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Abstract

A meta-analysis combines analysis results from multiple independent sets of data. Meta-

analyses to assess whether a treatment affects the occurrence of a medical event are

frequently based on published aggregate data from controlled clinical trials. In that

setting, the number of patients with an event in each trial is often treated as a binomial

random variable. This assumes that censoring times have the same distribution in all

treatment groups of a trial, and are independent of event times.

To allow for different drop-out time distributions across treatment groups, we derive

a likelihood for commonly available aggregate data that assumes specific event and

drop-out time distributions for a number of situations. These include exponentially or

Weibull distributed event and drop-out times, event-driven trials, the situation when a

patient may experience multiple potentially fatal events, and when individual patient

data are available for some trials.

The assumption that parameters of survival distributions are exchangeable between

trials is more plausible than for the expected proportion of patients with an event.

For this reason the proposed likelihood is more suitable than a binomial likelihood for

use in hierarchical meta-analysis models and for incorporating prior information from

historical control group data. Hierarchical models and prior information are useful in

sparse data settings and to avoid parameter identifiability problems. We use simulations

to compare hierarchical Bayesian models with the proposed trial-level likelihood against

other meta-analysis methods and to compare methods for using historical control group

data. We also demonstrate how conjugate priors may be used to analyze exponentially

distributed failure times without the need for Markov chain Monte Carlo methods.
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Zusammenfassung

Eine Metaanalyse fasst die Ergebnisse der Analysen von mehreren unabhängigen Da-

tensätzen zusammen. Wenn der Vergleich einer Behandlung mit einer Kontrollgruppe

bezüglich des Auftretens eines medizinischen Ereignisses nur auf publizierten Ag-

gregatdaten aus klinischen Studien beruht, wird typischerweise die Likelihood der

Binomialverteiligung benutzt, was jedoch voraussetzt, dass die Zensierungszeiten un-

abhängig von den Ereigniszeiten sind und in allen Behandlungsgruppen einer Studie der

gleichen Verteilung folgen. Wir entwickeln eine Likelihood-Funktion für üblicherweise

verfügbare Aggregatdaten, die die zweite dieser Annahmen vermeidet, aber spezifi-

sche Ereignis- und Zensierungszeitverteilungen annimmt. Wir behandeln dabei die

Szenarien mit exponential- und Weibull-verteilten Ereignis- und Zensierungszeiten,

als auch mit mehreren potentiell tödlichen Ereignissen pro Patient, mit verfügbaren

individuellen Patientendaten und ereignisgesteuerte Studien. Mehrebenmodelle und

A-priori-Verteilungen basierend auf Kontrollgruppendaten aus vorherigen Studien sind

insbesondere in Situationen mit spärlichen Daten oder Parameteridentifizierbarkeitspro-

blemen hilfreich. Hierfür ist die vorgeschlagene Likelihood-Funktion besser geeignet als

eine binomiale Likelihood-Funktion, weil die Austauschbarkeit von Ereigniszeitvertei-

lungsparametern zwischen verschiedenen Studien plausibler ist als für den erwarteten

Anteil von Patienten mit einem Ereignis. Mit Hilfe von Simulationen vergleichen wir auf

der vorgeschlagenen Aggregatdaten-Likelihood-Funktion basierende Bayessche Mehre-

benenmodelle mit anderen Metaanalysemethoden, als auch Methoden zur Benutzung

der Kontrollgruppendaten aus vorherigen Studien. Wir zeigen auch, wie konjugierte

A-priori Verteilungen für exponentialverteilte Ausfallzeiten konstruiert und zur Analyse

ohne Benutzung des Markov-Chain-Monte-Carlo-Verfahrens genutzt werden können.
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1. Introduction

1.1. Background

This work deals with the estimation of hazard ratios in time-to-event (“survival”)

models when no information on the exact event and censoring times is available for each

individual experimental unit. Instead, only aggregate data (AD) data are available at a

single observation time. Researchers face this type of problem when they have to rely on

publicly available summaries of more detailed data, or when a continuous observation

of the system under study is not feasible. This occurs in diverse applications such as

educational research, economics, reliability engineering and medical research. We focus

on the last of these applications and in particular methods for investigating whether

a medical intervention changes the hazard rate for patients to experience a specific

medical event.

Randomized controlled clinical trials (RCTs) are considered to provide the best evidence

about the effects of a medical intervention (Higgins and Green, 2011, Section 1.3).

RCTs compare the outcomes for patients receiving the intervention (the test group)

and patients that did not receive it (the control group). The random assignment of

concurrently recruited patients to test and control groups ensures that the distribution

of outcomes only differs between groups due to the assignment to one of the two

groups (Friedman et al., 2015, p. 36).

Some parts of this chapter are reproduced from Holzhauer (2017) (available at http://dx.doi.org/10.1002/sim.7181)
with permission from John Wiley & Sons. Copyright cO2016 John Wiley & Sons, Ltd.
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1. Introduction

Often there are multiple RCTs that provide data relevant to a question and each RCT

may not be able to conclusively answer it on its own. As a result, meta-analyses — “the

statistical analysis of a large collection of analysis results from individual studies for the

purpose of integrating the findings” (Glass, 1976) — have become a key tool of evidence

based medicine for quantitatively combining the results of independent RCTs (Higgins

and Green, 2011, Section 1.2.2).

Despite current efforts to increase the availability of individual patient data (IPD)

from RCTs (Bertagnolli et al., 2017; Strom et al., 2014; Taichman et al., 2016), methods

for AD are important for a number of reasons. Firstly, it is uncertain whether IPD

will ever be accessible for historic clinical trials, to which new journal requirements or

voluntary disclosure commitments do not apply. Secondly, many sponsors offer access

to IPD via a secure server, from which data cannot be downloaded (Strom et al., 2014)

so that an analysis cannot be simultaneously performed across RCTs from different

sponsors. Finally, competitors are excluded from access to individual patient data (IPD)

by most pharmaceutical companies. Thus, there is a need for methods using only AD

extracted from the published literature.

In safety meta-analyses, events are often so rare that none occur in one or all treatment

groups of some RCTs. It appears to be underappreciated that RCTs with no events in

any group do provide information on relative risk measures, if there is prior information

on what is expected for the control group.

For example, Senn (2008) pointed out that 6 out of 6 patients with an adverse event

on a test drug compared with 0 out of 2 placebo patients may not be statistically

significant at the one-sided 2.5% level according to Fisher’s exact test, but that the

prior knowledge on the rarity of the specific adverse event — a cytokine storm requiring

admission to an intensive care unit — in healthy individuals means that these adverse

events have been attributed to the test drug in the case of the first-in-human trial

of TGN1412.

For this reason, it has been suggested that Bayesian meta-analyses that incorporate

prior information would be particularly useful for rare events (Hamra et al., 2013; Lane,

– 2 –



1.2. Structure of this thesis

2013; Mao and Xia, 1992; Sutton et al., 2002). In a recent review of safety meta-analyses,

Bayesian methods were used only in 4% of papers with no increase (3% of papers)

for rare events (Warren et al., 2012). Weaver et al. (2016) suggest that the use of

Bayesian analyses of drug safety using informative prior distributions has been limited

by concerns about subjectivity in formulating prior distributions.

Such concerns may be partially addressed by basing prior distributions on historical

data (Gelman et al., 2014, p. 13) or by avoiding the explicit formulation of an informative

prior distribution in favor of implicitly inducing it through “borrowing of strength”

across trials using hierarchical models assuming the exchangeability of parameters

across trials (Browne and Draper, 2006; Higgins and Whitehead, 1996; U.S. FDA

Center for Devices and Radiological Health, 2010). Because these approaches make

non-randomized comparisons to control groups that were not concurrently recruited,

the reliability of such comparisons and to what extent such data should be discounted

based on potential between-trial differences are key questions (Schmidli et al., 2014).

1.2. Structure of this thesis

In Chapter 2 we review existing meta-analysis approaches for AD on medical event

occurrence. We also introduce hierarchical meta-analysis models, their underlying

assumption of exchangeability of parameters between trials, and how they are related to

different approaches for borrowing information across trials and making use of historical

data. In Chapter 3 we derive a likelihood based on commonly available AD from trials

of a fixed planned duration under the assumption of exponentially distributed event

and drop-out times, and assuming that within each treatment group all patients with

an event are equally likely to die. We propose to use this likelihood in a Bayesian

hierarchical meta-analysis model and to specify informative priors based on historical

control group data. At the end of Chapter 3 we compare the proposed model to other AD

and IPD meta-analysis approaches using simulations. In Chapter 4 we extend the

proposed approach to other frequently encountered settings such as Weibull distributed

event and drop-out times, event driven trials, and the situation when a patient may
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1. Introduction

experience multiple potentially fatal events. In Chapter 5 we demonstrate how conjugate

priors may be used for stratified meta-analyses of exponentially distributed failure times.

If it were possible to further extend this approach to hierarchical models, it could

increase the efficiency of future simulation studies. We also conducted a simulation

study comparing different methods for using historical control group data in Chapter 6.

We discuss our findings and conclusions in Chapter 7. Additional results and background

information are available in the appendices at the end of this work.

1.3. Notation, conventions and assumptions

Event of   Time to 1st event   Lost to                                     Total duration                Fatal event    

interest    or censoring          follow-up    Drop-out                  of follow-up                  of interest 

 

Rules for  

| Presentation Title | Presenter Name | Date | Subject | Business Use Only 1 

Revised dij following bma12 review in Iceland 

(patient)                 yijk tijk=min(xijk, cijk, τi)       zijk          zijk - mijk      dijk=min(cijk, time to death, τi)        mijk  

 
     1                   0           τi                    0                0                             τi     0 

 

     2                  0           cij2            1                1                             cij2     0 

 

     3                                                                                1           xij3            1                1                             cij3     0 

  

     4                                                                                1           xij4            0                0                             τi     0 

 

     5                                                                                1           xij5            1                0              time to fatal (3rd) event    1 

 

     6                                                                                1           xij6            1                1                             cij6     0 

 

     7                                                                  0           cij7            1                1                             cij7     0 

 

 τi 

fatal event of 

interest 

xij3 

xij4 

xij5 

cij3 

cij2 

death unrelated to  

event of interest 

xij6 

cij6 

cij7 

k 

0 Time from randomization 

= event of interest = drop-out (non-administrative censoring) 

      

Figure 1.1.: Examples for the data used in the estimation of the event time distribution Fij and the
drop-out time distribution Gij of treatment group j = 0, 1 of trial i = 1, . . . , I

Unless noted otherwise, we assume that data D from I RCTs with planned durations

τi > 0 for i = 1, . . . , I are available. In addition, historical control group AD D′ may be

available from H historical trials i = I+1, . . . , I+H. The notation for the IPD and AD

of an example trial is illustrated in Figure 1.1. We will deal solely with meta-analyses

that aim to estimate an effect measure such as a hazard ratio comparing two treatment

groups. For the inference on the treatment effect, good properties in terms of power,

type I error rate, coverage probability mean squared error and bias are desired.

The number of patients in each of the two treatment groups j = 0, 1 is denoted by

nij with ni1 patients receiving a test drug (j = 1) and ni0 patients being part of a
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1.3. Notation, conventions and assumptions

control group (j = 0). We denote the data from trial i by Di and that from treatment

group j of this trial by Dij . We use bold symbols for vectors or matrices, and non-bold

symbols for scalar quantities. We use uppercase roman letters such as Xijk for r.v.s

and lowercase roman letters such as xijk for realizations of r.v.s.

We assume that the times Xijk from trial start to event occurrence are random

variables (r.v.s) that are independent and identically distributed (i.i.d.) for all patients

k = 1, . . . , nij within group j = 0, 1 of trial i and follow an absolutely continuous

distribution with cumulative distribution function (cdf) Fij(x) := F (x;θF,ij) with

F (0;θF,ij) = 0 and lims→∞ F (s;θF,ij) = 1 parametrized in terms of a parameter vector

θF,ij and probability density function (pdf) fij(x) := f(x;θF,ij).

Some patients may not have an observed event, because each patient is only observed

for the fixed planned trial duration τi > 0. For patients that are observed to be event

free at time τi, the event time Xijk is said to be administratively censored, because we

only know that xijk > τi. Some patients may drop out — i.e. no longer be followed for

events before time τi. We denote the drop-out (non-administrative censoring) times

by Cijk and assume that they are i.i.d. for all patients within group j = 0, 1 of trial

i with an absolutely continuous cdf Gij(c) := G(c;θG,ij) with G(0;θG,ij) = 0 and

lims→∞G(s;θG,ij) = 1 parametrized in terms of a parameter vector θG,ij and pdf

gij(c) := g(c;θG,ij).

While the literature on typical drop-out patterns in RCTs is limited, an exponential

distribution is often assumed (Lachin and Foulkes, 1986) and the Weibull distribution

has been reported to fit the drop-out data from actual trials well (Gueorguieva et al.,

2012; Sun et al., 2013; Veyrat-Follet et al., 2000).

We will assume that the event times Xijk and censoring times Cijk follow a joint

distribution with cdf Hij(x, c) := H(x, c;θH,ij) and pdf hij(x, c) := h(x, c;θH,ij). We

will generally assume that Cijk and Xijk are independent for each patient within the

same treatment group and trial with distinct parameters so that θH,ij = {θF,ij,θG,ij}

and h(x, c;θH,ij) = f(x;θF,ij)g(c;θG,ij).

Further, we define Mijk as the indicator for whether a patient died due to an event
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1. Introduction

of interest. Different models will assume different processes underlaying the random

variable Mijk, which will be described when needed.

Instead of the IPD consisting of realizations of the r.v.s Tijk := min(Cijk, Xijk, τi),

Yijk := 1{Xijk ≤ min(Cijk, τi)} and Zijk := 1{Cijk < τi or Mijk = 1}, in practice we

will often only have the AD that yij· :=
∑nij

k=1 yijk patients experienced an event of

interest, that zij· of the nij patients in treatment group j of trial i were drop-outs, and

that mij· of these yij· patients died of an event of interest.

We use “·” in a subscript as a short-hand notation for summation over all values of

the subscript replaced by the “·” — e.g. yi·· :=
∑1

j=0

∑nij
k=1 yijk. Without IPD tij· is

typically unavailable and we do not know how many patients were lost to follow-up

after experiencing a non-fatal event — i.e. the overlap in patients between yij· −mij·

and zij· −mij·.

Further notation and symbols are introduced as they are needed. Unless they only

occur in the same section, in which they are introduced, they are listed in the List of

symbols and abbreviations.

– 6 –



2. A review of meta-analysis methods

for event occurrence

A key differences between a meta-analysis and the analysis of a single RCT is that

differences between groups from different RCTs in the distribution of outcomes may

occur for reasons other than the random assignment to a specific treatment group, e.g.

due to differences in trial duration, recruited patients or outcome assessment. As a

result a naive pooling of the data from multiple trials is susceptible to confounding

between trial and treatment effects (Pearson et al., 1899; Simpson, 1951; Yule, 1903).

Statistical meta-analysis methods avoid this by allowing either for completely unrelated

unconstrained distributional parameters for each trial or assuming that the separate

parameters for each trial are related via random effects (Ohlssen, 2014). In the following

sections we will discuss meta-analysis approaches starting with those that treat event

occurrence as a binomial outcome.

Time-to-event methods using IPD are considered the “gold standard” for analyzing

the occurrence of medical events in RCTs (Bennett et al., 2013; Crowther et al., 2012;

Lyman and Kuderer, 2005; Stewart and Clarke, 1995) for several reasons. Firstly, the

probability of a patient experiencing almost any event increases the longer he is followed.

Thus, patients that drop-out are less likely to have an observed event, if drop-out times

are independent of event times within each treatment group. This has the potential to

bias treatment comparisons, if the drop-out time distributions differ between treatment

Some parts of this chapter are reproduced from Holzhauer (2017) (available at http://dx.doi.org/10.1002/sim.7181)
with permission from John Wiley & Sons. Copyright cO2016 John Wiley & Sons, Ltd.
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2. A review of meta-analysis methods for event occurrence

groups. Time-to-event methods explicitly account for censoring. Secondly, it is often

not just of interest whether an intervention prevents the occurrence of an event, but

also whether the intervention delayed the occurrence of an event (or accelerated it).

Time-to-event methods gain in power the larger the proportion of patients with an

event is, while this is not the case for binomial data methods.

Finally IPD allow us to include patient characteristics affecting a patient’s risk for

an event into our analysis model. Even though randomization balances observed

and unobserved covariates on average within each RCT (Senn, 1994), generalized

linear models may give biased estimates of patient-level — as opposed to population-

level — effects when covariates bijk that affect the outcome are omitted from the

model. Neuhaus and Jewell (1993) showed that the employed link-function g , where

g(EYijk) = bTijkβ, determines whether and in which direction the estimates of the

treatment effect from generalized linear models in RCTs are biased when covariates

that affect the time-to-event are omitted: when −1/g ′(·) is convex (e.g. for the logit-,

probit- and complementary log-log-link function) the estimate of the treatment effect is

biased towards zero, biased towards inflated effect sizes when this function is concave

and unbiased otherwise (e.g. for the linear- and log-link functions). The estimates of

log-odds ratios from logistic regression, as well as of log-hazard ratios from exponential

— except when there is no censoring — Cox (Gail et al., 1984) and Weibull (Lancaster,

1985) time-to-event models are attenuated towards zero when covariates are omitted.

IPD are often unavailable, because journal articles and clinical trial results databases

only report AD. For this reason our discussion of IPD time-to-event methods primarily

serves as a background for AD methods. We discuss existing AD time-to-event methods

in Section 2.3. Sometimes IPD are available for a subset of trials. Methods for combining

a mixture of IPD and AD have been developed (Riley and Steyerberg, 2010; Riley et al.,

2008; Sutton et al., 2008) and we describe how to do so for our proposed model.

We discuss hierarchical models and their underlying assumption of exchangeable trial-

level parameters in Section 2.4, but we already encounter examples of such models in

preceding sections. Finally, we discuss Bayesian hierarchical meta-analysis models and

different approaches for incorporating prior information into a meta-analysis.
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2.1. Fixed and random effects meta-analyses

For a full discussion of all aspects of meta-analyses such as how to select RCTs

for inclusion in meta-analyses, issues surrounding the unavailability of the results of

some RCTs or indirect treatment comparisons using network meta-analysis, we refer

the reader to the Cochrane handbook for systematic reviews of interventions (Higgins

and Green, 2011) or the book by Borenstein et al. (2009).

2.1. Fixed and random effects meta-analyses

Whether a fixed treatment effect parameter or one that is allowed to vary across trials

should be estimated is a controversial topic. It has recently been suggested that much

more heterogeneity in treatment effect estimates across trials is present in meta-analyses

than usually identified (Kontopantelis et al., 2013). However, alternative explanations

for such an observed heterogeneity have been insufficiently explored. These include

differential losses to follow-up combined with withdrawal rates that increase with trial

duration or the choice of the effect measure (Whitehead and Whitehead, 1991) such as

a fixed odds, or risk ratio, which are inconsistent with a constant effect on a hazard

scale except for small hazard ratios and very rare events (Symons and Moore, 2002).

When the events of interest are rare, meta-analyses typically focus on whether there

is a treatment effect, at all, for which models that allow the treatment effect to vary

across trials are not recommended (Higgins and Green, 2011, Section 16.9.5). For these

reasons we focus on estimating a fixed treatment effect across trials in all that follows.

2.2. Event occurrence as a binomial outcome

The most commonly reported AD on medical event occurrence in publications and

clinical trial results registries is the number of patients with an event yij· out of the nij

patients in treatment group j = 0, 1 of trial i = 1, . . . , I. A binomial distribution for

Yij· is frequently assumed. In this section we discuss approaches for the meta-analysis

of binomial outcomes.

– 9 –



2. A review of meta-analysis methods for event occurrence

2.2.1. Logistic regression

For meta-analysis purposes a logistic regression model that assumes Yij· ∼ Bin(nij, πij)

with a logit-link function

logitπij := log
πij

1− πij

= βi + jϕ.

(2.2.1)

is often used, where βi = log( πi0
1−πi0 ) represents the log-odds of a patient in the control

group of trial i = 1, . . . , I experiencing an event and ϕ is the log-odds ratio for test

compared with control groups. Parameter estimates and asymptotic confidence intervals

(CIs) can be obtained by maximum likelihood (Agresti, 2007, pp. 106–110). By using

a log- or identity-link function in (2.2.1), ϕ would represent a log-risk ratio or risk

difference, respectively. The odds ratio is more popular than these alternative effect

measures, because unlike these alternatives the odds ratio ensures that πi1 will lie in

(0, 1) for any πi0 ∈ (0, 1) and ϕ ∈ (−∞,∞).

In practice there are a number of difficulties with obtaining unconditional maximum

likelihood estimates (MLEs) for a logistic regression model. Firstly, no finite MLE

exists for some of the model parameters, when yi0· = 0 or yi0· = ni0 for at least one

i = 1, . . . , I, or if y·1· = 0 or y·1· = n·1. Secondly, point estimates are known to be biased

when there are only a few patients with or without an event (Heinze and Schemper,

2002). Thirdly, CIs and p-values based on an asymptotic normal approximation may

perform poorly in the small sample cases (Heinze and Schemper, 2002).

For these reasons Firth’s penalized likelihood logistic regression and exact conditional

logistic regression are popular for the purpose of meta-analyses. Firth’s penalized

likelihood logistic regression approach removes the first-order term of the asymptotic

bias of the MLE by penalizing the likelihood by Jeffreys prior and leads to the existence

of a finite maximum-a-posteriori estimate even when a finite MLE does not exist (Heinze

and Schemper, 2001). As a meta-analysis method, exact conditional logistic regression

uses the exact permutational distributions of the sufficient statistic for the regression
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2.2. Event occurrence as a binomial outcome

coefficient for the treatment effect after eliminating the trial main effects by conditioning

on their sufficient statistic — the number of patients with an event in each trial (Mehta

and Patel, 1995). In this manner one can construct tests, CIs and median unbiased

estimates that exist even when no MLE exists (Mehta and Patel, 1995). However,

non-randomized and non-mid-P exact tests and CIs tend to be conservative in the small

sample case (Bradburn et al., 2007).

The beta-binomial model proposed by Kuss (2015) modifies (2.2.1) to logitπij =

logituij + jϕ, where ϕ is the log-odds ratio and Uij ∼ Beta(a, b) is a beta-distributed

treatment group specific random effect. Alternatively Platt et al. (1999) proposed to

let βi in (2.2.1) be a normally distributed random trial effect.

2.2.2. The inverse variance estimate for odds ratios

Historically meta-analysis methods have focused on combining analysis results across

trials based on published estimates for each trial and their standard errors (SEs) (Bagos

and Nikolopoulos, 2009). Meta-analysis methods such as the inverse variance method

that rely on these inputs are referred to as a two-step approach, because two analysis

steps occur: first each individual trial is analyzed and secondly the results of these

analyses are combined.

The MLE of the log-odds ratio for logistic regression based on a single trial with

0 < yij· < nij for j = 0, 1 is ϕ̂i := log
(
yi1·(ni0 − yi0·)(ni1 − yi1·)−1y−1

i0·
)

with asymptotic

variance estimate ŜE(ϕ̂i)
2 = y−1

i1· + (ni0− yi0·)−1 + (ni1− yi1·)−1 + y−1
i0· (Borenstein et al.,

2009, p. 36). Given independent estimates ϕ̂i and their SEs from each trial i = 1, . . . , I,

the inverse variance fixed effects estimate of ϕ — the minimum variance weighted

average of the ϕ̂i — is

ϕ̂ =

∑I
i=1

ϕ̂i
ŜE(ϕ̂i)2∑I

i=1 ŜE(ϕ̂i)−2

with estimated variance ŜE(ϕ̂)2 =
(∑I

i=1 ŜE(ϕ̂i)
−2
)−1

(Borenstein et al., 2009, pp. 63–

66).
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Asymptotically the log-likelihood contribution from each trial is well approximated by

ϕ̂i and ŜE(ϕ̂i) — i.e. a normal approximation. This approximation is improved for finite

sample sizes by combining log-odds ratios or log-hazard ratio estimates rather than

untransformed ratios (Borenstein et al., 2009, pp. 35–36). However, the approximation

performs poorly for the meta-analysis of the occurrence of rare events — i.e. when very

few patients experienced an event in at least one treatment group (Higgins and Green,

2011, Section 16.9.1).

In fact, if either yi1·, (ni0 − yi0·), (ni1 − yi1·) or yi0· is zero for a trial, we do not obtain

a finite MLE ϕ̂i for that trial. In this scenario most statistical software packages use

a so-called “continuity correction” by automatically adding 0.5 to all four of these

quantities (Higgins and Green, 2011, Section 16.9.2) and omit trials without any

events from analyses (Higgins and Green, 2011, Section 16.9.3). However, the normal

approximation remains questionable in case of rare events so that inverse variance

methods are not recommended in this setting and one-step methods — such as all

other analysis methods described in Section 2.2 — that directly analyze the data from

all trials in a single step have been recommended instead (Higgins and Green, 2011,

Section 16.9.5; Bradburn et al., 2007).

2.2.3. Peto one-step odds ratio method

The Peto one-step estimate of the log-odds ratio given a set of observed data is

ϕ̂ =

∑I
i=1(yi1· − yi··ni1/ni·)∑I
i=1

ni1ni0yi··(ni·−yi··)
n2
i·(ni·−1)

with estimated variance ŜE(ϕ̂)2 =
(∑I

i=1
ni1ni0yi··(ni·−yi··)

n2
i·(ni·−1)

)−1

(Borenstein et al., 2009,

pp. 336–337). It is the method recommenced in the Cochrane handbook when the

proportion of patients with an event is below 1%, but it is known to be biased for

large effect sizes and strongly imbalanced allocation ratios within trials (Higgins and

Green, 2011, Section 16.9.5), and its limitations are further discussed by Brockhaus

et al. (2016), and Hirji (2006, p. 271).
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2.2.4. Cochran-Mantel-Haenszel odds-ratio

An alternative estimate of the log-odds ratio without a continuity correction is the

stratified Cochran-Mantel-Haenszel (CMH) estimate of the log-odds ratio

ϕ̂ = log

(∑I
i=1 yi1·(ni0 − yi0·)/ni·∑I
i=1 yi0·(ni1 − yi1·)/ni·

)
(2.2.2)

with estimated variance (Lachin, 2000, pp. 95–98)

ŜE(ϕ̂)2 =

∑I
i=1

(yi1·+ni0−yi0·)yi1·(ni0−yi0·)
n2
i·

2(
∑I

i=1
yi1·(ni0−yi0·)

ni·
)2

+

∑I
i=1

yi0·(ni1−yi1·)(yi0·+ni1−yi1·)
n2
i·

2(
∑I

i=1
yi0·(ni1−yi1·)

ni·
)2

+

∑I
i=1

(yi1·+ni0−yi0·)yi0·(ni1−yi1·)+(yi0·+ni1−yi1·)yi1·(ni0−yi0·)
n2
i·

2(
∑I

i=1
yi1·(ni0−yi0·)

ni·
)(
∑I

i=1
yi0·(ni1−yi1·)

ni·
)

.

It is more popular to re-write (2.2.2) in terms of a weighted sum of the odds ratios

yi1·(ni0−yi0·)
yi0·(ni1−yi1·) in each study with weights yi0·(ni1 − yi1·)/ni· for each study and to use

continuity corrections as needed (Lachin, 2000, p. 95).

2.3. Event occurrence as a time-to-event outcome

2.3.1. Time-to-event models for individual patient data

When IPD are available for all RCTs to be meta-analyzed, a common approach is to

conduct an IPD meta-analysis that uses trial as one factor in the model besides other

covariates (Sutton et al., 2008) — much like the analysis of a RCT with data from

several centers. Another popular alternative is to stratify the analysis by trial.

In a stratified parametric IPD meta-analysis the contribution of the observed data

Dij from treatment group j of trial i consisting of (yijk,min(xijk, τi))
T for each patient

k = 1, . . . , nij to the likelihood of the parameters θF,ij of the event time distribution

– 13 –



2. A review of meta-analysis methods for event occurrence

with pdf f(·;θF,ij) and cdf F (·;θF,ij) is given by

L(θF,ij;Dij) =

nij∏
k=1

f (min(xijk, τi);θF,ij)
yijk [1− F (min(xijk, τi);θF,ij)]

1−yijk ,

if trial completion is the only form of censoring that occurs. When there are also

drop-outs before trial completion, then the likelihood contribution of each trial arm

for the parameters θHij of the joint distribution of event and drop-out times with pdf

h(·;θH,ij) and cdf H(·;θH,ij) is

L(θH,ij;Dij) =

nij∏
k=1

h (tijk,min(cijk, τi);θH,ij)
yijkzijk ×

[∫ ∞
tijk

h(tijk, c;θH,ij) dc

]yijk(1−zijk)

×

[∫ ∞
min(cijk,τi)

h(x,min(cijk, τi);θH,ij) dx

]zijk(1−yijk)

× [1−H(τi, τi;θH,ij)]
(1−yijk)(1−zijk) .

