
University of Magdeburg

School of Computer Science

D
S E
B

Databases 

Software
Engineering

and

Dissertation

Similarity-Driven Prioritization and
Sampling for Product-Line Testing

Author:

Mustafa Zaid Saleh Al-Hajjaji

August 15, 2017

Reviewers:

Prof. Dr. Gunter Saake (University of Magdeburg, Germany)

Prof. Dr. Andy Schürr (University of Darmstadt, Germany)

Prof. Ebrahim Bagheri (Ryerson University, Canada)



Al-Hajjaji, Mustafa Zaid Saleh:
Similarity-Driven Prioritization and Sampling for Product-Line Testing
Dissertation, University of Magdeburg, 2017.



Similarity-Driven Prioritization and
Sampling for Product-Line Testing

DISSERTATION

zur Erlangung des akademischen Grades

Doktoringenieur (Dr.-Ing.)

angenommen durch die Fakultät für Informatik
der Otto-von-Guericke-Universität Magdeburg

von M.Sc. Mustafa Zaid Saleh Al-Hajjaji

geb.am 01.01.1985 in IBB-YEMEN

Gutachterinnen/Gutachter

Prof. Dr. Gunter Saake
Prof. Dr. Andy Schürr
Prof. Ebrahim Bagheri

Magdeburg, den 15.08.2017





Abstract

A software product line comprises a family of software products that share a common
set of features. Testing an entire product-line product by product is infeasible, because
the number of possible products can be exponential in the number of features. Combi-
natorial interaction testing is a sampling strategy that selects a presumably minimal,
yet sufficient number of products to be tested. Several sampling approaches have been
proposed, however, they do not scale well to large product lines, as they require a con-
siderable amount of time to compute the samples. In addition, the number of generated
products can still be large, especially if the product line has a large number of features.
Since the time budget for testing is limited or even a priori unknown, the order in which
products are tested is crucial for effective product-line testing to increase the probability
of detecting faults faster. Hence, we propose 1) product prioritization to increase the
probability of detecting faults faster and 2) incremental sampling to generate samples
in a step-wise manner. Regarding product prioritization, we propose similarity-driven
product prioritization that considers problem-space information (i.e., feature selection)
and solution-space information (i.e., delta modeling) to select the most diverse product
to be tested next. With respect to sampling, we propose an incremental algorithm
for product sampling called IncLing, which enables developers to generate samples on
demand in a step-wise manner. The results of similarity-driven product prioritization
show a potential improvement in the effectiveness of product-line testing (i.e., increas-
ing the early rate of fault detection). Moreover, we show that applying the algorithm
IncLing to sample products enhances the efficiency of product-line testing compared to
existing sampling algorithms. Thus, we conclude that in which order these products
are generated as well as tested may enhance the product-line testing effectiveness.





Zusammenfassung

Eine Softwareproduktlinie ist eine Familie verwandter Softwareprodukte, die eine gemein-
same Menge von Features teilen. Das Testen einer gesamten Produktlinie durch die
Generierung und Testen aller möglichen Produkte ist nicht praktikabel, da die Anzahl
der möglichen Produkte exponentiell zur Anzahl der Features wachsen kann. Combina-
torial Interaction Testing ist eine Sampling-Strategie, bei der eine möglichst minimale,
aber ausreichende Anzahl an Produkten getestet wird. In der Vergangenheit wurden
bereits verschiedene Ansätze vorgeschlagen, die die Strategie des Combinatorial Interac-
tion Testing anwenden. Leider skalieren diese Ansätze nicht für große Produktlinien, da
die Auswahl geeigneter Samples eine erhebliche Menge an Zeit benötigt. Außerdem kann
die Anzahl der generierten Produkte trotzdem groß sein, insbesonders wenn die Produk-
tlinie eine große Anzahl an Features enthält. Da die Zeit zum Testen begrenzt oder a
priori unbekannt ist, kann ggf. nur eine begrenzte Anzahl an Produkten getestet werden.
Für ein effektives Testen mit einer hohen Wahrscheinlichkeit Fehler zu erkennen ist eine
geeignete Reihenfolge in der die Produkte einer Produktlinie getestet werden entschei-
dend. Deshalb schlagen wir 1) Product Prioritization vor um die Wahrscheinlichkeit
zu erhöhen Fehler schneller aufzudecken. Im Speziellen schlagen wir Similarity-Driven
Product Prioritization vor, das Problem- und Solution-Space-Informationen berück-
sichtigt, um ein möglichst unterschiedliches Produkt für den nächsten Test auszuwählen.
Hierbei betrachten wir die Auswahl der Features als Problem-Space-Informationen und
Delta-Modellierung als Solution-Space-Informationen. Des Weiteren schlagen wir 2) In-
cremental Sampling vor um Samples schrittweise zu generieren. Im Speziellen schlagen
wir IncLing vor, einen inkrementellen Algorithmus, welcher es Entwicklern ermöglicht
Samples schrittweise je nach Bedarf zu generieren. Die Ergebnisse der Similarity-
Driven Product Prioritization zeigen eine mögliche Verbesserung der Effektivität von
Produktlinien-Tests durch eine frühere Erkennung von Fehlern. Außerdem, zeigen wir,
dass die Verwendung von IncLing zum Sampling von Produkten, die Effizienz von
Produktlinien-Tests im Vergleich zu existierenden Sampling-Algorithmen verbessert.
Daher, schlussfolgern wir, dass die Wahl der Reihenfolge in der die Produkte generiert
und getestet werden die Effektivität von Produktlinien-Tests erhöhen kann.





Acknowledgments

Pursuing a Ph.D. is a long journey, and it would not be possible to reach the end of
that journey without the help of many people. Here, I would like to thank everyone
who helped me. Without their support, this thesis would not have come into existence.

First, I would like to express my deep gratitude to Gunter Saake for giving me the op-
portunity to pursue my Ph.D. under his supervision. He provided an excellent research
environment and gave me the chance to choose a research topic of my own choice. He
always came up with practical solutions whenever I faced scientific or organizational
challenges.

Second, I want to thank Thomas Thüm for his support from the first day of my Ph.D.
study. His advice, comments, and feedback improved my scientific writing skills. During
the last four years, we had many brainstorming sessions that had a major impact on
my research.

Third, to all my colleagues with whom I had the chance to collaborate and discuss, I
want to express my deepest gratitude for their support and fruitful discussions. In par-
ticular, I thank Sebastian Krieter, Fabian Benduhn, Jacob Krüger, Jens Meinicke, San-
dro Schulze, Reimar Schröter, Wolfram Fenske, Gabriel Campero Durand, and David
Broneske. I also thank Andreas Meister, who I shared the office with four years for
being supportive, good discussion partner, and colleague to have a laugh with.

Fourth, I would like to thank many researchers I was lucky to meet at my path and
interact with, especially Malte Lochau, Sascha Lity, and Thomas Leich. Their concert
and insightful comments had a great impact on my research. Special thanks to Andy
Schürr and Ebrahim Bagheri for being the reviewers of my thesis.

Last but not the least; I want to thank my wife Eman, son Azzam, parents, brothers,
and sisters for their encouragement, love, support, and understanding in good and bad
times. I am very grateful to my parents who supported me, my dreams, and plans from
the very beginning of my life.





Contents

List of Figures xvi

List of Tables xviii

List of Algorithms xix

List of Code Listings xxi

1 Introduction 1
1.1 Contribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2 Structure of the Thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2 Background 5
2.1 Software Product-Line Engineering . . . . . . . . . . . . . . . . . . . . 5

2.1.1 The Development Process of Software Product Lines . . . . . . 6
2.1.2 Feature Modeling and Configurations . . . . . . . . . . . . . . . 8
2.1.3 Implementation Techniques for Software Product Lines . . . . . 11

2.2 Software Product-Line Testing . . . . . . . . . . . . . . . . . . . . . . . 13
2.2.1 Combinatorial Interaction Testing . . . . . . . . . . . . . . . . . 14
2.2.2 Covering Array Algorithms . . . . . . . . . . . . . . . . . . . . 15
2.2.3 Test-Case Prioritization . . . . . . . . . . . . . . . . . . . . . . 17

3 Configuration-Based Similarity-Driven Product Prioritization 19
3.1 Configuration-Based Prioritization . . . . . . . . . . . . . . . . . . . . . 21

3.1.1 Initialization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.1.2 First Product Selection . . . . . . . . . . . . . . . . . . . . . . . 23
3.1.3 Incremental Product Selection . . . . . . . . . . . . . . . . . . . 24

3.2 Configuration-Based Prioritization in FeatureIDE . . . . . . . . . . . . . 27
3.3 Evaluation of Configuration-Based Prioritization . . . . . . . . . . . . . 28

3.3.1 Evaluation Metrics . . . . . . . . . . . . . . . . . . . . . . . . . 29
3.3.2 Experiment with Code Base of Existing Product Lines . . . . . 31
3.3.3 Experiments with Feature Models . . . . . . . . . . . . . . . . . 35

3.4 Cluster-Based Product Prioritization . . . . . . . . . . . . . . . . . . . 49
3.4.1 Overview on Cluster-Based Prioritization . . . . . . . . . . . . . 50
3.4.2 Evaluation of Cluster-Based Prioritization . . . . . . . . . . . . 51

3.5 Threats to Validity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55



xii Contents

3.6 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
3.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

4 Delta-Oriented Similarity-Driven Product Prioritization 63
4.1 Delta Modeling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
4.2 Delta-Oriented Prioritization . . . . . . . . . . . . . . . . . . . . . . . . 66

4.2.1 Choosing First Product to Test . . . . . . . . . . . . . . . . . . 67
4.2.2 Choosing Second Product to Test . . . . . . . . . . . . . . . . . 68
4.2.3 Choosing Further Products to Test . . . . . . . . . . . . . . . . 71

4.3 Combining Configuration-Based and Delta-Oriented Prioritization . . . 71
4.4 The Implementation of Delta-Oriented Prioritization . . . . . . . . . . 73
4.5 Evaluation of Delta-Oriented Prioritization . . . . . . . . . . . . . . . . 74

4.5.1 Subject Product Line: Body Comfort System (BCS) . . . . . . 75
4.5.2 Fault Injection . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
4.5.3 Results and Discussion . . . . . . . . . . . . . . . . . . . . . . . 78
4.5.4 Threats to Validity . . . . . . . . . . . . . . . . . . . . . . . . . 82

4.6 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
4.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

5 Incremental Pairwise Sampling 87
5.1 Incremental Pairwise Sampling with IncLing . . . . . . . . . . . . . . . 89

5.1.1 Initialization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
5.1.2 Generating Products . . . . . . . . . . . . . . . . . . . . . . . . 91
5.1.3 Building a Configuration . . . . . . . . . . . . . . . . . . . . . . 93
5.1.4 Testing a Combination . . . . . . . . . . . . . . . . . . . . . . . 93

5.2 Main Characteristics of Incremental Pairwise Sampling . . . . . . . . . 96
5.2.1 Incremental Approach . . . . . . . . . . . . . . . . . . . . . . . 96
5.2.2 Detecting Invalid Combinations . . . . . . . . . . . . . . . . . . 97
5.2.3 Feature Ranking Heuristic . . . . . . . . . . . . . . . . . . . . . 98
5.2.4 Detecting Conditionally Dead or Core Features . . . . . . . . . 98

5.3 The Integration of IncLing in FeatureIDE . . . . . . . . . . . . . . . . 99
5.4 Evaluation of IncLing . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

5.4.1 Experiment Settings . . . . . . . . . . . . . . . . . . . . . . . . 100
5.4.2 Results and Discussion . . . . . . . . . . . . . . . . . . . . . . . 100
5.4.3 Threats to Validity . . . . . . . . . . . . . . . . . . . . . . . . . 107

5.5 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
5.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

6 Conclusion and Future Work 113
6.1 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
6.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

A Appendix 117
A.1 Testing Software Product Line with FeatureIDE . . . . . . . . . . . . . 117



Contents xiii

A.1.1 Developing Product Lines with FeatureIDE . . . . . . . . . . . 119
A.1.2 Beyond Product-By-Product Testing . . . . . . . . . . . . . . . 123

A.2 Cluster-based prioritization . . . . . . . . . . . . . . . . . . . . . . . . 125
A.3 Architecture Definition of the Core Product of BCS . . . . . . . . . . . 129

Bibliography 147





List of Figures

2.1 Overview of an engineering process for software product lines [Apel et al.,
2013a] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.2 Feature diagram of product line GraphLibrary . . . . . . . . . . . . . . 9

2.3 Propositional formula of the GraphLibrary feature model . . . . . . . . 10

2.4 Propositional formula of the GraphLibrary feature model in CNF . . . 11

3.1 Overview of configuration-based prioritization approach . . . . . . . . . 21

3.2 Example illustrating the APFD measure. . . . . . . . . . . . . . . . . 31

3.3 Steps of the experiment with code base of product-lines . . . . . . . . . 33

3.4 APFD value distribution of random orders, our configuration-based pri-
oritization approach, and interaction-based approach for three product
lines: Elevator, Mine-pump, and E-mail . . . . . . . . . . . . . . . . . 35

3.5 Steps of the experiment with feature models . . . . . . . . . . . . . . . 37

3.6 Average APFD for random orders, configuration-based prioritization,
and interaction-based using exhaustive interaction faults.
(*) The computation of interaction-based did not finish within 24 hours. 40

3.7 Average APFD for random orders, configuration-based prioritization,
and interaction-based using pattern interaction faults.
(*) The computation of interaction-based did not finish within 24 hours. 41

3.8 The distribution of p-values from Mann-Whitney U Test between interaction-
based approach and configuration-based prioritization, (Ex.) exhaustive
interaction faults . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.9 The percentage of average execution time of prioritization to the com-
bined time of sampling and prioritization of each algorithm.
(*) The computation of sampling did not finish within 24 hours. . . . 48

3.10 An overview of clustering-based product prioritization . . . . . . . . . . 50

3.11 Average APFD for random orders, cluster-based prioritization, and configuration-
based prioritization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

4.1 The principle of delta-oriented software architectures . . . . . . . . . . 65

4.2 Delta-oriented prioritization with distance minimum . . . . . . . . . . 70

4.3 Overview of the combined approach where α represent the weighting
factor of the involved approaches . . . . . . . . . . . . . . . . . . . . . 72

4.4 The feature model of the Body Comfort System . . . . . . . . . . . . . 75



xvi List of Figures

4.5 The APFD distribution for delta-oriented prioritization, default order of
sampling algorithm MoSo-PoLiTe [Oster et al., 2011c] (Default), and
random orders (Random) . . . . . . . . . . . . . . . . . . . . . . . . . . 78

4.6 The APFD distribution for delta-oriented prioritization with considering
different weights of delta-oriented prioritization represented by the value
of α . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

4.7 The APFD distribution for delta-oriented prioritization by considering
combinations of different distance types, Hamming distance (H) and Jac-
card distance (J) with minimum distance (M) and summation distance (S) 81

5.1 Activity diagram of IncLing. . . . . . . . . . . . . . . . . . . . . . . . . 90
5.2 Activity diagram of generating products with IncLing. . . . . . . . . . 92
5.3 Activity diagram of the function testCombinations(). . . . . . . . . . . 95
5.4 Distributions of decrease in computation time (percentage) of our ap-

proach compared to sampling algorithms over all feature models, (CH:
Chvatal algorithm). . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

5.5 The percentage of feature models with the minimum number of generated
products for each sampling algorithm. . . . . . . . . . . . . . . . . . . . 105

5.6 Average percentage of covered combinations over all feature models with
size < 200features (i.e., all sampling algorithms scale to these feature
models), in addition to random configurations. . . . . . . . . . . . . . . 106

5.7 Average percentage of covered combinations for feature models between
200 and 3000 features using IncLing, ICPL, Chvatal, and random con-
figurations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

5.8 Number of covered combinations for the feature model of Linux kernel
(6,888 features) using IncLing, ICPL, and random configurations. . . . 108

A.1 Support for testing with FeatureIDE: 1 source code of a program in-
cluding two unit tests, 2 feature model defining valid combinations, 3
JUnit view, 4 user-defined configurations, and 5 a set of generated
sample products. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

A.2 Dialog to automatically derive and test products. . . . . . . . . . . . . 121



List of Tables

2.1 Configurations of GraphLibrary product line created using the pairwise
sampling algorithm ICPL . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3.1 Distances between the five configurations listed in Table 2.1 . . . . . . 24

3.2 Fault matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.3 Overview of subject product lines . . . . . . . . . . . . . . . . . . . . . 32

3.4 The average APFD value over 100 random orders, the APFD value of
configuration-based prioritization, and the APFD value of the interaction-
based approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.5 Feature models used in our evaluation. . . . . . . . . . . . . . . . . . . 36

3.6 Fault patterns [Abal et al., 2014] . . . . . . . . . . . . . . . . . . . . . 39

3.7 Average APFD for default order of sampling algorithms and configuration-
based prioritization using exhaustive faults. . . . . . . . . . . . . . . . . 43

3.8 Average APFD for default order of sampling algorithms and configuration-
based prioritization using pattern interaction faults. . . . . . . . . . . . 44

3.9 P-values of the Mann-Whitney U test between APFD values of configuration-
based prioritization and the default orders of sampling algorithms for
both fault types. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

3.10 The percentage of average execution time in seconds of prioritization to
the sampling of each algorithm. . . . . . . . . . . . . . . . . . . . . . . 47

3.11 APFD average values for clustering-based prioritization, Random order,
and configuration-based prioritization . . . . . . . . . . . . . . . . . . . 53

3.12 APFD average values for clustering-based with and without intra-cluster
prioritization for different number of clusters . . . . . . . . . . . . . . . 54

4.1 Overview of Deltarx Transformation Keywords . . . . . . . . . . . . . . 74

4.2 The average APFD for delta-oriented prioritization, default order of sam-
pling algorithm MoSo-PoLiTe [Oster et al., 2011c] (Default), and ran-
dom orders (Random) . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

4.3 The average APFD distribution for delta-oriented prioritization with con-
sidering different weights of delta-oriented prioritization represented by
the value of α . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

4.4 The average APFD for delta-oriented prioritization by considering com-
binations of different distance types, Hamming distance (H) and Jaccard
distance (J) with minimum distance (M) and summation distance (S) . 81



xviii List of Tables

5.1 The frequency and the signum for each feature in the uncovered literal
combinations list for product line GraphLibrary . . . . . . . . . . . . . 93

5.2 Feature models used in our evaluation . . . . . . . . . . . . . . . . . . 101
5.3 The computation time of different sampling algorithms (in seconds) using

feature models of different sizes. . . . . . . . . . . . . . . . . . . . . . 102
5.4 The average time decrease for our approach to sampling algorithms over

all feature models, (CH: Chvatal algorithm). . . . . . . . . . . . . . . 103
5.5 The number of generated products of different sampling algorithms using

feature models of different sizes. . . . . . . . . . . . . . . . . . . . . . 104

A.1 Average APFD for cluster-based prioritization, random orders, and configuration-
based prioritization. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

A.2 P-values of the Mann-Whitney U test between APFD values of cluster-
based prioritization and random orders as well as the configuration-based
prioritization. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

A.3 P-values of the Mann-Whitney U test between APFD values of cluster-
based prioritization and random orders as well as the configuration-based
prioritization. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

A.4 P-values of the Mann-Whitney U test between APFD values of cluster-
based prioritization and random orders as well as the configuration-based
prioritization. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

A.5 P-values of the Mann-Whitney U test between APFD values of cluster-
based prioritization using different numbers of clusters with considering
the intra-cluster prioritization. . . . . . . . . . . . . . . . . . . . . . . 128

A.6 P-values of the Mann-Whitney U test between APFD values of cluster-
based prioritization using different numbers of clusters without consid-
ering the intra-cluster prioritization. . . . . . . . . . . . . . . . . . . . 129



List of Algorithms

3.1 Configuration-Based Prioritization. . . . . . . . . . . . . . . . . . . . . 22
3.2 Select First Product To Test. . . . . . . . . . . . . . . . . . . . . . . . 24
3.3 Select the next Configuration. . . . . . . . . . . . . . . . . . . . . . . . 26
4.1 Delta-Oriented Prioritization. . . . . . . . . . . . . . . . . . . . . . . . 67
4.2 Select Further Configuration. . . . . . . . . . . . . . . . . . . . . . . . 68
5.1 Main algorithm of IncLing. . . . . . . . . . . . . . . . . . . . . . . . . . 89
5.2 Tests whether a combination from the list lsCombstest can be added to

the current configuration cnew. . . . . . . . . . . . . . . . . . . . . . . . 94



xx List of Algorithms



Listings

4.1 Delta DAutomaticPW for the Feature AutomaticPowerWindow [Lity
et al., 2013] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

4.2 Delta DAutomaticPW for the Feature AutomaticPowerWindow [Lity
et al., 2013] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

A.1 Architecture definition of the core product [Lity et al., 2013] . . . . . . 130
A.2 Deltas ofr BCS [Lity et al., 2013] . . . . . . . . . . . . . . . . . . . . . 132



xxii Listings



1. Introduction

Today, many software systems are developed in a large variety of similar variants to
meet different requirements of customers. Typically, these variants are built by adapting
existing ones instead of being developed from scratch [Antkiewicz et al., 2014; Hemel
and Koschke, 2012; Laguna and Crespo, 2013]. Software product-line engineering is a
technique empowering software companies to develop software systems that meet the
requirements of individual customers. Using product-line engineering, software systems
can be developed efficiently by considering their similarities and differences in terms of
features to facilitate systematic reuse [Clements and Northrop, 2001; Apel et al., 2013a;
Pohl et al., 2005; Czarnecki and Eisenecker, 2000]. A feature is defined as an increment
to the functionality that is recognized by customers [Batory et al., 2004; Kang et al.,
1990].

A software product line is defined as a set of software systems that share many fea-
tures, but also differ in others. It aims to reduce development and maintenance costs,
increase quality, and decrease time to market [van der Linden et al., 2007]. Hence, sev-
eral companies such as Hewlett-Packard, Toshiba, and General Motors have adapted
their software development process to software product-line engineering [Apel et al.,
2013a; Weiss, 2008]. Despite the aforementioned potential advantages of product-line
engineering, it poses new challenges for quality assurance [Thüm et al., 2014a; Lee et al.,
2012].

Testing is a necessary step in software development processes. It consumes at least 50%
of the whole development costs [Harrold, 2000; Willcock, 2011]. While testing a single
software system is already difficult, testing product lines is even more challenging as
the number of products is up-to exponential in the number of features. Ideally, every
product should be tested, especially for safety-critical systems, to ensure that it meets
its specifications. However, given a product-line implementation, one major challenge
is that it is difficult to guarantee that all its features and every possible combination of
them in a product will work as expected. The reason for this difficulty is the following:



2 1. Introduction

• The number of possible products potentially grows exponentially in the number
of features.

• Testers usually have a limited amount of time and resources to run tests on a
specific product.

• Every further derivation of a product under test causes additional costs (since
this may include assembling of software and hardware, in the case of industrial
systems).

Reducing the number of products to test as well as the number of executed test cases on
products under test while still maintaining a desired level of coverage is required [Har-
rold, 2000]. Thus, several approaches such as combinatorial interaction testing [Cohen
et al., 2007] have been proposed. Combinatorial interaction testing is an approach used
in product-by-product testing to systematically reduce the number of products under
test [Oster et al., 2010; Perrouin et al., 2012, 2010]. In particular, T -wise combinatorial
interaction testing is based on the observation that most faults are caused by inter-
actions among a fixed number of at most T features [Johansen et al., 2012a; Kästner
et al., 2009]. Consequently, combinatorial interaction testing is used to sample a pre-
sumably minimal subset of configurations that cover each T -wise interaction by at least
one product under test [Cohen et al., 2007]. This optimization problem is NP-hard [En-
gebretsen, 2005], and several heuristics have been proposed to perform T -wise sampling
such as CASA [Garvin et al., 2011], Chvatal [Johansen et al., 2011; Chvatal, 1979],
ICPL [Johansen et al., 2012a], IPOG [Lei et al., 2007], and MoSo-PoLiTe [Oster et al.,
2010, 2011c]. The output of these algorithms is a presumably minimal product sample
to be tested to obtain T -wise combinatorial interaction testing coverage. Moreover, the
aforementioned algorithms approximate the solutions to this constraint optimization
problem. However, those sampling algorithms do not scale well to larger product lines
in terms of CPU time and memory consumption [Medeiros et al., 2016; Henard et al.,
2014b]. In addition, even for small sets of features, these algorithms require a consider-
able amount of time until the first product of the sample can be tested as the complete
sample is computed without delivering intermediate products (i.e., one by one) until a
sufficient feature interaction coverage is reached.

Although sampling algorithms can reduce the number of products significantly, the
number can still be large, especially if the product line has a large number of features.
As the time budget in practice is limited in testing, the order in which products are
tested matters to presumably find faults as soon as possible within the available amount
of time. For example, testing two almost identical products is not likely to detect
different faults. For this purpose, several approaches have been proposed to prioritize
products based on different criteria [Devroey et al., 2014; Baller et al., 2014; Johansen
et al., 2012b; Henard et al., 2013a; Sánchez et al., 2015; Devroey et al., 2016]. However,
as reported by Elbaum et al. [2004], no prioritization criterion is the best for any
system as their effectiveness varies based on the considered systems. To overcome the
challenges of having a large number of products as well as the scalability of the existing



1.1. Contribution 3

sampling algorithms, we propose two possible solutions: product prioritization and
efficient incremental sampling.

1.1 Contribution

We propose similarity-driven product prioritization that considers problem-space as well
as solution-space information to prioritize products. With similarity-driven product pri-
oritization, we incrementally select the least similar product to be tested next in order to
increase feature interaction coverage faster during product-by-product testing. Based on
the information type, we recognize two instances of this approach, configuration-based
and delta-oriented prioritization. With configuration-based prioritization, we select the
next product to test using problem-space information in terms of feature selection. How-
ever, with delta-oriented prioritization, we consider solution-space information in terms
of delta modeling to select the next product. In case the diversity between products is
large, testing efforts may increase as a result of the redundancy in the test-case execu-
tion, especially in regression testing [Lity et al., 2017]. Thus, we propose cluster-based
product prioritization as a trade-off approach, where we group products into clusters.
The products in each cluster share common features. This allows also clustering prod-
ucts based on particular parameters (e.g., the most demanded products). The products
in a particular cluster might be ordered using different prioritization techniques. In this
thesis, we prioritize products in clusters using our configuration-based prioritization
approach.

With respect to sampling, we propose Incremental sampLing (IncLing) that generates
products one at a time with the aim of enhancing the sampling efficiency, in terms of
the required time to generate a sample, as well as testing effectiveness, in terms of the
interaction coverage rate. With IncLing, we take already generated and tested products
into account while selecting further products into the sample. At the beginning of the
sampling process, we efficiently detect the invalid feature combinations that will not
appear in any products due to the dependencies between features. Then, our greedy
algorithm generates the next product that covers as many of uncovered feature combi-
nations as possible. In particular, we increase the diversity among products by covering
dissimilar pairwise feature combinations each time a further product is generated to be
tested. Increasing the covering rate of feature combinations might lead to a faster fault
detection. This way, we dynamically generate further products into the sample until
the testing time is over or a certain degree of coverage is achieved.

1.2 Structure of the Thesis

This thesis is structured as follows. In Chapter 2, we give a brief introduction to software
product line-engineering as well as combinatorial interaction testing. In addition, we
introduce readers to test-case prioritization.

In Chapter 3, we propose our configuration-based and cluster-based prioritization ap-
proaches that consider problem-space information in terms of feature selections to pri-



4 1. Introduction

oritize products. Using product lines of various sizes, we evaluate the increase in effec-
tiveness (i.e., finding faults as soon as possible) of both approaches compared to random
orders and the default order of existing sampling algorithms.

In Chapter 4, we introduce delta-oriented product prioritization that considers the
solution-space information with respect to deltas to prioritize products without gen-
erating them. In addition, we propose a combined approach that considers feature
selection and deltas in product prioritization. Furthermore, we investigate the effec-
tiveness of our proposed approach compared to a default order of a sampling algorithm
and random orders using an automotive product line.

In Chapter 5, we present our incremental sampling algorithm (IncLing) that generates
products one at a time to enhance the sampling efficiency. Moreover, we present and
discuss the reported results of comparing our algorithm against existing algorithms
using feature models of different sizes.

In Chapter 6, we conclude the thesis and discuss potential future work. In the Ap-
pendix, we present the functionalities of FeatureIDE that we implemented to support
testing product lines (cf. Section A.1). In addition, we include other detailed results
(cf. Section A.2) as well as supplementary material (cf. Section A.3) that support our
evaluation.



2. Background

This chapter shares material with SoSyM’16 article “Effective Product-
Line Testing Using Similarity-Based Product Prioritization”[Al-Hajjaji et al.,
2016d].

In this chapter, we present background on software product-line engineering, including
the development process of product lines and the modeling of product-line common-
alities and differences. Furthermore, we give an overview of combinatorial interaction
testing as well as test-case prioritization.

2.1 Software Product-Line Engineering

Using software product-line engineering, companies are able to compose software sys-
tems that meet the requirements of individual customers by considering their common-
alities and differences in terms of features to facilitate systematic reuse [Clements and
Northrop, 2001; Apel et al., 2013a; Pohl et al., 2005; Czarnecki and Eisenecker, 2000].

Features are distinctive aspects or characteristics of software systems that are recog-
nized by customers [Kang et al., 1990]. A general definition of a feature is introduced
by Apel et al. [2013a], where they define it as “a characteristic or end-user-visible be-
havior of a software system. Features are used in product-line engineering to specify
and communicate commonalities and differences of the products between stakeholders,
and to guide structure, reuse, and variation across all phases of the software life cycle”.
The commonalities and differences of products need to be managed as they usually
define the domain of the market segment of a product line. Clements and Northrop
[2001] describe a software product line as “a set of software-intensive systems that share
a common, managed set of features satisfying the specific needs of a particular mar-
ket segment or mission and that are developed from a common set of core assets in a
prescribed way”.



6 2. Background

As a result of the systematic reuse, software product-line engineering can reduce the
time-to-market as well as the costs for development and maintenance, while the quality
of the generated products is increased. The notion of product-line engineering is not
new as it is already applied successfully in the automotive industry for several years to
handle the individual needs of customers. Software product lines follow the same notion
of product line engineering in the automotive domain, but focus on reusing the software
artifacts [Apel et al., 2013a]. Previously, a similar concept defined as program family
has been proposed with the aim of reducing the cost of development and facilitating the
systematic reuse of artifacts [McIlroy, 1968; Dijkstra, 1976; Parnas, 1976]. For instance,
McIlroy [1968] suggests avoiding the redundancy in the implementation by handling the
implemented components as interchangeable parts. Similarly, Parnas [1976] defines a
program family as a set of“programs whose common properties are so extensive that it is
advantageous to study the common properties of the programs before analyzing individual
members”. Recently, software product lines are gaining widespread acceptance in the
industry. Several companies such as Bosch, Philips, Siemens, General Motors, Hewlett-
Packard, Boeing, and Toshiba apply product-line approaches to facilitate reuse [Weiss,
2008; Northrop and Clements, 2007; Apel et al., 2013a].

We discuss the main development process of a software product line in Section 2.1.1. In
Section 2.1.2 we introduce feature models [Kang et al., 1990] that are used to model the
commonalities and differences in a product line. In Section 2.2, we introduce the task
of testing product lines including combinatorial interaction testing (cf. Section 2.2.1)
and covering array algorithms (cf. Section 2.2.2). In Section 2.2.3, we give an overview
on test-case prioritization in single systems as well as in software product lines.

2.1.1 The Development Process of Software Product Lines

Regardless of the specific development process used in single-system software engineer-
ing, the usual life cycle of a single system includes the following: First, the requirements
for the target system are collected and analyzed. Second, developers design and im-
plement the system based on these requirements. The implementation process could
be carried out in a single separate phase, consecutive phases or in agile cycles. Third,
the system is passed through a testing process. After releasing the system, the main-
tenance phase is launched. Compared to the development process of single software
engineering, the development process of software product lines is different, as variety
of desirable systems, which are similar but not identical, are considered. In particular,
the development process of product lines, as illustrated in Figure 2.1, can be divided
into two main tasks, domain engineering and application engineering [Weiss and Lai,
1999; van der Linden, 2002].

The domain is the knowledge area that defines the requirements of customers as well as
the way software systems will be built to fulfill these requirements [Czarnecki and Eise-
necker, 2000]. Pohl et al. [2005] defines domain engineering (cf. top half of Figure 2.1)
as “a process of software product line engineering in which the commonality and the
variability of the product line are defined and realized”. One of the main key points



2.1. Software Product-Line Engineering 7

Domain analysis

(incl. scoping, variability modeling)

Domain implementation

(models, source code, ..)

Requirement analysis Product derivation

(incl. validation and verification)

public class Graph 

{

    // Executes Number Vertices

    public void run( Vertex s )

     {

       Sys tem.out.print ln("Number");

        NumberVertices( );

        original( s );

    }

}

Y

X

a

b

c
d

e

f

a rcpcore:

Z

Y

X a

c
d

Z A

a rcp1:

P1

AR

C    =  {a dd A, a dd  e(A:Z), a dd f(Z:A), 

remove  b (X:Y)}

public class Vertex 

{

    public int VertexNumber;

    public void display( ) 

    {

      Sys tem.out.print(" # "+

      VertexNumber + " " );

      original( );

    }

}

Problem Space Solution Space
D

o
m

ai
n

 e
ng

in
e

er
in

g
A

p
p

lic
a

ti
o

n
 e

n
g

in
e

e
ri

n
g

Domain 
knowledge

Customer 
needs

Mapping

Feature 
selection Product

New requirements

Features

Artifact 
implementation

Figure 2.1: Overview of an engineering process for software product lines [Apel et al.,
2013a]

of product-line development is to define well the domain and its scope [Czarnecki and
Eisenecker, 2000].

The outcomes of domain engineering are artifacts that are used in several, if not all,
products of a product line [Apel et al., 2013a]. The commonality and the variability
mentioned in the definition of Pohl et al. [2005] are typically represented by a widely
used variability modeling technique, called feature model. We refer to the common and
variable functionality as well as the artifacts of a set of similar products as features. In
contrast to domain engineering, which aims to enable development for reuse, application
engineering targets the goal of developing a specific product that satisfies the need of a
particular customer. Pohl et al. [2005] defines application engineering (cf. bottom half
of Figure 2.1) as a“process of software product-line engineering in which the applications
of the product line are built by reusing domain artifacts and exploiting the product line
variability”.

Furthermore, in product-line development, the separation between problem space and
solution space is recognized [Czarnecki and Eisenecker, 2000]. The problem space
(cf. left half of Figure 2.1) considers the viewpoints of customers, including their re-
quirements and needs. It also displays the entire domain, where features describe the
problem space. In contrast, the solution space takes the perspectives of developers. It



8 2. Background

refers to concrete products developed during the architecture, design and implementa-
tion phases.

Based on the distinctions between domain and application engineering as well as prob-
lem and solution space (cf. Figure 2.1), we recognize four main tasks in product-line
development:

• Domain analysis deals with the requirements of the entire product line. In this
task, the decision of including features, which should be implemented as reusable
artifacts, in a product line is taken. The outcome of this task is usually docu-
mented in the form of a feature model. In this thesis, we use feature models as
an input to the sampling algorithms to generate products of a product line.

• Requirements analysis explores the needs of a particular customer by mapping
their requirements to the feature selections. These feature selections, which rep-
resent problem-space information, are used to prioritize products (cf. Chapter 3).

• Domain implementation is the process of developing artifacts that are mapped to
features recognized in the domain analysis. There are several types of artifacts
in product lines related to architecture, design, documentation, and test. In
this thesis, we consider the architecture model that represents the solution-space
information as an input to our product prioritization approach (cf. Chapter 4).

• Product derivation is the process of generating products by combining artifacts
based on the results of requirements analysis. In our work, we derive products for
the purpose of testing in order to ensure that the features and the combinations
between them work as expected (cf. Chapter 5).

In the next section, we introduce feature modeling as an activity that is used to model
the variability and commonality of a product line.

2.1.2 Feature Modeling and Configurations

Feature models consist of a tree-like hierarchical structure that captures the informa-
tion of all possible configurations of a product line in terms of features and relation-
ships among them. These models are usually represented graphically by feature dia-
grams [Kang et al., 1990]. Figure 2.2 shows the feature model of our running example,
the GraphLibrary product line. The feature GraphLibrary is the root of the feature di-
agram and it represents the common part of all products of the product line. Selection
of a feature in a configuration implies the selection of its parent feature in the same
configuration.

Each feature has to be either optional or mandatory. The mandatory features must be
included in each created configuration if their parent feature is selected. The optional
features may or may not be selected in case their parent feature is already part of
a configuration. An example of a mandatory feature in Figure 2.2 is feature Edges,



2.1. Software Product-Line Engineering 9

Figure 2.2: Feature diagram of product line GraphLibrary

while feature Algorithms represents an example of an optional feature. In addition,
the features can be grouped into alternative and or groups. Only one feature of an
alternative group must be selected in a configuration. For instance, a configuration can
contain only one of the features Directed and Undirected. From features in an or group,
at least one of them must be selected in a configuration. For instance, features Number,
Cycle, or both can be selected in a configuration.

In addition to the dependencies defined by the hierarchical structure, further depen-
dencies between features can be defined by so-called cross-tree constraints. Examples
of these constraints are Require and Exclude. A Require constraint, the selection of a
feature implies the selection of another feature. For instance, in our running example
(cf. Figure 2.2), the selection of feature Cycle in a configuration implies the selection
of feature Directed. Regarding Exclude constraint, the features are involved in such
constraints cannot be both selected in a configuration.

Propositional Formulas

All feature models can be represented in a form of propositional formulas, where each
feature is represented as a Boolean variable [Batory, 2005]. The logical operators are
used to connect those Boolean variables in order to model the dependencies between
features. To analyze feature models, algorithms often use propositional formulas as
input, because most of the tasks that could be applied to feature models can be reduced
to well-known problems in Boolean algebra.

In Figure 2.3, we show the propositional formulas of the feature model of our running
example. The relationship between features can be represented in propositional formu-
las as follows. The mandatory features (e.g., Equation 2.2) as well as the parent-child
relationship (e.g., Equation 2.3) can be expressed as an implication (i.e., ⇔ and ⇒,
respectively). Or groups are represented by the logical operator OR between features.
That is, they are expressed using disjunctions (e.g., Equation 2.4). Similar to or groups,
alternative groups are represented with the logical operator or with an additional con-
dition, all children exclude each other. The additional rule is represented as a set of
pairwise disjunctions (e.g., Equation 2.5). Additional constraints can also be defined
as propositional formulas using logical operators, such as conjunction (∧), disjunction



10 2. Background

GraphLibrary root feature (2.1)
∧(GraphLibrary ⇔ Edges) mandatory feature (2.2)
∧(Algorithms⇒ Edges) optional feature (2.3)
∧((Number ∨ Cycle)⇔ Algorithms) OR-group (2.4)
∧(((Edges⇔ (Directed ∨ Undirected)) alternative-group (2.5)
∧¬(Directed ∧ Undirected))
∧(Cycle⇒ Directed) cross-tree constraint (2.6)

Figure 2.3: Propositional formula of the GraphLibrary feature model

(∨), negation (¬), and implication (⇒). However, the algorithms that work on feature
models often consider the conjunctive normal form (CNF) of a propositional formula
as input.

Conjunctive Normal Form

All propositional formulas can be represented as Conjunctive Normal Forms (CNFs).
Using logical operators disjunction, conjunction, and negation placed in a certain order,
CNF consists of a conjunction of clauses that contain a disjunction of single positive or
negative variables. These positive and negative variables, which indicate the selection
state of each feature, are defined as literals L (i.e., L = {l1, l2, ....., ln}). A feature should
be selected, if it is represented as li and it should not if it is represented as ¬li. The
negation is allowed only for a single variable, not for the whole clause or the entire
formula. For instance, the constraint Cycle ⇒ Directed can be written in a CNF as
¬ Cycle ∨Directed. In Figure 2.4, we show the propositional formula in CNF for the
GraphLibrary feature model. We rely in our thesis on CNFs of feature models as input
to our proposed sampling algorithm.

A formal definition of feature models is described as follows:

Definition 2.1. (Feature Model Definition).
A feature model FM = (F,R) is defined as a tuple of a set features F and a set of
constraints R, where F contains all features of the product line (i.e., F={f1, f2, ..., fn},
n is the number of features), and R is a set of constraints represented as clauses, where
each contains pair of variables (i.e., features).

As mentioned, a configuration is a combination of a set of selected features from a
feature model. Formally a configuration c is defined as following:

Definition 2.2. (Configuration Definition).
A configuration c for a feature model FM = (F,R) is a set of literals in L, such that
c ⊂ L and ∀i ∈ {1,2,...,|F|} : {li,¬li} * c, where li indicates that the feature should
be selected and ¬li indicates that the feature should not be selected.

A feature can be defined or undefined based on its literal value. The feature is defined
if its state in a configuration is specified (i.e., selected li or not selected ¬li); otherwise



2.1. Software Product-Line Engineering 11

GraphLibrary
∧(¬Edges ∨GraphLibrary) ∧ (Edges ∨ ¬GraphLibrary)
∧(¬Algorithms ∨ Edges)
∧(¬Number ∨ Algorithms) ∧ (¬Cycle ∨ Algorithms)
∧(Number ∨ Cycle ∨ ¬Algorithms)

∧(¬Edges ∨Directed ∨ Undirected) ∧ (Edges ∨ ¬Directed) ∧ (Edges ∨ ¬Undirected)
∧(¬Directed ∨ ¬Undirected)

∧(¬Cycle ∨Directed)

Figure 2.4: Propositional formula of the GraphLibrary feature model in CNF

it is undefined. That is, if every feature in a configuration c is defined, we call this
configuration as complete, and it is partial otherwise.

As a result of feature dependencies and constraints, a feature can be a conditionally
dead or core if it is under certain circumstances (i.e., features that must be selected
or deselected given the feature model and already fixed features of the current config-
uration) [Benavides et al., 2010]. For instance, if feature Directed is selected, feature
Undirected will be a dead feature. The feature Directed may also be core, if feature
Cycle is selected.

Feature models can be used to restrict the variability of a product line as not all combi-
nations of features are valid. A combination of a set of features is a valid configuration
if it does not violate the feature dependencies and the constraints defined in the feature
model. For instance, with respect to Figure 2.2 on Page 9, c = {GraphLibrary, Edges,
Directed, Algorithms, Number, Cycle} is a configuration representing a software prod-
uct that includes all features except feature Undirected. This configuration is valid,
because it satisfies all the constraints and the feature dependencies defined in the fea-
ture model. On the contrary, c = {GraphLibrary, Edges, Algorithms, Number, Cycle}
is not valid, because it violates the constraint Cycle ⇒ Directed. Each configuration
can be used to generate a product implementing the selected features.

Besides the definition of the configuration space, feature models are mainly used by
sampling algorithms, such as CASA [Garvin et al., 2011], Chvatal [Johansen et al.,
2011], ICPL [Johansen et al., 2012a], IPOG [Lei et al., 2007], and MoSo-PoLiTe [Oster
et al., 2010], to derive representative subsets of configurations. In our thesis, we also use
feature models as input to our approaches to achieve efficient sampling. The sampling
algorithms apply combinatorial interaction testing to reduce the number of generated
products to be tested while achieving a certain degree of coverage [Perrouin et al., 2010;
Oster et al., 2010; Perrouin et al., 2012].

2.1.3 Implementation Techniques for Software Product Lines

There are several implementation techniques to realize product lines [Apel et al., 2013a].
These techniques specify the generation and transformation mechanisms that determine
the source code for single products. In the following, we give a short overview of these
implementation techniques.



12 2. Background

Preprocessors

The preprocessor-based mechanism is a popular approach to implement product lines,
relying on annotations. The C preprocessor (cpp) tool is commonly used to support this
mechanism [Kästner et al., 2008]. In preprocessor-based mechanism, directives (a.k.a.
macros) control syntactical program transformations. Examples of these directives are
file inclusion (i.e., #include directive), macro definition (i.e., #define), and conditional
inclusion (i.e., #ifdef) [Liebig et al., 2010]. These directives control the inclusion or
exclusion of feature code.

The preprocessors-based mechanism has been widely used in practice to implement
product lines. However, it has several weak points, such as neglecting the separation of
concerns [Parnas, 1972; Dijkstra, 1976]. For instance, the code of a feature is scattered
across the program code and also tangled with the code of other features [Apel et al.,
2013a]. In addition, programs that have been implemented with preprocessors-based
are difficult to analyze and also prone to simple errors [Liebig et al., 2010].

Feature-Oriented Programming

Feature-oriented programming is a composition-based approach that has been proposed
to overcome limitations of the preprocessors-based mechanism, such as neglecting the
separation of concerns, by providing feature modularization. It depends mainly on
the notion of features to build software product lines [Apel et al., 2013a]. Prehofer
[1997] proposed feature-oriented programming as an extension to object-oriented pro-
gramming, where classes are decomposed to feature modules that implement a specific
feature. Once the features are selected, the feature modules are composed to a program
automatically. With feature-oriented programming, a feature has the ability to refine
previous features in a flexible way using a keyword called Original [Apel et al., 2009].

Delta-Oriented Programming

Schaefer et al. [2010] proposed delta-oriented programming, where a preselected prod-
uct, called core, and a set of delta modules are defined. These delta modules capture
change operations that need to be applied to the core product in order to derive a new
product. These operations include adding and removing domain artifacts to the core
product. Given a configuration, the composer identifies the delta modules and applies
them to the core module to generate a new product.

