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Abstract

Consider the continuum of points along the edges of a network, i.e., a connected, undirected
graph with positive edge weights. We measure the distance between these points in terms of the
network distance, i.e., the weighted shortest path distance. The continuous diameter of a network
is the largest network distance between any two points on the network.

We study two intertwined problems within this metric space: The first problem is to minimize
the continuous diameter of a geometric network by introducing one or more shortcuts that
may connect any two points along the network. The second problem is to develop efficient data
structures that support queries for the farthest points from a query point along a network.

We study the first problem for geometric cycles and trees.

For geometric cycles, a single shortcut never decreases the continuous diameter and two
shortcuts always suffice to reduce the continuous diameter—except when the cycle consists of
two degenerate line segments. We characterize optimal pairs of shortcuts for both convex and
non-convex cycles. This allows us to produce an optimal pair of shortcuts for a geometric cycle
with straight-line edges that has n vertices and k reflex vertices in O(n + k%n) time.

For geometric trees, we minimize the continuous diameter when adding a single shortcut.
Unlike in the discrete version of this network augmentation problem, the continuous diameter
may increase when we add a shortcut to a tree. We characterize for which trees a single shortcut
is sufficient to reduce the continuous diameter of a tree. We develop an algorithm that produces
an optimal shortcut for a geometric tree with n vertices in O(nlogn) time.

For the second problem, we develop a sequence of data structures supporting farthest-point
queries on increasingly complex types of networks. This sequence culminates in a data structure
for series-parallel networks. A series-parallel network is a network where each bi-connected
component can be generated from a single edge using series operations that introduce a new
vertex along an existing edge and parallel operations that create a copy of an existing edge. These
results are part of a larger strategy for treelike networks where we divide a network into its
bi-connected components and combine data structures for each bi-connected component that are
drawn from a catalogue of data structures for networks that we can handle efficiently.

1ii






Zusammenfassung

Wir betrachten das Kontinuum der Punkte entlang der Kanten eines Netzwerkes, d.h., eines
zusammenhéngenden, ungerichteten Graphen mit positiven Kantengewichten. Die Netzwerkdi-
stanz zweier Punkte entlang eines Netzwerkes bezeichnet die Lénge eines kiirzesten gewichteten
Pfades entlang des Netzwerkes. Der kontinuierliche Durchmesser eines Netzwerkes ist die grofite
Netzwerkdistanz von zwei Punkten auf dem Netzwerk.

Wir studieren zwei miteinander verflochtene Problemstellungen in diesem metrischen Raum:
Das erste Problem besteht darin, die grofite Netzwerkdistanz in einem geometrischen Netzwerk
durch das Hinzufiigen von Abkiirzungen zu minimieren. Das zweite Problem besteht darin,
effiziente Datenstrukturen zu entwickeln, mithilfe derer fir einen Anfragepunkt die jeweils
entferntesten Punkte entlang des Netzwerkes ermittelt werden konnen.

Wir studieren das erste Problem fiir in die Ebene eingebettete Polygone und Baume.

Fiir jedes Polygon ist eine einzelne Abkiirzung niemals ausreichend, um den kontinuierlichen
Durchmesser zu verringern, wohingegen eine Reduktion des kontinuierlichen Durchmessers mit
zwei Abkiirzungen stets moglich ist, es sei denn, das Polygon besteht aus genau zwei kongruenten
Strecken. Wir charakterisieren optimale Paare von Abkiirzungen fiir konvexe wie nicht-konvexe
Polygone. Hieraus leiten wir ein Verfahren her, welches ein optimales Paar von Abkiirzungen fiir
ein Polygon mit n Ecken und k Innenecken in O(n + k?n) Zeit bestimmt.

Fiir Bdume minimieren wir den kontinuierlichen Durchmesser mit einer einzelnen Abkiirzung.
Anders als bei der diskreten Version dieses Problems, kann der kontinuierliche Durchmesser
bei Hinzufiigen einer Abkiirzung zu einem Baum ansteigen. Wir charakterisieren diejenigen
Béume, fiir die eine Abkiirzung existiert, die den kontinuierlichen Durchmesser verringert. Ferner
ermitteln wir eine optimale Abkiirzung fiir einen Baum mit n Ecken in O(nlog n) Zeit.

In Bezug auf das zweite Problem entwickeln wir eine Folge von Datenstrukturen fiir Anfragen
zum Berichten der entferntesten Punkte in zunehmend komplexen Klassen von Netzwerken. Das
Hauptresultat ist eine Datenstruktur fiir Series-Parallel-Netzwerke. Ein Series-Parallel-Netzwerk
ist ein Netzwerk, dessen Zweifachzusammenhangkomponenten jeweils aus einer einzelnen
initialen Kante durch eine Folge von Series-Operationen, welche einen Knoten auf einer Kan-
te einfiigen und Parallel-Operationen, welche eine bestehende Kante verdoppeln, hervorge-
hen. Diese Ergebnisse sind Bestandteil einer iibergreifenden Strategie zur Unterstiitzung von
Entfernteste-Punkte-Anfragen in baumartigen Netzwerken, bei der ein Netzwerk zunichst in
seine Zweifachzusammenhangkomponenten zerlegt wird, um dann Datenstrukturen fiir die
einzelnen Zweifachzusammenhangkomponenten, welche aus einem Katalog bereits bekannter
Datenstrukturen fiir effizient handhabbare Netzwerktypen bezogen werden, zu kombinieren.
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1 Introduction

This thesis proposes a new setting for the study of certain graph problems by shifting from the
discrete perspective, in terms of finitely many vertices, to a continuous perspective, in terms
of an infinite continuum of points along the edges. We study two intertwined problems in this
new setting: the search for shortcuts in a network that reduce the largest travel time along the
network and a means to quickly report how far one can travel from a given location and where
these farthest locations would be. By studying these problems in the continuous setting, we
shine a new light on their counterparts from the discrete world, the minimum-diameter graph
augmentation problem and the farthest-vertex network Voronoi diagram, respectively.

Shortcuts for Networks Imagine a network of subways or highways where we measure the
distance between locations in terms of the travel time. An urban engineer might want to improve
the worst-case travel time by introducing shortcuts. This work advises where these shortcuts
should be built. For example, we show where to find the best shortcut for a subway network
without loops and we show that a single shortcut never improves the worst-case travel time of a
ring road. Our continuous perspective on network augmentation reflects that a shortcut road
could connect any two locations along a highway.

Farthest-Point Queries Consider the task to find the ideal location for a new hospital within
the network formed by the streets of a city. One criterion for this optimization would be the
emergency unit response time, i.e., the worst-case time an emergency crew needs to drive from
the hospital to the site of an accident. However, a location might be optimal in terms of emergency
unit response time, but unacceptable with respect to another criterion such as construction costs.
We provide a data structure that would allow a decision maker to quickly compare various
locations in terms of emergency unit response time.

The selection of these two particular problems as the subject matter of this thesis is motivated
mainly through two separate works by Aronov et al. [5] and by Grofle et al. [29].

Aronov et al. [5] seek to connect a point p in the plane
to a polygonal cycle C using a straight-line segment pq,
called a feed-link, from p to an anchor point g on C,
as illustrated in Figure 1.1. The anchor point may be
a vertex or a point along an edge. Aronov et al. [5]
minimize the detour, i.e., the largest ratio of the largest
Figure 1.1: A feed-link that connects a geodesic distance between any two points along C U pq

point to a polygon. and their Euclidean distance. Aronov et al. [5] motivate
this type of feed-link problem by relating it to the task




1 Introduction

of connecting a new hospital to an existing system of roads. The choice of the detour as a target
function reflects that the distances along the roads should approximate the distance “as the crow
flies” as best as possible. Another target function that came to mind was the emergency unit
response time, i.e., the largest travel time from the hospital to any other location. As it turns
out, we minimize the emergency unit response time when connecting the hospital to a location
where the farthest travel time within the existing network is minimal. As stated above, an ideal
connection in terms of the emergency unit response time may be infeasible with respect to other
aspects. Therefore, we became interested in supporting queries for farthest distances.

Grofle et al. [29] seek a shortcut for a polygonal path
in the plane that connects two vertices of the path and »
minimizes the largest distance between any two vertices
in the resulting network, as illustrated in Figure 1.2.
Having studied networks in a continuous setting, this
naturally generalizes to adding a shortcut to a polygonal
path that connects any two points along the path and
that minimizes the largest distance between any two
points along the resulting network. After solving this
problem for paths, we continue with cycles and trees.

Figure 1.2: A shortcut for a path.

1.1 Preliminaries and Problem Definition

A network is a connected undirected graph G = (V, E) with positive edge weights. We define
points along the edges of a network as follows. Let uv € E be an edge in G with weight w,,,,
that connects the vertices u,v € V. For every value A € [0, 1], we define a point p on edge uv
that subdivides uv into two sub-edges up and pv of weights w,, = Awy, and wy, = (1 = Hwyy,
respectively. We write p € uv to indicate that p is a point along the edge uv, for some A € [0, 1],
and we write p € G to denote that p is a point along some edge of the network G.

4 q 3
0o ®
1 1 1
1 4 1 ol
3 5 3 3
V2 V2
®
u 3 T1 v — 1 ¢
(a) A network G. (b) A point p along edge uv. (c) A shortest path from p to g.

Figure 1.3: A geometric network G and a point p along edge uv of G that has relative position
A =3/4 to u and v. We mark points along edges with discs sourrounded by a small
gap to disinguish them from vertices marked by discs without any gap. A diametral
pair of points p, g € G with network distance dg(p, q) = 11, i.e., diam(G) = 11.




1.1 Preliminaries and Problem Definition

A geometric network is a network that is embedded into the Euclidean plane and whose edges
are rectifiable curves that are weighted with their Euclidean length, as illustrated in Figure 1.3.
There is no ambiguity if two edges cross: there are two points along the network that correspond
to the crossing in the plane, since points along edges are specified by their relative position to
the endpoints of their containing edge, expressed by A, and not by coordinates in the plane.

The network distance measures the distance between any two points p, g € G—where p and g
may be vertices or points along edges—in terms of the weighted length of a shortest path from p
to q in G. The continuous diameter of G is the largest network distance between any two points
on G, and it is denoted by diam(G), i.e., diam(G) = max, qec dG(p, q). In contrast, for a network
G with vertex set V, the discrete diameter is the largest distance between any two vertices, i.e.,
maxy, »ev dg(u, v). We only consider the continuous diameter in this work. A pair p,q € G
is diametral when its distance attains the continuous diameter, i.e., diam(G) = dg(p,q), and a
diametral path in G is a shortest weighted path in G that connects a diametral pair of G.

The point c along a geometric tree T that minimizes the distance to the farthest leaf is called
the absolute center of T. The absolute center is the midpoint of every diametral path of T. The
intersection of all diametral paths of T is called the backbone of T, denoted by B. The backbone
B of T is either a path or a single vertex and B always contains the absolute center.

Let N be a network and let uv be an edge of N. Any pair of points s, t € uv defines a sub-edge st
of uv of length wg; = dy.(s, t) that consists of the points along uv between s and t. A sub-network
S of N is a network whose vertices are points along N and whose edges are sub-edges of N.
A cut vertex in a network N is a vertex whose removal disconnects N. A bi-connected component
of N is a maximal sub-network of N that does not contain any cut vertices.

Let P be a path in a network N whose endpoints may be vertices or points along the edges
of N. The length of P, denoted by |P|, is the sum of the lengths of all edges and sub-edges of P.
The length of a cycle C, denoted by |C|, is the sum of the lengths of the edges of C. For a point p
along a cycle C, the antipodal of p is the farthest point p from p along C, i.e., dc(p, p) = |C|/2.

1.1.1 Minimizing the Diameter when Augmenting a Network with Shortcuts

q Let G be a geometric network. For any two points p and
e q along G that may be vertices or points along edges,
\ the straight-line segment pq is called a shortcut for G.
We augment a geometric network G with a shortcut pq,

Ipdl as illustrated in Figure 1.4. If they do not exist already, we
\ introduce new vertices at p and at g, thereby subdividing

the edges containing p and g. Then, we add the straight-
line segment pq as a new edge to G where the edge weight
p of pq is its Euclidean length |pq|. We do not introduce any
Figure 1.4: Augmenting a geometric Vvertices at crossings between pg and any other edges of
network with a shorcut.  G; we can only enter and leave a shortcut at its endpoints.

The resulting network is denoted by G + pq.

We aim to find a shortcut pq for G that minimizes the continuous diameter of the augmented
network G + pq, i.e., we seek points p, g € G such that diam(G + pq) = min, sec diam(G + rs).
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Q
L@A N q
=1\

Figure 1.6: A geometric tree with a
Figure 1.5: Four cycles with pairs of shortcuts that min- shortcut that minimizes
imize the continuous diamter. the continuous diameter.

We study this problem for geometric trees and geometric cycles, as illustrated in Figures 1.5
and 1.6. A single shortcut cannot reduce the continuous diameter of a geometric cycle. Therefore,
we seek a pair of shortcuts pq, rs for a cycle C that minimizes the continuous diameter of the
augmented cycle C + pq + rs, i.e., diam(C + pq + rs) = ming p ¢ gec diam(C + ab + cd). The
endpoints of both shortcuts lie on the cycle C; we do not connect one shortcut to the other.

1.1.2 Supporting Farthest-Point Queries

We consider a network G. The farthest distance from a point g € G is the largest network distance
between g and any other point along G. We denote the farthest distance from g by ds(q), i.e.,
dc(q) = maxpeg dG(p,q). A farthest point from g is a point along G that attains the farthest
distance from g, i.e., the set of farthest points from q is Fg(q) = {p € G|ds(q) = ds(p.q)}.
As illustrated in Figure 1.7, these definitions of farthest distances and farthest points take all
points along the network into account, i.e., vertices as well as points along edges.

[ ] e —
e ® [ ] "q_
o o o o
g e
o O o o
e e e e

L] [ ] e —

(a) A heat map of the farthest distance. (b) A farthest-point query with its answer.

Figure 1.7: Farthest-distance queries and farthest-point queries in a geometric network G.

Our goal is to develop a data structure for G that supports efficient queries for the farthest
distance d(q) and the set of farthest points Fg(g) from any query point g € G. For a network with
n vertices we aim for O(log n)-time farthest-distance queries and O(k + log n)-time farthest-point
queries, where k = |Fg(q)| is the number of farthest points from q. We specify the query points
as well as the reported farthest points by stating their containing edge and the relative position
to the endpoints of that edge; this problem is independent of any embedding of G.
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1.1.3 Series-Parallel Networks

In this work, we develop a data structure for farthest-distance queries and farthest-point queries
on series-parallel networks. There are various conflicting definitions of two-terminal series-
parallel networks and series-parallel networks. We rely on the definitions from the Information
System on Graph Classes and their Inclusions [50, 51]. Please note that the two-terminal and
series-parallel networks in this work are undirected.

The term series-parallel stems from the two opera-

= tions on the edges of a multigraph that are depicted in
o Figure 1.8. The series operation splits an existing edge uv

&% 93:9 into two new edges ux and xv where x is a new vertex.
%Qf’ /{v 5 The parallel operation creates a copy of an existing edge.

A graph G is two-terminal series-parallel if it can be gen-
erated from a single edge that connects two vertices u
>-u\9'c/zcj< éb-t<>z-}< and v using a sequence of series and parallel operations.
We call the vertices u and v the terminals of G and we
Figure 1.8: The operations that create say that G is two-terminal series-parallel with respect
series-parallel networks. to u and v. The number A of parallel operations that are

required to generate G is called the parallelism of G.

When generating a two-terminal series-parallel graph, the intermediate networks may contain
multiple edges. We assume, without loss of generality, that the final network is simple even
if intermediate networks have multiple edges. We ensure this by applying additional series
operations on edges that occur multiple times. A graph G is series-parallel when every bi-
connected component B of G is two-terminal series-parallel with respect to some pair of vertices
in B. A network is two-terminal series-parallel when its underlying graph is two-terminal
series-parallel, and a network is series-parallel when its underlying graph is series-parallel.
Figure 1.9 illustrates two-terminal series-parallel networks, networks that are series-parallel but
not two-terminal series-parallel, and networks that are not series-parallel.

A creation history of a two-terminal series-parallel network N consists of a sequence of series
operations and parallel operations that generate N. For a network with n vertices, we can check in
O(n) time whether N is two-terminal series-parallel by backtracking a creation history of N, i.e.,
reverting series operations and parallel operations in any order until no further operations can be
reverted [20]. The network N is two-terminal series-parallel if and only if this process ends with
a single edge. We can also determine in O(n) time if a network N with n vertices is series-parallel
by decomposing N into its bi-connected components [38] and then applying the recognition
algorithm for two-terminal series-parallel networks on each bi-connected component.

There are several equivalent characterizations of series-parallel graphs: The class of series-
parallel graphs, as defined above [51], is equivalent to the class of K4-minor-free graphs [20], the
class of partial 2-trees [59], and the class of graphs with tree-width two [11]. Every series-parallel
network is planar [20] and every outer-planar network is series-parallel [20, 59]. Two-terminal
series-parallel networks admit linear time solutions for several problems that are NP-hard on
general networks [10, 55]. Since series-parallel networks have treewidth two [11], this applies to
all problems with efficient algorithms on networks with bounded treewidth [4].
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a d
u e
C
b v

(a) A two-terminal network N. (b) Two series-parallel networks that are not two-terminal.
u u u
\ (AN C
v v v
1. Start with a single edge. 2. Series Operation. 3. Parallel Operations.
a d a d a d
u u u e
C C C
b v b v b v
4. Series Operations. 5. Parallel Operation. 6. Series Operation.

(c) A creation history of the two-terminal series-parallel network N from Subfigure (a).

N\ j

(d) The complete graph with four vertices Kj. (e) A network with a K4-minor.

Figure 1.9: The network N in Subfigure (a) is two-terminal series-parallel with respect to the
vertices u and v, as certified by the creation history of N in Subfigure (c). On the
other hand, N is not two-terminal series-parallel with respect to, e.g., the vertices
a and b. The networks in Subfigure (b) are series-parallel, since their bi-connected
components are two-terminal series-parallel, but they are not two-terminal series-
parallel, because reverting all series-operations and all parallel operations does not
yield a single edge. The complete graph with four vertices K4 in Subfigure (d) is a
forbidden minor for series-parallel networks. For instance, the network in Subfigure (e)
cannot be series-parallel, since it contains a forbidden Ky-minor that is marked in red.




1.2 Related Work

1.2 Related Work

We summarize the related literature on minimum-diameter network augmentation in various
settings, Voronoi diagrams on networks, and center problems from location analysis.

1.2.1 Minimum-Diameter Network Augmentation

The problem of augmenting a network with shortcuts in order to reduce its farthest distance
has been studied in various settings. Each setting differs in terms of the network at hand, the
distances that are taken into account, the allowed endpoints of the shortcuts and their length. For
instance, we distinguish whether the network is embedded into the plane (geometric) or whether
it does not have a fixed embedding (abstract) and whether we consider distances between any
points along the network (continuous) or only between vertices (discrete).

In the abstract and discrete setting, the goal is to minimize the discrete diameter of an abstract
network with positive weights for the edges and non-edges by inserting non-edges as shortcuts.
If the edges and non-edges have unit weight, then it is NP-hard to decide whether the diameter
can be reduced below D > 2 by adding at most k shortcuts [19, 43, 52]. This problem remains
NP-hard when the number of shortcuts is variable, even for trees [19]. On the other hand, Oh and
Ahn [46] determine an optimal vertex-to-vertex shortcut that minimizes the discrete diameter of
an abstract n-vertex tree with positive edge weights in O(n? log® n) time.

Minimum-diameter augmentation has also been studied as a bicriteria optimization in which
both the diameter and the number (or cost) of the additional edges are minimized. For an overview
on bicriteria approximation algorithms refer, for instance, to Frati et al. [24].

Grofie et al. [29] introduce the geometric and discrete setting in which the problem is to minimize
the discrete diameter of a geometric network by connecting vertices with line segments. Grofle
et al. [29] determine an optimal shortcut for a polygonal path with n vertices in O(nlog® n) time
using parametric search. Wang [60] recently improved this result to O(n) time.

The stretch factor, i.e., the largest ratio of the network distance between any two vertices and
their Euclidean distance, has also been studied as a target function [23, 44] in this setting.

In the geometric and continuous setting [15], the task is to minimize the continuous diameter
of a geometric network by inserting line segments that may connect any two points along the
edges. We propose this setting as a natural generalization of the geometric discrete setting.

In the model studied in this work, a crossing of a shortcut with an edge or another shortcut
is not a vertex: a path may only enter edges at their endpoints. In the planar model [14, 61],
every crossing is a vertex of the resulting network, which leads to a different graph structure
and, thus, continuous diameter. In the planar model, Yang [61] characterizes optimal shortcuts
for a polygonal path. Caceres et al. [14] determine in polynomial time whether the continuous
diameter of a plane geometric network can be reduced with a single shortcut.

1.2.2 Network Voronoi Diagrams

Let G be a network and S a set of sites on G. A network Voronoi diagram subdivides G depending
on which site in S is closest [33] or farthest [21, 48]. Okabe et al. [47] distinguish network Voronoi
node diagrams, network Voronoi link diagrams, and network Voronoi area diagrams.




1 Introduction

Let G = (V,E) be a network and let S C V be a set of vertices of G. The network Voronoi node
diagram [47] or graph Voronoi diagram [21] partitions the vertices of G depending on which
vertex among S is closest in terms of the network distance on G. Erwig [21] generalizes node
diagrams to inward and outward graph Voronoi diagrams on directed networks.
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(a) A nearest-site network Voronoi link diagram.  (b) A farthest-site network Voronoi link diagram.

Figure 1.10: Two variants of the network Voronoi link diagram that subdivide a network depend-
ing on which site among the vertices sy, s, . . ., ¢ is (a) closest or (b) farthest.

Consider a network G and a finite set S of points on G. The network Voronoi link diagram [33,
47] of S subdivides G into regions with common closest points in S with respect to the network
distance, as illustrated in Figure 1.10. Variations of network Voronoi link diagrams include sites
with additive or multiplicative weights, sites that are paths, and k-th nearest neighbour and
farthest-point network Voronoi link diagrams [48]. Network Voronoi link diagrams have also
been considered on directed networks [48], with coloured sites [39], and with moving sites [22].

Consider a plane network and a set of sites in the plane. Outside the network, we can move with
unit speed; along the network, we can move faster depending on the respective edge weights. The
network Voronoi area diagram [47] or city Voronoi diagram [3] subdivides the plane into regions
depending on which site is closest with respect to this travel time. The research on network
Voronoi area diagrams covers networks in the Euclidean plane [1, 8, 47], the L,-plane [3], general
metric planes [7], and farthest-point network Voronoi area diagrams [6].

The network Voronoi diagrams in the literature are defined with respect to a finite set of
sites [47]. In contrast, we consider an implicit farthest-point network Voronoi diagram whose
sites consist of the infinite continuum of all points on a network. In this sense, our research on
farthest-point queries generalizes farthest-site network Voronoi link diagrams [12, 13].

1.2.3 Center Problems in Networks

Center problems revolve the task to locate a new position for some facility as a central position
in a network, i.e., a position where the farthest distance is minimal. This area of research was
sparked by the seminal work of Hakimi [32] on absolute centers.

We consider a graph G = (V, E) with vertex weights w,,, for v € V. As illustrated in Figure 1.11,
an absolute center [32] of G is a point ¢ along the edges of G that minimizes the largest weighted
network distance from c to any of the vertices of the network G, i.e.,

max wy,dg(c, v) = min max w,dg(p, v) .
veV eG veV




1.3 Structure and Results

® ® When the vertex weights are non-negative,
we can interpret the absolute center ¢ as an
ideal location for a new facility that serves
o—tb c clients that are situated at the vertices with
non-zero weight. The vertex weights indicate
the relative importance of the clients to a loca-
tion analyst. Halpern and Maimon [34], Kin-
caid [41], Shi [53], Tansel [56], and Tansel,
Francis, and Lowe [57, 58] survey results on
the absolute center problem and its variants.
ReVelle and Fiselt [49] summarize applications
for center problems on networks.

A continuous absolute center is a point on a network with minimum farthest network distance.
Ben-Moshe et al. [9] locate a continuous absolute center of a cactus with n vertices in O(n) time.
A network may have infinitely many continuous absolute centers, e.g., all points along a cycle
are continuous absolute centers. Hansen, Labbé, and Nicolas [36] determine a representation of
all continuous absolute centers on a network with n vertices and m edges in O(m? log n) time.

In the absolute k-center problem [40], we seek to place k centers cq, ¢y, ..., ¢ on a network
G = (V, E) minimizing the largest distance from any vertex v € V to its closest center, i.e.,

Figure 1.11: The absolute center ¢ of a geometric
network with unit vertex weights.
The farthest vertices from ¢ are high-
lighted with red circles.

k k
marmindov.c) = min _ maxmindo(v.p) -
In the continuous absolute k-center problem, we seek to place k centers that minimize the farthest
distance from any point on G to the nearest center. Even though the absolute k-center problem
and its continuous version are NP-hard in general [40, 45], some classes of networks, like trees,
cactus networks, and almost trees admit efficient solutions [9, 25, 31, 35, 42, 53, 54].

In the reverse center problem [62] we are given a threshold ¢ > 0 and ask for the smallest
number p such that there is an absolute p-center where each point on the network is within
network distance ¢ of this absolute p-center. Zhang, Yang, and Cai [62] show that the reverse
center problem is NP-hard and provide an approximation algorithm.

1.3 Structure and Results

In Chapter 2, we minimize the continuous diameter when augmenting a geometric cycle C with
shortcuts. We discover that a single shortcut is never sufficient to reduce the continuous diameter,
whereas two shortcuts always suffice, except in a degenerate corner case when C consists of
two congruent line segments of length |C|/2. We characterize optimal pairs of shortcuts, which
inform us how we can reduce the continuous diameter by sliding the endpoints p, g, 7, s of a pair
of shortcuts pq, rs along a cycle C, based on the cycles in C + pg + rs that contain diametral pairs
of the augmented cycle C + pq + rs. This allows us to determine an optimal pair of shortcuts
for a convex polygonal cycle with n vertices in O(n) time and an optimal pair of shortcuts for a
non-convex polygonal cycle with n vertices and k reflex vertices in O(k?n) time.




1 Introduction

In Chapter 3, we minimize the continuous diameter when augmenting a geometric tree T. We
observe that—unlike in the discrete version of this problem—adding a shortcut to a tree might
increase the continuous diameter. We characterize the trees that have a useful shortcut, i.e., a
shortcut that reduces the continuous diameter, as precisely those trees where the intersection of
all diametral paths is neither a straight-line segment nor a point (i.e., a degenerate line segment).
The intersection of all diametral paths, called the backbone B of T, plays a key role when locating
an optimal shortcut. In the discrete setting, Grofie et al. [30] show that there exists an optimal
shortcut for a tree with both endpoints along the backbone. We prove that this result carries over
to the continuous setting and strengthen it: we show that every geometric tree has an optimal
shortcut pg with both endpoints along the backbone such that the absolute center ¢ of T lies on
the path from p to g in T. This yields a restriction of the search space that allows us to find an
optimal shortcut for a geometric tree with n straight-line edges in O(n log n) time. We develop
this algorithm in two steps: First, we develop a set of rules that inform us how to continuously
slide a shortcut along the backbone until we eventually reach an optimal shortcut. Then, we
simulate this conceptual continuous algorithm with a discretization.

The structural results for augmenting trees and cycles with shortcuts hold for geometric
networks whose edges are rectifiable curves, i.e., curves that have a well defined length. We
describe the algorithmic results for geometric networks with straight-line edges; the techniques
that we develop carry over to geometric networks with more general types of edges, e.g., edges
that are algebraic curves of constant degree. Our model of computation is the real RAM.

In Chapter 4, we turn our attention to supporting farthest-distance queries and farthest-point
queries in series-parallel networks. Our approach is to combine data structures for queries in
less complex series-parallel networks in increasingly sophisticated ways to support queries in
more complex series-parallel networks. This means we create data structures for a sequence of
intermediate types of networks that themselves are build from data structures for cycles, trees,
uni-cyclic networks, and cactus networks that I studied in my diploma thesis. Chapter 4 begins
by summarizing our previous results, introducing the intermediate networks, and outlining their
role as the stepping stones towards the data structure for series-parallel networks.

Chapters 2 to 4 are written to be self-contained and independent of each other and, thus,
start by re-introducing the problem at hand. In Chapter 5, we point out some of the surprising
commonalities between the different problems studied in this work, we discuss potential avenues
for improving some of the results, and we outline directions for future research.

A preliminary version of the results regarding farthest-point queries in series-parallel networks
from Chapter 4 has been presented at the 41st International Workshop on Graph-Theoretic
Concepts in Computer Science (WG 2015) [28]. The results for convex cycles from Chapter 2
have been presented at the 5th Scandinavian Symposium and Workshops on Algorithm Theory
(SWAT 2016) [15]. This publication also features an O(n)-time algorithm that minimizes the
continuous diameter when adding a shortcut to a polygonal path with n vertices. The algorithm
for polygonal paths is superseded by the algorithm for geometric trees with straight-line edges
from Chapter 3, since the latter runs in O(n) time for a path. The results from Chapter 3 regarding
shortcuts for trees have been presented at the 15th International Symposium on Algorithms
and Data Structures (WADS 2017) [16]; this contribution was invited to the special issue of
Computational Geometry Theory and Applications for the best papers from WADS 2017.
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2 Cycle Shortcuts

We seek to augment a cycle in the plane with shortcuts in order to minimize its continuous
diameter. As it turns out, a single shortcut cannot reduce the continuous diameter of a cycle, yet
two shortcuts suffice. Figure 2.1 illustrates examples of cycles with two optimal shortcuts.

NN

Y
U TN

Figure 2.1: Examples for geometric cycles with optimal pairs of shortcuts.

We consider a geometric cycle C in the plane.
For any two points p,q € C, let decw(p,q) and
dew(p, q) be their counter-clockwise and clock-
wise distance along C, respectively. As illustrated
in Figure 2.2, the network distance between p
and g in C is d(p, q) = min(deew(p; @), dew (P 9)-
The continuous diameter of C is diam(C) = |C|/2,
where |C| denotes the length of C. A geometric
cycle C is convex, when C is the boundary of a
convex set with non-empty interior. We require
the interior of a convex cycle to be non-empty in
order to exclude the degenerate cycles that consist
of two congruent line segments of length |C|/2.

q dccw (P, Q)

Figure 2.2: A geometric cycle with a shortcut
pq such that d(p, q) = deew(p, )

We present the following structural and algorithmic results on optimal shortcuts for cycles.

1. A single shortcut cannot reduce the continuous diameter of a geometric cycle.

2. For every geometric cycle C, there exists a pair of shortcuts that reduces the continuous
diameter—unless C is a degenerate cycle that consists of two congruent line segments.

3. For every geometric cycle C, there exists an optimal pair of shortcuts pq and rs such that
their endpoints appear in alternating order p, r, g, s along C, as illustrated in Figure 2.1.

4. The largest simple cycles in the augmented cycle C + pq + rs determine its continuous
diameter. There are four candidates for diametral cycles, i.e., cycles containing diametral
pairs: the two simple cycles in C + pq +rs containing both shortcuts (>«, ¥), the larger simple
cycle in C + pq containing pq (), and the larger simple cycle in C + rs containing rs (@).
By balancing these candidate cycles, we obtain our main structural results:

11



2 Cycle Shortcuts

a) Every geometric cycle C has a pair of optimal shortcuts pq, rs where the two simple
cycles with both shortcuts are diametral (~ = ¥ > ©, @), and where each of the larger
simple cycles containing one shortcut (9, @) is either diametral as well, or an endpoint
of the corresponding shortcut lies at a reflex vertex of C.

b) Every convex geometric cycle C has a pair of optimal shortcuts where all four of the
candidate cycles are diametral and in balance (<= ¥ = © = Q).

c) A pair of shortcuts pg and rs, where the two simple cycles with both shortcuts are
diametral (>~ = ¥ > O, @), is optimal for a geometric cycle C when the sum of the
lengths of the shortcuts [pg| + |rs| is minimal among such pairs of shortcuts.

5. Based on these observations, we develop an algorithm that determines an optimal pair of
shortcuts for a convex polygonal cycle with n vertices in O(n) time.

6. We generalize our approach to non-convex cycles and determine an optimal pair of shortcuts
for a geometric cycle C with n vertices and k reflex vertices in O(k?n) time.

The remainder of this chapter is organized as follows. In Section 2.1, we establish the first two
claims about the usefulness for one and two shortcuts for a cycle. In Section 2.2, we compare the
two possible configurations for pairs of shortcuts and establish that the alternating configuration
is better than the consecutive configuration. In Section 2.3, we characterize optimal shortcuts
for convex and non-convex geometric cycles by balancing the diametral cycles. Using this
characterization, we develop a linear-time algorithm that determines an optimal pair of shortcuts
for convex cycles in Section 2.4.1. Building on the ideas of the algorithm for convex cycles, we
conclude this chapter with an algorithm for non-convex cycles in Section 2.4.2.

2.1 Useful Shortcuts for a Geometric Cycle

We begin by showing that one shortcut is never sufficient to reduce the continuous diameter of a
cycle and that two shortcuts always suffice for non-degenerate geometric cycles.

Pc.cw

pcw /\g.‘/

Figure 2.3: The unaffected regions (solid red) of a shortcut pq (dashed red) for a geometric cycle C.
The point X, denotes the farthest points from x along the cycle Cy for x € {p, q} and
y € {cw, ccw}. Any point g along the clockwise path from peey t0 Geew has its farthest
point g on the clockwise path from gy to pew and vice versa. The network distance
between g and g is unaffected when we augment C with the shortcut pq.

12



2.1 Useful Shortcuts for a Geometric Cycle

Lemma 2.1. Augmenting a geometric cycle C with a single shortcut pq has no effect on the contin-
uous diameter, i.e., we observe diam(C) = diam(C + pq) for every pair of points p,q € C.

Proof. Consider a shortcut pq for a geometric cycle C. Let Ce.yw be the cycle consisting of pg and
the counter-clockwise path from p to g along C, as illustrated in Figure 2.3. Let pecw and Geew be
the farthest points from p and from g on C,.y, respectively. Since peew and Geew are antipodal
from p and q in Ceew, we have de(Geews Peew) = 1Pq| and de(Peew, @) = dc (P, Geew)-

Consider a point g along the clockwise path from peew t0 Geew With pecw # g # Geew and let
g € C be the farthest point form g with respect to C. The point g lies on the clockwise path from
Gew 1O pew. We argue that augmenting C with pg does not affect the distance between g and g.

We assume, for the sake of a contradiction, that augmenting C with the shortcut pq reduces
the network distance between g and §. This means that there is a shortest path from g to g in
C + pq that contains pq. Suppose this path reaches g before p. Then, the path from g to p via pq
must be shorter than the path from g to p via C only, i.e., dc1pq(9, p) < dc(g, p). However,

dcipq(9,p) = dc(g.q) + |pql (the path from g to g in C + pq reaches q before p)
> dc(Peews q) + |pq] (9 is on the path from pecw t0 Geew With pecw # 9)
= dc(p, Geew) + P4l (de(Peew 9) = de(p> Geew))
= dc(p, geew) + dc(Geews Pecw) (Ipgl = dc(Gecw: Peew))
> de(p, geew) + dc(@eews 9) - (g is on the path from pecw t0 Geew With g # Geew)
> de(p,g) -

Likewise, we derive a contradiction when we suppose that the shortest path from g to g in C + pq
contains pq and reaches p before q. Therefore, we have

diam(C) = dc(9, 9) = dc+pq(9,9) < diam(C + pq) .

If diam(C) < diam(C + pq), then C + pq had a diametral pair u, v with v ¢ C. This is impossible,
as the farthest point @ from u on C would then be farther from u than v, since [pg| < dc(p,q). O

As we have seen in the proof of Lemma 2.1, the farthest distance from some points on a
geometric cycle C remains unchanged when we augment C with a single shortcut pq. The points
that are unaffected by pq in this sense form the unaffected region of pq. The unaffected region of
pq consists of the counter-clockwise path from Gecw to pecw and the clockwise path from gy to
Pew, as illustrated in Figure 2.3. Conversely, every point on C outside of the unaffected region of
pq is affected by pgq, i.e., uses pq on a shortest path to their farthest point in C + pq.

Consequently, we require at least two shortcuts to decrease the continuous diameter of a cycle.
We call a pair of shortcuts pq and rs with p, g, 7, s € C useful when diam(C) > diam(C + rs + pq),
and we call pq and rs indifferent otherwise, i.e., when diam(C) = diam(C + pq + rs). A pair of
shortcuts pq and rs is useful if and only if their unaffected regions are disjoint.

Consider a degenerate geometric cycle that consists of two congruent line segments of length
|C|/2. No number of shortcuts can decrease the diameter of this degenerate cycle, since the
endpoints of its line segment will always remain at distance diam(C) = |C|/2. We argue that this
is the only type of geometric cycle that does not possess a pair of useful shortcuts.

13



2 Cycle Shortcuts

Theorem 2.2. For every non-degenerate geometric cycle C, there exist three points p,q,s € C such
that pq and qs form a useful pair of shortcuts for C.

Proof. Let C be a geometric cycle. Suppose there exist three distinct points p,q,s € C with
d(p,q) = d(q,s) = |C|/4 such that pqg and gs satisfy |pq| < d(p, q) and |gs| < d(g, s).

Figure 2.4: The unaffected regions of two touching shortcuts pg and gs. There is a small gap
separating these regions from p, g, s, and g, the antipodal of g.

We argue that the shortcuts pq and gs are useful for C. Let § denote the farthest point from ¢
on C. As illustrated in Figure 2.4, the unaffected region of pq is confined to the interior of the
clockwise paths from g to p and from g to s, and the unaffected region of gs is confined to the
interior of the clockwise paths from s to g and from p to q. Therefore, the unaffected regions of
pq and gs are disjoint, i.e., pq and gs are useful shortcuts, i.e., diam(C) > diam(C + pq + gs).

Suppose, on the other hand, that for every three points p, q,s € C with d(p, q) = d(q, s) = |C|/4
at least one of the line segments pq or gs is contained in C, i.e., [pq| = d(p, q) or |gs| = d(q, s). We
prove that C is degenerate by showing that C contains a line segment of length |C|/2.

(a) Rotating from p,q,s to p’, q’, . (b) Rotating from p’, q’,s" to p”’, q"’,s”

Figure 2.5: The impossible case of a non-degenerate cycle that contains at least one of the line
segments sq or gp for every three points p, q,s € C with d(s, q) = d(g,p) = |C|/4.

Let p, g, s € C be any three points with d(p, q) = d(g, s) = |C|/4. Then, C contains pq or gs. We
assume, without loss of generality, that C contains the line segment gs. Otherwise, we swap p
and s. We move p, ¢, and s clockwise along C while maintaining d(p, q) = d(g,s) = |C|/4 until we
arrive at the first positions p’, ¢’, and s’, where C contains q’p’. This means C contains both sq’
and q'p’, as illustrated in Figure 2.5a. The points p’, ¢’ and s’ exist and satisfy 0 < |sq’| < |C]/2,
since C cannot contain a line segment that is longer than |C|/2. If |sq’| = |C|/2, then the clockwise
path from s to ¢’ along C is a line segment of length |C|/2 and, thus, C is degenerate.
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Suppose |sq’| < |C|/2. We move the three points p’, ¢/, and s’ clockwise by a distance of
|C|/4 — € for some € with 0 < € < |C|/4. Let p”’, q¢”’, and s”’ be the resulting points. As illustrated
in Figure 2.5b, s” lies on s’q’ at distance € from ¢’, and ¢”’ lies on ¢’p’ at distance € from p’.
Since d(s”,q"") = d(q"”,p"") = |C|/4, the cycle C contains s”’q” or q"p”’. However, s”q” cannot
be contained in C, since otherwise q¢" would be contained in the line segment s”’q”’. This would
contradict the choice of ¢’ as the first point where ¢’p’ is contained in C. Therefore, C contains
the line segment q”’p”’ whose length is |¢g’p”’| = |¢’p’| + |p’p”’| = |C|/2 — €. Since this argument
holds for arbitrary small values of €, the cycle C contains a line segment of length |C|/2.

In summary, if a geometric cycle possesses three points p, ¢, s € C with d(p, q) = d(q, s) = |C|/4
and |pgq| < d(p, q) and |gs| < d(g, s), then the shortcuts pq and gs are useful for C. On the other
hand, if C does not possess three such points, then C must be a degenerate cycle that consists
of two line segments of length |C|/2. Therefore, every geometric cycle that is not a degenerate
cycle consisting of two line segments does possess a pair of useful shortcuts. ]

2.2 Alternating vs. Consecutive
When placing two shortcuts pg and rs on a cycle C, we distinguish whether their endpoints

appear in alternating order or in consecutive order along the cycle, as illustrated in Figure 2.6.
We show that there is always an optimal pair of shortcuts in the alternating configuration.

(a) Alternating configuration. (b) Consecutive configuration.

Figure 2.6: The two cases for adding two shortcuts pq and rs to a cycle C. The endpoints of the
shortcuts appear in alternating order p, r, g, and s, as shown in (a), or in consecutive
order p, g, r, and s, as shown in (b). The two cases overlap when g coincides with r.

We call a cycle in the augmented cycle C + pqg + rs diametral when it contains a diametral pair.
Each configuration has five candidates for diametral cycles: two that use both shortcuts, two that
use one of the shortcuts, and one (C) that does not use any shortcut. Figures 2.7 and 2.8 illustrate
the candidates for diametral cycles in each configuration, except for the cycle C itself.

We distinguish the cycles that contain only one of the two shortcuts as follows. We color pg
red and rs blue and we refer to the larger simple cycle in C + pq that contains pq as the red split
cycle and we refer to the larger simple cycle in C + rs that contains rs as the blue split cycle.

For consecutive shortcuts, notice that even though the handset is not a simple cycle, it might
still contain a diametral pair. Moreover, the base station is only listed for completeness: it is never
larger than the red split cycle and the blue split cycle and, therefore, never diametral.
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(a) The bowtie (><). (b) The hourglass (). (c) Red split cycle (©).  (d) Blue split cycle (@).

Figure 2.7: The candidates for diametral cycles, except C, in the alternating configuration.

(a) The handset. (b) The base station. (c) Red split cycle. (d) Blue split cycle.

Figure 2.8: The candidates for diametral cycles, except C, in the consecutive configuration.

For the following, let the points X, with x € {p,q,r,s} andy € {cw, ccw} be defined as in
Figure 2.3, e.g., let 7y, be the farthest point from r on the cycle Cey(r, s) that consists of rs and
the clockwise path from r to s along C, and let gy be the farthest point from g on the cycle
Ceew(p, q) that consists of pg and the counter-clockwise path from p to q.

Lemma 2.3. Two alternating shortcuts pq and rs are useful for a cycle C if and only if |pq| < d(p, q)
and |rs| < d(r,s) and |pq| + |rs| < deew(T, @) + deen(s, p) and |pq| + |7s| < decn(p, 1) + deen(q, ).

Proof. Suppose pq and rs are useless alternating shortcuts with |pq| < d(p, q) and |rs| < d(r,s).
This means the unaffected regions of pq and

rs overlap along the bowtie or along the hour- ) q.SC;”.f iy

glass. Since these cases are symmetric, we P CWMr

consider only the former in the following. T ccw./ N\ -~ 3
Suppose the unaffected regions of pg and rs JPte "\/ L

overlap along the bowtie. As illustrated in Fig- N \ /] o~

ure 2.9, this overlap consists of the clockwise s \ v S Geew

path from 7.y to pow and, symmetrically, of Jow 2O /\'p

the clockwise path from 5.y t0 Gecw. The sum Tew

of the lengths of the counter-clockwise paths Figure 2.9: Overlap on the bowtie.

from r to Feey and from pey to p is at least the
length of the counter-clockwise path from r to p, i.e., deewDews P) + deew(Ts Feew) = deew (7, D).
This is equivalent to [pq| + |rs| = dcew(7, @) + deew(s, p), because
dccw(q,P) + |Pq| + dCCW(r’ S) + Irs| = chcw(pcw’P) + chcw(r, fccw) > 2dccw(ra P)
— |P‘J| + |7'S| 2 dccw(r’p) - dccw(q’p) + dccw(r’p) - dccw(r’ S) .