Inference is typically focused on the parameters of the event time distribution, while the

parameters of the distribution of drop-out times are regarded as nuisance parameters.

We will assume that Xijk and Cijk are independent with distinct parameters so that

θH,ij can be partitioned into two subsets of parameters: θF,ij for the distribution of event

times and θG,ij for the distribution of drop-out times. In that case the contribution of

a trial arm to the joint likelihood for θF,ij and θG,ij is

L(θF,ij,θG,ij;Dij) =

nij∏
k=1

f (tijk;θF,ij)
yijk [1− F (tijk;θF,ij)]

1−yijk

× g(dijk;θG,ij)
zijk(1−G(dijk;θG,ij))

1−zijk ,

where dijk = min(cijk, τi). Thus, the contribution of a trial arm to the marginal

likelihood of θF,ij is

L(θF,ij;Dij) ∝
nij∏
k=1

f(tijk;θF,ij)
yijk(1− F (tijk;θF,ij))

1−yijk ,

even if the drop-out time distributions differ across trials and treatment groups.

– 14 –



2.3. Event occurrence as a time-to-event outcome

2.3.2. Popular parametric and semi-parametric

individual-patient-data time-to-event models

2.3.2.1. Proportional hazards models

It is often useful to write a time-to-event model in terms of the log-hazard function

log λij(s) for arm j of trial i and s ≥ 0, which given an event time distribution with cdf

F and pdf f is defined as (Ibrahim et al., 2001, p. 14)

log λij(s) := log lim
∆s→0

P(s < Xijk ≤ s+ ∆s|Xijk > s)

∆s

= log

(
− d

ds
log(1− F (s;θF,ij))

)
= log f(s;θF,ij)− log(1− F (s;θF,ij)).

Further we will assume a proportional hazards model so that

log λij(s) = log λi0(s) + bijk
Tβ, (2.3.1)

where bijk is a vector of covariates for each subject and β is a vector of regression

coefficients. λi0(s) in (2.3.1) is referred to as the trial-specific baseline hazard function.

We will typically only consider the situation where the only factor or covariate in the

model is the treatment effect, so that

log λij(s) = log λi0(s) + jϕ, (2.3.2)

where ϕ is defined to be the log-hazard ratio for the test group (j = 1) compared

with the control group (j = 0). Within the framework of proportional hazard models

we will focus on the exponential time-to-event model, the Weibull model and the

semi-parametric Cox regression model.

We focus on cases with a constant hazard ratio over time, because models with this

assumption are the most frequently used and do — under moderate deviations from a

constant log-hazard ratio — provide meaningful estimates of an average log-hazard ratio
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weighted by the number of events in different time periods (Allison, 1995, pp. 154–155).

However, if required the discussed time-to-event models can also be extended to allow

for time varying effects (Allison, 1995, pp. 154–157).

2.3.2.2. The exponential time-to-event model

If we assume a constant baseline hazard function λi0(s) = λi0 in (2.3.2), we obtain an

exponential time-to-event model with Xijk ∼ Exp(λij), where log λij := log λi0 + jϕ.

The exponential distribution is a convenient one-parameter distribution, but makes the

strong assumptions that each patients in group j of trial i has a rate that is constant over

time and that all of these hazard rate are the same — unlike e.g. for a gamma-exponential

mixture (Lomax distribution). The plausibility of these assumptions depends on the

patient population enrolled in each trial. For example, in medically stable patients with

a chronic condition there is no reason to expect a meaningful change in the control

group hazard rates over the relatively short duration of a typical clinical trial. The less

risk factors for events vary across patients, the better the approximation obtained by

assuming an identical hazard rate for all patients will be. More complex distributions

such as the Weibull or Lomax distributions may be needed to capture the effects of

changes in control group hazard rates over time or between subject heterogeneity.

Note that the likelihood of the exponential time-to-event model assuming independent

right censoring within each treatment group and trial is

L(φ, λ01, . . . , λI1|y011, . . . , yI1nI1 , t011, . . . , tI1nI1) =
I∏
i=1

1∏
j=0

nij∏
k=1

(φjλi0e
−φjλi0tijk)yijk

(e−φ
jλi0tijk)1−yijk

=
I∏
i=1

1∏
j=0

(φjλi0)yij·e−φ
jλijtij·

(2.3.3)

for φ := eϕ. Up to a normalizing constant that only depends on the observed data

this is the same likelihood as for a Poisson distribution having observed yij· events in
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tij· time units of follow-up. As a result such a model can be fitted using software for

Poisson regression with a log tij· offset (Crowther et al., 2012; Stijnen et al., 2010).

The exponential model is notably also an AD analysis method, because the likeli-

hood (2.3.3) only requires the AD on the number of patients with an event yij· amongst

the nij patients in group j = 0, 1 of trial i = 1, . . . , I and the total follow-up to first

event or censoring tij· — the sufficient statistic for the parameters of an exponential

time-to-event distribution under random right-censorship (Ibrahim et al., 2012).

Similar issues as those described for logistic regression may occur, if there are no events

in some or all arms of a trial. For this reason two alternative models have been used.

Firstly, a hierarchical exponential time-to-event model is available in many standard

software packages, which uses a Poisson likelihood with gamma distributed trial random

effect λi0 ∼ Gamma(a, b) with shape parameter a > 0 and rate (inverse-scale) parameter

b > 0, and a log tij· offset. Secondly, an exact version of Poisson regression stratified by

trial, in which we condition on the total number of cases yi·· in each trial i = 1, . . . , I,

is also available and can provide tests, CIs, and median unbiased estimates (Hirji, 2006,

pp. 263–266).

2.3.2.3. Weibull model

The Weibull distribution is a widely used parametric event time distribution, which

can reflect increasing or decreasing hazard functions (Ibrahim et al., 2012, p. 35). We

assume the following parametrization of the Weibull pdf (Ibrahim et al., 2012, p. 14)

fWb(x; a, b) := ab(xa)b−1 exp
(
−(xa)b

)
for a > 0 and b > 0, (2.3.4)

which ensures that for shape parameter b = 1 the inverse scale parameter a corresponds

to an exponential hazard rate. The corresponding cdf is

FWb(x; a, b) := 1− exp
(
−(xa)b

)
and the hazard function

λWb(x; a, b) := babxb−1.
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If we assume that the event times in the control group j = 0 of trial i = 1, . . . , I

are i.i.d. a Weibull distributed r.v.s Xi0k ∼Wb(λi0, γi) for k = 1, . . . , ni0 and assume a

proportional hazards model with a log-hazard ratio ϕ := log φ, then the event times in

the test group are i.i.d. Weibull distributed r.v.s Xi1k ∼Wb(λi0e
ϕ/γi , γi) with the same

shape parameter as in the control group.

2.3.2.4. Cox regression

Cox’s proportional hazards model (Cox, 1972) has gained considerable popularity,

because it does not assume a particular functional form for the baseline hazard function

λi0(s) in (2.3.1). If no events occurred at the same time despite any rounding of time

units, a stratified Cox regression that allows unrelated baseline hazard functions for

each trial uses the partial likelihood

PL(ϕ|D) =
I∏
i=1

1∏
j=0

nij∏
k=1

[
ejϕ∑1

`=0

∑ni`
r=1 1{ti`r ≤ tijk}e`ϕ

]yijk
.

The test resulting from a Cox regression model is equivalent to the log-rank test, if

we assume that there is no underlying ordering of tied event times (Allison, 1995,

pp. 127–137). Similar issues as those discussed for logistic regression in Section 2.2.1

can occur with Cox regression and Firth’s penalized (partial) likelihood approach can

also be applied to Cox regression (Heinze and Schemper, 2001). It has been reported to

perform well for meta-analyzing time-to-event IPD (Bennett et al., 2013).

2.3.3. Time-to-event approaches for aggregate data

Three main types of approach for survival meta-analysis when IPD are not available

have been previously described. The first type of approach assumes that some type

of survival analysis has already been conducted and that the resulting Kaplan-Meier

plots, hazard ratios or p-values are available (Arends et al., 2008; Combescure et al.,

2016; Guyot et al., 2012; Hoyle and Henley, 2011; Parmar et al., 1998; Tierney et al.,

2007; Wei et al., 2015; Williamson et al., 2002). The second type of approach uses
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the exponential survival model discussed in Section 2.3.2.2, which can be seen as both

an IPD and an AD model. Finally, some authors have proposed to modify binomial

data methods to account for differential follow-up.

2.3.3.1. Practical issues with the exponential aggregate data model

The main practical issue with the exponential time-to-event model as an AD method is

the availability of the total time to first event or censoring tij·, which the consolidated

standards of reporting trials (CONSORT) guidelines (Schulz et al., 2010) do not require

to be reported. In a rare events setting, it may be reasonable to use the total duration

of follow-up to censoring dij· instead of tij·, as e.g. Stijnen et al. (2010), Böhning et al.

(2015) and Kunz et al. (2015) have done. This is especially appropriate, if the event of

interest is always fatal so that dij· = tij·. However, for non-rare, not necessarily fatal

events this leads to an underestimation of the hazard rate in each trial arm. Additionally,

dij· and the duration of exposure to therapies are also typically unavailable. Methods

for estimating or imputing these values based on commonly available information have

not received attention in the literature so far.

2.3.3.2. Binomial data methods with adjustment for differential follow-up

It has been suggested that one could adjust binomial data methods by e.g. adding the

logarithm of the average exposure — or perhaps more appropriately follow-up — as an

offset variable in logistic regression (Lane, 2013). If data on the duration of follow-up

are available, then this may approximate the relationship of follow-up to the log-odds of

an event. Similarly, the Decision Support Unit of the UK National Institute for Health

and Clinical Excellence has suggested a log trial duration offset for a binomial model

with a complementary log-log link function (Dias et al., 2014). This is motivated by

the fact that assuming exponentially distributed event times Xijk ∼ Exp(λi0e
ϕj), we

obtain Yijk|(Dijk = dijk) ∼ Ber(πijk) we obtain

log(− log(1− πijk)) = log λi0 + jϕ+ log dijk, (2.3.5)
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i.e. a generalized linear model for binomial data with a complementary log-log link-

function and a log dijk offset (Dias et al., 2014). If all patients were followed for the

same planned duration τi, we can substitute log τi in (2.3.5). However, when follow-up

differs across patients, e.g. due to losses to follow-up, using a log τi or log(dij·/nij)

offset is also only an approximation to the IPD relationship (2.3.5). Whether a logit

or a complementary log-log link function is used, the quality of these approximations

depends on the distribution of failure times and is reasonable for a low drop-out hazard

rate that is close to constant over time. Lacking alternatives, these approximations

for low and close to constant hazard rates may be preferable to ignoring differential

follow-up between treatment groups. However, we are not aware of any advantage

of using such adjustments instead of an exponential time-to-event model. For either

approach the same AD is needed and exponentially distributed event times are assumed.

2.4. Exchangeability and hierarchical models

The random effects models discussed at the end of Section 2.2.1 and the gamma-

exponential model in Section 2.3.2.2 are examples of 2-stage hierarchical (also called

“multi-level” or “mixed-effects”) meta-analysis models. These are models that allow for

a specification of the joint distribution of the data from all trials in terms of successive

hierarchical levels of conditional distributions. For example the likelihood for the type

of hierarchical model we will primarily discuss throughout this thesis can be specified as

L(ζ,ϑ,θ1, . . . ,θI |D) =
I∏
i=1

p(θi|ϑ)
1∏
j=0

p(Dij|θi, ζj). (2.4.1)

ϑ denotes the hyperparameters determining the distribution of i.i.d. latent r.v.s θi

through the conditional pdf or probability mass function (pmf) p(θi|ϑ). θi and ζ

together determine the distribution of the observable data Dij in each trial arm. We

chose to split the hyperparameter vector into ϑ and ζ for the clarity of exposition.

In the models we consider, ζ will have treatment arm specific components ζj for

j = 0, 1 — e.g. the gamma-exponential model in Section 2.3.2.2 can be parametrized as

log λij = log λi0 + ζj with ζ0 = 0 and ζ1 = ϕ.
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We follow Bernardo and Smith (2000, ch. 4) in outlining the assumptions made in

specifying a hierarchical model, in particular that of partial exchangeability — an

extension of the concept of independence.

Definition 2.1 (Finite exchangeability). A set of r.v.s X1, . . . , XI are finitely exchange-

able under a probability measure P , if the joint probability distribution satisfies

P (X1, . . . , XI) = P (Xρ(1), . . . , Xρ(I))

for all permutations ρ defined on the set {1, . . . , I} (Bernardo and Smith, 2000, p. 169).

Definition 2.2 (Infinite exchangeability). The infinite sequence of r.v.s X1, X2, . . . is

infinitely exchangeable, if every finite subset of the sequence is finitely exchangeable in

the sense of Definition 2.1 (Bernardo and Smith, 2000, p. 171).

Remark 2.1. Exchangeable r.v.s generalize the concept of i.i.d. r.v.s. In either case

the r.v.s are marginally identically distributed, but the joint cdf of exchangeable r.v.s

is not necessarily the product of the marginal cdfs unlike for i.i.d. r.v.s. Instead,

Theorem 2.1 provides a representation in terms of r.v.s that are independent conditional

on latent variables.

Theorem 2.1. If X1,X2, . . . is an infinitely exchangeable sequence of r.v.s ∈ Rd for

d ≥ 1, each with a marginal density (i.e. Radon-Nikodym derivative) p(xi|θ) for θ ∈ Θ,

then there exists a probability measure Q over Θ so that for any subset X1, . . . ,XI of

the sequence the joint density of the subset has the form (Bernardo and Smith, 2000,

pp. 177–180)

p(x1, . . . ,xI) =

∫
Θ

I∏
i=1

p(xi|θ) dQ(θ).

Remark 2.2. Authors such as Bernardo and Smith (2000, ch. 4) and Gelman et al.

(2014, pp. 104–108) give Theorem 2.1 as the justification for why, after a judgment

of exchangeability has been made, a hierarchical model can be employed. However,

Theorem 2.1 is an existence theorem that does not specify the form of the probability

measure Q. I.e. a density p(θi|ϑ) for latent trial-level parameters θ1, . . . ,θI given

a finite dimensional hyperparameter ϑ as in (2.4.1) does not necessarily exist. On
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this point Spiegelhalter et al. (2004, p.168) argue that a — possibly multivariate —

normal distribution for the latent parameters is reasonable based on the central limit

theorem applied to the sum of all the small differences in trials that contributed to the

variation of latent parameters across trials. McCulloch and Neuhaus (2011) suggest

that inference from hierarchical models is in many settings robust to deviations from

this assumption. For this reason we will primarily consider hierarchical models of the

form (2.4.1) with normally distributed random trial effects for suitably transformed

nuisance parameters. I.e. p(θ1, . . . ,θI |ϑ) = φ(θ1, . . . ,θI |ν,Σ), where ϑ consists of

a vector of means ν of dimension p ≥ 1 and a p × p covariance matrix Σ. We will

assume that Σ is a diagonal matrix with diagonal entries σ2
1, . . . , σ

2
p. Friede et al. (2017)

consider a between-trial standard deviation of σr for r = 1, . . . , p of 0.125 as small, 0.25

as moderate, 0.5 as substantial, 1 as large and 2 as very large for an log-odds ratio. An

example of a non-normally distributed random trial effect is the gamma-exponential

model in Section 2.3.2.2.

Remark 2.3. Corresponding results to Theorem 2.1 hold under partial exchangeability

— i.e. when the outcomes in each trial are conditionally independent given known

covariates in addition to unknown latent parameter vectors θi (Bernardo and Smith,

2000, pp.209–226). Such covariates might be the planned trial duration τi, or the

number of randomized patients in each of the treatment group ni0 and ni1. We refer

to this form of partial exchangeability when stating that a parameter vector θi for

i = 1, . . . , I is exchangeable across trials.

In hierarchical models the estimation of each latent trial-level parameter θi influences the

estimation of those in other trials through the hyper-distribution p(θi|ϑ) — effectively

inducing a prior distribution based on the other trials (Gelman et al., 2014, p. 1). This

has often been referred to as “borrowing of information” across trials and hierarchical

models have gained considerable popularity in the last quarter century due to this

property (Browne and Draper, 2006; Higgins and Whitehead, 1996; U.S. FDA Center

for Devices and Radiological Health, 2010). As a consequence of this “borrowing of

information” trial-level parameters may be identifiable in such a hierarchical model

despite being non-identifiable based on the available data from each trial alone.
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The exchangeability assumption made when formulating a hierarchical model implies

that there is a-priori no reason to assume the parameters for one trial would be larger or

smaller than those for another trial (Gelman et al., 2014, pp. 104–107) (U.S. FDA Center

for Devices and Radiological Health, 2010). Yet the plausibility of this assumption is

not always given sufficient consideration.

For example, the beta-binomial model of Kuss (2015) assumes the exchangeability of

the expected proportion of patients with an event across arms. However, this is a

questionable exchangeability assumption, because trials with longer follow-up would be

expected to have a higher proportion of cases than shorter trials. Nevertheless, such an

assumption has been advocated or used for the meta-analysis of studies of substantially

differing duration by several other authors (Cai et al., 2010; Kaizar et al., 2006; Kuss,

2015; Stijnen et al., 2010; Warren et al., 2014; Woods et al., 2010).

More plausible exchangeability assumptions between trials of different duration can

be made in time-to-event models on the log-hazard for event occurrence as e.g. in the

gamma-exponential model discussed in Section 2.3.2.2.

2.5. Bayesian meta-analysis approaches

2.5.1. Bayesian inference

Bayesian inference combines the likelihood for the observed data — in the Bayesian

context denoted by p(D|θ) instead of L(θ|D) — with a prior distribution (or “prior” for

short) with density p(θ) for the model parameters θ to obtain the posterior distribution

(or “posterior” for short) of the parameters given the data with density p(θ|D) using

Bayes’ theorem (Gelman et al., 2014, pp. 6–7)

p(θ|D) ∝ p(D|θ)p(θ).

Meta-analyses of two or more trials in the Cochrane database of systematic reviews are

based on a median of 3 trials (inter-quartile range 2 to 6) with a median of 91 patients
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per trial (inter-quartile range 44 to 210) (Davey et al., 2011). This emphasizes the need

for meta-analysis methods that are robust to sparse data situations — both in terms of

sparse data within each trial and a low number of trials.

Bayesian approaches — even when using only vague priors — often perform well in

terms of repeated sampling properties in sparse data situations (Gelman and Rubin,

1995). This is for example the case for random effects meta-analyses, where standard

frequentist methods perform badly in terms of coverage for confidence and prediction

intervals in some settings — particularly when the heterogeneity of the treatment effect

across trials is low and study sizes are varied (Bodnar et al., 2017; Partlett and Riley,

2017). In contrast, Bayesian methods using vague priors (Bai et al., 2016; Bodnar et al.,

2017) or using informative priors for the between-trial standard deviation based on

historical data (Higgins and Whitehead, 1996; Turner et al., 2015) perform better.

2.5.2. Markov chain Monte Carlo methods

In practice Bayesian inference is primarily performed using Markov chain Monte Carlo

(MCMC) methods. The main reason is that analytical solutions for the posterior are

primarily available for a specific choice of prior (“conjugate priors”) for the rather

limited class of distributions with sufficient statistic of fixed dimension given a large

enough sample size (Robert, 2007, pp. 116–121). MCMC methods draw pseudo-random

samples from a simulated Markov chain with a limiting distribution that is the posterior

of the model parameters. If the Markov chain has converged to its limiting distribution

and samples are taken from sufficiently far apart steps (“thinning”), then these pseudo-

random samples can be treated as i.i.d. samples from the posterior (Gelman et al.,

2014, pp. 282–283). When starting a MCMC algorithm at an arbitrary starting

value for the parameters of interest, it is a typical practice to ignore an initial set of

samples in the posterior inference. These ignored samples are referred to as “burn-in

samples” (Gelman et al., 2014, p. 282). There is a wide range of MCMC algorithms, out

of which we primarily employed Hamiltonian Monte Carlo using the No-U-Turn sampler

(NUTS) (Hoffman and Gelman, 2014), Gibbs sampling and an adaptive blocked form

of the random walk Metropolis algorithm (Gelman et al., 2014, pp. 275–281).
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2.5.3. Vague, weakly informative and informative prior

distributions

In the absence of prior information it is often considered desirable to specify priors

that exert minimal influence on the posterior (Gelman et al., 2014, p. 51). Such default

priors are a topic of ongoing research, on which Bhadra et al. (2016) provide a recent

overview. We will use the convention of reserving the term “vague prior” for very

diffuse proper priors to distinguish these from — possibly improper — priors that are

flat with respect to some parametrization of the likelihood and are sometimes referred

to as “uninformative”. The use of proper priors avoids the possibility of an improper

posterior (Robert, 2007, p. 39), which may otherwise occur and cannot always be

identified from the output generated by MCMC methods (Robert, 2007, p. 48).

Informative priors are priors that reflect available information on parameters e.g. based

on the posterior of a previous analysis. Section 2.5.4 discusses methods for obtaining

informative priors from historical data. We will refer to priors as “weakly informative”,

if available informative prior information is down-weighted in order to avoid too strong

an influence of the prior on the posterior, while still giving low prior probability to those

parts of the parameter space a-priori considered to contain implausible values (Gelman

et al., 2014, pp. 51–52). When using weakly informative priors, posterior inference enjoys

many of the same advantages as with vague priors (Gelman et al., 2014, pp. 51–52),

but any shrinkage occurs towards more plausible parameter values.

2.5.4. Methods for incorporating historical prior information in

Bayesian hierarchical models

The Bayesian models we will consider throughout this thesis will be of the form described

in Remark 2.2. We will discuss the choice of vague and weakly informative priors for

the mean and scale hyperparameters of these hierarchical models in Section 3.4.1 in

the context of a specific proposed model. We discuss the choice of the prior for the

treatment effect in a meta-analysis in Section 3.4.2 and Appendix A.
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While vague proper priors already confer some desirable frequentist operating charac-

teristics on Bayesian methods, there is considerable promise in making use of available

historical data to formulate informative priors. While prior information about a new

test treatment may be limited, several previous trials studying the control group may be

available to provide information on the nuisance parameters describing the distribution

of control group outcomes (Schmidli et al., 2014). However, while an exchangeability

of the parameters in historical and new trials may often be plausible, there will in-

evitably be concerns that there could be systematic differences that could bias posterior

inference (Schmidli et al., 2014). In this section we review a number of the existing

proposals for making posterior inference more robust against such prior-data conflicts.

While a range of methods has been proposed for this purpose, a systematic evaluation

and comparison between these options has not been conducted, except for a paper

by Li et al. (2016) that compared a limited set of methods. We start by reviewing the

closely related meta-analytic combined (MAC) and meta-analytic predictive (MAP)

approaches that provide a useful background, but are in their basic form not robust

against non-exchangeability between the parameters of historical and new trials. Then

we discuss the robust MAP (rMAP) approach and propose extend the MAC approach

using model averaging with a shrinkage prior. The discussed methods are compared

in a simulation study in Section 6.1, where the employed models are fully specified

for the case of right-censored exponentially distributed failure times and a log-hazard

ratio ϕ assumed to be constant across trials. There are a number of further methods

that we do not discuss such as the “power prior” (Ibrahim et al., 2015) and the related

“commensurate power prior” (Hobbs et al., 2011) approaches.

2.5.4.1. Meta-analytic combined approach

The MAC approach is to analyze all historical and new data using a single hierarchical

model that assumes that all historical and new trials have parameters that arise from

the same random effects distribution. I.e. no distinction is made between the control

group data from historical and new trials. The term MAC approach aims to contrast

such an analysis against the closely related MAP approach discussed below. To aid the
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comparison of different approaches, we spell out the posterior obtained from a MAC

analysis given a — typically vague or weakly informative — prior p(ζ,ϑ) for ζ and ϑ,

which is given by

p(ζ,ϑ,θ1, . . . ,θI+H |D,D′) ∝ p(ζ,ϑ)
I+H∏
i=1

p(θi|ϑ)

1−hi∏
j=0

p(Dij|θi, ζj), (2.5.1)

where hi := 1{i > I} is the indicator for whether trial i = 1, . . . , I +H is a historical

trial.

In the MAC approach we do not explicitly define priors on the distribution of control

group parameters across trials based on the historical control group data. Instead, we

induce them implicitly through random effects on trial-level parameters. The same

effect could also be achieved by fitting model (2.5.1) using maximum likelihood.

2.5.4.2. Meta-analytic predictive approach

The MAP prior approach is a two-step version of the MAC approach. First, we obtain

p(ζ0,ϑ,θI+1, . . . ,θI+H |D′) ∝ p(ζ0,ϑ)
I+H∏
i=I+1

p(θi|ϑ)p(D′i0|θi, ζ0), (2.5.2)

the posterior from fitting a hierarchical meta-analysis model to the historical data

D′ (Schmidli et al., 2014). Secondly, the marginal posterior of the hyperparameters

given D′ is used as the hyperprior for a new analysis (Schmidli et al., 2014), i.e.

p(ζ,ϑ,θ1, . . . ,θI |D,D′) ∝ p(ζ1)p(ζ0,ϑ|D′)
I∏
i=1

p(θi|ϑ)
1∏
j=0

p(Dij|θi, ζj). (2.5.3)

If the new data consists of a single new trial so that I = 1 and if p(ζ,ϑ) = p(ζ1)p(ϑ)

for some ϑ ∈ Θ′, then (2.5.3) corresponds to (Schmidli et al., 2014)

p(θ1, ζ1|D,D′) ∝ p(ζ1)p(θ1|D′)
1∏
j=0

p(D1j|θ1, ζj)
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with

p(θ1|D′) =

∫
Θ′
p(θ1|ϑ)

∫
Θ

. . .

∫
Θ

p(ϑ,θI+1, . . . ,θI+H |D′) dθI+1 . . . dθI+H︸ ︷︷ ︸
=p(ϑ|D′)

dϑ. (2.5.4)

(2.5.4) is the marginal MAP distribution for θ1 given D′, which is why this method

is called “MAP” approach. However, when there are I ≥ 2 new trials the density of

the joint MAP distribution of θ1, . . . ,θI on the left-hand side of (2.5.5) is not equal to

the product of the densities of the marginal MAP distributions on the right-hand side

of (2.5.5) ∫
Θ′
p(ϑ|D′)

I∏
i=1

p(θi|ϑ) dϑ 6=
I∏
i=1

∫
Θ′
p(ϑ|D′)p(θi|ϑ) dϑ. (2.5.5)

A stratified meta-analysis with marginal MAP distributions p(θi|D′) as independent

priors for the trial-level parameters θi for i = 1, . . . , I equates the two sides of (2.5.5) by

ignoring the correlations between the parameters. Under what circumstances this naive

extension of MAP approach for a single trial provides a good approximation to (2.5.3)

has not been investigated.

Note that when a Bayesian analysis is performed using MCMC methods — as is

typically the case — we do not need to explicitly perform the integrations in (2.5.4)

or those to obtain p(ζ,ϑ|D′) from (2.5.2). Instead, we can directly use the values of

the pseudo-random samples ϑ(l) and ζ(l) with l = 1, . . . , L from the joint posterior

p(ζ,ϑ,θI+1, . . . ,θI+H |D′) and obtain predictions for θi for i = 1, . . . , I according to

p(θ
(l)
i |ϑ

(l)) (Gelman et al., 2014, pp. 63–67).

The use of standard MCMC methods requires a specification of the MAP prior in terms

of a mathematical function based on the MCMC samples obtained from fitting the

hierarchical model to the historical data. One approach is to use a mixture distribution

that closely approximates the posterior samples for the hyperparameters (Schmidli et al.,

2014). The use of a finite mixture of (conditionally) conjugate priors is particularly

convenient in order to obtain — when possible — analytical posteriors or to enable Gibbs

sampling (Schmidli et al., 2014). An arbitrarily close approximation to the MAP prior

in terms of e.g. pointwise convergence in the L1-norm, the Kullback-Leibler divergence
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or the Prohorov distance can be achieved by using a sufficient number of mixture

components (Lijoi, 2003; Schmidli et al., 2014; Robert, 2007, pp. 123–126). Schmidli

et al. (2014) have suggested that in practice two or three mixture components will

typically be sufficient, if the MAP prior is unimodal. However, a good approximation

of the prior does not ensure that the posterior based on the approximate prior will

closely approximate the posterior based on the original MAP prior (Robert, 2007,

pp. 126–127). The arbitrariness of the choice of distribution for the random effects, as

well as of the priors for its parameters, and the approach described in the next section

of making the MAP prior more vague through the addition of a weakly informative

mixture component may in practice somewhat alleviate concerns around this point.

2.5.4.3. The robust Meta-analytic predictive approach

To make the MAP approach more robust against non-exchangeability between the

parameters of historical and new trials Schmidli et al. (2014) have proposed the rMAP

method. It makes the tails of the mixture approximation to a MAP distribution heavier

by adding vague or weakly informative mixture components that assign weight to a

very wide range of potential parameter values. Such a rMAP prior increasingly discards

the prior information with increasing prior-data conflict (Schmidli et al., 2014).

