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1 Summary 

Protein kinase B (PKB), a ubiquitously expressed serine/threonine kinase, has central impact on 

several cellular processes including survival, proliferation and differentiation. In T cells, PKB is 

activated by growth factors, cytokines as well as TCR and CD28 stimulation. Previous studies 

performed with PKB transgenic (tg) mice, expressing a constitutively active version of PKB (myrPKB) 

in the T cell lineage, revealed active PKB to influence TCR proximal signaling events. The aim of this 

study was to characterize the cross-talk of PKB with the transcription factor NFAT and the Src kinase 

Fyn at the biochemical and molecular level. 

Expression of a hyperactive form of the phosphatase calcineurin (Cam) in thymocytes increased 

nuclear NFAT levels and caused a block in early thymocyte differentiation. Co-expression of PKB in 

Cam tg thymocytes reduced NFAT activity, induced Rag and TCR -chain expression and abrogated 

the block in thymocyte differentiation. Rag2 promoter activity assays showed that NFATc1 as well as 

NFATc2 regulates the Rag2 promoter, NFAT factors thus being among the few transcription factors so 

far known to be involved in the regulation of rag expression in T cells. IL-2 promoter activity induced 

by NFAT was also down-modulated by active PKB. Furthermore, myrPKB enhanced the inhibition of 

NFAT activation in concert with the NFAT kinases PKA and GSK3 or the transcription factor Foxp3. 

Since recombinant PKB phosphorylated NFATc1 at (at least) two sites within the NFAT regulatory 

domain, NFAT could be a direct substrate of PKB. However, despite several mutations in GST-NFAT 

fusion proteins encompassing the regulatory domain, no single PKB site(s) could be elucidated, 

suggesting that a complex interplay of several residues is needed for NFAT phosphorylation by PKB.  

Compared to wild type cells, peripheral myrPKB tg CD4+ T cells showed enhanced proliferation after 

CD3 stimulation and in the presence of pharmacological Src kinase and MEK inhibitors. In addition, 

western blot analysis revealed enhanced Erk activity in myrPKB tg CD4+ T cells and in vitro kinase 

assays (IVKs) showed increased Fyn activity in myrPKB tg CD4+ T cells and thymocytes. By 

generating several GST-Fyn fusion proteins and mutagenesis of prospective PKB phosphorylation 

sites, a PKB phosphorylation site was identified in N-terminal Fyn, Fyn thus being a novel substrate of 

PKB in vitro. Furthermore, in transfected HEK 293T cells PKB and Fyn co-immunoprecipitated, 

supporting a direct interaction of PKB and Fyn in vivo. Interestingly, Fyn hyperactivity in PKB tg cells 

was not correlated with increased phosphorylation of the adapter molecule PAG at Y314, a known Fyn 

phosphorylation site and anchor for the recruitment of the kinase Csk, which inhibits Src kinase activity 

and, thereby, leads to the shut-down of T cell receptor signaling. 

It is known that increased Fyn activity causes/coincides with T cell anergy. Interestingly, in the model 

of ionomycin induced anergy, myrPKB tg CD4+ T cells were less susceptible to anergy induction. 

Whereas anergy, i.e. lack of proliferation after CD3 Ab restimulation, in wild type CD4+ T cells 

correlated with enhanced Fyn activity, in comparison to untreated wild type cells, ionomycin treatment 

of myrPKB tg CD4+ T cells did not enhance Fyn activity. Altogether the data reveal a novel interaction 

and impact of PKB on Fyn activity. PKB mediated changes in Fyn activity, possibly also resulting in 

altered interaction of Fyn with certain substrates, may be important in regulatory processes like 

anergy, as our initial results indicate. Finally, the cross-talk of PKB with Fyn, both known proto-

oncogenes, could also be important for transformation and tumorigenesis. 



2. Zusamenfassung 

2 Zusammenfassung 

Proteinkinase B (PKB), eine ubiquitär exprimierte Serin/Threonin-Kinase, hat zentralen 

Einfluss auf verschiedene zelluläre Prozesse, wie Überleben, Proliferation, Wachstum und 

Differenzierung. In T-Zellen erfolgt PKB-Aktivierung über Wachstumsfaktoren, Zytokine 

sowie TCR- und kostimulatorische CD28-Signale. Vorherige Arbeiten zur Rolle von PKB in 

transgenen (tg) Mäusen, die eine konstitutiv aktive Form der PKB (myrPKB) in der T-

Zelllinie exprimieren, zeigten, dass aktive PKB proximale T-Zellrezeptor-Signale beeinflusst. 

In der vorliegenden Dissertationsarbeit sollte die Interaktion von PKB mit dem 

Transkriptionsfaktor NFAT und der Src Kinase Fyn auf biochemischer und molekularer 

Ebene untersucht werden. 

Verstärkte Aktivität der Phosphatase Calcineurin (Cam) und damit einhergehende erhöhte 

nukleäre NFAT-Aktivität in frühen Thymozyten führte zu einem Differenzierungsblock der 

Thymozyten, der durch fehlende Rag- und TCR-Ketten-Expression bedingt ist. 

Koexpression von myrPKB in Cam transgenen Thymozyten verminderte die NFAT-

Aktivierung, induzierte Rag-Expression und ermöglichte die Weiterdifferenzierung der 

Thymozyten. Es konnte diesbezüglich gezeigt werden, dass die Rag2-Promotoraktivität 

durch NFATc1 sowie NFATc2 reguliert wird, NFAT-Faktoren somit zu den wenigen bisher 

bekannten Transkriptionsfaktoren gehören, welche die Rag-Genexpression in T-Zellen 

steuern. NFAT-induzierte IL2-Promotoraktivität wurde durch myrPKB ebenfalls inhibiert und 

im Zusammenspiel mit den NFAT-Kinasen PKA und GSK3 sowie dem Transkriptionsfaktor 

Foxp3 steigerte myrPKB deren inhibitorischen Effekt auf die NFAT-Aktivierung. Eine direkte 

Regulation der NFAT-Aktivierung durch PKB erscheint möglich, da rekombinante PKB 

NFATc1 in der regulatorischen NFAT-Domäne an mindestens zwei Stellen in vitro 

phosphoryliert. Allerdings konnte trotz etlicher GST-NFATc1-Mutanten für potenzielle PKB-

Phosphorylierungsstellen in der regulatorischen NFAT-Domäne keine „einzelne“ PKB-Stelle 

identifiziert werden. Nur bei Kombination mehrerer Mutationen wurde die NFAT-

Phosphorylierung durch PKB unterbunden, was auf ein komplexes Zusammenspiel mehrerer 

Aminosäurereste für die NFAT-Phosphorylierung durch PKB hinweist. 

MyrPKB tg CD4+ T-Zellen zeigten gegenüber Wildtyp-Zellen eine verstärkte Proliferation 

nach TCR/CD3-Stimulation und eine deutlich erhöhte „Resistenz“ gegenüber 

pharmakologischen Src Kinase- und MEK-Inhibitoren. Dahingehend wurde in Western Blot-

Analysen nach CD3/CD4-Stimulation eine deutlich erhöhte Erk-Aktivierung in myrPKB tg 

CD4+ T-Zellen nachgewiesen. In vitro kinase assays (IVKs) belegten, dass die Fyn-Aktivität, 

d. h. Fyn-Autophosphorylierung an Y417 sowie Fyn-Transphosphorylierungsaktivität, in PKB 

tg CD4+ T-Zellen erhöht ist. Anhand mehrerer Fyn-GST-Fusionsproteine und entsprechender 

Mutagenese wurde sodann im N-terminalen Bereich von Fyn eine PKB-

2 
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Phosphorylierungsstelle identifiziert. Somit ist Fyn ein neues Substrat der PKB in vitro. Da in 

transfizierten HEK 293T-Zellen PKB und Fyn koimmunopräzipitiert werden konnten, scheint 

eine direkte Interaktion beider Kinasen in vivo gegeben. 

Fyn-Hyperaktivität wurde auch in myrPKB tg Thymozyten nachgewiesen. Interessanterweise 

korreliert die erhöhte Fyn-Aktivität nicht mit vermehrter Phosphorylierung des 

Adaptermoleküls PAG an Tyrosin 314, welches durch Fyn phosphoryliert wird und sodann 

zur Rekrutierung der Kinase Csk führt, die wiederum Fyn/Lck inhibiert und derart zum 

Abschalten der T-Zellrezeptorsignalgebung führt. Analyse der lipid raft Fraktionen aktivierter 

Thymozyten zeigte in PKB tg Zellen eine deutlich erhöhte Menge an Y147 phosphorylierter 

aktiver Fyn, aber keine einhergehende erhöhte PAG Y314-Phosphorylierung. Erhöhte PKB-

Signale führen daher nicht zu einer Sequestrierung von Fyn und PAG, fördern aber sehr 

wohl die Fyn-Aktivität, die aber nicht in die Negativregulation der TCR-Signalgebung über 

PAG-Csk einzufließen scheint. 

Anerge T-Zellen sind areaktiv gegenüber TCR-Signalen und produzieren kein IL-2. T-Zell-

Anergie wurde mit erhöhter Fyn-Aktivität korreliert. In dem durch Ionomycin-Behandlung 

induzierten Anergiemodellsystem zeigten myrPKB tg CD4+ T-Zellen eine deutlich 

„abgeschwächte“ Anergie, da sie im Gegensatz zu den entsprechenden Wildtyp-T-Zellen bei 

TCR/CD3-Restimulation wesentlich stärker proliferierten. Während anergisierte Wildtyp-T-

Zellen im Vergleich zu den DMSO-behandelten Kontrollzellen eine höhere Fyn-Aktivität 

aufwiesen, im Einklang publizierter Daten, war die Fyn-Aktivität in Ionomycin-behandelten 

myrPKB tg T-Zellen nicht gesteigert. Insgesamt zeigen die gewonnenen Daten, dass erhöhte 

PKB-Signale die Fyn-Aktivität wesentlich beeinflussen und PKB über die Regulation von Fyn 

beim Abschalten ungewollter T-Zellaktivierung, z. B. bei der Anergie, eine zentrale Rolle 

spielen könnte. Der aufgezeigte cross-talk von PKB mit Fyn, zwei ausgewiesenen 

Protoonkogenen, könnte auch bei der Tumorbildung von entscheidender Bedeutung sein. 
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3 Introduction 

3.1 The immune system 

The physiological function of the immune system is to protect organisms against infection. To 

achieve this goal it has to distinguish between self and non-self and to eliminate pathogens. 

The immune response encompasses an unspecific (innate) and a specific (adaptive) effector 

arm. The innate immune response is the first defense against an infection, does not involve 

specific recognition of the pathogen and does not provide specific protection against 

reinfection. It comprises physical barriers such as the skin and mucous membranes, 

physiological defense mechanisms such as the low pH in the stomach and soluble 

components like acute-phase proteins, interferons and lysozyme. The complement system 

and various cell types also contribute to innate immunity, like monocytes, macrophages and 

granulocytes, which mediate their function by phagocytosis (Ezekowitz 1998; Janeway and 

Medzhitov 2002). In contrast, the adaptive immune response is characterized by specific 

recognition of pathogens and by generation of an immunological memory, thus providing 

enhanced protection against re-infection. Adaptive immunity can be divided into two major 

arms: the humoral immune response, constituted by B cells producing antibodies, and the 

cellular immune response, which is executed by T lymphocytes. The adaptive immune 

system is not present in animals derived from ancestors older than jawed fish (Flajnik and Du 

Pasquier 2004; Pancer and Cooper 2006). 

3.1.1 Cells of the immune system 

All cells of the immune system originate from a common progenitor in the bone marrow, the 

hematopoietic stem cell (HSC). HSCs develop into stem cells with a more limited potential: 

mast cells, macrophages and granulocytes derive from myeloid progenitor cells, whereas 

lymphoid progenitor cells differentiate into T cells, B cells and natural killer (NK) cells. 

Monocytes are precursors of macrophages and are thus derived from the myeloid progenitor. 

Dendritic cells, which function as potent antigen presenting cells (APCs), are also derived 

from bone marrow precursors. T and B cells are the two major types of lymphocytes. B cells 

develop in the bone marrow, mature in the spleen and after activation of their B cell receptor 

(BCR) differentiate into antibody producing plasma cells. T cells are defined by their 

development in the thymus and the presence of T cell receptors (TCRs). Most T cells 

possess / heterodimeric TCRs (/ T cells), but about 5% of T cells bear / heterodimeric 

TCRs. The different subtypes of T cells are specialized to serve special functions. 

T helper (Th) cells express the CD4 co-receptor and recognize peptides presented by MHC II 

molecules. These peptides are derived from proteins taken up by the APC via endocytosis. 
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Th cells thus respond to antigens from extracellular sources (Germain 1994). Engagement of 

TCRs by cognate peptide/MHC II complexes results in the activation and proliferation of Th 

cells, which then differentiate into specialized Th subsets dependening on the activation 

signals and the cytokine milieu. Th1 cells mainly produce IFN- IL-2 and TNF- and 

stimulate macrophage activity and the proliferation of cytotoxic CD8+ T cells. Th2 cells 

produce IL-4, IL-5, IL-6, IL-10 and IL-13 and stimulate the proliferation and differentiation of B 

cells, resulting in enhanced and specific antibody production. Th17 cells are a more recently 

identified population of Th cells, which produce IL-17 and serve important functions in 

inflammatory and autoimmune diseases (Harrington, Hatton et al. 2005; Stockinger and 

Veldhoen 2007). TGF-, IL-6, IL-21 and IL-23 are known to be involved in the induction of 

Th17 cells in mice and humans (Dong 2008; Manel, Unutmaz et al. 2008). Regulatory T cells 

(Tregs) inhibit T cell activity to downmodulate immune reactions and suppress auto-reactive 

T cells. So called naturally occurring CD4+CD25+ Tregs (nTregs) develop in the thymus, 

whereas adaptive Tregs are generated in the periphery during an immune response. A 

hallmark of murine Tregs is the expression of the transcription factor Foxp3, which 

determines Treg function. Follicular T helper cells (ThFs) are CD4+ T cells, which had contact 

with antigen and reside in lymph node follicles (Akiba, Takeda et al. 2005). 

Cytotoxic T cells (CTLs) express the CD8 co-receptor and recognize peptides presented by 

MHC I molecules, which are predominantly loaded with peptides derived from intracellular 

proteins, e.g. viral proteins (York and Rock 1996). Cells infected with virus as well as tumor 

cells are targets of CTLs, which are also critically involved in transplant rejection. Cytotoxicity 

is mediated by the production of granzymes and perforin and the interaction of Fas with Fas 

ligand (FasL) (Kagi, Vignaux et al. 1994). 

3.1.2 T cell receptor (TCR) signaling 

The TCR is a heterodimeric protein consisting of an  and  or  and  subunit, which 

themselves are unable to transduce signals. The TCR is associated with one , one  and 

two  chains, commonly referred to as CD3 complex, and a homodimer of two  chains 

(Samelson, Harford et al. 1985; Clevers, Alarcon et al. 1988). The cytosolic domains of the  

chains contain three, and each of the ,  and  chains possess one immunoreceptor tyrosine 

based activation motif (ITAM) (Reth 1989; Letourneur and Klausner 1992; Irving, Chan et al. 

1993). The ITAM consensus sequence is YXXL/I/VX(6-8)YXXL/I/V, where X denotes any 

amino acid. TCR engagement by cognate peptide/MHC initiates a signaling network leading 

to T cell activation (Smith-Garvin, Koretzky et al. 2009), and nowadays logical computer 

models are employed to describe the complexity of biochemical events initiated by TCR and 

co-receptor triggering (Saez-Rodriguez, Simeoni et al. 2007). 
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The TCR initiated signaling cascade starts with phosphorylation of the tyrosine residues (Y) 

within the ITAMs by activated Src kinases, p56-Lck and p59-Fyn (Abraham, Miceli et al. 

1991; Cooke, Abraham et al. 1991; Weiss and Littman 1994; Latour and Veillette 2001). Lck 

and Fyn are inactivated by phosphorylation at Y505 (Lck) and Y528 (Fyn) by the C-terminal 

Src kinase (Csk) and activated by dephosphorylation by the phosphatase CD45 (Figure 3.1). 

The phosphorylated ITAMs within the  chains provide docking sites for the Syk family 

tyrosine kinase zeta-associated protein of 70 kDa (ZAP-70), which is then phosphorylated 

and activated by Lck (Chan, Dalton et al. 1995; van Oers, Killeen et al. 1996). Substrates for 

active ZAP-70 are the adapter proteins linker for activation of T cells (LAT) (Zhang, Sloan-

Lancaster et al. 1998) and Src homology 2 (SH2) domain-containing leukocyte protein of 76 

kDa (SLP76) (Bubeck Wardenburg, Fu et al. 1996). 

TCR

Fyn

PAG

Csk

CD4/8

Lck PI3-K

PKB

LAT

GADS

PLC
SLP76

Itk

GRB2

SOS

IP3

Calcineurin

NFAT

CD28

Ras
GRP

Ras

Raf

MEK

Erk

AP-1

PKC

NFB

Ca2+

ZAP-70

PIP2
PDK1

PIP3 PIP2 DAG

IL-2 gene expression

 

  

Figure 3.1 Model of selected early signaling events after TCR/CD28 stimulation 
The cross-talk of activated PKB with NFAT and Fyn is indicated by dashed red lines. For a detailed 
explanation see section 3.1.2. 
 
Phosphorylation of LAT induces the formation of a multiprotein signaling complex at the 

plasma membrane including Grb2-related adapter downstream of Shc (GADS), SLP76, 

phospholipase C1(PLC1), the Tec kinase IL-2 inducible T cell kinase (Itk), the adapter 

protein growth-factor-receptor-bound protein 2 (GRB2) and the guanine nucleotide exchange 

factor (GEF) son of sevenless (SOS) (Samelson 2002). This leads to the activation of PLC1 

6 



3. Introduction 

involving phosphorylation by Itk (Berg, Finkelstein et al. 2005). Active PLC1 cleaves 

phosphatidylinositol-4,5-bisphosphate (PIP2) to yield diacylglycerol (DAG) and inositol-1,4,5-

trisphosphate (IP3). IP3 induces the release of intracellular Ca2+ from the endoplasmatic 

reticulum (ER), which triggers external Ca2+ influx through calcium-release-activated calcium 

(CRAC) channels. Increased calcium levels lead to activation of the phosphatase calcineurin 

(CN), which dephosphorylates and thus activates the transcription factor nuclear factor of 

activated T cells (NFAT) (Oh-hora and Rao 2008). DAG is associated with the activation of 

the serine/threonine kinase protein kinase C (PKC) and thus with the activation of the 

transcription factor nuclear factor kappa-light-chain-enhancer of activated B cells (NFB). 

The major mechanism in T cells leading to the activation of the small G protein Ras is 

mediated by the GEF Ras guanyl nucleotide-releasing protein (RasGRP), which is recruited 

to the plasma membrane by binding to DAG (Ebinu, Bottorff et al. 1998; Cantrell 2003; 

Roose, Mollenauer et al. 2005). Additionally, the GEF SOS, which is constitutively associated 

with the adapter protein GRB2, is recruited to LAT after TCR triggering, where it contributes 

to the activation of Ras (Zhang, Sloan-Lancaster et al. 1998). Generation of RasGTP 

triggered by RasGRP was found to enhance the activation of SOS (Roose, Mollenauer et al. 

2007; Chakraborty, Das et al. 2009; Das, Ho et al. 2009). This positive feedback loop results 

in robust Ras activation after TCR triggering. Ras activation initiates the Ras/Raf/MEK/Erk 

pathway. Active extracellular signal-regulated kinase (Erk) causes activation of the 

transcription factor Elk1, which regulates expression of Fos. The transcription factor activator 

protein-1 (AP-1) consists of Fos and Jun, and Erk enhances AP-1 activation via Fos. 

TCR stimulation also triggers the activation of phosphatidylinositol 3-kinase (PI3-K) leading 

to activation of phosphoinositide-dependent kinase-1 (PDK1) and the serine/threonine kinase 

protein kinase B (PKB). The activation of PKB is described in more detail in section 3.2.3. 

PI3-K/PKB signals also result from engagement of CD28 and other co-stimulatory molecules. 

The activation of the transcription factors NFAT, NFB and AP-1 after TCR/CD28 triggering 

is important for the expression of interleukin-2 (IL-2), the IL-2 receptor chain (CD25) and 

CD69, which mark early T cell responses. 

The influence of active PKB on NFAT and Fyn activation and their molecular interaction, 

which is indicated by dashed red arrows in Figure 3.1, was the focus of this thesis. 
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3.2 PKB 

3.2.1 Identification of PKB 

PKB research was initiated in 1977 by Staal and co-workers, who identified a leukemia virus 

which induced spontaneous lymphoma in mice. The retrovirus was able to transform the cell 

line CCL-64 (mink epithelial cells) and was called AKT8 (Staal, Hartley et al. 1977). The 

AKT8 virus induced thymic lymphomas when inoculated into mice, and the cell-derived akt 

sequence of the virus was shown to be present in the DNA of virus-induced tumors. Thus, 

the akt sequence of the AKT8 virus was responsible for tumorigenesis (Staal and Hartley 

1988). The virus genome consisted of both viral and nonviral, cell-related sequences. The 

nonviral sequence was called akt, the presumed viral oncogene of the AKT8 virus. Two 

human homologues of akt, PKB and PKB, were identified by screening of a human 

genomic library with a probe specific for akt. One part of the PKB gene was shown to be 

amplificated in human gastric adenocarcinoma and thus PKB could play a role in 

cancerogenesis (Staal 1987). 

Despite these findings, the exact genetic identity of akt was not known until three groups 

independently identified genes coding for Akt in 1991. Jones et al. isolated full-length cDNA 

clones by screening libraries derived from the human cell lines MCF-7 and WI38 with a probe 

specific for a protein kinase related to the A and C kinases (rac), which later was given the 

name Akt1/PKB. DNA analysis identified an open reading frame of 1440 base pairs coding 

for a protein of 480 amino acids. The protein was immunoprecipitated and shown to possess 

specific kinase activity phosphorylating histone H1 and myelin basic protein (MBP) in vitro 

(Jones, Jakubowicz et al. 1991 Proc Natl Acad Sci USA). 

Bellacosa et al. cloned v-akt, consisting of the viral gag protein fused to Akt1/PKB 

(Bellacosa, Testa et al. 1991). The viral gag protein is myristoylated at its N-terminus and 

localized at the plasma membrane, whereas PKB mainly resides in the cytoplasm. Thus, the 

fused gag protein targets v-Akt to the plasma membrane, which could influence kinase 

activity (Ahmed, Franke et al. 1993). PCR screening technology was applied to identify an 

open reading frame coding for a 479 amino acid protein that showed similarity to protein 

kinase A (PKA) and protein kinase C (PKC) and was thus named protein kinase B (PKB) 

(Coffer and Woodgett 1991). PKB was identified by screening cDNA libraries from the 

human cell lines MCF-7 and WI38 applying the procedure used for identification of 

PKB(Jones, Jakubowicz et al. 1991 Cell Regul). PKB, the third PKB gene, was cloned in 

1995 from rat (Konishi, Kuroda et al. 1995) and in 1999 from human cells (Brodbeck, Cron et 

al. 1999; Nakatani, Sakaue et al. 1999). 
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In mammals, the three PKB proteins are ubiquitously expressed, but the intensity of 

expression differs assessing different tissues. PKB is strongly expressed in many tissues, 

whereas PKB is predominantly expressed in skeletal muscle, liver, kidney and heart 

(Altomare, Guo et al. 1995). PKB is dominant in brain and testis, and low expression is 

found in adult pancreas, kidney and heart (Konishi, Matsuzaki et al. 1996; Brodbeck, Cron et 

al. 1999; Nakatani, Sakaue et al. 1999). The human gene coding for PKB/Akt1 is localized 

on chromosome 14q32.32-q32.33, the gene for PKB/Akt2 is localized on chromosome 

19q13.1-q13.2 and the gene for PKB/Akt3 on chromosome 1q44. The three PKB/Akt genes 

show about 85% sequence similarity and code for proteins with similar domain-organization. 

3.2.2 Domain structure of PKB 

PKB, PKB and PKB display structural similarity within their conserved domains: 

a pleckstrin homology (PH) domain at the N-terminus, a kinase domain and a regulatory 

domain at the C-terminus. The regulatory domain includes a hydrophobic motif conserved in 

AGC kinases with the consensus sequence FXXF/YS/TY/F (X represents any amino acid). 

The PH domain mediates membrane targeting of PKB by interaction with phosphorylated 

membrane lipid molecules, e.g. phosphatidylinositol-3,4,5-trisphosphate (PIP3) produced by 

activated PI3-K (James, Downes et al. 1996). The structure of the kinase domain is 

conserved within the family of AGC kinases, including PKB (Peterson and Schreiber 1999). 

Phosphorylation of PKB in the kinase domain and the hydrophobic motif leads to activation of 

the enzyme. 

Kinase

Thr-308

Thr-309

Thr-305

Ser-473

Ser-474

Ser-472

PH

Kinase

Kinase

HM

HM

HM

PH

PH PKB/Akt1

PKB/Akt2

PKB/Akt3
 

Figure 3.2 Domain structure of human PKB 
PKB consists of three domains: an N-terminal pleckstrin homology (PH) domain, a central kinase 
domain and a regulatory domain harboring a hydrophobic motif (HM) at the C-terminus. Activation of 
PKB requires phosphorylation of the indicated threonine in the kinase domain and of the indicated 
serine in the hydrophobic motif (modified after: Kandel and Hay 1999; Hanada, Feng et al. 2004). 
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3. Introduction 

3.2.3 Regulation of PKB activity 

PKB is activated by insulin and various other growth and survival factors. In T cells, 

activation of PKB is triggered by TCR ligation, several co-stimulatory molecules like CD28, 

cytokines and chemokines, among others. Active PI3-K produces PIP3 and interaction with 

PIP3 via its PH domain recruits PKB to the plasma membrane, where it is activated by 

phosphorylation at T308 and S473 (see Figure 3.3) (Alessi, Andjelkovic et al. 1996). These 

phosphorylations are inhibited by the PI3-K inhibitors LY294002 and wortmannin, and 

exchange of these two residues to alanine abrogates PKB activity. Phosphorylation at T308 

in the activation loop of PKB is mediated by PDK1 (Brazil and Hemmings 2001). The kinase 

responsible for phosphorylation at S473 is mammalian target of rapamycin (mTOR), in a 

complex with rictor and Sin1, called mTORC2 complex (Sarbassov, Guertin et al. 2005; 

Jacinto, Facchinetti et al. 2006). 

PIP2 PIP3

p110
p85

PDK1

PIP3 PIP3

mTORC2 complex:
mTOR/rictor/Sin1

inactivation
of PKB

activation
of PKB

PI3-K

PTEN

PP2A

TCRCD28

active PKBinactive PKB

PH domain

Hydrophobic
motif

T308

S473

survival

proliferation

cell growth

metabolism

PHLPP

 

Figure 3.3 Model for regulation of PKB activity 
Triggering of the TCR and/or the co-receptor CD28 leads to the activation of PI3-K, which generates 
PIP3 by phosphorylation of PIP2. PKB is recruited to the plasma membrane by binding to PIP3 via its 
pleckstrin homology (PH) domain followed by phosphorylation of T308 in the kinase domain by PDK1 
and S473 in the hydrophobic motif of the regulatory domain by the mTORC2 complex, leading to its 
activation. Dephosphorylation of T308 and S473 by PP2A and of S473 by PHLPP or activation of 
PTEN, which depletes PIP3, leads to PKB inactivation (modified after: Brazil and Hemmings 2001). 
 
