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Abstract 
Death receptors such as CD95 and TRAIL-R1/R2 induce apoptosis in many cells, 

but can also activate non-apoptotic signalling pathways (NF-�B as well as 

mitogen-activated protein kinases (JNK, p38). Different isoforms of FLIP (cFLIPS 

and cFLIPL) inhibit different steps in death receptor (DR)-associated activation 

and maturation of procaspase-8. We reasoned that the cleavage of cFLIP, in 

turn, could differentially influence nonapoptotic DR signals. Thus, we established 

stable HaCaT cells expressing different cFLIP isoforms (cFLIPS, cFLIPL) or 

mutants of cFLIPL that are either uncleavable by capase-8 (cFLIPD376N) or 

generated after stimulation by DISC-associated caspase-8-mediated cleavage 

(cFLIPp43). All isoforms/mutants of cFLIPL blocked death ligand (DL)-mediated 

apoptosis, whereas a distinct cleavage pattern of caspase-8 was detected in the 

DISC. Only cells expressing full length cFLIPL (irrespective of cFLIP cleavage) 

sufficiently induced proteolysis of caspase-8 to its p43/41 fragments. In contrast, 

cFLIPS or cFLIPp43 blocked procaspase-8 cleavage.  

Furthermore, We examined DR-induced non-apoptotic signals. TRAIL or CD95L 

activated JNK within 15 minutes. MAPK p38 was induced in a biphasic manner. 

Interestingly, all cFLIP isoforms/mutants completely inhibited the late DL-induced 

activation of p38 or JNK. Moreover, cFLIP isoforms or mutants blocked DL-

mediated IκBα phosphorylation, NF-κB activation, and induction of the target 

gene IL-8. 

Conversely knockdown of cFLIP isoforms in primary human keratinocytes not 

only resulted in increased apoptotic cell death but also enhanced DL-induced NF-

κB activation and also its target gene IL-8 induction underscoring the 

physiological relevance of cFLIP for these DL-induced signals.  

In summary, cFLIP isoforms are not only potent inhibitors of DL-induced 

apoptosis, but also block DL-triggered activation of NF-κB. The inhibition of non-

apoptotic signalling by CD95 and the TRAIL death receptors by FLIP proteins 

might be of crucial importance during tumorigenesis of keratinocyte skin cancer 

in order to avoid activation of innate or adaptive immune responses in tumor cells 

acquiring apoptosis resistance 
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Zusammenfassung 
 
Todesrezeptoren, wie CD95 und TRAIL-R1/R2, können nicht nur Apoptose in 

vielen Zellen induzieren, sondern aktivieren auch nicht-apoptotische Signalwege 

(wie NF-κB und Mitogen-aktivierte Proteinkinasen (JNK, p38)). Die FLIP 

Isoformen (cFLIPS und cFLIPL) inhibieren verschiedene Schritte der 

Todesrezeptor (TR)-assoziierten Aktivierung und Prozessierung von Procaspase-

8. Wir glauben, dass die Spaltung von cFLIP, die nicht-apoptotische TR-

Signalgebung differentiell und bedeutend beeinflusst. Aus diesem Grund wurden 

HaCaT Zellen etabliert, die verschiedene cFLIP-Isoformen (cFLIPS, cFLIPL) oder 

Mutanten von cFLIPL stabil exprimieren. Insbesondere wurde die cFLIPD376-

Mutante,  welche von Caspase-8 nicht prozessiert werden kann sowie das DISC-

assoziierte Spaltprodukt von cFLIPL (cFLIPp43) stabil in HaCaT Zellen integriert. 

Sowohl die Isoformen als auch die Mutanten von cFLIPL inhibieren die 

Todesligand (TL)-vermittelte Apoptose, wobei ein distinktes Spaltmuster von 

Caspase-8 im DISC detektiert wurde. Lediglich die Zellen, die die cFLIPL-Isoform 

exprimieren (unabhängig von der cFLIP-Spaltung) induzieren substantiell die 

Proteolyse von Caspase-8 zum entsprechenden p41/p43 Spaltprodukt. Im 

Gegensatz dazu inhibieren cFLIPS oder cFLIPp43 die Procaspase-8-Spaltung. Im 

nächsten Schritt analysierten wir die TR-induzierten nicht-apoptotischen 

Signalgebungen. Beide TL, TRAIL und CD95L, aktivieren JNK innerhalb von 15 

Minuten. Die MAPK p38 wird in biphasischen Schritten aktiviert. 

Interessanterweise inhibieren alle cFLIP-Isoformen und -Mutanten  vollständig 

die späte TL-induzierte Aktivierung von p38 und JNK. Des Weiteren inhibieren 

die cFLIP Isoformen und Mutanten die TL-vermittelte IκBα-Phosphorylierung, die 

NF-κB-Aktivierung und die Induktion des Zielgens IL-8.  

Zusammenfassend zeigt diese Studie, dass die cFLIP Isoformen nicht nur 

potente Inhibitoren der TL-vermittelten Apoptose sind, sondern auch die TL-

vermittelte nicht-apoptotische Signalgebung, wie NF-κB oder MAPK (JNK oder 

p38), inhibieren. Diese Daten zeigen, dass die Spaltung von cFLIPL oder 

Caspase-8 im DISC weder mit einer verstärkten NF-κB Signalgebung assoziiert 
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ist noch für die inhibitorische Funktion der cFLIP Isoformen in der TR-induzierten 

NF-κB oder MAPK Aktivierung notwendig ist. Weiterhin lassen die Daten dieser 

Studie vermuten, dass die cFLIP-Isoformen eine bedeutende Funktion für die 

Inhibition der TR-induzierten nicht-apoptotischen Signale übernehmen. Dieser 

Mechanismus könnte damit für die Tumorigenese von keratinozytären Hautkrebs 

von Bedeutung sein und auch eine Erklärung liefern warum maligne Krebsformen 

die Eliminierung durch die angeborene oder adaptive Immunantwort umgehen 

können. 
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I.INTRODUCTION 
1. Skin function and role in apoptosis 
1.1 Skin function and homeostasis 
The skin is the largest organ in the body with multiple functions, occupying 12-

15% of body weight and having a surface area of 1-2 meters. There are two 

distinct layers that make up the skin: the dermis and the epidermis. The skin cells 

are constantly renewed by their respective progenitor cells. Epidermis is a thick 

keratinised and stratified squamous epithelium consisting of four distinct cell 

types that include keratinocytes, melanocytes, langerhans cells and merkel cells.  

Notably keratinocytes are the major cell type of the epidermis and contain keratin 

which is a fibrous protein responsible for protection of the epidermis. Melanocytes 

are specialized cells located at the base of the epidermis and synthesize the 

pigment melanin. Melanin shown to protect the cell nucleus from the destructive 

effects of UV-radiation. The dermis is a connective tissue layer under the 

epidermis, and contains nerve endings, sensory receptors, capillaries, and elastic 

fibers 1;2. 

The integumentary system (the organ system that protects the body from damage 

and comprises the skin and its appendages) has multiple roles in skin 

homeostasis including protection, temperature regulation, sensory perception, 

biochemical synthesis, and absorption. All body systems work in co-ordination to 

maintain the internal conditions essential to the proper functioning of the body. 

Being the largest organ in the human body with diverse roles, the skin functions 

mainly in protecting the body against foreign pathogens. The skin is also involved 

in providing thermal insulation and in temperature regulation, touch and sensation 

and synthesis of vitamins D and B.   

Homeostasis implies a balance between cell growth and cell death. This balance 

is essential for the development and maintenance of multi cellular organisms. 

Homeostasis is controlled by several mechanisms including apoptosis, a process 

by which cells condemned to death are completely eliminated 1.  
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Keratinocytes are the major cell type of the epidermis constituting 95% of all cells 

found on the outer skin. They express most of the important components of the 

apoptosis machinery and can activate this mechanism following exposure to 

various signals. Pathological modulation of apoptosis signalling in the skin may 

therefore lead to disorders such as psoriasis, alopecia areata, or skin cancer. 

Several death receptors are expressed in the keratinocytes and a function has 

been attributed to TNF-R1, CD95, TRAIL-R1, or TRAIL-R2 3. 

TRAIL (Tumor necrosis factor-related apoptosis-inducing ligand) was shown to 

overcome the relative resistance of senescent keratinocytes to apoptosis, and it 

was suggested that TRAL may play an important role in epidermal homeostasis.  

Human keratinocytes undergo apoptosis following treatment with tumor necrosis 

factor-related apoptosis-inducing ligand (TRAIL) via surface-expressed TRAIL 

receptors 1 and 2. In addition, TRAIL triggers non-apoptotic signalling pathways 

such as activation of the transcription factor NF-κB, particularly when TRAIL-

induced apoptosis is blocked. The intracellular protein cFLIPL shown to interfere 

with TRAIL-induced apoptosis at the Death-inducing signalling complex (DISC) in 

many cell types, including keratinocytes 4;5. 

 
1.2 Apoptosis resistance in the skin leads to skin cancer and other 
diseases 
Several pathological and patho-physiological factors disturb the integrity of 

molecules involved in crucial cellular processes such as proliferation, survival and 

programmed cell death (apoptosis). Such alterations in the tumor cells and their 

surrounding stroma impact the cellular homeostasis, ultimately leading to the 

manifestation of (potentially metastatic) keratinocyte-derived skin tumor. The role 

of apoptosis resistance has now been clearly established as an important 

necessity for tumor development 6. Apoptosis also represents an important 

cancer defence mechanism as keratinocytes that may have accumulated 

mutations or sustained other genetic damage as a consequence of exposure to  
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UV radiation or oxidative damage are eliminated by this process 2. Resistance to 

apoptosis can be acquired by cancer cells through a variety of strategies; the 

most common being the loss of a pro-apoptotic regulator through mutation 

involving the p53 tumor suppressor gene. The resulting functional inactivation of 

p53 protein is observed in more than 50% of human cancers thereby leading to 

the removal of a key component of the DNA damage sensor that can induce the 

apoptotic effector cascade. This often leads to impaired apoptotic machinery 

where the p53 tumor suppressor gene function is lost.  

Tumor progression may require the upregulation of different anti-apoptotic 

regulators such as cFLIP, Bcl-xL and various IAP molecules (cIAP1, cIAP2, XIAP 

and Livin) or conversely the loss of function of several pro-apoptotic proteins (see 

Figure 1). Intriguingly, a shift in the balance between these pro-and anti-apoptotic 

proteins may finally be sufficient to avoid tumor progression by apoptosis 

induction or may conversely promote tumor progression at the interface between 

tumor and the surrounding stroma 7. 

 
Skin diseases Apoptosis Mechanism Potential therapies

Sunburn Increased UVB-induced apoptosis -
Cytokine secretion

Toxic epidermal Increased Upregulation of Fas ligand Antibody blocking
Necrolysis (TEN) TNF production (anti-Fas, anti-TNF-intravenous Ig’)

Graft-versus-host Increased Fas-mediated lymphocyte Antibody blocking
Disease (GVHD) Killing TNF-production (anti-Fas, anti-TNF)

Psoriasis Decreased Keratinocyte senescence TNF inhibitors
Increased TNF (paradoxical)    Anti IL-15 antibody
IL-15.
Survivin Bcl-xL expression

Skin cancer Decreased p53 mutation or deletion Introduction of p53
(Basal-cell and Decreased death receptors,  TRIL Bortezomib
squamousCell Stat3 activation. Stat3 decoy
carcinoma) Survivin, Bcl-2, Bcl-xL

 

 

 

 

 

 

 

 

 

 

 

Table-1 Summary of skin diseases with deregulated apoptosis 2. 
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Death receptor activation

Mitochondrial
depolarization
Cytochrome C
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Hyperkeratosis
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Akt, 
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NF-κB

 

 

 

 

 

 

 

 

 

 

 

 

 
 
Figure-1 Apoptotic balance in keratinocytes is mediated by multiple factors 
at multiple levels. 
 
1.3 Apoptosis – functions and mechanisms (Extrinsic and Intrinsic) 
Apoptosis is a form of cell death that plays an important role in the regulation of 

growth in normal adult tissues and in early development and disease. The term 

“Apoptosis” is derived from a Greek word which means “falling off”, suggesting it 

might play a role opposite to that of mitosis. Apoptosis is regulated by different 

physiological stimuli and occurs in many species and tissues. Besides apoptosis 

there is another form of cell death, termed as necrosis, which is a result of acute 

injury to the tissue 7. 

Notably, apoptosis may not be harmful to the host and is also necessary for 

normal physiological functions. The term apoptosis is sometimes considered 

synonymous with programmed cell death which somehow implies a lethal genetic  
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program. It is a widely accepted notion that derangement of apoptotic regulation 

in development could result in structural and functional abnormalities while a lack  

 
Sequence of events in cells undergoing apoptosis 7;8. 
 
 

Stimulus Living cell Increase in 
endonuclease(s)

and/or
Changes in chromatin

Internucleosomal
DNA

fragmentation

Nuclear fragmentation
(Karyorrhexis)

Cellular fragmentation
(Apoptotic bodies)

structure

DISC
cFLIPL

Death ligand
 

 
 
 
 

cFLIP

Bcl-2 
BH3-only/BaxtBID

IAPsIAPs SMACSMAC

 
 
 
 
 
 
 
 
 Apoptosis

Extrinsic Intrinsic

Caspase-8

Pro-Caspase-8 cFLIPL FADDRIP1 Death ligand

Death receptor

Caspase-3 SMACSMAC SMAC/DIABLO

Pro-Caspase-9 APAF-1

Cytochrome C

Mitochondrion

 
 
 
 
Figure-2 Extrinsic and intrinsic cell death signaling pathways.  
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of its tight regulation in growth could result in the formation of tumors. Defects in 

apoptosis strengthen both tumorigenesis and drug resistance, and often leads to 

minimal success of chemotherapeutic treatment of tumors. On the other hand, 

the fact that apoptosis is present in tumors suggests that its induction could be 

used as a mode of therapy 7. 

The hallmarks of apoptosis are a series of typical biochemical and morphological 

features, such as shrinkage of the cell, fragmentation into membrane-bound 

apoptotic bodies and rapid phagocytosis by neighboring cells. Furthermore,  

activation of a class of cysteine proteases called caspases, determines the 

phenotype of cell death and plays a major role in the execution of apoptosis 7. 

Apoptotic cell suicide can be initiated by a plethora of stimuli that generally 

belongs to one of the two known cell death signalling pathways. 

The main components of apoptotic pathways are as follows,  
 

1. Apoptosis triggered by internal signals - the intrinsic or mitochondrial 

pathway 

2. Apoptosis triggered by external signals - the extrinsic or death receptor 

pathway 

The majority of proteolytic cleavage events that manifest the apoptotic phenotype 

are mediated by ‘effector’ caspases, such as caspase-3 and caspase-7, which 

become fully activated when the large and small subunits that are harbored within 

the dormant pro-enzyme are liberated after endoproteolysis by upstream ‘initiator’ 

caspases, such as caspase-8, caspase-9 or caspase-10. These initiator 

caspases themselves are activated by autoproteolytic mechanisms after 

facilitated oligomerization. In the extrinsic pathway, this event occurs as a 

consequence of ligand binding to ‘death receptor’ complexes, which leads to the 

recruitment of procaspase-8 via the adapter molecule FADD/Mort1 that forms a 

complex called Death inducing signalling complex (DISC) (see Figure 3). 

Interestingly, this pathway is modulated by the availability of molecular 

components (putative type I and type II cells differ in this regard) and dominant- 
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negative regulators such as decoy receptors and cFLIP or IAPs. Notably for the 

majority of cell death stimuli, the intrinsic death signal is communicated through 

the mitochondrion by less described mechanism, which leads to several changes 

in the organelle, including the release of polypeptide agents, such as cytochrome 

C and second mitochondria-derived activator of caspases SMAC/DIABLO. This 

pathway is highly dependent on the stoichiometry of anti versus pro-apoptotic 

Bcl-2 family members. When enabled, caspase-9 activation occurs via the 

oligomerization mediator APAF-1, which requires cytochrome C for the 

appropriate conformational change. Furthermore, SMAC/DIABLO protein helps to 

cross another apoptosis checkpoint by sequestering the inhibitors of apoptosis 

proteins (IAPs), which would otherwise block the actions of downstream effector 

caspases even in the presence of proteolytic maturation 8 (see Figure 2). 

Furthermore, signals from the extrinsic pathway may require the assistance of the 

intrinsic pathway, for example, when the signal strength is weak or when the IAP 

barrier is high and the actions of SMAC/DIABLO then become necessary 9;10. 

 
  Deat lh igand

FADD

Caspase 8

RIP1

cFLIP

 
 
 
 
 
 
 

DISC 
 
Figure-3 Extrinsic pathway is initiated by death ligands such as 
TRAIL/CD95L and upon stimulation, death receptors recruits DISC-
associated proteins at DISC. 
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1.4 HaCaT keratinocytes (primary and transformed keratinocytes) 
The HaCaT keratinocyte cell line is derived from the spontaneous transformation 

of the adult human keratinocytes and is shown to be associated with sequential 

chromosomal alterations in vitro. However, it is not necessarily linked to major 

defects in differentiation. The HaCaT cell line is derived from adult skin and 

maintains a complete epidermis differentiation capacity. This cell line has been 

shown to be immortal (>140 passages), has a transformed phenotype in vitro 

(clonogenic on plastic and in agar) but remains non-tumorigenic. Notably different 

keratin proteins (Nos. 1 and 10) and other known keratinocyte markers (involucrin 

and filaggrin) are commonly found and expressed in HaCaT keratinocytes. Thus, 

HaCaT cell line is the first permanent epithelial cell line derived from an adult 

human skin that exhibits normal differentiation properties and serve as a 

promising tool to study regulation of keratinization in human skin cells 1. We 

chose HaCaT keratinocytes as our cellular system because it expresses all the 

necessary death receptors (TRAIL R1/2 and CD-95R). Its ideal cellular system to 

study the role of intracellular regulators (cFLIP isoforms and its cleavage 

products) and their role in DR-mediated signalling pathways. 

On an interesting note, TRAIL induces apoptosis in primary keratinocytes (PK) 

and transformed keratinocytes (TK) in a dose dependent manner. Previous 

studies have shown that despite the increased surface expression of TRAIL 

R1/R2 in PK rather than TK, PK and TK exhibit significant differences in 

sensitivity to TRAIL with as much as 5-fold higher concentrations of TRAIL 

required to kill PK compared to TK 11. These studies clearly indicate that it is 

mainly the intracellular regulators which are responsible for the observed relative 

resistance of PK to TRAIL. Furthermore, ectopic expression of cFLIPL leads to 

TRAIL resistance of TK. Taken together, these data suggest an important role for 

cFLIPL in determining differential sensitivity of PK versus TK to TRAIL. This 

mechanism of resistance to TRAIL-mediated apoptosis may indeed important in 

many different cellular systems 11. Notably, proteasome inhibitors enhance TRAIL 

sensitization without interfering with the NF-κB activation in primary human  
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keratinocytes. This sensitization was not mediated at the receptor-proximal level 

of TRAIL DISC formation or caspase-8 activation but was shown to be effective 

further downstream 5. 

 
2. Pro-apoptotic properties of death receptors 
2.1 Death receptors (TRAIL-R1/2 and CD95-R system) 
The extrinsic apoptotic pathway is initiated by the ligation of death receptors 

(TNFR1/2, CD95-R and TRAIL-R1/2) with their respective ligands (TNF, CD95L, 

and TNF-related apoptosis inducing ligand or TRAIL) all of which are members of 

the TNF super family. Three different subclasses of death receptors are recently 

described (see Figure 4). The first subgroup includes TRAILR1/2, CD95-R, which 

are apoptosis promoting cell surface receptors having an N-terminal cysteine rich 

domain and a C-terminal death domain. The other subgroups include two decoy 

receptors (TRAIL-R3/R4), which lack the cytosolic domain and are unable to 

induce apoptosis. Interestingly, the known apoptosis-inducing members of the 

TNF family, CD95L and TNF are detrimental upon systemic administration. 

However, the property of TRAIL to kill tumor cells more efficiently than normal 

cells prompted many research groups to test the anti tumor potential of TRAIL in 

vivo. Notably, recent reports suggest that TRAIL can be used to inhibit the tumor 

growth in vivo with out any toxicity problems 10. 

 

    

CD95 TNF-R1 TRAIL-R1 TRAIL-R2 DR3 DR6 EDAR NGFR

Death domain Cysteine-rich domain N-Glycosylation

 

 

 

 

 

 
 
Figure-4 Structure of death receptors and members of TNF superfamily. 
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Furthermore, these data also suggest a novel alternative anti-tumor strategy by 

using TRAIL against Bcl2 or Bcl-xL overexpressing tumors, preferably one that 

combines the cytotoxic potential of TRAIL with chemo- and/or radiotherapy. 

Therapeutic targeting of tumor cells from two different angles could likely diminish 

the chances of the tumor from developing into therapy resistance variants.  