= ccw(r’q) = ccw(sap)
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Suppose the unaffected regions of pq and rs overlap along the hourglass. Analogously to the
overlap on the bowtie, we derive that this occurs precisely when [pq|+|rs| > decw(p, 7) + deew(q, S)-

If |pq| = d(p, q) or |rs| = d(r, s), then the shortcuts pg and rs cannot be useful for the cycle C.
Therefore, the shortcuts pq and rs are useful for the cycle C if and only if |pg| < d(p,q) and
73| < d(r,s) and |pg| + [rs| < decw(r, @) + deew(s, p) and [pgl + 3| < deew(ps ) + decw(grs). O

Lemma 2.4. Two consecutive shortcuts pq and rs are useful for a cycle C if and only if |pq| < d(p, q)
and |rs| < d(r,s) and |pq| + |rs| < |deew(s, p) — deew(q, 7)|-

Proof. Suppose pq and rs are useless consecutive shortcuts with [pg| < d(p, q) and |rs| < d(r, s).
We assume deew(q, 7) < deew(s, p), without loss of generality. This means the unaffected regions
of pq and rs overlap along the handset or along the base station, as illustrated in Figure 2.10.

Scew q Peew

o—
- o
pensll S —

Ogcw

(a) An overlap on the handset. (b) An impossible overlap on the base station.

Figure 2.10: The two cases of useless consecutive shortcuts with overlapping unaffected regions.

Suppose the unaffected regions of pq and rs overlap on the handset. This overlap consists of
the clockwise paths from 7eey to pew and, symmetrically, from Sy to Geew. An overlap along a
clockwise path from pecw t0 Scew is impossible, as peey would lie on Cey (P, ) 0r Seew 0n Cey (1, ).
The sum of the lengths of the counter-clockwise paths from r to 7.y and from pey, to p is at least
the length of the counter-clockwise path from r to p, i.e., decw(Pews P) + deew (7, Feew) = deew (T, P).
This is equivalent to |pq| + |rs| = deew (s, p) — deew(q, 7), since

dccw(q,p) + |Pq| + dccw(r’ S) + |r5| = chcw(ﬁcw,P) + chcw(r, Fccw) > chcw(r’P)
— |Pq| + |rs| 2 dccw(r’P) - dccw(ra S) + dccw(r’P) - dccw(q’P) .

= ccw(ssp) == ccw(qsr)

Suppose the unaffected regions of pg and rs overlap on the base station. This overlap consists
of a clockwise path from ¢y to 7oy, as illustrated in Figure 2.10b. The sum of the lengths of
the clockwise paths from r to 7., and from gy, to g is at least the length of the cycle C, i.e.,
deese(Fesor ) + decse(@ Gew) = [C| + deew(g, 7) > |C). This yields |pg| + Irs| > d(p, q) + d(r, s), since

dccw(q’p) + |Pq| + dccw(se r) + |rs| = chcw(q’ ch) + chcw(fcw, r) > 2|C|
== |PCI| + |7’S| 2 |C| - dccw(q’p)'i' |C| - dccw(s, r) .

= ccw(P,q)Zd(P’q) :dccw(r’s)Zd(r9s)
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The inequality |pq| + |rs| = d(p, q) + d(r, s) contradicts |pq| < d(p, g) and |rs| < d(r, s). Therefore,
the unaffected regions in the consecutive case can only overlap along the handset. Thus, pg and rs

are useful if and only if |pq| < d(p, q), [rs| < d(r,s), and |[pq| + |rs| < |deew(s, P) — deew(q,7)|. O

Theorem 2.5. For every pair pq and rs of consecutive shortcuts for a geometric cycle C, there exists
a pairp’q’ andr’s’ of alternating shortcuts with diam(C + p’q’ + r’s’) < diam(C + pq + rs).

Proof. Suppose pq and rs are useful consecutive shortcuts. We assume, without loss of generality,
deew(q, 7) < deew(s, p) and deew(p, @) < deew(r, s). Otherwise, we swap p, g, r, and s, appropriately.

The touching shortcuts pr and rs are both
alternating and consecutive, as illustrated in
Figure 2.11. We first argue that pr and rs are
useful shortcuts for the cycle C and then we
match each candidate diametral cycle in C +
pq + rs with one candidate diametral cycle in
C + pr + rs of smaller or equal size.

Since pq and rs are useful consecutive short-

cuts with deew(q,7) < deew(s,p), we have  Fjgure 2.11: Replacing consecutive shortcuts pg
lpgl < d(p,q) and |rs| < d(r,s) and |pq| + and rs with p’q’ = pr and r's’ = rs.
Irs| + deew(q, 7) < decw(s, p), by Lemma 2.4.

According to Lemma 2.3, the alternating pair of shortcuts pr and rs is useful for the cycle C,
because we have [pr| < d(p,r), due to |pq| < d(p, q), and |rs| < d(r,s), as well as

lpr| + |rs| < d(p,r) +d(r,s) < deew(p, ) + decw (7, S)
and |pr| + |rs| < |pq| + d(q,r) + |rs| < deew(s, p) < deew(S, P) + deew(r,7) .

We match the candidates for the diametral cycles in C + pq + rs with those in C + pr + rs. The
bowtie in C + pr + rs is at most as long as the handset in C + pq + rs, the hourglass in C + pr + rs
is at most as long as the base station in C + pq + rs, the blue split cycle did not change, and the
red split cycle in C + pr + rs is at most as long as the red split cycle in C + pq + rs.

We show the claim about the red split cycle. The red split cycle remains on the same side
of the red shortcut when replacing pg with pr, due to the following. Our premises decw(p, q) <
dccw(r’ S) and dccw(qa I’) < dccw(s’p) lmPIY ICch(p’ q)| < |ch(P, Q)la since dccw(p, 61) < dccw(r’ S) <
deew(q, p), and |Ceew(p, 1) < |Cew(p, 1), since decw (P, 1) = deew(Ps @) + deew(q, 7) < deew(7,s) +
deew (s, p) = deew(r,p). Moreover, the red split cycle shrinks when moving ¢ to r, due to the
triangle inequality and the fact that the red split cycle remains on the same side.

The continuous diameter of C + pq + rs is half of the maximum of the lengths of the four
candidates for diametral cycles (excluding C, since pq and rs are useful). When replacing pq with
pr, we decrease or maintain each of these four values whose maximum determines diam(C+pr+rs),
since pr and rs are useful shortcuts. Therefore, diam(C + pr + rs) < diam(C + pq + rs) ]
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2.3 Balancing Diametral Cycles

We show that every cycle has an optimal pair
of alternating shortcuts where the bowtie and
the hourglass are both diametral and we show
that every convex cycle has an optimal pair of
shortcuts where both split cycles are diametral
as well. We obtain these results by applying a
sequence of operations to some initial pair of
alternating shortcuts. Each operation brings
the candidate diametral cycles closer to the de-
sired balance by sliding the endpoints of the
shortcuts along the cycle in a way that reduces
or maintains the continuous diameter. The last
two operations only reduce the diameter for
convex cycles as the shortcuts might get stuck
at reflex vertices, which leads to our character-
ization of optimal shortcuts for convex and non-convex cycles.

Let pq and rs be two alternating shortcuts and let a = deew(p, 1), b = deew(75 q), ¢ = deew(q, S),
and d = diew (s, p). As depicted in Figure 2.12, we assume that the red split cycle contains s and
the blue split cycle contains p, i.e., a+ b < c+d and b + ¢ < a + d. We denote the lengths of the
bowtie (>), the hourglass (%), the red split cycle (®), and the blue split cycle (@) as follows.

Figure 2.12: The four sections of a cycle for a pair
of alternating shortcuts.

<i=a+c+|pgl+rs] S=c+d+|pql X=b+d+|pgl+|rs|] ©@:=a+d+]|rs]|

Lemma 2.6. For each relation ~ € {<, =, >}, we have

ba~Y & a+c~b+d O~@ & c+|pq|l ~a+|rs|
Ma~Q & a+|rs|~d X~0 < b+]|rs|~c¢c
M~Q & c+pq|l ~d X~@ & b+|pg|l~a

and the shortcuts pq and rs are useful for the geometric cycle C if and only if we have
lpgl < a+band|rs| <b+candlpq|+|rs| <a+candl|pg|+|rs| <b+d .
Proof. The relations between »<, X, ©, and @ follow from their definitions. For instance,
<~ & a+c+|pgl+rs|~b+d+pq|l+1rs| &= a+c~b+d .
The conditions for pq and rs being useful rephrase Lemma 2.3 in terms of the cycle sections. O

We prove our main structural result: For every geometric cycle C, there exists an optimal pair
of shortcuts in alternating configuration where the bowtie and the hourglass are both diametral
and where each split cycle is either diametral as well, or has one endpoint at a reflex vertex.
For convex cycles, all four candidate cycles are diametral for every optimal pair of shortcuts.
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Our approach is as follows. We start with some optimal pair of alternating shortcuts and move
them in a way that brings us closer to the desired properties while maintaining the shortcuts in
alternating configuration and without increasing the continuous diameter in the process.

Formally, a movement of pair of shortcuts pq and rs for a cycle C to another pair of shortcuts
p’q’ and r’s’ for C is a continuous function y : [0,1] — C* with y(0) = (p,q,7,s) and y(1) =
(p’.q’,r’,s"). A movement of a pair of shortcuts y(t) = (p(t), q(t), r(t), s(t)) with ¢ € [0, 1] is save
when p(t)q(t) and r(t)s(t) form an alternating pair of useful shortcuts for all ¢ € [0, 1], and when
the continuous diameter is weakly decreasing throughout the movement, i.e., for all ¢,¢" € [0, 1]
with t < t/, we have diam(C + p(t)q(t) + r(t)s(t)) = diam(C + p(t")q(t") + r(t")s(t)).

Suppose pq and rs are a useful pair of alternating shortcuts for a geometric cycle C. The
following results are the stepping stones towards our main structural result.

1. If the augmented cycle C + pg + rs has exactly one diametral cycle, then we can move the
shortcuts safely until there are at least two diametral cycles.

2. If the bowtie and hourglass in C + pq + rs have different lengths, then we can move the
shortcuts safely until the bowtie and the hourglass have the same length.

3. There exists an optimal pair of augmented shortcuts pg and rs for C such that C + pq + rs
has at least two diametral cycles and the bowtie and the hourglass have equal length.

4. If both split cycles are diametral in C + pq + rs and the hourglass and bowtie are in balance,
then we can safely move the shortcuts until all four candidate cycles are diametral.

5. There exists an optimal pair of alternating shortcuts pq and rs for C such that the bowtie
and the hourglass are diametral in the augmented cycle C + pg + rs.

6. If the bowtie and the hourglass are diametral in C + pq + rs, then we can move the shortcuts
safely until each split cycle is either diametral as well, or at least one endpoint of its
corresponding shortcut is stuck at some reflex vertex of C.

To establish the first claim, we show that a split cycle is never the only diametral cycle when
its shortcut splits the cycle into two paths of equal length. We say a split cycle divides the cycle
evenly when the corresponding shortcut xy divides C evenly, i.e., when the clockwise path from
x to y has the same length as the counter-clockwise path from x to y, i.e., deew(x, y) = dew(x, y).

Lemma 2.7. If the red split cycle or the blue split cycle of a pair of useful alternating shortcuts
evenly divides the cycle, then this split cycle must have a length of at most > or at most 3.

Proof. We assume, for the sake of a contradiction, that there exists a useful alternating pair of
shortcuts pq and rs, where the red split cycle divides the cycle evenly, i.e,a+b = c +d, and
where the bowtie and the hourglass are shorter than the red split cycle, i.e, > < ©and ¥ < ®.
Lemma 2.6 implies a + |rs| < d and b + |rs| < ¢, which yields the contradiction |rs| < 0, since

a+|rs|]<d=a+b-c<a-|rs] = 2|rs| <0 .

Therefore, an even red or blue split cycle is always shorter than the bowtie or the hourglass. O
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Lemma 2.8. For every geometric cycle C, there exists an optimal pair pq and rs of shortcuts in
alternating configuration such that neither split cycle is the only diametral cycle in C + pq + rs.

Proof. Suppose pq and rs are useful alternating shortcuts where the blue split is the only diametral
cycle in C + pq + rs, i.e., diam(C + pq + rs) = @/2 with~< < @, X < ©,and © < @.

The blue split cycle cannot divide the cycle evenly, due to Lemma 2.7, since it is diametral. This
means we can shrink the blue split cycle by moving r clockwise towards p until we arrive at some
position r” where another diametral cycle appears. We denote the bowtie, the hourglass, the red
split cycle, and the blue split cycle in C + pg + r’s by >, X', ®’, and @’, respectively. Moving r to
r’ leads to the following changes for the candidates for the diametral cycles.

q, /‘\ « The length of the blue split cycle decreases or
N r ,

remains unchanged, i.e., @ > @’.

N\
S / * + The length of the red split cycle remains un-
/_{_’.-"' Q\\ changed, ie, o =0’
- N
7 AN + The bowtie and the blue split cycle change pro-
“ep portionally, i.e., >« > »<" and >’ < @’.

+ The length of the hourglass remains unchanged
or increases, ie., ¥ < ¥/, and it increases
when the length of the blue split cycle does
not change, i.e, @ - 3> @’ - Y.

Figure 2.13: Shrinking the blue split cycle
by moving r clockwise to r’.

This means @’ = ¥’ or @’ = ©” and the continuous diameter decreases or remains the same,
i.e., diam(C + pq + r’s) < diam(C + pq + rs), provided that pq and r’s are useful and alternating.

We argue that r’ lies on the clockwise path from r to p, which implies that pg and r’s are
alternating shortcuts. With Lemma 2.6, X < @ implies decw(7, q) + [pq| < deew(p,7) and © < @
implies decw(q, 8) + |pgl — |rs| < deew(p, 7). Since deew(q, p) + |pgq| > 0, there is some position r”’
along the clockwise path from r to p with deew(r”, q) + |pq| = decw(p, r”’), by the intermediate
value theorem. Therefore, r’ lies on the clockwise path from r to p, because ’ is the first position
clockwise from r where decyw (', @) + |pg| = deew(P, r’) or deew(q, s) + |pg| — |7's] = deew (P, 17).

We argue that pq and r’s are useful. Since pq and rs are useful, we have

lpgl < a+band|rs| <b+cand|pq|+|rs| <a+cand|pg| +|rs| <b+d ,

where a = deew (P, 7), b = deew(7, q), ¢ = deew(q, $), and d = deew(s, 1), as illustrated in Figure 2.12.
Let a’, b’, ¢’, and d’ be the lengths of the sections into which p, r’, g, and s subdivide C, i.e.,

a = dccw@, 7',) =a- dccw(r/, r) ¢ = dccw(q, 3) =c
b’ = dccw(r/’ q) =b+ dCCW(r,’ r) d = dccw(sap) =d .

Wehavea’ +b' <c’+d and b’ + ¢’ <a’+d’,ie,d(p,q) =a’ +b" and d(r,s) = b’ + ¢/, because

a +b' =a—-dew(r',r)+b+deew(r’sr)=a+b<c+d=c"+d" ,
b'+c" =b+deew(r’,r)+c<a+d+deew(r’,r)=a" +d" .
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This means that the shortcuts pq and r’s are arranged as depicted in Figure 2.12, i.e., the red split
cycle of C + pq + r’s contains s and the blue split cycle of C + pg + r’s contains p. Therefore,
Lemma 2.6 applies and, thus, the shortcuts pg and r’s are useful if and only if

lpgl < a’ +b" and |r's| < b’ +¢" and |pq| + |r's| < a’ + ¢ and |pg| + |r's| < b +d’ .
We have |pq| < a’ + b’, since [pg| < a+ b =d(p,q) = a’ + b’ and we have |r's| < b’ + ¢/, since
[r's| < |r'r| + |rs| < deew(r, ") +|rs| < deew(rsr)+b+c=b"+c=b"+¢",
we have [pg| + |r's| < b’ + d’, since
lpg| + |r's| < |pg| + |rs| + deew(r',7) <b+d+deew(r',r)=b"+d =b"+d" ,

and |pg| +|r's| < a’+c¢’,as ¥ < @ implies b’ + |pq| < a’ and |pq| + |r's| < |pg|+b"+c¢’ < a’ +¢'.

Therefore, pg and r’s are useful alternating shortcuts such that the blue split is not the only
diametral path in C + pg + r’s. Moreover, if pg and rs was an optimal pair of shortcuts for C, then
so are pq and r’s, since diam(C + pq + r’s) < diam(C + pq + rs). Therefore, there exists an optimal
pair of shortcuts where the blue split cycle is not the only diametral cycle. Analogously, there
exists a pair of optimal shortcuts where the red split cycle is not the only diametral cycle. O

Lemma 2.9. For every cycle, there exists a pair of optimal alternating shortcuts with > = X.

Proof. Suppose pq and rs are useful alternating shortcuts with »< # X. We balance > and X using
the following operations that maintain or decrease the continuous diameter while decreasing the
difference between bowtie and hourglass. Two of these operations are illustrated in Figure 2.14.

1. As long as neither the red nor the blue split cycle divides the
cycle C evenly, we shrink the larger split cycle in a way that
decreases the difference of bowtie and hourglass:

a) If <« < Yand © < @, move s counter-clockwise.
b) If = < Yand © > @, move p clockwise.
¢) If« > Yand © < @, move r clockwise.
d) If >« > Yand © > @, move g counter-clockwise.

4 2. Once a split cycle evenly divides the cycle, we move the end-
points of the corresponding shortcut in the direction that
decreases the difference between bowtie and hourglass:

a) If >« < Yand © is even, move p and g clockwise.

\
O O b) If >« > X and © is even, move p and g counter-clockwise.
‘o
p.’/ ¢) If < < Yand @ is even, move s and r counter-clockwise.
Figure 2.14: Ops 1.a and 2.a. d) If>< > Yand @ is even, move s and r clockwise.

For each operation, we argue that pq and rs remain useful alternating shortcuts and that the
diameter never increases while the difference between hourglass and bowtie always decreases.
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The overlap between the cases for Operation 1 is intentional: if © = @, then we move the
endpoints of the shortcuts with appropriate speeds to maintain this balance. For Operation 2,
there is nothing to do when both split cycles divide the cycle evenly, since then »< = ¥.

Suppose >« < Yand neither split is even. We apply Operations 1.a and 1.b, i.e., we move s counter-
clockwise to s” and we move p clockwise to p” until bowtie and hourglass are in balance or until one
split is even. Since we never move past an even split, we have d(p’, q) = deew(p’, q) < dew(p’, q)
and d(r,s") = deew(r,s") < dew(r, s”). This means p’q and rs’ are alternating shortcuts where the
red split cycle contains s” and the blue split cycle contains p’. We denote the bowtie, the hourglass,
the red split cycle, and the blue split cycle in C + p’q + r’s by =<, ¥, ®’, and @’, respectively. The
candidate diametral cycles change as follows.

« The red and blue split cycles shrink or remain the same, i.e., ® > ® and @ > @’.
+ The bowtie grows or remains the same, i.e., > < p<’.

« The hourglass remains the same or shrinks, i.e., ¥ > ¥’

« The bowtie grows when the hourglass remains unchanged and, conversely, the hourglass

shrinks when the bowtie remains unchanged, i.e., X —>a > ¥’ — <",

Therefore, the continuous diameter decreases or remains the same, i.e., diam(C + p’q + rs’) <
diam(C + pq + rs), provided that p’q and rs’ remain useful shortcuts.
We argue that p’q and r’s are useful. Since pq and rs are useful, we have

lpgl < a+band|rs| <b+cand|pg|+|rs| <a+cand|pg| +|rs| <b+d ,

where a = deew (P, 7), b = deew(7, q), ¢ = deew(q, $), and d = deew(s, 1), as illustrated in Figure 2.12.
Let a’, b’, ¢/, and d’ be the lengths of the sections into which p’, r, g, and s” subdivide C, i.e.,

a = dccw(P,’ r) =a-+ dccw(P,aP) ¢ = dccw(% 5,) =c+ dccw(sas,)
b’ = dccw(r, q) =b d = dccw(s,apl) =d- dccw(p,7p) - dccw(sa 5,) .

Wehavea +b' < ¢’ +d and b’ +c¢ <a' +d',ie,dp’,q) =a +b andd(r,s") = b’ + ¢/, as
argued above. Therefore, Lemma 2.6 applies. We have |p’q| < a’ + b" and |rs’| < b’ + ¢/, since

Ip'ql <dp'.p) +|pgl <d@p'.p)+a+b=a"+b=a"+b",
[rs’| <d(s,s’)+|rs| <d(s,s’)+b+c=b+c =b +c" .

We have |p’q| + |rs’| < min{a’ + ¢’,b’ + d’}, since >’ < ¥’ implies a’ + ¢’ < b’ +d" and
[p’ql + |rs’| < |pql +d(@’,p) + |rs| +d(s,s") < a+d@’,p) +c+d(s,s')=a" +¢ .

Therefore, p’q and rs” form a useful pair of alternating shortcuts, due to Lemma 2.6. This means
that applying Operations 1.a and 1.b never increases the diameter while reducing the difference
between bowtie and hourglass. Similarly, the same holds for Operations 1.c and 1.d.

Suppose < < Y and the red split cycle is an even split. We apply Operation 2.a, i.e., we move p
and q at the same speed clockwise until (1) the bowtie and the hourglass are in balance or (2)
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the shortcuts cease to be alternating or (3) the role of the candidate diameteral cycles changes.
We argue that the first condition holds when this rotation of the red shortcut ends. Let p’ and
q’ be the positions of p and g, respectively, where the rotation ends. We denote the bowtie,
the hourglass, the red split cycle, and the blue split cycle in C + p’q” + rs by »<’, X', ®’, and @’,
respectively. The candidate diametral cycles change as follows.

« The red split cycle remains an even split; it shrinks and grows with the red shortcut. The
red split cycle cannot determine the diameter, since ©” < »<’ or ®’ < ¥’, due to Lemma 2.7.

+ The blue split cycle remains unchanged, i.e., @ = @".
« The bowtie grows or remains the same, i.e., > < »<’.
« The hourglass remains the same or shrinks, i.e., ¥ > ¥'.

+ The bowtie grows when the hourglass remains unchanged and, conversely, the hourglass
shrinks when the bowtie remains unchanged, i.e., X — < > ¥’ — <",

This means diam(C + p’q’ + rs) < diam(C + pq + rs), provided that p’q’ and rs are useful. We
argue that this is the case after establishing that the clockwise turn of the red shortcut ends with

the hourglass and the bowtie being in balance. Let § = deew(q’, ) = deew(p’, p) and let a’, b, ¢’,
and d’ be the lengths of the sections into which p’, r, ¢’, and s subdivide C, i.e.,

a =deew(p'sr)=a+6 ¢ =deewl(q’ss)=c+6
b = deew(r, q’) =b-46 d = dccw(sap,) =d-§ .

We argue that the roles of the candidates for the diametral cycles remain the same throughout
the rotation of the red shortcut by showing @’ + b” < b’ + ¢’ and b’ + ¢’ < a’ + d’. First, we have
a’ +b’ =b"+ ¢, since the red split cycle remains an equal split. Second, the blue split cycle in
C + pq + rs cannot split the cycle evenly, since > < X. Therefore, we have b + ¢ < a + d and

bV+c'=b-8)+(c+8)=b+c<a+d=(a+8)+d-8)=d +d .

Therefore, s lies on the red split cycle in C+p’q’ +rs and p’ lies on the blue split cycle in C+p’q’ +rs
and, thus, the roles of the candidates for diametral cycles remain the same.

We argue that p’q” and rs form a pair of alternating shortcuts. The observations a + b = ¢ +d
and b + ¢ < a+ d imply b < d. If the rotation of the red shortcut ends with the shortcuts ceasing
to be alternating, then ¢’ = r, i.e., § = b. Since pq and rs are useful, we have |rs| < d(r,s) =c+b
and, thus, b + ¢ > 0. Therefore, Lemma 2.6 implies =" > ¥’, since a’ + ¢’ > b’ + d’, because

a+c =(a+b)+(c+b)>a+b=c+d>0+d=>2b-b)+(d-b)=b"+d" .

By the intermediate value theorem, there was some position of the red shortcut where the
hourglass and the bowtie were balanced before g” could reach r. Therefore, the rotation of the
red shortcut ends with q” along the interior of the clockwise path from q to r and p” along the
interior of the clockwise path from p to s. Hence, p’q’ and rs are alternating shortcuts.
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Therefore, the rotation of the red shortcut ends when the bowtie and hourglass are in balance.
It remains to show that p’q” and rs are useful. Since pg and rs are useful, we have

lpgl < a+band|rs| <b+cand|pg|+|rs| <a+cand|pg| +|rs| <b+d .

By the triangle inequality, we have |p’q’| < d(p’,q’) = a’ + b’. We have |p’q’| < a’ + b’, since
otherwise the cycle C could not possess a useful pair of shortcuts, because it would contain a line
segment of length |C|/2, since a’ + b’ = ¢’ + d’ = |C|/2. However, pqg and rs form a useful pair of
shortcuts for C. We have |p’q’| + |rs| < @’ + ¢’ and |p’q’| + |rs| < b’ + d’, because

p'q’ | +1rs| < lpgl +26 +rs| <(a+8)+(c+8)=da"+c'=b"+d" .

According to Lemma 2.6, this means that p’q’ and rs form a useful pair of shortcuts for C.
Operation 2.a never increases the diameter while reducing the difference between bowtie and
hourglass until they are equal. Similarly, we can argue that the same holds for Operations 2.b,
2.c, and 2.e. The above implies the claim, since, by using Operation 1 and Operation 2, we can
transform every alternating configuration of useful shortcuts into another configuration where
bowtie and hourglass have equal length without increasing the continuous diameter. ]

Corollary 2.10. For every cycle, there exists an optimal pair of alternating shortcuts where none of
the split cycles is the only diametral cycle and the bowtie and the hourglass have the same length.

Proof. Lemma 2.8 yields an optimal pair of alternating shortcuts pg and rs for a cycle C where
none of the split cycles is the only diametral cycle. We begin with this pair of shortcuts.

If the bowtie and hourglass are unbalanced in C + pq + rs, then we apply the operations from
Lemma 2.9. These operations maintain the invariant that if one of the split cycles is diametral, then
some other candidate cycle is diametral as well: If neither split cycle is even, then Operations 1.a
to 1.d shrink the largest split cycles at the same rate as they shrink the larger of bowtie and
hourglass. If one of the split cycles is even, then it cannot become diametral by Lemma 2.7.
Operations 2.a to 2.d rotate the split cycle that is even and leave the other one unchanged. If both
split cycles are even, then the bowtie and hourglass are already in balance.

Therefore, we obtain an optimal pair of alternating shortcuts where none of the split cycles is
the only diametral cycle and the bowtie and the hourglass have the same length. ]

Theorem 2.11. For every geometric cycle, there exists an optimal pair of shortcuts in alternating
configuration such that the hourglass and the bowtie are both diametral, i.e,>< =X > O, @.

Proof. We consider a geometric cycle C. If C is a degenerate cycle that does not posses any useful
pair of shortcuts, then any pair of alternating shortcuts is optimal and the claim holds.
Suppose that C does possess some useful pair of shortcuts. Corollary 2.10 yields an optimal
pair of alternating shortcuts pq and rs for C where neither split cycle is the only diametral cycle
in C + pq + rs and where the bowtie and the hourglass have equal length. If the bowtie and the
hourglass are already diametral in C + pg + rs, then the claim follows, since >« =Y > ©, @.
Suppose that neither the bowtie nor the hourglass are diametral cycles in C + pg + rs. Then, the
cycle C cannot be diametral in C + pg + rs, because C possess some useful pair of shortcuts. This
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2 Cycle Shortcuts

means that at least one of the split cycles is diametral in C + pqg + rs and, thus, ® = @ >« =3,
since neither split cycle can be the only diametral cycle. Since the bowtie and the hourglass are
shorter than both split cycles, Lemma 2.7 implies that neither split cycle divides C evenly.

q
q /‘f.\/_\ ro,

SN ,o\’.r

Figure 2.15: Shifting the shortcuts to shrink the split cycles while maintaining the balance between
both split cycles and the balance between bowtie and hourglass.

We shrink both split cycles by simultaneously moving p and r clockwise while moving g
and s counter-clockwise, as illustrated in Figure 2.15. We argue that we can shift pq and rs
in a way that maintains the balance between the split cycles and the balance between bowtie
and hourglass. If we shift p and g by some sufficiently small distance ¢ > 0 to p’ and ¢/, i.e.,
deew (P, P) = deew(q, ') = €, then there exists some distance § > 0 such that the red split cycle
and the blue split cycle have equal length if we shift » and s by distance § to r” and s’, i.e.,
deew(r', 1) = deew(s, s’) = 8. This maintains the balance between bowtie and hourglass, since

a+c =(@+5-¢e)+(cte—-8)=a+c=b+d=0b+5+e)+(d-56-€)=b"+d",

where a’ = decw(p’, 1), b’ = deew(r’, q7), ¢’ = deew(q’, s7), and d” = decw(s”, p7).

We stop shifting the shortcuts at the first positions p’q’ and r’s” where (1) all four candidate
cycles are in balance or (2) two endpoints meet or (3) the role of the candidate cycles changes.
Our goal is to argue that only the first event occurs and that p’q” and r’s’ are useful.

Leta’ = deew(@’, 1), b’ = deew(r’,q"), ¢’ = deew(q’, s"), and d” = decw(s’, p’) be the lengths of the
sections into which p’, r’, ¢/, and s’ divide the cycle C. We denote the bowtie, hourglass, red split
cycle, and blue split cycle of the augmented cycle C +p’q” +r’s’ by =<', X', ®’, and @’, respectively.
Due to our invariants, we have ©’ = @’ > > = ¥’ and, thus,a’ + ¢’ = b’ +d’ = |C|/2.

If one of the split cycles becomes an even split while we shift the shortcuts, then all four
candidates for diametral cycles are in balance at that moment, due to Lemma 2.7. Therefore, we
havea’ +b' <c’+d and b’ + ¢’ < a’ +d’ and, thus, b’ < d’. This means that the roles of the
candidates for diametral cycles cannot change, unless the endpoints of two cycles meet.

First, we argue that ¢’ # r’ and s” # p’. Since pq and rs form a pair of useful alternating
shortcuts for C, we have 0 < b, since 0 < |pg| < a+ b < b. When we shift the shortcuts, we move
r clockwise and g counter-clockwise. Therefore, we have 0 < b < b’ and, thus, ¢’ # r’. This also
implies that s” # p’, since 0 < b’ < d’ < b’ +d’ = |C|/2 implies 0 < d’ = d(s’,p’).

Second, we argue that r’ # p’ and ¢’ # s’. The assumption r’ = p’ leads to a contradiction,
since then a’ = 0 and, thus, |[C|/2 =a’+¢ =¢ <b +c <a’ +d =d <b +d =]|C|/2
Therefore, we have r’ # g’ and we obtain ¢’ # s’ with a symmetric argument.
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This means that the shift of the shortcuts ended with all four candidates for diametral cycles
being in balance, i.e., >’ = X’ = ©" = @’. It remains to show that p’q’ and r’s’ form a useful pair
of shortcuts for C. We have |p’q’| < d(p’,q’) = a’ + b’ and |r's’| < d(r’,s") = b’ + ¢/, since

Ip’q’| < d@’,p) +Ipql + d(q.q") <d(@’.p) +d(p,q) +d(q,q') = d(p’.q")
[r's’| <d(r',r)+|rs| +d(s,s") <d(r’,r) +d(r,s) +d(s,s") = d(r’,s") .

Moreover, we have |p’q’| + |r's’| < a’ + ¢’ and |p’q’| + |r's’| < b’ + d’, since >’ = @’ implies
¢ +|p'q’| =d’ and ¥’ = © implies b’ + |r’s’| = ¢’ and, thus, with b’ > 0 we obtain

lp’q’| +1r's’| =@ =)+ (" =-b)=d" -b' <d" +b" ' =a"+ .

This means that p’q” and r’s’ are useful alternating shortcuts with >’ = ¥’ = ©’ = @’ such that
diam(C + p’q’ + r’s’) < diam(C + pq + rs). Since pq and rs are optimal, so are p’q” and r’s’.

In summary, Corollary 2.10 yields an optimal pair alternating shortcuts where > =Y > 9, @
or © = @ > v« = Y. In the latter case, we shift the shortcuts to another optimal position where
" = Y’ = ©" = @’. Therefore, for every geometric cycle, there exists an optimal pair of alternating
shortcuts where both the hourglass and the bowtie are diametral. ]

Theorem 2.12. For every convex cycle, there exists an optimal pair of alternating shortcuts such
that the hourglass, the bowtie, and both split cycles are diametral, i.e,><=Y=0 = @.

Proof. Let C be a convex cycle. According to Theorem 2.11, there exists an optimal pair of
shortcuts pq and rs for C with»< = X > ©, @. Suppose we have <= > Qors< =Y > Q.

We establish the claim in three steps. First, we show that we can grow each split cycle in a way
that shortens its corresponding shortcut. Second, we grow the smaller split cycle until both split
cycles have the same length. Third, we grow both split cycles simultaneously until their length
matches the lengths of the bowtie and the hourglass. Each step maintains the balance between
bowtie and hourglass, preserves usefulness, and never increases the continuous diameter.

We move p counter-clockwise and g by the same distance clockwise. As argued in the proof of
Theorem 2.11, this shifts the red shortcut pg in a way that increases the size of the red split cycle,
maintains the balance between bowtie and hourglass, and preserves usefulness.

p

Figure 2.16: The case when shifting the red shortcut increases its length. Since the cycle is convex,
shifting the red shortcut in the other direction must decrease its length.

Suppose that shifting the red shortcut pq to increase the red split cycle shortens the red shortcut.
Since the cycle is convex, the red shortcut shrinks as we continue to shift it.
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Suppose, on the other hand, that shifting the red shortcut pq to increase the red split cycle
increases the length of the red shortcut, as illustrated in Figure 2.16. Since the cycle is convex,
the red shortcut shrinks as we shift the red split cycle in the other direction, moving p clockwise
and q counter-clockwise. Otherwise, p or ¢ would be stuck at a reflex vertex. We shift the red
shortcut to shrink the red split cycle until it becomes even and starts growing.

Since each shift operation maintains a + ¢ and b + d, the bowtie and the hourglass change
as |pq| + |rs| changes. As argued above, we shift pg or rs in a way that decreases |pq| + |rs|
and thereby > and X while increasing the smaller split until both splits are equal. The same
applies when we continue to shift pq and rs at the same time adjusting the speed of the shifts
to maintain © = @. Eventually, we arrive at shortcuts p’q” and r's’ with <" = ¥ = 9’ = @’
and diam(C + pq + rs) > diam(C + p’q’ + r’s’), since we only decreased the diametral cycles
throughout the shift operations and maintain usefulness as argued in Theorem 2.11. ]

Corollary 2.13. For every geometric cycle, there exists an optimal pair of alternating shortcuts such
that the hourglass and the bowtie are diametral and such that each split cycle is diametral or the
shortcut of the split has at least one endpoint at a reflex vertex. ]

Lemma 2.14. A pair of alternating shortcuts pq and rs is optimal for a non-degenerate geometric
cycle if |pq| + |rs| is minimal among all pairs of alternating shortcuts with Y = > > ©, @.

Proof. Suppose C is a non-degenerate geometric cycle. Then, there exists an optimal pair of useful
alternating shortcuts p*q* and r*s* for C such that ¥* = =" > 0%, @*. We have

Giam(C 1 gt 4 risy = £ _ @) 1)+l 1] g s
2 2 4 2
since ¥* = »* implies d(p*, r*) + d(q*,s*) = d(q*,r*) + d(s*, p*) = |C|/2. Since p*q* and r*s* are
useful for C, i.e., diam(C + p*q* + r*s*) < diam(C) = |C|/2, we have |p*q*| + |r*s*| < |C|/2.
Consider any pair of alternating shortcuts pq and rs that minimize the sum of the their lengths,
i.e., [pg| + |rs|, such that X = > > ©, @. Note that we have |pq| + |rs| < [p*q*| + |r*s*| < |C]|/2.
We argue that pq and rs are useful for C. Let a = deew(p, 1), b = deew(r, q), ¢ = deew(q, s), and
d = deew(s,p) witha+b < c+dand b + c < a+ d. We need to show that |pg| + |rs| < a+¢
and |pq| + |rs| < b+d and |pg| < a + b and |rs| < b + c. The first two conditions hold, since
>« = Y implies a + ¢ = b+ d = |C|/2 and, thus, |pq| + |rs| < |C|/2 = a+ ¢ = b + d. The condition
|pgl < a + b holds, since >« > © implies a + |rs| > d, i.e., —|rs| < a —d, and, thus,

lpgl < |Cl/2—|rs| <|C|/2+a—-d=a+Db .
Likewise, the condition |rs| < b + ¢ holds, since > > @ implies —|pq| < ¢ — d and, thus,
Irs| < |C|/2—|pgq| < |C|/2+c—-d=b+c .

This means pq and rs are useful for C and, thus, optimal, since

C + |rs C qF| + |rts”
diam(C + pq + rs) = thl +—|qu2 Irs < ljl +—|P 9 |2 sl = diam(C + p*q” + r*s*
Therefore, a pair of alternating shortcuts pq and rs is optimal for a non-degenerate geometric
cycle if |pg| + |rs| is minimal among all pairs of alternating shortcuts with Y = = > ©, @. ]
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2.4 Algorithm

2.4 Algorithm

Guided by our structural results, we find an optimal pair of shortcuts for a geometric cycle C
by searching for a shortest pair of alternating shortcuts pg and rs such thats< = Y > ©,@. We
divide this search into four parts depending on which shortcuts are stuck at a reflex vertex.

1. Neither shortcut is stuck at a reflex vertex and thus <= =0 = Q.
2. Only the red shortcut pq is stuck at a reflex vertex and thus< =3 =@ > o.
3. Only the blue shortcut rs is stuck at a reflex vertex and thus»>< =3 =0 > @.

4. Both shortcuts are stuck at reflex vertices and thus>< = ¥ > Q and > = Y > Q.

For each part of the search, we determine a pair of shortcuts with the shortest length and
then we report the pair of shortcuts with the shortest encountered length. For a cycle with n
vertices and k reflex vertices, the first part of the search takes O(n) time, the second and third
part take O(kn) time each, and the forth part takes O(k?n). Therefore, we can find an optimal
pair of shortcuts for convex cycles in O(n) time and for non-convex cycles in O(k?n) time.

When the cycle is convex, we only perform the first part of the search, since every shortest
pair of shortcuts with >« = ¥ = © = @ is optimal. We use this property—rather than convexity
itself—to establish our result for convex cycles. This allows us to reuse the algorithm for convex
cycles without modification for the first part of the search for non-convex cycles.

We present our algorithms for non-degenerate geometric cycles where the edges are line
segments. Apart from the running time, our algorithmic results hold for more general edges, e.g.,
algebraic curves of constant degree. We assume, without loss of generality, that no two adjacent
edges are co-linear: If two adjacent edges are co-linear, then we merge them into a single edge.

2.4.1 Algorithm for Convex Cycles

For a convex cycle C, we search for a shortest pair of shortcuts satisfying <=3 =0 = @. We
begin with an arbitrary point p on the cycle C and compute three points g, r, and s such that
= X = O = @—regardless of whether pq and rs form a useful pair of shortcuts. The points g,
r, and s exist for every point p along C and they are unique up to a (benign) degenerate case.
Once we have an initial selection of points p, g, r, and s with > = ¥ = © = @, we conceptually
sweep p continuously along C maintaining the balance of the candidate cycles by moving g, r,
and s appropriately. We show that g, r, and s move in the same direction as p while preserving
their order along C. Thus, each endpoint traverses each edge of the n edges of C at most once
throughout this process. This yields O(n) events when discretizing the continuous sweep and, in
between any two subsequent of these events, we can express the current diameter of C + pg + rs
as an algebraic function of constant degree, because the points p, g, 7, and s remain on their
containing edges. Therefore, we obtain an optimal shortcut for a convex cycle in O(n) time.

We begin with an observation, illustrated in Figure 2.17, about the lengths of the sections into
which the endpoints of the shortcuts divide the cycle when all candidate cycles are in balance.
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2 Cycle Shortcuts

Figure 2.17: A convex cycle C with a pair of alternating shortcuts pqg and rs with< =3 =0 = @.
We have diam(C + pq + rs) = d(s, p) and diam(C + pq + rs) — diam(C) = d(q, r).

Lemma 2.15. Let pq, rs be a pair of alternating shortcuts for a geometric cycle C withe<=3=0 =
@. The points p, r, q, and s divide C into four sections of lengths a = d(p,r), b = d(r,q), c = d(q, s),
andd = d(s,p) witha+b < c+d andb + ¢ < a+d such that

C + C -

d= € + Ipgl +Irs| = diam(C + pq + rs) a= el + lpal = Irs|
4 2 4 2
C + C -

b= % _ lpal +rsl 5 Irs = diam(C) — diam(C + pq + rs) c= lTxl + Irsl = Ipql 5 Ipdl .

Proof. Let pq, rs be a pair of alternating shortcuts for a geometric cycle C with>< =3 =0 = @.
Leta=d(p,r),b=4d(r,q),c = d(g,s), and d = d(s,p). Recall that Lemma 2.6 implies

O=0Sa=c+|pq|-1rs|, w=XSa+c=b+d=|C|/2, m=0&b=a-|pq| .

This implies 2a = a+c+|pq| —|rs| = |C|/2+ |pq| —|rs| and thus 2¢ = |C| —2a = |C|/2 + |rs| — |pq]|.
This yields 2b = 2a — 2|pq| = |C|/2 — |pq| — |rs| and thus 2d = |C| — 2b = |C|/2 + |pq| + |rs].
Since the red split cycle is a diametral cycle, we have ©/2 = diam(C + pq + rs). Furthermore,
> = © implies a + |rs| = d and, thus, © = a + |rs| + d implies d = ©/2 = diam(C + pq + rs). Since
b =|C|/2 — d and diam(C) = |C|/2, we obtain b = diam(C) — diam(C + pq + rs). O

Surprisingly, for every useful pair of alternating shortcuts pg and rs withs< =Y =0 = @, we
can read the new continuous diameter of C + pq + rs from d(s, p) and we can read the benefit of
adding the shortcuts pg and rs to C from d(r, q). Therefore, we may minimize d(s, p) instead of
lpq| + |rs| when searching for a shortest pair of alternating shortcuts with>< =Y =0 = @.

Consider a geometric cycle C and a fixed point p on C. We say a triple of points g, r, and s is
in balanced configuration with p when the points p, r, ¢, and s appear counter-clockwise in this
order along C with deew(p, ) < |C|/2 and decw(r,s) < |C|/2 such that<=Y=0 = @.

Lemma 2.16. For every point p on a cycle C, there exist q,r,s € C that are in balance with p.

Proof. Let p be a point on a geometric cycle C. Let p and § be the antipodal points of p and s,
respectively, i.e., d(p, p) = d(s,3) = |C|/2. A pair of shortcuts pq and rs is alternating if and only
if |C|/4 < deew(s, p) < |C|/2 and g, r appear in this order along the clockwise path from p to 3.
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Let a = d(p,r), b = d(r,q), c = d(q,s), and d = d(s,p), as illustrated in Figure 2.18. An
alternating pair of shortcuts pgq, rs satisfies > = Yif and only ifa+c¢ = b +d = |C|/2, ie,
b = |C|/2 —d. Thus, for fixed s and p, the position of g determines the position of r and vice versa.

p.\/
. S.

\ d
Figure 2.18: Locating q and r to balance >« = X = @ for fixed p and s.

Suppose we place s tentatively on C with |C|/4 < dcew(s,p) < |C|/2. We search for positions
for g, r such that =« = ¥ = @. We sweep ¢ and r clockwise from q = p to r = § while maintaining
d(q,r) = |C|/2 — d(s,p), as illustrated in Figures 2.18 and 2.19. During the sweep, @ weakly
decreases. We argue that we have < = X > @ when r reaches $. If = = X < @ when q is at p, then
this implies that there exist positions for g,  such that >« = X = @. We use this to characterize the
positions for s such that there exist g, r where pq, rs are alternating shortcuts with =~ = Y = @.

—| —

> = X

p q 5
Figure 2.19: The points g, r where >« = X = @ for s, p on the geometric cycle shown on the right.

1. Suppose r lies at 3, as illustrated in Figure 2.20a. We argue that ¥ = > > @.

We have ¢ = d, since ¢ = d(q,s) = d(s,5)—d(q,5) = |C|/2—-d(q,r) = d(s,p) = d. This yields
X=ma>Q,sinces<= |pg|+|rs|+a+c=|pqg|+|rs| +a+d=>|rs|+a+d=0.

Note that we have X = > = @ if and only if p and g coincide, i.e., [pq| = 0.
2. Suppose q lies at p, as illustrated in Figure 2.20b.
We have b = ¢, since b = |C|/2 —d = d(p,p) — d(s,p) = d(p,s) = d(q,s) = c.

For each ~€ {<, =, >}, we have X = >« ~ @ if and only if

dp,s)+1ppl =c+lpql ~d=|Cl/2=b=|C|/2—c =|C|/2—d(p,s) .
This means we have X = > < @ if and only if d(p, s) < |C|/4 — |pp|/2.
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(a) The case when r lies at 3. (b) The case when ¢ lies at p.
Figure 2.20: The boundary cases when locating q and r to balance >~ = X = @.