Aspect-Oriented Programming

Using a provided meta-language, aspect-oriented programming transforms existing object-
oriented programs to modularize the crosscutting concern (i.e., extending a program at
different places, which cuts across the module boundaries introduced by classes) [Kicza-
les et al., 1997]. This crosscutting leads to code scattering and tangling. Thus, aspect-
oriented programming aims at reducing such code scattering and tangling induced by
concerns that are not well-separated. The crosscutting concern problem is solved by



2.2. Software Product-Line Testing 13

implementing these concerns as aspects, which encapsulates the implementation of cross-
cutting concerns. Using the aspects, the code linked to a crosscutting concern can be
localized as a one code unit. Moreover, aspects can be used to make new features for
existing programs. By applying a set of implemented aspects to an existing program,
different products can be generated.

2.2 Software Product-Line Testing

Software testing is one of the most distinguished aspects of software quality assurance
that can inform customers about the quality of systems. Testing is “the process of
operating a system or component under specified conditions, observing or recording the
results, and making an evaluation of some aspect of the system or component” [IEEE,
1990]. With testing, a certain software system is executed with the intention of finding
faults. A fault is defined as an incorrect step, process, or data definition in a computer
program, that results often in an error and leads to a failure [IEEE, 1990].

Model-based testing [El-Far and Whittaker, 2002; Utting and Legeard, 2007] is a soft-
ware testing technique to generate test cases from models that encode the intended
behavior of the system under test. In particular, all testing activities are based on an
executable formal test model of the expected behavior. Compared to traditional manual
testing, the activities in model-based testing, such as generating test cases, are achieved
in a systematic way considering predefined metrics (i.e., coverage). In addition, model-
based testing enables testers to automate test execution as well as test evaluation by
comparing the actual behaviors with the expected ones in the test model of software
under test. Model-based testing can be a cost-effective technique that supports a variety
of test generation strategies as well as model coverage criteria [Utting, 2008].

Product-line testing is more critical than testing a single system because a fault in a
single feature can exist in thousands or even millions of products. Usually, testing a soft-
ware product line includes creating configurations, building the corresponding products,
testing them by executing their test cases, and using the results for debugging [Perrouin
et al., 2010].

Several model-based testing strategies have been pursued to test product lines [Thüm
et al., 2014a]. First, product-by-product testing follows a traditional strategy where
concrete products are generated and tested individually using established testing tech-
niques from single product testing. Second, regression-based product-line testing is a
strategy where the new test cases for a product under test are generated and executed.
These test cases are not reusable from previously tested products. Some of the already
generated test cases are reused in case they cover components that have been changed
or affected by a change. However, every single product has to be considered to guar-
antee a complete software product-line test coverage. Third, family-based testing is
a strategy where all products are checked in a single run whether they satisfy their
specifications [Bürdek et al., 2015]. In the family-based strategy, testing is achieved
without considering any particular product. It uses a virtual representation of the



14 2. Background

product line that simulates all products (i.e., by superimposing test specifications of all
products). However, effective testing should not only investigate the software, but also
its interplay with the hardware and the environment, which is not supported by recent
family-based testing techniques. In addition, family-based testing can be time consum-
ing and even incomplete (e.g., IO) as it requires a complex and specialized execution
environment [Meinicke et al., 2016b; Nguyen et al., 2014; Apel et al., 2013c]. To over-
come those limitations, we consider product-by-product testing instead of family-based
testing.

2.2.1 Combinatorial Interaction Testing

Testing a product line exhaustively product-by-product is infeasible or even impossi-
ble due to the aforementioned exponential explosion of products and many redundant
testing steps caused by the commonality among products. To alleviate this problem,
combinatorial testing is used to reduce the effort of product-line testing by selecting a
minimal, yet sufficient subset of products [Carmo Machado et al., 2014; Oster et al.,
2010; Perrouin et al., 2010]. Concerning combinatorial interaction testing in particular,
faults that are triggered by erroneous interactions between a certain number of features
can be detected.

A feature interaction occurs when the integration of two or more features modifies or
influences the behavior of other features [Jackson and Zave, 1998]. Two types of feature
interaction can be recognized, positive and intended interaction as well as critical and
inadvertent interaction [Ferber et al., 2002]. With positive and intended interaction,
features are interacting to exchange information, reuse functionality of other features,
or collaborate to achieve a certain task [Apel et al., 2013a]. However, the critical and
the inadvertent interaction may lead to undesired results and even system failure. It
is a challenging task in product-line testing to detect faults that are caused by those
unintended and inadvertent feature interactions.

With T -wise combinatorial interaction testing, a kind of feature-combination coverage
needs to be achieved. For instance, in pairwise combinatorial interaction testing (i.e.,
T=2), each valid combination of two features is required to appear in at least one
configuration of the sample. In our running example, the valid combinations of feature
Directed and feature Undirected are Directed∧¬Undirected and ¬Directed∧Undirected,
and the invalid ones are Directed∧Undirected and ¬Directed∧¬Undirected. Each valid
combination is required to appear at least in one of the created configurations of the
sample.

Recently, T -wise testing has been generalized from pairwise testing to cover all T -
wise combinations of features [Johansen et al., 2012a]. A trade-off exists between the
time computation and test coverage. The higher the value of T , the higher is the test
coverage, the more computation time is required to find a minimum number of products
that covers all combinations of T features and as a result the number of products to
be tested increases. In Table 2.1, we list five configurations that are created from



2.2. Software Product-Line Testing 15

ID configurations

c1 {GraphLibrary, Edges, Directed}
c2 {GraphLibrary, Edges, Directed, Algorithms, Number, Cycle}
c3 {GraphLibrary, Edges, Undirected}
c4 {GraphLibrary, Edges, Undirected, Algorithms, Number}
c5 {GraphLibrary, Edges, Directed, Algorithms, Cycle}

Table 2.1: Configurations of GraphLibrary product line created using the pairwise sam-
pling algorithm ICPL

feature model GraphLibrary using the pairwise sampling algorithm ICPL [Johansen
et al., 2012a].

Creating these configurations are instances of the covering array problem [Johansen
et al., 2011]. In particular, the configurations can be represented as a covering array.
The main challenge of generating covering arrays is to find the minimal number of con-
figurations that covers the T -wise combinations of features, which is an NP-hard prob-
lem [Engebretsen, 2005]. In addition, finding a valid configuration in a feature model is
an NP-complete Satisfiability Problem (SAT) [Cook, 1971]. Numerous algorithms have
been proposed to approximate these minimal covering arrays [Chvatal, 1979; Johansen
et al., 2011, 2012a; Garvin et al., 2011]. In the following, we give an overview of a set
of existing sampling algorithms, which have been used to sample configurations using
the feature models as an input.

2.2.2 Covering Array Algorithms

In this thesis, we consider for evaluation purposes the sampling algorithms CASA [Gar-
vin et al., 2011], Chvatal [Chvatal, 1979; Johansen et al., 2011], ICPL [Johansen et al.,
2012a], IPOG [Lei et al., 2007], and MoSo-PoLiTe [Oster et al., 2010], as they are
well-known sampling algorithms in the product-line testing community [Henard et al.,
2014b; Medeiros et al., 2016].

CASA [Garvin et al., 2011] uses simulated annealing to generate T -wise covering
arrays of product lines. It is a non-deterministic algorithm where different configurations
may be created in different orders when applied multiple times to the same feature
model. CASA separates the problem of generating the T -wise covering arrays into two
iterated steps. The first step minimizes the number of created configurations. The
second step ensures that a certain degree of coverage is achieved.

Chvatal [Johansen et al., 2011] is a heuristic algorithm proposed by Chvatal [Chv-
atal, 1979] to approximate optimal solutions for the minimal covering array. The basic
version of the algorithm does not incorporate feature dependencies. Johansen et al.



16 2. Background

[2011] adapted and improved the algorithm to create samples from feature models. The
steps of generating covering arrays with the Chvatal algorithm are as follows. First, all
T -wise feature combinations are generated. Second, an empty configuration is created.
Third, all feature combinations are iterated to add them to the configuration. Each
time a new combination is added to the configuration, the validity of this configuration,
with respect to the feature model, is checked using a SAT solver [Mendonça et al.,
2009b]. If the configuration is invalid, the combination is removed from the configura-
tion. The newly created configuration is added to the final set of configurations if it
at least contains one uncovered combination. The creation of configurations continues
until all valid T -wise feature combinations are covered at least once.

ICPL [Johansen et al., 2012a] is based on the Chvatal algorithm with several
improvements, such as identifying invalid feature combinations at an early stage. It
generates the T -wise covering array more efficiently, because the parallelization of the
algorithm shortens the computation time significantly. ICPL aims to cover the T -
wise combinations of features as fast as possible by covering the maximum number of
uncovered feature combinations, each time a configuration is created.

IPOG [Lei et al., 2007] is an algorithm proposed to create covering arrays. These
arrays are generated from scratch for the first T features, and then the arrays grow
horizontally and vertically. With the horizontal growth, a feature and its value are
added, while in the vertical growth, new combinations of the newly added feature and
the old ones are added to achieve the coverage, if needed. In the following, we illustrate
IPOG’s functionality by means of our running example. First, the covering array starts
with one feature, e.g., GraphLibrary, and its values (True and False). Second, the
covering array grows horizontally by adding a new feature, e.g., Algorithms, and its
values (True and False). In particular, we have the following combinations of the two
features, True ∧ True and False ∧ False. Third, to cover all possible combinations of the
two features, the covering array grows vertically by adding the following combinations,
True ∧ False and False ∧ True. The horizontal and vertical growth continues until all
features and their combinations are covered.

MoSo-PoLiTe [Oster et al., 2010; Oster, 2012] is a test framework that combines
pairwise testing, to generate a minimal set of products covering all pairwise combina-
tions, and model-based testing, to derive test cases for the generated products. In our
work, we focus on the pairwise testing, where products are generated. These products
will be used in our evaluation. The pairwise algorithm in MoSo-PoLiTe is proposed
based on the existing algorithms IPO [Lei and Tai, 1998] and AETG [Cohen et al.,
1994]. MoSo-PoLiTe works as follows: the valid combinations of pair features, w.r.t.
the feature model, are generated. Then, the algorithm starts to combine these feature
combinations to create valid configurations by starting with the first combination and



2.2. Software Product-Line Testing 17

iteratively adding the remaining combinations. For each step, forward checking [Haral-
ick and Elliott, 1980] is applied to check whether the selected combination can be added
to the remaining combinations in the current configuration. If the current configuration
is not valid, the selected combination is removed and another combination is selected
to be added instead. The algorithm continues until all pairwise feature combinations
are covered by at least one configuration.

Although there are promising approaches for generating covering arrays, most of them
do not scale well to large feature models [Medeiros et al., 2016; Liebig et al., 2013]
and their execution takes a considerable amount of time. As a result, the Linux kernel
developers use the built-in facility of the Linux kernel build system randconfig to
generate random configurations, because none of the existing sampling algorithms scale
to the feature model of the Linux kernel with over 15 thousand features [Melo et al.,
2016]. Furthermore, testers cannot start testing until the entire sampling process has
terminated, because no intermediate results are reported. In this work, we propose
the IncLing algorithm to incrementally sample products one by one based on a greedy
selection heuristics to achieve pairwise coverage (cf. Chapter 5). As the testing time in
practice is limited, the order in which products are tested matters to find faults as soon
as possible. Each sampling algorithm typically outputs an ordered list of configurations.
The orders of the aforementioned sampling algorithms may already be effective as they
all aim to cover as many interactions as fast as possible. In this thesis, we investigate
whether the orders of these algorithms are effective.

2.2.3 Test-Case Prioritization

In a single system, it may require a large amount of time and effort to run all test
cases in an existing test suite, especially for large-scale real-world software. Rothermel
et al. [2001] report that running test cases of their 20 KLOC industrial software takes
approximately seven weeks. To reduce the number of executed test cases, different
techniques have been developed, such as test set minimization, test case selection, and
test case prioritization [Yoo and Harman, 2012]. While minimization and selection test
cases aim to reduce the test sets, test case prioritization aims to reorder test cases based
on their priority while keeping the same size. Rothermel et al. [2001] define test case
prioritization problem as follows:

Definition 2.3. (Test-Case Prioritization Problem).
Given: A set of test cases T, the set of its permutations PTT and function f: PTT → R
computing a test case priority.
Problem: Find T’ ∈ PTT such that (∀T”) (T” ∈ PTT ), (T”6=T’), [f(T’) ≥ f(T”)].

According to defined criteria, such as the code coverage, test cases with the highest
priority should be executed earlier than those with lower priority. Several goals of
prioritization can be achieved, such as reducing the costs of testing or increasing the
rate of fault detection of test cases (i.e., finding faults as soon as possible). To meet the
goals of prioritization, various criteria have been proposed, such as the coverage of the



18 2. Background

test cases that cover a large part of the code and the estimated ability of test cases to
reveal faults [Rothermel et al., 2001; Henard et al., 2016; Hemmati et al., 2013]. Another
technique is time-aware prioritization, which uses a genetic algorithm [Walcott et al.,
2006] to prioritize test cases to be executed within a given time budget. Regarding
the interaction coverage, Bryce and Memon [2007] propose to prioritize test cases by
examining all T -wise interactions of a software system. We refer to the latter in our
thesis as interaction-based approach.

In our thesis, we follow the same concept of prioritization (cf. definition 2.3), but to
prioritize products of a product line under test. In product-lines, prioritization has been
exploited to prioritize products under test [Devroey et al., 2014; Johansen et al., 2012b;
Henard et al., 2013a; Sánchez et al., 2015; Ensan et al., 2011; Henard et al., 2013c] as well
as the generated test cases [Lachmann et al., 2016, 2015; Baller et al., 2014]. While we
consider prioritizing products in this thesis, considering test case prioritization for these
products may enhance product-line testing effectiveness. In product lines, interaction-
based is a search approach that systematically enumerates all possible configurations
and selects the configuration which covers the highest number of feature interactions
to be tested next. In particular, the interaction-based approach works as follows. We
derive all feature combinations from the given configurations. Then, we incrementally
select one configuration at a time covering the largest number of uncovered feature
combinations. In case we have two or more configurations covering the same number of
uncovered combinations, we randomly select the next configuration to be tested next.

The interaction-based approach does not scale to complex product lines due to the
expensive computation of the T -wise interactions as well as the exponential growth
of the configuration number which must be enumerated each time a configuration is
selected [Henard et al., 2014b; Yoo and Harman, 2012]. In this chapter, in addition to
random orders and the default orders of sampling algorithms, we used the interaction-
based approach to measure the effectiveness of our proposed approaches, where we
prioritize configurations based on the dissimilarity among them, as we show in the next
chapter.



3. Configuration-Based Similarity-
Driven Product Prioritization

This chapter shares material with SoSyM’16 article “Effective Product-
Line Testing Using Similarity-Based Product Prioritization”[Al-Hajjaji et al.,
2016d], SPLC’14 paper“Similarity-Based Prioritization in Software Product-
Line Testing” [Al-Hajjaji et al., 2014], and the AST’17 paper “Efficient
Product-line Testing Using Cluster-based Product Prioritization”[Al-Hajjaji
et al., 2017b]. Furthermore, we have given tool demo support for product-
lines testing at GPCE’16 [Al-Hajjaji et al., 2016b].

As indicated in the previous chapter, the number of possible products can reach up-to
2n, where n is the number of features. Hence, testing each individual product of a
software product line can be unfeasible due to the usual limited testing time. Thus,
several approaches have been proposed to restrict the number of products under test [Shi
et al., 2012; Carmo Machado et al., 2014; Devroey et al., 2014; Perrouin et al., 2010]. For
instance, combinatorial interaction testing, especially pairwise testing, is a promising
approach widely used in single system testing as well as in product-line testing to reduce
testing effort [Nie and Leung, 2011; Cohen et al., 2007; Lopez-Herrejon et al., 2013;
Johansen et al., 2012a; Garvin et al., 2011; Oster et al., 2010]. While combinatorial
interaction testing considerably reduces the number of products to consider for testing,
this number can still be large to fit in the allocated testing budget. For example,
applying pairwise testing for a version of the Linux kernel with 6, 888 features results
480 products [Johansen et al., 2012a], which is a large number to test.

As the time budget for testing in practice is limited, the order in which products are
tested matters to presumably find faults as soon as possible within the available amount
of time. Hence, different criteria are used to prioritize products, such as statistical
analysis of usage models [Devroey et al., 2014], cost and profit of selecting a set of test
cases [Baller et al., 2014], domain knowledge [Johansen et al., 2012b; Henard et al.,



20 3. Configuration-Based Similarity-Driven Product Prioritization

2013a; Sánchez et al., 2015], and similarity among products [Henard et al., 2014b; Lity
et al., 2017; Devroey et al., 2016]. The notion of similarity heuristic is used in model-
based testing of single systems to prioritize test cases [Hemmati and Briand, 2010; Chen
et al., 2010; Cartaxo et al., 2011]. Hemmati et al. [2011] report that dissimilar test cases
are more likely to detect more different faults than the similar ones.

In this chapter, we propose configuration-based prioritization to prioritize products
based on the similarity between them in order to investigate whether it increases the
effectiveness of product-line testing. For this purpose, we consider problem-space infor-
mation in terms of feature selection for product-by-product testing. With regard to the
previously tested products, we incrementally select the least similar product in terms of
features to be tested next. Identifying the feature selections that distinguish products
and prioritize them based on the degree of similarity can yield a meaningful order for
testing [Henard et al., 2014b]. Configuration-based prioritization is a heuristic approach
that focuses on prioritizing products. Furthermore, configuration-based prioritization
can be combined with any sampling technique and can even be applied to the set of
productively-used configurations (i.e., configurations defined by users).

In case the diversity between products in a product line is large, testing efforts may
increase due to changing environmental testing settings, especially in the automotive
domain [Lity et al., 2016]. Thus, we propose cluster-based prioritization to cluster
products based on their similarity. On these clusters, developers can apply different
testing strategies: First, they may want to cover a specific cluster in more detail, for
instance, because it contains commonly demanded products. Hence, test efforts can be
reduced by enabling faster fault detection. Second, clustering products can be useful
to optimize the setup time for testing. For instance, instead of consuming time to
change the testing infrastructure (e.g., changing a specific hardware) for each product,
products can be clustered based on a specific parameter and the same testing setup can
be used for the whole products in a cluster. Finally, the developer may select a subset
of products from each cluster. Hence, the sample covers dissimilar products, and thus,
most likely different feature interactions.

The remainder of this chapter is organized as follows. In Section 3.1, we introduce
configuration-based prioritization and explain it by means of our running example
(cf. Figure 2.2 on Page 9, Table 2.1 on Page 15, and Table 3.1 on Page 24). In Sec-
tion 3.2, we present the implementation of the proposed approach and the integration
of sampling algorithms in FeatureIDE. In Section 3.3, we present our evaluation in-
troducing the experimental setting and used subject product lines. Then, we compare
the proposed approach to random orders, interaction-based prioritization, and the de-
fault order of sampling algorithms and discuss the reported results. We introduce the
cluster-based product prioritization approach in Section 3.4. We discuss the threats to
validity of our evaluations that may affect our results in Section 3.5. In Section 3.6, we
present related work to our product prioritization approaches.



3.1. Configuration-Based Prioritization 21

 

  

Sampling

Similarity-based 
prioritization 

Sample

Sampling algorithm

Set of 
configurations

Prioritized list of 
configurations

Feature model

Configurations given by domain experts

Generate all valid 
configurations

Generate

Figure 3.1: Overview of configuration-based prioritization approach

3.1 Configuration-Based Prioritization

With configuration-based prioritization, we prioritize products based on the similarity
between them in terms of feature selections. As illustrated in Figure 3.1, the input
of configuration-based prioritization is a set of configurations. These configurations
can be generated as follows. For small product lines, all valid configurations can be
used as input to prioritization. For larger product lines, these configurations can be
reduced using sampling algorithms, since it may not be possible to generate all valid
configurations. Another option is that these configurations can be given by domain
experts as they have insight into the product line, such as which configurations are
mostly desired by customers. The outcome of our approach is a prioritized list of
configurations.

In configuration-based prioritization, we select one product at a time to be tested.
We select the product that has the lowest value of similarity compared to all previ-
ously tested products in terms of feature selections. With configuration-based prior-
itization, we consider the selected and deselected features when we calculate the dis-
tance (cf. Equation 3.1). The rationale of taking the deselected features into account is
based on the observation that some faults can be triggered because other features are
not selected [Abal et al., 2014; Medeiros et al., 2016]. In the following, we present the
main algorithm of our approach in Algorithm 3.1 and explain its steps with our running
example.

3.1.1 Initialization

The inputs of our algorithm are a set of valid products PSPL ∈ SPL and the correspond-
ing feature model FM. The output of the algorithm is a list of prioritized products
in terms of feature selections (i.e., their configurations). At the beginning, we initialize
the required variables F , which represents all features in a feature model FM and
AllDistance, which represents the degree of similarity between products (Lines 2–10).



22 3. Configuration-Based Similarity-Driven Product Prioritization

Algorithm 3.1 Configuration-Based Prioritization.
Require: FM . feature model

PSPL . a set of products
Return: Ptested . list of tested products

1: function Prioritization(PSPL, FM)

2: F ← getFeatures(FM)
3: Ptested ← emptyList

4: for each pi ∈ PSPL do . Calculate distances between products
5: for each pj ∈ PSPL do
6: if pi 6= pj then
7: AllDistance[i, j]← getdistances(pi,pj ,F )
8: end if
9: end for

10: end for

11: allyesconfig ←getallyesconfig( FM, PSPL) . Algorithm 3.2
12: Ptested ← Ptested ∪ {allyesconfig}
13: PSPL ← PSPL \ {allyesconfig}
14: TestProduct(allyesconfig)

15: while |PSPL|>0 do
16: pi = SelectConfiguration(PSPL, Ptested, AllDistances)) . Algorithm 3.3
17: Ptested ← Ptested ∪ {pi}
18: PSPL ← PSPL \ {pi}
19: TestProduct(pi)
20: end while
21: return Ptested

22: end function

We measure the similarity between products by calculating the distances between them
(Lines 4–10). We use an adaptation of the Hamming distance [Hamming, 1950] to
measure the similarity among products. Devroey et al. [2016] investigate different
types of distance measurements in product-line testing and they report that Hamming
and Jaccard distances are most effective distance functions. While we use Hamming
distance in this chapter, we conduct a comparison between the Hamming and Jaccard
distances, with respect to the testing effectiveness, in the next chapter. Using Hamming
distance, we define the distance between two given products pi and pj relative to the
set of all features F as

distance(pi, pj,F) = 1− |pi ∩ pj|+ |(F\pi) ∩ (F\pj)|
|F |

(3.1)

where |pi ∩ pj| is the number of features selected in products pi and pj, |(F\pi) ∩
(F\pj)| is the number of features deselected in products pi and pj, and F is the set of
all features. The definition of distance(pi, pj, F ) is symmetric with regard to pi and pj,
which can be used to reduce the number of computational steps of our algorithms. The



3.1. Configuration-Based Prioritization 23

distance values among products are normalized, and therefore, they range from 0 to 1.
Values close to 0 indicate similar feature selections, while values close to 1 indicate that
the products differ in almost every feature.

Example 3.1. In this example, we show how the distances between products are calcu-
lated. We calculate the distance between p1 and p2 (cf. Table 2.1 on Page 15), where
each configuration represents the selected features of the corresponding product). With
p1, we have three selected features and four deselected features, while with p2 we have
six selected features and one deselected feature. The value of |pi ∩ pj| is 3, while the
value of |(F\pi) ∩ (F\pj)| is 1. Hence,

distance(p1, p2,F) = 1− 3 + 1

7
= 0.429

We follow the same step to calculate the distances between all products. The resulting
distances between products are reported in Table 3.1 on Page 24.

After calculating and saving the distances between products, which is the last step in
the initialization phase, we start to select products to be tested.

3.1.2 First Product Selection

Since considering the distance does not help to select the first product to test, we
select the product that has the maximum number of selected features to be tested
first (cf. Algorithm 3.2). We iterate all products in order to find the product with the
maximum number of selected features. The rationale for selecting the product that has
the maximum number of selected features as the first to be tested is the following:

• Most faults that may exist in an individual feature can be detected with this
product [Bessey et al., 2010].

• Most faults that are caused by the interaction of selected features can be detected
with this product [Abal et al., 2014; Medeiros et al., 2016].

For these reasons, it is a common strategy in the Linux community to test this product
first (a.k.a. allyesconfig) [Dietrich et al., 2012]. If more than one product has the same
value of the maximum number of selected features, we select the first iterated product
that has this value (cf. Algorithm 3.2 Line 6). The selected product is added to the list
Ptested (Algorithm 3.1 Line 17), which contains the prioritized products, and removed
from set PSPL (Algorithm 3.1 Line 18), which contains the remaining products.

Example 3.2. From Table 2.1 on Page 15, we have product p2 that has the maximum
number of selected features (six features). We select product p2 to be the first product
(allyesconfig) to be tested (cf. Algorithm 3.2). In particular, product p2 is added to list
Ptested and removed from set PSPL.



24 3. Configuration-Based Similarity-Driven Product Prioritization

p1 p2 p3 p4 p5

p1 0 0.429 0.286 0.571 0.286
p2 0.429 0 0.714 0.429 0.143
p3 0.286 0.7140 0.286 0.571
p4 0.571 0.429 0.286 0 0.571
p5 0.286 0.143 0.571 0.571 0
0.0 : The max distance to the first tested product (p2)

0.0 : The max distance over min to the tested products

Table 3.1: Distances between the five configurations listed in Table 2.1

Algorithm 3.2 Select First Product To Test.
Require: FM . feature model

PSPL . a set of products
Return: allyesconfig . product with the maximum number of selected features

1: function getallyesconfig(PSPL, FM)

2: allyesconfig ← p1
3: Fallyesconfig ← getSelectedFeatures(allyesconfig)
4: for each pi ∈ PSPL do
5: FSelected ← getSelectedFeatures(pi)
6: if |FSelected| > |Fallyesconfig| then
7: allyesconfig ← pi
8: end if
9: end for

10: return allyesconfig
11: end function

3.1.3 Incremental Product Selection

After selecting the first product (allyesconfig), we select a new product to be tested that
is least similar to the first one (Algorithm 3.1 Line 16). In case the new product is the
second one, we only need to compare the distances of products to the first selected one
(allyesconfig) (the inner loop of Algorithm 3.3 Lines 5–11). Considering the distances,
which are already calculated in the initialization phase (cf. Table 3.1), we are able to
select the second product to be tested.

Example 3.3. In list S, we already have product p2. The distances between product p2
and the other products is already calculated (cf. the second row or column of Table 3.1).
The products with the maximum distances (0.714) to product p2 is product p3 (highlighted
with circle and additional background color). The product p3 is added to list Ptested and
removed from set PSPL. As a result, two products exist in list Ptested = (p2, p3) and all
other untested products remain in set PSPL (i.e., PSPL = {p1, p4, p5}).



3.1. Configuration-Based Prioritization 25

After selecting the second product, we select the third product that is least similar
to all previously tested products. By incorporating distances between all previously
tested products, the selection of the next product ensures fast coverage of feature inter-
actions [Hemmati et al., 2013]. In the literature, a strategy has been used to calculate
distances between more than two products in product-line testing, namely maximum
over distance summation [Henard et al., 2014b].

Based on the sum of the distances between each product in the untested products PSPL

and all tested products in Ptested, we select the next product to be tested that has
the maximal sum distances. Therefore, we define the corresponding function nextsum :
P(PSPL)× P(PSPL)→ P(PSPL) for selecting the next product as follows:

nextsum(PSPL, Ptested) = p ∈ PSPL \ Ptestedwith∀p′ ∈ PSPL \ Ptested : (3.2)∑
pj∈Ptested

distance(Fp′ , Fpj , FSPL) ≥
∑

pi∈Ptested

distance(Fp′ , Fpi , FSPL)

However, the summation may be prone to favor outliers. For example, products which
have solely one large distance to one of the already tested products are selected for test-
ing instead of products which have average distances to the tested ones with a smaller
summation. Hence, we consider a strategy to calculate distances between more than
two products in product-line testing, namely maximum over distance minimum [Kuby,
1987]. In the strategy maximum over distance minimum, we perform two steps:

• First, we determine the minimum distances, which we already have from the
initialization phase, for all untested products to the already tested products (Al-
gorithm 3.3 Lines 5–11).

• Second, we determine the maximum of these minimum distances and select the
corresponding product as next product to be tested (Algorithm 3.3 Lines 12–15).

By incorporating the maximum over distance minimum, we are able to determine the
best increment in feature coverage and further are more stable against outliers. To
determine minimal distances, we define the relation minDist ⊆ PSPL × PSPL capturing
the pair of untested and tested products for which the minimal distance exists such
that for all p ∈ PSPL \ Ptested a corresponding pair exists as follows:

(p, p′) ∈ minDist⇔ ∃p′ ∈ Ptested : ∀p′′ ∈ Ptested \ {p′} : (3.3)

distance(Fp, Fp′ , FSPL) ≤ distance(Fp, Fp′′ , FSPL)

We use this relation for the product selection function nextmin : P(PSPL)× P(PSPL)→
P(PSPL) which is defined as follows:



26 3. Configuration-Based Similarity-Driven Product Prioritization

Algorithm 3.3 Select the next Configuration.
Require: PSPL . a set of products

Ptested . a list of tested products
AllDistances[ ] . The calculated distances between products

Return: NextConfig . product with the largest distance to the tested ones

1: function SelectConfigurations(PSPL, Ptested, AllDistances)

2: NextConfigDistance← 0

3: for each pi ∈ PSPL do
4: TempDistance← 1
5: for each pj ∈ Ptested do
6: Distancepipj ← GetDist(pi, pj)
7: if Distancepipj < TempDistance then
8: TempDistance← Distancepipj
9: PNewTemp

← pi
10: end if
11: end for
12: if TempDistance > NextConfigDistance then
13: NextConfigDistance← TempDistance
14: NextConfig ← PNewTemp

15: end if
16: end for
17: return NextConfig
18: end function

nextmin(PSPL, Ptested) = {p ∈ PSPL \ Ptested| ∀p′ ∈ PSPL \ Ptested :

min
pi∈Ptested

distance(Fp′ , Fpi , FSPL) > min
pj∈Ptested

distance(Fp′ , Fpj , FSPL)} (3.4)

The result may comprise more than one potential candidate for the next product to be
tested. In such a case, we, again, select the first iterated candidate.

Example 3.4. Consider again our running example, we already have two tested prod-
ucts in the list Ptested (p2 and p3). To select the third product, we determine first the
minimum distances for all untested products (p1, p4, and p5) to all tested products (p2
and p3) (Algorithm 3.3 Lines 5–11). These minimum distances are 0.286, 0.286, and
0.143 (highlighted with bold font in Table 3.1 on Page 24). Second, we select the product
with maximum of these minimum distances (Algorithm 3.3 Lines 12–15). In our case,
we have two products, p1 and p4 with 0.286. In this case, we select the first iterated one
of these products, which is product p1 (highlighted with circle and bold font in Table 3.1).
We repeat the previous step until all products are selected to be tested. The resulting
testing order is p2, p3, p1, p4, and p5.

Performing configuration-based prioritization is computationally cheap, because we es-
sentially rely on the Hamming distance, which is a linear operation in the number of



3.2. Configuration-Based Prioritization in FeatureIDE 27

features, to calculate distances among products. We implemented our approach and
combined it with existing sampling algorithms in FeatureIDE [Al-Hajjaji et al., 2016c]
as will be described in the next section.

3.2 Configuration-Based Prioritization in FeatureIDE

FeatureIDE [Meinicke et al., 2017; Thüm et al., 2014b] is a set of Eclipse plug-ins that
support all phases of product-line development from domain analysis to software gen-
eration. FeatureIDE covers the entire product-line development process and integrates
with tools for the implementation of product lines. In this section, we focus on the
functionalities of FeatureIDE that is related to product-by-product testing.

Product-by-product testing is a technique that generates and tests individual products
using an existing testing technique from single systems engineering. For product-by-
product testing and analyses, it is useful to automatically derive configurations from
the feature model. To automatically derive configurations as well as to generate and
test products in FeatureIDE, we support several strategies to provide configurations
for testing, namely using user-defined configurations, deriving all valid configurations,
and using T -wise sampling [Al-Hajjaji et al., 2016c; Meinicke et al., 2017]. User-defined
configurations can be created manually using the integrated configuration editor [Pereira
et al., 2016]. This is a straightforward strategy, which is commonly used in practice,
especially for the small product lines. All valid configurations can be generated using
an algorithm that exploits the tree structure of the feature model. Generating all valid
configurations scales only for small product lines. T -wise sampling aims to generate
a minimal set of configurations that covers all interactions among T features. In the
following, we present the integrated sampling algorithms that have been proposed to
sample product lines. These algorithms are also used in our evaluation.

T-Wise Sampling Algorithms

In FeatureIDE, we integrate three T -wise sampling algorithms, namely CASA [Garvin
et al., 2011], Chvatal [Chvatal, 1979; Johansen et al., 2011], and ICPL [Johansen et al.,
2012a].

• CASA [Garvin et al., 2011] uses simulated annealing to derive configurations.
Therefore, it is a non-deterministic algorithm where a different number of config-
urations may be created for the same product line in different runs.

• Chvatal [Chvatal, 1979; Johansen et al., 2011] is a heuristic algorithm proposed
to create configurations for software product lines.

• ICPL [Johansen et al., 2012a] is based on the Chvatal algorithm with several im-
provements, such as identifying invalid feature combinations at an early stage. It
generates the T -wise covering array efficiently as it makes use of multi-threading.



28 3. Configuration-Based Similarity-Driven Product Prioritization

Each sampling algorithm produces some implicit order as part of its output that is given
by the positioning of the products within the output data structure. However, this order
is not explicitly mentioned by the authors who proposed these sampling algorithms and
is somehow influenced by coverage criteria. Moreover, the order produced by some
sampling algorithms is even non-deterministic (i.e., different runs with the same input
often lead to different orders).

In FeatureIDE, we enable users to choose the way to order configurations, either by the
default order of these sampling algorithms or by configurations-based prioritization,
which is implemented and integrated in FeatureIDE.

In addition, we implemented the interaction-based approach, a greedy approach used in
our evaluation as a baseline [Bryce and Memon, 2007]. The interaction-based approach
aims to optimize feature interaction coverage. For this, the configuration that covers
most feature interactions that are not already covered by previous configurations is
selected. This process is continued until all configurations are tested, or all interactions
are covered (i.e., the number of configurations to test may be smaller). To evaluate our
approach, we used the aforementioned implementation to conduct our experiments.

3.3 Evaluation of Configuration-Based Prioritization
For a given set of products, configuration-based prioritization aims at detecting faults
earlier (with respect to random and sampling orders) by faster increasing interaction
coverage. We measured the potential improvements of effectiveness in terms of the
fault detection rate compared to random orders, to the default order of sampling al-
gorithms, and to the interaction-based approach [Bryce and Memon, 2007]. Especially
the interaction-based approach is commonly used to measure the effectiveness of com-
binatorial interaction testing approaches [Henard et al., 2014b]. The rationale of the
comparison to the interaction-based approach is that our approach aims to increase the
interaction coverage for a product line under test over time. In our experiments, we
consider the interaction of only up-to T = 2 in the interaction-based approach, as it
does not scale well to large t [Henard et al., 2014b; Yoo and Harman, 2012].

In particular, the run-time complexity of the interaction-based approach is O(m2nt2t),
where m is the number of products, n is the number of features, and t is the degree
of the interaction coverage. However, the run-time complexity of the configuration-
based prioritization approach is O(m2n). Regarding the total required memory space,
the interaction-based approach requires mn + nt2t, which represents the memory of
storing the feature selections of products (mn) and the combination of features (nt2t).
However, the required memory space of configuration-based prioritization is mn+m2,
which represents the memory of storing the feature selections of products (mn) and
the distances between products (m2). That is, the interaction-based approach requires
more memory space as well as time than configuration-based prioritization. Note that
a space–time trade-off can be made to optimize the needed space and time for both
approaches.

In our evaluation, we aim at answering the following research questions:



3.3. Evaluation of Configuration-Based Prioritization 29

RQ1 Can configuration-based prioritization detect faults faster compared to random
orders and the interaction-based approach?

RQ2 Do sampling algorithms produce samples with an acceptable effective order?

RQ3 Is the computational overhead required for configuration-based prioritization neg-
ligible compared to the efforts required for sampling?

Regarding RQ1, we ran experiments using three available subject product lines with
real faults in the feature source code. These subjects have already been used in pre-
vious studies on product-line verification [Apel et al., 2013c; Meinicke et al., 2016b].
In Table 3.3, Page 32, we summarize statistics on these product lines. As these product
lines are rather small in terms of the number of features, we ran further experiments
to evaluate our approach using real-world feature models and artificial ones of various
sizes. With respect to the experiment of product lines with real faults and to the ex-
periment of feature models, we derived the following, more specific research questions
from RQ1:

RQ1.1 Can configuration-based prioritization detect faults faster than random orders
and the interaction-based approach for product lines with real faults?

RQ1.2 Can configuration-based prioritization cover feature interactions faster than
random orders and the interaction-based approach?

In the remainder of this section, we introduce metrics that are used to evaluate our
results in Section 3.3.1. In Section 3.3.2, we describe the experiment to address RQ1.1,
where we used three subject product lines with real faults in the source code. In Sec-
tion 3.3.3, we present the settings and the results of the experiment with feature models
to address RQ1.2, RQ2, and RQ3. Finally, we discuss the threats to validity in Sec-
tion 3.5.

3.3.1 Evaluation Metrics

In this section, we introduce APFD metric to evaluate our approaches and the Mann-
Whitney U test to analyze the reported results.

Average Percentage of Faults Detected (APFD)

We use a well-known metric called APFD developed by Elbaum et al. [2000] to evaluate
the pace of fault detection. This metric is widely used in the literature to evaluate the
prioritization testing approaches [Kuhn et al., 2013; Rothermel et al., 2001; Elbaum
et al., 2002; Li et al., 2007; Yoo and Harman, 2012; Qu et al., 2007; Henard et al.,
2016; Sánchez et al., 2014; Walcott et al., 2006]. The APFD is calculated by measuring
the average number of faults detected in the system under test. APFD values range



30 3. Configuration-Based Similarity-Driven Product Prioritization

Faults Products

p1 p2 p3 p4 p5

f1 x x
f2 x x x
f3 x x
f4 x x
f5 x
f6 x x x

Table 3.2: Fault matrix

from 0 to 1; higher values of APFD indicate faster fault detection rates. APFD can be
calculated as

APFD = 1− tf1 + tf2 + ...+ tfm
n ∗m

+
1

2n
(3.5)

where n is the number of test cases, which represent products in our case, m is the
number of faults, and tfi is the position of the first test t that exposes the fault. We
show how to calculate APFD using our running example. We have five products P =
{p1, . . . , p5}, listed in Table 2.1 on Page 15, and we assume that six faults f1, . . . , f6,
are distributed as shown in Table 3.2. Moreover, assume we have two orderings of
these products, ordering O1 : p1, p2, p3, p4, p5 and ordering O2 : p3, p1, p4, p2, p5.
Incorporating the data from Table 3.2, the APFD calculation yields

APFD = 1− 4 + 1 + 2 + 3 + 3 + 3

6 ∗ 5
+

1

2 ∗ 5
= 0.57

for O1 and

APFD = 1− 3 + 2 + 3 + 1 + 1 + 1

6 ∗ 5
+

1

2 ∗ 5
= 0.73

for O2. Thus, the ordering O2 yields a better fault detection rate (0.73) than O1 (0.57).

In the following, we illustrate the effect of prioritization using APFD metric. Using the
fault matrix in Table 3.2 and considering the two aforementioned orders O1 and O2, we
show in Figure 3.2, the percentage of detected faults versus the fraction of the products
tested. With respect to order O1, we detect one of the six faults, which represent 16%
of the faults, after testing product p1, which represents 0.2 of the products (cf. Fig-
ure 3.2(a)). After testing the second product p2, we detect two faults, which represent
33% of the faults. The area inside the rectangle (dashed boxes) in Figure 3.2(a) repre-
sents the weighted percentage of faults detected over the corresponding fraction of the



3.3. Evaluation of Configuration-Based Prioritization 31

(a) Order 1 (b) Order 2

Figure 3.2: Example illustrating the APFD measure.

products under test. That is, the area under the curve represents the weighted average
of the percentage of faults detected over the progress of testing products (i.e., over the
life of products under test). In particular, this area represents the average percentage
faults detected in the prioritized products under test (APFD), which is in Figure 3.2(a)
57%. Changing the order of products under test to O2: p3, p1, p4, p2, p5, yields to a
faster detection, as illustrated in Figure 3.2(b), with an APFD of 73%.

Mann-Whitney U test

In this thesis, we compared our proposed approaches against other existing ones that
include some randomness. Therefore, to analyze the effectiveness of these approaches, it
is important to study the distribution of their results (e.g., APFD values). Considering
only the average values can be misleading [Arcuri and Briand, 2011]. Thus, statistical
tests [Rice, 2006] can be used to assess whether the results are reliable. These tests
show whether there is enough empirical evidence to claim a difference between these
approaches.

Based on guidelines for reporting statistical tests [Arcuri and Briand, 2011], we use in
our thesis the Mann-Whitney U test to analyze the APFD values. The Mann-Whitney U
test is a non-parametric statistical test of the null hypothesis that two samples come
from the same population against an alternative hypothesis (i.e., a particular population
tends to have larger values than the other). From this test, we obtain the p-value
representing the probability that two samples are equal. The significance level is 0.05.
That means, if the p-value is less than or equal to 0.05, we reject the null hypothesis
that the two samples are equal.

3.3.2 Experiment with Code Base of Existing Product Lines

In this section, we describe our experiment using three product lines in order to address
RQ1.1: Can configuration-based prioritization detect faults faster than random orders
and the interaction-based approach for product lines with real faults?.



32 3. Configuration-Based Similarity-Driven Product Prioritization

Product lines LOC Features Specifications Products Faults

Elevator 1046 6 9 20 8
Mine-pump 580 7 5 64 4
E-mail 1233 9 9 40 9

Table 3.3: Overview of subject product lines

Subject Product Lines

We selected three product lines that have been previously used to evaluate verification
strategies of product lines [Apel et al., 2013c; Meinicke et al., 2016b]. These product
lines are the only ones we are aware of that have real faults caused by erroneous feature
interactions and that are publicly available:

• The Elevator system is an Elevator model designed by Plath and Ryan [2001]. It
provides various features, such as stopping if the elevator is empty or high priority
service for a special floor.

• The Mine-pump system simulates a water pump in mining operations [Kramer
et al., 1983]. An example of these operations is keeping the bottom of the mine
shaft dry and deactivating the pump in case the mine contains methane gas.

• The E-mail system of Hall [Hall, 2005] provides several features, such as encryp-
tion, decryption, and automatic forwarding.

The aforementioned product lines are implemented using feature-oriented program-
ming [Prehofer, 1997]. In particular, these product lines are implemented in Java using
the tool FeatureHouse [Apel et al., 2009]. Each feature of these product lines has in-
dividual specifications. The specifications, in form of assertions, are introduced using
AspectJ. Apel et al. [2013c] adapted the initial specifications that are written by the
original authors of these product lines. The three product lines contain faults that are
documented by the authors of these product lines. Apel et al. [2013c] focus on the faults
that are caused by the feature interaction. These faults violate at least one specifica-
tion. Mainly, the specifications concern specific safety properties. For instance, in the
Elevator system, if the weight is more than the maximum weight, the elevator should
not move. In this system, the detected faults are caused by the interaction of up-to
three features. In the E-mail system, an encrypted e-mail must not be transferred in
plain text. The reported faults in E-mail system are caused by the interaction of up-to
six features. For the Mine-pump system, an example of a safety concern is that in case
a methane gas is detected, Mine-pump must be deactivated. The detected faults in
this system are caused by the interaction of up-to four features. The information of
these product lines is summarized in Table 3.3. In addition to the product lines and



3.3. Evaluation of Configuration-Based Prioritization 33

 

  

Randomized order

Fe
at

u
re

 
m

o
d

e
l

O
rd

er
in

g 
of

 
co

n
fig

ur
at

io
ns

 

Pr
o

du
ct

 a
nd

 
sp

ec
ifi

ca
ti

on
 

ge
ne

ra
ti

on
E

va
lu

a
ti

o
n

All valid 
configurations

Configurations randomly 

ordered 

 Configurations  
prioritized based on 

similarity

Generator

SpecificationsProduct

Software model 
checking

Results

Generate

Create

Similarity-based order

Generate

Configurations 
prioritized based on 

interaction

Interaction-based order

Figure 3.3: Steps of the experiment with code base of product-lines

their feature models, the information about how these faults are caused by the feature
interaction are publicly available.1

Experiment Design

Figure 3.3 visualizes the experimental steps. First, we use feature models of the sub-
ject product lines to generate all valid configurations, as these product lines are small
enough. Second, we prioritize these products with configuration-based prioritization
and measure the potential improvement of effectiveness compared to random orders as
well as to the interaction-based approach [Bryce and Memon, 2007]. We repeat the ex-
periment of random orders 100 times to mitigate the impact of randomness. Third, the
products and the specifications for the corresponding configurations are generated using

1http://wwwiti.cs.uni-magdeburg.de/iti db/research/spl-testing/thesis

http://wwwiti.cs.uni-magdeburg.de/iti_db/research/spl-testing/thesis


34 3. Configuration-Based Similarity-Driven Product Prioritization

FeatureIDE. Finally, we verify whether the products satisfy the specification using Java
Pathfinder (JPF) [Visser et al., 2000] as a software model checker. If a product does not
satisfy the specification, we consider the violation of specification as a fault. Then, we
use the APFD metric (cf. Section 3.3.1) to evaluate the effectiveness of configuration-
based prioritization and compare it against interaction-based prioritization and random
orders.