Interestingly, such a combinatorial therapy with TRAIL and chemotherapeutic 

agents has shown to act synergistically via distinct apoptotic pathways. Notably 

TRAIL preferentially makes use of the direct caspase pathway bypassing the 

mitochondrial pathway while most of the chemotherapeutic and radiation agents 

exert their apoptotic potential primarily via the mitochondrial apoptotic pathway. 

Thus, the treatment of cancer by direct induction of apoptosis in tumor cells, with 

anti-APO-1 antibody may soon become a reality as clinical trials with TRAIL/APO-

2L are proposed to get underway soon 10. 

 
2.2 DISC components and mode of DISC assembly 
The interaction of death receptors with their cognate ligands results in receptor 

trimerization and clustering of the death receptors, which in turn facilitates the 

recruitment of effector molecules that include the adaptor protein FADD (Fas-

associated death domain–containing protein). FADD enables the recruitment of 

the pro-form of the initiator caspase-8 to the death receptors and leads to the 

formation of a multi-molecular signalling complex known as DISC (see Figure 3). 

The interplay between the DISC components (see Figure 5) are mediated by 

conserved protein motifs which interact in a homotypic mode. Two prominent 

domains involved in these interactions are the death domain (DD) and the death 

effector domain (DED). Interestingly the formation of the DISC allows the 

dimerization of the pro-caspase-8 molecules, leading to the stimulation of its 

proteolytic activity, cleavage and release of the active caspase-8 molecules into 

the cytosol. Furthermore, this active enzyme then initiates apoptosis in death 

receptor-sensitive cells by cleaving substrates such as Bid, a pro-apoptotic 

member of the Bcl2 family, or caspase-3 4.  
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Figure-5 Overview of the domain structure of DISC associated proteins. 
 
3. Negative regulators of apoptosis 
3.1 Decoy receptors and Inhibitor of apoptosis proteins (IAPs) 
Decoy receptors 
Besides two pro-apoptotic receptors (TRAIL-R1/R2), TRAIL can also bind to three 

different anti-apoptotic receptors which include TRAIL-R3 and TRAIL-R4, which 

are membrane bound receptors known to suppress TRAIL-induced apoptosis.  

Osteoprotegerin (OPG), which is a secreted protein known to bind TRAIL and 

inhibit TRAIL induced apoptosis. These three decoy receptors (TRAIL-R3/R4, 

OPG) bind to TRAIL but do not mediate signalling. Normal tissues usually 

express all four of the TRAIL receptors, and this balance prevents TRAIL-induced 

apoptosis. Interestingly, cancer cells on the other hand often lack the expression 

of the decoy receptors (DcRs). Furthermore this imbalance favors the increased 

pro-apoptotic receptor induced sensitivity to TRAIL in cancer cells. On the 

contrary specific expression of decoy receptors in normal tissues possibly 

explains their resistance to TRAIL-induced apoptosis 12.  
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Furthermore decoy TRAIL receptors DcR1, DcR2 (TRAIL-R3/R4) were shown to 

be down regulated specifically in tumor cell lines. To study the possible 

hypothesis for tumor-specific down-regulation of decoy TRAIL receptors, many 

research groups extended their studies to promoter regions and methylation 

changes in the CpG islands of these receptors. All normal tissues were found to 

be completely un-methylated, whereas in the tumor cell lines, the promoter 

regions for decoy receptors DcR1, DcR2 (TRAIL R3/R4) were frequently 

hypermethylated. The modifications such as hypermethylation pattern in the 

promoter regions of decoy receptors (TRAIL-R3/R4) are shown to be prerequisite 

for downregulation of these receptors in most of the tumor cells 13. 

Inhibitor of apoptosis proteins (IAPs) 
The IAP family of proteins, including XIAP, cIAP1, cIAP2, neuronal apoptosis 

inhibitor protein (NAIP), and survivin are highly conserved through evolution. 

These proteins are characterized by the presence of baculoviral IAP repeat (BIR)-

binding domains and RING zinc finger domain. XIAP, cIAP1, and cIAP2 have 

been shown to bind specifically to the terminal effector cell death proteases such 

as caspases-3 and -7, but not to the known proximal proteases, caspases-8, -1, 

or –6. Notably, various other reports suggest that IAP family proteins including 

XIAP, cIAP1, cIAP2 did not prevent caspase-8-induced proteolytic activation of 

pro caspase-8. However, they subsequently inhibit caspase-3, -6, -7 directly by 

blocking cytochrome C induced activation of pro-caspase-9 14 and subsequently 

stop downstream apoptotic events such as further activation of caspases. These 

findings demonstrate that IAPs can suppress different apoptotic pathways by 

inhibiting distinct caspases. Interestingly these reports also identify pro–caspase-

9 as a new target for IAP-mediated inhibition of apoptosis 15;16. 

 
3.2 cFLIP isoforms/mutants and structure and mechanism of action 
The human homolog of vFLIP is also called cFLIP/FLAME-1/IFLICE/ 

Casper/CASH/MRIT/CLARP/Usurpin. Several reports suggest that many cFLIP 

splice variants are expressed at the mRNA level although at the protein level only  
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Figure-6 Schematic structure of known cFLIP isoforms and its cleavage 
products.  
 
three endogenous forms, cFLIPL and cFLIPS, and cFLIPR could be detected so 

far 17 (see Figure 6). cFLIPL is structurally similar to procaspase-8, since it 

contains two death effector domains and a caspase-like domain. However, this 

domain lacks residues that are important for the catalytic activity of caspase-8, 

most notably the cysteine within the active site. The short form of cFLIP, cFLIPS, 

structurally resembles vFLIP.  Despite the functional analysis of mice deficient for 

cFLIP, in which the role of cFLIP in cardiac development was elucidated but the 

definitive physiological role of this molecule still remains controversial 4;18. Recent 

reports suggest that high expression of cFLIP promotes tumor growth and 

facilitates immune escape by tumors. In addition to these studies, it has also 

been shown that mouse embryonic fibroblasts deficient of cFLIP clearly display 

an increased sensitivity toward death receptor mediated apoptosis. Several other 

reports suggest an involvement of cFLIP in the modulation of the immune  
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response. Interestingly, when present in high amounts cFLIPL and cFLIPS have 

blocked death receptor mediated apoptosis by interfering with caspase activation 

in the DISC in many cellular systems 4;18-22. 

 
3.3 cFLIP regulates DR mediated apoptosis 
Upon stimulation, death receptors CD95-R (APO-1/Fas), TRAIL-R1 recruit the 

adaptor molecule FADD/MORT1, procaspase-8, and the cellular FLICE-inhibitory 

proteins (cFLIP), RIP1 (Receptor interacting protein1) into the DISC. According to 

the proposed induced proximity model, procaspase-8 is activated in the DISC in 

an autoproteolytic manner by two subsequent cleavage steps. cFLIP proteins 

exist as long (cFLIPL) and short (cFLIPS) splice variant forms are both capable of 

protecting cells from death receptor mediated apoptosis. In ectopically expressed 

immune cells (BJAB cells), both cFLIPS and cFLIPL block procaspase-8 activation 

at the DISC. However, cleavage is blocked at different steps; cFLIPL allows the 

first cleavage step of procaspase-8, leading to the generation of the p10 subunit. 

In contrast, cFLIPS completely inhibit cleavage of procaspase-8. Interestingly, the 

cleavage product cFLIPp43 (lacking the p12 subunit) also prevents cleavage of 

procaspase-8. In contrast, a non-processable mutant, cFLIPD376N allows the first 

cleavage of procaspase-8. In conclusion, both cFLIP proteins prevent caspase-8 

activation at different levels of procaspase-8 processing at the DISC 20. These 

results indicate that cFLIPL induces a conformational change in procaspase-8 

that allows partial but not complete proteolytic processing, whereas in contrast 

FLIPS even prevents partial procaspase-8 activation at the DISC 4;20;23. 

 

3.4 Physiological and pathological functions of cFLIP 
The generation of cFLIP knockout mice has provided interesting insights into the 

physiological roles of this protein. Notably cFLIP knockout mice die in utero 

(E10.5–11.5) from cardiac failure associated with severely impaired heart 

development. Furthermore, studies on cFLIP deficient mice revealed that cFLIP 

has two distinct physiological roles. Firstly, cFLIP is required for the proper  
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development of embryos, playing a particularly important role in the development 

of the heart. Secondly, cFLIP is essential for regulating death receptor–mediated 

apoptosis induced by death ligands (CD95L, TRAIL) engagement 24. These 

results provide insights into the definitive protective role of cFLIP against death 

receptor-induced apoptosis. Intriguingly, these studies clearly demonstrate that 

cFLIP is yet another death receptor signal transducer like FADD and caspase-8 

which were previously reported to have an important function in heart 

development 24. 

Moreover, elevated expression of cFLIP has recently been linked to the escape of 

tumors from immune-surveillance and their resistance to early activated T-cells 

and differentiating macrophages. These observations suggest that death receptor 

signalling pathways are important biological processes and the modulation of 

cFLIP expression and death receptor signalling could be therapeutically beneficial 

for patients with cancers or immune system disorders. In cFLIP deficient cells, the 

“off” switch for apoptotic signalling is lost, thereby making these cells a valuable 

tool for investigating death receptor signalling 6;24. 

 

3.5 Inhibitors of anti-apoptotic factors can be used as therapeutic agents 
Its known that inappropriate regulation of apoptosis contributes to many human 

diseases, including cancer, autoimmune and neurodegenerative disorders. Over 

the past decade, suppression of apoptosis has been recognized as a key element 

in cancer progression, and therapies designed to relieve the apoptosis blockade 

in cancer cells are currently undergoing clinical trials 25. 

Cancer cells negatively regulate caspases and thereby suppress apoptosis by 

three known fundamental mechanisms. Firstly, they prevent activation of caspase 

zymogens (proenzymes), after which they neutralize active caspases (active 

enzymes) and finally suppress expression of genes encoding caspases or 

caspase-activating proteins. Moreover, endogenous suppressors of caspases 

include the inhibitor of apoptosis proteins (IAPs), of which eight are reported to be  
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expressed in humans. It is known that all the 10 IAPs are an evolutionarily 

conserved family of proteins that directly bind to active caspases. They either 

suppress their protease activity or target them for destruction by ubiquitination 

and subsequent proteasome- mediated degradation. 

Subsequent studies identified various inhibitory agents that suppress the 

expression of anti-apoptotic proteins such as cFLIP, IAPs (XIAP, cIAP1, cIAP2), 

anti-apoptotic Bcl2 family members and also known anti apoptotic transcriptional 

factor NF-κB and Akt. Interestingly, these inhibitors sensitize many tumor cells to 

death ligand (CD95L, TRAIL) induced apoptosis 26. This led researchers to 

identify a series of synthetic compounds, which could block or inhibit the anti-

apoptotic property of some potential proteins 26.  

In an attempt to design synthetic compounds which inhibit IAPs, Bertrand et.al, 

investigated the role of an IAP antagonist termed as AEG40730. This inhibitor 

was shown to bind BIR3 domains of IAPs with nM affinity and was revealed to 

have profound apoptotic sensitization to death ligands. Strikingly, the IAP 

antagonist was shown to induce caspase-8 dependent apoptosis in a subset of 

cancer cell lines through activation of a TNF-α autocrine loop. Moreover, 

reducing cellular levels of cIAP1 and cIAP2 using AEG40730 or siRNA resulted in 

a dramatic reduction in RIP1 ubiquitination and caused RIP1 to switch from 

functioning as a prosurvival scaffold molecule to a pro-apoptotic adaptor protein 
27. Recent reports suggests that loss of cIAP results dramatic sensitization to 

CD95 and interestingly this form of cell death can only be blocked with a 

combination of RIP1 kinase and caspase inhibitors. These findings further 

demonstrate the fundamental role of CD95 signalling and provide support for a 

physiological role of caspase independent DR-cell death 16.  

 
4. Death receptors induced non-apoptotic signalling pathways 
An increasing number of reports suggest the possible role of death ligands such 

as CD95L, TRAIL in apoptosis independent functions. These functions include 

induction of proliferation in T-cells and fibroblasts, liver regeneration, chemokine  
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production, differentiation of dendritic cells and neurons as well as recently 

reported invasiveness promoting capacities. Accordingly, it has been found that 

CD95L and TRAIL can induce non-apoptotic signalling pathways, such as the 

various MAP kinase cascades, PKC and the NF−κB. The activation of NF-κB is 

counteracted by apoptotic caspases and is strongly enhanced in cells, which are 

protected from apoptosis by caspase inhibitors or expression of anti-apoptotic 

members of the Bcl2 family. The NF-κB activation can be triggered by direct 

stimulation of death receptors CD95 and TRAIL4;28;29. In addition, there is growing 

evidence that suggests a physiologic role for CD95 in regulating neuronal 

development, growth, differentiation, and regeneration in the CNS. Interestingly, 

CD95 is not only highly expressed but also shown to mediate non-apoptotic 

signalling pathways in other tissues such as heart, pancreas and colon. All these 

above lines of evidences highlight the significant role of death receptors 

(TRAIL/CD95-R) in non-apoptotic signalling events 21.  

 

4.1 Death receptors activate NF-κB activation 

The nuclear factor-kappa B (NF-κB)/Rel family of proteins are composed of a 

group of dimeric transcription factors that have an outstanding role in the 

regulation of inflammation and immunity. The control of transcription by NF-κB 

proteins can be quite relevant to the death receptor functions in three ways. First, 

induction of anti-apoptotic NF-κB dependent genes critically determines cellular 

susceptibility toward apoptosis induction by TRAIL-R1/R2 and other death 

receptors. Each of the multiple known NF-κB inducers therefore has the potential 

to interfere with death receptors induced cell death. Second, TRAIL and some of 

its receptors are inducible by NF-κB, disclosing the possibility of autoamplifying 

TRAIL signalling loops. Third, the death receptors (TRAIL/CD95-R) can activate 

the NF-κB signalling pathway directly.  

The phylogenetically conserved family of nuclear factor-kappaB (NF-κB) 

transcription factors in mammals are composed of more than 10 defined homo- 
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and heterodimers of the c-Rel, RelA (p65), RelB, p50 (NF-κB1), and p52 (NF-

κB2) proteins. The NF-κB transcription factors can be activated by a variety of 

extracellular stimuli and physical stresses and they regulate a large number of 

genes involved in inflammation, differentiation, and apoptosis control. Notably the 

proinflammatory cytokines are known to induce NF-κB activation mainly by two 

pathways, the canonical and the non-canonical pathways. 

The IκBs (inhibitors of NF-κB) are the centerpiece of the canonical (classical) 

pathway. In unstimulated cells, NF-κB is complexed with the IκBs and thereby 

locked into the cytoplasm. The current view of this process is that upon 

stimulation of a cell, multiple intracellular signalling pathways are activated that 

converge at the IκB kinase (IKK) complex. The most common form of this 

complex consists of two functionally non-redundant kinases, IKKα (IKK1) and 

IKKβ (IKK2), as well as a regulatory subunit, IKKγ also called NEMO (NF-κB 

essential modulator). Upon activation, the IKK complex phosphorylates the IκBs 

at specific amino acid residues. The phosphorylation of IκBα at Ser-32 and Ser-

36 is predominantly mediated by IKKβ. This site-specific phosphorylation was 

shown to be a prerequisite for subsequent posttranslational modifications such as 

ubiquitination of IκBα, which tags the NF-κB inhibitor for degradation in the 26S 

proteasome unit. Furthermore NF-κB subunits are now reported to translocate 

into the nucleus as a homo or heterodimers, where they regulate the expression 

of genes involved in fundamental physiological and patho-physiological cellular 

processes such as control of the immune system, especially of the innate 

immune response, as well as the regulation of inflammation and apoptosis.  

In non-canonical (alternative) signalling pathway, activation of NF-κB is reported 

to involve the processing of the p52 precursor p100. This pathway is completely 

independent of IKKγ or NEMO, whereas IKKα and the NF-κB-inducing kinase 

(NIK) are essential. Moreover here NIK is positioned immediately upstream of the  

IKKα homodimers. Strikingly, cytokines such as lymphotoxin β (LT-β) and B cell-

activating factor, CD40 ligand, as well as viruses such as the human T cell  
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leukemia virus 1 (HTLV-1) or the Epstein-Barr virus (EBV), are among the few 

select stimuli shown to activate the non-canonical pathway. The phosphorylation 

of p100 at two specific C-terminal serine residues by IKKα homodimers is 

reported to be a key event in this pathway. Interestingly, site-specific 

phosphorylation is essential for polyubiquitination and proteasomal degradation. 

However, the entire molecule is not degraded rather only the C terminus of p100 

is destroyed. Furthermore, the RelB/p52 heterodimers are the main NF-κB 

factors generated by p100 processing 28;30-33. 

 

4.2 Sustained activation of JNK in response to TNF-family members (TNF-α, 

TRAIL) in NF-κB deleted HaCaT keratinocytes 

Cell death induction by apoptosis and necrosis, NF-κB activation and stimulation 

of JNK cascade are the most prominent cellular responses of TNFR1 signalling. 

Notably, the pathways that mediate these responses do not act independently in 

a parallel manner but are shown to interconnect to TNFR1 signalling network 

through various mechanisms. Recent findings suggests that apoptosis induction 

is inhibited by several targets genes of the NF-κB pathway including those 

encoding cFLIP, cIAP2, TRAF1, Bcl2, BclxL and XIAP. In recent years, there is 

growing evidence which suggests that the balance between NF-κB activation and 

apoptosis induction in the context of TNFR1 signalling is regulated by the JNK 

pathway. Notably the role of various JNKs and their major targets the AP1/jun 

family of transcriptional factors in the TNF-induced signaling network is complex 

and depends on the cellular context. TNFR1 induced JNK activation is generally 

very rapid and transient in viable cells, where as in NF-κB inhibited cells, which 

are primed to undergo cell death after TNFR1 stimulation. The JNKs are 

persistently activated. In vitro  experiments suggest that expression of the NF-κB 

target genes A20, GADD45β and XIAP inhibits TNF-induced JNK activation and 

thus prevent prolonged JNK signalling after TNFR1 stimulation in normal cells.  
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Interestingly, sustained JNK activity in TNF signalling was speculated to result 

from reactive oxygen species (ROS) mediated oxidative inhibition of JNK 

inactivating phosphatases. Furthermore, NF-κB pathway not only blocks 

apoptosis but also ROS production and necrosis by inducing ROS-detoxifying 

enzymes such as manganese superoxide dismutase and the ferritin heavy chain. 

It is therefore tempting to speculate that ROS generation, oxidative inhibition of 

phosphatases and apoptosis signalling kinase activation are of special relevance 

for sustained JNK activation in cells undergoing TNF-induced necrosis 34. 

 

4.3 Death receptors induces MAPkinases 
Several mitogen-activated protein kinase (MAPK) signal transduction pathways 

have been identified in mammals, including extracellular signal-regulated protein 

kinase (ERK), c-Jun NH2-terminal kinase (JNK) and p38 MAPK. Each of these 

groups of MAPK is activated by dual phosphorylation on Thr and Tyr within a 

tripeptide motif (Thr-Xaa-Tyr) located within the activation loop of the MAPK. This 

phosphorylation is mediated by seven MAPK kinases (MAPKKs) that have 

specificity for individual MAPK isoforms. The JNK is activated by MKK4 and 

MKK7, and p38 MAPK is activated by MKK3 and MKK6 35;36. These MAPKKs and 

MAPKs can function as independent signalling modules that may work in parallel.  

A large body of evidence suggests that the specificity of MAPKKs to activate 

individual MAPK isoforms is mediated, in part, by an interaction between an N-

terminal region located on the MAPKK and a docking site located on the MAPK 
37;38. It is of interest to know that both the up stream activators of JNK- MKK4 and 

MKK7 are shown to have non-redundant functions. Furthermore, JNK is 

phosphorylated preferentially on Tyr by MKK4, whereas MKK7 phosphorylates 

JNK on Thr 39;40. Interestingly, many other reports describe that dual 

phosphorylation on Thr and Tyr is required for full activation of JNK 41. These 

studies suggest that MKK4 and MKK7 may cooperate to activate JNK and also 

MKK4 and MKK7 gene disruption strongly supports these conclusions. In 

addition, ultraviolet (UV) radiation causes activation of both MKK4 and MKK7 42,  
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and loss-of-function mutations in either MKK4 or MKK7 cause reduced UV-

stimulated JNK activation 39;40;43.  

Many previous reports have identified the isoforms MKK3 and MKK6 as specific 

activators of p38 MAPK 44;45. It has also been reported that some cell surface 

receptors, including tumor necrosis factor (TNF), may activate p38 MAPK by a 

MAPKK-independent mechanism. Interestingly, the effect of loss-of-function 

mutations in the murine MKK3, MKK4, and MKK6 genes revealed that all three 

MAPKK isoforms can contribute to p38 MAPK activation and that the repertoire of 

MAPKK isoforms that results in p38MAPK activation in vivo depends on the 

specific stimulus that is studied. The loss of p38 MAPK regulation in the mutant 

cells causes defects in growth arrest and increased tumorigenesis (See review 
46). 

