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Abstract

Medical imaging with computed tomography (CT) aims at reconstructing a volu-
metric image of the patient’s anatomy from a sequence of planar X-ray projections.
The quality of reconstructed images is often degraded by residual patient motion,
especially when using slowly rotating C-arm robots or X-ray systems integrated with
linear accelerators for radiotherapy. The data acquisition might take from several
seconds up to one minute on those equipments. In particular, if the patient does not
manage to hold his or her movements during measurements, image resolution can
be impaired by strong motion blur artifacts.

This work was dedicated to the development of original techniques aiming at
improving the quality of CT images when X-ray projections contain non-periodic
patient motion. Since the developed methods do not assume any periodicity of the
motion model, they can correct artifacts due to unstructured patient motion, such as
breath-hold failure, abdominal contractions, and nervous movements. The proposed
solutions tackle for the first time the problem of motion correction in CT by using
solely the acquired data.

A first approach is to iteratively correct the reconstructed image by first decom-
posing the perceived motion in projection space into positive and negative parts,
then reconstructing the motion artifacts in image space, and finally, subtracting the
artifacts from an initial image of the anatomy. The initial image is reconstructed
from the acquired data without motion compensation but is nevertheless considered
as a reference for estimating the reconstruction artifacts.

An alternative approach consists of an iterative workflow to progressively esti-
mate a dynamic displacement vector field representing the position of image elements
over time. The motion information is then used within a motion-compensated vari-
ant of the analytical reconstruction algorithm to improve the image quality locally.
An elastic image registration step computes the displacement in projection space,
minimizing the difference between measured projections and reference projections
sampled from the image reconstructed in previous iterations. In addition, a mo-
tion segmentation procedure detects in image space the regions which are subject to
motion during acquisition.

Promising experimental results are summarized in qualitative figures and quan-
titative analyses. Experiments are based on numerically simulated projections from
a mathematical phantom and from a sequence of clinical images obtained from a
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Abstract

respiratory-gated acquisition on a fast helical CT scanner. Several elastic image reg-
istration methods are also evaluated for motion estimation purpose. In supplement,
a study comparing various image interpolation and approximation techniques and
their impact on reconstructed image fidelity is presented.

Keywords: computed tomography, iterative methods, motion segmentation, mo-
tion estimation, motion compensation.
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Kurzfassung

Bei der medizinischen Bildgebung mittels Computertomographie (CT) wird aus einer
Serie planarer Röntgenprojektionen ein dreidimensionales Bild der Anatomie eines
Patienten rekonstruiert. Die Qualität des rekonstruierten Bildes wird bei Einsatz
langsam rotierender Systeme, wie insbesondere Röntgen-C-Bögen oder an strahlen-
therapeutische Linearbeschleuniger gekoppelte Röntgensysteme, aufgrund der lan-
gen Aufnahmedauer von einigen Sekunden bis Minuten oft durch Bewegungen des
Patienten beeinträchtigt. Dabei führt insbesondere die Atmung sowie willkürliche
und auch unwillkürliche Bewegungen des Patienten zu starken Bildartefakten.

Diese Arbeit beschäftigt sich mit der Entwicklung zweier neuartiger Methoden
zur Korrektur derartiger Bewegungsartefakte. Dabei werden keine Forderungen an
die Periodizität des Bewegungsmodells gestellt, so dass auch Artefakte, welche durch
unregelmäßige Patientenbewegungen verursacht werden, wie zum Beispiel unwillkür-
liche Bewegungen beim Anhalten der Atmung, abdominelle Kontraktionen oder un-
kontrollierte Bewegungen korrigiert werden können. Die entwickelten Methoden
lösen erstmalig das Problem der Korrektur von Bewegungsartefakten einzig unter
Zuhilfenahme der gemessenen Daten.

Bei dem ersten iterativen Verfahren wird das rekonstruierte Bild dadurch kor-
rigiert, dass zunächst die Bewegungen aus den Projektionsdaten extrahiert und an-
schließend im Bildraum rekonstruiert werden, um schließlich von dem ursprünglichen
3D-Bild abgezogen zu werden. Dabei wird das initiale 3D-Referenzbild aus den
aufgenommenen Projektionsdaten rekonstruiert und enthält daher noch Bewegung-
sunschärfeartefakte, es wird dennoch als Referenz zur Schätzung der Rekonstruk-
tionsartefakte betrachtet.

Die zweite Methode basiert auf einer iterativen Bestimmung des dynamischen
Verschiebungsvektorfeldes, welches die zeitlich variierenden Positionen von Bildele-
menten beschreibt. In der folgenden Rekonstruktion wird die Rückprojektion nicht
entlang gerader, sondern durch die Verschiebungsvektoren definierter gekrümmter
Strahlen durchgeführt. Ein elastischer Registrierungalgorithmus berechnet die Ver-
schiebung im Projektionsraum durch Minimierung der Differenz aus gemessenen
Projektionen und Referenzprojektionen, welche aus dem in einer vorhergegangenen
Iteration rekonstruierten Bild berechnet werden. Zudem ermittelt ein Bewegungsseg-
mentierungsverfahren im Bildraum die Teile der Anatomie, welche sich tatsächlich
während der Aufnahme bewegt haben.
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Kurzfassung

Die entwickelten Methoden werden innerhalb zahlreicher Experimente sowohl auf
simulierten Daten eines mathematischen Phantoms als auch auf klinischen Daten,
welche auf einer schnellen atmungsgesteuerten Aufnahme mittels eines Spiral-CT
basieren, analysiert und evaluiert. Mehrere elastische Bildregistrierungsmethoden
werden auch zwecks Bewegungsschätzung bewertet. Durch den Einsatz verschiedener
Methoden zur Bewegungsschätzung sowie unterschiedlicher Bildinterpolation und
Bildapproximation während der Rekonstruktion konnten die entwickelten Verfahren
weiter verbessert werden.

Schlüsselworte: Computertomographie, iterative Methoden, Bewegungssegmen-
tierung, Bewegungsschätzung, Bewegungskompensierung.
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Preface

The present dissertation is summarizing the new knowledge that I gathered during
the past three years working in the field of image reconstruction with computed to-
mography (CT). This work has been kindly sponsored by the Marie Curie early stage
training (EST) programme of the European Commission. The European guidelines
are encouraging mobility of young researchers and the Comission provides financial
support for making this a reality.

I received a position as a doctoral researcher beginning on the first February
2007 and decided to seize the opportunity. I moved from Brussels, Belgium to the
little and charming town of Aachen in Germany. This was the first time in my life
I lived abroad and this experience brought much more discoveries than the results
presented in this volume.

In Aachen, I joined the labs of Philips Research, a private research organization
holding a network of research labs around the world, especially in The Netherlands,
Germany, France, Israel, and the USA. I worked there as a regular employee and
my task was to explore new techniques for the correction of motion blur artifacts
in the field of tomographic image reconstruction. The problem was very open. The
research was exploratory, hence, very exiting.

In parallel, the results developed during three years had to fulfill the requirements
for obtaining a doctoral degree from the Otto-von-Guericke University of Magdeburg,
Germany. The university was partner of the Marie Curie programme. I strived to
give the best of myself to reach the double-target of producing practically relevant
results for Philips while meeting academic requirements.

Balancing the objectives from the industrial world and the scientific commu-
nity was not easy and this certainly required much more dedication and time than
working as the other employees. As a corollary, I spent very few days for vacation
because of urgent matters in the “todo list.” The pressure was sometimes too high
and stressful for me but it also contributed to meet expectations.

In summer 2008, I had the chance to be selected for the prestigious IEEE EMBS
International Summer School on Biomedical Imaging organized in the Berder Island,
Bretagne, France. I travelled often to international conferences to present the current
state of my work and I always learned a lot from interactions with experienced
scientists and students.
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The topic of this thesis is the correction of motion artifacts that might arise in
volumetric images acquired by X-ray transmission scanners. The underlying prob-
lems to solve are identified as motion estimation, motion detection, and motion
compensation within existing analytical image reconstruction algorithms.

Image reconstruction with analytical methods was a firm requirement for back-
ward compatibility with the existing imaging chains. The direction of my research
aimed at demonstrating original techniques that would be readily applicable on ex-
isting scanners. Often, experiments have taken more importance over theoretical
justifications and it can be said that this work is fairly practical, even pragmatic.
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Most of the content of the present thesis has been presented to international con-
ferences and published in peer-reviewed scientific journals. The list of my personal
publications directly related to this work follows.

Journal Papers

1. Colas Schretter, Georg Rose and Matthias Bertram, “Image-Based
Iterative Compensation of Motion Artifacts in Computed Tomography,” Med-
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2. Colas Schretter, “A Fast Tube of Response Ray-Tracer,” Medical Physics,
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Conference Lectures

1. Colas Schretter, Fabian Pilatus, Georg Rose, Til Aach and Matthias
Bertram, “Optical Flow Motion Estimation for Approximate Motion Com-
pensation in Cone-Beam CT,” 10th International Meeting on Fully Three-
Dimensional Image Reconstruction in Radiology and Nuclear Medicine (Fully3D),
Beijing, China, September 6–12, Pages 327–330, 2009.

2. Colas Schretter, Christoph Neukirchen, Georg Rose and Matthias
Bertram, “Optimal Pre-Filtering for Linear Interpolation in Computed To-
mography,”2nd Workshop on High Performance Image Reconstruction (HPIR),
Beijing, China, September 6, Pages 29–32, 2009.

3. Colas Schretter, Christoph Neukirchen, Georg Rose and Matthias
Bertram, “Image-Based Iterative Compensation of Motion Artifacts in Com-
puted Tomography,” SPIE Medical Imaging, Lake Buena Vista, USA, 7–12
February, Volume 7258, Pages 72581W–8, 2009.

4. Colas Schretter, Christoph Neukirchen, Matthias Bertram and
Georg Rose, “Correction of Some Time-Dependent Deformations in Parallel-
Beam Computed Tomography,”5th IEEE International Symposium on Biomed-
ical Imaging (ISBI), Paris, France, May 14–17, Pages 764–767, 2008.

viii



Preface

Poster Presentations

1. Colas Schretter, Christoph Neukirchen, Georg Rose and Matthias
Bertram, “Local Correction of Non-Periodic Motion in Computed Tomogra-
phy,” SPIE Medical Imaging, Lake Buena Vista, USA, February 7–12, Volume
7258, Pages 72582M–12, 2009.

2. Alfonso A. Isola, Colas Schretter, Michael Grass, Matthias Bertram,
Georg Rose and Wiro J. Niessen, “Compensation of Periodic Cardiac Mo-
tion and Non-Periodic Abdominal Motion in Cone-Beam CT,” Marie Curie
Monitoring Mission, Alexander von Humboldt Foundation, Bonn, Germany,
January 29–30, 2009.

3. Colas Schretter, “Improving Image Quality in Computed Tomography by
Motion Estimation and Compensation,” 8th IEEE EMBS International Sum-
mer School on Biomedical Imaging, Berder, France, June 20–28, 2008.

Patent Applications

1. Colas Schretter, Matthias Bertram and Christoph Neukirchen,
“Method and Apparatus For Large Field of View Imaging and Detection and
Compensation of Motion Artifacts,” US 30961/04024, January, 2009.
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1
Introduction

X-ray transmission has been an ubiquitous technique for visualizing the hu-
man’s anatomy since its discovery attributed to Wilhelm Conrad Röntgen in

18951. By using computed tomography (CT) techniques, the inner structures of
convex objects can be revealed from external X-ray measurements. This work em-
phasizes on the applications of tomographic imaging during surgical interventions
and radiotherapy.

The ever increasing precision of digital detectors generated a current need for
the correction of general patient motion that often corrupts reconstructed images
with motion blur artifacts. Today, motion correction in CT is a crucial problem and
recent releases in literature indicate that this research topic becomes also increas-
ingly popular. Surprisingly, the correction of non-periodic residual motion for static
volumetric imaging is a problem that has not been tackled yet.

The theory behind image formation in CT assumes that the reconstructed ob-
ject remains static during data acquisition. Improving image quality of low-contrast
volumetric imaging when data contains non-periodic motion has been the major
problem tackled in this work. This introductory chapter overviews various applica-
tions of CT for medical imaging. Moreover, an experiment illustrates the general
problem of image degradation by unwanted breathing motion.

1.1 Volumetric Medical Imaging

Closed gantry computed tomography (CT) systems are often the modality of choice
for diagnostic volumetric imaging (Kalender, 2006). However, such systems are
only rarely used during minimally invasive interventional treatments due to the ring
structure which restricts the access to the patient during surgery. C-arm devices on
the other hand have an open structure which allows the examiner to fully access the
patient, making them the modality of choice for catheter guidance (Jaffray and
Siewerdsen, 2000; Rose et al., 2003).

1History has its peculiarities and it is seldom in science that inventions are attributed to inventors.
First discovered by Nikola Tesla in April 1887, the X-rays had a name before: the Bremsstrahlung
(braking radiation).
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(a) CT (b) C-arm

(c) LINAC (d) SPECT

Figure 1.1: Comparison of various CT scanners using the cone-beam geometry for volu-
metric anatomical imaging. The classical slipping ring CT (a) is a very fast closed-gantry
scanner used for diagnostic. The geometry of the X-ray focus source and the planar detec-
tor is well visible in the open-gantry C-arm system (b). C-arm robots are mainly used for
conventional fluoroscopy during interventions but CT acquisitions are possible with a slow
rotation speed. The LINAC systems (c) are used for radiotherapy and combines a focused
high-energy beam for treatment with a cone-beam CT setup used for patient positioning
and outcome control. Cone-beam CT systems are very versatile and are also combined with
SPECT scanners (d).

Nowadays CT devices are also embedded on linear accelerators (LINAC) for
radiotherapy (Cho et al., 1995; Jaffray et al., 2002; Dietrich et al., 2006) or
on single photon emission tomography (SPECT) scanners (Buck et al., 2008). For
example, figure 1.1 displays photographs of a fast slipping ring CT system used
for diagnostic imaging, a C-arm system used for interventional treatments with
catheters, a radiotherapy LINAC machine and a SPECT scanner combined with
a cone-beam setup. A well visible external X-ray tube and a flat panel detector are
mounted on the rotating gantry of those hybrid devices.

Only an X-ray point source and a detector are needed for CT imaging with
divergent ray geometries, also known as cone-beam geometries. An image recon-
struction method is then used to generate two-dimensional transversal slices of a
three-dimensional volumetric image from a corpus of X-ray projections (Grangeat,
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1991; Defrise and Clack, 1994; Katsevich, 2003). Projection data is taken while
the system is rotating around the object usually using either a circular or helical
trajectory. It is required that the object stays static during data acquisition for an
exact reconstruction from consistent projections.

In particular, C-arm systems were primarily developed for acquiring planar (2D)
views for real-time fluoroscopy. By programming an appropriate trajectory of the
robotic arm, it has been made possible to use C-arms for the acquisition of volumet-
ric (3D) images as well. With volumetric imaging capabilities, it is not necessary
anymore to move the patient to a dedicated CT room when requiring tomographic
images during a treatment procedure. A drawback of CT on such slow cone-beam
systems is the evidence of image artifacts that are generated implicitly by the moving
organs.

Hounsfield Units (HU)

In CT imaging, the values of the attenuation coefficients are conventionally expressed
in Hounsfield units (HU), which represent the attenuation of an object relative to
the attenuation of water. The unit is named after the designer of the very first CT
scanner, Sir Godfrey Newbold Hounsfield (1973). The conversion of the original
linear attenuation coefficient measurement values f to an image in Hounsfield units
µ is given by

µ(x, y, z) =
f(x, y, z)− µ(H2O)

µ(H2O)
· 1000, (1.1)

where the attenuation of water (H2O) is by definition equals to 0 HU.
The typical scale reaches from -1,000 HU for air to 3,000 HU for materials with

very high attenuation such as metal. The density of bone structures is patient-
specific and should range from around 400 HU to 800 HU. Due to the restricted
dynamic range of displays and humans’s perception only a limited window of at-
tenuation values is displayed to enhance the contrast for a certain type of material.
The mapping from the high dynamic range of CT numbers to grayscales is called
windowing.

When presenting results from experiments, all slices are extracted from volumet-
ric images represented by a Cartesian grid of 256×256×198 isotropic voxels of size
equal to 1.36 mm. Black is set to the attenuation of air and gray corresponds to the
attenuation of water. Highly attenuating materials such as bones yield to brighter
voxels.

1.2 Motion Blur Artifacts

Motion blur image artifacts are an ubiquitous and general problem in medical ap-
plications of CT (Chen et al., 2004). X-ray transmission and detection is very fast
and each acquired projection is a sharp snapshot of the anatomy. However, the
whole acquired dataset might be inconsistent if organ motion occurred during the
acquisition of all the projections that are necessary for image reconstruction. Data
inconsistencies introduce artifacts such as streaks, distortions and general blurring
in the reconstructed image.
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(a) Without motion (b) With breathing

Figure 1.2: Illustration of typical motion blur image artifacts that result when the patient
is breathing during an acquisition on a C-arm cone-beam CT device. The images are selected
slices from volumetric images reconstructed from simulated projections and allow the side-
by-side comparison of both reconstructions from consistent projections (a) and inconsistent
projections (b).

Since C-arm systems were not originally intended to be used for the purpose of
tomographic imaging, there is a major issue regarding the amount of time required
for an acquisition. A C-arm requires about five to twenty seconds for a single rotation
and some patients might not be able to hold still without breathing during the entire
acquisition time. This problem holds especially for older persons, patients under
sedatives, and young children.

Motion blur artifacts are even more problematic when using very slowly rotating
gantry CT scanners such as LINAC systems for radiotherapy (Fung et al., 2007).
On these heavy machines, a complete acquisition lasts for about one minute and the
patient will not able to hold his breath. Furthermore, other uncontrolled movements
such as heartbeat, nervous shaking or intestinal contractions can corrupt the data.
Data inconsistencies leads to severe motion blur artifacts in the reconstructed images.

Experiment

In order to grasp better the effect of patient motion in cone-beam CT, an experiment
has been conducted to analyse the image artifacts induced by simulated respiratory
motion during a simulated data acquisition on a C-arm system. The geometry of an
existing C-arm has been considered for sampling X-ray projections from a clinical
dynamic CT image of the respiration. The constrains of the perspective geometry
and the finite detector size induces truncations of the reconstructed image because
the region of possible reconstruction is smaller than the patient’s body.

For the experiment, projections in C-arm geometry were simulated using a phan-
tom consisting of a clinical image sequence. A slow acquisition of 12 seconds was
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modeled so that at least 3 breathing cycles are included in this acquisition. To sim-
ulate X-ray projections, a number of line integrals were taken from a specific frame
that was chosen according to the current breathing state. It results, that every 0.09
seconds, a new frame is taken. For the complete data acquisition, projections from
360 different angles has been generated which correspond to one projection every
0.03 seconds.

Results

Results of two reconstructed images are compared in figure 1.2. The first image is
computed from consistent data sampled from only one motion state. The second
image is reconstructed from inconsistent data and demonstrates severe artifacts.
The stomach and the liver are well visible in the transversal slice of the first image;
however, they appear as semitransparent organs in the motion-corrupted image. The
ghosting effect is the result of moving voxels that are estimated as a mixture of water
and air. In coronal slice, the border of the respiratory diaphragm is strongly blurred
as well.

To better visualize the dynamics of the respiratory movement, a flipbook ani-
mation has been inserted in the right margin of odd-numbered pages for browsing
among a selected slice crossing the chest. By flipping the pages very rapidly, starting
from page 95, an animation of the full breathing cycle will appear. The animation
shows some selected frames from a dynamic volumetric image that will be systemati-
cally used for experiments and evaluations of the various motion correction methods
presented in this work. The frames consist of central coronal slices extracted from
the 40 volumetric images of the dynamic sequence.

1.3 Previous Work

Motion correction is a ubiquitous problem for almost every tomographic imaging
modality. Indeed, the data acquisition process always take times and therefore
the problem of reconstructing a unique image become often ill-posed. This section
reviews alternative motion avoidance or motion compensation methods that have
been developed previously in medical tomography.

Emission Tomography

One of the first tomographic modality for which the crucial importance of motion
correction was raised is emission tomography (ET). Emission tomography scanners
such as positron emission tomographs (PET) or single photon emission tomographs
(SPECT) can produce low-resolution functional images of the metabolic uptake or
the cardiac activity.

Prior to the examination, a radioactive tracer is injected intravenously and
diffuses progressively into the organism. In PET, the radiolabelled tracer emits
positrons during its radioactive decay. After a short random walk, the positron
annihilates with an electron and two collinear high-energy photons are generated.

The PET scanner records the detection of coincident photon pairs that are emit-
ted in random direction from inside the body. With the list mode of all detected
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events, the spatial distribution of the radioactive tracer can be reconstructed to pro-
duce three-dimensional images. The detection of emission events by SPECT systems
is based on the detection of photons that are directly emitted from the radiological
decay of the injected gamma-emitting radioisotope.

A typical acquisition lasts for about 30 to 60 minutes in order to measure a
sufficient volume of data for image reconstruction. The scanning process is slow
by nature since the emission of high-energy photons is driven by the nuclear decay
process. In SPECT, early work by Fulton et al. (1994) tracks the rigid movement
of the head for brain studies for prospective compensation.

One representative alternative solution is currently developed in the group of
Gilland et al. (2008). Gilland is using an image based optical flow method to
estimate cardiac contractions for SPECT. In positron emission tomography (PET),
either the electrocardiogram (ECG) or the respiratory signal is extracted from the
data to produce motion-compensated 4D images (Livieratos et al., 2005; Qiao
et al., 2007; Blume et al., 2008).

Magnetic Resonance Imaging

Magnetic resonance imaging (MRI) is another kind of tomographic modality that
was developed for imaging the soft-tissue structures with an exceptional image res-
olution as demonstrated by Weiskopf et al. (2007), for example. MR scanners
are sensitive to water molecules and the recovery of contrast between different soft
tissues densities is much better when compared to X-ray imaging, for example.

However, parts of the anatomy that contains little amount of liquids, such as
bone structures, appear to be invisible on the image. Magnetic resonance is a field
of continuous and exiting expansion and new applications such as real-time tracking
of particles or recording of the brain activity can be acquired today.

A major drawback of imaging modalities based on the physical principle of mag-
netic resonance is directly linked to the high cost of the scanners multiplied by the
relatively long acquisition time. Because MR can not capture the metabolic activity,
the combination of MR and PET imaging modalities is natural. This project is one
of the next challenges in medical engineering.

For brain imaging, motion tracking using external cameras and computer vision
techniques has been applied in MRI as well (Dold et al., 2006). This solution
demonstrated very high accuracy and is relatively straightforward to implement.
Unfortunately, difficulties arise for the calibration of external cameras and the ad-
ditional cost of such an optical tracking system is affecting the adoption of motion
correction based on explicit external measurements.

For functional acquisitions in real-time, only a slice can be measured with current
MR scanners. However motion tracking systems have demonstrated superior results
(Speck et al., 2006) when compared to image-based correction of motion artifacts
such as the technique developed in the work of Manduca et al. (2004).

Dynamic Transmission Tomography

In medical applications of X-ray transmission tomography (CT), general patient
motion has not been considered as an important problem until relatively recently.
The specific case of cardiac imaging has been a predominant application of diagnostic
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CT. In cardiac imaging, either a static or a dynamic image of the myocardium is
reconstructed.

Early approaches to avoid data inconsistencies that are resulting from organ’s
motion have been to use a fast rotation speed of the gantry (Ritchie et al., 1992)
or to adapt the rotation speed (Willis and Bresler, 1995a,b) for each patient,
for example, according to the rate of the ECG signal. However, the acquisition
time on radiotherapy and interventional C-arm systems is slower than that on diag-
nostic closed-gantry CT scanners and the inconsistency of the acquired data is an
unavoidable problem.

Free breathing acquisition protocols are often used with slow gantry rotation.
While each projection is a sharp snapshot of the body at a certain motion state, the
back-and-forth movement of the respiratory diaphragm is contained in the sequence
of projections. For breath-hold acquisition protocols, the unstructured patient mo-
tion can be breath-hold failures, intestinal contractions, or nervous movements. For
cardiac or respiratory gated dynamic imaging, each reconstructed frame might ex-
hibit residual motion artifacts too, since a temporal window of a certain fixed width
is associated with each gate.

Predictive respiratory gating schemes have been suggested to acquire only pro-
jections that correspond to a given motion state (Ritchie et al., 1994; Vedam et al.,
2003), while retrospective gating allows the reconstruction of an image for each mo-
tion state of the breathing cycle (Sonke et al., 2005). As a drawback, methods
based on gating make the strong assumption that the patient motion is periodic
(Lauritsch et al., 2006; Hansis et al., 2008b,a). Recent publications demonstrate
that the periodicity hypothesis is valid only in few studies and alternatives are pro-
posed for dynamic angiographic imaging (Rohkohl et al., 2009a,b).