Experiment Results

To answer RQ1.1, we show in Figure 3.4 the APFD value distribution of random or-
ders, our configuration-based prioritization approach, and interaction-based approach
for three product lines. Figure 3.4 shows that the APFD values of our approach are
higher than the median APFD values of the distribution of 100 random orders for each
product line. However, we observed that in Mine-pump (cf. Figure 3.4(b)) some random
orders are better than configuration-based prioritization. A possible reason for that is
the limited number of detected faults in the product line Mine-pump (only four faults)
compared to the product lines Elevator (eight faults) and E-mail (nine faults). In
Table 3.4, we show that APFD values for configuration-based prioritization are higher
than the average APFD values over 100 random orders for all subject product lines.
Using the Mann-Whitney U test, we found that our approach and random orders are
significantly better for the three product lines Elevator (p-value=0.0), Mine-pump (p-
value=0.0004), and E-mail (p-value=0.0). Although the number of faults and the size
of the subject of product lines are small, the reported results show that configuration-
based prioritization is better than the random order.

Comparing our approach to the interaction-based approach (cf. Figure 3.4 and Ta-
ble 3.4), we found that the APFD values of our approach are higher than the values
of interaction-based approach for the three product lines. In particular, the APFD
values of configuration-based prioritization and the interaction-based approach for the
three product lines Elevator, Mine-pump, and E-mail are (0.925, 0.957, and 0.975) and
(0.888, 0.953, and 0.950), respectively. The reason for the potential improvement of ef-
fectiveness by our approach compared to the interaction-based approach is that most of
the faults, which caused by the interaction of selected features, are detected in the first
product (allyesconfig). In the interaction-based approach, the first product is selected
randomly, because each product in the first step covers the same number of feature
combinations. Hence, it might be the case that most of the features are not selected.
However, the interaction-based approach can be improved by starting with allyesconfig
as well.

In response to RQ1.1, the results show that configuration-based prioritization is sig-
nificantly better than the random order and slightly better than the interaction-based
approach. Although the criteria, which we used to prioritize the products, are based
only on selected and deselected features, they give a clue when we applied our approach
on product lines with real faults that testing effectiveness of product lines can be im-
proved. To validate our approach further, we conducted other experiments with feature
models and simulated test execution and fault detection.



3.3. Evaluation of Configuration-Based Prioritization 35

Rand. Prior. Inter.

0.
75

0.
80

0.
85

0.
90

Order types

AP
FD

(a) Elevator

Rand. Prior. Inter.
0.

86
0.

90
0.

94
0.

98

Order types

AP
FD

(b) Mine-pump

Rand. Prior. Inter.

0.
80

0.
85

0.
90

0.
95

Order types

AP
FD

(c) E-mail

Figure 3.4: APFD value distribution of random orders, our configuration-based pri-
oritization approach, and interaction-based approach for three product lines: Elevator,
Mine-pump, and E-mail

Product line Random Conf. Prio. Interaction-based

Elevator 0.881 0.925 0.888
Mine-pump 0.937 0.957 0.953
E-mail 0.912 0.975 0.950

Table 3.4: The average APFD value over 100 random orders, the APFD value of
configuration-based prioritization, and the APFD value of the interaction-based ap-
proach

3.3.3 Experiments with Feature Models

In this section, we present the feature models, the experiment design, and the results
of the experiment to address RQ1.2, RQ2, and RQ3.

Subject Feature Models

We consider a variety of subject systems from academia as well as real-world systems
to evaluate our approach. Due to the lack of having open-source software product lines
that have test cases and faults in the source code [Sánchez et al., 2014], we conduct
our experiment using the feature models of the subject systems. Besides our running
example, we select all feature models in the S.P.L.O.T. repository [Mendonça et al.,
2009a] that have more than 140 features2 to evaluate the effectiveness of our approach.

2http://splot-research.org/, last accessed February 07, 2017

http://splot-research.org/


36 3. Configuration-Based Similarity-Driven Product Prioritization

Feature Model #Features #Constraints CTCR #Configurations*

BattleofTanks 144 0 0% 459
FM Test 168 46 28% 44
Printers 172 0 0% 181
BankingSoftware 176 4 2% 42
Electronic Shopping 290 21 11% 22
DMIS 366 192 93% 29
eCos 3.0 i386pc 1,245 2,478 99% 62
FreeBSD kernel 8.0.0 1,369 14,295 93% 77
Automotive1 2,513 2,833 28% 913
Linux 2.6.28.6 6,888 6,847 99% 479
10xAFM15† 15.0 2.6 19% 13.7
10xAFM50† 50.0 9.7 17% 26.4
10xAFM100† 100.0 20.0 17% 56.4
10xAFM200† 200.0 39.0 17% 89.9
10xAFM500† 500.0 100.0 17% 189.6
10xAFM1000† 1,000.0 100.0 14% 343.6
1xAFM5K 5,542 300 11% 685
CTCR: cross-tree constraints representative

*: Numbers of configurations calculated using pairwise sampling algorithm ICPL

†: The values next to the artificial feature models represent the average over 10 feature models

Table 3.5: Feature models used in our evaluation.

Furthermore, we consider feature models of very large-scale product lines, such as the
Linux kernel in version 2.6.28.6 with 6,888 features. The feature model of the Linux
kernel has been used previously to evaluate the scalability of product-line testing [Jo-
hansen et al., 2012a; Henard et al., 2014b]. In addition to the real feature models,
we consider 61 artificial feature models generated with S.P.L.O.T. [Mendonça et al.,
2009a], which also served previously as a benchmark for evaluation purposes [Henard
et al., 2014b]. The feature models that we used in our experiments are shown in Ta-
ble 3.5, where we present the following data for each feature model: number of features,
number of constraints, ratio of the number of distinct features in cross-tree constraints
to the number of features (CTCR), and number of valid configurations using the pair-
wise sampling algorithm ICPL [Johansen et al., 2012a]. For simplification purposes, we
show in Table 3.5 the average values over 10 artificial feature models of each model size
(i.e., 10 feature models of size 10, 10 feature models of size 50, and etc.). These feature
models are highlighted in Table 3.5 with †.

Experiment Design

In Figure 3.5, we show an overview of the experiments with feature models. To eval-
uate the effectiveness of configuration-based prioritization, we use feature models of



3.3. Evaluation of Configuration-Based Prioritization 37

 

  

Fe
at

u
re

 M
od

el

C
on

fi
gu

ra
ti

o
ns

 r
eo

rd
er

 a
n

d
 a

rt
if

ic
ia

l 
fa

u
lt

s
Ev

al
ua

ti
on

Set of configurations Artificial seeded 
faults

Default orderRandomize order

Similarity-based order

Configurations 
randomly ordered 

Set of configurations
Configurations 

prioritized based on 
similarity 

Evaluation

Results

Sample Simulate

Evaluate
Evaluate

Configurations 
prioritized based on 

interaction 

Interaction-based order

1 2

3

Figure 3.5: Steps of the experiment with feature models

different sizes as inputs for the sampling algorithms. The input to configuration-based
prioritization is a set of configurations which are created based on the feature model
(cf. Figure 3.5(1)). Generating all valid configurations as in Section 3.3.2 is not feasible
for these feature models. Hence, we create these configurations using the algorithms
CASA [Garvin et al., 2011], Chvatal [Chvatal, 1979], and ICPL [Johansen et al., 2012a].
These algorithms are well known in the community and they have been used previously
to evaluate product-line testing techniques [Henard et al., 2014b; Sánchez et al., 2015,
2014; Henard et al., 2016]. We compare the effectiveness of configuration-based priori-
tization to the effectiveness of the default order of each sampling algorithm. However,
it is not clear whether the default orders of these algorithms are effective or not. The
order of the created configurations by the sampling algorithms is mainly influenced by
the interaction coverage where these algorithms aim to cover the feature combinations
as fast as possible. Thus, we consider the default order of sampling algorithms in our
evaluation. In addition, we compare our approach to random orders and interaction-
based approach. The outputs of these sampling algorithms are served as inputs for
configuration-based prioritization as well as the interaction-based approach, and ran-
dom orders. Note that the input to the random orders and the interaction-based ap-



38 3. Configuration-Based Similarity-Driven Product Prioritization

proach are configurations created using the sampling algorithm ICPL [Johansen et al.,
2012a].

Artificial Faults

For the evaluation purpose, we implemented a fault distribution simulator based on
the fault simulators presented by Bagheri et al. [2012] and Ensan et al. [2012] and
used by Sánchez et al. [2014] to evaluate the fault detection rate of product-line test
suites. Generating these faults is independent of prioritizing products. Applying such a
technique is common in the community [Bagheri et al., 2012; Ensan et al., 2012; Sánchez
et al., 2014; Devroey et al., 2016], due to the lack of having case studies that have test
cases, source code, and numerous real faults.

We assume that faults are equally distributed over features in a product line. The
issue with this assumption is that faults are regularly discovered where they are not
expected. In any case, we argue that assuming equal distribution is better than to
build on non-idealized, yet conceivably non-representative distributions. The input of
our fault generator is a feature model and the outputs are valid combinations of features
(i.e., partial configurations) (cf. Figure 3.5(2)). We mark those generated combinations
as they are faulty. We assume that the faults will be detected if the combination of
features causing a fault is covered in a configuration (cf. Figure 3.5(3)). Similar to
previous work Sánchez et al. [2014], we simulate n/10 faults on each feature model,
where n is the number of features. We assume that having a larger feature model leads
to potentially more feature interactions. Thus, the number of simulated faults in our
experiment is proportional to the feature model size.

We generate two types of faults from the fault simulator, called exhaustive interac-
tion faults and pattern interaction faults. We use these two types of faults to assess
the effectiveness of our approach in terms fault detection ratio with different fault
types. Bagheri et al. [2012] simulate faults for 2-wise feature interactions, and Sánchez
et al. [2014] simulate faults for 4-wise feature interactions. With Exhaustive Interaction
Faults, we incorporate up-to 6-wise feature interactions, because previous studies show
that almost all faults are caused by the interaction of up-to 6 features [Kuhn et al., 2004;
Abal et al., 2014]. Previous work [Bagheri et al., 2012; Sánchez et al., 2014] focused
on faults caused by the interaction among the selected features as well, and they do
not take deselected features into account. However, with our fault generator, we also
consider the deselected features, because deselected features may also cause faults in
products [Abal et al., 2014].

In the exhaustive interaction faults, the same proportion of each T -wise feature interac-
tions is simulated as faults (i.e., 17% ≈ 100/6 for each of the following: single feature,
2-wise, 3-wise, 4-wise, 5-wise, and 6-wise feature interaction). We assume the equality
of fault numbers for T -wise interaction faults, because we are not aware of a study
that reports what the percentage of each T -wise fault is (i.e., 70% of faults are 1-wise
interaction faults). Examples of faults simulated for our running example in Figure 2.2
on Page 9 could be as follows: {Edges}, {Algorithm, ¬Undirected, Cycle} represent



3.3. Evaluation of Configuration-Based Prioritization 39

ID some-selected

1 a
2 a ∧ b
3 a ∧ b ∧ c
4 a ∧ b ∧ c ∧ d
5 a ∧ b ∧ c ∧ d ∧ e

ID combination of selected and not-selected

1 ¬a
2 a ∧ ¬b
3 a ∧ b ∧ ¬c
4 a ∧ b ∧ c ∧ ¬d
5 a ∧ b ∧ c ∧ d ∧ ¬e
6 ¬a ∧ ¬b
7 a ∧ ¬b ∧ ¬c ∧ ¬d ∧ ¬e

Table 3.6: Fault patterns [Abal et al., 2014]

two faults, a fault in feature Edges and another fault that applies to all configurations
where Algorithm and Cycle are selected and Undirected is not selected.

The steps of generating these simulated faults are as follows. We select a value T where
T ∈ [1 : 6]. Then, we select T features randomly. We decide for each feature randomly
whether it is selected or deselected. After that, we check whether this combination of
features is valid according to the feature model using a satisfiability solver (i.e., whether
it occurs in at least one configuration) [Mendonça et al., 2009b]. We accept only valid
combinations, because invalid combinations are not relevant. We already showed how
the valid combinations of features are created in Section 2.2.1.

With Pattern Interaction Faults, we base the fault generation on a qualitative study
for a set of faults that has been collected from the Linux kernel, BusyBox, Marlin,
and Apache repositories [Abal et al., 2014]. Abal et al. [2014] analyze each fault and
record their results. They observe that some faults are caused when some features are
not selected. They classify their faults as they appear in Table 3.6. All the reported
faults are up-to 5-wise feature interactions. We implemented our fault generator to
seed faults similar to these reported faults. We generate the same proportion of faults
for each pattern due to aforementioned reasons that other distributions are potentially
non-representative. We generated 100 sets of faults for each fault type. In each set, as
we already mentioned, the number of faults is n/10, where n is the number of features.

Experiment Results

In this section, we answer RQ1.2, RQ2, and RQ3.



40 3. Configuration-Based Similarity-Driven Product Prioritization

Figure 3.6: Average APFD for random orders, configuration-based prioritization, and
interaction-based using exhaustive interaction faults.
(*) The computation of interaction-based did not finish within 24 hours.

RQ1.2: Can configuration-based prioritization cover feature interactions
faster than the random orders and the interaction-based approach?

We compare our approach to the average results of 100 experiments for random orders
and to interaction-based prioritization using aforementioned fault types. Note that the
inputs to configuration-based prioritization, random orders, and the interaction-based
approach are configurations created by the sampling algorithm ICPL. In Figure 3.6
and Figure 3.7, we present the average APFD of random orders, configuration-based
prioritization, and interaction-based over 100 sets of exhaustive and pattern interaction
faults, respectively. We observed that interaction-based prioritization does not scale to
feature models larger than 500 features (highlighted with * in Figure 3.6 and Figure 3.7).
We abort the process if the computation of interaction-based prioritization did not finish
within 24 hours.

As Figure 3.6 and Figure 3.7 reveal, configuration-based prioritization performs bet-
ter than random orders, as the APFD values of configuration-based prioritization are
higher than average APFD of random orders for each product line. We use the Mann-
Whitney U test to investigate whether differences between configuration-based prioriti-
zation and random orders are significant. We observed that the p-values between APFD
values for real and artificial feature models using the exhaustive and pattern interaction
faults are approximately zero. That is, the difference between configuration-based pri-
oritization and random orders is significant for all feature models for both fault types.
Hence, the evaluation results show that configuration-based prioritization improves the
effectiveness of product-line testing compared to random orders.



3.3. Evaluation of Configuration-Based Prioritization 41

Figure 3.7: Average APFD for random orders, configuration-based prioritization, and
interaction-based using pattern interaction faults.
(*) The computation of interaction-based did not finish within 24 hours.

Comparing our approach to the interaction-based approach, the results show that both
approaches are approximately identical with a slight improvement for one over the
other in some product lines. For instance, in Figure 3.6, we observe a slight improve-
ment for the interaction-based approach for some product lines such as BattleofTank,
FM Test, and BankingSoftware. In Figure 3.7, we notice that configuration-based pri-
oritization is slightly better than interaction-based approach for some product lines,
such as FM Test, BankingSoftware, DMIS, 10xAFM15, and 10xAFM50. The reason
for the slight improvement of our approach over the interaction-based approach with
the pattern interaction faults is that most of the simulated faults are selected features
(cf. Table 3.6 on Page 39). Hence, these faults are detected with the first product
(allyesconfig). For the first product with the interaction-based approach, it is selected
randomly, because any product will cover the same percentage of the feature combina-
tions. Thus, it might be the case that most of the features in the first product are not
selected. Another possible reason is that the interaction-based approach is influenced by
the T -wise interactions, where T in our case equals 2. On the contrary, configuration-
based prioritization is independent of T as it selects the least similar configurations
instead of those covering the highest number of interactions.

We use the Mann-Whitney U test to investigate whether the differences between APFD
values of configuration-based prioritization and interaction-based approach are signifi-
cant. In Figure 3.8, we show the distribution of p-values between APFD values for the
interaction-based approach and configuration-based prioritization using the exhaustive
and pattern interaction faults for real and artificial feature models. In Figure 3.8, we



42 3. Configuration-Based Similarity-Driven Product Prioritization

Figure 3.8: The distribution of p-values from Mann-Whitney U Test between
interaction-based approach and configuration-based prioritization, (Ex.) exhaustive
interaction faults

observe that the median p-values of all box-plots are higher than 0.05. Hence, the
difference between our approach and the interaction-based approach is not significant.

Regarding RQ1.2, we conclude from the results that our approach performs well com-
pared to an expensive approach such as the interaction-based approach. In addition,
the advantage of our approach compared to the interaction-based approach is that it
scales well to all used product lines in our evaluation, while it is not the case with
interaction-based where it does not scale to product lines larger than 500 features in
terms of memory consumption. Using feature models up-to 500 features for which the
interaction-based approach scales up, we compare configuration-based prioritization to
the interaction-based approach in terms of the computation time. We found that the
computation time of configuration-based prioritization is, on average, 11% of the com-
putation time of the interaction-based approach.

RQ2: Do sampling algorithms produce samples with an acceptable effective
order?

For each sampling algorithm, there is an implicit order influenced by feature coverage.
That is, a sampling tool outputs configurations necessarily in a particular order. We
investigate whether these algorithms already have good orders as a result of covering
as many feature combinations as possible each time a product is generated. Thus, we
compare their default orders to configuration-based prioritization.

In Table 3.7 and Table 3.8, we present the average APFD values over 100 sets of faults
for each fault type. We highlight higher average values of APFD with a circle. These
values are highlighted with an additional background color if the difference between
values is significant. The p-values resulting from the Mann-Whitney U test are used



3.3. Evaluation of Configuration-Based Prioritization 43

FM APFD

CA-D CA-P CH-D CH-P ICPL-D ICPL-P

BattleofTanks 0.915 0.910 0.932 0.931 0.930 0.930
FM Test 0.845 0.833 0.866 0.887 0.864 0.887
Printers 0.926 0.928 0.961 0.961 0.960 0.960
BankingSoftware 0.849 0.851 0.899 0.896 0.901 0.900
ElectronicShopping 0.829 0.834 0.847 0.845 0.841 0.840
DMIS 0.823 0.824 0.876 0.874 0.878 0.877
eCos 3.0 i386pc * * 0.723 0.717 0.718 0.711
FreeBSD kernel 8.0.0 * * 0.738 0.739 0.740 0.740
Automotive1 * * 0.967 0.968 0.968 0.968
Linux 2.6.28.6 * * * * 0.884 0.884
10xAFM15 0.595 0.605 0.637 0.640 0.633 0.632
10xAFM50 0.608 0.616 0.643 0.644 0.646 0.651
10xAFM100 0.698 0.705 0.713 0.715 0.714 0.715
10xAFM200 * * 0.744 0.744 0.743 0.744
10xAFM500 * * 0.791 0.791 0.793 0.793
10xAFM1000 * * 0.817 0.818 0.817 0.818
1xAFM5K * * * * 0.854 0.855
Average 0.709 0.711 0.797 0.811 0.817 0.818
CA: CASA algorithm

CH: Chvatal algorithm

D: Default order of each algorithm

P: Configuration-based prioritization approach

*: No result within a whole day of computation

0.00 : The corresponding APFD value is higher than the compared value

0.00 : The difference between the corresponding APFD value and the compared value is significant

Table 3.7: Average APFD for default order of sampling algorithms and configuration-
based prioritization using exhaustive faults.

to investigate whether the difference is significant. We report in Table 3.9 the p-values
between APFD values of our approach and the default orders of sampling algorithms
for both fault types.

In Table 3.7, we show the average APFD values for each feature model using the exhaus-
tive interaction faults. We observe that the average APFD values of configuration-based
prioritization for all product lines are higher than the average APFD values of the sam-
pling algorithms. If we look at the results for each product line separately, we observe
that they are varying. For instance, comparing to the default order of sampling al-
gorithm CASA, we find that our approach is better, on average, in most cases. In
particular, our approach is significantly better for product lines Electronic Shopping,



44 3. Configuration-Based Similarity-Driven Product Prioritization

FM APFD

CA-D CA-P CH-D CH-P ICPL-D ICPL-P

BattleofTanks 0.913 0.918 0.944 0.942 0.942 0.940
FM Test 0.821 0.870 0.852 0.911 0.850 0.913
Printers 0.923 0.927 0.961 0.960 0.962 0.961
BankingSoftware 0.838 0.867 0.910 0.911 0.916 0.918
Electronic Shopping 0.833 0.850 0.856 0.862 0.854 0.858
DMIS 0.825 0.828 0.879 0.884 0.885 0.891
eCos 3.0 i386pc * * 0.844 0.846 0.835 0.838
FreeBSD kernel 8.0.0 * * 0.764 0.767 0.764 0.766
Automotive1 * * 0.967 0.968 0.968 0.968
Linux 2.6.28.6 * * * * 0.890 0.892
10xAFM15 0.573 0.612 0.634 0.658 0.632 0.651
10xAFM50 0.651 0.684 0.692 0.707 0.686 0.710
10xAFM100 0.689 0.720 0.713 0.717 0.717 0.720
10xAFM200 * * 0.735 0.741 0.735 0.737
10xAFM500 * * 0.763 0.764 0.762 0.764
10xAFM1000 * * 0.783 0.784 0.781 0.782
1xAFM5K * * * * 0.411 0.411
Average 0.707 0.728 0.812 0.828 0.799 0.807
CA: CASA algorithm

CH: Chvatal algorithm

D: Default order of each algorithm

P: Configuration-based prioritization approach

*: No result within a whole day of computation

0.00 : The corresponding APFD value is higher than the compared value

0.00 : The difference between the corresponding APFD value and the compared value is significant

Table 3.8: Average APFD for default order of sampling algorithms and configuration-
based prioritization using pattern interaction faults.

10xAFM15, 10xAFM50, and 10xAFM100 with p-values 0.000, 0.001, 0.000, and 0.000,
respectively. However, we observe that our approach is significantly worse only for
product line FM Test with p-value 0.027. Comparing our approach to the default or-
der of sampling algorithm Chvatal, we observe that the average APFD values over all
product lines of configuration-based prioritization and Chvatal are 0.811, and 0.797, re-
spectively. We notice that the average values of the default order of Chvatal are better
but not significantly for five product lines, while the average values of our approach are
better but not significantly for five product lines and significantly better for product
lines FM Test and 10xAFM1000 with p-values 0.000 and 0.004, respectively. The re-
sults of configuration-based prioritization compared to sampling algorithm ICPL are as
follows. With our approach, the average APFD values for all product lines are higher



3.3. Evaluation of Configuration-Based Prioritization 45

FM Exhaustive faults Pattern faults

CA CH ICPL CASA CH ICPL

BattleofTanks 0.059 0.396 0.846 0.037 0.195 0.537
FM Test 0.000 0.000 0.000 0.000 0.000 0.000
Printers 0.386 0.8719 0.938 0.010 0.971 0.781
BankingSoftware 0.461 0.956 0.970 0.000 0.687 0.411
Electronic Shopping 0.027 0.906 0.869 0.000 0.159 0.159
DMIS 0.395 0.151 0.314 0.037 0.195 0.537
eCos 3.0 i386pc * 0.083 0.023 * 0.344 0.425
FreeBSD kernel 8.0.0 * 0.797 0.745 * 0.382 0.580
Automotive1 * 0.579 0.705 * 0.739 0.796
Linux 2.6.28.6 * * 0.854 * * 0.094
10xAFM15 0.001 0.481 0.398 0.000 0.000 0.000
10xAFM50 0.000 0.707 0.025 0.000 0.000 0.000
10xAFM100 0.000 0.220 0.561 0.000 0.027 0.099
10xAFM200 * 0.850 0.230 * 0.002 0.095
10xAFM500 * 0.448 0.815 * 0.024 0.005
10xAFM1000 * 0.004 0.054 * 0.0325 0.001
1xAFM5K * * 0.643 * * 0.837
CA: CASA algorithm

CH: Chvatal algorithm

*: No result within a whole day of computation

Table 3.9: P-values of the Mann-Whitney U test between APFD values of configuration-
based prioritization and the default orders of sampling algorithms for both fault types.

than the average APFD values of algorithm ICPL. However, in Table 3.7 on Page 43,
we notice that APFD values of configuration-based prioritization are higher and lower
than the APFD values of ICPL for six product lines, and five product lines, respectively.
Except for CASA where our approach outperforms its effectiveness, the APFD values
of sampling algorithms default orders are close to the APFD values of our approach.
The reason is that these algorithms are greedy (cf. Section 2.2.2) and they cover feature
combinations as fast as possible.

Using the pattern interaction faults, we show the results of comparing our approach to
the default order of sampling algorithms in Table 3.8. We observed that average APFD
values over 100 sets of faults of our approach for all product lines are higher than the
average APFD values of sampling algorithms. In addition, we report the p-values for
each product line in Table 3.9.

Looking closer to the results for each sampling algorithm, we remark that our approach
is significantly better than the default order of sampling algorithm CASA for all product
lines.



46 3. Configuration-Based Similarity-Driven Product Prioritization

Comparing the default order of sampling algorithm Chvatal to our approach, we observe
that our approach is significantly better for seven product lines and, on average, better
but not significantly for six product lines. Using sampling algorithm ICPL, the results
show that our approach is significantly better for five product lines, and, on average,
better but not significantly for eight product lines.

Since our approach is significantly better than random orders and by considering the
results of the comparison to the default orders of sampling algorithms (cf. Table 3.7 on
Page 43 and Table 3.8 on Page 44), we show that the investigated sampling algorithms
have already an acceptable effective order in terms of fault detection rate. With pattern
interaction faults, we notice that the average APFD values of our approach are higher
for most product lines than the default orders of sampling algorithms. However, it is
not the same situation with exhaustive interaction faults. We assume the reason is that
the number of deselected features in faults affects the results. The number of deselected
features using exhaustive interaction faults is more than the number of deselected fea-
tures using pattern interaction faults (cf. Table 3.6 on Page 39). In contrary to the
pattern interaction faults, most of these deselected features in exhaustive interaction
faults cannot be detected with the first product, since we select the product with max-
imum number of features. In response to RQ2, although these sampling algorithms
have effective orders of products, we show that our approach can be potentially helpful
in many cases to increase the rate of early fault detection. In addition, the order of
algorithm CASA is non-deterministic for all product lines. For ICPL and Chvatal, we
noticed that their orders are non-deterministic for some product lines, such as product
lines BattleofTanks and FM Test. With our approach, the order is always deterministic.

From the reported results, the default orders of these sampling algorithms already show
promising results, which also can be improved with our approach. However, we argue
that configuration-based prioritization might have a major impact if the given products
generated by end users or sampled randomly. To validate the aforementioned argument,
we conduct another experiment where we generated a set of configurations randomly. In
particular, we first sampled 20 thousand configurations randomly for each real feature
model (cf. Table 3.5 on Page 36). We sampled this large number of configurations to
reduce the possibility of generating unrepresentative configurations. Second, we select
100 configurations randomly to be used as an input to our approach. We repeated
these two steps 100 times to mitigate the impact of randomness. Note that the dif-
ference between this experiment and the random orders mentioned in RQ1.2 is that
the configurations in that experiment are created using the sampling algorithm ICPL
and then reordered randomly. The results show that configuration-based prioritization
outperforms the orders of these configurations sampled randomly. In particular, using
the Mann-Whitney U test, we observe that the differences between configuration-based
prioritization and the random orders of these random configurations are significant for
all considered feature models with p-values ≈ 0. We also repeat the experiment with
different numbers of configurations (e.g., 50 configurations). The reported results of all
experiments are very similar.



3.3. Evaluation of Configuration-Based Prioritization 47

Feature Model
CA

w/ P. P. %
CH

w/ P. P. %
ICPL
w/ P. P. %

BattleofTanks 25,493.05 1.16% 101.22 83.52% 97.65 91.69%
FM Test 9,045.40 0.002% 12.63 1.52% 4.46 4.20%
Printers 680.33 1.02% 17.92 34.69% 11.06 56.33%
BankingSoftware 3,656.32 0.004% 15.41 0.97% 3.70 4.73%
Electronic Shopping 3,940.84 0.004% 29.30 0.26% 2.46 3.01%
DMIS** 12,451.14 0.001% 49.75 0.21% 4.54 2.63%
eCos 3.0 i386pc * * 1,354.33 0.15% 91.16 2.09%
FreeBSD kernel 8.0.0 * * 2,184.73 0.053% 110.64 1.09%
Automotive1 * * 66,431.05 4.60% 12,225.89 23.68%
Linux 2.6.28.6 * * * * 25,102.04 3.94%
10xAFM15 1.81 0.08% 0.06 5.47% 0.10 10.56%
10xAFM50 39.31 0.03% 0.99 1.58% 0.28 5.53%
10xAFM100 1,063.02 0.01% 6.66 2.01% 1.39 10.60%
10xAFM200 * * 31.10 3.19% 4.96 21.86%
10xAFM500 * * 1,492.23 1.16% 733.31 2.63%
10xAFM1000 * * 4,740.29 7.45% 1,196.58 28.66%
1xAFM5K * * * * 45,498.94 7.80%
CA: CASA algorithm

CH: Chvatal algorithm

w/ P. The computation time of sampling and prioritization processes

P: The computation time percentage of prioritization

*: No result within a whole day of computation

Table 3.10: The percentage of average execution time in seconds of prioritization to the
sampling of each algorithm.

RQ3: Is the computational overhead required for configuration-based pri-
oritization negligible compared to the efforts required for sampling?

We computed the average execution time to sample and prioritize products. Then, we
compute the percentage of that execution time which is needed to achieve the priori-
tization process. To accelerate the process, we performed our experiments using two
computers. The first one with an Intel Core i5 CPU @ 3.33 GHz, 16 GB RAM, and
Windows 7. On this computer, we run the experiment for the following large prod-
uct lines: eCose 3.0 i386pc, FreeBSD kernel 8.0.0, Automotive1, Linux 2.6.28.6, and
1xAFM5K. The second computer with an Intel Core i5 CPU @ 3.33 GHz, 8 GB RAM,
and Windows 7 where we conducted experiments with the remaining product lines.

In Table 3.10, we show the average execution time over five runs to sample and pri-
oritize products for the listed product lines. In addition, we present the percentage
of prioritization time to the total computed execution time (i.e., time of both tasks:
sampling and prioritization). Using the subject product lines, in Figure 3.9, we show



48 3. Configuration-Based Similarity-Driven Product Prioritization

(a) CASA

(b) Chvatal

(c) ICPL

Figure 3.9: The percentage of average execution time of prioritization to the combined
time of sampling and prioritization of each algorithm.
(*) The computation of sampling did not finish within 24 hours.



3.4. Cluster-Based Product Prioritization 49

the percentage of prioritization time to the combined time of sampling and prioritiza-
tion for CASA 3.9(a), Chvatal 3.9(b), and ICPL 3.9(c). In the case of the sampling
algorithm CASA, we noticed that the time of prioritization can be negligible since the
percentage of prioritization time for each product line is less than 1.2% of the computa-
tion time to sample and prioritize products. Compared to sampling algorithm Chvatal,
the percentages of prioritization time range between 0.053% and 83.52%.

For ICPL, the percentages of prioritization time range between 1.09% and 91.69%.
From the results (cf. Figure 3.9 and Table 3.10), we found only two product lines where
the percentage of prioritization is more than 30% of the overall execution time. These
product lines are BattleofTanks and Printers. We investigated these cases, and we
found that it occurs when the feature models have no constraints and the number of
generated configurations is at least twice as much as the number of features. Thus, the
sampling process is computationally cheap. It does not require much time to validate
whether these configurations are valid or not. In addition, for these two feature models,
our approach takes relatively longer in the range of seconds (cf. Table 3.10), and thus
neglectable. Looking closer to the largest product lines (the Linux kernel and the
1xAFM5K), the prioritization process requires 3.94% and 7.8% of the overall execution
time, respectively. Regarding RQ3, as we show in Figure 3.9 and Table 3.10, the average
execution time of configuration-based prioritization for most cases is small compared
to the efforts required for sampling, especially for the large product lines.

We conclude that configuration-based prioritization is significantly better than random
orders with respect to the rate of early fault detection. Furthermore, the default orders
of the compared sampling algorithms already show promising results, which, however,
can even be improved cheaply in many cases using configuration-based prioritization.

3.4 Cluster-Based Product Prioritization

In some cases, especially in regression testing, if the diversity between products is large,
the cost of testing/analyzing these products will be increased due to the redundancy
in test cases execution [Lity et al., 2017] as well as the amount of the required time
to set up the testing environment (e.g., in the automotive domain). Furthermore, due
to the extreme diversity, it could be the case that different testing techniques or even
different prioritization techniques can be applied to each subset of the generated prod-
ucts [Busjaeger and Xie, 2016]. Thus, we investigate a potential solution to overcome
the aforementioned challenges. Our idea is to cluster products based on their feature
selections to identify those that are syntactically similar. Clustering products can be
useful to optimize the testing setup time by clustering products based on a specific
parameter into groups. That is, the same testing setup can be used to test the whole
products in a group. Moreover, clustering products facilitates testing if developers want
to focus on a set of products (i.e., the most demanded products). If they want to cover
dissimilar products, testers may select a subset of products from each cluster. In addi-
tion, clustering can be used to test products based on the testing history. For instance,



50 3. Configuration-Based Similarity-Driven Product Prioritization

Figure 3.10: An overview of clustering-based product prioritization

testers may want to focus on products that contain certain artifacts in which many
faults have been found in previous testing runs.

We evaluate our approach using product lines of different sizes and compare it against
random orders and our configuration-based prioritization approach (cf. Section 3.1).
The results for cluster-based prioritization show potential improvement in the effective-
ness of product-line testing (i.e., increasing the early rate of fault detection).

More precisely, we contribute the following:

• We propose a cluster-based prioritization approach to cluster products. This
allows us to group products and prioritize them.

• We evaluate our approach compared to a configuration-based prioritization (cf. Sec-
tion 3.1) and random orders.

• We assess the impact of having different cluster numbers.

The rest of this section is organized as follows. In Section 3.4.1, we introduce the cluster-
based prioritization approach. We present and discuss the results in Section 3.4.2.

3.4.1 Overview on Cluster-Based Prioritization

The main goal of our approach is to cluster products into different subsets such that
products in each group share common properties. As we illustrate in Figure 3.10,
the input for our approach is a set of configurations. In the following, we describe
the two main steps, clustering and prioritization, of our approach, which we display
in Figure 3.10. Clustering enables testers to cluster products into groups (e.g., cluster
with the most demanded products). In addition, testers may wish to prioritize products
within clusters based on certain criteria, such as the coverage, to find faults faster.
For the latter, we use configuration-based prioritization (cf. Section 3.1) to prioritize
products.



3.4. Cluster-Based Product Prioritization 51

Clustering

The commonality of configurations is measured with a clustering criterion. In this
thesis, we consider the similarity between products in terms of the selected features
(their configuration, cf. Table 2.1 on Page 15) as criterion. In particular, we identify
the similar products syntactically, in terms of features, and group them into clusters.
The resulting clusters allow testers to select a sample of products from each or only a
particular cluster. While we consider the simple K-means algorithm to cluster products,
other clustering algorithms can be considered in future to investigate whether they may
influence the results.

Prioritization

In order to prioritize clustered products, we recognize two layers of prioritization:

1. Intra-cluster prioritization addresses the order of products in a cluster.

2. Inter-cluster prioritization addresses the order of clusters themselves.

In our work, we only consider intra-cluster prioritization to prioritize products. Con-
sidering inter-cluster prioritization (i.e., from which clusters products are tested first)
requires additional domain knowledge, for instance, which cluster contains more de-
manded products than others. Hence, during our evaluation, we rely on the cluster
ordering that is given by the clustering algorithms.

To prioritize products in a cluster, we use configuration-based prioritization (cf. Sec-
tion 3.1), that is, products are prioritized based on the similarity of their feature selec-
tions. The product that is least similar to all previously tested ones is selected to be
tested next. The goal of considering the configuration-based prioritization approach is
to increase the interaction coverage for products under test inside a particular cluster
as soon as possible.

3.4.2 Evaluation of Cluster-Based Prioritization

In this section, we formulate research questions, introduce our subject systems, and
explain the experiment settings of our evaluation. Finally, we present and discuss the
results.

We assess the effectiveness of cluster-based prioritization in terms of its fault detec-
tion rate compared to configuration-based prioritization (cf. Section 3.1) and random
orders. With configuration-based prioritization, we handle all products as they are all
in one cluster. To evaluate the impact of considering the intra-cluster prioritization,
we compare it to the default order given by the clustering algorithm. In particular, we
answer the following questions:

RQ1 How does cluster-based prioritization perform compared to configuration-based
prioritization and random orders?



52 3. Configuration-Based Similarity-Driven Product Prioritization

RQ2 How does intra-cluster prioritization influence the effectiveness of testing com-
pared to using the default order provided by clustering algorithms?

RQ3 How does the number of clusters influence the effectiveness of testing?

We consider a variety of subject systems from academia as well as real-world systems
to evaluate our approach. Due to the lack of having open-source software product lines
that have test cases and faults in the source code, we conduct our experiment using the
feature models of the subject systems. We considered all real feature models in Table 3.5
(cf. Page 36) as well as an artificial feature model with 5, 542 feature and excluded all
other artificial feature models as they are relatively small.

Experiment Settings

Given the feature models, we now explain our methodology for conducting the evalua-
tion. In particular, we provide details about the faults to be detected and the applied
clustering algorithm.

Artificial Faults Due to the aforementioned reason of the lack of real-world product
lines, we use simulated faults to evaluate our approach. For this, we applied a technique
that has been used in previous studies on product-line testing [Ensan et al., 2012;
Sánchez et al., 2014; Devroey et al., 2016]: we randomly selected and marked features
as containing faults. To simulate reality, we used the pattern interaction faults that have
been generated to evaluate the configuration-based prioritization (cf. Section 3.3.3).

K-Means Clustering Algorithm For our evaluation, we use the Waikato Environ-
ment for Knowledge Analysis (Weka) [Hall et al., 2009] version 3.8, an open source
tool for machine learning and data mining. It provides several clustering algorithms,
such as simple K-means and Hierarchical Cluster. In this thesis, we use the simple
K-means algorithm to cluster products, as it needs no deeper knowledge about clus-
tering algorithms, thus, not biasing the results, and also can serve as a baseline for
applying other algorithms in the future. To answer our third research question (RQ-3),
we consider three values for K (i.e., a different number of clusters): K = 5, K = 10,
and K = 15. To measure the proposed approach, we use the APFD metric developed
by Elbaum et al. [Elbaum et al., 2000] to evaluate the effectiveness of fault detection
(cf. Section 3.3.1).

Results and Discussion

Regarding RQ1, we compare cluster-based prioritization with K = 5, K = 10, and
K = 15 to the configuration-based prioritization (cf. Section 3.1) and random orders
with respect to the fault detection rate. We show in Table 3.11 that the average APFD
values of cluster-based prioritization are higher than these of random orders for all



3.4. Cluster-Based Product Prioritization 53

Figure 3.11: Average APFD for random orders, cluster-based prioritization, and
configuration-based prioritization

Clustering Random Conf. Prio.

K = 5 K = 10 K = 15

APFD Average 0.681 0.667 0.669 0.618 0.689

Table 3.11: APFD average values for clustering-based prioritization, Random order,
and configuration-based prioritization

product lines, regardless the number of clusters. In particular, the APFD values for
cluster-based prioritization with K = 5, K = 10, and K = 15 are, receptively, 0.681,
0.667, and 0.669, while the average APFD value of random order is 0.618. Hence, the
improvements are 10.2%, 9.5%, and 8.3%.

If we look at the results for each feature model separately (cf. Figure 3.11), we ob-
serve that for each product line, cluster-based prioritization is, on average, better than
random orders. To support our observation, we apply the Mann-Whitney U test, a non-
parametric statistical test, to investigate whether the differences to our approach are
significant. We observe that the difference between cluster-based prioritization and ran-
dom orders is significant for all product lines, except printers and BattleofTanks, with
p-values 0.30 and 0.34, respectively. The detailed results of the experiment, including
all p-values, are listed in the Appendix Section A.2.

Furthermore, from Figure 3.11 and Table 3.11, we observe that the average APFD value
of heuristic configuration-based prioritization (0.689) is slightly higher than the values
for cluster-based prioritization. This applies especially with K = 5 (0.681) for which
the percentage of decrease is 1.2%.



54 3. Configuration-Based Similarity-Driven Product Prioritization

W/prioritization Wo/prioritization Improvement (%)

K = 5 0.681 0.668 3.18%
K = 10 0.677 0.663 2.10%
K = 15 0.669 0.650 2.90%

Table 3.12: APFD average values for clustering-based with and without intra-cluster
prioritization for different number of clusters

Regarding RQ2, we compare our approach to cluster-based prioritization without con-
sidering intra-cluster prioritization (i.e., taking the default order given by the clustering
algorithm). In Table 3.12, where we show the average value of APFD for K = 5, K = 10
with and without considering the intra-cluster prioritization inside clusters, we found
that the average APFD values are higher when applying intra-cluster prioritization for
K = 5, K = 10, and K = 15 with 0.681, 0.677, and 0.669, respectively than with-
out intra-cluster prioritization, where the values decrease to 0.660, 0.663, and 0.650.
Hence, the percentages of improvement of considering intra-cluster prioritization are
3.18%, 2.1%, and 2.9%. Still, we notice that the improvement of prioritizing products
within clusters is relatively small.

Regarding RQ3, we see that for our cluster-based prioritization, fewer clusters result
in higher APFD values. As we show in Table 3.12, the average APFD values for
K = 5, K = 10, and K = 15 are 0.681, 0.677, and 0.669 respectively. The percentages
improvement with K = 5 compared to K = 10 and K = 15 are 0.5% and 1.8%.
The reason for the slight improvement is the impact of intra-cluster prioritization on
the results. Fewer clusters result in more products within each cluster and, thus, a
higher impact of intra-cluster prioritization. The following supports the aforementioned
reasoning: Without considering intra-cluster prioritization the results are varying. For
instance, we observe that the average APFD values for K = 5, K = 10, and K = 15
are 0.660, 0.663, and 0.650 respectively. In particular, the percentages of improvement
of K = 10 compared to K = 5 and K = 15 are 0.4%, and 2.0%. We conclude that
fewer clusters improve the results if intra-cluster prioritization is considered.

To summarize our findings, we answer our research questions as follows:

RQ1 On average cluster-based prioritization performs better than random orders but
slightly worse than configuration-based prioritization. However, cluster-based
prioritization enables testers to select subsets of all products (e.g., select the
cluster with the most demanded products), which cannot be done easily with
configuration-based prioritization, as it requires to compare all products instead
of clusters.

RQ2 Considering the default order of clusters is slightly worse than prioritizing prod-
ucts overall or in a cluster. Still, clustering provides comparable results and
further investigations seem promising.



3.5. Threats to Validity 55

RQ3 A higher number of clusters decreases the APFD value on average. Hence, in-
creasing the number of clusters influences badly on the testing effectiveness as a
result of the randomness of selecting the center point of each cluster.

That is, clustering with and without intra-cluster prioritization shows promising results
compared to configuration-based prioritization and random orders. However, further
investigation using other clustering algorithms as well as different criteria is required.

3.5 Threats to Validity

In this section, we discuss the threats to validity of our experiments that may affect
our results and explain the steps that we took to mitigate those threats.

Experiment with Code Base of Product Lines

Our implementation of configuration-based prioritization could contain faults itself,
which may affect the internal validity. To overcome this threat, we applied our algo-
rithm on small product lines and analyzed the results manually. Our implementation
and experiment data are publicly available for inspection and reproduction purposes.3

Furthermore, configuration-based prioritization is integrated into testing functionalities
of FeatureIDE.

A potential external threat is that we acquired an intimate knowledge of the subjected
product lines for reproduction purposes. However, as configuration-based prioritization
is a push-button approach and only based on selection and deselection of features, this
threat cannot affect the reported results. A further potential threat that may affect
the external validity is related to the nature of the subject product lines. We are not
able to generalize that the proposed approach will provide the same results for other
product lines. We were restricted to these three product lines, because we are not
aware of other product lines publicly available with their source code and faults in
their code (i.e., interaction faults) and at the same time, test cases to detect these
faults. In particular, results may depend on fault distribution, test coverage, size of the
code base, number of features, and number of products. However, all these product lines
served as benchmarks previously to evaluate verification strategies of product lines [Apel
et al., 2013c; Meinicke et al., 2016b]. To reduce these threats, we conducted another
experiment with feature models of product lines and simulated test execution and fault
detection.

The main construct validity threat is the APFD metric that we used to evaluate the
testing effectiveness of the compared approaches. To our knowledge, APFD is widely
accepted metric for evaluating prioritization approaches [Kuhn et al., 2013; Rothermel
et al., 2001; Elbaum et al., 2002; Li et al., 2007; Yoo and Harman, 2012; Qu et al., 2007;
Henard et al., 2016; Sánchez et al., 2014; Walcott et al., 2006]. A potential limitation of

3 http://wwwiti.cs.uni-magdeburg.de/iti db/research/spl-testing/thesis

http://wwwiti.cs.uni-magdeburg.de/iti_db/research/spl-testing/thesis


56 3. Configuration-Based Similarity-Driven Product Prioritization

the APFD metric is that it does not assign values for the subsequent products that may
contain the already detected faults, which, however, may be helpful, especially in the
debugging process. Note that we use the Mann-Whitney U test to investigate whether
the differences between the APFD values of the compared approaches are significant
(confidence level 95%).