PKB is inactivated by phosphatases such as protein phosphatase 2A (PP2A), which 

dephosphorylate T308 and S473, converting PKB to its inactive conformation      
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(Andjelkovic, Jakubowicz et al. 1996; Meier, Thelen et al. 1998). PH domain leucine-rich 

repeat protein phosphatase (PHLPP) was found to dephosphorylate PKB at S473 (Gao, 

Furnari et al. 2005). A tumor suppressor gene located on chromosome 10q13 was identified 

in 1997, which was given the name phosphatase and tensin homologue localized on 

chromosome ten (PTEN). Since PIP3 is a substrate of PTEN (Maehama and Dixon 1998), 

active PTEN counteracts PKB activation via dephosphorylation of PIP3, a membrane lipid 

required for membrane targeting and activation of PKB. 

3.2.4 Physiological functions of PKB 

The various physiological functions of PKB include cell survival, proliferation, cell growth and 

differentiation, mediated by several downstream targets, more than 40 so far. The first direct 

target of PKB identified in cells was glycogen synthase kinase-3 (GSK-3) (Cross, Alessi et al. 

1995). Using synthetic peptide sequences based on the PKB phosphorylation site of GSK-3, 

the PKB phosphorylation motif was defined: RXRXXS/T, where X represents any amino acid 

and S/T the PKB phosphorylation site. Figure 3.4 shows major PKB phosphorylation targets, 

which are inhibited via phosphorylation. 

PKB

Survival:

BAD

FOXO

Caspase-9

Proliferation:

p27Kip1

P21Cip1/WAF1

Chk1

Growth:

TSC2

PRAS40

Metabolism:

GSK-3

AS160

 

Figure 3.4 PKB regulates survivval, proliferation, growth and metabolism 
Some direct substrates of PKB are indicated. 
 
PKB and cell survival 

PKB is known as ‘survival kinase’ because it inhibits the function of several pro-apoptotic 

proteins. For instance, Bcl-2 homology domain 3 (BH3)-only proteins, which are 

downmodulated in their expression or function by PKB, enhance apoptosis by inactivation of 

pro-survival Bcl-2 family proteins. The BH3-only protein BAD is directly regulated by PKB. 

PKB phosphorylates BAD at S136, thereby generating a binding site for 14-3-3 proteins 
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3. Introduction 

(Datta, Dudek et al. 1997; Datta, Katsov et al. 2000). PKB also intera ts with tran cription 

factors of the forkhead box family, which regulate the expression of BH3-only proteins. T24, 

S256, and S319 of FOXO1 and the corresponding amino acids of FOXO3a and FOXO4 are 

phosphorylated by PKB (reviewed in Tran, Brunet et al. 2003). Phosphorylation of T24 and 

S256 promotes nuclear export of FOXOs by providing docking sites for 14-3-3 proteins. 

There is also evidence that PKB phosphorylates S196 on human pro-caspase-9, which is 

associated with reduced caspase-9 activity in vitro and reduced cell death (Cardone, Roy et 

al. 1998). 

PKB and c

c s

ell proliferation 

ved in cell cycle regulation. Phosphorylation of the cyclin-

tion of the mTOR complex 1 (mTORC1), which is also 

   

PKB is also critically invol

dependent kinase inhibitor p27Kip1 at T157 by PKB triggers binding of 14-3-3 proteins causing 

nuclear export and reduction of cell-cycle inhibition by p27Kip1 (Liang, Zubovitz et al. 2002; 

Sekimoto, Fukumoto et al. 2004). Another PKB phosphorylation target is the cyclin-

dependent kinase inhibitor p21Cip1/WAF1, which upon phosphorylation at T145 by PKB localizes 

in the cytoplasm (Zhou, Liao et al. 2001). Furthermore, downmodulation of GSK-3 activity via 

phosphorylation by PKB has also impact on the cell cycle. Molecules involved in cell cycle 

progression from G1 to S phase, such as cyclin D and cyclin E and the transcription factors 

c-Jun and c-Myc, are driven to degradation in proteasomes by phosphorylation via GSK-3 

(Diehl, Cheng et al. 1998; Welcker, Singer et al. 2003; Yeh, Cunningham et al. 2004; Wei, 

Jin et al. 2005). Thus, inactivation of GSK-3 by PKB reduces degradation of these proteins 

and fosters cell cycle progression. PKB facilitates progression of mitosis even when DNA is 

damaged (Kandel, Skeen et al. 2002; Shtivelman, Sussman et al. 2002). The DNA damage 

checkpoint kinase Chk1 is phosphorylated by PKB at S280 (King, Skeen et al. 2004), 

causing Chk1 ubiquitination and its translocation to the cytosol leading to abrogation of 

checkpoint function. Cells with damaged DNA therefore proliferate (Puc, Keniry et al. 2005), 

one mechanism among others by which dysregulated PKB fosters transformation and 

tumorigenesis (Carpten, Faber et al. 2007; Tokunaga, Oki et al. 2008). 

PKB and cell growth, metabolism 

PKB promotes cell growth via activa

known as mTOR-raptor complex and is regulated by growth factors and nutrients. mTORC1 

regulates the initiation of translation and the synthesis of ribosomes. mTORC1 activation by 

PKB is mediated via the tuberous sclerosis complex 2 (TSC2), also termed tuberin, which 

negatively regulates mTOR signal transduction. PKB phosphorylates TSC2, inhibits its 

function (Potter, Pedraza et al. 2002) and thereby causes increased mTORC1 activity and 

cell growth. The proline-rich Akt substrate of 40 kDa (PRAS40) negatively regulates 

mTORC1 (Sancak, Thoreen et al. 2007) and is phosphorylated by PKB at T246   

12 



3. Introduction 

(Kovacina, Park et al. 2003). T246A mutants of PRAS40 led to the suggestion that 

phosphorylation of PRAS40 at T246 by PKB enhances mTOR signaling. 

GSK-3 phosphorylates and inactivates glycogen synthase after stimulation of cells with 

insulin. Phosphorylation of GSK-3 at S21 and of GSK-3 at S9 by PKB inactivates GSK-3 

leading to enhanced glycogen synthesis (Cross, Alessi et al. 1995; Lafont, Astoul et al. 2000; 

Ohteki, Parsons et al. 2000). 

PKB also increases glucose uptake of cells after stimulation with insulin. PKB was 

associated with vesicles containing the glucose transporter 4 (Glut4) in adipocytes, which 

were stimulated with insulin (Calera, Martinez et al. 1998). Furthermore, it was shown that 

PKB activation results in translocation of Glut4 to the plasma membrane (Kohn, Summers et 

al. 1996). A 160-kDa protein called AS160 and harboring a GTPase activating domain for 

Rab G proteins, which are important for membrane trafficking, was identified as a 

phosphorylation target of PKB and found to be involved in Glut4 membrane translocation 

(Sano, Kane et al. 2003; Eguez, Lee et al. 2005). PKB also influences transcription and 

translation of the gene coding for Glucose tansporter 1 (Glut1), which mediates glucose 

transport in many cell types (Taha, Liu et al. 1999), and PKB enhances the rate of glycolysis 

in cancer cells (Elstrom, Bauer et al. 2004). 

3.2.5 PKB deficient and transgenic mice 

To date more than 40 proteins have been described to be regulated by PKB. Whether all of 

these proteins are PKB targets in immune cells is not yet clear. To resolve the physiological 

functions of PKB in whole organisms and specifically in the immune system, PKB knockout 

(ko) and PKB transgenic (tg) mice with deletion or overexpression of PKB genes in all cells 

or specifically in T cells were established. PKB-/- mice display increased apoptosis in the 

thymus and show reduced body size (Chen, Xu et al. 2001; Cho, Thorvaldsen et al. 2001). 

PKB-/- mice are also viable but suffer from severe diabetes (Cho, Mu et al. 2001; Garofalo, 

Orena et al. 2003), indicating an essential function of PKB in glucose metabolism. Adult 

PKB-/- mice display decreased thymic cellularity but overall normal thymic subsets, and 

thymocyte development in PKB-/-mice is normal. In contrast, thymi from PKB-/-/-/-mice 

have a 8-fold reduction of thymic cell number and a higher percentage of cells at the double 

negative (DN)3 stage of thymocyte differentiation, indicating a defect in pre-TCR selection 

(Juntilla, Wofford et al. 2007). Analysis of PKB-/- mice revealed an about 25% reduction of 

brain weight and size in adult mice, indicating a central function of PKB in brain 

development (Tschopp, Yang et al. 2005). The viability and mild phenotype of mice with a 

single PKB deletion suggest that PKB, PKB and PKB can functionally compensate for 

each other. This is supported by the fact that PKB-/-/-/- mice quickly die after birth and show 
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a strong reduction in body size. Furthermore, skin and bone development are defective, 

skeletal muscles display atrophy and adipogenesis is reduced (Peng, Xu et al. 2003).   

PKB-/-/-/-double ko mice are embryonic lethal (Yang, Tschopp et al. 2005) suggesting that 

PKB has an important function in embryogenesis and survival after birth. Mice which solely 

express PKB, such as PKB-/-/-/- or PKB+/-/-/-/-/- mice, are viable, although total PKB 

expression is strongly reduced in many tissues. Finally, PKB-/-/-/-/-/- mice are not viable 

and show embryonic lethality (Dummler, Tschopp et al. 2006). The analysis of PKB ko mice 

revealed the importance of the three PKB forms in growth, proliferation and differentiation of 

cells as well as glucose metabolism. PKB is especially important in embryonic growth, 

development and survival, PKB serves unique functions in glucose metabolism and PKB 

has specifically impact on brain development. 

An inducible PKB-/- mouse was generated by usage of the Lck-Cre-lox system. Since the 

expression of Lck starts at the DN2 stage of thymocyte development, PKB expression is 

decreased at the DN3 stage and eliminated at the DN4 stage of thymocyte differentiation. 

Crossing PKBmice with PKB-/-, PKB-/- or PKB-/-/-/- mice resulted in the generation of 

viable PKB double and triple ko mice. PKB-/-/-/- mice show basically normal thymocyte 

development, but PKB-/-/-/- mice display a reduction of thymic cellularity and a block in the 

transition from the DN4 to the double positive (DP) stage. PKB-/-/-/- mice also show reduced 

thymic cellularity and a partial block in the transition from the DN4 to the DP stage. 

Combined deletion of all PKB genes in thymocytes (PKB-/-/-/-/-/- mice) inhibited the survival 

of DN thymocytes. From analysis of these mice can be concluded that all three forms of PKB 

contribute to thymocyte development, although PKB seems to be most important (Mao, Tili 

et al. 2007). 

The first PKB tg mouse described harbored a membrane targeted and thus constitutively 

active gag-PKB expressed under the CD2 promoter (Jones, Parsons et al. 2000). 

Peripheral T cells and thymocytes from these mice showed increased viability in culture. 

Furthermore, an increase in NFB activation after stimulation of peripheral T cells and 

increased levels of the anti-apoptotic protein Bcl-XL were detected in T cells and thymocytes 

from gag-PKB tg mice. In aged gag-PKB tg mice, accumulation of CD4+, CD8+ and B cells 

caused lymphadenopathy and splenomegaly and several organs were infiltrated by 

lymphocytes. A defect in Fas-mediated apoptosis was found in gag-PKB tg T cells and B 

cells from these mice showed enhanced proliferation after IgM F(ab’)2 and CD40 stimulation. 

Thus, expression of a constitutively active form of PKB in T cells has an impact on T as well 

as B cell homeostasis (Parsons, Jones et al. 2001). Additional studies revealed that the 

recruitment of pro-caspase-8 to the death-inducing signaling complex (DISC) associated with 

Fas receptors is impaired in gag-PKB tg T cells causing reduced activation of caspase-8, the 
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pro-apoptotic Bcl-2 protein BID and caspase-3 leading to a reduction of Fas-induced 

apoptosis (Jones, Elford et al. 2002). Later studies showed that NFB is necessary to avoid 

Fas-induced apoptosis via constitutively active gag-PKB. Gag-PKB-mediated survival after 

cytokine withdrawal was independent of protein synthesis and NFB (Jones, Saibil et al. 

2005). The function of PKB in survival of CD4+ and CD8+ T cells was examined in gag-PKB 

tg mice deficient for PKC. The survival of splenic PKC-/- CD4+ T cells was slightly affected 

but a strong survival defect occurred in splenic PKC-/- CD8+ T cells. Furthermore, PKC 

deficiency caused reduced expression levels of the anti-apoptotic protein Bcl-XL in 

CD3+CD28 Ab-stimulated CD4+ and CD8+ T cells. Active gag-PKB rescued the expression 

of Bcl-XL in PKC-/- CD8+ cells but not in PKC-/- CD4+ cells and increased the viability of   

PKC-/- CD4+ T cells but not of PKC-/- CD8+ T cells. A proliferation defect was observed in 

peptide-stimulated P14 TCR PKC-/- T cells and this defect was not rescued by gag-PKB. 

Thus, CD4+ and CD8+ T cell survival is regulated differentially and PKB specifically 

contributes to this regulation (Saibil, Jones et al. 2007). 

Thompson et al. generated tg mice expressing a myristoylated constitutively active form of 

murine PKB in T cells under control of the Lck promoter and CD2 enhancer. Naive T cells 

from these mice displayed increased cell size, glucose metabolism and viability in in vitro 

culture. Additionally, myrPKB tg T cells were less dependent on CD28 co-stimulation for 

induction of cell growth and cytokine secretion. Increased numbers of CD4+ T cells and B 

cells were present in one year old myrPKB tg mice compared with wt mice. Additionally, 

induction of autoimmunity with immunoglobulin accumulations in kidney glomeruli and a 

higher number of lymphomas were found in aged myrPKB tg mice (Rathmell, Elstrom et al. 

2003). 

Cell growth is associated with increased energetic and biosynthetic activity. T cell activation 

is limited by the amount of glucose consumed and CD28 co-stimulation is crucial for maximal 

glucose uptake via triggering expression and cell surface translocation of the Glut1 glucose 

transporter. Constitutively active myrPKB enhanced glucose consumption of resting T cells 

by promoting Glut1 cell surface trafficking (Jacobs, Herman et al. 2008). PKB is also 

important for glucose uptake of lymphocytes driven by IL-7. IL-7 induces transcriptional 

activity of signal transducer and activator of transcription 5 (STAT5) and leads to activation of 

PKB, which regulates Glut1 membrane trafficking and thereby influences glucose 

consumption. No component of this signaling pathway seems to be dispensable, because 

deletion of PKB, inhibition of PI3-K or downmodulation of STAT5 by siRNA inhibited IL-7-

driven glucose uptake (Wofford, Wieman et al. 2008). 

Similar mice expressing a myristoylated human PKB under the CD2 promoter and locus 

control region (LCR) were generated by Bommhardt et al. and used for experiments in this 
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thesis. PKB is constitutively recruited to the membrane via the N-terminal lck 

myristoylation/palmitoylation signal (MGCWCSSNPEDD) and constitutively active (Avota, 

Avots et al. 2001). Previous studies on these mice showed that myrPKB tg thymocytes 

display enhanced and prolonged activation of the Src kinase Lck and the Raf/MEK/Erk 

signaling pathway associated with hyperproliferation of thymocytes after TCR stimulation. In 

addition, proliferation of myrPKB tg thymocytes was less sensitive to inhibition by CsA or 

FK506. Concerning thymocyte selection, myrPKB tg thymocytes showed enhanced positive 

selection towards the CD4 lineage and an increased CD4:CD8 ratio in the peripheral organs. 

With respect to negative selection, myrPKB was shown to enhance, to reduce or to have no 

effect on negative selection depending on the system of negative selection analyzed (Na, 

Patra et al. 2003). MyrPKB tg peripheral T cells showed reduced nuclear translocation of 

NFATc1, NFATp, NFB p65 and RelB proteins after CD3 Ab and CD3+CD28 Ab stimulation, 

although they proliferated faster and produced more cytokines. Since NFAT and PKB co-

immunoprecipitate in CD4+ T cells, PKB could regulate NFAT activation via direct 

mechanisms (Patra, Na et al. 2004). Wt and myrPKB tg mice were also analyzed under 

septic conditions. MyrPKB tg mice showed enhanced survival which correlated with reduced 

apoptosis of lymphocytes and altered IFN- and IL-4 production (Bommhardt, Chang et al. 

2004). 

3.3 NFAT 

3.3.1 The NFAT family of transcription factors 

NFAT was identified as a transcription factor binding to the IL-2 promoter of activated T cells 

(Shaw, Utz et al. 1988; Randak, Brabletz et al. 1990). The binding of NFAT to the IL-2 

promoter was shown to be sensitive to CsA treatment (Emmel, Verweij et al. 1989; Randak, 

Brabletz et al. 1990; Serfling, Berberich-Siebelt et al. 2000). NFAT is expressed in several 

tissues and involved in the regulation of many processes such as development of the 

embryonic heart, angiogenesis, the growth of neuronal axons and bone development 

(Hogan, Chen et al. 2003; Macian 2005). The family of NFAT factors includes NFATc1 

(NFAT2 or NFATc), NFATc2 (NFAT1 or NFATp), NFATc3 (NFAT4 or NFATx), NFATc4 

(NFAT3) and NFAT5. The oldest member of the NFAT family, NFAT5, appeared as early as 

Drosophila in evolution and developed from the REL transcription factor family. NFAT5 is 

broadly expressed and activated by osmotic stress (Lopez-Rodriguez, Aramburu et al. 1999; 

Miyakawa, Woo et al. 1999). NFATc1-c3 are expressed in T cells, whereas NFATc4 is 

mainly expressed outside the immune system. NFATc1-c4 are regulated by calcium 

signaling via the Ca2+/calmodulin-dependent phosphatase calcineurin (CN). CN 

dephosphorylates at least 13 residues within the regulatory domain of NFAT, stimulating its 
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nuclear translocation, a process which is inhibited by CsA and FK506 (Okamura, Aramburu 

et al. 2000; Serfling, Berberich-Siebelt et al. 2000; Kaminuma 2008). 

3.3.2 Domain structure of NFAT 

The domain structure of NFAT is crucial for its function and characterized by the presence of 

an N-terminal transactivation domain (TAD), a regulatory domain, also termed NFAT-

homology region (NHR), a DNA-binding domain, known as REL-homology region (RHR) and 

a C-terminal domain (Figure 3.5). 

Regulatory domain (NFAT-homology region NHR) 

An important function of the regulatory domain is the control of the nuclear and cytoplasmic 

localization of NFAT transcription factors. Phosphorylation of serines positioned within the 

regulatory domain of NFAT causes cytosolic localization in resting T cells. These serines are 

mainly positioned in conserved sequence motifs: two serine-rich regions (SRR) and three 

serine-proline (SP) boxes. The regulatory domain also harbors binding sites for NFAT 

kinases and CN, which regulate the activation of NFAT factors by phosphorylation and 

dephosphorylation of the serines. Additionally, a nuclear localization sequence (NLS) is 

localized in the NHR (Okamura, Aramburu et al. 2000). 

DNA-binding domain (REL-homology region RHR) 

The REL-homology region is a characteristic feature of NFAT proteins. The name is due to 

its sequence similarity (15-17%) to the DNA-binding domains of the NFB/Rel family of 

transcription factors. NFATc1-c4 depict 60-70% sequence similarity in the DNA binding 

domains and the NFAT5 DNA binding domain shows about 40% sequence similarity 

compared with the other family members. Conservation of the DNA-binding domain results in 

similarity in DNA-binding specificity that characterizes NFAT transcription factors. The 

consensus NFAT binding site for several promoters is GGAAAA (Serfling, Avots et al. 1995; 

Chen, Glover et al. 1998). 

Transactivation domain (TAD) and C-terminal domain 

Transactivation domains contributing to the regulation of NFAT activity were identified at the 

N-terminus and the C-terminus of NFAT (Luo, Burgeon et al. 1996). NFATc1-c4 harbor 

transactivation domains at the N-terminus and NFATc1-c3 additionally possess 

transactivation domains at the C-terminus. 
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Figure 3.5 Domain structure of NFAT proteins and phosphorylation pattern of the regulatory 
domain 
NFAT proteins consist of an N-terminal transactivation domain (TAD), a regulatory domain, a DNA-
binding domain and a C-terminal domain, which also harbors transactivation domains in NFATc1-c3. 
N- and C-terminal domains are alternatively spliced in different NFAT isoforms. An enlarged version of 
the regulatory domain is shown including the conserved serine-rich regions (SRR-1 and SRR-2) and 
the conserved serine-proline boxes (SP-1, SP-2 and SP-3). The calcineurin binding site with the 
sequence PXIXIT (X depicts any amino acid), the second calcineurin binding site with the sequence 
LXVP and a nuclear localization signal (NLS) are also indicated. Phosphorylated serines in conserved 
sequence motifs are represented by circles. Black circles indicate phosphorylations that get lost after 
activation, whereas the gray circle represents a constitutively phosphorylated serine (modified after: 
Macian, Lopez-Rodriguez et al. 2001; Lee and Park 2006). 
 

3.3.3 Regulation of NFAT activity 

Activation of NFAT proteins is induced by ligation of the TCR, which leads to increase of 

intracellular Ca2+ levels via CRAC channel activation. Binding of the Ca2+/calmodulin complex 

activates CN, which subsequently dephosphorylates and thus activates NFAT (Shaw, Ho et 

al. 1995; Okamura, Aramburu et al. 2000). The binding sites for CN with the sequence motifs 

PXIXIT and LXVP are present in the regulatory domain (Aramburu, Garcia-Cozar et al. 1998; 

Garcia-Cozar, Okamura et al. 1998; Martinez-Martinez, Rodriguez et al. 2006). NFAT 

kinases are crucial regulators of NFAT activity, because they control nuclear shuttling of this 

transcription factor. GSK-3, p38, casein kinase 1 (CK1), JUN N-terminal kinase (JNK) and 

dual-specificity tyrosine-phosphorylation regulated kinase (DYRK) (Gwack, Sharma et al. 

2006) have been reported to phosphorylate NFAT. Maintenance kinases phosphorylate 

NFAT proteins in the cytosol and thus stabilize the cytosolic localization, whereas export 

kinases phosphorylate nuclear NFAT proteins and thereby enhance nuclear export. GSK-3 

acts as an export kinase (Beals, Sheridan et al. 1997). In NFATc1, the GSK-3 

phosphorylation sites with the consensus sequence S/TXXXpS are generated after priming 

by protein kinase A (PKA), which phosphorylates serines or threonines within the consensus 

sequence RRXS/TY (Sheridan, Heist et al. 2002). CK1 serves as an export and maintenance 

kinase for the SRR-1 region of NFAT (Zhu, Shibasaki et al. 1998). Mitogen-activated protein 
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kinases (MAPKs) also phosphorylate various NFAT proteins. JNK phosphorylates NFATc1 

(Chow, Dong et al. 2000), and p38 phosphorylates NFATc2 (Gomez del Arco, Martinez-

Martinez et al. 2000). The fact, that different kinases phosphorylate various serine-rich motifs 

in NFAT proteins provides a molecular basis for the spacial and temporal regulation of NFAT 

family members. PKB is known to phosphorylate and thus inactivate GSK-3. Since GSK-3 

functions as an export kinase for NFATc1 and NFATc2 and inactivates NFAT, one could 

speculate that PKB stimulates NFAT activation by phosphorylation of GSK-3. Indeed, 

enhanced NFAT activation was found after CD28 co-stimulation (Siefken, Klein-Hessling et 

al. 1998; Diehn, Alizadeh et al. 2002), which would lead to PKB activation. 

NFATc1 is not only regulated by phosphorylation and dephosphorylation in its regulatory 

domain, but additionally on the transcriptional level by a positive feedback loop. The 

expression of the splice variant NFATc1A is transcriptionally controlled by a promoter which 

is switched on by NFAT itself (Chuvpilo, Zimmer et al. 1999; Chuvpilo, Jankevics et al. 2002; 

Zhou, Cron et al. 2002; Serfling, Chuvpilo et al. 2006). 

CBP and p300 are co-factors of diverse transcription factors and function as adapter 

proteins. Additionally, CBP and p300 can acetylate histones and enhance transcription by 

this mechanism. CBP and p300 bind to the N-terminal transactivation domain of NFAT and 

enhance NFAT activity (Avots, Buttmann et al. 1999). 

NFATc1C and NFATc2 are also regulated by sumoylation. Addition of small ubiquitin-like 

modifier (SUMO) molecules to NFATc2 causes nuclear localization (Terui, Saad et al. 2004). 

Sumoylation of NFATc1C results in its localization in promyelocytic leukemia nuclear bodies 

(PML-nbs), where it interacts with histone deacetylases. Subsequent histone deacetylation 

results in the generation of transcriptionally inactive chromatin, which is associated with 

reduced IL-2 production. Thus, sumoylation of NFATc1C converts this transcription factor 

from a transcriptional activator to a repressor of IL-2 gene expression (Nayak, Glockner-

Pagel et al. 2009). 

NFAT was also found to co-immunoprecipitate with the cytoplasmic scaffolding proteins 

Homer2 and Homer3, which belong to the Homer family. This interaction diminishes binding 

of CN to NFAT and thus reduces dephosphorylation of NFAT by CN, leading to reduced 

NFAT activity. Thus, Homer molecules act as negative regulators of TCR signaling. Active 

PKB reduces the binding of Homer2 and Homer3 to NFAT, which results in enhancement of 

NFAT activity and thus TCR signaling. Since PKB is activated by CD28 as well as TCR 

stimulation, the impact of active PKB on the interaction of Homer with NFAT seems to be one 

mechanism by which CD28 co-stimulation enhances TCR signaling and T cell activation 

(Huang, Huso et al. 2008). 
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3.3.4 Transcriptional partners of NFAT 

NFAT proteins interact with a variety of other transcription factors. The main interaction 

partner of NFAT after T cell activation is activator protein-1 (AP-1). This cooperative 

transcriptional activity provides a molecular basis for the interplay between calcium and 

Ras/MAPK signaling. Increased intracellular Ca2+ leads to NFAT activation and Ras/MAPK 

signaling triggers AP-1 formation (Jain, McCaffrey et al. 1992). Complexes of NFAT and   

AP-1 bind with high affinity to the consensus sequence 5’ –GGAAAaxxxxTGAxTCA-3’ (Kel, 

Kel-Margoulis et al. 1999). Activation of the IL-2 promoter is a prominent example for 

transcriptional interaction of NFAT and AP-1 (Serfling, Berberich-Siebelt et al. 2000). 

Other transcriptional partners of NFAT comprise ICER (Bodor and Habener 1998), Maf (Ho, 

Hodge et al. 1996) and p21SNFT (Iacobelli, Wachsman et al. 2000), which are members of 

the basic region-leucine zipper (bZIP) family to which AP-1 belongs as well. Egr (Decker, 

Nehmann et al. 2003) and GATA (Avni, Lee et al. 2002) are zink finger proteins, and HNF3 

(Furstenau, Schwaninger et al. 1999), Oct (Duncliffe, Bert et al. 1997) and IRF-4 

(Rengarajan, Mowen et al. 2002) belong to the helix-turn-helix-domain proteins, which 

interact with NFAT. The nuclear receptor PPAR(Yang, Wang et al. 2000) and the MADS-

box protein MEF2 (McKinsey, Zhang et al. 2002) are also interaction partners of NFAT. 

Foxp3 belongs to the forkhead-winged-helix family of transcription factors. It is a specific 

marker of murine Tregs and has impact on the phenotype and function of these cells 

(Fontenot, Rasmussen et al. 2005). Foxp3 was initially identified as the gene which causes 

autoimmunity in scurfy mice (Brunkow, Jeffery et al. 2001). T helper cells from scurfy mice 

possess enhanced activity of the transcription factors NFAT and NFB, which is essential for 

cytokine production. Reconstitution of functional Foxp3 in scurfy-derived T cells reduces 

transcriptional activity of NFAT and NFB. Foxp3 and NFATc1A were shown to interact 

physically in lysates of transfected HEK 293T cells (Bettelli, Dastrange et al. 2005). Foxp3 

has influence on gene expression in Tregs by interaction with NFATc2 and the interaction 

was found to be mandatory for the suppressive function of Tregs in vivo. Depending on the 

promoter, the interaction with Foxp3 enhances or reduces NFATc2 driven transcription. 