Let p be the unique position on the clockwise path from p to p with d(p, p) = |C|/4 — |pp|/2.
Notice that 0 < d(p, p) < |C|/4, since 0 < |pp| < |C|/2 and notice that p is the farthest point from
p along the cycle formed by the clockwise path from p to p and the line segment pp. The points

along the clockwise path from p to p are precisely the positions for s where there exist g, r such
that pq, rs are alternating shortcuts with X = ~ = @.

—>=)Y=0Q
)

p s p
Figure 2.21: The points s, g, r that are in balance with p for the geometric cycle on the right.
We argue that < = Y = @ > © when s is at p and that < = X = @ < © when s is at p, as

illustrated in Figure 2.21. Therefore, there exists a position for s along the clockwise path from p
to p such that there exist g, r such that pq, rs are alternating shortcuts with>< =3 =0 = @.

1. Suppose s = p and let g, r be such that X = = = @, as illustrated in Figure 2.22a.
We have d = d(s,p) = d(p,p) = |C|/2. Since = = @, we have ¢ + [pq| = d. This implies

I=r=0<|Cl=2d=d+c+pgl=0 .

The pair of shortcuts is never useful in this case, since pq is a line segment along C.
2. Suppose s = p and let g, r be such that ¥ = > = @, as illustrated in Figure 2.22b.

Recall that p was the position for s where = = ¥ = @ when q lies at p, which implies b = c,
as argued above. Therefore, we have ¥ = > =@ > O, because

O=va=X=b+d+|pg|+|rs|>b+d+|pgl=c+d+|pgl=0 .

Therefore, there exist s, g, r such that pg, rs are alternating shortcuts with<~=Y=0=0. 0O
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s:p p=§=r=q q:p p
ﬁ\\/
(a) The case when s is at p. (b) The case when s is at p.

Figure 2.22: The boundary cases when locating a position for s withe<= Y= = . Whens =p
and C is not convex, ¢ might not lie at p, but pq is part of an edge of C.

The three points s, g, r that are in balance with a point p on a geometric cycle C are unique up
to the degeneracies described in Lemma 2.18. The following technical lemma summarizes some
observations that simplify the proof of Lemma 2.18 and other arguments.

Lemma 2.17. Let pq, rs and p’q’,r’s” be two pairs of alternating shortcuts. For x € {p,q,r,s},
let 6x = deew(p, x’) — deen(p, x) and let a = d(p,r), b = d(r,q), c = d(q,s), d = d(s,p) and let
a' =dp',r'),b" =d(r',q'), ¢’ =d(q’,s"),d’ = d(s’,p’). Regardless of the signs of 8,, &4, 6r, s,

d=a+8-8, b =b+8,-5  =c+8-8, d=d+5,-6 ,

M:X/\M':X'2>5p+5q=5s+5r (2-1)
I=oAY =0 = 26, =Ip'q'| - Ipql + 5, + I (2.2)
<=Q A =0 = 26, =|r's’| —|rs| + 6, + 5 . (2.3)

Proof. The relations between a, b, c,d and a’, b’, ¢/, d’ follow from the definition of ,, 4, 6, Js.
If>« = Yand »<’ = X', then b +d = |C|/2 = b’ + d’. This implies §, + 6, = 5 + J;, since
Sp+0g=0p+ g+ (b+d)— (b +d)
=0p+0q—(d —d)—(b"—b)
=08, +08q —(8p = 85) = (64 — 6,) = 65 + 6 .
Ify=0and Y’ =@, thenwehave 0 = X-@ = |pg| +b—-aand 0 =% - @ = |p'q’| + b’ —a’.
This implies 26, = [p’q’| — |pg| + &, + &4, because
26, =26, +(X -@)—-(X- @)
=26, +(Ip'q'| +b" = a") = (Ipql + b - a)
=26 +1p'q'l = lpgl + (0" = b) = (a" — a)
=20, +1p'q'| = Ipql + (84 — &) = (6, = Jp)
=1p'q'l = lpgl + 8 + 64 .

Analogously, we show that if >« = © and >’ = ®’, then 26, = |r’s’| — |rs| + 6, + 5. O
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Lemma 2.18. Let C be a geometric cycle. If q,r,s and q’,r’, s’ are in balance with p € C where
d(s’,p) < d(s, p), then one of the cases in Figure 2.23 applies and |pq’| + |r's’| < |pq| + |rs].

Proof. Suppose there exist two triples s, g,r and s, ¢’, ’ that are in balanced configuration with
a point p along a geometric cycle C. Furthermore, suppose d(s’, p) < d(s, p).
Let 8y = decw(p, x”) — deew(p, x) for x € {q, r, s}. We place p’ at p. Lemma 2.17 yields

a=a+, b =b+064 -0 ¢ =c—8;+ 3 d=d-96 .
We have §; > 0, because dew(s’,p) = d(s’,p) < d(s,p) = dew(s, p). Furthermore, Lemma 2.17
implies 8, = d; + 8, and 26, = [pq’| — |pg| + 64 and |rs| = [r's’| + &, + Js.
We distinguish two cases depending on whether ¢’ lies clockwise or counter-clockwise of g.
Each case corresponds to one of the two degenerate constellations depicted in Figure 2.23.

(a) The counter-clockwise case §, > 0. (b) The clockwise case 5, < 0.

Figure 2.23: The two cases when there exist two triples s, g, r and s’, ¢/, r’ that are in balance with
a point p along a geometric cycle C with d(s’, p) < d(s, p). If ¢’ lies counter-clockwise
of g,i.e., 64 > 0, then |rs| = d(r,r") + [r's’| +d(s,s”) and the cycle C contains the line
segments rr’ and ss’, as depicted in Figure 2.23a. If ¢’ lies clockwise of g, i.e., § > 0,
then s = s’ and |r's| = d(r’,r) + |rs| and |pq| = |pq’| + d(¢’, q) and C contains the
line segments rr’ and qq’ that have equal length, as depicted in Figure 2.23b.

1. Suppose 64 > 0, i.e., g’ lies counter-clockwise of q. This means &, = d(q, q").

Then, we have §, > 0, i.e., r’ lies counter-clockwise of r and, thus, §, = d(r, r’), since
26, = Ipq’| = Ipql + 84 = Ipq’l = Ipql +d(q,q') = —-d(q,q") +d(q.q") =0 .

This implies |rs| = |r's’| + 6, + 05 = d(r,r’) + |r's’| + d(s’, s). Therefore, r, ', s, and s are
co-linear and the line segment rs consists of the counter-clockwise path from r to r’, the
line segment r’s’, and the counter-clockwise path from s to s’, as in Figures 2.23a and 2.24.

We argue |pq’| + |r's’| < |pq| + |rs|. Recall that X = @ implies |pq| = a —b and ¥’ = @’
implies [p’q’| = a’ — b’. Since §4 = 6, + J; implies b’ = b + 5, — 5, = b + J5, we obtain
lpq’| +1r's’| = lpq’| + |rs| = 6, = 8s =a" = b" + |rs| = 6, — &
=(a+6,)—(b+0d)+|rs| -6, —8s =a—b+|rs| — 25
= |pgl + Irs| — 265 < |pgl + Irs| .
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p s s p
(a) The positions of the endpoints along the cycle. (b) A comparison of > = ¥ = @ and ©.

Figure 2.24: A geometric cycle C with a point p € C such that there is more than one position for
s that leads to a triple s, g, r that is in balance with p.

2. Suppose §, < 0, i.e., ¢’ lies counter-clockwise of g. This means d, = —d(q, q).
We have §, < 0, since 6, < §, + s = §; < 0. Hence, 6, = —d(r,r’).
We have |pq| = |pq’| + d(q,q’) and |r's’| = d(r’,r) + |rs| + d(s, s”), because the inequalities

0=-d(q,q) +d(q.q) < Ipq'| = Ipql + d(q.4') = |pq'| = Ipql = 54
=0 -0=0" -0 =|r's"| —|rs| + §, — &
=|r's’| = |rs| = d(r,r") — d(s,s")
<d(r,r')+d(s,s") —d(r,r")—d(s,s") =0
are attained with equality. This implies @’ = @, since d(r’,r) = —J,, and, thus
@ =1|r's'|+a" +d =rs|+ 5 -6, +(a+6,)+(d—-6)=|rs|+a+d=0 .
Therefore, we have §; = 0 and, thus s = s’, because |pq’| — |pq| = —d(q,q’) = §4 and
[r’s’| = [rs| =d(r',r) +d(s,s") = 6s — 6, and a’ —a = 6, and ¢’ — ¢ = §; — 4 and, thus,
0=0" —0= == (Ipqg’'| +|r's'| +a’ + ") = (lpg| + |rs| + a+¢)
=(Ipg'l = lpgl) + (Ir's’l = Irs) + (a" — @) + (¢ = ¢)
= (6¢) + (85 = 8;) + (8;) + (65 — dq) = 255 .
We conclude |pq’| + [r's’| = |pq| + |rs|, as —=d(q,q") = 64 = &, + &5 = 6, = —d(r,r’) and,
thus, |pg’| +[r's’| = |pql - d(q.q") + [rs| + d(r.r’) + d(s.s") = |pg| + |rs].
Therefore, we have one of the constellations in Figure 2.23 and |p’q’| + |r's’| < |pq| + |rs|. O
Lemma 2.18 suggests that we handle the cases where the points that are in balance with p are
not unique, as follows. First, if there are several positions for s that lead to balanced triples with p,
then we pick the one closest to p, since this will lead to the shortest pair of shortcuts. Second, if
there are several positions for g, then we pick, say, the position with the least clockwise distance

to p, since all the choices for g lead to pairs of shortcuts with the same length. Therefore, we
assume in the following, without loss of generality, that the balanced triple for p is unique.

35



2 Cycle Shortcuts

Corollary 2.19. For a geometric cycle C with n vertices and a point p € C, it takes O(n) time to
compute three points q,r,s € C that are in balanced configuration withp € C.

Proof. Let p be a point on a geometric cycle C with n vertices. We compute the counter-clockwise
distance from p to each vertex of C. This takes O(n) time and supports constant time queries
for the network distance between any two points along the edges of C. This also allows us to
determine the value of >, ¥, ®, and @ for any pair of shortcuts pq, rs in constant time.

The positions of s and g imply the position of r, due to the constraint >« = . For a fixed position
of s, all positions of g that lead to a triple s, g, r with >« = X = @ form a possibly empty interval
along C. The positions for g clockwise of this interval lead to >« = ¥ > @ and the positions for g
counter-clockwise of this interval lead to >« = X < @, as illustrated in Figure 2.19. Therefore, for
a fixed position of s, we can find a position of g with > = X = @ in O(log n) time using binary
search, if it exists. We detect in constant time if a suitable position for g exists.

The positions of s such that there exist g and r with > = ¥ = @ form a non-empty interval
along C. Within this interval there exists a line segment in C containing all positions for s that
lead to a balanced triple. All positions for s clockwise of this line segment lead to<~=Y=2 < ©
and all positions counter-clockwise of this line segment lead to>< = X = @ > ©, as illustrated in
Figure 2.21. Therefore, we can find a suitable position for s in O(log® n) time with a binary search
that performs in each step a binary search for a position for g with <= ¥ = @. ]

Lemma 2.20. We sweep a point p along a cycle C while maintaining the points s, q,r that are in
balance with p. As p traverses C, each of q, r, and s enter each edge at most once through a vertex.

Proof. Let pq, rs and p’q’, r’s’ be two pairs of shortcuts with p # p” and deew(p, p’) = d(p, p’) such
thate« =3 =@ = Q and =’ = ¥’ = @' = ©’". We argue that either all endpoints move in the same
direction as p sweeps to p’ or all endpoints remain on their containing edge.

For x € {p,q,r,s}, let x = deew(p, x’) — deew(p, x). In particular, we have 6, = d(p, p’) > 0.

We argue that §; > 0. By symmetry, Lemmas 2.16 and 2.18 imply that for every position of s
along C there is a unique point p such that we can find g, r € C that lead to a balance in the four
candidates for diametral cycles in C + pq + rs. Therefore, s cannot remain stationary or change
direction while p sweeps along C, i.e., s # 0. If s moves clockwise (§; < 0) while p moves counter-
clockwise (6, > 0), then we eventually reach positions s’ and p”” such that d(p”,s”) = |C|/2,
i.e., s” is the farthest point p”” from p”” along C. In the proof of Lemma 2.16, we have seen that
this means every ¢”,r” with =" = ¥/ = @"” and ©” = @" satisfy =" = ¥’ < ©” = @”. This
contradicts the existence of a balanced triple for p”’. Therefore, s must move in the same direction
as p, i.e, d; > 0 and, thus, s enters each edge at most once through a vertex.

Regardless of the signs of §, and §,, the changes in the section lengths are

d=a+8-5, b =b+8,-8  =c+8-8, d=d+5,-6 ,

and, by Lemma 2.17, the balancesb« = Y = © = @ and >’ = X' = ©’ = @" imply 6, + 54 = I + &
and 26, = &s + 6, + |r's’| — |rs| and 26, = 64 + 6, + |p'q’| — |pql.
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Figure 2.25: The degenerate case where we sweep a point p counter-clockwise to p” along a
geometric cycle C and the point r moves clockwise to r’ where s, q,r and s’,q,”, r’
are the triples of points that are in balance with p and p’, respectively. We have
Ipgl = d(p.p")+Ip’'q’|+d(q’, ) and [r's’| = d(r’, r)+|rs|+d(s, s") with d(p, p’) = d(s,s")
and d(r,r’) = d(q,q’). This means |p’q’| + |r's’| = |pq| + |rs|.

We distinguish the following two cases: In the first case, r moves in the same direction as p or
r remains stationary, i.e., §, > 0, and all endpoints move in the same direction as p sweeps to p’.
In the second case, r moves in a different direction as p, i.e., §, < 0, and all endpoints remain on
their containing edge as p sweeps to p’, as illustrated in Figure 2.25.

1. Suppose &, > 0. Then §, = d(r,r’) and, thus, 5, > 0, since

20 = 20, + 205 — 20, (8p + g = O + J5)
=6, + 05 +d(r,r’") + d(s,s") — 26, (6, =d(r,r’) and &5 = d(s,s"))
> 8, + 05 + |r's’| = |rs| = 26, d(r,r’)y+d(s,s") = |r's’| —|rs])
=25, — 20, (8 + 85 + |r's’| = |rs| = 26p)
=0 .

Therefore, s, g, and r move in the same direction as p and—since none of these endpoints
may pass each other—each endpoint enters each edge of C at most once through a vertex.
2. Suppose §, < 0. This means, we have §, = —d(r,r’).

We argue that ¢ moves in the same direction as r with §; < 6, < 0. By definition, we have
either 6, = d(q,q’) or 64 = —d(q, q’). The latter applies, since 4 < d(g,q’), because

8q = 6q +d(p,p") —d(p.p") — d(q.q') + d(q.q") (adding zeros)
=0q + 6, —d(p.p") —d(q.q") + d(q.9") (d(p,p’) = &)
< 8+ +10'q'| - Ipgl + d(q.q") (=d(p,p") —d(q.q") < Ip’q’| = Ipql)
=26, +d(q.q") (G + 34 +1p"q = Ipql = 26)
<d(g.q') . (6, < 0)

This implies 8, < 6,,as d(q,q") = —d yields 25, < 64 +26, +d(q,q") = 6+ 256, — 64 = 25,
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We argue that s moves in the same direction as p with 0 < §, < J;. We already know that
d(s,s’) = 6s > 0 and we obtain §, < Js, since 6, = —d(r,r’) leads to

20p = O + 05 + |r's’| = |rs| < 8, + & +d(r,r") + d(s,s") = 6 + 05 — 6, + &5 = 20 .

Now 6, + 64 = 65 + 6, and 64 < 6, and §, < &5 imply 6, = &5 and 64 = J,, since
Op +8qy < 6p+6r <65 +6,=8p +39g .

This leads to a degenerate constellation where p,p’,q, q’ are co-linear and r,r’, s, s’ are
co-linear in a way that prohibits ¢, and r to enter another edge through a vertex.

We obtain [pq| = d(p,p’) + |p’q’| +d(q’, q), since 264 = 25, = 6, + 64 + |p'q’| — |pg| implies
lpql = 6, +1p'q’1 = 8¢ = d(p.p") + Ip'q'| + d(q’, q) .

We obtain d(r’,r) + |rs| + d(s,s”) = |r’s’|, since 285 = 26, = 6, + 5 + |r’s’| — |rs| implies
d(r',r) + |rs| +d(s,s") = =6, + |rs| + 6s = |r's"| .

Therefore, we have the degenerate situation in Figure 2.25 where C contains the line
segments pp’, qq’, rr’, and ss’. Since we merged all adjacent co-linear edges, this means
that all endpoints remain on their containing edges as p sweeps to p’ in this case.

In conclusion, as p sweeps the entire cycle C once, each of the points s, g, r that are in balance
with p (and the point p itself) enter each edge of C at most once through a vertex. m|

Theorem 2.21. For a convex cycle C with n vertices, it takes O(n) time to determine a pair of
shortcuts pq, rs that minimizes the continuous diameter of the augmented cycle C + pq + rs.

Proof. We pick an arbitrary point p along C and determine three points s, g, r that are in balanced
configuration with p. This takes O(n) time, as argued in Corollary 2.19. Conceptually, we sweep
p continuously along C while maintaining s, g, r such that > = ¥ = @ = © and monitoring the
distance d(s, p) that matches the diameter of C + pq + rs, as argued in Lemma 2.15.

To discretize the sweep we proceed as follows. In each step, we identify the four edges that
would contain p, g, r, and s next, if p was to sweep continuously along C: for each x € {p,q,r, s},
we calculate how far the other endpoints would move under the assumption that x is the first
point to hit a vertex. Since all points move in the same direction as p, an edge e will never host
an endpoint x in any subsequent step, once x has left e. Therefore, the four edges e, ey, €;, and e
that contain p, g, r, and, s, respectively, change O(n) times. For each set of edges, we determine a
pair of alternating shortcuts p*q*, r*s* with =" = ¥ = ©" = @" that is optimal among all pairs
of shortcuts with x* € e, for all x € {p, g, r,s}. This takes constant time, since we can express
the value of d(s, p) = diam(C + pq + rs) between subsequent events of the sweep as an algebraic
function of constant degree in terms of the position of p along e,,.

Therefore, we obtain an optimal pair of shortcuts for a convex cycle C in O(n) time. ]
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2.4.2 Algorithm for Non-Convex Cycles

As explained at the beginning of this section, our search for an optimal pair of shortcuts for a
geometric cycle consists of four parts: The search for the shortest pair of shortcuts where (1)
none of the shortcuts are stuck at a reflex vertex (< = ¥ = © = @), (2,3) one of the shortcuts is
stuck at a reflex vertex (<= X =@ > 9,>a = Y = O > @), and (4) both of the shortcuts are stuck
at a reflex vertex (< = ¥ > ©, @). The algorithm for convex cycles from Theorem 2.21 already
handles the first part of this search, because—instead of relying on convexity itself—it relies on
the balance of the four candidate cycles (> = X = ® = @) that holds for convex cycles.

We begin with the case where the red shortcut is stuck at a reflex vertex (< = Y = @ > ©).
We describe how to find the best shortcut with p at a reflex vertex and similarly how to find the
best shortcut with g stuck at a reflex vertex. For a geometric cycle C with n vertices and k reflex
vertices, this takes O(n) time per reflex vertex and, thus, O(kn) total time. The treatment for the
case when the blue shortcut is stuck is symmetric.

Lemma 2.22. Let C be a cycle with n vertices. For every p € C, it takes O(n) time to determine
s,q,r € C that minimize |pq| + |rs| for all alternating shortcuts pq, rs withe< =X =@ > O.

Proof. Let p be a point along a geometric cycle C. Let p be the farthest point from p along C and
let p be the farthest point from p along the cycle formed by the clockwise path from p to p and
the line segment pp, i.e., d(p, p) = |C|/4 — |pp|/2. We know from the proof of Lemma 2.16 that
the clockwise path from p to p consists of all positions for s where there exist g, r such that the
shortcuts pgq, rs are alternating and satisfy = = ¥ = @. Due to the constraint ¥ = = = @, the
position of s implies the positions of q and r and these positions are unique up to the degeneracies
in Figure 2.23b that lead to pairs of shortcuts with the same length. According to Lemma 2.18,
there are two points s- and s_ along the clockwise path from p to p such that the clockwise path
from s- to s_ consists of all positions for s where we achieve >« = X = @ = ©. We have s- = s.,
except for the degenerate case depicted in Figure 2.23a. Furthermore, we achiever<=Y=0@ <
when s = p and we achieve >« = X = @ > © when s = p. Therefore, the positions for s where there
exist g, r such that pq and rs are alternating shortcuts with < = ¥ = @ > © form the clockwise
path from p to s—, excluding s- itself, as illustrated in Figure 2.24, where s_ is s” and s is s.

We sweep s counter-clockwise from s- to p. We argue that q and r move counter-clockwise
throughout the sweep. This means that the sequence of edges containing s, g, r has length O(n).
When s sweeps along an edge e, such that g lies on an edge e, and r lies on an edge e,, then
we can describe |pg| + |rs| such that X = = = @ as an algebraic function of low degree and
determine its minimum in constant time. Therefore, it takes O(n) time to locate the shortest pair
of alternating shortcuts pq and rs withs< = Y = @ > © for a fixed position of p.

It remains to show that g, r move counter-clockwise, as s moves counter-clockwise from s- to
s_. Suppose s,q,r and s, ¢’, r’ are two positions with d(p, s) > d(p,s’), such that < = X = @ and
" = X' = @', respectively. Let a = d(p,r), b = d(r,q), c = d(q,s),d = d(s,p), and let a’ = d(p,r’),
b’ =d(r',q'), ¢’ =d(q’,s’),d = d(s’,p). For x € {s,q,r}, let 5y = deew (P, x") — deew(p, x). The
points s, g, r move counter-clockwise to s’, ¢’, r” if and only if s, 64, 5, > 0.

The choice d(p, s) > d(p, s’) implies 65 = d(s,s’) > 0. We have = = @ and =<’ = @’ and, thus,
265 = 84 +|pql —|pq’|, by Lemma 2.17. We derive that §; > 0, since the assumption §, < 0 implies
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84 = —d(q,q’) and leads to the contradiction 0 < 285 = 84 + |pq| — |pq’| < 64 +d(q,q’) = 0.

We have X = @ and X’ = @” and, thus, 26, = §; + [pq’| — |pq|, by Lemma 2.17. We derive that
Oy 2 0, since 0 < 64 = d(q,q’) and, thus, 25, = 64 + |pq’| — |pq| = 64 — d(q.q’) = 0.

Therefore, g and r move counter-clockwise as s sweeps in counter-clockwise direction along
the counter-clockwise path from s- to p. As argued above, this means that the claim follows. O

Corollary 2.23. Consider a geometric cycle C with n vertices and k reflex vertices. It takes O(kn)
time to determine a shortest pair of alternating shortcuts pq, rs such thatr< =X =0 > O.

Proof. We know that if pq, rs is a shortest pair of alternating shortcuts with>< = ¥ = @ > ©, then
the red shortcut pq has one endpoint at a reflex vertex of C. For each reflex vertex v of C, we
search for a shortest pair of alternating shortcuts pq, rs withe< = X = @ > © and p = v. This
takes O(n) time per reflex vertex. Analoguously it takes O(n) time per reflex vertex to find a
shortest pair of alternating shortcuts pg, rs with < = ¥ = @ > © and g = v. Therefore, it takes
O(kn) time to find a shortest alternating pair of shortcuts pq, rs such that<=3=0>0©. O

Theorem 2.24. Consider a geometric cycle C with n vertices and k reflex vertices. It takes O(k*n)
time to determine a shortest pair of alternating shortcuts pq, rs such that=< =Y > @, O.

Proof. If pq, rs is a shortest pair of alternating shortcuts with >« = ¥ > @, ©, then both shortcuts
have an endpoint at a reflex vertex of C. Suppose u, v are reflex vertices of C with |C|/4 <
deew(u, v) < |C|/2. We can find the shortest alternating pair of shortcuts pq, rs with s = u and
p = v such that > = ¥ > @, in O(n) time. This is because any position for g determines the
position for r, since d(q,r) = b = |C|/2—d = |C|/2 - d(u,v). Hence, it is sufficient to sweep q and
r from q = 0 to r = @ and report the shortest encountered pair with = = Y > ©, @. Analogously,
it takes O(n) time to find the shortest alternating pair of shortcuts pg, rs such that< =Y > @,
when u € {s,r} and v € {p, q}. Since there are (];) pairs of reflex vertices, it takes O(k?n) time to
determine a shortest pair of alternating shortcuts pgq, rs such that < = Y > @, ®. ]

In conclusion, we have seen that for every geometric cycle there is an optimal pair of shortcuts
that is a shortest pair of alternating shortcuts with >« = ¥ > @, ®. In this section, we argued that
it takes O(n) time to find a shortest pair of shortcuts with > = ¥ = @ = O, it takes O(kn) times to
find a shortest pair of shortcuts withe< =Y =@ > Q or>~= Y =0 > ©, and it takes O(k?n) time
to find a shortest pair of shortcuts with < = ¥ > @, ©. Therefore, it takes O(k?n) time to find an
optimal pair of shortcuts for a geometric cycle with n vertices and k reflex vertices.

Theorem 2.25. For a non-convex geometric cycle C with n vertices and k reflex vertices, it takes
O(k?n) time to determine a pair of shortcuts pq, rs for C that minimizes diam(C + pq + rs). ]

Recall that we have d(s, p) = diam(C + pq + rs) for every pair of alternating shortcuts pg, rs
with >« = Y = @ = ©. However, we have diam(C + pq + rs) > d(s,p) when> = ¥ > @, ©, since

2diam(C + pq+rs) =< =a+c+ |pg| + |rs| > d + c+ |pq| > 2d = 2d(s,p) .

This means that we cannot minimize the continuous diameter of a geometric cycle C by minimizing
d(s, p) instead of |pq| + |rs| among all alternating shortcuts pq, rs for C with>< =Y > @, S.
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We are given a geometric tree T in the plane. We wish to find a shortcut pq for T that minimizes
the continuous diameter of the resulting tree T + pq, as illustrated in Figure 3.1.

Figure 3.1: A shortcut for a geometric tree.

We require the following definitions to describe our results. The backbone of a tree T is the
intersection of all diametral paths of T; we denote the backbone of T by B. The absolute center of
a geometric tree T is the unique point ¢ € T that minimizes the largest network distance from
¢, i.e., maxger dr(c, Q) = minyer maxger dr(p, q). The absolute center c is the midpoint of every
diametral path in T and, thus, ¢ always lies on the backbone B of T.

We present the following structural results about optimal shortcuts for geometric trees in
Section 3.1. A shortcut pq is useful for a geometric tree T when augmenting T with pg decreases
the continuous diameter. A geometric tree T admits a useful shortcut if and only if its backbone
$ is neither a line segment nor a single point. Every geometric tree T has an optimal shortcut pq
with p, g € B such that the absolute center c lies on the path from p to gin T.

We determine an optimal shortcut for a geometric tree T with n vertices in O(nlog n) time.
Conceptually, we slide a candidate shortcut pg along the backbone of T while balancing the
diametral paths in T + pq. To implement this approach, we discretize this movement such that the
shortcut jumps from one change in the diametral paths to the next. The diametral pairs in T + pg
guide this search as each rules out a better shortcut in some direction. In Section 3.3, we assemble
the building blocks of the algorithm and explain how the diametral pairs guide our search. In
Section 3.4, we describe the continuous algorithm and show that it produces an optimal shortcut.
In Section 3.5, we discretize this algorithm and introduce some modifications to the continuous
algorithm that are necessary to achieve the desired running time.
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3.1 Usefulness

We say a shortcut pq is useful for T when diam(T + pq) < diam(T), we say pq is indifferent for T
when diam(T + pq) = diam(T), and we say pq is useless for T when diam(T + pq) > diam(T). In
the discrete setting, every shortcut is useful or indifferent, as the discrete diameter only considers
vertices of T. In the continuous setting, a shortcut may be useless for T, since the points on the
shortcut pq matter as well, as exemplified in Figure 3.2.

— —

X p s q y

t

Figure 3.2: A geometric tree T with a shortcut pq that is useless for T. Each edge has a unit weight
and [pq| = 8. The continuous diameter increases when we augment T with pq, since
diam(T) = dr(x,y) = 16 and diam(T + pq) = dr4pq(s,t) = 17.

For two points u, v € T, we say that a shortcut pq is useful for the unordered pair {u, v} when
dr1pq(u,v) < dr(u,v), and we say that pq is indifferent for {u, v} when dr,,q(u,v) = dr(u,v).

We say a shortcut pq is useful for the ordered pair u, v when dr(u, p)+ |pq| +dr(q, v) < dr(u,v),
we say pq is indifferent for u,v when dr(u, p) + |pq| + dr(q,v) = dr(u, v), and we say that pq is
useless for u, v when dr(u, p) + |pq| + dr(q,v) > dr(u, v). If pq is useful for u, v then the shortest
path from u to v in T + pq travels from u to p in T, then along the shortcut to g, and then from ¢
to v in T. Order matters: if pq is useful for the ordered pair u, v then pq is useless for v, u.

For some trees, we cannot reduce the continuous diameter with a single shortcut. For instance,
every shortcut pq for the tree T in Figure 3.3 is either useless or indifferent for T, because pq
would be indifferent for at least one of the diametral pairs {x, y}, {x, z}, or {y, z} of T.

»./ ’

c
x \q y

~—"
Figure 3.3: A geometric tree T whose continuous diameter cannot be reduced with a single
shortcut. Each pair of the three leaves x, y, and z is diametral, as dr(x, c) = dr(y,c) =
dr(z, c). The shortcut pq is not useful for T, because it is indifferent for {x, y}.

In Figure 3.3, the intersection of the diametral paths of T consists of a single vertex. We argue
that a tree with this property cannot have a useful shortcut.
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Lemma 3.1. Ifthe backbone 8 of a geometric tree T consists only of the absolute center c of T, then
there does not exists a useful shortcut for T, i.e., every shortcut for T is either indifferent or useless.

Proof. Suppose T is a geometric tree whose backbone 8 consists only of the absolute center c.
Then, ¢ must be a vertex of T, since 8 would contain the edge containing c, otherwise. Let x, y
be a diametral pair of T. Then we have % diam(T) = dr(x, ¢) = dr(y, ¢), since c is the midpoint of
the path from x to y in T. Since the backbone only consists of c, there must be at least one other
leaf z with % diam(T) = dr(z, c¢) such that the paths from z to x and from z to y pass through c.
This means x, y, and z lie in three different sub-trees Tx, Ty, and T attached to c.

Assume, for the sake of a contradiction, that there exists a shortcut pq that is useful for T. Then
p # g, since pq would be indifferent for T, otherwise. Hence, we have p # c or q # ¢, and one of
the sub-trees Tx, Ty, or T contains neither p nor g. Without loss of generality, suppose p, q ¢ Tx.
By our assumption, pq must be useful for every diametral pair of T including {x, y}. Without
loss of generality, let pq be useful for x, y, i.e., dripq(x,y) = dr(x,p) + |pql + dr(q,y) < dr(x,v).
Otherwise, we swap p and g. This implies that q lies in Ty, since otherwise the shortest path in
T + pq from x to y would contain ¢ twice: once along the sub-path from x to p and once along the
sub-path from q to y. Since pq is useful for T by assumption, pg must be useful for the unordered
pair {x, z} and, thus, pg must be useful for either x, z or z, x. The shortcut pq cannot be useful for
the ordered pair x, z, since the path from g to z contains c. Therefore, pqg must be useful for z, x.
This implies that p lies in Tz, since the path from x to g in T + pq contains c.

In summary, we conclude that pq is useful for x, y and for z, x with p € Tz and g € Ty. This
is impossible: Along the shortest path from x to y in T + pq the sub-path from c to p does not
contain the shortcut pq, i.e., dripq(c,p) = dr(c,p). On the other hand, along the shortest path
from x to zin T + pq, the sub-path from c to p does contain the supposedly useful shortcut pq,
ie., dripq(c,p) < dr(c,p). Therefore, there does not exist a single useful shortcut for T. O

Sy

Figure 3.4: The decomposition of the geometric tree T from Figure 3.1 into its backbone 8 (orange),
its primary B-sub-trees, X (blue) and Y (purple), as well as its secondary B-sub-trees
(green). The primary B-sub-tree Y coincides with the endpoint b of B.

Let T be a geometric tree whose backbone 8B does not consist of a single vertex, as illustrated
in Figure 3.4. In this case, the backbone 8 is a path with endpoints a and b such that a # ¢ # b.
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We call the sub-trees that are attached to B the B-sub-trees of T. The root of a B-sub-tree S is the
vertex r connecting S and 8. Let X be the 8-sub-tree with root a, and let Y be the 8-sub-tree
with root b. We refer to X and Y as the primary B-sub-trees, because every diametral pair of T
consists of a leaf x in X and of a leaf y in Y. The other B-sub-trees S;, Sz, ..., Sk with roots ry,
ra, ..., and ry, respectively, are the secondary B-sub-trees of T. Each of the primary $B-sub-trees
may consist of an endpoint of the backbone only, as exemplified in Figure 3.4.

Theorem 3.2. For geometric tree T with backbone B, there exist two points p,q € T such that pq is
a useful shortcut for T if and only if B is neither a line segment nor a single point.

Proof. Let T be a geometric tree and let pg be a useful shortcut for T. We show that the backbone
B of T is neither a line segment nor a point. Since T possesses a useful shortcut, the backbone B
of T cannot be a point, due to Lemma 3.1. Let a and b be the endpoints of the path 8, and let X
and Y be the primary B-sub-trees attached to a and b, respectively. Let x, y be a diametral pair
of T with x € X and y € Y. Since pq is useful for T, the shortcut pg must be useful for {x, y}.
Without loss of generality, pq is useful for x, y. Otherwise, we swap p and q.

The shortcut pq is useful for a, b, i.e., dr(a, p) + |pq| + dr (b, q) < dr(a, b), because there exists
a diametral pair X, j of T with X € X and ¢ € Y such that pq is useful for x, §, and a lies on the
path from x to p, and b lies on the path from g to §j. We locate x and 7 as follows.

« Suppose a lies on the path from x to p. Then we let x = x.

« Suppose a does not lie on the path from x to p. Then p € X with p # a. Since a is an
endpoint of the intersection of the diametral paths in T, there is some leaf x” of X such
that x’, y is diametral in T and the path from x’ to p contains a. We let £ = x’.

We argue that pq is useful for x’, y. Since pq is useful for T, it must be useful for {x’, y}.
The shortcut pq is useful for x, y and, therefore, useful for p,y. Thus, the shortest path
connecting p and y in T + pq contains q. If pq was useful for y, x’, then the shortest path
connecting x” and y in T + pq would travel from x’ to g, then via the shortcut gp to p, and
then backwards via g to y. This is impossible and, thus, pq must be useful for x’, y.

Likewise, we find ¢ such that pq is useful for x, §j and b lies on the path from q to 7.

Therefore, pq is useful for a, b. By the triangle inequality, |ab| < dr(a,p) + |pq| + dr(q,b)
and, thus, |ab| < dr(a, b). This means that the backbone is strictly longer than the line segment
connecting its endpoints and, thus, the backbone cannot be a line segment itself.

Conversely, suppose T is a geometric tree whose backbone 8 is neither a line segment nor
a single point, as illustrated in Figure 3.5. This means that the backbone 8 of T is a path with
endpoints a and b such that |ab| < dr(a, b). Let X and Y be the primary 8B-sub-trees of T attached
to a and to b, respectively, and let S1, S,, . . ., Sk be the secondary B-sub-trees of T.

We show that ab is already a useful shortcut for T or we show that we can construct a useful
shortcut pq for T with p,q € B. Let s, t be a diametral pair of T + ab. We distinguish three cases:
either we have s, t € T and s, t is diametral in T, or we have s, t € T and s, t is not diametral in T,
or we have s ¢ T or t ¢ T. In the first two cases, we show that ab is useful for T, and in the third
case we construct a useful shortcut pq for T with p, q € B if ab is not useful for T.
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SZ S3

Figure 3.5: A geometric tree whose backbone is not a line segment.

1. Suppose s, t € T such that s, t is diametral in T, i.e., dr(s, t) = diam(T).

Then s and ¢ lie in different primary 8B-sub-trees of T. Without loss of generality, we assume
that s € X and t € Y. Otherwise, we swap s and ¢.

The shortcut ab is useful for s, ¢, i.e., dr(s,a) + |ab| + d7(b, y) < dr(s, t), since
dr(s,a) + |ab| + dr(b,y) < d7(s,a) + dr(a,b) + dr(b,y) = dr(s, ) .
Therefore, dr44p(s,t) < dr(s, t) and, thus, the shortcut ab is useful for T, since

diam(T + ab) = dryap(s,t) < dr(s,t) = diam(T) .

2. Suppose s,t € T such that s, t is not diametral in T, i.e., dr(s, t) < diam(T).

Then the shortcut ab is useful for T, since

diam(T + ab) = d7yap(s,t) < d7(s, t) < diam(T) .

3. Suppose s ¢ T or t ¢ T. Without loss of generality, let s ¢ T. Otherwise, we swap s and ¢.

Then s € ab with a # s # b. Let C(a, b) be the simple cycle in T + ab. We distinguish two
cases depending on whether ¢ lies on C(a, b) or not.

a) Suppose t € C(a, b). Then we have dr,45(s, t) < dr(a, b), because

|abl +dr(a,b) _ dr(a,b) +dr(a,b)
2 2

dT+ab(s’ t) < = dT(a’ b) .

Therefore, ab is useful for T, since diam(T + ab) = dryap(s, t) < dr(a,b) < diam(T).
b) Suppose t ¢ C(a, b), as illustrated in Figure 3.6.

We argue that ¢ is a leaf of a secondary B-sub-tree. Let a be the point on C(a, b) that
is the farthest point from a with respect to T + ab. The point a lies in T, because
|ab| + |ab| - |ab| + dr(a,b)

2 2

|ab| = =dr+ap(a, @) .
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a

AR

Figure 3.6: A sketch of a geometric tree T whose backbone is not a line segment connecting its

endpoints a and b. A diametral pair s, of T + ab with s ¢ T. The diametral partner
t lies in a B-sub-tree attached to the path from a to b in T, where @ and b are the
respective farthest points from a and from b along the simple cycle C(a, b) in T + ab.

Therefore, t cannot lie in X, because a is the farthest point on C(a, b) from any point
in X, and s # @, since s ¢ T and a € T. Likewise, we argue that ¢ ¢ Y. In summary, s
lies on the shortcut ab and ¢ is a leaf of a secondary B-sub-tree.

Let 8 be the largest diameter of the secondary 8B-sub-trees Sy, . . ., Sk, i.e.,
k..
0= max diam(S;) ,
i=

and let ¢ = diam(T) — §. We have ¢ > 0, as none of the secondary B-sub-trees
contains diametral pairs of T, i.e., diam(S;) < diam(T) for all i = 1,2,...,k. Since
|ab| < dr(a, b), there exist p,q € B with |pq| < dr(p, q) and |pq| + dr(p, q) < 2e.

We argue that pq is useful for T. Let u, v be a diametral pair of T + pq and let C(p, q)
be the simple cycle in T + pg. Analogous to diametral pairs of T + ab, we argue that
pq is useful for T when u,v € T (Case 1 and 2) and when u € pg withp # u # g
and v € C(p, q) (Case 3a). It remains to show that pq is useful for T when u € pg
with p # u # q and when v is a leaf of a secondary $B-sub-tree that is attached to an
interior vertex r of the path from p to q in T (Case 3b), as illustrated in Figure 3.7.

.
AR

Figure 3.7: A sketch of a geometric tree whose backbone is not a line segment connecting its

endpoints a and b. We moved the shortcut to a position pq, since the shortcut ab
increased the diameter. The points p and g are chosen such that the simple cycle
C(p,q) in T + pq is too small to contain the depicted diametral pair u,v with u ¢ T.
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By definition, we have dr(v,r) < §. By choice of p and g we have

Co.9)l _ lpgl +drp.g) _2-c _
2 2 2

dT+pq(r’ u) <

Therefore, the shortcut pq is useful for T, since

diam(T + pq) = drypq(u,v) (u, v is diametral in T + pq)
=dr(v,r) + dripg(r,u)  (r is on any path from v to u in T + pq)
<dr(u,r)+e (dr4pq(r,u) <€)
<d+e (dr(v,r) < 6)
=06 +diam(T) - 6§ (e = diam(T) — 6)
= diam(T) .

Every diametral pair s, t of T + ab falls into one of the above cases and, in each case, we either
argued that ab is useful for T or found a useful shortcut for T when ab was not useful for T.
Therefore, T possesses a useful shortcut when 8 is not a line segment. O

3.2 Optimal Shortcuts

Consider a geometric tree T whose backbone is a path from a to b. This path contains the absolute
center c. We prove that there is an optimal shortcut pq for T such that p lies on the path from a
to ¢ and q lies on the path from c to b. This holds when B consists only of ¢, i.e., a = ¢ = b, since
then T has no useful shortcuts and the shortcut cc is indifferent and therefore optimal for T. For
the other cases, we establish our claim by proving the following statements.

1. The endpoints of any shortcut pq that is useful for T cannot lie in the same $B-sub-tree S.

2. If an endpoint p of a useful, optimal shortcut pq for T lies in a B-sub-tree S with root r,
then the shortcut rq is also optimal for T—regardless of the position of gq.

3. There exists an optimal shortcut pq for T with p,q € 8.

4. If pq is an optimal shortcut for T with p, ¢ € B such that the path from p to q along B does
not contain c, then at least one of pc or cq is also an optimal shortcut for T.

The last statement implies our claim, since c lies on the paths from ¢ to b from c to a. In the
following, we prove the above Statements 1 through 4 in Lemmas 3.4 to 3.6 and Theorem 3.7.

The idea for restricting the search for an optimal shortcut along the backbone stems from
Grof3e et al. [30] who establish the following theorem for the discrete setting. We generalize their
result to the continuous setting and expand it by incorporating the absolute center.

Theorem 3.3 (Discrete Backbone Theorem by Grof3e et al. [30]). Let T be a geometric tree with
vertex set V and backbone B. There exists a pair of vertices p,q € B NV such that pq minimizes
the discrete diameter of the augmented tree T + pq among all possible discrete shortcuts for T, i.e.,

max dripe(u,v) = min max dri,s(u,v) .
u,vev pq( ’ ) r,seV u,veV rS( ’ )
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Figure 3.8: A shortcut pq for a geometric tree T that has both endpoints in the same B-sub-tree S
with root r and where r does not lie on the path from x to p, which implies S = X.

Lemma 3.4. Let T be a geometric tree, let pq be a shortcut for T, and let S be a B-sub-tree of T.
If the shortcut pq is useful for T, thenp ¢ S orq ¢ S.

Proof. Assume, for the sake of a contradiction, that there exists some geometric tree T, with a
B-sub-tree S with root r, such that there is a shortcut pq for T with p, g € S that is useful for T.

Suppose the backbone B of T is a path that connects the vertices a and b. Let X and Y be the
primary $-sub-trees with roots a and b, respectively. Furthermore, let x, y be a diametral pair of
T with x € X and y € Y. Since pq is useful for T, we have p # q and pq is useful for x, y or for
y, x. Without loss of generality, let pg be useful for x, y. Otherwise, we swap x,y and X, Y.

We distinguish two cases depending on whether the root r of S lies on the path from x to p in
T or not. We derive a contradiction by showing that both of these cases are impossible.

1. Suppose r does not lie on the path from x to p. Then x, p, and q lie in the same B-sub-tree
meaning S = X and r = g, since x € X, as illustrated in Figure 3.8. Since y lies in the other
primary B-sub-tree, we have y ¢ S and, thus, r lies on the path from q to y.

Since a is an endpoint of the backbone, i.e., the intersection of all diametral paths in T,
there is a leaf x” of X such that x’, y is diametral in T and r is on the path from x’ to p.

The shortcut pq cannot be useful for x’, y, since r lies on the path from x’ to p and on the
path from q to y. Thus, for pq to be useful for T, the shortcut pg must be useful for y, x”’.
This means that the shortest path from y to x’” in T + pq contains the path from r to p in T,
ie, dr(r,p) < dr(r,q) + |gp|. On the other hand, the shortest path from y to x in T + pq
travels from r via the shortcut to p, i.e., d7(r, q) + |qp| < dr(r, p). This is impossible.

2. Suppose r lies on the path from x to p. Then r does not lie on the path from y to g and, thus,
Y, g, and p lie in the same B-sub-tree, meaning S = Y and r = b and x ¢ S. This situation is
symmetric to the previous case and, therefore, impossible as well.