Experiments with Feature Models

There is a potential threat that may affect the internal validity related to the dis-
tribution of artificial faults in the experiments with feature models. We assume that
the faults are equally distributed over the features in a product line. This is rather
problematic in testing as faults are often found where they are not expected. Still,
assuming equally distributed faults seems to be better than to build on non-idealized,
but potentially also non-representative distributions.

Another threat to internal validity regarding the artificial faults is that we defined these
faults as valid combinations of features. We assume that, if a combination of features is
covered in a configuration, the faults will be detected. However, in practice, faults may
exist, but are not found. With exhaustive interaction faults, we assume the equality
of proportion of faults for T -wise interaction faults, because we are not aware of a
study that reports the percentage of each T -wise fault. Although Abal et al. [2014]
list the number of faults for each pattern, we assume the equality of fault numbers
with pattern interaction faults, for the aforementioned reasons that other distributions
are likely non-idealized distributions. In addition, these pattern faults are based on an
analysis of real interaction faults in the Linux kernel, which may raise threats related
to the applicability of these patterns to all product lines. Despite the distribution of
the artificial faults in the experiment with feature models may not realistic, we are now
more confident because we got the similar results for realistic fault distribution in the
experiment with code base of product lines.

An internal validity threat related to the default orders of sampling algorithms is that
they are non-deterministic. For instance, different runs of sampling algorithm CASA
with the same input often lead to different orders and even different numbers of con-
figurations. In contrast, for Chvatal and ICPL, the results for the same input differ
only in slight changes to the order. To reduce these random effects, we conducted those
experiments five times and we showed average results of these experiments. Since we
compare configuration-based prioritization to random orders, there are also random
effects, which we mitigate by 100 repetitions for each run.

A potential external validity threat related to the nature of feature models is that
configuration-based prioritization may not provide similar results for different feature
models. To alleviate this threat, we use all feature models in the S.P.L.O.T. repository
that have more than 140 features. In addition to 61 artificial feature models of different
sizes, we include large feature models consisting of up-to 6,888 features. The number of
configurations for some feature models is large, for example, using ICPL, the numbers
of configurations for BattleofTanks and Automotive1 are 459 and 913, respectively.



3.6. Related Work 57

Another external threat related to the nature of the features in the subject product
lines and feature models is that the results cannot be generalized to the non-functional
features, since our focus was on functional testing. However, future research should
investigate how to consider non-functional features in prioritizing products is required
as it may require additional effort to model and compute these features.

Furthermore, the selected clustering algorithm may influence the results. Thus, other
algorithms in future should be considered to investigate whether different clustering
algorithms influence the testing effectiveness. In addition, the number of clusters could
also influence the results. To mitigate this threat, we considered different numbers of
clusters.

3.6 Related Work

In this section, we discuss existing works that are related to product prioritization based
on different criteria.

Product prioritization based on feature selection

Several approaches have been proposed to prioritize products based on different criteria.
Sánchez et al. [2014] propose five prioritization criteria based on common feature model
metrics to prioritize products and compare between these criteria with respect to the
rate of fault detection. They observe that different orderings of the same products of
a product line may lead to a significant difference in the rate of early fault detection.
In their criteria, they do not take the deselected features into account, which, however,
is crucial according to Abal et al. [2014]. In addition, in their evaluation part, they
generate T -wise faults where T ∈ [1 : 4]. In our evaluation, we propose two types of
faults, one type up-to 6-wise faults (i.e., exhaustive faults). The other type of faults
(i.e., pattern interaction faults) is based on an empirical study of the Linux kernel and
BusyBox [Abal et al., 2014]. Moreover, we propose cluster-based prioritization to enable
testers to focus on a subset of products by clustering them into groups.

Henard et al. [2014b] sample and prioritize products at the same time by employing a
search-based approach to generate products based on similarity among them. Moreover,
they also propose to prioritize a given set of existing configurations, which can be
obtained elsewhere, such as sampling algorithms [Henard et al., 2013b]. Configuration-
based prioritization differs from the previous work, as follows:

• the selection of the initial (allyesconfig) configuration, which is the one with the
maximum number of selected features,

• the choice of the distance function (Hamming, an edit-based distance vs Jaccard
a token-based one),



58 3. Configuration-Based Similarity-Driven Product Prioritization

• the way prioritization is computed when more than two products are already
selected (e.g., taking the maximum of the minimum distances instead of taking
sums into account for a more fine-grained evaluation with respect to a coarse-
grained approach adopted by Henard et al. [2014b]), and

• the way of ordering (i.e., our proposed approach is deterministic while their ap-
proach is not due to the nature of the search-based approaches).

In addition, in case testers wish to focus on a subset of configurations, we propose to
cluster products into groups based on feature selections.

Devroey et al. [2016] propose a search-based approach that considers the similarity be-
tween feature selections to increase the diversity of the selected test cases for behavioral
product lines. Although we do not consider test case selection in our work, we argue
that our approach can increase the diversity of the selected test cases in case they are
mapped to the products or to the selected features in a product. Henard et al. [2013c]
mutate feature models to validate the observation that testing dissimilar products has
the ability to detect more faults than the similar ones. In their approach, they pro-
pose two mutation operators to mutate feature models and they evaluate the generated
products against these mutants. They report that considering dissimilar products to be
tested can detect more faults than similar ones. In our work, we confirm the previous
observation, but by evaluating our approaches using product lines with real faults as
well as simulated ones.

Product prioritization using domain knowledge

Several approaches have been proposed to prioritize products based on additional do-
main knowledge. Johansen et al. [2012b] prioritize products by giving a weight on
T -wise interactions based on market knowledge. The idea behind their approach is to
generate and prioritize only a set of products that is required in the market. However,
such market knowledge of product lines is often not available. Similarly, Ensan et al.
[2011] consider the expectations of the domain experts in product prioritization. The
experts expect the desirable features and as a result, they give a priority to products
that have these desirable features over other products. With our approaches, we do
not need domain knowledge as well as domain experts as we follow black-box approach,
where we only need the feature selections of each product.

Baller et al. [2014] introduce a framework to prioritize products under test based on
the selection of adequate test suites with regard to cost and profit objectives. The
limitation of this approach is that it requires in advance the set of all products and
its relation to test cases and test goals. To tackle this limitation, Baller and Lochau
[2014] propose an incremental test suite optimization approach for product-line testing
that uses a symbolic representation in terms of feature constraints. However, further
experiments are required to evaluate the effectiveness of their approach using real-world
product lines. In our approach, we use the similarity among configurations in terms of
features as criteria to prioritize them.



3.6. Related Work 59

Devroey et al. [2014] perform statistical analysis of a usage model for a product line in
order to select the products with high probability to be executed. A drawback of these
approaches is that they require analysis of a usage model to be given a priori. Sánchez
et al. [2015] prioritize products based on their non-functional attributes, such as feature
size and the number of changes in a feature. In a following work, Parejo et al. [2016]
consider the aforementioned criteria as inputs to their search-based algorithm by mod-
eling the product prioritization as a multi-objective optimization problem. However,
some of these required information are often not given in practice, especially in black-
box testing. In addition, their approach is non-deterministic, as it is the nature of the
search-based algorithm. Configuration-based and cluster-based prioritization does not
require more domain knowledge than the selected and deselected features of each con-
figuration. That is, we follow a purely model-based black-box approach solely requiring
feature selection as a basis. Furthermore, configuration-based product prioritization can
be applied to other product-line analysis strategies beyond testing, such as statistical
analysis, type checking, and theorem proving.

Test-case prioritization

In product-line testing, test-case prioritization is used to reschedule test-case executions
in order to increase the rate of fault detection. Baller et al. [2014] present a multi-
objective approach to optimize the test suites by considering certain objectives such
as cost of test cases, cost of test requirements, and products. With their approach, a
domain knowledge is required, which is not often available. In our approach, we only
need the feature selections of products under test. Lachmann et al. [2015] propose an
integration testing approach for product lines based on delta-oriented test specifications.
They reduce the number of executed test cases by selecting the most important test cases
for each product. In following work, Lachmann et al. [2016] combine a prioritization
based on structural and behavioral deltas with a dissimilarity approach to prioritize
message sequence chart test cases. In our work, we focus on product prioritization.
However, since these approaches mainly target test-case prioritization, combining these
approaches to configuration-based as well as cluster-based prioritization may enhance
the effectiveness of product-line testing.

In single-system testing, Henard et al. [2016] compare different black-box prioritization
approaches with respect to the detection fault rate. They report that combinatorial
interaction testing and similarity-based techniques perform best among the black-box
approaches. Bertolino et al. [2015] exploit the notion of similarity to prioritize test cases
in the context of access control systems. They conclude that considering the similarity
outperforms the random order with respect to the early rate of fault detection. Zhang
et al. [2017] propose a search-based approach that exploits the notion of similarity to
identify a subset of scenarios for inspecting the requirements of a large-scale system.
Their aim is to maximize the diversity of those selected scenarios. While we have the
same goal with the aforementioned approaches that is representing by finding faults
faster, we use the notion of similarity in terms of feature selection to increase the
diversity; but for prioritizing products in product-line testing.



60 3. Configuration-Based Similarity-Driven Product Prioritization

In addition, as surveyed by Yoo and Harman [2012], efforts have been made to prior-
itize test cases. For instance, Rothermel et al. [2001] describe several techniques for
using test execution information to prioritize test cases in regression testing. This in-
formation includes code coverage and estimation on the ability of test cases to detect
faults. Walcott et al. [2006] use a genetic algorithm to prioritize test cases which can
be executed within a given time budget.

With respect to T -wise testing, Bryce and Colbourn [2007] propose a one-test at-a-time
approach to cover more T -way interactions in earlier tests. In the context of product-
line testing, it might be that some of these approaches can be applied to prioritize either
the products or the test cases of a product line. Yoo et al. [2009] prioritize test cases
by classifying the test cases into clusters. Then, they prioritize the clusters by utilizing
the domain expert judgment. We follow a similar approach, but for products and do
not consider domain expert judgment, which may be utilized in future work.

3.7 Summary

Testing product lines takes a considerable amount of time. Testers wish to increase
the probability of detecting faults as soon as possible for the product line under test.
Hence, several approaches have been proposed to prioritize products, such that testing
products have a higher probability of containing faults earlier.

With configuration-based prioritization, we prioritize products based on similarity of
their feature selection and deselection. Products are incrementally prioritized among
the already tested and the remaining products from a given product set. We evaluate
configuration-based prioritization using three product lines with real faults in their
source code.

The results show that our approach can potentially accelerate the detection of faults.
In addition, we use several sampling algorithms to generate a subset of all valid con-
figurations. We evaluated configuration-based prioritization against random orders,
interaction-based order, and default orders of the sampling algorithms CASA [Garvin
et al., 2011], Chvatal [Chvatal, 1979], and ICPL [Johansen et al., 2012a]. We per-
formed our experiments on product lines of different size. The results show that the
rate of early fault detection of configuration-based prioritization is significantly better
than random orders. The default orders of existing sampling algorithms already show
promising results, which can even be improved in many cases using configuration-based
prioritization.

Comparing configuration-based prioritization to the interaction-based approach, the
results show that the difference between the effectiveness of both approaches, with
respect to the APFD, is not significant. However, our evaluation indicates that the
interaction-based approach did not scale to models larger than 500 features (already for
T=2). That is, we stopped computation after 24 hours, whereas configuration-based
prioritization finished in all cases within 48 minutes.



3.7. Summary 61

In addition, we propose cluster-based product prioritization to classify products into
different subsets such that products in each group share common features. This al-
lows sampling these products and, thus, reducing the costs of testing, especially when
the diversity among products is large. The results show that cluster-based product
prioritization performs better, on average, than random orders.

In this chapter, we considered only problem-space information in terms of feature selec-
tion in product prioritization. The results show that prioritizing product can potentially
enhance the product-line testing effectiveness. How including more information (i.e.,
solution-space information) in product prioritization influences the product-line testing
effectiveness is discussed in the next chapter.



62 3. Configuration-Based Similarity-Driven Product Prioritization



4. Delta-Oriented Similarity-Driven
Product Prioritization

This chapter shares material with the VACE’17 paper “Delta-Oriented
Product Prioritization for Similarity-Based Product-Line Testing”[Al-Hajjaji
et al., 2017c].

In the previous chapter, we proposed configuration-based prioritization to prioritize
products based on the similarity between them with respect to problem-space informa-
tion (i.e., feature selection). In addition to configuration-based prioritization (cf. Chap-
ter 3), other approaches considered prioritization in product-line testing to increase the
effectiveness of testing [Devroey et al., 2014; Baller et al., 2014; Henard et al., 2014b;
Johansen et al., 2012b; Sánchez et al., 2015]. However, these approaches focus mainly
on prioritizing products based on the selection of features only. A potential limitation
of all those approaches is that considering the feature selection only may not represent
all actual differences between products. For instance, some features have more impact
on solution-space artifacts than others. Hence, considering solution-space information
for prioritization could improve the effectiveness of product-line testing.

In this chapter, we first introduce the variability modeling technique delta model-
ing [Clarke et al., 2015], which has been proposed to develop product lines (cf. Sec-
tion 4.1) by applying operations, e.g., adding an element, to a designated core model.
Second, we introduce delta-oriented prioritization, which allows us to reason about dif-
ferences between solution-space artifacts, without computing and comparing complete
products (cf. Section 4.2). Using delta modeling to prioritize products provides more
detailed information about products than the feature selection, which may increase the
rate of early fault detection. In case testers wish to consider also the feature selection
in product prioritization, we third provide a combined approach of delta-oriented and
configuration-based prioritization, where their impact can be adjusted using weighting



64 4. Delta-Oriented Similarity-Driven Product Prioritization

factors (cf. Section 4.3). Fourth, we evaluate the effectiveness of delta-oriented priori-
tization using an automotive product line and compare it against a default order of a
sampling algorithm and random orders (cf. Section 4.5). Furthermore, we examine the
influence of using two different distance measurements, namely Hamming and Jaccard
distance, in product prioritization. The results of our product prioritization show an
improvement in the effectiveness of product-line testing in terms of the fault detec-
tion rate. Finally, in Section 4.6, we discuss the related work that focuses on using
solution-space information in product prioritization.

4.1 Delta Modeling

Various variability modeling techniques have been proposed to develop product lines [Sch-
aefer et al., 2012], such as the transformational approach delta modeling [Clarke et al.,
2015]. In our work, we focus on delta modeling, because detailed information about
products and their differences can be extracted without need to compute and com-
pare the corresponding products. Delta modeling has been proposed as an artifact-
independent and modular variability modeling technique to develop software product
lines [Clarke et al., 2015]. Based on a preselected core product pcore ∈ PSPL, where PSPL

represents products of a product line SPL, differences are specified to transform the
core model mpcore into product-specific models mpi for the remaining products pi ∈ PSPL

of the corresponding product line under consideration.

Selecting an appropriate core product may be guided by coverage criteria. For instance,
the core product can be the smallest product (a.k.a. simple core product) or the largest
possible product (a.k.a. complex core product) [Schaefer et al., 2010]. With the simple
core product, we consider only, if applicable, the mandatory features and a minimal
number of required alternative features, while with the complex core product, we con-
sider, if possible, the largest set of features. In practice, selecting a core product is often
influenced by project-specific considerations such as the existence of a legacy system to
be used as a basis for the product line. In addition, other factors may affect the core
product selection, such as focusing on the most desirable product by customers.

Each difference to the core product is defined by a change operation captured by means
of a delta δ ∈ ∆SPL. Thus, each delta δ comprises one particular operation, i.e., either
an addition (add e) or a removal (remove e) of a model element e. In particular, we
abstract the differences between products from modifications of elements. By ∆SPL, we
refer to the set of all possible deltas for the current product line that are extracted from
the delta model of a product line ∆MSPL

. Hence, for each product pi ∈ PSPL, a delta set
∆pi ⊆ ∆SPL exists solely comprising the transformations to obtain the corresponding
model mpi by applying all deltas δ ∈ ∆pi subsequently to the core model. The product-
specific delta sets are either predefined or can be determined based on application
conditions, i.e., logical expressions using features f ∈ FSPL as variables, specified for
each delta δ ∈ ∆SPL. By giving a feature configuration Fp for product p, all application
conditions are evaluated and those deltas are selected in the corresponding delta set ∆p

for which the evaluation results in true. The concept of delta modeling [Clarke et al.,



4.1. Delta Modeling 65

Y

X

a

b

c
d

e

f

arcpcore:

Z

Y

X a

c
d

Z A

arcp1:

P1

ARC    = {add A, add  e(A:Z), add f(Z:A), remove b(X:Y)}

Figure 4.1: The principle of delta-oriented software architectures

2015] is instantiated for various types of artifacts such as Java code [Schaefer et al.,
2010], finite state machines [Lochau et al., 2012], or architectures [Lochau et al., 2014].
In this chapter, we propose a prioritization technique independent from a concrete delta
modeling instantiation. Nevertheless, we use delta-oriented architectures for illustration
and evaluation.

Software architectures define the high-level structure of a software system [Szyperski,
2002] by describing the overall system components C = {c1, . . . , cm} and specifying
the communication between them via connectors CON = {con1, . . . , conl} transmitting
signals Π = {π1, ...., πk}. In the context of delta-oriented product lines, for each product
pi ∈ PSPL a corresponding architecture model arcpi exists. Thus, based on a core
architecture model arcpcore , architecture deltas δ ∈ ∆ARC

SPL are defined and grouped in
product-specific delta sets ∆ARC

pi
to transform the core into an architecture model arcpi .

The operations captured by a delta add/remove components, connectors, or signals.

Example 4.1. In Figure 4.1, a sample core architecture model arcpcore is shown on the
left-hand side comprising the three components C = {X, Y, Z} communicating via the
four connectors CON = {a(Y :X), b(X:Y ), c(X:Z), d(Y :Z)} (i.e., a(Y :X) represents the connec-
tor a between components Y and X) by transmitting the four signals Π = {a, b, c, d}.
To transform arcpcore into arcp1 on the right-hand side, we apply the delta set ∆ARC

p1
,

i.e., we remove one connector, add one component as well as two connectors.

Delta modeling [Clarke et al., 2015] has been further adapted to improve product-line
testing by reducing and prioritizing the number of executed test cases for components
as well as integration testing [Lochau et al., 2012, 2014; Lachmann et al., 2015, 2016;
Lity et al., 2016]. In this thesis, we exploit the concept of delta modeling to improve
product-line testing effectiveness by prioritizing products under test. Therefore, we
identify the commonalities and the differences between products by means of deltas to
reason about their similarity on the solution-space level, e.g., between their product-
specific architectures. Similarity-based testing is a technique used to select a subset of
test cases, which aims to increase the early rate of fault detection [Hemmati et al., 2013].
Achieving this aim can be done by maximizing the diversity among test cases. In the
context of product-line testing, numerous approaches apply similarity-based testing to
sample and prioritize products, with respect to feature selections [Sánchez et al., 2015;



66 4. Delta-Oriented Similarity-Driven Product Prioritization

Henard et al., 2014b, 2013c]. However, in this chapter, we prioritize products based
on the similarity between them with respect to deltas. In particular, we present delta-
oriented prioritization and the combined approach of configuration-based (cf. Chapter 3)
and delta-oriented prioritization in the next sections.

4.2 Delta-Oriented Prioritization

The input to our approach is a set of products which can be all valid products if the
product line is small, sample products that are generated using sampling algorithms,
or products given by domain experts. In addition to products, the delta model of
the software product line is required. With delta-oriented prioritization, we perform
three main steps to prioritize products to be tested by incorporating their differences
by means of deltas to reason about their similarity (cf. Algorithm 4.1). Therefore,

1. we select the first product which has the highest capability to detect the most
faults at the beginning of the testing process,

2. we select the second product which is most dissimilar compared to the first product
by means of deltas to be applied, and

3. the remaining products are incrementally selected by taking the delta-oriented
similarity to all already tested products into account.

The aforementioned steps are mainly based on Algorithm 3.1 on Page 22, Algorithm 3.2
on Page 24, and Algorithm 3.3 on Page 26 of the configuration-based prioritization
(cf. Section 3.1) with the following differences and improvements. Regarding the dif-
ferences, in addition to the feature model, which is also needed in configuration-based
prioritization, the delta model is required as input of the delta-oriented prioritization
approach. With respect to the improvements, with configuration-based prioritization
(cf. Section 3.1), we calculate the distances between all products in the initialization
phase. In the enhanced algorithm, the distances between products are calculated only
when it is needed, as it could be the case that testing time is finished before testing all
products. Once we calculate the needed distances between each untested product and
the new tested products, we store them to be used in follow-up steps. The distances
between the already tested products can be removed, as there is no need anymore to
store them. Postponing the distance calculation has the advantage that it improves
scalability and the performance of the algorithm. With respect to the scalability, only
the needed distances are stored in the memory, which means the approach can scale
to large product lines in terms of memory consumption. Regarding the performance,
postponing the distance calculation will accelerate the process of finding the distance
between particular products, especially at the beginning, because we iterate distances
of a small set of products rather than the whole set of products. In the following, we
describe the three aforementioned steps in detail.



4.2. Delta-Oriented Prioritization 67

Algorithm 4.1 Delta-Oriented Prioritization.
Require: FM . feature model

PSPL . a set of products
∆MSPL

. a delta model of a product line
Return: Ptested . list of tested products

1: function Prioritization(PSPL, ∆MSPL
)

2: ∆SPL ← getDeltas(∆MSPL
)

3: Ptested ← emptyList
4: AllDistances[ ]← emptyArray

5: pcore ← getcomplexcoreproduct(PSPL)
6: Ptested ← Ptested ∪ {pcore}
7: PSPL ← PSPL \ {pcore}
8: TestProduct(pcore)

9: while |PSPL|>0 do
10: pi = SelectFurtherConfig(∆SPL, Ptested, AllDistances) . Algorithm 4.2

select further product
to be tested

11: Ptested ← Ptested ∪ {pi}
12: PSPL ← PSPL \ {pi}
13: TestProduct(pi)
14: end while

15: return Ptested

16: end function

4.2.1 Choosing First Product to Test

As the overall goal of our product prioritization is to detect faults as early as possible
during product-line testing, we follow a strategy used for the analysis of the Linux
kernel, where a specific product called allyesconfig is selected to be analyzed or tested
first [Dietrich et al., 2012]. The allyesconfig is one of the largest products in the number
of selected features. Testing a large product first has the advantages that many faults
are caused by the selection of a single feature or the selection of two or more features
can be detected [Abal et al., 2014; Medeiros et al., 2016]. In contrast, we focus on
the detection of faults in solution-space artifacts such as architectures and, therefore,
reason about model size when selecting the first product to be tested. The first product
builds the basis for the selection of the next products to be tested by incorporating
their similarity to each other by means of model differences.

In delta modeling [Clarke et al., 2015], we observe a similar scenario, where the core
product builds the basis for the specification of deltas to create the remaining product-
specific models. We combine both scenarios by (1) choosing a complex core, i.e., a
certain product pcore ∈ PSPL with the largest set MEpcore of model elements comprised
in the respective product-specific model mpcore and (2) selecting the core as first product
to be tested (Algorithm 4.1, Line 5). For architectures, the set MEp of model elements



68 4. Delta-Oriented Similarity-Driven Product Prioritization

Algorithm 4.2 Select Further Configuration.
Require: PSPL . a set of products

∆SPL . a delta set of a product line
Ptested . a list of tested products
AllDistances[ ] . The calculated needed distances between products

Return: NextConfig . product with the largest distance to the tested ones

1: function SelectConfigurations(∆SPL, ∆Pcore , AllDistances)

2: NextConfigDistance← 0

3: for each pi ∈ PSPL do
4: TempDistance← 1
5: for each pj ∈ Ptested do
6: AllDistance[i, j]← getdistances(∆SPL, ∆pi , ∆pj ))
7: if Distancepipj < TempDistance then
8: TempDistance← Distancepipj
9: PNewTemp

← pi
10: end if
11: end for
12: if TempDistance > NextConfigDistance then
13: NextConfigDistance← TempDistance
14: NextConfig ← PNewTemp

15: end if
16: end for
17: return NextConfig
18: end function

is defined by the union of components Cp and connectors CONp contained in the ar-
chitecture arcp. To find the complex core, we assume that either (1) the model size
corresponds to the feature configuration size by means of selected features and, thus,
the complex core has also the largest feature configuration, or (2) the developer/test
engineer has this information based on domain and system knowledge. If there exist
more than one product comprising the maximum number of elements, we have to choose
one of these products as a complex core for delta specification and first product to be
tested. For testing a product, we apply standard testing techniques from single systems
engineering, e.g., integration testing in the context of software architectures [Bertolino
et al., 1997].

Example 4.2. For instance, assume we want to test the five products PSPL = {p1, . . . , p5}
listed in Table 2.1 on Page 15. We define p2 as complex core selected to be tested first
as it contains the maximum number of selected features and we assume that it has the
largest set MEpcore of model elements.

4.2.2 Choosing Second Product to Test

After testing the core, we select the next product to be tested by incorporating the
similarity compared to the core by means of model differences specified by deltas (Al-



4.2. Delta-Oriented Prioritization 69

gorithm 4.2). Selecting the second product to be tested is a special case of Algorithm 4.2,
as the inner loop (Lines 5–11) will be iterated once, because we only have one tested
product (core product pcore) in the list Ptested. By selecting the most dissimilar prod-
uct, we facilitate the coverage of solution-space artifacts to be tested and, therefore,
support early fault detection. In order to measure the similarity between products,
we require a suitable distance metric and meaningful properties on which the chosen
metric is applicable. Devroey et al. [2016] investigated the impact of using different
types of similarity measurements in test case prioritization such as Hamming, Jaccard,
Dice, Anti-dice, and Levenshtein distance. They report that Hamming and Jaccard
distances outperform the other distance types. However, they do not conclude whether
using Hamming outperforms using Jaccard distance or vice versa. Hence, we build on
and complement their work by investigating only the impact of Hamming and Jaccard
distances in product prioritization. Furthermore, as we focus on solution-space arti-
facts such as architectures, we take the product-specific models and their differences by
means of model elements into account to determine their similarity.

Following a naive approach, we have to create every product-specific model to determine
the differences for the distance computation. Based on delta modeling [Clarke et al.,
2015], we already have the explicit knowledge about those differences specified by deltas
and, thus, are able to determine the distance between two products by comparing
their delta sets without generating each individual model. Each product-specific delta
set comprises the particular deltas, i.e., change operations by means of additions and
removals of elements, required for transforming the core into the corresponding model.
The more deltas and, thus, change operations are common in both delta sets, the more
similar are the respective products. In addition, the usage of delta modeling allows
for a generalized definition of delta similarity, because it is independent of artifacts.
Therefore, the following generalized delta similarity functions build the basis for the
application of our approach in the context of the different delta modeling instantiation
such as delta-oriented architectures.

The Hamming distance is a well-known distance measurement [Hemmati et al., 2013],
which we used as a similarity measurement in the previous chapter. In order to handle
product-specific delta sets for distance computation and, thus, for the comparison of
two products pi and pj, we compare their corresponding delta sets ∆pi and ∆pj , and
further the sets of deltas not applicable for both products. We define the delta similarity
function deltaDistH based on the Hamming distance as follows

deltaDistH(∆pi ,∆pj ,∆SPL) = 1−
|∆pi ∩∆pj |+ |(∆SPL \∆pi) ∩ (∆SPL \∆pj)|

|∆SPL|
, (4.1)

where |∆pi ∩∆pj | denotes the number of common deltas applicable for pi as well as pj,
and |(∆SPL \ ∆pi) ∩ (∆SPL \ ∆pj)| represents the number of common deltas which are
not applicable to obtain their product-specific models.

The Jaccard distance measurement was already proposed to measure the similarity
between products and test cases [Henard et al., 2014b; Devroey et al., 2016]. In contrast



70 4. Delta-Oriented Similarity-Driven Product Prioritization

P4

0.91

0.29 0.64
0.79

(a) Select second product

P4
0.88

0.29 0.64
0.79 0.25

0.45

(b) Select third product

P4
0.88

0.52

0.29
0.79 0.25

0.23

(c) Select fourth product

P4
0.79 0.25

0.230.73

(d) Select last product

 Tested products PtestedNot tested products P New needed distances Old needed distances

Figure 4.2: Delta-oriented prioritization with distance minimum

to the Hamming distance, it defines a different comparison of products by incorporating
their product-specific delta sets. For the Jaccard distance, the number of common deltas
between two delta sets is compared to the number of all deltas captured in both delta
sets. Thus, the delta similarity function deltaDistJ is defined based on the Jaccard
distance as follows

deltaDistJ(∆pi ,∆pj ,∆SPL) = 1−
|∆pi ∩∆pj |
|∆pi ∪∆pj |

, (4.2)

where |∆pi ∩∆pj | denotes the number of common deltas for pi and pj, and |∆pi ∪∆pj |
represents the number of all deltas specified for both products.

In the context of delta architectures, both functions compare deltas specifying the
addition and removal of components and connectors. For both functions, their result
ranges between 0 and 1, where a value close to 0 indicates that compared products
have similar delta sets and, thus, similar product models are created by applying the
respective delta sets, whereas a value close to 1 indicates different products.

Example 4.3. After selecting p2 as complex core product to be tested first, we follow
an incremental process by determining the distances to the four untested products p1,
p3, p4, and p5 as shown in Figure 4.2(a), e.g., based on the delta similarity function
deltaDistH using the Hamming distance measure. Then, we select the most dissimilar
product to p2 in terms of deltas. The distances between product p2 and products p1, p3,
p4, and p5 are 0.29, 0.64, 0.91, and 0.79, respectively. As p4 has the largest distance
(0.91) to p2, we select p4 as second product to be tested.



4.3. Combining Configuration-Based and Delta-Oriented Prioritization 71

4.2.3 Choosing Further Products to Test

For the selection of the third and further products to be tested from the set of remaining
products PSPL \Ptested, we must take the similarity to all already tested products Ptested

into account (cf. Algorithm 4.2). By incorporating the distances to all previously tested
products, the selection of the next product ensures the fast coverage of solution-space
artifacts such as architectures and their elements and, therefore, facilitates the early
fault detection.

In Section 3.1.3, we already introduced two strategies to calculate distances between
more than two products in product-line testing, namely maximum over (1) distance
summation [Henard et al., 2014b] (cf. Equation 3.2) and (2) distance minimum (cf. Equa-
tion 3.3 and Equation 3.4). In this chapter, we will also investigate the impact of using
aforementioned strategies when the similarity between products is calculated.

After testing the third product that is less similar to the previous two products, we re-
peat the product selection until all products are tested or the provided testing resources
are exhausted.

Example 4.4. Depending on the chosen strategy, the order in which products are se-
lected differs. For instance, consider again our running example depicted in Figure 4.2.
After selecting and testing product p4 (cf. Example 4.3), we first update the distances
between all untested and tested products shown in Figure 4.2(b). For the summation
distance, we select p1 as next product to be tested, because the sum of its distances (1.17)
compared to p5 (1.09) and p3 (1.04) is larger. After testing p1, we update the distances
and select p5 (cf. Figure 4.2(c)). In the end, we select p3 as last product to be tested as
shown in Figure 4.2(d) and obtain p2, p4, p1, p5, p3 as testing order. In contrast, for
minimum distance, we would select p3 as third product under test as the pair (p3, p4)
has the maximum of minimum distances (0.45) compared to (p1, p2) (0.29) and (p5, p4)
(0.25). The corresponding testing order results in p2, p4, p3, p1, and p5.

Moreover, we investigate In this chapter whether the distance functions (Hamming
and Jaccard distance) and the way the distance between more than two products is
computed (summation and minimum distance) influence the results.

4.3 Combining Configuration-Based and Delta-Ori-

ented Prioritization

In Section 3.1, we show how products can be prioritized using configuration-based
product prioritization. Furthermore, we measure the similarity between products using
the Hamming distance functions as follows:

confDist(Fpi , Fpj , FSPL) = 1−
|Fpi ∩ Fpj |+ |(FSPL \ Fpi) ∩ (FSPL \ Fpj)|

|FSPL|
, (4.3)



72 4. Delta-Oriented Similarity-Driven Product Prioritization

List of prioritized 
products

      
  

Combined
 approach

Delta model

Deltas

Configuration-based 
product prioritization

Delta-oriented 
product prioritization

Weight factor (α)

Feature model

Feature selection

Figure 4.3: Overview of the combined approach where α represent the weighting factor
of the involved approaches

where |Fpi ∩ Fpj | is the number of included features in products pi and pj, |(FSPL \
Fpi) ∩ (FSPL \ Fpj)| is the number of not included features in products pi and pj, and
FSPL is a set of features of the SPL under test.

In Section 4.2, we propose delta-oriented prioritization to prioritize products based on
the similarity between them with respect to deltas. In this section, we present the
combined approach of delta-oriented and configuration-based prioritization, where the
impact of each can be adjusted using a weighting factor.

Combined Approach

As illustrated in Figure 4.3, the inputs to the combined approaches are the feature model
and delta model for the current product line under test, where the feature selections and
deltas are extracted, respectively. As mentioned above, the feature selections and deltas
are the inputs of configuration-based and delta-oriented prioritization. We control the
impact of each approach by introducing α as a weighting factor. Therefore, the value of
α adjusts the weight of the delta-oriented prioritization, whereas the 1 − α represents
the weight for the configuration-based prioritization as counterpart. In particular, the
α value adjusts the impact of the feature selections and deltas when the total distance
is calculated. The value of α can be adjusted based on the availability and quality of



4.4. The Implementation of Delta-Oriented Prioritization 73

the given information. The total combined distance for product prioritization is defined
as follows:

totalDist(Fpi , Fpj , FSPL,∆pi ,∆pj ,∆SPL) =
α · deltaDistH/J + (1− α) · confDist

2
(4.4)

Example 4.5. Consider our running example and the testing orders of Example 3.4
and Example 4.4 again, where the testing orders are determined based on α = 0.0 and
α = 1.0, respectively. For α = 0.0, we obtain p2, p3, p1, p4, and p5 as testing order,
while for α = 1.0, we obtain the following testing order p2, p4, p3, p1, and p5. In
contrast, for α = 0.5, we derive p2, p3, p5, p4, and p1 as testing order showing the
impact of the variation of α.

An alternative way to combine the configuration-based and delta-oriented prioritization
approaches is that we ignore the α value and, instead, we consider the product with
the maximum distance of both approaches. A potential limitation is that the used
information that causes the maximum distance may not represent the actual differences
between products. Note that, in the evaluation, we use different values of α to assess
our approach (cf. Section 4.5).

4.4 The Implementation of Delta-Oriented Priori-

tization

We built our implementation to prioritize products based on an existing framework,
where we reuse the modeling part of it [Lochau et al., 2014]. In particular, the tool
is an Eclipse plug-in that consists of Deltarx editor that is used to model the core
architecture as well as the deltas. Using the editor, the user is able to define the core
architecture (cf. Appendix, Section A.3) as well as a set of deltas based on the Deltarx
grammar [Lity et al., 2013]. This Deltarx grammar is defined using Eclipse Modeling
Framework 1 and Xtext Framework2 as they are compatible with Eclipse.

Each architecture model delta is recognized by a unique name and mapped to a fea-
ture/partial configuration (i.e., a combination of two or more features). These partial
configurations are part of a set of configurations generated using the sampling algo-
rithm MoSo-PoLiTe [Oster et al., 2011c]. This mapping is achieved by a declaration of
a condition as a Boolean statement using the keyword when. In case delta dependencies
are needed to be applied in advance (i.e., some deltas are needed to be applied before
others), those dependencies are indicated using the keyword after. As mentioned in Sec-
tion 4.1, generating a new product is achieved by transforming of the core, i.e., addition
and/or removal of the architecture elements using the listed keywords in Table 4.1. The
process of these plug-ins works as follows. First, the architecture of the core product
pcore is defined (cf. Appendix Section A.3). Second, the architecture model deltas are

1http://www.eclipse.org/modeling/emf/
2http://www.eclipse.org/Xtext/



74 4. Delta-Oriented Similarity-Driven Product Prioritization

Add Remove

Component addcomponent removecomponent
Connector addconnector removeconnector
Signal addsignal removesignal

Table 4.1: Overview of Deltarx Transformation Keywords

defined. Then, once the configuration is selected, the architecture model deltas that
are required to generate the product are extracted. We use those deltas as inputs to
our implemented approach to differentiate between products. In the following section,
we evaluate the effectiveness of the delta-oriented prioritization as well as the combined
approach.

4.5 Evaluation of Delta-Oriented Prioritization

To show the effectiveness of our approach, we compare it against random orders as well
as the default order of the sampling algorithm MoSo-PoLiTe [Oster et al., 2011c], where
an implicit order as part of its output is given by the positioning of products within the
output data structure. While the default order of a set of sampling algorithms, such as
CASA, Chvatal, and ICPL have been already evaluated (cf. Chapter 3), the default or-
der of the sampling algorithm MoSo-PoLiTe has not evaluated yet. We did not consider
the sampling algorithm MoSo-PoLiTe in the evaluation of Chapter 3, because we could
not have access to the tool. Even with the evaluation of delta-oriented prioritization,
we do have the access to the configurations of the subject product line generated by
MoSo-PoLiTe, not the tool itself. In particular, MoSo-PoLiTe is the main algorithm
used to sample the subject product line. In addition, we assess whether adding more
solution-space information enhances the effectiveness of product-line testing. Further-
more, we evaluate whether using different distance functions influences the results. In
particular, we answer the following research questions:

RQ1 How does delta-oriented prioritization using delta modeling perform compared to
random orders and the default order of the sampling algorithm MoSo-PoLiTe [Os-
ter et al., 2011c]?

RQ2 How does the combination of delta-oriented and configuration-based prioritiza-
tion in product prioritization influence the effectiveness of product-line testing?

RQ3 How does the way the distance between products is measured influence the ef-
fectiveness of product-line testing?

In the following, we introduce the subject product line and the fault injection that we
used in our evaluation. Then, we present and discuss the reported results.



4.5. Evaluation of Delta-Oriented Prioritization 75

Figure 4.4: The feature model of the Body Comfort System

4.5.1 Subject Product Line: Body Comfort System (BCS)

The amount of software embedded in the automotive domain is steadily increasing. An
example of this software is the implementation of the driver assistance systems in cars.
To assure that these systems work as expected, software testing becomes a critical task
in the automotive development. Furthermore, the variability of such systems is needed
to be taken into account during testing, as it makes the system more complex [Oster
et al., 2011a].

In our work, we evaluate our approach by means of a product line from the automotive
domain representing a Body Comfort System (BCS) [Lity et al., 2013]. Oster et al.



76 4. Delta-Oriented Similarity-Driven Product Prioritization

1 DAutomaticPW when ’Automatic Power Window’ {
2 removeconnector{
3 fp1
4 fp2
5 pw1
6
7 #endif /∗ FEAT_VISUAL ∗/

Listing 4.1: Delta DAutomaticPW for the Feature AutomaticPowerWindow [Lity et al.,
2013]

[2011b] adapted the original version of the BCS to a product line. As illustrated in Fig-
ure 4.4, the BCS comprises a number of mandatory and optional features, such as a
human machine interface that serves as a point of interaction with a driver, an alarm
system with the option of having interior monitoring, a central locking system with the
optional of automatic locking, a manual/automatic power window, and a remote control
key enables the locking and unlocking of the car as well as the controlling of the window
movement. The BCS product line comprises a total of 11,616 possible products. Ap-
plying pairwise sampling using the algorithm MoSo-PoLiTe, the number of generated
products is reduced to 17 products, where we add the core as product 18 [Lity et al.,
2013].

For evaluation, we focus on the delta-oriented architectures specified for the BCS prod-
uct line [Lity et al., 2013]. The range size of all the designed architecture models is
between 4 and 19 components. The average number of connectors in each architecture
is 72. These connectors transfer an average of 60 different signals between components.
We refer to Appendix, Section A.3 Listing A.1 for the architecture definition of the core
product of the BCS. In Listing 4.2, we show an example of the deltas that is required
to be applied in order to add the feature AutomaticPowerWindow to a product. It
looks that in order to add feature AutomaticPowerWindow, we need to remove eight
connectors, one component, and two signals from the core product. Furthermore, we
need to add nine connectors, one component, and three signals. For all deltas of the
BCS product line, we refer the reader to the Appendix, Section A.3 Listing A.2.

4.5.2 Fault Injection

To measure the effectiveness of the proposed approach, we use seeded faults using a well-
known method to assess the fault detection of a test suite [Mathur, 2008]. Following the
same concept of our work in Section 3.3.3, but considering the delta modeling instead
of feature selections, we randomly select architecture model elements and mark them as
containing faults. We assume that if the products contain these elements, the faults will
be detected. Abal et al. [2014] report that some faults can be triggered because some
features are not selected. Thereupon, we consider the involved and the non-involved
model elements when we seed faults. We consider two types of faults: single faulty
elements to simulate faults in a single element and pairwise combinations of faulty
elements to simulate faults caused by the interaction between elements. The reason for



4.5. Evaluation of Delta-Oriented Prioritization 77

1 DAutomaticPW when ’Automatic Power Window’ {
2 removeconnector{
3 fp1
4 fp2
5 pw1
6 pw2
7 hmi5
8 hmi6
9 env13

10 env14
11 }
12 removecomponent {
13 ManPW
14 }
15 removesignal {
16 pw_mv_dn
17 pw_mv_up
18 }
19 addsignal {
20 pw_auto_mv_up boolean
21 pw_auto_mv_dn boolean
22 pw_auto_mv_stop boolean
23 }
24 addcomponent{
25 AutoPW{
26 }
27 }
28 addconnector{
29 fpautopw1(FP,fp_on,fp_on,AutoPW)
30 fpautopw2(FP,fp_off,fp_off,AutoPW)
31 hmiautopw1(HMI,pw_but_up,pw_but_up,AutoPW)
32 hmiautopw2(HMI,pw_but_dn,pw_but_dn,AutoPW)
33 autopwenv1(AutoPW,pw_auto_mv_up,pw_auto_mv_up,ENV)
34 autopwenv2(AutoPW,pw_auto_mv_dn,pw_auto_mv_dn,ENV)
35 autopwenv3(AutoPW,pw_auto_mv_stop,pw_auto_mv_stop,ENV)
36 envautopw1(ENV,pw_pos_up,pw_pos_up,AutoPW)
37 envautopw2(ENV,pw_pos_dn,pw_pos_dn,AutoPW)
38 }
39 }

Listing 4.2: Delta DAutomaticPW for the Feature AutomaticPowerWindow [Lity et al.,
2013]

considering only up-to pairwise combinations is the nature of the subject product line
as it consists of only 27 features. Hence, we do not expect to find faults caused by a
high degree of combinations.

In the following steps, we show an example of how the pairwise faults are seeded.
At first, we select two elements (i.e., components) randomly. Assume that we select
components c3 and c5. The decision of involving the component in a faulty combination
or not (¬) is decided randomly. In our case, assume that component c3 is selected to be



78 4. Delta-Oriented Similarity-Driven Product Prioritization

●●
●
●
●

●

●

●●
●●●●●●

●

●
●

●●

●

●●
●

●●

●

●
●

●

●

●●

●

●

●●

●
●

Delta−oriented Default  Random

0.65

0.70

0.75

0.80

0.85

0.90

0.95

Order types

A
P

F
D

Figure 4.5: The APFD distribution for delta-oriented prioritization, default order of
sampling algorithm MoSo-PoLiTe [Oster et al., 2011c] (Default), and random orders
(Random)

Delta-oriented Default Random

Avg. APFD 0.907 0.871 0.863

Table 4.2: The average APFD for delta-oriented prioritization, default order of sampling
algorithm MoSo-PoLiTe [Oster et al., 2011c] (Default), and random orders (Random)

involved and component c5 is selected to be not involved. The combination of the two
components is c3∧¬c5. We ensure the validity of the generated combination with respect
to the feature model and delta model. We generate 200 sets of faults (100 sets for single-
wise interactions and 100 sets for pairwise interactions). In each set, we randomly select
10% of the faulty elements. We also considered different percentage of faulty elements;
however, the results show no significant difference. In our evaluation, we report the
results of considering 10% of the faulty elements. We use average percentage of faults
detected (APFD) as a metric to measure the effectiveness of our approach. APFD is a
metric developed by Elbaum et al. [2000] to evaluate how fast faults are detected during
testing. For more details about the APFD, we refer the reader to Section 3.3.1.

4.5.3 Results and Discussion

To answer RQ1, we used Hamming distance to measure the similarity between prod-
ucts. For computing the distance between more than two products, we considered the
minimum distance strategy.



4.5. Evaluation of Delta-Oriented Prioritization 79

The boxplots in Figure 4.5 show the APFD distribution for each approach over 200
sets of faults. The X-axis represents the different type of orders (delta-oriented product
prioritization, random, and default order) and the Y-axis represents the APFD value.
To reduce the impact of the random order, the boxplot shows the distribution of APFD
values of 100 random orders. Each random order is executed on 200 different sets of
faults.