Static Transmission Tomography

If motion can not be avoided, some efforts were spent to detect where local motion
occurs in image space. Motion detection from complementary rays has been investi-
gated by Lin (1994), Linney and Gregson (2001), and Bruder et al. (2003).
However, those techniques require datasets containing redundant measurements.
Fourier space motion extractions (Chiu and Yau, 1994; Srinivas and Costa, 1994)
are techniques aiming at removing the motion signal from projection data but results
have not been very convincing in comparison to more modern methods exploiting
data consistency conditions (Chen and Leng, 2005).

Solutions based on pre-correction of input projection data exist to handle non-
periodic motion in CT. The correction is applied prior to reconstruction by resam-
pling the data after estimating the motion in projection space (Lu and Mackie,
2002) or by modifying the values of line integrals to ensure data consistency condi-
tions (Leng et al., 2007, 2008). Those methods allow using standard image recon-
struction algorithms; however, they are dedicated to capture only smooth motion or
a limited class of deformations such as global translations (Yu et al., 2006) or rigid
body motion (Yu and Wang, 2007). Furthermore, the resampling step introduces
some additional blurring and aliasing artifacts in the projection data.

A wealth of publications concerns the development of motion-compensated recon-
struction algorithms. Exact motion compensation within analytical reconstruction
methods (Kak and Slaney, 1988) of increasing complexity (Pack and Noo, 2004;
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Roux et al., 2004; Desbat et al., 2007b; Taguchi and Kudo, 2008a; Katsevich,
2008) have been compared to modified algebraic reconstruction methods (Desbat
et al., 2007a; Rit et al., 2009). It should be noticed that motion compensation is
solving only half of the problem.

Unfortunately, all of those motion-compensated algorithms assume that the
movement is known a priori. A remaining challenge is to estimate the motion from
the available line integral data. Some recent applications of the compressed sensing
theory (Donoho, 2006) aim at avoiding explicit motion estimation by reconstructing
image frames using only few projections (Chen et al., 2008).

A prior image from a diagnostic CT scan is often assumed to be available in order
to reconstruct a motion-compensated image using further input data in addition to
the acquired projections. For instance, the supplemental data can be a gated 4D
dynamic image (Li et al., 2006a,b) or a 3D static image (Zeng et al., 2007; Brandt
and Kolehmainen, 2007) from which the relative motion can be estimated by image
registration (Maintz and Viergever, 1998; Hill et al., 2001).

Those techniques can be applied to reconstruct a static volumetric image, even if
projections are not gated according to a motion signal. However, a motion correction
method that would estimate the patient motion from solely the acquired data is
preferable for standalone applications.

1.4 Outline

The present work aims at improving image quality of static soft-tissue volumetric
imaging on slow CT systems. A major technical restriction for the development of
solutions was that the image should ultimately be reconstructed using analytical
image reconstruction methods. While this limitative requirement is motivated by
traditions and backward compatibility, this document shows new and encouraging
image reconstruction results. The remainder of the thesis is organized as follows.

Chapter 2

In the next chapter, the inverse problem of image reconstruction from line integrals
is defined and analytical, algebraic and statistical solutions are explained. A deriva-
tion of closed form analytical expressions for the reconstruction of images from line
integrals will be given. In addition, alternative iterative approaches are discussed as
well. Analytical algorithms are of special interest since their performances is typi-
cally faster than other approaches and their results are representative of the current
gold standard in the field of CT reconstruction.

Chapter 3

In chapter 3, the impact of the traditional bilinear interpolation model on image
quality of CT reconstruction is experimented. This additional work proposes to im-
prove sharpness with simple prefiltering technique based on modern approximation
theory. A naive implementation provides images that might be corrupted by alias-
ing, ringing, or blurring artifacts. This study is not directly related to motion but
raises the importance of interpolation models in CT.
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Chapter 4

Chapter 4 presents an iterative solution for removing motion blur artifacts from
volumetric CT images. The technique is based on a combination of tomographic
reconstruction and some standard image processing techniques. Starting from a
standard reconstruction that is possibly corrupted by blurring artifacts, this image
is progressively sharpened with time. Iteratively, the image quality is improved by
estimating image artifacts and removing them from the corrupted initial image.

Chapter 5

Chapter 5 presents an alternative technique where the motion information is explic-
itly extracted from acquired data and used in an exact motion-compensated recon-
struction algorithm that was already available. The experiments are conducted in
2D only, using a mathematical phantom object.

Chapter 6

Encouraged by the results from chapter 5, the technique has been extended to the
3D parallel-beam geometry in chapter 6. Results of first experiments using motion
sampled from a real patient has been assessed on the clinical respiratory phantom
that is first introducted in chapter 4. Moreover, the image regions subject to motion
are detected and the new concept of local motion compensation is presented.

Chapter 7

In chapter 7, the local motion correction technique has been applied to the cone-
beam geometry of an existing simulated C-arm system. The finite size of the digital
detector induces truncation of the data in both the axial and transversal directions.
Therefore, the method has been modified to accommodate this important additional
constraint. As a solution, a scout reconstruction is created using an iterative recon-
struction technique for a more accurate motion detection and motion estimation.

Chapter 8

The success of any motion compensated image reconstruction depends ultimately on
the accuracy of the estimated motion information. Chapter 8 focuses on this sub-
problem and compares two alternative elastic image registration methods for the
purpose of motion estimation in cone-beam CT. An iterative method based on the
optical flow theory is compared to a simpler and faster block-matching algorithm.
Extensive experimentations have been conducted and key results are reported.

Summary and Future Work

Finally, this dissertation is finalized with a summary of the contributions and some
propositions for future work. While supressing the influence of arbitrary patient
motion on image quality has been the central problem tackled in this thesis, sev-
eral pending problems and limitations of current solutions are still not solved yet.
Therefore, many different tracks for future investigations are discussed in details.
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2
Image Reconstruction
in Computed Tomography

Medical applications of computed tomography (CT) are nowadays a part of
the daily clinical routine. This technique can produce very detailed volumetric

anatomical images. The structures such as bones, the outer shape and inner details
of organs can be visualized in three dimensions. With local injection of contrast
agent, CT imaging can extract the shape of arteries and veins for imaging the car-
diovascular network. Volumetric images ease the guidance of surgical interventions
with catheters and are also used for outcome control.

Image reconstruction is the field of computational methods aiming at estimat-
ing a planar (2D) or volumetric (3D) image in function of the collection of X-ray
projections from the image of interest. The dataset is often acquired for a limited
field of view (FOV) by means of the transmission of X-ray through a physical object
composed of various material’s densities.

This chapter describes formally this data acquisition process and introduces the
theoretical background necessary to justify the development of analytical solutions
for solving the inverse problem of image reconstruction from line integrals. Addi-
tionally, the algebraic and statistical approaches to iterative image reconstruction
are also introduced.

2.1 Acquisition of X-Ray Projections

X-ray transmission computed tomography (CT) reconstructs a volumetric attenu-
ation image from several radiographies of a static object1. Digital radiographs are
taken at different orientations during a sequential data acquisition phase. Image for-
mation in CT transforms a collection of measured line integrals to an image of the
spatial distribution of X-ray attenuation factors. The reconstructed image depicts
the inside structures of the observed object.

To measure line integrals with X-ray transmission, high energy photons are gen-
erated by a X-ray tube and transmitted through the observed object. A certain

1In medical applications of CT, the observed object is alive and therefore never really static.
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Figure 2.1: Parameterization of line integrals for the 2D parallel-beam geometry. Each
line in the planar space of axis x and y is parameterized by the orientation of the detector
φ and a signed distance to the origin s. The half-length of the line segment inside a limited
field of view (FOV) is denoted by l. The thick line segment shows the virtual detector which
passes through the origin and is orthogonal to the projection direction.

quantity of photons are photo-absorbed inside the body or scattered during their
transport. The remaining light intensity is measured by a detector.

Raw data contains measured intensities, proportional to the number of photons
that were not absorbed during their passage through the object lying in between
the focus point of the X-ray tube and the detector’s pixel. Knowing the initial
emitted intensity, the input data are converted to digital tomographic projections
that sample line integrals through the object that shall be reconstructed.

2.1.1 Beer’s Law and Log Transform

Let f (x, y) → R be a continuous two-dimensional function where (x, y) ∈ R2

are Cartesian spatial coordinates. One wants to acquire from f the line integrals
g (s, φ) → R, where s ∈ R and φ ∈ [0, π) are the signed distance from the origin
and the angular coefficient of a line, respectively. The geometrical interpretation of
the line integral parameters s and φ in the coordinate system of the function f is
illustrated in figure 2.1.

Given I0 > 0, the initial emitted intensity of the X-ray tube, the Beer’s law says
that the remaining intensity after attenuation along the line parameterized by the
pair (s, φ) will be equal to

I (s, φ) = I0 exp
(
−
∫ ∞
−∞

f (s cosφ− t sinφ, s sinφ+ t cosφ) dt
)
, (2.1)

where the function f represents the spatial distribution of linear X-ray attenuation
factors.

In the above expression, the exponential’s argument is the negative of the line
integral through f . By posing

g (s, φ) =
∫ ∞
−∞

f (s cosφ− t sinφ, s sinφ+ t cosφ) dt, (2.2)
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one can write the Beer’s law in a more compact form as

I (s, φ) = I0 e
−g(s,φ). (2.3)

The relation between measured intensities and line integrals is made evident
when isolating g (s, φ). The negative natural logarithm of the ratio between initial
and measured intensities yields

g (s, φ) = − ln
I (s, φ)
I0

. (2.4)

This conversion from relative intensities to line integrals process is commonly known
as the “log transform”. The collection of all line integrals g (s, φ) is called the Radon
transform of f .

2.1.2 Practical Considerations

While reasoning from the Beer’s law is theoretically sound, some practical consid-
erations are important to point out. In practice, measured data are corrupted by
secondary physical effects such as occlusion (Robertson et al., 1988) (metalic ob-
jects), beam hardening (Hsieh et al., 2000) (low energy photons are more likely to
be photo-absorbed), Compton and Rayleigh scattering (Ning et al., 2004; Rinkel
et al., 2007) (photons do not follow exactly linear paths). Furthermore, the limited
dose and the photon count performances of the detector (Jaffray and Siewerd-
sen, 2000) limit the accuracy of measurements (the number of detected photons
follows Poisson statistics).

Additional higher-order physical effects introduce optical blurring such as scat-
tering inside the scintilator crystals of the detector. Electronic noise (approximately
Gaussian) equally corrupts the raw measures of the detector. The capacity to deal
with innacurate line integrals is the first challenge to overcome for the development
of practical image reconstuction methods. Therefore, the two following sections fo-
cus on how to solve the image reconstruction problem with direct inversion and
iterative approximation methods.

2.2 Analytical Image Reconstruction

The inverse problem of defining f (x, y) → R from its lines integrals g (s, φ) → R
has been tackled by Radon in 1917. His original article was written in German and
has been translated to English and re-published in Transactions on Medical Imaging
(Radon, 1986). The seminal work of Radon has provided the necessary mathemat-
ical background for the development of tomographic reconstruction algorithms.

Analytical image reconstruction methods compute images with closed-form so-
lutions based on a fundamental mathematical relation shown by Radon: the central-
slice theorem. This theorem shows that one can uniquely reconstruct the original
attenuation image from a simple combination of the information from each projec-
tion in Fourier space. However, analytical methods assume that an infinite number
of measures are available. In practice, the size of the dataset is limited, and a lot of
noise is present in the measures.
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This section defines the central-slice theorem that relates the two-dimensional
Fourier transform of the attenuation distribution to the one-dimensional Fourier
transform of a parallel projection. A parallel projection is defined as a set of integrals
along a family of parallel lines. Based on the theory of the Radon transform, the
direct Fourier reconstruction and the filtered backprojection (FBP) algorithms are
derived. Furthermore, the FDK algorithm for cone-beam geometry is presented.

2.2.1 Fourier Transform

Consider a function f (x, y) representing a planar image defined in the spatial do-
main. The two-dimensional Fourier transform F (vx, vy) maps the function f (x, y)
from spatial to frequency domain:

F (vx, vy) =
∫ ∞
−∞

∫ ∞
−∞

f (x, y) e−2πi(xvx+yvy)dxdy. (2.5)

The inverse Fourier transform is defined in a very similar way, only the sign of the
argument of the exponential is changed and the integration holds in the frequency
domain:

f (x, y) =
∫ ∞
−∞

∫ ∞
−∞

F (vx, vy) e2πi(xvx+yvy)dvxdvy. (2.6)

In the same way, consider a function g (s, φ), representing a one-dimensional
projection, defined in the spatial domain. The associated one-dimensional Fourier
transform G (v, φ) is defined by

G (v, φ) =
∫ ∞
−∞

g (s, φ) e−2πisvds, (2.7)

while the one-dimensional inverse Fourier transform of G (v, φ) recovers the original
projection data, hence

g (s, φ) =
∫ ∞
−∞

G (v, φ) e2πisvdv. (2.8)

2.2.2 Central-Slice Theorem

The central-slice theorem states that the one-dimensional Fourier transform of the
Radon transform with respect to the signed distance s is related to the two-dimensional
Fourier transform of the function f :

G (v, φ) = F (v cosφ, v sinφ) .

This relation holds for any projection angle φ and is a direct consequence of
the invariance for translation of the Radon transform. This theorem is proven by
first writing explicitly the Fourier transform G (v, φ) and by replacing the Radon
transform g (s, φ) by its definition as line integral of f :

G (v, φ) =
∫ ∞
−∞

g (s, φ) e−2πisvds
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(a) Phantom (b) Sinogram (c) Reconstruction

Figure 2.2: Analytical reconstructions of the 2D Shepp-Logan head phantom (a) from its
Radon transform (b). Each column of the dataset contains the 1D signal corresponding
to one specific projection angle. Since the trajectory of projected points follows sinusoidal
curves. The FBP reconstruction (c) uses a limited amount of data and therefore is always
an approximation of the original image.

=
∫ ∞
−∞

∫ ∞
−∞

f (s cosφ− t sinφ, s sinφ+ t cosφ) e−2πisvdtds

=
∫ ∞
−∞

∫ ∞
−∞

f (x, y) e−2πiv(x cosφ+y sinφ)dxdy

= F (v cosφ, v sinφ) (2.9)

In the above derivation, the polar parameter s was related to the Cartesian
coordinates x and y with the following changes of variables:{

x = s cosφ− t sinφ
y = s sinφ+ t cosφ

(2.10)

Then, by multiplying the first and second equations by respectively cosφ and sinφ,
we get {

x cosφ = s cos2 φ− t sinφ cosφ
y sinφ = s sin2 φ+ t cosφ sinφ

(2.11)

and finally, summing these two equations yields an expression for s:

x cosφ+ y sinφ = s
(
cos2 φ+ sin2 φ

)
= s. (2.12)

2.2.3 Direct Fourier Reconstruction

A direct application of the central-slice theorem is that the whole Fourier transform
F of an image f (x, y) → R where (x, y) ∈ R2 can be recovered if the projections
gφ (s) → R are measured for all orientations φ ∈ [0, π). This leads to an algorithm
known as “direct Fourier reconstruction”.

The direct Fourier reconstruction algorithm processes each measured projection
angle φ and sets F (v cosφ, v sinφ) = G (v, φ) where F and G are the two- and
one-dimensional Fourier transform of f and g, respectively. The two-dimensional
inverse Fourier transform of F is the reconstructed image f in the spatial domain.
The implementation of a discrete version of this algorithm can be made efficient by
relying on a standard implementation of the fast Fourier transform (FFT).
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Center Radii Rotation Density
(0,0,-0.25) (0.69,0.92,0.9) 0 2

(0,-0.0184,-0.25) (0.6624,0.874,0.88) 0 -0.98
(-0.22,0,0) (0.41,0.16,0.21) -72 -0.02
(0.22,0,0) (0.31,0.11,0.22) 72 -0.02
(0,0.35,0) (0.21,0.25,0.35) 0 0.01
(0,0.1,0) (0.046,0.046,0.046) 0 0.01
(0,-0.1,0) (0.046,0.046,0.046) 0 0.01

(-0.08,-0.605,0) (0.046,0.023,0.02) 0 0.01
(0.06,-0.605,0) (0.046,0.023,0.02) -90 0.01

(0.06,-0.105,-0.875) (0.056,0.04,0.1) -90 0.02
(0,0.625,0.1) (0.056,0.056,0.1) 0 -0.02
(0,-0.605,0) (0.023,0.023,0.023) 0 0.01

Table 2.1: Geometrical definition of the mathematical low-contrast 3D Shepp-Logan phan-
tom. The object is defined by twelve ellipsoids whose centers and elliptic radii are indicated
in the two first columns. The ellipsoids are oriented by the rotation around the depth
axis. The rotation angles in degree and the associated densities are indicated in the two
last columns. Note that the 2D Shepp-Logan phantom is defined by the ten ellipses in
intersection with the plane z = 0.

A drawback of the direct Fourier reconstruction technique is that interpolations
are required to transform line integrals from polar coordinates (v, φ) to Cartesian
coordinates (vx, vy). An alternative application of the central-slice theorem is the
filtered backprojection (FBP) algorithm.

2.2.4 Filtered Backprojection (FBP)

The FBP inversion implicitly avoids the conversion from Cartesian to polar coor-
dinates. The algorithm can be derived by first expressing the reconstructed im-
age f (x, y) as a two-dimensional inverse transformation of its Fourier transform
F (vx, vy):

f (x, y) =
∫ ∞
−∞

∫ ∞
−∞

F (vx, vy) e2πi(xvx+yvy)dvxdvy. (2.13)

The straightforward change from Cartesian (vx, vy) to polar (v, φ) coordinate
systems yields the following expression:

f (x, y) =
∫ 2π

0

∫ ∞
0

v F (v cosφ, v sinφ) e2πiv(x cosφ+y sinφ)dvdφ. (2.14)

By the central-slice theorem, F (v cosφ, v sinφ) is rewritten as G (v, φ) and the
(x cosφ+ y sinφ) exponent is rewritten as s. The expression can be rewritted in
the following shorten form:

f (x, y) =
∫ 2π

0

∫ ∞
0

v G (v, φ) e2πivsdvdφ. (2.15)

Finally, by symmetry of trigonometric functions and symmetry of the Radon
transform, i.e. g (s, φ) = g (−s, φ+ π), the integration can be limited to half of the
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angular domain:

f (x, y) =
∫ π

0

∫ ∞
−∞
|v|G (v, φ) e2πivsdvdφ. (2.16)

The first integral over all possible orientations 0 ≤ φ < π is the backprojection
operator. In this case, the backprojection is applied to the inverse Fourier transform
of |v|G (v, φ).

The weighting function |v| is linearly increasing. Therefore, high-frequencies
contributions are emphasized and the reconstruction will be very sensitive to high-
frequency noise in the data. For this reason, and unfortunately, tomographic recon-
struction is an ill-conditioned problem and often a low-pass smoothing filter is used
to attenuate high frequencies in the data. This appodization introduces some blur-
ring in the reconstructed image. Blurring alleviates noise artifacts, but also limits
the intrinsic image resolution.

FBP Algorithm

Implementation of FBP usually splits the reconstruction in two successive steps. In
the first step, each projection g (s, φ) is filtered:

g∗ (s, φ) =
∫ ∞
−∞
|v|G (v, φ) e2πivsdv

=
∫ ∞
−∞

h
(
s− s′

)
g
(
s′, φ

)
ds′

= [g ∗ h] (s, φ) (2.17)

As seen by the last expression, this operation is a simple one-dimensional convolution
of the projection with the following ramp filter :

h (s) =
∫ ∞
−∞
|v| e2πivsdv. (2.18)

In the second step, all filtered projections are backprojected to image space to
reconstruct the original image:

f (x, y) =
∫ π

0
g∗ (s, φ) dφ

=
∫ π

0
g∗ (x cosφ+ y sinφ, φ) dφ (2.19)

The two-step filtering and backprojection formulation allows the reconstruction
of an image function f from its line integrals without requiring back and forth
Fourier transformations and without explicit interpolation between polar and Carte-
sian grids. The former theory is derived for two-dimensional images only. However,
the volumetric reconstruction problem can be reduced to reconstructing independent
two-dimensional slices for each row of the detector.

Figure 2.2 shows the result of a FBP reconstruction from 1024 projections of the
mathematical 2D Shepp-Logan phantom (Shepp and Logan, 1974). The phantom
is defined by twelve ellipsoids of various size, position, orientation and density. The
geometric parameters of the 3D Shepp-Logan phantom are presented in Table 2.1.
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Windowing the Ramp Filter

As motivated above, since the integral h (s) is not convergent, one could choose to
attenuate high-frequencies in the reconstructed image. For example, one could limit
the lower and upper bounds of the integration variable to a finite range. However,
it is more common to apodize progressively the ramp kernel with a low-pass window
w (v):

hw (s) =
∫ ∞
−∞

w (v) |v| e2πivsdv, (2.20)

where the Hanning window with cut-off frequency vcut defined below has been used
to “bend” the ramp function |v|:

w (v) =
{

1+cos(πv/vcut)
2 |v| ≤ vcut
0 |v| > vcut

(2.21)

The value of the window function smoothly decreases with increasing abso-
lute values of the frequency parameter v. Therefore, high-frequency contributions
smoothly vanish instead of being hardly clamped when using the apodized ramp
kernel filter hw (s).

2.2.5 Feldkamp-Davis-Kress (FDK)

In 1984, Feldkamp, Davis and Kress published the so-called FDK method (Feld-
kamp et al., 1984), a practical FBP algorithm for cone-beam geometry. In compari-
son to a regular FBP implementation, their technique requires only slight modifica-
tions of the filtering and backprojection steps. Namely, the line integrals projections
must be weighted prior to ramp filtering and an additional weighting is incorporated
in the backprojection.

It is important to mention that for circular acquisitions, it is theoretically im-
possible to reconstruct the object exactly. Indeed, Tuy (1983) proved a sufficiency
condition for exact reconstruction in cone-beam geometry. This simple condition
state that an exact reconstruction is possible for slices crossed by the the trajectory
of the X-ray source. Smith (1985) proved that this simple condition is not only suf-
ficient, but necessary. Therefore, the literature mentions often jointly the necessary
and sufficient conditions of Tuy-Smith (Schomberg et al., 2009).

Although many variants and alternatives to the original FDK method have been
suggested, the success of FDK is tremendeous. Its simplicity and its very fast ex-
ecution speed are certainly the two key factors for its widespread adoption. In the
central slice, the FDK algorithm reduces to FBP for the fan-beam geometry and
therefore FDK produces exact reconstruction in this transversal section.

Perspective Projection and Backprojection

Data acquisition in divergent rays geometries and a circular trajectory can be pa-
rameterized by the time-varying position of the X-ray source, its distance to the
rotation axis R, and the distance from the rotation axis to the detector D. When
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Figure 2.3: Analytical reconstructions of the 3D Shepp-Logan phantom with the FBP
and FDK methods. The reconstruction is exact in the central transversal slice for both
methods. However, a characteristic intensity drop is observed in coronal slices with FDK.
The corresponding slices from the voxelized reference phantom image are shown as well for
comparison purpose. The white square shows the boundaries of close-up views.

the gantry is oriented at angle φ ∈ [0, 2π), the perspective projection operator

Pφ (x, y, z) = (y cosφ− x sinφ, z)
(R+D)

U
(2.22)

maps a point (x, y, z) ∈ R3 defined in object space to a point (u, v) ∈ R2 defined in
projection space.

The denominator in (2.22) is the perspective factor

U = Uφ (x, y) = R+ x cosφ+ y sinφ (2.23)

which is equal to the distance between the source and the orthogonal projection of
the voxel position on the central plane. The central plane contains the source point
and is orthogonal to the rotation axis.

The adjoint of the perspective projection operator

P ′φ (u, v) = (−u sinφ, u cosφ, v)
R

(R+D)
(2.24)

maps a point (u, v) ∈ R2 defined in projection space to a point on a virtual detector
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defined in object space. The constant ratio M = R/ (R+D) is also called the
magnification factor. The virtual detector shares the same orientation with the real
one but is smaller, proportionally to M , and centered on the origin of the FOV.

Divergent Ray Integrals

Let f (x, y, z) → R be a volumetric image where (x, y, z) ∈ R3 are Cartesian coor-
dinates in image space. The function f is compactly supported in the cylindrical
FOV such that f (x, y, z) = 0 when

√
x2 + y2 > D. Let gφ (u, v) → R be the line

integrals of f where (u, v) ∈ R2 are Cartesian coordinates in projection space and
φ ∈ [0, 2π) is the orientation of the detector.

When the gantry is oriented at angle φ ∈ [0, 2π), the position of the point source
is equal to R ~dφ where the vector ~dφ = (cosφ, sinφ, 0) is normal to the detector
plane. Therefore, the values of acquired line integrals are equal to

gφ (u, v) =
∫ 1

−1
f
(
t P ′φ (u, v) + (1− t)R ~dφ

)
dt. (2.25)

In this expression, the points on the integrated line segment connecting the X-ray
source to a pixel of the detector are selected by varying the integration parameter t.

