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Abstract

We introduce novel time discretization schemes for coupled systems of partial differential
equations. Our main focus is systems that are defined over spatially distinct domains with
a common interface, where the coupling is enforced. We also look at volume coupled models
defined over the same domain. Fluid-structure Interactions are one type of important appli-
cation problem that fall into this framework.

Each of the physical problems can be governed by a different type of equations and there-
fore can exhibit different dynamics. In traditional methods, the time-step size has to be
the same for both of the systems and adjusted to the subproblem with faster dynamics. As
a result, the time-step size in the other one is unnecessarily small. Our aim is to develop
time discretization schemes allowing for different time-step sizes without violating the cou-
pling conditions. We introduce a hierarchy of time meshes - a common uniform coarse mesh
and a second, finer mesh that can be chosen independently. The problems are formulated
within the space-time framework which allows us access to the apparatus usually reserved
for space discretization only. Although the formulation is monolithic, we solve the systems
sequentially relying on a partitioned approach. To resolve the coupling conditions, special
decoupling algorithms are introduced. Two such algorithms are discussed, namely a relax-
ation and a shooting method. We further develop an a posteriori error estimator based on
the Dual Weighted Residual method and define the necessary adjoint formulations needed for
this approach. The estimator is then used as an adaptivity criterion. We numerically test the
performance of both of the decoupling strategies as well as the error estimator for a series of
test problems.

We further expand our results by proving theoretical estimates and show error estimates
for the implicit Euler time-stepping scheme. The starting point consists of a simple system
of ordinary differential equations. It is then followed by the analysis of two heat equations
coupled across a common interface scaled by different diffusivity constants. As the final prob-
lem, we look at an analogous Stokes equations system. We study both semi-discrete as well
as fully discrete cases. For the Stokes problem, the estimates are proved in a special newly
defined norm that incorporates the coupling conditions.
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Zusammenfassung

Wir stellen ein neuartiges Zeitdiskretisierungsverfahren für gekoppelte Systeme von par-
tiellen Differentialgleichungen vor. Wir untersuchen vornehmlich Systeme über räumlich ge-
trennten Domänen mit einer gemeinsamen Schnittstelle, an welcher die Kopplungsbedingung
forciert wird. Wir betrachten ebenfalls volumengekoppelte Modelle über der gleichen Domäne.
Zu dieser Klasse von Problemen gehören unter anderem wichtige Anwendungsgebiete wie
Flüssigkeits-Feststoff-Interaktion.

Jedes physikalische Problem kann durch eine andere Art von Gleichungen bestimmt wer-
den und entsprechend unterschiedliche Dynamiken aufweisen. Bei traditionellen Methoden
muss die Zeitschrittgröße für beide Systeme übereinstimmen und an das Unterproblem mit
schnelleren Dynamiken angepasst werden. Als Ergebnis ist die Zeitschrittgröße im anderen
Unterproblem unnötig klein. Unser Ziel ist es, Zeitschrittdiskretisierungsverfahren zu en-
twickeln, die unterschiedliche Zeitschrittgrößen ohne Verletzung der Kopplungsbedingungen
ermöglichen. Wir stellen eine Zeitgitterhierarchie vor - ein grobes Gitter, das überall gleich
ist, und ein zweites, feineres Gitter, das unabhängig gewählt werden kann. Wir formulieren
die Probleme unter Verwendung des Orts-Zeit-Zugangs, der uns den Zugang zu Methoden
ermöglicht, die normalerweise nur für die Raumdiskretisierung zur Verfügung stehen. Ob-
wohl die Formulierung monolithisch ist, lösen wir die Systeme sequentiell unter Verwendung
eines partitionierten Ansatzes. Um die Kopplungsbedingungen zu lösen, führen wir spezielle
Entkopplungsalgorithmen ein. Wir schlagen zwei dieser Algorithmen vor – das Relaxation-
und das Shooting-Verfahren. Wir entwickeln weiterhin einen a-posteriori Fehlerabschätzer,
welcher auf der Dual Weighted Residual -Methode basiert. Wir definieren darüberhinaus die
notwendigen dualen Probleme, die für diesen Ansatz erforderlich sind. Der Schätzer wird dann
als Adaptivitätskriterium verwendet. Wir testen die Leistung beider Entkopplungsstrategien
sowie des Fehlerschätzers für eine Reihe von Testproblemen numerisch.

Wir erweitern unsere Ergebnisse darüber hinaus mit theoretischen Abschätzungen und
beweisen Fehlerschranken für die implizite Euler-Zeitschrittmethode. Wir beginnen mit ein-
fachen Systemen gewöhnlicher Differentialgleichungen. Darauf folgt eine Analyse zweier Diffu-
sionsgleichungen, die über eine gemeinsame Schnittstelle gekoppelt sind und über verschiedene
Wärmeleitkoeffizienten skaliert werden. Als letztes Problem betrachten wir ein analoges Sys-
tem von Stokes-Gleichungen sowohl im semi-diskreten als auch im gänzlich diskreten Fall. Die
Schätzungen für das Stokes-Problem werden mit Hilfe einer speziellen, neu definierten Norm
bewiesen, welche auf den Kopplungsbedingungen aufbaut.
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Introduction

In many engineering applications, we can encounter mathematical models where multi-
ple physical phenomena simultaneously interact with each other. Such systems are called
multiphysics problems. These might be fluid, structure, thermal, electromagnetic, acoustic,
electric, and many other different models. Despite the differences, what these problems have
in common is the importance of coupling capturing interdependencies between the individual
parts of the entire model. This coupling can either happen across the volume of a physical
domain (volume coupling) or only across a common interface in case the subsystems occupy
distinct physical domains (interface coupling). It is a key component of multiphysics problems
and therefore has to be accounted for with sufficient regularity. As a result, all of the interact-
ing models have to be simulated simultaneously. This is one of the reasons why the simulation
of multiphysics problems can be so challenging - each of the physical phenomena can have
very distinct characteristics and can require completely different numerical approaches.

One special class of multiphysics problems consists of Fluid-structure Interaction (FSI)
problems. There, we consider a solid structure immersed in a fluid. It is an example of an
interface coupled problem. The fluid model is most commonly given by Navier-Stokes equa-
tions. The solid is usually modeled using either linear or nonlinear elastic equations. That
results in a particularly demanding model. Indeed, even Navier-Stokes equations on their
own are not fully understood and offer many open problems. Further, if we want to consider
moving domains, each of the problems operates in different coordinate systems - the Eulerian
framework is natural for fluid systems, while the Lagrangian point of view is more suitable for
solid models. Each of the systems of equations is also of a different type. The fluid problem is
an example of a parabolic system while the elastic structure is given by a hyperbolic system.
The former, at least within the laminar regime, has smoothing properties whereas hyperbolic
systems can be highly oscillatory.

This difference in dynamics is of particular interest to us. Obviously, it would be out of
the scope of this thesis to consider all of the characteristics of multiphysics problems at once.
Therefore, here we would like to mainly concentrate on time discretization. In traditional
models, the choice of time-step sizes has to be adjusted to the problem with the fastest dy-
namics. This might lead to unnecessarily high resolution for the slower changing parts of
the model. We would like to address this problem by introducing novel time discretization
techniques that allow for using different time-step sizes for each of the subproblems. However,
while doing so, we have to be careful not to violate the coupling conditions. Moreover, such
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Monolithic approach

fluid problem

solid problem

Partitioned approach

fluid problem

solid problem

decoupling algorithm

Figure 1: The difference between a monolithic and a partitioned approach.

a technique prohibits us from exploiting a traditionally used fully monolithic approach for
solving algebraic systems arising from the discretization of underlying equations. In this ap-
proach, all of the systems are solved using one solver. The coupling conditions are guaranteed
by the proper choice of test and trial function spaces. The discretization is therefore stable at
the cost of low flexibility. An alternative is given by a partitioned approach. There, each of
the systems is solved separately using its own solver. This flexibility allows for considering the
special needs of each of the subproblems. The coupling is not accounted for within discretiza-
tion and a special decoupling algorithm has to be introduced. Especially in the case of strong
coupling, which may lead to many iterations within each time-step. In some circumstances,
partitioned approaches are known to be unstable [1, 2]. The difference between the two ap-
proaches is sketched in Figure 1. In this thesis, we are going to use methods that borrow from
both of the philosophies - formulations of the problems as well as discretization will be done
monolithically, while we will use the partitioned framework to solve arising algebraic systems.

Although heuristically sometimes we can deduce which problems may need finer time
discretization, it is highly beneficial to have access to an adaptivity criterion and therefore
be able to choose time-steps automatically. As such a criterion, we will use an a posteriori
error estimator based on a Dual Weighted Residual (DWR) method introduced by Becker and
Rannacher in [3] and [4]. This method has been widely used for the space component however,
it is less popular for time discretization. It requires embedding time-stepping, which is tradi-
tionally done using a finite difference method, within the finite element method framework.
Fortunately, it can be done with relative ease and some of the most popular time-stepping
schemes such as implicit Euler or Crank-Nicolson schemes have their finite element counter-
parts for specifically chosen trial and test spaces. To formulate a DWR estimator, one has to
formulate, discretize, and solve an adjoint problem corresponding to the original one. This
adjoint formulation is derived using a Gâteaux derivative and the procedure always yields
linear problems. As a result, especially for complex nonlinear systems, the benefits of having
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access to an adaptivity criterion outweigh the cost of computing an adjoint solution.
Another important property of novel discretization methods that has to be taken into

consideration is their stability. It is a crucial property that ensures that inevitable roundoff
errors are sufficiently damped and their accumulation is under control. Given the complexity
of many physically meaningful multiphysics models, one usually has to simplify the system
before performing any rigorous mathematical analysis. Assuming that some of the most im-
portant properties are preserved, such as for example incompressibility for incompressible
flows, such simplified models can still provide important information about the dynamics of
more realistic complex phenomena. We followed this route and analyzed the stability of mul-
tirate time discretization given by the implicit Euler scheme for a series of linear interface
coupled problems. In the proofs, some of the key ingredients included a carefully defined
operator transferring the interface values between the two time meshes as well as a modified
inf-sup condition that was introduced by the authors in [5].

The thesis is split into two parts. The first four chapters together form the first part.
There, we introduce the idea of multirate time-stepping methods, propose a way to solve such
systems, and introduce an a posteriori estimator. The second part consists only of the last
chapter, where we prove stability and error estimates. Although throughout the whole thesis,
we discuss various aspects of multirate time discretization methods for coupled problems, each
of the parts forms a separate cohesive story. Each of them considers a different set of model
problems and proposes a different point of view – in the first part we are more interested in
computationally feasible algorithms, and in the second we prove estimates depending on the
unknown exact solutions.

In the first chapter, a set of examples is introduced that serves as a basis for our algorithms.
In the first example, we couple heat and wave equations across a common interface. Despite
its simplicity, this example presents a set of challenges typical for more complex problems.
The heat equation is of parabolic type and therefore has smoothing properties. The wave
equation, as an example of a hyperbolic equation, can be highly oscillatory. As the second
example, we take a well-known challenging benchmark problem [6], where an elastic beam
is submerged in a viscous fluid. The fluid material is modeled by Navier-Stokes equations,
and the solid is described using the St. Venant-Kirchhoff model. Both of these models are
nonlinear. They are also coupled across a common interface, where geometric, dynamic, and
kinematic coupling conditions are established. All of these conditions are imposed weakly.
For the conditions of the Neumann type, this is a standard procedure. The condition of the
Dirichlet type is incorporated using the Nitsche method. The movement of the domains is
resolved using the Arbitrary Lagrangian Eulerian (ALE) coordinates. As the last example,
we take a thermoelasticity problem, where we couple linear elasticity equations with a linear
equation describing temperature fluctuations. Conversely to the previous two examples, here
the coupling happens across the whole volume of a common space domain. Each of these
examples is described strongly as well as weakly using a continuous variational formulation.

In the next chapter, based on the previously described model problems, we discuss dis-
cretization methods. We start with time discretization and then establish links between com-
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monly used time-stepping methods and space-time approaches. As it turns out, the implicit
Euler method corresponds to a finite element method, where both trial and test functions are
piecewise constant in time. The Crank-Nicolson scheme, on the other hand, can be formulated
using continuous piecewise linear trial functions and piecewise constant test functions. We
follow by introducing multirate time-stepping. The tension between the coupling conditions
and flexible time-stepping for each subproblem is resolved by introducing a hierarchy of time
meshes. We first define a coarse mesh, which is the same for both problems. Within this mesh,
the coupling conditions are enforced. Each such time-step can be further split independently
creating a finer time discretization. We then discretize all of the model problems and address
the individual needs of each of them. Especially the second one requires some finesse in this
regard. Then we shortly discuss space discretization. Here, we use standard commonly used
elements. The only aspect which requires some additional attention is the transfer of interface
values between the two meshes for the interface coupled problems.

The following chapter is devoted to decoupling methods. Since in each time-step we solve
the algebraic systems using a partitioned approach, we need to introduce additional algo-
rithms that take care of the coupling. We answer this need by presenting two solutions – a
relaxation method and a shooting method. The former is given by a simple convex combi-
nation of the two previously computed solutions. In the latter, using the continuity of the
solution on the interface, we introduce a shooting function. To find its root, a quasi-Newton
method is defined. In each iteration, the method approximates the derivative of the shooting
function using a finite difference quotient which in turn can be understood as a directional
derivative. Since this process gives us access to the matrix-vector product only, we use an
inner GMRES matrix-free solver. As it turns out, this method can be easily extended to vol-
ume coupled problems as well. We compare the performance of the two methods based on our
model problems. For the heat and wave equation as well as the thermoelasticity ones, both of
the methods perform well and we can observe the superiority of the shooting method. Due to
the strong coupling and incompressibility of the fluid, the performance worsens significantly
for the FSI problem.

In chapter four, we derive an a posteriori error estimator which is then used as an adaptiv-
ity criterion. Following the DWR method, we define adjoint variational formulations using the
previously established embedding of time-stepping methods within the finite element method
framework. Based on both the primal and adjoint solutions, the error estimator is defined.
We reconstruct the exact solutions needed in the formulation by projecting the discrete solu-
tions into higher dimensional spaces. The error is then split into contributions corresponding
to different subproblems. Thanks to the good localizability properties of the estimator, one
can easily distinguish between contributions coming from different time-steps. We use these
localized values and compare them with a threshold value and mark time-steps for refinement.
This adaptivity algorithm is then tested on the model problems. For the wave and heat equa-
tion and thermoelasticity problems, the algorithm is highly successful. For the FSI test case,
we only test the estimator on fully uniform meshes.

In the last chapter, we derive stability and error estimates of the implicit Euler multirate
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time-stepping scheme. In this portion of the thesis, a different set of test problems is consid-
ered. The simplest consists of a system of two coupled ordinary differential equations, then we
look at two coupled heat equations scaled with different diffusivity constants. Finally, we pro-
ceed to two coupled Stokes equations. The two PDE problems are coupled across a common
interface where standard kinematic and dynamic coupling conditions are imposed. For the
last two problems, we consider both semi-discrete as well as fully discrete formulations. Also
here, we impose Dirichlet conditions using the Nitsche method. The Nitsche terms are then
incorporated into a new norm, in which we prove the estimates. Following [5], symmetrized
variational formulations are used. From the same publication, we also borrow a modified
version of a standard inf-sup condition. In the proofs, a proper definition of an operator that
transfers the interface values between the two time meshes is crucial.