Preliminary preclinical data suggest that inhibitors that target JNK, p38 MAPK 

cascades exhibit anti-inflammatory activity. In addition, inhibition of ERK is a 

promising means of reducing production of TNF-α, although no direct inhibitors 

have been identified so far. However, it is difficult to extrapolate from gene 

knockout studies, in which the activity of a given kinase is completely abolished.  

For drug therapy partial inhibitors may be sufficient to achieve the desired 

therapeutic effect. Further experimentation with actual JNK, p38 inhibitors is 

needed (See review 47).    

 

4.4 cFLIP isoforms mediated non-apoptotic signalling pathways upon DR-
treatment 
Emerging evidence suggests that cFLIP not only regulates apoptosis but also 

modulate non-apoptotic signals, which in turn may be important for tumor 

promoting functions such as proliferation, migration, inflammation or metastasis 
6;18. It has been suggested that NF-κB activation is independent of caspase 

activation and that the inhibition of caspases leads to a complete blockade of 

apoptosis and a concomitant increase in the activation of NF-κB and its target 

gene IL-8. These data indicate that gene induction is a distinct apoptosis- 
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independent event, elicited by TRAIL/Fas receptors in keratinocytes 5. Previous 

findings suggest that cFLIPL acts as an inhibitor of TRAIL-mediated NF-κB 

activation by directly interfering with RIP1 (Receptor interacting protein1) 

recruitment to the DISC 4;28. The cFLIP isoforms include cFLIPs and cFLIPL. Upon 

recruitment to the DISC, cFLIPL is cleaved to a p43 fragment that is retained 

within the DISC. Based on overexpression studies in 293T cells, it was suggested 

that cFLIPL has differential interaction partners that might explain its distinct 

signalling pattern (for review see 48).  

There is growing evidence that cFLIP can act as a tumor progression factor. For 

example, cFLIP expression correlates with resistance against death receptor-

induced apoptosis in a variety of B-cell lymphomas, and cFLIP transfected tumor 

cell lines develop into more aggressive tumors in vivo 49. Conversely, 

administering chemotherapeutic drugs to sensitize cells that are resistant to death 

receptor–induced apoptosis often correlates with decreased expression of cFLIP. 

Additionally, cFLIP is a target of the major anti-apoptotic pathways involved in 

carcinogenesis, namely the NF-κB, Akt/PKB, and MAPK pathways 50. The 

particular relevance of cFLIP for apoptosis-resistance has been pinpointed in 

recent reports showing that decreased expression of cFLIP is sufficient to confer 

sensitivity against death receptor induced apoptosis as shown in human 

melanoma cells 23. Moreover, cFLIP antisense oligonucleotides have been 

successfully used in three other studies to sensitize resistant prostate cancer 

cells, multiple myeloma cells and chronic lymphocytic leukemia cells to death 

receptor-induced apoptosis 23;51. 

 
4.5 Regulation of cFLIP expression in tumor cells 
Inhibition of cFLIP expression in tumor cells might be of particular importance for 

TNF-related apoptosis-inducing ligand (TRAIL)-based cancer therapies. TRAIL is 

the ligand of two death receptors, TRAIL-R1 and TRAIL-R2, and has attracted 

considerable attention in recent years as a potential anti-cancer molecule  
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because of its ability to induce apoptosis preferentially in tumor cells 50. It is worth 

noting that TRAIL requires co-treatment with conventional chemotherapeutic 

drugs to sensitize tumor cells, although unfortunately some normal healthy cells 

also undergo death receptor induced apoptosis. Chemotherapy has often-

pleiotropic effects, including the inhibition of anti-apoptotic pathways that typically 

regulate a whole battery of effector molecules. For example, the NF-κB pathway 

induces in a cell-type specific way, almost a dozen anti-apoptotic proteins 

including cFLIP 32;33. Therefore, it seems conceivable that chemotherapeutic 

drugs sensitize normal and cancer cells by targeting different cell-type specific 

effector proteins. It has also been recently shown that proteasome inhibitors 

sensitize primary keratinocytes to TRAIL induced apoptosis by blocking the 

maturation and activity of caspase-3, most likely by interfering with the function of 

the inhibitory XIAP protein, an E3 ligase that drives the proteasomal degradation 

of caspase-3 and SMAC/DIABLO 5. However, proteasome inhibitors can also 

sensitize tumor cells to death receptor-induced apoptosis by blocking NF-κB–

dependent increased expression of cFLIP 32;33. These above examples illustrate 

that selective sensitizers of apoptosis might broaden the applicability of anti-

cancer strategies related to death-receptor activation. Future studies must show if 

a selective decrease of cFLIP expression allows for differential sensitization of 

tumor cells and normal cells to death receptor-induced apoptosis. 
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5. Aim of my study 
Death receptors (DRs) such as CD95 and TRAIL-R1/R2 induce not only 

apoptosis but also stimulate non-apoptotic signalling pathways such as NF-κB 

and mitogen-activated protein kinase (MAPK) activation. The inhibition of DR-

activated maturation of procaspase-8 is achieved by the action of distinct 

isoforms of cellular FLIP proteins (cFLIPS, cFLIPL) in various cellular systems. 

However, recent studies suggest more complex physiological roles of the cFLIP 

proteins beyond apoptosis protection, involving the regulation of several DR-

associated pathways, which might ultimately manifest in phenotypes associated 

with skin patho-physiology such as tumorigenesis or inflammatory diseases. 

These evidences thus led us to investigate and elucidate the following objectives 

in the present PhD study, using human primary and transformed (HaCaT) 

keratinocytes as the model of study. 

1. Is cFLIP cleavage a pre-requisite for the activation of DR-associated non-

apoptotic pathways such as NF-κB and MAPK signalling? (see Figure 7) 

2. If so, which cFLIP variants (isoforms/mutants) are involved in this process 

and what are their significant roles in regulating the DR-mediated 

activation of these proliferative/inflammatory signalling pathways? 

3. What are the precise cellular mechanisms by which these cFLIP variants 

modulate keratinocytes cell fate from different death receptors in various 

physio- and pathophysiological situations? 

4. Do other important regulators of cell differentiation, survival and apoptosis, 

such as members of the TNF super family (TNF, TRAIL) and JNKs, also 

play a role in transducing cell death mechanisms in the HaCaT cells? If so, 

what is the precise role for activation of the MAPK JNK in TNF-mediated 

apoptosis, when NF-κB signalling is blocked in these cells? 

5. Further, would the cFLIP variants also differentially influence the death 

ligand-mediated activation and phosphorylation of JNK and the 

transactivation of its downstream targets such as AP-1 in HaCaT cells? If  
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so, through which mechanisms would the cFLIP isoforms/mutants achieve 

this modulation?  

6. How would the cFLIP variants mechanistically impact the DR-induced 

activation of other MAPKs, such as the p38 MAPK and its downstream 

target Hsp27 to elicit non-apoptotic responses in the HaCaT cells?  

7. Do the cFLIP variants also possibly act upon the DR-associated 

differential recruitment to CD95-R/TRAIL and further, the post-translational 

modifications of the death-inducing signalling complex (DISC) and its 

associated proteins such as FADD, caspase-8, RIP1, TRAF2  etc. to 

trigger the non-apoptotic signals in HaCaT keratinocytes? What would be 

the importance of such a modulation to the keratinocytes cells? 

8. Finally, what is the crucial role of cFLIP and its variants in DR-induced 

activation of non-apoptotic signalling pathways, such as NF-κB, in primary 

human keratinocytes? Would specific targeting of cFLIP expression be of 

particular importance in TRAIL-based cancer therapies related to DR-

activation? (see Figure-8) 

Based on the afore-mentioned aims, the present PhD study thus endeavours to 

answer questions pertaining to the physiological relevance of cFLIP and its 

variants in death receptors (CD95 and TRAIL) mediated regulation of apoptotic 

and non-apoptotic signalling cascades such as NF-κB and MAPKs. These 

findings could thus be very important to understand mechanisms of keratinocyte 

skin cancer and the activation of innate and/or adaptive immune responses 

triggered by DR activation in the skin. This might led us to understand the less 

known biological functions of cFLIP and its variants in normal and disease states 

of the skin.  
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Figure-7 Does cleavage of cFLIP is essential for death ligand mediated non-
apoptotic signalling pathways in human keratinocyte? 
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Figure-8 cFLIP isoforms modulates DR-induced NF-κB activation under 

physiological conditions?
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II. MATERIALS AND METHODS  
1. Materials  
1.1 Lab instruments/Chemicals 

Instruments Company 

Sterile work bench Hera-safe (Heraeus), Thermo scientific 

Centrifuges and Incubator Eppendorf, Heraeus-biofuge, Multifuge 

Co2-Auto Zero. Heraeus, Biosafe plus 

Water bath Medingen 

Thermal block Thermo mixer (Eppendorf) 

Microscope Zeiss 

Balancing machine Sartorius  
Spectrophotometer Perkin Elmer, Amersham 
Western blot (Electrophoresis 

Instruments - chambers, blotting 

Apparatus) 

Bio-Rad, and Invitrogen 

Pipetboy Falcon Express, Becton Dickinson 

Pipettes 10µl, 20µl, 100µl, 200µl, 1000µl 

Eppendorf 

Neubauer-Cell counter Heiland Fachversand 

Hypercassette Intensifying Screen Amersham 

Cell counter Sarstedt 

FACScan-instrument/FACS-Canto Becton Dickinson/BD biosciences 

Bacterial incubator Binder 

EMSA (electrophoresis units, glass 

plates) 

Sigma 

Gel dryer Bio-Rad 

 
1.2 Common buffers and reagents 
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Company 

 
Product 

 
Catlog No 

Gibco,  
Darmstadt, 
Germany 

DMEM (4,5g/L Glucose, L-Glutamine, 
3,7g/L NaHCO3 pyruvate) 
PBS Dulbecco´s Phospate Buffered Saline 
Trypsin  
FCS 

P04-03590 
 
14190-094 
25300-054 
26400-044 

PAN Biotech 
GmbH, 
Heidenheim/G
ermany 

Penicillin/Streptomycin (10000UPen/10mg 
Strep) 

A-9164 

Sigma, 
St. Louis/USA 

APS (Ammonium Persulfate) 
(Final con. 10%) 
DMSO 
Lauryl Sulfat (Sodium dodecyl sulfate) 
2-Mercaptoethanol 
MOPS 
Ponceau S Concentrate 
Propidiumiodid 
Sodium chloride 
Sodium dioxoarsenate (NaAsO2) 
Sodium citrate 

A-3678 
 
D-2650 
L-4509 
M-7522 
M-5755 
P-7767 
P-4170 
S-7653 
S-7400 
S-4641 

Merck, 
Darmstadt, 
Germany 
 

Triton X-100 
Crystal violet 
Phosphorsaure (H3PO4) 
Tween 20 

T-9284 
1159400025  
100573 
817072 

BioRad 
Hercules,CA, 
USA 

30% Acrylamide/ Bis Solution, 29:1 
Coomassie Brilliant Blue G-250 
TEMED 
(N,N,N',N'-Tetra-methyl-ethylenediamine)  

161-0154 
161-0406 
161-0801 
161-0800 
 

Carl Roth, 
Karlsruhe, 
Germany 

TRIS buffer p.a. 
Milk powder 

4855.2 
T145:3 

ROCHE Protease-Inhibitor cocktail 
Sepharose-G beads 

11206893001 
11134515001 

Amersham ECL Western-Blotting detection reagents 
ECL + 

RPN 2106  
RPN 3004 

Pierce, 
Rockford, 
England 

Stripping Buffer 21059 

J.T.Baker, 
Deventer/NL. 

Methanol. 8045 
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1.2.1 Western blot 
 

Buffers Composition 

Tween/PBS 0,1% in 1000ml PBS 

DISC-lysis-buffer 30mM TRIS (pH 7,5)-HCL, 
120mM NaCl 
10% Glycerol 
1% Triton X  
1 x Complete protease inhibitors cocktail  
1mM Na-ortho-vanadate 

TritonX-100 lysis buffer 
(MAPKinases lysis buffer) 
 
 
 
 

20 mM Tris (pH 7.4)  
137 mM NaCl  
10% (v/v) glycerol 
1% (v/v) TritonX-100  
2 mM EDTA 
50 mM sodium  
β-glycerophosphate  
20 mM sodium pyrophosphate 
1 mM ABSF 
5 mg/ml aprotinine  
5 mg/ml leupeptin  
5 mM benzamidine 
and 1 mM sodium orthovanadate  

5x lamellae buffer 2,5ml of 2M Tris-HCl pH 6,8, 2g SDS 
100mg Bromphenoblau, 10ml Glycerol 
1,542g DTT and make up the volume with 
H2O.and store them –20°C. 

TAE (Tris-Acetate-EDTA) 40 mM Tris Base 
20 mM Acetic acid  
10 mM EDTA 

MOPS-SDS Running Buffer 
  

50 mM MOPS 
50 mM Tris-base 
0.1% (w/v) SDS  
1 mM EDTA pH = 7.7 

MES-SDS Running Buffer 
 
 

50 mM MES  
50 mM Tris-base 
0.1% (w/v) SDS 
1 mM EDTA, pH = 7.3 

Transfer buffer 25 mM Tris, 192 mM glycine, 10% 
methanol
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1.2.2 FACS-Analysis 
 

Nicoletti-buffer Composition 

Nicoletti buffer 2,5ml 20x Sodiumcitrate/Triton Stock solution  
(Dissolve 2g Sodiumcitrat in 98ml H2O + 2ml of 
Triton X-100) 
 
2,5ml 20x Propidiumjodid Stock solution (1mg/ml 
in 45ml H2O). 
 

 
1.2.3 IL-8 ELISA 
 

Buffers Composition 

Coating buffer 
 

0,1M Sodium carbonate, pH 9,5 8,4g NaHCO3
 

Assay diluent PBS with 10% FBS, pH 7,0 (BD Pharmingen™ assay diluent)
     

Wash buffer PBS with 0,05% tween-20 

Substrate solution Tetramethylbenizidine (TMB) and Hydrogen Peroxide  
(BD Pharmingen™ TMB Substrate Reagent Set) 

Stop solution 1 M Phosphorsaure (H3PO4) 
 

 
1.3 Culture media 
 
1.3.1 Media for culturing bacteria 
 
 
 
Media for culturing bacteria (LB)  10 g/l Tryptone, 10 g/l NaCl, 5 g/l Yeast 

extract. 
LB-Agar plates were prepared by 
addition of 15g/l Bacto-Agar before 
autoclaving. 
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1.3.2 Media for culturing eukaryotic cells 
 

Cell culture medium 
 

Composition 
 

  

 HaCaT-Culturmedium: 

 DMEM 500ml 

10% FCS (PAA) 

1% Penicillin/Streptomycin 

  

 Phoenix culture medium 

 DMEM 500mL 

10% FCS (PAA) d.h. 50mL 

1% Penicillin/Streptomycin 

1x aminoacids 

1x HEPES 

1x Sodium pyruvate 

  

 1xPBS 

137 mM NaCl, 

8,1 mMNa2HPO4 
2,7 mM KCl, 

1,5 mM KH2PO4 

pH = 7.4. 

Primary keratinocytes  
medium 

Purchased from Cellntec Advanced Cell Systems 

 
1.4 Biological Material 
1.4.1 Bacterial strains 
 

Strain  
designation Purpose 

References 
(Supplier) 

XL-10 Cloning and propagation of 
retroviral plasmid constructs 

Stratagene 

DH5α                                Propagation of plasmids               Clontech 
BL21 (DE3) pLysS         Protein expression                          Invitrogen 
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1.5 Antibodies 
1.5.1 Primary antibodies for western blot 
 

Antibody Company Cat.-Nr. Sec.-
Ab. 

Working stock 

ERK (C-14) Santa Cruz   
Biotechnology, 
Santa Cruz, USA 

Sc-154 DaR 1:1000 5% 
milk TBST  

p-ERK Santa Cruz   
Biotechnology, 
Santa Cruz, USA 

SC-32577 IgG2a  1:1000 5% 
TBST 

p-HSP-27 Cell signalling 
Hamburg,Germany  

2401 DaR 1:1000 5% 
milk TBST 

JNK Cell Signaling,   
Hamburg,Germany 

9252 DaR 1:1000 5% 
BSA TBST 

p-JNK 
 

Cell Signaling,  
Hamburg,Germany 

9251 DaR 1:1000 5%  
BSA  TBST 

p38 Santa Cruz 
Biotechnology, 
Santa Cruz,  
USA 

SC-535 DaR 1:1000 5% 
BSA TBST  

p-p38 Cell signaling, 
Hamburg, Germany 

9215 DaR 1:1000 5% 
BSA TBST 

Anti-tubulin 
 

Anti β-tubulin  
Clone Tub 
ascites fluid, 
2.1 mouse 
Sigma 

T4026  GaM 
IgG1 

1:5000 5%  
milk TBST 
 
 

cFLIP Alexis,  
San Diego, 
USA 

NF-6 GaM 
IgG1 

1:1000  
5% milk TBST 

Caspase-8 Alexis,  
San Diego, 
USA 

C-15 
 

GaM 
IgG2b 

1:1000  
5% milk TBST 

IκB-α (C-21) Santa cruz   
Biotechnolgy 
USA 

SC-371
  

DaR 1:1000  
5% milk TBS 

PIκB-α 
 
 

Cell signaling  
Hamburg, Germany 

9246 GaM 
IgG1 

1:1000 
5% milk TBST 
 

Caspase-3 Merck Frosst (Cpp32) MF-393 DaR 1:2000 
5%milk 
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1.5.2 Secondary antibodies for western blot 
 

Antibody Company Cat.-Nr. Working 
solution 

GaR (Goat Anti 
rabbit) IgG 

Southern biotech 
Birmingham, USA 

4030-05 1:5000 
5% milk TBST 

GaM (Goat Anti 
mouse) IgG1 

Southern biotech 
Birmingham, USA 

1070-05 1:5000 
5% milk TBST 

GaM (Goat Anti 
mouse) IgG2a 

Southern biotech 
Birmingham, USA 

1080-05 
 

1:5000 
5% milk TBST 

GaM (Goat Anti 
mouse) IgG2b. 

Southern biotech 
Birmingham, USA 

1090-05 1:5000 
5% milk TBST 

 
1.6 TNF-Superfamily ligands 
 

              Ligands                                       Reference 

His-Flag-TRAIL        10 
His-Flag-TNF-α       10 
FasL-Fc        52 
 
1.7 Materials for molecular biology 
1.7.1 Vectors 
 

Cell line Reference, 
supplier 

Purpose 

HaCaT 
 

1 Parental HaCaT 

HaCaT pCF-65.retro.Empty 4 Control cector 
 

HaCaT pCF-65.retro.cFLIPshort 28 Eukaryotic expression 
of cFLIPshort 

HaCaT pCF-65.retro.cFLIPLong 4 Eukaryotic expression 
of cFLIPLong 

HaCaT pCF-65.retro.cFLIPD376N As shown in Fig-6 Eukaryotic expression 
of cFLIPD376N 

HaCaT pCF-65.retro.cFLIPp43 As shown in Fig-6 Eukaryotic expression 
of cFLIPp43 
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1.7.2 Oligonucleotides 
 

Name 
 

Sequence (5’-3’) 
 

cFLIPL.fwd (Bgl-II) GGCCAGATCTACCATGTCTGCTGAAGTCATC 

cFLIPL.rev (Xba-I) GGCCTCTAGATTATGTGTAGGAGAGGAT 

cFLIPS.rev (Xba-I) GGCCTCTAGATCACATGGAACAATTTCC 
cFLIPp43.rev (Xba-I) GGCCTCTAGATTAATCCACCTCCAAGAGGCT 
cFLIPL.fwd (Bgl-II-) GGCCAGATCTACCATGTCTGCTGAAGTCATC 
cFLIPL.rev (Xba-I) GGCCTCTAGATTATGTGTAGGAGAGGAT 
IL-8.fwd CACCCCAAATTTATCAAAGA 

IL-8.rev ACTGGCATCTTCACTGATTC 
NF-κB (TcEda    c).fwd AGCTTGACCAAGAGGGATTTCCCCTAAATC 
NF-κB (TcEda    c).rev TTGATTTAGGGGAAATCCCTCTTGGTC 
GAPDH.fwd CCTGGTATGACAACGAATTT 
GAPDH.rev GTGAGGGTCTCTCTCTTCCT 
ACTB.fwd AGAAAATCTGGCACCACACC 
ACTB.rev GGGGTGTTGAAGGTCTCAAA 
 
1.7.3 Enzymes and kits 
 
 
 

 
Enzymes and kits 

 
Kit supplier 

Pfu Turbo DNA 
Polymerase 
 

Promega 
 

Taq DNA Polymerase 
 

Promega 
 

Restriction enzymes 
 

Promega 
 

DNA Ligase 
 

Promega 
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1.7.4 Pharmacological inhibitors 
 

Name of 
Inhibitior 

Proteins Company Cat. -Nr. References 
 

ZVAD-fmk 
 

Caspases 
 

Bachem  
Weil am 
Rhein. 
Germany 

1560 
 

53  

Aprotinin 
  

Protease-  
Inhibitor 

Sigma 
Missoouri USA

A-6103 
 

54 

Leupeptin  Protease-
Inhibitor 

Sigma  
Missoouri USA

L-2884 54 

ABSF   Protease  
Inhibitor 

Applichem   
Darmstadt  
Germany 

A1421 54 

Benzamidine 
  

Protease  
Inhibitor 

Fluka  
Missoouri USA

12072 
 

54 

Na-Ortho-vanadate Phoshpatase 
Inhibitor 

Sigma  
Missoouri USA

S-6508 54 

β-
Glycerophosphoate 

Phosphotase  
Inhibitor 

Sigma  
Missoouri USA

G6376 54 

Na-Pyrophsphoate. Phosphotase  
Inhibitor. 