Therefore, if the shortcut pq is useful for T, thenp ¢ Sorq ¢ S. ]

Lemma 3.5. Let T be a geometric tree and let S be a B-sub-tree of T with root r. If pq is a useful
shortcut for T with p € S then diam(T + rq) < diam(T + pq).

Remark. The proof of Lemma 3.5 below follows the proof of the discrete backbone lemma by
Grofie et al. [30]. The first two cases are due to Grofle et al. [30]; they are provided for the sake of
self-containment. We add the third case to generalize the result to the continuous setting.
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Proof of Lemma 3.5. Let T be a geometric tree, let S be a B-sub-tree of T with root r, and let pg
be a useful shortcut for T with p € S. Finally, let s, t be a diametral pair of T + rgq.

We distinguish three cases: Either we have s, € T and pq is indifferent for {s,t}, or we
have s,t € T and pq is useful for {s,t}, or we have s ¢ T or t ¢ T. In each case, we argue that
Ar1rg(s,t) < d7ipg(s’,t") for some s’,t" € T + pq and, thus, diam(T + rq) < diam(T + pq).

1. Suppose s,t € T and pq is indifferent for {s, t}, i.e., dr(s, t) = drypq(s, t).
Then we have diam(T + rq) < diam(T + pq), because

diam(T + rq) = drirq(s,t) < dr(s,t) = drypg(s, t) < diam(T + pq) .

2. Suppose s,t € T and pq is useful for {s, t},ie., dr(s,t) > dripg(s, t).

Then pq is useful for s, t or t,s. We assume, without loss of generality, that pq is useful for
s, t,i.e, dr(s,p) + |pql + dr(q,t) = dripg(s,t) < dr(s,t). Otherwise, we swap s and ¢.

We distinguish two cases depending on whether the path from s to p in T contains r.

a) Suppose the path from s to p in T contains r, as shown in Figure 3.9.

Figure 3.9: A sketch of the shortest path in T + pq connecting s and t via pq where p lies in some
B-sub-tree S whose root r lies on the path from s to p in T. Regardless of whether
seSors ¢S, wehave g ¢ Sby Lemma 3.4, and, therefore ¢ ¢ S.

Then we have diam(T + rq) < diam(T + pq), because

diam(T + rq) = dr1,4(s, t) (s, t is diametral in T + rq)
<dr(s,r) +|rq|l +dr(g. 1) (triangle inequality for dr,4)
<dr(s,r) +dr(r,p) + |pql +dr(q,t)  (triangle inequality for |[.|)
=dr(s,p) + |pq| + dr(q,t)  (the path from s to p in T contains r)
= dripq(s,t) (pq is useful for s, t)
< diam(T + pq) .

b) Suppose the path from s to p in T does not contain r, as shown in Figure 3.10.

Let a and b be the endpoints of the backbone B of T, and let X and Y be the primary
B-sub-trees with roots a and b, respectively. We argue that there exists a diametral
pair x,y of T with x € X and y € Y such that r lies on the path from x to p.
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(a) The case S = X. (b) The case S # X.

Figure 3.10: A sketch of the shortest path in T + pg connecting s and ¢ via pq where p lies in some
B-sub-tree S and p lies on the path from s to the root r of S. There is a diametral
partner x of T such that the path from x to p passes through r. This property holds
regardless of whether S is a primary 8-sub-tree (a) or a secondary $-sub-tree (b).

Every path in T + pq that connects a diametral pair of T contains the shortcut pg,
since pq is useful for T. If S = X, then there is a diametral pair x,y of T with x € X
and y € Y such that the path from x to p contains r = a, as illustrated in Figure 3.10a.
Otherwise, a would not be the endpoint of the backbone. If S # X, then r lies on the
path from x to p for every x € X, since p € S, as illustrated in Figure 3.10b.

The shortcut pq is useful for x, y and, thus, for r, g, since r lies on the path from x
to p. Therefore, no shortest path in T + pq may contain the path connecting r and q.
This includes the path from s to t. Hence, t ¢ S and d7,¢(s,t) = dr(s,7) + dryrq(r, t).

By Lemma 3.4, p € S implies g ¢ S. Since the path from x to y in T + pg cannot
contain r two times, we have y ¢ S and the path in T + rq from x to t contains r,
ie, dryrg(x,t) = dr(x,r) + drirg(r,t). We have dr(s,r) < dr(x,r), because x,y is a
diametral path of T and r lies on the path from x to y and on the path from s to y.
This implies that x, ¢ is a diametral pair of T + rg, because

diam(T + rq) = dr4rq(s, t) (s, t is diametral in T + rq)
=dr(s,r) + drirq(r,t) (seSandt¢S)
< dT(x’ r) + dT+rq(r, t) (dT(S9 r) < dT(x7 r))
= drirg(x,t) (any path from x to t in T + rq contains r)

< diam(T + rq) .

More precisely, x, t is a diametral pair of T +rq such that the path from x to p contains r.
With the argument from the previous case, we obtain

diam(T +rq) = dr1,¢(s,t) = dryrq(x,t) < diam(T + pq) .

3. Suppose s ¢ T or t ¢ T. Without loss of generality, let s ¢ T. Otherwise, we swap s and t.

Then we have s € rq with r # s # g, as illustrated in Figure 3.11.
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Figure 3.11: A diametral pair s, ¢ of T + rq with s € rq. We move the endpoint of the shortcut at
r € B to a point p in a B-sub-tree S such that pq is useful for T.

Let C(r, g) be the simple cycle in T + rq. The path from s to t leaves C(r, q) at the point
§ € C(r, q) with dryrq(s,5) = % (dr(r,q) + |rq|). Note that r # § # g, because r # s # g and
|rq| < dr(r,q). By Lemma 3.4, p € S implies g ¢ S. This means the path connecting r and ¢
in T lies outside of S and, therefore, s ¢ Sand t € S.

The cycle C(p, q) is formed by pq and the path from p to g in T. Since r lies on the path
from p to ¢, we know that § € C(p, q). Let s’ be the farthest point from § on C(p, g).

Then we have diam(T + rq) < diam(T + pq), because

diam(T + rq) = dr1,4(s,t) (s, t is diametral in T + rq)
=dr4r¢(s,3) +dr(5,t) (5 lies on any path from ¢ to s in T + rq)
d
= w +d7(5, 1) (s and § are antipodals on C(r, q))
dr(r, dr(r, . .
< 7(r ) + ;(r P+ Ipdl +dr(5,t) (triangle inequality)
d
= w +dr(s,t) (r lies on the path from p to ¢ in T)
= dripg(s’,5) +dr(5,t) (s’ and § are antipodals on C(p, q))
= dripg(s’s 1) (5 lies on any path from ¢ to s’ in T + pq)

< diam(T + pq) .

Therefore, if pq is a useful shortcut for T with p € S, then diam(T + rq) < diam(T + pq). ]

Lemma 3.6 (Continuous Backbone Lemma). Let T be a geometric tree T with backbone B. There
exist p,q € B such that pq is an optimal shortcut for T.

Proof. Let pq be an optimal shortcut for a geometric tree T. We assume that pq is useful for T,
since otherwise the shortcut cc is indifferent for T with ¢ € B and, thus, satisfies the claim.

If p,q € B, we are done. Suppose p ¢ B, i.e., p lies in some B-sub-tree S with root r € B.
According to Lemma 3.5 this implies diam(T + rq) < diam(T + pq). This means that rq is also an
optimal shortcut for T. If g € B, then the claim follows. Otherwise, q ¢ B, i.e., q lies in some B-
sub-tree S” with root v’ € 8. Since pq is useful for T and p € S, Lemma 3.4 implies that g ¢ S and,
thus, S # S" and r # r’. By Lemma 3.5, this implies diam(T + rr’) < diam(T + rq) < diam(T + pq),
and, thus, rr’ is an optimal shortcut for T with both endpoints along the backbone of T. O
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Theorem 3.7. LetT be a geometric tree with backbone 8 and absolute center c. There existp,q € B
such that pq is an optimal shortcut for T and such that c lies on the path fromp toq inT.

Proof. Let T be a geometric tree with backbone B and absolute center c. By Lemma 3.6, there
exists an optimal shortcut pq for T with p, g € B. If pq is indifferent for T, then the degenerate
shortcut cc satisfies the claim. Thus, we assume that pq is useful for T.

Since there exists a useful shortcut for T, the backbone 8 of T is a path with endpoints a and b
that contains ¢ with a # ¢ # b. Suppose c does not lie on the path from p to g along 8. Without
loss of generality, we assume that p and q lie on the path from a to ¢ with p # ¢ # q. Otherwise,
we swap a and b. Furthermore, we assume, without loss of generality, that the path from p to ¢
along B contains g, i.e., dr(q, ¢) < dr(p, c). Otherwise, we swap p and q.

We argue that the shortcut pc is at least as good as pgq, i.e., diam(T + pc) < diam(T + pq). Let
s, t be a diametral pair of T + pc. Either we have s, t € T and pq is indifferent for {s, t}, or we have
s,t € T and pq is useful for {s, ¢}, or we have s ¢ T or t ¢ T. We show drypc(s,t) < dripg(s,t)
and, thus, diam(T + pc) < diam(T + pq), for the first two cases and we rule out the third case.

1. Suppose s,t € T and pq is indifferent for {s, t}, i.e., dr(s,t) = drypq(s, t).
Then we have diam(T + pc) < diam(T + pq), because

diam(T + pc) = dripc(s, t) < d7(s,t) = dripg(s, t) < diam(T + pq) .

2. Suppose s,t € T and pq is useful for {s, t},i.e., dripq(s,t) < dr(s,t).

Then pq is useful for s, t or £, s. Without loss of generality, let pg be useful for s, t. Otherwise,
we swap s and t. Figure 3.12 illustrates the following arguments.

X Y

* y

Figure 3.12: A sketch showing a shortcut pq for a tree T with both endpoints on one side of the
absolute center ¢ together with a diametral pair s, t of T + pc for which pq is useful.

Let X and Y be the primary 8-sub-trees with roots a and b, respectively, and let x, y be a
diametral pair of T with x € X and y € Y. The shortcut pq is useful for T and, thus, pq is
useful for {x, y}. Hence, pq is useful for x, y, since p lies on the path from x to g in T.

The path from s to p cannot contain g, since pq is useful for s, ¢t. This means s lies in the
largest sub-tree of T with leaves x and g and the path from s to c in T contains q. In the
following, we argue t € Y, which implies that ¢ lies on the path from s to ¢t in T + pc.

As pq is useful for s, ¢, the shortcut pq is useful for s, g, i.e., dr(s,p) + |pq| < dr(s, q), since

dr(s,p) + |pgl + dr(q, t) = dripg(s,t) < dr(s,t) < dr(s,q) +dr(g.t) .
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This means pc is also useful for s, c, i.e., dr(s, p) + |pc| < dr(s,c), since
dr(s,p) + |pc| < dr(s,p) + |pq| + dr(q, c) < dr(s,q) + dr(g,c) = dr(s,c) .
The point ¢ is a farthest leaf from ¢ in T, i.e., dr(c, t) = dr(c, y), because
dr(s,p) + |pc| +dr(c, t) < dr(s,p) + |pc| + dr(c,y)  (yis a farthest leaf from ¢ in T)

= drypc(s,c) +dr(c,y) (pc is useful for s, c)
=dripc(s,y) (c lies on the path from s to y)
< dripe(s,t) (s, t is diametral in T + pc)

<dr(s,p) + |pe| + dr(c,t) .

Since pq was useful for s, ¢, the path from g to ¢ cannot contain p. On the other hand, p lies
on the backbone and blocks the path from g to any farthest leaf from c in X. Since t is a
farthest leaf from ¢ in T, this means that ¢t € Y and the claim follows, since

diam(T + pc) = d71pc(s, t) (s, t diametral in T + pc)
<dr(s,p) + |pe| + dr(c, t)
< dr(s,p) + |pgl + dr(g,c) + dr(c, t) (triangle inequality)
=dg(s,p) + |pq| + dr (g, t) (c is on the path from q to t)
=dripg(s,t) (pq is useful for s, t)

< diam(T + pq) .

3. Suppose s ¢ T or t ¢ T. Without loss of generality, s ¢ T, i.e., s € pc withp # s # c.

Figure 3.13: A sketch of a shortcut pq for a tree T with both endpoints on one side of the absolute
center ¢ together with an impossible diametral pair s,t of T + pc with s ¢ T.

Let X and Y be the primary B-sub-trees with roots a and b, respectively. As illustrated in
Figure 3.13, the point s lies on the simple cycle C(p, ¢) in T + pc. The largest tree attached to
C(p,c) in T + pc is the one containing Y, since c is the absolute center of T and both p and
q lie on the path from a to c. Therefore, the point ¢ lies in Y and s is the farthest point from
t on C(p, ¢). The path from ¢ to s in T + pc enters C(p, c) at c. Therefore, s is the farthest
point from ¢ on C(p, ¢). However, this implies that s lies on the path from p to c in T, since
|pc| < dr(p, ¢) contradicting s ¢ T. This means that this case is impossible.

We conclude that if pq is an optimal shortcut for T such that p and q lie on the path from a to ¢ in
T with dr(q, ¢) < dr(p, ¢) then pc is also an optimal shortcut for T. Therefore, there exist p,q € B
such that pq is an optimal shortcut for T and the path from p to g in T contains c. O
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3.3 Preparations for the Algorithm

Our search for an optimal shortcut pq for T proceeds as follows. Initially, we place the endpoints
of the shortcut, p and g, at the absolute center ¢ of T. Then, we move p and g along the backbone
$ balancing the diametral paths in T + pg. Throughout this movement p remains along the path
from a to ¢ and q remains on the path from c to b, where a and b are the endpoints of 8.

The diametral pairs in T + pq guide our search: each diametral pair in T + pq rules out some
direction in which we could search for a better shortcut. We have found an optimal shortcut
when p and g reach a position where the diametral pairs block all directions of movement, except
perhaps going back the way we came. We describe our algorithm along the following steps.

1. We simplify the geometric tree T by compressing the B-sub-trees, thereby simplifying the
discussion about diametral pairs and paths in the augmented tree T + pq.

2. We define algorithm states in terms of the diametral paths and diametral pairs that are
present in the augmented tree, and we distinguish four types of movements for the shortcut—
called in-shift, out-shift, x-shift, and y-shift—as the operations of our algorithm.

3. We observe how each type of diametral pair rules out a better shortcut in some direction,
and that some combinations of these types imply that the current shortcut is optimal.

4. We describe the continuous, conceptual movement of the shortcut that is guided by the set
of types of diametral pairs that are present in T + pq. We identify the invariants that are
upheld by this movement and that guarantee that we find an optimal shortcut.

5. We specify the speeds at which the endpoints of the shortcut would move in the continuous
algorithm. These speeds depend on the set of types of diametral paths in T + pg; the changes
in this set constitute the events for the discretization.

6. We bound the number of events that the discrete algorithm needs to process by O(n). This
involves ruling out some transitions between the algorithm states as well as identifying
situations were we can safely ignore events without compromising optimality.

7. Finally, we explain how we can process each of the O(n) events in O(log n) amortized time
and, thus, bound the running time of our algorithm by O(n log n).

In this section, we discuss Steps 1, 2, and 3, i.e., the preparations for the algorithm. In Section 3.4,
we describe Step 4, i.e., the continuous algorithm and its correctness. In Section 3.5, we discuss
Steps 5 through 7, i.e., the discretization of the algorithm and its running time.

3.3.1 Simplifying the Tree

Let T be a geometric tree whose backbone B consists of more than its absolute center c. Let a
and b be the endpoints of B, and let X and Y be the primary B-sub-trees of T with roots a and b,
respectively, and let S, Sy, . . ., Sk be the secondary B-sub-trees of T that are attached to B at
their roots ry, 1y, . . ., 7k, respectively. Let x be a farthest leaf from a in X, let y be a farthest leaf
from b in Y and, for every i = 1,2,...,k, let s; be a farthest leaf from r; in S;, as in Figure 3.14a.
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(a) A geometric tree T. (b) The perspective from B on T.

Figure 3.14: An illustration of a geometric tree (a) together with the perspective from its backbone
(b). We represent each B-sub-tree S with an edge whose length is the length of a
path from the root of S to a farthest leaf (squares) of S.

We simplify the discussion about diametral pairs in T + pq. First, there is no need to distinguish
diametral pairs with partners in the same B-sub-trees: for any i,j = 1,2, ...,k with i # j, the
pair s;, s; is diametral in T + pq if and only if every farthest leaf from r; in S; forms a diametral
pair with every farthest leaf from r; in S;. Second, there is no need to consider diametral pairs
with both endpoints in the same B-sub-tree, as we argue in Lemma 3.8 below. Therefore, we
simplify T by replacing each B-sub-tree S; with an edge from r; to a vertex representing s; of
length d(r;, s;). Likewise, we replace X and Y with edges of appropriate length, as illustrated in
Figure 3.14. We refer to the resulting caterpillar network as the perspective from 8 on T.

Lemma 3.8. Let T be a geometric tree with backbone B, letp,q € B, and let S be a B-sub-tree of T.
If there exist u,v € S such that u, v is diametral in T + pq, then pq is an optimal shortcut for T.

Proof. Let T be a geometric tree with backbone 8, let p, g € B, and let S be a B-sub-tree of T.
Suppose there exist u,v € S such that u, v is a diametral pair of T + pq.

Since S is a tree that is attached to the remainder of T + pq, we have diam(S) < diam(T + pq).
Every path from u to v via pq contains r twice, hence the shortest path from u to v in T + pq
remains in S. This implies diam(T + pq) = diam(S) = ds(u, v), since

diam(T + pq) = dr4pq(u,v) = ds(u,v) < diam(S) < diam(T + pq) .

By Lemma 3.6, there is an optimal shortcut p*q* for T with p*, g* € 8. By repeating the above,
we obtain ds(u, v) = dr4p¢*(4,v) and, thus, diam(T + pq) = diam(T + p*q*), since

diam(T + p*q") < diam(T + pq) = diam(S) = ds(u, v) = dr4p (v, v) < diam(T + p*q") .
Therefore, pq is an optimal shortcut for T and diam(T + pq) = diam(S). O

Corollary 3.9. Let T be a geometric tree, and let § be the largest diameter of any B-sub-tree of T, i.e.,
¢ = max{diam(S) | S is a B-sub-tree of T}. For every shortcut pq for T, we have § < diam(T +pq).
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We compute the largest diameter 6 of any $-sub-tree of T as part of our preprocessing and
we halt our search for an optimal shortcut if the current diameter reaches §. This is not strictly
necessary: if we ignore diametral pairs in the same $B-sub-tree, we still obtain an optimal shortcut
even though we might not know the actual value of the optimal diameter. Nevertheless, we may
safely exclude diametral pairs in the same $B-sub-tree from consideration.

3.3.2 States and Operations

We group the diametral pairs and paths of the augmented tree T + pq into types. The types of
diametral pairs and paths in T + pq define the states of our algorithm. We specify four different
types of movements for the shortcut as the base operations for the algorithm.

Pair States

Every partner v of a diametral pair u,v in T + pq is either: (x, y) a diametral partner in the tree,
(m) some other point on the tree, or (o) a point on the shortcut. More specifically, v is either (x, y)
a leaf of a primary $B-sub-tree, () a leaf of a secondary B-sub-tree, or v is a point on the simple
cycle C(p, q) in the augmented tree that (e) lies in the original tree or (o) on the shortcut. This
leads to the following distinction of the diametral pairs in T + pgq.
+ (x-y): Diametral pairs x,y of T + pg withx € X andy € Y.
o (x-m): Diametral pairs x,v of T + pg withx € X andv € T\ (X U Y).
Diametral pairs of this type manifest as one of the following two sub-types.
— (x-A): Diametral pairs x,s; of T + pg with x € X and s; € S; for some j = 1,2,...,k.

— (x-e): Diametral pairs x, ¥ of T + pq, where x € X and where % is the farthest point
from x on C(p, q). Since |pq| < d(p, q), we always have x € T.

+ (m-y): Diametral pairs u,y of T + pg withu e T\ (X UY)andy € Y.
Diametral pairs of this type manifest as one of the following two sub-types.
— (A-y): Diametral pairs s;,y of T + pq with's; € S; and y € Y for some i = 1,2,...,k.

— (®-y): Diametral pairs y, j of T + pq, where y € Y and where 7 is the farthest point
from y on C(p, q). Since |pq| < d(p, q), we always have § € T.

+ (m-m): Diametral pairs u,v of T + pg with u,v € T\ (X U Y).
Diametral pairs of this type manifest as one of the following two sub-types.
— (A-A): Diametral pairs s;,s; of T + pg with's; € S; and s; € S; fori,j=1,2,...,k.
— (A-e): Diametral pairs s;,3; of T + pg with s;,5; € T where s; € S; for some i =
1,2,...,k and where §; € T is the farthest point from s; on C(p, q).
+ (m-o): Diametral pairs u,v of T + pqg withv ¢ T, i.e, v € pqgwithp # v # q.

Since |pq| < d(p, q), we have u € T. These diametral pairs only manifest as diametral pairs
of the form s;,5; with s; € S, fori = 1,2,...,k, and where §; is the farthest point from s;
on C(p, q) that happens to lie in the interior of the shortcut pq.
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There is no need to consider diametral pairs of type e-e or e-o: the distance from x or y to
their respective farthest points on the cycle C(p, q) is always larger than the distance between
any two points on C(p, g)—unless the augmented tree is a cycle, i.e., T + pq = C(p, q).

There are no diametral pairs of type x-o or o-y, as X, € T. If x, v is a diametral pair of type
x-minT + pgthenv € T and if u,y is of typem-y in T + pq thenu € T.

The pair state is the set of types of diametral pairs in T + pq and the pair sub-state is the set of
sub-types of diametral pairs that are present in T + pq. For instance, if T + pq has the diametral
pairs x, y; X, S3; X, S5; and x, X then T + pq is in pair state {x-y, x-W} and, more precisely, T + pq is
in the pair sub-state {x-y, x-A, x-e}. Another example is shown in Figure 3.15.
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Figure 3.15: An optimal shortcut pq for the geometric tree T from Figure 3.2. The augmented tree
T +pq is in pair state {x-y, x-m, -y, m-o} as attested by the diametral pairs x, y (blue);
x, s1 (green); s1, y (orange); and s1, 51 (purple). Since pq is useful for x, y, but useless
for x, s; and s1, y, the path state of T + pq is {x-pq-y, x-T-A, A-T-y, A-p-o, A-g-0}.

Path States

Let u, v be a diametral pair in T + pq. If u, v € T then every diametral path in T + pq that connects
u and v either contains the shortcut (*-pg-*) or not (+-T-%). If u € T and v ¢ T, then every
diametral path in T + pq that connects u and v contains either p (x-p-*) or q (*-q-*). There are no
diametral pairs with u, v ¢ T. This leads to the following distinction.

+ (%-pg-*): A diametral path that does contain pq and connectsu € T withv € T.
o (%-T-%): A diametral path that does not contain pg and connects u € T with v € T.
o (#-p-*): A diametral path that contains p and connects u € T with v ¢ T.
o (%-g-*): A diametral path that contains g and connects u € T withv ¢ T.
In this notation, any type of diametral partner (e.g., x, y, m, A, 8, 0) may appear in place of .

For instance, we denote a diametral path from x to x via the shortcut by x-pg-e.

The path state is the set of types of diametral paths that are present in T + pq. For instance, if
T + pq has the diametral pairs x, y; x, s3; X, s5; and x, X such that pq is useful for x, y and x, s; but
useless for x, s5 then T + pq is in path state {x-pq-y, x-pq-A, x-T-A, x-pg-e, x-T-e}.
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Operations

We distinguish the four types of movements for the shortcut that are illustrated in Figure 3.16.
Suppose we move a shortcut pq for T with p,q € B such that d(a,p) < d(a, q) to some new
position p’q’ with p’,q" € B such that d(a, p”) < d(a,q’). The movement from pq to p’q’ is

« an outward shift when p moves towards a and g moves towards b, i.e., when d(a, p’) < d(a, p)
and d(b, q") < d(b, q) and, thus d(a,p’) < d(a,p) < d(a,q) < d(a,q’),

an inward shift when p moves away from a and g moves away from b, i.e., when d(a, p) <

d(a,p’) and d(b,q) < d(b,q’) and, thus, d(a,p) < d(a,p’) < d(a,q’) < d(a,q),

« a shift towards x when p moves towards a and g moves away from b, i.e., when d(a, p’) <

d(a,p) and d(b,q) < d(b,q’) and, thus, d(a,p’) < d(a,p) < d(a,q’) < d(a,q), or

« a shift towards y when p moves away from a and g moves towards b, i.e., when d(a, p) <

d(a,p’) and d(b,q") < d(b, q) and, thus, d(a,p) < d(a,p’) < d(a,q) < d(a,q’).

These types of movements intentionally overlap when one of the endpoints remains stationary,
e.g., when p = p’ every shift towards y is also an outwards shift, as illustrated in Figure 3.16e.
The operations, as defined above, allow us to move p or g through the absolute center c.
However, this never happens: the algorithm automatically maintains that p stays on the path
from a to ¢ and q stays on the path from ¢ to b—without taking any special care to ensure this.

3.3.3 Blocking

Each type of diametral pair serves as a witness that some type of movement cannot lead to a
better shortcut, i.e., cannot reduce the continuous diameter. For instance, if an augmented tree
T + pq has a diametral pair of type x-y, then the distance between x and y will increase or remain
the same when we shift pq inward. In this sense, x-y blocks any inward shift, x-m blocks any
y-shift, m-y blocks any x-shift, and m-m or m-o block any outward shift.

Lemma 3.10 (Blocking Lemma). Let pq be a shortcut for a tree T withp,q € 8.

(1) If T +pq has a diametral pair of type x-y, then diam(T + pq) < diam(T +p’q’) for every shortcut
p’q’ such that the movement from pq to p’q’ is an inward shift.

(2) IfT+pq has a diametral pair of type x-m, then diam(T +pq) < diam(T +p’q’) for every shortcut
p’q’ such that the movement from pq to p’q’ is a shift towards y.

(3) If T +pq has a diametral pair of type m-y, then diam(T +pq) < diam(T +p’q’) for every shortcut
p’q’ such that the movement from pq to p’q’ is a shift towards x.

(4) If T + pq has a diametral pair of type m-m or m-o, then diam(T + pq) < diam(T +p’q’) for every
shortcut p’q’ such that the movement from pq to p’q’ is an outward shift.

58



3.3 Preparations for the Algorithm

=
Q

NS
SRS

\‘

p 74 5
\.\/ q, cl .
c q 4
(c) A shift towards x.
x y @
a /;b N
- q nf-------- o----9

(€) An outwards shift towards y.

y a
a b
) — , ‘/.
PN Y c :
¢cq 9 b
(b) An inwards shift.
y a
a ,gb
q Pro------- -

ya
Xt }b
N H

P'\.>—o// Y
’ p ¢
p \5\/0» )

¢ q9=9 b
(f) An inwards shift towards y.

Figure 3.16: The four ways to move a shortcut pq to a new position p’q’. They are (a) the inward
shift, (b) the outward shift, (c) the shift towards x, and (d) the shift towards y. This dis-
tinction overlaps intentionally when one endpoint of the shortcut remains stationary,
i.e., when p = p’, as in (e), or when q = ¢, as in (f). For each operation, we provide a
sketch on the left, and, on the right, a plot of the positions of the shortcuts along the
path from c to a and the path from ¢ to b. In each plot, the region of shortcuts that
belong to the same type of movement is shaded.
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Proof. Let T be a geometric tree with backbone 8B, and let p, q,p’,q" € B.
If there exists a diametral pair u, v of T + pq such that u,v € T, and p’q’ is indifferent for {u, v},
ie., dr(u,v) = drypq(u,v), then we have diam(T + pq) < diam(T + p’q’), because

diam(T + pq) = dr4pq(u,v) < dr(u,v) = dryp g (u,v) < diam(T +p'q’) .

Therefore, we may assume that p’q” is useful for any diametral pair u,v of T + pq with u,v € T.

If there exists a diametral pair u,v of T + pq with u, v € T such that p’q’ is useful for u, v, the
path from u to p” in T contains p, i.e., dr(u, p’) = dr(u, p) + dr(p, p’), and the path from v to ¢’ in
T contains q, i.e., dr(q’,v) = dr(q’,q) + dr(q, v), then diam(T + pq) < diam(T + p’q’), since

diam(T + pq) = drpq(u,v) (u, v is diametral in T + pq)
< dr(u,p) + |pql + dr(g, v)
< dr(u,p) +dr(p,p") +|p’q’| + dr(q’, q) + dr(q,v) (triangle inequality)
=dr(u,p’)+ |p'q’| +dr(q’,v) (p’ lies on the path from u to p)
=drypq(u,v) (p’q’ is useful for u, v)
< diam(T +p'q’) .

We use this observation to prove that each diametral pair blocks the stated operation.

(1) Suppose T + pq has a diametral pair of type x-y. Let p’q’ be a shortcut for T such that the
movement from pq to p’q’ is an inward shift, as illustrated in Figure 3.17.
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Figure 3.17: An illustration of an inwards shift from pq to p’q’.

Then diam(T + pq) < diam(T + p’q’) follows, since x, y is a diametral pair of T + pgq with
x,y € T such that p lies on the path from x to p’ and g lies on the path from ¢’ to y.

(2) Suppose T + pq has a diametral pair of type x-m. Let p’q’ be a shortcut for T such that the
movement from pq to p’q’ is a shift towards y, as illustrated in Figure 3.18.

Let x, v be a diametral pair of type x-m in T + pq. Then v € T, since |pq| < dr(p, q) and, thus,
x,v € T. The path from x to p’ contains p, since the movement from pq to p’q’ is a shift
towards y. The path from ¢’ to v in T contains g, since otherwise y would be farther away
from x than v in T + pq. Therefore, we have diam(T + pq) < diam(T + p’q’).

(3) Suppose T + pq has a diametral pair of type m-y. Let p’q’ be a shortcut for T such that the
movement from pq to p’q’ is a shift towards x. This case is symmetric to the previous one.
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Figure 3.18: An illustration of a y-shift from pq to p’q’ that increases the distance between a

diametral pair x, v of type x-B manifesting as (a) subtype x-e and (b) subtype x-A.

(4) Suppose T + pq has a diametral pair of type m-m or m-o. Let p’q’ be a shortcut for T such that
the movement from pq to p’q’ is an outward shift, as illustrated in Figure 3.19.
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Figure 3.19: An illustration of an outward shift from pq to p’q” with a diametral pair u,v in T + pq
manifesting as (a) subtype A-A, (b) subtype A-e, and (c) subtype a-o.

Every diametral pair of type m-m or M-o manifests as subtype A-A, A-e or A-o.
a) Suppose there is some diametral pair u, v of T + pq of subtype A-a.

Then u and v are leaves of two secondary B-sub-trees that are attached to 8 along the
path from p to g in T. Otherwise, x or y would be strictly farther from v than u.

Then we have diam(T + pq) < diam(T + p’q’), since u, v is a diametral pair of T + pq
with u, v € T where p lies on the path from u to p’ and q lies on the path from ¢’ to v.

b) Suppose there is some diametral pair u,v in T + pq of subtype A-e or A-o.

Then one of u or v is a leaf of a secondary B-sub-tree and the other is the farthest
point on C(p, q) from said leaf. Without loss of generality, suppose u lies in a secondary
B-sub-tree S. The root r of S must lie along the path from p to g in T. Otherwise, x or y
would be strictly farther from u than v. This means we have

Ipql + dr(p,q)

dripq(u,v) = dr(u,r) + dripg(r,v) = dr(u,r) + 5
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Let v’ be the farthest point from u on the simple cycle C(p’q’) in T + p’q’. The vertex r
lies on the path from p’ to ¢’ in T, since the movement from pq to p’q’ is an outward
shift, and since r lies on the path from p to g in T. This means we have

Ip'q'| +dr(p’.q")
. :

dT+p’q’(u’ ’U/) = dT(u, r) + dT+p’q’(r, U/) = dT(u’ r) +

The simple cycle in the augmented tree is growing as pq shifts outwards to p’q’, i.e.,
lpql+dr(p,q) < Ip’q’|+dr(p’q’). This implies drpq(u, v) < drypq(u,v) and, therefore,
diam(T + pq) = dr1pq(u,v) < dryprg(u,v") < diam(T + p’q’).

We conclude that each type of diametral pair blocks one type of movement as claimed. ]

3.3.4 Sudden Optimality

As an immediate consequence of Lemma 3.10, a shortcut pq is optimal for a geometric tree T
when each of the four types of movements is blocked by some diametral pair in T + pq.

Corollary 3.11. If an augmented tree T + pq has diametral pairs of the types x-y, x-W, and B-y, as
well as a diametral pair of type m-m or W-o, then pq is an optimal shortcut for T.

The following result allows us to ignore diametral pairs of type m-m when a diametral pair of
x-y is present, provided that we keep track of diametral pairs of type m-y and x-m. This helps us
to reach the desired running time, since there may be O(n?) candidates for pairs of type m-m.

Theorem 3.12. If an augmented tree T + pq has diametral pairs of types x-y and m-m then T + pq
also has diametral pairs of type x-m and m-y and, thus, the shortcut pq is optimal for T.

Proof. Suppose an augmented tree T + pq has diametral pairs of types x-y and m-m.

Then pq is useful for x, y, since T + pq has diametral pairs besides those of type x-y. Therefore,
the diametral pairs of type x-y in T + pq are connected by diametral paths of type x-pg-y.

We distinguish two cases depending on whether the diametral pairs of type m-m in T + pq are
connected by diametral paths of type m-pg-m or m-T-m. In each case, we argue that there are
diametral pairs of types x-m and of type m-y, which implies that pq is optimal for T.

1. Suppose T + pq has diametral paths of type x-pg-y and m-pg-m, as illustrated in Figure 3.20.

Then T + pq has a diametral pair u,v € T \ (X U Y) such that a shortest path from u to v
contains pg. We show that the pairs u, y and x, v are diametral in T + pq.

Since pq is useful for u, v, the shortcut pq is also useful for u, g and, thus, for u,y. By
comparing the paths x-pq-y and u-pq-y, we obtain dr(u, p) < dr(x, p), since

dr(u,p) + |pql + dr(q,y) = dr+pq(u, y) (pq is useful for u, y)
< dripq(x,y) (x,y is diametral in T + pq)
=dr(x,p) + |pql + dr(q,y) . (pq is useful for x, y)
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Figure 3.20: An illustration of an augmented tree T + pq with diametral paths of type x-pgq-y
and m-pg-m. The diametral path of type m-pg-m connects u with v via the shortcut.
The points 7, and 7, mark the farthest points from r, and r,, respectively along the
simple cycle in T + pq. Their position indicates that pq is useful for u, v.

Likewise, we obtain d7(g, v) < dr(q,y) by comparing the paths x-pg-y and x-pg-v.

Comparing the diametral paths x-pg-y and u-pq-v yields dr(x,p) + dr(q.y) = dr(u,p) +
dr(g,v). This equation cannot be satisfied when dr(u, p) < dr(x, p) or dr(q,v) < dr(q,y),
since dr(u,p) < dr(x,p) and dr(q,v) < dr(q,y). Therefore, we have dr(u, p) = dr(x,p)
and dr(q,v) = dr(q, y). This implies that u, y and x, v are diametral pairs in T + pq, since

dripq(u,y) = dr(u, p) + Ipql + dr(q,y) = dr(x,p) + Ipq| + dr(q.y) = diam(T + pq) ,
and dripq(x,v) = dr(x,p) + |pq| + dr(q,v) = dr(x,p) + |pq| + dr(q,y) = diam(T + pq) .

Hence, T + pq is in the pair state {x-y, m-m, x-m, m-y} and, thus, pq is optimal for T.

2. Suppose T + pq has diametral paths of type x-pg-y and m-T-m, as illustrated in Figure 3.21.

Then there exists a diametral pair u, v of T + pq with u, v € T such that there is a shortest
path from u to v in T + pq that does not contain pq. If u lies in a secondary B-sub-tree
S., then let r,, be the root of S,,. Otherwise, let r, = u. Likewise, let r,, be the root of the
B-sub-tree containing v or let r, = v when v € 8. We assume, without loss of generality,
that r,, lies on the path in T from a to r,. Otherwise, we swap u and v.

We show that u, y and x, v are diametral in T + pq. Since u-T-v is diametral, pq cannot be
useful for u, v and, thus, pq cannot be useful for ry, ry, i.e., dr(ry, ro) < dr(ry, p) + |pgql +
dr(g, o). On the other hand, pq must be useful for x, v, i.e., dr1p4(x,v) < dr(x,v), since

dripg(x,v) < diam(T + pq)
= drypq(u,v) (u,v is diametral in T + pq)

= dr(u,v) (pq is not useful for u, v)
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Figure 3.21: An illustration of an augmented tree T + pq with diametral paths of type x-pg-y
and m-T-m. The diametral path of type m-T-m connects u with v via the tree only.
The points 7, and 7, mark the farthest points from r,, and r,, respectively along the
simple cycle in T + pq. Their position indicates that pq is useless for u, v.

=dr(u,ry) +dr(ry,v) (ry lies on the path from u to v)
<dr(x,ry) +dr(ry,v) (ueT\X)
=dr(x,v) . (ry lies on the path from x to v)

Likewise, pq must be useful for u, y. We have dr(q,v) < dr(q,y), as

dr(x,p) + lpql + dr(q, v) = dr1pg(x,v) (pq is useful for x, v)
< dripq(x,y) (x,y is diametral in T + pq)
= dr(x,p) + |pql + dr(q,y) (pq is useful for x, y)

The pair u, y is diametral in T + pq, i.e., d74pq(u, y) = diam(T + pq), since
diam(T + pq) = dr1pq(u,v) (u, v is diametral in T + pq)
=dr(u,v) (pq is not useful for u, v)
=dr(u,ry) + dr(ry,ro) + dr(ry, v)

<dr(u,ry) +dr(ru,p) + lpq| + dr(q,ro) + dr(ry, v)
(pg not useful for ry, ry)

= dr(u.p) + |pql + dr(q, v)

< dr(u,p) + |pql + dr(q, y) (d(g,v) < d(q,v))
= dr+pq(u, y) (pq is useful for u, y)
< diam(T + pq) .

Likewise, x, v is diametral in T + pq, and thus, T + pq is in pair state {x-y, x-®, B-y, m-m}.

Therefore, if T + pq has diametral pairs of type x-y and m-m, then pgq is optimal for T. ]
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3.4 Continuous Algorithm

Inspired by the plane-sweep paradigm, we—conceptually—move the shortcut continuously while
changing its speed and direction at certain events, i.e., when the pair state or path state changes.
To implement this approach, we discretize this movement such that the shortcut jumps from one
event to the next. We discretize the continuous algorithm in the next section.

3.4.1 The Algorithm from the Pair State Perspective

Figure 3.22 describes the continuous algorithm in terms of the pair states and operations. Initially,
we place the shortcut with both endpoints on the absolute center c of the geometric tree T. This
ensures that we start in pair state {x-y}. The algorithm consists of at most three phases: an
outwards shift, possibly followed by a shift towards x or a shift towards y, possibly followed by
another outwards shift. Some pair states are marked as final states with a double border. If we
reach a final state, we terminate our search and report the best shortcut that we have found. For
the other states, we specify the direction in which we move the shortcut.

l [ Phase I
Xy [ Phase II
out-shift [ Phase 11

v T [ | MR [y ] T [

R P e T s 0 o LT e S s S

x-shift © mo x-shift . oWy y-shift . mo y-shift

x-shift out-shift | y-shift

x-y * Xy
x-m x-m x-0

-0 H-o
By e my | my

my x-m
u-u out-shift H-o

Figure 3.22: The pair states encountered during our search for an optimal shortcut for a tree.
There are three types of states: First, regular states (single boundary) indicate the
pair state and the operation applied (out-shift, x-shift, or y-shift). Second, transition
states (dotted boundary) are visited only momemtarily while transitioning from one
regular state to another regular state. Third, final states (double boundary) where
we terminate our search and report the best shortcut encountered. Under certain
conditions, the search may also terminate early in non-final states. We always start
in state {x-y} with an outward shift. When we reach the pair state {x-y, m-o} then
we perform both a shift towards x and separately a shift towards y.
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For the sake of simplicity, we omit some pair states and transitions from Figure 3.22. First, we
omit all pair states containing x-y and m-m, due to Theorem 3.12. Second, we omit transitions
that are implied by transitivity, e.g., we model a transition from {x-y} to {x-y, x-m, m-y} by
transitioning from {x-y} to {x-y, x-m} and then from {x-y, x-m} to {x-y, x-m, m-y}. Third, we
omit pair states that are supersets of any final states in Figure 3.22.

Phase I: Shifting Outwards In Phase I, we shorten all diametral paths of type x-y with an
outwards shift, i.e., we move p from ¢ towards a and we move g from c towards b. If p reaches a
before q reaches b, then p remains at a and g continues to move towards b. Likewise, p continues
to move towards a if g reaches b. While we are in Phase I, the current shortcut is the best shortcut
encountered so far. Phase I ends when the shortcut reaches the end of the backbone, i.e., pg = ab,
or when a second type of diametral pair appears and Phase II begins.

Phase II: Shifting Sideways The second phase begins when we transition from pair state
{x-y} to a pair state containing x-y. If we transition from {x-y} to {x-y, x-m}, then we shift
towards x. If we transition from {x-y} to {x-y, M-y}, then we shift towards y. If we transition
from {x-y} to {x-y, m-o}, then we branch the search into a shift towards x and a shift towards y.
In the following, we discuss the second phase for the shift towards x, i.e., for the states {x-y, x-m},
{x-y, x-m, m-0}, and {x-y, m-o}. The shift towards y for the pair states {x-y, m-y}, {x-y, -y, m-o},
and {x-y, m-o} is symmetric.

Suppose we reach the pair state {x-y, x-m} from {x-y}. All diametral paths in T + pg contain
the path from a to p. We move p closer to g, thereby shrinking the diameter. At the same time,
we move q with a speed towards a that keeps all diametral paths in balance. This ensures that we
remain in the current pair state until another diametral pair appears. While we are in this state,
the current shortcut is the best shortcut encountered so far.

When we reach the pair state {x-y, m-o} then we move p towards a and adjust the position of
q to balance the diametral paths of type x-pg-y with those of type m-p-o and m-g-o. In this state,
the diameter shrinks and grows proportional to the length of the shortcut and the best shortcut
so far is the shortest shortcut encountered since we entered this state.

Balancing the diametral paths when moving pq ensures that we remain in the current pair state
until another diametral pair appears. It also restricts our search considerably: we are essentially
conducting a linear search, since the speed of g is determined by the speed of p, the path state,
and the change in the length of the shortcut, as we see in Section 3.5.

Phase II ends when p reaches a, when we transition to a pair state containing x-y and m-m,
when we transition from {x-y, m-o} to the final pair state {x-y, m-o, M-y}, or when we transition
from {x-y, x-m} to the pair state {x-y, x-m, B-y} and where we begin Phase IIL

Phase IlI: Shifting Outwards We begin Phase IIl when we reach the pair state {x-y, x-m, m-y}
from {x-y, x-m} or from {x-y, m-y}. Since x-y, x-m, and B-y block all other movements, we shift
outwards balancing x-m and m-y. We immediately transition to the pair state {x-m, m-y}, since
the path from x to y via the shortcut shrinks faster than the diametral paths connecting x-m and
m-y. If we reach Phase III, then the shortest shortcut encountered during Phase III is optimal.
Phase Il ends when p hits a, when q hits b, or when m-m or m-o appears.
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3.4.2 Optimality

We argue that the shortcut produced by the above algorithm is indeed optimal, using invariants
for each pair state that follow from the blocking lemma (Lemma 3.10). Moreover, we show that
throughout the course of the algorithm one endpoint of the shortcut remains on the path from a
to ¢ while the other endpoint remains on the path from c to b along the backbone.

While the algorithm is in Phase I, there is an optimal shortcut p*q* that we reach from the
current shortcut pq by shifting outwards, by shifting towards x, by shifting towards y, or by
remaining stationary. This invariant holds because the diametral pairs of type x-y block any
inward shift, i.e., we have diam(T + pq) < diam(T + p’q’) for any shortcut p’q’ that we reach with
an inward shift from pq, due to Lemma 3.10. Therefore, if Phase I concludes with the shortcut
reaching the end of the backbone, i.e., pqg = ab, then ab is an optimal shortcut for T.

While the algorithm is in pair state {x-y, x-m} of Phase II, there is an optimal shortcut p*¢*
that we reach from the current shortcut pq by shifting towards x, by shifting outwards, or by
remaining stationary. This invariant holds because the diametral pairs of type x-y and x-m in
T + pq block any inward shift and any shift towards y, i.e., we have diam(T + pq) < diam(T +p’q’)
for any shortcut p’q” that we reach with an inward shift or a shift towards y from pq, due to
Lemma 3.10. Therefore, if Phase II concludes with p = a in pair state {x-y, x-m}, then the current
shortcut is optimal, because when p = a, every shift towards x is also an inwards shift and, thus,
blocked by x-y, and every outwards shift is also a shift towards y and, thus, blocked by x-m.