In both parts, we were able to produce new original results. The findings in the first part
should be viewed holistically. Indeed, most of the individual parts were already introduced be-
fore. Multirate time-stepping was for example considered in [7, 8, 9]. The relaxation method
was discussed in [10, 11, 12], and various versions of interface Newton methods were studied
in [13, 14, 15, 16, 17, 18]. Representation of time-stepping schemes as finite element methods
can be found in [19, 20]. Time adaptivity using the DWR method was shown in [21, 22].
However, the combination of all of these methods together forms a new cohesive framework.
Starting from a strong formulation of a given problem, we show all of the steps needed to
achieve a novel adaptive and flexible time discretization. Although we encountered some
problems for strongly coupled problems, the methods presented here are general enough to
be successfully implemented for a large variety of problems. The results restricted to the first
model problem were published in [23]. The implementation was entirely done using the finite
element software FEniCS in Python. The code is stored in the GitHub repository MSoszyn-
ska.

The novelty of the results presented in the second part is more straightforward. All of the
proofs there form original work. Some of them use rather standard techniques such as for
example the Gronwall lemma in the first one. Some of the other aspects required more orig-
inality. Especially challenging was a proper estimation of interface terms. As we established
before, very helpful was work published in [5]. At the moment of writing this thesis, we are
in the process of publishing these results.
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Chapter 1

Model Problems

Throughout this thesis, we will discuss adaptive time-stepping schemes for temporal mul-
tiscale problems. Instead of keeping the framework abstract, we will analyze three specific
model problems. We will present them in detail in this chapter.

The first model consists of a linear system coupling a heat equation with a wave equation
on a rectangular space domain. This simple model emulates some of the difficulties typical for
FSI problems. Each of the equations is of a different type. The heat equation is an example
of a parabolic problem, while the wave equation is a hyperbolic one. That in itself already
poses a challenge akin to the ones appearing in the more complex problems.

The second one is an example of a true FSI problem - a popular benchmark problem first
introduced by Turek and Hron [6] in 2007. There, one considers laminar incompressible flow
around an elastic structure. The flow interacts with the elastic structure and leads to a large
periodic displacement profile in the structure. That and the added mass effect make the
simulation of this problem particularly challenging.

As our third and final model problem, we are going to consider a thermoelasticity prob-
lem. This almost linear system consists of an elasticity equation coupled with an equation
describing temperature fluctuations. Also here, we are expecting oscillatory behavior of the
elasticity model. Conversely to the previous problems, here the coupling happens across the
whole space domain and not only the interface.

1.1 Strong Formulations

As the first step, we will define the problems by presenting the equations in a strong
sense. Further in this chapter, we will proceed to their weak formulations using variational
techniques.

9



1.1. Strong Formulations

Ωf
Γf
N

Γs
D

Γf
N

Γs
D

Ωs

Γf
D

Γ

Γs
N

Figure 1.1: The domain Ω is split into two domains Ωf and Ωs which share a common
interface Γ. On the boundaries Γf

D and Γs
D and we impose Dirichlet conditions while on Γf

N

and Γs
N we prescribe Neumann conditions.

1.1.1 Heat and Wave Equation

This linear problem is too simplified to be considered an FSI problem. However, since we
treat this example as an introduction to more complex models, we will use the corresponding
nomenclature nevertheless. The heat equation will be associated with the fluid problem and
the wave equation with the solid problem. Thus, we will use names such as fluid problem,
solid problem, and fluid domain, solid domain, etc. In addition, the superscript f will refer to
the fluid domain and we will connect s with the solid domain.

The problem is defined on a time interval I “ r0, T s on a space domain Ω :“ Ω
f

Y Ω
s

consisting of two rectangular subdomains

Ωf :“ p0, 4q ˆ p0, 1q, Ωs :“ p0, 4q ˆ p0,´1q.

The interface is defined as Γ :“ Ω
f

X Ω
s

“ p0, 4q ˆ t0u. On the other boundaries, we either
impose homogenous Dirichlet or free Neumann boundary conditions. A sketch illustrating the
domains is shown in Figure 1.1. In the domain Ωf we pose the heat equation

Btv
f ´ ν∆vf ` β ¨ ∇vf “ gf in I ˆ Ωf , (1.1)

and in the domain Ωs the wave equation

Btv
s ´ λ∆us ´ δ∆vs “ gs, Btu

s “ vs in I ˆ Ωs, (1.2)

written as a first order system. By vf and vs we denote the velocities of fluid and solid and by
us the solid displacement. ν ą 0 is the heat diffusion parameter,

?
λ is the wave propagation

speed, and δ ě 0 is a damping parameter. β P R2 refers to a transport direction. The two
problems are coupled on the interface Γ by the transmission conditions

vf “ vs, λBn⃗s
us ` νBn⃗f

vf “ 0 on I ˆ Γ. (1.3)

10



Chapter 1. Model Problems

These conditions mimic kinematic and dynamic coupling conditions commonly used in FSI
problems. We distinguish between normal vectors corresponding to the fluid n⃗f and the solid
n⃗s domain. Therefore it holds n⃗f “ ´n⃗s. The solid deformation us is harmonically extended
to the fluid domain and denoted as uf . That is analogous to tactics used in ALE coordinates.
Here, the harmonic extension does not include any stiffening.

´∆uf “ 0 in I ˆ Ωf , uf “ us on I ˆ Γ. (1.4)

In the fluid domain, the left and right boundaries model free inflow and outflow, whereas
the upper boundary describes a no-slip condition. In the solid domain, the left and right
boundary model a fixed solid and the solid is free to move on the lower boundary, resulting
in

uf “ vf “ 0 on I ˆ Γf
D, Bn⃗f

vf “ Bn⃗f
uf “ 0 on I ˆ Γf

N

us “ vs “ 0 on I ˆ Γs
D, λBn⃗s

us ` δBn⃗s
vs “ 0 on I ˆ Γs

N .
(1.5)

At time t “ 0, all initial values are zero, i.e. uf p0q “ usp0q “ vf p0q “ vsp0q “ 0. The exact
values of the parameters read as

ν “ 0.001, β “

ˆ

2
0

˙

, λ “ 1000, δ “ 0.1.

The external forces are set to be products of functions in space and time gf px⃗, tq :“ hf px⃗qfptq
and gspx⃗, tq :“ hspx⃗qfptq where hf px⃗q, hspx⃗q are space components and fptq is a time compo-
nent that models a periodic pulse

fptq “

#

1 z ď t ď z ` 0.1

0 z ` 0.1 ă t ď z ` 1,
@z P Z. (1.6)

We will consider three different configurations of the right hand side. In Configuration 1.1,
the right hand side is concentrated in Ωf where the space component consists of an expo-
nential function centered around

`

1
2 ,

1
2

˘

. For Configuration 1.2 we take a space component
concentrated in Ωs with an exponential function centered around

`

1
2 ,´

1
2

˘

. Configuration 1.3
is a combination of the two previous ones where the source terms are located both in the fluid
and in the solid domain.

Configuration 1.1.

hf px⃗q :“e´ppx1´ 1
2

q2`px2´ 1
2

q2q, x⃗ P Ωf

hspx⃗q :“0, x⃗ P Ωs

Configuration 1.2.

hf px⃗q :“0, x⃗ P Ωf

hspx⃗q :“e´ppx1´ 1
2

q2`px2` 1
2

q2q, x⃗ P Ωs

11



1.1. Strong Formulations

r
h

l

B

L

H

A

Figure 1.2: Geometric dimensions of the FSI benchmark. In the bottom figure, we can see
the view of the whole domain. In the top figure, we zoom in on the cylinder and the elastic
structure attached to it.

Configuration 1.3.

hf px⃗q :“e´ppx1´ 1
2

q2`px2´ 1
2

q2q, x⃗ P Ωf

hspx⃗q :“e´ppx1´ 1
2

q2`px2` 1
2

q2q, x⃗ P Ωs

1.1.2 FSI Problem

The second problem we would like to consider is the FSI benchmark problem [6] where, the
authors consider laminar incompressible flow around a cylinder, to which an elastic structure
is attached. This is an extension of another popular benchmark problem featuring incom-
pressible laminar flow around a cylinder [24].

This benchmark poses many challenges. Both the fluid and the elastic structure are mod-
eled using nonlinear models. Additionally, the movement of the domains is included. Fluid
and solid models operate in different coordinate systems which has to be accounted for. Fi-

nally, the ratio between the fluid and the solid densities ρf

ρs is relatively high. That may
introduce instabilities, especially if the discretized algebraic systems are solved using a par-
titioned approach. This problem is called added mass effect and has been explored in depth
for example in [1] and [2].

In Figure 1.2, one can see the domain and in Table 1.1 the values of geometry parameters
are listed. We would like to point out that the cylinder is not exactly in the middle. That
allows the development of the oscillations. In Figure 1.3 we present and describe different
boundary conditions. The inflow velocity continuously increases for the first two seconds

vf
inpx⃗, tq “

#

vf
0px⃗q

1´cospπ
2
tq

2 for t ă 2.0

vf
0px⃗q for t ě 2.0

12



Chapter 1. Model Problems

geometry parameter symbol value

channel length L 2.5
channel width H 0.41
cylinder radius r 0.05
elastic structure length l 0.35
elastic structure thickness h 0.02
reference point A p0, 0q

reference point B p0.2, 0.2q

Table 1.1: Exact values of the geometry parameters mentioned in Figure 1.2. Note that this
configuration is slightly asymmetrical.

and finally takes the form of a parabolic profile

vf
0px⃗q :“

ˆ

0

6Ūx2pH´x2q

H2

˙

.

Ū denotes a prescribed mean velocity. The fluid problem is described using incompressible
Navier-Stokes equations

ρfBtv
f ` ρf pvf ¨ ∇qvf “ div σf

div vf “ 0.
(1.7)

Because of the upcoming coupling, we take the full symmetric tensor

σf “ ´pfI ` ρfνf p∇vf ` p∇vf qT q. (1.8)

We consider constant density ρf and kinematic viscosity νf . On the outflow Γf
out, a modified

natural outflow condition is imposed to avoid deflection at the end of the channel

pρfνf∇vf ´ pfIq ¨ n⃗f
“ 0.

The structure will be considered as an elastic compressible material

ρsBttû
s

“ xdivpF̂σ̂sq. (1.9)

The second time derivative is eliminated by introducing velocity v̂s
“ Btû

s. F̂ denotes a
deformation gradient F̂ “ I ` ∇û. As the material law, we choose St. Venant Kirchhoff
model

σ̂s “ 2µsÊ ` λstrpÊqI, (1.10)

where Ê stands for Green-Lagrangian strain tensor Ê “ 1
2pF̂

T
F̂ ´ Iq. The parameters λs and

µs are called the first and the second Lamé parameters, respectively. They are related to the

13



1.1. Strong Formulations

Γ Ωs

Γf
D

Γs
D

Γf
outΓf

in

ΩfΓf
D

Figure 1.3: In this figure, we present the boundaries of the benchmark. The dashed lines cor-
respond to no-slip boundary conditions. Depending on the domain, it is denoted by either Γf

D

or Γs
D. On Γf

in we impose an inflow boundary condition. On Γf
out a free Neumann boundary

condition is posed. Γ stands for an interface between the fluid and the solid models where
coupling conditions act.

Poisson ratio νs describing compressibility and Young modulus Es indicating stiffness of the
material

νs “
λs

2pλs ` µsq
, Es “

µsp3λs ` 2µsq

λs ` µs
.

Any material with νs ă 1
2 is considered compressible.

The fluid and the solid models operate in different coordinate systems. The Eulerian
reference system is more appropriate for the fluid system, while the dynamics of the elastic
structure are usually formulated in the Lagrangian system. Coupling these two configurations
together requires the introduction of a common framework. There are two popular solutions
to this problem. In the first one, called Arbitrary Lagrangian Eulerian (ALE) framework, one
introduces an artificial displacement in the fluid domain ûf and redefines the fluid problem
in the Lagrangian coordinates. The biggest advantage of this approach is that the reference
domain (including the interface) is fixed. However, the resulting system is highly nonlinear
and the quality of the solution vastly depends on the regularity of the displacement ûf . In
the second approach, the Fully Eulerian formulation, one instead formulates both of the
subproblems in the Eulerian coordinates. The resulting system is simpler but additional
techniques are needed to capture the movement of the interface. Here, we are going to
consider the ALE approach.

We will define the fluid displacement as a continuous harmonic extension of the solid
displacement with an additional stiffness operator S

S∆ûf
“ 0. (1.11)

14



Chapter 1. Model Problems

parameter symbol unit FSI2 FSI3

fluid density ρf kg
m3 1 ¨ 103 1 ¨ 103

kinematic viscosity νf m2

s 1 ¨ 10´3 1 ¨ 10´3

mean velocity Ū m
s 1 ¨ 100 2 ¨ 100

solid density ρs kg
m3 1 ¨ 104 1 ¨ 103

first Lamé parameter λs kg
ms2

2 ¨ 105 8 ¨ 106

second Lamé parameter µs kg
ms2

5 ¨ 105 2 ¨ 106

Table 1.2: Exact values for parameters for the two FSI test problems.

On the interface we have ûf
“ ûs and on the other parts of the boundary, a no-slip boundary

condition is set. We would like to emphasize that this displacement is indeed artificial and
does not have any physical meaning, for example Btû

f
‰ v̂f .

Using the extension above, one can as well extend the deformation gradient and its deter-
minant J “ detpF̂q. The The system after the ALE transformation takes the form

ρfBtv
f ` ρf pvf ¨ ∇qvf “ ρfJBtv̂

f
` ρfJpF̂

´1
pv̂f

´ Btû
f
q ¨ ∇̂v̂f

q.

The stress tensor equals to

σ̂f
“ ´p̂fI ` ρfνf p∇̂v̂f F̂

´1
` F̂

´T ∇̂v̂T
q

and the transformation of the incompressibility condition is defined by

Ĵdiv vf “ xdivpĴF̂
´1

v̂f
q.

In the further parts of this thesis, we will not use hats to distinguish between quantities in the
Eulerian and Lagrangian coordinate systems. For more details and a more rigorous analysis
of the ALE approach, we refer to the book [25]. On the interface, the continuity coupling
conditions in ALE coordinates stay unchanged

vf “ vs, uf “ us. (1.12)

The balance of stress in the normal direction after the transformation is instead given by

JσfF´T ¨ n⃗f
“ ´Fσs ¨ n⃗s. (1.13)

On the left hand side, J comes from multiplying both sides of the fluid system by J and F´T

from integration by parts.
The authors in [6] analyze three test problems - FSI1, FSI2, and FSI3. Solving the FSI1

problem leads to a steady state and the other two test problems have periodic solutions. Since
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1.1. Strong Formulations

the main focus of this thesis are time-depend problems, here we only analyze the last two
configurations. The exact parameter values are displayed in Table 1.2. FSI2 leads to higher
displacement profiles. That asks for a stronger stiffness operator (1.11), both of which are
stated below

S2px⃗q “ 1 ` 100e´75px1´0.6q2e´1000px2´0.21q2

` 100e´75px1´0.6q2e´1000px2´0.19q2 ,

S3px⃗q “ 1 ` 20e´15px1´0.6q2e´200px2´0.21q2

` 20e´15px1´0.6q2e´200px2´0.19q2 .