Sigma 
Missoouri 
USA. 

S6422 54 
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2. Methods 
2.1 Cell biological methods 
2.1.1 Cell culture 
The HaCaT Cells were grown in medium consisting of DMEM supplemented with 

10% fetal calf serum and 1% Penicillin and streptomycin at 5% CO2 in a 

humidified atmosphere at 37°C. HaCaT keratinocytes were always trypsinized 

when the cells were around 90% confluent to maintain the cellular integrity. 

2.1.2 Transfections of cFLIP variants in phoenix cells 
The amphotrophic phoenix cells were seeded at a density of 2x106 to have 60%-

70% confluency the following day for the transfections. The transfections were 

carried out as follows, 10-20µg of each pCF-65.cFLIP variant retroviral constructs 

were used to which 29.6µl of 2.5M CaCl2 was added and the volume was made 

upto 600µl with sterile water. Subsequently, transfer the DNA+CaCl2 mixture was 

transfered to a different falcon tube which already contained equal volume of 

2xHBS drop by drop with gently swirling and leave the reaction mixture was left 

for 30mins at room temperature. Meanwhile, old medium of phoenix cells was 

replaced with fresh DMEM medium containing 25µM chloroquine and incubate 

for atleast for 30mins before the DNA precipitate were added drop by drop to the 

phoenix cells. After 12 hours of incubation under standard conditions, the 

medium including the precipitate was removed from the phoenix cells. Cells were 

washed carefully with 1x PBS and 6 ml of fresh medium were added to collect 

the first virus supernatant after 24 hours. The recombinant retroviral supernatants 

were harvested by filter sterilization (With a 0,45µM filter). Recombinant 

supernatants were either quick frozen (using liquid nitrogen) and stored at -80°C 

or used directly for the transduction on the same day. 

2.1.3 Transduction of retroviral supernatants in HaCaT keratinocytes 
Cell culture supernatants containing viral particles were generated by incubation 

of producer cells with HaCaT medium (Dulbecco’s Modified Eagle’s Medium 

containing 10% fetal calf serum) overnight as described earlier 4. Following  
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filtration, culture supernatants were were added to HaCaT cells seeded in 6-well 

plates 24h earlier in the presence of 5µg/ml Polybrene. These HaCaT cells were 

centrifuged for 1h 30mins at 21 °C, and the viral particle containing supernatant 

were subsequently replaced by fresh medium. After 10–14 day recovery, the bulk 

infected cultures were selected with eukaryotic selection marker zeocin for two 

weeks at a concentration of 150µg/ml of zeocin. Successfully selected polyclonal 

populations were chosen for further expansion and later on confirmed for the 

GFP expression by FACS analysis and also overexpression by western blot 

analysis. 

2.1.4 Stable expression of cFLIP siRNA.  

We used stable expression of shRNA containing the cFLIP targeting sequence 

as published recently 23. The cFLIP targeting vector or a hyper random sequence 

(HRS) expressing vector which served as an internal control were transfected 

into the amphotrophic producer cell line exactly as outlined above. The 

retrovirus-containing supernatant was then used to infect primary human 

keratinocytes, and later the infected cells were selected with puromycin (1µg/ml) 

for 3-7 days in order to obtain puromycin-resistant bulk infected cultures for 

further analysis. Aliquots of cells were subsequently used for cytotoxicity assays 

and biochemical characterization between passage 2-5 following selection. 

 
2.2 Molecular biological methods 
2.2.1 Cloning of cFLIP variants in retroviral eukaryotic expression vector 
All the sub-clones generated in this study contain fragments (cFLIPshort, cFLIPLong, 

cFLIPD376N mutant, cFLIPp43) that were PCR-amplified from pcDNA clones 

(generated by cloning an ORF obtained from human cFLIP isoforms/mutants in 

the pcDNA vector - gift by Peter Krammer). Since the Pfu polymerase enzyme 

has 3'-5' exonuclease proof reading activity that reduces the errors in nucleotide 

incorporation during PCR amplification, it was hence used for generating all 

fragments for DNA cloning. All PCR products were first cloned into the pJET 

blunt vector (Fermentas) at XbaI and BglII restriction sites and thereafter the  
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sequence of the clones were confirmed by sequencing using pJET.fwd and 

pJET.rev vector primers. The pJET clones (cFLIPshort, cFLIPLong, cFLIPD376N 

mutant, cFLIPp43) were confirmed for the presence of the insert and sub cloned 

into eukaryotic retroviral expression vector (pCF.65.retro vector-gift by Dirk 

Linderman) in the right reading frame using XbaI and BglII restriction sites 

present in the pCF.65 vector. Authenticity of the clones was confirmed by 

restriction digestion analysis and also by sequencing.

 

2.3 Protein biochemical methods 
2.3.1 Preparation of cell lysates 
Cells were seeded at a density of 0,6x106 in 5mm dishes to have a confluency of 

50-70% for next day stimulations the next day. Cells were serum starved for 6h 

(for MAPKinases) and subsequently stimulations were performed with TRAIL 

0,5µg/ml for the indicated time points. After stimulations, cells were washed twice 

with ice cold 1x PBS and lysed for 1h on ice in Triton X-100 lysis buffer buffer 

(20mM Tris (pH 7.4), 137mM NaCl, 10%(v/v) glycerol, 1%(v/v)Triton X-100, 2mM 

EDTA, 50mM sodium β-glycerophosphate,20 mM sodium pyrophosphate, 1mM 

ABSF,  5mg/ml aprotinin, 5mg/ml leupeptin, 5 mM benzamidine, and 1mM 

sodium ortho-vanadate). Cell debris was removed by centrifugation at 15,000xg 

for 10 min. The supernatants were collected and aliquoted before being frozen at 

-80°C for long term storage.  

2.3.2 Preparation of cytosolic and nuclear extracts 
Cells were harvested by centrifugation at 400xg for 5 min at 4°C, washed twice 

with ice cold 1x PBS and lysates were prepared by resuspending the resulting 

cell pellets in 200µl of buffer-A per 1.79 x107 cells (10mM Tris pH-7.9, 10mM 

KCl, 1.5mM MgCl2, 10% Glycerol,  10mM K2HPO4 supplemented with 1mM 

Sodium ortho-vanadate, 10mM NaF, 0.5mM DTT, 1mM ABSF, 1X-complete 

protease inhibitors (Roche Diagnostics). This was immediately followed by 

addition of 0.125% NP-40 (v/v) and incubation on ice for 5min. The supernatants 

were spun down at 1000xg for 10min at 4°C. The fresh cytosolic supernatants  
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were collected and the resulting pellets were washed again with 300µl of buffer-A 

at 1000xg for 10mins. The washed pellets were resuspended in buffer-C (20mM 

Tris pH-7.9, 0.42M NaCl, 1.5mM MgCl2, 2mM EDTA, 10% Glycerol, 10mM 

K2HPO4) supplemented with 1mM Sodium ortho-vanadate, 10mM NaF, 0.5mM 

DTT, 1mM ABSF and 1X complete protease inhibitors. The resuspended pellets 

were centrifuged at 12,000xg at 4°C for 10mins. The fresh nuclear extracts were 

finally collected and store them at -80°C. 

2.3.3 Western blot analysis 
For Western blot analysis the resulting post cell lysates or DISC precipitates 

were supplemented with 4-fold concentrated laemmli buffer (4x laemmli). 

Subsequently, lysate containing 10 µg of protein as determined by the BCA 

method (Pierce) or proteins eluted from beads after ligand affinity 

immunoprecipitation were separated on a 4-12% NuPage Bis-Tris gradient gels 

(Novex) in MOPS buffer according to the manufacturer’s instructions. After 

protein transfer onto a nitrocellulose membranes (Amersham) by electroblotting, 

membranes were blocked with 5% non-fat dry milk and 3%BSA in PBS/Tween 

(PBS containing 0,05% Tween-20) for at least 1h, washed with PBS/Tween, and 

incubated in PBS/Tween containing 3% non-fat dry milk (NFDM) and primary 

antibodies as required. After 5 washes for 10 min each in PBS/Tween the blots 

were incubated with HRP-conjugated isotype-specific secondary antibodies 

diluted 1:5000 in PBS for 60mins at RT. After washing 5 times for 3 min with 

PBS/Tween the blots were developed by enhanced chemiluminescence (ECL) 

using SuperSignal West Dura substrate following the manufacturer's protocol 

(Perbio Science). For stripping, the blots were incubated in 50 mM Glycine HCl 

500 mM NaCl pH 2.3 for 20min at room temperature. Subsequently, blots were 

washed two times for 10 min in PBS/Tween and blocked again for further 

antibody incubation.  

2.3.4 FACScan analysis. For surface staining of Death receptors (TRAIL-R1 to 

TRAIL-R4),APO-1 R cells were trypsinized and 2 x 105 cells were incubated with 

monoclonal Abs against TRAIL-R1 to TRAIL-R4 and APO-1 R, or isotype- 
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matched control IgG (1µg) for 60 min on ice. After washes with 2ml of 1x PBS, 

cells were incubated on ice with goat anti-mouse biotinylated secondary Abs for 

60mins on ice. Further after the PBS washes, the cells were incubated with 

PCy5-Phycoerythrin-labeled streptavidin for 30mins and cells were left on ice 

(Caltag) as described previously 5. For all experiments, 104 cells were analyzed 

by the FACScan (Dickinson & Co). 

2.3.5 Quantification of apoptotic cell death by propidium iodide staining 
As a direct measurement of apoptotic cell death, DNA fragmentation was 

quantified essentially as described earlier 55. Briefly, 0,6x106 cells were seeded in 

5mm-well plates (Costar) with or without apoptotic stimuli (TRAIL or FasL) in 1ml 

medium at 37°C for 8h. The cells were harvested by centrifugation at 600xg for 

10 min at 4°C, washed twice with PBS and then resuspended in 0,5ml of lysis 

buffer containing 0.1% (v/v) Triton-X-100, 0.1% (w/v) sodium citrate and 50 µg/ml 

propidium iodide (PI). Apoptosis was quantitatively determined after incubation at 

4°C in the dark for 48h by flow cytometry as cells containing nuclei with 

subdiploid DNA content. Alternatively, apoptosis was determined by a drop in the 

forward scatter to sideward scatter (FSC/SSC) profile of apoptotic versus living 

cells. Percentage of specific cell death was calculated as follows: 100 x (% 

experimental cell death - % spontaneous cell death) / (100 - % spontaneous cell 

death). 

2.3.6 Luciferase assays.  

Cells were seeded in 48 well plates to attain a confluency of around 50% on the 

day of transfections. Transfections were carried out using 3x κB Luciferase (NF-

κB promoter elements) or 5x TK (AP-1 promoter elements) with Renilla ubiquitin 

(internal control) using lipofectamine as a transfection reagent (according to 

manufacturer’s recommendations-Invitrogen) The transfectants were left for 20-

24h while for the post transfections, stimulations were performed for 6h. This was 

immediately followed by assaying the cells for luciferase and renilla activity 

(According to the manufacturer’s recommendations-Promega). 
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2.3.7 Electrophoretic mobility shift assay (EMSA) 

Nuclear extracts were prepared as explained earlier. Oligos (NF-κB and AP-1) 

were annealed (15µl of sense oligos of 100ng/µl and 15µl of anti sense oligos 

100ng/µl) at 75°C for 15mins followed by gradual cooling (switching of the 

thermal block to allow gradual cooling) at RT overnight for annealing. Annealed 

oligonucleotides corresponding to either NF-κB binding sites was radio labeled 

by T4 polynucleotide kinase. Labelled oligonucleotides (1000 cpm) were purified 

from the gel. Radiolabeled oligonucleotides were added to 4µg of nuclear protein 

extract together with 1µg of poly(dI-dC) (Amersham Pharmacia) to prevent 

nonspecific binding and incubated for 5min on ice. After the incubation, the entire 

reaction mixtures were loaded into 4% native polyacrylamide gel and run for 3h 

at 200V. Dried gels were exposed to x-ray films for overnight. 

2.3.8 Quantitative Real-time PCR (qPCR). 
0,5x106 cells were seeded in 5mm dishes before stimulations were performed 

with TRAIL/CD95L for the indicated time points. After stimulations, cells were 

washed with ice cold PBS and total RNA extraction was performed using RNeasy 

Kit (Qiagen). The cDNA was synthesized in 20µl reaction volume using a mixture 

of oligo dT primers and random nonamers in a ratio of 1:10 and SuperScript II 

Reverse Transcriptase (Invitrogen). Primers were designed using Primer3 

software (available at http://frodo.wi.mit.edu/cgibin/primer3/primer3_www.cgi). 

RT qPCR analyses for the genes encoding interleukin-8 (IL-8), glyceraldehyde-3-

phosphate dehydrogenase (GAPDH) and β-actin (ACTB) were performed in a 

final volume of 25µl using IQTM SYBR® Green (BioRad) in an iCycler (BioRad). 

Gene of interest and reference gene products were amplified individually, under 

equal cycling conditions. HotStart-Taq DNA Polymerase was activated by an 

initial denaturation at 15 min for 95°C followed by 42 cycles of one step 

(denaturation) at 94°C for 15 sec, one step (annealing) at 55°C for 30sec, and 

one step (extension) at 72°C for 30sec. The specific amplification of a single 

product of the expected size was confirmed by melting curve analysis. 

Consecutive dilutions of cDNA (1, 1:5, and 1:25) were amplified for the  
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construction of a standard curve (plotted as a logarithmic function of the cDNA 

dilution factor) and used for the calculation of the RT PCR efficiency using 

iCycler software. The relative quantification for IL-8 was calculated after dividing 

the standard curve value of IL-8 by that of the reference gene (GAPDH and 

ACTB) for each individual sample. Two reference genes were used for data 

normalization to account for possible variations as a result of DL treatment. The 

effects on IL-8 expression were calculated by analyzing mean values obtained 

from three independent experiments. In two independent experiments, RNA was 

three times reverse transcribed and the cDNA from the three independent 

reverse transcription reactions was assayed for RT qPCR in triplicates. The 

mean values obtained by the above explained procedure were compared for all 

different experimental conditions.  

2.3.9 DISC analysis.  
For the precipitation of the TRAIL or CD95L DISC, 5 x 106 HaCaT keratinocytes 

were used for each condition. Cells were washed once with DMEM medium at 

37°C and subsequently incubated for the indicated time periods at 37°C in the 

presence of either 2,5 µg/ml Flag-TRAIL pre-complexed with 5 µg/ml anti-FLAG 

M2 (Sigma) or 10 units/ml of CD95L-Fc for 30 min, or, for the unstimulated 

control, in the absence of ligands. Receptor complex formation was stopped by 

washing the monolayer four times with ice-cold PBS. Cells were lysed on ice by 

addition of 2 ml lysis buffer (30 mM Tris-HCl pH 7.5 at 21°C, 120 mM NaCl, 

50mM sodium β-Glycerophosphate, 20mM sodium pyrophosphate, 1mM sodium 

ortho-vanadate, 10% Glycerol, 1% Triton X-100, Complete® protease inhibitor 

cocktail (Roche). After lysing cells on ice for 30 min (Flag-TRAIL) or 2h (CD95L-

Fc), lysates were centrifuged at 20,000xg for 5 min to remove cellular debris and 

later collect supernatants were collected in to fresh microfuge tube and were 

centrifuged again at 20,000xg for 30mins. A minor fraction of these clear lysates 

were used to control for the input of the respective proteins. Receptor complexes 

were precipitated from the lysates by co-incubation with 20µl protein G beads 

(Roche) for 24h on an end-over-end shaker at 4°C. For the precipitation of the  
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non-stimulated receptors, either 50ng of Flag-TRAIL precomplexed with anti-

FLAG M2 antibody or 1µg of APO-1 antibody is precomplexed with 10 U/ml of 

Fc-CD95L per each IP condition were added to the lysates prepared from non-

stimulated cells to control for protein association with non-stimulated receptor(s). 

Ligand affinity precipitates were washed 5 times with lysis buffer before the 

protein complexes were eluted from dried beads by addition of standard reducing 

sample buffer and boiled for 5mins at 95°C. Subsequently, proteins were 

separated by SDS-PAGE on 4-12% NuPAGE gradient gels (Invitrogen) before 

detection of DISC components by Western blot analysis. 

2.3.10 Apoptosis and cytotoxicity assays.  
Crystal violet staining of attached, living cells was performed 16 - 24h after 

stimulation with different concentrations of TRAIL (12–1000ng/ml) in 96 well 

plates as described previously 11. Subdiploid DNA content was analyzed as 

described by Nicoletti et al 55. Briefly, cells from a 35 mm dish were cultured till 

70% confluency was attained and were subsequently stimulated with TRAIL for 

3h. Cells were then detached, washed with ice cold PBS and resuspended in 

buffer (0.1% Sodium citrate) (w/v), Triton X 100 0,1% (v/v), 50µg/ml PI. Cells 

were kept in the dark at 4°C for 48h and then hypodiploidy was measured by 

FACScan analysis.  

2.3.11 Determination of IL-8 secretion.  
Pre-coated enzyme-linked immunosorbent assay (ELISA) was used to 

quantitatively determine interleukin-8 (IL-8) expression in keratinocyte cell culture 

supernatants. All samples were thawed only once at the time of testing and 

analyzed according to the procedures provided by the manufacturers (R&D 

Biosystems) as described previously 5. 

2.3.12 In-vitro kinase assay 
The activity JNK was analyzed in an in vitro kinase assay using 0.5 mg protein of 

total lysate incubated/immunoprecipitated with 1mg anti-JNK 1 (C-17; Santa Cruz 

Biotechnology) antibody/sample by permanent shaking for 3h at 4°C. Immune 

complexes were recovered using 50µl of a 50% protein A-sepharose bead  
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suspension (Amersham Biosciences) and incubated for 90min at 4°C in a 

permanent upside down shaker. Subsequently, immunoprecipitates were washed 

six times in the same lysis buffer and incubated with 1µg GST-c-jun in 25 µl 

kinase buffer (20 mM HEPES pH 7.6, 2 mM EGTA, 20 mM MgCl2, 1 mM Sodium 

ortho-vanadate, 1 mM DTT, 0.1% Triton X-100, 0.25 mM 32P-ATP) for 30 min at 

30°C. GST-c jun was used as substrate in an in vitro kinase assay as described 

previously 56;57. For further analysis, lysates were suspended in loading buffer, 

separated by SDS-PAGE, and transferred to PVDF membranes. The gels were 

dried and exposed to Amersham TM film (Amersham Pharmacia Biotech) at -

70°C using an intensifying screen.  
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III. RESULTS 
1. Biochemical characterization of cFLIP isoforms/mutants in HaCaT 
keratinocytes 
1.1 Different cFLIP isoforms protect keratinocytes from death ligand-
mediated apoptosis 
The role of cFLIP in death receptor-mediated signalling pathways has been a 

matter of intense debate over the past years 20;48;49;58. It was suggested that 

cFLIP may activate proinflammatory signalling pathways in a DISC-independent 

manner 59. In addition, overexpression studies using cleavage fragments such as 

p43 of cFLIPL indicated that cFLIP may differentially activate these signalling 

pathways by preferential binding to TRAF2, elicitating different signalling 

pathways depending upon the stoichiometry of DISC-associated components 60. 
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Since the spontaneously transformed keratinocyte cell line HaCaT expresses low 

levels of endogenous cFLIP, whereas the primary keratinocytes express high 

levels of cFLIP 11. 
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Figure-1.1 cFLIPL, cFLIPS, cFLIPp43 and cFLIPD376N are equally effective in 
protecting the keratinocytes from death ligand-mediated apoptosis. A) 
HaCaT keratinocytes were retrovirally transduced with different forms of cFLIP or 
the respective mutants as described in materials and methods. Cells were 
untreated or incubated with TRAIL (0,5 µg/ml; left panel) or CD95L (0,5 µg/ml; 
right panel) for 3h. Subsequently, 3µg protein of total cellular lysates were 
analyzed by western blotting for cFLIP, caspase-8, and caspase-3. β-tubulin 
served as a control for comparable loading of protein. B) Cells were seeded in 
96-well-plates in triplicates and stimulated with increasing concentrations of 
recombinant TRAIL (left panel) or CD95L (right panel) for 16-24h. Cellular 
viability was assessed using crystal violet assay as described in materials and 
methods. The percentage of living cells was normalized to mock-stimulated cells 
(~ 100%). Shown is mean +/- standard error of means (SEM) of a total of three 
independent experiments. C) Infected keratinocyte lines were either left 
untreated or stimulated with the indicated amounts of (C) TRAIL (0.5µg/ml) or (D) 
CD95 (0,5µg/ml) for 6h, harvested and examined for hypodiploidy by FACScan 
analysis. 
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The HaCaT keratinocytes are hence a prefect system for overexpression studies. 