From Figure 4.5, it is obvious that delta-oriented prioritization outperforms the random
ordering as well as the default order of the sampling algorithm MoSo-PoLiTe [Oster
et al., 2011c]. In Table 4.2, we show the average APFD values for each approach over 200
sets of faults, where we observe that delta-oriented approach has a higher APFD value
(0.907) than the random ordering (0.863) and the default order of MoSo-PoLiTe [Oster
et al., 2011c] (0.871). To test whether the difference between our approach and the
default order of MoSo-PoLiTe as well as the random orders is significant, we use the
Mann-Whitney U test (cf. Section 3.3.1). In our results, we observe that the differences
between our approach and the default order of MoSo-PoLiTe as well as the random
orders are significant with p-value 0.0 for both approaches. Hence, regarding RQ1,
delta-oriented prioritization outperforms the random ordering as well as the default
order of the sampling algorithm MoSo-PoLiTe [Oster et al., 2011c]. Figure 4.5 also
shows that the default order of MoSo-PoLiTe is slightly better than the random orders.
While, in some cases, it shows that random orders are better than the MoSo-PoLiTe
default order, we observed that in random ordering numerous worse outliers appear,
which is not the case in the default order.

Regarding RQ2, in order to show whether the combination of configuration-based and
delta-oriented prioritization influences the results, we consider different cases which
represent different values of α. The range value of α is between 0.0 and 1.0. If the value
of α is 0.0, we just apply configuration-based prioritization and if the α value is 1.0,
we apply delta-oriented prioritization. In the other cases where 0.0 <α <1.0, we apply
the combined product prioritization. These different values adjust the impact of deltas
and feature selections (cf. Equation 4.4). In particular, we consider the three cases that
represent three values as follows.

• Case 1: α =0.0, 1− α= 1.0. (configuration-based prioritization)

• Case 2: α =0.50, 1− α= 0.50.

• Case 3: α =1.0, 1− α= 0.0. (delta-oriented prioritization)

The proposed α values in this chapter are for evaluation purposes. However, the α value
can be adjusted by testers based on the availability and the quality of the provided
information of product lines.

Figure 4.6 shows the distribution of APFD values, where the X-axis denotes differ-
ent values of α, which represent different weights for the delta-oriented prioritization,



80 4. Delta-Oriented Similarity-Driven Product Prioritization

0.0 0.5 1.0

0.80

0.85

0.90

0.95

α 

A
P

F
D

Powered by TCPDF (www.tcpdf.org)Powered by TCPDF (www.tcpdf.org)Powered by TCPDF (www.tcpdf.org)

Figure 4.6: The APFD distribution for delta-oriented prioritization with considering
different weights of delta-oriented prioritization represented by the value of α

α = 0.0 α = 0.5 α = 1.0

Avg. APFD 0.900 0.905 0.907

Table 4.3: The average APFD distribution for delta-oriented prioritization with con-
sidering different weights of delta-oriented prioritization represented by the value of α

and the Y-axis denotes the APFD values. From Figure 4.6, we observe that includ-
ing solution-space information (delta modeling) to problem-space information (feature
selection) improves the effectiveness of product-line testing. Furthermore, the results
in Table 4.3 show that the average APFD value over 200 sets of faults when α = 0.0
is 0.900, while it is 0.907 when α = 1.0. Using the Mann-Whitney U test, we found
that the difference between the orders of the generated products, where α = 0.0 and
α = 1.0, is significant with p-value 0.04. We envision that adding more solution-space
information will enhance the product-line testing effectiveness, because it can give us in-
formation about the solution-space impact and the functionality of each feature, which
can be used to weight each feature during product prioritization. The results indi-
cate that including other solution-space information (i.e., source code), may enhance
the SPL testing effectiveness compared to configuration-based prioritization. However,
adding problem-space information does not seem to give advantages.

In order to answer RQ3, we compared the Jaccard distance to the Hamming distance.
For each distance type, we used two different ways of calculating the distance, namely
maximum over distance minimum and distance summation. In Figure 4.7 and Ta-



4.5. Evaluation of Delta-Oriented Prioritization 81

HM HS JM JS

0.75

0.80

0.85

0.90

0.95

Alternative similarity measurements

A
P

F
D

Figure 4.7: The APFD distribution for delta-oriented prioritization by considering com-
binations of different distance types, Hamming distance (H) and Jaccard distance (J)
with minimum distance (M) and summation distance (S)

HM HS JM JS

Avg. APFD 0.907 0.906 0.891 0.891

Table 4.4: The average APFD for delta-oriented prioritization by considering combina-
tions of different distance types, Hamming distance (H) and Jaccard distance (J) with
minimum distance (M) and summation distance (S)

ble 4.4, we show the distribution of APFD values and their average over 200 sets of
faults for a combination of Hamming and Jaccard distance with minimum distance and
summation distance. By comparing the two left boxplots to the two right boxplots,
which represent the two distance types: Hamming and Jaccard distance, respectively,
the boxplots show that using Hamming distance is better than the Jaccard distance. In
addition, the average APFD values over sets of faults for different similarity alternatives
(cf. Table 4.4), confirm the aforementioned observation that Hamming distance (0.907,
0.906) outperforms the Jaccard distance (0.891, 0.891). With the Mann-Whitney U
test, we observed that the difference between the Hamming and Jaccard distance for
the minimum distance and the summation distance is significant with p-values 0.00084
and 0.018, respectively. Hence, answering RQ3, we show that distance measurements
affect the results.

Furthermore, in the first two left boxplots from Figure 4.7, we observed a slight im-
provement, on average, when combining the Hamming distance with distance minimum



82 4. Delta-Oriented Similarity-Driven Product Prioritization

strategy over the combination of Hamming distance with distance summation strategy.
This slight improvement can be observed from the average values (cf. Table 4.4) of dis-
tance minimum (0.907) and distance summation (0.906). However, by considering the
Mann-Whitney U test, we observed that the difference is not significant with p-value
0.74.

In the two right boxplots in Figure 4.7, we show the results of using Jaccard distance
with distance minimum and with distance summation. The boxplots show that they
are approximately identical. The obtained p-value from the Mann-Whitney U test (1.0)
approves that they behave similarly. Hence, we show that there is only a slight impact
of using distance minimum or using distance summation when we calculate the distance
between more than two products. This slight impact is observed only when we used
Hamming distance. However, in order to generalize the aforementioned observation,
more experiments using other case studies are required to be conducted.

4.5.4 Threats to Validity

In the following, we discuss the internal and external threats to validity that may affect
our results.

There is a potential threat to the internal validity that may affect the results related to
the random distribution of the seeded faults. To mitigate this threat, we generated 200
sets of faults for the single-wise and pairwise interactions. In each set, we select 10%
of architecture model elements and mark them as they are faulty. We assume that the
random distribution of the seeded faults is better than building on non-representative
distributions. Considering 10% of the elements as seeded faults raises an internal fault
that may affect the results. To alleviate this threat, we ran different experiments with
other percentages. The experiments led to very similar results and, thus, to same
interpretations. The raw results of all experiments are available online3. Another
internal threat is that we compared our approach to random orders. To mitigate the
random effects, we repeated those experiments 100 times.

Regarding external validity, we cannot ensure that our product line is representative for
real-world software product lines. The product line BCS already served as a benchmark
to evaluate product-line testing techniques [Lachmann et al., 2015; Lochau et al., 2014;
Oster et al., 2011b; Lochau et al., 2012]. In addition, we are not aware of other industrial
or even academic product-lines publicly available with their architecture models.

4.6 Related Work

Several approaches have been proposed to prioritize products based on different criteria.
In Chapter 3, we proposed configuration-based prioritization to order products based
on the similarity between them with respect to the feature selection. Similarly, we
propose delta-oriented prioritization in this chapter to prioritize products by considering

3http://wwwiti.cs.uni-magdeburg.de/iti db/research/spl-testing/thesis

http://wwwiti.cs.uni-magdeburg.de/iti_db/research/spl-testing/thesis


4.6. Related Work 83

the similarity between them, but in terms of deltas. In addition, we investigate a
combined approach of the aforementioned approaches to differentiate between products.
Furthermore, we investigate whether the distance functions, which are used to measure
the similarity, and the way prioritization is computed (i.e., using the maximum or
summation of distances) influence the results. Lity et al. [2017] propose to reduce the
incremental product-line analysis efforts by optimizing product orders using adopted
graph algorithms. In their work, they select the next product that is the less different
to the previous ones to be analyzed to reduce the effort in regression analysis. However,
their work is based on an assumption that the analysis process will be finished in the
given time. In our work, we select a product that is least similar to the previously
tested ones to be tested next in order to detect faults as soon as possible.

Sánchez et al. [2015] prioritize products by considering solution-space information as
well as non-functional properties of features including following: the size, the number
of changes, the cyclomatic complexity that represents the implementation of a feature,
the number of test cases, the number of test assertions, number of developers and the
number of reported installations. They use the Drupal framework as a case study and
report that prioritizing products based on solution-space information, such as the size
of features and its complexity code outperforms problem-space information (i.e., the
feature selection) with respect to the early rate of fault detection. In a following work,
Parejo et al. [2016] consider the aforementioned properties and the combination between
them as inputs to their search-based algorithm by modeling product prioritization as a
multi-objective optimization problem. Using the Drupal framework, they confirm the
aforementioned observation reported by Sánchez et al. [2015] that considering solution-
space information can increase the early rate of fault detection. In our work, we consider
the solution-space information in terms of deltas to prioritize products.

Regarding the problem-space information in product prioritization, Henard et al. [2014b]
propose search-based approach to sample products based on selected features. Simi-
larly, Devroey et al. [2016] propose a search-based approach to select test cases for
behavioral product-line models based on similarity with respect to the feature selec-
tion. Sánchez et al. [2014] propose to prioritize products using common feature model
metrics. Henard et al. [2013c] apply the similarity-based technique to detect faults in
feature models. They generate faults by mutating feature models. They report that the
dissimilar test suites, in terms of feature selection, have a higher ability to detect faults
than the similar ones. In our approach, we prioritize products based on their similarity
in terms of deltas. With delta-oriented prioritization, we exploit the commonalities and
differences between products in terms of solution-space artifacts (deltas) to prioritize
products.

With respect to considering the domain knowledge in product prioritization, Devroey
et al. [2014] select the products with high probability to be executed using statistical
analysis of a usage model. Ensan et al. [2011] utilize the expectation of experts to select
the most desirable features and give a higher priority to test products that include these
features. Johansen et al. [2012b] prioritize the product based on a weight given to the
T -wise interactions based on market knowledge. With delta-oriented prioritization, we



84 4. Delta-Oriented Similarity-Driven Product Prioritization

do not require expert knowledge to prioritize products. Instead, we follow a purely
model-based gray-box approach solely requiring feature models and delta models as a
basis.

Baller et al. [2014] introduce a framework to optimize products and test cases by con-
sidering certain objectives such as the costs and the profits of test cases and test re-
quirements. Wang et al. [2013] automate the test case selection by mapping features
to the test cases. In our approach, we use the similarity among products, in terms of
deltas, as criteria to prioritize them. The test case prioritization is not considered in
this thesis, which, however, can be extended in future work to enhance the product-line
testing effectiveness.

Lachmann et al. [2015] propose to prioritize test cases using an integration testing
approach for product lines based on delta-oriented test specifications. In their work,
they prioritize test cases based on how many changed elements are covered by test cases.
These changes are captured in the deltas. In following work, Lachmann et al. [2016]
combine a prioritization based on structural and behavioral deltas with a dissimilarity
approach to prioritize message sequence chart test cases. In our work, we use these
delta models to prioritize products. Combining our approach with the aforementioned
approach may improve effectiveness of product-line testing.

In single-system testing, Yoo and Harman [2012] survey efforts that have been made
to select, minimize, and prioritize test cases in regression testing. For each technique,
they introduce its goals and limitations. Hemmati and Briand [2010] propose to ap-
ply similarity-based testing on model-based test case selection. In our approach, we
applied the same concepts, but to prioritize products to improve the effectiveness of
product-line testing. Another work of Hemmati et al. [2011], where they investigate the
properties of test suites in order to show under which conditions can similarity-based
technique work as expected. Similar work can be done in the context of product-lines.
However, instead of test cases, the generated products need to be considered. Henard
et al. [2016] perform a comparison between black-box (problem-space information) and
white-box (solution-space information) prioritization approaches with respect to the
detection fault rate. In their results, they show a slight improvement of using white-
box prioritization approaches to prioritize test cases over the black-box prioritization
approaches. However, they recommend for further investigation in order to generalize
their results. In addition, they do not investigate whether the combination of black-box
and white-box prioritization approaches may enhance the software testing.

Rothermel et al. [2001] propose to prioritize test cases in regression testing using
solution-space information. They consider code information, such as code coverage
and the estimation on the ability of test cases to detect faults in test-case prioritiza-
tion. Using the code information in product-line testing to prioritize products or the
test cases might enhance product-line testing, as observed by Sánchez et al. [2015]. In
our work, we show that considering more solution-space information in terms of deltas
(i.e., white-box prioritization approach) in the context of product lines can potentially
enhance the product-line testing. Moreover, we combine both approaches that consider



4.7. Summary 85

problem-space and solution-space information. Although the results of combining both
approaches using our subject product-line do not show an improvement over considering
only the solution-space information, combining both approaches will enable the testers
to prioritize products regardless of the type of the given information.

4.7 Summary

The increasing interest in variable software systems in academia and industry requires
different types of testing techniques to improve the quality of variable software sys-
tems. Several approaches have been proposed to improve product-line testing, such
as reducing the number of products to test. Moreover, prioritization approaches have
been proposed to increase the rate of early fault detection. In Chapter 3, we focus on
problem-space information only. In this chapter, we propose delta-oriented prioritiza-
tion to order products based on their similarity with respect to deltas. We compare
the delta-oriented prioritization approach against random orders and the default order
of the sampling algorithm MoSo-PoLiTe. The results show that prioritizing products
based on delta modeling outperforms the random orders as well as the default order of
the sampling algorithm MoSo-PoLiTe. Thus, we conclude that delta-oriented prioriti-
zation can enhance the effectiveness of product-line testing. In addition, we proposed
a combined approach that considers problem-space (i.e., feature selection) and solution-
space (i.e., delta modeling) information in product prioritization. The reported results
indicate that adding more solution-space can improve the testing effectiveness.

Furthermore, we evaluated the impact of using Hamming and Jaccard distance in mea-
suring the similarity of products. We reported that using Hamming distance outper-
forms Jaccard distance. Finally, we conclude that there is no significant impact of the
way we calculate the distance among more than two products (i.e., maximum over the
distance minimum, or the distance summation).

Based on our experiments in Chapter 3 and Chapter 4, we observed that sampling a
set of configurations using the existing sampling algorithms takes considerable amount
of time. Johansen et al. [2012a] also report that applying pairwise testing on a version
of the Linux kernel with 6,888 features needs nine hours, which is a large amount of
time considering the usual limited testing time. In addition, we observed that most of
the existing sampling algorithms are non-deterministic. Thus, in the following chap-
ter, we propose an incremental sampling algorithm that overcomes the aforementioned
challenges.



86 4. Delta-Oriented Similarity-Driven Product Prioritization



5. Incremental Pairwise Sampling

This chapter shares material with the GPCE’16 paper“IncLing: Efficient
Product-Line Testing Using Incremental Pairwise Sampling”[Al-Hajjaji et al.,
2016b]. The tool support of this work is presented also in the GPCE’16 demo
paper “Tool Demo: Testing Configurable Systems with FeatureIDE” [Al-
Hajjaji et al., 2016c].

As mentioned in the previous chapters, it is not possible to check whether each indi-
vidual product meets its requirements due to the large number of possible products of
a software product line. In a single system, an exhaustive test that includes all input
parameters and their combinations is not feasible [Bernot, 1991]. Thus, several ap-
proaches have been proposed to minimize the testing space with respect to parameters,
such as combinatorial interaction testing Cohen et al. [2003]. An instance of combinato-
rial interaction testing, pairwise testing, is a promising approach widely used to reduce
the testing cost [Grindal et al., 2005; Nie and Leung, 2011; Cohen et al., 2003; Kuhn
et al., 2008]. As we face a similar problem, even more complex, combinatorial interac-
tion testing is proposed to be used in software product line testing [Oster et al., 2010;
Perrouin et al., 2012, 2010; Henard et al., 2014b; Johansen et al., 2012a; Garvin et al.,
2011; Oster et al., 2011c]. Considering features of the feature models as parameters, we
generate a set of configurations that covers the feature combinations. Therefore, the
number of products is reduced significantly. Covering T -wise combinations of features
in the generated configurations results in a T -wise feature interaction coverage (cf. for
more details about the T -wise testing, see Section 2.2). To achieve T -wise coverage,
several sampling algorithms have been proposed, such as ICPL [Johansen et al., 2012a],
CASA [Garvin et al., 2011], Chvatal [Johansen et al., 2011; Chvatal, 1979], MoSoPo-
Lite [Oster et al., 2011c], and IPOG [Lei et al., 2007].

However, these algorithms do not scale well to larger product lines with respect to the
CPU time and memory consumption that are required for sampling [Medeiros et al.,



88 5. Incremental Pairwise Sampling

2016; Henard et al., 2014b]. Specifically, most of the existing algorithms make the
choice of giving results for the entire sample that achieves sufficient feature interaction
coverage, instead of delivering intermediate results one by one. As a consequence they
require a considerable amount of time to compute the result, even for smaller product
lines.

Johansen et al. [2012a] report that generating products for a version of the Linux kernel
(with 6,888 features) requires approximately nine hours for pairwise combinatorial in-
teraction testing. As those samples are usually not available until a sampling algorithm
is completely terminated, the sampling process may take a considerable part of the
limited testing time. As a result, the Linux kernel developers use the built-in facility of
the Linux kernel build system randconfig to generate random configurations, because
none of the existing sampling algorithms scales to a more recent version of the feature
model of the Linux kernel with over 15 thousand features [Melo et al., 2016]. An alter-
native to combinatorial interaction testing, several search-based approaches have been
proposed to generate a set of products [Henard et al., 2014b; Ensan et al., 2012; Henard
et al., 2013a]. However, the aforementioned approaches do not guarantee a certain de-
gree of coverage. Although the number of generated products can be specified at the
beginning of sampling, the process of generating these products is not incremental and
non-deterministic (i.e., different configurations for each run). To tackle the aforemen-
tioned problems, we propose Incremental sampLing (IncLing) to generate products
one at a time. Besides generating products incrementally, we aim also to enhance the
sampling efficiency, in terms of the required time to generate a sample, as well as testing
effectiveness, in terms of the interaction coverage rate (i.e., covering the combinations
of features faster).

In particular, the IncLing algorithm samples products incrementally one by one, based
on a greedy selection heuristics, to achieve pairwise coverage. With IncLing, while
further products are added to the sample, IncLing selects the next product that covers
as many of uncovered feature combinations as possible. In Chapter 3 and Chapter 4,
we observed that ordering products based on their similarity may enhance the testing
effectiveness. Thus, with IncLing, we propose a feature ranking heuristic to influence
in which order these products are generated. In particular, we increase the diversity of
the generated products by covering dissimilar pairwise feature combinations, each time
a further product is generated. For this purpose, we reorder features, which serve as
an input to our algorithms, based on how often they appear in the uncovered feature
combinations. As a result, the covering rate of feature combinations is increased, which
might lead to faster fault detection [Namin and Andrews, 2009; Frankl and Iakounenko,
1998; Cai and Lyu, 2005; Perry, 2006]. We dynamically continue generating further
products until the testing time is exhausted or coverage is achieved.

The rest of this chapter is organized as follows. We explain IncLing using our running
example in details in Section 5.1. In Section 5.2, we highlight the main characteris-
tics that differentiate IncLing from state-of-the-art sampling algorithms. We present
the implementation and the integration of IncLing to FeatureIDE in Section 5.3. We
evaluate IncLing using a corpus of real-world and artificial feature models of different



5.1. Incremental Pairwise Sampling with IncLing 89

Algorithm 5.1 Main algorithm of IncLing.
Require: FM . a feature model of a product line

Cold . the given configurations and/or the already generated ones
Time . the given testing time
Coverage . the required coverage

Return: Ptested . list of generated and tested products

1: function IncLing(FM, Cold, Coverage, Time)

2: F ← getFeatures(FM)
3: G← constructGraph(FM)
4: freq ← emptyList
5: signum← emptyList

6: lsCombsinitial ← generateCombinations(FM)
7: lsCombsleft ← lsCombsinitial \

( generateCombinations(Cold) ∪ generateInvalidCombinations(FM, G))

8: forbidConfigurations(FM, Cold)

9: while ( coveredCombinations( ) < Coverage ∧ passedTime( ) < Time ) do

10: updateFrequency(lsCombsleft, freq, signum)
11: sort(F , freq)

12: cnew ← ∅
13: for i← 1 to |F | step 1 do
14: for j ← 0 to i step 1 do
15: lsCombstest ← getCombinations(lsCombsleft, signum, F [i], F [j])
16: testCombinations(lsCombstest, cnew)
17: end for
18: end for
19: autoComplete(FM, cnew)

20: Cold ← Cold ∪ {cnew}
21: lsCombsleft ← lsCombsleft \ lsCombscovered
22: generateAndReturnProduct(cnew)
23: Ptested ← Ptested ∪ {cnew}
24: forbidConfigurations(FM, cnew)

25: end while

26: end function

sizes and compare it against four sampling algorithms and random configurations. We
present and discuss our results in Section 5.4. We point out related work in Section 5.5
and summarize the chapter in Section 5.6.

5.1 Incremental Pairwise Sampling with IncLing

We present the main algorithm for IncLing in pseudo-code in Algorithm 5.1. Further-
more, we show the main activities of IncLing in Figure 5.1. In the initialization phase,



90 5. Incremental Pairwise Sampling

Generate combinations

Feature models (CNF)

Remove invalid combinations

Implication graph

Forbid configurations

Build and generate configuration

Generate and return product

Build implication graphs

Old products

Time> 0 and Coverage< pairwise coverage

Forbid configuration

yes

no

New config

Figure 5.1: Activity diagram of IncLing.

we generate all pairwise combinations, remove the invalid ones, and consider the already
generated products, if any. Then, we generate products one at a time. To generate a
product, we build a configuration by consecutively adding feature combinations until
the configuration is complete. We keep generating products until the pairwise coverage
is achieved or the testing time is exhausted.

5.1.1 Initialization

The input of our algorithm consists of the feature model FM, the set of products Cold

that have been already tested, the desired pairwise Coverage, and the testing Time
available. The output of the algorithm is a list of generated products to test. At the
beginning, we initialize all required variables. First, we get all features from the feature
model FM (Line 2). We transform feature models into propositional formulas. These
formulas are written in Conjunctive Normal Forms (CNFs) (cf. Section 2.1.2). CNFs
resemble a collection of constraints that must be fulfilled. These constraints, which are
represented with clauses, are connected with the logical operator conjunction. Each
clause consists of a disjunction of positive or negative variables (e.g., see Figure 2.4 on
Page 11). In our case, the variables are the features. The variable is positive if the
feature is part of a partial configuration, otherwise it is negative. These positive and



5.1. Incremental Pairwise Sampling with IncLing 91

negative variables are defined as literals. Second, we construct the implication graph
G for the feature model FM (Line 3). This graph is used to detect the invalid literal
combinations. Third, we generate all pairwise combinations of literals lsCombsinitial
(Line 6). Fourth, we create a list of all uncovered literal combinations lsCombsleft by
removing the invalid literal combinations as well as the combinations of literals that are
already covered in the set of configurations Cold (Line 7). Checking the satisfiability of
adding a particular combination of literals is an NP-complete problem. Thus, we aim to
reduce the number of SAT query by removing the invalid literal combinations using the
constructed implication graph (see Section 5.2.2 for more detail about the implication
graph). Finally, we add the given generated configuration Cold, to the feature model
(FM) as a blocking clause to avoid generating them (Line 8). This blocking clause
contains a disjunction of positive or negative variables that are forbidden to be generated
again (i.e., FM

∧
ci∈Cold

(¬c1 ∨ ¬c2,∨...,∨¬cn)).

Example 5.1. We demonstrate the single steps of our algorithm with the help of the
graph product line example (cf. Figure 2.2 on Page 9). We have the following list of
seven features F = ( GraphLibrary, Edges, Directed, Undirected, Algorithms, Number,
Cycle). The list of all possible pairwise literal combinations consists of 168 elements in
total.

After the removal of all invalid literal combinations, such as ( Directed, Undirected)
(i.e., both features cannot be chosen together) and (¬Algorithms, Number) (i.e., con-
tradiction of a parent-child relationship), the list contains 111 valid literal combinations
that need to be covered (e.g., ( Directed, ¬Undirected), (¬Algorithms, ¬Cycle), ( Cycle,
Directed), ...). To explain the following steps in a simple way, let us assume we do not
have any already tested products (i.e., Cold=0).

5.1.2 Generating Products

In the main loop of the algorithm (Lines9–25), we build configurations until either
running out of testing time or there are no more literal combinations to cover. As
illustrated in Figure 5.2, before we build a configuration, we calculate the current signum
and frequency of each feature, which we use for our heuristic. Frequency denotes how
often each feature occurs in the uncovered literal combinations. In Line 11, we rank
features in descending order according to their frequencies. The signum of a feature is
positive, if the feature is more often selected than deselected in the uncovered literal
combinations and negative otherwise. We use the signum to increase the diversity
among configurations with regard to feature selections (Line 15). Note that, the invalid
literal combinations are taken into account for calculating the frequency and signum,
as we consider them as covered (Line 7). Ignoring invalid literal combinations, which
can never be covered normally, leads to a biased heuristic, as they are missing in the
calculations. For instance, the ranking of the features would favor features that appear
in many invalid literal combinations.

Next, we build a new configuration (Lines 12–19), which we describe in more detail later
on. For each new configuration, we exclude all literal combinations that are covered by



92 5. Incremental Pairwise Sampling

Update frequency
Old products, New configs

Sort features

Get combinations

Test combinations

Feature frequency

Features

                           Build and generate configuration

Autocomplete

Current config (cnew), FM

The number of 
iterated 

features != |F|

no

yes

Figure 5.2: Activity diagram of generating products with IncLing.

the configuration from the list of uncovered literal combinations combsleft (Line 21).
Finally, we generate a product from this configuration (Line 22), which may then be
tested in parallel while the algorithm goes to the next iteration. We avoid building the
same configurations by excluding the already generated ones from the feature model
(FM) via adding a blocking clause (Line 24). This process continues until either we
reach a certain degree of pairwise feature coverage or we run out of testing time (Line 9).

Example 5.2. In our example, we list the initial computation of frequency and signum
in Table 5.1. The numbers for frequency range from 0 and 168, which represent the
minimum and maximum frequency for seven features, respectively. When we rank the
features accordingly, we get the list F = ( Number, Algorithms, Cycle, Directed, Undi-
rected, GraphLibrary, Edges), where the first feature ( Number) has the highest fre-
quency. From Table 5.1, we notice that the signum value of feature ( Number) is −1.
That is, the feature Number should be part of the next configuration.



5.1. Incremental Pairwise Sampling with IncLing 93

Feature G E D U A N C

Frequency 155 155 161 161 162 163 162
Signum 11 11 1 -1 2 -1 -2

Table 5.1: The frequency and the signum for each feature in the uncovered literal
combinations list for product line GraphLibrary

5.1.3 Building a Configuration

As we show in Algorithm 5.1, Line 12, we first create an empty configuration cnew. Then,
we execute two nested loops over the ranked feature list to generate the combinations
for each pair of features (Lines 13–18). For each pair of features, we call the function
getCombinations to generate a list of uncovered literal combinations and order them
using the signum values (Line 15). We then test whether we can cover one of these
literal combinations within the current configuration cnew by executing the function
testCombinations (Line 16).

Example 5.3. For the first product in our example, we generate the following literal
combinations. The first feature pair according to the feature ranking is Number and
Algorithms. In this case, the function getCombinations returns this list of literal com-
bination lsCombsleft = ((¬Number, Algorithms), ( Number, Algorithms), (¬Number,
¬Algorithms)). The combination ( Number, ¬Algorithms) is excluded in the initializa-
tion phase as it is an invalid one. These valid literal combinations are then tried to be
added to the current configuration.

5.1.4 Testing a Combination

In Algorithm 5.2, we present the function testCombinations. In addition, we show
the main activities of this function in Figure 5.3. In this function, we iterate over the
given list of literal combinations lsCombotest and test for each combination whether it
is possible to include it in the current configuration cnew.

First, we check whether a feature from the tested combination of literals is already
included in the current configuration (Line 5). In this case, we continue with the next
literal combination in lsCombotest if at least one of the following conditions is true: cnew
contains the complement of at least one literal in the combination (i.e., the complement
of literal A is ¬A and vice versa), the combination is already contained in cnew, or the
percentage of covered combinations is below a certain threshold. The reason for moving
to the next literal combination if the previous condition is true is that we aim to cover
as many of the uncovered combinations for each a new configuration. Thus, considering
a combination where a one literal of it is already part of the current configuration will
not help us to achieve that aim. Otherwise, we test using a satisfiability solver whether
it is possible to add the combination to the current configuration cnew. If the current
configuration is not valid, we move to the next combination.



94 5. Incremental Pairwise Sampling

Algorithm 5.2 Tests whether a combination from the list lsCombstest can be added
to the current configuration cnew.
Require: cnew . the current configuration

lsCombstest . the combination of literals
Return: cnew . the current configuration cnew

1: function testCombinations(lsCombstest, cnew)

2: for each combo ∈ lsCombstest do
3: fa ← combo[0]
4: fb ← combo[1]

5: if ({fa, fb,¬fa,¬fb} ∩ cnew 6= ∅) ∧
( ( ¬fa ∈ cnew ∨ ¬fb ∈ cnew) ∨ (fa ∈ cnew ∧ fb ∈ cnew) ∨
coveredCombinations( ) < threshold( ) )

then
6: continue
7: end if

8: if fa /∈ cnew then
9: if ¬ isSatisfiable(cnew ∪ {fa}) then

10: cnew ← cnew ∪ {¬fa}
11: return
12: end if
13: end if
14: if isSatisfiable(cnew ∪ {fb}) then
15: cnew ← cnew ∪ {fa, fb}
16: return
17: else
18: if fa ∈ cnew then
19: cnew ← cnew ∪ {¬fb}
20: end if
21: end if
22: end for

23: end function

We use a threshold value as a mechanism to speed up the algorithm. Before reaching a
certain amount of covered literal combinations, we exclude every combination with at
least one literal of a feature in the current configuration (i.e., ({fa, fb,¬fa,¬fb}∩cnew 6=
∅)), which considerably reduces the number of literal combinations that we have to
check. After reaching the threshold, we consider all remaining literal combinations.

In the testCombination function, we do not test the entire combination at once, but
try to add the literals consecutively. We start by testing the validity of adding the first
feature from the combination fa to cnew (Lines 8–13). If cnew is no longer satisfiable, we
conclude that fa is conditionally core or dead (cf. Section 2.1.2) and, thus, we add the
complement of fa to cnew and return from the function. Next, we test the validity of
adding the second feature fb to cnew. If cnew is still satisfiable, we are able to cover the



5.1. Incremental Pairwise Sampling with IncLing 95

Get literal combinationsfa, fb 

  Test combinations

({fa,fb,¬fa ¬fb}  cnew    Φ) and 

((¬fa € cnew or ¬fb € cnew) or (fa € cnew and fb € cnew) 
or coveredCombinations < threshold )

yes

no

no

Check if fa is already part of 

Configuration cnew(fa € cnew)

yes
no

(isStatisfable(cnew {fa})

cnew=cnew {¬fa}

yes no

(isStatisfable(cnew {fb})

cnew=cnew {fa, fb}

yes

no

cnew=cnew {¬fb}

yes

Check if fa is already part of 

Configuration cnew(fa € cnew)

Figure 5.3: Activity diagram of the function testCombinations().

given combination and return from the function. Otherwise, we have to check whether
feature fa is already part of the current configuration cnew. If so, the complement of fb
is added to the current configuration cnew (Lines 17–20).



96 5. Incremental Pairwise Sampling

Example 5.4. Regarding our example, the first input of the function is the list of
literal combinations lsCombstest =((¬Number, Algorithms), ( Number, Algorithms),
(¬Number, ¬Algorithms)) and an empty configuration. We start by testing the first
configuration (¬Number, Algorithms). Since none of both features are included in the
current configuration, we add ¬Number to cnew and find that it is still satisfiable. Next,
we add literal Algorithms to cnew. As cnew is still satisfiable, we successfully added
the literal combination (¬Number, Algorithms) to the current configuration and return
from the function.

Continuing the execution of our algorithm, the next input consists of the list of literal
combinations lsCombstest =(( Number, Cycle), ( Number, ¬Cycle), (¬Number, Cycle),
(¬Number, ¬Cycle)) and the current configuration cnew = {¬Number, Algorithms}.
The feature Number is already contained in the configuration. Thus all literal combina-
tions containing Number or ¬ Number are ignored. Thus, the next relevant feature pair
is Cycle and Directed with the literal list lsCombstest = ((¬Cycle, Directed), ( Cycle,
Directed), (¬Cycle, ¬Directed)). Again, we add the literal ¬Cycle to cnew and find that
it is still satisfiable. However, when we add literal Directed, the configuration becomes
unsatisfiable. Thus, we remove both features from cnew and test the next combination
(i.e., (Cycle, Directed)). Given the current configuration, it is possible to select both
features and, thus, we add them to cnew and continue with the next feature pair. Fur-
ther continuing the process results in the configuration cnew ={¬Number, Algorithms,
Cycle, Directed, ¬Undirected, GraphLibrary, Edges}. To avoid generating the same
configuration again, we add the current configuration cnew to the feature model FM as
a blocking clause (i.e., FM∧ ¬(Cnew)).

5.2 Main Characteristics of Incremental Pairwise

Sampling

We propose IncLing to efficiently generate configurations for sample-based product-
line testing. The product-line testing process, as considered in the following, includes
creating configurations (e.g., sampling), generating products, and finally testing them.
Similar to ICPL [Johansen et al., 2012a], IncLing generates new products by sequentially
selecting a combination of features that are not already covered by previously selected
configurations. Although our algorithm is based on the general concept of ICPL, we
propose four major modifications. In the following, we explain these modifications and
their impact in more detail.

5.2.1 Incremental Approach

IncLing generates products incrementally, whereas in the current implementation of
ICPL, the user has to wait until all feature combinations are covered. The incremental
nature of our algorithm has the advantage that products can be generated and tested
in parallel until the testing time is exhausted or the desired coverage is achieved. Our
incremental approach enables us to utilize the testing time efficiently, because particular



5.2. Main Characteristics of Incremental Pairwise Sampling 97

products can be tested immediately after sampling returned a configuration. However,
a potential drawback of the incremental approach is that the order of the products
cannot be adapted before testing. However, the order in which products are generated
using IncLing is influenced by considering these products that are already generated
and tested. We explain more about influencing products order when we discuss the
feature ranking heuristic. Note that with a modification to the current implementation
of existing sampling algorithms, such as ICPL [Johansen et al., 2012a] and MoSo-
PoLiTe [Oster et al., 2010], these algorithms can also generate products incrementally.

5.2.2 Detecting Invalid Combinations

Invalid combinations are all those literal combinations that are impossible to cover due
to feature-model dependencies. As checking the validity of a product is an NP-complete
problem, it is likely not be solved in polynomial time. Thus, reducing the SAT queries,
which is used to check the validity of a combination, may enhance the performance of
the sampling algorithm.

ICPL removes invalid combinations after it covered a certain number of combina-
tions [Johansen et al., 2012a]. MoSo-PoLiTe [Oster et al., 2010] removes the invalid
combinations on the fly. During the configuration building, whenever MoSo-PoLiTe
finds a combination that cannot be part of a configuration, the combination is re-
moved [Oster, 2012]. In contrast, IncLing removes invalid combinations at the begin-
ning of the sampling process. The advantage of detecting invalid combinations at the
beginning is that the algorithm has to consider only valid combinations and thus saves
computation time. With IncLing, we detect the invalid combinations efficiently using
implication graphs, which we describe in more detail later on, that are created based
on the corresponding feature models [Krieter et al., 2018]. The potential disadvantage
of detecting these invalid combinations at the beginning is that it needs additional time
at the beginning, which is the cost of saving effort during the sampling process.

Detecting Invalid Literal Combinations Using Implication Graphs

Reducing the number of SAT queries will reduce the required time to derive a valid
configuration, as each query is an NP-complete problem. Hence, we consider an ap-
proach that uses implication graphs to reduce the number of necessary queries to the
satisfiability solver [Krieter et al., 2018].

With implication graphs, certain relationships between features in a feature model can
be represented by implication graphs. Detecting the invalid literal combinations using
implication graphs requires two steps. First, graph construction, where an implication
graph for the feature model is computed. Computing the implication graphs is based on
the observation that defining features (i.e., selected or deselected) affects the definition
of a small set of other features in a feature model as a result of its relationships, such
as parent-child relationships. In case the definition of other additional features is also
affected, it usually results of involving this feature in include or exclude constraints.
Constructing the graph is executed only once unless the feature model is modified.



98 5. Incremental Pairwise Sampling

Second, the created graph is utilized to minimize the number of satisfiability solver
queries by identifying the unaffected features as well as inferring the selection state of
the affected features. During the invalid combinations detection, the implication graph
is traversed in order to find potentially implied literals. For instance, each literal li can
be reached by literal lj, the combination of both literals is valid. Thus, we infer from the
previous that the combination of literal li and literal ¬lj (i.e., li∧¬lj) is an invalid literal
combination without a need to query the SAT solver. Following the previous step yields
a reduction in the number of SAT queries, which improves the IncLing performance in
general. Similar to our step of constructing implication graphs, the sampling algorithm
MoSo-PoLiTe [Oster, 2012] translates feature models into binary constraint graphs.
Then, forward checking [Haralick and Elliott, 1980] is used to identify whether the
literal combination cannot be part of a valid configuration (cf. Section 2.2.2).

5.2.3 Feature Ranking Heuristic

In Chapter 3 and Chapter 4, we prioritize products based on their similarity with respect
to the problem-space information (i.e., feature selection) and solution-space information
(i.e., delta modeling), respectively. The prioritized products can be generated using
sampling algorithms, which, however, require a considerable amount of time. Hence,
with IncLing, we propose to influence in which order these products are generated by
reordering the input feature list of our algorithm. In Section 5.1.2, we demonstrated the
way these features are ranked using our running example in more detail. As already
mentioned, IncLing uses a heuristic that ranks the features based on the previously
generated products. With each new product, this greedy strategy aims to cover the
maximum number of pairwise feature combinations that have not already been covered
by the previously generated products. Thus, our algorithm has the potential advantage
of covering many feature combinations as fast as possible. Moreover, testing time may
be saved as no need to generate the entire set of products at the beginning and then
prioritize them. However, a potential drawback is that we cannot ensure the order of
the generated products is optimal.

Compared to existing sampling algorithms, ICPl does not consider any particular heuris-
tic approach that influence in which order products are generated. However, we ob-
served in our evaluation of Chapter 3, there is an implicit order as a result of their goal
of covering as many uncovered combinations as soon as possible. To the best of our
knowledge, besides IncLing, only the sampling algorithm MoSo-PoLiTe [Oster, 2012]
has a ranking heuristic, where a literal that appears frequently in the uncovered literal
combinations has a higher probability to be part of the upcoming configuration.

5.2.4 Detecting Conditionally Dead or Core Features

IncLing uses a satisfiability solver to test whether it is possible to select or deselect a
feature in the current product. ICPL also uses satisfiability solver to determine whether
a combination of literals can be (de)selected simultaneously. In contrast to ICPL,
IncLing does not test whether the whole combination of literals can be selected in the



5.3. The Integration of IncLing in FeatureIDE 99

current product simultaneously, but each individually (i.e., IncLing tests whether adding
a literal of a combination to the partial configuration is satisfiable, instead of testing
the whole combination). However, it can be beneficial to test features individually,
as this detects features that are conditionally dead or core [Benavides et al., 2010].
A feature can be a conditionally dead or core if it is under certain circumstances. For
instance, given the feature model and already fixed features of the current configuration,
features in some cases must be selected or deselected as a result of feature dependencies
(cf. Section 2.1.2). Consequently, combinations that include these features do not need
to be considered, since they will be covered automatically. Hence, by reducing the
number of SAT queries, the overall performance of the algorithm is improved.

5.3 The Integration of IncLing in FeatureIDE

As mentioned in Chapter 3, we have already integrated several sampling algorithms to
FeatureIDE [Meinicke et al., 2017; Thüm et al., 2014b], such as CASA [Garvin et al.,
2011], Chvatal [Chvatal, 1979; Johansen et al., 2011], and ICPL [Johansen et al., 2012a].
To overcome the limitation of existing sampling algorithms, with our implementation
of IncLing, we generate products in an incremental manner. That is, developers do not
have to wait until the whole sampling process is over in order to start testing. Once,
the configuration is created, the corresponding product is generated and then tested.
In addition, we enable developers to specify the maximum number of products to be
tested, which is not possible for several sampling algorithms, especially the greedy ones,
such as ICPL and Chvatal. The current implementation of IncLing supports pairwise
testing, which could be extended in the future to a higher T -wise interaction coverage.
Our implementation is publicly available as a part of the current release of FeatureIDE.

Due to the scalability problem of the existing sampling algorithms, it is common in
practice to generate random products to be tested, especially for large product lines
(e.g., randconfig in Linux) [Melo et al., 2016]. For this purpose, we also implemented
a random generator to create a fixed number of random configurations based on the
satisfiability solver Sat4J [Le Berre and Parrain, 2010]. The method can efficiently
generate a large number of distinct random configurations. Once the configuration
is created, it is included immediately to the feature model as a blocked clause (i.e.,
foreach..) in order to avoid generating the same configuration again. This generator is
used in our thesis for evaluation purposes. However, it could be also used to evaluate
other approaches related to feature model analysis. For more details about the way of
using these functionalities, we refer the reader to Section A.1 in the Appendix.

5.4 Evaluation of IncLing

We evaluate IncLing against existing sampling algorithms and random configurations
with respect to three criteria: sampling efficiency, testing efficiency, and testing effec-
tiveness. With sampling efficiency, we refer to the aggregated computation time of the
sampling algorithms to achieve pairwise coverage. Testing efficiency counts the number



100 5. Incremental Pairwise Sampling

of products generated by the sampling algorithms to achieve pairwise coverage. For
testing effectiveness, we consider the increase of pairwise interaction coverage achieved
by the product order generated by our approach compared to the product order returned
by the other approaches. With respect to these three criteria, we focus on answering
the following research questions.

RQ1 Does IncLing increase the average sampling efficiency for achieving pairwise cov-
erage compared to existing sampling algorithms?

RQ2 Does IncLing decrease product-line testing efficiency compared to existing sam-
pling algorithms?

RQ3 Does IncLing increase product-line testing effectiveness compared to random con-
figurations and existing sampling algorithms?

5.4.1 Experiment Settings

In the experiments, we consider real and artificial feature models of different sizes in
terms of the number of features and different complexity in terms of the ratio of the
number of distinct features in cross-tree constraints to the number of features (CTCR).
The real feature models consist of up-to 6,888 features. The size of the artificial feature
models, which we use in our experiment, ranges between 15 and 5,542 features. In Ta-
ble 5.2, we summarize the properties of each feature model. We report for each feature
model the number of features, the number of constraints, and CTCR.

To evaluate IncLing, we generate configurations that are required to achieve the pairwise
coverage criterion. For the threshold mentioned in Section 5.1, we use 99%. We repeated
the experiment for each setting five times and calculated the average in order to reduce
the impact of outliers in our measurements. As an exception for random configurations,
we conducted the experiment 100 times to additionally mitigate the effect of random
impacts. For a fair comparison, we set the number of created configurations for random
configurations to the same number of configurations as created with IncLing for the
respective feature model. We performed the experiments using a PC with an Intel Core
i5-4670 CPU @ 3.40 GHz, 16 GB RAM, and Windows 7. In the next section, we discuss
the results of our experiments.

5.4.2 Results and Discussion

In this section, we present and discuss the results of the IncLing evaluation.

Sampling Efficiency (RQ1)

To answer RQ1, we compare our approach, with respect to the required time to achieve
the pairwise coverage, against existing sampling algorithms, namely CASA [Garvin
et al., 2011], Chvatal [Chvatal, 1979], ICPL [Johansen et al., 2012a], and IPOG [Lei



5.4. Evaluation of IncLing 101

Feature Model Features #Constraints CTCR

Email 10 3 50%
Violet 88 27 66%
BerkeleyDB1 53 20 42%
BerkeleyDB2 99 68 82%
Dell 46 110 80%
EShopFIDE 192 21 10%
EShopSplot 287 21 12%
GPL 27 16 63%
SmartHome22 60 2 6%
BattleofTanks 144 0 0%
FM Test 168 46 28%
BankingSoftware 176 4 2%
Electronic Shopping 290 21 11%
DMIS 366 192 93%
eCos 3.0 i386pc 1,245 2,478 99%
FreeBSD kernel 8.0.0 1,369 14,295 93%
Automotive1 2,513 2,833 28%
Linux 2 6 28 6 6,888 6,847 99%
10xAFM15† 15.0 2.6 19%
10xAFM50† 50.0 9.7 17%
10xAFM100† 100.0 20.0 17%
10xAFM200† 200.0 39.0 17%
10xAFM500† 500.0 100.0 17%
10xAFM1K† 1,000.0 100.0 14%
1xAFM5K 5,542 300 11%
CTCR: cross-tree constraints representative

†: The values next to the corresponding artificial feature models

represent the average values over 10 feature models

Table 5.2: Feature models used in our evaluation

et al., 2007]. Unfortunately, we did not consider the sampling algorithm MoSo-PoLiTe [Os-
ter et al., 2010] in our evaluation, because we could not have access to the tool. Nev-
ertheless, Johansen et al. [2012a] compare ICPL against MoSo-PoLiTe and report that
the sampling efficiency, with respect to the required time to achieve T -wise coverage, of
ICPL outperforms the sampling efficiency of MoSo-PoLiTe. Thus, comparing IncLing
to ICPL can give us a clue on how IncLing could perform compared to MoSo-PoLiTe.