However, little research exists on the choice of the weight for the vague or weakly

informative mixture component in the rMAP approach. Prior weights of 0.5 to 0.9 for

the informative mixture component have been used (Schmidli et al., 2014). Weaver

et al. (2016) suggest a weight of 0.5 for binomially distributed outcomes. They also

suggested that assigning a sufficiently large weight to the vague mixture component

becomes more important the more informative the likelihood is. Note that the weight

of the informative mixture component is not simply a factor by which the prior effective

sample size is down-weighted. In fact, if the likelihood strongly supports the MAP prior,

the informative mixture component may have close to 100% of the posterior weight and

the prior effective sample size is close to that of the MAP prior. This is in contrast to

the power prior approach of Ibrahim et al. (2015), in which the discounting parameter

is directly related to the prior effective sample size.
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2.5.4.4. An example of using robust mixture priors

We will use the example of estimating a single exponential rate parameter when

there is considerable prior information. Program code for this example is available

under https://doi.org/10.6084/m9.figshare.5007833. We assume that there is

uncertainty as to whether an exchangeability assumption between the new data under

analysis and the source of prior information is truly appropriate.

As the top-left panel of Figure 2.1 illustrates, an informative single-component conjugate

prior can lead to the posterior having minimal overlap with both the high-density regions

of the likelihood and the prior. As the other panels of the figure illustrate, this is

mitigated by using a supposedly vague conjugate prior such as a Gamma(ε, ε) prior

with e.g. ε = 0.001, a weakly informative conjugate prior such as a Gamma(1, 2.84)

prior, or a mixture of a weakly informative and an informative conjugate prior.

The posterior weight of the weakly informative component of the mixture is greater

than 99.99% so that the informative mixture component has extremely little effect

on the posterior despite having a prior weight of 80%. Note that the scale parameter

for the Gamma(1, 2.84) prior was chosen so that the prior mean on the log-scale
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Figure 2.1.: Conjugate analysis of an exponential rate when data (36 patients with an event in 40
patient-years of follow-up) is in conflict with the informative Gamma(40, 200) prior density
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Figure 2.2.: Conjugate analysis of an exponential rate when data (10 patients with an event in 40
patient-years of follow-up) is reasonably consistent with the informative Gamma(40, 200)
prior density

matches that of the informative Gamma(40, 200) prior, i.e. so that ψ(1)− log(scale) =

ψ(40)− log(200) ≈ 2.84, where ψ(x) := Γ′(x)/Γ(x) denotes the digamma function.

While a Gamma(ε, ε) prior is often considered a default vague prior (Coory et al., 2009;

Neil et al., 2008), the choice of ε can exert strong influence on posterior inference.

E.g. when no events were observed in 1 day of observation time, the upper end of

an equal-tailed posterior credible interval (CI) for the hazard rate per patient year is

1.5× 10−9 for ε = 0.001 and 3.7 for ε = 0.01.

On the other hand, as Figure 2.2 illustrates, an informative single-component conjugate

prior, as well as a mixture of a weakly informative and an informative conjugate prior

result in a notably more concentrated posterior density than weakly informative or

non-informative priors when the likelihood and the prior have a substantial overlap.

This is the result of prior information consistent with the observed data substantially

influencing the posterior. In the analysis using a mixture prior the informative mixture

component has a higher posterior (91.7%) than prior weight (80%), because it over-

laps more with the likelihood than the more spread-out weakly informative mixture

component.

– 31 –



2. A review of meta-analysis methods for event occurrence

2.5.4.5. Model averaging using a shrinkage prior

Instead of attempting to make the MAP approach more robust against prior-data

conflicts, one can attempt to do the same within the MAC framework. This has the

advantage of requiring only a single analysis instead of two analyses with an in-between

step for approximating the MAP prior by a mixture distribution as in the rMAP

approach. We propose to extend the MAC approach for hierarchical models with

normally distributed random effects by introducing an additional parameter β that

describes the extent to which historical and new data differ to obtain

p(ν,Σ, ζ,β,θ1, . . . ,θI+H |D,D′) ∝ p(ν,Σ)p(ζ)p(β)

I+H∏
i=1

φ(θi;ν + hiβ,Σ)

1−hi∏
j=0

p(Dij|θi, ζ).

In terms of the notation of Section 2.4, ϑ consists of ν, Σ and β. Specifying the prior

p(β) may be seen as an a-priori assessment of how much the parameters of the new

data may differ from the historical data.

Alternatively, Carvalho et al. (2009) have motivated the choice of a horseshoe HS(σa, σb)

prior by aiming for a behavior similar to Bayesian model averaging. With a local scale

parameter σa > 0 and global scale parameter σb > 0 the horseshoe prior for a vector of

regression coefficients β is given by

pHS(β;σa, σb) :=

∫ ∞
0

. . .

∫ ∞
0

pHCa(b; 0, σb)

p∏
r=1

φ(βr; 0, arb)pHCa(ar; 0, σa) da1 . . . dap db,

where pHCa(·; 0, σ) is the pdf of a half-Cauchy distribution with location parameter 0

and scale parameter σ.

The candidate models considered in the model averaging are the simple MAC model (2.5.1)

(i.e. β = 0), a model with some hierarchical mean parameters differing for new and

historical data (when some components of β are non-zero), and a model with an uncon-

strained β — i.e. a model with two completely separate means for the random effects in

the historical and new data. The horseshoe prior approximates a “spike-and-slab” prior

by having considerable weight in the vicinity of β = 0, where its density is unbounded,
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and otherwise having a relatively flat heavy-tailed density centered on zero.

For a single scalar β, the prior simplifies to
∫∞

0

∫∞
0
φ(β; 0, ab)pHCa(a; 0, σa)pHCa(b; 0, σb) da db.

Alternative proposals for p(β) include the Laplace (double-exponential) and the Cauchy

priors (Carvalho et al., 2009). All of these priors are illustrated in Figure 6.1.

The alternative of a full Bayesian model averaging has been investigated by Neuen-

schwander et al. (2016a) and Neuenschwander et al. (2016b), but efficient MCMC

sampling for this approach can be challenging (Carvalho et al., 2009; Neuenschwander

et al., 2016b).

– 33 –



3. Time-to-event meta-analysis of

commonly available aggregate data

We start this chapter by illustrating the need for AD time-to-event meta-analysis

methods that do not rely on the availability of tij· or dij·. First, we show that meta-

analysis methods for binomial data require quite restrictive assumptions on the drop-out

distribution. Secondly, we discuss options for imputing tij· and dij·, which are needed

for AD approaches such as using a “Poisson likelihood” or logistic regression with a log

duration to first event or censoring offset, or the binomial model with a complementary-

log-log link function with a log average follow-up offset. Methods for imputing these

quantities have not so far received attention in the literature.

The difficulties we face when attempting to do so illustrate the need for the kind of

likelihood, which we derive in Section 3.2. We discuss issues with parameter identifiability

and maximum likelihood estimation for the proposed likelihood in Section 3.3, as well as

approaches for avoiding these issues. One such approach is to use a Bayesian hierarchical

model as proposed in Section 3.4.

We then illustrate a number of the discussed approaches using the example of a meta-

analysis of the occurrence of major adverse cardiovascular events (MACE) with the

diabetes drug rosiglitazone in Section 3.5. Finally, we evaluate a range of methods in a

simulation study in Section 3.6.

Parts of this chapter are reproduced from Holzhauer (2017) (available at http://dx.doi.org/10.1002/sim.7181)
with permission from John Wiley & Sons. Copyright cO2016 John Wiley & Sons, Ltd.
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3.1. Motivation for aggregate data time-to-event

meta-analysis methods

3.1.1. Validity of meta-analysis methods for binomial data

We consider a meta-analysis of I trials with i.i.d. event times Xijk with absolutely

continuous pdf fij and hazard function λij(s) for s ≥ 0 for the nij patients k = 1, . . . , nij

in group j = 0, 1 of trial i = 1, . . . , I with planned follow-up τi > 0 for each patient. We

assume i.i.d. drop-out times Cijk with an absolutely continuous pdf gij, and that the

Xijk and Cijk are independent of each other. As before, we define Yij· :=
∑nij

k=1 1{Xijk ≤

min(Cijk, τi)} and πij := EYij·/nij.

Theorem 3.1. If for the drop-out times gi0(s) = gi1(s) ∀s ∈ [0, τi] and ∀i = 1, . . . , I,

then we can test the null hypothesis

H0 : λi1(s) ≤ λi0(s) ∀i = 1, . . . , I and ∀s ∈ [0, τi]

at level α ∈ (0, 1) with any level α test of the “substitute” null hypothesis H ′0 : πi1 ≤ πi0

∀i = 1, . . . , I.

Proof. We will demonstrate that H0 implies H ′0 under the conditions given in Theo-

rem 3.1, which proves the statement of the theorem. Since we assume i.i.d. event and

drop-out times within a treatment group j = 0, 1 of a trial i = 1, . . . , I, all patients

within the same group in a trial have the same probability πij of having an observed

event prior to dropping out or reaching the planned end of follow-up at time τi and the

number of patients with an observed event Yij· follows a binomial distribution. πij is

given by

πij := P{Xijk ≤ min(Cijk, τi)}

=

∫ ∞
0

∫ ∞
0

fij(x)gij(c)1{x ≤ min(c, τi)} dx dc

=

∫ ∞
0

∫ min(c,τi)

0

fij(x)gij(c) dx dc

=

∫ ∞
0

Fij(min(c, τi))gij(c) dc.
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Since Fij(s) = 1−exp
(
−
∫ s

0
λij(u) du

)
, λi1(u) ≤ λi0(u) for all u ∈ [0, s] implies Fi1(s) ≤

Fi0(s). Thus, if λi1(s) ≤ λi0(s) and gi0(s) = gi1(s) ∀s ∈ [0, τi], then πi1 ≤ πi0.

Remark 3.1. Under the conditions of Theorem 3.1 an unbiased level 0 < α < 1 test

of the alternative hypothesis H ′A : πi1 ≥ πi0 with strict inequality for some i = 1, . . . , I

against the null hypothesis H ′0 of Theorem 3.1 is an unbiased level α test for the

alternative hypothesis

HA : λi1(s) ≥ λi0(s) ∀i = 1, . . . , I and ∀s ∈ [0, τi] with strict inequality for some

i = 1, . . . , I and for some s ∈ [0,min(τi, G
−1
i0 (1))]

against the null hypothesis H0 of Theorem 3.1. Note that HA is not the complement of

H0 without additional assumptions such as a proportional hazards assumption. That

the power function of such a test is at least α under HA can be shown in a similar

manner to the proof of Theorem 3.1, because λi1(u) ≥ λi0(u) for all u ∈ [0, s] implies

Fi1(s) ≥ Fi0(s). Strict inequality occurs, if λi1(u) > λi0(u) for some u ∈ [0, s], because

in this case the hazard functions differ on a subinterval of non-zero length of [0, s] due

to their absolute continuity implied by the absolute continuity of the fij.

While Theorem 3.1 and Remark 3.1 may be obvious, what seems less widely appreciated

is that the given sufficient conditions cannot easily be relaxed. Firstly, having the

same expected proportion of drop-outs across treatment groups in each trial would not

be a sufficient condition. Secondly, an identical expected follow-up is not a sufficient

condition. Both of these can be illustrated with two counter-examples illustrated

in Figure 3.1. Program code for these counter examples is available under https:

//doi.org/10.6084/m9.figshare.5007833.

Counter-example 3.1. Let τi = 1, gi1(s) := 12(s − 0.5)2 for s ∈ [0, 1], gi0(s) :=

12/5(0.5− (s− 0.5)2) for s ∈ [0, 1] and let fij(s) := 2s for s ∈ [0, 1]. Then the expected

proportion of drop-outs is 1 and the expected duration of follow-up is 1/2 for both

treatment groups, but πi0 = 0.32 and πi1 = 0.4 even though the hazard function for

events is the same for both treatment groups throughout the trial period.

Counter-example 3.2. Let τi = 1, gi0(s) := 12(s − 0.5)2 for s ∈ [0, 1], gi1(s) :=

12/5(0.5 − (s − 0.5)2) for s ∈ [0, 1], fi0(s) := 3s2 for s ∈ [0, 1] and fi1(s) := 2s for
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Figure 3.1.: Probability density functions and hazard functions for the two counter-examples

s ∈ [0, 1]. As before the expected proportion of drop-outs is 1 and the expected

duration of follow-up is 1/2 for both treatment groups, but πi0 = 0.35 is larger than

πi1 = 0.32 even though the hazard function for the control group (3x2)/(1 − x3) is

smaller throughout the trial duration than that of the test group 2x/(1− x2).

Remark 3.2. Buyse and Ryan (1987) have shown that for a meta-analysis of trials of

a fixed planned duration for each patients with identical drop-out distributions across

groups, with at most 10% drop-outs, with at most 75% of patients experiencing an

event and with a Weibull shape parameter ≤ 1, the asymptotic relative efficiency of

the CMH test is at least 80% of that of a stratified log-rank test.

3.1.2. Imputing the duration of follow-up, or of follow-up to first

event or censoring

3.1.2.1. Imputing the duration of follow-up

The zij· patients that do not complete a trial have interval censored drop-out times

that lie in the interval [0, τi], if we treat deaths due to events of interest like any

other drop-out. Similarly, the drop-out times for patients that complete a trial are

right-censored to lie in (τi,∞). If we assume that drop-out times follow a Exp(µij)
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distribution and treat all deaths like any other trial discontinuation, then the MLE

based on the log-likelihood

logL(µij|zij·) = zij· logG(τi;µij) + (nij − zij·) log(1−G(τi;µij))

= zij· log(1− e−µijτi)− (nij − zij·)µijτi + constant

for an exponential drop-out hazard rate µij in each treatment arm j of each trial i is

µ̂ij = τ−1
i {log nij − log(nij − zij·)}, (3.1.1)

as long as zij· < nij, while for zij· = nij no finite MLE exists. For zij· = 0 we obtain

µ̂ij = 0, but already know that all patients were followed for the planned trial duration

so that dij· = nijτi. Otherwise, we can calculate the expected follow-up duration

conditional on zij· and substituting µ̂ij ∈ (0,∞) for µij as

Eµij=µ̂ij(Dij·|Zij· = zij·) =(nij − zij·)Eµij=µ̂ij(Dijk|Dijk ≥ τi)

+ zij·Eµij=µ̂ij(Dijk|Dijk < τi)

=(nij − zij·)τi + zij·

∫ τi
0
cµ̂ije

−µ̂ijc dc∫ τi
0
µ̂ije−µ̂ijc dc

=(nij − zij·)τi + zij·(
1

µ̂ij
+

τi
1− eµ̂ijτi

)

=(nij − zij·)τi − zij·τi(
nij − zij·
zij·

+
1

log(
nij−zij·
nij

)
)

=(nij − zij·)τi + zij·
τi
2

+O(
zij·
nij

) as
zij·
nij
↘ 0.

(3.1.2)

The Taylor series expansion in the last line of (3.1.2) is for τiniju(1/u − 1 + 1
log(1−u)

)

around u = 0 for u =
zij·
nij

. It suggests that we expect the zij· patients that did not

complete the trial to have approximately half the planned follow-up, if the proportion

of drop-outs is low. In case zij· = 0 evidently no approximation is involved, while for

zij· = nij the approximation is likely poor.

At the end of Section 3.1.2.2 we discuss the limitations and issues of approximating tij· in

a similar fashion and all of the points outlined there also apply to approximation (3.1.2)

for dij·.
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3.1.2.2. Imputing the duration of follow-up to first event or censoring

If we assume event and censoring times to be independent and exponentially distributed

with exponential hazard rates λij and µij , then the time to first event or drop-out is also

exponentially distributed with hazard rate parameter ξij = λij + µij. We can estimate

ξij in analogy to equation (3.1.1) as

ξ̂ij = τ−1
i {log nij − log(nij − yij· − (zij· −mij·) +

nij∑
k=1

yijk(zijk −mij·))},

if we knew the overlap
∑nij

k=1 yijk(zijk−mij·) between patients that had non-fatal events

and the drop-outs. Analogously to equation (3.1.2) we then obtain the conditional

expectation

t̃ij· := Eξij=ξ̂ij
(Tij·|Zij· = zij· and Yij· = yij· and Mij· = mij·)

≈ τi(nij − zij· +mij· − yij·) +
τi
2

(zij· −mij· + yij·),

if both the proportion of censored patients and of patients with an event are low.

On average tij· will be overestimated by t̃ij·, because without any approximations the

expected average event and drop-out times are expected to be below τi/2. Thus, if there

is differential follow-up across groups, we expect the approximations to bias the hazard

ratio between two treatment groups in favor — assuming that event occurrence is an

undesirable outcome — of the group with the higher drop-out rate, because using t̃ij· in

the MLE for an exponential hazard rate λ̂ij = yij·/tij· is expected to underestimate λij

more in that group. This expected direction of the bias is seen in the simulation results

presented in Appendix C. Additionally, such a single value imputation for tij· ignores

the uncertainty about t̃ij· in two ways: firstly by taking a conditional expectation

given the MLE of the hazard rate of events and drop-outs as a single value imputation,

and secondly by ignoring uncertainty around this estimated hazard rate. Using the

conditional expectation given ξij = ξ̂ij as a single value imputation for tij· ignores the

variation in Tij· for a given true ξij , as well as the uncertainty around ξ̂ij . This will not

only result in understated uncertainty, but also in potentially biased inference about
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event occurrence due to the non-linear link-function through which tij· enters analyses

such as an exponential AD time-to-event model.
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Figure 3.2.: Average percentage error 100× |t̃ij·/tij· − 1| for different exponential event and drop-out
time hazard rates based on 10,000 simulations for each scenario

As Figure 3.2 shows the average absolute percentage error when using t̃ij· is limited

to below 5% for many practically relevant event rates (≤ 0.5) for realistic censoring

rates below 0.2. On the other hand, for higher event hazard rates the error can be

substantial. Program code for this example is available under https://doi.org/10.

6084/m9.figshare.5007833.

3.2. Likelihood for commonly available aggregate data

In this section we derive a generally applicable likelihood for θF,ij and θG,ij, as well

as qij — the probability of events being fatal given that they have occurred — given

observed AD consisting of yij·, zij·, mij·, nij and τi.
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3.2. Likelihood for commonly available aggregate data

For deriving this likelihood, we will consider five mutually exclusive outcomes a patient

may experience and relate these to the observed AD.

Definition 3.1. Let Wij := (Wij1, . . . ,Wij5)T denote the random vector of the number

of patients in each of the following five mutually exclusive categories that a patient in

group j of trial i may fall into:

1. Patient experienced a fatal event of interest,

2. Patient experienced a non-fatal event and completed the trial,

3. Patient experienced a non-fatal event and then dropped out before completing

the trial,

4. Patient completed the study without an event (administratively censored), which

in fixed duration studies occurs after the planned trial duration τi,

5. Patient dropped out before experiencing any event or completing the trial.

The random vector Wij has a multinomial distribution with pmf

f(wij ; pij1, . . . , pij5) =

(
nij
wij

) 5∏
r=1

p
wijr
ijr (3.2.1)

for some probabilities pij1, . . . , pij5 that satisfy
∑5

r=1 pijr = 1, where

(
nij
wij

)
:= nij!/

5∏
r=1

wijr!

denotes the multinomial coefficient.

We treat patients that die for reasons other than the event of interest as censored for

the purpose of estimating θF,ij and as an event for estimating θG,ij.

We take into account whether events were fatal in order to correctly reflect that a fatal

event truncates further follow-up for drop-out from the trial, while patients continue

to be at risk for that outcome after a non-fatal event. We do not simply treat the

truncation of follow-up by a fatal event as drop-outs, because then event and drop-out

times would no longer be independent.
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3. Time-to-event meta-analysis of commonly available aggregate data

The probabilities

pij1 := P(Xijk ≤ min(τi, Cijk) and Mijk = 1) = qij × P(Xijk ≤ min(τi, Cijk)),

pij2 := P(Xijk ≤ τi < Cijk and Mijk = 0) = (1− qij)× P(Xijk ≤ τi < Cijk),

pij3 := P(Xijk ≤ Cijk ≤ τi and Mijk = 0) = (1− qij)× P(Xijk ≤ Cijk ≤ τi),

pij4 := P(min(Xijk, Cijk) > τi) and

pij5 := P(Cijk < Xijk and Cijk ≤ τi)

(3.2.2)

for group j of trial i can be expressed in terms of τi and the parameter vector θij

consisting of θF,ij, θG,ij , and qij , if we assume specific parametric distributions with cdfs

F for the failure times Xijk and G for the drop-out times Cijk for patient k = 1, . . . , nij

in group j of trial i.

The second equalities for pij1, pij2 and pij3 only follow, if we assume that P(Mijk =

1|Xijk ≤ min(τi, Cijk)) = qij. This may be a reasonable assumption regarding whether

the first event itself is fatal, but is a simplifying approximation when the first event

is not fatal. In the latter case, the probability of the patient dying of an event of

interest depends on the hazard over time of dying of an event of interest following a first

non-fatal event, the hazard over time for drop-out prior to dying and on the remaining

duration of follow-up until censoring after the first non-fatal event.

By considering follow-up as truncated at the time of the first event, when in fact the

fatal event may only have occurred subsequently, we underestimate the time at risk

for drop-out. In the absence of the data on recurrent events to fully model this, we

consider this approximation reasonable particularly if either first, recurrent or fatal

events are rare. In those cases any approximations for qij will have little influence on

inference, because qij is primarily a nuisance parameter that we account for in order to

estimate θG,ij. Similarly, less of an approximation is involved if recurrent events are

rare, because qij will be primarily driven by the probability of the initial event being

fatal and to a much smaller extent by subsequent events being fatal.

If we can specify a joint distribution of event and drop-out times, as well as event

fatality, (3.2.2) can also deal with non-independent event and drop-out times, but in
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what follows we will assume independence between drop-out times, event times and

whether events are fatal.

For exponentially distributed failure timesXijk ∼ Exp(λij) and exponentially distributed

drop-out times Cijk ∼ Exp(µij) for patients k = 1, . . . , nij , we have θij = (λij, µij, qij)
T

and obtain

pij1 = qij ×
λij

λij + µij

(
1− e−(λij+µij)τi

)
,

pij2 = (1− qij)×
(
1− e−λijτi

)
e−µijτi ,

pij3 = (1− qij)×
[
λij + µije

−(λij+µij)τi

λij + µij
− e−µijτi

]
,

pij4 = e−(λij+µij)τi , and

pij5 =
µij

λij + µij

(
1− e−(λij+µij)τi

)
.

(3.2.3)

Note that we can choose to replace the calculation of one of these probabilities by a use

of the identity
∑5

r=1 pijr = 1.

If we would observe realizations wij of Wij — i.e. if we knew how many patients

fall into each of the five mutually exclusive categories in Definition 3.1 — we could

substitute the expressions of the probabilities pij1, . . . , pij5 in terms of θij into (3.2.1) to

conduct inference about the parameters of interest. However, in practice publications

will typically only report wij1 = mij·, while wij2, . . . , wij5 will not be directly known.

Given yij·, zij·, mij·, nij and τi, we face a coarse data situation, in which we do not

know the overlap wij3 between the yij· −mij· patients with a non-fatal event and those

zij· patients that did not complete the trial. The data on wij3 is interval censored to lie

between r1 = max(0, yij· + zij· −mij· − nij) and r2 = min(yij· −mij·, zij· −mij·). wij2,

wij4, and wij5 are also interval censored, but are determined for a given value of wij3.

Thus, the likelihood is obtained as

L(pij1, . . . , pij5|AD) =nij!
pij1

mij·

mij·!

r2∑
r=r1

pij2
yij·−mij·−r

(yij· −mij· − r)!
pij3

r

r!

pij4
nij−yij·−zij·+mij·+r

(nij − yij· − zij· +mij· + r)!

pij5
zij·−mij·−r

(zij· −mij· − r)!

(3.2.4)

– 43 –



3. Time-to-event meta-analysis of commonly available aggregate data

by summing over the possible data constellations consistent with the observed AD.

(3.2.4) can be used as the likelihood for the parameters of interest θij in a straightforward

manner, if closed form expressions for pij1, . . . , pij5 in terms of θij exist. When this is

not the case, numerical integration may be necessary to evaluate the likelihood as is

the case for Weibull distributed event and drop-out times (see Section 4.1).

If we assume that θF,i0, θG,i0 and θG,i1 in different trials i = 1, . . . , I are completely

unrelated, while θF,i1 is specified for each trial in relation to θF,i0 e.g. by a fixed hazard

ratio, we obtain a stratified analysis.

However, as we will discuss in Section 3.3 and Section 4.1.2, these parameters may

not always be identified, and even if they are, it may not be possible to obtain a

unique MLE.

In an attempt to avoid these problems, we can assume that θF,i0, θG,i0 and θG,i1

are exchangeable across the I trials to be meta-analyzed leading to the hierarchical meta-

analysis model described in Section 3.4. Additionally, we will describe in Section 3.4.3

how to obtain priors for the random trial effect in a meta-analysis based on a set of

H historical trials i = I + 1, . . . , I +H in a manner that has some robustness against

prior-data conflicts. Another way to avoid the described issues, which we also address

in Section 3.4.3, is to use (weakly-)informative priors for θF,i0, θG,i0 and θG,i1 in a

stratified analysis.

3.3. Parameter identifiability and maximum likelihood

estimation for the proposed likelihood

Definition 3.2. A parameter θ ∈ Θ for a family of distributions with pdf or pmf

f(w;θ) is identifiable, if for θ 6= θ′ the pdf or pmf is not the same (Casella and Berger,

2002, p. 523).

Theorem 3.2. For independent and exponentially distributed failure times Xijk ∼

Exp(λij) and drop-out times Cijk ∼ Exp(µij) the parameters λij ∈ (0,∞), µij ∈ [0,∞)
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and qij ∈ [0, 1] of the distribution defined by the pmf (3.2.1) and (3.2.3) are identifiable.

Proof. pij := (pij1, . . . , pij5)T determines the pmf (3.2.1) of a multinomial distribution.

Thus, Theorem 3.2 holds, if any two parameter vectors (λij, µij, qij)
T 6= (λ′ij, µ

′
ij, q

′
ij)

T

that differ in at least one component lead to different pij.

Two such parameter vectors only result in the same pij4 = e−(λij+µij)τi for λij + µij =

λ′ij + µ′ij . However, holding ξ := λij + µij = λ′ij + µ′ij constant, pij5 = µij/ξ× (1− e−ξτi)

is a strictly increasing function of µij so that µij 6= µ′ij lead to different distributions.

Given a fixed µij ∈ [0,∞) the probability pij4 as a function of λij ∈ (0,∞) is a strictly

decreasing one-to-one function. Thus, λij 6= λ′ij lead to different distributions. Given

fixed values µij ∈ [0,∞) and λij ∈ (0,∞) we obtain λij/(λij+µij)×(1−e−(λij+µij)τi) > 0

so that pij1 as a function of qij is a strictly increasing function. Thus, qij 6= q′ij lead to

different distributions.

Remark 3.3. We needed to exclude the case λij = 0, because otherwise pij1 = pij2 =

pij3 = 0 irrespective of the value of qij. In that case qij would not be identified.

Remark 3.4. Theorem 3.2 does not guarantee parameter identifiability for the pmf (3.2.4),

but when the parameters for the pmf (3.2.1) are non-identifiable, this is also the case for

the pmf (3.2.4). For example, in Section 4.1.2 we will prove parameter non-identifiability

when event and drop-out times follow Weibull distributions.

Remark 3.5. Parameter identifiability does not ensure the existence of a unique or

finite MLE for any particular realization from the distribution. Under the assumptions

of Theorem 3.2 a unique finite MLE for all model parameters does not exist when

yij· = nij, yij· = 0 or when zij· = nij. Additionally, the MLE may lie on the boundary

of the parameter space when mij· = yij·, mij· = 0 or if zij· −mij· = 0. In the latter case

partial derivatives of the likelihood function do not exist so that we cannot obtain SEs

and confidence intervals using the usual asymptotic approximations.

Remark 3.6. A unique MLE q̂ij exists — not just for exponentially distributed

event and drop-out times — if θF,ij and θG,ij are distinct from qij, and yij· > 0.

In this case the MLE is q̂ij = mij·/yij·, because the first partial derivative of the

– 45 –



3. Time-to-event meta-analysis of commonly available aggregate data

logarithm of (3.2.1) with respect to qij is wij1/qij + wij2/(qij − 1) + wij3/(qij − 1),

which is equal to zero for the given MLE, and because the second partial derivative

−wij1/q2
ij − wij2/(qij − 1)2 − wij3/(qij − 1)2 is negative at the extremum so that it is a

maximum.