Thus we chose to use this cellular model system for our experiments to 

investigate the different signalling capabilities of cFLIP variants, namely cFLIPL, 

cFLIPS, a cleavage-site mutated cFLIPL (cFLIPD376N), and the caspase-8 cleaved 

fragment of cFLIPL (cFLIPp43) in more detail. We first established a number of 

polyclonal cell lines expressing different isoforms or mutants of cFLIP using the 

retroviral vector system described elsewhere in detail.  Briefly recombinant 

retroviral supernatants were harvested and these recombinant supernatants 

were transduced with HaCaT keratinocytes. Post transduction, these cell lines 

were selected with selection marker (zeocin) and analysed for the GFP 

expression as previously reported 5. Expression of the different cFLIP isoforms or 

mutants was confirmed and proved to be comparable in different polyclonal cell 

lines (see Figure1.1A). When cells were treated with the death ligands TRAIL 

and CD95L, biochemical analysis showed that parental HaCaT as well as 

control-infected cells readily cleaved large amounts of the caspase-8 active 

cleavage product p18 within 3h. In contrast, cFLIPL, cFLIPS, cFLIPD376N, as well 

as cFLIPp43 fully blocked caspase-8 cleavage and the p18 fragment was not 

detected. We observed the release of partial cleavage product p43/p41 in 

cFLIPL, cFLIPD376N overexpressing keratinocytes. On the contrary cFLIPS, 

cFLIPp43 HaCaT keratinocytes showed blockade of even the partial cleavage of 

caspase-8 (see Figure1.1A). As predicted, cFLIPL containing a cleavage site 

mutation (cFLIPD376N) was fully protected against TRAIL- or CD95L-mediated 

cFLIPL cleavage (see Figure 1.1 A, left and right panel), in line with a previous 

report 20. Finally, we also observed activation of caspase-3 in control infected 

keratinocytes which is blocked in the respective cFLIP isoforms/mutants 

expressing HaCaT cells. The different isoforms and mutants of cFLIPL were 

equally effective to protect HaCaT cells from TRAIL-or CD9SL-induced cell 

death, as indicated by crystal violet assays (see Figure 1.1B), or hypodiploidy 

analysis using propidium iodide staining, briefly stimulations were performed with 

death ligands (TRAIL or CD95L) for 6h and later the harvested pellets were  
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suspended in nicoletti buffer and the samples were stored in the dark for 48h. 

(see Figure 1.1C&1.1D). These data are in line with several other reports 20;28, 

including our own data for TRAIL-mediated cell death 4. Importantly, our results 

suggest that cFLIP is able to protect against CD95L and TRAIL-mediated 

apoptosis independent of cFLIPL cleavage.  

 

1.2 TRAIL-induced apoptosis is blocked by cFLIP isoforms or Caspase 
inhibitor or TRAIL-R-Fc in HaCaT keratinocytes 
Our previous and current findings suggest that cFLIPS is recruited to the DISC 

and completely inhibits caspase-8 cleavage, but does not interfere with 

procaspase-8 recruitment to the DISC indicating that cFLIPS blocks procaspase-

8 processing in the DISC. In the present study, we have shown that TRAIL 

activates caspase-8 by cleaving first cleavage p43/p41 and also releasing active 

p18 fragment from the receptor complex in to the cytosol thereby inducing 

apoptosis mediated via caspase-3. On the contrary, cFLIPS completely blocks 

partial cleavage of caspase-8 like the caspase inhibitor (ZVAD-fmk) which results 

in resistance to TRAIL mediated apoptosis. To investigate if TRAIL-mediated 

caspase-8 activation in HaCaT keratinocytes is very specific, we preincubated 

mock transfected and cFLIPS overexpressing HaCaT cells with caspase inhibitor 

(ZVAD-fmk) for 1h and subsequently stimulated with TRAIL for 3h. These lysates 

were analysed for caspase-8 activation (see Figure 1.2A-left) and also for TRAIL 

mediated cell death (see Figure 1.2A-right). cFLIPS completely suppressed. 

TRAIL mediated caspase-8 activation and also completely protects TRAIL 

mediated cell death as shown previously 28. Stimulations were also performed by  

preincubating with TRAIL-R2-Fc or TNF-R-Fc for 1hr and later stimulated for 3h 

in mock transfected cells and assayed for caspase-8 activation. We observed 

that in the presence of TRAIL-R2-Fc, TRAIL mediated caspase-8 activation is 

completely inhibited (see Figure 1.2B). In addition TNF-R-Fc, which served as 

non-specific control, did not interfere with TRAIL mediated caspase-8 activation. 
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Figure-1.2 cFLIPs confers resistance to TRAIL- induced apoptosis and 
caspase-8 activation which is fully blocked by TRAIL-R2-Fc. A) Control cells 
or cFLIPS-expressing HaCaT cells were preincubated with caspase inhibitor 
(ZVAD-fmk) and left untreated or treated with TRAIL (0,5 µg/ml; left panel) 
Subsequently, 3µg of total cellular lysates were analyzed by western blotting for 
caspase-8. β-tubulin served as a control for comparable loading of cellular 
protein. (Right panel), cells were seeded in 96-well-plates in triplicates and 
stimulated with increasing concentrations of recombinant TRAIL for 16-24 h. 
Cellular viability was assessed using crystal violet assay. The percentage of 
living cells was normalized to mock-stimulated cells. Shown is mean +/- standard 
error of means (SEM) of a total of two independent experiments. B) Mock 
transfected HaCaT keratinocytes were stimulated for 3h with 0,5µg/ml of TRAIL 
in the presence or absence of TRAIL-R2-Fc (left) or TNF-R-Fc or both (right) and 
subsequently, 3µg protein of total cellular lysates were then analyzed by western 
blotting for caspase-8, and β-tubulin served as a control for comparable loading 
of protein. 
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These results indicate that TRAIL mediated apoptotic signalling pathways are 

indeed specific in HaCaT keratinocytes. 

 

2. Death ligands activate non-apoptotic signalling pathways in a cFLIP-
dependent manner 
2.1 cFLIP modulates DR-induced MAPK JNK independent of cFLIP 
cleavage  
Over the past years, a number of reports have shown that death ligands such as 

CD95L or TRAIL may also activate non-apoptotic signalling pathways such as 

the MAPK JNK and its down stream target transcriptional factor AP-1 which 

eventually triggers pro-inflammatory or proliferative responses 21. cFLIP, is not 

only a modulator of apoptosis but is also predicted to modulate pro-inflammatory 

or proliferative signals. We therefore next asked if the various cFLIP variants 

differentially regulate the activation of JNK in HaCaT keratinocytes. In order to 

address this question we preincubated the cells with caspase inhibitor (ZVAD-

fmk) for 1h and also stimulated the control and also the respective cFLIP variants 

overexpressed HaCaT cells as indicated in figure legends. Interestingly, JNK is 

activated within 15 minutes of treatment with death ligands, with further increase 

up to 2h in control keratinocytes (see Figure 2.1A). This TRAIL-mediated 

induction was largely repressed by expression of cFLIPL (right panel) or cFLIPS 

(left panel). In order to test if the JNK activation is caspase dependent the pan-

caspase inhibitor (ZVAD-fmk) known to completely protect keratinocytes against 

TRAIL-mediated apoptosis was used 5. Remarkably, TRAIL-mediated activation 

of JNK was largely dependent upon the activation of caspases as indicated by 

blockade of JNK activation by caspase inhibition (see Figure 2.1B). In line with 

an activation of JNK downstream of caspase activation, the different isoforms of 

cFLIP or the respective mutants were equally effective in blocking TRAIL-induced 

JNK activation as determined by western blotting (see Figure 2.1B).  
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Figure-2.1 Death ligand-mediated phosphorylation of JNK and its 
downstream target transcriptional factor AP-1 is dependent upon active 
caspases and is blocked by different isoforms of cFLIP. A) Control 
keratinocytes and keratinocytes expressing cFLIPL or cFLIPS were stimulated 
with TRAIL (1µg/ml) for the indicated time points. Cellular lysates were 
subsequently analyzed for the phosphorylation of JNK using phospho-specific 
antibodies. Membranes were stripped and total levels of JNK were determined. 
B) HaCaT Keratinocytes expressing the different cFLIP isoforms as outlined in 
Figure 1 were preincubated for 1h in the presence or absence of ZVAD-fmk 
(20µM), and subsequently stimulated for 2h with TRAIL (1µg/ml). Total cellular 
lysates were characterized for JNK phosphorylation as indicated in A). C) cFLIP 
overexpressing HaCaT keratinocytes were seeded in a 96 well plate and 
transfected with 5x TK Firefly ( AP-1 promoter elements) along with internal 
control Renilla ubiquitin as described in the method section. Post tranfectants 
were stimulated with TRAIL (0,5µg/ml) for 6h and assayed for transcriptional 
factor AP-1 activation as described in methods section. One of three independent 
experiments is shown representatively here. 
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Many previous reports suggest that AP-1 transcriptional factor is a downstream 

target of c-jun phosphorylation. We asked if inhibition of c-jun activation results in 

a reduction of AP-1 activation. To addressed this question, we co transfected AP-

1 responsive reporter elements along with internal control reporter (Renilla 

ubquitin) and stimulated them for 6h and subsequently assayed for luciferase 

activity. In line with these findings, reporter assays using an AP-1 responsive 

reporter construct showed a 2-fold induction of AP-1 within 6h, whereas all 

isoforms or mutants of cFLIP fully blocked AP-1 induction (see Figure 2.1C). 

Collectively, these data indicate that cFLIP inhibits death ligand-mediated JNK 

activation independent of the caspase like-domain or its cleavage activity.  

 

2.2 Death ligands mediated JNK activation is completely inhibited by 
cFLIPL or caspase inhibitor and TRAIL mediated JNK activation is 
completely blocked by TRAIL-R-Fc in HaCaT keratinocytes 
Death receptors not only activate apoptosis but can also activate non-apoptotic 

signals such as MAPK JNK which eventually triggers pro-inflammatory 

responses. Our previous reports also suggest that, TRAIL induces MAPK JNK in 

HaCaT keratinocytes (Wachter.T, Felcht. M, 2007-unpublished reports). To 

investigate if cFLIPL or caspase inhibitor (ZVAD-fmk) modulates JNK activation, 

we addressed DR-induced JNK activation in control or cFLIPL HaCaT 

keratinocytes by In-vitro kinase assay. This assay was performed as described in 

materials and methods and is a very sensitive method to analyze activation of 

specific kinases. We preincubated the cells with caspase inhibitor (ZVAD-fmk) 

and stimulated them for indicated time points and performed the In-vitro kinase 

assay and later analyzed for c-jun phosphorylation. In the current study our 

results suggest that cFLIPL or caspase inhibitor (ZVAD-fmk) completely block 

TRAIL mediated JNK phosphorylation which was also reproduced by the In-vitro 

kinase assay. In order to address if TRAIL mediated JNK activation is specific to 

HaCaT cells we preincubated with TRAIL-R2-Fc or TNF-R-Fc or both for 1h and 

stimulated with TRAIL for indicated time points and analyzed for JNK activation. 
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Figure-2.2 Death ligand-mediated JNK phosphorylation is dependent upon 
active caspases and blocked by cFLIPL or TRAIL-R2-Fc. A) Infected cFLIPL 
or control HaCaT keratinocytes were treated with TRAIL (0,5µg/ml ) or Arsenic 
(81,5mg/ml) (left panel) or in the presence or absence of ZVAD-fmk (20µM) (right 
panel) for indicated time points and subsequently cell lysates were used in the In-
vitro kinase assay as indicated in materials and methods and analyzed for c-Jun 
phosphorylation. B) Control HaCaT keratinocytes were treated with TRAIL 
(0,5µg/ml) for indicated time points in the presence or absence of TRAIL-R2-Fc 
(right) or TNF-R-Fc or both (left) and subsequently 3µg of total lysates were 
analyzed for the JNK phosphorylation. 
. 

We noticed that TRAIL induced JNK phosphorylation is completely inhibited by 

TRAIL-R2-Fc but not with TNF-R2-Fc, indicating that TRAIL-induced JNK 

activation is TRAIL dependent (see Figure 2.2B). These data suggest that cFLIP 

is a central modulator of apoptotic and non apoptotic signalling pathways in 

HaCaT keratinocytes and TRAIL mediated non apoptotic signals are very specific 

to this cell type. 
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3. cFLIP mediates DR-induced MAPK p38 in HaCaT keratinocytes 
3.1 Death ligands activate the MAPK p38 in a biphasic manner 
We next investigated the activation of MAPK p38, highly relevant for the 

transcriptional as well as posttranscriptional regulation of gene expression by the 

death ligands 61. 
A) 

 

 

 
 
 
 
 
B)       C) 
 
 
 
 
 
 
 
 
 
 
Figure-3.1 Death ligands rapidly activate MAPK p38 and its target gene 
Hsp-27 which is blocked by Caspase-inhibitor or cFLIP isoforms. A) Control 
keratinocytes and keratinocytes expressing cFLIPL  or cFLIPS were stimulated 
with TRAIL (0,5 µg/ml) for the indicated time points. Cellular lysates were 
subsequently analyzed for the phosphorylation of MAPK p38, phosphorylation of 
Hsp-27 using phospho-specific antibodies. Membranes were stripped and total 
levels of p38 were determined to confirm even loading of proteins. B) Control 
cells or cells expressing the different cFLIP isoforms or mutants respectively, 
were preincubated for 1h in the presence or absence of ZVAD-fmk (20µM), and 
subsequently stimulated for 15 and 30 min (B) or 2h (C), respectively with TRAIL 
(0,5 µg/ml). Total cellular lysates were characterized for p38 phosphorylation and 
Hsp-27 phosphorylation as indicated for A) One of three independent 
experiments is shown representatively here. 
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To investigate if cFLIP modulates DR-induced p38 activation and also known 

downstream target Hsp-27 in HaCaT keratinocytes we pre incubated the cells in 

the presence or absence of the caspase inhibitor (ZVAD-fmk) and stimulated with 

TRAIL for indicated time points and analyzed for the activation of p38. The death 

ligand TRAIL rapidly activated p38 within 15 minutes with a further increase up to 

4h after stimulation. Interestingly, keratinocytes expressing different cFLIP 

isoforms demonstrated a complete inhibition of the late induction of death ligand-

mediated p38 and its downstream target Hsp-27 activation between 1-4h (see 

Figure 3.1A), whereas the early phosphorylation of p38 was unchanged in the 

presence of either the pancaspase inhibitor or different cFLIP isoforms/mutants, 

respectively (see Figure 3.1 B&C). Collectively these data indicated that different 

cFLIP isoforms containing caspase-like domains or only Death-effector-domains 

(DED) block the death receptor-mediated p38 activation in a comparable fashion.  

 

3.2 TRAIL mediated p38 activation is apoptosis dependent in HaCaT 
keratinocytes 
MAPK p38 activation is involved in many cellular processes such as cell 

apoptosis, cell proliferation and in cell migration. Death receptors are known to 

induce p38 activation in many cell types. To investigate if TRAIL induced p38 

activation is specific to HaCaT keratinocytes and also to analyze if it is caspase 

dependent, we preincubated the cells with caspase inhibitor (ZVAD-fmk) or 

TRAIL-R2-Fc or TNF-R-Fc or both and stimulated with TRAIL for indicated time 

points. These lysates were analyzed for the activation of p38. In the current study 

we have shown that TRAIL induces p38 MAPK in a biphasic manner and upon 

treatment with caspase inhibitor (ZVAD-fmk) the first peak is unchanged where 

as the second peak is completely inhibited (see Figure 3.2 A&B), indicating that it 

is apoptotic dependent. We have also shown here in our present study that 

TRAIL induced MAPK p38 activation is very specific to TRAIL as TRAIL-R2-Fc 

completely blocks TRAIL induced p38 activation. 

 

 55



III RESULTS 
 

 
A) 

 

0 12
0

12
0Time [mins]

MW
[kDa]

p-p38

p38

39

39

12
0

HaCaT vector

TRAIL 
TRAIL R2-Fc

TNF-R- Fc

- + + +
- +- -
- +- -

0 33 12
5 50

0
33 12

5
50

0

p-p38

p38

TRAIL

TRAIL-R2-Fc

HaCaT vector

TRAIL [ng/ml]
MW
[kDa]

- + + + - - -
- + + +- - -

39

39

 
 
 
 
 
 
 
 
 
B) 
 

30 12
00 30 12

0

TRAIL

ZVAD-fmk

P-p38

p38

39

39

HaCaT vector

Time [mins]
MW
[kDa]

- + + + +
- + +- -

 
 
 
 
 
 
 
 
 
Figure-3.2 Death ligands rapidly activate MAPK p38 and that is blocked by 
Caspase-inhibitor or TRAIL-R2-Fc in HaCaT keratinocytes. A) Control HaCaT 
keratinocytes were treated with TRAIL (0,5µg/ml) for indicated time points (left) or 
2h (right)  in the presence or absence of TRAIL-R2-Fc (right) or TNF-R-Fc or 
both (left) and subsequently 3µg of total lysates were analysed for the p38 
phosphorylation. B) HaCaT control keratinocytes were stimulated with TRAIL 
(0.5µg/ml) in the presence or absence of ZVAD-fmk (20µM) for indicated time 
points and subsequently 3µg of cell lysates were subjected to western blot 
analysis and p38 phosphorylation were analysed. 
 
4. cFLIP isoforms are inhibitory for death receptor-induced NF-κB 

activation irrespective of caspase-8 or cFLIP processing  
4.1 cFLIP isoforms are equally effective against CD95L- or TRAIL-mediated 

NF-κB activation  

Death ligands such as TNF, TRAIL or CD95L induce a large array of 

proinflammatory NF-κB-regulated target genes in keratinocytes, in particular 

when apoptotic caspase activation is blocked by synthetic caspase inhibitors 
5;62;63. In contrast to TRAIL- and CD95L-induced delayed activation of JNK and  
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p38, NFκB activation was not blocked under chemical inhibition of caspases by 

ZVAD-fmk. Interestingly, expression of cFLIPL and cFLIPS interfered with TRAIL- 

and CD95L-induced NFκB activation, indicating a DISC-associated regulation of 

this signalling pathway 4;28. We thus asked if different isoforms or distinct 

cleavage fragments of cFLIP may differentially regulate NFκB activation and its 

target gene IL-8 induction after DR-association. In these experiments, we used 

the closely related death ligand TNF as a putative control (another TNF family 

ligand). TRAIL and CD95L rapidly activated the phosphorylation of IκBα within 15 

to 30 minutes in mock transfected cells. Detectable phosphorylation as well as 

ubiquitination persisted up to 2h after stimulation with subsequent decline, 

paralleled by the loss of IκBα (see Figure 4.1A). Notably, all cFLIP variants were 

significantly impaired in NF-κB activation in response only to TRAIL and CD95L, 

but not to TNF. Thus, cleavage of cFLIPL does not compromise its inhibitory 

effect on NF-κB activation by CD95 and TRAIL (see Figure 4.1B). 
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Furthermore, we also investigated the NF-κB DNA binding activity in HaCaT 

keratinocytes as a second parameter for NF-κB activation. We noticed that 

TRAIL induces NF-κB DNA binding with in 60 min whereas TNF-α induces NF-

κB DNA binding as early as 20-30 min in mock infected HaCaT keratinocytes. 