Foxp3 can inhibit IL-2 promoter activity driven by NFATc2-AP-1 complexes but not by NFAT 

dimers (Wu, Borde et al. 2006). Thus, interaction with various transcription factors enables 

NFAT proteins to integrate different signaling pathways and to serve different functions. 
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3.3.5 NFAT in T cells 

NFAT is crucial for the activation of the IL-2 promoter and other cytokine genes and thus for 

T cell activation (Shaw, Utz et al. 1988; Serfling, Avots et al. 1995; Luo, Burgeon et al. 1996). 

Genetic data from two human families indicate the importance of NFAT for T cell activation, 

because impaired activation of NFAT caused by a defect in calcium influx coincided with 

severe immunodeficiency (Feske, Draeger et al. 2000). 

Mice deficient for single NFAT proteins display only weak changes in immune functions. 

However, elimination of more than one NFAT factor has a strong impact on immune cells 

and their functions. Mice deficient for NFATc1 and NFATc2 in T cells show reduced 

production of the cytokines IL-2, IL-4, IL-5, IL-10, IFN-, GM-CSF and TNF- (Peng, Gerth et 

al. 2001).  

Distinct functions of the NFAT family members in Th1 and Th2 cell differentiation were 

proposed as NFATc2-/- mice display a weak preference to differentiate into Th2 cells, 

probably mediated by prolonged IL-4 production (Hodge, Ranger et al. 1996; Kiani, Viola et 

al. 1997) and reduced IFN- production of Th1 cells (Kiani, Garcia-Cozar et al. 2001). 

NFATc2-/-/c3-/- mice show increased Th2 responses and cytokine production (Rengarajan, 

Tang et al. 2002). NFATc1-/- T cells are characterized by a block of IL-4 production and 

decreased titers of IgE and IgD (Ranger, Hodge et al. 1998). These data indicate that 

NFATc1 promotes Th2 differentiation and NFATc2 and NFATc3 give rise to Th1 

differentiation. On the contrary, overexpression of constitutively active NFATc1 as well as 

NFATc2 in Th1 and Th2 cells induces transcription of Th1 and Th2 cytokines to the same 

extent (Monticelli and Rao 2002; Porter and Clipstone 2002). NFATc2 binds to the IL-4 and 

IFN- promoter in activated Th1 and Th2 cells (Avni, Lee et al. 2002). These data contradict 

the effects seen in NFATc1-/- and NFATc2-/- mice. Thus, NFATc1 and NFATc2 could serve 

redundant functions in T cell differentiation without being exclusively restricted to the Th1 or 

Th2 branch. 

3.4 Fyn 

3.4.1 Fyn, a member of the Src family of tyrosine kinases 

Fyn belongs to the family of Src kinases (Resh 1998), which consists of nine members in 

mammals: Fyn, Src, Fgr, Yes, Lck, Hck, Blk, Lyn and Frk. Fyn is ubiquitously expressed and 

FynT expression is restricted to hematopoietic cells. FynT harbors an alternatively spliced 

variant of exon 7, which codes for a part of the kinase domain (Cooke and Perlmutter 1989). 
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3.4.2 Domain structure of Fyn 

Fyn is a 59 kDa protein with a domain organization typical for Src kinases and harbors the 

following domains: attachment sites for ligation of saturated fatty acids at the N-terminus, a 

unique region, a Src-homology 3 (SH3) domain, a Src-homology 2 (SH2) domain, a tyrosine 

kinase domain, also termed SH1 domain, and a negative regulatory domain at the C-

terminus (Boggon and Eck 2004) (see Figure 3.6). 

Unique SH3 SH2 Kinase

Tyr-417 Tyr-528Type II helix

activatory inhibitory

 

Figure 3.6 Domain structure of Fyn 
A myristyl residue bound to a fatty acid attachment site at the N-terminus of the molecule is indicated 
by a black zick-zack line. The unique region, SH3 domain, SH2 domain and the kinase domain are 
represented by colored boxes. The linker region between the SH2 domain and the kinase domain, 
which constitutes a polyproline type 2 helix, is indicated. The pink rectangle in the kinase domain 
represents the activation loop (A-loop) with the activatory tyrosine 417. The inhibitory tyrosine 528 
next to the C-terminus is also indicated (modified after: Boggon and Eck 2004). 
 
N-terminal fatty acid attachment 

A glycine residue at position 2 directly behind the start methionine is present in all Src 

kinases. The methionine residue is cut off and myristate is attached to glycine during 

translation, a hydrophobic residue which enables Src kinases to attach to membranes 

(Johnson, Bhatnagar et al. 1994). In addition, Fyn is reversibly palmitoylated at cysteine 3 

and cysteine 6 (Koegl, Zlatkine et al. 1994). 

Unique region 

The function of the unique domain of Fyn is not known. The unique domain of Lck mediates 

its interaction with CD4 and CD8 and thus influences its cellular localization (Turner, Brodsky 

et al. 1990). 

SH3 domain and SH2 domain 

SH domains of Fyn contribute to the regulation of its activity by mediating interactions with 

other binding partners and within the molecule. SH3 domains bind to proline-rich proteins, 

preferentially to PXXP motifs. The SH3 domain of Fyn can associate with the proline-

independent motif PKXXYXXY of the adapter protein Src kinase-associated phosphoprotein 

of 55 kDa (SKAP55) (Kang, Freund et al. 2000). The activity of Fyn is also regulated by 

binding of its SH3 domain to the SLAM-associated protein (SAP) (Chan, Lanyi et al. 2003; 

Latour, Roncagalli et al. 2003). The SH3 domain of Fyn mediates an intramolecular 

interaction with the linker region between the SH2 and kinase domains, contributing to Fyn 
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inactivation. The structure of SH2 domains is characterized by two pockets. One pocket 

binds phosphorylated tyrosines and the other typically mounts hydrophobic residues (Eck, 

Shoelson et al. 1993; Waksman, Shoelson et al. 1993). The SH2 domain of Fyn binds to 

phosphorylated tyrosine 528 localized at the C-terminus of Fyn, causing catalytic inactivation. 

Tyrosine kinase domain 

The bilobal structure of the kinase domain is a characteristic feature of all serine/threonine 

and tyrosine kinases and also shared by Fyn. (Knighton, Zheng et al. 1991). The small N-

terminal lobe is formed by one -helix and five -strands, whereas the large C-terminal lobe, 

which harbors the activation loop (A-loop) with the tyrosine for activatory phosphorylation, is 

mainly constituted by -helices. The transfer of the phosphate group to the substrate takes 

place in the groove between these two lobes. 

3.4.3 Regulation of Fyn activity 

Fyn kinase activity is regulated by conformational changes modulated by binding of ligands 

to the SH3 and SH2 domains and by the phosphorylation status of Y417 (mouse FynT) in the 

tyrosine kinase domain and of Y528 (mouse FynT). The C-terminal Y528 of Fyn is 

phosphorylated by the C-terminal src kinase (Csk) and then inhibits Fyn activity (Takeuchi, 

Kuramochi et al. 1993) by intramolecular binding to the SH2 domain of Fyn causing an 

inactive conformation (Sicheri and Kuriyan 1997). Intramolecular interactions between the 

SH3 domain and the polyproline type II helix positioned in the linker region between the SH2 

and kinase domains of Fyn cause further stabilization of the inactive conformation. Tyrosine 

417 in the activation loop of the catalytic domain of Fyn enhances kinase activity when 

phosphorylated and thereby acts as an activatory tyrosine (see Figure 3.7). 

In the unphosphorylated state the activation loop is in an -helical conformation, which 

occupies the catalytic cleft and thereby inhibits the kinase. Activation of Fyn leads to opening 

of the kinase domain. This is achieved by changing the position of the A-loop in a way that 

the activatory tyrosine 417 can undergo autophosphorylation. The phosphorylated A-loop 

stabilizes the catalytic cleft and thereby facilitates the activity of Fyn (Palacios and Weiss 

2004; Salmond, Filby et al. 2009). Src phosphorylation at Y215 in its SH2 domain after cell 

stimulation with platelet-derived growth factor (PDGF) or epidermal growth factor (EGF) is 

associated with an increase in the kinase activity of Src (Stover, Furet et al. 1996; 

Vadlamudi, Sahin et al. 2003). Y215 of Fyn was found to be hyperphosphorylated in anergic 

human T cells in association with enhanced Y529 phosphorylation giving rise to a 

hyperactive conformation of Fyn (Smida, Posevitz-Fejfar et al. 2007). 
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Figure 3.7 Model for regulation of Fyn activity 
Phosphorylation of Y528 of Fyn mediated by Csk induces an inactive, closed conformation of Fyn. 
pY528 interacts with the SH2 domain of Fyn and the linker region between the SH2 and the kinase 
domains forms contact with the SH3 domain. Dephosphorylation of the inhibitory pY528 by CD45 
results in an active, open conformation of Fyn. Binding of proteins to the SH3 domain promotes the 
active conformation of Fyn and autophosphorylation at Y417 enhances kinase activity. Substrates of 
Fyn are listed on the right (modified after: Salmond, Filby et al. 2009). 

 

Fyn is dephosphorylated at the inhibitory Y528 by the hematopoietic-specific tyrosine 

phosphatase CD45, which leads to Fyn activation (Mustelin, Pessa-Morikawa et al. 1992; 

Hermiston, Xu et al. 2003). Correspondingly, Fyn is hyperphosphorylated at Y528 in CD45-

deficient T cell lines, which display a strong reduction in tyrosine phosphorylation after TCR 

stimulation (Ostergaard, Shackelford et al. 1989; Koretzky, Picus et al. 1991; Stone, Conroy 

et al. 1997). A proline-enriched protein tyrosine phosphatase (PEP) is associated with the 

SH3 domain of Csk (Cloutier and Veillette 1996) and PEP causes dephosphorylation of the 

activatory Y417 of FynT in transfected Cos-1 cells (Cloutier and Veillette 1999). PEP also 

reduces the phosphorylation of the activatory Y394 in the kinase domain of Lck in transfected 

JCam1.6 cells stimulated with CD3 Ab (Gjorloff-Wingren, Saxena et al. 1999). Receptor 

protein tyrosine phosphatase  (PTP deficiency in thymocytes results in increased 

phosphorylation of Fyn at the inhibitory Y528 and the activatory Y417, indicating that PTP 

might be responsible for dephosphorylation of these tyrosines. Furthermore, PTP deficiency 

caused Fyn hyperactivity (Maksumova, Le et al. 2005). 

Binding of Fyn to the protein Uncoordinated 119 (Unc119) or SAP was also shown to cause 

increased Fyn activity (Gorska, Stafford et al. 2004; Simarro, Lanyi et al. 2004). Fyn and Lck 

associate in lipid rafts (Filipp, Moemeni et al. 2008) and Lck is necessary for Fyn activation in 

lipid rafts (Filipp, Zhang et al. 2003). These data indicate that Lck could also serve a function 

in the regulation of Fyn activity. 
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The localization of Csk is crucial for Fyn activity, because Csk phosphorylates the inhibitory 

Y528 causing reduced Fyn activity (Okada, Nada et al. 1991). In resting T cells, Csk is 

positioned in close proximity to Fyn by the transmembrane adapter protein phosphoprotein 

associated with glycosphingolipid-enriched microdomains (PAG) (Brdicka, Pavlistova et al. 

2000; Kawabuchi, Satomi et al. 2000). Fyn was shown to phosphorylate PAG at Y314 

(Yasuda, Nagafuku et al. 2002; Filby, Seddon et al. 2007) causing increased binding of Csk 

and thus subsequent inactivation of Fyn. After TCR stimulation, PAG is dephosphorylated at 

Y314 causing dissociation of Csk and thus results in increased Src kinase activity 

(Torgersen, Vang et al. 2001; Davidson, Bakinowski et al. 2003). 

3.4.4 Binding partners and substrates of Fyn 

Fyn interferes with lymphocyte signaling on many levels. Fyn is associated with the 

intracellular part of the TCR, although this interaction is of low stoichiometry (Samelson, 

Phillips et al. 1990; Timson Gauen, Kong et al. 1992). Since Fyn is the kinase 

phosphorylating PAG at Y314, elimination of Fyn in T cells abolishes Csk recruitment to PAG 

and thus decreases phosphorylation of the inhibitory Y505 of Lck. These effects are 

associated with enhanced proliferation and cytokine production (Filby, Seddon et al. 2007). 

Fyn associates with PI3-K (Prasad, Janssen et al. 1993) and phosphorylates CD28 (Raab, 

Cai et al. 1995). Other targets of Fyn are the casitas B-lineage lymphoma proto-oncogene 

(Cbl) (Tsygankov, Mahajan et al. 1996; Elly, Witte et al. 1999; Hunter, Burton et al. 1999) and 

the guanine nucleotide exchange factor (GEF) Vav (Huang, Tilly et al. 2000). An association 

of Fyn with ZAP-70 was detected in a murine hybridoma cell line and transfected COS cells 

(Fusaki, Matsuda et al. 1996). Furthermore, TCR stimulation enhances tyrosine 

phosphorylation of the focal adhesion kinase Pyk2 in Jurkat cells, which is critically 

dependent on Fyn activity (Qian, Lev et al. 1997). Fyn is also involved in signal transduction 

initiated by the signaling lymphocyte activation molecule (SLAM) co-receptor. Fyn associates 

with the adapter protein SAP, which increases Fyn activity (Simarro, Lanyi et al. 2004) and 

recruits Fyn to SLAM (Latour, Gish et al. 2001; Chan, Lanyi et al. 2003). Absence or 

deficiency of SAP is associated with X-linked lymphoproliferative syndrome (XLP) (Coffey, 

Brooksbank et al. 1998; Nichols, Harkin et al. 1998; Sayos, Wu et al. 1998). Interactions of 

Fyn with CD2, the IL-2 receptor and the cell death protein Fas were also reported (Beyers, 

Spruyt et al. 1992; Kobayashi, Kono et al. 1993; Atkinson, Ostergaard et al. 1996). 

Fyn also influences the organization of the cytoskeleton. The Wiskott-Aldrich syndrome 

protein (WASP), which has an impact on actin polymerization in T cells by regulation of the 

Arp2/3 complex, was shown to be a phosphorylation target of Fyn (Badour, Zhang et al. 

2004). Fyn influences the reorganization of the tubulin cytoskeleton, as T cells from Fyn-/- 

mice do not rearrange their cytoskeleton after stimulation with CD3 Ab coated beads  
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(Martin-Cofreces, Sancho et al. 2006). Furthermore, an association of Fyn with 

phosphorylated -tubulin was detected in T cells (Marie-Cardine, Kirchgessner et al. 1995). 

Molecules crucial for T cell adhesion are also associated with Fyn like the adapter protein 

SKAP55 (Marie-Cardine, Bruyns et al. 1997) and the adhesion and degranulation promoting 

adapter protein (ADAP) (da Silva, Li et al. 1997), which constitutively associate with each 

other in T cells (Liu, Kang et al. 1998; Marie-Cardine, Hendricks-Taylor et al. 1998). ADAP, 

also termed SLP76 associated protein (SLAP) or Fyn binding protein (FYB), is 

phosphorylated by Fyn (Geng, Raab et al. 1999). ADAP and SKAP55 are essential for 

integrin clustering and T cell adhesion (Griffiths, Krawczyk et al. 2001; Peterson, Woods et 

al. 2001; Simeoni, Kliche et al. 2004; Jo, Wang et al. 2005; Kliche, Breitling et al. 2006). 

Interestingly, Fyn phosphorylates the phosphatidylinositol 3-kinase enhancer-activating Akt 

(PIKE-A) at Y682 and Y774, thereby inhibiting apoptotic cleavage of PIKE-A. The kinase 

activity of PKB is enhanced by binding of PIKE-A, and apoptosis is reduced via this 

mechanism (Tang, Feng et al. 2007). Fyn and Src homology 2 domain containing 

transforming protein (Shc) co-immunoprecipitate (Wary, Mariotti et al. 1998), and the protein 

Src associated in mitosis 68 kDa (Sam68) was co-immunoprecipitated with the SH2 and SH3 

domains of Fyn (Fusaki, Iwamatsu et al. 1997). In mast cells, GRB2-associated binding 

protein 2 (Gab2) associated with Fyn (Parravicini, Gadina et al. 2002) and Histone H3 was 

found to be phosphorylated by Fyn at serine 10 (He, Cho et al. 2005). 

Thus, Fyn has various important physiological functions depending on its binding partners 

and substrates. 

3.4.5 Src kinases in T cell activation 

The phosphorylation of tyrosine residues within the ITAMs of the CD3 and  chains, which 

are among the first detectable biochemical events after TCR stimulation, are performed by 

Fyn and Lck. Analysis of a Lck-deficient human Jurkat T cell line, J.CaM.1, revealed reduced 

tyrosine phosphorylation after TCR stimulation (Straus and Weiss 1992). Lck-/- mice display a 

severe block in T cell development and Lck-/- thymocytes show a lack in phosphorylation of 

the ITAMs of the TCR -chains resulting in reduced recruitment and phosphorylation of ZAP-

70 (van Oers, Killeen et al. 1996). Lck function in peripheral T cells was analyzed by an 

inducible Lck transgenic mouse system on Lck-/- background (Legname, Seddon et al. 2000). 

Lack of Lck expression caused reduced ZAP-70 phosphorylation and activation after 

CD3+CD4 Ab stimulation, but slight ZAP-70 activity was still present in Lck-/- cells and some 

LAT phosphorylation was detectable as well. Only elimination of Fyn in addition to Lck 

caused complete abrogation of LAT phosphorylation. However, Fyn was not able to 

compensate the loss of Lck function concerning activation of PLC1 and induction of calcium 
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flux. Thus, Fyn has an impact on proximal TCR signaling, but seems to play a minor role 

than Lck. On the other hand, phosphorylation of Erk after CD3 Ab and CD3+CD4 Ab 

stimulation proceeded in the absence of Lck and was only abolished when both Lck and Fyn 

were deleted. Thus, Fyn can induce phosphorylation of Erk independently of Lck (Lovatt, 

Filby et al. 2006). 

Fyn-/- mice do not show severe abnormalities in thymic development with the exception of NK 

cells (Eberl, Lowin-Kropf et al. 1999). The activation of peripheral Fyn-/- T cells was reduced 

after CD3 Ab stimulation, and activation via antigen presenting cells was not impaired. A 

strong proliferative defect was found in Fyn-/- thymocytes after stimulation with CD3 Ab and 

PMA (Appleby, Gross et al. 1992; Stein, Lee et al. 1992; Sugie, Jeon et al. 2004). In this 

context, Fyn was shown to be important for proliferation induced by low affinity TCR ligands 

(Utting, Teh et al. 1998) and T cell stimulation with low affinity antagonistic ligands 

preferentially led to activation of Fyn (Huang, Tilly et al. 2000). 

Fyn and Lck are not solely positive regulators of TCR signaling, but they are involved in 

negative regulation of TCR signaling as well. Fyn-/- mice display reduced tyrosine 

phosphorylation of PAG (Yasuda, Nagafuku et al. 2002), especially at Y314 (Filby, Seddon et 

al. 2007). Because phosphorylated Y314 of PAG is the anchor for binding of Csk, the amount 

of Csk bound to PAG was reduced in the absence of Fyn and, thereby, phosphorylation of 

the inhibitory Y505 of Lck by Csk was impaired. However, the physiological relevance of 

reduced PAG function in Fyn-/- cells remains questionable, because T cells from PAG-/- mice 

display normal TCR signaling (Dobenecker, Schmedt et al. 2005; Xu, Huo et al. 2005), 

possibly by the existence of additional mechanisms for the recruitment of Csk into the 

proximity of Src kinases. 

Lck and Fyn also seem to be involved in the activation of the PI3-K pathway after TCR 

stimulation, but the exact mechanisms are not unraveled yet. Fyn associated with PI3-K in 

the T-lymphoblastoid cell line HPB-ALL (Prasad, Janssen et al. 1993) and both kinases 

increase the interaction of PI3-K and GRB2 with CD28 by phosphorylation of CD28 at Y191 

(Raab, Cai et al. 1995). However, Y191 of CD28 seems to be dispensable for CD28/PI3-K 

induced PIP3 generation at the immunological synapse (Garcon, Patton et al. 2008). 
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3.5 Anergy 

3.5.1 Definition of anergy 

Anergy is defined as a hyporesponsive state of T cells. Anergic T cells display impaired 

proliferation and cytokine production after exposure to the cognate antigen and especially a 

prominent block in IL-2 production (Jenkins, Pardoll et al. 1987). Anergy persists for a long 

time after induction and is not an early step on the way to cell death (Quill and Schwartz 

1987). After the first description of anergy in mouse and human CD4+ T cell clones (Lamb, 

Skidmore et al. 1983; Jenkins and Schwartz 1987), the term anergic has been used to 

describe different unresponsive states in vitro and in vivo. For instance, regulatory T cells 

(Tregs) were shown to display a hyporesponsive phenotype similar to anergic T cells 

(Hickman, Yang et al. 2006). 

Clonal anergy is a growth arrest which is associated with markedly reduced production of 

specific cytokines (IL-2 and IL-3) after TCR stimulation. Antigen is not required to maintain 

this state and it can be abrogated by IL-2 (Beverly, Kang et al. 1992; Schwartz 1996) or 

stimulation with phorbol esters and ionomycin (Fields, Gajewski et al. 1996; Li, Whaley et al. 

1996). Clonal anergy is characterized by a block in Ras activation and thus inactivation of the 

Ras/MEK/Erk signaling cascade (Fields, Gajewski et al. 1996; Li, Whaley et al. 1996; 

Chiodetti, Choi et al. 2006; Smida, Posevitz-Fejfar et al. 2007). 

Adaptive tolerance (in vivo tolerance) is associated with decreased production of all 

cytokines driven by TCR-stimulation and antigen persistence is obligatory to maintain this 

state. Furthermore, it is not reversed by treatment with IL-2 (Tanchot, Barber et al. 2001; 

Schwartz 2003; Singh and Schwartz 2003). Adaptive tolerance is characterized by a block in 

TCR signaling at the level of LAT phosphorylation by ZAP-70 (Chiodetti, Choi et al. 2006). 

This proximal block in TCR signaling causes downmodulation of the NFAT and NFB 

pathways but results in weak reduction of Erk phosphorylation. 

3.5.2 In vitro induction of anergy 

Initially, anergy was induced by triggering the TCR with agonist peptides presented by MHC 

molecules without additional co-stimulation via antigen presenting cells (APCs) (Quill and 

Schwartz 1987; Boussiotis, Freeman et al. 1993) or by partial agonist peptides with 

additional co-stimulation mediated by APCs (Sloan-Lancaster, Evavold et al. 1993). 

Furthermore, other methods can be used such as TCR cross-linking with plate-bound CD3 

Ab (Jenkins, Chen et al. 1990), self-presentation of agonist peptides by T cells possessing 

MHC II molecules (Lamb, Skidmore et al. 1983) and incubation of T cells with ionomycin 

(Macian, Garcia-Cozar et al. 2002; Heissmeyer, Macian et al. 2004). Application of CTLA4-Ig 
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to block CD28 co-stimulation in combination with soluble CD3 Ab and splenic APCs also 

induces anergy (King, Buckler et al. 2008). 

3.5.3 In vivo induction of anergy 

Initially, in vivo induction of anergy was performed by injection of superantigens (Rellahan, 

Jones et al. 1990). Additionally, intravenous injection of CD3 Ab into mice resulted in 

unresponsiveness of T cells (Hirsch, Eckhaus et al. 1988; Ben-Amor, Leite-De-Moraes et al. 

1996). Antigen-specific anergy models were established with TCR tg T cells triggered by 

intravenous injection of the peptide specific for the tg TCR (Kearney, Pape et al. 1994; 

Frauwirth, Alegre et al. 2001) or TCR tg T cells were transferred into T cell depleted mice 

expressing the cognate antigen (Rocha and von Boehmer 1991; Lanoue, Bona et al. 1997; 

Adler, Huang et al. 2000; Tanchot, Barber et al. 2001). In oral tolerance models, TCR tg mice 

were fed with high concentrations of the cognate antigen (Asai, Hachimura et al. 2002). 

Importantly, the model systems do not only differ in the procedure of anergy induction but 

also in their biochemical features. The experimental work done to analyze anergy resulted in 

the generation of the two-signal model of T cell activation. Signaling through the antigen 

receptor alone (signal 1) causes anergy, whereas signal 1 in combination with appropriate 

co-stimulation (signal 2) induces activation of T cells. Programmed death 1 (PD-1) is a 

receptor molecule with inhibitory function, which belongs to the CD28 superfamily and is 

expressed on T cells after antigen stimulation (Okazaki and Honjo 2006). PD-L1 and PD-L2 

are ligands of PD-1 and PD-1 interaction with PD-L1 is important for the induction of anergy 

in lymphoid organs (Tsushima, Yao et al. 2007). Tissue-resident signals generated by PD-L1 

contribute to the maintenance of tolerance in the pancreas (Martin-Orozco, Wang et al. 

2006). Thus, not only the dialogue between a T cell and the antigen presenting cell is 

important for induction or maintenance of an anergic phenotype, but interactions of T cells 

with other cell types are also important. 

3.5.4 Fyn and anergy 

Fyn is involved in different anergy models. When an allogen specific human T cell clone was 

co-cultured with cells presenting the cognate antigen in the absence of CD80 expression 

enhanced Fyn activity was detected in the anergized cells (Boussiotis, Freeman et al. 1997). 

In another study, primary human T cells were anergized by stimulation with plate-bound CD3 

Ab and enhanced Fyn activity in anergic cells was associated with hyperphosphorylation of 

PAG at Y317 leading to enhanced Csk recruitment (Smida, Posevitz-Fejfar et al. 2007). 

Furthermore, anergy in mouse Th1 cells induced by stimulation with plate-bound CD3 Ab 

coincided with decreased expression of Lck and increased levels of Fyn. Consistent with the 

differences in protein expression, autophosphorylation activity of Lck was reduced, whereas 

autophosphorylation activity of Fyn was enhanced (Quill, Riley et al. 1992). An increase in 

29 



3. Introduction 

the expression level of Fyn was associated with anergy in CD4-CD8- T cells from TCR tg 

mice (Utting, Teh et al. 2000), and deletion of Fyn recovered the T cell proliferation defect in 

this anergy system (Utting, Priatel et al. 2001). Increased FynT association with PAG was 

found in T cells, which were anergized in vitro by ionomycin. Tg expression of a PAG 

molecule able to interact with FynT but not with Csk, because of elimination of the Csk 

binding site at Y314, caused enhanced calcium fluxes after TCR stimulation and increased 

anergy (Davidson, Schraven et al. 2007). Increased Fyn expression was also detected in 

several other anergy systems (Gajewski, Qian et al. 1994; Gajewski, Fields et al. 1995; 

Welke and Zavazava 2002; Chiodetti, Choi et al. 2006). 

Since CsA has the potential to inhibit anergy induction, experiments were performend to 

analyze whether calcium signaling alone is sufficient to induce anergy (Jenkins, Pardoll et al. 

1987). Overnight treatment of T cells with ionomycin induced an unresponsive state, and 

NFAT activation without AP-1 interaction was crucial for this anergy, which was associated 

with a specific gene expression pattern (Macian, Garcia-Cozar et al. 2002). One of the genes 

induced was diacylglycerol kinase- (DGK- which catalyzes the degradation of DAG to 

phosphatidic acid (PA) and leads to reduced activation of Ras (Zha, Marks et al. 2006). 

Ionomyin induced anergy is also associated with increased expression of the E3 ubiquitin 

ligases Grail, Cbl-b and Itch and the ubiquitin binding protein Tsg101. Stimulation of anergic 

cells resulted in the localization of Itch and Nedd4, which is related to Itch, to the plasma 

membrane and in the degradation of PKCand PLC1. Anergized cells also displayed a 

decreased calcium flux after TCR stimulation and an impaired stability of immunological 

synapses (Heissmeyer, Macian et al. 2004). 
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3.6 Aim of the study 

Previous studies showed that myrPKB affects thymocyte selection, proliferation and survival 

of peripheral T cells. Although myrPKB tg T cells are hyperproliferative and produce more 

cytokines, they display a strong reduction in nuclear levels of the transcription factor NFAT. 