Nevertheless, the FSI3 is considered the more challenging test case because of its density ratio
ρf

ρs “ 1 which is higher than ρf

ρs “ 0.1 in the case of FSI2. The displacement profiles of both
of these examples at the end of the elastic structure are shown in Figure 1.5.

1.1.3 Thermoelasticity

In our third and final model problem, we consider a thermoelasticity problem, where
we look at an elastic material, whose material parameters depend on temperature. This
problem will be decoupled into systems describing an elastic system and an equation governing
temperature. Unlike the previous two examples, this problem is a volume coupled one. That
means that both subproblems are defined over the same spatial domain.

We consider a T-shaped domain Ωs which is presented in Figure 1.4. On all boundaries, we
either set homogenous Dirichlet or homogenous Neumann boundary conditions. The geometry
parameters are shown in Table 1.3. The elastic structure is modeled using damped linear
elasticity equations

ρBtv ´ div σ ´ δ∆v “ f, Btu “ v in I ˆ Ω, (1.14)

where the stress tensor is defined as

σ “ 2µϵ` λtr ϵI, ϵ “
1

2

´

∇u ` p∇uq
T
¯

.

The Lamé parameters λ and µ depend on the temperature and are defined as

λ “
νE

p1 ` νqp1 ´ 2νq
, µ “

E

2p1 ` νq

and E “ E0p1 ´βT q, where T is the unknown temperature. This temperature is additionally
governed by the equation

CρBtT ´ κ∆T “ αdiv u. (1.15)

All of the specific parameters are listed in Table 1.1.3. These values are matched with ther-
moelastic properties of steel. The external force is a pulse function that can be decomposed
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Chapter 1. Model Problems

geometry parameter symbol value

structure length L 5.0
structure width H 0.2
reference point A p0, 0q

reference point B p2.0,´2.0q

Table 1.3: Values of the geometry parameters from Figure 1.4.

A

B

L

H

H

Figure 1.4: We present the T-shaped space domain and describe its geometry. As bound-
ary conditions, on the very bottom of domain we take homogenous Dirichlet conditions for
displacement and velocity. Otherwise we set homogenous Neumann conditions for all the
unknowns.

as f “ gptqfptq. The function f is defined in the same way as in the first model problem
by (1.6). The function g is defined below

gptq “
`

2000 cosp10πt´ 0.5πq2, 0
˘T
.

1.2 Variational Formulations

The aim of this section is to transform the strong formulations of the model problems
into variational equations suitable for the analysis from the perspective of the finite element
method. This problem, given the defined variational forms and functions spaces, has the
following variational form

17



1.2. Variational Formulations

parameter symbol unit value

density ρ kg
m3 7800

kinematic viscosity ν m2

s 0.29

initial modulus of elasticity E0
Gkg
ms2

210

damping parameter δ kg
ms 0.01

thermal conductivity κ W
m˝C 480

specific heat capacity C J
kg˝C 45

coefficient of thermal expansion α G˝C
m 20

modulus of elasticity scaling β 1
˝C 0.25

Table 1.4: Material parameters for the thermoelasticity model problem. The values corre-
spond to steel.

Problem 1.1. Find U⃗ P X such that

Bf pU⃗qpΦf q “F f pΦf q, for all Φf P Xf ,

BspU⃗qpΦsq “F spΦsq, for all Φs P Xs

for the interface problems. The thermoelasticity variational problem is instead given by

Problem 1.2. Find (U⃗, T q P X such that

BspU⃗, T qpΦq “F spΦq, for all Φ P Xs,

BT pU⃗, T qpΛq “0, for all Λ P XT .

Let us start with defining appropriate function spaces. As the first one, we will define
a space akin to the space H1

0 pΩq, that is a space of functions with homogeneous Dirichlet
boundary conditions whose first weak derivatives are in the space L2pΩq. In our applications,
we will define a similar space with the exception that instead of the whole boundary BΩ, we
will take only its subset Υ Ă BΩ

H1
0 pΩ; Υq “

␣

v P H1pΩq| v|Υ “ 0
(

.

Similarly, one can define functions with weak L2 derivatives, which on a subset of the boundary
Υ Ă BΩ are equal to a given function f

H1pΩ; Υ; fq “
␣

v P H1pΩq| v|Υ “ f
(

.

To define the whole space-time domain we will use the space

XpV q “
␣

v P L2pI, V q| Btv P L2pI, V ˚q
(

,
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Chapter 1. Model Problems

where V ˚ denotes the dual space of V . On each of the domains Ωf and Ωs the L2 products
are defined using the notation

p¨, ¨qf :“ p¨, ¨qH1pΩf qdˆH1pΩf qd , p¨, ¨qs :“ p¨, ¨qH1pΩsqdˆH1pΩsqd .

Using duality arguments, one can also define a similar product on the interface

x¨, ¨yΓ :“ x¨, ¨y
H´ 1

2 pΓqdˆH
1
2 pΓqd

.

Finally, the products appropriate for expressing time derivatives are given by

x¨, ¨yf :“ x¨, ¨yH´1pΩf qdˆH1pΩf qd , x¨, ¨ys :“ x¨, ¨yH´1pΩsqdˆH1pΩsqd .

d denotes dimensions of the spaces.

1.2.1 Heat and Wave Equation

In the case of our first example, where we couple the heat and wave equation, we choose
V f :“ H1

0 pΩf ; Γf
Dq and V s :“ H1

0 pΩs; Γs
Dq as the function spaces defined on the fluid and solid

domain, respectively. For the fluid problem, we choose U⃗
f
,Φf P Xf :“

`

XpV f q
˘2

and for the

solid U⃗
s
,Φs P Xs :“

`

XpV sq
˘2

. These trial and test functions are defined as

U⃗
f

:“

ˆ

vf

uf

˙

, U⃗
s

:“

ˆ

vs

us

˙

, U⃗ :“

˜

U⃗
f

U⃗
s

¸

,

Φf :“

ˆ

φf

ψf

˙

, Φs :“

ˆ

φs

ψs

˙

, Φ :“

ˆ

Φf

Φs

˙

and U⃗,Φ P X :“ Xf ˆXs. Given these functions, we can define the variational forms as

Bf pU⃗qpΦf q :“

ż

I

@

Btv
f , φf

D

f
dt`

ż

I
af pU⃗qpΦf q dt`

`

vf p0q, φf p0q
˘

f
,

BspU⃗qpΦsq :“

ż

I

@

Btv
s, φs

D

s
dt`

ż

I

@

Btu
s, ψs

D

s
dt`

ż

I
aspU⃗qpΦsq dt

`
`

vsp0q, φsp0q
˘

s
`
`

usp0q, ψsp0q
˘

s
,

F f pΦf q :“

ż

I

`

gf , φf
˘

f
dt,

F spΦsq :“

ż

I

`

gs, φs
˘

s
dt

(1.16)

with

af pU⃗qpΦf q :“
`

ν∇vf ,∇φf
˘

f
`
`

β ¨ ∇vf , φf
˘

f
`
`

∇uf ,∇ψf
˘

f
´
@

νBn⃗f
vf , φf

D

Γ

´
@

Bn⃗f
uf , ψf

D

Γ
` γν

@

vf ´ vs, φf
D

Γ
` γ

@

uf ´ us, ψf
D

Γ
,

aspU⃗qpΦsq :“
`

λ∇us,∇φs
˘

s
`
`

δ∇vs,∇φs
˘

s
´
`

vs, ψs
˘

s
`
@

νBn⃗f
vf , φs

D

Γ

´
@

δBn⃗s
vs, φs

D

Γ
.

(1.17)
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1.2. Variational Formulations

To obtain this formulation, we first integrated by parts the Laplacian terms. The kinematic
condition was incorporated into the fluid problem and the dynamic condition became a part of
the solid problem. Both coupling conditions on the interface were imposed weakly. Since it is
not a standard procedure for Dirichlet boundary conditions, we used the Nitsche method which
was originally presented in [26]. The parameter γ can be seen as a penalization parameter
enforcing uf “ us and vf “ vs weakly. The parameter γ ą 0 should be large enough to
counter-balance different constants, like the one from the inverse estimate. We set γ “ 10.
Too small values for γ might cause a discrepancy from the Dirichlet condition, too large values
worsen the conditioning of the resulting system. Normally, the Nitsche terms are scaled by
γh´1, where h stands for a space mesh size. We use this scaling in our simulations as well.
However, for coherency, we will only include the parameter h in a fully discrete formulation.
We refer to [27] for the analysis of a full fluid-structure interaction system with Nitsche
coupling on the interface. We would also like to refer to Section 5.1, where different methods
to enforce interface conditions are discussed.

1.2.2 FSI Problem

In the FSI example for the displacement and velocity, we again choose spaces of H1 func-
tions with appropriate Dirichlet boundary conditions. In the case of pressure, it is enough to
assume L2 regularity. Therefore

V f
v :“ H1

0 pΩf ; Γf
Dq,XH1pΩf ; Γf

in;vf
inq;

V f
u :“ H1

0 pΩf ; BΩfzΓq,

V f
p :“ L2pΩf q,

V s
v “ V s

u :“ H1
0 pΩs; Γs

Dq.

The spaces are further specified by

Xf :“
`

XpV f
v q

˘d
ˆ
`

XpV f
u q

˘d
ˆ L2pI, V f

p q,

Xs :“
`

XpV s
v q
˘d

ˆ
`

XpV s
u q
˘d
.

We take trial and test functions defined over the fluid U⃗
f
,Φs P Xf :“ XpV f q and solid

U⃗
s
,Φs P Xs :“ XpV sq domains. They are further split to

U⃗
f

:“

¨

˝

vf

uf

pf

˛

‚, U⃗
s

:“

ˆ

vs

us

˙

, U⃗ :“

˜

U⃗
f

U⃗
s

¸

,

Φf :“

¨

˝

φf

ψf

ωf

˛

‚, Φs :“

ˆ

φs

ψs

˙

, Φ :“

ˆ

Φf

Φs

˙
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Chapter 1. Model Problems

and U⃗,Φ P X :“ Xf ˆXs. After integrating the stress tensor by parts and applying the ALE
transformation, we obtain the system

Bf pU⃗qpΦf q :“

ż

I

@

ρfJBtv
f ,φf

D

f
dt´

ż

I

@

ρfJF´1∇vfBtu
f ,φf

D

f
dt

`

ż

I
af pU⃗qpΦf q dt`

`

ρfJvf p0q,φf p0q
˘

f

´
`

ρfJF´1∇vf p0qBtu
f p0q,φf p0q

˘

f
,

BspU⃗qpΦsq :“

ż

I

@

ρsBtv
s,φs

D

s
dt`

ż

I

@

Btu
s,ψs

D

s
dt

`

ż

I
aspU⃗qpΦsq dt`

`

ρsvsp0q,φsp0q
˘

s
`
`

usp0q,ψsp0q
˘

s
.

(1.18)

The forms used in the formulation above are defined below

af pU⃗qpΦf q :“
`

JσfF´T ,∇φf
˘

f
`
`

ρfJF´1vf ¨ ∇vf ,φf
˘

f
`
`

JtrpF´1∇vf q, ωf
˘

f

`
`

S∇uf ,∇ψf
˘

f
´
@

JσfF´T ¨ n⃗f ,φ
f
D

Γ
´
@

SBn⃗f
uf ,ψf

D

Γ

` γρfν
@

vf ´ vs,φf
D

Γ
` γ

@

uf ´ us,ψf
D

Γ
,

aspU⃗qpΦsq :“
`

Fσs,∇φs
˘

s
´
`

vs,ψs
˘

s
`
@

Jσf ,F´T ¨ n⃗f , φ
s
D

Γ
.

(1.19)

In this variational formulation to avoid the second derivative in space of uf , we used the
identity

divpJF´1∇vf q “ JtrpF´1∇vf q.

For the proof, we again refer to [25].
The implementation of the coupling conditions is very similar to the previous problem. All

of the coupling conditions are imposed weakly which in the case of the kinematic condition is
done with the help of the Nitsche method. During simulations we discovered that this problem
requires a higher value of the parameter γ and therefore we chose γ “ 1000. Also here, the
scaling γh´1 will be added in front of the Nitsche terms in the fully discrete formulation only.
The Dirichlet boundary conditions are added to the fluid and the Neumann conditions to the
solid problem. In the Neumann conditions, we had to account for the ALE transformation
and apply the stiffness operator.

1.2.3 Thermoelasticity

In this last model problem, we take the space V s :“ H1
0 pΩs; ΓDq to model the solution to

the elasticity problem. ΓD denotes the bottom part of the boundary, where the homogeneous
Dirichlet boundary conditions are imposed. For the temperature equation, we take V T :“

H1
0 pΩsq. Further, we will use solid trial and test functions U⃗,Φ P Xs :“

`

XpV sq
˘2d

and the
temperature functions T,Λ P XT :“ XpV T q
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1.2. Variational Formulations

U⃗ :“

ˆ

v
u

˙

, Φ :“

ˆ

φ
ψ

˙

.

That leads us to the problem

BspU⃗, T qpΦq :“

ż

I

@

ρBtv,φ
D

dt`

ż

I

@

Btu,ψ
D

dt`

ż

I
aspU⃗, T qpΦq dt

`
`

ρvp0q,φp0q
˘

`
`

up0q,ψp0q
˘

,

BT pU⃗, T qpΛq :“

ż

I

@

CρBtT,Λ
D

dt`

ż

I
aT pU⃗, T qpΛq dt`

`

CρT p0q,Λp0q
˘

,

F spΦq :“

ż

I

`

g,φ
˘

dt

(1.20)

with
aspU⃗, T qpΦq :“

`

σ,∇φ
˘

`
`

δ∇v,∇φ
˘

´
`

v,ψ
˘

aT pU⃗, T qpΛq :“
`

κ∇T,∇Λ
˘

´
`

αdiv u,Λ
˘

.

We arrived at this formulation by simple integration by parts. Note that this problem in
general is a nonlinear one. However, given our decoupled splitting, each of the subsystems is
reduced to a set of linear equations. Since all of the terms are integrated over the same space
domain, we omitted the subscript in the L2 product.

Here we would like to pay a bit of attention to the indices ”s” and ”T”. They will be used
throughout this thesis while referring to the thermoelasticity problem. However, whenever we
will discuss general concepts concerning coupled problems, where the volume coupling nature
of this problem is not important, we will instead use indices ”f” and ”s”.
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Chapter 1. Model Problems

Figure 1.5: In this figure, we show the vertical displacement of FSI2 (top) and FSI3 (down)
at the end of the elastic structure over time. In both examples we can see that the oscillations
are proceeded by a long stagnation phase. FSI2 example needs a longer time to develop the
oscillations and once they develop, the vertical displacement reaches higher values with larger
periods.
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Chapter 2

Discretization of Coupled Problems

A suitable choice of time and space discretizations is crucial for the stability and accuracy
of finite element formulations. This can be especially challenging for coupled problems. The
introduction of adaptive time-stepping procedures can further complexify these problems.
One of the tools that may help with the analysis, is looking at classical time-stepping schemes
from the perspective of the space-time framework. This way, we can have access to tools
from the finite element community more commonly used for space discretization. This will
be especially important in later chapters where we will derive an error estimator used as a
criterion in an adaptive time-stepping algorithm. In the case of space discretization, although
we are going to employ classical approaches, handling the transfer of interface values between
different meshes is non-trivial.