Interestingly we observed suppression of NF-κB DNA binding in all the cFLIP 

isoforms/mutants overexpressing cells only upon TRAIL treatment. However 

TNF-α induced NF-κB activating complexes were unchanged (see Figure 4.1C) 

indicating that cFLIP modulates only TRAIL induced non-apoptotic signalling 

pathways in keratinocytes. In line with these findings, reporter assays using NF-

κB responsive reporter construct showed a 3-fold induction of NF-κB within 6h, 

whereas all isoforms or mutants of cFLIP completely blocked NF-κB induction 

(see Figure 4.1D). Collectively, these data indicate that cFLIP protects against 

death ligand-mediated NF-κB activation independent of processing of cFLIP 

cleavage in HaCaT keratinocytes. 
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Figure-4.1 DR mediated NF-κB activation is suppressed by cFLIP isoforms 
or mutants. Control keratinocytes and keratinocytes expressing cFLIPL (right)  or 
cFLIPS (left) or all the cFLIP isoforms/mutants (centre) pre incubated in the 
presence or absence of ZVAD-fmk (20µM) expressing keratinocytes as 
characterized in Figure 1 were stimulated with TRAIL as shown in (A) (0,5µg/ml) 
or with TNF as in      A&B (0,5 µg/ml) and FasL as indicated in (B) (0,5µg/ml) for 
the indicated time points. Cellular lysates were collected and subsequently 
investigated for IκBα phosphorylation and IκBα degradation using antibodies 
specific for phosphorylated IκBα (upper panel) or total IκBα (lower panel). β-
tubulin served as a loading control. C) In parallel experiments, nuclear extracts 
were analyzed for κB-specific DNA binding by EMSA. The positions of p65/p50 
heterodimers or p50 homodimers are indicated. D) cFLIP overexpressing HaCaT 
keratinocytes were seeded in 96 well plate and transfected with 3x κB Firefly ( 
NF-κB promoter elements) along with the internal control Renilla ubiquitin. 24 h 
after transfection, cells were stimulated with HF-TRAIL (0,5µg/ml) or HF-TNF-α 
(0,5µg/ml) for 6h and assayed for NF-κB activation as described according to 
manufactures recommendations. Shown are mean +/- standard error of mean 
(SD) of representative experiment of total two independent experiments. 
 
4.2 cFLIP isoforms are equally effective in protecting against death ligand-
mediated target gene induction  
Death ligands such as TNF, TRAIL or CD95L induce the proinflammatory 

cytokine IL-8 in an NF-κB dependent manner in HaCaT keratinocytes 5;62;63. 

Having shown that cFLIP isoforms/mutants block TRAIL-induced NF-κB 

activation, we therefore next asked how different cFLIP isoforms or mutants 

impact the induction of chemokine IL-8/CXCL8 4. 
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Figure-4.2 Death ligand-mediated IL-8 induction is blocked by cFLIP 
isoforms as well as cFLIPL mutants. A) TRAIL induced IL-8 induction is 
inhibited by cFLIP isoforms and its respective mutants. Following preincubation 
with either diluent alone or 20µM of ZVAD-fmk for 1h, control or cFLIP 
isoforms/mutants overexpressing HaCaT keratinocytes were treated with 
0.5µg/ml TRAIL for 3h and total RNA was isolated and after synthesis of cDNA, 
Quantitative PCR (qPCR) performed. IL-8 mRNA expression was normalized 
with housekeeping gene G3PDH. Shown here is mean +/ - standard error of 
mean (S.D) of a representative total of three independent experiments. B) Upon 
TRAIL and CD95L treatment in the respective cFLIP mutants, TRAIL and CD95L 
induced IL-8 secretion is inhibited by different cFLIP isoforms as well as their 
mutants. Following preincubation with either diluent alone or 20 µM of ZVAD-fmk 
for 1h, control keratinocytes or the different cFLIP-overexpressing keratinocytes 
were treated with TRAIL or CD95L, respectively for 24h. Supernatants were 
assayed for IL-8 secretion by ELISA. Shown are mean +/- standard error of mean 
(SD) of a total of three independent experiments (ELISA results kindly provided 
by Dr.Daniela siegmund) 
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We thus explored if the various cFLIP isoforms/mutants might differentially affect 

target gene induction. mRNA analysis using  qPCR and RPA (Figure 4.2A,B) 

demonstrated that all different cFLIP mutants or isoforms completely protected 

the cells against TRAIL-mediated IL-8 mRNA induction. These results are in line 

with our previous data which suggest that cFLIPL repress DR-induced IL-8 mRNA 

induction (see Figure 4.2A) 4, Protein secretion of CXCL8 was induced in a dose-

dependent manner by CD95L or TRAIL, in mock transfected cells, provided 

apoptosis was blocked by ZVAD-fmk. In contrast, all different isoforms of cFLIP 

or the respective mutants repressed death ligand-mediated target gene IL-8 

production (see Figure 4.2C). Taken together, our data support a concept that 

cFLIP is able to block death receptor-mediated target gene induction by 

interference with NF-κB activation.  

 
4.3 Inhibition of the NF-κB pathway induces TNF, TRAIL mediated 

sustained JNK activation in HaCaT keratinocytes 
TNF family members includes TRAIL or TNF-α known to induce variety of 

apoptotic and non apoptotic signalling cascades and also shown to interconnect 

these contrasting cascades by some unknown mechanisms. We have shown 

from our previous studies that inhibition of NF-κB pathway sensitizes for TNF-

induced apoptosis however TRAIL-induced apoptosis is unchanged in HaCaT 

keratinocytes 15;34. 
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Figure-4.3 TNF family members TNF and TRAIL induces sustained JNK 
activation in NF-κB inhibited HaCaT cells and sustained JNK activation is 
dispensable for TNF-induced cell death. A) Infected mock transfected or IKK2-
KD HaCaT keratinocytes were stimulated with TNF and TRAIL (0,5µg/ml) and 
nuclear extracts were prepared and subjected for elctro mobility shift assay as 
previously indicated and analyzed for NF-κB specific complexes. B) Control and 
IKK2-KD HaCaT keratinocytes were pre incubated with caspase inhibitor (ZVAD-
fmk) or JNK inhibitor (SP600125) as In (A left) for 60mins and stimulated with 
TNF or TRAIL or both (B right) for indicated time points and assayed for C-jun 
activation by in-vitro kinase assay as indicated previously. C) Different NF-κB 
deleted cell types stimulated with TNF and analyzed for TNF-induced cell death 
as indicated previously (Viability assay data kindly provided by Dr.Wicovsky.A 34). 
 
We want to investigate if sustained JNK activation by TNF is essential for JNK 

mediated cell death in HaCaT keratinocytes. To address this question, we first 

characterized the phenotype of NF-κB inhibition in HaCaT keratinocytes by 

electro mobility shift assay. We performed this assay as previously described. 

From our current findings we noticed that TRAIL and TNF induces NF-κB DNA 

binding in mock transfected cells and in NF-κB deleted HaCaT cell, we observed  
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complete blockade of NF-κB DNA binding complexes (see Figure 4.3A). We 

further analyzed JNK activation in control and IKK2-KD HaCaT keratinocytes by 

In vitro kinase assay as described previously. Interestingly, we observed c-jun 

phosphorylation in mock transfected cells however in NF-κB deleted HaCaT cells 

(IKK2-KD) we noticed sustained JNK activation with both TNF and TRAIL ligands 

(see Figure 4.3B). In addition to that caspase inhibition results inhibition of TNF 

or TRAIL induced JNK activation indicating that its caspase dependent. 

Furthermore to elucidate the functional consequence of prolonged TNF-induced 

JNK activation in various cellular models including HaCaT cells investigated for 

this study, we blocked JNK activity with pharmacological JNK inhibitor SP600125 

and analyzed TNF mediated cell death. Although TNF-induced c-jun 

phosphorylation is completely blocked upon JNK inhibition but cell death 

induction by TNF is unchanged (see Figure 4.3C). Collectively these results 

suggest that sustained activation of JNKs by TNF is dispensible for cell death 

induction 34.  

 
5. cFLIP modulates DR-induced DISC composition in HaCaT keratinocytes 
5.1 cFLIP isoforms differentially affect posttranslational modification of 
DISC-associated proteins  
Death ligands including TRAIL or CD95L are known to recruit various effector 

molecules to the death inducing signaling complex (DISC) thereby modulating 

downstream apoptotic and also non apoptotic signalling pathways in many 

cellular systems. To investigate the possible differential recruitment and post 

translational modification of DISC-associated proteins in cFLIP variants 

overexpressed HaCaT keratinocytes, we characterized the recruitment of various 

known molecules such as FADD, caspase-8, RIP1 and cFLIP in the CD95 and 

TRAIL DISC complex. HaCaT-cFLIPL, HaCaT-cFLIPS, HaCaT-cFLIPp43, or 

HaCaT-cFLIPD376N as well as the respective control cells were processed for 

DISC analysis using ligand affinity precipitation for TRAIL and CD95L (Figure 5.1 

A,B).  
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Figure-5.1 Different cFLIP isoforms modulate the composition of the TRAIL 
or CD95 DISC. A) Differential composition of the TRAIL DISC (A) or CD95 DISC 
(B) in keratinocytes expressing different isoforms or mutants of cFLIPL-
expression. DISC analysis (IP) was performed from a total of 5x106 cells. 
Precipitates of non-stimulated cells served as specificity controls for ligand 
affinity precipitates and were assayed for comparable immune precipitation of 
TRAIL-R2 or CD95 as a control. Cells were characterized for cFLIP, caspase-8, 
FADD, RIP1 recruitment by western blotting. Total cellular lysates (Lysates) were 
analyzed in parallel from all samples. One of three independent experiments is 
shown here representatively. 
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These experiments were performed as indicated in materials and methods, 

briefly stimulations were performed with TRAIL or CD95L between 30-90mins. 

Following lysis, immuno precipitation (IP) lysates were subjected to western 

blotting and analyzed for the DISC recruited molecules. FADD recruitment to 

both the TRAIL and CD95L DISC did not significantly differ between parental, 

control and the different cFLIP protein expressing keratinocytes (see Figure 

5.1A&B). In control cells, cFLIPL was only detected as the p43 cleavage fragment 

in the DISC, indicative of caspase-mediated cleavage in the DISC. A marked 

increased association of cFLIP p43 was observed in HaCaT-cFLIPL, these 

findings which are in line with our previous report4. The cleavage site-defective 

cFLIPL was detected only as a only full length p55 protein in the DISC, indicative 

of the effective inhibition of its DISC-associated cleavage. Ectopically expressed 

cFLIPp43 was detected at a similar efficiency in the DISC of HaCaT-cFLIPp43. We 

also observed cFLIPS recruitment in HaCaT-cFLIPS keratinocytes and which 

found to be comparably effective as recruitment of other various FLIPL-related 

FLIP variants. Interestingly we detected RIP1 recruitment and its ubiquitination 

pattern in control infected HaCaT keratinocytes upon TRAIL or CD95L treatment.  

Furthermore, we observed suppression of RIP1 recruitment and its characteristic 

ubiquitination pattern in all the cFLIP variants overexpressing HaCaT 

keratinocytes. These results are in line with our previous observations where 

cFLIPL suppresses TRAIL mediated RIP1 recruitment in HaCaT keratinocytes 4. 

Remarkably, caspase-8 pattern detected in the DISC were markedly different: In 

control cells, the proform of caspase-8 (p55/53) as well as the cleavage product 

p43/41 were found. In marked contrast, the DISC of HaCaT-cFLIPL largely 

contained p43/41 fragments of caspase-8. Expression of cFLIPS completely 

inhibited caspase-8 cleavage, but did not interfere with procaspase-8 recruitment 

to the DISC indicating that cFLIPS blocked procaspase-8 processing (see Figure 

5.1A&B). Similarly, expression of cFLIPp43 yielded an increased level of full 

length caspase-8 within the DISC, suggesting that uncleaved cFLIPL is required 

for procaspase-8 cleavage within the DISC. Lastly, HaCaT-cFLIPD376N showed an  
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increased amount of procaspase-8 p55/53 in the DISC when compared to 

HaCaT-cFLIPL, indicating that uncleaved cFLIPL is able to facilitate procaspase-8 

recruitment to the DISC when compared to cFLIPL. These data suggest that 

different steps of procaspase-8 activation are blocked by cFLIPD376N or cFLIPp43. 

In summary, our data demonstrate that different cFLIP isoforms block TRAIL- and 

CD95L-induced apoptosis of keratinocytes by interference with different steps of 

caspase-8 processing at the DISC and that full length cFLIP is required for 

efficient procaspase-8 recruitment and the initial cleavage step to caspase-8 

p43/41.  

 

5.2 cFLIP does not interfere with DISC-associated caspase-8 activity and  
its inhibition stabilizes death receptors induced DISC complex 
Recent reports have identified that the functions of cFLIP proteins at the DISC 

might be more complex then initially thought of and cFLIP isoforms may play a 

crucial role in caspase-8 activation 15;16;23. Many other reports suggest that 

apoptosis induction interferes with proinflammatory gene expression elicited by 

death receptors because addition of caspase inhibitors such as ZVAD-fmk either 

leads to increased induction of target genes or is needed for death  receptors 

dependent transcription 4. In order to investigate if caspase inhibition has any 

impact on death receptors induced recruitment of DISC associated molecules 

and their posttranslational modifications HaCaT keratinocytes, we analyzed 

recruitment of various effector molecules to the DISC upon caspase treatment. 

These experiments were performed as indicated previously. Briefly, cells were 

preincubated with caspase inhibitor (ZVAD-fmk) for 60mins and stimulations 

were performed with CD95L for 90mins. Post lysis and immuno precipitation, IP 

lysates were subjected to western blotting and analyzed for DISC recruited 

molecules. In mock transfected cells, cFLIPL was only detected as the p43 

cleavage fragment in the DISC and upon caspase inhibition. We did not observe 

any significant change in the recruitment of endogenous p43 cleavage fragment 

in the DISC. 
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Figure-5.2 Caspase inhibition stabilizes DR-induced DISC composition in 
HaCaT keratinocytes. A) Differential composition of the CD-95 DISC in 
keratinocytes expressing different isoforms of cFLIP, cFLIPS, cFLIPL  were 
preincubated with caspase inhibitor (ZVAD-fmk) and stimulated with CD-95L for 
90min. DISC analysis (IP) was performed from a total of 5x106 cells. Precipitates 
of non-stimulated cells served as specificity controls for ligand affinity precipitates 
and were assayed for comparable immune precipitation of CD95 as a control. 
Cells were characterized for cFLIP, caspase-8, FADD, RIP1 recruitment by 
western blotting. Total cellular lysates were analyzed in parallel from all samples. 
One of two independent experiments is shown representatively. 
 
As shown previously, marked increase in association of cFLIPp43 was observed 

in HaCaT-cFLIPL. However treatment with ZVAD-fmk we observed marginal 

enrichment of cleavage product cFLIPp43 upon DL-association. Furthermore 

marginal enrichment of caspase-8 proform p55 and also active p43/p41 fragment 

were seen but its final cleavage product p18 is completely blocked in mock 

transfected keratinocytes upon DL-treatment. FADD recruitment to the CD95L 

DISC complex did not significantly differ between caspase inhibitor (ZVAD-fmk) 

untreated and treated control keratinocytes upon CD-95 stimulation. Interestingly, 

we observed DR-induced enrichment of RIP1 recruitment and ubiquitination 

pattern upon treatment with ZVAD-fmk after stimulation with DL in control  
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keratinocytes. In line with our previous observations, cFLIP isoforms suppress 

DR-induced RIP1 recruitment and ubiquitination. Notably caspase inhibition did 

not show any change in the repression of RIP1 recruitment in our cellular system 

(see Figure 5.2). Collectively these results suggest that caspase modulation not 

only alters the caspase activity in the DISC but also it modulates crucial apical 

modulators (RIP1) recruitment which might be essential in DR-induced non 

apoptotic signalling pathways. 

 

5.3 TRAF2 not a crucial modulator in DR-induced NF-κB activation in 

HaCaT keratinocytes 

TRAF2, yet another crucial NF-κB inducer which is shown to recruit to DR-

induced DISC. In addition to that, it also shown to be crucial for TNF-induced NF-

κB activation in many cell types. 
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Figure-5.3 Does cFLIP variants modulates DR-induced TRAF2 recruitment 
in HaCaT keratinocytes A) Different polyclonal cFLIP overexpressing 
keratinocytes were stimulated with CD-95L and subsequently DISC analysis (IP) 
was performed from a total of 5x106 cells. Precipitates of non-stimulated cells 
served as specificity controls for ligand affinity precipitates and were assayed for 
comparable immune precipitation of TRAIL-R2 or CD95 as a control and further 
characterized for cFLIP, caspase-8, FADD and TRAF2 recruitment by western 
blotting. One of two independent experiments is shown representatively. 
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In addition to that, it also shown to be crucial for TNF-induced NF-κB activation in 

many cell types. Furthermore TRAF2 is shown to interact specifically with 

endogenous cFLIPL and induces NF-κB activation in 293T cells 64. To investigate 

if cFLIP modulates recruitment of TRAF2 upon DL treatment in cFLIP 

isoforms/mutants overexpressing keratinocytes, we stimulated with CD95L for 

90mins. Post lysis and immuno precipitation, IP lysates were subjected to 

western blotting and analyzed for DISC recruited molecules. We observed 

recruitment of several known effector molecules such as cFLIP, caspase-8, 

FADD to CD95-R DISC in mock transfected keratinocytes as previously shown. 

Interestingly we observed recruitment of TRAF2 only in cFLIPL, cFLIPD376N 

overexpressing HaCaT keratinocytes where we observed similar caspase-8 

cleavage pattern upon DR-activation (see Figure 5.3). Surprisingly, TRAF2 is 

being known activator NF-κB shown to recruit in cFLIPL, and its mutant 

cFLIPD376N HaCaT cell lines where we observed suppression of DR-induced NF-

κB activation. In summary TRAF2 is not one of the crucial modulator in DR-

induced NF-κB activation in our cellular system HaCaT keratinocytes. 

 
6. Downregulation of cFLIP sensitizes primary human keratinocytes to 

TRAIL-induced apoptosis and NF-κB irrespective of apoptosis induction   

Primary human keratinocytes are highly resistant to TRAIL-induced cell death. 

The substantial resistance to DL-induced apoptosis might correlate with the 

observed high expression of cFLIP protein. Therefore we want to study if cFLIP 

modulates DR-induced NF-κB activation under endogenous conditions in primary 

keratinocytes (PK) as our model system. PK are known to express high levels of 

cFLIP in vitro and are also shown to be more resistant to TRAIL then transformed 

HaCaT keratinocytes 11. We thus performed knockdown experiments using 

shRNA against cFLIP as recently described 15;23. Efficient downregulation of 

cFLIP isoforms dramatically sensitized primary keratinocytes to TRAIL-mediated 

cell death (see Figure 6A&B).  
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Figure-6 Knockdown of cFLIP proteins leads to increased sensitivity to 
TRAIL-mediated apoptosis and NF-κB activation in primary human 
keratinocytes. (PK) A) PK were infected with cFLIP-specific siRNA using 
recombinant retroviruses and transduced cells were selected with puromycin (1 
µg/ml) for 3 days. Hyper random sequence (HRS)-infected cells Vector served as 
control for cFLIP shRNA-transduced PK. Cells were subsequently stimulated with 
150ng of recombinant TRAIL for 3h and analyzed for cFLIP, caspase-8, and 
caspase-3 expression and cleavage. Arrows indicate molecular weights of 
protein cleavage fragments. Western blotting of the caspase substrate PARP-1 
and detection of the 85kDa fragment served as marker for caspase activity under 
those conditions. Analysis of β-tubulin protein expression served as loading  
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control. Molecular weights are indicated on the right side. B) PK generated as 
described in A) were treated with the indicated concentrations of TRAIL for 24 
hours. Viability was subsequently examined by crystal violet assay. Shown are 
mean ± SD of three independent experiments. C) cFLIP knock down PK and 
HRS expressing PK which served as a internal control were stimulated with 
150ng of TRAIL for 6h and performed qPCR as mentioned before. Shown are 
mean +/- standard error of mean (SEM) of a total of three independent 
experiments. D) cFLIP knock down and HRS transduced primary keratinocytes 
were stimulated with 150ng of TRAIL for 24h and supernatants are assayed for 
ELISA. Shown are mean +/- standard error of mean (SEM) of a total of three 
independent experiments. E) Cells as indicated in A) were stimulated with 150ng 
of TRAIL for 3h and subsequently analysed for IκBα phosphorylation by western 
blotting with antibodies recognizing the phosphorylated forms of IκBα. Equal 
amounts of protein (6µg) were separated by SDS-PAGE gel electrophoresis, and 
subsequent analysis of β-tubulin protein expression served as loading control. 
Show is one representative experiment of three independent experiments. 
 
In addition, increased cleavage of initiator caspase-8 and caspase-3 was 

detectable. Indirect evidence of increased caspase activity in PK with repressed 

cFLIP levels was obtained by analysis of the caspase substrate PARP1 (see 

Figure 6A). To investigate if loss of cFLIP may modulate TRAIL-mediated NF-κB 

activation, we next analyzed TRAIL-mediated phosphorylation and degradation 

of IκBα in these cells. Repression of cFLIP levels resulted in a rapid 

phosphorylation of IκBα when compared to control-infected cells (see Figure 6E). 

Also the loss of cFLIP led to increased expression of the NF-κB target gene IL-8 

at the mRNA level (see Figure 6C) and protein level (see Figure 6D) in primary 

keratinocytes. Taken together these results indicate a physiological role of cFLIP 

not only for apoptosis protection, but also for inhibition of DL-induced NF-κB 

activation and target gene induction. 