Interaction of PKB with NFAT was detected in vivo by co-immunoprecipitation experiments. 

These data suggest that NFAT could be a direct target of PKB. 

Elevated PKB signals in thymocytes also affected early TCR signaling events leading to 

enhanced Lck and Erk activity. Since both Src kinases, Lck and Fyn, initiate proximal TCR 

signaling and after TCR stimulation co-localize in lipid rafts, as does activated or myrPKB, 

the hypothesis arose that myrPKB could modify Lck activity either directly by binding and 

phosphorylation or by indirect mechanisms like modifying Fyn or Csk activity, the kinase 

negatively regulating Lck/Fyn activity. 

 

Based on above results, the aims of the thesis were: 

 

1) to characterize the interaction of PKB with NFAT in early T cell development and at 
the molecular level 

 

2) to investigate a possibly novel interaction of PKB with Lck/Fyn or Csk in T cell 
activation. 
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4 Materials and Methods 

4.1 Materials 

4.1.1 Bacteria 

E. coli BL21  

E. coli SURE  

E. coli XL10-Gold QuikChange® Multi Site-Directed 

Mutagenesis Kit Stratagene (# 200514) 

E. coli XL1-Blue QuikChange® Site-Directed Mutagenesis Kit 

Stratagene (# 200518) 

4.1.2 Cell lines 

EL4 murine T lymphoblast cell line 

HEK 293T human embryonic kidney cell line 

4.1.3 Mice 

C57BL/6 mice bred at the animal facility of the Medical 

Faculty of the Otto-von-Guericke University 

human CD2-myrPKB (myrPKB) transgenic 

mice 

bred at the animal facility of the Medical 

Faculty of the Otto-von-Guericke University 

4.1.4 Miscellaneous 

ø 60 x 15 mm cell culture dishes TPP 93060 

1.5 ml reaction tubes Eppendorf 

6 well plates Corning Incorporated (costar® 3516) 

12 well plates Corning Incorporated (costar® 3513) 

15 ml tubes Greiner Bio-One (cat. no.188271) 

75 cm2 cell culture flasks Corning Incorporated (cat. no.: #430641) 

175 cm2 cell culture flasks Corning Incorporated (cat. no.: #431080) 

50 ml tubes Greiner Bio-One (cat. no. 227261) 

96 well plates TPP 92096 

Amersham HyperfilmTM ECL (X-RAY FILM) GE Healthcare (prod code: 28906837) 

Cell scraper Corning Incorporated (costar® 3010) 

Cell strainer 100 m Nylon BD FalconTM BD Biosciences (REF 352360) 
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FUJI MEDICAL X-RAY FILM 

100 NIF 18 x 24 

A. Hartenstein (N0. RF12) 

Nitrocellulose (HybondTM-C Extra) Amersham Biosciences 

(cat. no.:RPN 303E) 

Pasteur pipettes Roth (art. no.: 4518) 

SORVALL®PA THINWALL TUBE 4,4 ML 

Ultra centrifugation tubes 

Kendro Laboratory Products 

(cat. no.: 03955)  

Syringe filters 0.22 m TPP (99722) 

Tubes for luciferase measurement 

5 ml, 75 x 12 mm ø 

SARSTEDT (No.REF 55.467) 

4.1.5 Instruments 

AutoMacs Miltenyi Biotech 

Balance Kern & Sohn GmbH (Kern 440) 

Cell homogenizer 

DOUNCE TISSUE GRINDER 2 ML 

WHEATON 

Centrifuge 5415D (table centrifuge) Eppendorf 

Centrifuge Micro 200R (table centrifuge) Hettich 

Centrifuge Multifuge 3S-R Heraeus 

CO2 incubator Binder 

Compact incubator Heraeus (Typ B 15) 

Film developing machine CAWO GmbH (CAWOMAT 2000 IR) 

Flake ice machine Thermo Electron Corporation 

Gel documentation station Herolab 

Gel dryer BIO RAD (Model 583) 

Liquid scintillator 1450 Microbeta Wallac Perkin Elmer 

Luminometer Berthold (Lumat LB 9507) 

Magnetic stirrer IKA®-Labortechnik (MSH) 

Microscope Axioskop 2 plus  Zeiss 

Microwave AEG (MICROMAT) 

Mini Trans-Blot® Electrophoretic Transfer 

Cell 

BIO RAD 

Mini-PROTEAN® 3 Cell BIO RAD 

PCR machine PTC-200 Peltier Thermal 

Cycler 

MJ RESEARCH 

PCR machine T3000 Thermocycler Biometra 
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PHD cell harvester Inotech AG 

pH meter Ino lab 

Precision balance OHAUS 

RC-5 Superspeed Refrigerated Centrifuge Kendro Laboratory Products 

Rotor GSA (r: 14.56 cm) Kendro Laboratory Products 

Rotor SORVALL® TH-660 (r: 12.15 cm) Kendro Laboratory Products 

Safety cabinet Heraeus (Hera Safe HS 12) 

Shaker Heidolph Duomax 1030 

Shaking incubator GFL (3032) 

Shaking water bath GFL 1083 

Spectrophotometer Ultrospec 3000 Pharmacia Biotech 

Steam sterilizer Thermo Scientific (VARIOKLAV®) 

Sub-Cell® GT Agarose Gel Electrophoresis 

System 

BIO RAD 

Thermomixer Eppendorf (5436) 

Transilluminator Messinstrumentebau GmbH Erlangen 

Germany 

Ultracentrifuge Combi Sorvall® Du Pont Company (OTD-COMBI) 

UP50H Ultrasonic Processor (sonifier) Hielscher Ultrasound Technology 

Vortexer IKA®-Labortechnik (VF2) 

Water de-ionizer TKA-LAB (Typ HP 5UF) 

4.1.6 Chemicals and reagents 

[-32P]-ATP GE Healthcare (PB 10168-500UCI) 

Perkin Elmer (prod. no.: NEG002A500UC)r 

[3H]-thymidine MP Biomedicals Europe 

100 bp DNA ladder Invitrogen (cat. no.: 15628-019) 

2-[N-Morpholino] ethanesulfonic acid (MES) SIGMA (M-3023) 

2-Mercaptoethanol SIGMA (M3148) 

2-Mercaptoethanol 50 MM GIBCO (cat. no.: 31350-010) 

5 x Green Go Taq® Flexi Buffer Promega (cat. no.: M891A) 

Acetic acid J.T. Baker (cat. no.: 6052) 

Acetone p. a. 8002 J.T. Baker  

Adenosine 5’-Triphosphate (ATP) SIGMA (A-2383) 

Agarose NEEO Ultra-Quality Roth (art. no.: 2267.4) 

Akt kinase Cell Signaling (cat. no.: #7500) 
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Ammoniumperoxodisulfate (APS) Roth (art. no.: 9592.3) 

Ampicillin Roth (art. no.: K029.1) 

-glycerophosphate SIGMA (G-6251) 

Brij 58 (Surfact-Amps® 58) Pierce (prod. # 28336) 

Brilliant Blue R250 Roth (art. no.: 3862.1) 

BSA (Albumine Fraction V) Roth (art. no.: 8076.2) 

CaCl2 Roth (art. no.: A119.1) 

Cholera Toxin B Subunit, Peroxidase 
from Vibrio cholerae 

SIGMA (C4672) 

Deoxycholate SIGMA (D-2510) 

D(+)-Glucose Roth (art. no.: X997.1) 

Dimethylsulfoxide (DMSO) Aldrich (cat no.: 276855) 

Dithiothreitol (DTT) SIGMA (D-9779) 

D-Luciferin SIGMA (L9504) 

D(+)-Saccharose Roth (art. no.: 4621.1) 

Enolase from rabbit muscle SIGMA (#E0379) 

Ethanol (drained) Pharmacy University Hospital Magdeburg 

Ethidium bromide solution 1% (10 mg/ml) Roth (art. no.: 2218.1) 

Ethylenediaminetetraacetic acid (EDTA) SIGMA (E6758) 

Ethylenediaminetetraacetic acid (EDTA) 

[titration complex 3] 

Roth (art. no.: 2218.1) 

FuGENE6 Transfection Reagent Roche (cat. no.: 11814443001) 

GIBCOTM MEM Non-Essential Amino Acids 

Solution 10 mM (100x) 

Invitrogen (cat. no.: 11140076) 

Glutathione SepharoseTM4B GE Healthcare (cat. no.:17-0756-01) 

Glycerol Pharmacy University Hospital Magdeburg 

Glycine Roth (art. no.: T873.2) 

Go Taq® Flexi DNA Polymerase Promega (cat. no.: M8305) 

HEPES Roth (art. no.: 9105.4) 

Hydrochloric acid (HCl) 3% p.a. Roth (art. no.: 4625.1) 

Ionomycin calcium salt from Streptomyces 

conglobatus 

SIGMA (I0634) 

Isopropanol Pharmacy University Hospital Magdeburg 

Isopropyl--D-thiogalactopyranoside (IPTG) Fermentas (#R0392) 

Kaliumdihydrogenphosphate (KH2PO4) Roth (art. no.: 3904.2) 

Kanamycin sulfate Roth (art. no.: T832.1) 

LB Agar (Lennox) Roth (art. no.: X965.1) 
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LB Broth (Lennox) International Diagnostics Group plc (idg) 

L-Glutamine 200 mM (100 x) GIBCO (25030) 

L-Glutathione reduced SIGMA (G4251) 

Magnesium acetate [Mg (OAc)2] SIGMA (M-5661) 

Manganese chloride (MnCl2) SIGMA (M-8530) 

Methanol J.T. Baker (cat. no.: 8045) 

Milk powder Roth (art. no.: T145.2) 

Murine IL-2 BIOCHROM AG (#W1505.960.005) 

n-Dodecyl--D-maltoside (LM) Calbiochem (cat. no.: 324355) 

NP-40 (IGEPAL Ca 630) SIGMA (I-3021) 

Page RulerTM Prestained Protein Ladder Fermentas (#SMO671) 

PD98059 (MEK inhibitor) Calbiochem (cat. no.: 513000) 

Penicillin-Streptomycin Invitrogen (cat. no.: 15140-122) 

Phenylmethylsulfonylfluoride (PMSF) Roth (art. no.: 6367.2) 

Phorbol 12-myristate 13-acetate (PMA) SIGMA (P8139) 

Polyethylenimine (PEI) Aldrich (408727) 

Ponceau S SIGMA-ALDRICH (P3504) 

PP2 Calbiochem (cat. no.: 529573) 

Protein G SepharoseTM 4 Fast Flow GE Healthcare (cat. no.: 17-0618-01) 

Proteinase inhibitor mix complete Roche (cat. no.: 11697498001)  

Proteinase K Roth (art. no.: 7528.1) 

Roti®- Load 1 (4x) Roth (art. no.: K929.1) 

Rotiphorese® Gel 40 37,5:1 (acrylamide N, N 

methylenebisacrylamide) 

Roth (art. no.: T802.1) 

Rotisol Roth (art. no.:7917.1) 

Sodium acetate  Roth (art. no.:6773.1) 

Sodium azide Roth (art. no.: K305.1) 

Sodium chloride (NaCl) Roth (art. no.: 3957.1) 

Sodium dodecyl sulfate (SDS) SIGMA (L-4390) 

Sodium fluoride (NaF) Roth (art. no.: P756.1) 

Sodium orthovanadate (Na3VO4) SIGMA (S6508) 

Sodium pyrophosphate  SIGMA (S-6422) 

Sodium pyruvate Roth (art. no.: 8793.2) 

Streptavidin Dianova (cat no.: 016-000-084) 

Streptavidin MicroBeads Miltenyi Biotech (# 130-048-101) 
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Super Signal® West Pico Chemiluminescent 

Substrate (ECL substrate) 

Thermo SCIENTIFIC (prod # 34077) 

TEMED Roth (art. no.: 2367.3) 

Trichloroacetic acid (TCA) Aldrich (cat. no.: 116114) 

Tris Roth (art. no.: 5429.3) 

TritonX100 Roth (art no.: 3051.2) 

Trypan blue Roth (art. no.: CN76.1) 

Tween®20 Roth (art. no.: 9127.1) 

UO126 (MEK inhibitor) Calbiochem (cat. no.: 662005) 

4.1.7 Kits 

BCATM Protein Assay Kit Thermo SCIENTIFIC (prod #23225) 

Dual-Luciferase® Reporter Assay System Promega (E1910) 

HiSpeed Plasmid Maxi Kit Qiagen (cat no.: 12663) 

peq GOLD Plasmid Miniprep Kit I PEQLAB (order no.: 12-6942-02) 

Quik Change® Multi Site-Directed 

Mutagenesis Kit 

Stratagene (cat. no.: 200514) 

4.1.8 Vectors 

pGEX-3X Amersham Biosciences (27-4803-01) 

pGEX-4T-1 Amersham Biosciences (27-4580-01) 

4.1.9 Antibodies 

Stimulation 

Biotin-CD4 clone GK1.5 (rat monoclonal) Becton Dickinson (mat. no.: 553728) 

Biotin-CD3 clone 145-2C11 

(hamster monoclonal) 

Becton Dickinson (mat. no.: 553060) 

CD28 clone 37.51 (hamster monoclonal) Becton Dickinson (mat. no.: 553295) 

CD3 clone 145-2C11 (mouse monoclonal) Becton Dickinson (mat. no.: 553058) 

Immunoprecipitation 

Akt1 (2H10) (mouse monoclonal) Cell Signaling (cat. no.: #2967) 

Fyn15 (mouse monoclonal) Santa Cruz (sc-434) 

PAG IG452 (rabbit polyclonal) ImmunoGlobe (cat. no.: # 0062-10) 

Control antibodies for immunoprecipitation 

Rabbit IgG control Ab (rabbit polyclonal) Dianova (code no.: DLN-13121) 

AffiniPure mouse anti-rat IgG (H+L) 

(mouse polyclonal) 

Dianova (code no.: 212-005-168) 
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Western blotting (primary antibodies) 

4G10 (mouse monoclonal) prepared from hybridoma by AG Bommhardt 

Actin (mouse monoclonal) SIGMA (A3853) 

Akt (rabbit polyclonal) Cell Signaling (cat. no.: #9272) 

Csk C-20 (rabbit polyclonal) Santa Cruz (sc-286) 

FLAG (rabbit polyclonal) SIGMA (F7425) 

Fyn01 (mouse monoclonal) provided by Vaclav Horejsi, Prague 

Fyn3 (rabbit polyclonal) Santa Cruz (sc-16) 

PAG IG452 (rabbit polyclonal) ImmunoGlobe (cat. no.: # 0062-10) 

pAkt (Ser473) (rabbit monoclonal) Cell Signaling (cat. no.: #4060) 

pErk Phospho-p44/42 Map Kinase 

(Thr202/Tyr204) (rabbit polyclonal) 

Cell Signaling (cat. no.: #9101) 

pY314 PAG (rabbit polyclonal) Rabbit anti-phospho-PAG (pY314) was 
generated by immunizing rabbits with the 
peptide KEISAMpYSS 
(gift from Dr. J. Lindquist). 

Src pY418 (rabbit polyclonal) BIOSOURCE (cat. no.: 44-660G) 

Western blotting (secondary antibodies) 

Peroxidase-conjugated AffiniPure Goat Anti-

Mouse IgG (H+L) 

Dianova (code no.: 115-035-146) 

Peroxidase-conjugated AffiniPure Goat Anti-

Rabbit IgG (H+L) 

Dianova (code no.: 111-035-003) 

4.1.10 Solutions, buffers and media 

Dulbecco’s MEM BIOCHROM AG (cat. no.: FG 0435) 

FCS PAN BIOTECH GmbH 

(cat. no.: 3702-P211312) 

OPTI MEM® 1x GIBCO (31985) 

PBS Dulbecco w/o Ca2+, Mg2+ BIOCHROM AG (cat. no.: L 1825) 

RPMI 1640 medium BIOCHROM AG (cat. no.: FG 1215) 

TBS 137 mM NaCl 

20 mM Tris pH 7.6 

TBST TBS 

0.05% (v/v) Tween®20 

Trypsin/EDTA solution BIOCHROM AG (cat. no.: L2163) 
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4.2 Methods 

4.2.1 Bacterial cell culture 

Liquid culture 

Liquid culture was performed to gain sufficient amounts of bacteria for subsequent plasmid 

isolation or protein expression. Bacteria were cultured in LB medium containing antibiotics for 

selection of clones harboring the plasmid of interest. Ampicillin and kanamycin were used at 

a concentration of 100 g/ml. Bacteria were cultured at 37°C and shaken at 225 rpm. 

LB agar plates 

Plate culture of bacteria was performed to separate single clones. LB Agar was autoclaved 

and 100 g/ml ampicillin or kanamycin was added to the liquid agar before casting into petri 

dishes. Plates were inoculated with liquid bacteria culture and incubated at 37°C. Plates 

carrying single colonies were stored at 4°C. 

4.2.2 DNA isolation and precipitation 

DNA isolation from bacteria was performed using the peq GOLD Plasmid Miniprep Kit I from 

PEQLAB or the HiSpeed Plasmid Maxi Kit from Qiagen according to the manufacturer’s 

instructions. DNA used for transfections was precipitated by the following procedure: 

 addition of ddH2O to a final volume of 500 l 

 addition of 1/10 vol (50 l) 3 M sodium acetate pH 5.2 and 2.5 vol (1375 l) ethanol 

=> mixing by inverting tube 

=> incubation at -20°C (at least 1 h) 

 centrifugation at 18620 g (14000 rpm in a table centrifuge) for 20 min at 4°C 

=> discard supernatant 

 washing of pellet (2 x) 

=> addition of 500 l 70% ethanol 

=> centrifugation at 18620 g for 10 min at 4°C 

=> discard supernatant 

 drying of pellet at RT or at 50°C in a heating block 

 resuspension of dry pellet in ddH2O 

4.2.3 DNA quantification 

The concentration of the purified DNA was measured by spectrophotometry. Nucleic acids 

possess an absorption maximum at 260 nm. An optical density (OD) of 1 indicates a DNA 

concentration of 50 g/ml. The absorption at 280 nm represents contamination by proteins 

and the absorption at 230 nm represents contamination by peptides, aromatic compounds 
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and carbohydrates. Thus, the quotients OD260/OD280 and OD260/OD230 provide information 

concerning the purity of DNA as indicated in Table 4.1. 

Table 4.1 Spectralphotometric analysis of concentration and purity of nucleic acids 

 
OD260=1 

pure DNA 
OD260/OD280  

pure DNA 
OD260/ OD230  

dsDNA 50 µg/ml 1.8 2.2 

 

4.2.4 PCR mutagenesis and DNA sequencing 

Mutagenesis PCRs were performed using the Quik Change® Multi Site-Directed Mutagenesis 

Kit from Stratagene according to the manufacturer’s instructions. PCR primers were 

prepared by APARA BIOSIENCE GmbH (Denzlingen, Germany). Isolation of DNA from 

transformed E. coli XL10-Gold was done with the peq GOLD Plasmid Miniprep Kit I from 

PEQLAB. Mutagenesis was monitored by sequencing the appropriate DNA segments by 

GATC BIOTECH AG (Konstanz, Germany). 

4.2.5 Transformation of bacteria 

Proteins were expressed in E. coli BL21 bacteria optimized for protein expression. 

Transformation of bacteria was performed as follows: 

 thawing of an aliquot (50 l) of competent bacteria on ice 

 addition of DNA and careful mixing 

(E. coli SURE and E. coli XL1-Blue: 50 ng DNA; E. coli BL21: 500-1000 ng DNA) 

 30 min incubation on ice 

 90 sec heat shock at 42°C (E. coli SURE), 

45 sec heat shock at 42°C (E. coli XL1-Blue; E. coli BL21) 

 2 min incubation on ice 

 addition of 1 ml LB medium (sterile and without antibiotics) 

 1 h incubation at 37°C with shaking at 225 rpm 

 plating on LB agar plates with appropriate antibiotic for selection of the plasmid: 

=> 30 l of LB culture 

=> centrifuge rest of culture at 750 g (2800 rpm in a table centrifuge) 

      for 5 min at RT 

=> discard supernatant, carefully resuspend bacteria in 50 l LB and plate 

     (equivalent to 970 l) 
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4.2.6 Bacterial GST-fusion protein expression and harvest via glutathione columns 

Elution buffer: 

50 mM Tris/HCl pH 8.0 

10 mM reduced glutathione 

 

A 5 ml LB culture with ampicillin (100 g/ml) and the appropriate bacterial clone was grown 

overnight. 1/50 vol of this culture was used for inoculation of 100 ml LB containing 50 g/ml 

ampicillin and 20 mM glucose. The culture was incubated at 37°C with shaking at 200 rpm 

until an OD600 of 0.6–0.8 was reached, which indicated entry into the exponential growth 

phase. At this stage, the expression of the GST-fusion protein was induced by adding 1 mM 

IPTG to the culture and 600 l proteinase-inhibitor solution (prepared as recommended by 

the manufacturer Roche) was added, followed by an incubation at 30°C for 2 h with shaking 

at 200 rpm. Thereafter, the culture was transferred into two 50 ml tubes and centrifuged at 

3000 g (3600 rpm in Heraeus Multifuge 3S-R) for 5 min at 4°C. The supernatants were 

discarded and the cell pellets were resuspended in 5 ml PBS 0.1% TritonX100 (v/v). Each 

sample was sonified with a Hielscher UP50H ultrasonic processor (100% amplitude, cycle 1) 

for 3 min, subsequently stored on ice and centrifuged at 16264 g (10000 rpm in RC-5 

Superspeed Refrigerated Centrifuge) for 20 min at 4°C. The supernatants were transferred 

into a 15 ml tube and 500 l washed Glutathione SepharoseTM4B suspension was added. 

The mix was incubated at 4°C with gentle rotation for 1 h or overnight. The GST-fusion 

proteins should bind to the Glutathione SepharoseTM4B during this incubation. 

Glutathione SepharoseTM4B was washed as follows: 2 x 600 l Glutathione SepharoseTM4B 

were transferred into two 1.5 ml reaction tubes and briefly centrifuged at 18620 g (14000 rpm 

in a table centrifuge). The supernatants were discarded and the pellets were washed three 

times with 1 ml PBS 0.1% TritonX100 (v/v). 

After incubation, samples were centrifuged at 380 g (1300 rpm in Heraeus Multifuge 3S-R) 

for 5 min at 4°C and washed three times with 10 ml PBS 0.1% TritonX100 (v/v). After the last 

washing step, the Glutathione SepharoseTM4B with bound GST-fusion proteins was 

resuspended in 1 ml PBS 0.1% TritonX100 (v/v) and transferred into a 1.5 ml reaction tube. 

After a brief centrifugation at 18620 g (14000 rpm in a table centrifuge) at 4°C, the 

supernatant was discarded and the pellet was resuspended in 300 l elution buffer. After 2 

min incubation at RT, the mixture was centrifuged briefly at 18620 g at RT, the supernatant 

was collected and after addition of 1/50 vol proteinase-inhibitor solution stored at -20°C. This 

procedure was repeated to obtain a second fraction of eluted proteins. 
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4.2.7 In vitro kinase assay (IVK) 

10 x kinase reaction buffer: 

250 mM Tris/HCl pH 7.5 

100 mM MgCl2 

1 mM Na3VO4 

50 mM -glycerophosphate 

20 mM DTT 

Coomassie solution: 

0.25% (w/v) Brilliant Blue R250 

50% (v/v) methanol 

12.5% acetic acid 

Destaining solution: 

30% (v/v) methanol 

10% (v/v) acetic acid 

 

The concentration of the eluted GST-fusion proteins (prepared as described in section 4.2.6) 

was quantified with the BCATM Protein Assay Kit from Thermo SCIENTIFIC. 5 g of protein 

were used to assess the phosphorylation by recombinant PKB. For the in vitro kinase assay 

(IVK), the proteins of interest were incubated for 30 min at 37°C with shaking at 600 rpm in   

1 x kinase reaction buffer containing 50 ng recombinant PKB and 10 Ci [-32P]-ATP. The 

reaction was terminated by addition of 1/4 vol 4 x Roti-Load followed by boiling for 5 min at 

95°C with shaking at 800 rpm. Samples were run on a 10% SDS-PAGE gel. The running 

front of the gel, containing most unincorporated [-32P]-ATP, was cut off and discarded and 

the gel was incubated in 10% (v/v) ethanol 10% (v/v) acetic acid in ddH2O for 10 min at RT. 

Afterwards, the gel was stained in coomassie solution for 1 h at RT with gentle shaking, 

followed by an incubation in destaining solution at RT and overnight (with gentle shaking). 

After destaining, gels were dried and X-ray films were exposed to detect phosphorylation of 

the analyzed proteins by autoradiography. 

4.2.8 Cell culture 

EL4 lymphoma cells were grown in RPMI 1640 medium containing 10% FCS, 0.352 M-

mercaptoethanol, 100 units/ml penicillin and 100 g/ml streptomycin at 37°C and 5% CO2. 

Cells were diluted 1:10 after 3 days to maintain optimal cell density (1x105–1x106 cells/ml). 

Adherent HEK 293T cells were grown in Dulbecco’s MEM containing 10% FCS, 100 units/ml 

penicillin and 100 g/ml streptomycin at 37°C and 5% CO2. Cells were diluted 1:10 in 3 day 

cycles to avoid confluency of the cell layer on the culture flask bottom. For splitting, adherent 
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cells were washed once with PBS and subsequently treated with 5 ml Trypsin/EDTA solution 

(0.25% trypsin/ 0.02% EDTA in PBS without Ca2+, Mg2+) for 1 min at RT for cell detachment. 

Cells were suspended and diluted 1:10 in fresh medium for culture. 

4.2.9 Heat-inactivation of FCS 

FCS used in media and buffers was incubated in a water bath at 56°C for 30 min to 

inactivate proteins of the complement system. 

4.2.10 Transfection methods 

FuGENE6 

EL4 cells were transfected using FuGENE6 Transfection Reagent (Roche) according to the 

manufacturer’s instructions. 50 ng murine Rag2-firefly luciferase reporter, 400 to 800 ng 

human NFATc1 (Chuvpilo, Jankevics et al. 2002) or NFATc2 expression construct, 50 ng 

Cam expression vector (Parsons, Wiederrecht et al. 1994) and empty vector for DNA 

compensation in a solution containing 1 g DNA were mixed with 4 l FuGENE6. 

Subsequently, this mixture was evenly distributed over 1.5-3.0x105
 cells per well cultured in 

12 well plates. 26 h later, cells were stimulated with ionomycin (100 ng/ml) and PMA        

(100 ng/ml) for 16 to 20 h. Afterwards, cells were harvested followed by assessment of 

luciferase activity. Luciferase expression was controlled by the TCR -chain enhancer and 

part of the murine Rag2 promoter (nt -251 to nt +147) (Kishi, Wei et al. 2000). 