The issues with maximum likelihood estimation from the proposed likelihood can be

avoided or minimized in at least three ways. Firstly, we can make exchangeability

assumptions about trial-level parameters across studies. This regularizes the estimates

of the trial-level parameters. Even non-identifiable parameters — such as those of

an AD Weibull model — may become identifiable, if trials vary sufficiently in duration

to provide information on how the proportion of drop-outs and of patients with events

varies with trial duration (Dias et al., 2014). Secondly, if parameter identifiability

issues arise in (3.2.4) due to a lack of knowledge of each patient’s time to event or

censoring, having IPD available from some trials may avoid this issue. Exchangeability

assumptions can then be used to borrow the information obtained from trials with

available IPD, in order to avoid parameter identifiability issues in trials with AD, even

when all trials are of similar planned duration. The likelihood contribution of the IPD

of arm j of trial i is

L(θF,ij,θG,ij, qij|IPD) =

nij∏
k=1

q
mijk
ij (1− qij)yijk−mijk

× f(tijk;θF,ij)
yijk{1− F (tijk;θF,ij)}1−yijk

× g(dijk;θG,ij)
zijk−mijk{1−G(dijk;θG,ij)}1−zijk+mijk

Thirdly, using proper priors for θF,ij, θG,ij and qij, or on the hyperparameters ϑ

specifying random effects for the trial-level parameters ensures a proper posterior,

although with vague priors it may remain a very diffuse distribution that is difficult to

sample from (Gelfand and Sahu, 1999) — an issue that truly informative priors will

reduce. Similarly, penalized likelihood approaches could be considered.

Exchangeability assumptions about the parameters of each trial also allow us to analyze

data with partially missing information on yij·, zij· or mij· without explicit imputation,
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if data are missing at random (MAR). A likelihood-based analysis makes assumptions

equivalent to imputing the missing data according to its conditional distribution given

the observed data, while a Bayesian analysis implicitly does so according to the posterior

predictive distribution. In either case missingness must only depend on the observed

data for the trial under the MAR assumption, but we will be unable to assess whether

the unavailability of data depends on the unreported data (“missing not at random”).

E.g. publication authors may not report that no patients withdrew from a trial or that

no patient had a particular adverse event.

3.4. Proposed hierarchical aggregate data

meta-analysis model

We will use a hierarchical meta-analysis model for the data yij·, mij·, zij·, nij and τi from

a set of I trials i = 1, . . . , I of a test intervention against controls with the trial-level

log-likelihood (3.2.4) and random study effects on θF,i0, θG,i0 and θG,i1. We assume

that θF,i1 is defined by θF,i0 and a log-hazard ratio ϕ that is fixed across all trials. For

each parameter r = 1, . . . , p out of the parameters θF,i0, θG,i0 and θG,i1 we will assume

normally distributed independent N(νr, σr) random effects with mean νr and standard

deviation σr across the trials for suitably transformed forms of the parameters. For

the example of exponentially distributed event and drop-out times we would use the

hierarchical meta-analysis model in Figure 3.3.

We will assume that qij = qj is identical for all patients in treatment group j = 0, 1

across all trials i = 1, . . . , I. While this may not be true in general for trials of differing

duration, we consider this a pragmatic choice, because the qij should typically be the

least influential nuisance parameters as discussed in Section 3.2. Additionally, fatal

events will often be much more rare than events so that separate parameters qij for

each trial would be difficult to estimate. Alternative approaches include a random trial

effect for logit qij and the approach introduced in Section 4.3. In the absence of any

other prior information we will use independent Beta(1/2, 1/2) priors for q0 and q1.
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B Figure 3.3.: Proposed hierarchical model for a meta-analysis of test compared with control assuming
exponentially distributed event and drop-out times (prior distributions indicated in red),
the likelihood for each treatment group is given by (3.2.4) with the probabilities (3.2.3)

3.4.1. Choice of priors for hierarchical mean and scale parameters

While we write p(νr, σr) for r = 1, . . . , p in Figure 3.3, we assume that vague priors for

the hyperparameters are independent so that p(νr, σr) = p(νr)p(σr) — except when

using informative prior information (see Section 3.4.3). Even when there is a small

number of trials, the trial-level data will typically be highly informative about the means

of random trial effects (Gelman et al., 2014, p. 115). Thus, independent vague priors

— e.g. N(0, 1000) distributions for the means ν1, . . . , νp of the random effects across

trials — are a standard choice in the absence of prior information (Gelman et al., 2014,

p. 115). A choice of a mean of zero for the priors lacks any justification, but will have

extremely limited influence on inference as long as the prior is sufficiently flat across a

wide range of possible values. For example, in case of exponentially distributed failure

times, values of the log hazard rate of 0 correspond to a hazard rate of 1 indicating

that 63% of patients at risk at the start of a year would experience an event by the end

of the year, but the prior probability for a wide range of intervals for the log-hazard

ratio ϕ is very similar: [log(0.0001), log(0.001)] has a prior probability of 0.091857%

and [log(0.1), log(1)] of 0.091860%. Alternatively, a normal prior for the hierarchical

mean parameter centered on a reasonable prior estimate and a standard deviation of,

say, log(10) is a weakly informative alternative.

In contrast to the means the scale parameters σ1, . . . , σp of random effects tend to
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be more difficult to estimate (Gelman et al., 2014, pp. 128–132). In a hierarchical

model the MLE for the hierarchical scale may be 0 despite the likelihood also providing

considerable support for values far away from zero and many procedures for maximum

likelihood estimation then proceed, as if the scale parameter were known to be 0 (Chung

et al., 2013). This can be avoided by penalizing the likelihood sufficiently to avoid

such an estimate, which is equivalent to Bayesian maximum-a-posteriori estimation

with a specific prior (Chung et al., 2013). The choice of the prior for σ1, . . . , σ3 will be

particularly influential when only a small number of trials is included in a meta-analysis

and it is difficult to formulate a truly uninformative prior — e.g. a conditionally conjugate

inverse-gamma(ε, ε) prior for a between-trial variance is problematic due to the strong

impact of the choice of the exact value of ε > 0 on the posterior inference (Gelman

et al., 2014, p. 129–130). For this reason using information on these parameters from

historical data as discussed in Section 3.4.3 is attractive. In the absence of historical

data, independent half-normal HN(0, 100) with scale parameter 100, half-t HT3(0, 100)

with 3 degrees of freedom and scale parameter 100, HCa(0, 100) or uniform U(0, 100)

priors for the between-trial standard deviation may be a reasonable choice. They lead

to an overestimation of the between-trial standard deviation, if the number of trials is

small or the true between-trial standard deviation is small (Lambert et al., 2005). This

results in less borrowing of information and greater uncertainty around the treatment

effect, which can be seen as a conservative choice. An alternative may be to explicitly

formulate a weakly informative prior that somewhat overstates the likely extent of

between-trial heterogeneity. Out of the aforementioned priors Gelman et al. (2014,

pp. 128–133) have suggested the half-t family of distributions and in particular the

half-Cauchy distribution as default weakly informative priors, because their long tails

allow the likelihood to dominate the prior. For such a prior we might choose a scale

parameter of log(10) to express that it is a-priori unlikely that parameters such as an

exponential hazard rate would vary by much more than a factor of 10 between trials.

3.4.2. Parametrization and prior for the treatment effect

The parametrization (2.3.2) is particularly suitable, if the prior for the control group

hazard rate λi0(s) is based on historical trials and that for ϕ on other considerations. If
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we wish to express equal prior uncertainty about the hazard rates for all treatment groups

or treatment effects are assumed to vary across trials in a frequentist random effects

model, it is advantageous to parametrize the model in terms of main effects for trial

and treatment, i.e. log λi0(s) = log λi(s)−ϕ/2 and log λi1(s) = log λi(s) +ϕ/2 (Agresti

and Hartzel, 2000; Piepho et al., 2012; Smith et al., 1995).

For the rosiglitazone example in Section 3.5 we use weakly informative Ca(0, 0.37) or

Ca(0, 2.5) Cauchy priors with location parameter 0 and, scale parameter 0.37 or 2.5 for

the log-hazard ratio ϕ. The rationale for these priors is described in Appendix A.

3.4.3. Deriving robust historical meta-analytic predictive priors

To obtain joint rMAP priors for each pair of hyperparameters (νr, σr) r = 1, . . . , p from

historical control group data yi0·, mi0·, zi0·, ni0 and τi for i = I + 1, . . . , I +H, we fit a

hierarchical model similar to that in Section 3.4 to the historical data. For the example

of exponentially distributed event and drop-out times, the hierarchical meta-analysis

model that we will also use in the rosiglitazone example in Section 3.5 is illustrated in

Figure 3.4. When approximating the posterior from fitting this model to historical data,

we approximate the joint posterior of the hyperparameters (νr, log σr) r = 1, . . . , p by a

mixture of bivariate normal distributions with a weakly informative mixture component

chosen as in subsection 3.4.1.

Hierarchical meta-analysis models fitted to the 
historical data and the rosiglitazone data 

   

 

  

 

 

A 

   

 

B 

Figure 3.4.: Proposed hierarchical meta-analysis model for the historical control group data assuming
exponentially distributed event and drop-out times with prior distributions indicated in
red

Similarly, for approximating the predictive distribution for a single trial we approximate

the marginal MAP distribution for log λi0 by a mixture of normal or t-distributions.
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In the same fashion we obtain rMAP priors for ν2, log σ2 and log µi0, as well as ν3,

log σ3 and log µi1 based on the posterior for ν2 and log σ2. To obtain priors for q0 and

q1, we approximate the posterior for q0 given the historical trials by a mixture of beta

distributions and add a vague beta(1/2, 1/2) mixture component.

3.5. Rosiglitazone cardiovascular safety example

3.5.1. Rosiglitazone dataset and selected historical data

As an example, we will consider a meta-analysis of type 2 diabetes trials with a duration

of 2 months to 2 years presented at a 2010 United States Food and Drug Administration

(FDA) advisory committee meeting to discuss the cardiovascular risk of rosiglitazone

and the historical control group data from 64 type 2 diabetes trials of other drugs

conducted in the same time period. This was the second of several meetings discussing

concerns about the cardiovascular safety of rosiglitazone. These concerns were initially

brought to prominence by a meta-analysis in 2007 (Nissen and Wolski, 2007). In 15

of the 54 (28%) of the rosiglitazone trials no event occurred in any treatment arm

and in an additional 21 (39%) of the rosiglitazone trials events only occurred in one

treatment arm. Additionally, in 66% of trials a higher proportion of control group than

rosiglitazone patients did not complete the trial. Further details on the selection of

data, used data sources, the compiled set of data and program code are available under

https://doi.org/10.6084/m9.figshare.5007833.

3.5.2. Used analysis methods

We used a range of the standard analysis methods introduced in Section 2. We also

fitted the proposed model in Figure 3.3 for independent exponentially distributed failure

and drop-out times with the vague priors described in Section 3.4.1.

For an analysis with weakly informative hyperpriors we used the observational data
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reported in the drug sponsor’s briefing document for the 2010 rosiglitazone FDA advisory

committee meeting(Glaxo-Smith-Kline, 2010), as well as information on typical trial

drop-out rates as described in Appendix B. When fitting Bayesian models using MCMC

methods we used every 5000th out of 50,000,000 MCMC samples from each of 5 chains

after discarding 10,000 burn-in samples. We checked the mixing of each chain by visual

inspection of trace and autocorrelation function plots. We assessed the non-convergence

of each chain using the Geweke diagnostics and across chains using the Gelman-Rubin

statistic.

We also conducted two analyses with rMAP priors based on the model in Figure 3.4. The

first one used joint rMAP priors for each pair of hyperparameters (νr, σr) r = 1, . . . , 3

(see Section 3.4.3) with weights of 20% or 50% for the weakly informative mixture

component. The weakly informative mixture component consisted of two independent

priors: a HN(0, log 10) prior for σr and a normal distribution with standard deviation

log 10 centered on the mean of the MAP prior for each νr. The second analysis was a

stratified analysis with independent marginal rMAP priors for log λi0, log µi0 and log µi1

for i = 1, . . . , I. E.g. for the exponential control group MACE hazard rate in each trial

log λi0, the informative MAP component was

p(log λi0) =

∫ ∞
−∞

∫ ∞
0

φ(log λi0; ν1, σ1)p(ν1, σ1|D′) dσ1 dν1.

Each of the priors p(log λ10), . . . , p(log λI0) was assumed to be independent. Each of

these rMAP priors additionally had a weakly informative mixture component consisting

of a t-distribution with 3 degrees of freedom with scale parameter 100 centered on the

prior mean for the respective MAP prior. The limitations of such a stratified analysis

with independent marginal rMAP priors were discussed in Section 2.5.4.2.

3.5.3. Results for the rosiglitazone example

In what follows we will concentrate of the hyperparameters for the log-hazard rate for

events, but similar considerations apply for the other hyperparameters of the model.

Figure 3.5 shows a bivariate histogram for the posterior density of the hierarchical mean
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Hierarchical mean parameter for log event hazard rate
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Figure 3.5.: Posterior density p(ν1, log σ1|D′) for hierarchical mean and log-scale parameters of the
random effect for the log-hazard rate for events based on the historical data for different
priors for the hierarchical mean (vague or weakly informative) and scale parameters
(half-normal, half-T3, half-Cauchy or uniform) with overlaid mixture approximation to the
posterior density for hierarchical mean and log-scale parameters of the random effect for
the log-hazard rate for events based on the historical data obtained using the mclust R
package (Fraley et al., 2012) assuming a mixture of 5 bivariate normal distributions

and log-scale parameters ν1 and log σ1 resulting from fitting the proposed model to the

historical data. As these figures illustrate, the joint posterior does not differ substantially

depending on the priors used for the hierarchical hyperparameters. Figure 3.6 illustrates

that the choice of hyperpriors for the hierarchical model for the historical data also

had little impact on the marginal MAP distribution for the exponential control group

hazard rate for this particular large set of 64 historical trials. This was also the case of
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the exponential drop-out rate and the probability of an event being fatal.

For these reasons we subsequently present only the results with a vague half-normal

prior on hierarchical scale parameters for the historical data.

Figure 3.5 also shows the mixture approximations using bivariate normal distributions

overlaid on top of the bivariate histogram for the MCMC samples. These mixture

approximations were used as the basis for the informative part of the MAP hyperpriors

used in the analyses labeled as being “with borrowing of information” below.
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Figure 3.6.: Mixture approximations to the marginal MAP distribution for the exponential control
group hazard rate for major adverse cardiovascular events in a new trial based on 64
historical trials for vague and weakly informative hyperpriors for the means of random
trial-effects, as well as different hyperpriors for the hierarchical standard deviation (SD).
The MAP distribution was approximated by a 3-component mixture of t-distributions
with 3 degrees of freedom, while the additional weakly informative mixture component
had a scale parameter of 100 and centered on the mean of the MAP distribution.

Remark 3.7. Using the MAP distribution in Figure 3.6 as the prior for the control

group hazard rate and a Ca(0, 0.37) prior for the log-hazard ratio, a single trial with

no events in 100 patient-years of follow-up for both the group on a new test drug

and control group results in a 95% posterior equal-tailed CI for the hazard ratio from
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0.00004 to 2.1. I.e. the impact of the prior information on the control group hazard

rate is substantial on the upper limit of the CI suggesting that more than a doubling of

the hazard rate on the new drug is unlikely, while the prior information does little to

bring the lower limit of the CI towards no effect so that an extremely large benefit of

the new drug cannot be excluded.
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Figure 3.7.: Odds or hazard ratio for rosiglitazone compared with control groups for major adverse
cardiovascular events from a meta-analysis of 54 trials. For the 17 analyses using the
proposed trial-level likelihood (3.2.4) either maximum-likelihood estimation, a Ca(0, 0.37),
or a Ca(0, 2.5) prior on the log-hazard ratio was used. Historical prior information was
used to specify to specify independent priors for the parameters of each study (“stratified
analysis”) or a prior for the hyperparameters of a hierarchical model that allows borrowing
of information as described in Section 3.4.3 either with no down-weighting, some down-
weighting, only to center weakly informative priors, or not at all.

As shown in Figure 3.7 the proposed hierarchical meta-analysis model fitted using

maximum likelihood resulted in very similar point estimates — with slightly greater
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uncertainty around the estimate — as fitting the same model using vague or weakly

informative priors on nuisance parameters and a Ca(0, 2.5) prior on the log-hazard

ratio. The closely related exponential time-to-event model using the imputed duration

of follow-up to first event or censoring with a random effect on the control group hazard

rates of each trial also resulted in very similar inference, but with narrower CIs. In this

example, using a log imputed duration of follow-up to first event or censoring log t̃ij

offset in a stratified exact exponential model or the Firth’s penalized likelihood logistic

regression also resulted in very similar results.

Approaches that ignore the differences in follow-up such as Firth’s penalized likelihood

logistic, exact conditional logistic regression, and Peto’s one-step odds ratio method

resulted in slightly higher estimated odds-ratios than Firth’s penalized likelihood logistic

regression with a log t̃ij offset. This suggests that under the assumption of independent

drop-out and event times any differences in follow-up have only a minor effect on

inference for this example.

The results for the CMH odds-ratio using a continuity correction of 0.5 for those studies

with at least one treatment group without an event illustrate that considerable shrinkage

towards no treatment effect is induced by such a continuity correction, if — as in this

example — two thirds of trials have at least one arm with no events and most trials

have as many or more patients on the test group than on the control group. The

beta-binomial model proposed by Kuss (Kuss, 2015) resulted in a higher point estimate

and a much wider CI than all other models.

Using historical prior information on control group hazard rates and other nuisance

parameters resulted in a higher point estimate for the hazard ratio for rosiglitazone

compared to control groups, because historical control rates were somewhat lower than

those observed in the control groups of rosiglitazone trials. The effect of the historical

prior information was less pronounced when strength was borrowed across trials within

the rosiglitazone meta-analysis than in the corresponding stratified analyses at the

bottom of Figure 3.7. Whether the historical prior was given 100%, 80% or 50% weight

in the mixture prior for an analysis with borrowing of information made no appreciable

difference to the analysis results, while for the stratified model there appeared to be
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an increase in the width of CIs with increasing down-weighting of the historical prior

information.

3.6. Simulation study

3.6.1. Simulation set-up and conduct

We conducted a simulation study mimicking a typical drug development program

involving 1425 patients that compares a test drug with control groups. The simulated

program shown in Figure 3.8 consists of two early-stage 12 week trials with 6:1 and 1:1

randomization, respectively, three half-year trials with 2:1 randomization, and a single

1-year trial with 1:1 randomization. Sample sizes range from 25 to 300 patients per arm.

For each treatment group we assumed identical exponential event and drop-out time

distributions in all trials. We assumed either no increase in the hazard rate for events

in the test group compared with control groups or an increased hazard rate chosen to

result in approximately 50% power. We chose the drop-out hazard rate to be the same,

substantially higher or substantially lower in the test compared with the control groups.

To investigate the effect of informative priors we simulated control group data for

12 historical trials with a mixture of trial durations and sample sizes as shown in

Figure 3.8 assuming the same event and drop-out time distributions as for the main

meta-analysis. We then fitted the proposed Bayesian hierarchical AD meta-analysis

model with borrowing of information described in Section 3.4 either with vague priors,

a MAP prior or a rMAP prior for the hyperparameters of the model.

We used SAS/STAT® 14.1 software, Version 9.4 of the SAS System for Linux to

simulate IPD, derive AD and to implement the following reference methods: the CMH

odds ratio with continuity correction, the beta-binomial model, the Peto one-step odds-

ratio method, exact conditional logistic regression stratified by trial, Firth’s penalized

logistic regression with a model term for each trial (with and without a log(t̃ij·/nij) offset)

and exponential time-to-event models using a “Poisson likelihood” with a log(nijτi), or

– 57 –



3. Time-to-event meta-analysis of commonly available aggregate data

0.00 0.25 0.50 0.75 1.00

Planned trial duration [years]

N=50

N=300

N=100 Trials in main meta-analysis
N=100

N=25
N=50

N=100

N=200

N=100

Control group

N=200

Active group

N=100

N=100

N=100

N=100 Historical trials
N=50

N=300

N=300

N=300

N=100

N=100

N=50

N=300

N=300

N=300

Figure 3.8.: Details of simulated trials in terms of sample size and planned trial duration

a log(t̃ij·) offset either with a gamma distributed random trial effect, or using software

for exact Poisson regression stratified by trial. To optimize runtime, we implemented
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all Bayesian models using Stan (Carpenter et al., 2017) via the rstan 2.7.0 package

within R 3.0.2 for Linux. We used the NUTS (Hoffman and Gelman, 2014) and a

non-centered parametrization that has been recommended for Hamiltonian Monte-Carlo

when data are sparse (Betancourt and Girolami, 2015). Program code is available under

https://doi.org/10.6084/m9.figshare.5007833.

Table 3.1.: Parameters for the simulation scenarios: placebo event hazard rate λi0, log-hazard ratio for
events on test drug compared with placebo ϕ, placebo drop-out hazard rate µi0, test drug
drop-out hazard rate µi1, probability that an event is fatal on placebo q0 and probability
that an event is fatal on test drug q1 for all trials i = 1, . . . , I in the main meta-analysis
and the historical trial i = I + 1, . . . , I +H

Scenario I H λi0 ϕ µi0 µi1 q0 q1

1 6 12 0.05 0 0.5 0.5 0.35 0.35
2 6 12 0.05 0 0.5 1.36 0.35 0.35
3 6 12 0.05 0 0.5 0.18 0.35 0.35
4 6 12 0.05 0.7 0.5 0.5 0.35 0.35
5 6 12 0.05 0.7 0.5 1.36 0.35 0.35
6 6 12 0.05 0.7 0.5 0.18 0.35 0.35
7 6 12 0.5 0 0.5 0.5 0.35 0.35
8 6 12 0.5 0 0.5 1.36 0.35 0.35
9 6 12 0.5 0 0.5 0.18 0.35 0.35
10 6 12 0.5 0.25 0.5 0.5 0.35 0.35
11 6 12 0.5 0.25 0.5 1.36 0.35 0.35
12 6 12 0.5 0.25 0.5 0.18 0.35 0.35

The parameters used in the 12 simulation scenarios to simulate data are given in

Table 3.1, while the sample size and planned trial duration for the I trials in the main

meta-analysis and the H historical trials are shown in Figure 3.8.

The log-hazard ratios of 0.7 and 0.25 — corresponding to hazard ratios of 2.0 and 1.3,

respectively — were chosen to result in approximately 50% power for an unstratified

log-rank test to ensure differences between analysis methods could be seen clearly. If

an event occurred for a patient, the event was considered to have been fatal according

to the probabilities qij given in Table 3.1 — i.e. the simulations exactly followed the

assumptions made by the proposed analysis model in this respect.

For evaluating the different analysis methods we present type I error rate and power

— defined as the proportion of simulations with two-sided p-value ≤ 0.05 or with the

Bayesian 95% CI excluding a log-hazard ratio of 0. In addition, we also investigated CI
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coverage, bias
∑R

r=1
ϕ−ϕ̂r
R

, to assess median-unbiasedness also the median value of esti-

mated minus true log-hazard ratio and root mean squared error (RMSE)
√∑R

r=1
(ϕ−ϕ̂r)2

R
,

for which we give full results in Appendix C.

3.6.2. Simulation study results

Type I error rate
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Figure 3.9.: Type I error rate with 99% Clopper-Pearson CIs based on 10,000 simulations under different
scenarios: control and test group hazard rate for events (0.05 or 0.5; no treatment effect),
control group hazard rate for drop-out (0.5) and test group hazard rate for drop-out (0.5,
1.36 or 0.18)

Under the null hypothesis of no treatment effect on event times, nearly all methods

approximately kept the type I error rate, if the drop-out time distribution was the same

across treatment groups (see Figure 3.9). The only exception was Firth’s penalized

likelihood logistic regression with a log t̃ij offset, which only approximates the true

relationship between tij and the probability of an event. The type I error inflation

occurred in the scenario of a high hazard rate for events of 0.5/patient-year — i.e.

when the approximation is expected to be poor (see Section 2.3.3.2). In contrast, the

beta-binomial model had a type I error rate notably below the nominal level.
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All methods that assumed a binomial distribution and ignored differences in the number

of drop-outs had inflated type I error rates when there was a higher drop-out hazard

rate in the test group — this type I error rate inflation was more pronounced for higher

event hazard rates.

Using a log estimated average follow-up offset in logistic regression reduced this type

I error rate inflation, but in some scenarios still resulted in a type I error rate more

than three times above the nominal level. Using a log estimated follow-up offset in

combination with a “Poisson likelihood” was effective in this regard for the lower hazard

rate for events of 0.05/patient-year, while using a log planned trial duration offset

resulted in an increased type I error rate in the presence of differential drop-out.

For the higher exponential hazard rate for events of 0.5/patient-year the “Poisson

likelihood” with a log estimated follow-up offset also showed some type I error rate

inflation.

In the absence of differential drop-out, there were only small differences in power

between the methods that do not use historical data as shown in Figure 3.10. The only

exception was the beta-binomial model that had low power in all considered scenarios

despite similar point estimates as other methods, because its CIs were wider by a factor

of 2.4 to 4.7 compared to the method with the consistently shortest CIs — Firth’s

penalized likelihood logistic regression.

When drop-out hazard rates differed between treatment groups, the methods that

control the type I error rate showed only small changes in power consistent with fewer

observed events in case of more drop-outs and more observed events in case of fewer

drop-outs.

As expected, using historical control group data generated from the same distribution

as the data in the main meta-analysis resulted in a clear increase in power. There

was only a small loss in power when down-weighting the informative prior by adding a

weakly informative mixture component with 50% weight.

Full results on CI coverage, bias, median-unbiasedness and RMSE are presented in
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Figure 3.10.: Power to detect an increased event occurrence in the test compared to the control groups
with 99% Clopper-Pearson CIs based on 10,000 simulations under different scenarios:
control group hazard rate for events (0.05 or 0.5), test group hazard rate for events (0.1
or 0.64), control group hazard rate for drop-out (0.5) and test group hazard rate for
drop-out (0.5, 1.36 or 0.18)

Appendix C. In summary, the proposed Bayesian hierarchical model with or without

informative priors provided the least biased estimates across the evaluated scenarios

and the same was the case for the median difference between estimate and true value

of the log-hazard ratio. As expected, methods that estimate an odds ratio provided

biased estimates of the hazard ratio in the presence of a treatment effect.

In terms of RMSE, the proposed Bayesian hierarchical model with robust historical

priors performed consistently well across the considered scenarios. As expected — given

that the historical data was generated under the same model and parameters as the

data for the main meta-analysis — giving greater weight to the historical prior reduced

the RMSE.

The proposed Bayesian hierarchical model with vague priors, as well as exponential time-

to-event analyses using a Poisson likelihood and a log t̃ij· offset, performed relatively
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consistently, but in some scenarios other methods had a lower RMSE.

The coverage of 95% confidence or credible intervals (see Appendix C) was largely in

line with the results for the type 1 error rate. The proposed Bayesian hierarchical model

with vague priors provided coverage at approximately the nominal level in all scenarios,

while coverage was generally slightly above the nominal level with informative priors.

All other methods had substantially below nominal coverage in some scenarios.

3.6.3. Comparison with IPD time-to-event methods

To investigate the loss of efficiency involved in only having AD available, we also

compared the proposed Bayesian hierarchical AD model with standard IPD time-to-

event analysis methods in terms of type I error rate and power for the same scenarios

as in the preceding section.

As Figure 3.11 shows, all IPD time-to-event methods controlled the type I error rate

and had similar power to each other. For the considered scenarios with exponentially

distributed failure times and without any covariates to be taken into account, the

proposed model with vague priors appeared to have slightly higher power than the IPD

time-to-event methods in several of the scenarios and in particular those with a low

placebo hazard rate (0.05/patient-year).

The outcome of this comparison was less clear for the higher placebo hazard rate

(0.5/patient-year) — IPD time-to-event models clearly outperformed the proposed

model with vague priors when there were more drop-outs in the test group than the

placebo group, while it was the other way around when there were fewer drop-outs in

the test compared to the placebo group.

This matches the theoretical finding that the power advantage of IPD time-to-event

analyses over binomial methods increases with an increasing proportion of censored

observations (Buyse and Ryan, 1987).

Note that the proposed hierarchical AD model — unlike the considered IPD time-to-
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Figure 3.11.: Proportion of simulations with two-sided p-value ≤ 0.05 or with the Bayesian 95% CI
excluding a log-hazard ratio of 0 under the null hypothesis (Panel A) or the alternative
(Panel B) with 99% Clopper-Pearson CIs based on 10,000 simulations: hazard rate for
events 0.05 or 0.5 per patient-year (/p-y) in control groups, and 0.05 or 0.5/p-y (Panel
A) and 0.1 or 0.64/p-y (Panel B) for test groups; drop-out hazard rate 0.5/p-y in control
groups, and 0.5, 1.36 or 0.18/p-y for test groups.

event models — borrows information across trials. For this reason the proposed model

should perhaps be compared to the exponential AD model with a Poisson likelihood and

gamma-distributed random trial effect in Figure 3.10, which performed very similarly to

the proposed model with vague priors. The proposed Bayesian hierarchical AD model

with informative MAP or rMAP priors had higher power than IPD methods.
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aggregate data model

In Chapter 3 we considered the general principles for deriving the probability of each of

the mutually exclusive outcomes for a patient in Definition 3.1. We also derived these

probabilities for a trial of fixed planned duration under the assumption of exponentially

distributed event and drop-out times, and assuming that within each treatment group

all patients with an event are equally likely to die.