We will start this chapter by tackling time discretization and will first discuss the specific
needs of coupled problems. Then we will explain how to embed time-stepping methods in
a space-time formulation and present ways to cope with different time meshes for each of
the coupled systems. A crucial part will be the introduction of an interpolation operator
which will enable a transfer of values between the two meshes. Finally, we will derive semi-
discrete formulations of our model problems including the FSI problem which will require the
most care. Then we will consider the space discretization and shortly present methods for
reassigning the interface coupling conditions between different space meshes.

2.1 Time Discretization

Choosing an appropriate time-stepping scheme for coupled systems is particularly chal-
lenging since each of the problems calls for different properties in the scheme. Indeed, time
discretization of parabolic equations leads to highly stiff systems which need preferably im-
plicit stable schemes. Hyperbolic problems have the feature of energy conservation and thus
require schemes with little numerical dissipation. This tension can be illustrated with the help
of the class of time-stepping schemes called θ-schemes. First, let us define a simple coupled
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2.1. Time Discretization

system consisting of a parabolic and a hyperbolic equation

ż

I

"

A

Btu
1, φ1

E

` a1
´

U⃗,Φ1
¯

*

dt “

ż

I

´

f1pU⃗q,Φ1
¯

dt,

ż

I

"

A

Btu
2, φ2

E

`

A

Btv
2, ψ2

E

` a2
´

U⃗,Φ2
¯

*

dt “

ż

I

´

f2pU⃗q,Φ2
¯

dt,

(2.1)

where the trial and test functions are defined as

U⃗
1

:“

ˆ

u1

v1

˙

, U⃗
2

:“

ˆ

v2

u2

˙

, U⃗ :“

˜

U⃗
1

U⃗
2

¸

,

Φ1 :“

ˆ

φ1

ψ1

˙

, Φ2 :“

ˆ

φ2

ψ2

˙

, Φ :“

ˆ

Φ1

Φ2

˙

For now, we assume that these problems are defined over the same space domain Ω with
homogeneous Dirichlet boundary conditions. We can define the space of solutions of this
system as (2.1)

X :“
␣

ϕ P L2pI, V q, Btφ P L2pI, V ˚q
(

,

where as space V we choose V “ H1
0 pΩq and its dual space is given by V ˚ “ H´1pΩq. One

can introduce discretization of the time interval I “ r0, T s

0 “ t0 ă t1 ă ... ă tN “ T, kn :“ tn ´ tn´1, In :“ ptn´1, tns

with a grid size k :“ maxn“1,...,N kn. Then, for a given θ P r0, 1s we obtain the scheme

´

u1kptnq ´ u1kptn´1q, φ1
kptnq

¯

`

´

u2kptnq ´ u2kptn´1q, φ2
kptnq

¯

`

´

v2kptnq ´ v2kptn´1q, ψ2
kptnq

¯

` θkna
1
´

U⃗kptnq,Φ1
kptnq

¯

` p1 ´ θqkna
1
´

U⃗kptn´1q,Φ1
kptnq

¯

` θkna
2
´

U⃗kptnq,Φ2
kptnq

¯

` p1 ´ θqkna
2
´

U⃗kptn´1q,Φ2
kptn´1q

¯

“ θkn

´

f1pU⃗kptnqq,Φ1
kptnq

¯

` p1 ´ θqkn

´

f1pU⃗kptn´1qq,Φ1
kptnq

¯

` θkn

´

f2pU⃗kptnqq,Φ2
kptnq

¯

` p1 ´ θqkn

´

f2pU⃗kptn´1qq,Φ2
kptnq

¯

(2.2)

By setting θ “ 0 we get the explicit Euler scheme, θ “ 1
2 leads to the Crank-Nicolson and

θ “ 1 corresponds to the implicit Euler. Based on a deeper study of this class of schemes, one
can deduce three basic observations:

1. Convergence rate - only the Crank-Nicolson scheme has the second order of conver-
gence. Other schemes converge linearly.
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Chapter 2. Discretization of Coupled Problems

2. Stability - the more implicit the scheme is, the more stable it is. Consequently, the
implicit Euler has the best stability properties.

3. Numerical energy dissipation - Crank-Nicolson has the lowest energy dissipation.

For details, we refer to [25]. From this perspective, the most sensible way to resolve these
tensions is to choose the Crank-Nicolson scheme. Its A-stability is enough for most of the
applications. However, for more challenging problems it may not be able to deal with errors
accumulated over time. Further, it may not sufficiently smooth the solution for the irregular
initial data. Thus, one can try to slightly shift the Crank-Nicolson to the implicit side. Indeed,
in [28] and [29] it was discovered that by replacing some of the Crank-Nicolson time-steps with
smaller implicit Euler ones, we can recover the second order convergence rate. This scheme,
after its author, is called the Rannacher time marching scheme. Further, in [30] the authors
were able to prove second order error estimates for nonstationary Navier-Stokes equations.
Interestingly, for a classic version of the Crank-Nicolson scheme, the authors had to assume
k ď ch

2
3 , whereas, for the modified version of the scheme, this assumption was not necessary.

A similar idea stands behind shifted Crank-Nicolson scheme [25]. There, instead of intro-
ducing implicit Euler steps one uniformly shifts θ using

θ :“
1

2
` Opkq

It is enough to achieve a strongly A-stable scheme which still has a second order convergence
rate and very low numerical energy dissipation. Because of its simplicity, this is also the
scheme that we decided to use to discretize our FSI model problem.

Another way to construct a time-stepping scheme with good properties is by using a so-
called, fractional θ-scheme, whereby carefully splitting a time-step into smaller parts and
choosing appropriate θ parameters for each of them one can recover second order convergence
and low numerical energy dissipation. Since the chosen θ values belong to θ P p12 , 1s, the
resulting scheme is strongly A-stable. This approach has been introduced in [31] and further
extended in [32].

2.1.1 Space-time Approach

So far, we have been discussing time discretization methods, where the time component was
discretized first before the space component. It is also possible to use Galerkin discretization
simultaneously for both space and time, so-called space-time discretization. This approach
allows access to tools from the finite element community such as robust error estimates and
adjoint formulations. However, the computational costs of space-time methods, caused by an
additional dimension in the discretization, can be prohibitive. Fortunately, up to quadratures
of nonlinear terms, one can express some of the classic single-step time-stepping methods
within the space-time framework.

This idea has been explored in [19] and then further extended in [20]. By embedding
the definition of time-stepping schemes in the Galerkin method framework, the authors were

27



2.1. Time Discretization

able to derive both a priori and a posteriori estimates in the energy and L2 norms. We will
demonstrate this idea using both discontinuous and continuous approaches. The first step is
defining polynomial spaces over the time interval I similar to spaces conventionally used for
the finite element method

Xr
k “

␣

φ P CpĪ , V q| φ|In P PrpV q for all n “ 1, . . . , N
(

,

Y r
k “

␣

φ P L2pĪ , V q| φ|In P PrpV q for all n “ 1, . . . , N and φp0q P L2pΩq
(

,

where PrpV q denotes a space of piecewise polynomials of degree r and value in a Sobolev
space V , which here is chosen as V “ H1

0 pΩq.

2.1.1.1 Discontinuous Galerkin Methods

In discontinuous methods, often denoted as dG(r), both the trial and test functions belong
to Y r

k . In a special case of this approach, dG(0), we consider the space Y 0
k that contains

piecewise constant functions. Then, on every interval In:

U⃗kptq
ˇ

ˇ

ˇ

In
“ U⃗kptnq, Φkptq

ˇ

ˇ

ˇ

In
“ Φkptnq. (2.3)

A corresponding projection operator is defined by

´

iIEk U⃗
¯

ptq
ˇ

ˇ

ˇ

In
“ U⃗ptnq.

The space Y r
k is the image of this operator and therefore for any U⃗k P Y r

k we have

´

iIEk U⃗k

¯

“ U⃗k.

At the initial time, we set
´

iIEk U⃗
¯

p0q “ U⃗p0q.

This choice of Galerkin spaces leads to a nonconforming formulation, where Y r
k R X. Never-

theless, one can introduce a conforming semi-discrete formulation of the problem (2.1). We
introduce jump terms typical for discontinuous Galerkin methods

U⃗
`

k ptq :“ lim
sŒt

U⃗kpsq, U⃗
´

k ptq :“ lim
sÕt

U⃗kpsq, rU⃗ksptq :“ U⃗
`

k ptq ´ U´
k ptq,
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Chapter 2. Discretization of Coupled Problems

which in turn can be used in the following conforming problem over each of the intervals In
ż

In

"

A

Btu
1
k, φ

1
k

E

` a1
´

U⃗k,Φ
1
k

¯

*

dt`

´

ru1ksptn´1q, φ1,`
k ptn´1q

¯

“

ż

In

´

f1pU⃗kq,Φ1
k

¯

dt,

ż

In

"

A

Btu
2
k, φ

2
k

E

`

A

Btv
2
k, ψ

2
k

E

` a2
´

U⃗k,Φ
2
k

¯

*

dt`

´

ru2ksptn´1q, φ2,`
k ptn´1q

¯

`

´

rv2ksptn´1q, ψ2,`
k ptn´1q

¯

“

ż

In

´

f2pU⃗kq,Φ2
k

¯

dt.

(2.4)

If we assume that the forms a1, a2 as well as the functions f1 and f2 are linear in U⃗ and
do not explicitly depend on time t, then the discretization of the problem (2.1) using the
formulation above is equivalent to the implicit Euler scheme. Although on every interval In,
the time derivative is zero

ż

In

A

BtU⃗k,Φk

E

dt “ 0,

we can use the jump term to derive the finite difference quotient conventionally associated
with time-stepping

´

rU⃗ksptn´1q,Φ`
k ptn´1q

¯

“

´

U⃗kptnq ´ U⃗kptn´1q,Φkptnqq

¯

.

In the case of nonlinearities, we lose the equivalence between the implicit Euler and dG(0)
method. However, the error can be split

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ
U⃗ ´ U⃗k

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ
ď

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ
U⃗ ´ U⃗G

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ
`

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ
U⃗G ´ U⃗k

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ
, (2.5)

where U⃗k denotes the solution coming from the implicit Euler scheme and we refer to UG as
the result of the Galerkin scheme given by (2.3). In general, these two errors are of the same
order and thus, have to be accounted for separately. If the nonlinearity only comes from the
right hand side, one can solve this problem by approximating the integrals

ż

In

´

f1pU⃗kq,Φ1
k

¯

dt,

ż

In

´

f2pU⃗kq,Φ2
k

¯

dt

using higher order quadrature rules.

2.1.1.2 Continuous Galerkin Methods

Similarly, we can consider continuous setup, where we pick continuous trial functions from
space Xr

k and discontinuous test functions of one order lower from Y r´1
k . That method is
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2.1. Time Discretization

referred to as cGprq. Here as well one can find one of the θ-schemes discussed earlier. Indeed,
for cG(1) trial functions are piecewise continuous in time

U⃗kptq
ˇ

ˇ

ˇ

In
“

tn ´ t

tn ´ tn´1
U⃗kptn´1q `

t´ tn´1

tn ´ tn´1
U⃗kptnq (2.6)

and test functions, the same as in the previous example, are piecewise constant in time

Φkptq
ˇ

ˇ

ˇ

In
“ Φkptnq. (2.7)

The following projection operator will be associated with this method

´

iCN
k U⃗

¯

ptq
ˇ

ˇ

ˇ

In
“

tn ´ t

tn ´ tn´1
U⃗ptn´1q `

t´ tn´1

tn ´ tn´1
U⃗ptnq,

where for any U⃗k P Xr
k we have

´

iCN
k U⃗k

¯

“ U⃗k and at the initial time we set

´

iCN
k U⃗k

¯

p0q “ U⃗kp0q.

This choice of trial and test spaces leads to a conforming method, where the problem (2.1)
does not have to be adjusted other that replacing the continuous functions with semi-discrete
ones. After performing time integration using these functions we obtain

ż

In

A

BtU⃗k,Φ
k
E

dt “

ż

In

´ U⃗kptnq

tn ´ tn´1
´

U⃗kptn´1q

tn ´ tn´1
,Φkptnq

¯

dt

“

´

U⃗kptnq ´ U⃗kptn´1q,Φkptnq

¯

.

Similarly, assuming linearity of the form a

ż

In

a
´

U⃗k,Φk

¯

dt

“

ż

In

tn ´ t

tn ´ tn´1
a
´

U⃗kptn´1q,Φkptnq

¯

dt`

ż

In

t´ tn´1

tn ´ tn´1
a
´

U⃗kptnq,Φkptnq

¯

dt

“
1

2
kna

´

U⃗kptn´1q,Φkptnq

¯

`
1

2
kna

´

U⃗kptnq,Φkptnq

¯

.

From these computations, one can clearly spot a connection between this scheme and the
Crank-Nicolson scheme. In truth, under the same assumptions on linearity as in the case of
the previously discussed discontinuous Galerkin method, the Crank-Nicolson method and the
cG(1) method are equivalent. The inconsistencies arising from the nonlinear terms can be
dealt with in a similar way using (2.5). Finally, we would like to point out that by choosing
appropriate test and trial spaces along with quadrature rules, one can recover θ-schemes for
all values of θ. For details, we would like to refer to [25].
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Chapter 2. Discretization of Coupled Problems

2.1.2 Multirate Time-stepping

We can further extend the idea of time-stepping methods for coupled problems by intro-
ducing multirate time-stepping, where each of the problems has a different time mesh. It is
not a new concept and has its roots in domain decomposition methods. One of the first arti-
cles on the matter is [7]. A detailed overview of the domain decomposition methods one can
find in the book [8]. In [9] the authors present methods more specifically designed for coupled
systems. For another outlook on the literature, we would like to refer to the introduction
of Chapter 3 devoted to decoupling algorithms. These two topics are closely related since
decoupling a coupled problem is necessary to introduce independent time-stepping strategies.

Establishing multirate time-stepping methods for coupled systems requires resolving the
tension between two factors. First, we have to guarantee that the solutions fulfill the coupling
conditions. Second, we need to provide enough flexibility to enable independent time-stepping
in each of the problems. We decided to solve this problem by introducing a hierarchy of time
meshes. The coarse mesh, which is the same for both of the problems, assures that the
coupling is enforced. The fine meshes introduce independent time-step sizes in each of the
domains. The coarse mesh is defined by

0 “ t0 ă t1 ă ... ă tN “ T, kn :“ tn ´ tn´1, In :“ ptn´1, tns.

This mesh will be referred to as macro time mesh and to its time-steps as macro time-steps.
Each of the intervals In is further independently split in the fluid domain

tn´1 “ tfn,0 ă ... ă tf
Nf

n
“ tn, k

f
n,m :“ tfn,m ´ tfn,m´1, I

f
n,m :“ ptfn,m, t

f
n,m´1s

and in the solid domain

tn´1 “ tsn,0 ă ... ă tsNs
n

“ tn, k
s
n,m :“ tsn,m ´ tsn,m´1, I

s
n,m :“ ptsn,m, t

s
n,m´1s.