 
7. Death receptors (TRAIL-R1/R2 and CD95) surface expression in cFLIP 
overexpressed keratinocytes 
HaCaT keratinocytes undergoes apoptosis following treatment with death ligands 

(TRAIL/CD95L) via surface expressed death receptors which include TRAIL-

R1/R2 and CD95-R. Interestingly, in addition to apoptosis it has also been shown  
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that Death receptors also trigger non-apoptotic signalling pathways such as NF-

κB and MAPK p38, JNK. To investigate the death receptors (TRAIL-R1/R2, 

CD95-R) surface expression in different retro virally generated polyclonal cell 

lines like HaCaT-cFLIPL, HaCaT-cFLIPS, HaCaT-cFLIPp43, or HaCaT-cFLIPD376N 

as well as the respective control cells were analyzed for the cell surface 

expression by FACS scan for green fluorescent protein-positive/propidium iodide-

negative cells. The cell surface expression of death receptors was not altered 

between control cells and all the different cFLIP isoforms/mutants overexpressed 

HaCaT keratinocytes (see Figure 7). This finding suggests that differences of 

TRAIL sensitivity (see Figure 1B) are not due to the differential surface 

expression of death receptors (TRAIL/CD95). 

 
 

Vector cFLIPS cFLIPL cFLIPD376N cFLIPp43

TRAIL-R1

TRAIL-R2

CD95

 
 
 
 
 
 
 
 
 
 
 
 
Figure-7 TRAIL-R and CD95-R surface expression of different cFLIP 
mutants expressing HaCaT keratinocytes. A) TRAIL-R1 -TRAIL-R4 and CD95 
cell surface expression of cFLIP isoforms/mutants overexpressed HaCaT 
keratinocytes were determined by FACS analysis. Cultured cells were stained 
with TRAIL-R1 (HS101), TRAIL-R2 (HS201), TRAIL-R3 (HS301), TRAIL-R4 
(HS402), and CD95 (APO-1 IgG1) primary Abs as well as isotype-matched 
control Abs. Filled curves indicate receptor specific staining as compared to 
isotype-matched control staining (open curves). 
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IV. DISCUSSION 
1. cFLIP is a crucial modulator of death receptor mediated signalling 
pathways 
Death receptors belong to the tumor necrosis factor receptor (TNF) super family 

and can induce apoptosis through activation of procaspase-8. The cellular 

FLICE-inhibitory protein (cFLIP) is able to modulate the activation of procaspase-

8 and thereby prevents the induction of apoptosis mediated by death receptors. 

As an important physiological modulator of caspase-8, cFLIP regulates life and 

death in various types of normal cells and tissues, such as lymphoid cells, and 

renders resistance to death receptor-mediated apoptosis in many types of cancer 

cells 18;20. In addition to being an apoptosis modulator, cFLIP has also been 

shown to exert other physiological functions related to cell proliferation and 

tumorigenesis 59. Dysregulation of cFLIP expression has been linked to various 

diseases, such as cancer and autoimmune diseases, and hence cFLIP might be 

a critical target for therapeutic intervention 6. At the onset of this work, the role of 

death ligand induced cFLIP cleavage in non-apoptotic signalling pathways was 

controversially discussed. This could be Primarily, due to the transient 

transfections of cFLIP mutants and also possibly because of the direct effect of 

cFLIP overexpression in earlier studies 60;64. We sought to elucidate the role of 

cleavage of cFLIP, which in turn, could differentially influence non-apoptotic DR 

signals. Insights into the differential regulation of cFLIP isoforms/mutants could 

advance our understanding of the physiological and pathophysiological relevance 

of this molecule in tumor progression and development. 

 
2. cFLIP inhibits DR-mediated apoptosis independent of its cleavage 
product in HaCaT keratinocytes 
Previous studies suggest that, cFLIP is a major anti-apoptotic protein that 

renders normal and transformed cells resistant to death receptor-mediated  
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apoptosis 4;18;20;32, even though some reports suggest that cFLIP is a pro-

apoptotic protein in death receptors mediated apoptosis. These findings explain 

the non-physiologic aggregation of large amounts of cFLIP and caspase-8, 

leading to processing and activation of caspase-8. However, at lower or nearer to 

physiologic expression levels, cFLIP protects against death receptor–induced 

apoptosis 65-67. The anti-apoptotic properties of cFLIP in vivo were also supported 

by the finding that embryonic fibroblasts derived from cFLIP knockout mice 

exhibit increased susceptibility to death receptor–induced cell death, whereas 

they show normal responses to drugs or compounds like etoposide, sorbitol, 

staurosporine and anisomycin 24. In contrast, recent studies have also suggested 

that even at low or near-physiologic concentrations, cFLIP can act both as an  

inhibitor and enhancer of death receptor–mediated apoptosis, indicating that a 

rheostat effect between the levels of caspase-8 and cFLIP might determine the 

ultimate sensitivity of cells to apoptosis induced by death receptors 68. Thus, 

subtle changes in intracellular cFLIP levels could determine the outcome of death 

receptor–mediated signalling resulting either in cell death or cell survival. If this 

scenario proves true, strict control of cFLIP synthesis and degradation would be 

of utmost importance for the regulation of cell death and survival. Our previous 

reports suggest an anti-apoptotic role of cFLIP isoforms when overexpressed 

very close to the physiological level in HaCaT keratinocytes 4;16. 

From our current study, the biochemical characterization of cFLIP 

isoforms/mutants revealed that the overexpression of different cFLIP isoforms or 

mutants was shown to be comparable in the different polyclonal cell lines (see 

Figure 1A). When cells were treated with the death ligands TRAIL and CD95L, 

biochemical analysis showed that parental HaCaT as well as control-infected 

cells readily cleaved large amounts of the initiator caspase-8 within 3h of 

stimulation. In contrast, cFLIP isoforms and mutants (cFLIPL, cFLIPS, cFLIPD376N, 

as well as cFLIPp43) block caspase-8 cleavage differentially and the p18 fragment 

was subsequently not detected (see Figure 1A). In line with previous reports,  
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cFLIPL containing a cleavage site mutation (cFLIPD376N) was fully protected 

against TRAIL- or CD95L-mediated cFLIPL cleavage (see Figure 1A, left and 

right panel) 20. Furthermore, different isoforms and mutants of cFLIPL were 

equally effective in protecting HaCaT cells from TRAIL-or CD95L-mediated cell 

death, as indicated by crystal violet assay (Figure 1B left-TRAIL or right-CD95L). 

More interestingly, our results suggest that cFLIP is able to protect HaCaT 

keratinocytes against CD95L or TRAIL-mediated apoptosis independent of 

cFLIPL cleavage. All these observations are in agreement with our own and 

several previous reports, that cFLIP is an anti-apoptotic molecule that provides 

protection against death receptors mediated apoptosis 4;16;18;20;23;28. 

 
3. cFLIP and its mutants substantially modulate recruitment and post 
translational modifications of DISC-associated proteins in HaCaT 
keratinocytes 
The mechanism in which death receptors activate apoptosis is quite clear, 

namely through the recruitment of caspase-8 into the DISC. Forced dimerization 

using different systems then suggested activation of caspase-8 through ‘induced 

proximity’ involving two active enzymes. Recently, it was demonstrated that 

procaspase-8 in the DISC gains enzymatic activity prior to its processing 

suggesting that dimerization induces a conformational change in the zymogen 

that results in the activation of the active sites 4;16;18;20;23;28. 

To date the role of cFLIPL in apoptosis remains controversially discussed. In 

most of the reports, cFLIPL has been described as an anti-apoptotic molecule, 

largely because of its ability to inhibit apoptosis at high levels of ectopic 

expression in cell lines in which the level of endogenous cFLIPL has been 

approximately 1% of that of endogenous procaspase-8. Since this ratio is so 

disproportionate it is unclear what precise role cFLIPL plays in these cells. 

However, subsequent studies of mice deficient in cFLIP (lacking both cFLIPL and 

cFLIPS) revealed the role of cFLIP in death-receptor induced apoptosis.  The 

embryonic fibroblasts (MEFs) derived from these mice (through an in vitro  
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selection process for cell growth) were shown to be more sensitive to CD95- 

induced apoptosis than the wild-type MEFs. This observation has been widely 

accepted as a validation of the inhibitory role of cFLIPL in apoptosis by many 

other groups. Strikingly, cFLIP-/- mice showed developmental defects that 

resembled those of caspase-8-/- or FADD-/- mice. These mice died in utero 

between E10.5 and E11.5 with a failure in heart formation accompanied by  

hemorrhage attributing a function to cFLIPL that is similar to that of caspase-8 

and FADD 21;24. 

Previous reports suggest the significant role of cFLIPL in having an inhibitory 

effect on the DISC by reducing the generation of active caspase-8. A second 

cellular splice variant of cFLIP, cFLIPS, also has anti-apoptotic effects. Both 

cFLIP proteins contain two DEDs and are recruited into the DISC and thereby 

block the death receptor-mediated apoptosis 4;28. From our current studies, we 

provided important insights into the molecular mechanisms of cFLIP-mediated 

apoptotic inhibition using the HaCaT keratinocytes as our cellular model of this 

study. cFLIP is expressed very low endogenously in HaCaT keratinocytes. 

Ectopically expressed cFLIP isoforms, either cFLIPL or cFLIPS or the mutants, 

unprocessed cFLIPD376N and cleavage product cFLIPp43, are protected against 

death receptor-mediated apoptosis in HaCaT keratinocytes. The presence of 

cFLIPS or cleavage product cFLIPp43 prevents the initial cleavage step of 

procaspase-8, and therefore its full-length form can be detected at the DISC. In 

contrast, cFLIPL or mutant cFLIPD376N allows the initial cleavage step but blocks 

further processing and the generation of the p18 subunit. The difference in the 

processing of procaspase-8 in the presence of the two cFLIP isoforms is also 

reflected in total cell lysates and these results are in line with previous reports 

thereby shedding new light on caspase-8 activation at the DISC 20. 

From our and other previous observations suggested the following model for 

cFLIP proteins mediated inhibition of death receptor initiated apoptosis has been 

suggested. In the presence of low concentrations of cFLIP proteins, procaspase-

8 represents the major tandem DED-containing protein at the DISC and is  
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activated by trans-and autocatalytic cleavage due to the close proximity of 

several procaspase-8 molecules. cFLIPL that is recruited into the DISC is cleaved 

by caspase-8. High amounts of cFLIPL in the DISC abolish their close proximity 

to procaspase-8 molecules, instead of leading to proximity of cFLIPL and 

procaspase-8, thereby resulting in the first but not the second step of 

procaspase-8 processing. In this conformation, only the p10 subunit of caspase-8 

and the p12 subunit of cFLIPL are generated. Since cFLIPL itself has no intrinsic 

catalytic activity, the generation of the p10 subunit of caspase-8 proceeds 

autocatalytically, whereas the generation of the p18 subunit would require trans-

catalytical activity as suggested in BJAB cells 20. 

High amounts of cFLIPS in the DISC totally prevent procaspase-8 cleavage. This 

indicates that cFLIPL, in contrast to cFLIPS, still induces a conformation change 

of the DISC that leads to autocatalytic activity of procaspase-8 and the first 

cleavage step. This hypothesis is supported by the cleavage pattern of 

procaspase-8 in the presence of cFLIPL mutants. The uncleavable cFLIPL mutant 

(cFLIPD376N), like the wild-type cFLIPL, allows the generation of the p10 subunit of 

caspase-8. Therefore, the full-length protein of cFLIPL, but not its cleavage, 

facilitates the first cleavage step of procaspase-8. These results from us and 

others are further supported by the observation that the deletion mutant of cFLIPL 

(cFLIPp43), which does not contain the p12 subunit, prevents the first cleavage 

step of procaspase-8, similar to cFLIPS. Both, the p43 cleavage product of 

cFLIPL (cFLIPp43) and the uncleaved cFLIPL form (cFLIPD376N) form block 

caspase-8 activation and therefore, inhibit apoptosis.  

Given that procaspase-8 interacts with cFLIP proteins in the DISC in a dimeric 

manner, our results suggest that the generation of the p10 subunit of caspase-8 

occurs autocatalytically as suggested previously 20. In contrast, the second 

cleavage step leading to the release of the p18 subunit requires trans-catalytic 

activity. High expression of cFLIPS also prevents cleavage of cFLIPL at the DISC.  
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This phenomenon was also detected in re-stimulated primary T cells 20. This 

might be attributed to the spatial interference of cFLIPS with the interaction of 

procaspase-8 and cFLIPL. Another possibility is that initial cleavage of 

procaspase-8, blocked by cFLIPS, is required for its trans-catalytic activity and, 

thus, cFLIPL is not cleaved at the DISC upon high expression of cFLIPS.  

Thus, so far the biological function of different procaspase-8 cleavage patterns 

by cFLIP isoforms has not been addressed. One might speculate that the 

generation of these cleavage products is blocked because they are necessary for 

the recruitment of yet to be identified molecules into the DISC or, alternatively, 

they prevent the association of unidentified molecules.  

Recent findings further described an in vitro DISC reconstitution model, where 

they clearly demonstrated a two-step activation of procaspase-8 that includes 

firstly, dimerization and secondly the proteolytic cleavage which is obligatory for 

the death receptor-induced apoptosis. Furthermore, cellular expression of non-

cleavable procaspase-8 mutants, which undergo DISC-mediated oligomerization 

but not cleavage fails to initiate CD95-induced apoptosis and was shown to 

undergo CD95-induced survival. These findings represent an important paradigm 

shift in the current understanding of DISC-mediated procaspase-8 activation, as 

the reconstituted CD95 DISC model has revealed a key regulatory mechanism 

whereby activated death receptor complexes can signal for death or survival 69. 

Previously, it was reported that cellular FLIP proteins regulate activation of the 

non-apoptotic signalling pathways such as NF-κB and AP-1 upon stimulation of 

death receptors, possibly via recruitment and posttranslational modifications of 

DISC associated proteins RIP1, TRAF1, and TRAF2, A20. However, there are 

also conflicting reports about the exact role of cFLIP proteins which includes 

enhanced or suppressive effects in death receptor mediated NF-κB activation 
4;28;33;64. Therefore, the role of cFLIP and its different cleavage products in death 

receptor induced NF-κB activation, with possible differential recruitment of NF-κB 

signal inducing proteins remains controversial till date.  
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In the current study we reported that cFLIP modulated the DL-mediated 

recruitment and also posttranslational modifications of DISC-associated proteins. 

In addition, our data confirm that an important function of cFLIP isoforms/mutant 

is to prevent caspase-8 activation at different levels of procaspase-8 processing 

at the DISC. In line with previous results, cFLIPL, cFLIPD376N induce a 

conformational change of procaspase-8 that allows partial but not complete 

proteolytical processing, whereas in contrast cFLIPS, cFLIPp43 even prevent 

partial procaspase-8 activation at the DISC. However, the adapter protein FADD 

recruitment remains unchanged. Notably, all the cFLIP isoforms/mutants 

suppress the recruitment and ubiquitination of receptor interacting protein-1 

(RIP1) suggesting that cleavage of cFLIP is irrelevant for the repression of RIP1 

in the receptor complex (Figure 5.1-A&B). 

A large body of evidence suggests that RIP1 recruitment to the receptor complex 

(TNF-R, CD95-R, TRAIL-R) and posttranslational modifications are the two 

crucial events  for the activation of transcriptional factor NF-κB 70;71. Here we 

show that not only does cFLIPL suppress the RIP1 modification and recruitment 

as shown previously 4, but also other isoforms/mutants (cFLIPS, cFLIPp43, 

cFLIPD376N) showed repression of RIP1 recruitment and ubiquitination to the 

receptor complex which results in the suppression of death ligand mediated NF-

κB activation (see Figure 9). It is likely that ubiquitinated RIP1 interacts with 

NEMO (subunit of IKK complex), thereby activating NF-κB activation as 

previously suggested 71. Since all the cFLIP isoforms/mutants suppress RIP1 

recruitment by an unknown mechanism, which leads to the inhibition of NEMO 

(one of component of IKK complex). This sort of an interaction finally leads to the 

suppression of death receptor mediated NF-κB activation. The above results are 

also in line with earlier reports, suggesting that, RIP1 knockdown substantially 

inhibited Apo2L/TRAIL induced phosphorylation and degradation of IκB-α in 

HT1080 cells indicating the importance of RIP1 function in NF-κB signalling 72. 
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Several other reports suggest that the involvement of TRAF2, yet another 

effector molecule which is recruited to TNF-R and CD95-R/TRAIL-R receptor 

complex and influences NF-κB, JNK and MAPK p38 activation 73. A number of 

reports indicate that TRAF2 is recruited to DR complexes and thereby influences 

NF-κB, JNK, and MAPK p38 activation 74. Moreover, endogenous TRAF2 was 

shown to interact with cFLIPp43 and promote formation of a cFLIPp43-caspase-8-

TRAF2 tertiary complex. This complex was suggested to be a prerequisite for 

NF-κB activation in lymphocytes. Our study now investigated the differential 

outcomes of DR triggered NF-κB activation. The CD95 DISC of HaCaT 

overexpressing cFLIPL or the cFLIPD376N mutant contained TRAF2 in a 

stimulation-dependent manner, in line with another report in pancreatic tumor 

cells 75. However, we noticed that CD95-mediated suppression of NF-κB 

activation was not altered by the different cFLIP isoforms/mutants regardless of 

the recruitment of TRAF2. This indicates that TRAF2 recruitment to the CD95 

DISC is not critical for DR-induced suppression of NF-κB activation (see Figure 

5.3). In line, recent evidence for TNF has demonstrated that NF-κB activation in 

TRAF2 KO murine embryonic fibroblasts (MEFs) is unaltered 76.  Thus, TRAF2 

may either require other cFLIP-dependent secondary proteins or binding of 

TRAF2 to the DISC may be indirect. Taken together these observations indicate 

that cleavage of cFLIPL or caspase-8 in the DISC is neither associated with 

increased NF-κB signalling nor necessary for the inhibitory function of cFLIP 

isoforms on DR-induced NF-κB signalling.  

Interestingly, there is growing evidence that a number of cytosolic complexes 

formed upon death receptor stimulation are essential for life/death decisions. The 

formation of complex II comprising of procaspase-8, cFLIP, FADD, RIP, TRADD 

and TRAF2 was described in detail for TNF signalling. Notably, Larvik et al, 

reported that upon CD95 stimulation in several T and B cell lines a novel 

signalling complex is formed, which they termed as complex II 77. Complex II is 

composed of the DED (Death Effector Domain) proteins: procaspase-8a/b, three 

isoforms of cFLIP (cFLIPL, cFLIPS,cFLIPR) and FADD. However, the complex II  
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does not contain CD95. Based on these findings they suggested that CD95 

signalling comprises of two steps. The first step involves the formation of the 

DISC at the cell membrane. The is followed secondly by the formation of the 

cytosolic DED protein containing complex that may play an important role in the 

amplification of caspase activation 77. 
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Figure-9 cFLIP proteins suppress DR-induced RIP1 recruitment and its 
posttranslational modifications irrespective of cFLIP cleavage in HaCaT 
keratinocytes. 
Furthermore, emerging evidence suggests that Apo2L/TRAIL activates kinase 

pathways by promoting the association of secondary signalling complex 

subsequent to death-inducing complex (DISC). This secondary complex retains 

DISC components which are involved in Apo2L/TRAIL-induced kinase pathway 

such as RIP1, TRAF2, NEMO 72. On an interesting note, other reports recently 

demonstrated that upon TRAIL stimulation, the same molecules (FADD, RIP, 

TRADD and TRAF2, Caspase-8) are involved in the formation of a secondary  
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complex and this complex is essential for the transduction of both life and death 

signals 72. The understanding of the role of complex II in life and death pathways 

is a matter of future studies.  

 
4. cFLIP proteins modulate DR-mediated non-apoptotic signalling pathways 
A large body of evidence till date suggests that three main isoforms of cFLIP- 

cFLIPS, cFLIPL and cFLIPR, have been reported to block DR mediated apoptosis 
4;17;28. However differential signalling capabilities of various cFLIP isoforms have 

not yet been studied so far. We reasoned that the cleavage of cFLIP, in turn, 

could differentially influence non-apoptotic DR signals such as NF-κB and 

mitogen-activated protein kinases (MAPK). The functions of these signalling 

pathways may have important and distinct stage-specific pathophysiological 

consequences during skin tumorigenesis. Targeting these crucial signalling 

pathways might prove to be a novel strategy for cancer prevention and therapy 

and would be required prior to systematic cancer treatment of patients with 

TRAIL or TRAIL-R-agonists 78. Death receptor mediated non-apoptotic signalling 

pathways have been a topic of interest scientific debate over the years, in 

particular due to the fact that TRAIL or TRAIL-R agonists are currently being 

used in early clinical studies 78. Although cFLIP isoforms are known for their 

apoptosis resistance, their non-apoptotic functions have aroused immense 

interest especially in cellular events that lead to potential detrimental effects 

whenever TRAIL stimulates tumor cells that carry death receptors at the surface, 

but do not undergo apoptosis. 