In this chapter we demonstrate how each of these assumptions can be relaxed by

extending the results to Weibull distributed event and drop-out times, event driven

trials and the situation when a patient may have multiple potentially fatal events. The

material in this chapter may be skipped by the reader, because it is not a necessary

background for subsequent chapters.

4.1. Weibull distributed event and drop-out times

4.1.1. Likelihood for Weibull distributed event and drop-out times

We will assume i.i.d. Weibull distributed failure times Xijk ∼Wb(λij, γij) with inverse

scale parameter λij and shape parameter γij using the parametrization (2.3.4), and i.i.d.

drop-out times Cijk ∼Wb(µij, ωij) that are independent of the event times for patient

k = 1, . . . , nij in group j of trial i of planned duration τi.

Theorem 4.1. Under the assumptions above, the probabilities of a patient falling into
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each of the five mutually exclusive categories of Definition 3.1 are given by

pij1 =qij γijλ
γij
ij

∫ τi

0

exp (−(xλij)
γij − (xµij)

ωij)xγij−1 dx︸ ︷︷ ︸
=:u1

,

pij2 =(1− qij) exp (−(τiµij)
ωij) [1− exp (−(τiλij)

γij)] ,

pij3 =(1− qij) (u1 − exp (−(τiµij)
ωij) [1− exp (−(τiλij)

γij)]) ,

pij4 = exp (−(τiλij)
γij − (τiµij)

ωij) and

pij5 =1− exp (−(τiλij)
γij − (τiµij)

ωij)︸ ︷︷ ︸
=pij4

−u1.

Remark 4.1. pij1, pij3 and pij5 all require the evaluation of the one-dimensional integral

in u1. We address its numerical evaluation in Appendix D.

Proof of Theorem 4.1. We obtain the probability that a patient has a fatal event as

pij1 = qij

∫ ∞
0

∫ ∞
0

fWb(x;λij, γij)fWb(c;µij, ωij)1{x ≤ min(c, τi)} dc dx

= qij

∫ τi

0

fWb(x;λij, γij)

[∫ τi

x

fWb(c;µij, ωij) dc+

∫ ∞
τi

fWb(c;µij, ωij) dc

]
︸ ︷︷ ︸

=1−FWb(x;µij ,ωij)

dx

= qijγijλ
γij
ij

∫ τi

0

exp (−(xλij)
γij − (xµij)

ωij)xγij−1 dx,
(4.1.1)

the probability that the patient experiences a non-fatal event and completes the trial as

pij2 = (1− qij)
∫ ∞

0

∫ ∞
0

fWb(x;λij, γij)fWb(c;µij, ωij)1{x ≤ τi}1{c ≥ τi} dx dc

= (1− qij)
∫ ∞
τi

ωijc
ωij−1µ

ωij
ij [exp ((λijτi)

γij)− 1] exp (−(cµij)
ωij − (λijτi)

γij) dc

= (1− qij) exp (−(τiµij)
ωij) [1− exp (−(τiλij)

γij)] ,

the probability that a patient completes the study without an event as

pij4 =

∫ ∞
0

∫ ∞
0

fWb(x;λij, γij)fWb(c;µij, ωij)1{τi < min(x, c)} dx dc

=

∫ ∞
τi

ωijc
ωij−1µ

ωij
ij exp (−(cµij)

ωij − (λijτi)
γij) dc

= exp (−(τiλij)
γij − (τiµij)

ωij) ,
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the probability of a patient having a non-fatal event and dropping out thereafter as

pij3 =(1− qij)
∫ ∞

0

∫ ∞
0

fWb(x;λij, γij)fWb(c;µij, ωij)1{x ≤ c < τi} dc dx

=(1− qij)γijλ
γij
ij exp (−(τiµij)

ωij)

∫ τi

0

exp (−(xλij)
γij − (xµij)

ωij)

× [exp ((τiµij)
ωij)− exp ((xµij)

ωij)]xγij−1 dx

=(1− qij)γijλ
γij
ij

[ ∫ τi

0

exp (−(xλij)
γij − (xµij)

ωij)xγij−1 dx

− exp (−(τiµij)
ωij)

∫ τi

0

exp (−(xλij)
γij)xγij−1 dx︸ ︷︷ ︸

=γ−1
ij λ

−γij
ij [1−exp(−(τiλij)

γij)]

]

=(1− qij)
(
γijλ

γij
ij

∫ τi

0

exp (−(xλij)
γij − (xµij)

ωij)xγij−1 dx︸ ︷︷ ︸
=u1 as defined in Theorem 4.1

− exp (−(τiµij)
ωij) [1− exp (−(τiλij)

γij)]

)
,

(4.1.2)

and the probability that a patient drops out before any event or the end of the trial as

pij5 =

∫ ∞
0

∫ ∞
0

fWb(x;λij, γij)fWb(c;µij, ωij)1{c < x}1{c ≤ τi} dc dx

= exp (−(τiλij)
γij − (τiµij)

ωij) [exp ((τiµij)
ωij)− 1]

+

∫ τi

0

exp (−(xλij)
γij) γijx

γij−1λ
γij
ij dx︸ ︷︷ ︸

=1−exp(−(τiλij)
γij)

−
∫ τi

0

exp (−(xλij)
γij − (xµij)

ωij) γijx
γij−1λ

γij
ij dx

=1− exp (−(τiλij)
γij − (τiµij)

ωij)︸ ︷︷ ︸
=pij4

− γijλ
γij
ij

∫ τi

0

exp (−(xλij)
γij − (xµij)

ωij)xγij−1 dx︸ ︷︷ ︸
=u1 as defined in Theorem 4.1

.

4.1.2. Parameter identifiability

Result 4.1. For Weibull distributed failure times Xijk ∼ Wb(λij, γij) and drop-out

times Cijk ∼ Wb(µij, ωij) the parameters λij, γij, µij and ωij of the distribution de-
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fined by the pmf (3.2.1) and the probabilities given in Theorem 4.1 are not in general

identifiable.

Proof. We will demonstrate that there are multiple parameter vectors that differ in at

least one of the first 4 components (λij, γij, µij, ωij, qij)
T 6= (λ′ij, γ

′
ij, µ

′
ij, ω

′
ij, qij)

T , but

lead to the same pij. We will without loss of generality consider the case with τi = 1,

because a re-scaling of the time unit leads to distributions Xijk ∼ Wb(λ′ij, γij) with

λ′ij := λijτi and Cijk ∼Wb(µ′ij, ωij) with µ′ij := µijτi.

The same value of pij4 and pij2 will result from any parameter vectors that lead to the

same u2 := λ
γij
ij and u3 := µ

ωij
ij . Given fixed values for u2 and u3, the same value of pij1

will result for all parameter vectors that keep

u1 := γijλ
γij
ij

∫ 1

0

exp (−(xλij)
γij − (xµij)

ωij)xγij−1 dx

=

∫ 1

0

u2 exp
(
−u3s

ωij/γij − u2s
)
ds

(4.1.3)

constant. For ωij/γij = 1, (4.1.3) simplifies to u1 = u2
1−e−u2−u3
u2+u3

.

Thus, by noting that pij3 = (1− qij)(u1 − pij2) and pij5 = 1− pij4 − u1, any parameter

vectors that satisfy ωij/γij = 1 and result in the same values for u2 and u3 lead to the

same pij. This is achieved for (λij, γij, µij, γij, qij)
T and (λ

γij/γ
′
ij

ij , γ′ij, µ
γij/γ

′
ij

ij , γ′ij, qij)
T

for λij 6= 1 and µij 6= 1. This demonstrates the lack of parameter identifiability, because

pij uniquely determines the pmf of a multinomial distribution (3.2.1).

Example 4.1. The two parameter vectors qij = 0.5, γij = ωij = 1.5, λij = 0.1 and

µij = 0.15, and q′ij = 0.5, γ′ij = ω′ij = 0.75, λ′ij = 0.01 and µ′ij = 0.0225 both result in

the same pij ≈ (0.0151, 0.0147, 0.0004, 0.9142, 0.0556)T .

Remark 4.2. It is also straightforward to demonstrate the lack of parameter iden-

tifiability in the absence of drop-outs. E.g. assuming τi = 1, µij = 0, ωij = 1 and

qij = 0.5, any pair of parameter vectors that satisfy γij log λij = γ′ij log λ′ij will lead to

the same pij. E.g. for both λij = e−2 and γij = 1, and λ′ij = e−3 and γ′ij = 2/3 we

obtain pij ≈ (0.0633, 0.0633, 0, 0.8734, 0)T .
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Remark 4.3. Due to the lack of parameter identifiability, a unique maximum likelihood

estimate for the trial-level parameters λij, γij, µij and ωij does not typically exist, if

they are assumed to be unrelated. As discussed in Section 3.3 approaches for addressing

this issue include prior distributions and hierarchical models.

4.1.3. Choice of prior for the control group Weibull parameters

One popular way to specify vague priors for the parameters of a Wb(a, b) distribution

is to assume a vague gamma prior for b, a vague normal or an improper uniform prior

for log a, and that log a and b are a-priori independent (Ibrahim et al., 2012, p. 35–36).

This may be a reasonable choice in the complete absence of any prior knowledge, but

prior knowledge may often imply a prior dependence between b and a. In fact, prior

information will often not be directly available for the parameters of multi-parameter

distributions, but will rather be available about some derived quantity such as the

expected proportion of patients with an event after a certain amount of follow-up. For

this reason we suggest an alternative way of specifying a prior.

Let us assume that a-priori there is some plausibility to the hazard rate being constant,

but considerable uncertainty about it, in which case a marginal N(0, σκ) prior for the

logarithm of the shape parameter κ := log b with a large value of σκ may be reasonable.

Note that the density of this prior is centered on zero — corresponding to a constant

hazard rate.

If prior knowledge otherwise comes in the form of information about the expected

proportion $s0 := FWb(s0; a, e
κ) of patients with an event at a fixed time s0 in the

absence of censoring, then for a given value of κ this implies a prior for v := log a via

the cdf that depends on κ.

Let us assume that we have a N(u0, σu) prior for the log-odds of an event u :=

log$s0 − log($s0) by time s0, where u0 := log$0 − log(1−$0) given some $0 ∈ (0, 1)

and σu > 0.

We can either specify independent priors for κ and u, or alternatively specify a joint
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prior for κ and v := log a. The latter can be implemented using a change of variables to

v = log {log(1 + eu)} e−κ − log s0

with the inverse function of the transform given by

u(v) = log {exp [exp (eκ(v + log s0))]− 1}

for a given value of κ, we obtain the conditional prior density for v given κ as

p(v|κ) =φ(u(v);u0, σu)× |
du(v)

dv
|

=
1√

2σ2
uπ

exp

(
−(log {exp [exp (eκ(v + log s0))]− 1} − u0)2

2σ2
u

)

× exp {exp [eκ(v + log s0)] + eκ(v + log s0) + κ}
| exp {exp [eκ(v + log s0)]} − 1|

.

Thus, a prior can be specified as p(κ)p(v|κ). As all of the discussed parametrizations in-

volve one-to-one transformations of the original parameters, the parameter identifiability

considerations of Section 4.1.2 remain unaffected.

4.1.4. Hierarchical model set-up and priors for the

hyperparameters

In analogy to the preceding section, one way to specify a hierarchical Weibull meta-

analysis model is to specify six independent random effects

uλ,i0 ∼ N(ν1, σ1), uµ,i0 ∼ N(ν3, σ3), uµ,i1 ∼ N(ν5, σ5),

log γi0 ∼ N(ν2, σ2), logωi0 ∼ N(ν4, σ4) and logωi1 ∼ N(ν6, σ6).

We assume that event times in the control group follow a Wb(λi0, γi0) distribution

with log λi0 = log {log(1 + exp(uλ,i0))} /γi0 − log s0, control group drop-out times a

Wb(µi0, ωi0) distribution with log µi0 = log {log(1 + exp(uµ,i0))} /ωi0−log s0, test group

drop-out times a Wb(µi1, ωi1) distribution with log µi1 = log {log(1 + exp(uµ,i1))} /ωi0−

log s0 and test group event times a Wb(λi0e
ϕ/γi0 , γi0) distribution.
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To conduct a Bayesian hierarchical meta-analysis we also specify hyperpriors such

as vague N(0, ς) priors for some large value of ς > 0 for each νr r = 1, . . . , 6 and

HCa(0, 100) priors for σr r = 1, . . . , 6. In the case of vague priors, it may be simplest to

choose s0 = 1. Alternatively, if more informative priors using available prior information

are specified, s0 would be a follow-up duration, for which prior information exists

regarding the expected proportion of patients with an event or of drop-outs.

4.2. Extension to event driven trials

Uncertainty about nuisance parameters like the control group hazard leads to uncertainty

about the power of a RCT. We can reduce this uncertainty by specifying that the RCT

will finish when a specified amount of statistical information has accrued (Friedman

et al., 2015, p. 364). In the case of time-to-event outcomes such information-based trials

are called “event driven” trials, because a fixed number of patients is followed for a

flexible amount of time until a specified number of patients has had an event (Friedman

et al., 2015, p. 364). In this section, let τi denote the trial duration from start of

recruitment until the specified number of patients has had an event.

The CONSORT guidelines require the reporting of the length of recruitment ρi > 0

and the end of follow-up τi > ρi (Schulz et al., 2010). Even though technically both

the time to recruit all patients ρi and the time until the requisite number of events

has accrued τi are r.v.s, we will treat their realizations as fixed quantities. While the

observation of all participants will not cease instantaneously once the target number

of patients with an event has been achieved — instead final visits are often scheduled

during a close-out period of one to two months (Friedman et al., 2015, pp. 464–465) —

it may still be a reasonable approximation to assume that this is the case, unless details

of the close-out period are known.

By assuming a specific distribution for the recruitment times this information may allow

us to model the recruitment process in addition to the time-to-event, time-to-censoring

and event fatality. However, this adds an additional level of complexity compared

to trials of fixed duration as we illustrate for exponentially distributed event and
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drop-out times in Section 4.2.2. The same approach can be applied for more complex

distributions, but we were unable to derive convenient closed form expressions. When at

least tij· is available, modeling the recruitment process is not necessary for exponentially

distributed event times as we outline in Section 4.2.1.

4.2.1. When tij· and dij· are available

When the total duration of follow-up to first event or censoring tij· and the duration of

follow-up dij· are available for each arm j = 0, 1 of each trial i = 1, . . . , I, then assuming

exponential distributions for event and censoring times with θF,ij = λij and θG,ij = µij ,

we obtain

L(θF,ij,θG,ij, qij|IPD) =

nij∏
k=1

q
mijk
j (1− qj)yijk−mijk

× f(tijk;θF,ij)
yijk{1− F (tijk;θF,ij)}1−yijk

× g(tijk;θG,ij)
zijk−mijk{1−G(tijk;θG,ij)}1−zijk

× {1−G(tijk;θG,ij)}mijk ,

=q
mij·
j (1− qj)yij·−mij·λ

yij·
ij e

−λijtij·µ
zij·−mij·
ij e−µijdij· .

(4.2.1)

tij· is often available for event driven trials, if the event of interest is a primary or

secondary outcome of the event driven trial.

Such outcomes are often summarized in terms of the number of patients with an event

per 100 (or 1000) patient-years of follow-up to first-event or censoring. Similar summary

statistics are often reported for all-cause mortality, in which case dij· is available.

Remark 4.4. If only tij·, but not dij·, is available, then one option is to ignore the

information about the censoring hazard rate the event driven trial contributes. When

doing so, then likelihood simplifies to q
mij·
j (1− qj)yij·−mij·λ

yij·
ij e

−λijtij· .

Remark 4.5. When tij· and dij· are unavailable for an event driven trial, one option is to

impute them by assuming a fixed trial duration on the basis of the assumed recruitment

pattern. Assuming that the trial entry times of patients have a linearly increasing

probability density function throughout the recruitment period [0, ρi], the expected time

– 72 –



4.2. Extension to event driven trials

of recruitment for a patient is 2ρi/3. Assuming that the trial entry times of patients

are uniformly distributed across the recruitment period, this expected time would be

ρi/2. By treating an event driven trial as a fixed duration trial as in Section 3.1.2 with

duration τi−2ρi/3 (or τi−ρi/2), we obtain t̃ij· ≈ (nij−zij·/2+mij·/2−yij·/2)(τi−2ρi/3)

and d̃ij· ≈ (nij − zij·/2)(τi − 2ρi/3). Note that this involves further approximations

in addition to those already pointed out in that section, because we assume that all

patients were recruited at the expected time of recruitment. We demonstrate how to

avoid these approximations in Section 4.2.2 by deriving the probabilities pij1, . . . , pij5

for event driven trials that can be used with the likelihood (3.2.4).

4.2.2. Using information on the recruitment period

Multi-center clinical trials recruit patients in multiple trial centers, which typically

start recruitment in a staggered fashion, so that patients are not recruited in a uniform

fashion and an increasing recruitment rate is common (Friedman et al., 2015, p. 220).

For such a trial a linearly increasing pdf pi(r; ρi) := 2r
ρ2i

on [0, ρi] for ρi < τi may provide

a reasonable approximation to the distribution of recruitment times.

Theorem 4.2. The probabilities of each of the outcomes of Definition 3.1 assuming

a linearly increasing density of recruitment times across the recruitment period, and

exponentially distributed event and drop-out times as in (3.2.3) are

pij1 = qj
λije

−(λij+µij)τi
(
ρ2
i (λij + µij)

2eτi(λij+µij) − 2eρi(λij+µij)(ρi(λij + µij)− 1)− 2
)

ρ2
i (λij + µij)3

,

pij2 = 2(1− qj)
(

(eµijρi(µijρi − 1) + 1) e−µijτi

ρ2
iµ

2
ij

−
(
1 + eρi(λij+µij)(ρi(λij + µij)− 1)

)
e−τi(λij+µij)

ρ2
i (λij + µij)2

)
,

pij3 =
2µij(1− qj)

ρ2

(
ρ2
i

2µij
− (eµijρi(µijρi − 1) + 1) e−µijτi

µ3
ij

+

(
eρi(λij+µij)(ρi(λij + µij)− 1) + 1

)
eτi(−(λij+µij))

(λij + µij)3
− ρ2

i

2(λij + µij)

)
,

pij4 = 2e−(λij+µij)τi
1− eρi(λij+µij) (1− ρi(λij + µij))

ρ2
i (λij + µij)2

and

pij5 =
µij

λij + µij
− 2µije

−τi(λij+µij) 1− eρi(λij+µij) (1− ρi(λij + µij))

ρ2
i (λij + µij)3

.
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Proof of Theorem 4.2. We obtain

pij1 = qj

∫ ρi

0

∫ ∞
r

∫ ∞
r

2r

ρ2
i

λijµije
−µij(c−r)e−λij(x−r)1(x ≤ c)1(x ≤ τi) dx dc dr

=

∫ ρi

0

2µijqjr

ρ2
i

(∫ τi

r

eµij(r−c) − e(r−c)(λij+µij) dc

+

∫ ∞
τi

eµij(r−c) − e−cµij−λijτi+r(λij+µij) dc

)
dr

=

∫ ρi

0

2µijqj
ρ2
i

r

(
1− eµij(r−τi)

µij
+
e(λij+µij)(r−τi) − 1

λij + µij
+
eµij(r−τi)

µij
− e(λij+µij)(r−τi)

µij

)
dr

=
2µijqj
ρ2
i

(
ρ2
i

2µij
+

(
eρi(λij+µij)(ρi(λij + µij)− 1) + 1

)
eτi(−(λij+µij))

(λij + µij)3
− ρ2

i

2(λij + µij)

−
(
eρi(λij+µij)(ρi(λij + µij)− 1) + 1

)
e−τi(λij+µij)

µij(λij + µij)2

)
= qj

λije
−(λij+µij)τi

(
ρ2
i (λij + µij)

2eτi(λij+µij) − 2eρi(λij+µij)(ρi(λij + µij)− 1)− 2
)

ρ2
i (λij + µij)3

for the probability that a patient experiences a fatal event of interest,

pij2 = (1− qj)
∫ ρi

0

∫ ∞
r

∫ ∞
r

2r

ρ2
i

λijµije
−µij(c−r)e−λij(x−r)1(c > τi)1(x ≤ τi) dx dc dr

= (1− qj)
∫ ρi

0

2µijr

ρ2
i

∫ ∞
τi

eµij(r−c) − e−cµij−λijτi+r(λij+µij) dc dr

= (1− qj)
∫ ρi

0

2r

ρ2
i

(
eµij(r−τi) − e(λij+µij)(r−τi)

)
dr

= 2(1− qj)
(

(eµijρi(µijρi − 1) + 1) e−µijτi

ρ2
iµ

2
ij

−
(
1 + eρi(λij+µij)(ρi(λij + µij)− 1)

)
e−τi(λij+µij)

ρ2
i (λij + µij)2

)

for the probability that a patient experiences a non-fatal event and completes the trial,

pij3 = (1− qj)
∫ ρi

0

∫ ∞
r

∫ ∞
r

2r

ρ2
i

λijµije
−µij(c−r)e−λij(x−r)1(c ≤ τi)1(x ≤ c) dx dc dr

= (1− qj)
∫ ρi

0

2µijr

ρ2
i

∫ τi

r

eµij(r−c) − e(r−c)(λij+µij) dc dr

=
2µij(1− qj)

ρ2
i

∫ ρi

0

r

(
1− eµij(r−τi)

µij
+
e(λij+µij)(r−τi) − 1

λij + µij

)
dr

=
2µij(1− qj)

ρ2

(
ρ2
i

2µij
− (eµijρi(µijρi − 1) + 1) e−µijτi

µ3
ij

+

(
eρi(λij+µij)(ρi(λij + µij)− 1) + 1

)
eτi(−(λij+µij))

(λij + µij)3
− ρ2

i

2(λij + µij)

)

– 74 –



4.2. Extension to event driven trials

for the probability that a patient experiences a non-fatal event and then drops out

before completing the trial,

pij4 =

∫ ρi

0

∫ ∞
r

∫ ∞
r

2r

ρ2
i

λijµije
−µij(c−r)e−λij(x−r)1(c > τi)1(x > τi) dx dc dr

=

∫ ρi

0

∫ ∞
τi

2µijre
−cµij−λijτi+r(λij+µij)

ρ2
i

dc dr

=

∫ ρi

0

2re(λij+µij)(r−τi)

ρ2
i

dr

= 2e−(λij+µij)τi
1− eρi(λij+µij) (1− ρi(λij + µij))

ρ2
i (λij + µij)2

for the probability that a patient completes the study without an event and

pij5 =

∫ ρi

0

∫ ∞
r

∫ ∞
r

2r

ρ2
i

λijµije
−µij(c−r)e−λij(x−r)1(c ≤ τi)1(c < x) dx dc dr

=

∫ ρi

0

∫ τi

r

2µijre
(λij+µij)(r−c)

ρ2
i

dc dr

=

∫ ρi

0

2µijr
(
1− e(λij+µij)(r−τi)

)
ρ2
i (λij + µij)

dr

=
µij

λij + µij
− 2µije

−τi(λij+µij) 1− eρi(λij+µij) (1− ρi(λij + µij))

ρ2
i (λij + µij)3

for the probability that a patient is lost to follow-up before experiencing any event.

Remark 4.6. In (4.2.1) the part of the likelihood that depends on qj, λij and µij,

respectively, does not depend on the other parameters. Theorem 4.2 shows that the

likelihood no longer factorizes in this manner, when tij· and dij· are not available.

Remark 4.7. For a single center trial recruitment times may be uniformly distributed

across [0, ρi]. We provide the corresponding results under this assumption in Appendix E.

4.2.3. EMPA-REG OUTCOME example

In the event driven EMPA-REG OUTCOME trial 7020 patients were randomized,

started treatment with placebo or empagliflozin between September 2010 and April

2013, and were followed until at least 691 patients had had a primary endpoint (Zinman

et al., 2015). The final data collection date for the primary outcome measure was April

2015 (Boehringer Ingelheim, 2016). The AD for this trial are shown in Table 4.1.
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Table 4.1.: EMPA-REG OUTCOME AD: Patient-years of follow-up until the primary endpoint, or
censoring tij· were derived from the reported information on yij·/tij·, patient-years of
follow-up dij· were derived from the reported number of deaths from any cause per 1000
patient-years and zij· was taken to be the sum of total deaths, and the number of patients
not completing the trial based on the primary results publication (Zinman et al., 2015).

Treatment group nij yij· tij· yij·/tij· dij· mij· zij·
empagliflozin 4,687 490 13,102 0.0374 13,866 172 413
placebo 2,333 282 6,424 0.0439 6,783 137 261

As Table 4.2 shows there were no meaningful differences between the hazard ratios and

their CIs obtained by different analysis methods for this example. While the parameter

estimates for placebo hazard rate substantially deviated from the MLE when using

t̃ij· and d̃ij·, this happened to a similar degree in both treatment groups so that the

estimated hazard ratio remained essentially unchanged. Program code for this example

is available under https://doi.org/10.6084/m9.figshare.5007833.

Table 4.2.: Comparing the covariate-adjusted Cox regression reported by Zinman et al. (2015) with
alternative AD maximum-likelihood analyses of the EMPA-REG OUTCOME data

Analysis Hazard ratio (95% CI)
Covariate adjusted Cox regression 0.86 (0.74 – 0.99)
Poisson likelihood (2.3.3) with log tij· offset 0.85 (0.74 – 0.99)
Poisson likelihood (2.3.3) with log t̃ij· offset∗ 0.86 (0.74 – 0.99)
Poisson likelihood (2.3.3) with log t̃ij· offset† 0.86 (0.74 – 0.99)
Likelihood (4.2.1) using tij· and dij· 0.85 (0.74 – 0.99)

Likelihood (4.2.1) using t̃ij· and d̃ij·
∗ 0.86 (0.74 – 0.99)

Likelihood (4.2.1) using t̃ij· and d̃ij·
† 0.86 (0.74 – 0.99)

Proposed AD likelihood (3.2.4)∗ 0.86 (0.74 – 0.99)
Proposed AD likelihood (3.2.4)† 0.86 (0.74 – 0.99)
∗: assuming uniform recruitment (see Remark 4.5 and Appendix E)
†: assuming linearly increasing recruitment (see Remark 4.5 and Section 4.2.2)

4.3. Extension taking into account fatal events arising

from recurrent events

In Section 3.2 we made some restrictive assumptions when deriving the formulae

for the probabilities pij1, . . . , pij5 of the following five mutually exclusive outcomes of

Definition 3.1. In particular, we assumed that the probability qij := P(Mijk = 1|Yijk = 1)
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4.3. Extension taking into account fatal events arising from recurrent events

that patient k = 1, . . . , nij in group j = 0, 1 of trial i = 1, . . . , I dies of an event of

interest given that the patient has at least experienced one event is independent of

the time when the first event occurs and the remaining follow-up duration after a first

event. Since the first event of a patient is not necessarily fatal and further events may

subsequently occur, we investigate the effect of the possibility of subsequent events.

4.3.1. General aggregate data likelihood with recurrent events

Let Eijk be the number of events a patient would experience prior to being censored, if

there were no fatal events. With this notation, we obtain

pij1 =
∞∑
r=1

P(Eijk = r and at least one of the r events was fatal),

pij2 =
∞∑
r=1

P(Eijk = r and none of the r events was fatal and Cijk > τi),

pij3 =
∞∑
r=1

P(Eijk = r and none of the r events was fatal and Cijk ≤ τi),

pij4 =P(Eijk = 0 and Cijk > τi) and

pij5 =P(Eijk = 0 and Cijk ≤ τi).

If we assume that each event has an equal probability of being fatal, then whether

a patient dies due to an event of interest is determined by whether at least one of

eijk Bernoulli trials with probability qj is positive. Alternatively, Mijk|Eijk = eijk ∼

Ber(1− (1− qj)eijk). Thus, assuming that event and drop-out times are independent,

as well as that the drop-out times have a distribution with pdf gij, we obtain

pij1 =
∞∑
r=1

P(Eijk = r)(1− (1− qj)r)

=
∞∑
r=1

∫ ∞
0

gij(c)P(Eijk = r|Cijk = c)(1− (1− qj)r) dc,

pij2 =
∞∑
r=1

P(Eijk = r|Cijk > τi)P(Cijk > τi)(1− qj)r

=
∞∑
r=1

∫ ∞
τi

gij(c)P(Eijk = r|Cijk = c)(1− qj)r dc,
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pij3 =
∞∑
r=1

P(Eijk = r|Cijk ≤ τi)P(Cijk ≤ τi)(1− qj)r

=
∞∑
r=1

∫ τi

0

gij(c)P(Eijk = r|Cijk = c)(1− qj)r dc,

pij4 = P(Eijk = 0|Cijk > τi)P(Cijk > τi)

=

∫ ∞
τi

gij(c)P(Eijk = 0|Cijk = c) dc and

pij5 = P(Eijk = 0|Cijk ≤ τi)P(Cijk ≤ τi)

=

∫ τi

0

gij(c)P(Eijk = 0|Cijk = c) dc.