While the algorithm is in pair state {x-y, m-o} of Phase II, there is an optimal shortcut p*¢*
that we reach from the current shortcut pq by shifting towards x, by shifting towards y, or by
remaining stationary. This invariant holds because the diametral pairs of type x-y and m-o in
T + pq block any inward shift and any outward shift, i.e., we have diam(T + pq) < diam(T + p’q’)
for any shortcut p’q’ that we reach with an inward or outward shift from pq, due to Lemma 3.10.
The following invariant shows that we cannot miss an optimal shortcut in this state.

Invariant 3.13. Suppose there is an optimal shortcut p*q* for T in the direction of a shift towards
x when the algorithm transitions to the pair state {x-y, m-o} for the first time. While the algorithm
shifts the shortcut towards x in pair state {x-y, m-o} of Phase II, we have already encountered an
optimal shortcut or the shift from the current shortcut pq to p*q” is still a shift towards x.

Proof. Suppose we shift the shortcut from pq towards x while maintaining the diametral paths
x-y and m-o in balance until the pair state changes at some position p’q’. If the movement from
p’q’ to p*q* is a shift towards x, then so is the movement from pq to p*q*, by transitivity.
Suppose the shift from pq to p*q* leads towards x while the shift from p’q’ to p*q* leads towards
y. We argue that we encounter an optimal shortcut while we are shifting from pq to p’q’. Let
p”’q” be the last position during the shift from pq to p’q” where the shift from p”¢” to p*q*
leads towards x. Then T + p”’q” is in pair state {x-y, m-o} and we have p”’ = p* or ¢’ = ¢*. If
p”" = p*, then the movement from p”’q”’ to p*q* is an inward shift towards x. Since x-y blocks
any inward shift, we have diam(T + p”’q”’) < diam(T + p*q*). If ¢ = ¢*, then the movement

from p”’q” to p*q" is an outward shift towards x. Since m-o blocks any outward shift, we have
diam(T + p”q"”") < diam(T + p*q*). In both cases, p”'q”’ is optimal, as p*q* is optimal. i
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If Phase II ends in state {x-y, m-o} with p = a or in the final state {x-y, m-o, m-y}, then all
directions are blocked and, by the invariant, we have encountered an optimal shortcut.

When the algorithm enters Phase III with a transition to the pair state {x-y, x-m, m-y}, then
there is an optimal shortcut p*q* that we reach from the current shortcut pq by shifting outwards
or by remaining stationary. This is because all movements, except for the outward shift, are
blocked by the diametral pairs of types x-y, x-m, and m-y. As we shift the shortcut outwards in
the pair state {x-m, m-y} of Phase III, we have already encountered an optimal shortcut or the
optimal shortcut p*q* can still be reached with an outward shift from the current shortcut.

Therefore, we have encountered an optimal shortcut when Phase III ends in the final state
{x-m,m-y,m-m}, or in {x-m, W-y, W-o}, or when p = a or ¢ = b in the state {x-m, m-y}.

Finally, we argue that the endpoints of the shortcut remain on their respective sub-paths of
the backbone, i.e., that the absolute center ¢ always lies on the path from p to gq.

Invariant 3.14. At any moment during the course of the continuous algorithm, the point p lies on
the path from a to c in T and the point q lies on the path fromc tob inT.

Proof. The invariant holds when we place both p and g at the absolute center ¢ at the beginning.
Throughout Phase I, we perform an outwards shift that continues to uphold the invariant: both p
and g move away from c and neither does p move past a nor does g move past b.

For Phase II, we prove that g cannot pass through ¢ during a shift towards x and, symmetrically,
that p cannot pass through ¢ during a shift towards y. This means that the invariant holds
throughout Phase II, since the algorithm terminates when p reaches a or when q reaches b.

Assume for the sake of a contradiction that q reaches ¢ during a shift towards x in Phase I
Without loss of generality, suppose that this is the first time g reaches ¢ during Phase II. This
means the invariant holds until now and, therefore, p lies on the path from a to c. Since we are in
Phase II, there are diametral pairs of type x-y in T + pq as well as diametral pairs of type x-m or
m-o. We distinguish two cases depending on the pair state of the augmented tree T + pc. In each
case, we derive a contradiction, meaning that g could never have reached c.

@ a 5 y
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(a) Path state {x-y, x-m} for T + pc. (b) Path state {x-y, m-o} for T + pc.

Figure 3.23: Two impossible constellations where an augmented tree T + pc has (a) diametral
pairs of types x-y and x-m or (b) diametral pairs of type x-y and m-o.
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1. Suppose T + pc has diametral pairs of type x-y and x-m, as illustrated in Figure 3.23a.

Let x, v be a diametral pair of type x-m in T +pc. Since v does not lie in a primary B-sub-tree
of T, we have dr(c,v) < dr(c,y). Since T + pc has other diametral pairs besides those of
type x-y, the shortcut pc must be useful for x, y, i.e., dr(x, p) + |pc| + dr(c, y) = dripc(x, y).

This leads to the contradiction diam(T + pc) < diam(T + pc), since

diam(T + pc) = dripc(x,v) (x, v is diametral in T + pc)
< dr(x,p) + |pc| + dr(c,v)
< dr(x,p) + Ipel + dr(c,y) (dr(c.v) < dr(c.y)
=dripe(x,y) (pc is useful for x,y)
= diam(T + pc) . (x,y is diametral in T + pc)

2. Suppose T + pc has diametral pairs of type x-y and m-o, as illustrated in Figure 3.23b.

Let u, v be a diametral pair of type -0 in T + pc with v ¢ T. Then v € pc withp # v # ¢
and u lies in a secondary 8-sub-tree with root r attached to the path from p to c along 8.
Let ¢ be the farthest point from c on the simple cycle C(p,c) in T + pc.

This leads to the contradiction diam(T + pc) < diam(T + pc), since

diam(T + pc) = dr1pc(u, v) (u, v is diametral in T + pc)
=dr(u,r) +dripc(r,v) (u, v is of type m-o)
< dr(u,c) +dripe(r,v) (r is on the path from p to ¢)
<dr(y,c) +dripe(r,v) (u is in a secondary $B-sub-tree)
=dr(y,c) + (Jpc| + dr(p,c))/2 (r and v are antipodal along C(p, ¢))
=dr(y,c) + dripc(c, ©) (c and ¢ are antipodal along C(p, c))
=drpc(y, ) (c is on any path from y to ¢ in T + pc)

< diam(T + pc) .

Therefore, during Phase II, g remains on the path from c to b and, likewise, p remains on the path
from a to c. Finally, this invariant holds for the entire algorithm, because the outward shift of
Phase III cannot move p or g through ¢ and it ends when p reaches a or when g reaches b. O

In conclusion, if we could implement and run it, the continuous algorithm would produce an
optimal shortcut pq for T where the point p lies along the path from a to ¢ and the point q lies
along the path from c to b. Next, we simulate the continuous algorithm with a discretization.

3.5 Discretization

To discretize the continuous algorithm, we subdivide the continuous motion of the shortcut with
events such that we can calculate the next event and the change in the continuous diameter of
T + pq between subsequent events. We introduce events, for instance, when the shortcut hits a
vertex, when the path state changes, and when the shortcut begins to shrink or to grow.
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3.5.1 Simulating Phase |

In the continuous algorithm, we move p and g with unit speed towards a and b, respectively. In
the discrete algorithm, we process a vertex event whenever p or g would hit a vertex during the
continuous movement. We locate the next vertex event by comparing the distance from p and
from g to the next vertex along their respective paths towards a and towards b.

Phase I begins in path state {x-pq-y, x-T-y} with pg = cc; the diametral paths of type x-T-y
disappear when the shortcut becomes useful for T. During Phase I, the continuous diameter
decreases or remains constant. Therefore, it is sufficient for the discrete algorithm to determine
where Phase I of the continuous algorithm ends. At the end of Phase I, we have either reached
the end of the backbone, i.e., pq = ab, or a diametral pair of type x-m, m-y, or m-o has appeared
alongside the diametral pairs of type x-y. We may ignore diametral pairs of type m-m as they
appear together with x-m and m-y when x-y is diametral, as shown in Theorem 3.12. We detect
changes in the path state by monitoring the candidates for each type of diametral path—except
for those connecting diametral pairs of type m-m.

x-pq-y The path x-pg-y has length dr,,q(x,y) = dr(x,p) + |pq| + d7(q, y). Between two events,
p and g remain on their respective containing edge. If the edges of T are line segments, we
can express the positions of p and q as an algebraic function of time with constant degree.
Therefore, we can also express dr,4(x,y) as an algebraic function of small degree.

X-pq-A, A-pq-y If the path x-pg-s;, fori = 1,2, ...,k becomes a diametral path of type x-pg-a,
then pq is useful or indifferent for x, s;, i.e., the leaf s; belongs to a secondary $-sub-tree
S; that is attached to the path from p to b in T. If x-pg-s; becomes diametral in Phase I or
II, then x-pg-y is also diametral and S; is attached to the path from q to p, as otherwise
y would be farther from x than s; in T + pq. Therefore, for any i = 1, 2,. .., k, the paths
x-pq-y and x-pg-s; are diametral in T + pq if and only if pq is useful or indifferent for x, s;
and dr(q,y) = dr(q, s;), i.e., q lies midway along the path from s; to y.

We introduce new events at the points q; € T with d7(q;,y) = dr(q;,s;), fori =1,2,...,k,
whenever g; lies on the path from ¢ to b. To locate the points g1, g2, . . . , gk, we first sort the
distances dr(y, s1), dr(y, s2), - - ., d7(y, si) and then traverse the path from b to ¢ placing g;
at the appropriate distance from y. This takes O(n + k log k) = O(nlog n) time.

When q reaches q;, for some i = 1,2, ..., k, during Phase I we test whether pq is useful or
indifferent for x, s;. If pq is useful or indifferent for x, s;, then x-pg-s; becomes diametral
and Phase I ends. Otherwise, pq is useless for x, s; and x-pg-s; cannot become diametral
during Phase L. Processing this event takes constant time, because the shortcut pq is useful
or indifferent for x, s; if and only if the root r; of S; lies on the path from p to b in T + pgq,
which we can check in constant time by comparing dr(a, r;) with dr(a, p), since

dr(a,p) = dr(a,p) + dr(p, p) = dr(a,p) + M .

x-T-A, A-T-y The length of the path x-T-s; for some i = 1,2, ...k does not change with the
position of pq; what does change, however, is whether x-T-s; is a shortest path in T + pq or
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not: the shortcut pq is useful for x, s; if and only if p lies in the interior of the path from a
to r; in T. Otherwise, pq is indifferent for {x,s;}, i.e., dr4pq(x,s;) = dr(x, ;).

The path x-T-s; becomes a diametral path of type x-T-a when the continuous diameter
of T + pq decreases to dr(x,s;) while the shortcut pq is indifferent for {x,s;}. To detect
this, we sort the values dr(x, s1), dr(x, s2), . . ., dr(x, sg) and we introduce events when the
current continuous diameter reaches any of these values. This leads to O(n log n) additional
preprocessing time and O(k) = O(n) additional events, since the continuous diameter is
decreasing during Phase I. For each additional event, we compare dr(a, r;) with dr(a, p) to
decide, in constant time, whether pq is indifferent for {x,s;}.

x-pq-e, ®-pq-y, x-T-e,e-T-y, A-p-o, A-q-°, A-pq-®, A-T-e We need to detect diametral paths in
T + pq that connect some leaf [ of T with the farthest point from [ along the cycle C(p, g).
Any candidate for a diametral path of this kind has length h + % (dr(p, q) + |pql), where h
is the height of a tallest sub-tree attached to the cycle C(p, q) in T + pq.

At the beginning of Phase I, the sub-trees containing x and y are the tallest sub-trees
attached to C(p, q), i.e., h = d7(x,p) = dr(q,y). As Phase I progresses, these sub-trees
shrink as p moves to a and g moves to b. For any secondary B-sub-tree S; attached to
the path from a to p, we have dr(r;,s;) < dr(p,si) < dr(p,x), and for every secondary
B-sub-tree S; attached to the path from g to b, we have dr(rj,s;) < dr(q,s;) < dr(q,y).
Thus, a secondary B-sub-tree S; may only become a tallest sub-tree if its root r; lies on the
path from p to q and h = max{dr(x, p), dr(r1,s1),dr(r2,s2), . . ., dr(ri, k), dr(q, y) }.

We compute h = max{dr(ri, s1), dr(rz, $2), . - ., dr(rg, sk )} as part of our preprocessing.
This allows us to detect diametral paths of type x-pg-e, e-pg-y, x-T-e, ®-T-y, A-p-o, A-g-o,
A-pg-e, and A-T-e by comparing max{dr(x, p), fl, dr(q,y)} + % (dr(p, q) + |pq|) with the
current continuous diameter. This takes constant additional time per event.

In conclusion, we can simulate Phase I of the continuous algorithm in O(n log n) time.

3.5.2 Simulating Phase Il

We describe the discretization of Phase II for a shift towards x, where the continuous algorithm
balances the diametral path x-pg-y and a diametral path with endpoints of type x-m or m-o.
Suppose p moves with unit speed towards a. The following lemma specifies the speed at which g
should move towards c to balance the diametral paths and how this impacts the diameter.

Lemma 3.15. Let pq and p’q’ be two shortcuts for a geometric tree T such that the movement from
pq top’q’ is a shift towards x. If T + pq and T + p’q’ are in the same path state, then we can express
the distance of q and q" and the change in diameter as stated in Table 3.1.

Proof. We show the result for the path state {x-pq-y, x-pg-e, x-T-e}. Suppose the paths x-pg-y,
x-pg-e, and x-T-e remain diametral as the shortcut moves from pq to p’q’. Then

dT+pq(xa y) - dT+p’q'(x7 y) = dlam(T + pQ) - dlam(T + P’q’) = dT+pq(x’ X-) - dT+p’q'(x, X-/)
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Path State dr(q,q") diam(T + pq) — diam(T + p’q’)
{x-pq-y,x-pq-} 0 dr(p’,p) + Ipql = Ip’q’|

{x-pq-y, x-pg-e,x-T-e} 1 (dr(p.p’) + Ipql — Ip’q’l) 2 (dr(p.p") + Ipgl - Ip’q’])
{x-pq-y,x-T-a} dr(p,p’) + Ipql — 1p'q’| 0

{x-pg-y. A-p-o, A-g-0}  dr(p.p") + 3 (Ipgl = lp'q’) % (pgl - 1p'q'))

Table 3.1: The distance between g and ¢’ and the change in diameter when shifting the shortcut
towards x from pq to p’q’ while maintaining the diametral paths in balance.

and, thus, dr(q.q’) = 3 (dr(p.p’) + Ipql — |p’q’]), since

dr+pq(6,Y) = AT q (X, Y) = dT4pg(X, %) = drapr (%, X7)
= (dr(p’.p) + Ipql = p'q’| + dr(q.q") /2 = dr (P, p) + Ipql = |p'q’| - dr(q’, @)
= 3dr(q.q") = dr(p.p") + Ipgl = Ip'q’I -
In this case, the diameter changes by % (dr(p,p’) + lpql — |p’q’|), since

diam(T + pq) — diam(T + p'q") = drpq(x,y) = dr4prq (%, Y)
=dr(p’.p) +Ipgl - Ip'q’| - dr(q’. q)

2 ’ ’_’
=3 r(.p") +Ipal = Ip'q’l) -
Analogously, we establish the results for the other path states listed in Table 3.1. ]

When p and q traverse a fixed pair of edges while shifting towards x, Lemma 3.15 allows us
to compute the next vertex event and how the diameter changes between subsequent events.
While simulating Phase II, we encounter O(n) events where the shortcut hits a vertex or where
the shortcut begins to shrink or grow, due to the following. The shortcut enters each edge at
most once, since p and g never change direction (we have dr(p,p’) > 0 and dr(q,q’) = 0 from
Lemma 3.15). Thus, we encounter O(n) pairs of edges. Moreover, the shortcut changes at most
once between growing and shrinking when both endpoints move along a fixed pair of edges.

Lemma 3.16. For a geometric tree with n vertices, the path state changes O(n) times in Phase IL.

Proof. In Phase II, the speed of p and q is determined by two or three different types of diametral
paths, i.e., by x-pq-y and x-pg-A, or by x-pg-y and x-pg-e and x-T-e, or x-pg-y and x-T-a, or by
x-pg-y and A-p-o and A-q-o. For any path state S during Phase II, only the subset &’ of & that
leads to the least increase in the continuous diameter determines the speed of p and q. The other
types of paths cease to be diametral instantaneously, i.e., we transition from S to &’.

Some transitions between the path states in Phase II are impossible. For instance, suppose we
shift pg towards x to p’q’ such that the path state remains {x-pg-y, A-p-o, A-g-o} until excluding
p'q’. Then T + p’q’ cannot be in path state {x-pg-y, A-p-o, A-g-0, x-pg-e, x-T-e}, due to the
following. From Table 3.1 we know dr(q,q’) = dr(p,p’) + 5 (Ipql — |p'q’]). As pg moves to p’q’,
the length of the paths x-pg-e and x-T-e changes by dr(p’,p) + % (Ipql = 1p’q’), since

dT+pq(x’ X-) - dT+p’q’(x’ X-/) = (dT(p/’p) + |pq| - |p/q/| + dT(q’ q/)) /2
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3.5 Discretization

1 !’ w4 ’ 1 w4
=3 dr(p,p)+lpq|—lpq|+dT(p,p)+§(lpql—lpql)
’ 2 !’
=dT(p,p)+§(lpq|—lpq|) -

Since dr(p,p’) > 0, the paths of type x-pg-e and x-T-e shrink at a faster rate than the diametral
paths of type x-pg-y, A-p-o, and A-g-o. Therefore, x-pg-e and x-T-e cannot become diametral
when the shortcut reaches p’q’. Figure 3.24 illustrates the transitions between the path states
that may occur during Phase II. We discuss some restrictions on these transitions.

x-pq-y
x-pq-®

/ x-T-o \
X-pq-y

X-pq-y —w XPq-y
e x-T-A [ |xpg-a
N /
Figure 3.24: The transitions between the path states during Phase II. Transitory states, such
as {x-pg-y, x-pq-A, x-pq-e, x-T-e} have been omitted. The red transition is possible

when the shortcut grows and the blue transition is possible when the shortcut shrinks.

When we take any green transition from {x-pg-y, x-pg-s;} for j = 1,2,...,k then
x, s;j ceases to be diametral and cannot become diametral again.

gy B
AP0 (]

We bound the number of visits to the path state {x-pg-y, x-pg-a} by k, where k = O(n) is the
number of secondary B-sub-trees of T. When we are in path state {x-pg-y, x-pg-s;} for some
j =1,2,...,k, then g lies midway along the path from y to s, i.e., dr(q,y) = dr(q,s;). When
we transition from {x-pg-y, x-pg-s;} to any other path state, g will begin to move with non-zero
speed towards a. Thus, the pair x, s; ceases to be diametral and cannot become diametral again
during Phase II. Therefore, we may take at most k green transitions in Figure 3.24.

We bound the number of visits to the pair state {x-pg-y, A-p-o, A-g-o} by n. Once we have
exhausted the green transitions, we can only enter pair state {x-pq-y, A-p-o, A-q-o} with the red
transition from {x-pg-y, x-T-a}. This transition is only possible when the shortcut is growing.
Therefore, we can visit {x-pq-y, A-p-o, A-g-o} at most O(n) times, since the shortcut switches at
most 2n times between shrinking and growing during a shift towards x.

Thus, after O(n) visits to each of the path states {x-pq-y, x-pg-a} and {x-pg-y, A-p-o, A-g-o},
we can no longer take any of the red or green transitions in Figure 3.24. We encounter O(n) path
state changes during Phase II, since the remaining transitions form an acyclic digraph. ]

In conclusion, we can simulate Phase II in O(nlog n) time, because Phase II consists of O(n)
events that we can process in O(log n) time after O(nlog n) preprocessing time by monitoring
the diametral paths of the augmented tree T + pq in the same fashion as in Phase 1.
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3 Tree Shortcuts

3.5.3 Simulating Phase IlI

In Phase III, the continuous algorithm balances a diametral path with endpoints of type x-m and
a diametral path with endpoints of type m-y. This leads to the following speeds.

Lemma 3.17. Let pq and p’q’ be two shortcuts for a geometric tree T such that the movement from
pq top’q’ is an outwards shift. If T+ pq and T + p’q’ are in the same path state, then we can express
the distance of g and q" and the change in diameter as stated in Table 3.2.

x-l H-y dr(q,q’) diam(T + pq) — diam(T + p’q’)

x-pq-A  A-pg-y dr(p.p’) lpgl = 1p'q’]
x-pg-A ey dr(p,p") + 3 (pal = 1p'd’) % (Ipgl = 1p’q’])

x-pqg-A  A-T-y  dr(p,p’) +|pql — Ip'q’|
x-® A-pg-y  dr(p.p)) -5 (pgl = 1p'q’) 2 (pgl - Ip'q’])
x-o -y dr(p.p’) (Ipql = 1p'q’)

x-o A-T-y  dr(p,p’) +1Ipgl - 1p'q’|
x-T-o  A-pg-y dr(p,p’)—(Ipql - 1p'q’])
x-T-A oy dr(p,p’) — (Ipql — Ip’q’l)
x-T-o  A-T-y dr(p,p’)

O O O On-win O©

Table 3.2: The distance between ¢ and q’ with the change in diameter when shifting a shortcut
pq outwards to a new position p’q” while maintaining the diametral paths in balance.
Here, x-e stands for x-pg-e and x-T-e. Likewise, -y stands for e-pg-y and e-T-y.

Proof. We establish these results using the same approach as in Lemma 3.15.
As pg moves to p’q’, the potential diametral paths change as follows. As usual, we denote the
farthest point from z € {x, y} along C(p, q) and along C(p’, ¢’) by Z and Z’, respectively.

x-pq-A:  dripg(x,si) = drepg(x,s:) = dr(p’,p) + lpgl — Ip’q’| — dr(q’, @)
x-pq-e,x-T-e : dT+pq(xa x) — dT+p’q’(xa f/) = (dT(P,’P) + |pq| - |P,q,| - dT(q/’ q)/2
x-T-A : dripq(x,8;) —dripg(x,55) =0
A-pgy:  dripg(sy) = drapg(sy) = dr(q’.q) + lpgl = Ip'q'| — dr(®’.p)
pq-y, o T-y:  dripg(y,9) — dripq(y.7) = (dr(q’.q) + Ipql - Ip’q'| — dr(p’,p)) /2
A-T-y: Ar1pq(S0,Y) = dT1pr g (S0, y) = 0

These changes equate for those paths that remain diametral during the shift towards x. For
instance, if the paths x-pg-e, x-T-e, and A-pg-y remain diametral as pq moves to p’q’ then

dT+pq(x, ¥) - dT+p’q’(x’ %) = diam(T + pq) — diam(T +p’q’) = dT+pq(sl, y) - dT+p’q'(sl’ y)
and, thus, dr(p,p’) = dr(q.q) + 5 (Ipql = [p'q’), since

dT+pq(X, x) — dT+p'q'(X, f/) = dT+pq(Sl, y) — dT+p’q’(sl, y)
= (dr(p",p) +Ipql - Ip'q’| = dr(q’. @) /2 = dr(q’, q) + lpql — Ip'q’| — dr(p’, p)

74



3.5 Discretization

= 3dr(p’,p) = 3dr(q.q") + Ipql = Ip'q’l -
In this case, the diameter changes by % (Ipql = 1p’q’1), since

diam(T + pq) — diam(T + p'q’) = dr4pq(s1.y) = drsp g (s1, )
=dr(q’.q) + Ipql = 1p’q’| = dr(p’. p)

2 ! 7
=§(Ipq|—lpql) -

In the same manner, we express dr(q, q’) and the change in diameter in terms of dr(p, p’) and
lpg| — |p’q’| for the remaining path states listed in Table 3.2. ]

Similar to Phase I and II, there are O(n) events where the shortcut hits a vertex or starts to
shrink or grow. Even though we can rule out certain transitions between path states, the path
state might change Q(n?) times. This occurs, for instance, when the shortcut alternates Q(n)
times between growing and shrinking such that there are Q(n) candidates for diametral pairs, for
each of which the shortcut becomes useful whenever it shrinks and useless whenever it grows.
We circumvent this issue by ignoring certain superfluous path state events.

Suppose that the shortcut is growing while the path x-T-s;, for some i = 1,2,...,k, is a
diametral path of type x-T-a. In this situation a path state change may occur where the path
x-pq-x or a path x-pg-s; for some j > i might become a diametral path of type x-pg-e and x-pg-a,
respectively. There is no need to recognize this path state change, since the diameter cannot
decrease before the shortcut becomes useful for x, s; again. Until then, we do not keep track of
any changes in the diametral path for pairs of type x-m. With this modification, the shortcut
might leave the trajectory that it would follow in the original algorithm. However, this does
not compromise optimality, because we uphold the same invariants: the path x-T-s; serves as a
witness that no shift towards x leads to a better shortcut, even if it is no longer diametral.

During Phase III, the path state has two components: the diametral path of type x-m and
the diametral path of type m-y. We modify Phase III such that we ignore changes to the x-m-
component of the path state when x-T-s; has become diametral for some i € {1,2,...,k} until
pq becomes useful for x, s;. Likewise, we ignore changes to the B-y-component when s;-T-y has
become diametral for some j € {1,2, ..., k} until pq becomes useful for x, ;.

Lemma 3.18. For a geometric tree with n vertices, the modified Phase III has O(n) events.

Proof. In Phase III, the speed of p and g is determined by one type of diametral path for a di-
ametral pair of type x-m and by one type of diametral path for a diametral pair of type m-y,
as indicated in Table 3.2. Certain path state transitions are only possible when the short-
cut shrinks, others only when the shortcut grows. Suppose, for instance, that the shortcut
shrinks as we move from pq to p’q’, i.e., |p’q’| < |pq|. In this case, we cannot transition from
{x-pg-e,x-T-e, 0-pg-y, ®-T-y} to {x-pq-A,x-pq-e,x-T-e, e-pg-y,e-T-y} as the shortcut moves
from pq to p’q’, since then dr(q,q’) = dr(p,p’) any path of type x-pg-a shrinks by

dripq(x,8i) = drop g (x,50) = dr(p’,p) + |pql = 1p'q’| — dr(q’,q) = |pql — Ip'q’|

whereas the diameter only shrinks by %(|pq| —|p’q’|). Figure 3.25 illustrates the path state
transitions during Phase III for the path states that do not contain x-T-4 or A-T-y.
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Recall that the B-sub-trees Sy, Sa, . . ., Sk are

numbered in the order along the backbone x-pg-A
from a to b. After x-T-s; has become a di- A-pgy
ametral path of type x-T-a in the modified / \
Phase III, none of the paths x-T-s; with i < j
X-pq-A xX-o

will be registered as diametral paths. If x-T-s;

does become diametral after x-T-s; has be- Y APqY

come diametral, then the shortcut is useless \ /
for x,s;, since it is useless for x,s;. There- x-®
fore, we do not register that x-T-s; becomes -y

diametral, because we are still waiting for
the shortcut to become useful for x, s;, since Figure 3.25: The path states encountered during

dr(x,si) = dripe(s, xi) < diam(T + pqg). Phase III, excluding the states con-

We argue that the modified Phase III vis- taining x-T-A or A-T-y and any tran-
its the path states containing x-T-A at most sitions to these states. Red transi-
k + n times. Figure 3.26 illustrates the possi- tions may occur while the shortcut
ble changes in the x-m-component of the path is shrinking; blue transitions may
state during the modified Phase IIl. When the occur while the shortcut is growing.

shortcut is growing, we only enter a path state

containing x-T-A when the path x-T-s; that was most recently a diametral path of type x-T-a
becomes diametral again. In this case, the x-m-component only changes away from x-T-a after
the shortcut has began to shrink again. Since the shortcut is growing at most n times during the
modified Phase III, we register at most O(n) path state changes of this kind. When the shortcut is
shrinking, we only enter a path state containing x-T-A when a path x-T-s; becomes diametral
that has not been diametral before. As argued above, this may occur at most k times, since [ < i,
where x-T-s; was the most recent diametral path of type x-T-a. Likewise, we argue that the
modified Phase III visits the path states containing a-T-y at most k + n times.

a xe M ~Jxpga

u-y

x-T-A
u-y

u-y
\_/' \/v

Figure 3.26: A simplified view on the path states encountered during Phase III. Only the changes
in the path type for x-m are shown. Red transitions may occur while the shortcut is
shrinking; blue transitions may occur while the shortcut is growing.

Once we have exhausted the at most 2k + 2n visits to path states containing x-T-a or A-T-y,
the remaining path state transitions form acyclic digraphs when the shortcut is shrinking and
when the shortcut is growing, as illustrated in Figure 3.25. Since the shortcut changes at most 2n
times between shrinking and growing, we register at most 2k + 4n events where the path state
changes. Therefore, we process O(n) events in total throughout the modified Phase III. ]
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3.5 Discretization

We treat path state events during Phase III in the same fashion as in Phase I and II, except for
the following two differences. First, the detection of diametral paths of type x-pg-a and a-pg-y
changes, since x-pq-y is no longer diametral. Second, we need to detect when a diametral path
appears that connects a diametral pair of type m-m, since this marks the end of Phase III. The latter
difference only concerns diametral paths of type A-T-A and A-pg-aA, since we already detect
diametral paths of type A-pg-e and A-T-e when monitoring the candidates for diametral paths
with an endpoint on the simple cycle C(p, q) in the augmented tree T + pq.

X-pq-A, A-pq-y There are only two cases in which a path x-pg-s;, for some i € {1,2,...,k}
becomes a diametral path of type x-pg-A during the modified Phase IIL

In the first case, the path x-T-s; is a diametral path of type x-T-a and the shortcut is about
to become useful for x, s;. We can detect this path state event in constant time per vertex
event by comparing dr(a, r;) with dr(a, p) to see when and if p passes through r;.

In the second case, the shortcut is growing and the path x-pg-p is a diametral path of type
x-pg-e. The point p is moving towards y when the shortcut is growing and s; is a leaf
of a secondary $B-sub-tree attached to the path from g to p. This implies that we have
dr(g,r;) = dr(r, s;) in this case. Therefore, we can detect this type of path state event by
placing additional vertices at the points py, p, . . ., px along the backbone such that p; is the
point along the path from a to r; with dr(p;, r;) = dr(ri, s;), if such a point exists. Placing
these at most k additional vertices takes O(n + k log k) preprocessing time.

A-T-A We may ignore diametral paths of type A-T-4A. Suppose that, during the modified Phase
III, some path s;-T-s;, for i,j € {1,2,...,k}, becomes a diametral path of type A-T-a at
some position pg of the shortcut. Even if we fail to register this path state event, we
still report an optimal shortcut, because we report the shortcut that yields the smallest
encountered continuous diameter including the continuous diameter of T + fq.

A-pq-A We cannot ignore an event where a diametral path of type A-pg-A appears, because
the length of these paths depends on pq. Moreover, we cannot afford to check whether
a diametral path of type A-pg-a is about to appear when processing the other events.
Therefore, we perform the detection of such events as a post-processing step instead.

It is sufficient to find the first position p§ where some path s;-pg-s;, for i,j € {1,2,...,k},
becomes a diametral path of type A-pg-a: If we shift outwards from pg, then s;-pg-s; will
remain diametral while increasing in length. Thus, we proceed as follows.

First, we simulate the modified Phase III without attempting to detect if a diametral path
of type A-pg-a appears. We record the sequence of edge pairs that we visit during this
simulation. As argued in Lemma 3.18, this sequence contains O(n) edge pairs. After the
simulation, we perform a binary search for pq in the sequence of visited edge pairs. The
binary search for pg takes O(nlog n) time, since we can determine the largest path of type
A-pg-4 in O(n) time for a fixed position of the shortcut, as shown in Lemma 3.19.

Lemma 3.19. For every augmented tree T + pq with n vertices, we can determine the length of the
longest paths of type A-pq-A in O(n) time.
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Proof. Every path of type A-pg-a has length dr(s;, p) + [pq| + dr(q,s;) for some i,j =1,2,...,k
with i < j where pq is useful for s;,s;. This means s; is a leaf of one of the secondary B-sub-
tees Si;, Si;+1,- - ., Siy attached to the path from p to g, and s; is a leaf of one of the secondary
B-sub-tees Sj,, Sj, +1, . . ., Sj attached to the path from p to q. We prove that the matrix M with

’

Moo = dr(si,p) + Ipql + dr(q,s;) ,if pq is useful for s;, s; fori; <i<ig
" 0 , otherwise and j; <j < jg

is totally monotone. This means we have to show that M;, ; < M;, ;, implies M;
all indices iy, ip, j1, jo With ip < i; < iy < igandj < j; < jo < jg.

< sz’ iy for

2, 11

Figure 3.27: A sketch of the relative positions of the secondary $B-sub-trees with indices
ir, 11, ia, ifg, jL» J1, j2, and jg when determining the longest A-pg-a path.

Suppose we have M;, ;
This means that pq is useful for s;,, s;,. Therefore, the shortcut pq is also useful for s;,,s;,, for
Si;» 8j,» and for s;,, s;,, due to the relative positions of r;, ,r;,, rj,, and r;,, as shown in Figure 3.27.
Hence, M; ; = dr(s;,p) + |pql + dr(q,s;) for i € {i, iz} and j € {ji,j2}. With this observation,
M;, i, < M, ;, implies dr(s;,, p) < dr(si,,p), since

< M;, i,. Then Mj, ;, > 0, because all entries of M are non-negative.

dT(sil’p) + |PQ| + dT(q’ Sjl) = Mjl,il < Mjl,iz = dT(siz’p) + |pq| + dT(q’ sjl) >

which, in turn, implies M;, ;, < M;, ;,, because

MjZ’il = dT(sil’p) + |PCI| + dT(q? sjz) < dT(siz’P) + |pq| + dT(q’ sjz) = sz,iz .

Therefore, the matrix M is totally monotone. We can access any entry M; ; of M in constant time
after O(n) pre-processing due to the following. We determine dr(s1, 1), dr(s2, r2), - .., dr(sg, rx)
as well as dr(a, 1), dr(a,r2), ..., dr(a, ri) in advance. The shortcut pq is useful for s;, s; precisely
when dr(r;,p) + |pq| + dr(q,rj) < dr(ri,r;j), which we can check in constant time with our
preparation. Computing dr(s;, p) + [pq| + dr(q, s;) also takes constant time.

Therefore, we can determine a largest entry in M—and, thus, a longest path of type A-pg-ao—in
O(n) time using the SMAWK Algorithm [2] without constructing M explicitly. ]

In conclusion, we can discretize all phases of the continuous algorithm—with some modifi-
cations that do not impact optimality—with O(n) events that we can process in O(nlog n) total
time, followed by a post-processing step that takes O(nlog n) time.

Theorem 3.20. For a geometric tree T with n vertices, it takes O(nlog n) time to determine a shortcut
pq for T that minimizes the continuous diameter of the augmented tree T + pq. m]
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4 Data Structures for Farthest-Point Queries

We aim to design efficient data structures that answer the following types of queries for a fixed
network G. Given a point q on the network G, what is the farthest distance from g in G? What
are the farthest points from ¢ in G? We refer to the former as farthest-distance query and to the
latter as farthest-point query. Figure 4.1 illustrates these queries in a geometric network.

[ ] e
e [ [ ] .q
o o o o
d 7e
o o o o

e e e o

L ] o e
(a) A heat map of the farthest distance. (b) A farthest-point query with its answer.

Figure 4.1: Farthest-distance queries and farthest-point queries in a geometric network G. In
Subfigure (a), the edges of G are shaded depending on the farthest distance with the
values grouped in five intervals; brighter shades indicate low values and darker shades
indicate higher values. The farthest distance is low at the center and high at its fringe.
Subfigure (b) illustrates a farthest-distance query from a point ¢ whose farthest points
in G are the points g and ¢’ that are points along edges, not vertices.

A query point q is represented by the edge e containing g together with the value 4 € [0, 1]
that specifies the relative position of q along e with respect to the endpoints u and v of e, i.e.,
de(u,p) = A-d(u,v). The farthest points from q are represented in the same fashion. The farthest
distance from q € G is denoted by ds(q), i.e., dg(q) = max,ec dg(p,q), and a point p € Gis a
farthest point from q in the network G when dg(q) = dg(p, q).

4.1 Preliminaries

Let G be a network with n vertices and m edges. If we perform no preprocessing, then we can
answer farthest-distance queries and farthest point queries in G in O(m + nlogn) time using
Dijkstra’s Algorithm with Fibonacci heaps [26]: For a query g € G, we compute a shortest path
tree T, that is rooted at q. For each edge st that is not part of T,, we subdivide st into two
sub-edges sx and xt such that for all points p € sx a shortest path to g passes through s and for all
points p € xt a shortest path to g passes through ¢. Orienting the edges of the resulting subdivided
network towards q yields an extended shortest path tree [48] rooted at q. Notice that—despite
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4 Data Structures for Farthest-Point Queries

of the name—an extended shortest path tree is a directed acyclic graph and not necessarily a
tree. Every farthest point from ¢ in G is a source of any extended shortest path tree rooted at gq.
Figure 4.2 illustrates an example of an extended shortest path tree.
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Figure 4.2: An extended shortest path tree E, that is rooted at the point g in a geometric network.
The edges of E, along shortest paths to g via u (and the sub-edge uq) are coloured
orange and the shortest paths to g via v (and the sub-edge quv) are coloured blue. The
monochromatic sources (orange squares and blue squares) of E, are candidates for
stationary farthest points from ¢ and the bichromatic sources (green squares) that are
incident to edges of different colour are candidates for moving farthest points.

Since all points along a network G are candidates for farthest points, we observe two types of
changes in the set of farthest points when moving the query point along an edge. As illustrated
in Figure 4.3, there are farthest points that remain stationary when moving the query point, and
there are farthest points that move with the query point. Hence, the set of points that are farthest
from some point on the network may be uncountable infinite. This means that there may be
uncountably infinitely many regions in the farthest-point Voronoi diagram that is defined with
respect to the metric space formed by all points along a network and their network distance, and
where all points along the network are considered to be sites. We obtain a finite representation
of this infinite diagram when by subdividing the network depending on which edges contain
farthest points [12]; we call this finite representation the network farthest-point diagram.

q q

3
] ¥ 7%
u —N q n [ u q
(a) Stationary farthest point. (b) Moving farthest points.

Figure 4.3: A network with (a) stationary and (b) moving farthest points. Each point on the
blue edge has the blue square as a stationary farthest point. Each point p on the
vertical middle edge has two farthest points p and p’ that move downwards as p moves
upwards. No two points on the middle edge have the same farthest points.

For a network G with n vertices and m edges, the network farthest-point diagram of G has size
O(m?), construction time O(m? log n), and supports O(log n)-time farthest-distance queries and
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O(k + log n)-time farthest-point queries in G, where k is the number of reported farthest points.
The purpose of this chapter is to develop more efficient data structures for certain networks.

4.1.1 Previous Work

This chapter builds upon previous results on data structures supporting farthest-distance queries
and farthest-point queries in networks [12, 13, 27]. It is instructive to review these results here, as
we combine data structures for simpler networks to support queries in more complex networks.
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(a) A query facing u. (b) A query facing both ways. (c) A query facing v.
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(d) The farthest distance from ¢ € uv to any point on st.

Figure 4.4: A derivation of the farthest distance from an edge uv of a network N to any point on
another edge st. Let f and § be the farthest points in N from t and s along uv, and let
% and © be the farthest points in N from u and v along st. If the query q lies between
u and t with g # £, as in Subfigure (a), then the farthest point from q on st is @. If
the query g moves from t to § along uv, as in Subfigure (b), then the farthest point
from q on st moves from @ to ©. If the query g lies between § and v with g # 0, as in
Subfigure (c), then the farthest point from q on st is ©. For a point g on edge uv, the
function dg;(q) = max,cs; dn(p, q) has the shape depicted in Subfigure (d).

General Networks [12,27] We consider an arbitrary network N. For each pair of edges uv
and st of N, we determine the farthest distance from points on uv to any point along st as
a function of the position of the query along uv, i.e., we compute d;(q) = maxpes: dn(p, q)
for each g € uv, as illustrated in Figure 4.4. Then, we compute the upper envelope of the
functions indicating farthest distances from uv to support farthest distance queries from
uv, ie., JN(q) = maxy,ep dg; for q € uv, where E is the set of edges of N. An example is
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4 Data Structures for Farthest-Point Queries

illustrated in Figure 4.5. We repeat this for each edge and construct a data structure that
reports the functions determining the upper envelope, and, thereby, the edges containing
farthest points. For a network with n vertices and m edges, this leads to a data structure with
size @(m?) and construction time O(m? log n) that supports O(log n)-time farthest-distance
queries and O(k + log n)-time farthest-point queries, where k is the number of reported
farthest points. The bound on the size of the data structure is tight, i.e., for every value of
m, we can construct a network with m edges, where the set of the edges containing farthest
points changes Q(m?) times as we traverse all edges of the network. Notice that this is a
lower bound for the approach, not the problem itself: there may exist a data structure for
farthest-point queries in general networks with size o(m?).
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location of the farthest points in N.
(c) The edge-wise farthest distance functions for uv.

Figure 4.5: The computation of the farthest distance function from an edge uv in a network N.
In Subfigure (a), the edges of N that contain farthest points from some point along
uv are highlighted in the colours that match the corresponding edge-wise farthest
distance functions in Subfigure (c). Based to the upper envelope of these functions,
we subdivide N depending on the location of the farthest points from queries along
uv, as illustrated in Subfigure (b). The colours of the sub-edges of uv in Subfigure (b)
indicates that a square of matching colour is a stationary farthest point or that there
is a moving farthest point along the sub-edge xy. For each ® € {h,x,y, f,e, a}, the
point & denotes the farthest point from e along uv with respect to the cycle in N.
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Cycle Networks [13,27] Let C be a cycle network with n edges. The length of C is denoted
as |C|. For any point g € C the farthest point from ¢ in C is the antipodal g of g and
dc(q) = de(g, §) = |C|/2. Hence, answering farthest-distance queries from a cycle takes
constant time, once we have calculated |C|. To locate farthest points, we subdivide C at the
antipodal ¢ of every vertex v of C and introduce pointers between pairs of antipodal vertices,
as illustrated in Figure 4.6. This allows us to perform a binary search for the antipodal
point for any query point. Therefore, for every cycle C, there exists a data structure with
O(n) size and O(n) construction time that supports O(1)-time farthest-distance queries
and O(log n)-time farthest-point queries on C. Notice that we cannot improve the query
time for farthest-point queries, since this would also mean an improvement to predecessor
search in a sorted array, as illustrated in Figure 4.7. However, if we are allowed to subdivide
C with O(n) additional vertices (the antipodals of the vertices), and if we are allowed to
specify queries with respect to the subdivided edges instead of the original edges of C, then
we can answer farthest-point queries in constant time by storing the edge containing the
antipodal with each edge in the sub-divided cycle.
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Figure 4.6: The construction for farthest-point queries on a cycle C. For some vertex v; of C, we
locate the antipodal point 0; of v;. Starting from v; and 0;, we sweep a point p and
its antipodal p along the cycle and introduce a new vertex at p or at p when the other
point reaches a vertex. We store a pointer from each vertex to its antipodal and vice
versa to locate the edge containing the farthest point from a query point.
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Figure 4.7: The reduction from predecessor search in sorted arrays to farthest-point queries
on cycles. Suppose we are given a sorted array A with entries aj, ay, . . ., a, where
0<a; <a;<--<ap <1 We construct the depicted cycle C: we begin with two
edges e and e’ of weighted length one that connect two vertices u and v. We subdivide
the edge e’ with points pq,ps, . . ., pn such that d(u, p;) = a;, foreachi = 1,2,...,n.
We answer a query for the predecessor of £ € (0, 1) in A with a farthest-point query
in C from the point g¢ € e with d(q¢, v) = &. The farthest point g¢ from g in C lies
on the edge connecting p; and p;. if and only if a; is the predecessor of ¢ in A.
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4 Data Structures for Farthest-Point Queries

Tree Networks [13, 27] Let T be a tree network with n vertices. Every tree has exactly one

pivotal point where the set of farthest points changes. This pivotal point is the absolute
center of T, i.e., the point ¢ € T that minimizes the farthest distance to the leaves of T. The
absolute center ¢ of T is the midpoint of every diametral path of T, i.e., dr(c) = diam(T)/2.
As illustrated in Figure 4.8, we split T at ¢ into sub-trees Ty, T3, . . ., Tj, where each T; is a
maximal sub-tree of T consisting of points that can reach each other via a path that does
not contain c in its interior. For every point g € T; with q # c, the farthest points from
q in T are the farthest leaves from c in the sub-trees T; with j # i. The farthest distance
from any point g € T; is the distance between q and c plus the distance from c to the
farthest leaves from c in T \ T}, i.e., dr(q) = dr(q,c) + diam(T)/2. It takes O(n) time to
compute the absolute center c, the diameter of T, and the farthest leaves from c in each
sub-tree Ty, T3, . . ., T;. Therefore, for every tree T, there exists a data structure with size and
construction time O(n) that supports O(1)-time farthest-distance queries and O(k)-time
farthest-point queries in T, where k is the number of reported farthest points.
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(a) The absolute center lies on an edge. (b) The absolute center lies on a vertex.