We will use the names micro time mesh and micro time-steps while referring to these meshes.
An example of this kind of partitioning is sjowm in Figure 2.1. The global mesh sizes are
defined by

kf :“ max kfn,m, ks :“ max ksn,m, k :“ maxtkf , ksu.

One can also define a global number of time-steps in each subdomain

Nf :“
N
ÿ

n“1

Nf
n , N s :“

N
ÿ

n“1

N s
n.

We assume that micro time-steps are introduced only when necessary. That means that for
every interval In the only points that coincide in the fluid and solid micro mesh are the ends
of the interval tn´1 and tn. Further, if we assume that these meshes are a result of an adaptive
algorithm, where the time-steps can be refined only in the middle, then for each In there is
no micro time-stepping in either the fluid or the solid domain. This mechanism is explained
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2.1. Time Discretization

ksn,1 ksn,2

kn´1 kn

tn´2 tn´1 tn
tfn´1,1 tfn´1,2 tfn´1,3

Figure 2.1: We show a snapshot of time partitioning with two macro time-steps. In the first
one, we introduce four micro time-steps in the fluid domain. In the second one, we have two
micro time-steps in the solid domain.

ksn,1 ksn,2

kn´1 kn kn`1

tn´2 tn´1 tn tn`1
tfn´1,1 tfn,1

Figure 2.2: Here we show the refinement of the time mesh presented in Figure 2.1 by splitting
In in the solid subproblem. Since the time mesh corresponding to the fluid subproblem was
already split at this point (point tfn´1,2 in Figure 2.1), we can introduce a new macro time-
step.

in Figures 2.1 and 2.2. This adaptive procedure is further discussed in Section 4.2.5, where
we introduce an adaptivity algorithm.

To enable the transfer of values between the time meshes, which is necessary to evaluate
the coupling conditions, we need to introduce appropriate operators. Based on our needs, we
decided to take average operators

´

IfkU⃗
f
¯

ptq
ˇ

ˇ

ˇ

Ifn,m

:“
1

kfn,m

ż

Ifn,m

U⃗
f

dt,
´

IskU⃗
s
¯

ptq
ˇ

ˇ

ˇ

Isn,m

:“
1

ksn,m

ż

Isn,m

U⃗
s

dt. (2.8)

We will also use the shorter notation Ik :“ pIfk , I
s
kqT . At the initial time, we set

´

IkU⃗
¯

p0q “ U⃗p0q.

The key property of this operator is that the error given by this operator has an average equal
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Chapter 2. Discretization of Coupled Problems

to zero
ż

In

´

U⃗ ´ IkU⃗
¯

dt “ 0.

It will be crucial in Chapter 5, where stability estimates will be derived.

2.1.3 Semi-discrete Formulations

Using the information above one can derive semi-discrete formulations for each of our
model problems. In all of them, we either use the Crank-Nicolson or the shifted Crank-
Nicolson time-stepping scheme. In both cases, we will use the correspondence to the Cg(1)
scheme. Therefore, as the trial spaces for the interface coupled problem, we take

Xf,1
k “

␣

φ P CpĪ , V f q

ˇ

ˇ

ˇ
φ|

Ifn,m
P P1pV f q for all Ifn,m Ă I

(

,

Xs,1
k “

␣

φ P CpĪ , V sq

ˇ

ˇ

ˇ
φ|Isn,m

P P1pV sq for all Isn,m Ă I
(

.

The test spaces for the interface problems are given by

Y f,0
k “

␣

φ P L2pĪ , V f q

ˇ

ˇ

ˇ
φ|

Ifn,m
P P0pV f q for all Ifn,m Ă I and φp0q P L2pΩf q

(

,

Y s,0
k “

␣

φ P L2pĪ , V sq

ˇ

ˇ

ˇ
φ|Isn,m

P P0pV sq for all Isn,m Ă I and φp0q P L2pΩsq
(

.

Similarly, for the thermoelasticity problem, we will replace the Xf,1
k by

XT,1
k “

␣

φ P CpĪ , V T q

ˇ

ˇ

ˇ
φ|ITn,m

P P1pV T q for all Isn,m Ă I
(

.

Instead of Y f,0
k , we will use

Y T,0
k “

␣

φ P L2pĪ , V T q

ˇ

ˇ

ˇ
φ|ITn,m

P P0pV T q for all ITn,m Ă I and φp0q P L2pΩsq
(

.

Examples of functions given by these spaces are given in Figure 2.3.
As the result of this time discretization procedure, we will obtain the following variational

problem for the interface problem

Problem 2.1. Find U⃗k P Xk such that

Bf
k pU⃗kqpΦf

kq “F f
k pΦf

kq, for all Φf
k P Y f

k ,

Bs
kpU⃗kqpΦs

kq “F s
k pΦs

kq, for all Φs
k P Y s

k .

and the formulation

Problem 2.2. Find U⃗k P Xk such that

Bs
kpU⃗k, TkqpΦkq “F s

k pΦkq, for all Φk P Xs
k,

BT
k pU⃗k, TkqpΛkq “0, for all Λk P XT

k .

for the thermoelsticity problem.
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tn´1 tn

vfk ptn´1q

vfk ptnq

kn

φf
kptnq

tn´1 tn
kn

Figure 2.3: We show an example of a piecewise linear trial function vfk (left) and a piecewise

constant test function φf
k (right).

2.1.3.1 Heat and Wave Equation

We will start with the coupling of the heat and wave equations and discretize this problem
using the classical Crank-Nicolson time-stepping scheme. Because this problem is linear in
time, the Cg(1) time-stepping scheme and the Crank-Nicolson scheme are equivalent up to
the quadrature of the right hand side. We will use notation

Xf
k :“

`

Xf,1
k

˘2
, Xs

k :“
`

Xs,1
k

˘2
, Xk :“ Xf

k ˆXs
k

while referring to the trial spaces. Similarly, we will denote

Y f
k :“

`

Y f,0
k

˘2
, Y s

k :“
`

Y s,0
k

˘2
, Yk :“ Y f

k ˆ Y s
k .

As trial and test functions we take U⃗k P Xk and Φk P Yk, respectively. Then, we define the
bilinear forms as

Bf
k pU⃗kqpΦf

kq :“

ż

I

"

´

Btu
f
k , φ

f
k

¯

f
` af

´

pUf
k , I

f
kU

s
kqT ,Φf

k

¯

*

dt,

Bs
kpU⃗kqpΦs

kq :“

ż

I

"

´

Btu
s
k, φ

s
k

¯

s
`

´

Btv
s
k, ψ

s
k

¯

s
` as

´

pIskU
f
k ,U

s
kqT ,Φs

k

¯

*

dt,

The right hand side is integrated in time using 2-point Gaussian quadrature. Assuming there
is no micro-time-stepping in In, this quadrature rule is given by

ż

In

gptq dt «
kn
2

ˆ

g

ˆ

kn

2
?

3
` t̄n

˙

` g

ˆ

´
kn

2
?

3
` t̄n

˙˙

,

where t̄n “
tn´tn1

2 . Since this quadrature has one order higher convergence rate than the
Crank-Nicolson method, we can ensure that the quadrature error is also of a higher order
than the Galerkin error. Thus, it can be neglected.
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Chapter 2. Discretization of Coupled Problems

2.1.3.2 FSI Problem

To discretize in time the FSI example, we will use the shifted Crank-Nicolson time-stepping
scheme. Since this is a highly nonlinear system, its discretization introduces a quadrature
error, whose order of convergence is the same as the order of convergence of the scheme itself.
This example also carries some specific difficulties. One of them is incompressibility. The
pressure in the systems describing incompressible fluids can be understood as a Lagrange
multiplier to a corresponding system solved in the space of divergence-free functions

V0 :“
!

φ P H1pΩq

ˇ

ˇ

ˇ
div φ “ 0

)

.

As a consequence, we have two possible ways to discretize the pressure components. The first
option is to discretize them using the shifted Crank-Nicolson scheme. Then, before applying
the ALE transformation, the incompressibility condition is discretized using

ˆ

1

2
´ Opkq

˙

kn
`

div vf
kptn´1q, ωf

k ptnq
˘

f
`

ˆ

1

2
` Opkq

˙

kn
`

div vf
kptnq, ωf

k ptnq
˘

f
.

By testing this formulation with a function of the form

ωf
k ptnq :“ div vf

kptnq ´ div vf
kptn´1q,

we obtain
ˇ

ˇ

ˇ

ˇdiv vf
kptN q

ˇ

ˇ

ˇ

ˇ

2
“
ˇ

ˇ

ˇ

ˇdiv vf
kp0q

ˇ

ˇ

ˇ

ˇ

2
` Opkq.

Even though in our example we set vf
kp0q “ 0, which does not violate the incompressibility

condition, this identity still shows that any inevitable truncation errors are not damped and
instead carried through the whole time interval. A remedy to this problem is using the second
approach, where we first restrict the equations to the space V0, discretize it there using the
shifted Crank-Nicolson scheme and then apply the Lagrange multiplier. This way leads to a
discretization, where all the terms involving the pressure pfk or its test function ωf

k are fully

implicit. Therefore, we take pfk P Y f,0
k as well as

Xf
k :“

`

Xf,1
k

˘2d
ˆ Y f,0

k , Xs
k :“

`

Xs,1
k

˘2d
, Xk :“ Xf

k ˆXs
k

and

Y f
k :“

`

Y f,0
k

˘2d`1
, Y s

k :“
`

Y s,0
k

˘2d
, Yk :“ Y f

k ˆ Y s
k .

To distinguish between the terms discretized using the shifted Crank-Nicolson and the implicit
Euler schemes, we will split the forms

af pU⃗qpΦf q “ afCN pU⃗qpΦf q ` afIEpU⃗qpΦf q,

aspU⃗qpΦsq “ asCN pU⃗qpΦsq ` asIEpU⃗qpΦsq.
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2.1. Time Discretization

The form afIEp¨qp¨q contains all the terms including either the pressure or the corresponding
test function. The form asIEp¨qp¨q contains the parts of the coupling conditions including
pressure. All of these forms are stated below

afCN pU⃗qpΦf q :“
`

2JϵfF´T ,∇φf
˘

f
`
`

ρfJF´1vf ¨ ∇vf ,φf
˘

f
`
`

S∇uf ,∇ψf
˘

f

´
@

2JϵfF´T ¨ n⃗f ,φ
f
D

Γ
´
@

SBn⃗f
uf ,ψf

D

Γ
` γρfν

@

vf ´ vs,φf
D

Γ

` γ
@

uf ´ us,ψf
D

Γ
,

afIEpU⃗qpΦf q :“ ´
`

JpfF´T ,∇φf
˘

f
`
`

JtrpF´1∇vf q, ωf
˘

f
`
@

JpfF´T ¨ n⃗f ,φ
f
D

Γ
,

asCN pU⃗qpΦsq :“
`

Fσs,∇φs
˘

s
´
`

vs,ψs
˘

s
`
@

2Jϵf ,F´T ¨ n⃗f , φ
s
D

Γ
,

asIEpU⃗qpΦsq :“ ´
@

Jpf ,F´T ¨ n⃗f ,φ
s
D

Γ

(2.9)

for

ϵ :“ ρfνf
1

2

´

∇vfF´1 ` F´T p∇vf qT
¯

.

Discretization in time of an FSI problem in ALE coordinates brings its own set of chal-
lenges. One has to be especially careful while discretizing the time derivative terms, namely
the terms

ż

In

@

ρfJBtv
f ,φf

D

f
dt and

ż

In

@

ρfJF´1∇vfBtu
f ,φf

D

f
dt. (2.10)

Time discretization of the latter can especially cause problems. As far as we know, there does
not exist a strict study on this issue and existing approaches are instead based on experience.
We will present the two most common choices. Both rely on taking an average between the
old tn´1 and the new tn time-steps while computing the terms in front of the time derivative.
In the first, we take the average expression

1

2

`

ρfJkptnqF´1
k ptnq∇vf

kptnqpuf
kptnq ´ uf

kptn´1qq,φf
kptnq

˘

f

`
1

2

`

ρfJkptn´1qF´1
k ptn´1q∇vf

kptn´1qpuf
kptnq ´ uf

kptn´1qq,φf
kptnq

˘

f
.

In the second, we choose as the time argument the time average t̄n “
tn´tn´1

2 and obtain

`

ρfJkpt̄nqF´1
k pt̄nq∇vf

kpt̄nqpuf
kptnq ´ uf

kptn´1qq,φf
kptnq

˘

f
.

Both of these possibilities are further explored in [33] and [34]. According to these publi-
cations, both treatments of time derivatives yield similar results. We have decided to use
the first approach because its implementation in our case proved to be less troublesome. In
the first term from (2.10), we decided to treat the determinant J in a fully implicit way and
therefore obtain

`

ρfJkptnqpvf
kptnq ´ vf

kptn´1qq,φf
kptnq

˘

f
.
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Chapter 2. Discretization of Coupled Problems

With these issues explained, we can proceed and define the semi-discrete forms. Since in this
example we do not have the correspondence between the formulations given by the space-time
and traditional time-stepping, we present already integrated forms over a time subinterval In

Bf
k pU⃗kqpΦf

kq

ˇ

ˇ

ˇ

In
:“
´

ρfJkptnqpvf
kptnq ´ vf

kptn´1qq,φf
kptnq

¯

f

´
1

2

´

ρfJkptnqF´1
k ptnq∇vf

kptnqpuf
kptnq ´ uf

kptn´1qq,φf
kptnq

¯

f

´
1

2

´

ρfJkptn´1qF´1
k ptn´1q∇vf

kptn´1qpuf
kptnq ´ uf

kptn´1qq,φf
kptnq

¯

f

`

ˆ

1

2
` kn

˙

kna
f
CN

´

U⃗
f

kptnq, IfkU⃗
s

kptnq

¯T´

Φf
kptnq

¯

`

ˆ

1

2
´ kn

˙

kna
f
CN

´

U⃗
f

kptn´1q, IfkU⃗
s

kptn´1q

¯T´

Φf
kptnq

¯

` kna
f
IE

´

U⃗
f

kptnq, IfkU⃗
s

kptnq

¯T´

Φf
kptnq

¯

,

Bs
kpU⃗kqpΦs

kq

ˇ

ˇ

ˇ

In
:“
´

ρspvs
kptnq ´ vs

kptn´1qq,φs
kptnq

¯

s
`

´

us
kptnq ´ us

kptn´1q,ψs
kptnq

¯

s

`

ˆ

1

2
` kn

˙

kna
s
CN

´

IskU⃗
f

kptnq, U⃗
s

kptnq

¯T´

Φs
kptnq

¯

`

ˆ

1

2
´ kn

˙

kna
s
CN

´

IskU⃗
f

kptn´1q, U⃗
s

kptn´1q

¯T´

Φs
kptnq

¯

` kna
s
IE

´

IskU⃗
f

kptnq, U⃗
s

kptnq

¯T´

Φs
kptnq

¯

.