4.3.2. AD likelihood with recurrent events assuming exponentially

distributed waiting and drop-out times

We will now demonstrate how to derive the probabilities above assuming exponentially

distributed waiting times between events. We will investigate both the situation of the

same or a different exponential hazard rate before and after a first event.

The latter setting is of particular interest, if the hazard ratio of test compared with

control group solely based on the time-to-first-event is of interest. This is because in

the former setting, the occurrence of subsequent events would influence the estimation

of the hazard rate for first events in each treatment group.

Lemma 4.1. For qij ∈ (0, 1), λ′ij ∈ (0,∞), τi > 0 and x ∈ (0, τi) we have

∞∑
r=0

(1− qij)r+1
(λ′ij(τi − x))re−λ

′
ij(τi−x)

r!
= (1− qij)e−λ

′
ijqij(τi−x).

Proof. We use that
∞∑
r=0

(1− qij)r
(λ′ij(τi − x))re−λ

′
ij(τi−x)

r!

is by definition the moment generating function (mgf) MR(s) := E(eRs) of a Poisson r.v.

R with rate parameter λij(τi−x) and pmf f (r;λij(τi − x)) = (λij(τi − x))r e−λij(τi−x)/r!

evaluated at s = log(1− qij) (Johnson and Kotz, 1969, pp. 87–91). Since the mgf for

such a Poisson r.v. is MR(s) = eλij(τi−x)(es−1) (Johnson and Kotz, 1969, pp. 91), we
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obtain

∞∑
r=1

(1− qij)r
(λij(τi − x))r e−λij(τi−x)

r!
= exp{λij(τi − x)(elog(1−qij) − 1)} − e−λij(τi−x)

= e−λijqij(τi−x) − e−λij(τi−x).

(4.3.1)

Theorem 4.3. Let the waiting times to the first event be i.i.d. r.v.s following a Exp(λij)

distribution with λij ∈ (0,∞) for all patients k = 1, . . . , nij of group j = 0, 1 of trial

i = 1, . . . , I with planned duration τi > 0, let the waiting times to the first event

be independent from the i.i.d. waiting times between the first and subsequent events

following a Exp(λ′ij) distribution with λ′ij ∈ (0,∞), as well as the i.i.d. drop-out times

Cijk ∼ Exp(µij) with µij ∈ (0,∞) and let each event have the same probability qij ∈ (0, 1)

of being fatal. Then we obtain the following probabilities for the 5 mutually exclusive

outcomes of Definition 3.1

pij1 =



λijqij
µij+λ′ijqij

(
λ′ij+µij

λij+µij

(
1− e−τi(λij+µij)

)
− (1−qij)λ′ij
λ′ijqij−λij

(
e−τi(λij+µij) − e−τi(µij+λ′ijqij)

))
if λ′ijqij 6= λij

λijqij
µij+λ′ijqij

(
λ′ij+µij

λij+µij

(
1− e−τi(λij+µij)

)
− (1− qij)λ′ijτie−τi(λij+µij)

)
if λ′ijqij = λij

pij2 =


λij(1−qij)

(
e
τi(λ
′
ijqij−λij)−1

)
e
−τi(µij+λ

′
ijqij)

λ′ijqij−λij
if λ′ijqij 6= λij

λij(qij − 1)τi
(
−e−τi(λij+µij)

)
if λ′ijqij = λij

pij3 =
λijµij(1− qij)
µij + λ′ijqij

(
1− e−τi(λij+µij+λ′ijqij)

λij + µij + λ′ijqij
+

(
1− eλijτi

)
e−τi(λij+µij+λ

′
ijqij)

λij

)
,

while pij4 and pij5 remain the same as in (3.2.3).

Proof. The probabilities pij4 and pij5 remain the same as in (3.2.3), because they only

depend on the timing of the first event.

In order to derive the probabilities pij1, pij2 and pij3 we need to distinguish the time

min(Xijk, Cijk, τi) to the first event or censoring of a patient, during which the expo-
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nential hazard rate is λij, from the remaining time at risk max(0,min(Cijk, τi)−Xijk)

after the first event conditional on Xijk ≤ min(Cijk, τi), during which the hazard rate

is λ′ij. Conditional on there having been an observed first non-fatal event at time xijk

and min(cijk, τi) > xijk, the number of additional events after the first event Rijk is

distributed as

Rijk| (Xijk = xijk and Cijk = cijk and Xijk ≤ min(Cijk, τi)) ∼ Poisson(λ′ij(min(cijk, τi)−xijk))

assuming that there are no fatal events.

If a patient has experienced a first event and a number Rijk = rijk of additional events,

the probability that this patient does not die due to an event is (1− qij)rijk+1. Taking

this into account, we obtain

pij2 =

∫ ∞
0

∫ ∞
0

µije
−µijc1(c ≥ τi)λije

−λijx1(x ≤ τi)

∞∑
r=0

(1− qij)r+1
(λ′ij(τi − x))re−λ

′
ij(τi−x)

r!︸ ︷︷ ︸
=(1−qij)e

−λ′
ij
qij(τi−x) using Lemma 4.1

dx dc

=

∫ τi

0

λij(1− qij)eλijqx−λijx−λijqτi−µijτi dx

=


λij(1−qij)

(
e
τi(λ
′
ijqij−λij)−1

)
e
−τi(µij+λ

′
ijqij)

λ′ijqij−λij
if λ′ijqij 6= λij

λij(qij − 1)τi
(
−e−τi(λij+µij)

)
if λ′ijqij = λij

.

In a similar manner we obtain

pij3 =

∫ ∞
0

∫ ∞
0

µijλije
−µijc−λijx1(x ≤ c < τi)

∞∑
r=0

(1− qij)r+1
(λ′ij(c− x))re−λ

′
ij(c−x)

r!︸ ︷︷ ︸
=(1−qij)e

−λ′
ij
qij(c−x) using Lemma 4.1

dc dx

=
λijµij(1− qij)
µij + λ′ijqij

∫ τi

0

e−x(λij+µij+λ
′
ijqij) − e−λ′ijqijτi−µijτi−λijx dx

=
λijµij(1− qij)
µij + λ′ijqij

(
1− e−τi(λij+µij+λ′ijqij)

λij + µij + λ′ijqij
+

(
1− eλijτi

)
e−τi(λij+µij+λ

′
ijqij)

λij

)
.

– 80 –



4.3. Extension taking into account fatal events arising from recurrent events

We use

∞∑
r=0

(1− (1− qij)r+1)
(λ′ij(min(c, τi)− x))re−λ

′
ij(min(c,τi)−x)

r!

=
∞∑
r=0

(λ′ij(min(c, τi)− x))re−λ
′
ij(min(c,τi)−x)

r!︸ ︷︷ ︸
=1 (Poisson pmf summed over all outcomes)

− (1− qij)
∞∑
r=0

(1− qij)r
(λ′ij(min(c, τi)− x))re−λ

′
ij(min(c,τi)−x)

r!︸ ︷︷ ︸
=e
−λ′

ij
qij(min(c,t)−x)

(definition of the mgf of a Poisson r.v.)

=1− (1− qij)e−λ
′
ijqij(min(c,t)−x)

(4.3.2)

to derive that

pij1 =

∫ ∞
0

∫ ∞
0

µije
−µijcλije

−λijx1(x ≤ min(c, τi))

×
∞∑
r=0

(
1− (1− qij)r+1

) (λ′ij(min(c, τi)− x))re−λij(min(c,τi)−x)

r!︸ ︷︷ ︸
=1−(1−qij)e

−λ′
ij
qij(min(c,t)−x)

using (4.3.2)

dc dx

=
λijqij

µij + λ′ijqij

∫ τi

0

(λ′ij + µij)e
−x(λij+µij) − (1− qij)λ′ijeλ

′
ijqij(x−τi)−µijτi−λijx dx

=



λijqij
µij+λ′ijqij

(
λ′ij+µij

λij+µij

(
1− e−τi(λij+µij)

)
− (1−qij)λ′ij
λ′ijqij−λij

(
e−τi(λij+µij) − e−τi(µij+λ′ijqij)

))
if λ′ijqij 6= λij

λijqij
µij+λ′ijqij

(
λ′ij+µij

λij+µij

(
1− e−τi(λij+µij)

)
− (1− qij)λ′ijτie−τi(λij+µij)

)
if λ′ijqij = λij.

Remark 4.8. As long as some patients had at least one event and some patients had

no event, we have information to estimate the parameter λij . However, λ′ij and qij may

be poorly identified, because the likelihood given an observed number of fatal events

may be the same or similar for different combinations of λ′ij and qij. I.e. it may be

hard to distinguish a scenario with a low rate of events that are frequently fatal and

a scenario with a high rate of events that are more rarely fatal. This can be resolved

by IPD from some trials (see Section 4.3.3), by trials having substantially different

duration, or by having informative prior information on qij , λ
′
ij or the ratio of λ′ij to λij .
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4. Extensions to the proposed aggregate data model

Corollary 4.1. Let the waiting times to the first event and between subsequent events

be i.i.d. r.v.s following a Exp(λij) distribution with λij ∈ (0,∞) for all patients k =

1, . . . , nij of group j = 0, 1 of trial i = 1, . . . , I of planned duration τi > 0, let the waiting

times be independent from the i.i.d. drop-out times Cijk ∼ Exp(µij) with µij ∈ (0,∞)

and let each event have the same probability qij ∈ (0, 1) of being fatal. Then we obtain

pij1 =
λijqij

(
1− e−τi(µij+λijqij)

)
µij + λijqij

,

pij2 = e−τi(µij+λijqij) − e−τi(λij+µij) and

pij3 =
λijµij(1− qij)
µij + λijqij

(
1− e−τi(λij+µij+λijqij)

λij + µij + λijqij
+

(
1− eλijτi

)
e−τi(λij+µij+λijqij)

λij

)

for the probabilities of the 5 mutually exclusive outcomes of Definition 3.1, while pij4

and pij5 remain the same as in (3.2.3).

Proof. By setting λ′ij = λij in Theorem 4.3 and noting that for qij ∈ (0, 1) we only need

to consider the case with qijλij 6= λij, we obtain Corollary 4.1.

4.3.3. IPD likelihood with recurrent events assuming exponentially

distributed waiting and drop-out times

Let tijkr for r = 1, . . . , eijk+1 be the waiting times until the eijk events or until censoring

for patient k = 1, . . . , nij in group j = 0, 1 of trial i = 1, . . . , I. Note that tijk1 = tijk,

that tijk(eijk+1) is always a time to censoring and that tijk(eijk+1) = 0, if the last event

was fatal, or occurred at time min(cijk, τi). With this notation the IPD likelihood

corresponding to the AD model with a different exponential hazard rate before and

after the first event is

L(λij, λ
′
ij, µij, qij|D) =

1∏
j=0

I∏
i=1

(1− qij)eij·−mij·q
mij·
ij µ

zij·−mij·
ij eµijdij·

λ
yij·
ij e

λijtij·λ′ij
eij·−yij·eλ

′
ij(dij·−tij·)

=
1∏
j=0

(1− qj)e·j·−m·j·q
m·j·
j

I∏
i=1

µ
zij·−mij·
ij eµijdij·

λ
yij·
ij e

λijtij·λ′ij
eij·−yij·eλ

′
ij(dij·−tij·), if qij = qj.
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4.3. Extension taking into account fatal events arising from recurrent events

Note that if the AD on yij·, eij·, mij·, zij·, dij· and tij· are available, this likelihood can

also be considered an AD likelihood.

If λ′ij = λij, the likelihood simplifies to

L(λij, µij, qij|D) =
1∏
j=0

I∏
i=1

(1− qij)eij·−mij·q
mij·
ij µ

zij·−mij·
ij eµijdij·λ

eij·
ij e

λijdij· .

=
1∏
j=0

(1− qj)e·j·−m·j·q
m·j·
j

I∏
i=1

µ
zij·−mij·
ij eµijdij·λ

eij·
ij e

λijdij· , if qij = qj.
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5. Conjugate updating for exponential

time-to-event regression models

Definition 5.1 (Conjugate family of prior distributions). A conjugate family of prior

distributions for a statistical model results in a posterior distribution from the same

family of distributions as the prior distribution (Robert, 2007, p. 114). We will only

refer to distributions as conjugate, if they are parametrized in terms of a fixed finite

number of parameters.

Conjugate priors result in tractable posterior inference as Theorem 5.1 illustrates.

Theorem 5.1. A conjugate prior density p(θ;ϑ) for a exponential family distribution

with parameter vector θ in canonical form and sufficient statistic T of dimension d can

be parametrized in terms of a d dimensional parameter vector ϑ so that the posterior

distribution p(θ|T = t) after observing a realization t of the sufficient statistic is

p(θ;ϑ+ t) (Bernardo and Smith, 2000, pp. 265–269).

There are a number of reasons why (conditionally) conjugate priors remain important

despite the availability of fast implementations of general purpose MCMC methods

and continuing increases in computing power. Firstly, we typically need to analytically

summarize the MAP distribution obtained e.g. using MCMC methods from a previous

analysis in order to use it as the prior for a future analysis. For this purpose mixtures

of (conditionally) conjugate priors are one possible choice that simplifies subsequent

analyses. Secondly, (mixtures of) conjugate priors allow for analytic solutions and

(mixtures of) conditionally conjugate priors allow for Gibbs sampling. While such
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5.1. Conjugate prior and updating rule for a single trial

approaches are no longer required for conducting Bayesian analyses in practice, there

are applications such as simulation studies to evaluate Bayesian methods, for which

computational efficiency remains important.

For analyzing exponentially distributed event times with right censoring using a “Poisson

likelihood”, (Zhu et al., 2016) have proposed separate conjugate gamma priors for test

and control group hazard rates.

However, this proposal has several limitations. Firstly, conjugate gamma priors con-

stitute a limited class of distributions that may not be able to reflect the available

prior information. For example, we often wish to use wide priors symmetric around 0

for the log-hazard ratio, but it is unclear how to construct such a prior when there is

considerable prior information about the control group hazard rate and substantially

less information about a new test intervention. Secondly, when we use informative priors

e.g. for the control group hazard rate, conjugate priors are not robust against prior-data

conflicts. Thirdly, independent priors for the test group hazard rates in multiple trials

cannot capture that in a meta-analysis a similar effect of the test intervention compared

with control groups across trials would be expected.

For many generalized linear models in the exponential family there is no closed form

conjugate prior (Chen and Ibrahim, 2003). However, for comparing exponentially

distributed failure times with independent right censoring between two treatment

groups in a RCT, a closed form analytic solution is available, as we will show. In the

case of meta-analyzing data from multiple trials, the normalizing constant for the prior

and posterior densities needs to be evaluated using one-dimensional numeric integration.

5.1. Conjugate prior and updating rule for a single trial

Using the results of Chen and Ibrahim (2003) for constructing conjugate priors in

generalized linear regression models for exponential family distributions, we obtain the

conjugate prior

p(λ0, φ) ∝ λa00 e
−λb0(λ0φ)a1e−λ0φb1
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5. Conjugate updating for exponential time-to-event regression models

with constants a0 > 0, b0 > 0, a1 > −1 and b1 > 0 for an exponential time-to-event

model under independent right-censoring comparing a control group with hazard rate

λ0 versus a test group with hazard rate λ1 = φλ0, where φ is the hazard ratio. We

obtain

γ−1 =

∫ ∞
0

∫ ∞
0

λa00 e
−λ0b0(λ0φ)a1e−λ0φb1 dλ0 dφ

=
Γ(a0)Γ(a1 + 1)

ba00 b
a1+1
1

for the normalizing constant γ of the prior and thus, the prior density is given by

p(λ0, φ) =
ba00 b

a1+1
1

Γ(a0)Γ(a1 + 1)
λa00 e

−λ0b0(λ0φ)a1e−λ0φb1 . (5.1.1)

Theorem 5.2. (5.1.1) is a conjugate prior for Exp(λ0φ
j) distributed failure times from

two groups j = 0, 1 with independent right-censoring.

Proof. This is a conjugate prior when an exponential time-to-event model is parametrized

in terms of control group rate λ0 and hazard ratio φ, because given observed data con-

sisting of y0 patients with an event in a control group during t0 time units of follow-up

to first event or censoring, and y1 patients with an event in the test group during t1

time units of follow-up to first event or censoring, we obtain

p(λ0, φ|y0, t0, y1, t1) ∝ p(λ0, φ)× L(λ0, φ|y0, t0, y1, t1)

=
λa00 b

a0
0 b

a1+1
1 (λ0φ)a1e−β0λ0−β1λ0φ

Γ(a0)Γ(a1 + 1)
× λy00 e

−λ0t0(λ0φ)y1e−λ0t1φ

=
ba00 b

a1+1
1

Γ(a0)Γ(a1 + 1)
λa0+y0

0 e−λ0(β0+t0)(λ0φ)a1+y1e−λ0φ(b1+t1).

(5.1.2)

This expression integrates to

ba00 b
a1+1
1

Γ(a0)Γ(a1 + 1)

∫ ∞
0

∫ ∞
0

λa0+y0
0 e−λ0(β0+t0)(λ0φ)a1+y1e−λ0φ(b1+t1) dλ0 dφ

=
ba00 b

a1+1
1 Γ(a0 + y0)Γ(a1 + y1 + 1)

(b0 + t0)a0+y0(b1 + t1)a1+y1+1Γ(a0)Γ(a1 + 1)
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5.2. Properties of the proposed conjugate prior and its posterior

so that the posterior is given by

p(λ0, φ|y0, t0, y1, t1) =
(b0 + t0)a0+y0(b1 + t1)a1+y1+1Γ(a0)Γ(a1 + 1)

Γ(a0 + y0)Γ(a1 + y1 + 1)ba00 b
a1+1
1

× ba00 b
a1+1
1

Γ(a0)Γ(a1 + 1)
λa0+y0

0 e−λ0(β0+t0)(λ0φ)a1+y1e−λ0φ(b1+t1)

=
(b0 + t0)a0+y0(b1 + t1)a1+y1+1

Γ(a0 + y0)Γ(a1 + y1 + 1)
λa0+y0

0 e−λ0(β0+t0)(λ0φ)a1+y1e−λ0φ(b1+t1).

This is the same distribution as the conjugate prior, just with parameters a0 +y0, b0 + t0,

a1 + y1 and b1 + t1.

5.2. Properties of the proposed conjugate prior and its

posterior

Proposition 5.1. Using the conjugate prior 5.1.1 is equivalent to using two independent

conjugate priors for the control group hazard rate λ0 and the test group hazard rate λ1.

Proof. The conjugate prior for a single rate in an exponential time-to-event model with

random right-censoring is a gamma distribution (Ibrahim et al., 2001, pp. 30–32). If we

assume the two priors to be independent, we thus obtain

p(λ0, λ1) =
βα0

0

Γ(α0)
λα0−1

0 e−β0λ0 × βα1
1

Γ(α1)
λα1−1

1 e−β1λ1 (5.2.1)

with shape parameter α0 > 0, rate parameter β0 > 0, shape parameter α1 > 0 and

rate parameter β1 > 0. We obtain the posterior by independently updating the two

priors after observing y0 patients with an event in a control group during t0 time

units of follow-up to first event or censoring, and y1 patients with an event in the test

group during t1 time units using the updating rule for the conjugate prior for a single

rate (Ibrahim et al., 2001, pp. 30–32) as

p(λ0, λ1|y0, t0, y1, t1) =
(β0 + t0)α0+y0

Γ(α0 + y0)
λα0+y0−1

0 e−(β0+t0)λ0

(β1 + t1)α1+y1

Γ(α1 + y1)
λα1+y1−1

1 e−(β1+t1)λ1 .

(5.2.2)
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5. Conjugate updating for exponential time-to-event regression models

If we conduct a change of variables for the prior (5.2.1), we obtain

p(λ0, φ) =
βα0

0 βα1
1

Γ(α0)Γ(α1)
λα0

0 (λ0φ)α1−1e−λ0(β0+β1φ),

which for α0 = a0, α1 = a1 +1, β0 = b0 and β1 = b1 is exactly the prior (5.1.1). Similarly,

conducting a change of variables for the posterior (5.2.2) we obtain

p(λ0, φ|y0, t0, y1, t1) =
(β0 + t0)α0+y0

Γ(α0 + y0)
λα0+y0−1

0 e−(β0+t0)λ0

× (β1 + t1)α1+y1

Γ(α1 + y1)
(λ0φ)α1+y1−1e−(β1+t1)λ0φ × |λ0|,

which for α0 = a0, α1 = a1 + 1, β0 = b0 and β1 = b1 is exactly the posterior (5.1.2).

Remark 5.1. The conjugate priors and posteriors for the two parametrizations are

identical in terms of the implied prior beliefs about λ0 and φ. We therefore parametrize

the model in terms of the parameters of interest to avoid the single change of variables

that would otherwise be necessary. However, once a meta-analysis of multiple trials

i = 1, . . . , I is being conducted, a parametrization in terms of independent priors for the

λij is no longer feasible, if we wish to respect the constraint λi1 = φλi0 for all i = 1, . . . , I.

We will derive the conjugate prior for the parametrization of this problem in terms of

the control group hazard rates λ10, . . . , λI0 and the hazard ratio φ in subsection 5.5.

Remark 5.2. Note that the marginal prior for λ0

p(λ0) =

∫ ∞
0

ba00 b
a1+1
1

Γ(a0)Γ(a1 + 1)
λa00 e

−λb0(λ0φ)a1e−λφb1 dφ

=
ba00

Γ(a0)
λa0−1

0 e−b0λ0

is a gamma distribution with parameters a0 and b0 irrespective of the values for a1 > −1

and b1 > 0. It has prior mean (a0 − 1)/b0 for a0 ≥ 1 and the prior mean for log λ0 is

ψ(a0)− log(b0) Johnson et al. (1994, pp. 337–349).

The implied marginal prior p(φ) for the hazard ratio is

p(φ) =
Γ(a0 + a1 + 1)ba00 b1(b1φ)a1

Γ(a0)Γ(a1 + 1)(b0 + b1φ)a0+a1+1
(5.2.3)
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5.2. Properties of the proposed conjugate prior and its posterior

with mode arg max p(φ) = a1b0
b1(a0+1)

. This can be seen by solving

d

dφ
log p(φ) =

a1

φ
− b1(a0 + a1 + 1)

b0 + φb1

= 0

for φ. The extremum constitutes a maximum, because d2

dφ2
log p(φ) = (a0+1)2b2

1/b
2
0(1/(a0+

a1 + 1) − 1/a1) is negative, if a0 > −1, a1 > 0, b0 > 0 and b1 > 0. The mean of the

marginal prior is ∫ ∞
0

φp(φ) dφ =
b0(a1 + 1)

b1(a0 − 1)
(5.2.4)

for a0 > 1.

Corollary 5.1. Given a prior of the form (5.1.1) the marginal conjugate prior for the

log-hazard ratio ϕ := log φ is

p(ϕ) = eϕ
Γ(a0 + a1 + 1)ba00 b1(b1e

ϕ)a1

Γ(a0)Γ(a1 + 1)(b0 + b1eϕ)a0+a1+1
. (5.2.5)

The prior mode of the log-hazard ratio ϕ is arg max p(ϕ) = log
(
b0(a1+1)
a0b1

)
, the prior

mean is

Eϕ = ψ(a0)− ψ(a1 + 1) + log(b1/b0), (5.2.6)

and the variance is Var(ϕ) = ψ1(a0) + ψ1(a1 + 1), where ψ1(x) := dψ(x)
dx

denotes the

trigamma function. For large values of a1 and a0 Var(ϕ) ≈ a0+a1+1
(a1+1)a0

≈ a0+a1
a1a0

.

Proof. After a change of variables in (5.2.3) to the log-hazard ratio ϕ := log φ, we

obtain (5.2.5) from

p(λ0, ϕ) = p(λ0, φ = eϕ)

∣∣∣∣deϕdϕ

∣∣∣∣ .
The first derivative of the logarithm of (5.2.5) is

−a0b1e
ϕ + a1b0 + b0

b0 + b1eϕ
,

which is zero when −a0b1e
ϕ + a1b0 + b0 = 0. This is the case for ϕ = log

(
b0(a1+1)
a0b1

)
and

the second derivative evaluated at this point is −a0(a1 + 1)/(a0 + a1 + 1) < 0, while

p(ϕ)→ 0 for ϕ→∞ or ϕ→ −∞, so that the point is the global maximum of p(ϕ).

– 89 –



5. Conjugate updating for exponential time-to-event regression models

Using that ϕ := log λ1 − log λ0, Proposition 5.1 and the properties of the logarithm of

gamma distributed r.v.s given by Johnson et al. (1994, pp. 337–349), we obtain

Eϕ := E(log λ1)︸ ︷︷ ︸
ψ(a0)−log(b0)

− E(log λ0)︸ ︷︷ ︸
ψ(a1+1)−log(b1)

= ψ(a0)− ψ(a1 + 1) + log(b1/b0)

and

Var(ϕ) = Var(log λ1) + Var(log λ0)

= ψ1(a1 + 1) + ψ1(a0).
(5.2.7)

For large values of a1 and a0 (5.2.7) can be approximated by 1
a1+1

+ 1
a0

= a0+a1+1
(a1+1)a0

≈
a0+a1
a1a0

Johnson et al. (1994, p. 347).

5.3. Construction of a conjugate prior capturing

desired prior information

With (5.2.1) and (5.2.2) in mind, the prior information implied by the prior (5.1.1) can

be interpreted to being equivalent to having observed historic data having the same

parameters λ0 and λ1, in which a0 control group patients had an event during b0 time

units of follow-up to first event or censoring and a1 + 1 test group patients had an event

during b1 time units of follow-up to first event or censoring. If prior information is

available in this form, then the specification of the conjugate prior is straightforward.

However, in practice the prior belief about the control group hazard rate λ0 may not be

available in this form and may not be well approximated by a single gamma distribution.

If a Gamma(a0, b0) distribution captures the prior information about λ0, one could fix

the prior mean — or mode as suggested by Chen and Ibrahim (2003) — to correspond

to a hazard ratio of 1 by setting a1 = b1/b0(a0− 1)− 1 for any choice of b1 that satisfies

b1 > b0/(a0 − 1) based on (5.2.4). However, the resulting marginal prior density p(ϕ)

will in general not be symmetric (Chen and Ibrahim, 2003) and will not correspond
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5.3. Construction of a conjugate prior capturing desired prior information

to typically recommended default priors for regression coefficients such as a uniform

distribution, a normal distribution, a t-distribution, or a Cauchy distribution.

We can use a mixture of conjugate priors to more closely approximate desired marginal

priors for λ0 and ϕ. One way of constructing such a mixture prior is to first construct

a mixture prior that approximates the marginal prior information on the control group

hazard rate λ0. This can be done irrespective of our prior beliefs about λ1, because the

marginal prior density pr(λ0; ar,0, br,0) of each of these mixture components r = 1, . . . , R

will not depend on the choice of ar,1 and br,1. Using a mixture prior also gives us the

option of making the prior more robust against prior-data conflicts by adding a weakly

informative component to the mixture. This could be a unit information prior that has

the same prior control group mean log-hazard rate as the informative part of the prior

by choosing aR+1,0 = 1 and bR+1,0 = exp
(
ψ(1)−

∑R
r=1 wr (log(br,0)− ψ(ar,0))

)
, where

the wr ∈ (0, 1) with
∑R

r=1wr = 1 are the mixture weights of each component. After

fixing ar,0 and br,0 for each mixture component r = 1, . . . , R, we then choose ar,1 and

br,1 for each mixture component so that the mixture of marginal distributions pr(ϕ) for

the log-hazard ratio approximates the desired marginal prior for the log-hazard ratio.

If no mixture is needed to represent the prior information on λ0, then R mixture

components with identical values for ar,0 and br,0 can be used — each with the same

marginal prior for λ0. These mixture components can then differ in terms of the values of

ar,1 and br,1 to represent the prior information on the hazard ratio. In analogy to kernel

density estimation we can choose these values in a somewhat ad-hoc fashion by first

choosing quantiles ξ1, . . . , ξR of the desired prior for ϕ that correspond to equally spaced

percentiles, and choosing ar,1 and br,1 for each mixture component so that pr(ϕ) has a

mean of ξr and a standard deviation approximately proportional to the distance to the

adjacent quantiles ξr−1 and ξr+1. Thus, br,1 = exp (ψ(ar,1 + 1)− ψ(a0,r) + log br,0 + ξr)

based on (5.2.6) and

ar,1 =

0 for (ξr+1 − ξr−1)2ar,0 = 1

ar,0
(ξr+1−ξr−1)2ar,0−1

for (ξr+1 − ξr−1)2ar,0 6= 1

,

where ξ0 := 2ξ1− ξ2 and ξR+1 := 2ξR− ξR−1. We use Var(ϕ) ≈ a0+a1
a1a0

instead of a0+a1+1
(a1+1)a0

,
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5. Conjugate updating for exponential time-to-event regression models

because it reduces numerical issues when br,1 is very close to zero in the tail area of the

distribution. We assign all mixture components the same prior weights wr = 1/R.

If a mixture with R1 components is needed to represent the marginal prior information

on λ0, then the same process with R2 mixture components for each of the R1 mixtures

can be applied to obtain a mixture with R = R1 ×R2 components.