Polyethylenimine (PEI) 

Polyethylenimine was described to function as an efficient transfection reagent (Ehrhardt, 

Schmolke et al. 2006). 0.15x106 HEK 293T cells in 2 ml Dulbecco’s MEM/10% FCS without 

antibiotics were seeded into 6 well plates the day before transfection. Cells were transfected 

with 1575 ng total DNA and 5 l PEI stock solution. Stock solution of PEI was prepared as 

follows: 1 mg PEI was diluted in 1 ml ddH2O and pH 7.0 was adjusted with HCl. The stock 

solution was sterilized by filtration through a syringe filter (0.22 m) and aliquots were stored 

at -80°C. A total volume of 100 l OPTI MEM medium containing all DNA constructs to be 

transfected was pipetted into 1.5 ml reaction tubes. 5 l PEI stock solution was added to 

each sample, samples were vortexed for 2 sec and incubated for 10 min at RT. Afterwards, 

the samples were mixed by pipetting up and down two times before dropwise addition to 

HEK 293T cells cultured in 6 well plates. After addition of the transfection mix, 6 well plates 

were gently shaken several times for proper mixing of the transfection solution with the 

culture medium. The day after transfection, HEK 293T cells were stimulated with 100 ng/ml 

PMA and 747 ng/ml (1 M) ionomycin for 6 h at 37°C followed by cell lysis and determination 

of luciferase activity. 
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Calcium phosphate 

2 M CaCl2 

2 x HBS pH 7.05: 

280 mM NaCl 

10 mM KCl 

1.5 mM Na2HPO4 

12 mM glucose 

50 mM Hepes 

 

1x106 HEK 293T cells were seeded into ø 60x15 mm cell culture dishes in 4 ml Dulbecco’s 

MEM/10% FCS/1% antibiotics the day before transfection. The cells were transfected with 5 

g total DNA. For this, DNA constructs were taken up in a total volume of 500 l ddH2O, and   

50 l 2 M CaCl2 and 500 l 2 x HBS buffer, adjusted to RT, were added. The mixture was 

vortexed followed by incubation at RT for 30 min. The cell culture medium was replaced by 4 

ml fresh Dulbecco’s MEM/10% FCS/1% antibiotics. Thereafter, the transfection mixture was 

added dropwise to the cells. The day after transfection, cells were lysed and western blot 

analysis was performed. 

4.2.11 Luciferase assay 

Harvesting buffer: 

50 mM Tris 

50 mM MES 

0.1% (v/v) TritonX100 

1 mM DTT 

pH 7.8 

Assay buffer: 

125 mM Tris 

125 mM MES 

25 mM Mg(OAc)2 

1 pipette tip ATP powder for a total volume of 1 ml assay buffer 

pH 7.8 

Luciferase solution: 

1 mM luciferin 

5 mM KH2PO4 pH 7.8 

Luciferase solution was prepared by dilution of 10 mM luciferin stock solution (in DMSO) in  

5 mM KH2PO4 pH 7.8. 
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Luciferase assays were performed with a self-prepared harvesting buffer, assay buffer and 

luciferase solution. Luminescence generated by firefly luciferase (firefly luciferase activity: 

RLU1) was measured with a Berthold Lumat LB 9507. 

Procedure with self-prepared buffers: 

 transfer cells of each sample into a 1.5 ml reaction tube 

 centrifugation at 300 g (1700 rpm in a table centrifuge) for 5 min at 4°C 

 wash cells with 1 ml PBS (w/o Ca2+, Mg2+) 

=> centrifugation at 3000 g (5500 rpm in a table centrifuge) for 2 min at 4°C 

 => discard supernatant 

 resuspend cell pellet in 100 l harvesting buffer 

=> vortex 20 sec at maximum intensity 

 5 min incubation on ice 

=> vortex 20 sec at maximum intensity 

 centrifugation at 9500 g (10000 rpm in a table centrifuge) for 4 min at 4°C 

 provide 50 l assay buffer into wells of a 96 well plate 

 add 50 l supernatant to 50 l assay buffer and mix by pipetting 

 transfer 50 l of the mixture into a luminometer tube and store on ice 

 measure luminescence (RLU1) after injection of 50 l luciferase solution per sample 

Alternatively, the Dual-Luciferase® Reporter Assay System from Promega was used 

according to the manufacturer’s instructions. Separate measurements of luminescence 

generated by firefly luciferase (firefly luciferase activity: RLU1) and of luminescence 

generated by renilla luciferase (renilla luciferase activity: RLU2) were performed with a 

Berthold Lumat LB 9507. Relative luciferase activity (RLU1/RLU2) was calculated by dividing 

firefly luciferase activity (RLU1) by renilla luciferase activity (RLU2). 

4.2.12 Isolation of genomic DNA from mouse tail 

Tail lysis buffer: 

50 mM Tris pH 8.0 

100 mM EDTA 

100 mM NaCl 

1% (w/v) SDS 

 

Tail biopsies were used for genotyping of mice. Tail pieces were incubated in 400 l tail lysis 

buffer containing 8 l proteinase K (20 mg/ml) for overnight at 50°C with shaking at 600 rpm. 

The next day, lysates were centrifuged at 18620 g (14000 rpm in a table centrifuge) for 15 

min at RT. Supernatants were transferred into 1.5 ml reaction tubes containing an equal 
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volume of isopropanol. After mixing by gently inverting the Eppendorf tube 2-3 times, DNA 

was harvested by pulling a bent pasteur glas pipette several times through the DNA 

precipitation mixture. The glas pipette tips with bound DNA were dried for 10 min at RT and 

washed with 70% ethanol. After drying at RT, the tips of the pasteur pipettes were broken 

into 1.5 ml reaction tubes, containing 200 l ddH2O. After incubation for 30 min at 60°C with 

shaking at 600 rpm, DNA solutions were used as templates in PCR reactions and stored at 

4°C. 

4.2.13 Genotyping mice by PCR 

Primers used for genotyping myrPKB tg mice: 

F5 forward primer:  5’ TGA CAC CAG GTA TTT TGA TGA 3’ 

6168 reverse primer:  5’ TGT TGG ACC AGC TTT GCA G 3’ 

 

The genotype of mice was determined by PCR-amplification of genomic DNA obtained from 

mouse tails with primers specific for the myrPKB transgene cassette. Expected size of PCR 

fragments was 900 bp. 

 

The PCR mixture had the following composition: 

F5 forward primer 10 M 1 l 

6168 reverse primer 10 M 1 l 

dNTP mix 12.5 mM 0.4 l 

5 x Green Go Taq® Flexi 

Buffer 

 4 l 

MgCl2 25 mM 2 l 

Go Taq® Flexi DNA 

Polymerase 

5 units/l 0,1 l 

Template DNA solution  1 l 

ddH2O  10.5 l (ad 20 l) 

 

The PCR reaction was peformed using the following program: 

94°C 5 min  initial denaturation 

94°C 1 min denaturation 

56°C 1 min annealing 

72°C 1 min 

32 cycles 

elongation 

72°C 5 min  final elongation 

4°C  storage 
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4.2.14 Agarose gel electrophoresis 

50 x TAP buffer: 

Tris   242 g 

Acetic acid  57.1 ml 

EDTA (titration complex 3) 37.2 g 

ddH2O   ad 1000 ml 

pH 8.0 

 

For agarose gels 1% (w/v) agarose was added to 1 x TAP buffer, the mixture was boiled in a 

microwave and 10 l ethidium bromide (10 mg/ml) were added before casting the agarose 

into a gel chamber. DNA samples were run at 100 volts and recorded with an UV-gel 

documentation system. 

4.2.15 Preparation of thymocyte and lymph node cell suspensions 

Supplement complete (SC) 20x: 

500 ml FCS (heat inactivated) 

100 ml sodium pyruvate (100 mM) 

100 ml GIBCOTM MEM Non-Essential Amino Acids Solution 10 mM (100x) 

100 ml Penicillin-Streptomycin [10000 units/ml penicillin (base) and 10000 g/ml 

            streptomycin (base), Invitrogen (cat. no.: 15140-122)] 

5 ml 2-Mercaptoethanol [50 MM; GIBCO (cat. no.: 31350-010)] 

Supplemented RPMI 1640/10% FCS medium: 

(75 M final 2-Mercaptoethanol) 

500 ml RPMI 1640 

25 ml SC 

25 ml FCS (heat inactivated) 

5 ml Penicillin-Streptomycin [10000 units/ml penicillin (base) and 10000 g/ml 

        streptomycin (base)] 

1.75 l 2-Mercaptoethanol [14.3 M; SIGMA (M3148)] 

 

Mice were killed with CO2, thymi and lymph nodes were extracted and kept in supplemented 

RPMI 1640/10% FCS medium at RT. For preparation of single cell suspensions, thymi or 

lymph nodes were passed through a 100 m plastic cell strainer in petri dishes containing 

supplemented RPMI 1640/10% FCS. An aliquot of cells was diluted in 0.05% trypan blue in 

PBS and counted in a Neubauer chamber for calculation of the cell concentration. 
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4.2.16 Isolation of CD4+ T cells 

Isolation of CD4+ T cells from lymph nodes was performed with AutoMacs technology 

(Miltenyi Biotech, Bergisch Gladbach). Single cell suspensions were centrifuged at 300 g 

(1160 rpm Heraeus Multifuge 3S-R) for 10 min at 4°C and 1x107 cells were resuspended in 

100 l PBS/0.5% (w/v) BSA. A mixture of the following antibodies was added to the cell 

suspension using 0.2 l of each antibody for 1x107 cells: 

 

 Biotin anti-mouse CD8; BD Pharmingen, Cat. 553029; 0.5 mg/ml 

 Biotin anti-mouse I-A/I-E (2G9); BD Pharmingen, Cat. 553622; 0.5 mg/ml 

 Biotin anti-mouse CD11b; BD Pharmingen, Cat. 553309; 0,5 mg/ml 

 Biotin anti-mouse CD45R/B220 (RA3-6B2); BD Pharmingen, Cat. 553086; 0.5 mg/ml 

 Biotin anti-mouse TER-119/erythroid cells (Ly-76); BD Pharmingen, Cat. 553672; 

0.5 mg/ml 

 AffiniPure mouse anti-rat IgG (H+L); Dianova, Code Number 212-005-168;  

1.7 mg/ml 

 AffiniPure goat anti-mouse IgG (H+L); Dianova, Code Number 115-005-166;  

1.3 mg/ml 

 

Cells were incubated for 20 min at 4°C with gentle mixing in between by inversion of the 

tube, followed by washing with 2 ml PBS/0.5% BSA for 1x107 cells. Cells were centrifuged at 

300 g (1160 rpm Heraeus Multifuge 3S-R) for 10 min at 4°C. The supernatant was discarded 

and the cell pellet was resuspended in 90 l PBS/0.5% BSA for 1x107 cells. For 1 x 107 cells, 

10 l Streptavidin MicroBeads were added, mixing was performed by gentle inversion of 

tubes and cells were incubated for 15 min at 4°C. Subsequently, cells were washed with 2 ml 

PBS/0.5% BSA for 1 x 107 cells. The supernatant was discarded and the cell pellet was 

resuspended in 1 ml PBS/0.5% BSA for 1x108 cells. Negative selection was performed using 

the ‘Deplete’ program of the AutoMacs machine. Isolated CD4+ T cells were spun down at 

440 g (1400 rpm Heraeus Multifuge 3S-R) for 5 min at 15°C, the supernatant was discarded 

and cells were suspended in supplemented RPMI 1640/10% FCS medium. 
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4.2.17 Preparation of protein extracts 

Cell lysis buffer: 

1% Nonidet P-40 

100 mM NaCl 

50 mM Hepes pH 7.4 

5 mM EDTA 

1% lauryl maltoside (LM) 

1 mM phenylmethylsulfonylfluoride (PMSF) 

50 mM sodium fluoride 

1 mM sodium orthovanadate 

10 mM sodium pyrophosphate 

 

Protein extracts were prepared from thymocytes or lymph node CD4+ T cells. Single cell 

suspensions were washed once with cold PBS and lysed by suspension in 100 l ice cold 

lysis buffer for 1x107 cells. Lysates were vortexed and incubated on ice for 30 min. 

Thereafter, lysates were centrifuged at 18620 g (14000 rpm in a table centrifuge) for 10 min 

at 4°C. Supernatants were transferred into 1.5 ml reaction tubes, 1/4 vol 4 x Roti-Load was 

added and lysates were boiled at 95°C for 5 min with shaking at 800 rpm. Samples were 

stored at -20°C. The lauryl maltoside (LM) in the cell lysis buffer led to disruption of 

membrane lipid rafts. 

4.2.18 Sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) 

4 x Lower gel buffer (LGB): 

1.5 M Tris 

0.4% (w/v) SDS 

pH 8.8 

4 x Upper gel buffer (UGB): 

0.5 M Tris 

0.4% (w/v) SDS 

pH 6.8 

10 x Electrophoresis buffer: 

0.25 M Tris Base 

1.92 M Glycin 

1% (w/v) SDS 
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Denaturating polyacrylamide gels were used for separation of protein extracts. The 

separating gel mixture was poured into the gel apparatus and isopropanol was pipetted on 

top. After gel polymerization for 30 min at RT, the isopropanol was discarded, the stacking 

gel mixture was poured into the apparatus and a comb was inserted. 15 min incubation at RT 

were sufficient for polymerization of the stacking gel. 

Table 4.2 Composition of separating gel 

 8% 10% 12.5% 

ddH2O 11 ml 10 ml 8.75 ml 

Acrylamide/Bisacrylamide 

37.5:1 

4 ml 5 ml 6.25 ml 

4 x LGB buffer 5 ml 5 ml 5 ml 

10% APS in ddH2O 66 l 66 l 66 l 

TEMED 10 l 10 l 10 l 

 

Table 4.3 Composition of stacking gel 

ddH2O 5.65 ml 

Acrylamide/Bisacrylamide 

37.5:1 

1.15 ml 

4 x UGB buffer 2.5 ml 

Glycerol 700 l 

10% APS in ddH2O 33 l 

TEMED 20 l 

 

Gels were loaded with protein samples and run at 100 volts in electrophoresis buffer. 

Proteins were transferred onto nitrocellulose membranes by wet western blotting. 
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4.2.19 Western blot 

1 x Blotting buffer: 

192 mM glycine 

25 mM Tris 

20% (v/v) methanol 

Ponceau S solution: 

0.2% Ponceau S in 3% trichloroacetic acid (TCA) 

1 x TBS: 

137 mM NaCl 

20 mM Tris pH 7.6 

Washing solution (TBST): 

1 x TBS 

0.05% (v/v) Tween®20 

 

Transfer of proteins from SDS-PAGE gels onto nitrocellulose membranes was performed at 

75 volts for 2 h in blotting buffer, which was cooled with ice. After the blotting procedure, 

nitrocellulose membranes were stained with Ponceau S solution to monitor the transfer of 

proteins. Destaining was performed by washing in TBST, and thereafter nitrocellulose 

membranes were blocked in 5% (w/v) milk powder in TBST for 2 h at RT followed by 

incubation with primary antibodies diluted in 5% (w/v) milk powder in TBST overnight at 4°C. 

The following day, nitrocellulose membranes were washed three times by shaking in TBST 

for 10 min. Subsequently, membranes were incubated with horseradish-peroxidase-

conjugated antibodies diluted in 5% (w/v) milk powder in TBST for 1 h at RT and shaking. 

After washing three times with TBST, the membrane was treated with ECL solution and X-

ray films were exposed. 

4.2.20 Immunoprecipitation 

Washing buffer: 

0.05% (v/v) NP-40 

5 mM EDTA 

150 mM NaCl 

50 mM Tris pH 7.4 
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For immunoprecipitation, 1x107 cells were lysed in 500 l lysis buffer as described in section 

4.2.17. 50 l lysate were mixed with 1/4 vol 4 x Roti-Load, boiled at 95°C for 5 min and then 

stored at -20°C. Protein G SepharoseTM 4 Fast Flow beads were washed two times in cell 

lysis buffer without lauryl maltoside (LM) before usage in immunoprecipitation. Centrifugation 

was performed at 9500 g (10000 rpm in a table centrifuge) for 2 min at RT. 10 l washed 

Protein G SepharoseTM 4 Fast Flow beads were added to 450 l protein lysate and incubated 

under gentle rotation for 1 h at 4°C to eliminate proteins binding unspecifically to Protein G 

Sepharose. After preclearing, lysates were centrifuged and the supernatants were 

transferred into new 1.5 ml reaction tubes containing 20 l washed Protein G SepharoseTM 4 

Fast Flow beads. 2 g of immunoprecipitating antibody was added to each sample. 

Importantly, one sample was mixed with 2 g antibody which was of the same isotype and 

generated in the same species as the antibody used for immunoprecipitation. Samples were 

incubated overnight at 4°C with gentle rotation. After centrifugation for 2 min at 4°C, 

supernatants were discarded and immunoprecipitates were washed four times with 800 l 

washing buffer. Finally, 21 l washing buffer and 7 l 4 x Roti Load were added to the 

sepharose pellet and immunoprecipitated proteins were released from the sepharose beads 

by boiling of samples at 95°C for 5 min. After this step, immunoprecipitates were stored at     

-20°C for later western blot analysis. 

4.2.21 In vitro kinase assay (IVK) with immunoprecipitated protein 

Washing buffer: 

0.05% (v/v) NP-40 

5 mM EDTA 

150 mM NaCl 

50 mM Tris pH 7.4 

Kinase reaction buffer (30 l): 

50 mM Tris/HCl pH 7.4 

10 mM MnCl2 

0.1% (v/v) NP-40 

5 g acid-denatured enolase 

5 Ci -32P]-ATP 

Coomassie solution: see section 4.2.7 

Destaining solution: see section 4.2.7 
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2x107 thymocytes or 1.5x107 CD4+ T cells were lysed as described in section 4.2.17 and 

immunoprecipitation was performed as described under 4.2.20. The samples were washed 

four times with 800 l washing buffer (centrifugation at 9500 g for 2 min at 4°C). After the last 

washing step about 40% of the sepharose beads were taken, 1/4 vol 4 x Roti-Load was 

added and the mixture was boiled at 95°C for 5 min with shaking at 800 rpm. Samples were 

stored at -20°C and analyzed by western blot for the amount of immunoprecipitated protein. 

The other fraction of the immunoprecipitate was suspended in 30 l kinase reaction buffer 

containing 5 Ci -32P]-ATP and 5 g acid denatured enolase. The kinase reaction was 

performed for 30 min at RT and terminated by addition of 10 l 4 x Roti-Load followed by 

boiling at 95°C for 5 min. Samples were run on 10% SDS-PAGE gels, gels were fixed, 

stained with coomassie, then dried and X-ray films were exposed for autoradiography. 

4.2.22 Denaturation of enolase 

Enolase stock suspension (10 mg/ml in 2.8 M ammonium sulfate containing 0.05 M 

imidazole and 1 mM MgSO4, pH 7.5) was mixed with 1 vol 0.1 M acetic acid, vortexed and 

incubated at 30°C for 8 min. Thereafter, 1 vol ddH2O was added resulting in an enolase 

concentration of 2.5 mg/ml. Acid denatured enolase was stored at -20°C. 

4.2.23 Membrane lipid raft preparation by ultracentrifugation 

Lysis buffer: 

50 mM Hepes pH 7.4 

100 mM NaCl 

3% (v/v) Brij 58 

1 mM PMSF 

5 mM EDTA 

1 mM sodium orthovanadate 

50 mM NaF 

10 mM sodium pyrophosphate 

NME buffer: 

25 mM MES 

5 mM EDTA 

150 mM NaCl 

80%, 30% and 5% sucrose in NME buffer: 

30% and 5% sucrose solutions were freshly prepared by dilution of 80% sucrose in NME 

buffer, stored at 4°C 
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Lipid raft preparation was performed as cold as possible: 

 lysis of 1x107 thymocytes in 500 l lysis buffer followed by vortexing and storage on 

ice for 10 min 

 mixing of lysate with 500 l ice-cold 80% sucrose in NME buffer resulting in a 40% 

sucrose solution 

 transfer of lysate into a cell homogenizer and performance of 10 regular thrusts 

 transfer of lysate into ultracentrifugation tubes (SORVALL®PA THINWALL TUBE 4.4 

ML) with pasteur pipettes 

 overlay lysate with 2 ml ice-cold 30% sucrose in NME buffer followed by 1 ml ice-cold 

5% sucrose in NME buffer 

 centrifugation of sucrose gradient in an ultracentrifuge with TH-660 rotor at 270000 g 

(44000 rpm) for 20 h at 4°C without brake 

 collection of 10 fractions (400 l each) from top to bottom of the gradient 

The proteins in the fractions were precipitated by the following procedure: 

 addition of deoxycholate to samples in 1.5 ml reaction tubes to a final concentration 

of 0.02% 

 15 min incubation at RT 

 addition of trichloroacetic acid (TCA), final concentration 6% 

 1 h incubation on ice 

 centrifugation at 18620 g (14000 rpm in a table centrifuge) for 10 min at 4°C 

=> discard the supernatant 

 wash pellet with 200 l ice-cold acetone 

 15 min incubation on ice 

 centrifugation at 18620 g for 10 min at 4°C 

=> discard the supernatant 

 repeat washing procedure once 

 dry protein pellet for 10 min at RT 

Pellets were suspended in 42 l MNE buffer and 14 l 4 x Roti-Load were added. Boiling at 

95°C for 5 min with shaking at 800 rpm was performed and protein samples were analyzed 

by western blot. 

Lipid raft fractions were identified via the marker protein ganglioside GM1, which was 

detected with cholera toxin-horseradish-peroxidase fusion proteins. For this, 3 l of each 

sucrose gradient fraction were spotted onto a nitrocellulose membrane, which was then 

dryed for 10 min at RT. Subsequently, the nitrocellulose membrane was blocked with 5% 

(w/v) milk in TBST at RT for 30 min with gentle shaking. Cholera toxin-horseradish-

peroxidase fusion proteins diluted in 5% milk in TBST were applied overnight at 4°C with 
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gentle shaking. Membranes were washed three times with TBST for 10 min at RT and 

binding of cholera toxin to ganglioside GM1 was detected by ECL and exposure to X-ray film. 

4.2.24 Anergy induction 

Anergy was induced in isolated CD4+ T cells with ionomycin according to the protocol used 

by Davidson et al. (Davidson, Schraven et al. 2007). CD4+ T cells were stimulated with CD3 

Ab (3 g/ml; plate-bound) and CD28 Ab (1 g/ml; soluble) for 48 h. Thereafter, cells were 

cultured in the presence of IL-2 (50 units/ml) for 72 h and anergy was induced by treatment 

of cells for 16 h with ionomycin (1 M in DMSO). Control cultures were treated with the 

corresponding amount of DMSO only. Subsequently, cells were analyzed in proliferation 

assays or Fyn activity was assessed by in vitro kinase assays. 

4.2.25 Proliferation assay 

To analyze the proliferative capacity, 5x104 CD4+ T cells were cultured in 96 well plates in 

triplicates in supplemented RPMI 1640/10% FCS medium for 48 h. T cells were left untreated 

or stimulated with plate-bound CD3 Ab, CD3+CD28 Abs or with PMA/ionomycin in 

concentrations as indicated. After 48 h, cells were pulsed with 0.2 Ci [3H]-thymidine for 12-

16 h and [3H]-thymidine incorporation into DNA was determined by liquid scintillation. 

To assess the impact of the Src kinase inhibitor PP2 and the MEK inhibitors PD98059 and 

UO126 on proliferation, 1x105 CD4+ T cells from wt and myrPKB tg mice were cultured for 24 

h in the presence or absence of plate-bound CD3 Ab and inhibitors. DNA synthesis was 

assessed by [3H]-thymidine incorporation after 12-16 h. 

4.2.26 Densitometric analysis 

Densitometric analysis was performed by scanning X-ray films with an Epson Perfection 

4990 Photo scanner followed by determination of the optical density of the bands with Kodak 

1D 3.6 software. 
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5 Results 

5.1 Cross-talk of PKB with the transcription factor NFAT 

5.1.1 PKB rescues calcineurin/NFAT induced arrest of Rag expression and 

thymocyte development in Cam tg mice 

Previous publication showed that TCR/CD3 stimulated myrPKB tg CD4+ T cells exhibit 

reduced NFAT activation, although they are hyperproliferative. NFAT and myrPKB co-

immunoprecipitated in wt and myrPKB tg T cells indicating that NFAT and PKB interact in 

vivo (Patra, Na et al. 2004). The cross-talk of myrPKB with NFAT during thymocyte 

development was analyzed in Cam tg mice, which express a constitutively active form of 

the serine threonine phosphatase calcineurin (Cam) leading to enhanced nuclear 

translocation and activity of NFAT. Cam induces a strong developmental arrest in 

thymocyte differentiation at the CD25+CD44- double negative 3 (DN3) stage, since 90% of 

thymocytes in Cam tg mice are DN3 phenotype. This developmental block is rescued by 

co-expression of constitutively active myrPKB (Patra, Drewes et al. 2006), indicating that 

PKB signals can reverse or overcome Cam induced signaling events. 

Signaling via the preTCR is needed for the transition of thymocytes from the DN3 to DN4 and 

double positive (DP) stage. Analysis of intracellular (ic) TCR -chain expression showed a 

lack or strong reduction in TCR -chain positive Cam tg DN3, DN4 and DP cells, but this 

was partially reversed by co-expression of active PKB. Rag proteins are mediating the 

rearrangement of TCR -chains (Wilson, Held et al. 1994; Bassing, Swat et al. 2002) and 

Rag RNA and protein expression were strongly reduced in Cam tg thymocytes. 

Interestingly, co-expression of myrPKB rescued Rag expression and TCR -chain 

rearrangement in Cam tg thymocytes (Patra, Drewes et al. 2006). 

Because the nuclear localization of NFATc1 and NFATc3 were reduced in Cam/PKB tg DN 

thymocytes in comparison to Cam DN cells (Patra, Drewes et al. 2006), the question arose 

whether NFAT proteins are involved in the inhibition of rag expression. To test this 

hypothesis, EL4 cells were co-transfected with a Cam-expressing vector and a firefly 

luciferase reporter construct harboring nucleotide -251 to +147 of the murine Rag2 promoter. 

NFATc1, NFATc2 or vector control (vc) DNA was co-transfected and firefly luciferase activity 

was determined after stimulation of cells with PMA plus ionomycin. The Rag2 promoter was 

active in EL4 cells and NFATc1 or NFATc2 resulted in reduced Rag2 promoter activity. Thus, 

NFAT factors regulate Rag promoter activity in vivo and hyperactivity of NFAT in Cam DN3 

cells could result in inhibition of rag and thus TCR -chain expression. Reduction of NFAT 
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activity via myrPKB would enable optimal rag and ic TCR -chain expression and, thereby, 

abrogate the differentiation block in Cam/PKB tg thymocytes. 
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Figure 5.1 NFAT factors inhibit Rag2 promoter activity in EL4 cells (Patra, Drewes et al. 2006) 
Transfection of EL4 cells was performed with a Rag2 promoter firefly luciferase reporter construct    
(50 ng), a vector coding for Cam (50 ng) and either empty vector DNA for control (vc) or NFATc1 or 
NFATc2 expression vectors in the given amounts. Cells were stimulated with PMA (100 ng/ml) and 
ionomycin (100 ng/ml) for 16-20 h and Rag2 promoter activity was assessed by measurement of 
luminescence generated by firefly luciferase (firefly luciferase activity: RLU1). Error bars show 
standard deviation of four samples of one experiment. Data were analyzed by student’s t-test          
(*** p<0.001). Data are representative of 3 independent experiments. 
 

5.1.2 MyrPKB inhibits NFAT activity in HEK 293T cells 

NFAT is one of the major transcription factors involved in the activation of the IL-2 gene 

(Randak, Brabletz et al. 1990; Serfling, Berberich-Siebelt et al. 2000). To further substantiate 

the influence of PKB on NFAT activation, we analyzed the impact of myrPKB on NFATc1-

induced activation of the IL-2 promoter. HEK 293T cells were transfected with NFATc1, 

myrPKB and a luciferase reporter construct harboring three copies of the NFAT/AP1 binding 

sequence (-286 to -257) of the human IL-2 gene linked to the -72 to +47 region of the human 

IL-2 promoter. IL-2 promoter activity was determined 6 h after stimulation of cells with 

PMA/ionomycin. As shown in Figure 5.2, NFATc1 induced IL-2 promoter activity and co-

transfection of myrPKB resulted in a 69% reduction of IL-2 promoter activity. Thus, myrPKB 

inhibits NFATc1 activity in transfected HEK 293T cells. 
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Figure 5.2 MyrPKB reduces NFATc1 activity in HEK 293T cells 
HEK 293T cells were co-transfected with the IL-2 promoter firefly luciferase reporter construct        
(100 ng), NFATc1 (100 ng), myrPKB (75 ng) and Renilla luciferase construct (100 ng). The total 
amount of DNA in each transfection sample was compensated to 1575 ng with empty vector. Co-
transfection of a Renilla luciferase construct was used to monitor transfection efficiency. After 
stimulation of cells with PMA (100 ng/ml) and ionomycin (747 ng/ml) for 6 h, IL-2 promoter activity was 
determined. Relative luciferase activity is given as firefly luciferase activity (RLU1) divided by renilla 
luciferase activity (RLU2) from 3 independent experiments. IL-2 promoter activation by NFATc1 was 
set as 1. Data were analyzed by student’s t-test (** p<0.01). 
 