In Table 5.3, we show the time that is required to achieve pairwise coverage using
IncLing compared to existing sampling algorithms. We observed that some of these
sampling algorithms do not scale well. We stopped computation that required more
than 24 hours. We refer to these cases in Table 5.3 as (*).



102 5. Incremental Pairwise Sampling

Feature Model CASA Chvatal ICPL IPOG IncLing

Email 0.13 0.01 0.03 0.46 0.01
Violet 59.75 1.38 0.31 4841.02 0.12
BerkeleyDB1 47.60 0.59 0.08 664.22 0.03
BerkeleyDB2 5240.35 1.61 0.21 (*) 0.05
Dell 54.95 0.18 0.10 2562.60 0.04
EShopFIDE 4789.30 23.16 1.20 (*) 0.30
EShopSplot (*) 15.57 0.72 (*) 0.22
GPL 14.58 0.24 0.15 173.65 0.06
SmartHome22 14.40 0.32 0.05 169.56 0.03
BattleofTanks 16955.84 11.72 3.38 (*) 2.75
FM Test 11945.02 4.05 0.62 16997.68 0.20
BankingSoftware 1423.98 4.13 0.48 19187.96 0.15
ElectronicShoping 12512.83 16.08 0.84 88680.47 0.22
DMIS 6969.84 26.19 1.66 (*) 0.47
eCos 3.0 i386pc (*) 1334.02 78.92 (*) 22.90
FreeBSD kernel 8.0.0 (*) 2155.77 105.28 (*) 32.68
Automotive1 (*) 56344.51 7602.94 (*) 510.91
Linux 2 6 28 6 (*) (*) 18805.14 (*) 3296.41
10xAFM15 0.77 0.02 0.02 3.20 0.01
10xAFM50 30.84 0.27 0.06 643.10 0.02
10xAFM100 3066.64 1.45 0.27 11991.00 0.09
10xAFM200 (*) 9.64 1.19 (*) 0.43
10xAFM500 (*) 189.4 14.97 (*) 4.76
10xAFM1K (*) 1744.55 228.98 (*) 35.66
1xAFM5K (*) (*) 35172.81 (*) 1870.72
*: No result within 24 hours of computation

†: The values next to the corresponding artificial feature models

represent the average values over 10 feature models

Table 5.3: The computation time of different sampling algorithms (in seconds) using
feature models of different sizes.

Examining the values of the required time to achieve the pairwise coverage for each
feature model, we observe that IncLing outperforms the other sampling algorithms for
all feature models, except for feature model Email (with 10 features), where the compu-
tation sampling time of IncLing is equal to the computation sampling time of Chvatal.
For instance, for feature model GPL (27 features), we notice that the required time
to cover all pairwise combinations for IncLing is 0.06 second, while the sampling algo-
rithms CASA, Chvatal, ICPL, and IPOG require 14.58, 0.24, 0.15, and 173.65 seconds.
That is, with IncLing, we can save 99.6%, 75%, 60%, and 99.9% of CASA’s, Chvatal’s,
ICPL’s, and IPOG’s sampling time, respectively. For feature model Automotive1, the
required time for IncLing is 8.6 minutes. Sampling algorithms ICPL and Chvatal re-



5.4. Evaluation of IncLing 103

●
●●●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●●●

CASA ICPL CH IPOG

20

40

60

80

100

Sampling algorithms

D
ec

re
as

e 
of

 s
am

pl
in

g 
tim

e 
(%

)

Figure 5.4: Distributions of decrease in computation time (percentage) of our approach
compared to sampling algorithms over all feature models, (CH: Chvatal algorithm).

CASA CH ICPL IPOG

Avg. decrease time 99.1% 91.8% 70% 99.9%

Table 5.4: The average time decrease for our approach to sampling algorithms over all
feature models, (CH: Chvatal algorithm).

quire 126.72 minutes and 939.08 minutes with 93% and 99.1% decrease of its sampling
time, respectively. For the feature model of the Linux kernel, only IncLing and ICPL
scale to this large feature model. The times required for IncLing and ICPL to achieve
the pairwise coverage are 0.92 hours and 5.2 hours, respectively. In particular, 82.5%
sampling time can be saved when IncLing is used instead of ICPL.

To compute the saved time percentage of using the sampling algorithm IncLing, we
calculate the relative time decrease compared to existing algorithms with the following
formula:

TimeDecrease = (1− TimeIncLing
TimeExisting

) · 100% (5.1)

where TimeIncLing is the sampling time of IncLing and TimeExisting is the time of the
existing sampling algorithm.

In Figure 5.4, we show the distribution of relative time decrease of existing sampling
algorithms when using IncLing instead (cf. Equation 5.1). We observe an improvement



104 5. Incremental Pairwise Sampling

Feature Model CASA Chvatal ICPL IPOG IncLing

Email 6.0 7.0 7.0 8.0 9.0
Violet 22.0 27.0 28.0 28.0 25.0
BerkeleyDB1 19.6 25.0 24.0 22.0 24.0
BerkeleyDB2 19.0 24.0 21.0 (*) 22.0
Dell 33.0 38.0 37.0 43.0 43.0
EShopFIDE 24.0 22.0 21.0 (*) 23.0
EShopSplot (*) 23.0 21.0 (*) 23.0
GPL 15.0 20.0 19.0 18.0 22.0
SmartHome22 14.8 18.0 17.0 17.0 17.0
BattleofTanks 664.0 448.0 460.0 (*) 650.0
FM Test 40.0 47.0 45.0 51.0 42.0
BankingSoftware 37.0 41.0 42.0 49.0 47.0
ElectronicShoping 31.4 23.0 24.0 26.0 22.0
DMIS 27.0 27.0 29.0 (*) 26.0
eCos 3.0 i386pc (*) 66.0 63.0 (*) 64.0
FreeBSD kernel 8.0.0 (*) 77.0 77.0 (*) 75.0
Automotive1 (*) 913.0 913.0 (*) 946.0
Linux 2 6 28 6 (*) (*) 479.0 (*) 450.0
10xAFM15 11.0 12.0 12.0 13.2 16.7
10xAFM50 24.0 26.9 26.6 28.0 28.0
10xAFM100 49.4 56.0 56.6 63.5 58.5
10xAFM200 (*) 88.1 89 (*) 91.7
10xAFM500 (*) 185.2 189.1 (*) 186.4
10xAFM1K (*) 346.7 346.7 (*) 340.2
1xAFM5K (*) (*) 685.0 (*) 607.0
*: No result within 24 hours of computation

†: The values next to the corresponding artificial feature models

represent the average values over 10 feature models

Table 5.5: The number of generated products of different sampling algorithms using
feature models of different sizes.

of our approach compared to the other sampling algorithms. If IncLing is used, the me-
dian values of the decrease of time for existing sampling algorithms range between 65%
and 99.9%. The average time decrease over all feature models is illustrated in Table 5.4,
where we show that 99.1%, 70%, 91.8%, and 99.9% of CASA’s, ICPL’s, Chvatal’s, and
IPOG’s sampling time can be saved using IncLing.

We conclude from the results in Table 5.3, Figure 5.4, and Table 5.4 that IncLing is
more efficient than the existing sampling algorithms with respect to the required time
to achieve the pairwise coverage.



5.4. Evaluation of IncLing 105

Figure 5.5: The percentage of feature models with the minimum number of generated
products for each sampling algorithm.

Testing Efficiency (RQ2)

Regarding RQ2, we expect that we need more products to achieve pairwise coverage
compared to existing sampling algorithms. We collected the number of generated prod-
ucts for each feature model to achieve pairwise coverage. In Table 5.5, we report the
required number of products for each feature model to achieve pairwise coverage (the
minimum ones are highlighted in bold font). As illustrated in Table 5.5 and Figure 5.5,
CASA generates the least number of products for most feature models that it was able
to sample (48% of feature models). In addition, we observe that IPOG does not gen-
erate the minimum number of products for any feature model. In the case of Chvatal,
ICPL, and IncLing, they generate the minimum number of products for 10%, 14%, and
28% of feature models, respectively.

Moreover, we conducted the Mann-Whitney U Test to investigate whether the differ-
ences between IncLing and the existing sampling algorithms are significant regarding
the number of generated products for each feature model (cf. Section 3.3.1). In our
results, we observe that the difference is not significant between IncLing and CASA,
Chvatal, ICPL, and IPOG with p-values 0.12, 0.70, 0.65, and 0.71, respectively. While
it is not our primary goal to generate the minimum number of products, p-values above
indicate that most of the sampling algorithms have similar testing efficiency, because
the differences are not significant.

Testing Effectiveness (RQ3)

To answer RQ3, we measure the potential gain of testing effectiveness of IncLing with
respect to the increase of interaction coverage achieved by the product order compared



106 5. Incremental Pairwise Sampling

1 2 5 10 20 50 100

20

40

60

80

100

% configurations

%
 o

f c
ov

er
ed

 c
om

bi
na

tio
ns

Chvatal
IncLing
ICPL
Random
IPOG
CASA

*

*

*

*

*

◊

□

□

∆

∆

□

□

□

□

□

∆

∆

∆

∆

◊

◊

◊

◊

◊

.
.
.

. .
.

Figure 5.6: Average percentage of covered combinations over all feature models with
size < 200features (i.e., all sampling algorithms scale to these feature models), in
addition to random configurations.

to random configurations and the existing sampling algorithms. In Figure 5.6, we show
the percentage of covered combinations to the percentage of configurations for the 38
feature models that could be sampled by all evaluated algorithms. From Figure 5.6,
we observe that on average for the first 40% of the generated configurations, IncLing
covers more combinations than the other sampling algorithms. IPOG covers more com-
binations than CASA, Chvatal, ICPL, and random configurations until approximately
8% of the generated configurations. However, with random, we do not achieve 100%
coverage. Surprisingly, CASA performs worse than all other sampling algorithms and
even than random configurations.

In Figure 5.7, we show the average percentage of covered feature combinations for the
relative number of configurations generated by Chvatal, IncLing, ICPL, and random
configurations considering only feature models between 200 and 3,000 features. We
find that IncLing covers more feature combinations for the first 3% of configurations
than Chvatal, ICPL, and random. For Chvatal and ICPL, we notice that they behave
almost similar. In the case of random configurations, it does not compete with the
other sampling algorithms. Comparing the results between Figure 5.6 and Figure 5.7,
we observe a reduction of the covered combinations by IncLing for the first generated
configurations. However, 3% of the configurations is still an acceptable rate. For
instance, for product line Automotive1, 3% means that IncLing covers more feature
combinations for the first 27 configurations (the total number is 913) than the other
sampling algorithms.



5.4. Evaluation of IncLing 107

1 2 5 10 20 50 100

40

50

60

70

80

90

100

% configurations

%
 o

f c
ov

er
ed

 c
om

bi
na

tio
ns

Chvatal
IncLing
ICPL
Random∆∆

∆

∆

∆

∆

∆

□

□
□

□

□
□

□

**
*

*

*

Figure 5.7: Average percentage of covered combinations for feature models between 200
and 3000 features using IncLing, ICPL, Chvatal, and random configurations.

Looking closer at the large feature models, we show in Figure 5.8 the aggregated number
of covered combinations of the Linux kernel for IncLing, ICPL, and random configu-
rations. Note that IncLing and ICPL are the only sampling algorithms scaling to this
large feature model. The results show that IncLing covers more feature combinations
in the first 26 and three configurations for AFM5K and Linux, respectively. We argue
that increasing the diversity among configurations, which is intended in IncLing, yields
to cover more feature combinations as early as possible. As a result, many faults may
be detected more quickly, which could enhance the testing effectiveness. To answer
RQ3, we show that there is a potential gain in testing effectiveness with respect to the
interaction coverage of IncLing. In particular, we found that IncLing increases the test-
ing effectiveness regarding the interaction coverage, because up-to the first 40% of the
generated configurations by IncLing cover more feature combinations than all existing
sampling algorithms.

5.4.3 Threats to Validity

In this section, we introduce validity threats of our experiments that may affect our
results and discuss the steps that we considered to mitigate those threats.

Internal Validity

There is a potential threat that may affect the results with random configurations. To
mitigate random effects, we conducted the experiments 100 times. Another internal
threat is that we compared IncLing to the existing sampling algorithms. Some of these



108 5. Incremental Pairwise Sampling

1 2 5 10 20 50 100 200 500

3e+07

4e+07

5e+07

6e+07

7e+07

8e+07

9e+07

Number of configurations

N
um

be
r 

of
 c

ov
er

ed
 c

om
bi

na
tio

ns

IncLing
ICPL
Random∆

∆

∆

∆

∆

∆

*
*

*

*

*

*

□
□

□

□

□

□

Figure 5.8: Number of covered combinations for the feature model of Linux kernel
(6,888 features) using IncLing, ICPL, and random configurations.

sampling algorithms, such as CASA, are known to be non-deterministic. Moreover,
in some cases we also observed a non-deterministic behavior for Chvatal and ICPL.
To minimize the impact of this threat, we repeated all experiments five times. Fur-
thermore, another potential threat is that the implementation of IncLing could contain
errors which may affect the presented results. To limit this threat, we divided the imple-
mentation task into sub-tasks to have better control on the overall implementation. In
addition, the results of comparing IncLing to the existing sampling algorithms give us a
confidence in the IncLing implementation. Besides that, we made our implementation
publicly available as IncLing is currently integrated to FeatureIDE.

External Validity

We cannot guarantee that the artificial feature models we used in our evaluation are
able to simulate realistic real-world product lines. Furthermore, we cannot ensure that
the compared algorithms will provide similar results on different sets of feature models.
What mitigates this threat is that we evaluate IncLing using artificial feature models
of different sizes and complexity, which already served as a benchmark to evaluate
product-line testing [Johansen et al., 2011, 2012a; Henard et al., 2014b]. In addition,
we used real-world feature models, which represent the variability of complex product
lines, such as a version of the Linux kernel with 6,888 features. Another threat is that
we considered the interaction coverage in this chapter as a testing effectiveness measure.



5.5. Related Work 109

5.5 Related Work

In the literature, several approaches have been proposed to sample sets of products [Per-
rouin et al., 2012; Cohen et al., 2007; Lochau et al., 2012; Kim et al., 2011; Shi et al.,
2012; Johansen et al., 2011, 2012a; Carmo Machado et al., 2014]. Combinatorial in-
teraction testing is a promising approach that has been used to select a subset of
products [Kuhn et al., 2004]. Perrouin et al. [2010] propose a non-deterministic ap-
proach that divides the T -wise generation problem into several sub problems that can
be solved automatically. To solve these sub problems, a set of products is generated to
cover part of the T -wise interactions using Alloy [Jackson, 2012]. The union of these
sets of products covers the whole T -wise interactions. A potential drawback of this
approach is that the number of the generated products to be tested will be large. Thus,
their approach does not scale to large feature models. As we showed in our results,
IncLing scales for large feature models when pairwise coverage is applied.

Johansen et al. [2011] adopt the Chvatal algorithm Chvatal [1979] to generate cover-
ing arrays from feature models. They propose ICPL based on Chvatal with several
enhancements, such as parallelizing the process of generating covering arrays, which
reduces the computation time significantly [Johansen et al., 2012a]. ICPL tries to cover
as many uncovered feature combinations as possible with each configuration added to
the covering array. The configurations are included to the covering arrays until all valid
combinations of features are covered. Although the process of generating the covering
arrays is incremental, with the current implementation of the algorithm, the users have
to wait until all valid combinations are covered to generate and test products. With
IncLing, we generate the configurations incrementally. In addition to considering the
pairwise coverage, we can also generate configurations within a given testing time. Fur-
thermore, with our approach, we are trying to increase the diversity among the created
configurations. In addition, the results show that the performance of our approach
potentially outperforms the performance of ICPL, especially for large feature models.
Medeiros et al. [2016] compare ten sampling algorithms regarding the size of the samples
and their capability of fault detection. They report that existing sampling algorithms
do not scale well, as they require a considerable amount of time. With IncLing, we
show that its efficiency outperforms all sampling algorithms for pairwise coverage.

Oster [2012] proposes a pairwise sampling algorithm, called MoSo-PoLiTe, to generate
samples. To do so, MoSo-PoLiTe transforms feature models into a binary constraint
satisfaction problem, which represents a high-level description of a problem based on
constraints. With IncLing, we represent feature models as forms of propositional formu-
las and, therefore, we handle the feature models as propositional satisfiability problem.
MoSo-PoLiTe detects invalid combinations on the fly during the sampling. Whenever
it finds an invalid combination cannot be part of any valid configuration, this com-
bination is removed. In contrast, IncLing detects these invalid combinations at the
beginning of the sampling process. It exploits the built implication graph to detect
them efficiently. To check the validity of adding a combination to a partial configu-
ration, MoSo-PoLiTe uses forward checking [Haralick and Elliott, 1980], while IncLing



110 5. Incremental Pairwise Sampling

uses the SAT solver [Mendonça et al., 2009b]. Both sampling algorithms, IncLing and
MoSo-PoLiTe, influence in which order these products are generated by exploiting rank-
ing heuristics of feature combinations. It will be interesting to conduct an experiment
in the future that compares between both algorithms to investigate their scalability as
well as their strong and weak points.

Garvin et al. [2011] propose CASA to generate covering arrays using simulated anneal-
ing. The algorithm does not scale to large feature models and it takes a long time
to generate the covering arrays. Compared to IncLing, the performance of IncLing
outperforms CASA significantly. However, considering a search-based algorithm may
help IncLing to avoid being trapped in local optima. Hence, combining IncLing with
search-based techniques is subject to future work. Henard et al. [2014b] propose an
alternative to combinatorial interaction testing by employing a search-based approach
to sample products. They propose the similarity notion to increase the interaction cov-
erage for the generated products. Ensan et al. [2012] propose an evolutionary sampling
approach to generate a set of products based on genetic algorithm. The generated
products are evaluated using two aspects: the variability and the integrity constraints.
They quantify these aspects using the following metrics: variability coverage, which
represents the number of optional features that are required to generate a particular
product, and cyclomatic complexity, which represent for each product the number of
integrity constraints that are involved in the product generating. Similar to the previ-
ous two approaches, with IncLing, we can test a fixed number of products or test as
many products as possible in a fixed time. In addition, with our approach, we consider
the pairwise combinatorial interaction testing to sample products. Moreover, our ap-
proach is deterministic, which is not the case with this search-based approach, where
different products might be generated in each run. Lopez-Herrejon et al. [2013] pro-
pose a multi-objective pairwise approach that considers maximizing the coverage and
minimizing the number of products. While our main aim with IncLing is to generate
these products efficiently in terms of the computation time, we also consider the two
mentioned objectives during the sampling process.

Kowal et al. [2013] propose to provide additional information to feature models about
the actual source of feature interaction. They use this information to reduce the number
of products that need to be tested. However, additional information about the actual
interaction between features is typically not available. With IncLing, we are trying not
only to reduce the number of products, but also to generate them incrementally and
efficiently. Johansen et al. [2012b] use domain knowledge to generate a set of products
by exploiting market information. Similarly, Ensan et al. [2011] propose to test a set of
products that contain the most desirable features recognized by customers. Kim et al.
[2011] propose to reduce the number of products under test by using static analysis
techniques that identify irrelevant features for testing. Their approach is based on
the observation that some of the combinations of these features are unnecessary to be
considered in testing.

As an alternative to combinatorial interaction testing, several fault-based approaches
exploit the concept of mutation testing to generate a set of products [Henard et al.,



5.6. Summary 111

2014a; Reuling et al., 2015; Arcaini et al., 2015]. For instance, Henard et al. [2014a]
propose a search-based approach that explores the configuration space of a product line
to generate a set of products. For this purpose, they mutate the propositional formulas
and they select these products based on their ability to detect mutants of feature models.
Similarly, Reuling et al. [2015] introduce fault-based sampling to generate a set of
products by mutating the feature diagrams. In addition, they discuss the possibility of
using their approach to enhance the effectiveness of the generated products by sampling
algorithms. By mutating the feature model of a product line, Arcaini et al. [2015]
propose to generate a set of products based on their ability to distinguish the original
version feature models from its faulty. While we use combinatorial interaction testing to
generate products, the aforementioned fault-based approaches can be used to evaluate
the generated products of IncLing.

5.6 Summary

As testing the entire products of a product line is infeasible, several approaches have
been proposed to sample a set of products as representatives for the entire products of
a product line while achieving a certain degree of coverage. However, existing sampling
algorithms require a considerable amount of time to sample products, which may not
all be tested due to the limitation of testing time. Thus, we propose IncLing to sample
products one at a time. With our approach, there is no need to wait for a long time to
have the first samples. Besides generating a fixed number of products within a given
time, we can achieve a pairwise coverage.

Using feature models of different sizes, we evaluated IncLing against existing sampling
algorithm with respect to three criteria, sampling efficiency (i.e., the computation time
of sampling to achieve pairwise coverage), testing efficiency (i.e., the required number
of products to achieve pairwise coverage), and testing effectiveness (i.e., how fast the
pairwise interactions are covered). Regarding the sampling efficiency, the results of
applying IncLing show significant improvements over existing sampling algorithms. In
particular, applying IncLing can save, on average, at least 70% of the sampling time
of existing algorithms. With respect to the testing efficiency, in some cases, IncLing
generates more products than existing sampling algorithms. However, we argue that it is
an acceptable cost compared to the saved time. Regarding testing effectiveness, IncLing
covers as many feature interactions as soon as possible by increasing the diversity among
the created configurations. In particular, with the same number of products, IncLing
covers more feature interactions than existing sampling algorithms, which is likely to
enhance product-line testing effectiveness.



112 5. Incremental Pairwise Sampling



6. Conclusion and Future Work

In the following, we conclude our thesis and discuss potential future work on product
lines with respect to product prioritization and efficient sampling.

6.1 Conclusion

The increasing interest in variable software systems in academia and industry requires
different types of testing techniques to improve the quality of product lines. While
testing a single system is already a difficult task due to the limited testing resources,
testing a product line is even more challenging due to the vast number of products
that can be generated. Thus, reducing the number of products is a necessary step in
product-line testing, and, therefore, several approaches have been proposed to select a
set of products to be tested, such as combinatorial interaction testing.

Combinatorial interaction testing is a well-recognized testing approach that has been
employed to restrict the number of products by generating a subset of these products
systematically while achieving a certain degree of coverage. In spite of the fact that
combinatorial interaction testing already reduces the number of products significantly,
this number can still be large, especially for large product lines. Thus, the order in which
products are tested matters to improve the use of testing time, by finding faults faster.
For this purpose, we propose similarity-driven product prioritization that considers
problem-space and solution-space information to prioritize products.

The aim of similarity-driven product prioritization is to increase the interaction coverage
rate by increasing the diversity among products under test. To achieve that aim, we
consider the feature selections, as problem-space information, and deltas, as solution-
space information, to differentiate between products. Moreover, we propose to combine
feature selections and deltas in product prioritization, where the impact of each can
be adjusted using a weight factor. If testers wish to focus on a subset of products
under test, we propose to cluster them into groups. Clustering products can also be



114 6. Conclusion and Future Work

helpful to reduce the testing efforts in case the diversity among products is extremely
large. For instance, clustering products into groups may enable testers to avoid wasting
testing efforts as a result of changing the testing environment each time a very dissimilar
product to the previously tested one is tested next. The results show that considering
feature selections and deltas in product prioritization can enhance the product-line
testing effectiveness with respect to the early rate of fault detection. In addition, the
results reveal that more information about these products to differentiate between them
leads to better testing effectiveness in terms of fault detection rate.

One of the challenges we observed during our evaluation is the considerable time that is
required to sample products lines. The existing sampling algorithms do not scale well
for large product lines, and even for small ones, these sampling algorithms require a
considerable amount of time. Furthermore, these sampling algorithms do not produce
products until the sampling process is finished. In addition, some of these sampling
algorithms are not deterministic. Thus, a different order, and even for some sampling
algorithms, a different product number, can be generated for each run over the same
product line. To overcome the aforementioned limitations of these sampling algorithms,
we propose the IncLing algorithm that generates products incrementally while achiev-
ing a certain degree of coverage. IncLing is a deterministic algorithm that generates
products efficiently with the goal of increasing the interaction coverage as soon as pos-
sible. During the sampling, we influence the order in which products are sampled by
ranking the features. The results of applying IncLing can save, on average, between
70% and 99% of the computation time compared to existing sampling algorithms.

6.2 Future Work

We identified several points that offer the potential for future work regarding the two
main contributions of our thesis.

Product Prioritization in Product-Line Testing

In our work, we prioritize products based on the similarity between them with respect
to feature selections and deltas. In future, considering more solution-space information,
such as the source code should be investigated as it may enhance the effectiveness of
software product-line testing. The main challenge of considering the source code in
product prioritization is the initial cost of measuring the similarity between products,
which could be addressed in future. In this thesis, we have applied our prioritization
approach using three subject product lines with source code, an automotive product
line (body comfort system), and feature models of different product-lines sizes. While
we tried to generalize our results by considering different product lines, the prioriti-
zation approaches in future should be applied to real-world systems that have been
implemented by different product-line implementation techniques.

In our product prioritization, we aim to find faults faster by increasing the rate of fea-
ture interaction coverage as a result of exploiting the diversity among products under



6.2. Future Work 115

test. In case the diversity among products is large per definition, testing these prod-
ucts may require a considerable time as a result of the execution of a higher number of
redundant tests cases, especially in regression testing [Lity et al., 2016]. To reduce the
efforts in integration-based testing, we propose to test next the most similar product to
the previously tested one [Lity et al., 2017]. Therefore, the number of test cases that
is required to be executed will be minimized as the difference between the consecutive
tested products is small. However, a trade-off between the goal of finding faults faster
and reducing the testing effort should be applied. That is, handling product prioriti-
zation as an optimization problem that considers multi-objectives, possibly conflicting
ones, in product prioritization should be investigated.

Furthermore, in addition to prioritizing products, which we consider in this thesis,
combining test-case prioritization with product prioritization should be considered in
future as it may enhance the effectiveness of product-line testing.

Sampling in Product-Line Testing

IncLing guarantees that the generated products of a product line achieve pairwise in-
teraction coverage. To cover a higher value of interaction coverage (i.e., T >2), IncLing
should be extended in the future. However, applying a higher degree of interaction
coverage yields a large number of products. In addition, these higher degrees of feature
interactions occur rarely in practice. Thus, approaches that detect these feature inter-
actions in a product line should be proposed. Considering only these detected feature
interactions can reduce the number of generated products as combinations of features
that do not interact with each other might be avoided during sampling.

In general, fault-based testing techniques are used to measure the effectiveness of test
cases [Jia and Harman, 2011]. Recently, researchers pay attention to the fault-based
testing techniques in software product line engineering [Henard et al., 2014a; Reuling
et al., 2015; Arcaini et al., 2015; Al-Hajjaji et al., 2016a, 2017a; Carvalho et al., 2018].
Some of these techniques have been used to generate products as well as evaluating
them by checking their possibility of containing faults. However, most of the existing
approaches either consider only faults in feature models [Henard et al., 2014a; Reuling
et al., 2015; Arcaini et al., 2015], which are not enough as most of the faults are in the
source code [Abal et al., 2014], or they are not mature enough to be applied immediately.
Thus, in future, building on the existing approaches and investigating their ability to
generate products that have a higher probability of having faults should be further
investigated.



116 6. Conclusion and Future Work



A. Appendix

The Appendix is organized as follows. In Section A.1, we give an overview on the
functionalities of FeatureIDE that support testing product lines. In particular, we
present the testing support of product-by-product testing as well as other functionalities
that are integrated to avoid limitations of product-by-product testing, such as avoiding
redundant tests. In Chapter 3, Section 3.4, we discuss the aggregated results of cluster-
based product prioritization evaluation. In section, we present the detailed results
of the proposed approach (cf. Table A.1). Finally, in Section A.3, we introduce the
architecture definition of the core product for the Body Comfort System (BCS), which
we used to evaluate delta-oriented prioritization (cf. Chapter 4).

A.1 Testing Software Product Line with FeatureIDE

This section shares material with GPCE’16 demo paper “Tool Demo:
Testing Configurable Systems with FeatureIDE”[Al-Hajjaji et al., 2016c].

Testing a product line includes many activities, such as creating configurations, build-
ing the corresponding products, testing them by executing their test cases, and using
the results for debugging [Perrouin et al., 2010]. In Chapter 3 and Chapter 5, we al-
ready introduced the implementation support for the corresponding approaches. In
addition, we implemented and integrated other approaches that have been used in our
evaluation, such as the sampling algorithms CASA, Chvatal, and ICPL. In this section,
we summarize the aforementioned implementation support and discuss other testing
functionalities that are integrated into FeatureIDE.

In practice, developers tend to test only one or a few products, as testing all valid
products only scales to product lines with a small number of features [Medeiros et al.,
2015]. Considering only a single configuration is not enough as some faults may only
appear in some configurations [Jackson and Zave, 1998]. Ideally, all valid products



118 A. Appendix

of a software system should be tested, especially for safety-critical systems. However,
testing all valid configurations is often not possible due to the combinatorial explosion
in the number of features and due to limited testing resources. Several strategies have
been proposed to reduce the number of configurations that need to be tested, such
as generating a reduced, yet sufficient subset of configurations [Kuhn et al., 2004; Jo-
hansen et al., 2012a; Garvin et al., 2011; Thüm et al., 2014a], random configurations,
or user-defined configurations. These strategies require tedious manual effort, such as
configuring and generating the software system as well as checking its validity. In ad-
dition, they may require a specialized testing framework. As a result, these strategies
are often not applied in practice. Hence, automating the testing process is a necessary
step to use the testing resources wisely.

To automate the testing process, numerous sampling tools have been introduced to cre-
ate configurations while achieving a certain degree of coverage, such as MoSo-PoLiTe [Stef-
fens et al., 2012], CASA [Garvin et al., 2011], Chvatal Johansen et al. [2011], ICPL Jo-
hansen et al. [2012a], and IncLing [Al-Hajjaji et al., 2016b]. Furthermore, Henard et
al. introduce the PLEDGE tool to create and prioritize products based on their dissimi-
larity [Henard et al., 2013b]. Moreover, Bürdek et al. present a tool that systematically
explores similarities among products to enhance the testing efficiency [Bürdek et al.,
2015]. While the aforementioned tools show promising results, each of them focuses
only on testing rather than supporting the entire product-line development process.

We extended our tool FeatureIDE to automate the process of creating configurations,
building products, and testing them by integrating the corresponding strategies. Our
extension to FeatureIDE includes the following:

• Derivation of configurations using different techniques namely, (a) deriving all
valid configurations, (b) generating random configurations, (c) using user-defined
configurations, and (d) T -wise sampling.

• Generation of program variants independent of the programming paradigm, such
as preprocessors and feature-oriented programming.

• Customization of product generation, such as adjusting the maximum number of
created configurations and the order in which they are tested.

• Testing of generated program variants using JUnit and derivation of configuration-
aware test results.

• Support to avoid redundant test executions and to achieve family-based testing.

In this section, we discuss the testing work-flow that we automated in FeatureIDE.
We show a screen-shot of the FeatureIDE perspective in Eclipse in Figure A.1. In the
following, we explain each element and how it is integrated into FeatureIDE for testing
purposes. The single elements are as follows: At 1 , we show the source code of the
program that we want to test, including two unit tests. At 2 , we show the feature



A.1. Testing Software Product Line with FeatureIDE 119

model that defines the variability of the program [Batory, 2005]. The folder configs at
4 shows three configurations that are user-defined. The folder products at 5 shows

generated sample programs that are used for testing. The result of the tests for the
configurations is shown in the JUnit view at 3 .

A.1.1 Developing Product Lines with FeatureIDE

Features in product line can have dependencies among each other (e.g., one feature
might require or exclude another one). To specify the dependencies of features, Fea-
tureIDE provides a feature model editor shown in Figure A.1. 2 . The feature model is
the central part of projects in FeatureIDE as it defines the variability of the systems
that is used for configuration [Benavides et al., 2010; Pereira et al., 2016] and analyses
(e.g., to detect unused features or dead code) [Tartler et al., 2011].

FeatureIDE supports the feature-oriented implementation of product line and is de-
signed as an extensible framework [Thüm et al., 2014b]. In particular, it supports a vari-
ety of implementation mechanisms, such as feature-oriented programming [Batory et al.,
2004], aspect-oriented programming [Kiczales et al., 1997], preprocessors [Meinicke
et al., 2016a], and runtime variability.

In our example, we show a product line using the integrated preprocessor Antenna
(cf. Figure A.1 1 ). To configure the system, the user can manually define configura-
tions using the configuration editor of FeatureIDE [Pereira et al., 2016]. In the example
of Figure A.1, there are three user-defined configurations in the folder configs at Fig-
ure A.1. 4 . Only one configuration can be active at a time, which is then used to
preprocess and compile the source code of the src folder.

Derive Configurations

To automatically derive configurations as well as to generate and test the products, we
provide a dialog in which the user can choose how to derive the configurations. The
user can open the dialog of building products via FeatureIDE → Product Generator in
the context menu of the Project-/Package-Explorer. We show the dialog in Figure A.2.
In the following, we discuss the meaning of the options provided in the dialog. As
mentioned in Chapter 3 and Chapter 5, we support in FeatureIDE several strategies to
provide configurations for testing, namely using user-defined configurations, deriving all
valid configurations, using T -wise sampling, and randomly generating configurations.
The user can select any of these strategists from the drop-down box Strategy in the
dialogue Build Products (cf. Figure A.2).

Using the integrated configuration editor [Pereira et al., 2016], User-defined config-
urations can be created manually. These configurations are contained in the folder
configs (cf. Figure A.1. 4 ). Using an algorithm that exploits the tree structure of the
feature model, all valid configurations can be generated. As this algorithm scales only
for product lines with a few number of features, we provide alternatively a strategy to
generate a fixed number of random configurations (cf. Chapter 5, Section 3.2). Fur-
thermore, in addition to our sampling algorithm IncLing, we integrated several T -wise



120 A. Appendix

1
 

2
 

3
 

4
 

5
 

F
ig

u
re

A
.1

:
S
u
p
p

or
t

fo
r

te
st

in
g

w
it

h
F

ea
tu

re
ID

E
:

1
so

u
rc

e
co

d
e

of
a

p
ro

gr
am

in
cl

u
d
in

g
tw

o
u
n
it

te
st

s,
2

fe
at

u
re

m
o
d
el

d
efi

n
in

g
va

li
d

co
m

b
in

at
io

n
s,

3
J
U

n
it

v
ie

w
,

4
u
se

r-
d
efi

n
ed

co
n
fi
gu

ra
ti

on
s,

an
d

5
a

se
t

of
ge

n
er

at
ed

sa
m

p
le

p
ro

d
u
ct

s.



A.1. Testing Software Product Line with FeatureIDE 121

Figure A.2: Dialog to automatically derive and test products.

sampling algorithms that aim to generate a minimal set of products covering all inter-
actions among T features, such as CASA [Garvin et al., 2011], Chvatal [Chvatal, 1979;
Johansen et al., 2011], ICPL [Johansen et al., 2012a], and IncLing (cf. Chapter 3, Sec-
tion 3.2). The user can specify a particular sampling algorithm using the drop-down
box Algorithm in the dialogue Build Products (cf. Figure A.2). The value of T, which
represent the number of involved features in a combination, can be specified using what
so-called an interaction-bar.

Maximal Number Of Configurations The user can specify a threshold n for the
maximum number of configurations that should be tested. This option is available for all
generation strategies. When generating all or a random set of configurations at most
n configurations are calculated. For the strategy to use user-defined configurations,
only the first n configurations will be tested. For all T-Wise sampling algorithms, we
can limit the number of generated configuration to n as well. Thus, a 100% T-Wise
interaction coverage might not be reached. As T-Wise algorithms typically cover most



122 A. Appendix

interactions in the first configurations, it is still reasonable to give a threshold for T-Wise
sampling.

The generated configurations can be built into the products folder as shown in Fig-
ure A.1. 2 or into a distinct Eclipse project using the option create new project in Fig-
ure A.2.

Ordering of Generated Configurations

Optimizing the order of test cases is a good strategy to detect faults early. Therefore,
the generated configurations can be ordered using one of three different techniques
(cf.Figure A.2). Each generation strategy outputs a list of configurations in a certain
order.

To improve the order in which configurations are tested, we currently provide two
greedy algorithms. The first one is to order configurations by dissimilarity Chapter 3.
The second technique aims to optimize feature interaction coverage. For this, the
configuration that covers most feature interactions that are not already covered by
previous configurations is selected. This process is continued until all configurations
are tested, or all interactions are covered (i.e., the number of configurations to test may
be smaller). The user can specify in which order these products are generated using
the drop-down box of Order in the dialogue Build Products (cf. Figure A.2). Regarding
the interaction-based ordering, the degree of the interaction coverage to order can be
specified using the interactions-bar, whereas higher T require more effort for ordering.

Test Configurations

The last step for testing the system is to execute the test cases. So far, we integrated
JUnit to execute tests for Java. When selecting the check box called Run JUnit tests in
the dialogue Build Products (cf. Figure A.2), test cases are executed after each product
is generated. As shown in Figure A.1. 1 , it is only necessary to annotate the test cases
as known from JUnit.

To comprehend the results of testing multiple configurations (i.e., to associate the faults
with configurations and to reproduce the fault), we provide a structured tree in the
JUnit view as shown in Figure A.1. 3 . The root elements are the classes that are
tested with the configurations as direct children. The leaf elements are the actual test
cases. As known from the JUnit view, the stack trace of the failing test is shown when
selecting the element. Also, the location of the fault will be opened when selecting the
entry in the stack trace.

Faults are associated with configurations that cause the fault. However, aggregated re-
sults that show, which tests fail under which condition (i.e., a minimal feature selection)
would improve the comprehension of the faults [Xin et al., 2008; Hoffman et al., 2009;
Meinicke et al., 2016b]. For example, the test case testStartsWithHello in Figure A.1
fails in all configurations where the feature Hello is not selected. The integration of ag-
gregated results is usually nontrivial, especially when only a subset of all configurations
is tested. Thus, this improvement is subject to future work.



A.1. Testing Software Product Line with FeatureIDE 123

A.1.2 Beyond Product-By-Product Testing

Product-by-product testing allows the execution of test cases on a set of configurations.
In this section, we show how FeatureIDE provides further strategies to improve testing
configurable systems by avoiding redundant test executions and with support for family-
based testing.

Avoid Redundant Tests

Multiple testing approaches aim to reduce the number of tests to execute [Kim et al.,
2013]. However, these approaches usually require a specialized infrastructure or domain
knowledge. We propose a lightweight approach to improve the time to test multiple
configurations.

Unit test cases are usually designed to test a small part of the program, such as single
methods or classes. When running the test case on multiple products it is unlikely to
get different results, especially if the test case is not affected by variability. Thus, for
product-by-product testing the test case is executed redundantly multiple times causing
unnecessary overhead. Instead, the test case should rather be executed only once.

To avoid redundant test executions, we provide a Java annotation for test classes called
@NonInteracting. While testing multiple configurations as discussed in the previous
section, FeatureIDE will execute tests of an annotated class only once. However, the
user needs to decide manually whether the test cases do not interact. In the example
of Figure A.1, the test cases of the class SingleRunTest are only executed once as the
JUnit view illustrates (cf. Figure A.1. 3 ).

Family-Based Testing

Product-by-product analyses are most common in practice as standard analysis tech-
niques can be used for the analysis of configurable systems. However, this strategy is
either unsound (i.e., it may miss faults that could be found by testing other configu-
rations) or does not scale to the high amount of configurations to test. To analyze all
configurations, family-based mechanisms (also known as variability-aware mechanisms)
have been proposed [Thüm et al., 2014a; Thüm et al., 2014; Havelund and Pressburger,
2000; von Rhein et al., 2011; Beckert et al., 2007; Meinicke et al., 2016b]. Family-based
analyses exploit the fact that the analysis of two similar configurations is also simi-
lar. Thus, these redundant calculations when analyzing multiple configurations can be
avoided. Family-based aim to execute these redundant parts only once to reduce the
overall effort to execute all configurations.

Family-based testing requires a product simulator (a.k.a. metaproduct) that represents
all configurations [Thüm et al., 2014; Apel et al., 2013c]. This simulator is a transfor-
mation of the system into a program with runtime variability, which can simulate all
configurations. Currently, FeatureIDE only supports family-based analysis for feature-
oriented programming with FeatureHouse [Apel et al., 2013b; Thüm et al., 2014; Apel



124 A. Appendix

et al., 2013c]. The metaproduct can be generated via the project’s contextmenu (i.e.,
FeatureIDE → FeatureHouse → Build Metaproduct). When building the project the
metaproduct will be generated instead of a single configuration.

Different tools for family-based analysis require special types of feature model classes
(i.e., a standard Java class that defines all features and valid combinations thereof). To
support these different tools, FeatureIDE enables the user to choose between different
model files. In particular, we support family-based testing with VarexJ [Meinicke et al.,
2016b], model checking with JavaPathfinder [Havelund and Pressburger, 2000] and JPF-
BDD [von Rhein et al., 2011], and theorem proving with KeY [Beckert et al., 2007]. The
type of the model class can be selected via the project’s properties (i.e., FeatureIDE →
Feature Project → Metaproduct Generation). In the future, we aim to provide further
support for other implementation techniques, especially for runtime variability, to ease
the application of family-based testing and analyses.



A.2. Cluster-based prioritization 125

A.2 Cluster-based prioritization

In this section, we present some raw and detailed results that support the conclusion
of Section 3.4. Using feature models of different sizes, we show in Table A.1 the APFD
values of the cluster-based prioritization approach with different numbers of clusters
(K=5, 10, and 15) as well as the APFD values of the configuration-based prioritiza-
tion and random orders. In addition, we present the p-values that show whether the
differences between the random orders as well as the configuration-based prioritization
approach and the cluster-based prioritization approach with K= 5 (Table A.2), K=10
(Table A.3), and K=15 (Table A.4). We show the p-values of considering different num-
ber of clusters with intra-cluster prioritization (Table A.5) and without intra-cluster
prioritization (Table A.6).



126 A. Appendix

F
M

A
P

F
D

C
lu

st
er

in
g

K
=

5
K

=
5

(W
/O

IC
P

)
K

=
10

K
=

10
(W

/O
IC

P
)

K
=

15
K

=
15

(W
/O

IC
P

)
R

an
d
om

C
on

f.
P

ri
o.

B
at

tl
eo

fT
an

k
s

0.
70

0
0.

69
7

0.
69

9
0.

69
9

0.
70

3
0.

69
8

0.
68

9
0.

70
8

F
M

T
es

t
0.

74
0

0.
71

8
0.

74
1

0.
74

1
0.

74
0

0.
72

3
0.

66
0

0.
73

8
P

ri
n
te

rs
0.

76
0

0.
75

1
0.

76
0

0.
76

0
0.

76
0

0.
75

4
0.

74
5

0.
74

9
B

an
k
in

gS
of

tw
ar

e
0.

58
5

0.
55

1
0.

58
7

0.
58

7
0.

56
1

0.
55

4
0.

53
6

0.
60

8
E

le
ct

ro
n
ic

S
h
op

p
in

g
0.

70
5

0.
70

2
0.

69
7

0.
69

7
0.

68
6

0.
68

2
0.

66
8

0.
70

2
D

M
IS

0.
71

6
0.

67
6

0.
69

9
0.

67
3

0.
67

0
0.

63
0

0.
63

9
0.

73
3

eC
os

3.
0

i3
86

p
c

0.
73

9
0.

68
8

0.
73

7
0.

73
7

0.
73

3
0.

67
2

0.
65

8
0.

76
7

F
re

eB
S
D

ke
rn

el
8.

0.
0

0.
67

3
0.

64
7

0.
66

2
0.

66
2

0.
64

9
0.

62
9

0.
54

9
0.

67
9

L
in

u
x

2
6

28
6

0.
84

1
0.

82
9

0.
82

0
0.

83
5

0.
83

5
0.

81
8

0.
72

2
0.

85
0

A
F

M
5K

0.
34

8
0.

34
2

0.
34

7
0.

35
1

0.
34

8
0.

34
4

0.
31

2
0.

35
4

A
v
e
ra

g
e

0
.6

8
1

0
.6

6
0

0
.6

7
7

0
.6

6
3

0
.6

6
9

0
.6

5
0

0
.6

1
8

0
.6

8
9

K
:
n
u
m
b
er

o
f
cl
u
st
er
s;

W
/
O

IC
P
:
w
it
h
o
u
t
co

n
si
d
er
in
g
in
tr
a
-c
lu
st
er

p
ri
o
ri
ti
za

ti
o
n

T
ab

le
A

.1
:

A
ve

ra
ge

A
P

F
D

fo
r

cl
u
st

er
-b

as
ed

p
ri

or
it

iz
at

io
n
,

ra
n
d
om

or
d
er

s,
an

d
co

n
fi
gu

ra
ti

on
-b

as
ed

p
ri

or
it

iz
at

io
n
.



A.2. Cluster-based prioritization 127

FM P-values

K = 5

Random Conf. Prio.