Given a mixture of conjugate priors with R components

p(λ0, φ) =
R∑
r=1

wrpr(λ0, φ; ar,0, br,0, ar,1, br,1)

that closely approximates any desired marginal priors for λ0 and φ, the posterior is

obtained as (Diaconis and Ylvisaker, 1985)

p(λ0, φ|y0, t0, y1, t1) =
R∑
r=1

w′rpr(λ0, φ; ar,0 + y0, br,0 + t0, ar,1 + y1, br,1 + t1).

The updated posterior mixture weights for a mixture of such priors is obtained based

on the consistency of the observed data with the prior predictive distribution as

w′r :=
wr
w′

∫ ∞
0

∫ ∞
0

pr(λ0, φ; ar,0, br,0, ar,1, br,1) p(y0, t0, y1, t1|λ0, φ)︸ ︷︷ ︸
:=λ

y0
0 e−λ0t0 (φλ0)y1e−φλ0t1

dλ0 dφ

=
wr
w′

b
ar,0
r,0 b

ar,1+1
r,1 Γ(ar,0 + y0)Γ(ar,1 + y1 + 1)

(br,0 + t0)ar,0+y0(br,1 + t1)ar,1+y1+1Γ(ar,0)Γ(ar,1 + 1)
,

where w′ is chosen so that
∑R

r=1w
′
r = 1 (Diaconis and Ylvisaker, 1985).

5.4. Example: TGN1412

During a first-in-man trial of the monoclonal antibody TGN1412 conducted in March

2006, all 6 of 6 the healthy volunteers in the test group were admitted to a critical care

unit within 12 to 16 hours (total follow-up to first event or censoring t1 = 91.5 hours)

after receiving TGN1412 due to cytokine storms, while this occurred for none of the
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Figure 5.1.: Marginal prior and posterior distributions for the log-hazard ratio for the TGN1412
example showing the analytical Ca(0, 2.5) prior density, an approximation to this prior
using a mixture of 99 conjugate prior components constructed in the manner described
in Section 5.3 with υ = 4/3, a kernel density estimate of the posterior density obtained
using MCMC sampling with a Ca(0, 2.5) prior for the log-hazard ratio and the posterior
obtained using conjugate updating of the mixture of conjugate priors

2 subjects treated with a placebo (t0 presumably at least 32 hours) (Royal Statistical

Society working party on statistical issues in first-in-man studies, 2007). We formalize

the informal comparison with historical rates made by Senn (2008) for this example,

which we had discussed on page 2 of the Introduction. Fisher’s exact test results in a

one-sided p-value of 0.0357 and an exponential time-to-event model using exact Poisson

regression software leads to a median unbiased estimate of 1.05 (95% CI -0.62 to ∞)
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for the log-hazard ratio with a two-sided p-value of 0.3308.

In order to obtain a prior for the placebo hazard rate, we used historical intensive care

unit admission rates. In 2001, there were 127’614 discharges including due to death

from intensive care units in England amongst a total population of 48’867’538 above 1

year of age (Wunsch et al., 2009). This can be seen as providing a conservative upper

bound for the expected rate of intensive care admissions for healthy young male adults

like those enrolled in the TGN1412 first-in-man trial, because they would be expected

to be less likely to be hospitalized than the average member of the population. On

this basis we used a Gamma(127′614, 48′867′538) prior for the control group hazard

rate λ0. For the log-hazard ratio ϕ of the TGN1412 group compared with the placebo

group we used the Cauchy(0, 0.25) prior introduced in Section 3.4.2. With these priors,

we obtained posterior median log-hazard ratio of 12.2 with equal-tailed 95% CI from

11.3 to 13.0 with a posterior probability in excess of 99.999% that TGN1412 increased

the hazard rate for the admission to critical care using MCMC as shown in Figure 5.1.

Applying conjugate updating to the mixture prior approximation to the Ca(0, 2.5) prior

shown in Figure 5.1, we obtained closely matching results with a posterior median

log-hazard ratio of 12.2 with equal-tailed 95% CI from 11.3 to 12.9.

Note that the cause of hospitalization in all patients was the same potential side effect

of the drug, which was even considered a-priori possible, if unlikely (Royal Statistical

Society working party on statistical issues in first-in-man studies, 2007). The calculated

posterior probability ignores this further evidence of a causal drug effect, but on the

other hand it also ignores the multiplicity issue of the many safety outcomes that could

have been compared between groups. Program code for this example is available under

https://doi.org/10.6084/m9.figshare.5007833.

5.5. Extending the results to a stratified meta-analysis

We will now extend the results from the previous subsections to a time-to-event meta

analysis setting. We assume that we have prior information regarding the event rate
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5.5. Extending the results to a stratified meta-analysis

within each study, but are not making an assumption of exchangeability across studies.

Using the results of Chen and Ibrahim (2003), we obtain a conjugate prior for an

exponential time-to-event model under independent right-censoring comparing the

control groups in trials i = 1, . . . , I with hazard rate λi0 versus test groups with hazard

rates λi1 = φλi0, where φ is the hazard ratio, as

p(λ10, . . . , λI0, φ) ∝ exp

(
I∑
i=1

(ai0 log λi0 − bi0λi0 + ai1 log(λi0φ)− bi1λi0φ)

)
.

To obtain the prior density we need to calculate the normalizing constant γ, which is

given by

γ−1 =

∫ ∞
0

. . .

∫ ∞
0

∫ ∞
0

e
∑I
i=1(ai0 log λi0−bi0λi0+ai1 log(λi0φ)−bi1λi0φ) dλ10 . . . dλI0 dφ

=

∫ ∞
0

φ
∑I
i=1 ai1

I∏
i=1

Γ(ai0 + ai1 + 1)

(bi0 + bi1φ)ai0+ai1+1
dφ.

Thus, calculating γ only requires a one-dimensional numeric integration for any given

values of aij, bij for i = 1, . . . , I and j = 0, 1 so that the prior becomes

p(λ10, . . . , λI0, φ) = γ exp

(
I∑
i=1

(ai0 log λi0 − bi0λi0 + ai1 log(λi0φ)− bi1λi0φ)

)
.

The marginal prior for the hazard ratio φ is

p(φ) = γφ
∑I
i=1 ai1

I∏
i=1

Γ(ai0 + ai1 + 1)

(bi0 + bi1φ)ai0+ai1+1
,

while the marginal prior for the control group hazard rate λi0 for any study i is given by

p(λi0) = γ

∫ ∞
0

e−λi0(bi0+bi1φ)λai0+ai1
i0 φ

∑I
r=1 ar1( ∏

r∈1,...,I 6=i

Γ(ar0 + ar1 + 1)

(br0 + br1φ)ar0+ar1+1

)
dφ.

– 95 –



5. Conjugate updating for exponential time-to-event regression models

The posterior after observing the data D consisting of yij· events in treatment group j

of study i during tij· time units of follow-up to first event or censoring is

p(λ10, . . . , λI0, φ|D) =γ′ exp

( I∑
i=1

(
(ai0 + yi0·) log λi0 − (bi0 + ti0·)λi0

+ (ai1 + yi1·) log(λi0φ)− (bi1 + ti1·)λi0φ
))

with normalizing constant

γ′−1 :=

∫ ∞
0

φ
∑I
i=1(ai1+yi1·)

I∏
i=1

Γ(ai0 + yi0· + ai1 + yi1· + 1)

(bi0 + yi0· + (bi1 + yi1·)φ)ai0+yi0·+ai1+yi1·+1
dφ.

The updated posterior weight w′r for a mixture component r = 1, . . . , R in a mixture of

such priors after conjugate updating is obtained as (Diaconis and Ylvisaker, 1985)

w′r ∝ wr

∫ ∞
0

∫ ∞
0

. . .

∫ ∞
0

pr(yi0·, ti0·, . . . , yI1·, tI1·|φ, λ10, . . . , λI0)

pr(φ, λ10, . . . , λI0) dφ dλ10 . . . dλI0

= γ−1
r

∫ ∞
0

φ
∑I
i=1(ar,i1+yi1·)

I∏
i=1

Γ(ar,i0 + ar,i1 + yi0· + yi1· + 1)

(br,i0 + ti0· + (br,i1 + ti1·)φ)ar,i0+ar,i1+yi0·+yi1·+1
dφ,

which can be evaluated by one-dimensional numeric integration.
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incorporating historical data

In Chapters 3 and 5 we used historical prior information through rMAP priors. As

discussed in Section 2.5.4, there is limited previous research into the optimal choice

of weight for the weakly informative mixture component in rMAP priors and how

the rMAP approach compares to other methods for incorporating historical data into

meta-analyses. We conducted a simulation study to investigate these questions.

6.1. Evaluated methods

The evaluated methods, that are also summarized in Table 6.1, were

1. a Bayesian hierarchical model with vague priors fitted only to the trials in the

main meta-analysis ignoring the historical prior information,

2. the MAC approach (see Section 2.5.4.1) with a single Bayesian hierarchical model

with vague priors fitted to all trials without any down-weighting of the historical

prior information other than through the estimated between-trial variability,

3. the rMAP prior approach (see Section 2.5.4.3) with the MAP prior approximated

by a mixture distribution and with different choices for the weight for the weakly

informative mixture component, and

4. a Bayesian hierarchical meta-regression model with variable selection on the

historical trial effect using a shrinkage prior (see Section 2.5.4.5). As shrinkage
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priors we used the horseshoe, double-exponential (Laplace) and Cauchy priors

with different choices for the scale parameters.

As Table 6.1 shows, we used a Poisson-likelihood based on simulated values of yij· and

tij· for each trial arm. Compared to using the AD likelihood (3.2.4) this substantially

reduced the time required for the simulations given that we fitted all models using MCMC

methods. We did not use conjugate updating, because we were unable to find a reliable

approach for performing conjugate updating in models with borrowing of information

between trials.

Figure 6.1 illustrates several of the shrinkage priors used in the fourth of the approaches

outlined above for parameter values that performed well in the simulation results

presented in Section 6.3. As can be seen the horseshoe prior is substantially more

peaked around zero than the other illustrated priors, while at the same time having

higher density in the tail area outside of, say, (−3.5, 3.5).
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Figure 6.1.: Illustration of several of the considered shrinkage priors for the meta-regression coefficient
for historical trials: density in the tail area (Panel A) and near the origin (Panel B) with
the arrow indicating that the density of the horseshoe prior is unbounded at zero and with
the black dots indicating the degrees of discrepancy between the placebo hazard rates in
the historical and new trials considered in the simulations described in Section 6.2

6.2. Simulation study setup

The simulation study evaluated the scenarios shown in Table 6.2. Within each scenario,

we considered 7 different sub-scenarios, and within these the situation with and without
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Table 6.1.: Investigated methods for incorporating historical data, abbreviations used for them in results figures and priors used: a Ca(0, 2.5) prior was
used for the log-hazard ratio ϕ in all methods, rMAP(D′, w) denotes the robust MAP prior based on the historical data D′ with weight
w = 0, 0.005, . . . , 0.995, 1 for the informative mixture component; hi := 1{i > I}

Approach Historical data likelihood Likelihood for new data Parameter Prior used

Hierarchical
model with
vague priors
(“Vague”)

not used
∏I

i=1 φ(log λi0; ν1, σ1)
∏1

j=0(λi0e
ϕj)yij·e−λi0e

ϕjtij·

ν1 N(0, 1000)

σ1 HCa(0, 100)

Meta-analytic
combined
(MAC)

∏I+H
i=1 φ(log λi0; ν1, σ1)

∏1−hi
j=0 (λi0e

ϕj)yij·e−λi0e
ϕjtij·

ν1 N(0, 1000)

σ1 HCa(0, 100)

Model
averaging
using
shrinkage
priors
(“Horseshoe”,
“Cauchy”,
“Dbl.-Exp.”)

∏I+H
i=1 φ(log λi0; ν1, σ1)

∏1−hi
j=0 (λi0e

βhi+ϕj)yij·e−λi0e
βhi+ϕjtij·

ν1 N(0, 1000)

σ1 HCa(0, 100)

β HS(σλτ , σλτ )

Ca(0, σCa)

Dbl.-Exp.(0, σL)

Robust
meta-analytic
predictive
(rMAP)

∏I
i=1 φ(log λi0; ν1, σ1)

∏1
j=0(λi0e

ϕj)yij·e−λi0e
ϕjtij·

ν ′1 N(0, 1000)∏I+H
i=I+1 (φ(log λi0; ν ′1, σ

′
1) σ′1 HCa(0, 100)

λyi0·i0 e−λi0ti0·
)

ν1, σ1 rMAP(D′, w)
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a treatment effect. As a basic reference scenario we considered 10 historical and 10 new

trials of 1 year duration, each with 100 patients in each treatment group. In addition,

we investigated 6 other scenarios with only 5 new trials, with 20 new trials, with a

higher sample size in each trial (1000 instead of 100 per arm), with more historical

trials (100 instead of 10), with between-trial variability in control group hazard rates,

and with this between-trial variability differing between historical and new trials.

Table 6.2.: Parameters for the simulation scenarios for the trials in the main meta-analysis i = 1, . . . , I
and the historical trials i = I+1, . . . , I+H: sample size per group nij , placebo event hazard
rate λi0, log-hazard ratio for events on test drug compared with placebo ϕ, dispersion
parameter κ for variation around λi0 across trials, placebo drop-out hazard rate µi0, test
drug drop-out hazard rate µi1 and planned trial duration τi

Main meta-analysis Historical trials All trials
# I nij λi0 ϕ κ H ni0 λi0 κ µi0 µi1 τi
1 10 100 0.1 0 0 10 100 0.1 – 0.2 0 0.15 0.15 1
2 10 100 0.1 log(1.75) 0 10 100 0.1 – 0.2 0 0.15 0.15 1
3 5 100 0.1 0 0 10 100 0.1 – 0.2 0 0.15 0.15 1
4 5 100 0.1 log(1.75) 0 10 100 0.1 – 0.2 0 0.15 0.15 1
5 20 100 0.1 0 0 10 100 0.1 – 0.2 0 0.15 0.15 1
6 20 100 0.1 log(1.75) 0 10 100 0.1 – 0.2 0 0.15 0.15 1
7 10 1000 0.1 0 0 10 1000 0.1 – 0.2 0 0.15 0.15 1
8 10 1000 0.1 log(1.75) 0 10 1000 0.1 – 0.2 0 0.15 0.15 1
9 10 100 0.1 0 0 100 100 0.1 – 0.2 0 0.15 0.15 1
10 10 100 0.1 log(1.75) 0 100 100 0.1 – 0.2 0 0.15 0.15 1
11 10 100 0.1 0 0.75 10 100 0.1 – 0.2 0.75 0.15 0.15 1
12 10 100 0.1 log(1.75) 0.75 10 100 0.1 – 0.2 0.75 0.15 0.15 1
13 10 100 0.1 0 0.75 10 100 0.1 – 0.2 0.1 0.15 0.15 1
14 10 100 0.1 log(1.75) 0.75 10 100 0.1 – 0.2 0.1 0.15 0.15 1

Within each scenario, we considered sub-scenarios in terms of different placebo hazard

rates in the historical data chosen to be 0.1, 0.105, 0.11, 0.125, 0.15 or 0.2 per patient-

year. Program code for the conducted simulations is available under https://doi.org/

10.6084/m9.figshare.5007833 and the simulation results under https://doi.org/

10.6084/m9.figshare.5027927.

6.3. Simulation study results

Figure 6.2 shows the RMSE across all scenarios for different degrees of expected prior-

data conflict. The results illustrate that the direct MAC approach and the MAP

– 100 –
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Figure 6.2.: Difference in root-mean-square-error for the log-hazard ratio when including historical
information via different methods (with the parameters for each method given at the top
of the graph) compared with an analysis with a vague prior (blue=lower, white=similar,
red=higher) across 14 different scenarios and sub-scenarios regarding the discrepancy in
placebo hazard rates between present (0.1) and historical (0.1 to 0.2) trials
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approach give very similar results despite the approximation of the posterior of the

hyperparameters by a mixture of bivariate normals.

Figure 6.3 shows the average RMSE (aRMSE) across different degrees of expected prior

data conflict — i.e. sub-scenarios with the same placebo hazard rate in the historical

data as in the new data to those with a doubled placebo hazard rate — in each scenario.

It illustrates the inherent bias-variance trade-off that occurs when it is a-priori suspected

that there may be some degree of prior-data conflict. In terms of aRMSE it is neither

optimal to totally disregard prior information, nor to use it without any down-weighting,

but rather to allow some degree of borrowing of information.
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Figure 6.3.: Difference in average root-mean-square-error for the log-hazard ratio when including
historical information via different methods (with the parameters for each method given
at the top of the graph) compared with an analysis with a vague prior (blue=lower,
white=similar, red=higher) across the 14 different scenarios: numbers indicate the rank of
the method within the scenario from 1 (best) to 52 (worst)

Out of the investigated priors for inducing shrinkage on the coefficient for historical

trials in hierarchical meta-regression models the double-exponential and Cauchy priors

performed well in terms of aRMSE across the evaluated scenarios. The horseshoe prior

also performed better than the rMAP approach, but appeared to be outperformed by
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the other priors in scenarios with limited prior information.

It is not clear that there is a generally recommendable default class of priors for inducing

shrinkage on the coefficient for historical trials in hierarchical meta-regression models.

In fact, all priors performed reasonably well and the choice of parameters of the priors

may be more crucial. Depending on the expected degree of prior data conflict a more or

less aggressive parameter choice may be preferable: while a scale parameter of 0.25 for a

double-exponential prior performed extremely well on average, a scale parameter of 0.5

performed nearly as well on average and performed better in case of more substantial

expected prior data conflict.

It was perhaps to be expected that these prior parameter choices would perform well on

average across different degrees of discrepancy between the placebo hazard rates in the

historical and new trials. This is because the resulting prior approximately resembles

the distribution of the considered discrepancies as illustrated in Figure 6.1.

As Figure 6.4 shows the prior choices that performed well in terms of aRMSE also

performed reasonably well in terms of the coverage probability of 95% CIs for the

treatment effect. E.g. for a double-exponential prior with scale parameter of 0.5 the

coverage was very close to the nominal level, while it was more notably below or above

the nominal level for a more aggressive scale parameter value of 0.25.

As expected, when the parameters for generating the historical data and the data in

the main meta-analysis are identical, RMSE improves as increasingly more weight is

given to the historical prior information in the rMAP approach. However, the largest

reductions in RMSE were achieved when increasing the weight from close to 0 to, say,

0.2 and in some scenarios 0.5, while further improvements in RMSE beyond that point

were smaller. Previously suggested weights for the informative MAP prior component

of the rMAP prior such as 0.5, 0.8 or 0.9 performed less well in terms of aRMSE than

substantially lower weights such as 0.01 to 0.05. The only exceptions were scenarios

#11 and #12, in which there was substantial between-trial variability in placebo hazard

rates, in which case one would expect a wider and more dispersed rMAP prior. In these

scenarios weights of between 0.8 to 0.95 performed best. In contrast to this finding
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Approach
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for the rMAP approach, there was no notable difference between the optimal scale

parameter choice for the considered shrinkage priors across scenarios.

When there is a moderate conflict between historical and present model parameters

(λi0 = 0.125 for i = I + 1, . . . , I +H versus λi0 = 0.1 for i = 1, . . . , I), the RMSE still

initially improves slightly as the informative historical prior component is given more

weight. In contrast a relatively strong conflict (λi0 = 0.15 versus 0.1) was the most

unfavorable situation in most scenarios and RMSE uniformly increased with increasing

weight for the informative mixture component. While a hazard ratio of 1.5 between the

historical and the present data is quite large, the historical and the present data were

not informative enough to entirely discard the informative prior in the inference in most

scenarios. The only exceptions are scenarios #7 and #8, in which there is substantially

more data (1000 instead of 100 patients per trial), but in these scenarios the same issue

occurs at a lower level of expected prior data conflict (λi0 = 0.11 to 0.125 versus λi0

= 0.1). In contrast for the scenario with the largest expected prior-data conflict (λi0

= 0.2 versus 0.1), the weakly informative mixture component more clearly dominates

the inference and the RMSE even with a weight of 0.9 for the informative mixture

component remains below the RMSE for substantially lower weights in the scenario

with a strong conflict.

These findings illustrates that the relative amount of information in the historical and

the present data is a key factor in the optimal weight given to the historical data. This

can also be seen from the greater gain in terms of aRMSE in scenarios #3 and #4,

where there is fewer new trials (5 trials) compared to scenarios #1, #2 (10 trials), #3

and #4 (20 trials). However, it should be noted that this overall reduction in aRMSE

is the result of a greater reduction in terms of RMSE when there is no or little expected

prior-data conflict, but that this is partially offset by a greater increase in aRMSE when

there is a strong expected prior-data conflict. The same effects can be seen when there

is a larger number of historical trials (100 instead of 10) in scenarios #9 and #10.
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7.1. Discussion

While meta-analyses typically treat the occurrence of medical events as binomial data,

it is rarely considered that this makes the strong assumption that in each trial drop-out

times follow the same distribution in all treatment groups and are independent of event

times. In the absence of IPD, the AD time-to-event meta-analysis model proposed in

Chapter 3 requires several — arguably more plausible — assumptions, most importantly

that both event and drop-out times are independent and follow specific distributions.

Our simulations show that the proposed model — unlike binomial distribution based

methods such as the Peto one-step odds ratio, logistic regression, the CMH odds ratio or

the beta-binomial model of Kuss — avoids type I error rate inflation due to differences

between treatment groups in drop-out time distributions. We assumed an exponential

distribution for event and drop-out times in both the rosiglitazone case study and for

our simulations, but the event and drop-out time distributions can be chosen to be

sufficiently flexible to provide a good approximation to the expected distributions for

each application. For example, in Section 4.1 we derived the AD likelihood assuming

Weibull distributed event and drop-out times.

The necessary inputs for the proposed AD meta-analysis model are typically reported in

the publications of clinical trials or clinical trial results databases, but an imputation of

Some parts of this discussion are reproduced from Holzhauer (2017) (available at http://dx.doi.org/10.1002/sim.

7181) with permission from John Wiley & Sons. Copyright cO2016 John Wiley & Sons, Ltd.
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missing values from the predictive distribution under a MAR assumption is also easily

accomplished. We have derived both the AD and the IPD likelihood for the proposed

model so that a mixture of both types of data can be used, which may also ameliorate

the parameter identifiability issues that arise with AD, if we assume flexible event and

drop-out time distributions such as the Weibull distribution. In Sections 4.2 and 4.3 we

derived the AD likelihood for event driven trials and demonstrated how to account for

the risk of fatal events due to recurrent events.

There are a number of alternatives to using the proposed AD likelihood. For the

exponential time-to-event model using the imputed follow-up to first event or censoring

t̃ij· — assuming half the planned follow-up for those that drop-out or experience an

event — in a “Poisson likelihood” also performed reasonably well in our simulations,

especially for low event rates. While t̃ij· is a biased approximation to tij·, it appears that

by having a similar bias in all treatment groups of a trial the bias often approximately

cancels out when it comes to the estimation of the hazard ratio. Further alternatives

include approximate Bayesian computations (Marin et al., 2012), which would avoid

the need to derive and evaluate an AD likelihood.

Borrowing of information in meta-analyses using hierarchical models relies on an

assumption of exchangeability of parameters between trials. Instead of assuming

the exchangeability of the expected proportion of cases across the control groups of

trials of very different lengths, we suggest that it is more appropriate to assume that

parameters of survival distributions are exchangeable — e.g. the control group log-

hazard rate in an exponential model. In fact, we feel that the choice of parameters about

which exchangeability assumptions are made deserves more careful consideration in

many settings. Additionally, between-trial differences in explanatory variables expected

to affect trial-level parameters — e.g. the percentage of patients with a key risk factor

for events — should be accounted for, instead of being absorbed into random effects as

unexplained between-trial heterogeneity.

Criticism of Bayesian methods frequently focuses on the subjectivity of priors. This

may be partially addressed by basing priors on historical data chosen according to

pre-specified objective criteria. Our simulations illustrate that using priors based
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on historical data can result in a substantial gain in power. However, the historical

data will often not fulfill several of the criteria for selecting “acceptable historical

controls” suggested by Pocock (1976) and the validity of an exchangeability assumption

for the parameters underlying a present set of data, and historical information will

often be questioned. Widening the MAP prior and using long-tailed priors that offer

more robustness against a prior-data conflict (Schmidli et al., 2014) acknowledges this

uncertainty. Our simulations in Chapter 6 support the suggestion by Senn (2008) that

the inherent bias-variance trade-off involved in using historical controls is especially

favorable in situations with sparse data. Our simulations in Section 3.6 and Chapter 6

also suggest that the loss in power due to using a rMAP instead of a MAP prior is

small over a wide range of weights given to the informative mixture component. In

fact, substantially lower weights than previously suggested appear to optimize RMSE

under a plausible extent of differences in parameter values underlying the present and

historical data. In our simulations, model averaging via shrinkage priors outperformed

the rMAP prior approach for a moderate degree of expected prior-data conflict. We

assume that this occurs, because both approaches can completely discount the historical

data or give it full weight, but only the shrinkage prior approach explicitly allows for

the possibility of a somewhat broadened version of the MAP prior that may be optimal

in terms of RMSE in case of a moderate prior-data conflict. It may be possible to

achieve a similar behavior with a type of rMAP prior that includes mixture components

with different degrees of informativeness. Such an approach could be seen as a discrete

mixture approximation to the power prior approach of (Ibrahim et al., 2015) or a more

formal basis for the empirical MAP prior approach of Li et al. (2016).

The use of historical data and borrowing information across trials in a meta-analysis

step out of the relatively safe bounds of randomized comparisons. In the rosiglitazone

example, it would be necessary to further investigate whether differences in populations

explain the differences in control rates between historical and new trials before relying

on historical prior information for strengthening the case for an increased risk of

cardiovascular events with rosiglitazone. In any case only the stratified Bayesian

analysis resulted in 95% CIs excluding a hazard ratio of 1.0. This analysis used
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independent informative priors based on historical data for each of the trials in the

main meta-analysis. As a result parameters are assumed to be exchangeable between

the historical trials, as well as between all historical trials and any individual trial in the

main meta-analysis, but not between the trials in the main meta-analysis. By making

these somewhat inconsistent assumptions that do not allow borrowing of information

across trials in the main meta-analysis the informative priors become more influential.

For these reasons we prefer the analysis with borrowing of information between the

trial in the main meta-analysis. The question of how to introduce “borrowing of

information” is also the greatest remaining challenge — besides the practical problem

of the availability of tij· — regarding the conjugate prior derived in Section 5 for the

exponential time-to-event model. If this challenge can be overcome, then conjugate

updating would allow for substantially faster simulations to explore questions such

as the value of prior information on event rates and the operating characteristics of

different methods of using such prior information.

The proposed Bayesian hierarchical meta-analysis model with borrowing of information

performed well in the scenarios investigated in our simulation study. When control

group parameters were exchangeable between historical and new trials, using historical

prior information — as expected — lead to increased power under the alternative

hypothesis without an inflation of the type I error rate under the null hypothesis.

Methods for binomially distributed data performed well in simulations with identical

drop-out time distributions across all treatment groups with the exception of the beta-

binomial model of Kuss (2015). This last model with an independent beta-distributed

random effect on each trial arm performed badly with respect to most operating

characteristics in our simulations and produced excessively wide CIs. This is because

even for a test and control group from the same trial, this model attributes a part of

the differences between arms to the between-arm variability rather than the treatment

effect. This effect could be seen in the rosiglitazone case study and was even more

pronounced in our simulations, because in both cases there were substantial between-

trial differences in trial duration that caused substantial between-arm differences in the

expected proportion of patients with an event. In such a setting we recommend not to

use this particular beta-binomial model.
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While we focused on the meta-analysis of time-to-event data from clinical trials, there

are a number of other possible uses of the discussed methods for using historical data

in the clinical trials setting including blinded monitoring of clinical trials (Gould, 2016),

interim decision making and trial planning.

7.2. Conclusions

Current methods for the meta-analysis of aggregate data on the occurrence of medical

events have several limitations with respect to how drop-outs are accounted for, how

“borrowing of information” across trials in a meta-analysis is done and how information

from historical trials is used. We proposed a trial-level time-to-event likelihood that

accounts for differences in follow-up between groups and only requires commonly

available AD. We also demonstrated that exchangeability assumptions should be made

about parameters of survival distributions rather than for the probability of an event.

The investigated methods for borrowing of information in meta-analyses and using

historical data are attractive for the analysis of sparse data.

– 110 –



Bibliography

Agresti, A. (2007). An Introduction to Categorical Data Analysis, 2nd edition. Wiley,

Hoboken.

Agresti, A. and Hartzel, J. (2000). Strategies for comparing treatments on a binary

response with multi-centre data. Statistics in Medicine, 19(8):1115–1139.

Allison, P. D. (1995). Survival analysis using SAS: A practical guide. SAS Institute,

Cary.

Arends, L. R., Hunink, M., and Stijnen, T. (2008). Meta-analysis of summary survival

curve data. Statistics in Medicine, 27(22):4381–4396.