FDK Algorithm

The FDK reconstruction proceeds in three successive steps. First, the projection
data are pre-weighted such that

g
′
φ (u, v) = gφ (u, v)

R+D√
R2 + S

, (2.26)

where S = M2
(
u2 + v2

)
is the squared distance between the detector pixel (u, v)

and the central transversal plane.
Second, pre-weighted line integrals are convolved with a ramp filter h. The

derivation of the filter is identical to the parallel-beam case. The pre-weighted
filtered projections are noted

g∗φ (u, v) =
[
g

′
φ ∗ h

]
(u, v) . (2.27)

Finally, a perspective backprojection is applied independently for each voxel of
the reconstructed volume:

f (x, y, z) =
∫ 2π

0

R2

U2
g∗φ (Pφ (x, y, z)) dφ, (2.28)

where R2/U2 is the weighting factor for backprojection.
Figure 2.3 presents a visual comparison of the reconstruction of the conventional

3D Shepp-Logan phantom defined by Table 2.1. The exact reconstruction of FBP
in parallel-beam is compared to the approximate result from FDK in cone-beam
geometry.

While the reconstruction is exact in the central slice with FDK, some inaccuracies
appear for slices that are shifted along the axial direction. The typical intensity drop
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Iteration per dataset Iteration per projection Iteration per ray
Algebraic SIRT SART ART
Statistical MLEM RAMLA -

Table 2.2: A classification of some key algebraic and statistical iterative image recon-
struction methods. The granularity of methods can be sorted according to the frequency of
image updates (iteration or sub-iteration). It seems that no statistical algorithm has been
implemented yet for tomographic image reconstruction with ray-by-ray image updates.

is symptomatic of the so-called cone-beam artifacts that are unavoidable with the
plain FDK method. Some modifications of the backprojection weighting overcome
partially the cone-beam artifacts (Hu, 1996; Zhu et al., 2007). Another solution
proposed by Hsieh (2000, 2003) is to reconstruct the artifacts for correcting the
image in a second reconstruction pass.

2.3 Iterative Image Reconstruction

Iterative image reconstruction refers to the broad family of techniques that do not
rely on closed-form analytical inversions but on progressive improvement of an im-
age estimate. The computational performances of iterative reconstruction methods
are not as attractive as analytical solutions; however, their intrinsic flexibility can
account with ease practical issues such as Gaussian or Poisson noise modeling or
an accurate simulation of the physics of photon transport including physical effects
such as beam hardening and scattering.

Iterative methods are classified into two categories: algebraic and statistical re-
construction algorithms. Many alternative reconstruction techniques can be found
in the literature and only four of them are compared in this section. Table 2.2 clas-
sifies the specific methods of interest: the algebraic SIRT and SART algorithms and
the statistical MLEM and RAMLA algorithms.

While the MLEM and RAMLA have been derived for the Poisson noise model in
emission tomography, those algorithms can be applied safely for the reconstruction
from noise-free line integrals. Indeed, the experiments reconstruct a mathematical
phantom object for which perfect line integral data can be generated. In this case,
both algebraic and statistical methods should converge to the same unique image.
However, small discrepancies appears in practice, due to specific numerical properties
of the arithmetical operations and the unavoidable inacuracies of integration and
interpolation methods.

2.3.1 Algebraic Algorithms

The very first image reconstruction method used by Hounsfield in 1971 was an
implementation of the method of projections by Kaczmarz (1937), also known as
the algebraic reconstruction technique (ART) that was developed by Gordon et al.
(1970). Later, this technique was superseded by the faster FBP methods (Pan et al.,
2009). However, with the ever increasing computational power, algebraic methods
have regained some popularity.
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Iteration 0 Iteration 8 Iteration 16 Iteration 32

Iteration 64 Iteration 128 Iteration 256 Iteration 512

Figure 2.4: Iterative reconstruction of the Shepp-Logan phantom with the simultaneous
iterative reconstruction technique (SIRT).

Subiteration 32 Subiteration 64 Subiteration 128 Subiteration 256

Subiteration 512 Subiteration 1024 Subiteration 2048 Subiteration 4096

Figure 2.5: Iterative reconstruction of the Shepp-Logan phantom with the simultaneous
algebraic reconstruction technique (SART). The relaxation parameter was set to λ = 0.2.
For a better vizualization at the early stage of the reconstruction, the window level and
width of the first image have been set to 0.6 and 0.8 respectively.
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This section will present formally the simultaneous iterative reconstruction tech-
nique (SIRT) and the faster simultaneous algebraic reconstruction technique (SART)
introduced as a superior implementation of ART2 by Andersen and Kak (1984).
The convergence speed of those more modern implementations is by nature slower
than the ART method (Jiang and Wang, 2003). However, they demonstrated su-
perior image quality (Andersen, 1989) and define the current state of the art of
iterative algebraic reconstructions.

Algebraic methods model the image formation problem as the following system
of linear equations

Af = g, (2.29)

where g is a vector containing the line integrals measured from the original image
f . A discrete-discrete problem is defined if both the set of measurements M is finite
and the set of image elements N is finite as well. The elements Aij of the system
matrix A contains the (partial) contributions of measurements gi, i ∈ M to image
elements fj , j ∈ N .

Instead of storing explicitly the system matrix A, the value of its elements Aij
are usually computed on the fly by ray-tracing techniques. When processing a given
line integral gi, every element fj along the path of the line integral are directly
accessed by the ray-tracer. An approximation of f will be iteratively estimated from
g. In practice, the number of measurements exceeds the number of unknown image
elements and the system is said to be over-determined. Therefore, the solution is
not unique if data are inconsistent.

SIRT

Starting from an empty image at iteration n = 0, the SIRT algorithm updates each
image element fj , j ∈ N at iteration n > 0. The update is defined by

fn+1
j = fnj +

1
Sj

∑
i∈M

Aij∑
j∈N Aij

(gi − ĝni ) , (2.30)

where each update factor depends on the average difference between measured line
integrals gi, i ∈ M and their corresponding forward projection from the current
image ĝni =

∑
j∈N Aij fj

n. The sensitivity term Sj =
∑

i∈M Aij normalizes the
correction term by the total of contributions from line integrals passing through the
given image element fj , j ∈M .

The progressive image reconstruction of the Shepp-Logan phantom can be ap-
preciated in figure 2.4. To model the finite size of detector bins, each projection
contains 256 measures that are computed by averaging 16 parallel line integrals
evaluated from the mathematical definition of the phantom. This process effectively
computes strip integrals to attenuate the aliasing generated by sharp transitions
between ellipsoids.

The dataset consists of a large number (1024) of non-truncated noise-free pro-
jections in parallel-beam geometry. This classical setup is the most favorable case
for analytical reconstruction algorithms. Nevertheless, the final reconstructed im-

2It can be said that the implementation of every image reconstruction algorithm is more than a
technical task, but also a kind of art.
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age tends to be more regular and contains less streaks in comparison with the FBP
reconstruction of figure 2.2 (c) in the preceding chapter.

SART

In contrast to the SIRT method, the SART algorithm updates the current image
estimate for each batch of line integrals corresponding to a carefully chosen projec-
tion angle α. Since the image is updated before processing the whole corpus of data,
the convergence speed is faster than SIRT. In addition, the running time does not
depend anymore on the number of projections present in the dataset. In practice, a
relaxation factor 0 < λ < 2 is used to limit the convergence speed and stabilize the
estimation process when inconsistent data are used.

The value of image element fj , j ∈ N at the subiteration n > 0 is defined by

fn+1
j = fnj + λ

[
1
Sαj

∑
i∈Mα

Aij∑
j∈N Aij

(gi − ĝni )

]
, (2.31)

where each update factor depends on the difference between a subset of the measured
line integrals gi, i ∈Mα when the detector is oriented at angle 0 ≤ α < 2π and the
forward projection from the current image fn. This update factor is multiplied by
the relaxation parameter λ and normalized by sensitivity term Sαj =

∑
i∈Mα Aij .

The ordering or projections and the choice of the relaxation factor is critical for
tuning the performances of the method (Herman and Meyer, 1993; Strohmer
and Vershynin, 2009). For the experiments, the projections have been selected
according to a golden search rule that was suggested by Köhler (2004). The relax-
ation factor has been set to the conservative constant λ = 0.2 (Trummer, 1984).
The image formation, starting from an empty image, can be appreciated in figure 2.5.

2.3.2 Statistical Algorithms

Algebraic algorithms cast the image reconstruction problem as solving a system
of linear equations. By slightly updating the current image estimate at each it-
eration, the solution that matches the data in the least square sense is iteratively
approached. In constrast to algebraic methods, statistical algorithms maximize iter-
atively the probability of observing the input data from the current image estimate.
This approach exploits the statistical nature of the data and tends to avoid artifacts
in reconstructed images more efficiently.

Traditional statistical image reconstruction methods are based on the iterative
expectation-maximization (EM) algorithm described in the seminal paper of Demp-
ster, Laird and Rubin in 1977 (Dempster et al., 1977). The EM optimization
method is used to approach maximum likelihood estimates of classical machine
learning problems such as the estimation of maximum likelihood Gaussian mixture
models. Applying EM for tomographic image reconstruction was first proposed in
the context of emission tomography by Shepp and Vardi (1982). The EM algo-
rithm has been quickly adapted to transmission tomography by Lange and Carson
(1984).

Since then, many successive improvements have been discussed in the literature.
A lot of work was adopting the Bayesian approach of maximum a-posteriori (MAP)
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Iteration 0 Iteration 8 Iteration 16 Iteration 32

Iteration 64 Iteration 128 Iteration 256 Iteration 512

Figure 2.6: Iterative reconstruction of the Shepp-Logan phantom with maximum likelihood
expectation-maximization (MLEM).

Subiteration 32 Subiteration 64 Subiteration 128 Subiteration 256

Subiteration 512 Subiteration 1024 Subiteration 2048 Subiteration 4096

Figure 2.7: Iterative reconstruction of the Shepp-Logan phantom with the row-action
maximum likelihood algorithm (RAMLA). The relaxation parameter was set to λ = 0.1.
For a better vizualization at the early stage of the reconstruction, the window level and
width of the first image have been set to 0.6 and 0.8 respectively.
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estimation to regularize the maximum likelihood objective (Lange and Fessler,
1995). Another branch of investigation is improving convergence speed by using
subsets of the whole data. The paper of Hudson and Larkin (1994) introducing
the faster, but non-convergent, ordered subset EM (OSEM) was a milestone.

Later, the use of subsets was extended to a convergent ordered subset algorithm
using complete data (COSEM) in emission tomography by Hsiao et al. (2004).
In transmission, methods such as the ordered subset convex algorithms proposed
by Kamphuis and Beekman (1998) or the convergent incremental optimisation
transfer algorithm of Ahn et al. (2006) are representatives of the state-of-the-art in
tomographic iterative image reconstruction.

Among the wide collection of existing statistical reconstruction algorithms, this
section will only present formally the very first maximum likelihood expectation-
maximization (MLEM) method of Shepp and Vardi (1982) and the faster row-
action maximum likelihood algorithm (RAMLA) by Browne and De Pierro (1996).
Those two methods are older but nevertheless, their underlying principles influenced
in a great part the direction of current research investigations.

MLEM

Starting from a positive-definite initial image at iteration n = 0, the MLEM algo-
rithm updates each image element fj , j ∈ N at iteration n > 0. The update is
defined by

fn+1
j = fnj

1
Sj

∑
i∈M

Aij (gi/ĝni ) , (2.32)

where each update factor depends on the average ratio between measured line inte-
grals gi, i ∈ M and their corresponding forward projection from the current image
ĝni =

∑
j∈N Ai,j f

n
j . The sensitivity term Sj =

∑
i∈M Aij normalizes the correction

term by the total of contributions from line integrals passing through the given image
element fj , j ∈M .

The MLEM equation shares a striking ressemblance with SIRT. A division in-
stead of a difference is used to evaluate the discrepancy between acquired line inte-
grals gi and the forward projection from the current image. Accordingly, the value
of each image element is corrected by multiplying the correction factor while SIRT
relies on incremental image update. The current image at several selected iterations
is shown in figure 2.6.

RAMLA

In contrast to the MLEM method, the RAMLA updates the current image estimate
for each batch of line integrals corresponding to a carefully chosen projection angle
α. This approach has striking similarities with SART, at the sole difference that the
data discrepancy is evaluated by the ratio instead of the difference with the forward
projected line integrals. A relaxation factor equal to λ = 0.1 has been used.

The value of image element fj , j ∈ N at the subiteration n > 0 is defined by

fn+1
j = (1− λ) fnj + λ

[
fnj

1
Sαj

∑
i∈Mα

Aij (gi/ĝni )

]
, (2.33)
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(a) Siddon ray-tracing (b) Joseph ray-tracing (c)

Figure 2.8: Siddon (a) and Joseph (b) ray-tracing results. The tones of black are pro-
portional to the lengths of the intersection between the line and pixels for Siddon and are
proportional to an approximation of the intersection areas between the strip and pixels for
Joseph. The dotted segments link the centers of the two pixels, closest to the central line
of the strip in (b). In (c), the ideal strip area (up) is approximated by the length of the
vertical projection on the central line of the strip (down).

where each update factor depends on the difference between a subset of the measured
line integrals gi, i ∈Mα when the detector is oriented at angle 0 ≤ α < 2π and the
forward projection from the current image fn. The projection ordering follows the
same strategy as the one used for the SART method.

The relaxation factor λ is used to interpolate linearly between the current value
of image elements and the updated estimate, using solely the line integrals of the
projection measured at angle α. Note that if λ = 1 and if Mα = M , then the
RAMLA reduces to the MLEM algorithm.

The rationale of the RAMLA is to slightly update the image estimate more
often, using the partial information of the line integrals measured at the current
projection angle α. The image formation process can be seen in figure 2.7. One can
remark that one iteration of MLEM processes the whole dataset and therefore the
convergence speed depends on the number of acquired projections. With one image
update per projection, the convergence speed of RAMLA becomes independent upon
the number of acquired projection angles.

2.3.3 Forward Projection

Two projection operators are of main importance for iterative reconstruction since
most of the running time is spent in these two routines. The forward projection from
image space to projection space is defined as the integral of all image elements along
a given line. The backprojection from projection space to image space is defined as
the integral of all lines passing through a given image element.

Forward projections are usually implemented by a ray-tracing procedure. Xu and
Mueller (2006) explained that ray-tracing algorithms can be seen as a composition
of a line integration and an image interpolation method . Two classical methods
are commonly used in the iterative image reconstruction community, namely, the
Siddon’s method published in 1985 and the alternative, more accurate, Joseph’s
method that was published earlier in 1982.

Siddon (1985) uses exact line integration but requires nearest neighbor interpo-
lation that performs very poorly in practice. Joseph (1982) relies on approximate
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integration and linear interpolations and this method demonstrates higher accuracy
than Siddon. In a previous work (Schretter, 2006), a fast ray-tracing implemen-
tation based on fixed step integration and linear interpolation is evaluated.

Figure 2.8 compares qualitatively the Siddon and Joseph methods. Previous
experiments on the reconstruction of PET data have demonstrated an accuracy
comparable to Joseph (Brinks et al., 2006), while the running-time performances
are improving over the fastest incremental implementation of the Siddon ray-tracer
(Jacobs et al., 1998; Christiaens et al., 1999; Zhao and Reader, 2003).

Ray-tracing in CT is a sibbling of line drawing algorithms in computer graphics
such as the Bresenham (1965) and Wu (1991) algorithms: two of the most rep-
resentative solutions. In the image reconstruction community, the implementation
of ray-tracing methods is a topic on itself and a multitude of alternative methods
are developed today. It should be noted that the newest distance-based approach of
De Man and Basu (2002, 2004) is increasingly popular and has been applied for
reconstructing clinical images (Thibault et al., 2007).

Many alternative forward projectors have been compared to the distance-driven
implemementation. For example, Sunnegardh and Danielsson (2007) and Long
et al. (2009) rely on a discrete integration model similar to Joseph but use integrated
footprints of triangle and square kernels, respectively. In fact those implementations
are equivalent to a convolution with the image element kernel and thus implicitly
smoothen the image. Smoothing alleviates aliasing artifacts but also attenuates
higher frequency content.

2.3.4 Antialiasing

The derivation of analytical image reconstruction algorithms often uses the continuous-
continuous model for representing both the projection data and the image as con-
tinuous functions. In practice, data are binned into a digital signal representation
and the image domain is covered by a finite amount of image elements. Therefore,
the derivation of iterative methods assumes a discrete-discrete model, exactly the
opposite of analytical approaches.

The discrete-discrete model traditionally assumes that image elements are square
or cubic shaped (Blinn, 2005). It is well known that this choice leads to strong alias-
ing artifacts in general image processing (Blinn, 1989a,b). Alternative representa-
tions based on smooth basis functions have been used as well to represent images
(Lewitt, 1992; Matej and Lewitt, 1995) and results show clear improvements
in terms of noise to resolution trade-off. Unfortunately, computation of forward
projections is more complex (Ziegler et al., 2006) and the correction of remaining
aliasing is not adressed by those works.

Aliasing artifacts arise also in the practice of image reconstruction in CT (Zbi-
jewski and Beekman, 2004, 2006) because either the definition of the original
acquired projection is insufficient or because of integration or interpolation artifacts
when computing forward projections in digital images. Those two specific problems
have been experimented and a simple solution is proposed, as shown in figure 2.9.

In the experiment, a simple forward projector based on a fixed step discrete in-
tegrator (the Euler method) was combined to a simple trilinear image interpolation
model (Köhler et al., 2000). While aliasing could be partially compensated by
implementing image blurring within the forward and backprojections, the approach
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2.3. Iterative Image Reconstruction

(a) (b) (c) (d)

Figure 2.9: Impact on accuracy of a simple supersampling technique parameterized by
the number of ray per detector bin, in combination with a straightforward fixed-step line
integration method parameterized by the number of integration steps per pixel. When
no antialiasing technique is used, the image tend to be grainy (a). Those artifacts can
be attenuated by tracing more (five) rays per detector bin (b). However, large streaks and
checkerboard pattern artifacts remain because an inaccurate line integration method is used.
Using more (five) integration steps per pixel for ray-tracing suppresses those artifacts (c).
The reconstructed image can become exceptionally regular when those two key accuracy
issues are tackled simultaneously, using both antialiasing and a finer integration step (d).
The white square shows the boundaries of close-up views.

used here has been to use brute force supersampling and accurate interpolations. Su-
persampling appears to be quite effective at suppressing aliasing for iterative recon-
struction in CT. This technique is also often used for image rendering as illustrated
in the work of Cook (1986) on stochastic sampling in computer graphics.
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3
Linear Interpolation
in Computed Tomography

Linear image interpolation is ubiquitous for image reconstruction in com-
puted tomography (CT). For instance, the backprojection step of reconstruc-

tion algorithms is traditionally implemented with the simple bilinear interpolation
model: a convolution with a pyramidal kernel. This model is approximate but offers
a good trade-off between speed and accuracy. Furthermore the implementation is
natural and available on hardware graphics processing units (GPU).

Approximation theory says that the image blurring induced by the triangular
interpolation kernel can be compensated by enhancing the image with an all-pole
recursive filter before resampling. This study shows that the experimentally optimal
pole differs from the one derived by theoretical approaches and that optimal pre-
filtering leads to significant image quality improvement in term of signal to noise
ratio (SNR). In fact, optimal pre-filtered linear interpolation outperforms the higher
order cubic B-spline interpolation for image reconstruction in CT.

This work has been presented at the 2nd Workshop on High Performance Image
Reconstruction (HPIR) onrganized on the September 5 of 2009 in Beijing, China
(Schretter et al., 2009c).

3.1 Introduction

Linear image interpolations are widely used in the field of computed tomogra-
phy (CT). Bilinear interpolation is traditionally used during backprojections (Hor-
belt et al., 2002) when fetching the value of filtered line integrals for filtered-
backprojection (FBP) tomographic reconstruction algorithms. Trilinear interpola-
tion is often used in conjunction with a numerical integrator for computing forward
projections through digital volumetric images.

Linear interpolation from point samples relies on a compact triangle signal recon-
struction kernel that is only a very crude approximation of the theoretically exact
sinc kernel. Nevertheless, the computational performances, the ease of implementa-
tion, the implicit handling of image borders and the fair accuracy of the interpolated
values made the uncontested popularity of linear interpolation schemes.
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Figure 3.1: Spatial (a) and frequency (b) responses of various interpolation kernels. The
frequency response is expressed as a fraction of the sampling frequency. The goal of pre-
filtered triangle interpolation is to compensate smoothing in the pass-band while ensuring
simultaneously an effective suppression of aliasing. Note that the support of the sinc kernel
is infinite.

Furthermore, linear interpolations are implemented in hardware in graphical
processing units (GPU) that are used to accelerate the backprojection and for-
ward projection operations (Zeng and Gullberg, 2000). Those two algorithms
are ubiquitous in CT and are also the main bottleneck in both analytical and it-
erative tomographic image reconstruction algorithms. The impact of several image
interpolation methods on the accuracy of forward projections has been evaluated by
Xu and Mueller (2006).

Still today, the image interpolation problem for digital images motivates numer-
ous research works, but a wide collection of techniques has been proposed in the
literature. Traditional image interpolation approaches (Lehmann et al., 1999) do
not consider the possibility to filter the image before resampling. However it has
been shown a long time ago that optimal accuracy can be obtained for signal re-
construction by using a pair of optimized pre-filter and reconstruction post-filter
(Malvar and Staelin, 1988). A generalized sampling theory that does not assume
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3.2. Interpolation and Approximation

band-limited signals justifies this approach (Unser, 1999, 2000). Very accurate im-
age interpolation methods have been reported for medical images (Thévenaz et al.,
2000; Blu et al., 2004).

Recently, approximation instead of interpolation has been considered in the im-
age processing community. In particular, quasi-interpolation with infinite impulse
response (IIR) filter (Condat et al., 2005) and least-square approximation with
finite impulse response (FIR) filter (Price and Hayes, 1998; Dalai et al., 2005)
have been proposed independently. The aim of the present work is to demonstrate
the potential of modern interpolation and approximation schemes for more accurate
tomographic image reconstruction in CT.

The remainder of this chapter is structured as follows. Traditional image in-
terpolation and modern image approximation methods are presented in section 3.2.
Section 3.3 shows the benefit of a simple image approximation scheme implemented
by a pre-filtering step before linear interpolation for tomographic image reconstruc-
tion. Finally, conclusions are drawn in section 3.4.

3.2 Interpolation and Approximation

This section introduces the classical interpolation and approximation problems of the
reconstruction of a continuous time-varying signal from uniformly distributed point
samples. For interpolation, the reconstructed continuous signal is required to match
exactly the sampled values at the sampling point locations. For approximation, this
constraint is not required and this unveils possible improvements over interpolation.
In this section, the term “reconstruction” refers to the reconstruction of a continuous
signal from point samples.

The spatial impulse and the frequency response of classical interpolation kernels
are compared in figure 3.1 along with the pre-filtered linear interpolation model
investigated in this work. One can remark that the frequency response of the box
kernel is superior to the triangle kernel in the pass band w ∈ [−π, π]. This translates
into sharper interpolated images. However, the large ripples outside the pass band
translate in very strong aliasing artifacts.

The recovery of high frequency components in the pass band is always underes-
timated with the triangle kernel and this causes blurring artifacts. Unfortunately,
interpolation with the theoretically optimal sinc kernel (last row in figure 3.1) is im-
practical since the support of the spatial impulse function is infinite. Pre-filtering the
signal before linear interpolation (third row in figure 3.1) allows a trade-off between
blurring and aliasing artifacts but does not ensure the interpolation property.

3.2.1 Interpolation

Let a sequence of N ≥ 2 point samples s (k) , k ∈ [1, N ], being sampled from a
continuous function f (t) , t ∈ R. If f is band-limited to frequencies w ∈ [−π, π] and
sampled at the Nyquist rate 2π, then it is well known that an exact reconstruction
of the original signal is possible between the first and last samples by using sinc
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3. Linear Interpolation in Computed Tomography

interpolation (Shannon, 1949; Cover and Thomas, 1991) such that

f (t) =
N∑
k=1

s (k) sinc (t− k) , (3.1)

Since the sinc kernel has infinite support, exact interpolation requires to convolve
each sample with the kernel. While feasible if the support of the image is finite, the
very large computational cost of convolutions is often impractical. Furthermore, to
prevent loss of information, interpolated values have to be computed and stored also
for the infinity of samples lying outside the image boundaries.

Instead, the reconstruction of a continuous function f̃ close to the original signal
f can be computed effectively by piecewise linear interpolation from s such that

f̃ (t) =
N∑
k=1

s (k)β1 (t− k) , (3.2)

where the reconstruction function β1 (t) = max (0, 1− |t|) is the second order B-
spline function also known as triangle kernel. Interpolation with the triangle kernel
ensures that the reconstructed signal is continuous. This property is often preferred
over the simplest interpolation with a box kernel, also called nearest neighbor in-
terpolation. Unfortunately, the reconstructed image suffers from overall blurring
artifacts when using linear interpolations during backprojections.