BattleofTanks 0.296 0.717
FM Test 0.000 0.760
Printers 0.343 0.840
BankingSoftware 0.000 0.0462
Electronic Shopping 0.000 0.434
DMIS 0.000 0.000
eCos 3.0 i386pc 0.000 0.000
FreeBSD kernel 8.0.0 0.000 0.000
Linux 2 6 28 6 0.000 0.000
AFM5K 0.000 0.000

K: number of clusters

Table A.2: P-values of the Mann-Whitney U test between APFD values of cluster-based
prioritization and random orders as well as the configuration-based prioritization.

FM P-values

K = 10

Random Conf. Prio.

BattleofTanks 0.638 0.390
FM Test 0.000 0.646
Printers 0.313 0.782
BankingSoftware 0.000 0.0638
Electronic Shopping 0.000 0.0769
DMIS 0.000 0.000
eCos 3.0 i386pc 0.000 0.000
FreeBSD kernel 8.0.0 0.000 0.000
Linux 2 6 28 6 0.000 0.000
AFM5K 0.000 0.000

K: number of clusters

Table A.3: P-values of the Mann-Whitney U test between APFD values of cluster-based
prioritization and random orders as well as the configuration-based prioritization.



128 A. Appendix

FM P-values

K = 15

Random Conf. Prio.

BattleofTanks 0.200 0.707
FM Test 0.000 0.692
Printers 0.335 0.825
BankingSoftware 0.002 0.000
Electronic Shopping 0.039 0.000
DMIS 0.000 0.000
eCos 3.0 i386pc 0.000 0.000
FreeBSD kernel 8.0.0 0.000 0.000
Linux 2 6 28 6 0.000 0.000
AFM5K 0.000 0.000

K: number of clusters

Table A.4: P-values of the Mann-Whitney U test between APFD values of cluster-based
prioritization and random orders as well as the configuration-based prioritization.

FM P-values

(K=5&K=10) (K=5&K=15) (K=10&K=15)

BattleofTanks 0.635 0.917 0.535
FM Test 0.908 0.874 0.958
Printers 0.981 0.970 0.991
BankingSoftware 0.848 0.035 0.018
Electronic Shopping 0.297 0.009 0.094
DMIS 0.002 0.000 0.000
eCos 3.0 i386pc 0.667 0.162 0.345
FreeBSD kernel 8.0.0 0.003 0.000 0.000
Linux 2 6 28 6 0.000 0.000 0.813
AFM5K 0.000 0.844 0.000

K: number of clusters

Table A.5: P-values of the Mann-Whitney U test between APFD values of cluster-
based prioritization using different numbers of clusters with considering the intra-cluster
prioritization.



A.3. Architecture Definition of the Core Product of BCS 129

FM P-values

(K=5&K=10) (K=5&K=15) (K=10&K=15)

BattleofTanks 0.922 0.925 0.841
FM Test 0.339 0.604 0.695
Printers 0.805 0.788 0.962
BankingSoftware 0.004 0.744 0.011
Electronic Shopping 0.116 0.001 0.104
DMIS 0.676 0.000 0.000
eCos 3.0 i386pc 0.645 0.000 0.000
FreeBSD kernel 8.0.0 0.342 0.000 0.000
Linux 2 6 28 6 0.000 0.000 0.171
AFM5K 0.000 0.012 0.000

K: number of clusters

Table A.6: P-values of the Mann-Whitney U test between APFD values of cluster-based
prioritization using different numbers of clusters without considering the intra-cluster
prioritization.

A.3 Architecture Definition of the Core Product of

BCS

In this section, we list the architecture definition of the core product of BCS Listing A.1
as well as the deltas that are required to be applied on the core product in order to
generate new products Listing A.2.



130 A. Appendix

1
2 architecture p0 for featuremodel ’/Users/.../BCS.featuremodel’{
3 signals {
4 pw_but_mv_dn boolean
5 pw_but_mv_up boolean
6 em_but_mv_left boolean
7 em_but_mv_right boolean
8 em_but_mv_up boolean
9 em_but_mv_dn boolean

10
11 pw_but_up boolean
12 pw_but_dn boolean
13 em_but_right boolean
14 em_but_left boolean
15 em_but_up boolean
16 em_but_down boolean
17
18 em_pos_left boolean
19 em_pos_right boolean
20 em_pos_top boolean
21 em_pos_bottom boolean
22 em_mv_left boolean
23 em_mv_right boolean
24 em_mv_up boolean
25 em_mv_down boolean
26
27 finger_detected boolean
28 fp_on boolean
29 fp_off boolean
30
31 pw_pos_up boolean
32 pw_pos_dn boolean
33 pw_mv_up boolean
34 pw_mv_dn boolean
35 }
36
37 components {
38 HMI {
39 ports {
40 in p_pw_but_mv_dn pw_but_mv_dn
41 in p_pw_but_mv_up pw_but_mv_up
42 in p_em_but_mv_left em_but_mv_left
43 in p_em_but_mv_right em_but_mv_right
44 in p_em_but_mv_up em_but_mv_up
45 in p_em_but_mv_bottom em_but_mv_up
46
47 out p_pw_but_up pw_but_up
48 out p_pw_but_dn pw_but_dn
49 out p_em_but_right em_but_right
50 out p_em_but_left em_but_left
51 out p_em_but_up em_but_up
52 out p_em_but_down em_but_down



A.3. Architecture Definition of the Core Product of BCS 131

53 }
54 }
55 ManPW {
56 ports {
57 in p_pw_but_up pw_but_up
58 in p_pw_but_dn pw_but_dn
59 in p_pw_pos_up pw_pos_up
60 in p_pw_pos_dn pw_pos_dn
61 in p_fp_on fp_on
62 in p_fp_off fp_off
63
64 out p_pw_mv_dn pw_mv_dn
65 out p_pw_mv_up pw_mv_up
66 }
67 }
68 FP {
69 ports {
70 in p_finger_detected finger_detected
71 in p_pw_but_dn pw_but_dn
72
73 out p_fp_on fp_on
74 out p_fp_off fp_off
75 }
76 }
77
78 EM {
79 ports {
80 in p_em_but_right em_but_right
81 in p_em_but_left em_but_left
82 in p_em_but_up em_but_up
83 in p_em_but_down em_but_down
84 in p_em_pos_left em_pos_left
85 in p_em_pos_right em_pos_right
86 in p_em_pos_top em_pos_top
87 in p_em_pos_bottom em_pos_bottom
88
89 out p_em_mv_left em_mv_left
90 out p_em_mv_right em_mv_right
91 out p_em_mv_up em_mv_up
92 out p_em_mv_dn em_mv_down
93 }
94 }
95 }
96 connectors {
97 hmi1(HMI,em_but_right,em_but_right,EM)
98 hmi2(HMI,em_but_left,em_but_left,EM)
99 hmi3(HMI,em_but_up,em_but_up,EM)

100 hmi4(HMI,em_but_down,em_but_down,EM)
101 hmi5(HMI,pw_but_up,pw_but_up,ManPW)
102 hmi6(HMI,pw_but_dn,pw_but_dn,ManPW)
103 hmi7(HMI,pw_but_dn,pw_but_dn,FP)
104
105 env1(ENV,pw_but_mv_dn,pw_but_mv_dn,HMI)



132 A. Appendix

106 env2(ENV,pw_but_mv_up,pw_but_mv_up,HMI)
107 env3(ENV,em_but_mv_left,em_but_mv_left,HMI)
108 env4(ENV,em_but_mv_right,em_but_mv_right,HMI)
109 env5(ENV,em_but_mv_up,em_but_mv_up,HMI)
110 env6(ENV,em_but_mv_dn,em_but_mv_dn,HMI)
111 env7(ENV,em_pos_left,em_pos_left,EM)
112 env8(ENV,em_pos_right,em_pos_right,EM)
113 env9(ENV,em_pos_top,em_pos_top,EM)
114 env10(ENV,em_pos_bottom,em_pos_bottom,EM)
115 env11(ENV,finger_detected,finger_detected,FP)
116 env13(ENV,pw_pos_up,pw_pos_up,ManPW)
117 env14(ENV,pw_pos_dn,pw_pos_dn,ManPW)
118
119 fp1(FP,fp_on,fp_on,ManPW)
120 fp2(FP,fp_off,fp_off,ManPW)
121
122 em1(EM,em_mv_left,em_mv_left,ENV)
123 em2(EM,em_mv_right,em_mv_right,ENV)
124 em3(EM,em_mv_up,em_mv_up,ENV)
125 em4(EM,em_mv_down,em_mv_down,ENV)
126
127 pw1(ManPW,pw_mv_dn,pw_mv_dn,ENV)
128 pw2(ManPW,pw_mv_up,pw_mv_up,ENV)
129
130 }
131 }

Listing A.1: Architecture definition of the core product [Lity et al., 2013]

1 deltas {
2 //AutoPW
3 DAutomaticPW when ’Automatic Power Window’ {
4 removeconnector{
5 fp1(FP,fp_on,fp_on,ManPW)
6 fp2(FP,fp_off,fp_off,ManPW)
7 pw1(ManPW,pw_mv_dn,pw_mv_dn,ENV)
8 pw2(ManPW,pw_mv_up,pw_mv_up,ENV)
9 hmi5(HMI,pw_but_up,pw_but_up,ManPW)

10 hmi6(HMI,pw_but_dn,pw_but_dn,ManPW)
11 env13(ENV,pw_pos_up,pw_pos_up,ManPW)
12 env14(ENV,pw_pos_dn,pw_pos_dn,ManPW)
13 }
14 removecomponent {
15 ManPW
16 }
17 removesignal {
18 pw_mv_dn
19 pw_mv_up
20 }
21
22 addsignal {
23 pw_auto_mv_up boolean
24 pw_auto_mv_dn boolean



A.3. Architecture Definition of the Core Product of BCS 133

25 pw_auto_mv_stop boolean
26 }
27
28
29 addcomponent{
30 AutoPW{
31
32 }
33 }
34
35 addconnector{
36 fpautopw1(FP,fp_on,fp_on,AutoPW)
37 fpautopw2(FP,fp_off,fp_off,AutoPW)
38 hmiautopw1(HMI,pw_but_up,pw_but_up,AutoPW)
39 hmiautopw2(HMI,pw_but_dn,pw_but_dn,AutoPW)
40 autopwenv1(AutoPW,pw_auto_mv_up,pw_auto_mv_up,ENV)
41 autopwenv2(AutoPW,pw_auto_mv_dn,pw_auto_mv_dn,ENV)
42 autopwenv3(AutoPW,pw_auto_mv_stop,pw_auto_mv_stop,ENV)
43 envautopw1(ENV,pw_pos_up,pw_pos_up,AutoPW)
44 envautopw2(ENV,pw_pos_dn,pw_pos_dn,AutoPW)
45 }
46
47
48 }
49 //EMH
50 DHeatable when ’Heatable’ {
51 removeconnector {
52
53 em1(EM,em_mv_left,em_mv_left,ENV)
54 em2(EM,em_mv_right,em_mv_right,ENV)
55 em3(EM,em_mv_up,em_mv_up,ENV)
56 em4(EM,em_mv_down,em_mv_down,ENV)
57 hmi1(HMI,em_but_right,em_but_right,EM)
58 hmi2(HMI,em_but_left,em_but_left,EM)
59 hmi3(HMI,em_but_up,em_but_up,EM)
60 hmi4(HMI,em_but_down,em_but_down,EM)
61 env7(ENV,em_pos_left,em_pos_left,EM)
62 env8(ENV,em_pos_right,em_pos_right,EM)
63 env9(ENV,em_pos_top,em_pos_top,EM)
64 env10(ENV,em_pos_bottom,em_pos_bottom,EM)
65 }
66
67 removecomponent {
68 EM
69 }
70 addsignal {
71 heating_on boolean
72 heating_off boolean
73 time_heating_elapsed boolean
74 em_too_cold boolean
75 }
76
77 addcomponent {



134 A. Appendix

78 EMH {
79
80 }
81 }
82 addconnector {
83 emhenv1(EMH,em_mv_left,em_mv_left,ENV)
84 emhenv2(EMH,em_mv_right,em_mv_right,ENV)
85 emhenv3(EMH,em_mv_up,em_mv_up,ENV)
86 emhenv4(EMH,em_mv_down,em_mv_down,ENV)
87 emhenv5(EMH,heating_on,heating_on,ENV)
88 emhenv6(EMH,heating_off,heating_off,ENV)
89 envemh1(ENV,em_pos_right,em_pos_right,EMH)
90 envemh2(ENV,em_pos_top,em_pos_top,EMH)
91 envemh3(ENV,em_pos_bottom,em_pos_bottom,EMH)
92 envemh4(ENV,em_too_cold,em_too_cold,EMH)
93 envemh5(ENV,time_heating_elapsed,time_heating_elapsed,EMH)
94 envemh6(ENV,em_pos_left,em_pos_left,EMH)
95
96 hmiemh1(HMI,em_but_right,em_but_right,EMH)
97 hmiemh2(HMI,em_but_left,em_but_left,EMH)
98 hmiemh3(HMI,em_but_up,em_but_up,EMH)
99 hmiemh4(HMI,em_but_down,em_but_down,EMH)

100 }
101 }
102
103 //AS
104 DAS when ’Alarm System’ {
105 addsignal {
106 as_activated boolean
107 as_deactivated boolean
108 as_alarm_detected boolean
109 time_alarm_elapsed boolean
110 key_pos_lock boolean
111 key_pos_unlock boolean
112 as_active_on boolean
113 as_active_off boolean
114 as_alarm_on boolean
115 as_alarm_off boolean
116 activate_as boolean
117 deactivate_as boolean
118 as_alarm_was_detected boolean
119 }
120
121 addcomponent {
122 AS {
123
124 }
125 }
126
127 addconnector {
128 envhm1(ENV,activate_as,activate_as,HMI)
129 envhm2(ENV,deactivate_as,deactivate_as,HMI)
130 hmias1(HMI,as_activated,as_activated,AS)



A.3. Architecture Definition of the Core Product of BCS 135

131 hmias1(HMI,as_deactivated,as_deactivated,AS)
132
133 envas1(ENV,as_alarm_detected,as_alarm_detected,AS)
134 envas2(ENV,time_alarm_elapsed,time_alarm_elapsed,AS)
135 envas3(ENV,key_pos_lock,key_pos_lock,AS)
136 envas4(ENV,key_pos_unlock,key_pos_unlock,AS)
137
138 asenv1(AS,as_active_on,as_active_on,ENV)
139 asenv2(AS,as_alarm_on,as_alarm_on,ENV)
140 asenv3(AS,as_active_off,as_active_off,ENV)
141 asenv4(AS,as_alarm_off,as_alarm_off,ENV)
142 asenv5(AS,as_alarm_was_detected,as_alarm_was_detected,ENV)
143 }
144
145 }
146 //IM for AS
147 DASIM after DAS when ’Interior Monitoring’ {
148 addsignal {
149 im_alarm_detected boolean
150 as_im_alarm_on boolean
151 as_im_alarm_off boolean
152 }
153
154 addconnector {
155 envasim1(ENV,im_alarm_detected,im_alarm_detected,AS)
156 asimenv1(AS,as_im_alarm_on,as_im_alarm_on,ENV)
157 asimenv2(AS,as_im_alarm_off,as_im_alarm_off,ENV)
158 }
159 }
160 //CLS for Manual Power Window
161 DCLSM when ’Central Locking System AND Manual Power Window’ {
162 addsignal {
163 key_pos_lock boolean
164 key_pos_unlock boolean
165 cls_lock boolean
166 cls_unlock boolean
167 }
168 addcomponent {
169 CLS {
170
171 }
172 }
173
174 addconnector {
175 envcls1(ENV,key_pos_lock,key_pos_lock,CLS)
176 envcls2(ENV,key_pos_unlock,key_pos_unlock,CLS)
177 clsenv1(CLS,cls_lock,cls_lock,ENV)
178 clsenv2(CLS,cls_unlock,cls_unlock,ENV)
179 clsmanpw1(CLS,cls_lock,cls_lock,ManPW)
180 clsmanpw2(CLS,cls_unlock,cls_unlock,ManPW)
181 }
182 }
183 //CLS for Automatic Power Window



136 A. Appendix

184 DCLSA when ’Central Locking System AND Automatic Power Window’ {
185 addsignal {
186 key_pos_lock boolean
187 key_pos_unlock boolean
188 cls_unlock boolean
189 cls_lock boolean
190 }
191 addcomponent {
192 CLS {
193
194 }
195 }
196
197 addconnector {
198 envcls1(ENV,key_pos_lock,key_pos_lock,CLS)
199 envcls2(ENV,key_pos_unlock,key_pos_unlock,CLS)
200 clsenv1(CLS,cls_lock,cls_lock,ENV)
201 clsenv2(CLS,cls_unlock,cls_unlock,ENV)
202 clsautopw1(CLS,cls_lock,cls_lock,AutoPW)
203 clsautopw2(CLS,cls_unlock,cls_unlock,AutoPW)
204
205 }
206 }
207
208 //RCK_Ctrl for CLS with Automatic Power Window
209 DRCKA after DCLSA when ’Remote Control Key AND Automatic Power

Window’ {
210 addsignal {
211 rck_but_lock boolean
212 rck_but_unlock boolean
213 rck_lock boolean
214 rck_unlock boolean
215 }
216
217 addcomponent {
218 RCK_Ctrl {
219
220 }
221 }
222 addconnector {
223 envrck1(ENV,rck_but_lock,rck_but_lock,RCK_Ctrl)
224 envrck2(ENV,rck_but_unlock,rck_but_unlock,RCK_Ctrl)
225 rckcls1(RCK_Ctrl,rck_lock,rck_lock,CLS)
226 rckcls2(RCK_Ctrl,rck_unlock,rck_unlock,CLS)
227 }
228 }
229
230 //RCK_Ctrl for CLS with Manual Power Window
231 DRCKM after DCLSM when ’Remote Control Key AND Manual Power Window’

{
232 addsignal {
233 rck_but_lock boolean
234 rck_but_unlock boolean



A.3. Architecture Definition of the Core Product of BCS 137

235 rck_lock boolean
236 rck_unlock boolean
237 }
238
239 addcomponent {
240 RCK_Ctrl {
241
242 }
243 }
244 addconnector {
245 envrck1(ENV,rck_but_lock,rck_but_lock,RCK_Ctrl)
246 envrck2(ENV,rck_but_unlock,rck_but_unlock,RCK_Ctrl)
247 rckcls1(RCK_Ctrl,rck_lock,rck_lock,CLS)
248 rckcls2(RCK_Ctrl,rck_unlock,rck_unlock,CLS)
249 }
250 }
251
252 //RCK SF
253 DRCKSFA after DRCKA when ’Safety Function AND Automatic Power Window

’ {
254 addsignal {
255 door_open boolean
256 time_rck_sf_elapsed boolean
257 }
258 addconnector {
259 envrcksf1(ENV,door_open,door_open,RCK_Ctrl)
260 envrcksf2(ENV,time_rck_sf_elapsed,time_rck_sf_elapsed,

RCK_Ctrl)
261 }
262 }
263 DRCKSFM after DRCKM when ’Safety Function AND Manual Power Window’ {
264 addsignal {
265 door_open boolean
266 time_rck_sf_elapsed boolean
267 }
268 addconnector {
269 envrcksf1(ENV,door_open,door_open,RCK_Ctrl)
270 envrcksf2(ENV,time_rck_sf_elapsed,time_rck_sf_elapsed,

RCK_Ctrl)
271 }
272 }
273
274 //CAP
275 DRCKCAP after DRCKA when ’Control Automatic Power Window AND

Automatic Power Window’ {
276 addsignal {
277 pw_rm_up boolean
278 pw_rm_dn boolean
279 }
280 addconnector {
281 envrckcap1(ENV,pw_rm_up,pw_rm_up,RCK_Ctrl)
282 envrckcap2(ENV,pw_rm_dn,pw_rm_dn,RCK_Ctrl)
283 rckcapautopw1(RCK_Ctrl,pw_but_up,pw_but_up, AutoPW)



138 A. Appendix

284 rckcapautopw2(RCK_Ctrl,pw_but_dn,pw_but_dn, AutoPW)
285 rckcapfp1(RCK_Ctrl,pw_but_dn,pw_but_dn,FP)
286 }
287 }
288 //CAS
289 DCASM after DAS DRCKM when ’Control Alarm System AND Manual Power

Window’ {
290 addsignal{
291 rck_lock boolean
292 rck_unlock boolean
293 }
294 addconnector {
295 rckcasas1(RCK_Ctrl,rck_lock,rck_lock,AS)
296 rckcasas2(RCK_Ctrl,rck_unlock,rck_unlock,AS)
297 }
298 }
299 //CAS
300 DCASA after DAS DRCKA when ’Control Alarm System AND Automatic Power

Window’ {
301 addsignal{
302 rck_lock boolean
303 rck_unlock boolean
304 }
305 addconnector {
306 rckcasas1(RCK_Ctrl,rck_lock,rck_lock,AS)
307 rckcasas2(RCK_Ctrl,rck_unlock,rck_unlock,AS)
308 }
309 }
310
311 //AL
312 DALA after DCLSA when ’Automatic Locking AND Automatic Power Window’

{
313 addsignal {
314 door_open boolean
315 car_drives boolean
316 car_lock boolean
317 car_unlock boolean
318 }
319 addconnector {
320 envclsal1(ENV,car_drives,car_drives,CLS)
321 envclsal2(ENV,door_open,door_open,CLS)
322 clsalsenv1(CLS,car_lock,car_lock,ENV)
323 clsalsenv2(CLS,car_unlock,car_unlock,ENV)
324 }
325 }
326 //AL
327 DALM after DCLSM when ’Automatic Locking AND Manual Power Window’ {
328 addsignal {
329 door_open boolean
330 car_drives boolean
331 car_lock boolean
332 car_unlock boolean
333 }



A.3. Architecture Definition of the Core Product of BCS 139

334 addconnector {
335 envclsal1(ENV,car_drives,car_drives,CLS)
336 envclsal2(ENV,door_open,door_open,CLS)
337 clsalsenv1(CLS,car_lock,car_lock,ENV)
338 clsalsenv2(CLS,car_unlock,car_unlock,ENV)
339 }
340 }
341
342 //LED_EM
343 DLEDEM when ’LED Exterior Mirror AND NOT Heatable’ {
344 addsignal {
345 em_pos_vert_bottom boolean
346 em_pos_vert_pend boolean
347 em_pos_vert_top boolean
348
349 em_pos_hor_right boolean
350 em_pos_hor_pend boolean
351 em_pos_hor_left boolean
352
353 led_em_bottom_on boolean
354 led_em_top_on boolean
355 led_em_right_on boolean
356 led_em_left_on boolean
357
358 led_em_bottom_off boolean
359 led_em_top_off boolean
360 led_em_right_off boolean
361 led_em_left_off boolean
362 }
363
364 addcomponent {
365 LED_EMB {
366
367 }
368 LED_EMT {
369
370 }
371 LED_EMR {
372
373 }
374 LED_EML {
375
376 }
377 }
378
379 addconnector {
380 emledemb1(EM,em_pos_vert_bottom,em_pos_vert_bottom,LED_EMB)
381 emledemb2(EM,em_pos_vert_pend,em_pos_vert_pend,LED_EMB)
382 ledembenv1(LED_EMB,led_em_bottom_on,led_em_bottom_on,ENV)
383 ledembenv2(LED_EMB,led_em_bottom_off,led_em_bottom_off,ENV)
384
385 emledemt1(EM,em_pos_vert_pend,em_pos_vert_pend,LED_EMT)
386 emledemt2(EM,em_pos_vert_top,em_pos_vert_top,LED_EMT)



140 A. Appendix

387 ledemtenv1(LED_EMT,led_em_top_on,led_em_top_on,ENV)
388 ledemtenv2(LED_EMT,led_em_top_off,led_em_top_off,ENV)
389
390 emledemr1(EM,em_pos_hor_right,em_pos_hor_right,LED_EMR)
391 emledemr2(EM,em_pos_hor_pend,em_pos_hor_pend,LED_EMR)
392 ledemrenv1(LED_EMR,led_em_right_on,led_em_right_on,ENV)
393 ledemrenv2(LED_EMR,led_em_right_off,led_em_right_off,ENV)
394
395 emledeml1(EM,em_pos_hor_left,em_pos_hor_left,LED_EML)
396 emledeml2(EM,em_pos_hor_pend,em_pos_hor_pend,LED_EML)
397 ledemlenv1(LED_EML,led_em_left_on,led_em_left_on,ENV)
398 ledemlenv2(LED_EML,led_em_left_off,led_em_left_off,ENV)
399 }
400 }
401
402 //LED_EM
403 DLEDEMWITHH after DHeatable when ’LED Exterior Mirror AND Heatable’

{
404 addsignal {
405 em_pos_vert_bottom boolean
406 em_pos_vert_pend boolean
407 em_pos_vert_top boolean
408
409 em_pos_hor_right boolean
410 em_pos_hor_pend boolean
411 em_pos_hor_left boolean
412
413 led_em_bottom_on boolean
414 led_em_bottom_off boolean
415 led_em_top_on boolean
416 led_em_top_off boolean
417 led_em_right_on boolean
418 led_em_right_off boolean
419 led_em_left_on boolean
420 led_em_left_off boolean
421 }
422
423 addcomponent {
424 LED_EMB {
425
426 }
427 LED_EMT {
428
429 }
430 LED_EMR {
431
432 }
433 LED_EML {
434
435 }
436 }
437
438 addconnector {



A.3. Architecture Definition of the Core Product of BCS 141

439 emhledemb1(EMH,em_pos_vert_bottom,em_pos_vert_bottom,LED_EMB
)

440 emhledemb2(EMH,em_pos_vert_pend,em_pos_vert_pend,LED_EMB)
441 ledembenv1(LED_EMB,led_em_bottom_on,led_em_bottom_on,ENV)
442 ledembenv2(LED_EMB,led_em_bottom_off,led_em_bottom_off,ENV)
443
444 emhledemt1(EMH,em_pos_vert_pend,em_pos_vert_pend,LED_EMT)
445 emhledemt2(EMH,em_pos_vert_top,em_pos_vert_top,LED_EMT)
446 ledemtenv1(LED_EMT,led_em_top_on,led_em_top_on,ENV)
447 ledemtenv2(LED_EMT,led_em_top_off,led_em_top_off,ENV)
448
449 emhledemr1(EMH,em_pos_hor_right,em_pos_hor_right,LED_EMR)
450 emhledemr2(EMH,em_pos_hor_pend,em_pos_hor_pend,LED_EMR)
451 ledemrenv1(LED_EMR,led_em_right_on,led_em_right_on,ENV)
452 ledemrenv2(LED_EMR,led_em_right_off,led_em_right_off,ENV)
453
454 emhledeml1(EMH,em_pos_hor_left,em_pos_hor_left,LED_EML)
455 emhledeml2(EMH,em_pos_hor_pend,em_pos_hor_pend,LED_EML)
456 ledemlenv1(LED_EML,led_em_left_on,led_em_left_on,ENV)
457 ledemlenv2(LED_EML,led_em_left_off,led_em_left_off,ENV)
458 }
459 }
460
461 //LED_EMH
462 DLEDHeatable after DHeatable when ’LED Heatable’ {
463 addsignal {
464 led_em_heating_on boolean
465 led_em_heating_off boolean
466 }
467
468 addcomponent {
469 LED_EMH {
470
471 }
472 }
473 addconnector {
474 emhled1(EMH,heating_on,heating_on,LED_EMH)
475 emhled2(EMH,heating_off,heating_off,LED_EMH)
476 ledemhenv1(LED_EMH,led_em_heating_on,led_em_heating_on,ENV)
477 ledemhenv2(LED_EMH,led_em_heating_off,led_em_heating_off,ENV

)
478 }
479 }
480 // LED_FP
481 DLEDFingerProtection when ’LED Finger Protection’ {
482 addsignal{
483 led_fp_on boolean
484 led_fp_off boolean
485 }
486
487 addcomponent {
488 LED_FP {
489



142 A. Appendix

490 }
491 }
492
493 addconnector {
494 fp3(FP,fp_on,fp_on,LED_FP)
495 fp4(FP,fp_off,fp_off,LED_FP)
496 ledfp1(LED_FP, led_fp_on,led_fp_on,ENV)
497 ledfp2(LED_FP, led_fp_off,led_fp_off,ENV)
498 }
499 }
500 //LED_CLS
501 DLEDCLSM after DCLSM when ’LED Central Locking System AND Manual

Power Window’ {
502 addsignal{
503 cls_lock boolean
504 cls_unlock boolean
505 led_cls_on boolean
506 led_cls_off boolean
507 }
508 addcomponent {
509 LED_CLS {
510
511 }
512 }
513 addconnector {
514 clsledcls1(CLS,cls_lock,cls_lock,LED_CLS)
515 clsledcls2(CLS,cls_unlock,cls_unlock,LED_CLS)
516 ledclsenv1(LED_CLS,led_cls_on,led_cls_on,ENV)
517 ledclsenv2(LED_CLS,led_cls_off,led_cls_off,ENV)
518 }
519 }
520
521 DLEDCLSA after DCLSA when ’LED Central Locking System AND Automatic

Power Window’ {
522 addsignal{
523 cls_lock boolean
524 cls_unlock boolean
525 led_cls_on boolean
526 led_cls_off boolean
527 }
528 addcomponent {
529 LED_CLS {
530
531 }
532 }
533 addconnector {
534 clsledcls1(CLS,cls_lock,cls_lock,LED_CLS)
535 clsledcls2(CLS,cls_unlock,cls_unlock,LED_CLS)
536 ledclsenv1(LED_CLS,led_cls_on,led_cls_on,ENV)
537 ledclsenv2(LED_CLS,led_cls_off,led_cls_off,ENV)
538 }
539 }
540



A.3. Architecture Definition of the Core Product of BCS 143

541 //LED AutoPW without CLS
542 DLEDAPW after DAutomaticPW when ’LED Power Window AND Automatic

Power Window AND NOT Central Locking System’ {
543 addsignal {
544 led_pw_up_on boolean
545 led_pw_up_off boolean
546 led_pw_dn_on boolean
547 led_pw_dn_off boolean
548 pw_auto_mv_up boolean
549 pw_auto_mv_dn boolean
550 pw_auto_mv_stop boolean
551 }
552 addcomponent {
553 LED_AutoPW {
554
555 }
556 }
557 addconnector {
558 autopwledapw1(AutoPW,pw_auto_mv_dn,pw_auto_mv_dn,LED_AutoPW)
559 autopwledapw2(AutoPW,pw_auto_mv_up,pw_auto_mv_up,LED_AutoPW)
560 autopwledapw3(AutoPW,pw_auto_mv_stop,pw_auto_mv_stop,

LED_AutoPW)
561
562 ledapwenv1(LED_AutoPW,led_pw_up_on,led_pw_up_on,ENV)
563 ledapwenv2(LED_AutoPW,led_pw_up_off,led_pw_up_off,ENV)
564 ledapwenv3(LED_AutoPW,led_pw_dn_on,led_pw_dn_on,ENV)
565 ledapwenv4(LED_AutoPW,led_pw_dn_off,led_pw_dn_off,ENV)
566 }
567
568 }
569 //LED_AutoPW with CLS
570 DLEDAPWCLS after DAutomaticPW when ’LED Power Window AND Automatic

Power Window AND Central Locking System’ {
571 addsignal {
572 led_pw_up_on boolean
573 led_pw_up_off boolean
574 led_pw_dn_on boolean
575 led_pw_dn_off boolean
576
577 led_pw_cls_up_on boolean
578 led_pw_cls_up_off boolean
579
580 }
581 addcomponent {
582 LED_AutoPW {
583
584 }
585 }
586 addconnector {
587 autopwledapw1(AutoPW,pw_auto_mv_dn,pw_auto_mv_dn,LED_AutoPW)
588 autopwledapw2(AutoPW,pw_auto_mv_up,pw_auto_mv_up,LED_AutoPW)
589 autopwledapw3(AutoPW,pw_auto_mv_stop,pw_auto_mv_stop,

LED_AutoPW)



144 A. Appendix

590
591 clsledapw1(CLS,cls_lock,cls_lock,LED_AutoPW)
592 clsledapw2(CLS,cls_unlock,cls_unlock,LED_AutoPW)
593
594 ledapwenv1(LED_AutoPW,led_pw_up_on,led_pw_up_on,ENV)
595 ledapwenv2(LED_AutoPW,led_pw_dn_on,led_pw_dn_on,ENV)
596 ledapwenv3(LED_AutoPW,led_pw_cls_up_on,led_pw_cls_up_on,ENV)
597 ledapwenv4(LED_AutoPW,led_pw_up_off,led_pw_up_off,ENV)
598 ledapwenv5(LED_AutoPW,led_pw_cls_up_off,led_pw_cls_up_off,

ENV)
599 ledapwenv6(LED_AutoPW,led_pw_dn_off,led_pw_dn_off,ENV)
600 }
601
602 }
603 //LED_MANPW
604 DLEDManPW when ’Manual Power Window AND LED Power Window’ {
605 addsignal {
606 release_pw_but boolean
607 led_pw_up_on boolean
608 led_pw_up_off boolean
609 led_pw_dn_on boolean
610 led_pw_dn_off boolean
611 release_pw_but_dn boolean
612 release_pw_but_up boolean
613 }
614 addcomponent {
615 LED_ManPW {
616
617 }
618 }
619 addconnector {
620 manpwledapw1(ManPW,pw_mv_dn,pw_mv_dn,LED_ManPW)
621 manpwledapw2(ManPW,pw_mv_up,pw_mv_up,LED_ManPW)
622 hmiledapw3(HMI,release_pw_but,release_pw_but,LED_ManPW)
623
624 envhmi1(ENV,release_pw_but_up,release_pw_but_up,HMI)
625 envhmi2(ENV,release_pw_but_dn,release_pw_but_dn,HMI)
626
627 ledmanpwenv1(LED_ManPW,led_pw_up_on,led_pw_up_on,ENV)
628 ledmanpwenv2(LED_ManPW,led_pw_dn_on,led_pw_dn_on,ENV)
629 ledmanpwenv3(LED_ManPW,led_pw_up_off,led_pw_up_off,ENV)
630 ledmanpwenv4(LED_ManPW,led_pw_dn_off,led_pw_dn_off,ENV)
631 }
632 }
633
634 //LED_AS
635 DLEDAS after DAS when ’LED Alarm System’ {
636 removeconnector {
637 asenv5(AS,as_alarm_was_detected,as_alarm_was_detected,ENV)
638 }
639
640 addsignal {
641 led_as_active_on boolean



A.3. Architecture Definition of the Core Product of BCS 145

642 led_as_active_off boolean
643 led_as_alarm_on boolean
644 led_as_alarm_off boolean
645 led_as_alarm_detected_on boolean
646 led_as_alarm_detected_off boolean
647 as_alarm_was_confirmed boolean
648 confirm_alarm boolean
649 }
650
651 addcomponent {
652 LED_ASAD {
653
654 }
655 LED_ASAC {
656
657 }
658 LED_ASAL {
659
660 }
661 }
662
663 addconnector {
664 //ASAD
665 hmiledasad1(HMI,as_alarm_was_confirmed,

as_alarm_was_confirmed,LED_ASAD)
666 asledasad1(AS,as_alarm_was_detected,as_alarm_was_detected,

LED_ASAD)
667 ledasadenv1(LED_ASAD,led_as_alarm_detected_on,

led_as_alarm_detected_on,ENV)
668 ledasadenv2(LED_ASAD,led_as_alarm_detected_off,

led_as_alarm_detected_off,ENV)
669 //ASAL
670 asledasal1(AS,as_alarm_on,as_alarm_on,LED_ASAL)
671 asledasal2(AS,as_alarm_off,as_alarm_off,LED_ASAL)
672 ledasalenv1(LED_ASAL,led_as_alarm_on,led_as_alarm_on,ENV)
673 ledasalenv2(LED_ASAL,led_as_alarm_off,led_as_alarm_off,ENV)
674 //ASAC
675 asledasac1(AS,as_active_on,as_active_on,LED_ASAC)
676 asledasac2(AS,as_active_off,as_active_off,LED_ASAC)
677 ledasacenv1(LED_ASAC,led_as_active_on,led_as_active_on,ENV)
678 ledasacenv2(LED_ASAC,led_as_active_off,led_as_active_off,ENV

)
679 //HMI
680 envhmi3(ENV,confirm_alarm,confirm_alarm,HMI)
681 }
682 }
683 //LED_ASIM
684 DLEDASIM after DAS DASIM when ’LED Alarm System AND Interior

Monitoring’ {
685 addsignal {
686 led_as_im_alarm_on boolean
687 led_as_im_alarm_off boolean
688 }



146 A. Appendix

689
690 addcomponent {
691 LED_ASIM {
692
693 }
694 }
695 addconnector {
696 asledasim1(AS,as_im_alarm_on,as_im_alarm_on,LED_ASIM)
697 asledasim2(AS,as_im_alarm_off,as_im_alarm_off,LED_ASIM)
698 ledasimenv1(LED_ASIM,led_as_im_alarm_on,led_as_im_alarm_on,

ENV)
699 ledasimenv2(LED_ASIM,led_as_im_alarm_off,led_as_im_alarm_off

,ENV)
700 }
701 }
702 }
703 }

Listing A.2: Deltas ofr BCS [Lity et al., 2013]



Bibliography

Iago Abal, Claus Brabrand, and Andrzej Wasowski. 42 Variability Bugs in the Linux
Kernel: A Qualitative Analysis. In Proc. Int’l Conf. Automated Software Engineering
(ASE), pages 421–432, New York, NY, USA, 2014. ACM. (cited on Page xvii, 21, 23,

38, 39, 56, 57, 67, 76, and 115)

Mustafa Al-Hajjaji, Thomas Thüm, Jens Meinicke, Malte Lochau, and Gunter Saake.
Similarity-Based Prioritization in Software Product-Line Testing. In Proc. Int’l Soft-
ware Product Line Conf. (SPLC), pages 197–206, New York, NY, USA, 2014. ACM.
(cited on Page 19)

Mustafa Al-Hajjaji, Fabian Benduhn, Thomas Thüm, Thomas Leich, and Gunter Saake.
Mutation Operators for Preprocessor-Based Variability. In Proc. Int’l Workshop Vari-
ability Modelling of Software-Intensive Systems (VaMoS), pages 81–88, New York,
NY, USA, 2016a. ACM. (cited on Page 115)

Mustafa Al-Hajjaji, Sebastian Krieter, Thomas Thüm, Malte Lochau, and Gunter
Saake. IncLing: Efficient Product-Line Testing Using Incremental Pairwise Sam-
pling. In Proc. Int’l Conf. Generative Programming and Component Engineering
(GPCE), pages 144–155, New York, NY, USA, 2016b. ACM. (cited on Page 19, 87,

and 118)

Mustafa Al-Hajjaji, Jens Meinicke, Sebastian Krieter, Reimar Schröter, Thomas Thüm,
Thomas Leich, and Gunter Saake. Tool Demo: Testing Configurable Systems with
FeatureIDE. In Proc. Int’l Conf. Generative Programming and Component Engineer-
ing (GPCE), pages 173–177, New York, NY, USA, 2016c. ACM. (cited on Page 27,

87, and 117)

Mustafa Al-Hajjaji, Thomas Thüm, Malte Lochau, Jens Meinicke, and Gunter Saake.
Effective Product-Line Testing Using Similarity-Based Product Prioritization. Soft-
ware and System Modeling, pages 1–23, 2016d. (cited on Page 5 and 19)

Mustafa Al-Hajjaji, Jacob Krüger, Fabian Benduhn, Thomas Leich, and Gunter Saake.
Efficient Mutation Testing in Configurable Systems. In Proc. of Int’l Workshop on
n Variability and Complexity in Software Design (VACE), VACE ’17, pages 2–8,
Piscataway, NJ, USA, 2017a. IEEE Press. (cited on Page 115)



148 Bibliography

Mustafa Al-Hajjaji, Jacob Krüger, Sandro Schulze, Thomas Leich, and Gunter Saake.
Efficient Product-line Testing Using Cluster-based Product Prioritization. In Proc. of
Int’l Workshop on Automation of Software Testing (AST), pages 16–22, Piscataway,
NJ, USA, 2017b. IEEE Press. (cited on Page 19)

Mustafa Al-Hajjaji, Sascha Lity, Remo Lachmann, Thomas Thüm, Ina Schaefer, and
Gunter Saake. Delta-Oriented Product Prioritization for Similarity-Based Product-
Line Testing. In Proc. of Int’l Workshop on n Variability and Complexity in Software
Design (VACE), pages 34–40, Piscataway, NJ, USA, 2017c. IEEE Press. (cited on

Page 63)

Michal Antkiewicz, Wenbin Ji, Thorsten Berger, Krzysztof Czarnecki, Thomas Schmor-
leiz, Ralf Lämmel, Stefan Stănciulescu, Andrzej W ↪asowski, and Ina Schaefer. Flexible
Product Line Engineering with a Virtual Platform. In Proc. Int’l Conf. Software En-
gineering (ICSE), pages 532–535, New York, NY, USA, 2014. ACM. (cited on Page 1)

Sven Apel, Christian Kästner, and Christian Lengauer. FeatureHouse: Language-
Independent, Automated Software Composition. In Proc. Int’l Conf. Software Engi-
neering (ICSE), pages 221–231, Washington, DC, USA, May 2009. IEEE. (cited on

Page 12 and 32)

Sven Apel, Don Batory, Christian Kästner, and Gunter Saake. Feature-Oriented Soft-
ware Product Lines: Concepts and Implementation. Springer, Berlin, Heidelberg,
2013a. (cited on Page xv, 1, 5, 6, 7, 11, 12, and 14)

Sven Apel, Christian Kästner, and Christian Lengauer. Language-Independent and Au-
tomated Software Composition: The FeatureHouse Experience. IEEE Trans. Soft-
ware Engineering (TSE), 39(1):63–79, January 2013b. (cited on Page 123)

Sven Apel, Alexander von Rhein, Philipp Wendler, Armin Größlinger, and Dirk Beyer.
Strategies for Product-Line Verification: Case Studies and Experiments. In Proc.
Int’l Conf. Software Engineering (ICSE), pages 482–491, Piscataway, NJ, USA, May
2013c. IEEE. (cited on Page 14, 29, 32, 55, and 123)

P. Arcaini, A. Gargantini, and P. Vavassori. Generating Tests for Detecting Faults in
Feature Models. In Proc. Int’l Conf. Software Testing, Verification and Validation
(ICST), pages 1–10, April 2015. (cited on Page 111 and 115)

Andrea Arcuri and Lionel Briand. A Practical Guide for Using Statistical Tests to
Assess Randomized Algorithms in Software Engineering. In Proc. Int’l Conf. Software
Engineering (ICSE), pages 1–10, New York, NY, USA, 2011. ACM. (cited on Page 31)

Ebrahim Bagheri, Faezeh Ensan, and Dragan Gasevic. Grammar-based Test Generation
for Software Product Line Feature Models. In Proc. Conf. Centre for Advanced
Studies on Collaborative Research (CASCON), pages 87–101, Riverton, NJ, USA,
2012. IBM Corp. (cited on Page 38)



Bibliography 149

Hauke Baller and Malte Lochau. Towards Incremental Test Suite Optimization for Soft-
ware Product Lines. In Proc. Int’l Workshop Feature-Oriented Software Development
(FOSD), pages 30–36, New York, NY, USA, 2014. ACM. (cited on Page 58)

Hauke Baller, Sascha Lity, Malte Lochau, and Ina Schaefer. Multi-Objective Test Suite
Optimization for Incremental Product Family Testing. In Proc. Int’l Conf. Software
Testing, Verification and Validation (ICST), pages 303–312, Washington, DC, USA,
2014. IEEE. (cited on Page 2, 18, 19, 58, 59, 63, and 84)

Don Batory. Feature Models, Grammars, and Propositional Formulas. In Proc. Int’l
Software Product Line Conf. (SPLC), pages 7–20, Berlin, Heidelberg, 2005. Springer.
(cited on Page 9 and 119)

Don Batory, Jacob N. Sarvela, and Axel Rauschmayer. Scaling Step-Wise Refinement.
IEEE Trans. Software Engineering (TSE), 30(6):355–371, 2004. (cited on Page 1

and 119)

Bernhard Beckert, Reiner Hähnle, and Peter Schmitt. Verification of Object-Oriented
Software: The KeY Approach. Springer, Berlin, Heidelberg, 2007. (cited on Page 123

and 124)

David Benavides, Sergio Segura, and Antonio Ruiz-Cortés. Automated Analysis of
Feature Models 20 Years Later: A Literature Review. Information Systems, 35(6):
615–708, 2010. (cited on Page 11, 99, and 119)

Gilles Bernot. Testing Against Formal Specifications: A Theoretical View. In Proc.
of the Int’l Joint Conf. Theory and Practice of Software Development on Advances
in Distributed Computing (TAPSOFT), pages 99–119, New York, NY, USA, 1991.
Springer. (cited on Page 87)

Antonia Bertolino, Paola Inverardi, Henry Muccini, and Andrea Rosetti. An approach
to integration testing based on architectural descriptions. In Proc. Int’l Conf. En-
gineering of Complex Computer Systems (ICECCS), pages 77–84. IEEE, Sep 1997.
(cited on Page 68)

Antonia Bertolino, Donia Daoudagh, Said El Kateb, Christopher Henard, Yves
Le Traon, Francesca Lonetti, Eda Marchetti, Tejeddine Mouelhi, and Mike Papadakis.
Similarity Testing for Access Control. J. Information and Software Technology (IST),
58:355–372, 2015. (cited on Page 59)