 

4.1 cFLIP represses DR-mediated NF-κB activation independent of cFLIP or 

caspase-8 processing 
The precise role of cFLIP isoforms in death receptors mediated transcriptional 

factor NF-κB activation is of intense debate over several years. It is also a widely  

 

 

 82



IV DISCUSSION 
 

 

accepted notion that death receptors not only induce apoptosis but can also 

trigger other signalling pathways that lead to proliferation. There are also 

conflicting reports about the molecular mechanisms that switch from death 

receptor induced apoptosis to proliferation and/or differentiation. There are 

contradictory reports which suggest that cFLIP, which is upstream to DISC-

associated protein, may be pivotal in turning signals for cell death into those for 

cell survival. 

Some reports suggest that transient ectopic expression of cFLIP promotes 

activation of proliferative signals such as those of transcriptional factor NF-κB 

and ERK signalling pathways and further indicated that increased levels of cFLIP 

can lead to the activation of ERK and NF-κB signalling pathways. Furthermore, 

another additional report suggested that NF-κB-inducing protein TRAF2 

specifically interacts with the cleavage product cFLIPp43 and enhances NF-κB 

activation. However, these observations were made from studies of the direct 

effect of overexpressed cFLIPL with transient overexpression in 293T cells 60;64. 

Therefore, cFLIP might have a role in the regulation of NF-κB dependent gene 

expression, which could affect cellular proliferation in response to stimulation of 

death receptors. Consistent with its role in the NF-κB pathway, cFLIP can 

interact with other NF-κB–related signalling proteins, such as TRAF1, TRAF2, 

and IKK2 79. Contradicting to the earlier reports, retroviral stable overexpression 

studies revealed that cFLIP isoforms cFLIPS and cFLIPL are inhibitory to death 

receptor induced activation of NF-κB. Our previous studies and other reports 

confirm that the NF-κB signalling protein RIP1 recruitment and its modification in 

the death inducing signalling complex (DISC) is crucial for the activation of NF-

κB. The ectopic expression of cFLIPL shown previously in HaCaT cellular system 

previously is likely to remain at physiologically relevant levels, since we could 

overcome TRAIL resistance by increasing concentrations of TRAIL. Notably, 

HaCaT keratinocytes show very low endogenous expression of cFLIP, therefore 

it is an ideal system for the overexpression studies 4. It is speculated that the  
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proteolytic processing of cFLIP isoforms by partially activated procaspase-8 at 

DISC, might play an important role to induce distinct non-apoptotic signalling 

events with possible variable recruitment of DISC associated proteins. Many 

previous studies indicated the significance of cFLIP cleavage products in death 

receptors mediated non-apoptotic signalling pathways.  

In the current study, we investigated the impact of cFLIP isoforms and the role of 

their cleavage fragments in DR mediated NF-κB activation. We now show that 

only TRAIL-induced and not TNF-induced NF-κB activation is affected by cFLIP 

isoforms (cFLIPS, cFLIPL and its cleavage fragment (cFLIPp43), non-processed 

fragment (cFLIPD376N) (see Figure 4,1 A-D). This difference is also reflected by 

distinctive ligand-mediated IκBα degradation, thereby placing cFLIP 

isoforms/mutants mediated inhibition upstream of or at the signalosome. What 

may be the reason for the difference between TNF and TRAIL-mediated NF-κB 

activation? Since we detected NF-κB activation and IκBα degradation within 15–

30 min after stimulation with soluble TNF, the activation of NF-κB via TNF-R2 by 

endogenous membrane bound TNF was unlikely. Therefore, previous results 

imply a direct activation of NF-κB via TNF-R1 rather than induction of 

endogenous TNF. Thus, non-apoptotic death receptor signalling by TNF-R1 is 

not abrogated by cFLIPL but rather specifically inhibited for TRAIL, whereas 

cFLIPL efficiently blocks pro-apoptotic signals of both TNF and TRAIL 24;33. These 

data confirm that pro-apoptotic and gene-inductive signalling pathways utilized by 

TNF and TRAIL are not identical, proving to be similar to yet another report for 

CD95L 28.  

Previous studies by several groups have shown that apoptosis induction 

interferes with proinflammatory gene expression elicited by Fas/TRAIL, because 

the addition of caspase inhibitors such as ZVAD-fmk either leads to increased 

induction of target genes or is needed for TRAIL-dependent transcription 5;28;80. 

Using the physiological caspase-8 inhibitors cFLIPL, cFLIPS and its mutants 

cFLIPD376N, cFLIPp43, we show that cFLIP isoforms/mutants potently inhibit  
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proinflammatory DR-induced target genes such as IL-8 independent of cFLIP or 

caspase-8 (see Figure 4,2 A&C) cleavage and thereby demonstrate that the 

effect exerted by the caspase inhibitor ZVAD-fmk is clearly different from the 

ability of cFLIP to interfere with TRAIL receptor signalling. Understanding this 

difference is of great importance, since the clinical use of caspase inhibitors may 

result in potentially deleterious proinflammatory signals exerted by death 

receptors when apoptosis induction is blocked by ZVAD-fmk in vivo.  

Furthermore, we observed that caspase inhibitor ZVAD-fmk stabilizes death-

ligand induced DISC complex. Since upon pre-treatment with ZVAD-fmk, CD-

95/TRAIL enhances the recruitment of DISC-associated proteins such as cFLIP, 

caspase-8, RIP1, FADD. Interestingly, there is increased recruitment of the 

cleavage fragment of cFLIP (cFLIPp43), in cFLIPL overexpressing HaCaT 

keratinocytes upon ZVAD-fmk treatment indicating that caspase inhibitor (ZVAD-

fmk) inhibits caspase-8 activation downstream of DISC (see Figure 5,2). In the 

current study, we investigated the DR-induced non-apoptotic signals and found 

that TRAIL or CD95L efficiently activated NF-κB in HaCaT keratinocytes. It is 

currently uncertain as to how cFLIP isoforms/mutants influence the activation of 

NF-κB 4;28. In this report, we have studied how cFLIP isoforms and its DISC-

associated cleavage fragments, cFLIPD376N and cFLIPp43 modulate DR-mediated 

gene induction in HaCaT keratinocytes. cFLIPL was described as a constitutive 

activator of NF-κB exerted by cFLIPL-mediated recruitment of TRAF-2 to the 

caspase-like domain of cFLIPL. Furthermore, It was suggested that heterodimers 

of the p43 fragment of cFLIPL and the p43/41 fragments of caspase-8 are formed 

at the CD95 DISC and thereby activate NF-κB 60;64.  

However, these results were based on direct ectopic expression of the cleavage 

product cFLIPp43 rather then the direct effect of death receptor ligation. In 

contrast to these reports, our group and others have suggested that death 

receptor-mediated NF-κB activation was inhibited by cFLIPL and cFLIPS 
4;28. In 

these reports, they did not observe any changes in basal NF-κB DNA binding to  
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casapase-8 in cells expressing different isoforms of cFLIP (cFLIPS/L). The 

discrepancy with the report in 293T cells might be explained by the direct effect 

of overexpressed cFLIPL in this study 64. Our previous results and those of others 

are in accordance to the findings by many other groups 4;28 demonstrating an 

inhibitory role of cFLIP isoforms (cFLIPShort and cFLIPLong for death receptor-

induced NF-κB activation. From our current results, we demonstrate that not only 

the cFLIP isoforms (cFLIPL, cFLIPS) but also its mutants (cFLIPD376N, cFLIPp43) 

completely inhibited DL-mediated IκBα phosphorylation and degradation, NF-κB 

DNA binding and transcription and induction of the target gene IL-8. These 

observations support previous reports that cFLIPL knockdown accelerates 

TRAIL-induced NF-κB activation in HT1080 cells 72. Our data clearly demonstrate 

that the cleavage of cFLIP is not necessary for the death ligand mediated NF-κB 

activation (see Figure 10). These results also confirm that the differential 

processing of caspase-8 by cFLIP isoforms/mutants at the DISC is neither 

sufficient for apoptosis induction nor does it predominantly lead to gene 

induction.  
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Figure-10 Cleavage of cFLIP is NOT necessary for DR-induced NF-κB 

activation in HaCaT keratinocytes. 
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In summary, cFLIP isoforms are not only potent inhibitors of DL-mediated 

apoptosis, but also block DL-mediated non-apoptotic signalling pathways such as 

NF-κB. This indicates that cleavage of cFLIPL or caspase-8 in the DISC is neither  

associated with increased NF-κB signalling nor necessary for the inhibitory 

function of cFLIP isoforms on DR-induced NF-κB. Taken together, our data 

highlight the importance of cFLIP and its isoforms for the inhibition of DR-induced 

non-apoptotic signals that might be of crucial importance during tumorigenesis of 

keratinocyte skin cancer in order to escape the activation of innate or adaptive 

immune responses. 

 

4.2 Sustained activation of JNKs by TNF is dispensable for cell death 
induction 
JNK activation can mediate not only pro-apoptotic but also anti-apoptotic effects 

in death receptor signalling, especially after TNFR1 stimulation 34;79;81;82. The 

pleiotropic cellular effects of TNF are in part the consequence of intense and 

multifold cross talk between the major TNF-induced intracellular signalling 

pathways especially those leading to apoptosis or activation of NF-κB and JNK. 

In the recent years, many reports revealed that JNK pathway can tip the balance 

between cell death induction and survival signalling in TNF-stimulated cells in 

both directions. The cell death promoting effect of JNK in TNF signalling however 

has been attributed to a second sustained phase of JNK activation that follows 

on the early phase of JNK activation especially in cells sensitized to apoptosis by 

cycloheximide (CHX) treatment or inhibition of NF-κB (for review 83). Several 

mechanisms by which TNF-induced cell death have been identified include 

caspase independent cleavages of BID, proteasomal degradation of cFLIPL and 

ROS production 81;82.  Whether TNF-induced cell death signalling is also involved 

in the modulation of JNK signalling is yet largely unknown, more so, in particular 

the relationship of TNF-induced apoptotic caspases and prolonged JNK 

signalling is unclear. It seems possible that there is interplay between JNK and  
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caspases in other cell types, where apoptosis induction by TNF is more 

prominent. We therefore chose the HaCaT keratinocytes as our model of study 

with respect to the relationship of cell death induction, caspase activation and 

JNK and NF-κB stimulation in the context of TNF signalling. The prolonged JNK 

activation by TNF has been ascribed to the relief from the inhibitory actions of the 

NF-κB pathway. From our previous observations we demonstrated that inhibition 

of NF-κB dramatically sensitizes human keratinocytes to TNF- but not to TRAIL-

induced apoptosis and that this sensitization to TNF was largely independent of 

cIAP2.34. In the current study, we report that TNF family members, TNF and 

TRAIL induce sustained JNK activation in NF-κB inhibited HaCaT keratinocytes 

(see Figure 4.3 B). Furthermore, the pharmacological JNK inhibitor SP600125, 

efficiently blocked JNK activity but had no effect on TNF induced cell death in 

many cellular systems we used in our present study, including in the HaCaT 

keratinocytes (see Figure 4.3 C). Therefore, TNF-induced prolonged JNK 

activation was cell type dependent and mediated by caspases and had no 

essential role in cell death induction by TNF in the cellular models investigated in 

this study.   

 

4.3 cFLIP isoforms inhibit death ligand mediated JNK, MAPK p38 activation 
in HaCaT keratinocytes 
Several tumor types have been reported to have inappropriately elevated levels 

of cFLIP, e.g. melanoma, colon carcinoma, and Hodgkin lymphoma. High 

expression levels of cFLIP in tumor cells could lead to resistance to death ligand 

induced apoptosis induction. Interestingly, in immunocompetent mouse models, 

cFLIP overexpressing B lymphoma tumor cells developed into more aggressive 

tumors than the respective control cells, both in syngenic and semi-allogeneic 

tumor-host systems, indicating that cFLIP expression was associated with a 

selective advantage for tumor growth. Furthermore, cFLIP overexpression in 

tumor cells was capable of preventing tumor rejection by perforin-deficient NK 

cells. These results provided compelling evidence that, deregulated cFLIP  
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expression in tumor cells could act as a tumor-promoting factor and assist the 

cancer cells to evade the milieu of immune surveillance mechanisms 84.  Various 

lines of evidence suggest that death-inducing proteins have an additional role in 

regulating innate immunity. Subsequent reports generated conditional deletion of 

cFLIP using CD19-Cre to analyze the function of cFLIP in B cells. The resulting B 

cell-specific cFLIP-deficient mice were found to have reduced numbers of 

peripheral B cells that were hypersensitive to Fas-induced apoptosis and 

impaired proliferation induced by Toll like receptors (TLRs) and the B-cell 

receptor (BCR). Furthermore, there was aberrant expression of co-stimulatory 

proteins and activation markers in cFLIP deficient B cells. Whereas LPS-induced 

activation of NF-κB and Erk1/2 appears to be unaffected, p38 and JNK were 

spontaneously activated and hyperinduced in cFLIP-deficient B cells. Therefore, 

these data revealed novel functions of cFLIP in B cells 84.  

In the current study we observed that death ligands (TRAIL/CD95L) induce JNK 

phosphorylation while cFLIP isoforms (cFLIPS, cFLIPL) inhibit death ligand 

induced JNK phosphorylation (see Figure 2.1A). Surprisingly, we also observed 

that the cFLIP mutants (cFLIPD376N, cFLIPp43) suppress death ligand mediated 

JNK suppression, indicating that the cleavage of cFLIP is not necessary for the 

JNK activation (see Figure 2.1B). We also observed that caspase activation is 

essential for the death ligand mediated JNK phosphorylation, since the caspase 

inhibitor (ZVAD-fmk) completely blocked the TRAIL-induced JNK activation in 

HaCaT keratinocytes. We went on to investigate TRAIL mediated AP-1 activation 

which is the downstream target of JNK. Also identical with the JNK results, we 

also observed that cFLIP isoforms/mutants suppress TRAIL mediated AP-1 

activation (see Figure 2.1C). To sum up, cFLIP inhibits TRAIL mediated JNK 

phosphorylation and its downstream target transcriptional factor AP-1 activation 

indicating that cFLIP or caspase-8 cleavage is not necessary for the death ligand 

mediated activation of JNK and transcriptional factor AP-1 in HaCaT 

keratinocytes. Our studies are consistent with the previous reports suggesting  
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that cFLIP plays a crucial role in modulating the activation of both caspases and 

stress MAPKs in immune cells 84.  

Death ligands also activate MAPK p38 activation in many cellular systems. Our 

studies indicate that TRAIL activates MAPK p38 activation in a biphasic manner. 

TRAIL activates the first peak as early as 15-30mins and lasts for 2h (second 

peak) and finally the activation of p38 goes down at later time points. 

Interestingly, all the cFLIP isoforms/mutants suppress the TRAIL mediated 

second peak MAPK p38 phosphorylation. Furthermore, isoforms/mutants of 

cFLIP did not modulate TRAIL mediated first peak of MAPK p38 activation. 

Strikingly, TRAIL mediated MAPK p38 activation is inhibited upon treatment with 

caspase inhibitor ZVAD-fmk. ZVAD-fmk only inhibited the second peak but not 

the first peak (see Figure 3,1A). These results clearly demonstrated that cFLIP 

and its cleavage products suppress TRAIL mediated MAPK p38 activation 

independent of cFLIP cleavage (see Figure 11). These results are comparable to 

many other reports suggesting that cFLIPL exerts its anti-apoptotic activity 

partially by inhibiting MAPK p38 activation 85. 
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Figure-11 cFLIP proteins inhibit DR-induced p38 and JNK activation In 
HaCaT keratinocytes. 
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Alike to these findings, all the cFLIP isoforms/mutants suppress RIP1 recruitment 

at CD95/TRAIL DISC, which in turn results in the suppression of TRAIL-induced 

MAPK p38 and JNK activation. These results confirm many other observations, 

indicating that RIP null (RIP-/-) mouse fibroblast cells show decreased activation 

of TNF-induced JNK and MAPK p38 activation. Also the reconstitution of wild 

type RIP in RIP-/- cells partially restored the activation of MAPK p38 and JNK in 

response to TNF-α. RIP1 kinase domain is only essential for the activation of 

ERK but not p38, JNK. This indicates that RIP1 is likely to interact with different 

downstream targets to activate different MAPKs.74. Our results are in 

concordance with the findings by Wajant et al and many others, demonstrating 

an inhibitory role of cFLIPL for death receptor-induced non-apoptotic signalling 

pathways 30;84-86.  

 

5. cFLIP knockdown enhances TRAIL-induced apoptosis and NF-κB 

activation 
Tumor cells have developed different strategies to escape apoptosis induced by 

death receptors, triggering effects such as down-regulation of death receptors 

(TRAIL-R/R2, CD-95R), loss or mutation. The other known mechanisms 

elaborated by tumor cells to develop cell death resistance include aberrant 

expression of anti-apoptotic molecules such as cFLIP, Bcl2, Bcl-xL, survivin and 

IAP family proteins (cIAP1/2, XIAP, livin). The current understanding is that 

perturbations in apoptotic death regulation constitute a vital step in cancer 

evolution. There is increasing evidence, which suggests that the anti-apoptotic 

function of cFLIP can be considered as a tumor progression factor. At present, 

the role of cFLIP, as an anti-apoptotic protein involved in the regulation of the DR 

extrinsic apoptotic pathway, remains unclear. However, the identification of the 

precise role of cFLIP in cancer cells is an essential step to further target and 

restore deregulated death pathways 6;25;87. 

Primary human keratinocytes are highly resistant to TRAIL-induced cell death. 

The substantial resistance to DL-induced apoptosis might correlate with the  

 91



IV DISCUSSION 
 

 

observed high expression of cFLIP proteins. Therefore, we want to study if cFLIP 

modulates DR-induced NF-κB activation under endogenous conditions using the 

primary keratinocytes (PK) as our model system. PK are known to express high 

levels of cFLIP in vitro and are also shown to be more resistant  to TRAIL than 

transformed HaCaT keratinocytes 11. 
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Figure-12 cFLIP knockdown not only enhances TRAIL-induced apoptosis 

but also enhances NF-κB activation 

 

Throughout our study, we corroborated the inhibitory role of cFLIP isoforms to 

death ligand- mediated NF-κB activation by overexpression studies, as reported 

previously by others 4;28. Most of the information known so far about the inhibitory 

action of the cFLIP molecule has been obtained under non-physiological 

conditions. In the present study, we have shown the physiological role of cFLIP in 

death ligand-mediated NF-κB activation by using primary keratinocytes as a 

model system. Consistent with previous observations, we also found enhanced 

activation of caspase-8 and caspase-3 and caspase substrate PARP-1 in the 

cFLIP knock down primary keratinocytes (see Figure 6 A&B). Interestingly, we  
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also found TRAIL-induced pronounced activation of phosphorylation of IκBα in 

cFLIP knock down cells (see Figure 6E). Furthermore, we also observed 

enhanced activation of NF-κB target gene IL-8 in the absence of cFLIP, 

supporting the hypothesis that cFLIP is required in the skin (see Figure 12) to 

inhibit proliferative signals through mechanisms such as the NF-κB signalling 

pathway (see Figure 6 C&D).  

In the skin there is a constant need to repress proinflammatory gene induction 

and unwanted cell death, at least in the basal cell layer of the epidermis 88. This 

corresponds well to our present data showing that cFLIP isoforms block 

inflammatory CD95 and TRAIL-R signalling irrespective of cell death induction. 

In the absence of caspase activity in cells expressing low levels of cFLIP, we 

show augmented NF-κB activation and target gene induction. Thus, blockade of 

NF-κB by cFLIP is not an epiphenomenon of cell death protection or due to 

overexpression, supporting the notion that cFLIP has an indispensible role in 

the skin to downregulate inflammatory responses.   
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V. APPENDIX 
1. Abbreviations 
 
HaCaT    Human adult keratinocytes 
TRAIL    Tumor Necrosis Factor-Related Apoptosis- 

Inducing Ligand   
TNF    Tumor Necrosis Factor 
TRAIL-R    TRAIL receptor 
CD-95R    CD-95 receptor 
ZVAD-fmk    Z-Val-Ala-Asp-fluoromethyl ketone  

NF-κB    Nuclear factor-kappa B  

MAPK    Mitogen protein kinase 
JNK             JUN NH2-terminal kinase 
ERK     Extracellular signal related kinase 
MAPK    p38, Mitogen activated protein kinase p38 
AP-1     Activated protein kinase-1 
IL-8     Interleukin-8 
cFLIP    Cellular FLICE proteins 
cFLIPL   Cellular FLICE protein long form 
cFLIPS    Cellular FLICE protein long form 
FADD    Fas-associated death domain protein 
TRAF     TNF receptor-associated factor  
DD    Death domain 
DED    Death effector domain 
IAP     Inhibitor of apoptosis protein 
KD     Kinase dead 
siRNA    Small interfering RNA 
XIAP              X-linked inhibitor of apoptosis 
Rpm     Rotations per minute 
FSC     Forward scatter 
SSC     Sideward scatter 
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