Modern developments have shown that very accurate interpolation can be im-
plemented effectively by pre-filtering the image before resampling. Unser (2000)
recommends to implement image interpolation by the application of a theoretically
derived pre-filter followed by convolution with a third order B-spline basis function.
The cubic B-spline interpolation model is very popular nowadays and has been eval-
uated in experiments for comparison purpose.

3.2.2 Approximation

Traditional interpolation ensures that the reconstructed signal f̃ (t) equals the origi-
nal signal f at the sampling points, hence when t = btc. When this constraint is not
a requirement, approximation schemes instead of interpolation have the potential
for better reconstructions. Approximation for image resampling has been initially
proposed by Mitchell and Netravali (1988) and Blinn (1989a) to find a quali-
tatively good visual compromise between blurring, aliasing, and ringing artifacts.

Although the derivations are different, the independent works of Condat et al.
(2005) and Dalai et al. (2005) have shown that a least-square approximation of the
continuous function can be implemented by pre-filtering the signal prior to interpo-
lation with the simple triangle kernel. Their derivations assume that the continuous
function is the cubic B-spline interpolation from the known samples. However, it is
likely that the true underlying function is not a linear combination of B-spline basis
functions. In this case, better approximation can be obtained as demonstrated in
experiments.

When considering the triangle kernel as reconstruction post-filter, a general for-
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3.2. Interpolation and Approximation

(a) Dalai (b) Condat (b) Optimal (-0.15)

Figure 3.2: Point spread function (PSF) of the FIR pre-filter of Marco Dalai (a), the
IIR pre-filter of Laurent Condat (b) and the experimentally optimal pre-filter (c). Gray
corresponds to zero, darker values are negative and brighter values are positive. The PSFs
of (a) and (b) look very similar, however, the support of the FIR kernel (a) is compact.

mulation of approximate reconstruction can be written as

f̂ (t) =
N∑
k=1

ŝ (k)β1 (t− k) , (3.3)

where the coefficients ŝ (k) have to be computed from the original point samples
s (k) by filtering them with a symmetric pre-filter kernel ϕ such that

ŝ (k) = [s ∗ ϕ] (k) . (3.4)

3.2.3 IIR and FIR Pre-Filters

Condat proposes an infinite impulse response (IIR) implementation with a simple
all-pole recursive filter while Dalai proposes a finite impulse response (FIR) imple-
mentation of the pre-filter by discrete convolution. From the derivation of Condat,
the negative pole for implementing the convolution with a simple IIR recursive filter
is 2
√

6− 5. The Fourier transform of the pre-filter can be extracted from the pole:

WIIR (w) =
6

5 + cos (2πw)
. (3.5)

The equivalent discrete convolution implemented by FIR filtering is computed
by Dalai as follows:

ŝ (k) =
49
40
s0 −

11
90
s1 +

7
720

s2, (3.6)

with s0 = s (k), s1 = s (k − 1)+s (k + 1) and s2 = s (k − 2)+s (k + 2). The support
is arbitrarily limited to five samples. However, a larger support of seven samples
have not shown any significant improvement in terms of image quality. From the
coefficients of the FIR kernel, the Fourier transform of the pre-filter can be extracted:

WFIR (w) =
49
40
− 11

45
cos (2πw) +

7
360

cos (4πw) . (3.7)

Despite very different expressions, WIIR and WFIR are surprisingly similar func-
tions. Since convolutions in spatial domain are equivalent to multiplications in
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Figure 3.3: Tomographic image reconstructions from 1024 projections, sampled from a
voxelized phantom. Results with cubic B-spline, linear and pre-filtered linear interpolations
are compared. Linear interpolation during backprojections introduces some blurring in the
reconstruction of the phantom image. The white frames mark the borders of close-up views.

frequency domain, the resulting Fourier transform of the pre-filtered linear recon-
struction is just

H (w) = sinc2 (w)WIIR (w) ≈ sinc2 (w)WFIR (w) . (3.8)

This frequency response can be observed in comparison to linear interpolation in
figure 3.1. The recovery of frequencies in the pass band is clearly improved at the
cost of slight aliasing.

Recursive filtering takes constant time per image element and requires two passes
for the causal and anti-causal filtering. While discrete convolutions require more
operations per pixel, in practice, in-place convolution with small kernels can be
implemented to run as fast as IIR filtering. The choice between IIR and FIR is
left to subjective appreciation. For two-dimensional images, the filter is applied
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Figure 3.4: Quantitative analyses of image reconstruction in term of signal to noise ratio
(SNR) from the original phantom image. Various values of the pole for the pre-filtering
have been experimented. The experimentally optimum value of the pole (-0.15) unveils
the potential improvement over the theoretical developments using current hypotheses and
approximation theory. The FIR filter derived by Dalai gives a very similar result than the
IIR filter derived by Condat that uses a pole equals to 2

√
6− 5 = −0.1010205...

successively in the vertical and horizontal directions.
The point spread functions of the FIR and IIR implementation of the theoret-

ically optimal pre-filter in least-square sense are compared to the experimentally
optimized pre-filter in figure 3.2. Since the support of the IIR filter is infinite, the
point spread function (PSF) extends to the whole image. Despite their different in-
trinsic properties, experiments demonstrate that FIR and IIR implementations yield
nearly identical results.

3.3 Results

For experiments, a set of 1024 parallel-beam tomographic projections of 256 × 198
pixels have been computed from a phantom image of 256×256×198 isotropic voxels
of size equal to 1.36 mm. The goal is to reconstruct the original phantom image from
the projection data with the best possible accuracy. The tomographic reconstruction
algorithm is FBP and the ideal Ram-Lak ramp filter is used to preserve all frequency
content. A large number of projections is used to alleviate possible issues with
angular aliasing that typically translates into streak artifacts.

Several image reconstruction results have been compared using various interpo-
lation methods for sampling filtered line integrals in projection space during back-
projection. The traditional linear interpolation is compared to cubic B-spline in-
terpolation and several pre-filtered linear interpolation models. The FIR and IIR
implementations of the pre-filter for least-square optimal linear approximations give
similar results.

A transversal and a coronal slice of reconstructed volumetric images and two
selected close-up views are shown in figure 3.3. In those images, gray is set to the
attenuation of water and the window width equals 1000 HU such that black cor-
responds to the attenuation of air. The resolution recovery is much better when

37 Frame 25/40



3. Linear Interpolation in Computed Tomography

using the cubic B-spline interpolation model in comparison to first order linear in-
terpolations. However, when a suitable pre-filtering is applied before interpolations,
linear interpolation have the potential to outperform the more costly cubic B-spline
interpolation.

Quantitative analyses conducted in terms of signal to noise ratio (SNR) are pre-
sented in figure 3.4. The SNR is a classical metric of the relative image similarity
that is conventionally used for assessing the quality of image interpolation proce-
dures. Given a reference image P and a reconstructed image Q defined by N image
elements, the SNR is evaluated by

SNR (P,Q) = −10log

(∑N
i=1 (Pi −Qi)2∑N

i=1 P
2
i

)
. (3.9)

3.4 Conclusion

The supplemental work reported in this chapter studied a novel heuristic approach
to compensate for the typical blurring that can be observed when reconstructing
an image with FBP. In the backprojection step of FBP, linear interpolation is used
to fetch filtered line integrals in projection space. This simple interpolation model
is exact only if the interpolation points exactly match pixel centers. A simple pre-
filtering is used to transform interpolations into approximations and it has been
observed that a sharper tomographic reconstruction can be obtained this way.

Linear interpolations are ubiquitous when using GPU implementations for back-
projection. Therefore, optimal pre-filtering can improve significantly the accuracy
of current image reconstruction codes. For analytic FBP algorithms, the pre-filter is
applied in projection space before the backprojection step. For more accurate high-
performance computation of line integrals through volumetric images, the pre-filter
could be applied in image space before sampling points along integration lines.
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4
Image-Based Compensation
of Motion Artifacts

Motion blur reconstruction artifacts often arise in computed tomography (CT)
when patient’s motion introduces inconsistencies among projections. Severe

reconstruction artifacts have been observed for free-breathing acquisitions. Streaks
and doubling of structures can appear and the resolution is limited by strong blur-
ring. To improve image quality, this chapter presents an iterative method for com-
pensation of motion artifacts for slowly rotating CT systems.

The rationale of the proposed motion compensation method is to iteratively cor-
rect the reconstructed image by first decomposing the perceived motion in projection
space, then reconstructing the motion artifacts in image space, and finally subtract-
ing the artifacts from an initial image. The initial image is reconstructed from the
acquired data and might contain motion blur artifacts, but nevertheless, is consid-
ered as a reference for estimating the reconstruction artifacts. The originality of the
technique stems from the fact that the patient motion is not explicitly estimated
but the motion artifacts are reconstructed in image space.

This work has been first presented at the SPIE Medical Imaging Conference
organized at Lake Buena Vista, USA, on the February 7–12 of 2009 (Schretter
et al., 2009a). An extended paper has also been published on this topic in the
Medical Physics journal in 2009 (Schretter et al., 2009e).

4.1 Introduction

In contrast to the existing approaches based on pre-correction of the acquired line
integrals, this work proposes an iterative motion compensation technique that leaves
the input data untouched but aims at correcting the output reconstructed image.
The advantage is that the algorithm provides very quickly an early reconstructed
image and the image quality of this initial reconstruction progressively improves
with each iteration.

The iterative approach presented in this chapter was inspired by the two-pass
algorithm for cone-beam reconstruction proposed by Hsieh (1996, 2000) while the
principle of motion detection from the difference between line integrals was first
proposed by Lin Lin (1994) and studied further by Linney and Gregson (2001).
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P P0 D0 D+
0 D−0

− = = +

Figure 4.1: Example of decomposition of line integral differences (D0) between an acquired
projection (P ) and a reference projection (P0) computed for the first iteration. Either the
positive (D+

0 ) or negative (D−0 ) parts of differences (D0) will be reconstructed to estimate
the motion artifacts in image space. The consequences of motion are very apparent at the
border of the diaphragm. In (D0), (D+

0 ) and (D−0 ), gray corresponds to zero, while brighter
and darker values correspond to negative and positive differences, respectively.

The instant feedback feature is crucial for using CT protocols on C-arm systems
(Rose et al., 2003) during interventions and is helpful for patient positioning in
radiotherapy (Jaffray et al., 2002).

The remainder of this chapter is structured as follows. A novel method based
on a pipeline of standard image processing algorithms is proposed in section 4.2
and specific implementation details are discussed in section 4.3. In section 4.4, both
qualitative and quantitative figures are shown for experiments based on numerically
simulated projections of a sequence of clinical images resulting from a respiratory-
gated helical CT acquisition. The border of the diaphragm becomes progressively
sharper and the contrast improves for small structures in the lungs. Finally, short-
comings and future work are nailed in section 4.5.

4.2 Method

The iterative nature of the technique exploits the fact that the forward projection
is the inverse of the image reconstruction. Therefore, if one samples line integrals
through the reconstructed image, then the resulting reference projections should
match the acquired projections. However, if the acquired projections are inconsistent
because of patient motion, then the reconstructed image will be corrupted by motion
artifacts. In this case, sampled reference projections will not match the acquired
projections.

The iterative image correction works as follows. First, difference projections are
computed by subtracting reference projections from the acquired projections and
the differences are decomposed into positive and negative parts. Then, the artifacts
are reconstructed in image space from either the positive or the negative part of
the decomposition1. Finally, the artifacts are subtracted from the initial image,
improving its quality.

This work considers parallel-beam geometry for which exact analytical image
reconstruction is possible for circular trajectories. The aim is to distinguish the
reconstruction artifacts due to patient’s motion from the possible cone-beam arti-
facts that are typically introduced by the approximate FDK reconstruction method

1Note that the decomposition of differences is a mandatory step that leads to convergence to a
corrected image. If one simply reconstructs the difference projections, the negative errors counter-
balance the positive errors and the result is an empty image, filled with zero values.
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(Feldkamp et al., 1984). For application in cone-beam geometry, the method can
be combined naturally with the related approach of two-pass correction of cone-beam
artifacts of Hsieh (2000).

Algorithm

Consider P , the set of projections acquired for a full circular trajectory. The recon-
struction from P gives the initial image I0 = fbp (P ), where fbp (·) is the filtered-
backprojection (Kak and Slaney, 1988; Turbell, 2001) image reconstruction op-
erator. If the projections P are inconsistent, then the reconstructed image I0 is
corrupted by artifacts and the forward projections P0 = fp (I0) do not match the
acquired data P . The forward projection operator fp (·) is the inverse of the image
reconstruction operator fbp (·).

The set of difference projections D0 = P − P0 is computed and differences are
decomposed into a positive partD+

0 and a negative partD−0 such thatD0 = D+
0 +D−0

and two correction images C+
0 = fbp

(
D+

0

)
and C−0 = fbp

(
D−0
)

are reconstructed
from each part of the decomposition. Figure 4.1 shows the decomposition of the line
integral differences for a typical pair of projections.

The images C+
0 and C−0 are approximations of the reconstruction artifacts due

to, respectively, over- and underestimation of line integrals when reconstructing an
image from the acquired data P . The reconstructed artifacts C+

0 or C−0 can be
subtracted in image space from the initial image I0, giving the corrected images
I+

1 = I0 − C+
0 and I−1 = I0 − C−0 . Note that even if the decomposed parts of line

integral differences are all positive or negative, the reconstructed correction images
can contain both positive and negative values.

The correction scheme is iterated, while considering either I+
1 or I−1 as initial

image and improving the correction by reconstructing and subtracting a new cor-
rection image C+

1 or C−1 . A partially corrected initial image provides a more reliable
reference of an artifact-free reconstruction and the estimation of the remaining ar-
tifacts will be improved. The two suites of corrected images are I+

i+1 = Ii − C+
i

and I−i+1 = Ii − C−i , with i ≥ 0. The method is a generalization of regular image
reconstruction algorithms since the initial image is reconstructed from the acquired
data without any compensation.

It is interesting to observe that fbp (P ) = fbp (P0) = I0, so up to numerical
inaccuracies, the two sets of projections P and P0 reconstruct the very same image,
although P 6= P0. Furthermore, P0 is always a consistent set of reference projections
but the acquired projections P are consistent only if the inverse of the reconstruction
exactly matches the acquired data, hence if D0 = 0. If the acquired projections P
are inconsistent, then D0 6= 0 but still fbp (D0) = 0.

4.3 Accuracy Issues

The central idea of the method is that the perceived motion is isolated in projection
space by computing the difference between the acquired data and the reference data,
sampled from a previously reconstructed image. The differences are decomposed and
reconstructed by a standard FBP method. The reconstruction uses the very same
geometry as the acquired data to obtain an image that is perfectly registered with
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4. Image-Based Compensation of Motion Artifacts

(a) I0 (b) I−3 (linear) (c) I−3 (B-spline)

Figure 4.2: Close-up views showing the spine in a transversal slice of the initial FBP image
and two corrected images when using the bilinear or cubic B-spline interpolation models. The
spine is a mainly static region and is already sharply reconstructed in the initial FBP image
(a). Strong blurring is introduced when using linear interpolation (b) while the sharpness
is preserved with cubic B-spline interpolation (c). Image interpolation is used for sampling
forward projections from volumetric digital images.

the initial reconstruction. Unfortunately, the accuracy of the reconstructed motion
artifacts is limited by two main factors explained below.

First, the forward projection operation that inverses the image reconstruction
operation is implemented by sampling line integrals through a digital image and
so the accuracy of the line integral calculation depends on the image interpolation
method. Inaccurate image interpolation will introduce aliasing and smoothing or
ringing artifacts in the correction images (Xu and Mueller, 2006).

Second, the images are reconstructed from a finite number of projections and
this inevitably introduces small numerical inaccuracies and streaks in image space.
Moreover, the set of the acquired line integrals is not guaranteed to be consistent
and so the differences can be inconsistent too. Therefore, large streaks might appear
in the reconstruction of the correction image itself.

4.3.1 Cubic B-Spline Interpolation

To improve the accuracy of forward projections, the implementation of image in-
terpolation relies on cubic B-spline interpolation, as suggested by Unser (1999);
Thévenaz et al. (2000); Unser (2000). This method has been demonstrated to
limit significantly both aliasing and smoothing, in comparison to the classical linear
and cubic interpolation schemes. The impact on image sharpness when using the
higher order cubic B-spline interpolation instead of the simpler linear interpolation
during forward projections can be seen in figure 4.2.

Note that it is also possible to improve the accuracy and sharpness of the re-
constructed image by using an approximation instead of an interpolation scheme, as
explained in the previous chapter. However, the cubic B-spline interpolation model
has been prrefered in this work for separation of concerns. Cubic B-splines are a
de facto standard in the medical imaging community, while approximation schemes
based on linear interpolation is a recent idea. Future work could evaluate the per-
formances of the algorithm with an implementation using either interpolation or
approximation.
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Figure 4.3: Impact of the apodization on the correction image C−0 , computed from the
negative part of line integral differences, at the third iteration. The noisy streaks present
in the raw reconstructed correction image (a) are removed (b) by the smoothstep function
plotted on the right. The smooth apodization prevents the accumulation of numerical errors
in the corrected image. The window width of difference images is 100 HU.

4.3.2 Smooth Apodization

In addition, the residual numerical errors are eliminated by smoothly apodizing the
reconstructed values that are close to zero in the correction images. This regular-
ization leaves the sharp static parts of the initial image untouched, yielding local
correction of reconstruction artifacts. The apodization is implemented by multiply-
ing the values of the correction images with the smoothstep function:

smoothstep (a, b, t) =


0 if t < a
1 if t > b
3x2 − 2x3, x = (t− a) / (b− a) otherwise

(4.1)

where a = 0 Hounsfield units (HU) and b = 30 HU in the experiments and the
parameter t is set to the absolute value of image elements.

In fact, the smoothstep function interpolates smoothly between 0 and 1 with a
cubic Hermite polynomial. A demonstration of the benefit of the apodization on the
quality of a reconstructed correction image can be seen in figure 4.3. The optimal
choice for the threshold b can be evaluated experimentally. Indeed, if no motion
occurs during acquisition, the forward projections of the reconstructed image should
match the acquired projections, hence the differences should be equal to zero in an
ideal case.

Unfortunately, the aforementioned differences are usually not equal to zero be-
cause in practice, the reconstruction uses a limited number of projections and various
discretization as well as numerical errors are transferred to the sampled projections.
By measuring the standard deviation of the error distribution, a suitable value for
b can be chosen in a principled way (for example, two or three times the mean
standard deviation).
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Figure 4.4: Transversal slices number 40 and central coronal views of the selected frames 1,
6, 11, 16, 21, 26, 31 and 36 of a respiratory-gated helical CT acquisition. The study covered
an axial length of 27 cm with a FOV of 35 cm. The first four and last four pairs of frames
correspond to inhalation and exhalation, respectively. Pulled by contraction of the thoracic
diaphragm, organs move out of the selected transversal slice during the inhalation phase.

4.4 Results

To simulate a motion-corrupted acquisition, a set of 1024 parallel-beam projections
was numerically simulated from the dynamic free-breathing phantom described in
figure 4.4. Experiments consider parallel-beam geometry for which exact analytical
image reconstruction is possible for half-circular trajectories but one full rotation
with a circular trajectory was considered to simulate a realistic acquisition scenario.

The dataset was obtained from a free breathing patient and consists of a sequence
of 40 frames reconstructed from a respiratory-gated helical CT acquisition. The
speed of the CT gantry was 0.444 seconds per rotation. The acquisition time was
93.3 seconds during which 26 breathing cycles were observed. Hence, the duration
of one breathing cycle was 3.6 seconds on average.
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Figure 4.5: Transversal slices number 40 and coronal central views of the initial FBP
reconstruction and the corrected images after one, two and three iterations. The white
squares show the boundaries of close-up views. The last row emphasizes on the difference
with the reference frame 21 from the dynamic phantom. This frame corresponds to the time
point in the middle of the respiratory cycle.
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Figure 4.6: Side-by-side comparisons of the two possible image correction scenarios. The
corrected images are shown after 20 iterations of the iterative motion compensation frame-
work. As suggested by the analyses in figure 4.8, the images get closer to one of the two
extreme motion states: The beginning of exhalation (F1) when the position of the diaphragm
is low or the beginning of inhalation (F21) when the position of the diaphragm is high.

I0 − F1 I+
20 − F1 I0 − F21 I−20 − F21

T
ra

ns
ve

rs
al

C
or

on
al

Figure 4.7: Transversal slices number 40 and coronal central views of the two selected
frames F1 and F21 of the dynamic phantom compared to the initial FBP image I0 and the
two corrected images I+

20 and I−20 obtained after 20 iterations. F1 corresponds to the start
of exhalation (full inspiration) motion state. F21 corresponds to the other extreme start
of inhalation (full exhalation) motion state. The differences are significantly reduced with
motion compensation.
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Figure 4.8: Quantitative analyses of images for the initial FBP reconstructed image and
corrected images after 1, 2 and 3 iterations when the correction is applied from the positive
(left) and negative (right) part of the decomposed differences. The plots show the mean
average error (MAE) in Hounsfield units (HU) between the reconstructed image and each
of the original 40 gates shown in figure 4.4. The analysis considers only voxels in regions
significantly compensated after the first iteration.

At the first frame, the sequence starts at full exhalation, where the diaphragm
is low. During the next 20 frames, the inspiration takes place. At frame 21, the
maximum inhalation is reached and the expiration begins. One can remark that the
images still contain some slight blurring due to helical reconstruction artifacts and
residual motion within each gate of the breathing cycle.

The forward projection relies on the approximation of line integrals through the
digital image using a fast ray-tracing algorithm (Schretter, 2006). The acquisition
time was 12 seconds, matching the typical rotation speed of a C-arm system. This
experiment validates the method on a worst case scenario when the patient moves
during the whole acquisition instead of holding the breath. Although the simulated
breathing motion is naturally periodic, only about 3 cycles can be observed for 12
seconds. Selected transversal and coronal slices from the dynamic phantom are
shown in figure 4.4.

Interpretation

The initial FBP reconstruction and the corrected images after one, two, and three
iterations are shown in figure 4.5. The strong reconstruction artifacts due to in-
consistencies among projections can be seen in the initial FBP images of the first
column. Image resolution is mainly limited by motion-blur artifacts. The liver and
stomach appear to be semitransparent in the transversal view, as can be seen in the
selected close-up views. When using motion correction, the image quality improves
progressively with the number of iterations for some of the frames of the dynamic
phantom.

It can be observed that in the first two rows of figure 4.5, the corrected image
converges towards the motion state at begin-inhale (end-exhale) when correcting
with the positive part of differences. In the last two rows, the corrected image
converges toward the motion state at end-inhale (begin-exhale) when correcting
with the negative part of differences. In all images, the window is centered to
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Figure 4.9: Analysis of the convergence toward one specific motion state. The “pos”
curve plots the mean absolute error (MAE) in Hounsfield units (HU) between F1 and the
corrected image I+

i obtained after iteration i ∈ [0, 20]. The reference frame F1 corresponds
to the motion state at the beginning of exhalation. The “neg” curve plots the MAE between
F21 and the corrected image I−i obtained after iteration i ∈ [0, 20]. The reference frame F21

corresponds to the motion state at the beginning of inhalation. In both cases, a reduction of
50% in terms of the mean absolute error can be observed already after the fourth iteration.

the attenuation value of water (0 HU) and the window width equals 2000 HU. In
difference images, the window center is set to zero.

One of the two extreme motion states (where the diaphragm is the lower or
the highest) is selected as an asymptotic state of the iterative framework. The
convergence depends on the choice of the positive or negative part of the difference
projections. Indeed, when the diaphragm is low (or high), then the lungs are filled (or
empty) and the total mass of the reconstructed image is minimized (or maximized).
In figure 4.6, side-by-side comparisons of images obtained after convergence (after 20
iterations) illustrate the end results of the experiment with the two possible image
correction scenarios. Image quality improvements can be assessed visually from the
difference images in figure 4.7.

Quantitative Analyses

Figure 4.8 shows quantitative analyses of the reconstructed volumetric image. As
the number of iterations increases, the algorithm converges to a particular motion
state. The mean absolute error (MAE) with respect to frames close to this optimum
motion state decreases with the number of iterations.

The plots in figure 4.9 demonstrate the early convergence of the method. After
only four iterations, a significant improvement in mean absolute error above 50%
can be appreciated. The analyses only consider voxels that belong to a region of
interest (ROI) which is the collection of voxels that are significantly compensated
after the first iteration. A voxel belongs to the ROI if its absolute value of correction
exceeds 100 HU.