Al Bessey, Ken Block, Ben Chelf, Andy Chou, Bryan Fulton, Seth Hallem, Charles
Henri-Gros, Asya Kamsky, Scott McPeak, and Dawson Engler. A Few Billion Lines
of Code Later: Using Static Analysis to Find Bugs in the Real World. Comm. ACM,
53(2):66–75, 2010. (cited on Page 23)

Renée C. Bryce and Charles J. Colbourn. One-test-at-a-time Heuristic Search for In-
teraction Test Suites. In Proc. Int’l Conf. on Genetic and Evolutionary Computation
(GECCO), pages 1082–1089, New York, NY, USA, 2007. ACM. (cited on Page 60)



150 Bibliography

Renée C. Bryce and Atif M. Memon. Test Suite Prioritization by Interaction Coverage.
In Workshop on Domain Specific Approaches to Software Test Automation: Conjunc-
tion with the 6th ESEC/FSE Joint Meeting, DOSTA ’07, pages 1–7, New York, NY,
USA, 2007. ACM. (cited on Page 18, 28, and 33)

Johannes Bürdek, Malte Lochau, Stefan Bauregger, Andreas Holzer, Alexander von
Rhein, Sven Apel, and Dirk Beyer. Facilitating Reuse in Multi-goal Test-Suite Gen-
eration for Software Product Lines. In Proc. Int’l Conf. Fundamental Approaches
to Software Engineering (FASE), pages 84–99. Springer, Berlin, Heidelberg, 2015.
(cited on Page 13 and 118)

Benjamin Busjaeger and Tao Xie. Learning for Test Prioritization: An Industrial Case
Study. In Proc. Int’l Symposium Foundations of Software Engineering (FSE), pages
975–980, New York, NY, USA, 2016. ACM. (cited on Page 49)

Xia Cai and Michael R. Lyu. The Effect of Code Coverage on Fault Detection Under
Different Testing Profiles. SIGSOFT Software Engineering Notes, 30(4):1–7, 2005.
(cited on Page 88)

Ivan Do Carmo Machado, John D. McGregor, Yguaratã Cerqueira Cavalcanti, and
Eduardo Santana De Almeida. On Strategies for Testing Software Product Lines:
A Systematic Literature Review. J. Information and Software Technology (IST), 56
(10):1183–1199, 2014. (cited on Page 14, 19, and 109)

Emanuela G. Cartaxo, Patricia D. L. Machado, and Francisco G. Oliveira Neto. On the
Use of a Similarity Function for Test Case Selection in the Context of Model-based
Testing. Software Testing, Verification and Reliability (STVR), 21(2):75–100, 2011.
(cited on Page 20)

Luiz Carvalho, Marcio Augusto Guimarães, Márcio Ribeiro, Leonardo Fernandes,
Mustafa Al-Hajjaji, Rohit Gheyi, and Thomas Thüm. Equivalent Mutants in Config-
urable Systems: An Empirical Study. In Proc. Int’l Workshop Variability Modelling
of Software-Intensive Systems (VaMoS), pages 11–18, New York, NY, USA, 2018.
ACM. (cited on Page 115)

Tsong Yueh Chen, Fei-Ching Kuo, Robert G. Merkel, and T.H. Tse. Adaptive Random
Testing: The ART of Test Case Diversity. J. Systems and Software (JSS), 83(1):60
– 66, 2010. (cited on Page 20)

Vasek Chvatal. A Greedy Heuristic for the Set-Covering Problem. Mathematics of
operations research, 4(3):233–235, 1979. (cited on Page 2, 15, 27, 37, 60, 87, 99, 100, 109,

and 121)

Dave Clarke, Michiel Helvensteijn, and Ina Schaefer. Abstract Delta Modelling. Math-
ematical Structures in Computer Science, 25(3):482––527, 2015. (cited on Page 63, 64,

65, 67, and 69)



Bibliography 151

Paul Clements and Linda Northrop. Software Product Lines: Practices and Patterns.
Addison-Wesley, Boston, MA, USA, 2001. (cited on Page 1 and 5)

D. M. Cohen, S. R. Dalal, A. Kajla, and G. C. Patton. The Automatic Efficient Test
Generator (AETG) system. In Proc. Int’l Symposium Software Reliability Engineering
(ISSRE), pages 303–309, Washington, Nov 1994. IEEE. (cited on Page 16)

M.B. Cohen, P.B. Gibbons, W.B. Mugridge, and C.J. Colbourn. Constructing Test
Suites for Interaction Testing. In Proc. Int’l Conf. Software Engineering (ICSE),
pages 38–48. IEEE, May 2003. (cited on Page 87)

Myra B. Cohen, Matthew B. Dwyer, and Jiangfan Shi. Interaction Testing of Highly-
Configurable Systems in the Presence of Constraints. In Proc. Int’l Symposium in
Software Testing and Analysis (ISSTA), pages 129–139. ACM, 2007. (cited on Page 2,

19, and 109)

Stephen A. Cook. The Complexity of Theorem-proving Procedures. In Proc. of the
annual ACM symposium on Theory of computing (STOC), pages 151–158, New York,
NY, USA, 1971. ACM. (cited on Page 15)

Krzysztof Czarnecki and Ulrich Eisenecker. Generative Programming: Methods, Tools,
and Applications. ACM/Addison-Wesley, New York, NY, USA, 2000. (cited on Page 1,

5, 6, and 7)

Xavier Devroey, Gilles Perrouin, Maxime Cordy, Pierre-Yves Schobbens, Axel Legay,
and Patrick Heymans. Towards Statistical Prioritization for Software Product Lines
Testing. In Proc. Int’l Workshop Variability Modelling of Software-Intensive Systems
(VaMoS), pages 10:1–10:7, New York, NY, USA, January 2014. ACM. (cited on

Page 2, 18, 19, 58, 63, and 83)

Xavier Devroey, Gilles Perrouin, Axel Legay, Pierre-Yves Schobbens, and Patrick Hey-
mans. Search-based Similarity-driven Behavioural SPL Testing. In Proc. Int’l Work-
shop Variability Modelling of Software-Intensive Systems (VaMoS), pages 89–96, New
York, NY, USA, 2016. ACM. (cited on Page 2, 20, 22, 38, 52, 58, 69, and 83)

Christian Dietrich, Reinhard Tartler, Wolfgang Schröder-Preikschat, and Daniel
Lohmann. Understanding Linux Feature Distribution. In Proc. of Workshop on
Modularity in Systems Software (MISS), pages 15–20, NY, USA, 2012. ACM. (cited

on Page 23 and 67)

Edsger W. Dijkstra. A Discipline of Programming. Prentice Hall PTR, Upper Saddle
River, NJ, USA, 1st edition, 1976. (cited on Page 6 and 12)

Ibrahim K. El-Far and James A. Whittaker. Model-Based Software Testing, volume 1,
pages 825–837. John Wiley & Sons, Inc., 2002. (cited on Page 13)



152 Bibliography

Sebastian Elbaum, Alexey G. Malishevsky, and Gregg Rothermel. Prioritizing Test
Cases for Regression Testing. SIGSOFT Software Engineering Notes, 25(5):102–112,
August 2000. (cited on Page 29, 52, and 78)

Sebastian Elbaum, Alexey G. Malishevsky, and Gregg Rothermel. Test Case Prioriti-
zation: A Family of Empirical Studies. IEEE Trans. Software Engineering (TSE),
28(2):159–182, 2002. (cited on Page 29 and 55)

Sebastian Elbaum, Gregg Rothermel, Satya Kanduri, and Alexey G. Malishevsky. Se-
lecting a Cost-Effective Test Case Prioritization Technique. Software Quality Journal
(SQJ), 12(3):185–210, 2004. (cited on Page 2)

Lars Engebretsen. The Nonapproximability of Non-Boolean Predicates. SIAM Journal
on Discrete Mathematics, 18(1):114–129, 2005. (cited on Page 2 and 15)

Alireza Ensan, Ebrahim Bagheri, Mohsen Asadi, Dragan Gasevic, and Yevgen Bilet-
skiy. Goal-Oriented Test Case Selection and Prioritization for Product Line Feature
Models. In Proc. Int’l Conf. on Information Technology:New Generations (ITNG),
pages 291–298. IEEE, 2011. (cited on Page 18, 58, 83, and 110)

Faezeh Ensan, Ebrahim Bagheri, and Dragan Gasevic. Evolutionary Search-Based Test
Generation for Software Product Line Feature Models. In Proc. Int’l Conf. Advanced
Information Systems Engineering (CAiSE), volume 7328, pages 613–628. Springer,
2012. (cited on Page 38, 52, 88, and 110)

Stefan Ferber, Jürgen Haag, and Juha Savolainen. Feature Interaction and Dependen-
cies: Modeling Features for Reengineering a Legacy Product Line, pages 235–256.
Springer, Berlin, Heidelberg, 2002. (cited on Page 14)

Phyllis G. Frankl and Oleg Iakounenko. Further Empirical Studies of Test Effectiveness.
SIGSOFT Software Engineering Notes, 23(6):153–162, 1998. (cited on Page 88)

Brady J. Garvin, Myra B. Cohen, and Matthew B. Dwyer. Evaluating Improvements
to a Meta-Heuristic Search for Constrained Interaction Testing. Empirical Software
Engineering (EMSE), 16(1):61–102, 2011. (cited on Page 2, 11, 15, 19, 27, 37, 60, 87, 99,

100, 110, 118, and 121)

Mats Grindal, Jeff Offutt, and Sten F Andler. Combination Testing Strategies: A
Survey. Software Testing, Verification and Reliability (STVR), 15(3):167–199, 2005.
(cited on Page 87)

Mark Hall, Eibe Frank, Geoffrey Holmes, Bernhard Pfahringer, Peter Reutemann, and
Ian H. Witten. The WEKA Data Mining Software: An Update. ACM SIGKDD
Explorations Newsletter, 11(1):10–18, 2009. (cited on Page 52)

Robert J. Hall. Fundamental Nonmodularity in Electronic Mail. Automated Software
Engineering, 12(1):41–79, January 2005. (cited on Page 32)



Bibliography 153

Richard W Hamming. Error detecting and error correcting codes. Bell System technical
journal, 29(2):147–160, 1950. (cited on Page 22)

Robert M. Haralick and Gordon L. Elliott. Increasing tree search efficiency for constraint
satisfaction problems. Artificial Intelligence, 14(3):263–313, 1980. (cited on Page 17,

98, and 109)

Mary Jean Harrold. Testing: A Roadmap. In Proc. of the Conf. on The Future of
Software Engineering (FSE), pages 61–72, New York, NY, USA, 2000. ACM. (cited

on Page 1 and 2)

Klaus Havelund and Thomas Pressburger. Model Checking Java Programs Using Java
PathFinder. Int’l J. Software Tools for Technology Transfer (STTT), 2(4):366–381,
2000. (cited on Page 123 and 124)

Armijn Hemel and Rainer Koschke. Reverse Engineering Variability in Source Code
Using Clone Detection: A Case Study for Linux Variants of Consumer Electronic
Devices. In Proc. Working Conf. Reverse Engineering (WCRE), pages 357–366,
Washington, DC, USA, 2012. IEEE. (cited on Page 1)

Hadi Hemmati and Lionel Briand. An Industrial Investigation of Similarity Measures
for Model-Based Test Case Selection. In Proc. Int’l Symposium Software Reliability
Engineering (ISSRE), pages 141–150, Washington, DC, USA, November 2010. IEEE.
(cited on Page 20 and 84)

Hadi Hemmati, Andrea Arcuri, and Lionel Briand. Empirical Investigation of the Effects
of Test Suite Properties on Similarity-Based Test Case Selection. In Proc. Int’l Conf.
Software Testing, Verification and Validation (ICST), pages 327–336. IEEE, March
2011. (cited on Page 20 and 84)

Hadi Hemmati, Andrea Arcuri, and Lionel Briand. Achieving Scalable Model-based
Testing Through Test Case Diversity. Trans. Software Engineering and Methodology
(TOSEM), 22(1):6:1–6:42, 2013. (cited on Page 18, 25, 65, and 69)

Christopher Henard, Mike Papadakis, Gilles Perrouin, Jacques Klein, and Yves Le
Traon. Multi-Objective Test Generation for Software Product Lines. In Proc. Int’l
Software Product Line Conf. (SPLC), pages 62–71, New York, NY, USA, 2013a.
ACM. (cited on Page 2, 18, 19, and 88)

Christopher Henard, Mike Papadakis, Gilles Perrouin, Jacques Klein, and Yves Le
Traon. PLEDGE: A Product Line Editor and Test Generation Tool. In Proc. Int’l
Software Product Line Conf. (SPLC), pages 126–129, New York, NY, USA, 2013b.
ACM. (cited on Page 57 and 118)

Christopher Henard, Mike Papadakis, Gilles Perrouin, Jacques Klein, and Yves Le
Traon. Assessing Software Product Line Testing Via Model-Based Mutation: An



154 Bibliography

Application to Similarity Testing. In Proc. of Int’l Conf. on Software Testing, Ver-
ification and Validation Workshops (ICSTW), pages 188–197. IEEE, March 2013c.
(cited on Page 18, 58, 66, and 83)

Christopher Henard, Mike Papadakis, and Yves Le Traon. Mutation-Based Generation
of Software Product Line Test Configurations. In Search-Based Software Engineering,
volume 8636 of Lecture Notes in Computer Science, pages 92–106. Springer, 2014a.
(cited on Page 110, 111, and 115)

Christopher Henard, Mike Papadakis, Gilles Perrouin, Jacques Klein, Patrick Heymans,
and Yves Le Le Traon. Bypassing the Combinatorial Explosion: Using Similarity
to Generate and Prioritize T-Wise Test Configurations for Software Product Lines.
IEEE Trans. Software Engineering (TSE), 40(7):650–670, July 2014b. (cited on

Page 2, 15, 18, 20, 25, 28, 36, 37, 57, 58, 63, 66, 69, 71, 83, 87, 88, 108, and 110)

Christopher Henard, Mike Papadakis, Mark Harman, Yue Jia, and Yves Le Traon.
Comparing White-box and Black-box Test Prioritization. In Proc. Int’l Conf. Soft-
ware Engineering (ICSE), pages 523–534, New York, NY, USA, 2016. ACM. (cited

on Page 18, 29, 37, 55, 59, and 84)

Kevin J. Hoffman, Patrick Eugster, and Suresh Jagannathan. Semantics-aware Trace
Analysis. In Proc. ACM SIGPLAN Conf. Programming Language Design and Im-
plementation (PLDI), pages 453–464, New York, NY, USA, 2009. ACM. (cited on

Page 122)

IEEE. The Institute of Electrical and Eletronics Engineer. IEEE standard glossary of
software engineering terminology. IEEE Std., 610121990:3, 1990. (cited on Page 13)

Daniel Jackson. Software Abstractions: Logic, Language, and Analysis. MIT press,
2012. (cited on Page 109)

Michael Jackson and Pamela Zave. Distributed Feature Composition: A Virtual Archi-
tecture for Telecommunications Services. IEEE Trans. Software Engineering (TSE),
24(10):831–847, Oct 1998. (cited on Page 14 and 117)

Yue Jia and Mark Harman. An Analysis and Survey of the Development of Mutation
Testing. IEEE Trans. Software Engineering (TSE), 37(5):649–678, September 2011.
ISSN 0098-5589. (cited on Page 115)

Martin Fagereng Johansen, Øystein Haugen, and Franck Fleurey. Properties of Realistic
Feature Models Make Combinatorial Testing of Product Lines Feasible. In Proc. Int’l
Conf. Model Driven Engineering Languages and Systems (MODELS), pages 638–
652. Springer, Berlin, Heidelberg, 2011. (cited on Page 2, 11, 15, 27, 87, 99, 108, 109, 118,

and 121)

Martin Fagereng Johansen, Øystein Haugen, and Franck Fleurey. An Algorithm for
Generating T-Wise Covering Arrays from Large Feature Models. In Proc. Int’l Soft-
ware Product Line Conf. (SPLC), pages 46–55, NY, USA, 2012a. ACM. (cited on



Bibliography 155

Page 2, 11, 14, 15, 16, 19, 27, 36, 37, 38, 60, 85, 87, 88, 96, 97, 99, 100, 101, 108, 109, 118, and 121)

Martin Fagereng Johansen, Øystein Haugen, Franck Fleurey, Anne Grete Eldegard, and
Torbjørn Syversen. Generating Better Partial Covering Arrays by Modeling Weights
on Sub-Product Lines. In Proc. Int’l Conf. Model Driven Engineering Languages and
Systems (MODELS), pages 269–284. Springer, Berlin, Heidelberg, 2012b. (cited on

Page 2, 18, 19, 58, 63, 83, and 110)

Kyo C. Kang, Sholom G. Cohen, James A. Hess, William E. Novak, and A. Spencer
Peterson. Feature-Oriented Domain Analysis (FODA) Feasibility Study. Technical
Report CMU/SEI-90-TR-21, Software Engineering Institute, 1990. (cited on Page 1,

5, 6, and 8)

Christian Kästner, Sven Apel, and Martin Kuhlemann. Granularity in Software Product
Lines. In Proc. Int’l Conf. Software Engineering (ICSE), pages 311–320, New York,
NY, USA, May 2008. ACM. (cited on Page 12)

Christian Kästner, Sven Apel, Syed Saif ur Rahman, Marko Rosenmüller, Don Batory,
and Gunter Saake. On the Impact of the Optional Feature Problem: Analysis and
Case Studies. In Proc. Int’l Software Product Line Conf. (SPLC), pages 181–190,
Pittsburgh, PA, USA, 2009. Software Engineering Institute. (cited on Page 2)

Gregor Kiczales, John Lamping, Anurag Mendhekar, Chris Maeda, Cristina Lopes,
Jean-Marc Loingtier, and John Irwin. Aspect-Oriented Programming. In Proc. Europ.
Conf. Object-Oriented Programming (ECOOP), pages 220–242, Berlin, Heidelberg,
1997. Springer. (cited on Page 12 and 119)

Chang Hwan Peter Kim, Don Batory, and Sarfraz Khurshid. Reducing Combinatorics
in Testing Product Lines. In Proc. Int’l Conf. Aspect-Oriented Software Development
(AOSD), pages 57–68, New York, NY, USA, 2011. ACM. (cited on Page 109 and 110)

Chang Hwan Peter Kim, Darko Marinov, Sarfraz Khurshid, Don Batory, Sabrina Souto,
Paulo Barros, and Marcelo D’Amorim. SPLat: Lightweight Dynamic Analysis for
Reducing Combinatorics in Testing Configurable Systems. In Proc. Europ. Software
Engineering Conf./Foundations of Software Engineering (ESEC/FSE), pages 257–
267, New York, NY, USA, 2013. ACM. (cited on Page 123)

Matthias Kowal, Sandro Schulze, and Ina Schaefer. Towards Efficient SPL Testing
by Variant Reduction. In Proce. Int’l workshop on Variability & composition (Vari-
Comp), pages 1–6, New York, NY, USA, 2013. ACM. (cited on Page 110)

J. Kramer, J. Magee, M. Sloman, and A. Lister. CONIC: An Integrated Approach
to Distributed Computer Control Systems. IEE Proc. Computers and Digital Tech-
niques, 130(1):1–10, January 1983. (cited on Page 32)



156 Bibliography

Sebastian Krieter, Thomas Thüm, Sandro Schulze, Reimar Schröter, and Gunter Saake.
Propagating Configuration Decisions with Modal Implication Graphs. In Proc. Int’l
Conf. Software Engineering (ICSE), New York, NY, USA, 2018. ACM. To appear.
(cited on Page 97)

Michael J. Kuby. Programming Models for Facility Dispersion: The p-Dispersion and
Maxisum Dispersion Problems. Geographical Analysis, 19(4):315–329, 1987. (cited

on Page 25)

D. Richard Kuhn, Dolores R. Wallace, and Albert M. Gallo Jr. Software Fault Inter-
actions and Implications for Software Testing. IEEE Trans. Software Engineering
(TSE), 30(6):418–421, 2004. (cited on Page 38, 109, and 118)

D. Richard Kuhn, Raghu N. Kacker, and Yu Lei. Introduction to Combinatorial Testing.
Chapman & Hall/CRC, London, UK, 1st edition, 2013. (cited on Page 29 and 55)

Rick Kuhn, Yu Lei, and Raghu Kacker. Practical Combinatorial Testing: Beyond
Pairwise. IT Professional, 10(3):19–23, May 2008. (cited on Page 87)

Remo Lachmann, Sascha Lity, Sabrina Lischke, Simon Beddig, Sandro Schulze, and Ina
Schaefer. Delta-Oriented Test Case Prioritization for Integration Testing of Software
Product Lines. In Proc. Int’l Software Product Line Conf. (SPLC), pages 81–90, New
York, NY, USA, 2015. ACM. (cited on Page 18, 59, 65, 82, and 84)

Remo Lachmann, Sascha Lity, Franz E. Fürchtegott, Mustafa Al-Hajjaji, and Ina Sch-
aefer. Fine-Grained Test Case Prioritization for Integration Testing of Delta-Oriented
Software Product Lines. In Proc. Int’l Workshop Feature-Oriented Software Devel-
opment (FOSD), pages 1–10, New York, NY, USA, 2016. ACM. (cited on Page 18, 59,

65, and 84)

Miguel A. Laguna and Yania Crespo. A Systematic Mapping Study on Software Product
Line Evolution: From Legacy System Reengineering to Product Line Refactoring.
Science of Computer Programming (SCP), 78(8):1010–1034, 2013. (cited on Page 1)

Daniel Le Berre and Anne Parrain. The SAT4J Library, Release 2.2, System Descrip-
tion. Journal on Satisfiability, Boolean Modeling and Computation (JSAT), 7:59–64,
2010. (cited on Page 99)

Jihyun Lee, Sungwon Kang, and Danhyung Lee. A Survey on Software Product Line
Testing. In Proc. Int’l Software Product Line Conf. (SPLC), pages 31–40, New York,
NY, USA, 2012. ACM. (cited on Page 1)

Yu Lei and Kuo-Chung Tai. In-Parameter-Order: A Test Generation Strategy for
Pairwise Testing. In Proc. Int’l Symposium High-Assurance Systems Engineering
(HASE), pages 254–261, Washington, 1998. IEEE Computer Society. (cited on

Page 16)



Bibliography 157

Yu Lei, Raghu N. Kacker, D. Richard Kuhn, Vadim Okun, and James Lawrence. IPOG:
A General Strategy for T-Way Software Testing. In Proc. Int’l Conf. Engineering of
Computer-Based Systems (ECBS), pages 549–556. IEEE, 2007. (cited on Page 2, 11,

15, 16, 87, and 100)

Zheng Li, Mark Harman, and Robert Hierons. Search Algorithms for Regression Test
Case Prioritization. IEEE Trans. Software Engineering (TSE), 33(4):225–237, 2007.
(cited on Page 29 and 55)

Jörg Liebig, Sven Apel, Christian Lengauer, Christian Kästner, and Michael Schulze.
An Analysis of the Variability in Forty Preprocessor-Based Software Product Lines.
In Proc. Int’l Conf. Software Engineering (ICSE), pages 105–114, Washington, DC,
USA, May 2010. IEEE. (cited on Page 12)

Jörg Liebig, Alexander von Rhein, Christian Kästner, Sven Apel, Jens Dörre, and
Christian Lengauer. Scalable Analysis of Variable Software. In Proc. Europ. Software
Engineering Conf./Foundations of Software Engineering (ESEC/FSE), pages 81–91,
New York, NY, USA, 2013. ACM. (cited on Page 17)

Sascha Lity, Remo Lachmann, Malte Lochau, and Ina Schaefer. Delta-Oriented Software
Product Line Test Models-The Body Comfort System Case Study. Technical report,
Technical report, TU Braunschweig, 2013. (cited on Page xxi, 73, 75, 76, 77, 132, and 146)

Sascha Lity, Thomas Morbach, Thomas Thüm, and Ina Schaefer. Applying Incremental
Model Slicing to Product-Line Regression Testing. In Proc. Int’l Conf. Software Reuse
(ICSR), pages 3–19, Berlin, Heidelberg, 2016. Springer. (cited on Page 20, 65, and 115)

Sascha Lity, Mustafa Al-Hajjaji, Thomas Thüm, and Ina Schaefer. Optimizing Product
Orders Using Graph Algorithms for Improving Incremental Product-Line Analysis. In
Proc. Int’l Workshop Variability Modelling of Software-Intensive Systems (VaMoS),
pages 60–67, New York, NY, USA, 2017. ACM. (cited on Page 3, 20, 49, 83, and 115)

Malte Lochau, Ina Schaefer, Jochen Kamischke, and Sascha Lity. Incremental Model-
Based Testing of Delta-oriented Software Product Lines. In Proc. of Int’l Conf. on
Tests and Proofs (TAP), pages 67–82, Berlin, Heidelberg, 2012. Springer. (cited on

Page 65, 82, and 109)

Malte Lochau, Sascha Lity, Remo Lachmann, Ina Schaefer, and Ursula Goltz. Delta-
Oriented Model-Based Integration Testing of Large-Scale Systems. J. Systems and
Software (JSS), 91:63–84, 2014. (cited on Page 65, 73, and 82)

Roberto Lopez-Herrejon, Francisco Chicano, Javier Ferrer, Alexander Egyed, and En-
rique Alba. Multi-objective Optimal Test Suite Computation for Software Product
Line Pairwise Testing. In Proc. Int’l Conf. Software Maintenance (ICSM), pages
404–407. IEEE, 2013. (cited on Page 19 and 110)



158 Bibliography

Aditya P. Mathur. Foundations of Software Testing. Addison-Wesley Professional, 1st
edition, 2008. (cited on Page 76)

Malcolm Douglas McIlroy. Mass Produced Software Components. In Proc. NATO Conf.
Software Engineering, pages 138–155. Springer, 1968. (cited on Page 6)

Flávio Medeiros, Christian Kästner, Márcio Ribeiro, Sarah Nadi, and Rohit Gheyi. The
Love/Hate Relationship with The C Preprocessor: An Interview Study. In Proc. Eu-
rop. Conf. Object-Oriented Programming (ECOOP), pages 495–518, Dagstuhl, Ger-
many, 2015. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik. (cited on Page 117)

Flávio Medeiros, Christian Kästner, Márcio Ribeiro, Rohit Gheyi, and Sven Apel. A
Comparison of 10 Sampling Algorithms for Configurable Systems. In Proc. Int’l Conf.
Software Engineering (ICSE), pages 643–654, New York, NY, USA, 2016. ACM.
(cited on Page 2, 15, 17, 21, 23, 67, 87, and 109)

Jens Meinicke, Thomas Thüm, Reimar Schröter, Sebastian Krieter, Fabian Benduhn,
Gunter Saake, and Thomas Leich. FeatureIDE: Taming the Preprocessor Wilderness.
In Proc. Int’l Conf. Software Engineering (ICSE), 2016a. (cited on Page 119)

Jens Meinicke, Chu-Pan Wong, Christian Kästner, Thomas Thüm, and Gunter
Saake. On Essential Configuration Complexity: Measuring Interactions in Highly-
configurable Systems. In Proc. Int’l Conf. Automated Software Engineering (ASE),
pages 483–494, New York, NY, USA, 2016b. ACM. (cited on Page 14, 29, 32, 55, 122,

123, and 124)

Jens Meinicke, Thomas Thüm, Reimar Schröter, Fabian Benduhn, Thomas Leich, and
Gunter Saake. Mastering Software Variability with FeatureIDE. Springer, Berlin,
Heidelberg, 2017. (cited on Page 27 and 99)

Jean Melo, Elvis Flesborg, Claus Brabrand, and Andrzej Wasowski. A Quantitative
Analysis of Variability Warnings in Linux. In Proc. Int’l Workshop Variability Mod-
elling of Software-Intensive Systems (VaMoS), pages 3–8, New York, NY, USA, 2016.
ACM. (cited on Page 17, 88, and 99)

Marćılio Mendonça, Moises Branco, and Donald Cowan. S.P.L.O.T.: Software Product
Lines Online Tools. In Proc. Conf. Object-Oriented Programming, Systems, Lan-
guages and Applications (OOPSLA), pages 761–762, New York, NY, USA, 2009a.
ACM. (cited on Page 35 and 36)

Marćılio Mendonça, Andrzej W ↪asowski, and Krzysztof Czarnecki. SAT-Based Analysis
of Feature Models is Easy. In Proc. Int’l Software Product Line Conf. (SPLC), pages
231–240, Pittsburgh, PA, USA, 2009b. Software Engineering Institute. (cited on

Page 16, 39, and 110)



Bibliography 159

Akbar Siami Namin and James H. Andrews. The Influence of Size and Coverage on
Test Suite Effectiveness. In Proc. Int’l Symposium in Software Testing and Analysis
(ISSTA), pages 57–68, New York, NY, USA, 2009. ACM. (cited on Page 88)

Hung Viet Nguyen, Christian Kästner, and Tien N. Nguyen. Exploring Variability-
Aware Execution for Testing Plugin-Based Web Applications. In Proc. Int’l Conf.
Software Engineering (ICSE), New York, NY, USA, 2014. ACM. (cited on Page 14)

Changhai Nie and Hareton Leung. A Survey of Combinatorial Testing. ACM Computing
Surveys, 43(2):11:1–11:29, February 2011. (cited on Page 19 and 87)

Linda Northrop and P. Clements. A Framework for Software Product Line Practice,
Version 5.0. SEI, 2007. (cited on Page 6)

Sebastian Oster. Feature Model-Based Software Product Line Testing. PhD thesis, TU
Darmstadt, Darmstadt, January 2012. (cited on Page 16, 97, 98, and 109)

Sebastian Oster, Florian Markert, and Philipp Ritter. Automated Incremental Pair-
wise Testing of Software Product Lines. In Proc. Int’l Software Product Line Conf.
(SPLC), pages 196–210, Berlin, Heidelberg, 2010. Springer. (cited on Page 2, 11, 14,

15, 16, 19, 87, 97, and 101)

Sebastian Oster, Andreas Wübbeke, Gregor Engels, and Andy Schürr. A Survey of
Model-Based Software Product Lines Testing. In Model-Based Testing for Embedded
System, pages 339–381. CRC Press, Boca Raton, FL, USA, 2011a. (cited on Page 75)

Sebastian Oster, Marius Zink, Malte Lochau, and Mark Grechanik. Pairwise Feature-
interaction Testing for SPLs: Potentials and Limitations. In Proc. Int’l Software
Product Line Conf. (SPLC), pages 6:1–6:8, New York, NY, USA, 2011b. ACM. (cited

on Page 75 and 82)

Sebastian Oster, Ivan Zorcic, Florian Markert, and Malte Lochau. MoSo-PoLiTe - Tool
Support for Pairwise and Model-Based Software Product Line Testing. In Proc. Int’l
Workshop Variability Modelling of Software-Intensive Systems (VaMoS), pages 79–
82, New York, NY, USA, 2011c. ACM. (cited on Page xvi, xvii, 2, 73, 74, 78, 79, and 87)

José A. Parejo, Ana B. Sánchez, Sergio Segura, Antonio Ruiz-Cortés, Roberto E. Lopez-
Herrejon, and Alexander Egyed. Multi-Objective Test Case Prioritization in Highly
Configurable Systems: A Case Study. J. Systems and Software (JSS), 122:287 – 310,
2016. (cited on Page 59 and 83)

David L. Parnas. On the Criteria to be used in Decomposing Systems into Modules.
Comm. ACM, 15(12):1053–1058, December 1972. (cited on Page 12)

David L. Parnas. On the Design and Development of Program Families. IEEE Trans.
Software Engineering (TSE), SE-2(1):1–9, 1976. (cited on Page 6)



160 Bibliography

Juliana Alves Pereira, Sebastian Krieter, Jens Meinicke, Reimar Schröter, Gunter Saake,
and Thomas Leich. FeatureIDE: Scalable Product Configuration of Variable Systems.
In Proc. Int’l Conf. Software Reuse (ICSR), pages 397–401, Cham, 2016. Springer.
(cited on Page 27 and 119)

Gilles Perrouin, Sagar Sen, Jacques Klein, Benoit Baudry, and Yves Le Traon. Auto-
mated and Scalable T-Wise Test Case Generation Strategies for Software Product
Lines. In Proc. Int’l Conf. Software Testing, Verification and Validation (ICST),
pages 459–468, Washington, DC, USA, 2010. IEEE. (cited on Page 2, 11, 13, 14, 19, 87,

109, and 117)

Gilles Perrouin, Sebastian Oster, Sagar Sen, Jacques Klein, Benoit Baudry, and Yves
Le Traon. Pairwise Testing for Software Product Lines: Comparison of Two Ap-
proaches. Software Quality Journal (SQJ), 20(3-4):605–643, 2012. (cited on Page 2,

11, 87, and 109)

William Perry. Effective Methods for Software Testing. John Wiley & Sons, Inc., New
York, NY, USA, 2006. (cited on Page 88)

Malte Plath and Mark Ryan. Feature Integration Using a Feature Construct. Science
of Computer Programming (SCP), 41(1):53–84, September 2001. (cited on Page 32)

Klaus Pohl, Günter Böckle, and Frank J. van der Linden. Software Product Line En-
gineering: Foundations, Principles and Techniques. Springer, Berlin, Heidelberg,
September 2005. (cited on Page 1, 5, 6, and 7)

Christian Prehofer. Feature-Oriented Programming: A Fresh Look at Objects. In
Proc. Europ. Conf. Object-Oriented Programming (ECOOP), pages 419–443, Berlin,
Heidelberg, 1997. Springer. (cited on Page 12 and 32)

Xiao Qu, Myra B. Cohen, and Katherine M. Woolf. Combinatorial Interaction Re-
gression Testing: A Study of Test Case Generation and Prioritization. In Proc. Int’l
Conf. Software Maintenance (ICSM), pages 255–264, Oct 2007. (cited on Page 29

and 55)

Dennis Reuling, Johannes Bürdek, Serge Rotärmel, Malte Lochau, and Udo Kelter.
Fault-Based Product-Line Testing: Effective Sample Generation Based on Feature-
Diagram Mutation. In Proc. Int’l Software Product Line Conf. (SPLC), pages 131–
140, New York, NY, USA, 2015. ACM. (cited on Page 111 and 115)

John Rice. Mathematical Statistics and Data Analysis. Nelson Education, 2006. (cited

on Page 31)

G. Rothermel, R.H. Untch, Chengyun Chu, and M.J. Harrold. Prioritizing Test Cases
for Regression Testing. IEEE Trans. Software Engineering (TSE), 27(10):929–948,
Oct 2001. (cited on Page 17, 18, 29, 55, 60, and 84)



Bibliography 161

Ana B. Sánchez, Sergio Segura, and Antonio Ruiz-Cortés. A Comparison of Test Case
Prioritization Criteria for Software Product Lines. In Proc. Int’l Conf. Software
Testing, Verification and Validation (ICST), pages 41–50, Washington, DC, USA,
March 2014. IEEE. (cited on Page 29, 35, 37, 38, 52, 55, 57, and 83)

Ana B. Sánchez, Sergio Segura, JoséA. Parejo, and Antonio Ruiz-Cortés. Variability
Testing in the Wild: The Drupal Case Study. Software and System Modeling, pages
1–22, 2015. (cited on Page 2, 18, 20, 37, 59, 63, 65, 83, and 84)

Ina Schaefer, Lorenzo Bettini, Viviana Bono, Ferruccio Damiani, and Nico Tanzarella.
Delta-Oriented Programming of Software Product Lines. In Proc. Int’l Software
Product Line Conf. (SPLC), pages 77–91, Berlin, Heidelberg, 2010. Springer. (cited

on Page 12, 64, and 65)

Ina Schaefer, Rick Rabiser, Dave Clarke, Lorenzo Bettini, David Benavides, Goetz Bot-
terweck, Animesh Pathak, Salvador Trujillo, and Karina Villela. Software diversity:
state of the art and perspectives. Int’l J. Software Tools for Technology Transfer
(STTT), 14(5):477–495, 2012. (cited on Page 64)

Jiangfan Shi, Myra B. Cohen, and Matthew B. Dwyer. Integration Testing of Soft-
ware Product Lines Using Compositional Symbolic Execution. In Proc. Int’l Conf.
Fundamental Approaches to Software Engineering (FASE), pages 270–284, Berlin,
Heidelberg, March 2012. Springer. (cited on Page 19 and 109)

Michaela Steffens, Sebastian Oster, Malte Lochau, and Thomas Fogdal. Industrial Eval-
uation of Pairwise SPL Testing with MoSo-PoLiTe. In Proc. Int’l Workshop Variabil-
ity Modelling of Software-Intensive Systems (VaMoS), pages 55–62, New York, NY,
USA, 2012. ACM. ISBN 978-1-4503-1058-1. (cited on Page 118)

Clemens Szyperski. Component Software: Beyond Object-Oriented Programming.
Addison-Wesley, Boston, MA, USA, 2002. (cited on Page 65)

Reinhard Tartler, Daniel Lohmann, Julio Sincero, and Wolfgang Schröder-Preikschat.
Feature Consistency in Compile-Time-Configurable System Software: Facing the
Linux 10,000 Feature Problem. In Proc. of European Conf. on Computer Systems
(EuroSys), pages 47–60, New York, NY, USA, 2011. ACM. (cited on Page 119)

Thomas Thüm, Sven Apel, Christian Kästner, Ina Schaefer, and Gunter Saake. A
Classification and Survey of Analysis Strategies for Software Product Lines. ACM
Computing Surveys, 47(1):6:1–6:45, June 2014a. (cited on Page 1, 13, 118, and 123)

Thomas Thüm, Christian Kästner, Fabian Benduhn, Jens Meinicke, Gunter Saake, and
Thomas Leich. FeatureIDE: An Extensible Framework for Feature-Oriented Soft-
ware Development. Science of Computer Programming (SCP), 79(0):70–85, January
2014b. (cited on Page 27, 99, and 119)



162 Bibliography

Thomas Thüm, Jens Meinicke, Fabian Benduhn, Martin Hentschel, Alexander von
Rhein, and Gunter Saake. Potential Synergies of Theorem Proving and Model Check-
ing for Software Product Lines. In Proc. Int’l Software Product Line Conf. (SPLC),
pages 177–186, New York, NY, USA, 2014. ACM. (cited on Page 123)

Mark Utting. The Role of Model-Based Testing, pages 510–517. Springer, Berlin,
Heidelberg, 2008. (cited on Page 13)

Mark Utting and Bruno Legeard. Practical Model-Based Testing: A Tools Approach.
Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, 2007. (cited on Page 13)

Frank van der Linden. Software Product Families in Europe: The Esaps & Caf&#233;é
Projects. IEEE Software, 19(4):41–49, July 2002. (cited on Page 6)

Frank J. van der Linden, Klaus Schmid, and Eelco Rommes. Software Product Lines in
Action: The Best Industrial Practice in Product Line Engineering. Springer, Berlin,
Heidelberg, 2007. (cited on Page 1)

Willem Visser, Klaus Havelund, Guillaume P. Brat, and Seungjoon Park. Model Check-
ing Programs. In Proc. Int’l Conf. Automated Software Engineering (ASE), pages
3–12, Berlin, Heidelberg, 2000. Springer. (cited on Page 34)

Alexander von Rhein, Sven Apel, and Franco Raimondi. Introducing Binary Decision
Diagrams in the Explicit-State Verification of Java code. In JavaPathfinder Work-
shop, 2011. (cited on Page 123 and 124)

Kristen R. Walcott, Mary Lou Soffa, Gregory M. Kapfhammer, and Robert S. Roos.
Time-Aware Test Suite Prioritization. In Proc. Int’l Symposium in Software Testing
and Analysis (ISSTA), pages 1–12, New York, NY, USA, 2006. ACM. (cited on

Page 18, 29, 55, and 60)

Shuai Wang, Arnaud Gotlieb, Shaukat Ali, and Marius Liaaen. Automated Test Case
Selection Using Feature Model: An Industrial Case Study, pages 237–253. Springer,
Berlin, Heidelberg, 2013. (cited on Page 84)

David M. Weiss. The Product Line Hall of Fame. In Proc. Int’l Software Product Line
Conf. (SPLC), page 395, Washington, DC, USA, 2008. IEEE. (cited on Page 1 and 6)

David M. Weiss and Chi Tau Robert Lai. Software Product-line Engineering: A Family-
based Software Development Process. Addison-Wesley, Boston, MA, USA, 1999.
(cited on Page 6)

Colin Willcock. The ITEA D-MINT Project: Overview, Results, and
Lessons Learnt. In Nokia Siemens Networks, Espoo, Finland

”
2011. Avail-

able online: ”http://www.model-based-testing.de/mbtuc11/presentations/Keynote
Willcock NSN MBTUC2011.pdf/” (accessed on 06 July 2017). (cited on Page 1)

http://www.model-based-testing.de/mbtuc11/presentations/Keynote_Willcock_NSN_MBTUC2011.pdf/
http://www.model-based-testing.de/mbtuc11/presentations/Keynote_Willcock_NSN_MBTUC2011.pdf/


Bibliography 163

Bin Xin, William N. Sumner, and Xiangyu Zhang. Efficient Program Execution Index-
ing. In Proc. ACM SIGPLAN Conf. Programming Language Design and Implemen-
tation (PLDI), pages 238–248, New York, NY, USA, 2008. ACM. (cited on Page 122)

Shin Yoo and Mark Harman. Regression Testing Minimization, Selection and Prior-
itization: A Survey. Software Testing, Verification and Reliability (STVR), 22(2):
67–120, 2012. (cited on Page 17, 18, 28, 29, 55, 60, and 84)

Shin Yoo, Mark Harman, Paolo Tonella, and Angelo Susi. Clustering Test Cases to
Achieve Effective and Scalable Prioritisation Incorporating Expert Knowledge. In
Proc. Int’l Symposium in Software Testing and Analysis (ISSTA), ISSTA ’09, pages
201–212, New York, NY, USA, 2009. ACM. (cited on Page 60)

Huihui Zhang, Shuai Wang, Tao Yue, Shaukat Ali, and Chao Liu. Search and Similarity
Based Selection of Use Case Scenarios: An Empirical Study. Empirical Software
Engineering (EMSE), pages 1–78, 2017. (cited on Page 59)



164 Bibliography



Hiermit erkläre ich, dass ich die vorliegende Arbeit selbständig verfasst und keine an-
deren als die angegebenen Quellen und Hilfsmittel verwendet habe.

Magdeburg, den 15.08.2017


	Contents
	List of Figures
	List of Tables
	List of Algorithms
	List of Code Listings
	1 Introduction
	1.1 Contribution
	1.2 Structure of the Thesis

	2 Background
	2.1 Software Product-Line Engineering
	2.1.1 The Development Process of Software Product Lines
	2.1.2 Feature Modeling and Configurations
	2.1.3 Implementation Techniques for Software Product Lines

	2.2 Software Product-Line Testing
	2.2.1 Combinatorial Interaction Testing
	2.2.2 Covering Array Algorithms
	2.2.3 Test-Case Prioritization


	3 Configuration-Based Similarity-Driven Product Prioritization
	3.1 Configuration-Based Prioritization
	3.1.1 Initialization
	3.1.2 First Product Selection
	3.1.3 Incremental Product Selection

	3.2 Configuration-Based Prioritization in FeatureIDE
	3.3 Evaluation of Configuration-Based Prioritization
	3.3.1 Evaluation Metrics
	3.3.2 Experiment with Code Base of Existing Product Lines 
	3.3.3 Experiments with Feature Models

	3.4 Cluster-Based Product Prioritization
	3.4.1 Overview on Cluster-Based Prioritization
	3.4.2 Evaluation of Cluster-Based Prioritization

	3.5 Threats to Validity
	3.6 Related Work
	3.7 Summary

	4 Delta-Oriented Similarity-Driven Product Prioritization
	4.1 Delta Modeling
	4.2 Delta-Oriented Prioritization
	4.2.1 Choosing First Product to Test
	4.2.2 Choosing Second Product to Test
	4.2.3 Choosing Further Products to Test

	4.3 Combining Configuration-Based and Delta-Oriented Prioritization
	4.4 The Implementation of Delta-Oriented Prioritization
	4.5 Evaluation of Delta-Oriented Prioritization
	4.5.1 Subject Product Line: Body Comfort System (BCS)
	4.5.2 Fault Injection
	4.5.3 Results and Discussion
	4.5.4 Threats to Validity

	4.6 Related Work
	4.7 Summary

	5 Incremental Pairwise Sampling
	5.1 Incremental Pairwise Sampling with IncLing
	5.1.1 Initialization
	5.1.2 Generating Products
	5.1.3 Building a Configuration
	5.1.4 Testing a Combination

	5.2 Main Characteristics of Incremental Pairwise Sampling
	5.2.1 Incremental Approach
	5.2.2 Detecting Invalid Combinations
	5.2.3 Feature Ranking Heuristic
	5.2.4 Detecting Conditionally Dead or Core Features

	5.3 The Integration of IncLing in FeatureIDE
	5.4 Evaluation of IncLing
	5.4.1 Experiment Settings
	5.4.2 Results and Discussion
	5.4.3 Threats to Validity

	5.5 Related Work
	5.6 Summary

	6 Conclusion and Future Work
	6.1 Conclusion
	6.2 Future Work

	A Appendix
	A.1 Testing Software Product Line with FeatureIDE
	A.1.1 Developing Product Lines with FeatureIDE
	A.1.2 Beyond Product-By-Product Testing

	A.2 Cluster-based prioritization
	A.3 Architecture Definition of the Core Product of BCS

	Bibliography