Bagos, P. G. and Nikolopoulos, G. K. (2009). Mixed-effects Poisson regression models

for meta-analysis of follow-up studies with constant or varying durations. The

International Journal of Biostatistics, 5(1).

Bai, O., Chen, M., and Wang, X. (2016). Bayesian estimation and testing in random

effects meta-analysis of rare binary adverse events. Statistics in Biopharmaceutical

Research, 8(1):49–59.

Bennett, M. M., Crowe, B. J., Price, K. L., Stamey, J. D., and Seaman Jr, J. W. (2013).

Comparison of Bayesian and frequentist meta-analytical approaches for analyzing

time to event data. Journal of Biopharmaceutical Statistics, 23(1):129–145.

Bernardo, J. M. and Smith, A. F. (2000). Bayesian theory , revised edition. Wiley,

Chichester.

– 111 –

http://dx.doi.org/10.1002/0470023678.ch3c(ii)
http://dx.doi.org/10.1002/0470023678.ch3c(ii)
http://dx.doi.org/10.1002/sim.3311
http://dx.doi.org/10.1002/sim.3311
http://dx.doi.org/10.2202/1557-4679.1168
http://dx.doi.org/10.2202/1557-4679.1168
http://dx.doi.org/10.1080/19466315.2015.1096823
http://dx.doi.org/10.1080/19466315.2015.1096823
http://dx.doi.org/10.1080/10543406.2013.737210
http://dx.doi.org/10.1080/10543406.2013.737210
http://dx.doi.org/10.1002/9780470316870


Bibliography

Bertagnolli, M. M., Sartor, O., Chabner, B. A., Rothenberg, M. L., Khozin, S., Hugh-

Jones, C., Reese, D. M., and Murphy, M. J. (2017). Advantages of a truly open-access

data-sharing model. New England Journal of Medicine, 376(12):1178–1181.

Betancourt, M. and Girolami, M. (2015). Hamiltonian Monte Carlo for hierarchical

models. In Upadhyay, S. K., Singh, U., Dey, D. K., and Loganathan, A., editors,

Current trends in Bayesian methodology with applications, pages 79–101. CRC Press,

Boca Raton.

Bhadra, A., Datta, J., Polson, N. G., and Willard, B. (2016). Default Bayesian analysis

with global-local shrinkage priors. Biometrika, 103(4):955–969.
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List of symbols and abbreviations

1{. . .} indicator function

aj, bj parameters of the conjugate prior for exponentially distributed
failure times from two treatment groups (j = 0, 1)

ar,j, br,j parameters of mixture component r of a mixture of conjugate
priors for exponentially distributed failure times for group j

aij, bij parameters of the conjugate prior for exponentially distributed
failure times for trial i = 1, . . . , I and treatment group j = 0, 1

ar,ij, br,ij parameters of mixture component r of a mixture of conjugate
priors for exponentially distributed failure times for trial i and
group j

AD aggregate data

aRMSE average RMSE across different (sub-)scenarios

as x↘ x0 as x decreases in value approaching x0

bijk covariates for patient k in group j of trial i to be used in modeling
events times

Ber(π) Bernoulli distribution with parameter π

β, β symbol for a generic regression coefficient

Beta(a, b) Beta distribution with parameter a and b

Bin(n, π) binomial distribution with parameters n and π

Cijk, cijk drop-out time for patient k in treatment group j of study i

Ca(µ, σ) Cauchy distribution with location parameter µ and scale
parameter σ
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List of symbols and abbreviations

cdf cumulative distribution function

CI confidence or credible interval

CMH Cochran-Mantel-Haenszel (test, statistic or odds ratio estimate)

CONSORT consolidated standards of reporting trials

D observed data for a meta-analysis

D′ observed historical control group data

Di observed data for trial i

Dij observed data for treatment group j of trial i

D′i0 observed control group data for historical trial i

Dijk, dijk follow-up until censoring for patient k in treatment group j of
study i

d̃ij· approximation to dij· (see Section 3.1.2.1)

Dbl.-Exp. double-exponential or Laplace (distribution)

δ risk or rate difference

E expectation

Eθ=θ0(Y ) expectation of Y when the parameter θ of the distribution of Y
has value θ0

E(Y |X = x) conditional expectation of Y given X = x

Eijk, eijk total number of events for patient k in group j of study i

Exp(λ) exponential distribution with rate parameter λ

F ,G,H cumulative distribution function, usually for event times, drop-
out times and their joint distribution, respectively, when a single
distribution is assumed that only differs across treatment groups
j = 0, 1 and trials i = 1, . . . , I with respect to parameters θF,ij,
θG,ij and θH,ij

Fij,Gij,Hij cumulative distribution function, usually for event times, drop-out
times and their joint distribution, respectively, for group j of trial
i
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f ,g,h pdf (or pmf), usually for event times, drop-out times and their joint
distribution, respectively, when a single distribution is assumed
that only differs across groups j = 0, 1 and trials i = 1, . . . , I with
respect to parameters θF,ij, θG,ij and θH,ij

fij,gij,hij pdf (or pmf), usually for event times, drop-out times and their
joint distribution, respectively, for group j of trial i

fWb, FWb pdf and cdf of the Weibull distribution

FDA United States Food and Drug Administration

γij Weibull shape parameter for event times in group j of trial i

Γ Γ function

H number of historical trials

hi indicator for whether trial i = 1, . . . , I +H is a historical trial

HCa(0, σ) half-Cauchy distribution with location 0 and scale parameter σ

HN(0, σ) half-normal distribution with mean 0 and standard deviation σ

HS horseshoe (prior) distribution

HTν(0, σ) half-t distribution with ν degrees of freedom, location 0 and scale
parameter σ

i index for study

I number of trials in meta-analysis

i.i.d. independent and identically distributed∫
A
f(x) dx integration for a measurable function f with respect to the

Lebesgue measure on A ⊆ R
D

IPD individual patient data (e.g. yijk and tijk for each patient)

j index for treatment group with (0 = control and 1 = test group)

k index for patient number

L(θ|D) likelihood of parameter θ given data D

λij exponential rate parameter or inverse Weibull scale parameter for
event times in treatment group j of trial i
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List of symbols and abbreviations

λij(s) hazard rate in treatment group j of trial i at time s ∈ [0, τi]

Mijk, mijk indicator for whether patient k in treatment group j of study i
has an observed fatal event

MLE maximum likelihood estimate

MAC meta-analytic combined (approach or prior)

MACE major adverse cardiovascular events

MAP meta-analytic predictive (distribution, approach or prior)

MAR missing at random

MCMC Markov chain Monte Carlo

mgf moment generating function

µij exponential rate parameter or inverse Weibull scale parameter for
drop-out times in treatment group j of trial i

N(ν, σ) normal distribution with mean ν and standard deviation σ

N(ν,Σ) multivariate normal distribution with mean vector ν and covari-
ance matrix Σ

nij number of patients in treatment group j of study i

ν mean of a normally distributed random effect

NUTS no-U-turn (Hamiltonian MCMC) sampler

f(x) = O(g(x))
as x→ x0

there exist ε > 0 and δ > 0 so that for all x that satisfy
0 < |x− x0| < ε we have |f(x)| ≤ δ|g(x)|

ODE ordinary differential equation

ωij Weibull shape parameter for drop-out times in group j of trial i

p used to denote the number of random effects or the dimension of
a (hyper-)parameter vector

p(θ) prior density of parameter θ

p(θ|D) posterior density of parameter θ given the data D

p(D|θ) pdf or pmf for data D given parameter θ, alternative notation for
likelihood L(θ|D) used in Bayesian context
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p(θi|ϑ) pdf or pmf for the conditional distribution of the latent trial-level
variable θi given the hyperparameter ϑ

p(θ;ϑ) prior density for the parameter vector θ with hyperparameter
vector ϑ

P probability

pdf probability density function

φ hazard or odds ratio

φ(x; ν, σ) pdf of a N(ν, σ) r.v.

φ(x;ν,Σ) pdf of a N(ν,Σ) r.v.

πij expected proportion of patients with an event in group j of trial i

πijk probability of an observed event for patient k in group j of trial i

pij vector with the five components pijr for r = 1, . . . , 5

pijr probability that a patient in group j of trial i will have the rth of
the outcomes in Definition 3.1

pmf probability mass function

ψ(x) the digamma function ψ(x) := Γ′(x)/Γ(x)

ψr(x) dr

dxr
ψ(x) polygamma function of order r = 1, 2, . . .

qij, qj probability that an event in group j of trial i is fatal given that it
has occurred (qj when the probability is assumed to be the same
across all trials)

R the real numbers (−∞,∞)

R
+ the non-negative real numbers [0,∞)

RCT randomized controlled trial

ρi length of the recruitment period of trial i = 1, . . . , I

rMAP robust meta-analytic predictive

RMSE root mean squared error

r.v. random variable
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List of symbols and abbreviations

SE standard error

σ standard deviation of a normally distribution random effect (“hi-
erarchical scale parameter”)

Σ covariance matrix of a multivariate normal random effect

2T transposition of the matrix or vector 2

Tijk, tijk follow-up to first event or censoring for patient k in treatment
group j of study i

t̃ij· approximation to tij· (see Section 3.1.2.2)

θ, θ symbol for a generic parameter or parameter vector

θF,ij parameters of event time distribution F for group j of trial i

θG,ij parameters of drop-out time distribution G for group j of trial i

θH,ij parameters of joint distribution H of event and drop-out times for
group j of trial i

θi vector of latent trial-level parameters, for the proposed Bayesian
hierarchical model θF,i0, θG,i0 and θG,i1

θij trial arm specific parameters, for the proposed model typically
θF,ij, θG,ij and qij

τi planned duration of trial i (time of administrative censoring); time
from start of recruitment to trial end in an event driven trial

U(a, b) uniform distribution on [a, b]

Var variance

ϕ log-hazard or log-odds ratio ϕ := log φ

ϑ hyperparameters determining the distribution of θi across trials

Wb(a, b) Weibull distribution with inverse scale parameter a and shape
parameter b

Wijr, wijr The number of patients in group j of trial i with the rth of the
outcomes in Definition 3.1

Xijk, xijk event time for patient k in treatment group j of study i
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Yijk, yijk indicator for whether patient k in treatment group j of study i
has an observed event

Zijk, zijk indicator for whether patient k in treatment group j of study i is
a drop-out

ζ hyperparameters that do not define random effects

ζj component of the hyperparameter vector ζ corresponding to treat-
ment group j
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Appendix A.

Prior for the log-hazard ratio

When evaluating whether one intervention is superior to another it is usually seen as

inappropriate to use a prior distribution that favors one of the interventions (Gelman

et al., 2014, p. 56). Similarly, when evaluating whether an intervention is non-inferior

to another, a prior that strongly favors a conclusion of no treatment difference is

problematic. With this in mind, one possible approach is to use a weakly informative

prior that is symmetrical around a “neutral” parameter value representing “no treatment

effect” and is more vague than we consider a-priori plausible based on either the historical

distribution of treatment effects, or based on considerations of biological plausibility.

A Cauchy(0, 0.37) prior puts 90% of the prior probability mass within (− log(10), log(10))

reflecting a mildly skeptical prior belief that extremely large drug effects with relative

risk measures such as hazard, rate, risk, or odds ratios above 10 or below 0.1 are

rare (Greenland, 2000; Hamra et al., 2013). In fact, this prior puts more probability

in the tail area than the distribution of the estimated hazard ratios for new drugs

versus controls from several sets of historical trials (Djulbegovic et al., 2012) shown in

Figure A.1. This distribution reflects not just the distribution of actual treatment effect

sizes, but also of sampling variation. For this reason priors developed on this basis have

been criticized for depending on the sampling variation in historical trials (Senn, 2007).

Kault and Kault (2015) have attempted to estimate the distribution of intrinsic drug

effects free of sampling variation in the Cochrane database of systematic reviews. On
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the other hand, a prior centered around no effect that is as wide or wider than the

distribution of estimated treatment effects in actual trials — such as a Cauchy(0, 0.37)

prior — can be considered as a weakly informative prior or as appropriately reflecting

the uncertainty around the exchangeability of the relative risk measures between

the historical comparisons and the comparison under consideration. As a sensitivity

analysis, one may consider the default weakly informative Ca(0, 2.5) prior proposed

by Gelman et al. (Gelman et al., 2008) with 90% of the prior probability mass within

(− log(108), log(108)). Ca(0, 0.37) and Ca(0, 2.5) distributions are the main priors we

consider throughout this thesis. Program code for this appendix is available under

https://doi.org/10.6084/m9.figshare.5007833.
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Figure A.1.: Cumulative distribution function for the estimated hazard ratios for test groups compared
with controls in all 624 trials from 1955 to 2006 with 781 comparisons by the US National
Cancer Institute (NCI), all 63 superiority trials from 1999 to 2008 with 94 comparisons by
the UK Health Technology Assessment (HTA) Programme, all 28 trials from 1973 to 1994
with 31 comparisons by the United Kingdom Medical Research Council (MRC), all 28
trials from 1984 to 2003 with 32 comparisons by the US National Institute for Neurological
Disorders and Stroke (NINDS) (Djulbegovic et al., 2012), two Cauchy distributions with
location 0 and scale parameter 0.37 or 2.5, and the Normal(0, 1) distribution
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Appendix B.

Weakly informative hyperpriors for the

rosiglitazone example

For weakly informative hyperpriors p(ν1) and p(σ1) for the placebo group MACE hazard

rate we used the observational data reported in the drug sponsor’s briefing document for

the 2010 rosiglitazone FDA advisory committee meeting(Glaxo-Smith-Kline, 2010). The

sponsor provided three estimates from different observational databases for the MACE

hazard rate per patient-year in type 2 diabetes patients on control therapies: 0.0142

based on 38 patients with an event, 0.0135 based on 13 patients with an event and 0.0140

based on 51 patients with an event(Glaxo-Smith-Kline, 2010). The inverse variance

weighted average of these estimates combined on the log-scale is -4.27 corresponding to

a rate of 0.0140 per patient-year.

For weakly informative hyperpriors p(ν2), p(σ2), p(ν3) and p(σ3) regarding drop-out

hazard rates in the control and test groups, we considered 20% of drop-outs by the end

of 1 year as a plausible average proportion of drop-outs corresponding to an average

exponential hazard rate for drop-out of 0.22.

As it seemed unlikely that these estimates would be incorrect by a factor substantially

above 10, we used a normal prior for the mean of the random effects with these means

and a standard deviation of log(10). We considered this as a weakly informative prior

that understates our prior beliefs. This is illustrated in Figure B.1 for the MACE hazard
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Figure B.1.: Weakly informative prior compared to informative priors based on possible analyses of
the observational databases

rate that shows that for the MACE log-hazard rate, the employed prior is substantially

less informative than the posterior from an analysis of the observational data, which

can be considered reasonable given the potential wide range of differences between

observational data and data from RCTs including in terms of patient characteristics,

outcome definitions and outcome reporting.

Program code for the results in this Appendix is available under https://doi.org/10.

6084/m9.figshare.5007833.
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Appendix C.

Additional results from the simulations

in Section 3.6
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Figure C.1.: Bias in the estimated log-hazard ratio in the absence of a treatment effect with 99% CIs
based on 10,000 simulations under different scenarios: control and test group hazard rate
for events (0.05 or 0.5; no treatment effect), control group hazard rate for drop-out (0.5)
and test group hazard rate for drop-out (0.5, 1.36 or 0.18)

For the lower placebo event hazard rate (0.05 per patient-year) nearly all simulations
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(>90%) included at least one trial arm and often (10 to 30% of simulations) at least

a whole trial without any events, while this was hardly ever the case for the higher

placebo event hazard rate of 0.5 per patient-year. There was no simulation without

any events and a single case of complete separation (no events in one treatment group

across all trials of a simulation) for scenario 2. For 14 simulated meta-analyses the

potential scale reduction factor for the proposed Bayesian hierarchical model with vague

priors remained > 1.1 for some variables despite repeated runs of the model for these

scenarios. We used the estimates and CIs obtained from the Bayesian hierarchical

model with vague priors for these 14 cases for the evaluation of the method despite their

questionable convergence status. We do not expect this to affect the overall conclusions

of the simulation study, because only 14 out of 1,440,000 (< 0.001%) simulations were

affected.
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Figure C.2.: Bias in the estimated log-hazard ratio in the presence of a treatment effect with 99%
CIs based on 10,000 simulations under different scenarios: control group hazard rate for
events (0.05 or 0.5), test group hazard rate for events (0.1 or 0.64), control group hazard
rate for drop-out (0.5) and test group hazard rate for drop-out (0.5, 1.36 or 0.18)

As shown in Figure C.1 and Figure C.2, the proposed Bayesian hierarchical model with
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Appendix C. Additional results from the simulations in Section 3.6

or without informative priors provided the least biased estimates across the evaluated

scenarios. As seen in Figure C.2, exponential time-to-event analyses using a Poisson

likelihood and a log t̃ij· offset primarily performed worse than the proposed Bayesian

hierarchical model in the presence of differential drop-out. Binomial-distribution-based

methods with the exception of the CMH odds ratio with continuity correction and the

beta-binomial model performed relatively well in the absence of differential drop-out

under the null hypothesis of no treatment effect as seen in Figure C.1, while as seen in

Figure C.2 in the presence of a differential drop-out or a treatment effect all methods

that estimate an odds ratio were clearly biased. This considerable bias of methods that

estimate an odds ratio in the presence of a treatment effect reflects the inconsistent

effect measures — i.e. that were are attempting to estimate a hazard ratio by an odds

ratio. The CMH odds ratio with continuity correction and the beta-binomial model

resulted in biased estimates even in the absence of a treatment effect and in the absence
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Figure C.3.: Median difference between estimate and true value of log-hazard ratio in the absence of a
treatment effect with 99% distribution-free CIs based on 10,000 simulations under different
scenarios: control and test group hazard rate for events (0.05 or 0.5; no treatment effect),
control group hazard rate for drop-out (0.5) and test group hazard rate for drop-out (0.5,
1.36 or 0.18)
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Figure C.4.: Median difference between estimate and true value of log-hazard ratio in the presence
of a treatment effect with 99% distribution-free CIs based on 10,000 simulations under
different scenarios: control group hazard rate for events (0.05 or 0.5), test group hazard
rate for events (0.1 or 0.64), control group hazard rate for drop-out (0.5) and test group
hazard rate for drop-out (0.5, 1.36 or 0.18)

of differential drop-out.

To assess median-unbiasedness, Figure C.3 and Figure C.4 show the median difference

between the estimated and true log-hazard ratio with distribution-free 99% confidence

limits (Hahn and Meeker, 1991, pp. 82–89). In general, the patterns seen for bias were

also seen for the median difference between estimate and true value of log-hazard ratio.

In terms of RMSE, the proposed Bayesian hierarchical model with robust historical

priors performed consistently well across the considered scenarios as seen in Figure C.5

and Figure C.6. As expected — given that the historical data was generated under the

same model and parameters as the data for the main meta-analysis — giving greater

weight to the historical prior reduced the RMSE. The proposed Bayesian hierarchical

model with vague priors, as well as exponential time-to-event analyses using a Poisson

likelihood and a log t̃ij· offset performed relatively consistently, but in some scenarios
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Root mean squared error
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Figure C.5.: Root mean squared error in the estimated log-hazard ratio in the absence of a treatment
effect with 99% CIs based on 10,000 simulations under different scenarios: control and
test group hazard rate for events (0.05 or 0.5; no treatment effect), control group hazard
rate for drop-out (0.5) and test group hazard rate for drop-out (0.5, 1.36 or 0.18)

other methods had a lower RMSE. In particular, exact and Firth’s penalized likelihood

logistic regression performed well under the null hypothesis as seen in Figure C.5,

while in the presence of a treatment effect this was not the case (Figure C.6). This

again partly reflects the inconsistent effect measure — i.e. that we are attempting to

estimate a hazard ratio by an odds ratio. For the lower event hazard rate scenario

(0.05 events/patient-year) and in the absence of differential drop-out, the Peto on-step

method performed as well or better than the the proposed Bayesian hierarchical model

with vague priors and exponential time-to-event methods, but less well for the higher

event hazard rate scenario (0.5 events/patient-year) or in the presence of differential

drop-out. The wide CIs for the proposed Bayesian hierarchical model with vague priors

in the second scenario of Figure C.5 are due to an extreme estimate in a single simulation

with complete separation.

The coverage of 95% confidence or credible intervals shown in Figure C.7 is in line with
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Figure C.6.: Root mean squared error in the estimated log-hazard ratio in the presence of a treatment
effect with 99% CIs based on 10,000 simulations under different scenarios: control group
hazard rate for events (0.05 or 0.5), test group hazard rate for events (0.1 or 0.64), control
group hazard rate for drop-out (0.5) and test group hazard rate for drop-out (0.5, 1.36 or
0.18)

the results for the type 1 error rate. In line with the findings regarding bias, methods that

estimate an odds ratio achieve poor coverage of 95% CIs in the presence of a treatment

effect as seen in Figure C.8. Coverage probabilities for the beta-binomial model of Kuss

(2015) are hard to see in some panels of Figures C.7 and C.8, because they are close

to 100% due to very wide 95% CIs provided by this method. The proposed Bayesian

hierarchical model with vague priors provided coverage at approximately the nominal

level in all scenarios, while coverage was generally slightly above the nominal level with

informative priors. Exponential time-to-event models using a Poisson likelihood and a

log estimated follow-up to first event or censoring offset had below nominal coverage

in the scenarios with a high hazard rate for events and a higher drop-out hazard rate

on test treatment than in the control groups, while a log planned trial duration offset

resulted in below nominal coverage in most scenarios with differential censoring.
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95% CI coverage
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Figure C.7.: Coverage of 95% confidence or credible intervals for the log-hazard ratio in the absence
of a treatment effect with 99% Clopper-Pearson CIs based on 10,000 simulations under
different scenarios: control and test group hazard rate for events (0.05 or 0.5; no treatment
effect), control group hazard rate for drop-out (0.5) and test group hazard rate for drop-out
(0.5, 1.36 or 0.18)
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Figure C.8.: Coverage of 95% confidence or credible intervals for the log-hazard ratio in the presence
of a treatment effect with 99% Clopper-Pearson CIs based on 10,000 simulations under
different scenarios: control group hazard rate for events (0.05 or 0.5), test group hazard
rate for events (0.1 or 0.64), control group hazard rate for drop-out (0.5) and test group
hazard rate for drop-out (0.5, 1.36 or 0.18)
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Appendix D.

Likelihood evaluation for Weibull

distributed event and drop-out times

The numerical evaluation of the likelihood (3.2.4) with the probabilities pij1, pij2, pij3,

pij4 and pij5 given in Theorem 4.1 when either event times, drop-out times or both

follow a Weibull distribution requires numerical integration.

For the numerical evaluation of the definite integral in (4.1.1), one approach is to use

the composite Simpson’s rule that is based on Lagrange polynomial interpolation

∫ τ

0

f(x) dx ≈ τ

3R

f(x0) + f(xR) + 4

R/2∑
r=1

f(x2r−1) + 2

R/2−1∑
r=1

f(x2r)

 , (D.1)

where R ≥ 4 is an even integer and the x0, . . . , xR denote evenly spaced points on [0, τ ]

with x0 = 0 and xR = τ (Burden and Faires, 2011, p. 206). To use this approach it is

necessary to remove the singularity in the integrand that occurs at x = 0 for values of

the parameter γij that lie in (0, 1). This can be achieved by integration by substitution

using a change of variables to u = xγij

λ
γij
ij

∫ τi

0

γijx
γij−1 exp (−(xλij)

γij − (xµij)
νij) dx

=λ
γij
ij

∫ τ
γij
i

0

exp
(
−uλγijij − uνij/γijµ

νij
ij

)
du.

– 148 –



For the integral (D.1), it is challenging to derive error bounds for fixed values of R.

Instead, one can use an adaptive Simpson’s rule (Burden and Faires, 2011, p. 220–226).

However, the use of this approach in Stan is problematic, because choice of R that

depends on the parameter values causes issues with the automatic differentiation of

the log-likelihood that Stan performs. An ad-hoc alternative may be to fit the model

for different choices of R (e.g. 5 MCMC chains with R = 25 and 5 MCMC chains with

R = 50), in which case the Rhat statistic across all chains can be used to diagnose

whether the MCMC samples from all chains come from the same distribution (Sebastian

Weber, personal communication, November 3, 2016).

Alternatively, we can represent the integral as the solution to an ordinary differential

equation (ODE) and use the ODE solver provided in Stan to numerically evaluate the

integral. For using the ODE solver, we would re-express the integral

∫ τi

0

e−(xλij)
γij−(xµij)

ωij
xγij−1 dx (D.2)

as the ODE

f ′(x) = exp [−(xλij)
γij − (xµij)

ωij + (γij − 1) log(x)]

with the boundary condition f(0) = 0. Then the solution to the integral (D.2) is the

solution of the ODE evaluated at τi (Burden and Faires, 2011, p. 304).
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Appendix E.

Event driven trials with uniformly

distributed recruitment times

Assuming that the trial entry times of patients are uniformly distributed across the

recruitment period [0, ρi] with pdf pi(r; ρi) := 1/ρi, where ρi < τi, we obtain

pij1 = qj

∫ ρi

0

∫ ∞
r

∫ ∞
r

λijµij
ρi

e−µij(c−r)e−λij(x−r)1(x ≤ c)1(x ≤ τi) dx dc dr

= qj

(∫ ρi

0

∫ τi

r

µij
(
ecλij − eλijr

)
eµijr−c(λij+µij)

ρi
dc︸ ︷︷ ︸

=
µij

(
e
(λij+µij)(r−τi)−1

)
ρi(λij+µij)

− e
µij(r−τi)−1

ρi

dr

+

∫ ρi

0

∫ ∞
τi

µij
(
eλijτi − eλijr

)
e−cµij−λijτi+µijr

ρi
dc︸ ︷︷ ︸

= e
µij(r−τi)−e(λij+µij)(r−τi)

ρi

dr

)

=
qjλij

ρi(λij + µij)

∫ ρi

0

1− e(λij+µij)(r−τi) dr

=
qjλij

λij + µij

(
1−

(
eρi(λij+µij) − 1

)
e−τi(λij+µij)

ρi(λij + µij)

)

for the probability that a patient experiences a fatal event of interest,
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pij2 = (1− qj)
∫ ρi

0

∫ ∞
r

∫ ∞
r

λijµij
ρi

e−µij(c−r)e−λij(x−r)1(c > τ)1(x ≤ τ) dx dc dr

=
(1− qj)
ρi

∫ ρi

0

(eµijr − e(λij+µij)r−λijτi)

∫ ∞
τi

µije
−cµij dc dr

=
(1− qj)
ρi

∫ ρi

0

eµij(r−τi) − e(λij+µij)(r−τi) dr

=
(1− qj)
ρi

(
(eµijρi − 1) e−µijτi

µij
−
(
eρi(λij+µij) − 1

)
e−τi−(λij+µij)

λij + µij

)

for the probability that a patient experiences a non-fatal event and completes the trial,

pij3 =(1− qj)
∫ ρi

0

∫ ∞
r

∫ ∞
r

λijµij
ρi

e−µij(c−r)e−λij(x−r)1(c ≤ τi)1(x ≤ c) dx dc dr

=
µij(1− qj)

ρi

∫ ρi

0

∫ τi

r

eµij(r−c) − e(λij+µij)(r−c) dc dr

=
µij(1− qj)

ρi

∫ ρi

0

1− eµij(r−τi)

µij
− 1− e(λij+µij)(r−τi)

λij + µij
dr

=µij(1− qj)

(
λij

µij(λij + µij)
− (eµijρi − 1) e−µijτi

ρiµ2
ij

+

(
eρi(λij+µij) − 1

)
e−τi(λij+µij)

ρi(λij + µij)2

)

for the probability that a patient experiences a non-fatal event and then drops out

before completing the trial,

pij4 =

∫ ρi

0

∫ ∞
r

∫ ∞
r

λijµij
ρi

e−µij(c−r)e−λij(x−r)1(c > τi)1(x > τi) dx dc dr

=

∫ ρi

0

e−λijτi+r(λij+µij)

ρi

∫ ∞
τi

µije
−cµij dc dr

=
e−(λij+µij)τi

ρi

∫ ρi

0

e(λij+µij)r dr

=
e−(λij+µij)τi

(
eρi(λij+µij) − 1

)
ρi(λij + µij)
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Appendix E. Event driven trials with uniformly distributed recruitment times

for the probability that a patient completes the study without an event and

pij5 =

∫ ρi

0

∫ ∞
r

∫ ∞
r

λijµij
ρi

e−µij(c−r)e−λij(x−r)1(c ≤ τi)1(c < x) dx dc dr

=
µij
ρi

∫ ρi

0

er(λij+µij)
∫ τi

r

e−c(λij+µij) dc dr

=
µij

ρi(λij + µij)

∫ ρi

0

1− e−τi(λij+µij)er(λij+µij) dr

=
µij

(λij + µij)

(
1−

(
eρi(λij+µij) − 1

)
e−τi(λij+µij)

ρi(λij + µij)

)

for the probability that a patient drops out before trial completion.
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