5.1.3 MyrPKB enhances GSK3, PKA and Foxp3 mediated inhibition of NFAT activity 

Protein kinase A (PKA) was shown to phosphorylate NFAT at S245, S269 and S294, priming 

for further phosphorylation of NFAT by GSK-3 at S241 and S290. These phosphorylation 

events lead to inactivation and cytoplasmic retention of NFAT (Sheridan, Heist et al. 2002). 

We analyzed the effects of PKA and GSK-3 alone and in combination with myrPKB on NFAT 

activation, again using IL-2 promoter driven luciferase activity as readout. For this, HEK 293T 

cells were transfected with the indicated expression vectors and IL-2 promoter activity was 

assessed (Figure 5.3). Transfection of either myrPKB, GSK-3 or PKA alone reduced NFAT 

and IL-2 promoter activity. The combination of myrPKB with GSK-3 or PKA or both kinases 

led to a stronger reduction of IL-2 promoter activity than transfection of the single 

components with myrPKB/GSK-3/PKA co-transfections being most inhibitory on NFAT 

activation. Thus, myrPKB, GSK-3 and/or PKA expression in HEK 293T cells results in an 

additive reduction of NFAT activity, suggesting that elevated PKB signals provide additional 

inhibitory signals for inhibition of NFAT activity. 
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Figure 5.3 MyrPKB, GSK-3 and PKA reduce NFATc1 induced IL-2 promoter activity in HEK 293T 
cells 
HEK 293T cells were transfected with the IL-2 promoter firefly luciferase reporter construct (100 ng), 
NFATc1 (100 ng), myrPKB (50 ng), GSK-3 (100 ng) and PKA (100 ng) alone or in combination. Co-
transfection of a Renilla luciferase construct (30 ng) was used to monitor transfection efficiency. The 
total amount of DNA in each transfection sample was compensated to 1000 ng with empty DNA 
vector. Cells were left untreated or stimulated with PMA (100 ng/ml) plus ionomycin (747 ng/ml) for     
6 h. Thereafter, IL-2 promoter activity was determined. Relative luciferase activity is given as firefly 
luciferase activity (RLU1) divided by renilla luciferase activity (RLU2). IL-2 promoter activation by 
NFATc1 in stimulated cells was set as 1. 
 

The transcription factor Foxp3 determinates the phenotype of regulatory T cells and is 

involved in the shut down of IL-2 expression in Treg cells (Bettelli, Dastrange et al. 2005; Wu, 

Borde et al. 2006). We analyzed the effect of myrPKB on Foxp3 regulated NFAT activation. 

In transfected HEK 293T cells IL-2 promoter activity was reduced by Foxp3 and myrPKB 

alone (Figure 5.4), and the combination of Foxp3 and myrPKB resulted in a stronger 

reduction of IL-2 promoter activity induced by NFATc1. Altogether, these data show that 

myrPKB signals alone inhibit NFAT activity and enhance the inhibitory effects of PKA, GSK-3 

or Foxp3 on NFAT activation. 
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Figure 5.4 MyrPKB and Foxp3 reduce NFAT induced IL-2 promoter activity in HEK 293T cells 
HEK 293T cells were co-transfected with the IL-2 promoter firefly luciferase reporter construct        
(100 ng), NFATc1 (100 ng), Foxp3 (1200ng), myrPKB (75 ng) and Renilla luciferase construct (100 
ng). The total amount of DNA in each transfection sample was compensated to 1575 ng with empty 
DNA vector, if necessary. Co-transfection of a Renilla luciferase construct was used to monitor 
transfection efficiency. After stimulation of cells with PMA (100 ng/ml) and ionomycin (747 ng/ml) for   
6 h, IL-2 promoter activity was determined. Relative luciferase activity is given as firefly luciferase 
activity (RLU1) divided by renilla luciferase activity (RLU2). IL-2 promoter activation by NFATc1 was 
set as 1. Error bars show standard deviation of three samples of one experiment. Data were analyzed 
by student’s t-test (* p<0.02; ** p<0.01). 
 

5.1.4 PKB phosphorylates NFAT in vitro 

Since above data showed a strong effect of PKB signals on NFAT activation and PKB and 

NFAT were shown to co-immunoprecipitate in T cells (Patra, Na et al. 2004), we speculated 

that NFAT could be a direct target of PKB. Therefore, several GST-NFAT fusion DNA 

constructs were generated harboring amino acids 177-261, 262-336 and 177-336 of the 

regulatory domain of human NFATc1A with a GST tag fused N-terminally. Expression 

vectors were expressed in bacteria, and GST-NFATc1A fusion proteins were purified via 

glutathione columns. Additionally, several NFATc1A mutants were produced, in which 

potential PKB phosphorylation sites were eliminated by exchange of serine or threonine to 

alanine, to identify possible PKB phosphorylation sites in NFATc1A in vitro (see Figure 5.5). 

Mut A, B and W were chosen because of sequence similarity to the canonical PKB 

phosphorylation site. S245 is localized in the SPRASVTEES (mut D) motif, which has 

sequence similarity to the calcineurin binding site SPRIEIT of NFAT. Although it is not part of 

a PKB phosphorylation site, it was analyzed, since a mass spectrometry experiment 

suggested S245 as a possible PKB phosphorylation site. Additionally, T247 and S250 

present in the SPRASVTEES (mut D) motif were chosen for mutation. S294, T296 and S299 

in the sequence motif SPRVSVTDDS (mut C) were also mutated to alanine. T339 and S403, 

which are localized in canonical PKB sites indicated by black rectangles, were not analyzed, 

because they are positioned outside the initial GST-NFATc1A fusion proteins, which were 

phosphorylated by PKB. 
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Figure 5.5 Amino acid sequence of human NFATc1A 
The regulatory domain of human NFATc1A is underlaid yellow and amino acids 177-336, which are 
included in the GST-fusion proteins, are shown in blue. The colored rectangles mark sequences with 
anticipated PKB phosphorylation sites and the NFATc1A mutants A, D, W, B and C, in which S/T 
residues were mutated to A (indicated by red color). The black rectangles mark canonical PKB 
phosphorylation sites (T339 and S403). 
 
Phosphorylation of GST-NFATc1A fusion proteins by PKB was analyzed by in vitro kinase 

assays (IVKs). Initial IVKs performed in the lab of U. Bommhardt (Figure 5.6) with GST-

NFATc1A fusion proteins harboring amino acids 177-261, 262-336 and 177-336 of the 

regulatory domain of hNFATc1A showed that all three GST-NFATc1A fusion proteins were 

phosphorylated by PKB in vitro. Thus, potential PKB phosphorylation sites are present in the 

aa 177-261 as well as aa 262-336 part of the NFATc1A regulatory domain. 
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Figure 5.6 PKB phosphorylates NFATc1A within the regulatory domain in vitro 
The indicated GST-NFATc1A fusion proteins were analyzed for phosphorylation by PKB by in vitro 
kinase assays. 5 g of GST-NFATc1A fusion protein of interest were incubated at 37°C for 30 min in 
kinase reaction buffer containing 50 ng recombinat PKB and 10 Ci [-32P]-ATP. The reaction was 
terminated by addition of 1/4 vol 4 x Roti-Load followed by boiling at 95°C for 5 min. Samples were run 
on a SDS-PAGE gel, the gel was dried and analyzed by autoradiography. 
 
To determine the specific PKB sites within the NFATc1A regulatory domain, we next 

performed IVKs with various NFAT mutants (Figure 5.7). The amount of NFATc1A substrate 

used in each reaction was controlled by coomassie staining of the gel. Phosphorylation of the 

known PKB substrate GSK-3 was used as positive control for PKB activity. GST was not 

phosphorylated by PKB, indicating that phosphorylation of GST-NFATc1A fusion proteins 

was not localized in their GST part. A sample without protein was included, and no 

background signals were produced by the reaction mixture itself. The wt GST-NFATc1A 

fusion protein (aa 177-336) was phosphorylated in the presence, but not absence of PKB. 

The combined mutation of the serines and threonines in the sequences of mut W, A and B to 

alanine, which are indicated by red color in Figure 5.5, had no effect on NFAT 

phosphorylation (Figure 5.7 A). The mutation of S245, T247 and S250 to alanine in the 

sequence of mut D in addition to the mutations in the sequences of mut W, A and B (GST-

NFATc1A fusion protein labeled mut W + A + B + D) caused a reduced phosphorylation. A 

drastic reduction of NFAT phosphorylation was found when S294, T296 and S299 in the 

sequence of mut C were mutated to alanine in addition to all the mutations inserted in the 

sequences of mut W, A, B and D (GST-NFATc1A fusion protein labeled mut W + A + B + D + 

C) (Figure 5.7 A and B, see red rectangle). This suggested that PKB phosphorylation sites 

are positioned within the mut C and mut D sequences of the NFATc1A regulatory domain. 
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Figure 5.7 The combination of mut W, A and B with mut D or with mut D + C reduces the 
phosphorylation of the NFATc1A regulatory domain by PKB in vitro 
A) Wild type (wt) GST-NFATc1A fusion protein (aa 177-336) and the indicated GST-NFATc1A 
mutants, GSK-3 and GST were used in PKB IVKs. Samples were run on a SDS-PAGE gel and 
analyzed by autoradiography. The amount of substrate was controlled by coomassie staining of the 
gel. 
B) Wild type (wt) GST-NFATc1A fusion protein (aa 177-336) and the indicated GST-NFATc1A 
mutants were used in PKB IVKs performed as described under A. 
 
The results shown in Figure 5.7 suggested phosphorylation of NFAT by recombinant PKB at 

serines/threonines present in the mut D and mut C sequences, although these sequences do 
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not contain a canonical PKB phosphorylation motif. Since mut D contains 3 mutations, i.e. 

S245, T247 and S250, and mut C contains mutations to A at S294, T296 and S299, we 

wanted to identify the exact site(s) of phosphorylation. Therefore, serine and threonine sites 

in the mut D and mut C regions were mutated one by another to A without the additional 

mutations in the mut W, A or B regions. However, analysis of these GST-NFAT mutants in 

IVKs showed similar phosphorylation of all proteins. Neither 3 mutations in the D region 

alone nor mutations within regions C + D alone abrogated PKB phosphorylation (Figure 5.8). 

Thus, none of the sites examined seems to be a PKB phosphorylation site in vitro. This result 

was unexpected and the reduction of phosphorylation by insertion of mut D and C in addition 

to the mutations W, A and B seen in Figure 5.7 seems to be caused by an interplay of all the 

mutations inserted. Mut C and D could change the folding of the GST-NFAT construct in 

such a way that mut W, A and/or B would have an impact on the phosphorylation by PKB, or 

mut W, A and/or B could change the folding that mut C and D would alter phosphorylation by 

PKB. 
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Figure 5.8 S245, T247 and S250 within mut D alone and S294, T296 and S299 within mut C in 
the NFATc1A regulatory domain are not phosphorylated by PKB in vitro 
Wild type (wt) GST-NFATc1A fusion protein (aa 177-336) and the indicated GST-NFATc1A mutants 
were used in PKB IVKs. Samples were run on a SDS-PAGE gel and analyzed by autoradiography. 
The amount of substrate was controlled by coomassie staining of the gel. 

64 



5. Results 

 

The activity of NFATc1A with mutation of serines and threonines in the regions of mut D and 

mut C was also analyzed via luciferase assays, but no major difference was detected 

comparing wt and mutant NFAT proteins (data not shown). Mutations T339 or S403, 

localized in canonical PKB motifs, also had no effect on NFAT activity. 

Taken together, these results suggest that only the complex interplay of mut W, A, B, D and 

C in the regulatory domain of NFAT can cause a reduction of NFAT phosphorylation by PKB 

in vitro. Modification of NFAT activity in vivo by direct phosphorylation of NFAT by PKB may 

thus be dependent on the interplay and de/phosphorylation status of several residues within 

the regulatory domain. 
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5.2 Cross-talk of PKB with the Src kinase Fyn 

5.2.1 MyrPKB tg CD4+ T cells are less sensitive to Src kinase and MEK inhibitors 

MyrPKB tg thymocytes show enhanced proliferation after TCR/CD3 stimulation and are less 

sensible to the Src kinase inhibitor PP1 and the MEK inhibitor PD98059 in comparison to wt 

cells (Na, Patra et al. 2003). Here we analyzed the effect of these inhibitors on the 

proliferation of peripheral myrPKB tg CD4+ T cells. Wt and myrPKB tg CD4+ T cells were 

stimulated with immobilized CD3 Ab for 24 h in the presence or absence of the indicated 

inhibitors and proliferation was measured by [3H]-thymidine incorporation. 
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Figure 5.9 Proliferation of myrPKB tg CD4+ T cells is less affected by Src kinase inhibitor PP2 
and MEK inhibitors PD98059 and UO126 
CD4+ T cells from wt and myrPKB tg mice were stimulated with immobilized CD3 Ab (3 g/ml) in the 
presence or absence of PP2, PD98059 and UO126 in concentrations as indicated. Proliferation was 
measured by [3H]-thymidine incorporation after 24 h and is given as counts per minute (cpm). Error 
bars show standard deviation of triplicates. Significance was determined by student’s t-test (** p<0.01; 
*** p<0.001). 
 
MyrPKB tg CD4+ T cells showed enhanced proliferation after CD3 Ab stimulation in 

comparison to wt cells. In this experiment, application of 1 M PP2 caused a 88% reduction 

of proliferation of wt CD4+ T cells, whereas proliferation of myrPKB tg cells was only reduced 
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by 39%. 6.25 M PD98059 reduced proliferation of wt CD4+ T cells by 61% but of myrPKBtg 

cells by 6% only. Likewise, treatment with 6.25 M UO126 almost totally ablated proliferation 

of wt CD4+ T cells, but proliferation of myrPKB tg cells still occurred quite strongly. Since 

other experiments showed comparable results, activation of myrPKB tg CD4+ T cells is less 

affected by Src kinase inhibitor PP2 as well as MEK inhibitors PD98059 and UO126    

(Figure 5.9). 

5.2.2 Enhanced Erk phosphorylation but similar phosphorylation of activatory 

tyrosines of Fyn and Lck in activated myrPKB tg CD4+ T cells 

The reduced sensibility of myrPKB tg CD4+ T cells to Src kinase inhibitor application 

indicated that myrPKB could have an impact on Fyn and/or Lck activity. Indeed, enhanced 

and prolonged Lck activity and Erk phosphorylation were previously detected in myrPKB tg 

thymocytes (Na, Patra et al. 2003). We, therefore, analyzed the phosphorylation of Fyn at 

Y417, of Lck at Y394, of Erk1 (p44) at T203/Y205 and of Erk2 (p42) at T183/Y185 (the 

activatory phosphorylation sites of Fyn, Lck and Erk). For CD3+CD4 Ab-stimulated CD4+ T 

cells from wt and myrPKB tg mice no major differences in Fyn Y417 and Lck Y394 

phosphorylation were detected by western blot analysis. However, enhanced 

phosphorylation of Fyn and Lck was obvious in unstimulated myrPKB tg CD4+ T cells. In 

addition, Erk phosphorylation was strongly enhanced in CD3+CD4 Ab-stimulated myrPKB tg 

cells in comparison to wt CD4+ cells (Figure 5.10). 
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Figure 5.10 Enhanced Erk phosphorylation in myrPKB tg CD4+ T cells 
CD4+ T cells from wt and myrPKB tg mice were stimulated with biotin-CD3 Ab (5 g/ml) and biotin-
CD4 Ab (5 g/ml) plus streptavidin (20 g/ml) for the indicated time period at 37°C. 
Expression/phosphorylation of the indicated proteins was analyzed by western blot. Actin expression 
was used as control for protein loading. 
 

5.2.3 Fyn is hyperactive in myrPKB tg CD4+ T cells and thymocytes 

The inhibitor and western blot studies suggested that PKB influences Erk activation, which 

could be linked to altered Fyn/Lck activity which in a western blot analysis became apparent 

in unstimulated cells. PKB could either directly act on Fyn and/or Lck or indirectly on Lck via 
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altered Fyn activity. Since Fyn but not Lck harbors canonical PKB phosphorylation sites, we 

concentrated on Fyn as a potential novel substrate of PKB. For this, Fyn was 

immunoprecipitated from unstimulated wt and myrPKB tg CD4+ T cells and IVKs were 

performed with enolase as a substrate for Fyn. 
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Figure 5.11 Fyn is hyperactive in myrPKB tg CD4+ T cells and thymocytes 
A) Unstimulated CD4+ T cells from wt and myrPKB tg mice kept on ice were lysed, Fyn was 
immunoprecipitated and its activity was assessed by IVK. Fyn autophosphorylation (left figure) and 
enolase transphosphorylation (right figure) were detected by autoradiography. The amount of Fyn 
immunoprecipitated was monitored by western blot analysis (bottom-line). IP cont.: specific 
immunoprecipitation was controlled with mouse anti-rat IgG Ab; IP cont. buffer: mouse anti-rat IgG Ab 
was incubated with lysis buffer only. Bands were quantified by densitometric analysis and the amounts 
of phosphorylated Fyn and enolase were normalized to the amounts of Fyn immunoprecipitated       
(p-Fyn rel. IP Fyn; p-enolase rel. IP Fyn) and are given in percentage for myrPKB tg relative to wt 
cells. 
B) Thymocytes from wt and myrPKB tg mice were left untreated or stimulated with biotin-CD3 Ab     
(30 g/ml) plus streptavidin (42 g/ml) for 2 min at 37°C. Fyn activity was assessed by IVKs. Fyn 
autophosphorylation and enolase transphosphorylation were detected by autoradiography. The 
substrate enolase was visualized by coomassie staining and the amount of Fyn immunoprecipitated 
was monitored by western blot (bottom-line). Specific immunoprecipitation was controlled with mouse 
anti-rat IgG Ab (IP cont.). Numbers give the amounts of p-Fyn normalized to the amounts of Fyn 
immunoprecipitated (p-Fyn rel. IP Fyn) and of p-enolase normalized to the amounts of Fyn 
immunoprecipitated and the total amounts of enolase (p-enolase rel. IP Fyn/enolase) in percentage for 
myrPKB tg relative to wt cells. 
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Enhanced Fyn autophosphorylation and enolase transphosphorylation were detected in 

unstimulated myrPKB tg CD4+ T cells (Figure 5.11 A). Fyn auto- and transphosphorylation 

activity were also enhanced in unstimulated and CD3 Ab-stimulated myrPKB tg thymocytes 

in comparison to wt thymocytes (Figure 5.11 B). These experiments show that Fyn is 

hyperactive in myrPKB tg CD4+ T cells and thymocytes. 

5.2.4 Increased Fyn activity in myrPKB tg cells does not lead to increased 

phosphorylation of PAG at Y314 

Tyrosine 314 of PAG is phosphorylated by Fyn and in the phosphorylated state functions as 

anchor for the recruitment of Csk to PAG (Brdicka, Pavlistova et al. 2000; Yasuda, Nagafuku 

et al. 2002; Filby, Seddon et al. 2007). We next analyzed whether enhanced Fyn activity in 

myrPKB tg CD4+ T cells and thymocytes resulted in increased phosphorylation of PAG at 

Y314. IVKs were performed to assess Fyn activity and western blot analysis to assess PAG 

phosphorylation at Y314 from the same samples. Wt and myrPKB tg CD4+ T cells were 

stimulated with immobilized CD3 Ab (2 g/ml) or CD3+CD28 Abs (2/5 g/ml). As shown in 

Figure 5.12 A, Fyn transphosphorylation activity on enolase in myrPKB tg CD4+ T cells was 

the highest 1 h after stimulation and reduced at 4 h, but still higher than in unstimulated cells. 

No enhanced Fyn activity was detected in wt CD4+ T cells 1 h after stimulation, and after 4 h 

Fyn activity was lower than in unstimulated cells. Thus, Fyn activity was increased in 

myrPKB tg CD4+ T cells in comparison to wt CD4+ T cells. However, despite increased Fyn 

activity phosphorylation of PAG at Y314 was similar or even reduced in myrPKB tg CD4+ T 

cells in comparison to wt CD4+ T cells. This effect was most obvious at 4 h CD3 Ab 

stimulation (indicated by red rectangles in Figure 5.12 A). No major differences were found 

between CD3 Ab and CD3+CD28 Abs in wt and myrPKB tg cells for these time points. 

Western blot analysis of wt and myrPKB tg thymocytes showed similar PAG phosphorylation 

at Y314 in the unstimulated state (Figure 5.12 B) and CD3 Ab stimulation led to PAG Y314 

dephosphorylation with similar kinetics in wt and myrPKB tg thymocytes. Altogether, these 

data show that myrPKB tg thymocytes and CD4+ T cells reveal similar or even less PAG 

phosphorylation at Y314 despite increased Fyn activity. 
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Figure 5.12 PAG phosphorylation at Y314 is not enhanced in myrPKB tg cells despite increased 
Fyn activity 
A) CD4+ T cells from wt and myrPKB tg mice were stimulated with immobilized CD3 Ab (2 g/ml) or 
CD3+CD28 Abs (2/5 g/ml) for the indicated time period at 37°C. Cells were lysed, Fyn was 
immunoprecipitated and its activity was assessed by IVK. The substrate enolase was visualized by 
coomassie staining of the gel and the amount of Fyn immunoprecipitated was monitored by western 
blot analysis (bottom-line). Mouse anti-rat IgG Ab was used for control immunoprecipitation (IP cont.). 
pY314 PAG and total PAG were determined by western blot and actin was used as protein loading 
control. The amounts of p-enolase normalized to the amounts of Fyn immunoprecipitated and the total 
amounts of enolase (p-enolase rel. IP Fyn/enolase) are given in percentage for myrPKB tg cells 
relative to wt cells as well as the amounts of pY314 PAG normalized to the amounts of total PAG 
(pY314 PAG rel. PAG) of myrPKB tg relative to wt cells. 
B) Thymocytes from wt and myrPKB tg mice were stimulated with biotin-CD3 Ab (30 g/ml) plus 
streptavidin (42 g/ml) for the indicated time period at 37°C. Protein extracts were analyzed by 
western blot for PAG phosphorylation with an antibody specific for pY314. Actin was used as protein 
loading control. 
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5.2.5 Enhanced Fyn activity in myrPKB tg CD4+ T cells does not result in increased 

binding of Csk to PAG 

IVKs of Fyn from wt and myrPKB tg CD4+ T cells showed that Fyn autophosphorylation and 

activity were increased in unstimulated and CD3 Ab-stimulated myrPKB tg CD4+ T cells 

(Figure 5.11 A and Figure 5.12 A). Because phosphorylated Y314 of PAG is the anchor, 

which recruits Csk to PAG, and Y314 phosphorylation of PAG was found to be similar in 

myrPKB tg CD4+ T cells despite Fyn hyperactivity, the amount of Csk bound to PAG was 

determined. As shown in Figure 5.13 A, untreated and CD3 Ab-stimulated myrPKB tg CD4+ T 

cells showed enhanced Fyn auto- and transphosphorylation activity as seen before. The 

amount of Csk co-immunoprecipitated with PAG was slightly reduced in myrPKB tg in 

comparison to wt cells (Figure 5.13 B). Therefore, the increased Fyn activity in myrPKB tg 

cells does not correlate with a proportional increase of Csk association to PAG. 
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Figure 5.13 Similar amounts of Csk bind to PAG in wt and myrPKB tg CD4+ T cells 
A) CD4+ T cells from wt and myrPKB tg mice were left untreated or stimulated with immobilized CD3 
Ab (2 g/ml) for 4 h at 37°C. Cells were lysed, Fyn was immunoprecipitated and its activity was 
assessed by IVK. The substrate enolase was visualized by coomassie staining and the amount of Fyn 
immunoprecipitated was monitored by western blot (bottom-line). Mouse anti-rat IgG Ab was used for 
control immunoprecipitation (IP cont.).The amounts of p-Fyn normalized to the amounts of Fyn 
immunoprecipitated (p-Fyn rel. IP Fyn) and the amounts of p-enolase normalized to the amounts of 
Fyn immunoprecipitated and the total amounts of enolase (p-enolase rel. IP Fyn/enolase) are given in 
percentage for myrPKB tg relative to wt cells. 
B) PAG was immunoprecipitated from the same cell lysates and the amount of associated Csk was 
detected by western blot. Control immunoprecipitation (IP cont.) was performed with rabbit IgG control 
Ab. PAG and Csk bands were densitometrically analyzed and the amounts of Csk co-
immunoprecipitated relative to the amounts of PAG precipitated (Csk rel. PAG) are given in 
percentage for myrPKB tg relative to wt cells. 

71 



5. Results 

 

5.2.6 Tyrosine phosphatase activity is inhibited at 4°C 

The above data raised the question of the mechanism(s) for the discrepancy between Fyn 

hyperactivity and the lack of a concomitant increase of PAG Y314 phosphorylation and Csk 

association in myrPKB tg cells. One possibility to consider is PKB mediated increase in 

tyrosine phosphatase activity, because the phosphorylation status of PAG at Y314 is caused 

by the reaction equilibrium between Fyn that phosphorylates PAG and a so far unknown 

phosphatase that dephosphorylates PAG at this site. We, therefore, performed a western 

blot analysis of thymocytes at 4°C or 37°C. Increased global tyrosine phosphorylation was 

observed at 4°C compared to 37°C for unstimulated as well as CD3 Ab-stimulated cells 

(Figure 5.14), indicating that tyrosine phosphatase activity is reduced at 4°C but not so 

kinase activity. 
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Figure 5.14 Thymocytes show decreased tyrosine phosphatase activity at 4°C 
Thymocytes from wt mice were left unstimulated or stimulated with biotin-CD3 Ab (30 g/ml) plus 
streptavidin (42 g/ml) for 30 min at 4°C or 37°C. Cells were lysed and protein extracts were analyzed 
by western blot for global tyrosine phosphorylation using 4G10 Ab. Actin staining was used as protein 
loading control. 
 