4.5 Conclusion

This chapter has presented a novel compensation algorithm for artifacts due to
inconsistencies among projections in static tomographic image reconstruction. Per-
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formances of the method are assessed for the correction of motion artifacts resulting
from a simulated free-breathing acquisition with a slow circular trajectory.

In contrast to existing approaches, the projection data is left untouched and the
time-dependent deformation is not explicitly modeled, nor estimated. Instead, the
perceived motion is extracted in projection space from the difference between the
acquired and the reference projections, sampled from the image reconstructed in a
previous iteration step. Then, the artifacts are reconstructed in image space and
subtracted from an initial reconstruction.

Data inconsistencies are assumed to be caused by organ motion and the recon-
struction of artifacts is progressively refined by the iterative scheme. Since no peri-
odicity of the motion is assumed, the technique could also be applied on breath-hold
acquisitions to compensate for unstructured movements such as digestive contrac-
tions, breath-hold failures, or nervous shaking.

Since the technique is independent of the specific detector geometry and source
trajectory, it can be applied on fan-beam geometry without any change. However,
a parallel-beam setup has been preferred because a previous implementation was
available and image reconstruction in this simpler geometry suffers less from typical
aliasing artifacts that arise in divergent ray geometries.
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5
Global Motion Correction
in 2D Parallel-Beam Geometry

Line integrals contain only a limited part of the information contained in the
image that is reconstructed with computed tomography. As a consequence,

if patient motion occurs during the acquisition of line integral projections, only a
limited part of the motion information will be contained into the data. This observa-
tion illustrates fundamental limitations of motion perception. As a corollary, only a
limited class of deformations which have motion components orthogonal to the direc-
tion of line integrals will introduce data inconsistencies and therefore reconstruction
artifacts only occurs for movements belonging to this restricted class.

Based on theoretical limitations of motion perception, an alterative approach for
motion correction is developed in this chapter. A novel iterative workflow is proposed
to estimate a dynamic displacement field representing the time-varying position of
image elements. An elastic signal registration algorithm computes the displacement
in projection space from the difference between measured projections and reference
projections, sampled from the image reconstructed in previous iterations.

This work has been first presented at the 5th IEEE International Symposium
on Biomedical Imaging (ISBI) organized in Paris, France on the May 14–17 of 2008
(Schretter et al., 2008). First results applying this technique on a realistic clinical
dataset has been shown at the 8th IEEE EMBS International Summer School on
Biomedical Imaging held in Berder, France on June 20–28 (Schretter, 2008).

5.1 Introduction

The method presented in this chapter aims at estimating non-periodic motion from
tomographic projections for high-quality static low contrast imaging on C-arm sys-
tems. In the following, only breath-hold (hence, non-gated) acquisitions are con-
sidered, for reconstruction of one single static image in which residual unstructured
motion is estimated and compensated. Because previous efforts assume periodicity
of the motion, the development of a different technical approach was required.

The motion correction problem can be split into two complementary sub-problems:
motion estimation and motion compensation. An analytical motion-compensated re-
construction algorithm has already been developed by Roux et al. (2004); Desbat
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et al. (2006, 2007b). The reconstruction is exact for the class of deformations that
preserves some properties of the projection geometry. A solution is proposed for
the motion estimation problem in parallel-beam geometry and for a certain class of
deformations, including shifting and some local expansions or compressions.

From a new estimate of the displacement field, a better image can be recon-
structed by introducing motion compensation in the backprojection step of filtered-
backprojection methods. The result of the first iteration is equivalent to a stan-
dard reconstruction without motion correction and further iterations progressively
sharpen the image. Considering the sampled image as a motionless reference, the
motion estimation is exact for a certain class of deformations, including shifting,
expansion, and compression.

The remainder of this chapter is structured as follows. First, a new iterative mo-
tion correction framework is introduced in section 5.2. This solution is motivated by
the fundamental limitations of motion perception that are briefly introduced. Their
impact on the reconstruction of exact motion in image space is experimented as
well. In section 5.3, an original algorithm is derived to compute deformations while
assuming the availability of a static reference image. A generalization allows estimat-
ing more general motion with a simple elastic signal registration method. Finally,
results are shown in section 5.4 for a randomly deformed Shepp-Logan phantom and
conclusions are drawn in section 5.5.

5.2 Motion Correction

In 2D tomography, projections are 1D signals and the projection of the displacement
of image elements can be described by a smooth strictly increasing bijective mapping
function in projection space. The strict increasing property appears because crossing
of two integration lines never occurs with diffeomorphic deformations (Ashburner,
2007).

Due to relative motion, the angular position of the focus position can vary freely
over time, describing a so-called virtual source trajectory. In general, the position
of the focus point is parameterized by a projection angle and a distance from the
detector and all line integrals are measured between a displaced focus point and
centers of detector pixels, smoothly displaced on the projection axis. The parallel-
beam geometry considered here is a special case in which the focus point is at infinite
distance from the projection plane. Therefore, only the projection angle can vary.

If the virtual source trajectory matches the ideal circular path, the exact mo-
tion compensation of Desbat et al. only involves two slight modifications in the
backprojection step of classical filtered backprojection (FBP) algorithms.

First, the integration line joining the center of the current voxel to the focus
point is displaced, according to the provided bijective mapping and the line integral
value is fetched at the corresponding pixel in the projection image.

Second, the line integral is weighted by a scaling coefficient, preserving the total
mass in cases of local expansion or compression movements. The scaling coefficients
are proportional to the derivative of the scalar mapping function.
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Figure 5.1: Experiment on the fundamental limitations of motion perception from tomo-
graphic projections. A 2D smooth vector field has been generated and reconstructed from
a sinogram that has been corrupted by removing the vector component aligned with the di-
rection of line integrals. Line integrals through the vector field (a) has been sampled for 256
different angles and the resulting stack of projections is shown in (b). Vector components
along the projection direction has been removed from (b) to give the corrupted sinogram (c).
The reconstruction from (c) yields the vector field (d) that only convey partial information
about the true motion shown in (a). The upper and lower rows show respectively the x and
y components of vectors.

5.2.1 Motion Perception

Motion perception involves a combination of the visual and cognitive process, in
order to infer the velocity of elements of an observed scene Mather (2006). In
the context of three-dimensional imaging with CT, the scene is composed from the
collection of image elements (voxels) (Srámek and Kaufman, 1998, 1999) and
visual occlusions prevent the external observations of inner structures. The great
revolution brought by X-ray imaging is the ability to capture transparent images
from opaque objects.

By means of X-ray transmission, it becomes possible to perceive motion inside
the body from a sequence of planar X-ray projections. Some motion information is
implicitly present in the image sequence but fundamental limitations to perception
exist. In particular, the motion component in the direction of the projection can
not be measured since line integrals are invariant to motion along their integration
paths. This phenomenon is related to the insufficient motion cue for the inference
of depth in monocular vision and the impact on tomographic image reconstruction
is illustrated in figure 5.1.

The fundamental limitations of motion perception prevent external observers to
define the exact trajectories of image elements and therefore discourage any hope
to achieve exact reconstruction of the motion information. This fact motivated the
choice to estimate only the motion information that can be captured in projection
space. Fortunatelly, only a partial knowledge of the true motion is sufficient to
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Figure 5.2: Iterative workflow for motion estimation and compensation. Box shapes rep-
resent algorithms, transforming input data to generate new outputs. Data are represented
by oval shapes. The current reconstructed image shown in gray is considered as a reference
static image. Then, the motion is estimated with elastic image registration. Finally, the
image is reconstructed again with motion compensation.

acheive high-quality motion compensated image reconstruction in CT.

5.2.2 Framework

The iterative motion correction workflow, outlined in figure 5.2, proposes a solution
to estimate the mapping function. Data is represented by ovals and boxes sym-
bolize algorithms. For each iteration, an attenuation image is reconstructed from
the measured projections using a FBP reconstruction with compensation. Then, ref-
erence projections are sampled by computing the forward projection through the
attenuation image reconstructed so far. The measured projections are mapped on
the reference projections by an elastic registration algorithm. The resulting warp-
ing is a new estimate of displacement in projection space that can be used by the
motion-compensated FBP algorithm to produce a new corrected image.

The first reconstruction assumes no motion and the resulting image contains
artifacts, but may nevertheless be considered as a motionless reference for the second
iteration. Since these reference projections are sampled from a static image, they are
consistent. Therefore, the registration algorithm will provide a displacement field in
projection space that compensates for inconsistencies when reconstructing an image
from measured projections.

The design of the method takes into account the fundamental limitations of mo-
tion perception. Due to the aperture problem, only one of the two components of
motion can be perceived. Hence the motion estimation stage produces displace-
ment vectors, orthogonal to the projection directions by registration of measured
projections to reference projections. The motion estimation step works on indepen-
dent pairs of corresponding projections. Therefore, the algorithm suits naturally for
trivial parallelization.

5.3 Motion Estimation

Let’s assume the availability of a motionless image from which reference projections
can be sampled. The considered motion estimation problem is to extract the dis-
placement of pixels in projection space from corresponding measured and reference
projections. The motion is computed independently for each pair of projections.

A static 2D image is commonly represented by a Cartesian grid of point samples,
located at centers of identical image elements: usually, non-overlapping square pixels.
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It is easy to extend this image model to represent motion by associating, for each
pixel, a description of its displacement over time from the initial grid position. In
a similar way the space is discretized by the grid, the displacement of pixels can be
sampled at several time frames. In this chapter, one time frame is associated with
each projection.

5.3.1 Radon Transform

Let f (x, y, t) → R be a dynamic 2D image where (x, y) ∈ R2 are spatial Cartesian
coordinates and t ∈ [0, 1) is the normalized temporal position. The function f is
positive and compactly supported in a normalized circular field of view such that
f (x, y, t) = 0 when x2 + y2 > 1. Moreover, the total mass M must be preserved:

M =
∫ 1

−1

∫ 1

−1
f (x, y, t) dxdy, ∀t. (5.1)

A line integral p (φ, s, t) → R from f is parameterized by an angular coefficient
φ ∈ [0, π) and a signed distance from the origin s ∈ [−1, 1] and is defined by

p (φ, s, t) =
∫ l

−l
f (s cosφ+ u sinφ, s sinφ− u cosφ, t) du, (5.2)

with l =
√

1− s2, the half-length of the intersection between the line and the
field of view. The point of intersection between the line and the virtual detec-
tor is (s cosφ, s sinφ) and the normalized direction vector of the integration line is
(sinφ,− cosφ).

The Radon transform of f is the collection of all time-varying line integrals inter-
secting the field of view. The Radon transform provides sufficient data to reconstruct
exactly the dynamic image f at any position in space and time. However, most CT
tomographs are only able to measure line integrals along one projection direction at
a time. To model this limitation, the projection angle φ is assumed to be linearly
dependent on the acquisition time t. Therefore, φ = πt such that one half circular
rotation is achieved when t = 1. In the following, the Radon transform is defined as
the measured projections

(Rf) (φ, s) = p

(
φ, s,

φ

π

)
, (5.3)

and this collection of line integrals may be inconsistent since each projection observes
f at a potentially different deformation state.

5.3.2 Shifting Motion

The translation invariance property of the Radon transform states that translation
in the image domain results in shifted projections. This important property and its
relation to image motion have been studied further by Milanfar (1999). An image
displaced by the translation vector (dx, dy) is noted

fd (x, y, t) = f (x+ dx, y + dy, t) , (5.4)
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and its Radon transform is obtained by translating each projection:

(Rfd) (φ, s) = (Rf) (φ, s+ dx cosφ+ dy sinφ) . (5.5)

Therefore, analytical estimation of shifting motion is straightforward by com-
puting a feature point that depends on global translation in both the measured
projection and the reference projection. For instance, the center of mass

µ (f, φ) =
1
M

∫ 1

−1
s (Rf) (φ, s) ds (5.6)

can be computed in projection space from the weighted mean of pixel positions on
the virtual detector axis. The difference between center of masses in corresponding
measured and reference projections yields a signed shifting displacement.

5.3.3 Scaling Motion

Given the scaling invariance and the linearity properties of the Radon transform,
global expansion or compression in the image domain result on respectively broader
or narrower spreads in projection space, while preserving the total mass. An image
scaled non-uniformly along the horizontal and vertical axis by the respective factors
sx > 0 and sy > 0, and preserving the total mass is noted

fs (x, y, t) =
1

sxsy
f

(
x

sx
,
y

sy
, t

)
, (5.7)

and its Radon transform is obtained by weighting each projection, translated toward
or away from the origin:

(Rfs) (φ, s) =
1
α

(Rf) (φ, sα) , (5.8)

where α =
√

(sx cosφ)2 + (sy sinφ)2.
Therefore, analytical estimation of global expansion and compression deforma-

tions is also straightforward by computing a value that depends on the scale of
corresponding projections. For instance, the standard deviation from the center of
mass

σ (f, φ) =

√
1
M

∫ 1

−1
(s− µ (f, φ))2 (Rf) (φ, s) ds (5.9)

can be computed for both measured and reference projections. The ratio of the
former on the later yields the scaling factor.

5.3.4 Shifting and Scaling Motion

As explained above, analytical extraction of motion in projection space is trivial
for cases such as shifting and global expansion or compression. The center of mass
can be computed in projection space from the weighted mean of pixel positions, in
both measured and reference projections. Their difference gives the projection of
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Figure 5.3: Elastic signal registration for the computation of a bijective mapping function
that minimizes the difference between partial integrals. The center of each pixel is displaced
by a simple numerical integration method. The solution has unambiguous closed form and
therefore the registration algorithm is fast and straightforward to implement.

the shifting displacement and the ratio of standard deviations gives the object scale,
as perceived from the projection.

Given the number of bins in a discretized projection N , the cumulative sum of
bins is invariant in respect to the projection angle and is equal to M . Also, the point
located at the center of mass splits the signal in two parts of equal partial integrals.
Generalizing this observation, any particular point

pi =
2i−N − 1

N
, i ∈ [1 . . . N ] (5.10)

of a projection splits the signal in two regions determined by the values of their
partial integrals. Systematic computation of the correspondence between centers
of pixels defines a discrete bijective mapping function that provides a registration
between two discrete signals.

5.3.5 Elastic Signal Registration

As shown in figure 5.3, the center of every pixels pi of the source signal is mapped
on sub-pixel accurate locations qi ∈ [−1, 1] on the target signal, such that partial
integrals are preserved:∫ pi

−1
(Rf) (φ, s) ds =

∫ qi

−1
(Rfref ) (φ, s) ds, (5.11)

where fref is the motionless reference image. One can remark that qi ≤ qj , ∀i < j
is an invariant of the former relation, ensuring that the computed discrete function
is a strictly increasing bijective mapping. Offsets between corresponding pixels are
displacements in projection space.

This elastic signal registration procedure can be implemented by a simple nu-
merical integration method that marches through sub-pixel locations in the target
signal to find the correspondence with the centers of pixels from the source signal.
Two corresponding points share identical value for their left and right partial inte-
grals. Elastic image registration algorithms minimize, usually iteratively, an image
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(a) (b) (c) (d) (e)

Figure 5.4: Reconstructions from measured projections (a) of a randomly shifted and
compressed phantom are shown after the first (b) and second (d) iteration. The projections
(a) are inconsistent and regular FBP reconstruction leads to a motion-corrupted image (b).
Forward projections from (b) give the reference projections (c). A displacement field is esti-
mated in projection space (result shown in figure 5.5) by elastic registration of measured pro-
jections (a) to reference projections (c). Using the displacement for a motion-compensated
FBP reconstruction from original projections (a) yields the motion corrected image (d) from
which more accurate reference projections (e) can be sampled.

(a) (b) (c) (d)

Figure 5.5: Motion pattern images iteratively estimated by direct elastic signal registration.
Images show the estimates of displacements in projection space after the first (a), second
(b), and third (c) iteration. The last pattern (d) is the ground truth, shown for comparison
purpose.

dissimilarity metric. In this case, the dissimilarity is the difference between partial
integrals in the source and target signals and the solution is not iterative.

5.4 Results

Results from an experiment with the low-contrast Shepp-Logan phantom are shown
in figure 5.4 and figure 5.5, for random shifting and non-uniform global compres-
sion motion. Measured data has been simulated for a full rotational acquisition in
parallel-beam geometry.
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Figure 5.4 shows the projections and reconstructed images for the first steps
within the iterative motion correction technique explained in Fig 5.2. Images of
128 × 128 pixels are reconstructedf rom 256 projections of 128 pixels each. The
images are shown with 2× 2 magnification of pixels size. An efficient correction for
the inconsistencies of input projections is already observed after the second iteration.

Figure 5.5 shows the estimated displacement of pixels in projection space for
successive iterations. Bright and dark pixels correspond to positive and negative
offsets, respectively. Residual errors decrease with increasing iteration number and
are mainly located at the edge of the object, at the border between high and low
attenuation regions. Each row is filled with a gradient: from bright to dark for
compressions and from dark to bright for expansions. A constant negative or positive
bias contains the global shifting information. There is no correlation between rows
because the deformations are generated randomly over time. More complicated
motion could yield complex non-linear variations along the horizontal axis.

5.5 Conclusion

This chapter introduces a general methodology for motion estimation and compen-
sation in tomography. In particular, a solution is provided to estimate the motion in-
formation for the class of deformations that can be described by a strictly increasing
bijective mapping function in projection space. Tackling these specific deformations
is inspired by the complementary work of Desbat et al., showing that exact recon-
struction from inconsistent projections and a motion description, is still possible for
this class of deformations.

The extraction of the motion information is based on numerical integration,
without using any prior knowledge about the temporal or spatial smoothness of the
underlying displacement field. This is a simple non-iterative elastic signal registra-
tion procedure that can be computed in a single pass over the input data. The
proposed iterative motion correction framework can be seen as a generalization of
a conventional FBP image reconstruction. Indeed, if no motion corrupts the pro-
jections, the process converges in one iteration and reduces to a standard image
reconstruction.
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6
Local Motion Correction
in 3D Parallel-Beam Geometry

This chapter extends the technique described previously and presents a new
iterative motion correction technique composed of motion estimation in pro-

jection space, motion segmentation in image space and motion compensation within
an analytical filtered-backprojection (FBP) image reconstruction algorithm. The
motion is estimated by elastic registration of acquired projections on reference pro-
jections, sampled from the image reconstructed in a previous iteration step. To
apply the motion compensation locally, the image regions significantly affected by
motion are also segmented.

First the perceived motion is identified in projection space by computing the
absolute difference between acquired line integrals and reference line integrals. Then,
differences are reconstructed in image space and the image is regularized with a
pipeline of standard image processing operators. The result of the segmentation is
a normalized motion map, associating each image element with an estimate of the
relative amplitude of the detected motion. The estimated displacement vectors in
projection space and the reconstructed motion map in image space are then used by
an adaptive motion-compensated FBP algorithm to reconstruct a sharper image.

This work has been presented at the SPIE Medical Imaging Conference organized
at Lake Buena Vista, USA, on the February 7–12 of 2009 (Schretter et al., 2009b).

6.1 Introduction

The estimation of organ motion from X-ray projections is an ill-posed problem by
nature. Since the projections are two-dimensional while the image space is three-
dimensional, the system is undetermined if one wants to extract the 4D information
of motion along time given the 3D information of projections acquired from a dy-
namic object (Grangeat et al., 2002; Bonnet et al., 2003).

It is mandatory to augment the input information to solve the motion estimation
problem. Often, the assumption is made that the organ motion is smooth and
periodic. Under those hypotheses, gating the projection data with the respiratory
signal allows independent reconstructions of each frame of a dynamic sequence of
volumetric images (Sonke et al., 2005; Yang et al., 2008). Furthermore, the motion
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can be estimated with fair accuracy, by image registration of successive reconstructed
volumes Isola et al. (2008).

The approach of this work follows the proposal of Roux et al. (2004); Desbat
et al. (2006, 2007b). Desbat assumes that for any given time, the displacement vec-
tors are identical for all points on a same X-ray projection ray and that these vectors
are orthogonal to that line. It is easy to see that displacement along projection lines
does not modify the value of line integrals (Milanfar, 1999). Hence, the measured
intensities are invariant to the orthogonal component of the displacement vectors.
Those motion components can not be perceived in X-ray projections and therefore
do not yield any data inconsistency (Yu et al., 2006; Yu and Wang, 2007).

Constraining the displacements to be orthogonal to line integrals yields exact im-
age reconstruction algorithms. Therefore, this assumption does not lead to any loss
of generality since the reconstruction reduces to a standard filtered-backprojection
(FBP) (Kak and Slaney, 1988; Turbell, 2001) if the displacement magnitudes
are set to zero. However, it is likely that patient motion will not fulfill the conditions
of the admissible class of deformations mentioned above. For instance, an incorrect
motion estimate could corrupt the static parts of the image. By introducing the
concept of local motion compensation, the admissible class of motion is extended in
this work to capture also some deformations that bend integration lines into curves
in image space.

The rationale of the method presented in this chapter is the combination of
an iterative estimation of the perceived patient motion in projection space and a
heuristic segmentation of the image region where organ motion is detected. The
deformation estimate and the motion segmentation provide additional information
that are used by a motion-compensated FBP algorithm to reconstruct a sharp static
image from the acquired projection data. This technique has already demonstrated
promising results for the estimation of affine motion from projections of a deforming
Shepp-Logan phantom (Schretter et al., 2008).

The remainder of this chapter is structured as follows. The extended iterative
motion correction method is described in section 6.2 in the context of volumetric im-
age reconstruction. The motion correction problem is split into three complementary
sub-problems: motion estimation, motion segmentation and motion compensation.
Results are shown qualitatively and quantitatively in section 6.3, for reconstructions
from realistic projections simulated from clinical patient data. Since the method
does not assume any periodicity of the motion model, it can correct artifacts due to
unstructured patient motion, such as breath-hold failure, abdominal contractions,
and nervous movements. Finally, conclusions are drawn in section 6.4.

6.2 Method

A novel iterative motion correction technique is proposed and is summarized by the
diagram in figure 6.1. Rounded rectangles represent algorithms and oval shapes
represent both input data and output results of the algorithms. The motion is
estimated in projection space by registration of measured projections on reference
projections, sampled from a static image reconstructed in a previous iteration. This
step is identical to the method illustrated by figure 5.2 in the precedent chapter.
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Figure 6.1: Workflow for iterative motion estimation, segmentation, and compensation.
First, reference projections are forward-projected from the current reconstructed image. Dis-
placement vectors are estimated in projection space by elastic image registration of acquired
projections on reference projections. In parallel, the motion is segmented in image space by
reconstructing absolute differences between acquired and reference projections. Finally, the
image is reconstructed again with local motion compensation.

An original local motion-compensated image reconstruction scheme is proposed
in this chapter by using a motion map that segments image regions where organ
motion is detected. The motion estimation is shown by the black part of the diagram,
while the computation of the motion map is shown by the gray part in figure 6.1. In
parallel to the motion estimation steps, the method detects the image regions where
patient motion occurred during the acquisition.

The original motion information in projection space is transferred to image space
by backprojection and weighted by the result of the new motion segmentation pro-
cedure. To detect organ motion, the absolute differences between reference and ac-
quired line integrals are reconstructed with FBP. This reconstructed image provides
additional information about the patient motion in image space. The image is reg-
ularized and normalized to weight the estimated displacements in projection space,
in order to further increase the accuracy of the motion-compensated reconstruction.

The next sections define the notations used through the chapter and present in
more details the motion estimation and motion segmentation methods. Furthermore,
a novel adaptive motion-compensated FBP reconstruction algorithm is defined. This
algorithm is a generalization of FBP, but allows local image correction with the
estimated patient motion.

Projection and Backprojection

In parallel-beam geometry, the orthogonal projection operator

Pα (x, y, z) = (y cosα− x sinα, z) (6.1)

maps a point (x, y, z) ∈ R3 defined in image space, to a point on the planar detector
oriented at angle α ∈ [0, 2π). The adjoint of the orthogonal projection operator

P ′α (u, v) = (−u sinα, u cosα, v) (6.2)

maps a point (u, v) ∈ R2 defined in projection space to a point on a virtual detector.
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Figure 6.2: Parametrization of line integrals for the parallel-beam geometry. The figure
shows geometrical relations in a transversal cross section of the cylindrical field of view
bounded by the circle. The thick line segment depicts the cross section of a row of the virtual
planar detector, oriented at angle α. The dotted line segment is a specific integration path.

The virtual detector shares the same orientation with the real one, but is centered
on the origin of the cylindrical field of view (FOV). Note the invariant relation

Pα
(
P ′α (u, v)

)
= (u, v) , ∀ (u, v) ∈ R2, (6.3)

however (6.2) is not the inverse of (6.1) since P ′α (Pα (x, y, z)) = (x, y, z) is true only
for points that lie on the virtual detector, thus if (x, y, z) · ~dα = 0. The normalized
vector ~dα = (cosα, sinα, 0) is normal to the detector plane.