Figure 4.8: The decomposion of two geometric trees into sub-trees with the same farthest points.

When the absolute center c of a tree T falls on an edge, as depicted in Subfigure (a),
then we split T into two sub-trees. When the absolute center c of a tree T falls onto
a vertex of degree [, as shown in Subfigure (b), then we split T into [ sub-trees. The
farthest points for q € T; with q # c are the farthest leaves from cin T \ T;.

Uni-Cycle Networks [13, 27] A uni-cyclic network is a network with exactly one cycle. This

means that every uni-cyclic network U consists of a cycle C with trees Ty, T», . . ., Tj that
are attached to C at vertices vy, vy, ..., v;. As illustrated in Figure 4.9, we support queries in
a uni-cyclic network by combining the data structure for trees, the data structure for cycles,
and a new data structure that identifies the trees that contain farthest points from a query
point along the cycle. The following observations show that it takes O(n) time to subdivide
the cycle C depending on which trees among Ty, T3, . . ., T}, if any, contain farthest points.
We call a tree T; relevant if some point on C has a farthest point in T;. A tree T; is relevant
if and only if the antipodal point 9; of v; has a farthest point in T;. The points along C that
have farthest points in T; form a path along C. These paths appear in the same circular
order as their corresponding relevant trees appear along C.
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(c) The perspectives from the trees. (d) The perspective from the cycle.

Figure 4.9: A uni-cyclic network together with the perspectives from its trees and from its cycle.
The edge weights are omitted for edges of weight one. In the perspective from the
cycle, the colouring of the cycle indicates which tree, if any, contains farthest points.

For uni-cyclic networks, we introduce the idea of the perspective from a sub-network on a
network. The perspective from tree T; on U is the tree that consists of T with a new edge
e from v; to a new vertex v; whose weighted length w, is the farthest distance from v;
to any point in U outside of Tj, i.e., we = dy\1,(v;). The perspective from the cycle C onto
U consists of C where each sub-tree T; is replaced by a pendant edge e; from v; to a new
vertex t; whose weighted length w,, is the farthest distance from v; to any point in T, i.e.,
We, = dr,(v;). As illustrated in Figures 4.9c and 4.9d, the perspectives from the trees and
cycles preserve the distance information from the original network and allow us to split
queries into sub-queries that we can handle with known data structures.

For a uni-cyclic network U with n vertices, there exists a data structure with O(n) size and
construction time that supports O(log n)-time farthest-distance queries and O(k + log n)-
time farthest-point queries in U, where k is the number of reported farthest points.

Cactus Networks [13, 27] A cactus network is a network where no two simple cycles share
an edge. This means that every cactus network N consists of cycles C;,C,,...,C, that
are connected by trees Ty, T», . . . ,, Ty, as illustrated in Figure 4.10. To support queries in
cactus networks, we expand on the idea of perspectives. The perspective from a cycle C;
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4 Data Structures for Farthest-Point Queries

on a cactus network N is a uni-cyclic network and the perspective from a tree T; on N is a
tree. Since we already know how to support queries in trees and uni-cyclic networks, the
challenge for cactus networks lies in constructing the perspectives from the trees and the
cycles of a cactus and in connecting their corresponding data structures.

T

(a) A cactus network N. (b) The tree structure of N.

Figure 4.10: A cactus network with its tree structure.

We describe the construction of the perspectives from the bi-connected components of
a network as illustrated in Figure 4.11. We construct the perspectives from trees and
from cycles on a cactus network in the same manner. We start with some bi-connected
component B* and recursively determine the farthest distance on paths leading away from
the bi-connected component B* with a breadth-first search in the tree structure of the
network. Then, we propagate the information gathered at B* to the other bi-connected
components to build the remaining perspectives. As illustrated in Figure 4.12, we introduce
shortcuts in the tree structure to support efficient farthest point queries. These shortcuts
point to the next bi-connected component in the tree structure that contains a farthest
point, or to the next bi-connected component where two paths to farthest points diverge.

For every cactus N with n vertices, there exists a data structure with O(n) size and con-
struction time that supports O(log n)-time farthest-distance queries and O(k + log n)-time
farthest-point queries in N, where k is the number of reported farthest points.

Tree-Like Networks [13, 27] The strategy for cactus networks generalizes as follows. Con-

sider a network N with n vertices and b bi-connected components By, B, . . ., By, of sizes
ni, Ny, . . ., Ny, respectively. Suppose we have a data structure with size S;(n;) and construc-
tion time T;(n;) for the perspective from B; on N, for each i = 1,2,...,b. Suppose that
this data structure supports O(log n)-time farthest-distance queries and O(k + log n)-time
farthest-point queries from points on B; and that it supports O(1)-time farthest-distance
queries and O(k)-time farthest-point queries from dummy vertices in the perspective from
B;. Then, there exists a data structure with size O (n + Z?:l S,-(nl-)) and construction time
O(n+ Zf‘):l Ti(n;)) that supports O(log n)-time farthest-distance queries and O(k + log n)-
time farthest-point queries in N, where k is the number of reported farthest points.
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(a) A bi-connected component B* in a network N. (b) The perspective from B* on N.

(c) A bi-connected component B’ neighbouring B*. (d) The perspective from B’ on N.

Figure 4.11: The construction of the perspectives from the bi-connected components (gray shapes)
on anetwork N. We begin with some bi-connected component B*. For each connected
component X (coloured shapes) of N \ B* with at least one edge, we determine the
farthest distance dx(h*) in X from the cut vertex h* (empty circles) that connects
B* with the bi-connected components in X. We compute the longest paths leading
away from B* in X, and thus dx(h*), with a breadth-first search in the tree structure
(black arrows). Using the perspective from B*, we construct the perspective of each
neighbouring bi-connected component B’ of B*. We already know all but one of the
required distances for the construction of the perspective from B’ on N from the
construction for B*. We obtain the missing distance (red arrow) with a query in the
perspective from B* on N from the artificial vertex * that represents the connected
component X in N \ B* that contains the bi-connected component B’.

The term tree-like—which is not formally defined—expresses that we consider a network to
be more like a tree when the network decomposes into a large number of small bi-connected
components. If a network decomposes into bi-connected components of constant size,
then the above leads to a data structure with size and construction time O(n). On the other
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hand, if the network decomposes into bi-connected components of linear size, then we
gain little from this strategy. Despite lacking a formal definition, we would consider the
former network to be more tree-like than the latter.

(a) A query g from a bi-connected component of a

network N (b) The paths to farthest points from g in N.

(c) The perspectives that are visited when answering the query from ¢ in N.

Figure 4.12: A query q for the farthest points (squares) from g in a network N with respect
to the tree structure of N. In Subfigure (b), the bi-connected components that
contain farthest points from g are red and a bi-connected component where paths
to farthest points diverge are yellow. We follow a shortcut (green) to skip some
bi-connected components along the paths (blue) to the red or yellow bi-connected
components. Subfigure (c) illustrates the queries in the perspectives from all bi-
connected components on N that are accessed when processing the query from gq.

The connection between the previous works and this work is as follows. The strategy for
tree-like networks applies to any network, yet its success depends on how well we can handle the
larger bi-connected components. We aim to expand the usefulness of the strategy for tree-like
networks with more sophisticated bi-connected components than trees and cycles. One type of
networks that appears to be particularly hard for this problem are grid networks, since small
changes in the weight of the grid edges can cause vast changes in the extended shortest path tree
from a query point. In order to avoid networks with large grid minors, we consider networks of
low treewidth, starting with networks of treewidth two, i.e., series-parallel networks.
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4.1.2 Structure and Results

We obtain the data structure for series-parallel networks by studying intermediate types of
networks. We begin with networks reflecting parallel structure (parallel-path networks) and
serial structure (bead-chain networks). Combining them, we support queries on flat two-terminal
series-parallel networks (abacus). We then decompose two-terminal series-parallel networks into
a tree of nested networks and combine their associated data structures. We tackle series-parallel
networks by first building separate data structures for each of its bi-connected components,
which are two-terminal series-parallel by definition. Finally, we connect the data structures for
the bi-connected components exploiting that the bi-connected components are connected in
a tree-like fashion. Table 4.1 summarizes the proposed data structures and compares them to
previous results. Figure 4.13 illustrates the types of networks that we study in this work.
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(a) A parallel-path network. (b) A bead-chain network.
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(c) An abacus network. (d) A two-terminal series-parallel network.

Figure 4.13: The types of two-terminal series-parallel networks studied in this work.

Parallel-Path Networks A parallel-path network N is obtained by applying the parallel opera-
tion A times to a single edge and subdividing the resulting network with series operations.
As illustrated in Figure 4.13a, every parallel-path network N consists of A paths that only
meet at the two terminals u and v of N and that are otherwise disjoint.

We support queries in parallel-path networks by distinguishing queries where all farthest
points are reached through the terminal u (queries facing u), all farthest points are reached
through the terminal v (queries facing v), or neither (queries facing both ways). Further-
more, we distinguish candidates for farthest points on the u-v-path containing the query
(inward queries) and candidates on other u-v-paths (outward queries).

89



4 Data Structures for Farthest-Point Queries

Type Farthest-Point Query  Size  Construction Time Reference

General O(k + logn) o(m?) O(m?logn) [12, 27]

Tree 0(k) O(n) O(n) [13, 27]

Cycle O(logn) O(n) O(n) [13, 27]

Uni-Cyclic O(k + logn) O(n) O(n) [13, 27]

Cactus O(k + logn) 0(n) 0(n) [13, 27]

Parallel-Path O(k + logn) O(n) O(n) [28]

Bead-Chain O(k + logn) O(n) O(n) [28]

Abacus O(k + logn) O(n) O(nlog ) [28]
Two-Terminal O(k + logn) O(rn) O(rnlogA)
Series-Parallel O(k + logn) O(tn) O(rnlogA)

Table 4.1: The traits of our data structures for queries in different types of networks, with n

vertices, m edges, k reported farthest points, nesting number 7, and parallelism A.

For a parallel-path network with n vertices, we obtain a data structure with size and
construction time O(n) that supports O(log n)-time farthest-distance queries and O(k +
log n)-time farthest-point queries, where k is the number of reported farthest points.

Bead-Chains A bead-chain network is obtained from a cycle C by applying one parallel oper-

ation to o edges of C and subdividing the resulting network with series operations. As
illustrated in Figure 4.13b, a bead-chain network consists of a main cycle C with paths that
are attached to C in a non-overlapping fashion; we refer to these paths as arcs.

We support queries in bead-chain networks by distinguishing whether the query originates
from the main cycle or from an arc. For queries from the main cycle, we determine the
distance to the farthest point on the cycle itself and on each arc as a function of the position
of the query. Then, we compute the upper envelope of these functions to describe the
farthest distance from points along the cycle. Due to the shape of these functions, this takes
linear time. We support farthest-point queries from the cycle using an interval stabbing
data structure that reports the arcs whose functions match the upper envelope. For queries
from the arcs, we project the query point onto the cycle and reconstruct the answer for the
original query on the arc from the projected query on the cycle.

For a bead-chain network B with n vertices, this yields a data structure with size and
construction time O(n) that supports O(log n)-time farthest-distance queries and O(k +
log n)-time farthest-point queries in B, where k is the number of reported farthest points.
This data structure generalizes the data structure for queries in a uni-cyclic network.

Abacus Networks An abacus network is obtained from a parallel-path network N by applying

one parallel operation to ¢ edges of N and subdividing the resulting network with series
operations. As illustrated in Figure 4.13c, an abacus consists of a number of parallel paths
P1, P, ..., P, that connect the terminals, and each of these parallel paths has additional
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paths attached to it in a non-overlapping fashion; we refer to these attached paths as arcs.
Furthermore, we call each parallel path P; with its arcs a bead-string and denote it by B;.

We support queries in abacus networks by building on the techniques for parallel-path
networks and bead-chain networks. We distinguish whether the query reaches its farthest
points through the terminal u (queries facing u), through the terminal v (queries faching
v), or neither (queries facing both ways). We translate queries from the arcs to queries on
the parallel-path network similar to how we translate queries from the arcs of a bead-chain
to its main cycle. Abacus networks require a number of new approaches as well: we split
farthest-point queries into queries for the farthest points on the bead-string containing
the query (inward queries) and queries for the farthest points outside the bead-string
containing the query (outward queries). We support inward queries by completing each
bead-string B; to a bead-chain with an additional edge that represents the shortest path
connecting the terminals outside of the bead-string B;. We support outward queries by
translating them to a virtual edge from where we compute the functions that describe the
farthest distance to the arcs of each of the A bead-strings. We recover the answer to the
outward farthest-point query from the first layer (i.e., the upper envelope) or the second
layer (i.e., the functions directly below the upper envelope) of these functions.

For an abacus A with n vertices, this leads to a data structure with O(n) size and O(nlog 1)
construction time that supports O(log n)-time farthest-distance queries and O(k + log n)-
time farthest-point queries in A, where k is the number of reported farthest points.

Two-Terminal We decompose a bi-connected two-terminal series-parallel network N into a
hierarchy H of nested abacus networks. Intuitively, the hierarchy H is formed as follows.
We generate N starting with an abacus A that becomes the root node of H. We select a
cycle C in A with exactly two degree-three vertices a and b in A. We replace C with an
abacus with terminals a and b that contains C and repeat this process on the resulting
network. Whenever a cycle is replaced with an abacus, the new abacus becomes a child
node in H of the node containing the cycle. The nesting number  of N is the size of H,
i.e., T is the number of times we replace a cycle with an abacus network to obtain N.

We support queries in two-terminal series-parallel networks by generalizing the approach
for abacus networks. For each node of the nesting hierarchy, we construct a data structure
that aggregates the farthest-distance information from other parts of the network in the
same fashion as we aggregate the farthest distance information from the arcs of an abacus.
For a two-terminal series-parallel network N with n vertices, parallelism A, and nesting
number 7, this leads to a data structure with size O(rn) and construction time O(rnlog 1)
that supports O(log n)-time farthest-distance queries and O(k + log n)-time farthest-point
queries in N, where k is the number of reported farthest points.

Series-Parallel We apply the strategy for tree-like networks to series-parallel networks, i.e.,
we decompose a series-parallel network into its bi-connected components and build data
structures for the bi-connected components and for the perspectives from the bi-connected
components on the network. The bi-connected components of a series-parallel network
are, by definition, two-terminal series-parallel; the perspective from each bi-connected
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component consists of a two-terminal series-parallel with attached pendant edges. Even
though these perspectives are not two-terminal series-parallel, we argue that we can still
use our data structure for two-terminal series parallel networks for them, because we can
interpret the pendant edges as arcs whose endpoints coincide.

Let N be a series-parallel network with n vertices, and b bi-connected components of size
ni, Ny, ..., Np, nesting numbers 7y, 73, . . ., 7p, and parallelisms A1, A5, . . ., 4. Moreover, let
T = maxﬁ’:1 7; be the largest nesting number and let A = maxf.’:1 Ai be the largest parallelism
in N. By applying the strategy for tree-like networks, we obtain a data structure with
size O (n + Zf.’zl 7;n;) = O(rn) and construction time O (n + Z?:l in;log ;) = O(rnlog 1)
that supports O(log n) time farthest-distance queries and O(k + log n)-time farthest-point
queries in N, where k is the number of reported farthest points.

4.2 Parallel-Path Networks

A parallel-path network N consists of A edge disjoint
paths Py, P,, ..., P) that connect two vertices u and v,
as illustrated in Figure 4.14. Parallel-path networks are
series-parallel networks that are generated from an edge = “ v
uv using A parallel operations followed by a sequence of
series operations to further subdivide the paths. Without
loss of generality, let |P;| < |P;| < -+ < |Py| be the
weighted lengths of Py, Py, . . ., Py, respectively.

For a query point ¢ € N, we consider an extended Figure 4.14: A parallel-path network.
shortest path tree [48] rooted at g, i.e., a directed acyclic
graph that results from directing all edges towards q after splitting each edge st that is not in
a shortest path tree for g into two sub-edges sx and xt, where all points on sx reach g through
s and all points on xt reach g through ¢. As illustrated in Figure 4.15, either all shortest paths
from q reach v via u (i.e., q is facing u), or all shortest paths from g reach u via v (i.e., q is facing
v), or neither (i.e., g is facing both ways). We distinguish the three cases using the following
notation. Let ¥; denote the farthest point from x € {u, v} among the points of path P;, i.e., X;
is the point on P; such that dy(x, ¥;) = max,ep, dn(x,y). Together with Figure 4.15, the next
lemma characterizes when the query point q is facing u, facing both ways, or facing v.

Lemma 4.1. Let N be a parallel-path network with terminals u and v that are connected by the
edge disjoint paths Py, P, . . ., P;. Consider a query point q € P; foranyi=1,2,...,A.

(i) The query q is facing u if and only if q lies on the sub-path from u to 0; with q # 0;,

(ii) the query q is facing both ways if and only if q lies on the sub-path from o; to i;, and
(iii) the query q is facing v if and only if q lies on the sub-path from 4; to v with q # ;.

Proof. Suppose q € P; is facing u, i.e., every shortest path from q to v contains u, i.e., dn(g,v) =
dn(q,u) +dn(u,v) and dn(q, v) < dp,(q, v). The latter implies q # 0;, since dn(9;, v) = dp,(0;, v).
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q > o . o e < q
O ~— — 1i; 0 \?.q/ U; U ~———1l;
(a) A query facing u. (b) A query facing both ways. (c) A query facing v.

Figure 4.15: The three cases for queries in parallel-path networks. Consider the extended shortest
path tree from a query q € P; along the paths P; (center), P; (bottom), and P; (top).
When gq is facing u, we reach v via u. When gq is facing both ways, we enter path
P; through both terminals u and v. When gq is facing v, we reach u via v. Points
coloured red are reached fastest via a path through u or towards u along P;, while
points coloured blue are reached fastest through v or on a path towards v along P;.

Moreover, 7; cannot lie on the sub-path from g to u along P;, since otherwise

q#90;
dn(q,v) = dn(q, ;) + dn(D5,v) > dn(D;,0) ,

which contradicts the definition of ¥; as the farthest point in N from v along the path P;. Therefore,
if q is facing u, then q lies between u and 0; along P; with q # ;.

Conversely, suppose q lies between u and 9; along P; with g # ;. No shortest path from ¢
to v can contain 7; in its interior. Hence, every shortest path from q to v reaches v via u, i.e., g
is facing u. Symmetrically, q is facing v if and only if q¢ # u; lies between #; and v with q # ;.
Consequently, all points on the sub-path from 9; to @; along P; are facing both ways. ]

Queries Facing One Way

Query points that are facing u or v only occur on u-v-paths that are strictly longer than the
shortest u-v-path Py, since |P;| = |P;| implies 9; =u and #i; = v forall j =1,2,..., A

We consider a u-facing query g from a u-v-path P; for some i = 2,3,...,A with |P;| > |Py].
Every shortest path from g to any point outside of P; leaves P; through u. Hence, the farthest
point from q on P; with j # i is the farthest point #; from u on P; and the distance from q to g;
is dn(q,q;) = dn(q,u) + dn(u, %) = dp,(q,u) + (|P1| + |Pj|)/2. On the other hand, the farthest
point §; from q on the u-v-path P; itself moves from #; to v as ¢ moves from u to 9; maintaining
a distance of dx(q, i) = (|P1| + |P;|)/2 . Therefore, the farthest distance from q in N is

5 Pi| + |P; Pi| + |P;
2 J#i 2
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dpl.(q,1,t)+|Pl|-'2-J ifi# A
= dpi(q,u)+w ifi=/1andwgdpi(q,u) .
Pil+ Pl i ang PPl L
2 2
To support farthest-distance queries when facing u, we compute the lengths |Py|, |P|,..., |Pal

of the u-v-paths Py, P, . .., P; as well as the distance to u for each vertex of N. This takes O(n)
time and allows us to evaluate dy(g) in O(1) time for every query point g that is facing u.

To support farthest-point queries when facing u, we locate the points #; with |P;| = |P,| or
|Pj| = |Py—q| for j = 1,2,...,Ain advance. The farthest points from u are the @; with |P;| = |P,]|.
We answer a farthest-point query from a point q € P; that is facing u with q # u as follows.

« If i # A, then we report all points #; where |P;| = |P;| for j = 1,2,...,A with i # j.

The farthest points from g € P; with i # A are the farthest points #; from u in N along the
longest u-v-paths—except for the farthest points #; from u on P; itself. The farthest point
g; from g in N along P; itself is not a farthest point from g, since ¢ # u and, thus,

Pl + [Pal P+ 1Pl [Pl + |
2 2 2

dn(q) = dp,(q u) + =dn(q,qi) -

« If i = Aand |Py| — |Py_1| < 2dp,(q,u), then we report all points ii; where |P;| = |P;_| for
j=12,...,A-11Ifi=Aand |P;| — |P)_1| = 2dp,(q, u), then we report the farthest point
G, from q on P, itself. The overlap |P;| — |P)—1| = 2dp,(g, u) of these cases is intentional.

We consider a query point g € P, such that dp,(q,u) ~ (|[Py| — |P)-1])/2 for ~ € {<,=,>}.
Note that ~ is > when |P;| = |Py_4|, since q # u and, thus, dp,(q,u) > 0 = (|P| — [Pa-1])/2.
Depending on ~, the farthest points from q in N are (>) the farthest points ; from u along
the paths P; with |Pj| = |P;| — 1 and j < A, or (<) the farthest point g, from g along P,
itself, or (=) both, because we have dn(q,@)-1) ~ dn(g,G2), since
dn(q, @p-1) = dp,(q. u) + w

_ Bl =1Paal P+ [Pa]

2 2

_ P+ [Py

==

=dn(q,42) -

We support O(log n)-time queries for ¢, by building the data structure for farthest point queries
in the cycle P; U P,. This means it takes O(k + log n) time to answer farthest-point queries when
facing u after O(n) preprocessing, where k is the number of reported farthest points and n is the
number of vertices of N. Swapping u and v yields the procedure for queries facing v.
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Queries Facing Both Ways

We consider a query g that is facing both ways along a u-v-path P; for some i = 1,2, ..., . Every
path P; with j # i contains points that we reach from g with a shortest path via u as well as
points that we reach with a shortest path from g via v. This means that there are no farthest
points from g in N on P; itself. Let g; be the farthest point from q on the cycle P; U P; for j # i.
As the distance from g to g; is dn(q, 4;) = (|Pi| + |Pj])/2, the farthest distance from g in N is

P+ Pl
d_ ()—max —|Pi|+|Pj| = T lfl;&A
N =15 2 1Pl + 1Pl .

# lfl:A

The first case applies for queries g € P;, with i < A, where the farthest points from g lie on
the longest u-v-paths, i.e., on the paths P; with |P;| = |P;|. The second case applies for queries
q € P), where the farthest points from q lie on the second longest u-v-paths, i.e., on the paths P;
with |P;| = |P;_1| and j < A. Using a binary search, we can answer a farthest point query from
q € P; when facing both ways by reporting the points g; on those k paths P; that contain farthest
points from g. To improve the resulting query time of O(k log n), we take a closer look at the
position of g; relative to @; and 9;. Notice how the farthest point g; from q € P; along the path
P; moves from i; to 9; as ¢ moves from 9; to @; along P;, as depicted in Figure 4.16.

-—

Uj qj Uj

u v

0 q U
—

Figure 4.16: The points 9}, §;, and @; on the cycle P; U P; for q between 9; and #; with i # j.

Lemma 4.2. Let N be a parallel-path network with terminals u and v that connect the paths
P1,P,,...,Py of lengths |P1| < |Py| < --- < |Py|. Foreachi =1,2,..., 4, the following holds.

(i) The sub-path from ; to ui; along P; has length dp,(9;, 4i;) = |P1| = dn(u, v) and the sub-paths
fromu to ©; and from 4; tov along P; have length dp,(u, ;) = dp,(i;,v) = (|P;| — |P1])/2.
(ii) For every point q along the sub-path from U; to i;, the sub-path from ©; to q has the same

length as the sub-path from u; to q;, i.e., dp,(0;, q) = dp, (4}, q;), for any j # i.

Proof. Since P; is a shortest path from u to v in N, we have |P;| = dn(u, v) withu = ¢, and v = ;.
Therefore, dp, (01, %1) = |P;| and dp,(u, 01) = dp, (@1, v) = 0 = (|Py| — |P4|)/2. Foreachi =2,..., A,
the farthest point #; from u in N along the path P; is the farthest point from u along the cycle
P1 U Py, ie., dn(u,@;) = (|P;] + |P1])/2. Hence, the sub-path from v to @#; along P; has length

dp, (v, 4;) = dn(u, 4;) — dn(u, ) = (IPi| + [P1))/2 = [P1| = (IP:] = [P1])/2
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Likewise, the sub-path from u to 0; along P; has length dp,(u, 0;) = (|P;| — |P1|)/2. Therefore, the
sub-path from 9; to @; along P; has length dp,(9;, ;) = |P;], since

dp, (0, 4;) = |P;| — dp,(v,@;) — dp,(u,0;) = |Pi| = (|P;| = |P1]) = |P4] .

We show the second claim for i = 1. Suppose we move a point ¢ with unit speed from u = 9,
to v = @iy along P;. For each j = 2,3,..., 4, the farthest point ¢; from g along P; moves with
unit speed from #; to 9}, since g and g; are antipodal points on the cycle P; U P;. Therefore, the
sub-path from @, to q along P; has the same length as the sub-path from 9; to g; along P;.

We show the second claim for i = 2,...,A. Consider a point ¢ € P; on the sub-path from 9;
to #;, and let g; be the farthest point from g in N along P; with j # i. The points q and §; are
antipodal along the cycle P; U P;. Let q; be the antipodal of g; in the cycle P; U P;. Since u, #; and
q1, 4; are pairs of antipodal points along the cycle P; U P;, we have dp,(u, q1) = dp,;(4;, g;). Since
dp,(u, ;) = dp,(i1;,v), the distance of q to 7; is the same as the distance from ¢, to u = 7y, i.e.,
dp,(0i,q) = dp,(u, q1) = dp, (@}, G;)- Therefore, we have dp,(0;, q) = dp,(#;,q;) forany i # j. O

Let ] € {1,2,...,A} be a set of indices. Suppose we search for each §; with j € J as part of a
query from g € P; with i ¢ J. Using Lemma 4.2, we interpret these searches as a single search
with a common key (the distance from 9; to q), in multiple lists (the sub-paths from 9; to @; for
j € J) of comparable search keys (the vertices from 9; to #; ordered by their distance to ;).

We construct a fractional cascading data structure [18] in O(n) time that supports O(¢ + log n)-
time predecessor queries on the sub-paths from 9; to #; for the £ paths P; where |P;| = |P;_4].
We answer a farthest-point query from g € P; as follows. If i # A, then we locate and report
G, along P) in O(log n) time using binary search. If i = A or |P;| = |P,—;|, then the remaining
farthest points from g are the g; where j # i and |P;| = |Py_;|; we report them in O(k + log n)
time using the fractional cascading data structure. This query might report a point on P;, which
would be g; for queries from outside P;. For queries from within P;, we omit this artifact.

Theorem 4.3. For every parallel-path network N with n vertices, there is a data structure with size
O(n) and construction time O(n) that supports O(log n)-time farthest-distance queries and O(k +
log n)-time farthest-point queries in N, where k is the number of reported farthest points. ]

The number of farthest points in a parallel-path network N is at most the parallelism A of N,
ie,k €{1,2,...,4} in Theorem 4.3, as each parallel-path contains at most one farthest point.

4.3 Bead-Chain Networks

A bead-chain network is a two-terminal series-parallel network that is constructed as follows.
First, we create a cycle by applying one parallel operation to the starting edge uv followed by
a sequence of series operations. Second, we apply at most one parallel operation to each edge
of this cycle to create paths that are attached to the cycle. Third, we subdivide the edges of the
resulting network with a sequence of series operations. Figure 4.17a depicts a bead-chain.

This means each bead-chain network B consists of a main cycle C with paths a4, a, ..., o, that
are non-overlapping in the following sense. For each i = 1,2, ..., g, one of the two paths along C
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(a) A bead-chain network. (b) The paths f; and y; for an arc «;.

Figure 4.17: A bead-chain network with four arcs and the three paths defined by an arc.

that connect the endpoints of «; does not contain any endpoint of any «; with i # j in its interior.
This means that the paths that are attached to C have a circular order. Without loss of generality,
let this order be a1, @, ..., as. We label the endpoints of @; with a; and b; such that the circular
order of the endpoints along C is ay, by, az, by, . . ., ag, by. As illustrated in Figure 4.17b, let f; be
the path from a; to b; along C that does not contain any other endpoints in its interior, and let y;
be the path from b; to a; along C that contains all endpoints of the other attached paths. Without
loss of generality, let ; be at least as long as f;. Otherwise, we swap the labels of ; and ;. We
refer to the attached paths a1, a, ..., @, as the arcs of B.

We develop a data structure for queries in bead-chain networks based on the following ideas.

1. We first develop a data structure supporting queries from the main cycle C of B; we explain
later how to answer queries from any arc of B with the help of a query from C.

2. We divide a query q from C into a query for the farthest point from q on C, and into a
query for the farthest points from g on the arcs of B. For the former, we rely on the data
structure for cycles. For the latter, we develop a new data structure for farthest-arc queries,
i.e., queries reporting the arcs that contain farthest points from gq.

3. We describe the farthest distance from the points along C to each arc as a function of x € C
and then construct the upper envelope of these functions. This upper envelope describes
the farthest distance to any point along an arc. It is piecewise linear with line segments of
slope minus one, zero, and plus one and it can be constructed in linear time.

4. We observe that the farthest arcs of a query point on C appear as a contiguous sublist of
the circular list L of those arcs that are farthest-arcs for some point on C. This means we
can support farthest-arc queries by constructing L and by storing a pointer to one farthest
arc in L with each line segment of the upper envelope from the previous idea.

The resulting data structure supports farthest-distance queries in O(log n) time and farthest-point
queries in O(k + log n)-time in a bead-chain network B after O(n) construction time, where n is
the number of vertices of B and k is the number of reported farthest points.
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4.3.1 Queries from the Main Cycle

We begin by supporting queries from the main cycle C of a bead-chain network. To support
farthest-distance queries from g € C, we compare the farthest distance from g in C with the
farthest distance from g to any point on an arc of B and report the higher value. To support
farthest-point queries from q € C, we compare the farthest distance from g on C with the farthest
distance from g to the arcs and then report farthest points accordingly. We use the data structure
for cycles to support queries for farthest-points on C. In the following, we develop a new data
structure to support queries for the farthest-points on the arcs for queries from C.

.l;i
N

. o
i d(ai, b;) - i

l d(a;, d;)
L | |

|
ai b, ai b a;

(a) The main cycle with arc «; (blue). (b) A plot of the function d; (x).

Figure 4.18: The distance c?i(x) from x € C to the farthest point x; from x on arc «;.

We study the farthest distance from the points along the main cycle C to any point on arc
a;, i.e., the function cfi(x) = maXyeq, dp(x,y) forx € Candi=1,2,...,0. Let X; be the farthest
point from x on arc @; in B with d; := d;; and l;,- = I;ii, and let @; and b; be the farthest points
from a; and b; along C, respectively. To determine di(x), we consider the parallel-path network
C U q;, since cf,-(x) = dp(x, x;) = dcug,(x,X;). This is because each arc a; is at least as long as the
path f; along C for each j = 1,2, ..., 0. Hence, there is a shortest path from x to x; in B that does
not contain any arc other than «;. We derive that d;(x) has the shape depicted in Figure 4.18. We
assume, for the moment, that f; has length at most |C|/2, i.e., a; and b; lie on Yi-

We slide a point x along the cycle C such that we encounter a;, b;, d;, and b; in this order.
When x moves from a; to b;, the point x; moves from 4; to l;i with a constant distance to x. From
b; to a;, the point X; remains at Bi while the distance between %; and x increases. From a; to b;,
the point x; moves from l;,- back to d; with a constant distance to x. Finally, when x moves from
b; to a;, the point x; remains at d; while the distance between %; and x decreases. If x moves with
unit speed, then the distance between x and x; decreases with unit speed when x moves towards
x; and it increases with unit speed when x moves towards x;, for eachi = 1,2, .. ., 0. This means
that the plots of the functions cfl, (fg, (JU consist of line segments with slope one (increasing
segment), zero (low plateau, high plateau), and minus one (decreasing segment).

The height of the upper envelope D of the functions di, . . ., dy at ¢ € C indicates the farthest
distance from q to any point on the arcs a1, ay, . . ., @5. In the following, we construct D in linear
time using the shape of the functions dy,...,ds. One arc may need a special treatment in the
construction of D: we call an arc a; bad when the path ; is strictly longer than |C|/2. Otherwise,
we call a; good. Figure 4.19 illustrates a bad arc a; with its function a?i.
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d(a;, b;) /’l
d(ai, d;) /// -

(a) A bad arc (blue). (b) The farthest distance to a bad arc.

Figure 4.19: A bad arc «; (blue) in a bead-chain network where f; (green) is longer than the
remaining cycle y; (purple). The shape of d; is the same as for good arcs, but its high
plateau may horizontally overlap with the high plateau of other arcs.

Lemma 4.4. Every bead-chain network has at most one bad arc.

Proof. Assume, for the sake of a contradiction, that there is a bead-chain network that has two
bad arcs a; and a; with i # j. This means the length of each path $; and f; is greater than |C|/2.
Therefore, f; and f; overlap along C, i.e., at least one endpoint of ; lies in the interior of f;. This
contradicts our choice of f; as the path along C that connects the endpoints of @; and does not
contain the endpoints of another arc in its interior. Thus, there is at most one bad arc. ]

Lemma 4.5. Let a1, ..., be the good arcs of a bead-chain network B as they appear along the
main cycle C of B, and let d;(x) be the farthest distance fromx € C toarca; fori = 1,2,...,0.

(i) The high plateaus ofcfl, o dy appear in the same order as the good arcs a, . . ., as appear
along the main cycle C and no two high plateaus overlap horizontally.

(ii) The low plateaus ofcfl, o dy appear in the same order as the good arcs a, . .., 05 appear
along the main cycle C and no two low plateaus overlap horizontally.

Proof. Let a3, . .., as be the good arcs of a bead-chain B as they appear on its main cycle C. For
eachi=1,2,...,0, the farthest points a; and b; from the endpoints a; and b; of arc a; appear
along y;. Therefore, the points d;, bi,dg, by, ..., 4., and b, appear in this order along C. Claim (i)
follows, since the high plateau of (fl- lies between a; and b;. Claim (ii) follows, since 021 has its low
plateau on f; and since the interiors of the paths 1, f; . . ., B are pairwise disjoint. O

We incrementally construct the upper envelope D of the functions di,ds, . ..d, that describe
the farthest distances from the main cycle C of a bead-chain B to its good arcs a, . . ., @y, and
we treat a bad arc ap,q separately, if it exists. To answer a farthest-point query from q € C in B,
we compare the farthest distance from q to the bad arc ap,q with the farthest distance D(q) from
q to any good arcs. Depending on the answer, we report the farthest points from gq.

Lemma 4.6. Let ay,...,a, be the good arcs of a bead-chain network B as they appear along the
main cycle C of B, and let d;(x) be the farthest distance from x € C to arc a; fori = 1,2,...,0.
Computing the upper envelope D of the functions dy, . . .,d, takes O(c) time.
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Proof. We proceed in two passes: in the first pass, we consider only the high plateaus, the
increasing segments, and the decreasing segments of di,...,dy;the respective low plateaus are
replaced by extending the corresponding decreasing and increasing segments. In the second
pass, we traverse the partial upper envelope from the first pass again and compare it with the

previously omitted low plateaus, thereby constructing D, as illustrated in Figure 4.20.

a; b; ai b;

Figure 4.20: An incremental step where we construct f): from bz,'—1 (black) and ‘21’ (orange). The
treatment of the low plateau of d; (dashed) is deferred to the second pass.

Let c?l’ be the function resulting from replacing the low plateau of d; by extending its increasing
and decreasing segments and let 15; be the upper envelope of d,..., a?l’ . In the first pass, we
construct ﬁ; incrementally, starting with ﬁi = dA{ Fori=2,3,...,0, we obtain ﬁ: by inserting
cfl’ into ]5;_1, as depicted in Figure 4.20. We perform this insertion by walking from a;—the left
endpoint of the high plateau of d;—in both directions updating the current upper envelope D;_;.
Locating @; takes constant time, since @; is the first bending point to the right of b;_;.

There is no more than one increasing segment of D;_l between a; and b;. Assume, for the sake
of a contradiction, that there are two increasing segments s; and s, between a; and b;. Neither
of them has their higher endpoint between a; and b;, since there would be two horizontally
overlapping high plateaus otherwise. Since s; and s, have the same slope, only one of them can
be part of the upper envelope. When the segments s; and s, happen to overlap, we consider only
the segment that was inserted first. Symmetrically, we treat the decreasing segments. Therefore,
inserting the high plateau of d; into the upper envelope 15;_1 takes constant time.

If the decreasing segment of ‘j; appears along ﬁ: at all, then it appears at its highest point at b;.
We update the previous upper envelope ﬁ;_l by walking from b; towards a; until the decreasing
segment of ‘j; vanishes below ﬁ;_l. We charge the costs for this walk to the segments that
are removed from the previous upper envelope ]5;_1. Symmetrically, we process the increasing
segment of (f; by walking from a; towards b;. Each increasing segment and each decreasing
segment appears at most once along any intermediate upper envelope and is never considered
again after its removal. Therefore, the total cost for inserting all increasing and decreasing
segments—and, thus, the total cost of constructing ﬁ;—amounts to O(o).

In the second pass, we construct the upper envelope D from ﬁ; Since no two low plateaus
overlap, we walk along D/, comparing its height to the height of the current low plateau, if any.
This takes O(o) time, since there are o low plateaus and ]j’a consists of O(o) line segments. O
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Consider a bead-chain network B where all arcs are good. To answer a farthest-point query
from a point g on the main cycle C of B, we need to find the farthest arcs from g, i.e., the arcs
that contain farthest points from g in B. If D has a plateau at g, then ¢ has at most two farthest
arcs: one arc a; where d; has a low plateau at g and one arc a; where d ; has a high plateau at q.
This means that we can store these at most two farthest arcs directly with each plateau of D. If
the farthest-arc distance D has an increasing or decreasing segment at g, then several arcs could
contain farthest points from g in B. We rely on the following observations to locate these arcs.

An arc a of B is considered relevant when there exists some point x € C such that « is a
farthest arc for x and « is considered irrelevant when there is no such point on the cycle C.

Lemma 4.7. Let a;, aj, and ay be arcs that appear in this order along the main cycle C of a bead-
chain network B without a bad arc. If a; and ay are farthest arcs from a point q € C such that d;
and d. are both decreasing at q, then a; is either also a farthest arc from q or a; is irrelevant.

Proof. Suppose «; is not a farthest arc from g in B. We show d; i(x) < d; i(x) for all x € C, which
means that ; is irrelevant. As illustrated in Figure 4.21, g lies between a; and by, since d; and dj
are both decreasing at q. Hence, q lies between a; and b;, i.e., d is decreasing at g, as well.

[T 7T T 11

Ll | | | | | |

q4i b; 4 b; 4 p; G

|
. J i
(a) The three arcs. (b) The comparison of d; (blue) and d; (green).

Figure 4.21: The constellation from Lemma 4.7, where «; and ay are farthest arcs from g where
the farthest distance decreases as ¢ moves in clockwise direction (a). A comparison
of the arc distance functions d; and d reveals that a; is irrelevant in this case (b).

Let A(x) = di(x) — a?j(x). We have A(a;) = A(q) > 0, as d; and cZ] are decreasing with the same
slope from g to a;. We observe that A(b;) = A(a;) + d(a;, b;), as d; remains constant from a; to
b; while a?j decreases. We have A(a;) = A(b;) + 2d(b;, aj), as d; increases from b; to aj while oij
decreases. We continue in this fashion and obtain the following description of A.

A(a;) = A(g) A(a;) = A(bj)

A(b;) = A(a;) + d(a;, b;) A(b;) = A(d;) — d(a;, b;)
A(aj) = A(b;) + 2d(b;, a;) A(aj) = A(b;) — 2d(b;, a;)
A(bj) = Alay) + d(aj, by) A(b)) = May) - d(a;, b))

This implies A(x) > A(q) > 0 for all x € C, since d(a;, b;) = d(a;, b;), d(bi,a;) = d(b;, a;), and
d(aj, bj) = d(aj, l;j). Therefore, the arc «; is irrelevant, since for every point x along the cycle C,
the farthest point X; from x on «; is further away than the farthest point x; from x on «;. O
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4 Data Structures for Farthest-Point Queries

Corollary 4.8. Let g be a point on the main cycle C of a bead-chain network B without a bad arc.
The farthest arcs a from q where the farthest distance from C to any point on the arc a is locally
increasing or decreasing near q form a contiguous sub-list in the circular list of relevant arcs. O

When we traverse an increasing segment s along
D, then the set of functions among di,dy, ..., dEy D(a;) = di(a;)
that define D shrinks until only one function d;
remains at the upper endpoint of s, as illustrated
in Figure 4.22. Otherwise, two high plateaus of
(31, cfz, e cfg would overlap at a;. The arc ¢; is a
farthest arc for all points x € C such that D(x) € s,
and we can find the remaining farthest arcs from
x by traversing the circular list of relevant arcs of
B starting from «;, due to Corollary 4.8.

Using this observation, we can support farthest-
arc queries from the main cycle of a bead-chain
network B without a bad arc as follows. First, we
determine the farthest-arc distance function D alongside with the circular list L of the relevant
arcs in B. Each increasing segment s along the plot of D stores a pointer to the arc « in L that
defines D at the higher endpoint of the segment s. Likewise, we store a pointer to the arc in L
that defines the upper endpoint of each decreasing line segment along the plot of D. As depicted
in Figure 4.23, we subdivide each horizontal segment s of D depending on which low plateaus
or high plateaus overlap along s and store the at most two arcs that determine the subdivided
segments directly with them. This construction takes O(n) time, since we obtain all relevant
information during the construction of D, and it supports O(l + log n)-time farthest-arc queries
from the main cycle C of the bead-chain B, where [ is the number of reported farthest arcs.

d;

Figure 4.22: An increasing segment s along
D where the functions d], dk,
d; fall below D and only d; re-
mains at the upper endpoint.

5 {i./} {i} {i.k} {i}
d

j"' ----- \“ ,’/ s\\ A

! . p < d,

Figure 4.23: A horizontal segment s along D, where the low plateau of d; overlaps with the
high plateaus of d and di. We subdivide the segment s depending on the functions

dl, d2, .. d that determlne D and store their indices with the subdivided segments.

Lemma 4.9 (Main Cycle Queries). Let B be a bead-chain network with n vertices, o good arcs, and
main cycle C. There exists a data structure with O(n) construction time that supports O(log n)-time
farthest-distance queries in B from the main cycle C and O(k + log n)-time farthest-point queries
in B from C, wherek € {1,2,...,0 + 2} is the number of reported farthest points.

Proof. Let B be a bead-chain with main cycle C, good arcs a4, a3, . . ., &, and a bad arc ap,q.
The data structure for queries from the main cycles consists of two parts: The first part is the

data structure for queries in the parallel-path network C U ap,q to determine the farthest distance

and farthest points from g € C to points on the main cycle C itself and on the bad arc ap,4. The
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4.3 Bead-Chain Networks

second part is the data structure for farthest-arc queries from C in the bead-chain network B\ apaq
to determine farthest points from g on the good arcs a;, a2, . . ., @. The overall construction time
is O(n), since it takes takes O(n) time to decompose B into the main cycle, the good arcs, and the
bad arc, and since constructing each part of the data structure takes O(n) time.

We answer a farthest-distance query from g € C by reporting the larger of the farthest distance
from q in C U ap,q and the farthest-arc distance from g in B \ apaq. This takes O(log o) time, as
the queries in C U ap,q and B \ ap,q take O(1) and O(log o) time, respectively.