5.2.7 Fyn is hyperactive but PAG is not hyperphosphorylated at Y314 in myrPKB tg 

thymocytes stimulated with CD3 Ab at 4°C 

We next investigated the dependency of Y314 phosphorylation of PAG in myrPKB tg cells on 

tyrosine phosphatase activity by performing experiments at 4°C. If the low level of Y314 

phosphorylation of PAG in stimulated myrPKB tg cells is caused by hyperactivity of tyrosine 

phosphatases, inhibition of tyrosine phosphatase activity at 4°C should alter the observed 

results. Thymocytes from wt and myrPKB tg mice were left unstimulated or stimulated with 

CD3 Ab at 4°C and Fyn auto- and transphosphorylation activity were analyzed by IVK. Fyn 
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autophosphorylation and transphosphorylation activity after 120 min CD3 stimulation at 4°C 

were increased in myrPKB tg in comparison to wt thymocytes. However, increased Fyn 

activity in myrPKB tg thymocytes did not result in enhanced phosphorylation of PAG at Y314 

but was even lower than in wt thymocytes. These results indicate that lack of 

hyperphosphorylation of Y314 of PAG in myrPKB tg thymocytes with increased Fyn activity is 

not caused by increased tyrosine phosphatase activity acting on pY314 of PAG. We cannot 

completely exclude that the reduction of Y314 phosphorylation of PAG despite Fyn 

hyperactivity in myrPKB tg thymocytes is caused by a tyrosine phosphatase that is 

temperature insensitive. 
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Figure 5.15 Hyperactivity of Fyn in myrPKB tg thymocytes stimulated with CD3 Ab at 4°C does 
not result in increased phosphorylation of PAG at Y314 
Thymocytes from wt and myrPKB tg mice were stimulated with biotin-CD3 Ab (30 g/ml) plus 
streptavidin (42 g/ml) for 90 and 120 min at 4°C. Fyn was immunoprecipitated and its activity was 
assessed by IVK. Control immunoprecipitation (IP cont.) was performed with mouse anti-rat IgG Ab. 
The amount of enolase was visualized by coomassie staining and the amount of Fyn 
immunoprecipitated was visualized by western blot. The amount of p-Fyn normalized to the amount of 
Fyn immunoprecipitated (p-Fyn rel. IP Fyn) and the amount of p-enolase normalized to the amount of 
Fyn immunoprecipitated and the total amount of enolase (p-enolase rel. IP Fyn/enolase) are given in 
percentage for myrPKB tg relative to wt cells. 
Phosphorylation of PAG at Y314 was monitored by western blot. Actin levels were used to control for 
protein loading. The amount of Y314 phosphorylated PAG is given in percentage for myrPKB tg 
relative to wt cells. 
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5.2.8 Enhanced Fyn activity in myrPKB tg thymocytes at 4°C does not result in 

increased binding of Csk to PAG 

The experiments performed at 4°C did not reveal increased phosphorylation of PAG at Y314 

in myrPKB tg cells despite increased Fyn activity. To analyze to what degree Csk binds to 

PAG, wt and myrPKB tg thymocytes were stimulated with CD3 Ab for 30, 90 and 120 min at 

4°C and phosphorylation of PAG at Y314 was determined. Again, the kinetics of 

dephosphorylation of PAG at Y314 in CD3 Ab-stimulated wt and myrPKB tg thymocytes was 

comparable. PAG was immunoprecipitated from the same cell lysates and the co-

immunoprecipitated Csk was detected by western blot. The kinetics of Csk dissociation from 

immunoprecipitated PAG was also similar in wt and myrPKB tg thymocytes and the amount 

of Csk bound to PAG correlated with the dephosphorylation of PAG at Y314 (Figure 5.16). 

Thus, increased Fyn activity in myrPKB tg thymocytes does not result in increased binding of 

Csk to PAG. 
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Figure 5.16 Similar binding of Csk to PAG and PAG phosphorylation at Y314 in wt and myrPKB 
tg thymocytes stimulated with CD3 Ab at 4°C 
Thymocytes from wt and myrPKB tg mice were stimulated with biotin-CD3 Ab (30 g/ml) plus 
streptavidin (42 g/ml) for 30, 90 and 120 min at 4°C. 
A) PAG phosphorylation was assessed by western blot with an antibody specific for pY314 of PAG, 
and actin expression was used as control for protein loading. Y314 phosphorylation of PAG was 
quantified and is given in percentage for myrPKB tg relative to wt cells. 
B) PAG was immunoprecipitated from the same cell lysates, which were used in A, and the amount of 
co-immunoprecipitated Csk was determined by western blot. Control immunoprecipitation (IP cont.) 
was performed with rabbit IgG control Ab. The relative amounts of co-immunoprecipitated Csk 
normalized to the amounts of total PAG immunoprecipitated (Csk rel. to PAG) are given in percentage 
for myrPKB tg relative to wt cells. 
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5.2.9 Hyperactive Fyn and PAG co-localize in lipid rafts of myrPKB tg thymocytes 

The previous experiments showed that Fyn is hyperactive in myrPKB tg CD4+ T cells and 

thymocytes, but PAG phosphorylation at Y314 and association with Csk are not 

correspondingly increased. This does not result from increased phosphatase activity in 

myrPKB tg cells leading to enhanced dephosphorylation of PAG at Y314, since similar 

results were obtained in experiments performed at 4°C, which blocks phosphatase activity. 

We next hypothesized that hyperactive Fyn might be sequestered from PAG or PAG might 

be, at least partially, sequestered from lipid rafts in myrPKB tg cells. 

To analyze co-localization of Fyn, PAG and Csk and activation of Fyn in lipid rafts, sucrose 

density gradient centrifugation was performed with lysates from wt and myrPKB tg 

thymocytes. A temperature of 4°C was choosen to block phosphatase activity. Thymocytes 

were stimulated with CD3 Ab for 120 min at 4°C since at this point in time the difference in 

Fyn activity between wt and myrPKB tg thymocytes stimulated at 4°C was most obvious 

(Figure 5.15). Insoluble fractions 1-4 were identified as lipid raft fractions by detection of 

ganglioside GM1 with cholera toxin (GM1-CTX). GM1 was not present in soluble fractions 8 

and 9. Ganglioside GM1 (monosialotetrahexosylganglioside) belongs to the ganglio series of 

gangliosides, which possess one sialic acid residue, bind to CTX (cholera toxin) and have 

been shown to localize in lipid rafts (Morales-Garcia, Fournie et al. 2008). 

Analysis of CD3 stimulated cells (Figure 5.17) revealed an increased amount of total Fyn, 

pY417 Fyn and total PAG in the lipid raft fractions 1-3 of myrPKB tg thymocytes, especially in 

fraction 1 (marked by red rectangles in Figure 5.17). Importantly, the higher accumulation of 

pY417 Fyn in fraction 1 did not correlate with a proportional increase of pY314 PAG, 

suggesting that ‘hyperactive’ Fyn in this fraction did not lead to a proportional 

hyperphosphorylation of PAG. Thus, in stimulated myrPKB tg thymocytes Y417 

phosphorylated ‘hyperactive’ Fyn and PAG are pesent in the same lipid raft fractions, i.e. Fyn 

and PAG are not sequestered from each other, but ‘hyperactive’ Fyn does not enhance 

phosphorylation of PAG at Y314 and recruitment of Csk, under these stimulatory conditions. 

75 

http://en.wikipedia.org/wiki/Sialic_acid


5. Results 

 

wt stim. PKB stim.

1 2 3 4 8 9 1 2 3 4 8 9

pY417 Fyn

Fyn

pY314 PAG

PAG 

Csk

GM1-CTX

fraction

10.97

0.67

4.15

17.34

1.26

12.45

5.62

12.39

23.99

1.69

14.62

0.78

9.69

25.29

0.82

12.33

1.24

11.54

24.61

0.33

4.56

1.36

10.18

15.68

3.32

 
Figure 5.17 ‘Hyperactive’ Fyn and PAG co-localize in lipid rafts of myrPKB tg thymocytes, but 
this does not lead to hyperphosphorylation of PAG at Y314 
Sucrose density gradient centrifugation of protein lysates from wt and myrPKB tg thymocytes, which 
were stimulated with biotin-CD3 Ab (30 g/ml) plus streptavidin (42 g/ml) for 120 min at 4°C, was 
performed. Protein fractions 1-9 were taken from top to bottom of the gradient and analyzed by 
western blot for the indicated proteins. Insoluble lipid raft fractions (lanes 1-4) were identified by 
detection of ganglioside GM1 with cholera toxin (GM1-CTX). Ganglioside GM1 was not detectable in 
soluble fractions 8 and 9. Numbers give the quantified intensities of signals as indicated on the right. 
 

5.2.10 Fyn and PKB co-immunoprecipitate in HEK 293T cells overexpressing Fyn 

and myrPKB 

The previous data indicated a cross-talk between PKB and Fyn, which could be mediated by 

a direct interaction of both molecules. To examine whether PKB and Fyn are associated in 

vivo, experiments to co-immunoprecipitate Fyn and PKB from lysates of wt and myrPKB tg 

thymocytes were performed. However, no association was detectable. We assumed that only 

small amounts of the total pools of Fyn and PKB interact for a restricted period of time or that 

the association is very labile. Therefore, transfected HEK 293T cells overexpressing Fyn and 

myrPKB were analyzed. When PKB was immunoprecipitated, association of transfected 

Fyn was detected (Figure 5.18 A). Likewise, immunoprecipitated Fyn associated with PKB 

(Figure 5.18 B). Thus, under these conditions Fyn and myrPKB associate in vivo. 
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Figure 5.18 Fyn and myrPKB co-immunoprecipitate in vivo 
HEK 293T cells were transfected with Fyn and myrPKB. Cells were lysed and IPs were performed: 
A) IP of PKB and detection of associated Fyn by western blot (lane 2). Analysis with mouse anti-rat 
IgG Ab served as isotype control for PKB IP (lane 1). The two right lanes depict Fyn and myrPKB 
expression in the cell lysates used for IPs. 
B) IP of Fyn and detection of associated PKB by western blot. IP with mouse anti-rat IgG Ab (lane 1) 
served as isotype control for Fyn IPs. 
 

5.2.11 MyrPKB reduces PAG phosphorylation at Y314 in HEK 293T cells 

overexpressing Fyn, PAG and myrPKB 

Since myrPKB tg thymocytes and CD4+ T cells showed enhanced Fyn activity, we analyzed 

the impact of myrPKB on the activatory phosphorylation of Fyn at Y417 and phosphorylation 

of PAG at Y314 in HEK 293T cells transfected with Fyn, Flag-tagged PAG and myrPKB. 

Protein expression of the transfected DNA constructs was controlled by detection of Flag-

tagged PAG, total Fyn and pS473 PKB via western blot. PAG Y314 phosphorylation was not 

observed in the absence of Fyn co-transfection, whereas Fyn overexpression resulted in 

strong phosphorylation of PAG at Y314 (Figure 5.19). Co-transfection of myrPKB resulted in 

a reduction of the activatory phosphorylation of Fyn at Y417 and an almost complete loss of 

PAG phosphorylation at Y314. If Y314 phosphorylation of PAG is considered as an indicator 

of Fyn activity, co-transfection of myrPKB led to decreased Fyn activity, resulting in reduced 

phosphorylation of PAG at Y314. Thus, PKB clearly affects Fyn activity in HEK 293T cells, 

however, opposite to the effects seen in CD4+ T cells and thymocytes from myrPKB tg mice, 

where myrPKB led to increased Fyn activity. This is most likely due to the different cell types 

used and the different expression levels of Fyn and myrPKB in these cells. 
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Figure 5.19 MyrPKB reduces the phosphorylation of Fyn at Y417 and of PAG at Y314 in HEK 
293T cells overexpressing Fyn, PAG and myrPKB 
HEK 293T cells were transfected with Fyn (4000 ng), Flag-tagged PAG (950 ng) and myrPKB (PKB, 
50 ng). Cells were lysed and western blot analysis for expression and phosphorylation of the indicated 
proteins was performed. Control cells (cont.) were transfected with empty vector only. Actin 
expression was used as control for protein loading. Data are representative of 3 independent 
experiments. 
 

5.2.12 Generation of GST-Fyn and GST-Csk fusion constructs 

The increased Fyn activity in myrPKB tg cells and the co-immunoprecipitation of PKB and 

Fyn in HEK 293T cells suggested that Fyn could be a direct target of PKB, the more as Fyn 

possesses canonical PKB phosphorylation sites at T12 and T82. T82 is conserved in mouse 

and human Fyn and T12 is present in human, but not mouse Fyn. In addition, the sequences 

at T181, T223, S444 and S448 of Fyn show similarity to the PKB consensus motif and thus 

could also be PKB target sites. To examine whether PKB phosphorylates Fyn at these sites, 

GST-Fyn fusion proteins were generated as illustrated in Figure 5.20 A. The GST-tag was 

fused to the N-terminus. Fyn1/2 consists of the N-terminal, unique and SH3 domain of Fyn, 

whereas Fyn1/3 additonally includes major parts of the SH2 domain. Fyn4/5 contains the 

major part of the Fyn kinase domain and the C-terminal negative regulatory domain of Fyn. 

A possible cross-talk of PKB with Fyn could be mediated via Csk. Csk is known to 

phosphorylate Fyn at Y528, which is an inhibitory phosphorylation in the C-terminal 

regulatory domain of Fyn (Takeuchi, Kuramochi et al. 1993). Csk could also be a target of 

PKB, because it possesses a canonical PKB phosphorylation site at S284 in its catalytic 

domain. We, therefore, also generated GST-Csk fusion proteins with the GST-tag fused to 

the N-terminus (Figure 5.20 B). Csk1/2 consists of the N-terminal amino acids 1-177 of Csk, 
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which include the SH3 and SH2 domains. Csk3/4 contains the C-termial amino acids 178-

450 and harbors the kinase domain. S364 of Csk, which is phosphorylated by PKA and leads 

to increased Csk activity, is also indicated (Vang, Torgersen et al. 2001). 

GST-Fyn constructs

Fyn1/2 (SH3) aa 1-142

Fyn1/3 (SH3 + SH2) aa 1-233

Fyn4/5 (kinase-domain)
aa 311-534

SH3-Domäne
(85-142)
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Csk3/4 (kinase-domain)
aa 178-450

Figure 5.20 Schematic representation of GST-Fyn and GST-Csk fusion constructs 
A) GST-Fyn constructs: the canonical PKB phosphorylation motifs at T12 and T82 are indicated as 
well as possible non-canonical PKB phosphorylation sites at T181, T223, S444 and S448. The Fyn 
autophosphorylation site at Y417 and the Csk phosphorylation site at Y528 are also indicated. 
B) GST-Csk constructs: the canonical PKB phosphorylation site at S284 and the PKA phosphorylation 
site at S364 are indicated. 
 

5.2.13 PKB phosphorylates Fyn at T82 in vitro 

The GST-fusion constructs represented in Figure 5.20 were expressed in E. coli BL21, GST-

fusion proteins were isolated via glutathione columns and examined in IVKs for 

phosphorylation by PKB. Figure 5.21 shows the analysis of GST-Fyn fusion proteins. The 

amount of GST-Fyn present in each reaction was monitored by coomassie staining of the gel 

(lower panel). The GST-NFAT fusion protein hNFATc1A (aa 177-336) was used as positive 

control for PKB activity (lanes 1-3). PKB was active in the presence of DMSO (lane 2) or the 

Src kinase inhibitor PP2 (lane 3), which were used as vehicle control and to inhibit possible 
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autophosphorylation of the GST-Fyn4/5 fusion protein harboring parts of the kinase domain 

(lanes 8-11). No phosphorylation of GST-NFAT was detected without PKB (lane 14). The 

background phosphorylation caused by PKB and reaction mixture, i.e. without any substrate, 

was also monitored (lane 13). The bands appearing in this lane (and all other lanes) thus 

represent unspecific phosphorylation resulting from contaminating proteins in the commercial 

PKB enzyme sample. To exclude that signals obtained from GST-Fyn proteins resulted from 

phosphorylation of the GST part by PKB, the phosphorylation of GST was also tested. GST 

has a molecular mass of about 26 kDa and was detected by coomassie staining (lane 12). 

Phosphorylation of GST by PKB was not detectable. 
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Figure 5.21 PKB phosphorylates Fyn in vitro 
GST-Fyn1/2, GST-Fyn1/3 and GST-Fyn4/5 fusion proteins were analyzed for phosphorylation by PKB 
by IVKs. The analyzed proteins were incubated with IVK reaction mixture without or with PKB. 
hNFATc1A (aa 177-336) was used as positive control for PKB kinase activity. Phosphorylation of 
substrates was detected by autoradiography (upper panel). The amount of substrate protein in each 
reaction was visualized by coomassie staining (lower panel). 
 
GST-Fyn1/2 (lanes 4, 5) as well as GST-Fyn1/3 (lanes 6, 7) harboring A12 and T82 were 

phosphorylated by PKB. The signal of GST-Fyn1/3 was slightly stronger in comparison to the 

phosphorylation intensity of GST-Fyn1/2. Additional phosphorylation could occur in the SH2 
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domain present in GST-Fyn1/3, which could be T181 or T223, or combination of the SH2, 

SH3, unique and N-terminal domain might increase PKB phosphorylation efficiency. To 

exclude possible autophosphorylation of GST-Fyn4/5, the Src kinase inhibitor PP2, dissolved 

in DMSO, was included. However, GST-Fyn4/5 was not phosphorylated by PKB and 

autophosphorylation was also not detectable. 

To identify the PKB phosphorylation site(s) in N-terminal Fyn, constructs were generated with 

mutations at position A12 and/or T82. Mutation T−>A82 in combination with A12 resulted in 

complete abolishment of GST-Fyn1/2 phosphorylation (Figure 5.22). Since GST-FynT12/A82 

was not phosphorylated but GST-FynA12/T82 was phosphorylated, T82 is a PKB site in Fyn. 

Analysis of GST-Fyn1/3 harboring A82 and A12 led to a strong decrease in phosphorylation 

in comparison to GST-Fyn1/3 possessing T82. The low level of phosphorylation left despite 

the elimination of T82 could result from additional PKB sites present in GST-Fyn1/3, which 

are absent in GST-Fyn1/2. Altogether, the IVKs clearly showed that the conserved T82, but 

not T12, is a PKB phosphorylation site in vitro. 
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Figure 5.22 PKB phosphorylates Fyn at T82 in vitro 
GST-Fyn1/2 and GST-Fyn1/3 fusion proteins with the indicated mutations were analyzed for 
phosphorylation by PKB by IVKs. The analyzed proteins were incubated with IVK reaction mixture 
without or with PKB. hNFATc1A (aa 177-336) was used as positive control for PKB kinase activity. 
Phosphorylation of substrates was detected by autoradiography (upper panel). The amount of 
substrate protein in each reaction was visualized by coomassie staining (lower panel). 
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IVK analysis of GST-Csk1/2, GST-Csk3/4 and GST-Csk3/4 with S264 mutated to A showed 

that Csk is not phosphorylated by PKB in vitro (Figure 5.23). 
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Figure 5.23 Csk is not phosphorylated by PKB in vitro 
GST-Csk1/2, GST-Csk3/4 and GST-Csk3/4 fusion proteins with the indicated mutation (S−>A284) 
were analyzed for phosphorylation by PKB by IVKs. The analyzed proteins were incubated with IVK 
reaction mixture without or with PKB. GST-NFATc1A (aa 177-336) was used as positive control for 
PKB kinase activity. Phosphorylation of substrates was detected by autoradiography (upper panel). 
The amount of substrate protein in each reaction was visualized by coomassie staining (lower panel). 
 

5.3 Ionomycin induced anergy 

5.3.1 Ionomycin induced anergy is reduced in myrPKB tg CD4+ T cells 

Previous publication showed an increased amount of Fyn associated with PAG in CD4+ T 

cells anergized by ionomycin treatment (Davidson, Schraven et al. 2007). These and other 

data (Smida, Posevitz-Fejfar et al. 2007) suggest that Fyn plays an important role in anergy. 

We, therefore, examined the impact of hyperactive Fyn in myrPKB tg CD4+ T cells on 

ionomycin induced anergy. Wt and myrPKB tg CD4+ T cells were stimulated with CD3+CD28 

Abs for 2 days, expanded in IL-2 for 3 days and then treated for 16 h with ionomycin to 

induce anergy or with the vehicle DMSO. After ionomycin treatment, cells were restimulated 

for 48 h with immobilized CD3 Ab, CD3+CD28 Abs or PMA+Ionomycin and proliferation was 

determined. As shown in Figure 5.24 A, ionomycin treatment reduced the proliferation of 

CD3 Ab-stimulated wt CD4+ T cells by 84% in comparison to DMSO treated cells, indicating 

that ionomycin induced anergy in wt cells. However, ionomycin treatment of myrPKB tg CD4+ 

T cells reduced their proliferation only by 44%. When assessing proliferation after stimulation 

with CD3+CD28 Abs, hyporesponsiveness was no longer detectable in ionomycin treated 

myrPKB tg CD4+ T cells, whereas ionomycin treated wt cells still showed a 79% reduction in 

proliferation. Anergy was overcome by restimulation of cells with PMA+ionomycin, which 

resulted in intensive proliferation of wt and myrPKB tg cells. Taken together, these results 
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show that myrPKB delivers signals that counteract or ameliorate anergy induction by 

ionomycin. 

Figure 5.24 B shows the reduction of CD3 Ab induced proliferation after ionomycin treatment 

relative to the DMSO control of wt and myrPKB tg CD4+ T cells for 2 experiments, 

demonstrating that ionomycin induced anergy was ‘stronger’ in wt than myrPKB tg cells. 
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Figure 5.24 Ionomycin induced anergy is reduced in myrPKB tg CD4+ T cells 
A) CD4+ T cells from wt and myrPKB tg mice were activated for 48 h with immobilized CD3 Ab 
(3 μg/ml) and soluble CD28 Ab (1 μg/ml) followed by expansion in IL-2 for 3 days. Subsequently, cells 
were treated with ionomycin (1 μM) for 16 h. Control cultures were treated with DMSO. Cells were 
then restimulated for 48 h with immobilized CD3 Ab (1 g/ml), immobilized CD3+CD28 Abs (1/2.5 
g/ml) or with PMA plus ionomycin (50/747 ng/ml) and proliferation was measured by [3H]-thymidine 
incorporation (cpm). Standard deviations from triplicates are shown. 
B) Bars represent percent reduction of proliferation induced by ionomycin treatment relative to DMSO 
control of wt and myrPKB tg CD4+ T cells for 2 independent experiments. CD4+ T cells were expanded 
and anergized as described under A and thereafter restimulated for 48 h with immobilized CD3 Ab    
(1 g/ml). Proliferation of DMSO treated control cells was set as 100%. 
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Above data raised the question, whether anergized wt and more ‘resistant’ myrPKB tg T cells 

would show altered Fyn activity. Therefore, wt and myrPKB tg CD4+ T cells were anergized 

with ionomycin, Fyn was immunoprecipitated and Fyn activity determined by IVK. Ionomycin 

treated wt CD4+ T cells showed increased Fyn auto- and transphosphorylation activity in 

comparison to DMSO treated cells (black numbers in Figure 5.25). In contrast, ionomycin 

treated myrPKB tg CD4+ T cells showed a slight reduction in Fyn autophosphorylation and 

stronger reduction of enolase phosphorylation (red numbers in Figure 5.25). Thus, ionomycin 

induced anergy in wt CD4+ T cells is associated with an increase in Fyn activity, whereas 

ionomycin treatment of myrPKB tg T cells does not lead to enhanced Fyn activity, which 

correlates with an increased proliferation after restimulation. 
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Figure 5.25 Analysis of Fyn activity in ionomycin treated CD4+ T cells 
CD4+ T cells were activated for 48 h with immobilized CD3 Ab (3 μg/ml) and soluble CD28 Ab 
(1 μg/ml). After that, cells were expanded in IL-2 (50 units/ml) for 3 days and treated with ionomycin  
(1 μM) for 16 h for anergy induction. Control cultures were treated with DMSO instead. Fyn was 
immunoprecipitated from 1 x 107 cells per sample and IVKs were performed to assess Fyn activity. 
Fyn autophosphorylation and enolase transphosphorylation were detected by autoradiography. The 
substrate enolase was visualized by coomassie staining and the amount of Fyn immunoprecipitated 
was monitored by western blot (bottom-line). Control immunoprecipitation (IP cont.) was performed 
with mouse anti-rat IgG Ab. Numbers give the amounts of p-Fyn normalized to the amounts of Fyn 
immunoprecipitated (p-Fyn rel. IP Fyn) and the amounts of p-enolase normalized to the amounts of 
Fyn immunoprecipitated and the total amounts of enolase (p-enolase rel. IP Fyn/enolase). 
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6 Discussion 

6.1 Cross-talk of PKB with NFAT 

Thymocytes from Cam tg mice, expressing a constitutively active form of the phosphatase 

calcineurin, show strongly increased nuclear NFAT and a DN3 block in differentiation. This 

block is linked to a failure of Rag expression and TCR -chain rearrangement. Simultaneous 

expression of myrPKB reduces this DN3 block by allowing Rag and pre-TCR formation. 

Since nuclear NFAT levels are strongly downregulated in myrPKB Cam tg thymocytes, the 

question arose whether NFAT factors are involved in Rag gene expression. To answer this 

question, EL4 cells were transfected with a Rag2 promoter luciferase reporter construct and 

Rag2 promoter activity was detected in these cells. Co-transfection of either NFATc1 or 

NFATc2 led to a shut down of Rag2 promoter activity. These and CHIP studies (Patra, 

Drewes et al. 2006) revealed that NFAT binds to the Rag promoter/enhancer elements, and 

thus we identified NFAT as a novel and one of the few transcription factors so far known to 

be involved in the regulation of Rag expression in T cells (Kuo and Schlissel 2009). 

Previous studies showed that active PKB also regulates NFAT activation in peripheral T 

cells: myrPKB tg T cells showed reduced NFAT activation after TCR stimulation, although 

they proliferated better than wt T cells and produced more cytokines. An interaction of NFAT 

and PKB in vivo was shown by co-immunoprecipitation of both proteins in peripheral T cells 

(Patra, Na et al. 2004). The latter suggested that NFAT could be a direct phosphorylation 

target of PKB. Therefore, several GST-NFATc1A fusion proteins, which harbor parts of the 

NFATc1 regulatory domain, were generated to analyze whether PKB phosphorylates NFAT 

in vitro. Indeed, in IVKs recombinant PKB phosphorylated the NFATc1 regulatory domain in 

the N-terminal (aa 177-261) and C-terminal (aa 262-336) segment in vitro (Figure 5.6). 

Analysis of mutants, in which possible PKB phosphorylation sites were mutated one by 

another, indicated that PKB phosphorylates NFATc1 within the motifs SPRVSVTDDS and 

SPRASVTEES, named mut C and mut D, respectively. However, several single mutations in 

the regions of mut C and mut D did not cause a reduction of NFATc1 phosphorylation (Figure 

5.8). Only additive mutations, mut W, mut A, mut B in combination with mut D or mut C and 

mut D, led to a reduction of NFATc1 phosphorylation (Figure 5.7). Thus, the complex 

interplay of all mutations seems to be a prerequisite for the impact on phosphorylation of the 

NFATc1 regulatory domain by PKB in vitro. We can only speculate that mut C and D would 

change the conformation of the NFAT regulatory domain in a way that mut W, mut A and/or 

mut B lead to a reduction of phosphorylation. A modification of protein conformation by 

mutations W, A and/or B leading to reduced phosphorylation by insertion of mut C and D is 

also possible. Transfection experiments to analyze the in vivo effect of PKB on NFAT activity 
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clearly showed that myrPKB reduces NFAT-induced IL-2 promoter activity (Figure 5.2). 

However, mutation of serines and threonines present in the sequences of mut C and D in 

NFATc1A did not change its activity as analyzed by IL-2 promoter luciferase assays (data not 

shown). Thus, so far it was impossible to identify the definite PKB site(s) in NFAT. 

PKA phosphorylates NFAT at S245, S269 and S294, priming NFAT for further 

phosphorylation by GSK-3 at the GSK-3 consensus sites (S/TXXXpS) at S241 and S290, 

leading to cytoplasmic accumulation and inactivation of NFAT (Sheridan, Heist et al. 2002). 

Thus, we tested whether PKA, GSK-3 and PKB alone or in combination revealed differences 

in inhibiting NFAT activation. PKB, GSK-3 and PKA alone inhibited NFAT activity and PKB in 

combination with GSK-3 or PKA enhanced NFAT inhibition induced by the NFAT kinases 

alone. PKA and GSK-3 in combination caused stronger inhibition of NFAT than each protein 

alone confirming that both kinases cooperate in causing cytoplasmic accumulation of NFAT. 

The strongest reduction of NFAT activity was obtained by co-transfection of PKB, PKA and 

GSK-3 (Figure 5.3). Thus, PKB, PKA and GSK-3 additively inhibit NFAT activity. It is, 

however, unclear, whether PKB inhibits NFAT by a mechanism independent from PKA and 

GSK-3 and the single mechanisms sum up to the total effect or whether PKB affects GSK-3 

and PKA activity or other proteins. 

NFAT and Foxp3 were shown to interact in co-transfected HEK293 T cells, and retroviral 

expression of Foxp3 in naive peripheral mouse CD4+ T cells causes a reduction of IL-2 and 

IL-4 expression (Bettelli, Dastrange et al. 2005). Foxp3 is a definitive marker of murine 

regulatory T cells and was shown to downmodulate the activation of NFAT in Jurkat 

transfection assays. The crystallographic structure of the NFATp-Foxp2-DNA complex has 

been unravelled and disruption of the NFAT-Foxp3 interaction by mutating the NFAT-binding 

sites in Foxp3 had an impact on several cellular processes: it reduced the ability of Foxp3 to 

repress IL-2 gene expression, interfered with the ability of Foxp3 to upregulate expression of 

the Treg markers CD25 and CTLA4 and diminished Treg suppressor function in a model of 

autoimmune diabetes in mice (Wu, Borde et al. 2006). 