Radon Transform

Let ft (x, y, z)→ R be a dynamic volumetric image where (x, y, z) ∈ R3 are Cartesian
coordinates in image space and the subscript t ∈ [0, 1) is a normalized time variable.
The function ft is compactly supported in a normalized cylindrical field of view such
that ft (x, y, z) = 0 when x2 + y2 > 1.

Let gt (u, v) → R be the line integrals of ft where (u, v) ∈ R2 are Cartesian
coordinates in projection space. In this chapter, projections are taken sequentially
for a full circular trajectory with parallel-beam geometry. Hence, gt is akin to the
Radon transform and the values of line integrals are equal to

gt (u, v) =
∫ 1

−1
ft

(
P ′α (u, v) + s ~dα

)
ds, (6.4)

with α = 2πt.
Every point of the integrated line are selected by varying the integration param-

eter s ∈ R. In particular, a point is located on the line segment intersecting the field
of view if |s| ≤ r =

√
1− u2. A sketch of the relation between u and r is shown in

figure 6.2.
The orientation of the planar detector is linearly dependent on the acquisition

time t, therefore every projection observes ft at a different angle and time and thus,
a potentially different deformation state. Since the set of projections gt is three-
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dimensional (2D over time) and the observed dynamic image ft is four-dimensional
(3D over time), the information of gt is always insufficient to reconstruct ft, except
in the special case where the values of line integrals do not vary with time.

6.2.1 Motion Model

The purpose of this work is to reconstruct one static image f (x, y, z) → R from
the corpus of line integrals gt that was acquired from a moving object. Since the
acquired data contain line integrals of a dynamic image, the reconstruction problem
is ill-posed. Nevertheless, a strategy to reconstruct a static image f from gt is
proposed. The technique assumes that the dynamic image ft is deformed by a
mathematically tractable motion model.

If ft is the time-varying image of a moving patient, then the deformations of the
body should be invertible (Chun and Fessler, 2009b,a) and therefore, a bijective
mapping function Γt (x, y, z)→ R3 exists between the object at any temporal posi-
tion t ∈ [0, 1) and the object at a reference motion state f̂ (x, y, z) → R, such that
f̂ (x, y, z) = ft (Γt (x, y, z)) and ft (x, y, z) = f̂

(
Γ−1
t (x, y, z)

)
.

Note that in general, the suitable invertible deformations Γt are not unique.
Therefore, instead of considering the whole class of time-varying deformations, this
work introduces an original constrained model of the patient motion that can be
seen as an extension of the admissible class of motion suggested by Desbat et al.
(2006, 2007b).

First, the degrees of freedom of the deformation model are constrained to pre-
serve the geometry of lines in image space. Consequently, the deformation can be
represented in projection space by a bijective mapping function Dt (u, v)→ R2. Sec-
ond, the moving regions are detected in image space and segmented by a normalized
scalar field M (x, y, z) ∈ [0, 1]. In this chapter, M is also called motion map.

Definition

The displacement of image elements in image space is finally modeled by backpro-
jecting the dynamic vector field Dt and multiplying vectors by the static scalar field
M and is expressed by

∆t (x, y, z) = P ′α (Dt (Pα (x, y, z)))M (x, y, z) , (6.5)

with α = 2πt. The trajectories of image elements along time is given by applying
the displacement in (6.5) relatively to the initial position of image elements and is
noted

Γt (x, y, z) = (x, y, z) + ∆t (x, y, z) , (6.6)

where the displacement vectors of ∆t lies on the detector plane and are therefore
always orthogonal to the direction of integration lines.

Note that if M (x, y, z) = 1, ∀ (x, y, z) ∈ R3, then the displacement vectors Dt are
uniformly backprojected and ∆t (x, y, z) = P ′α (Dt (Pα (x, y, z))), with α = 2πt. This
restrained displacement model yields the class of deformation called global motion
in this chapter, in opposition to the more general class of deformation considered
in (6.6) and called local motion. A systematic comparison of image reconstruction
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(a) Acquired projection (b) Reference projection (c) Deformation grid

Figure 6.3: Motion estimation by elastic image registration. The mapping of an acquired
projection taken at the beginning of expiration (end of inspiration) to a corresponding ref-
erence projection taken at the beginning of inspiration (end of expiration) is shown by a
deformation grid (c). Those two motion states are very different and thus, this specific pair
of projections demonstrates a difficult registration case.

results, using global and local motion estimation and compensation, is conducted in
section 6.3.

6.2.2 Motion Estimation in Projection Space

Motion estimation requires a reference static image f̂ (x, y, z)→ R. The initial refer-
ence image f̂ is reconstructed from acquired data, without any motion compensation.
A set of reference projections ĝα (u, v) is being obtained by forward projection from
f̂ with one projection per acquisition angle α ∈ [0, π). Note that because of the sym-
metry of the parallel-beam geometry, it is required to compute reference projections
only for half of a circular rotation.

The perceived deformation between each pair of acquired projections gt and
corresponding reference projections ĝα is represented in projection space by the
bijective mapping function Dt (u, v)→ R2 that maps the projections gt (u, v) on the
projections ĝα (u, v), with α = 2πt:

ĝα (u, v) = gt ((u, v) +Dt (u, v)) , ∀ (u, v) ∈ R2. (6.7)

Given the set of reference projections, displacements are estimated by registering
independently all pairs of corresponding projections. The results shown in this
chapter rely on a regularized elastic image registration algorithm, recently published
by Chun and Fessler (2008, 2009b). The implementation is based on the B-spline
model to represent both the images and the deformation field.

Regularization of the Deformation

The value of each parameter of the deformation vector field is iteratively optimized
by a conjugate gradient descent method. The objective function maximizes the
image similarity while a penalization term enforces that the deformation stays locally
invertible. An example of registration for a pair of projections is shown in figure 6.3.

An additional modification of the penalization can capture some discontinuities
that arise at the boundaries of organs like the sliding motion between ribs and
the diaphragm that occurs during respiration (Chun and Fessler, 2009a). This
modification has not been used in this work but could improve the robustness of
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(a) Detected motion (b) Thresholding (c) Regularization

Figure 6.4: A specific coronal slice from motion segmentation in image space. The motion
is first detected by reconstruction of absolute differences between acquired and reference
projections (a). Then, a segmentation is obtained by thresholding (b). This binary map
is regularized with a non-linear max filter and edges are smoothed by Gaussian filtering to
produce the motion map (c).

the motion estimation. Moreover, alternative image registration techniques could
be employed such as optical flow methods (Horn and Schunck, 1981; Barber
and Hose, 2005) that proved to be computationally very efficient.

The reference projections are forward projected from a digital volumetric image,
using a fast ray-tracing algorithm (Schretter, 2006). Since the projections are
sampled from the current reconstructed image, they can be corrupted by motion
artifacts and sampling inaccuracies. Therefore, the accuracy of the estimated de-
formation can be refined by iterating the estimation procedure, using an improved
reference image, reconstructed with motion compensation.

6.2.3 Motion Segmentation in Image Space

The principle of motion segmentation from difference between line integrals was first
proposed by Lin (1994) and studied further by Linney and Gregson (2001). These
algorithms assume that each line integral is sampled at least twice during the acqui-
sition. If corresponding line integrals are not equal, this indicates that some motion
occurred along the line. The solution proposed here does not require redundant data
but re-uses the pairs of corresponding acquired and reference projections gt and ĝα
that are computed for motion estimation.

For detecting motion in image space, data inconsistencies are first identified in
projection space by computing the absolute differences dt = |ĝα − gt| , α = 2πt.
The differences dt are evaluated independently for each acquired projection and are
reconstructed to detect the image elements strongly affected by motion. The re-
construction uses the regular FBP algorithm defined below in (6.8). Finally, the
reconstructed image is thresholded and regularized to produce the motion map
M (x, y, z) ∈ [0, 1].

Regularization of the Motion Map

The motion map provides a rough binary partitioning of the image domain into
two classes of image elements: static or moving. The regions that remain static
during the whole acquisition yield consistent line integrals in projection space and
the regular FBP reconstruction is very suitable for static image elements.
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Only the moving parts of the anatomy are responsible for inconsistencies in
projection data. Therefore, the motion compensation could be applied only on
moving voxels during image reconstruction. The role of the motion map is to detect
the static image elements in order to apply locally the motion-compensation.

Note that the differences dt are computed independently for each line integral,
therefore, the set of difference projections is not guaranteed to be consistent. Often,
data inconsistencies yield large streak artifacts in reconstructions. In practice, the
impact of those artifacts is not so severe for this application, since the expected
result is only a rough localization of the moving regions.

In experiments the reconstruction of differences is post-processed with the fol-
lowing procedure. First, a binary mask is created by thresholding the image at 100
Hounsfield units (HU). Then, a non-linear max filter with a spherical structural el-
ement of radius 1 is applied to grow the segmented region. Finally, edges between
moving and non-moving regions are smoothed by convolving the binary image with a
volumetric Gaussian kernel. Note that the end result is exactly the same if the max
filter is applied before thresholding. Other pipelines of image processing operators
may equally fulfill this post-processing task.

Selection of the Threshold

The specific value of the threshold drives the sensitivity of motion detection and
therefore, the threshold should be chosen as low as possible to guarantee that every
moving voxel is properly detected. However, noise in the X-ray transmission mea-
surements and the intrinsic numerical errors of the FBP reconstruction algorithm
limit the maximum reachable sensitivity. If the threshold is chosen too high, then
the sensitivity decreases up to the point that some moving regions are not properly
detected.

The suggested value of 100 HU has been used in experiments to avoid corruption
of the motion map by noise and reconstruction artifacts. Typical motion artifacts
at the border of moving regions of the chest appear as a mixture of air and water.
100 HU corresponds to 10% of the difference between the attenuation value of air
and water for retaining only the most significant differences between acquired and
reference line integrals.

While thresholding is a very simple segmentation technique that know many
refinements (Aach and Kaup, 1995), it demonstrated very sufficient performance
for this simple binary segmentation problem. A visualization of the formation of the
motion map is shown in figure 6.4.

6.2.4 Motion-Compensated Image Reconstruction

FBP is the method of choice for fast volumetric image reconstruction in X-ray
transmission CT. An approximate FBP image reconstruction algorithm with mo-
tion compensation have already been developed by Ritchie et al. (1996). Several
exact FBP algorithms have been derived in the works of Roux et al. (2004); Desbat
et al. (2007b). The admissible motion models are various classes of mathematically
tractable deformations, including affine transformations such as rigid-body transfor-
mations and non-uniform scaling. Recently, an exact reconstruction algorithm has
been developed in the context of local tomography by Katsevich (2008).
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Considering the local motion model in (6.6), the value of reconstructed voxels
must match exactly the result of FBP in image regions where the motion compen-
sation is not applied. Therefore, in contrast to exact reconstruction approaches, the
proposed motion compensation technique does only modify the backprojection step
of the reconstruction algorithm and is therefore exact only for rigid body transforma-
tions (Milanfar, 1999). Using standard uniform pre-weighting and ramp filtering
of input projections enforces the important property that the reconstruction is a
generalization of the regular FBP.

Reconstruction Algorithm

For full circular acquisitions in parallel-beam geometry, the regular FBP image re-
construction is implemented by first convolving, row by row, the input projections
with the Ram-Lak ramp filter and dividing the filtered values by the number of
projections. Then the filtered line integrals are backprojected from projection space
to image space.

Let’s consider that the pre-weighted and ramp filtered input projections g∗t are
available, the reconstruction of a static volumetric image f (x, y, z)→ R is computed
by summing the backprojections of g∗t as follows:

f (x, y, z) =
∫ 1

0
g∗t (Pα (x, y, z)) dt, (6.8)

with α = 2πt. For motion compensation, a modification is introduced within this
procedure by displacing the projected position of voxels before fetching the pre-
weighted filtered line integral. Therefore, the motion model in (6.6) is inserted in
(6.8) and the result is an approximate motion-compensated FBP algorithm:

f (x, y, z) =
∫ 1

0
g∗t
(
PΓ
α (x, y, z)

)
dt, (6.9)

with α = 2πt and

PΓ
α (x, y, z) = Pα (Γt (x, y, z))

= Pα
(
(x, y, z) + P ′α (Dt (Pα (x, y, z)))M (x, y, z)

)
= Pα (x, y, z) +Dt (Pα (x, y, z))M (x, y, z) . (6.10)

As shown by the last expression in (6.10) by using the invariant relation pointed
in (6.3) the motion-compensated FBP algorithm in (6.9) can be implemented by dis-
placing in projection space the backprojected position of the current image element.

Discussion

The motion estimation method assumes implicitly that all voxels along a given line
integral are shifted by the same displacement vector. Unfortunately, this approxima-
tion can introduce certain artifacts into image regions not affected by any motion.
To alleviate this issue, the dynamic displacements Dt will be weighted by scalar
values of the static motion map M , produced by segmenting the motion in image
space.
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Figure 6.5: Results of ground truth experiment on motion correction with global and local
motion compensation. The regular FBP reconstruction does not use any motion compensa-
tion and contains motion blur artifacts. When additional motion information is estimated
and used during reconstruction, the compensated image looks very closely to the reference
frame extracted from the dynamic phantom.

In the software implementation, a displacement vector is stored for each pixel of
each acquired projection. The continuous time-varying two-dimensional vector field
is obtained by bi-linear interpolation from the discrete samples. Furthermore, the
motion-compensated reconstruction runs nearly as fast as the regular FBP since the
pre-weighting and filtering input data need to be applied only once for producing
all reconstructed images.

It is possible to further accelerate the local correction scheme by using the gen-
eralization property of the motion-compensated reconstruction algorithm. Indeed,
if M (x, y, z) = 0, then the value of reconstructed voxel at position (x, y, z) will not
change from the initial reconstructed image. Hence, it is sufficient to reconstruct
with motion compensation, only the voxels where M (x, y, z) 6= 0. For the final
image, the resulting local reconstruction can be composited with the initial image,
using the values of M as blending factors. This procedure dramatically saves the
computational cost by computing the correction only in the region of interest where
strong motion artifacts are detected.

6.3 Results

In this section, all slices are extracted from volumetric images represented by a
Cartesian grid of 256×256×198 isotropic 1.36 mm voxels. Transversal views show
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Figure 6.6: Transversal slices extracted from the results of iterative motion correction
with global and local motion compensation. Static regions become deteriorated with global
motion correction while their sharpness is preserved with local motion correction. The white
squares show the boundaries of close-up views.

the slice number 40 and coronal views show the central slice. Those slices have
been selected because they exhibit strong motion artifacts without correction. The
window level and width are 0 and 2000 Hounsfield units (HU), respectively. Hence,
gray corresponds to the attenuation value of water and black corresponds to air.

Experiments are conducted on synthesized projections, sampled from the clinical
dataset shown in figure 4.4. This dynamic phantom is a sequence of 40 frames,
reconstructed from a respiratory-gated helical CT acquisition. A set of 360 parallel-
beam projections was forward-projected from this dynamic phantom for one full
rotation with a circular trajectory. The simulated acquisition time was 12 seconds,
approximating the typical speed of a rotating C-arm system, when used for soft
tissue imaging.
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Figure 6.7: Coronal slices extracted from the results of iterative motion correction with
global and local motion compensation. For both methods, the border of the diaphragm
becomes sharper as seen in the coronal slice. The white squares show the boundaries of
close-up views.

Figure 6.5 compares images reconstructed with local or global motion correction
using a set of projections sampled from a static image for motion estimation and
segmentation. For this experiment, the frame number 8 has been chosen from the
dynamic phantom as a ground truth and consistent reference projections are forward
projected from this image. The accuracy of the motion model and the modified
reconstruction method can be assessed by comparing the output images with the
ground truth reference.

Global and Local Motion Compensation

The less accurate global motion compensation yields local image corruption. This
effect is especially prominent in transversal views, for the spinal bones that remain
static during the whole acquisition. This experiment proves the capability of the local
motion correction method to appropriately correct motion artifacts if a reference
image is known.
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Figure 6.8: Exploration of the influence of various parameters for motion segmentation.
Images are binary segmentations that are produced as intermediate step before edge smooth-
ing. The influence of the thresholding parameter shown by column headlines is combined
with various max filter operations. The radius of the spherical structural element used for
the max filter is chosen between 0, 1, and 2 and is indicated between braces.
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Figure 6.9: Image formation of the normalized motion map after the first iteration. The
detected motion image is reconstructed from the absolute differences between acquired and
sampled line integrals. Then, the image is regularized with the non-linear max filter and
a threshold is applied to obtain a binary image. Finally, edges are smoothed by discrete
convolution with a 5×5×5 volumetric Gaussian kernel.
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Figure 6.10: Image formation of the region of interest (ROI) for quantitative analyses,
extracted from the dynamic phantom. The average of all 40 frames contains motion blur in
regions where patient movements are observed. The average of the differences between the
average frame and each frames of the phantom emphasizes the location of observed motion.
Thresholding this image gives the binary ROI composed of voxels that are significantly
affected by motion. Note the similarity to the motion map shown in figure 6.9.
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Figure 6.11: Quantitative analyses of reconstructed images after 1, 2, and 3 iterations
when the correction is applied globally (left) or locally (right). The plots show the mean
average error (MAE) between the reconstructed image and each of the 40 frames from the
breathing phantom. Evaluation considers the region of interest (ROI) in figure 6.10. The
minimum points of the curves correspond to frames number 8 and 29.
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Figure 6.12: Side-by-side comparison between a reference frame and the image reconstruc-
tion after the first iteration with the local correction method. The reference frame is the
average of frames 8 and 29 of the free breathing phantom. The difference image for the initial
FBP reconstructions emphasizes motion artifacts. After the first iteration of local motion
correction, the second difference image is already much more uniform. For the difference
images, the window level and width are 0 and 1000 HU, respectively.

Results of image reconstructions with iterative motion corrections are shown in
figure 6.6 and figure 6.7. The initial image does not use any compensation and is
therefore identical for both global and local compensation results. This image is
repeated to ease visual comparisons. The progressive improvement of image quality
follows the number of iterations. The visual difference between results obtained with
global and local motion correction is very clear in the smaller scale close-up views.

Two or three iterations are usually sufficient since the relative difference between
subsequent motion-compensated images becomes small. Using a higher number of
iterations should be avoided due to the fact that the FBP reconstruction does in-
troduce certain inaccuracies in the image. Notably, sampling artifacts and the finite
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number of projections limit intrinsically the accuracy of analytical reconstructions.

Motion Estimation and Segmentation

For elastic image registration, the spacing between control knots of the B-spline grid
is 8 pixels. The resulting deformation after 32 internal iterations of the registration
algorithm is retained. It has been observed that the additional penalization term
preserved the smoothness of the deformation. However, in practice, the chosen
number of iterations and the resolution of the grid also play a prominent role to
regularize the deformation estimate.

The local motion compensation requires the creation of a normalized motion
map as explained by the gray-shaded part of the diagram in figure 6.1. Figure 6.8
compares results obtained with various values for the threshold constant and the
radius of the max filter used for regularization. As expected, the extent of the
segmented regions tends to increase with diminishing values for the threshold.

The max filter grows the boundaries of the segmented regions and ensures that
every potentially moving voxel is detected while avoiding noisy segmentation that
could result from a too sensitive threshold value. Figure 6.9 shows the intermediate
steps of the motion map creation for the first iteration, with the parameter set chosen
for the experiment (threshold of 1000 HU and max filter of radius 1). The black
regions in the final image segment voxels where no compensation is applied at all.

The progressive improvement in image quality has been assessed quantitatively
in a region of interest (ROI) extracted from the frames of the phantom, as shown in
figure 6.10. First, the average frame has been computed from the 4D dataset. This
image contains motion blur in regions where patient motion occurred, while static
regions remain sharp. Moreover, the noise variance has been reduced significantly
by the averaging process.

Second, the average difference from the average frame has been computed. This
image emphasizes regions where motion can be observed and is therefore also the
ground truth of the motion map used for local motion compensation. Finally, the
average difference image is thresholded at 100 HU to select voxels of the ROI.

Interpretation

Curves resulting from quantitative analyses are shown in figure 6.11. The mean
absolute error (MAE) between the static reconstructed images and each frame of
the dynamic phantom is plotted. If both images contain N image elements selected
by the subscript i ∈ [1, N ], the MAE measure of the error between a reconstructed
image I and one specific frame F in the ROI is

MAE (I, F ) =
1∑N

i=1 ROIi

N∑
i=1

|Ii − Fi| · ROIi, (6.11)

where ROI is the binary image shown in figure 6.10, indicating for each voxel
Ii,∈ [1, N ] if it belongs or not to the region of interest where measurements are
meaningful.

The error curves follow the breathing signal and their amplitude increases with
iterations. However, the curves are shifted up by increasing offsets with global mo-
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tion compensation. In fact, if any displacement is applied in static regions of the
image, then the method introduces motion corruption instead of motion compensa-
tion and the image quality is locally deteriorated. This offset is much smaller with
local motion correction.

The points of minimum error in figure 6.11 indicate that the motion corrected
images tend to converge toward gates 8 and 29 of the phantom. Those gates corre-
spond to motion states at half-way between the beginning (or the end) of exhalation
and inhalation. Those two motion states are by nature very similar since the respi-
ratory motion is a roughly periodic back and forth movement. A significant error
reduction is observed for those gates. The progressive convergence towards frames
8 and 29 is shown by the difference images in figure 6.12.

Convergence towards the intermediate motion states can be explained as follows.
As can be observed in the plots of figure 6.11, without any motion correction, the
blurred reconstructed image is close to the motion states of frames 8 and 29. Since
this intermediate image is considered as a static reference for motion estimation,
in the next iteration, the motion-compensated image tends to further improve this
proximity by sharpening the blurred structures observed in the initial reconstruction.

6.4 Conclusion

In this chapter, an iterative motion correction method for static image reconstruc-
tion in computed tomography has been presented. The motion correction problem is
split into three sub-problems: motion estimation, motion segmentation and motion
compensation. For motion estimation, an elastic image registration algorithm esti-
mates a displacement vector field that warps acquired projections on corresponding
reference projections.

For motion segmentation, the absolute difference between acquired and reference
line integrals are reconstructed first. Then, an image processing pipeline regularizes
the image and provides a normalized scalar image, called motion map. Finally, mo-
tion compensation is applied locally within an analytical FBP image reconstruction
algorithm by displacing image elements before backprojection.

The motion segmentation method produces a normalized motion map, associ-
ating each image voxel with an estimate of the motion magnitude present there.
The motion map is combined with the motion correction scheme in order to locally
apply a compensation for motion during image reconstruction. However, the mo-
tion map can also be used in different ways. For example, the motion information
could be displayed in overlay to highlight the voxels that are potentially corrupted
by reconstruction artifacts due to patient motion.

The main originality of the proposed solution is that the underlying motion
model is not assumed to be periodic and the motion compensation is applied only
locally during image reconstruction. Therefore, the technique can also be applied
on X-ray projections acquired during breath-hold acquisitions to compensate for un-
structured residual patient motion. In this work, a novel approach for local motion
estimation and compensation was evaluated in parallel-beam geometry. While the
same methodological framework is in principle also applicable to cone-beam geom-
etry, certain adaptations and extensions are required for the latter case.
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7
Local Motion Correction
in Cone-Beam Geometry

Divergent ray geometries are widespread today for X-ray transmission com-
puted tomography (CT) because classical X-ray generators emit high-energy

photons from a single point source. Cone-beam geometry refers to the class of diver-
gent rays geometries when radiations are detected by a multi-row planar or curved
detector. In order to adapt to practical constraints, this work proposes a method to
detect and to estimate arbitrary patient motion in cone-beam geometry. In contrast
to the parallel-beam geometry studied in the previous chapter, the technique also
takes into account image truncations associated to divergent ray geometries.

This work extends the method described in the two preceding chapters to the
cone-beam geometry and validates it on physiologically plausible motion. The mo-
tion information is computed from truncated data and then used within a motion-
compensated variant of the FDK algorithm to improve the image quality. Because
of truncation issues, the method can not be applied iteratively anymore in order to
improve the estimate of the motion information.

This work has been presented at the 10th International Meeting on Fully Three-
Dimensional Image Reconstruction in Radiology and Nuclear Medicine (Fully3D)
organized on the September 6–12 of 2009 in Beijing, China (Schretter et al.,
2009d).

7.1 Introduction

Our motion estimation and compensation approach has been first developed in the
context of parallel-beam tomography. In the precedent chapter, the experiments
have been conducted using the exact reconstruction algorithm of Roux et al. (2004)
for a parallel-beam acquisition geometry. However, in principle the technique does
not depend on the acquisition geometry and the source trajectory, since the motion
is estimated independently for each acquired projection.