We used the operator Ik to transfer the interface values between the two domains. To make
it more readable, this formulation assumes that there is no micro time-stepping in In. Oth-
erwise, one would need to replace In by either Ifn,m or Isn,m and use the corresponding time
discretization points

2.1.4 Thermoelasticity

This problem too will be discretized using the Crank-Nicolson method. That results in a
slight inconsistency between the time-stepping scheme and the discretization following from
the space-time approach. We take

Xs
k :“

`

Xs,1
k

˘2d
, XT

k :“ XT,1
k , Xk :“ Xs

k ˆXT
k

as trial spaces as well as

Y s
k :“

`

Y s,0
k

˘2d
, Y T

k :“ Y T,0
k , Yk :“ Y s

k ˆ Y T
k
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2.2. Space Discretization

as the test spaces. Below we present the discretization given by the Crank-Nicolson scheme.
For simplicity, we omit indices corresponding to the micro time-steps

Bs
kpU⃗, TkqpΦq

ˇ

ˇ

ˇ

In
:“

´

ρpvkptnq ´ vkptn´1qq,φkptnq

¯

`

´

ukptnq ´ ukptn´1q,ψkptnq

¯

`
1

2
kna

s
´

U⃗kptnq, IskTkptnq

¯T´

Φkptnq

¯

`
1

2
kna

s
´

U⃗kptn´1q, IskTkptn´1q

¯T´

Φkptnq

¯

,

BT
k pU⃗k, TkqpΛq

ˇ

ˇ

ˇ

In
:“

´

ρCpTkptnq ´ Tkptn´1qq,Λptnq

¯

`
1

2
kna

T
´

ITk U⃗kptnq, Tkptnq

¯T´

Λkptnq

¯

`
1

2
kna

T
´

ITk U⃗kptn´1q, Tkptn´1q

¯T´

Λkptnq

¯

.

In this formulation, the superscripts switch from the interface operators to the ones corre-
sponding to the thermoelasticity problem.

2.2 Space Discretization

The discretization in space is performed using classical approaches. For every problem,
we use triangular elements continuous in space. However, in the case of interface coupled
problems, we can not guarantee the continuity across the interface neither of the trial nor the
test space because of our partitioned approach. Further, handling the transfer of interface
values between different meshes does require additional attention. It will be explored in the
next section.

To discretize the problems, we introduce regular triangulations T f
h and T s

h . We assume

that they match across the interface Γ. Kf denotes an element of the mesh T f
h and Ks an

element in T s
h . Their sizes are denoted by hfK and hsK , respectively. Further,

hf :“ max
KfPT f

h

hfK , hs :“ max
KsPT s

h

hsK , h :“ max
!

hf , hs
)

.

As the function spaces, for the interface coupled problems, we take space of continuous poly-
nomials of order r

Xf,1
k,hprq “

␣

φ P CpXf,1
k q

ˇ

ˇ

ˇ
φ|Kf P PrpΩf q for all Kf P T f

h

(

,

Xs,1
k,hprq “

␣

φ P CpXs,1
k q

ˇ

ˇ

ˇ
φ|Ks P PrpΩsq for all Ks P T s

h

(

,

Y f,0
k,h prq “

␣

φ P CpY f,0
k q

ˇ

ˇ

ˇ
φ|Kf P PrpΩf q for all Kf P T f

h

(

,

Y s,0
k,h prq “

␣

φ P CpY s,0
k q

ˇ

ˇ

ˇ
φ|Ks P PrpΩsq for all Ks P T s

h

(

.

38



Chapter 2. Discretization of Coupled Problems

For our volume coupled problem, we will replace the spaces corresponding to the fluid problem
by

XT,1
k,h prq “

␣

φ P CpXT,1
k q

ˇ

ˇ

ˇ
φ|Ks P PrpΩsq for all Ks P T s

h

(

,

Y T,0
k,h prq “

␣

φ P CpY T,0
k q

ˇ

ˇ

ˇ
φ|Ks P PrpΩsq for all Ks P T s

h

(

.

Given these function spaces, one can define the fully discrete problem either as

Problem 2.3. Find U⃗k,h P Xk,h :“ Xf
k,h ˆXs

k,h such that

Bf
k,hpU⃗k,hqpΦf

k,hq “F f
k pΦf

k,hq, for all Φf
k,h P Y f

k,h,

Bs
k,hpU⃗k,hqpΦs

k,hq “F s
k pΦs

k,hq, for all Φs
k,h P Y s

k,h

or, in the case of thermoelasticity problem, as

Problem 2.4. Find pU⃗k,h, Tk,hq P Xk,h :“ Xf
k,h ˆXs

k,h such that

Bs
kpU⃗k,h, Tk,hqpΦk,hq “F s

k pΦk,hq, for all Φk,h P Y s
k,h,

BT
k pU⃗k,h, Tk,hqpΛk,hq “0, for all Λk,h P Y T

k,h.

As we can see, only the forms defining the interface coupled problems change. This is due to
the inclusion of the fully discrete Nitsche terms on the interface.

2.2.1 Transfer of Interface Values

Transferring the coupling conditions across the interface poses a technical difficulty worth
discussing. Particularly challenging is shifting normal derivatives between the meshes. Indeed,
computing a normal derivative of a function on a single triangular element depends on all the
nodes and not only the ones touching the interface. We propose two possible approaches to
solve this problem:

1. First transfer then assemble - assuming that the fluid and solid meshes are sym-
metric with respect to the interface, we first reassign nodal values from one mesh to the
other, then assemble them on the new mesh. The process is illustrated in Figure 2.4.
This approach was used for the model coupling heat and wave equation.

2. First assemble then transfer - we first assemble the system and then transfer the
nodal values between the meshes. The advantage of this approach is that once the
system is assembled, the important information is only stored in the nodes directly on
the interface. Therefore, we can relax the requirements on the fluid and solid meshes.
Here, it is enough to assume that the interface nodes on both meshes coincide. We used
this approach for the FSI problem.
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2.2. Space Discretization

Ωf

Ωs

Γ

Γ

Figure 2.4: In this figure we show how nodal values are mirrored across the interface from the
fluid to the solid domain. Triangular linear elements are considered.

We can clearly see that because of its flexibility, the second approach is superior. However,
from the implementation standpoint, it can be quite troublesome. In the first approach,
the function can be treated as a global entity and as such can be mirrored with respect
to a known axis of symmetry. It is not necessary to perform independent transformations
on a node level. The second way is inherently local, where the transformations have to be
performed node by node. Therefore, we need to know the exact correspondence between the
coordinates of a node and its position in the assembled system. It is further complicated for
mixed multidimensional finite element spaces and meshes which are not regular. Therefore,
this approach requires quite deep knowledge of the finite element software.

2.2.2 Heat and Wave Equation

In this example, as the space mesh, we take a regular triangular mesh. To obtain symmetry
across the interface, the cells in the fluid domain have a right diagonal, and the cells in the
solid domain have a left diagonal. For an illustration, we again refer to Figure 2.4. As the
function spaces, we take elements that are continuous and piecewise linear in space. Therefore,
we choose

Xf
k,h “

`

Xf,1
k,hp1q

˘2
, Xs

k,h “
`

Xs,1
k,hp1q

˘2
, Y f

k,h “
`

Y f,0
k,h p1q

˘2
, Y s

k,h “
`

Y s,0
k,h p1q

˘2
.
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Chapter 2. Discretization of Coupled Problems

Figure 2.5: In this figure, we present the space mesh of the FSI model problem. In the top
figure, the whole mesh is shown, in the bottom, we zoom on the cylinder and attached elastic
structure. The solid mesh as well as the fluid cells close to the obstacle are highly refined.
One can also see some refinement around the cylinder. In the direction of the outflow, the
cell size continuously increases.

We change the forms af and as in (1.17) to include the fully discrete version of the Nitsche
coupling

afhpU⃗qpΦf q :“
`

ν∇vf ,∇φf
˘

f
`
`

β ¨ ∇vf , φf
˘

f
`
`

∇uf ,∇ψf
˘

f
´
@

νBn⃗f
vf , φf

D

Γ

´
@

Bn⃗f
uf , ψf

D

Γ
`
γν

h

@

vf ´ vs, φf
D

Γ
`
γ

h

@

uf ´ us, ψf
D

Γ
,

ashpU⃗qpΦsq :“
`

λ∇us,∇φs
˘

s
`
`

δ∇vs,∇φs
˘

s
´
`

vs, ψs
˘

s
`
@

νBn⃗f
vf , φs

D

Γ

´
@

δBn⃗s
vs, φs

D

Γ
.

2.2.3 FSI Problem

Since this domain is more complicated, the domains are discretized using unstructured
meshes. The fluid mesh is finely refined around the elastic structure. To better approximate
the curvature of the cylinder, the elements around it are also refined. To save some compu-
tational effort, we consider bigger cells close to the outflow. the nodes of both the fluid and
the solid mesh coincide on the interface. The mesh is shown in Figure 2.5.
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2.2. Space Discretization

As the function spaces in the fluid domain, we take the classical inf-sup stable Tylor-Hood
elements, where the space for velocity is given by continuous piecewise quadratic functions
and for the pressure, we take piecewise linear functions. Similarly, the velocity in the elastic
structure, as well as the displacement in both of the domains, are approximated using the
piecewise quadratic functions

Xf
k,h “

`

Xf,1
k,hp2q

˘2d
ˆ Y f,0

k,h p1q, Xs
k,h “

`

Xs,1
k,hp2q

˘2d
,

Y f
k,h “

`

Y f,0
k,h p2q

˘2d
ˆ Y f,0

k,h p1q, Y s
k,h “

`

Y s,0
k,h p2q

˘2d
.

After including the Nitsche terms, the discrete version of the forms given by (1.19) reads as

afhpU⃗qpΦf q :“
`

JσfF´T ,∇φf
˘

f
`
`

ρfJF´1vf ¨ ∇vf ,φf
˘

f
`
`

JtrpF´1∇vf q, ωf
˘

f

`
`

S∇uf ,∇ψf
˘

f
´
@

JσfF´T ¨ n⃗f ,φ
f
D

Γ
´
@

SBn⃗f
uf ,ψf

D

Γ

`
γρfν

h

@

vf ´ vs,φf
D

Γ
`
γ

h

@

uf ´ us,ψf
D

Γ
,

ashpU⃗qpΦsq :“
`

Fσs,∇φs
˘

s
´
`

vs,ψs
˘

s
`
@

Jσf ,F´T ¨ n⃗f , φ
s
D

Γ
.

For the time-stepping, these forms are then split analogously as in (2.9).

2.2.4 Thermoelasticity

Since this is an example of a volume coupled problem where we do not need to tackle the
issue of transferring the interface values between the two domains, its space discretization is
the most straightforward. Also here, we use a collection of triangular linear function spaces

Xs
k,h “

`

Xs,1
k,hp1q

˘2d
, XT

k,h “ XT,1
k,h p1q, Y s

k,h “
`

Y s,0
k,h p1q

˘2d
, Y T

k,h “ Y T,0
k,h p1q.
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Chapter 3

Decoupling Algorithms

As it was already stated in the introduction, there exist two major approaches designed
to solve algebraic systems arising from the discretization of coupled problems - a monolithic
and a partitioned approach. In the former, one incorporates all subproblems into one larger
system. In the latter, each system is solved separately. In a monolithic approach, through
a proper choice of test and trial spaces, the coupling conditions are incorporated within a
variational formulation. That leads to stable numerical schemes at a cost of lack of flexibility.
Thus, our focus on temporal multiscale problems forces us to consider partitioned approaches.
This, on the other hand, requires the introduction of decoupling algorithms to properly enforce
coupling conditions which is the main topic of this chapter.

We will start with explaining the outline of weakly coupled schemes and justify why they
are insufficient for our applications. Then we will proceed to strongly coupled schemes. First,
we will present the general idea, then propose two different approaches, namely a relaxation
and a shooting method. We will finish by evaluation of their performance based on our model
problems. Their limitations will be discussed in the case of strongly coupled FSI problems
due to the added mass effect.

3.1 Types of Coupled Schemes

In this section, we will present two types of coupled schemes, namely weakly and strongly
coupled ones. We will shortly discuss their characteristics and list their advantages and
drawbacks.

3.1.1 Weakly Coupled Schemes

Possibly the most straightforward way to numerically solve coupled systems is by using
weakly coupled schemes. These are semi-explicit schemes that do not require any iterative
procedure. To obtain a solution at a new time-step, in the coupling, one uses the solution
from the previous time-step. That means, given the solution U⃗ptnq, one performs the following
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3.1. Types of Coupled Schemes

steps to obtain U⃗ptn`1q:

1. Using the solution U⃗
s
ptnq, solve the fluid problem and obtain U⃗

f
ptn`1q.

2. With the help of U⃗
f
ptn`1q, solve the solid problem to get U⃗

s
ptn`1q.

In the case of interface coupled problems, this procedure can be understood as using solutions
of the other subproblem to set boundary conditions on the interface to fully define and then
solve a given subproblem. This algorithm is further conceptualized by

U⃗
s
ptnq

fluid
ÝÝÝÝÝÑ
problem

U⃗
f
ptn`1q

solid
ÝÝÝÝÝÑ
problem

U⃗
s
ptn`1q.

In both of these steps, if necessary, micro time-stepping is performed. We stress that for every
time-step these steps are performed only once without any subcycling. To avoid unnecessary
indices, here and throughout this chapter, we will omit the index k since we only consider
semi-discrete solutions anyway.

This procedure might seem attractive given its low computational costs and simplicity.
Indeed, an example of a successful application in the context of aeroelasticity is given in [35].
Unfortunately, such a method is only suitable for loosely coupled problems, otherwise, it can
suffer from stability issues. A rather pessimistic analysis is performed in [1] and [2], where
authors consider systems that exhibit added mass instabilities.

3.1.2 Strongly Coupled Schemes

The weakly coupled scheme described above does not guarantee that coupling conditions
are satisfied exactly. To overcome that, a frequently used solution is to iteratively solve both
of the subproblems until the coupling conditions are met. Such schemes hold the name of
strongly coupled schemes. To accelerate and stabilize this procedure, after each iteration an
additional step is performed by applying a decoupling function. This term will be further
explored in the next sections.

From this description emerges the following scheme - until convergence, given the solution
U⃗iptn`1q, the i-th iteration of a decoupling method results from the following steps:

1. Using U⃗
s

i ptn`1q, solve the fluid problem and obtain U⃗
f

i`1ptn`1q.

2. From U⃗
f

i`1ptn`1q by solving the solid problem acquire the intermediary solution
r

U⃗s
i`1ptn`1q.

3. Apply a decoupling function to
r

U⃗s
i`1ptn`1q and get U⃗

s

i`1ptn`1q.

A concise version of this algorithm is written below

U⃗
s

i ptn`1q
fluid

ÝÝÝÝÝÑ
problem

U⃗
f

i`1ptn`1q
solid

ÝÝÝÝÝÑ
problem

r

U⃗s
i`1ptn`1q

decoupling
ÝÝÝÝÝÝÑ
function

U⃗
s

i`1ptn`1q.
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Although this procedure might be costly, its stability properties are far superior compared
to its weakly coupled counterpart. Below we formalize the first two steps of the decoupling
procedure

Problem 3.1. For a given U⃗
s

i P Xs
k, find U⃗

f

i`1 P Xf
k and

r

U⃗s
i`1 P Xs

k such that:

Bf
n`1

˜

U⃗
f

i`1

U⃗
s

i

¸

pΦf q “ F f
n`1pΦf q

Bs
n`1

˜

U⃗
f

i`1
r

U⃗s
i`1

¸

pΦsq “ F s
n`1pΦsq

for all Φf P Y f
k and Φs P Y s

k . By Bf
n and Bs

n we denote restrictions of forms Bf and Bs to

In. Forms F f
n and F s

n are defined accordingly.