In tansfection experiments with HEK 293T cells, we analyzed the impact of Foxp3 alone or in 

combination with myrPKB on NFAT-induced IL-2 production. MyrPKB as well as Foxp3 

reduced NFAT activity, and co-transfection of Foxp3 and myrPKB caused stronger inhibition 

of NFAT activity than either factor alone (Figure 5.4). Thus, Foxp3 and myrPKB additively 

inhibit NFAT activity, similar to the above results with PKA and GSK-3. Transfection of 

NFATc1 with mutations in mut C and mut D yielded results similar to wt NFATc1. 

Mass spectrometry analysis of NFATc2 extracted from resting D5 and Cl.7W2 mouse T cell 

lines revealed phosphorylation at 21 serine residues. Eighteen of these serine residues were 

localized in the N-terminal regulatory domain and three phosphoserines were present within 
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the C-teminal domain. Fourteen of the eighteen phosphoserines in the N-terminal regulatory 

domain of NFAT were localized in the conserved serine-rich regions (SRR) and serine-

proline boxes (SP), SRR-1, SP-2, SRR-2 and SP-3. It was shown that concerted 

dephosphorylation of 13 serine residues in the conserved sequences of the regulatory 

domain of NFAT is required for masking of the nuclear export signal (NES) and for full 

unmasking of the nuclear localization signal (NLS), resulting in nuclear translocation and full 

transcriptional activity of NFAT (Okamura, Aramburu et al. 2000). Two models have been 

used to describe the activation of NFAT: the conformational switch model is based on the 

assumption that only 2 conformations of NFAT exist: an active and an inactive conformation. 

When NFAT proteins are phosphorylated, many NFAT molecules are in the inactive 

conformation at any time and only a small number is in the active conformation. This 

conformational preference is reversed by dephosphorylation of NFAT. Thus, progressive 

dephosphorylation of NFAT increases the probability that a single NFAT molecule will fold 

into the active conformation. The model of progressive conformational changes is based on 

the assumption that each phosphorylation state of NFAT defines a distinct conformation. 

Sequential changes in NFAT phosphorylation would lead to sequential changes of 

conformation. Thus, all fully phosphorylated NFAT proteins would exclusively exist in an 

inactive conformation, and all completely dephosphorylated proteins would assume an active 

conformation. 

Our IVKs with wt and mutant GST-NFAT fusion proteins revealed that the complex interplay 

of all mutations analyzed in the regulatory NFAT domain seems to be a prerequisite for the 

reduction of NFAT phosphorylation by PKB in vitro. In view of the model of progressive 

conformational changes, a specific protein conformation could be caused by each mutation 

inserted. Only the interplay of mut W, A, B with mut D or with mut C plus mut D could lead to 

a protein conformation, which inhibits NFAT phosphorylation by PKB. With regard to the 

conformational switch model, only the interplay of all mutations would increase the probability 

of a conformation, which causes a reduction of NFAT phosphorylation. 

In conclusion, in various transfection assays and in Cam tg mice PKB was shown to 

downregulate NFAT activity. The in vitro kinase assays showed that PKB phosphorylates 

NFAT in the regulatory domain, suggesting that PKB could directly act on NFAT. Since 

inhibition of NFAT by GSK3 and PKA was enhanced by PKB, one could speculate that in 

vivo PKB could act as a priming kinase for PKA and/or GSK3 or vice versa. A single site for 

PKB phosphorylation, however, could not be identified, suggesting that special 

conformations and several phosphorylations by PKB might be involved. Recent publication 

showed that PKB activates NFAT via Homer proteins. The interaction of the cytoplasmic 

scaffolding proteins Homer2 and Homer3 with NFAT diminishes binding of CN to NFAT and 

thus reduces dephosphorylation of NFAT by CN, leading to reduced NFAT activity. Thus, 
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Homer molecules act as negative regulators of TCR signaling. Active PKB reduces the 

binding of Homer2 and Homer3 to NFAT, which results in enhancement of NFAT activity and 

thus TCR signaling (Huang, Huso et al. 2008). 

6.2 Cross-talk of PKB with Fyn 

Protein modifications by phosphorylation and acetylation in response to extracellular stimuli 

provide a mechanism to induce rapid changes in protein function (Karin and Hunter 1995; 

Berger 1999). Protein modifications influence protein function by generating or eliminating 

binding sites for the recruitment of other proteins or by modification of the conformation of a 

protein. Phosphorylation and dephosphorylation are ubiquitous modes for regulation of 

protein function (Cohen 2000). As outlined before, NFAT family transcription factors are a 

good example for regulation of protein activity by phosphorylation and dephosphorylation 

(Okamura, Aramburu et al. 2000). Phosphate groups can also modify the local environment 

of a functional structure and thereby determine the affinity of a protein for other interaction 

partners. Examples for this modus of changing protein function are plenty when looking at 

TCR signaling. For instance, docking sites for other proteins (e.g. ZAP-70, GRB2 and Csk) 

are provided by phosphorylation of the TCR-associated ITAMs after TCR triggering or by 

phosphorlyation of the transmembrane adapter proteins LAT and PAG, respectively (Horejsi, 

Zhang et al. 2004; Smith-Garvin, Koretzky et al. 2009) The activity of a protein can be 

modified by phosphorylation of sites distant from the functional motifs by induction of global 

conformational changes (Volkman, Lipson et al. 2001). A striking example for changes in 

global protein conformation induced by phosphorylation leading to catalytic activation of 

enzymes is the activation of the Src kinases Fyn and Lck after TCR stimulation (Palacios and 

Weiss 2004). 

This study showed that activated myrPKB tg CD4+ T cells are more resistant to Src kinase 

inhibitor PP2 and to MEK inhibitors PD98059 and UO126 (Figure 5.9), since the proliferation 

of myrPKB tg cells was clearly less inhibited in the presence of the inhibitors in comparison 

to wt CD4+ T cells. In western blot analysis of CD3/CD4 stimulated CD4+ T cells enhanced 

Erk phosphorylation was detected in myrPKB tg CD4+ T cells (Figure 5.10), but increased 

phosphorylation of the activatory tyrosines 394 and 417 of Lck and Fyn was not obvious, 

except for unstimulated myrPKB tg cells. However, assessment of Fyn activity by IVKs 

revealed Fyn hyperactivity in unstimulated and stimulated myrPKB tg CD4+ T cells and 

thymocytes (Figure 5.11, Figure 5.13). Increased Fyn activity could contribute to increased 

inhibitor resistance and increased downstream Erk phosphorylation. Both, PKB and Fyn, are 

proto-oncogenes. Membrane targeting of PKB was shown to be the mechanism for the 

oncogenic potential of v-Akt. A mutation in the PH domain of PKB has impact on its 

oncogenic potential: a glutamic acid to lysine substitution at position 17 in the PH domain led 
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to increased membrane translocation and thus activation of PKB, and this was associated 

with the induction of leukemia in mice (Carpten, Faber et al. 2007). In PKB tg mice, 

hyperactivity of PKB was induced by its constitutive membrane targeting via an N-terminal 

myristoylation sequence. Thus, the mechanism of hyperactivation of PKB in tg mice used 

here is similar to hyperactivation of PKB causing cancer. Indeed, myrPKB tg mice develop 

lymphoma on a homozygous background (data not shown). Our data suggest that a cross-

talk of PKB with Fyn, resulting in enhanced Fyn activity, could be an important mechanism by 

which aberrant PKB signaling fosters tumorigenesis. Enhanced Fyn activity could result from 

a direct interaction of PKB with Fyn or from indirect mechanisms like phosphorylation and 

inactivation of Csk. Both, Fyn and Csk harbor canonical PKB phosphorylation sites and 

inhibition of Csk by PKB phosphorylation could therefore enhance Fyn activity. 

Phosphorylation of Src in the N-terminal region at S12 in PMA stimulated SH-SY5Y cells (an 

adrenergic clone of the human neuroblastoma cell line SK-N-SH) coincided with increased 

Src activity and neuronal cell differentiation (Bjelfman, Meyerson et al. 1990), and PKC was 

shown to phosphorylate S12 of Src in vitro (Gould, Woodgett et al. 1985). Phosphorylation of 

Src at S17 mediated by PKA (Schmitt and Stork 2002; Abrahamsen, Vang et al. 2003; 

Obara, Labudda et al. 2004) and at S75 mediated by Cdk5 kinase (Kato and Maeda 1995; 

Kato and Maeda 1997; Kato and Maeda 1999) have been reported, and phosphorylation of 

S75 is associated with spherical cell morphology. Chicken Src is also phosphorylated in the 

N-terminal region at T34, T46 and S72 during mitosis of fibroblasts and the catalytic 

component of metaphase promoting factor (MPF) from Xenopus eggs phosphorylates these 

sites in vitro (Chackalaparampil and Shalloway 1988; Shenoy, Choi et al. 1989). The 

phosphorylations at T34 and S72 increase the kinase activity of Src in mitotic cells (Shenoy, 

Chackalaparampil et al. 1992). However, the exact functions of these phosphorylations and 

whether they occur in T cells are not clear. 

PKA phosphorylates S364 of Csk leading to enhanced Csk activity thereby causing reduced 

Lck activity and thus reduced TCR -chain phosphorylation (Vang, Torgersen et al. 2001). 

PKA and PKC phosphorylate Lck at S42 and Erk phosphorylates Lck at S59 in vitro (Watts, 

Sanghera et al. 1993; Winkler, Park et al. 1993). Lck S59 phosphorylation by Erk is 

considered as a mechanism, which inhibits dephosphorylation and inactivation of Lck by the 

SH2 domain-containing phosphatase 1 (SHP-1) (Stefanova, Hemmer et al. 2003). 

Altogether, these data suggest that S/T phosphorylations of Src kinases in T cells have a 

central impact on their function. 

In this work, Fyn was identified as a novel potential substrate of PKB, and T82 of Fyn was 

identified as the critical PKB phosphorylation site in vitro. T82 is conserved in mouse and 

human Fyn. T12, which is present in human Fyn but missing in mouse Fyn, was not 
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phosphorylated by PKB (Figure 5.22). Phosphorylation of Csk by PKB in vitro was not 

detected under the experimental conditions used (Figure 5.23). However, it cannot be 

excluded that the canonical PKB site in the kinase domain of Csk, nevertheless, could be a 

PKB target in vivo, for instance, after priming of Csk by other kinases. The PKB 

phosphorylation site, T82, is positioned in the unique region of Fyn in close proximity to its 

SH3 domain. Thus, phosphorylation of T82 could modify the local conformation of Fyn and 

thereby influence the conformation of the SH3 domain. This could reduce its binding to the 

SH2-kinase linker region of Fyn, which stabilizes the inactive conformation. Therefore, a 

modification of the local conformation of Fyn by phosphorylation of T82 could modify its 

global conformation and thereby increase Fyn activity. Binding of PKB to Fyn, which was 

detected in HEK 293T cells overexpressing both molecules (Figure 5.18), could also change 

the conformation of Fyn and thus enhance its activity or the interaction with specific binding 

partners. 

Besides increased Fyn activity, Erk phosphorylation was enhanced in myrPKB tg CD4+ T 

cells (Figure 5.10). Interaction of PKB and Erk was found in mouse kidney proximal tubular 

epithelial (MK-PT) cells. Erk and PKB were shown to co-immunoprecipitate as parts of a 

multimolecular complex additionally containing PDK1 and ribosomal S6 kinase (Rsk) (Sinha, 

Bannergee et al. 2004). Enhanced Erk activity could have an impact on Lck by reduced 

binding of the phosphatase SHP-1 due to enhanced phosphorylation of Lck at S59 by Erk. 

Since SHP-1 dephosphorylates the activatory Y394 of Lck (Chiang and Sefton 2001), 

decreased SHP-1 binding to Lck should result in enhanced Lck activity. Lck is positioned 

upsream of Erk signaling, and hyperactivity of Lck should result in enhanced Erk 

phosphorylation, constituting a positive feedback loop. Indeed, Lck was shown to be 

hyperactive in thymocytes from myrPKB tg mice (Na, Patra et al. 2003). The activation of Fyn 

in CD4+ T cells stimulated by co-aggregation of TCR and CD4 was shown to be dependent 

on Lck in lipid raft fractions (Filipp, Zhang et al. 2003). The dependency of Fyn activation on 

the presence of active Lck was also found in NIH 3T3 cells overexpressing these two 

enzymes (Filipp, Moemeni et al. 2008). Thus, hyperactivity of Fyn in myrPKB tg thymocytes 

could also be caused by enhanced activity of Lck. Both, hyperactive Fyn and Lck, could 

contribute to hyperphosphorylation of Erk in myrPKB tg cells. 

Fyn and Lck were shown to contribute to Erk phosphorylation but via different mechanisms. 

Lck-/- CD4+ T cells display reduced activity of ZAP-70, reduced phosphorylation of LAT at 

Y136, which is important for recruitment of PLC reduced recruitment of Ras GRP to the 

plasma membrane and diminished phosphorylation of PKC at T538. The RasGRP pathway 

is mainly responsible for the activation of Erk in Jurkat cells (Roose, Mollenauer et al. 2005). 

Although this pathway is switched off in Lck-/- CD4+ T cells, Erk phosphorylation was still 
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induced after stimulation with CD3 Ab or CD3+CD4 Abs. Since pErk levels were only 

moderately reduced in Lck-/- in comparison to wt CD4+ T cells, it seems that Lck contributes 

to Erk activation but does not represent the only pathway mediating Erk phosphorylation. On 

the other hand, co-elimination of Fyn in Lck-/- CD4+ T cells nearly completely abrogated Erk 

activation after stimulation, indicating that Fyn mediates phosphorylation of Erk by another 

pathway than Lck (Lovatt, Filby et al. 2006). The detected increased Fyn activity in myrPKB 

tg cells in combination with enhanced Lck activity, as previously shown for thymocytes, thus 

could lead to enhanced Erk activation, decreased sensitivity to Src/MEK inhibitors and 

enhanced proliferation. 

It is important to note that Fyn does not exclusively act as a positive regulator of TCR 

signaling, but can also function as a negative regulator. A positive regulatory function of Fyn 

was deduced from slightly reduced proliferative responses of Fyn-/- splenic T cells after 

stimulation with CD3 Ab and PMA and their low level of IL-2 secretion. A stronger 

proliferative defect was found in Fyn-/- thymocytes after stimulation with CD3 Abs and PMA 

(Appleby, Gross et al. 1992; Stein, Lee et al. 1992). On the contrary, Fyn-/- T cells were 

shown to be hyperproliferative and to produce more IL-2 after peptide/MHC stimulation. 

Enhanced proliferation of Fyn-/- T cells was blocked by IL-2 Abs, indicating that the 

hyperproliferation was driven by IL-2. Furthermore, Fyn-/- T cells required shorter 

peptide/MHC stimulation for the induction of IL-2 production than their wt counterparts. Under 

these conditions, Fyn functions as a negative regulator of TCR signaling and has an impact 

on the response of primary T cells to antigens (Filby, Seddon et al. 2007). 

Fyn is implicated in another negative regulatory mechanism of TCR signaling as it 

phosphorylates Y314 of PAG, the site for recruitment of Csk to PAG (Brdicka, Pavlistova et 

al. 2000; Yasuda, Nagafuku et al. 2002; Filby, Seddon et al. 2007). Thereby, Csk is localized 

in the proximity of its substrates Lck and Fyn and can catalyze the inhibitory 

phosphorylations at Y505 and Y528, respectively. Interestingly, we detected increased Fyn 

activity in myrPKB tg T cells and thymocytes, but this did not lead to a proportional increase 

of Y314 phosphorylation of PAG (Figure 5.12). The amount of Csk associated with PAG was 

also not increased (Figure 5.13). This could be caused by hyperactivity of so far unknown 

phosphatases mediating dephosphorylation of PAG. Reduction of the temperature from 37°C 

to 4°C shifted the reaction equilibrium between kinases and phosphatases towards kinases 

resulting in increased tyrosine phosphorylation (Figure 5.14). Even when experiments were 

performed at 4°C, phosphorylation of Y314 of PAG in myrPKB tg cells showing Fyn 

hyperactivity was not enhanced (Figure 5.15). Thus, it can be excluded to a great extent that 

the lack of increased phosphorylation of PAG at Y314 in PKB tg cells is caused by increased 

activity of phosphatases that dephosphorylate PAG at pY314. Likewise, PAG was associated 

with similar amounts of Csk in wt and myrPKB tg cells, even at 4°C (Figure 5.16). 
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We also considered that the discrepancy between Fyn hyperactivity and PAG Y314 

phosphorylation could result from sequestration of PAG from hyperactive Fyn in myrPKB tg 

cells. We, therefore, performed sucrose density gradient centrifugation to analyze the 

distribution of Fyn and PAG in lipid rafts and cytosolic fractions of wt and myrPKB tg 

thymocytes. Fyn and PAG were present in the same lipid raft fractions, i.e. in PKB tg 

thymocytes PAG and Fyn were not sequestered from each other. In CD3 Ab-stimulated cells 

(120 min at 4°C), increased amounts of Y417 phosphorylated Fyn were found in lipid raft 

fraction 1 of myrPKB tg cells. However, there was no proportional increase in 

phosphorylation of PAG at Y314 (Figure 5.17). Thus, hyperactive Fyn is present in the same 

lipid raft fraction as PAG, but does not enhance PAG phosphorylation. So far, we can only 

speculate on the mechanism for this intriguing result. Physical interaction of Fyn with 

myrPKB or phosphorylation of Fyn by myrPKB, which is also localized in lipid rafts, could 

recruit other molecules into the proximity of Fyn and prevent PAG phosphorylation by this 

phosphorylated form of Fyn. Indeed, Fyn and myrPKB co-immunoprecipitated when 

overexpressed in HEK 293T cells (Figure 5.18), showing that Fyn and myrPKB can associate 

in vivo. Whether Fyn and myrPKB interact directly or via additional proteins functioning as 

adapters is still open. So far, we could not detect myrPKB association with Fyn in thymocytes 

or T cells. Perhaps only small amounts of the total pools of Fyn and myrPKB interact which 

each other for a restricted period of time or the association is very labile. 

Immunoprecipitations of PKB/Fyn/PAG from lipid rafts should shed light on this. Fyn and 

myrPKB do not only associate when overexpressed in HEK 293T cells, but transfection of 

myrPKB resulted in reduced phosphorylation of Fyn at its activatory tyrosine 417 and 

reduced phosphorylation of PAG at Y314. Thus, it seems that PKB reduces Fyn activity 

when overexpressed in HEK 293T cells, an opposite effect as seen in thymocytes and CD4+ 

T cells where myrPKB enhanced Fyn activity. These results confirm a definite cross-talk 

between PKB and Fyn. However, we can only speculate that the opposite effects of PKB on 

Fyn activity in T cells and HEK 293T cells result from the different cell types and different 

expression levels of Fyn and myrPKB. 

Taken together, Fyn is a novel substrate of PKB, whereby active myrPKB can influence 

proximal TCR signaling and T cell activation. 

We also analyzed whether myrPKB tg cells respond differentially to signals inducing anergy 

in T cells. Anergy is a pivotal mechanism to limit ‘unwanted’ T cell activation, e.g. of cells 

reacting to self-antigens outside the thymus or T cells activated without proper co-

stimulation. Human T cells anergized by CD3 stimulation in the absence of CD28 co-

stimulation display enhanced Fyn activity correlating with increased phosphorylation of PAG 

at Y317 and increased Csk association to PAG. This demonstrates that hightened Fyn 

activity is involved in anergy (Smida, Posevitz-Fejfar et al. 2007). Also, induction of anergy in 
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mouse T cells by prolonged ionomycin treatment resulted in enhanced binding of FynT to 

PAG, indicating that Fyn also has a function in the model of ionomycin induced anergy 

(Davidson, Schraven et al. 2007). 

In view of increased Fyn activity in myrPKB tg T cells, we stimulated wt and myrPKB tg CD4+ 

T cells with CD3+CD28 Abs, expanded them for 3 days in IL-2 and then induced anergy by 

treatment of cells for 16 h with ionomycin. Thereafter, cells were restimulated to measure 

their proliferative response and Fyn activity was determined by IVKs. Our experiments 

showed that CD3 Ab induced proliferation of ionomycin treated wt CD4+ T cells was reduced 

by 84% in comparison to wt control cells, whereas proliferation of ionomycin treated myrPKB 

tg CD4+ T cells was only reduced by 44% (Figure 5.24). Thus, induction of anergy is less 

efficient in myrPKB tg cells. 

Analysis of Fyn activity after anergy induction showed increased Fyn activity in wt cells but 

not myrPKB tg cells. Thus, lower Fyn activity in ionomycin treated myrPKB tg CD4+ T cells 

coincided with weak induction of anergy and strong proliferation, whereas ionomycin 

treatment of wt CD4+ T cells resulted in enhanced Fyn activity and strong 

hyporesponsiveness to TCR/CD3 signals (Figure 5.24, Figure 5.25). Weaker Fyn activity in 

PKB tg cells should lead to less efficient PAG phosphorylation and recruitment of Csk and 

other factors that inhibit Ras-Erk signaling (Smida, Posevitz-Fejfar et al. 2007). In addition, 

hyperactivity of Fyn in non-anergized PKB tg cells was not associated with increased PAG 

Y314 phosphorylation. Thus, other Fyn dependent and also Fyn independent mechanisms 

regulated by PKB may contribute to the relative resistance of myrPKB tg cells to anergy 

induction by ionomycin. 

In summary, this study demonstrates that elevated PKB signals critically affect thymocyte 

differentiation processes, T cell activation and anergy induction, involving a cross-talk with a 

novel substrate Fyn and NFAT. Since Fyn and other Src kinases are proto-oncogenes 

involved in cancer progression, which is also valid for PKB, regulation of Fyn activity by PKB 

may represent a novel and important mechanism, whereby PKB promotes tumor formation in 

T cells. 
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Ab antibody 

ADAP adhesion and degranulation promoting adapter protein 

AP-1 activator protein-1 

APC antigen presenting cell 

APS ammoniumperoxodisulfate 

ATP adenosine 5’-triphosphate 

BCR B cell receptor 

BH3 Bcl-2 homology domain 3 

bZIP basic region-leucine zipper 

Cbl casitas B-lineage lymphoma proto-oncogene 

CD cluster of differentiation 

CK1 casein kinase 1 

CN calcineurin 

CRAC channel calcium-release-activated calcium channel 

CsA cyclosporin A 

Csk C-terminal Src kinase 

CTL cytotoxic T cell 

CTLA4 cytotoxic T-lymphocyte antigen 4 

CTX cholera toxin 

DAG diacylglycerol 

DGK- diacylglycerol kinase alpha 

DISC death-inducing signaling complex 

DMSO dimethylsulfoxide 

DN double negative 

DP double positive 

DTT dithiothreitol 

DYRK dual-specificity tyrosine-phosphorylation regulated kinase 

E. coli Escherichia coli 

EDTA ethylenediaminetetraacetic acid 

ER endoplasmatic reticulum 

Erk extracellular signal-regulated kinase 

FasL Fas ligand 

FCS fetal calf serum 

FYB Fyn binding protein 

Gab2 GRB2-associated binding protein 2 
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GADS Grb2-related adapter downstream of Shc 

GEF guanine nucleotide exchange factor 

Glut glucose transporter 

GM-CSF granulocyte macrophage colony-stimulating factor 

Grail gene related to anergy in lymphocytes 

GRB2 growth-factor-receptor-bound protein 2 

GSK-3 glycogen synthase kinase-3 

GST glutathione S-transferase 

h hour 

HSC hematopoietic stem cell 

ic intracellular 

IFN- interferon gamma 

Ig immunoglobulin 

IL interleukin 

IP immunoprecipitation 

IP3 inositol-1,4,5-trisphosphate 

IPTG isopropyl--D-thiogalactopyranoside 

ITAM immunoreceptor tyrosine based activation motif 

Itk IL-2 inducible T cell kinase 

IVK in vitro kinase assay 

JNK JUN N-terminal kinase 

ko knockout 

LAT linker for activation of T cells 

Lck lymphocyte-specific protein tyrosine kinase 

LCR locus control region 

LM n-Dodecyl--D-maltoside 

MAPK mitogen-activated protein kinase 

MEK MAPK/Erk kinase 

MES 2-[N-Morpholino] ethanesulfonic acid 

MHC major histocompatibility complex 

min minute 

MK-PT cells mouse kidney proximal tubular epithelial cells 

MPF metaphase promoting factor 

mTOR mammalian target of rapamycin 

mTORC1 mTOR complex 1 

Nedd4 neural precursor cell expressed developmentally down-regulated 

protein 4 
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NES nuclear export signal 

NFAT nuclear factor of activated T cells 

NFB nuclear factor kappa-light-chain-enhancer of activated B cells 

NHR NFAT-homology region 

NK cell natural killer cell 

NLS nuclear localization signal 

nt nucleotide 

nTreg naturally occurring regulatory T cell 

PA phosphatidic acid 

PAG phosphoprotein associated with glycosphingolipid-enriched 

microdomains 

PD-1 programmed death 1 

PDK1 phosphoinositide-dependent kinase-1 

PEI polyethylenimine 

PEP proline-enriched protein tyrosine phosphatase 

PHLPP PH domain leucine-rich repeat protein phosphatase 

PI3-K phosphatidylinositol 3-kinase 

PIKE-A phosphatidylinositol 3-kinase enhancer-activating Akt 

PIP2 phosphatidylinositol-4,5-bisphosphate 

PIP3 phosphatidylinositol-3,4,5-trisphosphate 

PKA protein kinase A 

PKB protein kinase B 

PKC protein kinase C 

PLC phospholipase C gamma 

PMA phorbol 12-myristate 13-acetate 

PML-nb promyelocytic leukemia nuclear body 

PMSF phenylmethylsulfonylfluoride 

PP2A protein phosphatase 2A 

PRAS40 proline-rich Akt substrate of 40 kDa 

PTEN phosphatase and tensin homologue localized on chromosome ten 

PTP receptor protein tyrosine phosphatase alpha 

RasGRP Ras guanyl nucleotide-releasing protein 

RHR REL-homology region 

rpm rounds per minute 

Rsk ribosomal S6 kinase 

RT room temperature 

Sam68 Src associated in mitosis 68 kDa 
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SAP SLAM-associated protein 

SDS sodium dodecyl sulfate 

SDS-PAGE sodium dodecyl sulfate polyacrylamide gel electrophoresis 

sec second 

SH Src homology 

Shc SH2 domain-containing transforming protein 

SHP-1 SH2 domain-containing phosphatase 1 

SKAP55 Src kinase-assosciated phosphoprotein of 55 kDa 

SLAM signaling lymphocyte activation molecule 

SLAP SLP76 associated protein 

SLP76 Src homology 2 domain-containing leukocyte protein of 76 kDa 

SOS son of sevenless 

SP box serine-proline box 

SRR serine-rich region 

STAT signal transducer and activator of transcription 

SUMO small ubiquitin-like modifier 

TAD transactivation domain 

TCA trichloroacetic acid 

TCR T cell receptor 

TEMED tetramethylethylenediamine 

tg transgenic 

TGF- transforming growth facor beta 

Th cell T helper cell 

ThF follicular T helper cell 

TNF- tumor necrosis factor alpha 

TNF- tumor necrosis factor beta 

Treg regulatory T cell 

TSC2 tuberous sclerosis complex 2 

Tsg101 tumor susceptibility gene 101 protein 

Unc119 uncoordinated 119 

vc vector control 

WASP Wiskott-Aldrich syndrome protein 

XLP X-linked lymphoproliferative syndrome 

ZAP-70 zeta-associated protein of 50 kDa 
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