To answer a farthest-point query from q € C, we first perform a farthest-distance query from
q to determine whether we need to report farthest points from C U ay,q4, or B \ apag, or both. We
report the at most two farthest points from g in C U ap,,q with a farthest-point query from g in
C U apyq that takes constant time. We report the good arcs that contain farthest points from g
using a farthest-arc query from q in B \ apaqg. This query takes O(k + log o) time, where k is the
number of arcs with farthest points from g. We could locate each farthest point from g on an arc
with a binary search. This would lead to a query time of O(k logn + log o) = O(k log n).

To reduce the query time to O(k + log n), we review some observations about the farthest point
from g € C on a good arc «;. Recall that f; is the path along C that connects a; and b; and that
does not contain the endpoints of any other arc in its interior, and recall that y; is the other path
along C that connects a; and b;. Let a; and b; be the farthest points from a; and b;, respectively,
along the main cycle C and let a; and l;l- be the farthest points from a; and b;, respectively, along
arc @;. Since «a; is a good arc, f; is at most as long as y; and, thus, a;, b; € y;. Therefore, we
encounter the points a;, b;, a;, b; in this circular order along C. Recall the following.

1. If g lies between a; and b;, then the farthest point §; from g on ¢; lies on the path from bi
to d;. More precisely, g; is the farthest point from q along the cycle a; U f;.

2. If q lies between b; and a;, then l;l- is the farthest point from g on «;.

3. If q lies between a; and b;, then the farthest point §; from g on a; lies on the path from b
to a;. More precisely, g; is the farthest point from g along the cycle a; U y;.

4. If g lies between b; and a;, then 4; is the farthest point from q on «;.

The interiors of the paths By, B, ..., B, are pairwise disjoint, by definition. Let f; be the
shorter path from b; to a; along C. Since f; is a mirrored copy of f; in C, the interiors of the paths
Bi, o, . .., Bo are pairwise disjoint, as depicted in Figure 4.24. Hence, every query point g € C
lies in at most one path f; and in at most one path ,B_j for some i,j=1,2,...,0 with i # j. This
means that there are at most two good arcs where we need to locate the farthest point from q on
these arcs; on all other arcs, locating the farthest point from q takes constant time. Therefore,
reporting the farthest points from g on the good arcs takes O(k + log n) time. ]

4.3.2 Queries from the Good Arcs

Consider a bead-chain network B with main cycle C, good arcs ay, a, ..., @y and a bad arc ap,g.
For a farthest-distance query ¢ from a good arc «;, we determine the farthest distance from g to
any point on the cycle a; U f; and the farthest distance from g in B to any point on the remainder
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=N
~7 Q\/

(a) The paths Sy, pa, ..., Bo- (b) The paths Bi, fo, ..., Bo.

Figure 4.24: The disjoint paths f;, Bo, ..., B, and their mirrored copies 31, Bs, ..., Bo.

B\ (a; U B;) of the network. For a farthest-point query from q € a;, we report the farthest points
from q in a; U B; or B\ (a; U f;), depending on which are farther away.

The data structure for queries from the good arcs consists of (1) the data structures for queries
in the cycles a; U f1, a2 U B, ..., a5 U B, and (2) the data structure for queries from C in B. We
explain how we use the latter data structure to find the farthest points from a query ¢ on a good
arc ¢; in B\ (@; U ;). The overall construction takes O(n) time for a bead-chain with n vertices,
since the cycles a; U 1, a, U s, ..., a5 U B, are pairwise edge-disjoint, and since constructing
the data structure for queries from C in B takes O(n) time, as shown in Lemma 4.9.

Q>

S)
.

<!
>

(a) A query facing q;. (b) A query facing both ways.

Figure 4.25: Projecting a query g from an arc «; onto a point q” along the path ;. When gq is facing
a;, as in Subfigure (a), then ¢’ is a;. When q is facing both ways, as in Subfigure (b),
q’ is the point along f; that splits ; at the same ratio as g splits «;.

We project a query from q € a; with a; # q # b; for the farthest points in B \ (a; U f5;) to
a query from some point ¢’ along f;, as illustrated in Figure 4.25. This translation depends on
the position of g along «;. Recall that d; and I;i are the farthest points from a; and b; along «;
with respect to B. The points d; and l;i are the antipodals of a; and b; along the cycle a; U f;.
We distinguish the cases from parallel-path networks: The query point q is facing a; when every
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4.3 Bead-Chain Networks

shortest path in B from g to b; contains a;, the query point q is facing b; when every shortest
path in B from q to a; contains b;, and the query point q is facing both ways otherwise.

1. The query q is facing a; if and only if ¢ lies on the sub-path from a; to b; with q # b;.

If g is facing a;, then the farthest distance from g to any points on B\ ¢; is the distance
from g to a; plus the farthest distance from g; in the bead-chain network B \ «;, i.e.,

JB(q) = max (Jaiuﬁi(CI), dp(g,a;) + ‘ZB\ai(ai)) .

We distinguish two cases depending on whether a; has any farthest points in B \ «;.

a)

Suppose a; has some farthest point in B that does not lie on «;.

This means we have JB\O{,— (a;) = dg(a;) and, thus,
dp(q) = max (dg,up,(q). dB(q, a;) + dp(a;)) .

We answer a farthest-distance query from g with three constant-time queries: a
query for the farthest distance dy,up,(q) from g in @; U f;, a query for the distance
dp(q,ai) = dq,(q, a;) between g and a; along «;, and a query for the farthest distance
dp(a;) from a; in B. If a farthest-distance query from q indicates that ¢ has farthest
points in B \ a;, then we report these farthest points in O(k + logn) time with a
farthest-point query from qa; in B. If this query reports d;, then we omit this point
from the output. If a farthest-distance query from g indicates that g has a farthest
point in B on a; U f;, then we find it in O(log n) time with a query from q in «; U §;.

Suppose all farthest points from q; in B lie on ¢;, i.e., only d; is farthest from a; in B.

This means we have JB\al.(a,-) < dp(a;). In this case, we cannot use a query from a;
to obtain the information that we need to answer a query from q € «;.

We resolve this issue by constructing the data structure for queries from C in the
bead-chain network B \ a;. We show in Lemma 4.10 that B has at most one arc «;
where some point on f; has only farthest points on ;. This means that this case
occurs at most once and the overall construction time remains linear.

We answer queries from q in the same manner as in the previous case, with the only
difference that we perform all queries from qg; in B \ ¢;, instead of in B.

2. The query q is facing b; if and only if q lies on the sub-path from d; to b; with q # a;.

We handle queries facing b; symmetrically to queries facing a;.

3. The query q is facing both ways if and only if q lies on the sub-path from b; to a;.

We translate the query from g to a query from f;. By Lemma 4.2, the sub-path from b; to
a; along «; has the same length as §; and both the sub-path from a; to b;, and the sub-path
from @; to b; have length (|a;| —|fi|)/2. Let ¢’ be the point on f; such that d(a;, q°) = d(b;, q),
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i.e., the relative position of ¢’ to a; and b; along f; is the same as the relative position of ¢
to b; and a; along ;. We call ¢’ the projection of ¢ from «; onto f;.

For any point g € B\ (a; U f;), we have d(q,g) = d(q’,g) + (|a;| — |pi])/2, because the
lengths of the shortest paths from q to g and from ¢’ to g differ by the length of the path
from a; to b;. This means that the farthest distance from g in B is

7 7 7 ’ ;| — il
dp(q) = max (du,up,(9), dp\a;(q') + Tﬂ

More precisely, we have dg(q) = &B\ai(q’) + (|ai| = |Bil)/2, since
2dp\a, (@) + lai| = |Bil = 2dc(q) + || = |l
= |ai| + |C| = | Bl
= |ai| + lyil
> |oi| + |Bil
= ZCZaiuﬁi(Q) s
which means that if «; U ; contains a farthest point from q in B, then |f;| = |yi| = |C|/2.

We distinguish two cases depending on whether ¢’ has any farthest points in B \ «;.

a) Suppose g has some farthest point in B that does not lie on ;.

This means we have JB\ai (a;) = dg(a;) and, thus,
d(q) = dp\a,(q") + (|o:| = |Bil)/2 = d(q") + (lai| = 1Bi])/2 .

We answer a farthest-distance query from g by adding the precomputed values
(a; — Bi)/2 to the answer of a farthest-distance query from g’ in B that takes O(log n)
time. We answer a farthest-point query from q in O(k + log n) time with a farthest-
point query from ¢’ in B. If this query reports a farthest point on «;, then we omit this
point from the output. If | §;| = |y;|, then we check if we need to report an additional
farthest point from g along the cycle a; U f; with a query from g in «; U ;.

b) Suppose all farthest points from ¢’ in B lie on ¢;, i.e., only §; is farthest from ¢’ in B.

This means we have dp\4,(q") < dg(q’). In this case, we cannot use a query from ¢’
to obtain the information that we need to answer a query from gq.

As before, we resolve this issue by constructing the data structure for queries from
C in the bead-chain network B \ «;. We argue in Lemma 4.10 below that this case
applies for at most one arc and, thus, the construction time remains linear.

We answer queries from q in the same manner as in the previous case, with the only
difference that we perform all queries from g’ in B \ «; instead of in B.

An arc a; is long when there is a point x € §; such that ¢; is the only farthest arc of x in B. We
have described a data structure supporting O(log n)-time farthest-distance and O(k + log n)-time
farthest-point queries from the good arcs of a bead-chain network. The construction time of this
data structure is O(n + In), where [ is the number of good long arcs of B. We show [ < 1.
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Lemma 4.10. Every bead-chain network as at most one long good arc.

Proof. Let B be a bead-chain network with main cycle C and good arcs a1, @, ..., a5. Suppose a;
is a long arc. We argue that the cycle a; U f; is strictly longer than any other cycle «; U §; for
i =2,...,0. This implies that B cannot have more than one long arc that is good.

Since «; is a long arc, there exists a point x € f; such that ¢; is the only farthest arc from x in
B. This means that the farthest point x; from x on @; with respect to B is strictly farther away
from x than the farthest point x; from x on any other arc o; forany i = 2,3,...,0.

Consider a good arc @; for some i = 2,3, ..., 0. The point x lies on y;, since x € f; and since
the interiors of the paths fi, fs, . . ., B, are pairwise disjoint. Let @; and b; be the farthest points
on C from the endpoints a; and b; of the arc a;, respectively. Since «; is a good arc, we know that
Bi is at most as long as y; and, thus, a;, b; € Yi- More precisely, b;, a;, b, a; appear in this order
along y;. We distinguish three cases based on the position of x along y;.

ai; b:

i bi = %;

(a) The point x lies between a; and b;. (b) The point x lies between b; and d;.

Figure 4.26: Two positions of the witness x for a; being long along y; for some i > 2.

1. Suppose x lies on the sub-path from b; to a; along y; with x # a;, as in Figure 4.26a.

This means that x is facing b; in the parallel-path network C U ¢;, i.e., every shortest path
in B from x to the farthest point X; from x on «; passes through b;. This implies that the
farthest point %; from x on ¢; is Ei, i.e., the farthest point from b; on «;. Since «; is a good
arc, f3; is at most as long as y; and, thus, 151- is the farthest point from b; on the cycle o; U ;.
Therefore, the cycle a; U f; is strictly longer than the cycle «; U f;, because

lay U B1]/2 = dp(x, %1) (x and x; are antipodal on a; U f5)
> dg(x, X;) (x is a witness for a; being long)
> dg(b;, %;) (the shortest path from x to x; contains b;)
= dg(b;, I;i) (%; = l;,-, since x is facing b; in C U «;)
=lo; U Bil/2 . (bi, Bi are antipodal on o; U ;)

2. Suppose x lies on the sub-path from a; to b; along y;, as depicted in Figure 4.26b.

This means that x is facing both ways in the parallel-path network C U «;, i.e., the farthest
point x; from x on ¢; in B is the farthest point from x along the cycle y; U a;. Therefore,

107



4 Data Structures for Farthest-Point Queries

the cycle a; U f is strictly longer than the cycle a; U f;, because

lag U B1|/2 = dp(x, %1) (x and x; are antipodal on a; U )
> dp(x, X;) (x is a witness for a; being long)
=lyi Ual/2 (x and x; are antipodal on y; U «;)
2 |fiVail/2 . (a; is a good arc)

3. Suppose x lies on the sub-path from b; to a; along y; with x # b;.

This means that x is facing a; in the parallel-path network CU«;, i.e., every shortest path in B
from x to the farthest point X; from x on a; passes through a;. The claim |a; U ;| > |a; U S|
follows symmetrically to the case where x is facing b; in C U «;.

The above implies |a; U f1] > |a; U ;| for any i = 2,..., 0. If there was any other good long
arc a; with i # 1 in B, then we would have the contradiction |a; U f1] > |a; U ;| > |ag U By].
Therefore, every bead-chain network has at most one good arc that is long. ]

Since each bead-chain network has at most one good long arc, we obtain the following.

Lemma 4.11 (Queries from the Good Arcs). Let B be a bead-chain network with n vertices and
o good arcs. There is a data structure with O(n) construction time that supports farthest-distance
queries in B from the good arcs of B in O(log n) time and farthest-point queries in B from the good
arcs in O(k + log n) time, wherek € {1,2,...,0 + 2} is the number of reported farthest points. O

4.3.3 Queries from the Bad Arc

We complete the data structure for bead-chain networks by discussing queries from a bad arc.
Figure 4.27 shows the sub-networks that we build to support queries in a bead-chain.

Theorem 4.12. Let B be a bead-chain network with n vertices and o good arcs. There is a data
structure with O(n) size and O(n) construction time supporting O(k + logn)-time farthest-point
queries on B, where k € {1,2,...,0 + 2} is the number of reported farthest points.

Proof. Consider a bead-chain network B with main cycle C, with one bad arc ay,,4, and with
o good arcs a1, . . ., Q. Let B \ apaq be the network obtained by removing the bad arc from B.
We support queries from the main cycle and from the good arcs using the data structures from
Lemmas 4.9 and 4.11. We support queries from the bad arc ap,q as follows.

Recall that g is the path along C that connects the endpoints of ap,g and that does not
contain the endpoints of any other arc in its interior, and recall that yp,q is the other path along
C connecting the endpoints of @p,g. Since apaq is a bad arc, we have |ybad| < |Pbad|- Any shortest
path from q € ap,q to a farthest point g from q in B traverses fp,q only if g lies on f,q itself.

The farthest points from a query g € apaq are the farthest points from q in the parallel-path
network apag U C = pag U Ppad U Ybads OF the farthest points from g in the bead-chain B \ a4, or
both. Notice that B \ fp.q is a bead-chain network without a bad arc and ay,,q is part of the main
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Qbad

(a) The bead-chain B. (b) The network B \ @tpaq.
(0453 A5
&
Xbad
a a 6
as %4 as %4
(c) CU apag dCUaU---Ua, (e) The cycles oy U B1, a2 U fa, . . ., a5 U fs.

Figure 4.27: The sub-networks that we create to support queries in a bead-chain B with main
cycle C, good arcs a3, g, . . ., &y and a bad arc ap,g, where a4 is a good long arc.

cycle of B\ frag- We support queries from the bad arc ap,q by constructing the data structure for
Qpad U C from Theorem 4.3 and the data structure for B \ fpaqg from Lemma 4.9.

The entire data structure for queries in B has O(n) construction time, since each edge of
B appears only in a constant number of data structures with linear construction time. Every
farthest-point query takes O(k + log n) time, because each query consists of a constant number of
O(log n)-time farthest-distance queries followed by a constant number of farthest point queries
in those sub-structures that actually contain farthest points from the original query. For each
query, we report at most one farthest point on each arc and at most one farthest-point on the
main cycle. Therefore, the number of reported farthest points ranges from 1 to ¢ + 2. ]

When we use the data structure for queries in a bead-chain as part of another data structure,
then we are sometimes in a position to preempt the binary searches during the queries: We
subdivide the bead-chain network in advance. We introduce a new vertex (1) at the farthest point
along the main cycle C from every vertex of B, (2) at the farthest point on the cycle a; U ; from
every vertex along the arc ;, and (3) at every point along the main cycle C where a linear piece
of the farthest distance function dg(x) = maxyep dp(x,y), for x € C, ends.

Corollary 4.13. Let B be a bead-chain with n vertices. We can subdivide B with O(n) vertices in
O(n) time such that the resulting bead-chain B’ satisfies the following. There is a data structure
with O(n) size and O(n) construction time supporting O(1)-time farthest-distance queries on B’ and
O(k)-time farthest-point queries on B’, where k is the number of reported farthest points. O
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4.4 Abacus Networks

An abacus network is a two-terminal series-parallel network that is generated as follows. First,
we generate a parallel path network X. Second, we apply at most one parallel operation for each
edge of X. Third, we subdivide the resulting network using a sequence of series operations. As
illustrated in Figure 4.28, an abacus A consists of a parallel-path network N with terminals u and
v whose parallel paths Py, P, . . ., P; have paths attached to them that satisfy the following:

1. The endpoints a and b of each attached path « are vertices on the same u-v-path of N.

2. The attached paths are non-overlapping along each u-v-path P; of N in the sense that
if a and b are the endpoints of a path « that is attached to P;, then the path § that connects
a and b in P; does not contain the endpoints of any other attached path in its interior.

3. Without loss of generality, each path « that is attached to P; is at least as long as the path
B in P; that connects the endpoints of & along P; in N. Otherwise, we swap « and f.

We refer to the paths that are—in the above sense—attached to a parallel-path network N in
an abacus network A as the arcs of A. Fori = 1,2,..., 4, let B; be the path P; with its arcs in A.
We refer to By, By, . .., B, as the bead-strings of A. Note that any pair of bead-strings B; and B;
of an abacus A, with i # j, form a bead-chain network B; U B;. In the following, we assume that
the paths Py, P,, ..., P, of N are sorted by their weighted lengths |P;| < |P,| < -+ < |Py].

If an abacus network A has only few par-
allel paths, then we support queries on A as
follows. For each i,j = 1,2,...,A with i # j, m /\ m
we support queries in the bead chain B; U B;.
This construction takes O(An) time, since each
edge of A appears in A bead-chains. To an- W TN /\ 7~ N \lv
swer a farthest-point query from g € B;, we
either report the farthest points from u or v /\ ™~
(for queries facing one terminal) or we per-
form a farthest-distance query from g in each Figure 4.28: An abacus with arcs (coloured) at-
B; U B; (for queries facing both ways). This tached to its parallel-path network.
takes O(Alog n) time and reveals which bead-
chains contain farthest points from g. Then, we report the farthest points from g in A in
O(k + Alog n) time with at most A farthest-point queries in the appropriate bead-chains. This
data structure is optimal when A = O(1), i.e., when the abacus A has few parallel paths. Next, we
consider the case when A is not a constant.

We split farthest-point queries in an abacus into an inward query and an outward query: an
inward query considers farthest points on the bead-string containing the query point; an outward
query considers farthest points on the remaining bead-strings. We first perform the farthest
distance version of inward and outward queries before reporting farthest points where appropriate.
Figure 4.29 illustrates how we treat inward and outward queries.
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(a) An inward query.
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(c) The right case of an outward query.
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(e) Translating a query to the virtual edge.
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(d) An outward query from an arc.

(f) Collapsing the chains.

Figure 4.29: Inward (a) and outward (b-f) queries for the abacus network from Figure 4.28. Inward
queries are answered in the bead-chain containing the query (a). When facing a
terminal, outward queries are answered with queries form the terminal that the query
is facing (b,c). When facing both ways, outward queries from arcs are translated to
queries from the path (d) and outward queries from the path are translated to queries
from a virtual edge (e). We conceptually collapse all bead-chains of the abacus to

support queries from the virtual edge (f).
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4.4.1 Inward Queries

An inward query from a point q along a bead-string B; in an abacus A reports the farthest points
from g in A on B; itself, i.e., we report the points g € B; with da(q, q) = maxyep, da(q, q’). For
i=2,3,...,4,let B] be the bead-chain network that consists of the bead-string B; and an edge of
length |P;| = d4(u, v) that connects the terminals u and v. Let B] be the bead-chain that consists
of B; and an edge of length |P,|. As depicted in Figure 4.29a, the network B] preserves distances
for points on B; with respect to 4, i.e., da(x,y) = dp(x,y) forallx,y € B;and i = 1,2,...,A. The
farthest points from g along B; in A are the farthest points from g along B; in B}, i.e.,

Vq € B; : maxda(q,x) = maxdp(q,x) .
X€B; X€B; !

We support inward queries in an abacus A by constructing the bead-chains B, By, . .., B
as well as the data structures for farthest-distance queries and farthest-point queries therein.
This construction takes O(n) time and allows us to answer inward farthest-point queries on the
abacus A in O(k + log n) time and inward farthest-distance queries in O(log n) time, where n is
the number of vertices of A and k is the number of reported inward farthest points.

4.4.2 Outward Queries

An outward query from a point q along a bead-string B; in an abacus A reports the farthest
points from q in A on all bead-strings other than B;, i.e., we report the points § € A\ B; with
da(g. q) = maxy ca\B, da(q, q’). We distinguish the same cases as for parallel-path networks: The
query q is facing u when every shortest path tree from q reaches u before v, the query ¢ is facing
v when every shortest path tree from g reaches v before u, and the query q is facing both ways
otherwise. Analogously to Lemma 4.1, the query is facing u precisely when g is within distance
d(u, 0;) from u, and it is facing v precisely when g is within distance d(v, @;) from v.

An outward query from g € B; that is facing u has the same farthest points as u outside of B;.
During the construction of the networks B/, . . ., B; for inward queries, we determine a list L; of
the farthest points from u in B;. Similarly to the approach for parallel-path networks, we keep
the lists that achieve the largest farthest distance from u. If there is only one such list L;, then we
also keep the lists that achieve the second highest farthest distance from u for queries from B;.
With this preparation, answering the query for g € B; amounts to reporting the entries of the
appropriate lists L; with j # i. Symmetrically, we proceed when q is facing v. This means that we
can perform outward farthest-point queries in O(k) time and outward farthest-distance queries
in O(1) time, after O(n) preprocessing time, when the query is facing one way.

Supporting outward queries that are facing both ways is the most challenging component of the
data structure for abacus networks. It is the bottleneck of the construction time of O(nlog A)—all
other types of queries can be handled in linear time. We iterate through a number of ideas and
inefficient intermediate data structures before we arrive at a data structure with size O(n) and
construction time O(nlog A) that supports O(log n)-time outward farthest-distance queries and
O(k + log n) outward farthest-point queries for queries that are facing both ways.
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Projecting Queries from the Arcs to Queries on the Parallel-Path Network

We translate outward queries that are facing both ways from the arcs of an abacus A to outward
queries from the corresponding parallel path in N, as illustrated in Figure 4.29d.

Let a be an arc with endpoints a and b along a bead-string B;, for some i = 1,2,...,A, and
let B be the path along P; connecting a and b. Recall that « is at least as long as f. Let @ and b
be the farthest points along the cycle @ U  from a and from b, respectively. The path from b to
a along « has length |f| while the path from a to b and the path from 4 to b both have length
(le| = |Bl)/2. We adapt the strategy for answering queries from an arc of a bead-chain:

« If g lies on the path from a to b with q#* b, then we reach any farthest point from q outside
of B; through a. Hence, we translate the query from q to a query from q’ = a. Furthermore,
the farthest distance from g to any point in A outside of B; is

xrenjl\)l(gi da(g,x) =dalq,a) + xrenf\)éi dala,x) .

« If g lies on the path from b to 4, then we reach any farthest point from ¢q outside of B; with
a shortest path through a and with a shortest path through b. Thus, the outward farthest
points remain the same when we project g from « onto the point ¢° € 8, where ¢’ is the
relative position of ¢’ to a and b is the relative position of g to band g, ie. d(b, q) =d(a,q’).
Furthermore, the farthest distance from g to any point in A outside of B; is

Jnax, da(q.x) = da(b,a) + nax da(q’,x) = (la| = 1/2 + nax da(q’,x) .

« If g lies on the path from a to b with q # 4, then we reach any farthest point from q outside
of B; through b. Hence, we translate the query from q to a query from ¢’ = b.

This means it suffices to consider queries from the underlying parallel-path network N.

Suppose we construct data structures for queries in each bead-chain network P; U B; for i # j.
According to the above, we could use these data structures to report all outward farthest points
from a query g € B; in O(k + Alog n) time with a query in each P; U B; with i # j. The overall
construction time for this approach would be O(An). Note that the relative position of the query
point to the terminals matters, whereas the edge containing the query point does not.

Projecting Queries to a Virtual Edge

We remove the dependence on the parallel path from where the query originates. As illustrated
in Figure 4.29, we introduce a virtual edge € from u to v of length |P;| = da(u, v), i.e., the length
of the shortest u-v-path in N. By Lemma 4.2, the sub-path from @; to 7; along P; has the same
length as ¢, for each i = 1,2,...,A. For a query point q € P; let § be the unique point on € such
that ¢ has the same distance to u and to v as q to #; and to 0, i.e., da(0;, q) = dsua(u, q) and
da(q, @;) = dsua(q,v). We refer to G as the projection of q onto the virtual edge é.
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4 Data Structures for Farthest-Point Queries

Lemma 4.14. Let A be an abacus network A with parallel paths Py, P, . .., P, and bead-strings
By, By, ..., By. Consider a query point q € P; that is facing both ways and let g be the projection of
q onto the virtual edge € of A. The farthest points from q in P; U B; are the farthest points from q in
€U Bj foranyj=1,2,...,A withj # i and dp,up,(q) = deus,;(q) + (|Pi| — |P1])/2.

Proof. Recall that P; is at least as long as €. Suppose we continuously shrink P; until P; is as long
as €, while maintaining the relative position of q to u and v. The distance from g to all points on
B; in P; U B; increases uniformly for any j # i. Therefore, the farthest points from g in P; U B;
remain the same throughout the deformation and, thus, match those of g in € U B;.

Ujf_\ ﬂ F)qj N

uj
U q v
......... - 4
Vi q U

Figure 4.30: An illustration of how farthest points on bead-string B; (top) are preserved when
projecting a query g from P; (bottom) to g along the virtual edge e (middle).

Let g; € Bj be a farthest point from g in P; U B;. Since q is facing both ways, there is a shortest
path from q to g; in P; U B; that passes through ¢; and u. Without loss of generality, assume that
a shortest path from g to g; in € U B; passes through u, as depicted in Figure 4.30. Otherwise, we
swap u and v. We have dp,(0;,u) = (|P;| + |P;|)/2 according to Lemma 4.2, and therefore

dp,uB,(9) = dp,uB; (9, ) (gj is farthest from q in P; U B;)

= dp,(q,0;) + dp,uB;(3i, qj) (9; lies on a shortest path from g to g;)

= dp,(q, i) + dp,(0;, u) + dp;(u, q;) (u lies on a shortest path from o; to g;)

= dz(q, u) + dp, (0, u) + dp;(u, q;) (q is the projection of ¢ onto ¢€)

= deuB,(g,q;) + dp, (0, u) (u lies on a shortest path from g to g; in e U A)

= d;u,(q) + dp, (01, u) (g is farthest from G in € U B;)

_ Py —|P
= deup,(q) + % . (by Lemma 4.2)
This implies that inUBj(q) = cngBj((j) + (|P;| — |P1])/ 2. O

Since Lemma 4.14 does not depend on the index j, the outward farthest distance from g € P; in
the abacus A is equal to the farthest distance from ¢ in the abacus € U (A \ B;), plus the correction
term (|P;| — |Py|)/2 that accounts for the length differences between P; and ¢, i.e.,

Pl=IPd, oo
S max dous, (@) -

A A _
max da(q,x) = max maxdp,up,(q,x) = max dp,up,(q) =
x€A\B; J=1,j#i x€B; j=1,j#i
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We construct the data structure for queries in the bead-chains ¢ U By, € U By, ..., € U B;. This
construction takes O(n) time, since each edge of A appears in at most one of these networks. We
answer an outward farthest-distance query from g € P; by projecting g onto the point g along
the virtual edge € and performing a farthest-distance query from g in each bead-chain € U B;
with j = 1,2,..., A and j # i. We then report the largest value reported from the queries from ¢
plus the correction term (|P;| — |P;])/2 as the farthest distance from q to any point in A \ B;. This
takes O(4log n) time. We report any outward farthest points from g with farthest-point queries
from g in those bead-chains € U B; where the maximum distance from g was attained. This means
it takes O(k + Alog n) time to report all k outward farthest-points from gq.

Superimposing the Farthest Distances to other Bead-Strings

We wish to avoid inspecting every bead-chain e U B; with j # i for an outward farthest-point
query from g € P;. Forany i = 1,2,...,Aand g € ¢, let ci,((j) := dzup,(q). The farthest distance
from g € P; to any point on A\ B; is the upper envelope D; of the functions d i with j # i at the
projection g of g onto € plus the term (|P;| — |P;|)/2 that corrects the projection, i.e.,

[Pil = IP|
x di(g) = L1
@) = =

|Pi| = |P1] L S Ll el Lol
da(gx) = Sy dap () =
xrgj)é, A(q X) 2 jgll,aj)il eUB; (q) 2 ] 1]¢l

+ D,((j) .

If we construct the upper envelopes D; for each i = 1,2, ..., A, then we can answer queries for
the outward farthest distance from q € P; in O(log n) time by projecting g onto é and evaluating
(IPi| = |P11)/2 + D;(q). This construction requires O(An log 1) time and O(An) space, if we compute
each upper envelope D; in O(nlog A) time using plane sweep.

Lemma 4.15. Foranyi=1,2,...,2, it takes O(nlog A) time to construct the upper envelope D; of
the functions d with j # i, and the plot of the upper envelope D; consists of O(n) line segments.

Proof. Leti € {1,2,...,A}. Each of the functions Jl, oiz, e J,l is piecewise linear, where each
linear piece has slope minus one, zero, or one, and the total number of pieces is O(n).

For each slope x € {-1,0, +1}, we determine the partial upper envelope Df of all line segments
of slope x of the functions d ; with j # i. We sweep a vertical line over the plane maintaining a
heap of the line segments of slope x in vertical order along the sweep line. Since line segments of
the same slope never change their vertical order, we only need to process the O(n) endpoints of
the line segments as events. Since the size of the heap never exceeds A, processing each event
takes O(log 1) time. Therefore, the sweep for I3x takes O(nlog A) time.

Once we have the partial upper envelopes D; ', D, and D}, we determine D; in a final sweep.
The events of this sweep are endpoints of hne segments and intersections of ﬁi_l, b?, and ﬁ;”
Every intersection of D D0 and DJrl consumes one line segment that cannot be part of any
other intersection. For 1nstance, suppose a line segment of slope zero is currently the highest line
segment and suppose it intersects a line segment of slope plus one. Then, the line segment of
slope plus one cannot intersect any other line segment of DY or D}, afterwards. This means the
final sweep has O(n) events that can be processed in constant time each. Therefore, computing
the upper envelope D; of d with j # i takes O(nlog 1) time and consumes O(n) space. ]
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Reporting Farthest Points on other Bead-Strings using Interval Stabbing

Aside from the upper envelopes Dy, D,, . .., D; we develop a second data structure to support
queries to identify the bead-strings that contain outward farthest points from a query point.
There is an outward farthest point from g € P; on B; with i # j when d; i(q) = D; i(q), since

|Pi| — |P1] |Pi] — |P1]

ot Di(g) -

+ /@) = drus, (@) = max da(g.x) =

For each bead-string B; with j # i, let I;(j) be the set of points g € € where g is the projection
of a point q € P; such that B; contains outward farthest points from g, i.e., I;(j) = {g € €| d (q) =
b,((j)} If the bead-string B; has o; arcs, then I;(j) consists of O(o;) sub-edges of €. We interpret
these sub-edges as intervals on the real line within [0, 1] by parameterizing ¢ with a function
¢ :[0,1] — € where ¢(r) is the unique point on € with distance 7 - |P;| from u for any 7 € [0, 1].

We obtain the sets I;(j) for all j = 1,2,...,A with j # i in linear time when constructing the
upper envelope D; of the functions d for all Jj # i. We say the intervals in the set I;(j) have color
j. LetI; = U? 1 L (j) collect all 1ntervals. We construct a data structure that supports interval
stabbing queries on [, i.e., that reports the intervals in I; that contain a query ¢ € é. Each stabbed
interval indicates a bead-string that contains outward farthest points from q. Each bead-string is
reported at most once, since intervals of the same color are pairwise disjoint.

Theorem 4.16 (Coloured Interval Stabbing). LetI be a set of n intervals in [0, 1] where each interval
inI has a colorc € {1,2,...,A} and all intervals of the same color have pairwise disjoint interiors.
Suppose for each color c, we are given the endpoints of the intervals of color ¢ in ascending order.
There is a data structure with size O(n) and construction time O(nlogA) that supports interval
stabbing queries in I in O(k + log n) time, where k is the number of reported intervals.

Proof. We sort the O(n) endpoints of all intervals in O(nlog A) time using A-way merge. Then,
we apply a filtering search technique called window lists [17] to support stabbing queries in I. A

window list for I consists of a set of intervals [x1, x2], [x2, x3], ..., [X1, X;01] With 0 = x; < x5 <
- < x7 < x141 = 1 together with windows Wy, W, ..., W; where each window W is a list that
stores the intervals in I that overlap [x;, x;41], for i = 1,2,...,l. Moreover, each window satisfies

the density condition stating that the largest number of intervals in I stabbed by some value
x € [xj,x;+1] is at most twice the lowest number of intervals in I stabbed by some x’ € [x;, xj41]-
We construct a window list for I by processing the endpoints of the intervals in I in ascending
order and adding new intervals to the current list W; while keeping track of the number of stabbed
intervals. Whenever the density condition becomes violated, we begin a new window. Chazelle
[17] shows that this construction takes O(n) time and consumes O(n) space.

To answer an interval stabbing query x € [0, 1] with the window lists for I, we first determine
the index i such that x; < x < x;;; using a binary search. We know that all intervals in I that
contain x are stored in W;. Therefore, we report all intervals from W; that contain x and we filter
the remaining intervals from the output. The list W; contains at most 2k intervals, where k is the
number of intervals that contain x. Hence, the total query time is O(k + log n). ]

The interval stabbing data structure for I; allows us to answer outward farthest-point queries
from g € P; in O(k + llog n) time, where [ is the number of bead-strings containing outward
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farthest points: First, we determine the colors of the intervals in I; that are stabbed by g. When g
stabs an interval of color j, we report the outward farthest points from g in B; with a farthest
query from g in € U B;. The query in € U B; takes O(k; + log n) time, where k; is the number of
reported farthest points in B;. Therefore, the total time for the query is O(k + [ log n).

Preempting Binary Searches from Queries in the Bead-Chains

We reduce the query time to O(k + log n). Recall that answering a farthest point query from ¢ in
€ U B; involves three sub-queries that take O(log n) time: The first sub-query reveals whether
q has a farthest point on the main cycle, on the arcs, or both. The second sub-query locates a
farthest point on the main cycle, if it exists. The third and forth sub-queries locate the at most two
farthest points on arcs that need to be located; the other farthest points on arcs can be computed
in advance. We break each interval in I;(j) into smaller intervals depending on the answers to
these sub-queries. This is done by locating the farthest point from each vertex of € U B; along
its main cycle and subdividing the corresponding edge. This does not increase the asymptotic
construction time, since each vertex of B causes at most one break.

If we build an interval stabbing data structure for the subdivided intervals, then it takes O(k;)
time to report the farthest points from g in éUB;, since the answers to all O(log n)-time sub-queries
are stored with the subdivided intervals. Therefore, the overall time to report all outward farthest
points from q reduces to O(k +log n). The overall construction time is O(An log n): First, we spend
O(n) time to build the data structure for queries in the bead-chains é U Bj,é U By, ...,é U B;.
Then, we spend O(Anlog n) time to build the upper envelopes D;(g) = max?zl’ i dzuB . (q), for
eachi = 1,2,..., A Finally, we spend O(Anlog n) time to construct the interval stabbing data
structures for the subdivided intervals I; that indicate the farthest colors from points on P;. Next,
we reduce the construction time to O(nlog n).

Superimposing all Bead-String Data Structures with a Double Bottom Approach

Let F be a set of real valued functions on a common domain X. The first layer £! of the functions
in F is their upper envelope, i.e., L(x) = supsep f(x) for all x € X. The second layer L% of Fis
the partial function of the second highest functions in F, i.e., for all x € X we have

L3(x) = sup f(x) .
FeFf(x)<L(x)
The final data structure for outward farthest-distance and outward farthest-point queries for

queries that are facing both ways is constructed as follows.

1. We introduce a virtual edge € of length |P;| to A, i.e., the length of ¢ is the length of the
shortest of the parallel paths that connect the terminals u and v of A.

2. Foreachi = 1,2,...,4, we calculate the correction term (|P;| — |P;|)/2 that is required
when translating farthest-distance queries from the path P; to the virtual edge e.

3. Foreachi=1,2,...,A, we create a copy X; of each bead-chain network € U B;. For each
vertex x of the copy X, we introduce a new vertex at the farthest point % from x along the
main cycle of X;. Note that we do not subdivide the original virtual edge é.
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. Foreachi=1,2,...,A, we construct the data structure for queries in X;. This takes O(n)

total time and supports O(1)-time farthest-distance queries and O(k)-time farthest-point
queries in Xj, provided that queries are specified in terms of the edges of X;.

. Foreachi=1,2,...,A, we determine the function ci,- that maps points on é to their farthest

distance in € U B;, i.e., J,-(g) = maxyesuB; dsuB,; (X, q) for any g € e. We obtain these
functions during the construction of the data structure for queries in Xj, X5, ..., X).

. We construct the first layer £! and the second layer £? of all functions Jl, ciz, ...d 1. This

takes O(nlog /) time using plane sweep. Alongside with the layers, we determine the sets

1Y) = {G € ¢]di(§) = £1(G)} and I%(i) = {§ € &|di(§) = L2(§)} for each i = 1,2,..., L.

. Foreveryi=1,2,...,A, we break each interval in I 1(i) and in I%(i) into smaller intervals,

depending on the subdivision of the edges in X;. This ensures that the points in each
subdivided interval have their farthest points on the same edges of X; and, thus, on the same
edges of ¢ UB;. Each subdivided interval stores its color i and a pointer to the corresponding
edge in X;. Let I' be the set of the subdivided intervals from I'(1), I*(2),...,I'(1), and let
I? be the set of subdivided intervals from I%(1),1?(2),...,I%(A). This process takes O(n)
time, since each vertex of A breaks at most one interval.

. We construct an interval stabbing data structure for the intervals in I 1 and we construct

an interval stabbing data structure for the intervals in I?. This takes O(nlog 1) time.

The entire construction requires O(n log 1) time and consumes O(n) space. The reason why we
need the second layer becomes apparent when we explain how we answer queries.

To answer an outward query from q € P; that is facing both ways, we first project g to the
point g along the virtual edge é. We distinguish two cases depending on whether ¢ has any
farthest bead-string other than B; or whether B; is the only farthest bead-string from gq.

1. Suppose G has some farthest bead-string B; with j # i.

This means that B; contains outward farthest points from ¢ in A and we can determine the
outward farthest distance of q by evaluating the first layer £! at g, since
max da(g.x) = dp,us,(q) = A; + deus,(§) = A; + di(§) = A + L1
x i
where the term A; = (|P;| — |P1])/2 corrects the difference between the query from g in A

and the projected query from g along the virtual edge é in € U A. This means that we can
calculate the outward farthest-distance from g in O(log n) time in this case.

The projected query g stabs those intervals among I' that correspond to the functions
among dl, oiz, e d , that coincide with £! at §. For every color ¢ with ¢ # i such that an
interval in I' of color c is stabbed by g, the bead-string B, contains an outward farthest
point from g, because £!(q) correctly indicates the outward farthest distance from gq.

Hence, we report any outward farthest points from q as follows. We perform an interval
stabbing query in I', which takes O(I + log n) time, where [ is the number of reported
intervals. If an interval of color i is reported, then we ignore it. For each reported interval
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of color ¢ with ¢ # i, we follow the pointer to the edge that contains g in the bead-chain X,
and report all farthest points from q in B, with a farthest point query from ¢ in X,. This
takes O(k.) time, where k. is the number of reported farthest points in B,. This means that
the overall time to report all outward farthest points from q is O(k + log n).

2. Suppose ¢ has only i as its farthest color.

This means £ only coincides with the function d; at q,ie., d () < cfi(cj) for any j # i. The
value (|P;| — |P1])/2 + ci,(d) does not indicate the farthest distance from g to any outward
farthest points from g in A. Instead, the outward farthest distance from g is stored with the
second highest functions among czl, Jg, e JA, i.e., with their second layer £2.

This means that we can report the outward farthest distance from g and the outward farthest
points from g in almost the same manner as for the previous case: the only difference is
that we use the second layer £? instead of the first layer £! and that we perform interval
stabbing queries for the intervals in I? instead of the intervals in I*.

This shows that our construction supports O(log n)-time outward farthest-distance queries
and O(k + log n)-time outward farthest-point queries for queries that are facing both ways. This
was the last piece of the puzzle to complete the data structure for abacus networks.

Theorem 4.17. Let A be an abacus with n vertices and A bead-strings that have o arcs in total.
There is a data structure of size O(n) with O(nlogA) construction time supporting farthest-point
queries on N in O(k + log n) time, wherek € {1,2,...,A + o} is the number of farthest points.

4.5 Two-Terminal Series-Parallel Networks

A two-terminal series-parallel network is generated from a single edge using series and parallel
operations. We develop a data structure for queries in bi-connected two-terminal series-parallel
networks; the data structure for queries in series-parallel networks from the next section also
supports queries in two-terminal series-parallel networks that are not bi-connected.

We decompose a bi-connected two-terminal series-parallel network N into a hierarchy of
nested two-terminal series-parallel networks. This hierarchy has the shape of a tree where
the leaves are two-terminal series-parallel networks that have no further nested structures, i.e.,
abacus networks, bead-chain networks, and parallel-path networks. We build data structures
for queries in the nested networks, recursively, and combine them mimicking the approach for
abacus networks. We answer any query with three sub-queries that report the (distance to the)
farthest points at the current level of the hierarchy, downward, and upward the hierarchy.

4.5.1 The Nesting Hierarchy

We consider a bi-connected two-terminal series-parallel network N with terminals u and v.
A u-v-component of N is a maximal sub-network of N that consists of points that can reach each
other via a path that contains neither u nor v in its interior. As illustrated in Figure 4.31, u and v
are part of each u-v-component of N. Let K1, Ky, . . ., K be the u-v-components of N.
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LN oo

u v
(a) The network N. (b) The u-v-component Kj. (c) The u-v-component K.

Z : C ol Y—~r | Lo
u v
(d) The u-v-component Ks. (e) The u-v-component Kj. (f) The u-v-component Ks.

Figure 4.31: A bi-connected two-terminal series-parallel network N with terminals u and v
together with its five u-v-components K1, Ky, . . ., Ks.

The bi-connected components N; 1, N 2,..., N, of K; that are not cycles are the nested
networks of N that are attached to K;. Each nested network Nj ; is itself a bi-connected two-
terminal series-parallel network whose terminals are the vertices a; j and b; j in N; ; that are
closest to u and v in Kj, respectively. The nested networks form a tree that is defined as follows.
Recall that parallel-path networks and bead-chain networks are abacus networks by definition.
Let N be a bi-connected two-terminal series-parallel network with terminals u and v. If N is
an abacus network, then the nesting hierarchy H of N consists of a single node representing N.
Otherwise, if N is not an abacus network, then the nesting hierarchy H of N consists of a node
representing N whose child nodes are the nesting hierarchies of the nested networks of N.
Figure 4.32 illustrates an example of the hierarchy of a two-terminal series-parallel network.

Lemma 4.18. Every bi-connected two-terminal network has a unique nesting hierarchy.

Proof. We prove this claim via structural induction. If N is an abacus network, then the nesting
hierarchy H of N consists of a single node and is therefore unique. Suppose N is not an abacus
network. If the nested networks of N are unique, then the nesting hierarchy H of N is unique,
since the nesting hierarchies of the nested networks are unique by the induction hypothesis.

We argue that the set of nested networks remains the same even when N is two-terminal with
respect to more than one pair of terminals. Suppose that N is two-terminal series parallel with
respect to u and v and with respect to u’ and v’. If neither u’ nor v’ lie in a nested network of N
with respect to u and v, then the set of nested networks remains the same as well.

Let X be a nested network of N with respect to u and v, and let a and b be the terminals of X
that are determined by u and v. Assume, for the sake of a contradiction, that u” lies in X with
a #u’ #b. Let Px(a,u’) be a shortest path from a to u” in X and let Px(u’, b) be a shortest path
from u’ to b in X. Since X is bi-connected, there is a path Px(a, b) in X that connects a and b
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Figure 4.32: The nesting hierarchy of a geometric two-terminal series-parallel network N.

and that neither contains u’ nor shares an edge with the path Px(a, u") U Px(u’, b). Furthermore,
since N is bi-connected and has terminals u and v, there is a path P\ x(a, b) from a to b outside
of X, which contains u and v. As illustrated in Figure 4.33, the vertex u’ cannot be a terminal of
N’ = Px(a,b) U Px(a,u’)UPx(u’,b) U Px\x(a, b) and, thus, not a terminal of N, since we cannot
remove both a and b by reverting series operations and parallel operations in N’.