It should be noted that for divergent rays geometries with circular trajectory,
the image reconstruction can not be exact for arbitrary objects (Tuy, 1983; Finch,
1985). Therefore, so-called cone-beam artifacts can corrupt the reconstructed image
when using the popular FDK algorithm (Feldkamp et al., 1984). The possible
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Figure 7.1: Workflow for motion estimation, segmentation, and compensation. First,
reference projections are forward-projected from a scout image reconstructed with SART.
Displacement vectors are estimated in projection space by elastic image registration of ac-
quired projections on reference projections. In parallel, the motion is segmented in image
space by reconstructing absolute differences between acquired and reference projections.
Finally, the image is reconstructed again with local motion compensation.

shading artifacts could be corrected (Hu, 1996; Zhu et al., 2007) before sampling
reference projections or an alternative trajectory could be used, as proposed for
instance by Schomberg et al. (2009).

The motion-compensated reconstruction relies on the heuristic algorithm of Schäfer
et al. (2006). Taguchi and Kudo analyzed the properties of this algorithm (Taguchi
and Kudo, 2008b) and concluded that “the fan-beam and cone-beam versions of
Schäfer’s method are a very good approximation of the exact method.” This state-
ment is confirmed by our experiments. Indeed, the motion-compensated FDK re-
construction from a simulated free breathing acquisition shows very good agreement
with the objective image.

The remainder of this chapter is structured as follows. Notations and an outline
of the motion estimation and segmentation methods are given in section 7.2. Exper-
imental results conducted on simulated data from a realistic respiratory phantom
are discussed in section 7.3. Two related experiments have been analysed. First,
the motion is estimated in projection space by optical flow-based elastic image reg-
istration, using reference projections of a known static image. Second, the motion is
estimated from approximate reference projections that are computed by the SART
method, using solely the acquired data. Finally, conclusions are drawn in section 7.4.

7.2 Method

The motion estimation method is split into three sequential steps which are solved
by standard algorithms from the image reconstruction and image processing commu-
nities. The three steps of this workflow are summarized by the diagram in figure 7.1.

First, a sequence of reference projections is synthesized from the acquired projec-
tions. Those reference projections are sampled from a voxelized image and therefore
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Figure 7.2: Illustration of the reconstructed region of interest (ROI) observed by all pro-
jections, in cone-beam geometry. The ROI is a truncated cylinder caped by two Chinese hats
and is smaller than the whole field of view (FOV). The fan angle is 18.9◦. The maximum
cone angle is 14.7◦. The definition of reconstructed images is 256× 256× 198 voxels.

a scout image is required. This intermediate image is reconstructed with the SART
method to aleviate artifacts from data truncation.

Second, a 2D displacement vector field that maps every acquired projection on
its corresponding reference projection is computed using optical flow-based elastic
image registration. Third, a binary segmentation is obtained from the reconstruc-
tion of absolute difference between acquired and reference projections. The motion
segmentation can be executed in parallel with motion estimation.

Finally, a static image is reconstructed with the modified FDK algorithm in
(7.12) that uses both the motion estimate and the segmentation to apply locally a
compensation during the back-projection step. In fact, only a limited region of the
field of view (FOV) can be reconstructed, and the reconstruction is exact only in
the central slice. In addition, since the size of the detector is limited, projections
are truncated as well. Nevertheless very encouraging results are obtained, by using
only a single iteration for motion estimation. The three steps of the method will be
described in more details in the following sections.

Projection and Backprojection

With circular trajectory and cone-beam geometry, divergent X-rays are emitted from
a point source and attenuated intensities are measured by a planar detector. The
point source is located at distance R from the rotation axis and the detector is
positioned at distance R + D from the point source such that the radius of the
cylindrical field of view (FOV) is equal to D. The region of interest (ROI) that
should be reconstructed is composed of image voxels that are observed in every
projection. The geometry of a realistic C-arm system illustrated in figure 7.2 is
simulated by choosing R = 5D.

Let ft (x, y, z) → R be a dynamic volumetric image where (x, y, z) ∈ R3 are
Cartesian coordinates in image space and the subscript t ∈ [0, 1) is a normalized
time variable. The function ft is compactly supported in the cylindrical FOV such
that ft (x, y, z) = 0 when

√
x2 + y2 > D.
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When the arm is oriented at angle α ∈ [0, 2π), the perspective projection operator

Pα (x, y, z) = (y cosα− x sinα, z)
(R+D)

U
(7.1)

maps a point (x, y, z) ∈ R3 defined in object space to a point (u, v) ∈ R2 defined in
projection space. The denominator in (7.1) is the perspective factor

U = Uα (x, y) = R+ x cosα+ y sinα (7.2)

which is equal to the distance between the source and the orthogonal projection of
the voxel position on the central plane. The central plane contains the source point
and is orthogonal to the rotation axis.

The adjoint of the perspective projection operator

P ′α (u, v) = (−u sinα, u cosα, v)
R

(R+D)
(7.3)

maps a point (u, v) ∈ R2 defined in projection space to a point on a virtual detector
defined in object space. The constant ratio R/ (R+D) is called the magnification
factor. The virtual detector shares the same orientation with the real one, but is
smaller, proportionally to the magnification factor and centered on the origin of the
FOV. Note the relation

Pα
(
P ′α (u, v)

)
= (u, v) , ∀ (u, v) ∈ R2, (7.4)

however (7.3) is not the inverse of (7.1) since P ′α (Pα (x, y, z)) = (x, y, z) is true only
for points that lie on the virtual detector, when U = R and thus, when x cosα +
y sinα = 0.

Radon Transform

Let gt (u, v) → R be the line integrals of ft where (u, v) ∈ R2 are Cartesian co-
ordinates in projection space. When the arm is oriented at angle α ∈ [0, 2π), the
position of the point source is Rdα where the vector ~dα = (cosα, sinα, 0) is normal
to the detector plane. Therefore, the values of acquired line integrals are equal to

gt (u, v) =
∫ 1

−1
ft

(
(1− s)P ′α (u, v) + sR ~dα

)
ds, (7.5)

with α = 2πt. Points of the integrated line segment connecting the X-ray source to
a pixel of the detector are selected by varying the integration parameter s > 0.

7.2.1 Motion Model

The motion model is similar to the one derived for the parallel beam geometry in
the last chapter, however, in perspective geometry, the geometrical definition of the
modeled class of motion is obviously different. The model can be seen as an extension
of the admissible class of motion suggested for fan-beam geometry by Roux et al.
(2004) and extended to cone-beam geometry by Desbat et al. (2007b).
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The perceived motion is represented by a dynamic displacement vector field
in projection space Dt (u, v) → R2 and a normalized scalar field in image space
M (x, y, z) ∈ [0, 1]. The associated image M indicates for each voxel if some motion
occurred during the acquisition. This segmentation information is a key for success-
ful local motion compensation. The displacement of image elements in object space
is modeled by backprojecting the displacement field Dt and weighting vectors with
the scalar field M .

Definition

Displacements are formally expressed for the perspective geometry by the equation

∆t (x, y, z) = P ′α (Dt (Pα (x, y, z)))M (x, y, z) , (7.6)

with α = 2πt. The trajectories of image elements along time are given by apply-
ing the displacement in (7.6) relatively to the initial position of image elements.
Trajectories are expressed by

Γt (x, y, z) = (x, y, z) + ∆t (x, y, z) , (7.7)

where the displacement vectors of ∆t lie on the detector plane and thus represent
only the component orthogonal to the projection ray.

A particularity of the model is that neither periodicity nor spatial or temporal
smoothness of the underlying motion is assumed. Therefore it could capture un-
wanted sudden patient motion such as hiccups, breath-hold failures, or bowel move-
ments, for example. Although the model is approximate, our experiments demon-
strate that it has the potential to capture local motion very well. The success of
motion compensation mainly depends on the accuracy of motion estimation.

7.2.2 Motion Estimation in Projection Space

Motion estimation requires a reference static image f̂ (x, y, z) → R from which a
set of reference projections ĝα (u, v) is forward projected, with one projection per
acquisition angle α ∈ [0, 2π). The simultaneous algebraic reconstruction technique
(SART) proposed by (Andersen and Kak, 1984) is used to reconstruct a pilot
image from the available acquired projections.

By principle, iterative image reconstruction techniques try to estimate an image
such that the error between forward projection and input projections is minimized.
A corollary is that the forward projection of the image will be more robust to possible
projection truncations that often arise in cone-beam geometry, see figure 7.2.

It is known that, if data are consistent, the reference projections will match the
acquired projections in the weighted least square sense when using SART. However, if
acquired data are corrupted by unwanted patient motion, the iterative reconstruction
will never converge and the image will contain motion blur artifacts. This pilot image
is nevertheless valuable for sampling approximate reference projections.

Experiments demonstrate that even if the resolution of those approximate refer-
ence projections is limited by motion blurring, their quality is sufficient for motion
estimation in projection space. The SART method is used because of its fast con-
vergence rate but another reconstruction algorithm could have been used as well.
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Optical Flow Tracking

The perceived deformation between each pair of acquired projections gt and corre-
sponding reference projections ĝα is represented in projection space by the bijective
mapping function Dt (u, v)→ R2 that map gt (u, v) on ĝα (u, v), with α = 2πt:

ĝα (u, v) = gt ((u, v) +Dt (u, v)) , ∀ (u, v) ∈ R2. (7.8)

In this chapter, the displacement vectors Dt are computed using the optical flow
principle introduced by the seminal paper of Horn and Schunck (1981). Optical
flow has been applied with success for motion estimation in SPECT imaging by
Gilland et al. (2002, 2008) and will be the object of a through study in the next
chapter.

In optical-flow-based methods, the brightness of a particular point of the projec-
tion gt is assumed to remain constant over time, so that

∂gt
∂t

= −Dt ·
(
∂gt
∂u

,
∂gt
∂v

)
. (7.9)

Provided that the displacement vectors in (7.9) are small, the chain rule for differ-
entiation gives

ĝα − gt = Dt ·Gt, (7.10)

where Gt contains gradient vectors that capture the direction and the amplitude
of the intensity change between the two images ĝα and gt. Partial derivatives are
approximated by finite differences.

For robustness, the components of gradient vectors are computed for both the
source and target images and then averaged such that

Gt =
1
2

(
∂ĝα
∂u

+
∂gt
∂u

,
∂ĝα
∂v

+
∂gt
∂v

)
. (7.11)

In the implementation, vectors of (7.11) are averaged at a coarse grid of control
points and then interpolated back for every pixel. This procedure improves the
numerical stability but also reduces the resolution of the deformation vector field.

The present work relies on the optical flow-based elastic image registration algo-
rithm proposed by Barber and Hose (2005); Barber et al. (2007). His algorithm
provides an automatic regularization of the deformation grid and is both fast and
robust1. The optimal deformation Dt is iteratively estimated by the conjugate gra-
dient descent method.

The objective function minimizes the sum of squared differences between ĝα and
gt while a regularization term penalizes the updates of Dt to avoid irregularities
in the final deformation. The penalization is proportional to the Laplacian of the
deformation vector field computed in the previous iteration. For the first iteration,
the initial deformation is a zero vector field and no regularization term is used.

1For cross-validation, the same experiments has been executed with the B-spline-based MAT-
LAB implementation of Chun and Fessler (2009b) as well and very similar results are obtained.
However, the implementation in the C language from Barber et al. (2007) has been retained for
its advantageous performance benefits over MATLAB.
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7.2.3 Motion Segmentation in Image Space

For detecting motion in image space, data inconsistencies are first identified in pro-
jection space by computing the absolute differences dt = |ĝα − gt| , α = 2πt. The
differences dt are evaluated independently for each acquired projection and are re-
constructed to detect the voxels strongly affected by motion. In contrast to the
method described in the previous chapter, the reconstruction relies on the regular
FDK algorithm and not FBP. Finally, a threshold is applied to yield a binary image
that is regularized to give the final motion map.

In experiments the reconstruction of differences is post-processed with the fol-
lowing procedure. First, a binary mask is created by thresholding the image at 100
Hounsfield units (HU). Then, a non-linear max filter with a spherical structural el-
ement of radius 2 is applied to grow the segmented region. Finally, edges between
moving and non-moving regions are smoothed by convolving the binary image with
a volumetric Gaussian kernel. Note that the end result is the same if the threshold
is applied after the max filter. Alternative post-processing pipelines may equally
fulfill the regularization task.

7.2.4 Motion-Compensated Image Reconstruction

For motion compensation, a modification is introduced within the FDK algorithm by
displacing the projected position of voxels before fetching the pre-weighted filtered
line integrals, denoted here by g∗t .

The motion model defined in (7.7) is inserted in the backprojection of FDK
and the reconstruction of a static volumetric image f (x, y, z) → R is computed as
follows:

f (x, y, z) =
∫ 1

0

R2

U2
g∗t
(
PΓ
α (x, y, z)

)
dt, (7.12)

with α = 2πt and the displaced backprojection operator derived in the previous
chapter:

PΓ
α (x, y, z) = Pα (x, y, z) +Dt (Pα (x, y, z))M (x, y, z) . (7.13)

7.3 Results

Experiments have been conducted using an identical setup as described earlier for
the parallel-beam case. The importance of using an iterative method for generating
the scout image was evaluated first in the next sub-section. The first results with
motion compensation for a realistic divergent rays geometry and truncated data are
then presented. The experiments validate the method on a challenging scenario,
when the patient is breathing freely.

The dynamic phantom is a sequence of 40 frames reconstructed from a respiratory-
gated helical CT acquisition shown in the first chapter. The simulated acquisition
time was 12 seconds, matching the typical rotation speed of a C-arm system when
used for soft tissue imaging. The experiments validate the method on a challenging
scenario, when the patient is breathing freely. The following sub-sections specify the
experimental setup and discuss results.
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Figure 7.3: Registration of two pairs of projections when the reference projection has been
forward projected from a volume reconstructed with the FDK or the SART method. The
difference between the original acquired projection and the synthetic projection projected
from the FDK reconstruction reveals innacuracies. Therefore, some spurious motion in-
formation is visible nearby image borders. However, reference projections computed with
SART match perfectly the acquired data.

For visualizing results of volumetric image reconstruction, all slices are extracted
from volumetric images represented by a Cartesian grid of 256×256×198 isotropic
voxels of size equal to 1.36 mm. Gray is set to the attenuation of water and the
window width equals 1000 HU such that black corresponds to the attenuation of
air. To simulate a motion-corrupted acquisition, a set of 360 projections for one full
circular rotation was forward-projected from the dynamic free-breathing phantom
shown in figure 4.4.

Generation of Reference Projections

For effective motion compensation, the patient’s motion has to be detected accu-
rately in projection space. It is also important that eventual reconstruction artifacts
present in the reference projections are not recognized as motion. In cone-beam
geometry, volumes can be reconstructed only approximately and therefore an exper-
iment has been conducted in order to evaluate the robustness against inaccuracies
induced by specific reconstruction algorithms. One set of projections was recon-
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structed using both the FDK and the SART method and then the volume was
projected to generate reference projections.

For this experiment, it is expected that the estimated deformation field is com-
posed of null vectors, since no motion occurred during the simulated acquisition. The
registration was executed independently on pairs of projections and typical frontal
and sagittal projections can be seen in figure 7.3. Since FDK does not preserve
oblique line integrals and does not reconstruct the whole field of view, unacceptable
spurious motion arises after the image registration step.

In constrast to FDK, the iterative methods such as SART do not suffer from
data truncations and provides therefore ideal reference projections. As expected,
the deformation grid is stationary because no motion was detected. From its core
principle, the SART method guarantees that the forward projections match the
input views as good as possible. Neither cone-beam artifacts nor truncation-induced
distortions are recognizable in the forward projected views or the difference to the
ideal projections.

Image Reconstruction

For the first experiment, reference projections have been computed by the SART
method while for the second experiment, reference projections have been simulated
from a chosen reference frame of the dynamic volumetric image. Using a ground
truth static reference image, it is possible to assess the accuracy of the motion esti-
mation and compensation method by measuring the similarity of the reconstructed
image with the reference image. Quantitative analyses consider only voxels where
motion compensation is applied. The mean absolute error (MAE) equals 151 HU
without motion compensation and 61 HU with reference motion estimation.

Results of image reconstructions are shown in selected transversal and coronal
slices in figure 7.4. The images emphasis the region of the myocardium in a transver-
sal slice and the region of the respiratory diaphragm in a coronal slice. The second
column (approximate estimation) shows that the image gets sharper with motion
estimation and segmentation using approximate reference projections. The third
column (reference estimation) contains slices of the reconstructed image when us-
ing reference projections from a known static image for motion estimation. The
motion-compensated image is very close to the reference image shown in the last
column.

Without compensation, the border of the myocardium and vessels appears blurred
in transversal views and the border of the diaphragm is very fuzzy in the coronal
view as well. The border of the myocardium and the vascular structures in the lungs
get sharper with motion compensation. The contours of ribs become also sharper.
However, motion estimation from approximate reference projections did not succeed
to suppress the blurring observed at the border of the diaphragm.

7.4 Conclusion

In practical application of CT, there are complications due to axial truncations of
the image region that can be reconstructed in divergent ray geometries with circular
source trajectories. Therefore, this work proposes a practical technique to improve
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Figure 7.4: Results of image reconstructions for two motion estimation experiments, com-
pared to a static reference frame. Partial motion compensation is acheived when using
approximate (App.) reference projections. A very sharp image can be obtained when ideal
reference (Ref.) projections are available. The white frames mark the boundaries of the
close-up views.
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image quality when acquired data are corrupted by arbitrary patient motion. First
an iterative reconstruction is performed to produce a set of reference projections.
Then, the perceived motion is estimated in projection space by elastic image reg-
istration and segmented in image space by reconstructing the absolute differences
between acquired and reference projections. Finally, a motion-compensated image
is reconstructed by a slightly modified FDK implementation. Motion blur artifacts
are locally reduced with motion compensation.

With the proposed technique, motion compensation can be applied in a smaller
cylindrical region enclosed in the field of view and it is even possible to estimate
organ motion near the border of the image. Unfortunately, the diaphragm of the
respiratory-gated image used in experiments crosses the border of this region of
interest and therefore data are missing for continuous motion estimation of organs
leaving in and out the FOV. In addition, with flat detectors of limited size the
possible lateral truncations of projections have been addressed.

The method has been validated on experiments using a dynamic image recon-
structed from clinical patient data. Results demonstrate a great potential to estimate
and compensate breathing motion. Since the underlying motion model does not as-
sume periodicity, the described technique may capture arbitrary residual patient
motion that corrupts the data in breath-hold acquisitions.
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8
Elastic Image Registration
for Motion Estimation

Elastic image registration is a fundamental technique for the estimation of
non-rigid motion from image sequences. A successful image registration pro-

cedure provides a displacement vector field, mapping the center of every pixel of a
source image to the corresponding location in a target image. The source and target
images should be roughly similar to yield a well-posed problem.

Image registration techniques can be classified into rigid, affine, and elastic.
Rigid registration describes all rigid-body deformations such as rotation and trans-
lations. Affine registration extends this class of allowed deformations by also captur-
ing additional deformations such as uniform and non-uniform scaling. On the other
hand, elastic registration deals with local deformations and has the potential to cap-
ture organs moving individually during breathing, heart beating, or other source of
movement. The algorithms used for this purpose are often more complex.

The central and most sensitive part of the motion correction workflows pre-
sented in the three previous chapters is undoubtely the motion estimation stage.
This chapter is dedicated to the comparison and assessment of two alternative tech-
niques solving the important motion estimation problem from a sequence of X-ray
projections. In this work, only non-rigid elastic registration techniques are consid-
ered. An iterative algorithm based on the optical-flow theory and a direct method
based on block-matching are described and compared.

8.1 Introduction

One very common approach to elastic image registration (Hill et al., 2001; Maintz
and Viergever, 1998) are so called free-form deformations (FFD) where a grid
of control points is defined and then manipulated (Rueckert et al., 1999). These
control points can either be placed on features extracted from the images or be
placed on a regular or irregular grid. The deformation itself is then modeled using
splines such as the triangular kernel, thin plate splines (TPS), but mostly cubic
B-splines (Unser, 1999, 2000) are popular because of their advantageous trade-off
between accuracy and computational efficiency.
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Having the grid and the deformation model, a cost function is designed which con-
sists primarily of a similarity metric evaluating the difference between the source and
the target images. The registration is then performed by minimizing the cost func-
tion, which corresponds to minimizing the image dissimilarity between the deformed
source image and the reference target image. For this purpose, different optimization
algorithms can be used (Klein et al., 2007) such as the Gauss-Newton method (Bar-
toli and Zisserman, 2004), the Levenberg-Marquardt algorithm (Kabus et al.,
2004), or the method of conjugated gradients (CG) (Chun and Fessler, 2008;
Barber and Hose, 2005). During iterative optimization, the parameters of the
model function are altered until the relative improvement becomes negligible.

Since in many cases the deformation is constrained, a regularization term is
added to the cost function, weighted by a factor that counteracts the deformation.
Usually the regularization terms are designed such that the value of this term in-
creases with the amplitude of the computed displacement. In the work of Chun
and Fessler (2008, 2009b), a regularization method is presented based on a novel
and very attractive penalization to ensure local invertibility. Alternatively, a rigidity
penalty term can be used (Staring et al., 2007; Chun and Fessler, 2009a). With
regularization, the deformation is encouraged to be diffeomorphic and invertible
(Ashburner, 2007).

A zoo of other registration approaches are existing. Template propagation for es-
timating respiratory motion (Rösch et al., 2002). The popular SIFT image features
have been used to select control points (Franz et al., 2006). The Radon transform
was also used for scale and rotation invariant image matching (Jiangsheng et al.,
1998). The method of demons is also popular to track borders (Thirion, 1998). In
this work, only two alternative implementations based on the optical flow principles
have been considered.

Optical flow-based methods track the movement of image elements, assuming
that each pixel is conserving its brightness value (Horn and Schunck, 1981; Ku-
mar et al., 1996; Brox et al., 2004). An alternative technique based on the popular
block-matching scheme has also been implemented (Jain and Jain, 1981; Malsch
et al., 2006; Chen, 2009). Block matching procedures are known to be fast and ex-
periments with this specific implementation demonstrated very surprising accuracy.

The remainder of this chapter is structured as follows. A state of the art free-form
deformation based registration technique is presented in section 8.2. This algorithm
has been used for motion estimation in the experiments from the previous chapter.
For comparison a direct registration method based on block matching is described
in section 8.3. Section 8.4 presents a comparative analysis of results obtained by the
two techniques. An extensive discussion of parameters is provided. Further research
and experiments are suggested in section 8.5.

8.2 Optical Flow

A popular approach to compute a dynamic motion vector field from an image se-
quence is the method of optical flow, originally introduced by Horn and Schunck
(1981). Optical flow theory assumes that the brightness of each pixel remains con-
stant over time. If the brightness has changed at one location, a deformation is
estimated using image gradients in horizontal and vertical directions.
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8.2. Optical Flow

The basis assumption of optical flow methods states that the brightness E of one
picture element does not change over time, hence

dE

dt
= 0. (8.1)

Applying the chain rule for derivatives gives the following relation between infinites-
imal spatial displacements and the change over time of E:

∂Ex
∂x

u+
∂Ey
∂y

v +
∂Et
∂t

= 0, (8.2)

with u = dx
dt and v = dy

dt being the coordinates of the optical flow velocity vectors for
the image element positioned in (x, y). Thus if the pixel intensity E does not remain
constant over time, optical flow velocities can be computed according to the gradients
in horizontal and vertical directions. Often image gradients are approximated by
finite difference.

Based on the seminal paper of Horn and Schunk, various image registration
methods were developed. One of these methods is the Sheffield image registration
toolkit (ShIRT) from Barber and Hose (2005); Barber et al. (2007) on which a
closer look was taken due to high expectations regarding its speed and robustness.
The following description of the registration method used in ShIRT borrows nota-
tions from the original user manual. The implementation of the method is available
on request to the author and has been developed since a decade.

The algorithm aims at minimizing a cost function Q proportional to the dissim-
ilarity between the images f and m = Γ (g), the source image g, deformed by the
motion field Γ. The objective function can be written as

Q =
∑

(f −m)2 . (8.3)

For each given pixel, it is assumed that any difference of intensities between f
and m is due to an infinitesimal displacement of the pixel’s position. According to
this fundamental principle of optical flow, a linear relashionship between the image
difference and the horizontal and vertical displacements ∆x and ∆y can then be
written as

f −m =
∆x
2

(
∂f

∂x
+
∂m

∂x

)
+

∆y
2

(
∂f

∂y
+
∂m

∂y

)
. (8.4)

The sum of squared differences used in Q is a simple and appropriate metric for
capturing dissimilarity between binary images but tends to emphasize small relative
differences between bright pixels. To overcome this problem, both source and target
image are converted to binary images fb and mb, respectively, prior to registration.

The conversion to binary images is done by introducing a supplemental dimension
for the intensity, effectively casting a 2D registration problem between a pair of
planar images to a registration of volumetric 3D binary images:

fb −mb =
∆x
2

(
∂fb
∂x

+
∂mb

∂x

)
+

∆y
2

(
∂fb
∂y

+
∂mb

∂y

)
+

∆s
2

(
∂fb
∂s

+
∂mb

∂s

)
. (8.5)
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The new dimension for the intensity channel is denoted by s. Since the intensity
channel depends on the specific range of pixel’s values, it is appreciable to make this
dimension independent from the spatial channels x and y. Therefore the difference
between intensity channels is modelled as ∆s = s∆α+ ∆β.