In our volume coupled model problem, where we couple an elastic structure and temperature
evolution, in each iteration we will start with solving the solid problem and then proceed to
the temperature one. Hence, the volume coupled version of this problem would be given by

Problem 3.2. For a given Ti P XT
k , find U⃗i`1 P Xs

k and rTi`1 P XT
k such that :

Bs
n`1

ˆ

U⃗i`1

Ti

˙

pΦq “ F s
n`1pΦq

BT
n`1

˜

U⃗i`1

rTi`1

¸

pΛq “ F T
n`1pΛq

for all Φ P Y s
k and Λ P Y T

k .

3.2 Coupled Schemes for FSI Problems

Numerical simulation of FSI problems in a regime that is not fully monolithic is particularly
challenging. That is especially true for problems with a high ratio between the fluid and solid

densities ρf

ρs where the fluid is incompressible. Heuristically, the movement of the elastic
structure acts on the fluid close to the interface. Since the fluid is not compressible, it has to
move along with the solid. Therefore, it acts as an additional artificial mass on the structure
at the interface. For a given density of the structure, this interaction is stronger, the higher
the density of the fluid is. This phenomenon does not happen if the problem is solved fully
within the monolithic regime.

The description above of this effect is in line with the literature. In [1] the authors explored
the correlation between this instability and time-stepping schemes. They deduced that this
problem occurs independently of the choice of a time-stepping scheme. Moreover, the onset
happened earlier when a smaller time-step size was used. They concluded that the instability is
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inherent in the scheme itself and is caused by too large eigenvalues of the added mass operator
on the interface. In [2] the influence of geometry was further explored. Numerical tests lead
to an observation that lengthening of a domain worsens the instability. The authors also
compared the performance of weakly and strongly coupled schemes for numerical problems
where the added mass effect was present. They noted that weakly coupled schemes were not
able to yield any results and the strongly coupled ones needed more iterations than usually.
A different aspect of this issue was studied in [36] and [37]. There, the added mass effect
was studied from the perspective of comparison between compressible and incompressible
fluid models. The instability turned out to have a much stronger effect on incompressible
fluids. In line with our heuristic explanation, due to the incompressibility condition, the
displacement of the interface induces a global perturbation in the fluid. For compressible
fluids, this perturbation is only local. It was further confirmed that decreasing time-step sizes
worsens the effect.

3.3 Decoupling Algorithms

We will define in detail two decoupling algorithms that we will use for numerical simula-
tions. Both of them are examples of strongly coupled schemes

3.3.1 Relaxation Method

The first method we would like present is a simple fixed-point method first presented
in [38]. For a fixed damping parameter τ P r0, 1s the new solution is defined by a convex
combination of the old and the previously computed intermediate solution.

Definition 3.1 (Relaxation Function). Let U⃗
s

i P Xs
k and

r

U⃗s
i`1 P Xs

k be the solid intermediate
solution defined in Problem 3.1. Then for τ P r0, 1s the relaxation function R : Xs

k Ñ Xs
k is

given by:

RpU⃗
s

i q :“ τ
r

U⃗s
i`1 ` p1 ´ τqU⃗

s

i

Assuming that we already know the value U⃗
s
ptnq, we pose

U⃗
s

0ptn ` 1q :“ U⃗
s
ptnq,

U⃗
s

i`1ptn`1q :“ RpU⃗
s

i qptn`1q for i “ 1, 2, . . . .

Even though this method was introduced over 60 years ago, it is widely used up to this
day. For example in [10] authors praised its convergence properties compared with low com-
putational cost. The importance of the right choice of the damping parameter was underlined.
In a more recent paper [11], the relaxation method was used to simulate a nonlinear flexi-
ble beam. Nevertheless, this method appears to be inferior to more elaborate quasi-Newton
approaches which we will discuss in the next section. A comparison between the two was pre-
sented for example in [12]. Especially in the case of strong coupling between the subproblems
the relaxation method might not be sufficient.

46



Chapter 3. Decoupling Algorithms

3.3.2 Shooting Method

Multirate time-stepping can be implemented in a more sophisticated way by using a shoot-
ing method. Then the resulting root-finding problem can be solved by the Newton method.
This method has been popular and widely used in literature. To successfully employ this
approach one has to make two crucial decisions. The first one is the definition of the root-
finding problem itself. The second one is an approximation of a Jacobian needed in each
Newton iteration. We will start with the former.

Definition 3.2 (Interface Shooting Function). Let U⃗
s

i P Xs
k and

r

U⃗s
i`1 P Xs

k be the solid
solution of Problem 3.1. Then the shooting function S : Xs

k Ñ pL2pΓqq2 is defined as:

SpU⃗
s

i q :“

ˆ

U⃗
s

i ptnq ´
r

U⃗s
i`1ptnq

˙

ˇ

ˇ

ˇ

ˇ

ˇ

Γ

(3.1)

The function above is only appropriate for interface coupled problems. Below we present the
volume coupled version of this definition.

Definition 3.3 (Volume Shooting Function). Let Ti P XT
k and rTi`1 P XT

k be the temperature
solution of Problem 3.2. Then the shooting function S : XT

k Ñ L2pΩq is defined as:

SpTiq :“ Tiptnq ´ rTi`1ptnq (3.2)

Interestingly, none of these definitions uses the coupling conditions explicitly. Instead, they
rely on reaching the point where the solution stabilizes. This way, the method becomes more
flexible and can be used in a variety of situations. It is one of our new contributions to the
application of this method.

Given these functions, in each iteration of the shooting procedure, we want to find a
solution U⃗

s

i to SpU⃗
s

i q “ 0. By discretizing this equation using the Newton method, we obtain

S1pU⃗
s

i qd⃗i`1 “ ´SpU⃗
s

i q,

where d⃗i`1 is an unknown vector. This problem is either defined on the common interface in
the case of interface coupled problems or the whole domain for volume coupled ones.

An appropriate approximation of the Jacobian S1 is one of the most challenging aspects
of the quasi-Newton approaches presented here. There exists a range of possible solutions
to tackle this problem. An extended survey on Jacobian-free methods is presented in [13].
In [14] authors compute the Jacobians exactly using shape derivative calculus. Strongly
coupled problems including an added mass effect are explored in [15], where the Jacobian
is handled using model order reduction techniques. Another possible solution is presented
in [16] where the approximation is done using the least square method. In [17] a matrix-
free approach using a Jacobian of a simplified model is considered for applications coming
from medical imaging. In [18] authors explore a variety of different solutions such as a direct
solution with block-triangular approximate Jacobians as well as matrix-free approaches with
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Figure 3.1: Performance of decoupling methods for Configuration 1 in one macro time-step
in the case of Nf

2 “ N s
2 “ 1 (top), Nf

2 “ 10 and N s
2 “ 1 (left), Nf

2 “ 1 and N s
2 “ 10 (right).

approximate Jacobians and a global pressure Schur complement.
Here as well we decided to use a matrix-free approach, where the Jacobian-vector product

is approximated using a finite difference method. The first needed step is a choice of a suitable
matrix-free Krylov subspace linear solver such as matrix-free GMRES. Thanks to that, we do
not need all the entries of the Jacobian, only a suitable definition of its vector-matrix product.
This quantity can be interpreted as a directional derivative and approximated using a finite
difference quotient

S1pU⃗
s

i qd⃗i`1 «
SpU⃗

s

i ` εd⃗i`1q ´ SpU⃗
s

i q

ε
(3.3)

with a suitable value of ε. This way, we achieve a nested iterative algorithm, where for each
macro time-step the outer loop is defied by the Newton and the inner one by the GMRES
method. Once the increment vector d⃗i`1 is computed, we can define the Newton iteration by
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Figure 3.2: Performance of decoupling methods for Configuration 2 in one macro time-step
in the case of Nf

2 “ N s
2 “ 1 (top), Nf

2 “ 10 and N s
2 “ 1 (left), Nf

2 “ 1 and N s
2 “ 10 (right).

U⃗
s

0ptnq
ˇ

ˇ

Γ
:“ U⃗

s
ptn´1q

ˇ

ˇ

Γ
,

U⃗
s

i`1ptnq
ˇ

ˇ

Γ
:“ U⃗

s

i ptnq
ˇ

ˇ

Γ
` d⃗i`1.

(3.4)

The solution on the previously computed time-step U⃗
s
ptn´1q serves here as an initial guess.

It is well known that a good choice of an initial guess for the Newton method is especially
important because of its limited convergence radius. Thus, we also considered an alternative
initial guess additionally consisting of the solution U⃗

s
ptn´2q given by

U⃗
s

0ptnq
ˇ

ˇ

Γ
:“

´

U⃗
s
ptn´1q `

kn
kn´1

pU⃗
s
ptn´1q ´ U⃗

s
ptn´2qq

¯
ˇ

ˇ

ˇ

Γ
. (3.5)

Although matrix-free quasi-Newton methods are not new, the usage of a directional deriva-
tive (3.3) to approximate the Jacobian is a novelty.
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Figure 3.3: Performance of decoupling methods for Configuration 3 in one macro time-step
in the case of Nf

2 “ N s
2 “ 1 (top), Nf

2 “ 10 and N s
2 “ 1 (left), Nf

2 “ 1 and N s
2 “ 10 (right).

3.3.3 Stopping Criteria

As stopping criteria we use a mixture of a relative and an absolute tolerance. Regardless
of the decoupling algorithm, we use the shooting function to establish stopping criteria. The
absolute tolerance stopping criterion is given by

||SpU⃗
t

iq||8 ď tol

and the relative tolerance criterion by

||SpU⃗
s

i q||8

||SpU⃗
s

0q||8
ď tol.

|| ¨ ||8 denotes l8 norm. In the case of the shooting method, we have to set the tolerance
for both the outer Newton method as well as the inner GMRES method. We can save some
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Figure 3.4: Number of evaluations of the decoupling functions for Configuration 1 needed for
convergence on the time interval I “ r0, 1s for N “ 50 in the case of Nf “ N s “ N (top),
Nf “ 10N and N s “ N (left), Nf “ N and N s “ 10N (right).

computational resources by setting the GMRES tolerance slightly higher than the Newton
method tolerance. However, by doing so we run the risk of not obtaining the accuracy
required to reach the tolerance of the outer loop. Therefore, we will either use constant values
of tolerances shown in Table 3.1 or take GMRES tolerance equal to

tol :“ max
´

||SpU⃗
t

iq||8, 10´10
¯

.

We would also like to go back to ε from the finite difference quotient (3.3). We have discovered
that it is beneficial to set dependency between ε, the residual and the absolute tolerance of
the Newton method. After this consideration, we arrived at the epsilon given by the same
formula as the tolerance

ε :“ max
´

||SpU⃗
t

iq||8, 10´10
¯

.
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Figure 3.5: Number of evaluations of the decoupling functions for Configuration 2 needed for
convergence on the time interval I “ r0, 1s for N “ 50 in the case of Nf “ N s “ N (top),
Nf “ 10N and N s “ N (left), Nf “ N and N s “ 10N (right).

Although, the tolerance for the GMRES method as well as ϵ are given by the same formula,
the reasons for that are different. By setting the GMRES tolerance depending on the shooting
function S, we can only save some computational resources. On the other hand, choosing ϵ
this way positively influences the stability of the shooting method, especially in the case of
the FSI test case.

3.4 Numerical Results

In this section, we are going to compare the performance of the presented methods on
our model problems. In each case, we will look at the convergence rate of the residual of
decoupling methods and the number of iterations needed to converge. Whenever possible, we
will introduce micro time-stepping and analyze its influence on the performance.
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Figure 3.6: Number of evaluations of the decoupling functions for Configuration 3 needed for
convergence on the time interval I “ r0, 1s for N “ 50 in the case of Nf “ N s “ N (top),
Nf “ 10N and N s “ N (left), Nf “ N and N s “ 10N (right).

3.4.1 Heat and Wave Equation

For our simple case of coupling of the heat and wave equations, our approach works very
well. The shooting method is clearly superior to the relaxation method. Further, introducing
even many micro time-steps does not harm the performance.

In Figures 3.1, 3.2, and 3.3 we looked at the performance of the decoupling methods
for every version of the source terms (Configuration 1, 2 and 3). In each case, we looked
at the values of the residuals on the single macro time-step I2 “ r0.02, 0.04s. For each of
the right hand sides, we performed simulations in the instance of no micro time-stepping
(Nf

2 “ N s
2 “ 1), 10 micro time-steps in the fluid domain (Nf

2 “ 10N s
2 “ 10), and 10 micro

time-steps in the solid domain (10Nf
2 “ N s

2 “ 10). For all of these examples, we chose
only uniform time-step sizes. No matter which source term we considered, the introduction
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Figure 3.7: Performance of the shooting function one macro time-step (left) and number of
evaluations needed for convergence on the time interval I (right).

tolerance relaxation Newton GMRES

absolute tolerance 10´10 10´10 10´10

relative tolerance 10´8 10´8 10´8

Table 3.1: Here we present the tolerances. We decided to set the same tolerances for the
Newton and GMRES methods.

of the micro time-steps had very little influence on the performance. Clearly, the shooting
method outperforms the relaxation method. The relaxation method has a linear convergence
rate. Because of the nested GMRES method as well very low number of iterations needed
to converge, it is difficult to draw any assumptions on the convergence rate of the shooting
method. In Figure 3.1, the relaxation method needed 13 iterations, whereas the shooting
method required only 2 iterations of the outer Newton method and overall 3 linear systems.
The results in Figure 3.2 and Figure 3.3 are very similar. The relaxation method required
27 iterations instead of 3 iterations and overall 6 linear systems were needed to reach the
prescribed tolerance in the case of the shooting method. Based on these pieces of information,
we can claim that adding the source term to the wave equation results in a more challenging
system. That should not be surprising knowing its hyperbolic nature. This difference in
difficulty is big enough that once we have the source term in the wave equation, adding a
similar term to the heat equation does not have a visible impact on how challenging the
resulting system becomes.

In Figures 3.4, 3.5, and 3.6 we show the results over the whole time interval I “ r0, 1s for
each of the configurations of the right hand side. We looked at the uniform time-stepping with
k “ 0.02 and therefore N “ 50. In every case, again, we considered an example without any
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Figure 3.8: Number of evaluations of the decoupling functions needed for convergence de-
pending on the size of time-steps for the FSI2 example (left) and FSI3 (right).

micro time-stepping (Nf “ N s “ N), micro time-stepping in the fluid domain (Nf “ 10N
and N s “ N), and micro time-stepping in the solid domain (Nf “ N and N s “ 10N). In
all of these examples, the performance of both of the decoupling methods is stable over the
whole time interval and does not depend on the number of micro time-steps. The number
of iterations needed for convergence was the lowest in the examples, where the external force
was applied to the heat equation only. There, the relaxation method required between 10 and
13 linear systems per time-step to reach the tolerance. The shooting method converged after
solving only 3 or 4 systems. Similarly as in our analysis of a single time-step, here as well the
simulations corresponding to Configuration 2 and 3 yield the same results. The relaxation
method required there mostly 27 or 28 iterations with occasional exceptions where only 24
were sufficient. The performance of the shooting method was very stable, where universally
6 systems per time-step were enough to converge. All in all, the superiority of the shooting
method extends to the whole interval.