X

Figure 4.33: The sub-network N’ of N from the proof that if u and v are terminals of N and X is
a nested network of N with respect to u and v, then N cannot have other terminals
u’ and v’ with u’ € X and a # u’ # b. No matter where v’ lies, the vertices a and
b both cannot be removed by undoing series and parallel operations without first
removing u’ with a series operation. Therefore, u’ cannot be a terminal of N.

Therefore, the set of nested networks remains unique even if the terminals are not unique. This
means that the nesting hierarchy H of N itself is unique, since the nesting hierarchies of the
networks Ni, Ny, ..., N, that are nested in N are unique by the induction hypothesis. O
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We define the nesting number of N as the number 7 of nodes in its nesting hierarchy H. For
instance, the two-terminal series-parallel network in Figure 4.32 has nesting number 7 = 11.

We decompose N into its nested networks Ni, Ny, . .., N, and the abacus A that results from
replacing each nested network N; that is not a cycle with an edge e; that is weighted with the
weighted length of a shortest path in N; connecting the terminals a; and b; of N;. We refer to A as
the frame of N. The frame of N is unique, since the nested networks of N are unique. Figure 4.34
illustrates the frames for the hierarchy of the geometric network from Figure 4.32.

Figure 4.34: The frames of the networks in the nesting hierarchy from Figure 4.32.

Theorem 4.19. Let N be a bi-connected two-terminal series-parallel network with n vertices that
was created using A parallel operations. It takes O (nlog A) time to construct the nesting hierarchy
H of N alongside with the frames for the networks stored with each node of H.

Proof. Our strategy is to revert series operations and parallel operations until we arrive at a
single edge connecting two terminals of N while maintaining a log of the operations that were
reverted. By reading this log backwards, we obtain a creation history of N alongside with the
nesting hierarchy H as well as the frames of the networks stored at the nodes of H.

We assume that N is represented as follows. The vertices of N are labelled with unique indices
i=1,2,...,n. For each vertex v; of N, we store a balanced binary search tree B; that contains
the neighbours of v; sorted by their index. Each entry in B; refers to an edge of N that is incident
to v; and we store the weight of this edge with the entry of the corresponding neighbour of v;
in B;. If there are multiple edges connecting the vertices v; and v;, then we store a list of the
weights of these edges with the entry for v; in B; and with the entry for v; in B;. Let §; be the
degree of vertex v;, for i = 1,2,. .., n. With this representation, it takes O(log §; + log §;) time to
check if two vertices v; and v; are adjacent, it takes O(log §; + log §;) time to remove a parallel
edge connecting v; and v;, and it takes O(log §; + log di) time to remove a degree two vertex

122



4.5 Two-Terminal Series-Parallel Networks

v; and connect its neighbours v; and v; with a new edge. Converting N into this format takes
O (n+ X, 6;log ;) time, since we sort the indices in the neighbourhood of each vertex.

For each degree § = 1,2, ..., A, we store a list Ls of the vertices with degree § and each vertex
of degree § stores a pointer to its position in Ls to facilitate constant-time updates of these
lists. We maintain a list Ly of the pairs of vertices that are connected by multiple edges. At the
beginning, Ly is empty, because N is simple and, thus, has no parallel edges.

We proceed in alternating rounds, where we reverse as many series operations as possible or
as many parallel operations as possible in each round, starting with series operations. This means
that, at the end of each round, either L, is empty, or Ly is empty, or both.

vj
i Y T 3
Wij Wik wi;j + Wik
(a) Before reversing a series operation. (b) After reversing a series operation.
w .
v 1 Y Wi min{wi, wp} U
—— / «
w2
(c) Before reversing a parallel operation. (d) After reversing a parallel operation.

Figure 4.35: Reversing series operations and parallel operations.

We reverse a series operation as illustrated in Figures 4.35a and 4.35b. Let v; be a degree-two
vertex that is adjacent to the vertices v; and v; via edges e;; and ej; of weights w;; and wjy,
respectively. We remove v; from N and introduce a new edge e;i of weight w;; = w;; + wji that
connects v; and vg. We update the degree lists by decrementing the degree of v; and v;, and we
add the pair (i, j) to Ly if v; and v; were already connected by an edge. Reversing this series
operation and updating the auxiliary lists takes O(log §; + log 9y ) time. We store a record of the
series operation that we just reversed, including the indices i, j, and k as well as the weights w;;
and wji that indicate how the addition of v; subdivides the edge connecting v; and vy.

We reverse a parallel operation as illustrated in Figures 4.35c and 4.35d. Let v; and v; be two
vertices that are connected by parallel edges of weights |P;| and |P;|. We remove the edge with
the smaller weight that connects v; and v; and we keep the shorter one. Reversing this series
operation and updating the auxiliary lists takes O(log §; + log §;) time. We store a record of the
parallel operation that we just reversed alongside with the weight of the deleted edge.

For every two-terminal series-parallel network, this procedure terminates with a single edge
that connects the two terminals u and v of N [20]. The weight of this final edge is the length of a
shortest path in N that connects its terminals u and v. Reading the record of reversed operations
backwards yields a creation history for N. We obtain the nesting hierarchy H of N together with
the frames for each node of H by tracing this creation history as follows.

We redo the series operations and the parallel operations in the creation history of N starting
with a single edge connecting the terminals u and v. We initialize the nesting hierarchy H as a
single node that stores the edge connecting u and v as its initial frame. When we redo a series
operation that subdivides an edge e, the nesting hierarchy remains unchanged and we update
the frame that contains e by subdividing e according to the recorded weights. When we redo
a parallel operation, we tentatively create a new node in the nesting hierarchy and store with
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it a new frame consisting of the two edges that were involved in the parallel operation. This
may create extraneous nodes in the temporary nesting hierarchy that contain only cycles. Once
we have reversed all operations, we merge the leaves of the nesting hierarchy that contain only
cycles as frames back into their parent nodes to obtain the final hierarchy with frames.
Whenever we create a new nested network, the edge to which the parallel operation was
applied had the weight of a shortest path through the nested network that is about to be generated.
Therefore, the networks stored with the nodes of the nesting hierarchy are indeed the frames
of the network at any time throuhgout this process. We can perform the above construction in
O (=, 6;log §;) time, if each edge stores its current containing frame. The maximum degree
in N is at most A + 2, where A is the number of parallel operations required to generate N, i.e.,
log §; = O(log A) for each i = 1,2,...,n. Furthermore, X" | §; = O(n), since N is planar [20].
Therefore, the overall construction time for H and its associated frames is O(nlog 7). O
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(a) A query g in N. (b) The local query for gq.

q
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(c) The downward query for q. (d) The upward query for q.

Figure 4.36: An illustration of (a) some query g in the network N from Figure 4.31 together with
(b) the local query that reports farthest points from q in the frame of N that contains
g, and (c) the downward query that reports farthest points from g that we reach by
descending the nesting hierarchy H of N, and (d) the upward query that reports
farthest points from q that we reach by ascending the nesting hierarchy.

We use the nesting hierarchy H of N to decompose a query from g € N into three sub-
queries: a local query for the (distance to the) farthest points in the frame A of the hierarchy H
containing q, a downward query for the (distance to the) farthest points from ¢ to any point that
we reach by descending H from A, and an upward query for the (distance to the) farthest points
from g to any point that we reach by ascending H from A. Figure 4.36 illustrates the parts of the
network and the nesting hierarchy that correspond to each of these three sub-queries for a query
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point.

4.5.2 Local Query

We begin with local queries in the frame that corresponds to the root of the nesting hierarchy.
Let A be the frame of a two-terminal series-parallel network N and let u and v be the terminals
of N. We define a sub-network F of N to translate between the distances in A and in N. Let
Ki,Ks, ..., K, be the u-v-components of N, and let N, Ny, . .., N be the nested networks of N.
Recall that the abacus network A results from replacing each nested network N; with terminals a;
and b; by a dummy edge e; of length dn;,(a;, b;). Let F be the network that results from replacing
each edge e; with a shortest path 7; from a; to b; in N; foreachi =1,2,...,A.

We define local queries in A more precisely. Consider a query point g € N with ¢ € A.
A local farthest-distance query from g in A reports the farthest distance from g along F in N,
i.e., maxycr dn(g, x); we argue that this value is da(q). A local farthest-point query from g in A
reports the farthest points from ¢q in F that lie in A; we argue that these are the farthest points
from g in A that lie in N. We show that the network distance of F and N are compatible.

Lemma 4.20. For every p,q € F, we have dr(p,q) = dn(p, q).

Proof. For every pair p,q € N, we have dr(p, q) > dn(p, q), because F is a sub-network of N. We
show that every shortest path in F is a shortest path in N and, thus, dr(p, q) < dn(p, ).

We consider a shortest path Pr(p, g) that connects p with g in F. Assume, for the sake of a
contradiction, that some shortest path Py(p, q) that connects p with q in N is strictly shorter than
Pr(p, q). There exist two distinct points s, t € Pr(p, ¢) N Px(p, q) such that the sub-path Py (s, t)
from s to t along Pn(p, q) is strictly shorter than the sub-path Pg(s, t) from s to t along F and the
interior of the path Py(s, t) does not contain any points from F. Note that neither u nor v lie on
Pn(s, t), since u, v € F. We distinguish two cases depending on whether s and ¢ lie in the same
u-v-components of N or not and we derive a contradiction in each case.

(a) Different u-v-components. (b) The same u-v-component.

Figure 4.37: The two impossible locations for s and ¢ with the path Py(s, t) shown dashed.

1. Suppose s and t lie in different u-v-components of N.

Let K, and K; be the u-v-components of N with s € K and t € K;. Then, N contains the
diamond in Figure 4.37a formed by the path from u to v in K via s, the path from u to v in
K; via t and the path Px(s, t). This is a contradiction, since this diamond cannot occur in a
network that is two-terminal with respect to u and v.
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2. Suppose s and ¢ lie in the same u-v-component K of N.

Recall that F contains a shortest path from u to v in K and all bi-connected components of
K that are cycles. As the interior of Pn(s, t) lies outside of F, the entire path Pn (s, t) lies in
some nested network N; of N that is part of K, as illustrated in Figure 4.37b.

Recall that F N N; is a shortest path 7; in N; that connects the terminals a; and b; of N;. We
arrive at a contradiction, since s and ¢ must lie on ;. Yet, replacing Pr(s, t) with Py(s, t) in
7; yields a strictly shorter path from a; to b; in N;. This is impossible.

Since both cases lead to a contradiction s and t—and, thus, Pn(p, g)—cannot exist. Hence, every
shortest path in F is also a shortest path in N and dr(p, q) = dn(p, q) for every p,q € F. ]

Lemma 4.20 implies that the answer to a local farthest-distance query from g € F is
max dn(q, x) = maxdrp(q, x) = dr(q) .
x€F x€F

We argue that dr(q) = da(q). Let ¢ : A — F be the bijection that is defined as follows. For
peAwithp e N,let p(p) =p. Forp € Awithp ee; fori =1,2,...,0,let ¢(p) be the unique
point along 7; with de, (a;, p) = dr,(ai, (p)). We have da(p, q) = dr(¢(p), ¢$(q)) for every p,q € A.
Therefore, for every query q € N with q € A, we observe da(q) = dr(q), since

@@=ﬁ§@@m:ﬁgmwww@wwﬁgw@mm:@@.

This means we can answer a local farthest-distance query directly with a query in A. Therefore, a
local farthest-distance query in A takes O(log n) time after O(nlog A) pre-processing.
If p € Ais a farthest point from q in A, then ¢(p) is a farthest point from q in F, since

dr(q) = da(q) = da(g, 9) = dr(q, (@) ,

and if §(p) is a farthest point from g in F, then p is a farthest point from g in A, since

da(q) = dr(q) = dr(q. ¢(p)) = da(q.p)

If there are farthest points from g in N along F, then we report them with a query from g in A.
This query might return farthest points from q in A that lie along the dummy edges e, e, . . ., es;
we remove these artifacts from the output. Each farthest point p from g in A on a dummy edge
corresponds to a farthest point ¢(p) from g in N. Therefore, a local farthest-point query from g
in A requires O(k + log n) time, where k is the number of farthest points from ¢ in N.

So far, we have described how to support local queries for the frame A of N itself, i.e., the
frame that corresponds to the root node of the nesting hierarchy H of N. Let A; be the frame of
the nested network N; of N and let a; and b; be the terminals of N; with respect to H. When
we apply the above technique to support local queries in A;, we need to account for potential
shortest paths between points in A; that leave N;. These shortest paths exist precisely when
dn,(ai, b;) > dn(a;, b;). In this case, we support local queries in A; with the data structure in
the abacus network A; U e/, where e’ is an additional edge of length dn(a;, b;). Otherwise, we
support local queries in A; with the data structure in the abacus network A; itself.
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Lemma 4.21. Let N be a bi-connected two-terminal series-parallel network with n vertices and
parallelism A. There exists a data structure with O(nlog A) construction time and O(n) size that
supports O(log n)-time local farthest-distance queries and O(k + logn)-time local farthest-point
queries for all frames associated with N, where k is the number of reported local farthest points. O

4.5.3 Downward Query

We construct the data structure for downward queries with a bottom-up approach starting from
the leaves of the nesting hierarchy towards the root. We describe how to perform downward
queries from the root of the nesting hierarchy assuming that the data structures for the remaining
nodes have already been created. The procedure is analogous for nodes at lower levels.

We consider a bi-connected two-terminal series-parallel network N with terminals u and v.
Let A be the frame of N, let K1, K3, . . ., K, be the u-v-components of N, and fori = 1,2,..., 4,
let N; 1,Ni2,...,Ni s be the nested networks of N in K;. A downward farthest-distance query
from q € A reports the farthest distance from g in N to any point on a nested network, i.e.,

_/gxnféx max dyn(p,q) ,

i=1 j=1 peN;;
and a downward farthest-point query from q reports all farthest points from ¢ in N that lie in
any of the nested networks of N. We mimic the approach for farthest-arc queries in an abacus
network and divide a downward query g € A with q € K; into two sub-queries: An inward
downward query from q reports the (distance to the) farthest points from ¢ with respect to N that
lie in the nested networks along the u-v-component K; that contains q. An outward downward
query from q that reports the (distance to the) farthest points from ¢ with respect to N that lie in
the nested networks along the other u-v-components K; with j # i.

Inward Downward Queries

To support inward downward queries in the u-v-component K;, we need to take into account that
the shortest path from g € ANK; to point x € Nj; ; may leave and reenter K; through the terminals
u and v. We consider the network K that consists of K; and an edge e; of length dn\k, (u, v). For
every pair p, q € K;, we have dy(p, q) = dk:(p, q) and, thus, JK; (@) = max,ek, AN (p, q)-

If A contains the u-v-paths Py, P,, ..., Py of lengths
|P1| < |Py| < -+ < |P;|, then we have dn\k, (u, v) = |Py|
fori=2,3,...,Aand dn\k,(u,v) = |P,| for i = 1. This
means we obtain the length dy\k, (1, v) of the edge e;
in K/ as a by-product of the construction of A.

Let N; be a nested network of N with terminals a; )
and b; that belongs to K;. In A, the nested network Figure 4.38: The network K} for the
Nj is replaced by an edge e; of length de(ai, b;) that network from Figure 4.31.
corresponds to a shortest path 7; in N; from a; to b;. We
identify p € e; with the unique point 7;(p) along 7; such that d (a;, p) = d,(a;, 7;(p)).

Suppose we already have a data structure for queries in N; with a virtual edge ¢; of length
dn;,(aj, bj) for outward queries in the frame of N; and downward outward queries from N;.
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Consider the cycle C; formed by P; and the edge e in K that represents the shortest path
from u to v outside of the u-v-component K;. Without loss of generality, we consider only
inward downward queries from the cycle C;. Similarly to queries from the arcs of a bead-chain,
we answer inward downward queries from the arcs of K] with a corresponding query from C;.
A nested network Nj is good, if dn,(aj, bj) < dn(aj,b;), i.e., dn;(a;,b;) < |Ci|/2 and Nj is bad,
otherwise. There is at most one bad nested network in K; and we treat it like a bad arc.

aj Bj aj l;j dj
Figure 4.39: The points along C;.  Figure 4.40: The shape of the function d i(x) for x € C;.

Let a; and b; be the farthest point from a; and b; along C;, respectively. When we traverse the
cycle C;, we encounter the points bj, a;, l;j, aj in this order or its reverse, as in Figure 4.39. Note
that we have dc,(a;, Ej) = dc,(aj, bj) and dc,(aj, 5]-) = dc,(@j, bj). For x € C; between EJ- and aj,
let x be the unique point on the virtual edge ¢; of N; with dc,(x, a;) = d¢;(X, b)).

We describe the farthest distance cf(x) from points x € C; to any point along N; in K}, i.e.,

d; i(x) = max dKf(x y) = mzjlvx dn(x,y) .
ye

When x lies between a; and b;, the farthest points from x along N; in K] are the farthest points
from 7j(x) in N;. When x lies between b; and a;, the farthest points from x along N; in K are
the farthest points from b; in N;. When x lies between @; and b;, the farthest points from x along
Nj in K{ are the farthest points from x in N; U ¢;. When x lies between Ej and a;, the farthest
points from x in Nj; are the farthest points from a; in N;. For x € C;, this yields

JNJ. (7j(x)) , if x lies between a; and b;
. de,(x,bj) + JNj(bj) , if x lies between b; and a;
dj(x) =

dc,(bj, a;) + JNjUgj(fc) , if x lies between a; and l;j

dc,(x,a;) + c?Nj (aj) , if x lies between l;j and a;

As illustrated in Figure 4.40, the plot of the function d ;i consists of an increasing line segment
of slope plus one from b; to a;, a high rugged plateau in form of the plot of the function d N;ug; (X)
elevated by dc,(b;, a;) from a; to bj, a decreasing line segment of slope minus one from b; to a;,
and a low rugged plateau in form of the plot of the function d N; (ﬁ] (x)) from a; to b;.

We consider the upper envelope D; of the functions di, dz, v do, that correspond to the nested
networks Nj, Ny, ..., Ny, of N that are part of Kj, i.e., Dl(x) max d i(x) for x € C;. For a

query g € K] N A, the downward inward farthest distance from q is Dl(q), since

Di(q) = max d}(q) — max max dg'(p,q) = Max max dn(p,q) .
j:1 j=1 pENj z j:1 pENj
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Similar to the arc distance functions for the good arcs of a bead-chain network, for the good
nested networks, the rugged high plateaus do not overlap, the rugged low plateaus do not overlap,
and the cyclic order of each type of plateau matches the cyclic order of the corresponding nested
networks along C;. This means that we can compute D; with the technique from Lemma 4.6 in
O(n;) time, where n; is the number of vertices in K;. Therefore, we can support O(log n)-time
inward downward farthest-distance queries in all u-v-components of N after O(n) preprocessing,
provided that this construction has already been completed for all nested networks of N.

We discuss how to support inward downward farthest-point queries from q € K] N A. Let N;
be a good nested network of N in K; with terminals a; and b;, and let x be some query point
along C; in K. If x lies between b; and a;, then the farthest points from x in N; are the farthest
points from b; in Nj;. If there are k; farthest points from x in Nj;, then we can report them in
O(k;) time, provided that we store them with the data structure for queries in N;. Likewise, we
report the farthest points from x in N; when x lies between b; and a;. When x lies between
a;j and bj, the farthest points from x in N; are the farthest points from 7;(x) in N;; we report
them using a window list W} for farthest-point queries in N; that was stored with the function
d N;(p) for p € ;. For each edge of D; along the low rugged plateau of d; i/, we store a pointer to
the corresponding window in Wj. Likewise, each rugged plateau of D; along the high rugged
plateau of a’ stores a pointer to the corresponding window in the window list W for farthest
point queries along the virtual edge ¢€; of N;. We create these pointers when constructing D;
alongside with a window list W; to support queries for the nested networks that determine D; for
any query point along C;. With this preparation, it takes O(k + log n;) time to report all inward
farthest points from g € K; N A, where k is the number of reported points.

We refer to the depth § of the nesting hierarchy H of N as the nesting depth of N. The total
time to construct all data structures for inward downward queries in the nesting hierarchy H
amounts to O(dnlog 1) and the total size of these data structures amounts to O(dn), because
every edge e of N may contribute a constant number of times to each data structure at the nodes
along a path from the root of H to the node whose frame contains the edge e.

Lemma 4.22. Let N be a bi-connected two-terminal series-parallel network with n vertices, paral-
lelism A, and nesting depth §. There exists a data structure with O(dnlog A) construction time and
O(6n) size that supports O(log n)-time inward downward farthest-distance queries and O(k+log n)-
time inward downward farthest-point queries for all frames associated with the nesting hierarchy
H of N, where k is the number of reported inward downward farthest points. O

Outward Downward Queries

Let N;1,Niz2,...,Nj ., be the nested networks of N in the u-v-component K; of N for each
= 1,2,...,A. An outward downward farthest-distance query from q € K; N A reports the
farthest distance from g in N to the nested networks of u-v-components K; with j # i, i.e.,

A
max max max dN(p q ,
Jj=Lj#i I=1 peN

and an outward farthest-point query from ¢ € K; N A reports the farthest points from g in N that
lie on a nested network N; ; with j # iand [ = 1,2, ..., 0y, as illustrated in Figure 4.41.
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We mimic our approach for outward queries in
[—@ an abacus network. The query q is facing u when
e oo every shortest path from g to v passes through u,

q the query q is facing v when every shortest path

% from q to u passes through v, and the query q is
facing both ways, otherwise.

u° v When g is facing u, then the outward downward

farthest points from g are the farthest points from
u on any nested network N;; with j # i, i.e., the
outward farthest distance from q is

Figure 4.41: An outward downward query
from q € K5 N A where we con-
sider farthest points from q in
the coloured nested networks. d,(q, u) + .m%l.x . rrféx max dn(p,u) .

J=Lj#i I=1 peN;;

To support u-facing outward downward queries, we determine the farthest distance from u to the
nested networks in each u-v-component, i.e., we determine o; = maxg | maXpen;, dn(p,u) for
eachj=1,2,...,A Letji, jo,...,j1 be areordering of 1,2,...,A such that 0, <o0j, <--- < o0j,.
The outward farthest distance from a u-facing query g € K; N A is
A oj A 0; Jifi £
dk,(q,u) + max max max dn(p,u) = dk,(q,u) + max o; = dk,(q,u) + I . I
j=Lj#i 1=1 peN;, j=1,j#i 0j,, Hifi=j;
Thus, answering u-facing outward farthest-distance queries takes O(1) time. We obtain o, , and
0j, in O(n) time when constructing the data structures for inward downward queries.

Let O; be the set of farthest points from u in the nested networks of K}, i.e., let

aj
Oj = U{p € Nj,l |dN(p,u) = Oj} .
=1

For a query from g € K; N A that is facing u, the outward downward farthest points from ¢
are stored in each O; with o; = 0;, when i # j,, and in each O; with 0; = 0j, , when i = jj.
Therefore, we support O(k)-time u-facing outward downward farthest-point queries, where k is
the number of reported points, by determining the sets O;, and O; with 0; = 0j, , in O(n) time
when constructing the data structures for inward downward farthest-point queries.

We generalize the construction for outward queries that are facing both ways from abacus
networks to outward downward queries that are facing both ways in a two-terminal network. Let
Py, P,, ..., Py be the u-v-paths in A of lengths |P;| < |P;| < --- < |P,|, where P; is a shortest path
from u to v in the u-v-component K; for each i = 1,2,...,A. In the following, we only discuss
outward downward queries that are facing both ways from query points g € K; N A along the
u-v-path P;. We translate any queries from the arcs of A in K; to a query from P;.

We introduce a virtual edge € of length dy(u,v) = |P;| that connects the terminals u and v.
Fori=1,2,...,A let d; denote the function that maps the points g on the virtual edge € to their
farthest distance to any point on any nested network of K; with respect to K; U ¢, i.e.,

a?,(c}) = max max dk,us(p.q) = mAx max dn(p,q) .
I=1 peN;; =1 j.1
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4.5 Two-Terminal Series-Parallel Networks

We obtain ci,» when constructing the data structure for inward downward queries in K;, because J,-
is the restriction of the downward farthest distance function D; from K ! to the edge e. Following
the approach for abacus networks, we determine the first layer £! and the second layer £? of
cil, Cjz, e d 1 with interval stabbing data structures that report which of the functions determine
each layer at any query point. This construction takes O(nlog A) time, provided that we have
already completed this construction for descendents of N in the nesting hierarchy:.

When answering an outward downward farthest-distance query from ¢ € K; N A that is
facing both ways, we project g onto the unique point ¢ along € with dx(9;, q) = ds(u, q) and
dn(q,4;) = ds(q,v), where 0; and @; are the farthest point from v and u on P; in N, respectively.
We call g the projection of q onto é. If g has a farthest point on some N,,, ; withm #iin NU e,
then (fm((j) = £(g) and we can read the outward farthest distance from g from £, since

Ao |Pi| = |P1l Ao |Pi| = |P1l

J _ (&) = 1/~
A T, v ) = T max, &) L@
where the term (|P;| — |P1|)/2 corrects the projection of the query from the u-v-path P; of length
|P;| to the virtual edge € of length |P;| = dy(u, v). If ¢ has all downward farthest points on K;

itself, then we can read the outward farthest distance from g from L2, since

A oj |P;| — | P4 A s |P;| — |P1] 2/~
m m m d R = 4+ m d — + )
j=1,aj)=§i lzalxpe]%fl N(P q) 2 j=13§i J(q) L (q)

Therefore, answering an outward downward farthest-distance query takes O(log n) time, since
we can use the interval stabbing data structures to decide in O(log n) time if ¢ has farthest points
on any u-v-component other than K; itself and evaluating £! or £? takes O(log n) time.

We wish to report the outward downward farthest points from q € Kj, i.e., the farthest points
from q on any u-v-components K; with j # i. We project g to g onto the virtual edge ¢ and use
the interval stabbing data structure for the first layer to check if ¢ has any farthest points on
any u-v-component other than K; itself. If this is the case, we proceed to report the farthest
points from all u-v-components that were reported from the interval stabbing query. For each
reported u-v-component Kj, we project the query from g to the virtual edge of K7, i.e., the data
structure for inward farthest-point queries in K. The query in K; takes O(k;) time to answer,
where k; is the number of reported farthest points from q in Kj, if we break the intervals in
the interval stabbing data structure depending on the answer to the query in K J’ . Likewise, we
proceed with the second layer, if all farthest points from g in N U ¢ lie along K; itself. Therefore,
it takes O(k + log n) time to answer an outward downward farthest-point query.

The total time to construct all data structures for outward downward queries in the nesting
hierarchy H amounts to O(6nlog 4) and the total size of these data structures amounts to O(5n),
because every edge e of N may contribute a constant number of times to each data structure at
the nodes along a path from the root of H to the node whose frame contains the edge e.

Lemma 4.23. Let N be a bi-connected two-terminal series-parallel network with n vertices, par-
allelism A, and nesting depth §. There exists a data structure with O(énlogA) construction time
and O(Sn) size that supports O(log n)-time outward downward farthest-distance queries and O(k +
log n)-time outward downward farthest-point queries for all frames associated with the nesting hi-
erarchy H of N, where k is the number of reported outward downward farthest points. O
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4 Data Structures for Farthest-Point Queries

4.5.4 Query Upward

We support upward queries by propagating information from the root of the nesting hierarchy
back to its leaves after building the data structures for local queries and downward queries.

Let N; be a nested network of N at the u-v-component K; of N. Furthermore, let a; and b; be
the terminals of N; and let A; be the frame of N;. We consider an upward query from q € Aj,
i.e., we would like to determine the farthest distance from g in N to any point on N \ N; and we
would like to report any farthest points from g in N that lie in N \ N;. To support these queries,
we translate the query from q to a query from the edge e; that replaces Nj; in the frame A of N.
Then, we gather all information about (the distance to) farthest points in N \ N; along e;.

We distinguish the three familiar cases. The query q is facing a; when all shortest paths in N
from g to b; pass through a;, the query q is facing b; when all shortest paths in N from q to a;
are passing through b;, and the query q is facing both ways, otherwise.

When q is facing aj, then all shortest paths from g to any point on N \ N; pass through a;.
Therefore, the farthest distance from q € A; N N; to any point on N \ Nj is

x?}?\)](\rj dN(q7 x) de(q7 aj) + xgll\fa\)li\]j dN(aj’x) = dAj(q’ a]) + dN\Nj(a]) .

We obtain the value d N\N;(a;) and the farthest points
from a; in N \ N; by combining a query from g; in the

frame A of N and a downward query from a; in N \ N;. X
We modify the data structures for inward downward

queries in N to answer the inward downward query J==\ an)
from a; in N \ N;. If a; has any inward downward PQ—D§ N—N

farthest point from a; in N that lies in K; \ Nj, then the
inward farthest-distance query from a; in K reports the
inward farthest distance from g in N \ N;. Otherwise, Figure 4.42: An upward query.
the inward downward farthest distance from ajin N \N
is the height of the second layer D2 of the functions dl, dz, ... ,cf(,i at g. We add the construction
of Dl2 as an additional step when building the data structures for inward downward queries.
The data structure for outward downward queries already supports the query for a; in N \ Nj,
since it reports the (distance to the) downward farthest points from a; on N \ K;. Therefore, for
upward queries from N; that are facing a;, we can report the upward farthest distance from ¢
in O(1)-time and we can report all k upward farthest points from g in O(k) time by storing the
farthest distance from a; in N \ N; and the farthest points from a; in N that lie on N \ N;. This
requires O(n) time and space for the root of H, provided that the modified data structures for
inward downward queries in the nested networks of N have already been constructed.
Consider an upward query from a point ¢ € A; N N; that is facing both ways. Recall that e;
denotes the edge of A that represents a shortest path r; from a; to b; in N;. We project g onto
the unique point g” along e; with the same relative position to a; and b; as g in Nj, i.e,

e | \v

de(aja Q) _ dej(aja q,)
dn,(aj,q) +dn;(q, b)) de;(aj,q') +de(q', b))
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4.5 Two-Terminal Series-Parallel Networks

This generalizes the translation of a query from an arc of an abacus network to a query on its
parallel-path network. The upward farthest distance from g € A; N N; in N is

dn.(a;,q) +dn.(q.b;) — dn.(a, b)) - ,
AN J J A AR +dN\Nj(Q),

T, e ) = ;
where the term (dn;(a;,q) + dn;(q,b;) — dn,(aj, b;))/2 corrects the projection from N; to A.
Computing the correcting term takes constant time, if each vertex of A; stores its distance to the
terminals a; and b;. As described for queries facing a;, we can answer the query for dn N;(q’) in
O(log n) time using the data structures for local queries in A and for downward queries from N
along e; and we can report any farthest points from ¢’ along N \ N; in O(k + log n) time.

N e e L o L o L e e e

ANV ARRY AT A AR ATYA

Figure 4.43: Aggregating information to support upward queries from a nested network M; ;
in the s-t-component Z; of a two-terminal network M with terminals s and ¢ that
is part of a larger two-terminal network N. We combine the data structures for
inward downward queries (green) to the other nested networks of M in Z;, outward
downward queries (blue) to the nested networks of the other s-t-components of M,
local queries (purple) to M \ (Z; U - - - U Z;), and upward queries (red) to N \ M.

So far, we have described upward queries from the frame A; of a nested network N; of N that
corresponds to a child node of the root in the nesting hierarchy H of N. In order to support
upward queries from the descendants of N;, we copy the data structure for queries in N \ N;
along e; to the nested networks in N;. As illustrated in Figure 4.43, we support downward queries
from a nested network Nj, of N; by combining the data structure for upwards queries from N; via
ej with the data structure for the frame A; of Nj;, and the data structures for downward queries
to the descendents of N; that are reached from Nj, by ascending through N;.

Recall that 7 is the number of nodes in the nesting hierarchy H of N. Every edge e of N
appears a constant number of times in the data structures associated with each node of the
nesting hierarchy. Therefore, the resulting data structure has the following properties.

Theorem 4.24. Let N be a bi-connected two-terminal series-parallel network with n vertices, paral-
lelism A, nesting number t, and nesting depth 8. There is a data structure with O(tn+dnlog 1) con-
struction time and O(tn) size that supports O(log n)-time farthest-distance queries and O(k +log n)-
time farthest-point queries in N, where k is the number of reported farthest points. O
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4 Data Structures for Farthest-Point Queries

4.6 Series-Parallel Networks

A series-parallel network is a network N where every bi-connected component B of N is a
two-terminal series-parallel network, as illustrated in Figure 4.44.

Figure 4.44: A series-parallel network with alternating white and grey bi-connected components.
Each bi-connected component is two-terminal series-parallel and its terminals are
indicated with solid discs (grey bi-connected components) or empty discs (white
bi-connected components). Two bi-connected components are a single edge.

We consider a series-parallel network N with n vertices and b bi-connected components
B, B, ...,Bp. Fori=1,2,...,b, let n; be the number of vertices in B;, let A; be the parallelism
of B;, and let 7; be the nesting number of B;. Let { be the number of cut vertices of N and let n be
the number of incidences between bi-connected components. We have Zib=1 ni =n+n-{ = 0(n),
since every cut vertex is counted once for each bi-connected component containing it. Let
A= maxi.’:1 A; be the largest parallelism and let 7 = maxi.’:1 7; be the largest nesting number.

SPE A

(a) The external components of B. (b) The perspective from B on N.

Figure 4.45: A bi-connected component B in a series-parallel network N with four external
components (coloured). In pery(B), each external component Xj is replaced by an
edge weighted with the farthest distance from the vertex x; = B N X into Xj.
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4.6 Series-Parallel Networks

Fori = 1,2,...,b, let x1,x3,...,x;, be the cut vertices of B;, and let X1, X3, ..., X, be the
connected components of N\ B; such that x; € X foreachj=1,2,...,{;. We call X1, X5, ..., Xy,
the external components of B; in N. The perspective pery(B;) from B; onto N is the network that
results from N by replacing X; with an edge of weight d x;(x;) from x; to a new vertex X;, as
illustrated in Figure 4.45. As shown in previous works [13, 27], the perspective from B; onto N
preserves the farthest-distance information from N for points on Bj;, i.e., for all ¢ € B; we have
dn(q) = dper y(B;)(q). Furthermore, a point q € B; has a farthest point in N that lies in X; if and
only if the point x7 is farthest from g in per ~ (Bi). Furthermore, if we have data structures that
support O(1)-time farthest-distance queries and O(k)-time farthest point queries from the cut
vertices of N in every bi-connected component and from the dummy vertices in the perspective
of every bi-connected component, then we can combine these data structures to a data structure
for queries in N with O(n) additional time and space.

The perspectives from bi-connected components
of a series-parallel network are two-terminal series- . dx; (x))
parallel networks with attached pendant edges. A Xj
These networks are not two-terminal series-parallel dx; (x))
themselves, so it would appear that we need an ad-
ditional data structure. Fortunately, the data struc-
ture for two-terminal series-parallel networks al-
ready supports queries in these networks: If we
double each of the pendant edges in the perspec-
tive per (B;) of a bi-connected component B; on
N, then these two edges form an arc with identical
endpoints, as illustrated in Figure 4.46. Notice that
none of the constructions for bead-chains, abacus networks, or two-terminal series-parallel
networks require the endpoints of the arcs to be distinct. This means we already have a data
structure for queries in two-terminal series-parallel networks with attached pendant edges.

Figure 4.46: Replacing the external compo-
nents of a bi-connected compo-
nent B; in N with loop arcs in-
stead of pendant edges.

Corollary 4.25. Let B; be a two-terminal series-parallel network with n; vertices, parallelism A;,
and nesting number t; that is a bi-connected component in a series-parallel network N. Suppose we
are given the perspective pery(B;) from B; onto N. There is a data structure with O(t;n;n; log A;)
construction time and O(t;n;) size that supports O(log n;)-time farthest-distance queries and O(k +
log n;)-time farthest-point queries in per \(B;), where k is the number of reported farthest points.

O

We apply our approach for treelike networks to build a data structure for queries in N. First,
we identify the bi-connected components and the cut vertices of N, which takes O(n) time: The
bi-connected component-cutpoint-tree T of N [37] is the tree whose vertices are the bi-connected
components of N and the cut vertices of N; a bi-connected component B is connected to the
cut vertex v in T when v € B. Second, for each i = 1,2,...,b, we identify the terminals
of the bi-connected component B; alongside with its nesting hierarchy using the algorithm
from Theorem 4.19 and construct the data structure from Theorem 4.24 for queries in B;. This
step takes O (Z;’:l nilogl;) = O(nlogA) total time. Third, we create the perspectives from
each bi-connected component starting from some arbitrary bi-connected component B;. Let
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4 Data Structures for Farthest-Point Queries

X1,Xa, ..., X¢, be the external components of By in N attached to the cut vertices x1, x2, . . ., x¢, of
N in B;. If X; consists of a single bi-connected component By, then we determine d x; (%)) = dg, (x;)
with a query from x; in that bi-connected component. If X; consists of £ bi-connected components
By, By, . . ., By, that are all incident to B; at x;, then we have ij (x;) = maxf:1 ‘sz, (x;). Otherwise,
we recursively determine the farthest distance from x; in X; with a breadth-first search in the
bi-connected component-cutpoint-tree T’ this search returns when it reaches the leaves of T. We
obtain the distances required to construct the perspective from B; onto N in O (n + Z;’:Z ilogn;))
time, since the farthest-distance queries from the cut vertices in each bi-connected component B;
take O(log n;)-time and we perform {; — 1 queries in each B; for i = 2,3,...,b. Once we have
the perspective from B; onto N, we use it to obtain the missing distance required to construct
the perspectives from the neighbours of B; in the tree structure T. We propagate the distance
information from T in a breadth-first-search fashion. This takes again O (n + X2, logn;) time,
since each bi-connected component B; is only one missing the farthest distance into its external
component that contains the starting bi-connected component B;. This means that we can
construct the perspectives from all bi-connected components in total time

b b b
Ofn+>" gilogn;+ > logn; + > tin;logA; | = O(rnlogd) .
i=1 i=1 i=1

With this preparation, we can answer a farthest-distance query from a point ¢ € N in O(log n)
time with a farthest-distance query from g in the perspective onto N from the bi-connected
component B that contains g. For a farthest-point query from g, we first perform a farthest-point
query from q in pery(q). We output the reported farthest points from g in per,(B) that lie on B
and we cascade the query into the neighbouring bi-connected components of B as indicated by
the reported dummy vertices. During the recursive construction of the perspectives from the
bi-connected components, we introduce shortcuts in the tree structure that allow us to avoid
cascading through long sequences of bi-connected components without any farthest points from
g. For each edge in the tree structure, we store a shortcut to the next bi-connected component
where we find a farthest point, or where two paths (in T) to bi-connected components containing
farthest points from g split. We obtain these pointers as a by-product when calculating the
distances into the external components for each bi-connected component [13, 27].

Theorem 4.26. Let N be a series-parallel network with n vertices that consists of b bi-connected
components with size ny, n,, . . ., ny, nesting numbers ty, 7, . . . , Tp, and parallelisms Ay, Ay, . . ., Ap,
respectively, where T = maxi’:1 7, and A = maxf’:1 A; are the largest nesting number and par-
allelism. There exists a data structure with O (Zle rini) = O(rn) size and O (Zle 7;n; log Ai) =
O(rnlog A) construction time that supports O(log n)-time farthest-distance queries and O(k+log n)-

time farthest-point queries in N, where k is the number of reported farthest points. ]
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5 Conclusion

We point out commonalities between the problems that we have studied independently thus far,
we discuss ideas for improving some of our results, and other directions for future research.

5.1 Commonalities

We observed in Lemma 2.1 that adding a single shortcut pg to a geometric cycle C creates two
regions along C that are unaffected by the shortcut. As illustrated in Figure 5.1, these regions
are the mirror image of the shortcut along the two cycles in C + pq that contain pq. Thus, these
regions have the same length as the shortcut pq. This observation is, in fact, a special case of the
observation from Lemmas 4.1 and 4.2 where we characterize which terminals a query point on a
parallel-path network is facing: the unaffected regions correspond to queries that are facing both
terminals. The description of the unaffected regions in C + pq follows from the characterization
of the query points that are facing both ways when interpreting C + pq as a parallel-path network
with parallelism A = 3 where the shortest u-v-path is the straight-line segment pq.

0j qj uj
u U
Oj q i;
Figure 5.1: The unaffected regions along a Figure 5.2: The region of query points along
geometric cycle C when aug- a parallel-path network that are
menting C with a shortcut pq. facing both terminals.

Although the details differ substantially, the algorithm for placing an optimal pair of shortcuts
for a cycle from Chapter 2 and the algorithm for placing an optimal shortcut for a tree from
Chapter 3 follow the same strategy. First, we restrict the search space, viz., to shortcuts in
alternating configuration for cycles and to shortcuts with both endpoints along the backbone that
span across the absolute center for trees. Second, we characterize configurations of diametral
paths in the augmented network that define algorithm states and we show that optimal shortcuts
balance diametral paths. Third, we derive rules that inform us how to slide the shortcuts along the
search space in a way that we encounter optimal shortcuts. Fourth, we discretize the continuous
algorithm by identifying events where the algorithm states change. Fifth, we bound the running
time by bounding the number of events and the time required to handle each event.
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$ d p

(a) The complete network with four vertices Kj. (b) Two alternating shortcuts for a cycle.

Figure 5.3: The correspondence between an augmented cycle C + pq + rs with two shortcuts in
alternating configuration and a complete network K4 with four vertices.

We observed that we require two shortcuts to reduce the continuous diameter of a cycle
and that an optimal pair of shortcuts is alternating. A cycle with two shortcuts in alternating
configuration is a subdivision of Ky, i.e., the complete graph with four vertices, as illustrated in
Figure 5.3. However, K} is the forbidden minor for series-parallel networks. This may pose a
challenge when we wish to create a dynamic data structure for farthest-point queries or when
we wish to use a data structure for farthest-point queries as an aid to place multiple shortcuts.

5.2 Potential Improvements

The algorithm from Chapter 2 takes O(k?n) time to determine an optimal pair of shortcuts for a
non-convex cycle with n vertices and k reflex vertices. This running time is dominated by the
search for an optimal pair of shortcuts where both shortcuts have one endpoint at a reflex vertex.
For each of the (IZC) pairs of reflex vertices, we scan a path of length O(n) for an optimal position
of the other endpoints of the shortcuts. We conjecture that we can combine these searches
into one search that takes O(kn log n) time, where we slide a candidate for the midpoint of the
longest section along the cycle and maintain for each reflex vertex the position (or positions) of
an optimal target for a shortcut from that reflex vertex, as illustrated in Figure 5.4.

Figure 5.4: A sketch of a simultaneous search for the best pair of shortcuts for a non-convex
polygonal cycle where both shortcuts have an endpoint at a reflex vertex.
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5.3 Future Research

We conjecture that we can reduce the dependence on the size 7 of the nesting hierarchy in the
construction time of a data structure for farthest-point queries in a two-terminal series-parallel
network by applying path compression to the nesting hierarchy. A compressible path in the
nesting hierarchy corresponds to one of the two networks depicted in Figure 5.5; both are similar
to parallel-path networks. The challenge would be to devise a data structure that reports which
neighbouring paths in the nesting hierarchy contain farthest points from a query.

=

=)
(a) A path P4 in the nesting hierarhcy. (b) A path P, in the nesting hierarchy.
(c) The network corresponding to ;. (d) The network corresponding to P».

Figure 5.5: Two paths in the nesting hierarchy of a two-terminal series-parallel network.

5.3 Future Research

Future research on farthest-distance queries in networks would be concerned with more general
types of networks. We could investigate dynamic data structures, where we add or remove edges
or modify edge weights or approximate farthest-distance queries. Instead of querying for the
farthest points from ¢, we could query for the points at distance 8 from g for some value 6.

There are numerous directions for future research on minimum-diameter network augmenta-
tion. We could minimize the continuous diameter when augmenting a cycle with k > 3 shortcuts
or a tree with k > 2 shortcuts. We could investigate which cycles and trees benefit from k
shortcuts and characterize optimal configurations of shortcuts. We could study planar variants,
where shortcuts must not cross the network or where every crossing becomes a vertex. We
could add shortcuts one at a time and allow the endpoints of a shortcut to connect to points
on a previous shortcut. At WADS 2017, Therese Biedl suggested minimizing the continuous
diameter of a geometric tree with edge weights. At CCCG 2017, Joseph O’Rourke proposed
a three-dimensional version of the augmentation problem for cycles where we minimize the
geodesic diameter when augmenting a sphere with chords.
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