The difference for continuous intensity images can now be expressed by integrat-
ing over s the difference between binary images, giving

f −m =
∆x
2

(
∂f

∂x
+
∂m

∂x

)
+

∆y
2

(
∂f

∂y
+
∂m

∂y

)
− ∆α

2
(f +m)−∆β. (8.6)

The objective is now to estimate smooth functions to represent the displacements
∆x, ∆y, ∆α, and ∆β. Thus the registration of planar 2D images boils down to the
estimation of a smooth 4D function. To represent the deformation, a sparse grid
of control points is introduced. For each control point located at the grid vertex
(xi, yi), the bilinear kernel

φi(x, y) = max
(

0, 1−
∣∣∣∣x− xid

∣∣∣∣)×max
(

0, 1−
∣∣∣∣y − yid

∣∣∣∣) . (8.7)

is used to sample image elements at any given position (x, y).
The radius of the kernel depends on the spacing of control knots. The triangular

basis function corresponds to the second order B-spline, many authors do prefer re-
lying on cubic B-spline basis functions for their attractive smoothness and continuity
properties. However, to the author’s knowledge, the practical relative advantage of
cubic over linear B-splines has not yet been evaluated for image registration purpose.

Using such a grid for representing the deformation, the relation between image
differences and the displacements of control points can be expressed by

f −m =
∑
i

axiφi

(
∂f

∂x
+
∂m

∂x

)
+

∑
i

ayiφi

(
∂f

∂y
+
∂m

∂y

)
−

∑
i

aαiφi (f −m)− 2
∑
i

aαβiφi, (8.8)

where the four scalar parameters axi, ayi, aαi, and aβi must be estimated for every
control point i.

It is obvious that the number of control points influences the speed of the algo-
rithm as well as the local accuracy of the displacements. If the number of control
points is low, there are less computations to be executed. If on the other hand the
spacing of these points is small, the displacements estimates becomes more accurate
and even very slight motion can be captured.

Using vector and matrix notations, the relation can be written in shorten form:

f −m = aTT, (8.9)

where aT represents the transposed vector of parameters to estimate and the matrix
T represents the multiplication of basis functions φi with sums of partial derivatives.
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(a) falloff = 10−4 (b) falloff = 10−3 (c) falloff = 10−2

Figure 8.1: Various weightings of the image area surrounding the search block. A
larger falloff factors of an exponential distribution allows selecting between uniform con-
stant weighting where every pixel are equally important and point weighting where only the
center pixel contributes to the evaluation of local image dissimilarity.

To enforce smoothness, hence, regularity of the deformation, a weighted regular-
ization term is added which includes the square of the Laplacians. This regulariza-
tion scheme was already proposed in the seminal paper of Horn and Schunk.

The regularized cost function can be expressed by

Q =
∑

(f −m)2 + λaTLTLa, (8.10)

where L stands for a discretized Laplacian operator and λ is a user-defined parameter
driving the strength of the regularization term.

In the implementation of ShIRT, the registration problem is iteratively solved
by a conjugate gradient (CG) method. The current estimate for the parameters a
at iteration t ≥ 1 is noted by at. The accuracy of the estimate is iteratively updated
as at+1 = at + ∆at with

∆at =
[
T TT + λLTL

]−1 (
T T (f −mt)− λLTLat

)
. (8.11)

8.3 Block Matching

Block matching is a rather simple technique often used for medical image registration
besides its application in many video compression schemes and in computer vision
(Forsyth and Ponce, 2002). As the name suggests, this technique computes a
deformation by matching blocks from a source image g to corresponding blocks in a
target image f .

The matching is computed only for several seclected pixels from the source image.
Those control points could correspond to specific image features; however, in our
implementation, the set of control points are pixels corresponding to vertices of a
coarse regular Cartesian grid.

Around each vertex, a block is created with a predefined size and the best match-
ing for this block is searched in the target image in a certain neighborhood. The
candidate target blocks are usually only translated to overlap the source block, while
in principle, rotations and non-uniform scaling should also be considered to capture
arbitrary elastic deformations.
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For the present work, the block is round-shaped and the coordinates of the pixels
Bi, ∀i ≤ |B| belonging to a compact circular support is noted by

B ≡
{

(x, y)i : ‖(x, y)i‖ ≥
∥∥∥(x, y)j

∥∥∥ , ∀i > j
}
, (8.12)

where |B| is the number of pixels included in the set B. In a similar way, the search
region in the target image is limited to a round neighborhood around the center of
the block. This set of displacement vectors Nj , ∀j ≤ |N | is also ordered according
to magnitudes such that

N ≡
{

(u, v)i : ‖(u, v)i‖ ≥
∥∥∥(u, v)j

∥∥∥ , ∀i > j
}
, (8.13)

where |N | is the number of pixels inside the search region N .

If displacements are small, it can be assumed that the larger the magnitude of the
displacement is, the less probable a block of better similarity will be found further
away from the best match found so far. Therefore, a weighting is introduced within
the image dissimilarity metric to control the influence of pixels far away from the
block center.

The weights are associated to each pixel of the block B and are precomputed in
a look-up table (LUT) using the formula

wi = exp
[
−falloff · ‖Bi‖2

]
, ∀i ≤ |B| . (8.14)

Furthermore, weights are normalized such that the integral over every pixel of the
block equals to one. Thus, normalized weights are finally assigned with the following
normalization procedure:

wi ←
wi∑

k≤|B|wk
, ∀i ≤ |B| . (8.15)

The weights follow an exponential function dependent on the squared Euclidean
distance from the search center and a constant falloff factor. The spatial distribution
of function for different values of falloff in a square of 33×33 pixels can be visualized
in figure 8.1. It can be seen that the number of pixels with a significant weight
decreases with increasing falloff factors, while the shape of the weighting function is
almost flat for a small constant.

For computing the dissimilarity between a block extracted from position (x, y)
inside the target image f and another block from the source image g, the algorithm
tests first if the search block covers image elements which are outside the image
borders. Then, the dissimilarity integrated over pixels that belong to the image
support is normalized according to the sum of the weightings of the pixels inside the
image.

A simple computation of the image distance is used in this work, while multi-
modal registration requires appropriate image similarity metrics such as the pop-
ular mutual information (Pluim et al., 2000, 2003) or the cross correlation (An-
dronache et al., 2008). The sum of absolute differences (SAD) is used for measur-
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ing the dissimilarity such as

Q =
1
W

∑
i≤|B|

wi |f ((x, y) +Bi)− g (Nj + (x, y) +Bi)| , (8.16)

where every difference has been weighted. The normalization term is given by

W =
∑
i≤|B|

wi. (8.17)

Note that if the block is completely inside the image, then W = 1 and the evaluation
of the normalization term can be ignored.

Additionally, in order to favor small displacements, a shift-variant penalty term
dependent on the squared length of displacement vectors is added to the dissimilarity
metric. The penalization is weighted by the factor λ ≥ 0 such that

Q =
1
W

∑
i≤|B|

wi |f ((x, y) +Bi)− g (Nj + (x, y) +Bi)|+ λ ‖Nj‖2 . (8.18)

The displacement vector Nj ∈ N that minimizes the cost function Q is selected
by an exhaustive search strategy for every control point located in (x, y). The
rationale is that, since the number of candidate displacement vectors |N | is small,
an exhaustive search can outperform more complex optimization strategies.

In comparison to the clasical and popular sum of squared differences (SSD)
metric, the SAD metric emphasizes much less small relative differences between
bright pixels. Many alternative criteria have been proposed for computing image
dissimilarities, such as the relative entropy (Kullback-Liebler divergence) that is
based on elements of information theory. Future work could evaluate the robustness
of the proposed block matching scheme when using different metrics.

In the current implementation, the displacement vectors are estimated on a
coarser grid. Using a smaller displacement field decreases the number of compu-
tations that is needed and therefore speeds up the registration (Plishker et al.,
2007). Additionally, the displacement field is scaled up to the full size using cubic
interpolation and a smooth displacement vector field is obtained. Since the motion
is computed at a coarser resolution, small local deformations can not be captured
(Robinson and Milanfar, 2004).

Computing resources are especially needed for computing the dissimilarity be-
tween blocks for each possible displacement vector candidate. The number of blocks
to be processed can be reduced further by previously thresholding the image and
determining which pixels are close to object borders (Malsch et al., 2006). Another
possibility to increase the speed of the algorithm is to alter the search strategy (Zhu
and Ma, 2000).

A full search algorithm is used in standard block matching, that means that
in a predefined search area every possible displacement candidate is evaluated. In
addition, multiresolution image representation (Adelson et al., 1984) can both
speed-up the registration process and regularize the results (Bajcsy and Kovacic,
1989; Kostelec et al., 1998).
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(a) Acquired projection (b) Selected reference (c) Approx. reference

Figure 8.2: Two series of pairs of projections are used for experiments but only the frontal
projection is shown as illustration. The sharp acquired projection (a) is registered on either
a sharp projection (b) from a selected reference motion state or a more blurry approximate
reference projection (c), projected from a scout reconstruction. The approximate projection
contains motion blur artifacts that are well visible at the border of the diaphragm.

(a) ShIRT (b) Block matching
λ = 0

(c) Block matching
λ = 100

Figure 8.3: Effect of the penalization parameter λ on the regularity of the grid produced by
block matching. In comparison to the grid produced by ShIRT (a), the non-penalized block
matching scheme produces irregular deformations (b). However, irregularities are largely
prevented by using a slight penalization (c) within the image dissimilarity metric.

8.4 Results

Experiments have been conducted to evaluate the impact of various registration algo-
rithms on the quality of motion-compensated image reconstruction. The influence of
user-controlable parameters of the registration methods has also been experimented.
For instance, the definition of deformation grids and the strength of the penalty term
for regularization.

Two set of reference projections have been used for motion estimation: a collec-
tion of sharp X-ray images sampled from a selected motion state and a collection
of blurry projections sampled from an approximate scout reconstruction without
any motion correction. Figure 8.2 shows projections for a specific acquisition angle
and figure 8.3 shows typical deformation grids estimated using ShIRT and the block
matching method.

In experiments, it has been observed that the deformations estimated using
ShIRT are fairly regular and no spurious motion corrupts the results. This comes
from the fact that ShIRT is using a multi resolution image pyramid for registration
and implicitly ensures smoothness with the additional penalty term that depends
on the Laplacian of the deformation grid.
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Figure 8.4: Side-by-side comparisons for two selected transversal slices through motion-
compensated reconstructions. The deformation is estimated using sharp selected reference
projections.
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Without motion ShIRT Block matching Reference frame
Sl

ic
e

40
C

lo
se

-u
p

(l
ef

t)
C

lo
se

-u
p

(r
ig

ht
)

Sl
ic

e
59

C
lo

se
-u

p
(l

ef
t)

C
lo

se
-u

p
(r

ig
ht

)

Figure 8.5: Side-by-side comparisons for two selected transversal slices through motion-
compensated reconstructions. The deformation is estimated using blurry approximate ref-
erence projections.
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In contrast, without penalization (λ = 0), the block matching scheme produces
very irregular deformation grids. However, a sligh penalization (λ = 100) allows the
recovering of a grid that visually match the result produced by the more complex
registration algorithm implemented in ShIRT.

Figure 8.4 shows the slices 40 and 59, extracted from the volumetric images
reconstructed without and with motion compensation when the motion is estimated
using the ShIRT optical-flow implementation or the block-matching technique. The
similarity with the reference image is striking when using motion compensation.
Only slight remaining dissimilarities can be observed in the two selected close-up
views. Both ShIRT and block matching result in relatively similar images that
compare well with the selected reference frame.

The second experiment considered the more realistic scenario where reference
projections are projected from a scout reconstruction corrupted by motion blur arti-
facts. The corresponding images slices are shown in figure 8.5. In this case, the image
improvement is clear, but only partial. In particular, the contrast improvement can
especially be appreciated with the ShIRT method while almost any improvement
can be seen with the block matching implementation.

The result of this second experiment points out that ultimately, the quality of
a motion compensated reconstruction depends on the accuracy of reference pro-
jections used for motion estimation (Christensen and Johnson, 2001). For the
particular case of blurry reference projections, ShIRT showed its benefits for this
more chalenging instance of image registration.

For separation of concerns, no motion segmentation is used and therefore the
global motion compensation reconstruction is used, where every voxel is displaced
according to its corresponding motion vector estimated in projection space. Very
similar results are expected when the compensation is applied only locally, according
to the detected motion in image space. Motion detection is a simpler problem than
motion estimation.

8.5 Conclusion

In this study, an existing implementation of an optical flow-based approach (ShIRT)
and an original implementation of a block matching scheme were presented and
evaluated for the purpose of motion estimation in CT. For the experiments, simulated
projections of a dynamic phantom obtained from clinical patient data were used.
Both algorithms were evaluated in two scenarios.

In the first case, breathing motion was estimated assuming the prior knowledge of
sharp reference projections. In the second case, there was no such reference available
and the motion was detected by registration of acquired projections with forward
projections of an initial, blurred reconstruction.

It was observed that the optical flow algorithm was capable of detecting the mo-
tion accurately and produced smooth displacement vector fields if a sharp reference
was used. Motion blur artifacts were almost completely retarget from the recon-
structed images. However, this algorithm was not well suited for the application
on blurred reference projections. The blur in the reconstructed volumes was only
slightly reduced, mainly because the amplitude of the detected displacement vectors
was systematically too small.
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In the case of the known reference, the block matching approach provided also
favorable results which were however slightly inferior to the results obtained with
ShIRT. To fulfill the requirement of smooth deformations, the block matching ap-
proach relies on regularization which was implemented by penalizing large deforma-
tions and taking the neighboring displacement vectors into account.

Without known reference, it was observed that the block matching method esti-
mated the motion with more accuracy than the ShIRT tool. It was possible to reduce
the blurring perceptibly. The performance of the block matching approach could be
improved by optimizing the code such as replacing the exhaustive search scheme by
approximations, using parallel implementations and/or GPU acceleration.
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A new trend in minimally invasive medical interventions is tomographic soft tissue
imaging for tightly coupled diagnosis, therapy planning, and outcome control. The
interventional room is typically equipped with a versatile digital radiography system
mounted on a robotic C-arm. By programming a circular trajectory for the C-arm,
X-ray transmission projections can be acquired at regular angular intervals around
the patient. Using computed tomography (CT), a volumetric image can be recon-
structed from the set of projections, unveiling the depth of anatomical structures.

During a treatment session, the patient may follow several acquisitions for which
he is asked to retain a still position while holding his breath. An acquisition lasts
for 10 to 20 seconds for an angular range of about 240 degrees. Unfortunately,
uncontrolled patient movements yield inconsistent projections which result in strong
image artifacts when using analytical reconstruction methods. For example, such
residual motion frequently occurs due to breath-hold failures, intestinal contractions,
or nervous shaking.

If breathing occurs during the acquisition, the diaphragm contracts and pulls
down the organs to enlarge the thoracic volume. The organ motion is space-variant,
only approximately periodic, and mainly axial. In particular, organs can move inside
and outside the field of view (FOV) during the acquisition. Therefore, the measured
line integrals can be strongly biased and the input projections are inconsistent. The
correction of non-periodic motion is a challenging problem because neither period-
icity nor smoothness in time of the patient motion can be assumed. Therefore, new
techniques for the correction of arbitrary motion have been developed in this thesis.

Two main methods have been experimented for improving the quality of static
volumetric imaging in CT when motion occurs. The first approach is an iterative
image refinement technique based on a pipeline of standard image processing algo-
rithms. This method starts with a regular image reconstruction and therefore, the
result is a generalization of the existing image reconstruction solution. Surprising
results were obtained but a great number of iterations is required to converge to an
acceptable image quality.

A second approach has been less straightforward to develop and was incremen-
tally explored and refined over the four last chapters of this work. First, an initial
image is reconstructed from acquired data without any motion correction. This
image is likely to contain motion blur artifacts but is nevertheless considered as a
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motionless static image of a representative mean motion state. Then, the recon-
struction is inverted by computing the forward projection from this reconstructed
image. The result is a stack of reference projections, matching the geometry of the
input acquired projections.

Once the reference projections are available, a field of displacement vectors is
evaluated by elastic image registration for each independent pair of corresponding
acquired and reference projections. The output result is a continuous representation
of a bijective (invertible) mapping function from acquired projections to reference
projections. The computed deformation provides rough information of the patient
motion that can be used in addition to the original acquired projections to recon-
struct a motion-compensated image.

Early results for two-dimensional imaging and parallel-beam geometry have been
obtained from experiments with the mathematical Shepp-Logan phantom. It was
found that the method can provide exceptionally accurate images. Therefore, subse-
quent work has been made to experiment the method on realistic respiratory motion
with a moving three-dimensional image derived from a clinical acquisition. Further-
more, this method has been coupled with a motion detection scheme in order to
apply the motion correction locally.

Since the motion is perceived and estimated in the two-dimensional space of X-
ray projections, an exact recovery of the entire motion information is impossible.
The new concept of local motion compensation proposed in this work has proven to
be beneficial for avoiding motion corruption that would result from a uniform com-
pensation for each voxel in image space. Furthermore, local motion compensation
can potentially save computational resources by skipping the repeated reconstruction
of static image regions.

A last step in the development of the second approach has been to challenge the
technique on perspective projections from a simulated circular acquisition on a real-
istic C-arm cone-beam system. New important constraints had to be overcome for
enabling a practical motion correction in cone-beam geometry. The main limitation
is due to the fact that exact image reconstruction is impossible outside of the central
plane. Additionally, the relative small size of digital X-ray detectors induces both
axial and lateral data truncations.

To solve issues with data truncation, the SART iterative reconstruction method
has been used first to generate a (motion-blurred) volumetric image and its core-
sponding collection of reference projections. A key property of iterative reconstruc-
tion methods is that an artifact-free reconstruction is possible in the region of interest
that is observed by every projection. Even with severe data truncations, the obtained
reference projections always match exactly the data when no motion is present.

In addition, an experiment comparing various image interpolation models during
the backprojection of a FBP reconstruction algorithm is presented in chapter 3.
This investigation has emphasized the impact of the less accurate standard bilinear
interpolations on image quality. A simple pre-filtering technique has been proposed
to improve image sharpness at the cost of only a small performance overhead.

In conclusion, this work proposed several original methods for motion correction
in computed tomography. For the first time, the general problem of unstructured
(non-periodic) patient’s motion is addressed in details. Experiments have been de-
signed to simulate as closely as possible the realistic conditions of an acquisition on
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a divergent ray C-arm device, including data truncations and limited frame rate.
The new concept of local motion compensation is certainly the major contribution
and very encouraging results have been obtained when following this approach.

Future Work

The present thesis reports on results that have been gathered during a three years
long research programme. The emphasis of this work was the exploration and the
comparison of new original techniques for general motion correction in computed
tomography. The most promising solution has been identified as a two-stages scheme
based on a prior motion estimation and motion segmentation step, followed by a
motion-compensated image reconstruction.

This promising technical approach has been incrementally developed in the four
last chapters of the thesis. This work is however still in an intermediary stage on
the long way towards a complete solution for the problem. Although promising
early results have been demonstrated, important tracks for future work ought to be
mentioned.

Validation Using Multiple Datasets

All presented methods have been experimented using either the conventional mathe-
matical Shepp-Logan or a realistic dynamic dataset of the breathing motion acquired
for one single patient. It should be stressed that this clinical dynamic image is of
exceptional quality and has made possible the experimentation of a close-to-reality
scenario. In future, more experiments should be conducted for other sources of
patient’s motion.

For instance, it would be interesting to evaluate the potential for correction of
general abdominal motion such as hiccups or digestive contractions. Validation for
various motion scenarios and other anatomical regions would be an interesting future
investigation. However only one dataset focusing on the chest motion was available
for experiments and modeling the free-breathing motion was a natural choice in this
case.

Reconstruction Using Acquired Data

Up to now, the projection data has been sampled from mathematical phantom or a
clinical image. Therefore, projection data are already partially corrupted by noise,
helical reconstruction artifacts, and remaining motion blur. It would be more con-
vincing to evaluate some of the proposed methods on acquired projection data. It is
natural to expect superior results when using directly the acquired projections since
the mentioned source of inaccuracies will not be present with real data.

For a fair comparison with the current standard, a motion-compensated recon-
struction from acquired data requires to modify the existing image reconstruction
software. Unfortunately, this implementation was not available and this evaluation
was not initially planned, due to the very exploratory nature of the research project.
However, the methods developed in this work have solicited enough interest and a
new project started in January 2010 at Philips Research for achieving this goal.
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Refining the Motion Segmentation Step

Little time was spent on the development of the image processing chain for motion
detection and segmentation. In fact, very satisfactory results have been obtained
when using the very simple, even naive, approach of segmentation using a single
threshold function. Image segmentation is an important topic in medical imaging
and a wealth of publications and alternative methods have been proposed.

In future work, it would be interesting to further refine the quality of the motion
segmentation stage. For instance spurious labeling of voxels can arise with indepen-
dent thresholding of each image element. Another track for improving both accuracy
and performances would be performing the segmentation at a lower image definition,
since the detection of moving regions do not require a high image definition such as
for image reconstruction.

Refining the Motion Estimation Step

When using blurry reference projections for motion estimation, the amplitude of
the displacement vectors has the tendency to be underestimated and no significant
motion compensation is observed in some part of the image, especially for image
elements located far from the central slice. To improve the robustness of motion
estimation, one could study the possibility to pre-process images prior to motion
estimation by elastic image registration. In the same way, the estimated deformation
vector field can be improved by the application of non-linear enhancement filters as
a post-processing after elastic image registration.

Note that, if no motion occurred during the acquisition, then the difference
between acquired projections and reference projections should be zero. Therefore,
the displacements in projection space will also be estimated as zero vectors, resulting
in no motion correction when reconstructing again the acquired projections. In this
case, the process will converge in only one iteration and reduces to a simple FBP
reconstruction. This property ensures that the motion correction workflow is a
generalization of the standard reconstruction pipeline.

Profiling and Improving Performances

Since the specific implementations of algorithms were not designed for speed, the
evaluation of computational performances has not been tackled in this work. How-
ever, it is easy to roughly predict the potential speed of the proposed algorithms.
Most of the time spent in a reconstruction method is due to the backprojection and
forward projection steps. A scout image must be reconstructed for generating refer-
ence projections. The reconstruction is then inverted and the image is reconstructed
again for motion detection and for the final motion compensated image.

The minimum computational cost can be roughly evaluated as the cost of three
reconstructions and one forward projection, plus the cost of the image registration
for motion estimation. Hence, a motion-compensated image reconstruction is ap-
proximately four times slower than an existing method, ignoring the cost of image
registration. Those expected performances are in fact very encouraging. A modern
trend in tomographic image reconstruction is the use of Graphical Processing Units
(GPU) for the computation of backprojections and forward projections. Those spe-
cialized stream computers demonstrated impressive performances. Furthermore, the
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registration of two dimensional images can be realized in a very fast step, in parallel
for each pair of projections.

As mentioned above, run-time performance could be improved further by recon-
structing a lower resolution scout image for the sole purpose of motion estimation
and motion detection. The final reconstruction will then use a lower resolution
motion estimate for reconstructing the full-resolution motion-compensated image.

Adaptations to Different Imaging Modalities

While the compensation of patient’s motion in slow cone-beam systems was the main
motivation for this work, other imaging modalities could benefit from the proposed
motion correction methodology. For instance, the “heart creeping” is a common
problem in SPECT imaging. During the acquisition of planar views, the myocardial
muscle slowly slides up and emission data become inconsistent in this case. The
proposed method could track the movement of the myocardium.

Another possible application is the correction of residual motion for helical CT
acquisition. Diagnostic CT scanners benefit from a very fast continuous rotation
of the slipping ring gantry. On such system it is possible to reconstruct the whole
respiratory sequence when data are gated using the respiratory signal. Similarly,
cardiac-gated reconstruction is possible when recording the electrocardiogram signal.

Unfortunately, the finite size of gating windows gives a chance for the corrup-
tion of projection data from residual motion. Therefore, the principle of motion
estimation, detection, and compensation could be applied for the independent re-
construction of each frame of a dynamic image sequence.

Joint Motion Estimation and Image Reconstruction

Image reconstruction using analytical methods was a firm requirement for this work.
However, all the proposed methods are in a way iterative. After the motion estima-
tion and motion segmentation steps, a motion-compensated image is reconstructed.
From this new static reference image, the estimate of displacement vectors in projec-
tion space can be refined further by iterating the whole motion correction procedure.

Future work could investigate the potential of iteratively updating the reference
projections during reconstruction and therefore updating accordingly both the es-
timated motion and the motion segmentation. In this joint motion estimation and
segmentation framework, the motion estimation and compensation process would be
embedded in a unified motion-compensated iterative reconstruction algorithm.
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