3.4.2 FSI Problem

Unfortunately, the performance of the shooting method for the more complicated FSI
problem is not fully satisfactory. Even though the method can converge consistently in the
case of no micro time-stepping, it requires many iterations to achieve the prescribed toler-
ance. Moreover, it is only capable of dealing with micro time-stepping in the fluid domain.
Introducing it in the solid domain leads to a volatile instability in pressure which after a
few time-steps causes the method to crash. Since the instability occurs in the pressure, we
would attribute it to the incompressibility condition, more precisely, the added mass effect.
Although disappointing, this course of events should not be very surprising. By design, per-
forming micro time-stepping inevitably introduces explicit elements into time discretization
which in turn worsens stability. For this model problem, we do not present results for the
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Figure 3.9: Performance of decoupling methods for the thermoelasticity model problem in
one macro time-step in the case of N s

2 “ NT
2 “ 1 (top), N s

2 “ 10 and NT
2 “ 1 (left), N s

2 “ 1
and NT

2 “ 10 (right).

relaxation method because it was not able to converge at all.
The left picture in Figure 3.7 shows the results on a single macro time-step for both vari-

ants of the FSI problem. We are interested in time-steps where the oscillations are already
fully developed. The development of these oscillations is slower for the FSI2 test problem (for
the displacement profile, see Figure 1.5). Therefore, for each of the model problems we choose
a different time-step. For the FSI2 problem, we take I2 “ r12.01, 12.02s, for the FSI3 we take
I2 “ r6.01, 6.02s. Either way, the time-step size is equal to kn “ 0.01. We can clearly see that
the method struggled more with the FSI3 variant of the model. One can notice that in the
number of iterations of the Newton method, the number of GMRES iterations as well as the
magnitude of the error itself. For the FSI2 test case, the shooting method needed 4 iterations
of the Newton method and 20 GMRES iterations. For FSI3 these values are equal to 6 and
27, respectively. In both cases, we can observe the best error reduction in the final iteration
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Figure 3.10: Number of evaluations of the decoupling functions for the thermoelasticity model
problem needed for convergence on the time interval I “ r0.0, 0.1s for N “ 50 in the case of
N s “ NT “ N (top), N s “ 10N and NT “ N (left), N s “ N and NT “ 10N (right).

of the Newton method. It is expected given the nature of the Newton method as well as the
varying tolerances set for the GMRES method, which were discussed in Section 3.3.3. We
would also like to point out that the comparison of simulations of the two model problems
with the same time-step size might not be fair since the dynamics of the two problems are
different. More precisely, the period of the oscillations for the FSI3 is much smaller than for
the FSI2 model. Either way, given that we can not perform fully adaptive multirate time-
stepping, the computational costs of the shooting method do not make it competitive with a
more traditional fully monolithic approach.

The right picture in Figure 3.7 represents a a plot illustrating the performance of the
shooting method during a longer simulation without any micro time-stepping for N “ 50.
Also here, different time intervals are used for each of the test models. For FSI2 we choose
I “ r12, 12.5s and for FSI3 I “ r6, 6.5s. The FSI2 model requires fewer iterations to reach
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convergence. For FSI2 the number of evaluations of the shooting functions varies between 19
and 25 whereas for FSI3 this number is between 22 and 30. In the case of FSI2 the number of
iterations changes less volatilely which might suggest better stability properties. However, for
both test cases, we can notice that the overall behavior is stable throughout the simulation.
Finally, we would like to point out that the jump in the first time-step is due to the initial
guess that we applied given by (3.5), which we could not use at the very beginning of the
simulation due to the lack of access to the previous solutions. That in itself also shows the
effectiveness of this initial guess.

In the process of finalizing these simulations, we have noticed that there is a dependence
between the size of a time-step and the number of Newton as well as GMRES iterations needed
to reach the prescribed tolerance. Unsurprisingly, the smaller the time-step size, the number
of Newton iterations needed decreases. However, at the same time, for the smaller time-steps,
the GMRES method needs more iterations, especially in the final iterations of the Newton
method. Given the fact that the bulk of computations lies in the GMRES method, overall the
shooting method converges faster for bigger time-steps. It is illustrated in Figure 3.8. There,
we compare the performance of different time-step sizes for both the FSI2 and FSI3 model
problems. We examine three time-step sizes: kn “ 0.01, kn “ 0.001, and kn “ 0.0001. Each
mark represents one iteration of a Newton method. For the FSI2 example, for all the three
time-step sizes, the shooting method needed 4 Newton iterations. For the biggest time-step,
we needed 20 evaluations of the shooting function, for the smaller time-step this number in-
creased to 28 and to 43 for the smallest time-step. For the FSI3 problem, we can observe
more variety in the number of Newton iterations, where for the biggest time-step 6 iterations
were required instead of 4. From the biggest to the smallest time-step, the number of overall
evaluations of the decoupling function is equal to 27, 40, and 54, respectively. That gives a
clear increase in comparison with similar results for the FSI2 example.

3.4.3 Thermoelasticity

Similarly, as in the previous examples, we start with the analysis of the performance over a
single time interval. These results are shown in Figure 3.9. Given the oscillatory nature of the
thermoelasticity problem, we choose a smaller time-step of k2 “ 0.002 and look at the interval
I2 “ r0.002, 0.004s. Again, we look at the case where there is not micro time-stepping with
N s

2 “ NT
2 “ 1, micro time-stepping in the structure problem N s

2 “ 10, NT
2 “ 1, and micro

time-stepping in the thermal problem N s
2 “ 1, NT

2 “ 10. Also here, micro time-stepping
does not have any significant influence on the performance. The improvement from using the
shooting method is significant. The shooting method requires 2 Newton iterations and overall
4 linear systems to reach the tolerance. The relaxation method needs 20 iterations.

Figure 3.10 shows what happens throughout the whole simulation over the time interval
I “ r0.0, 0.1s. We take a coarse mesh with N “ 50 and kn “ 0.002. We similarly consider a
case without any micro time-stepping at all (N s

2 “ NT
2 “ 1), uniform micro time-stepping in

the structure problem (N s
2 “ 10, NT

2 “ 1), and micro time-stepping in the thermal problem
(N s

2 “ 1, NT
2 “ 10). The performance of neither of the decoupling methods deteriorates
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due to micro time-stepping. The shooting method needs between 4 and 11 linear systems.
The relaxation requires between 17 and 28 iterations. Again, the shooting method performs
much better than the relaxation method. For this example, the number of linear systems
needed to converge varies across the time interval. Although the specific values for each of
the methods are different, the tendencies are similar, where the number of iterations needed
to reach convergence increases until the middle of the interval and then decreases. That most
likely reflects the dynamics of the solution.
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Chapter 4

A Posteriori Error Estimation and
Adaptivity

In this chapter, we will discuss the concept of a posteriori error estimation for the temporal
component applied to the finite element method. As in the previous chapters, our variational
formulations will be treated as space-time problems. This way, we will be able to extend
the usage of tools normally reserved only for the space component to the time component
as well. To our knowledge, there are no flexible error estimators resulting in strict error
bounds for complex FSI problems. Thus, we will relax the requirement of rigorous bounds
and instead concentrate on flexibility and practical application. From this perspective, the
Dual Weighted Residual (DWR) method introduced by Becker and Rannacher [3], [4] is a
very good candidate.

We will start this chapter by presenting the concept of error estimation in general terms
and then introduce goal oriented estimation and proceed to the DWR method. After that,
the DWR method will be used for temporal estimation. Linear and then nonlinear problems
will be discussed. Finally, we will present numerical experiments exemplifying both of these
cases. We will derive and discretize adjoint problems needed to obtain the estimator.

4.1 Introduction to Error Estimation

Error estimation is an essential tool when analyzing most numerical methods. Thanks
to such estimates, one can examine both the accuracy and stability of a given method. In
the finite element method, estimates deal with a quantity ||U⃗ ´ U⃗k,h||, where U⃗ is an exact

solution to a given problem and U⃗k,h is its discrete counterpart. There exist two basic types
of error estimates - a priori and a posteriori error estimates. The former depends on the
exact solution U⃗ while the latter is a function of the approximate solution U⃗k,h and can be
evaluated once a numerical simulation is complete. In practice, we usually do not know the
exact solution U⃗ and thus, only an a posteriori error estimate is computable.

An a posteriori error estimate has one additional advantage. As long as it is possible
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to localize different contributions to an estimate, one can use it as a tool in adaptive mesh
refinement. With such an error indicator at hand, one can aim to reach an optimal solution.
Here, an optimal solution can be understood in two ways. This can either mean that for a
given tolerance ϵ, the numerical solution is reached using the minimal amount of computational
resources or that for given computational resources one gets the best possible solution. To
clarify, computational resources may include the number of nodes in discretization, number
of time-steps in case of nonstationary problems, number of solved linear systems, or, more
broadly, time and memory needed to finalize a computer simulation. Of course, in most cases
reaching such optimality is not feasible. Nevertheless, applying adaptive techniques can vastly
improve the performance of numerical methods. For these reasons, we will concentrate on the
a posteriori error estimation techniques.

The characteristics of an ideal a posteriori error estimator include:

• Rigorous bounds - strict bounds grant control and information about fringe cases.

• Asymptotic behaviour - good error estimates must have the same convergence rate
as the estimated error itself.

• Computability - the estimator must depend on quantities that we can actually com-
pute.

• Localizability - only if the estimator is easily localizable, one can identitify the cells
that should be refined.

• Computational costs - the cost of computing the estimator should not exceed the
savings granted by the adaptive procedure.

• Flexibility - it is highly desirable that the estimator can be successfully used for a wide
variety of problems.

We cannot expect an estimator to fulfill all of these conditions at once. Mainly the tension
occurs between computability and strict error bounds. It is especially true in the case of
complex applications where there are few theoretical results available. Because of that, we
will consider estimators which yield good results in practical applications at the cost of error
bounds. One could argue that providing these bounds is a necessary condition to call an
adaptive strategy an error estimator. For simplicity, we will use this phrase nevertheless.
However, we would like to stress that we are aware of this discrepancy.

Finally, it is well beyond the scope of this work to extensively present a posteriori error
estimation methods. For that reason, we would like to refer to the literature to complement
the overview of possible approaches. Detailed reviews can be found in [39] and [40]. We would
also like to mention [41] containing a concise and technical survey on the topic.

4.1.1 Error Estimation and Adaptive Time-Stepping

In standard approaches, the discretization of the time component in partial differential
equations is usually performed using the finite difference method. However, it is also possible
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to use the finite element method instead. That enables access to a wider variety of error esti-
mation tools, which in turn can be used as time-stepping adaptivity criteria. The formulation
of time-stepping schemes using the space-time framework was described in detail in Chapter 2
devoted to time discretization. Unfortunately, the literature on adaptive time-stepping using
tools derived from the space-time framework is still lacking. To our knowledge, the most
applicable to our case is the work of Dominik Meidner, who developed in [22] and [21] a goal
oriented error estimation method for the fractional step θ-method. Another worthwhile article
[42] presents adaptivity for nonlinear parabolic equations in the space-time framework.

4.1.2 Goal Oriented Error Estimation

There are situations where the main interest is not the computation of a global error
||U⃗ ´ U⃗k,h||. Instead, one is focused on, so-called, quantities of interest. That might be
deformation, stress, or drag and lift coefficients. All of these quantities can be expressed in
terms of some functional Q : X Ñ R acting from the space of solutions to the real numbers. In
this instance, we are interested in the estimation of |QpU⃗q ´QpU⃗k,hq|. This kind of approach
is called goal oriented error estimation. Since the main topic of this thesis is the temporal
aspect of a discrete solution, we will concentrate on the error given by the semi-discrete
solution |QpU⃗q ´QpU⃗kq|.

4.2 Dual Weighted Residual Method

Traditional techniques of a posteriori error estimation usually give estimates in energy
norm derived from a specific differential operator defining a given problem. They are often
determined globally and include unknown constants that may depend on a problem itself. As
such, they can not reliably be used as adaptivity criteria. Dual Weighted Residual (DWR)
method extends this idea resulting in a more practically applicable method. There, one solves
an additional adjoint problem, which is then used as weights capturing the influence of local
variations of the residual on the global error.

DWR method has been commonly used in literature. In [43] the authors present an
overview of adjoint methods in the a posteriori error estimation and postprocessing. Adaptiv-
ity for multiple target quantities in aerodynamics is explored in [44]. This method is used in
the analysis of linear-elastic perfect plasticity [45] and anisotropic elements for viscous flows
[46]. It is used in the context of phase-field fracture propagation in [47]. Authors in [48] apply
it to complex periodic gratings. In [49] it is implemented within a neuronal network. Just
from these few examples, one can see how versatile this method is.

Now we will explain the main idea behind the method based on articles [3] and [4]. We
assume here a simplified set-up where the forms describing the continuous and semi-discrete
problems are the same. We also assume conformity of the function spaces Xk, Yk P X. Then,
the exact solution U⃗ P X is given by solving the problem

BpU⃗qpΦq “ F pΦq, for all Φ P X
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and its semi-discrete counterpart U⃗k P Xk comes from the solution of

BpU⃗kqpΦkq “ F pΦkq, for all Φk P Yk.

One can embed evaluation of the goal functional in the framework of optimal control. Then,
computing QpU⃗q is equivalent to solving this trivial optimization problem

QpU⃗q “ min! such that BpU⃗qpΦq “ F pΦq for all Φ P X.

A natural way of proceeding is the introduction of a Lagrangian Lp¨qp¨q and searching its
stationary point

LpU⃗, Z⃗q :“ QpU⃗q ` F pZ⃗q ´BpU⃗qpZ⃗q. (4.1)

4.2.1 Linear Case

If we assume that the form Bp¨qp¨q is bilinear and the functional Qp¨q is linear, then finding
the stationary point of the Lagrangian above corresponds to finding a solution Z⃗ P X to the
problem

Problem 4.1. Find Z⃗ P X such that

BpΞqpZ⃗q “ QpΞq, for all Ξ P X

The solution Z⃗ is called an adjoint solution. To distinguish between U⃗ and Z⃗, we will call the
solution U⃗ a primal solution. The correspondence between both of them can be seen in the
identity

F pU⃗q “ BpU⃗qpZ⃗q “ QpZ⃗q.

Similarly, the semi-discrete adjoint solution Z⃗k P Yk is given by

Problem 4.2. Find Z⃗k P Yk such that

BpΞkqpZ⃗kq “ QpΞkq, for all Ξk P Xk.

We can use the connection between primal and adjoint solution and apply it to errors e :“
U⃗ ´ U⃗k , e˚ :“ Z⃗ ´ Z⃗k. With the help of Galerkin orthogonality we have

Qpeq “ BpeqpZ⃗q “ Bpeqpe˚q “ BpU⃗qpe˚q “ F pe˚q.

To simplify the notation, we define primal and adjoint residuals

ρpU⃗qpΦq :“ F pΦq ´BpU⃗qpΦq,

ρ˚pZ⃗qpΞq :“ QpΞq ´BpΞqpZ⃗q.

For any Φk P Yk and Ξ P Xk it holds

ρpU⃗kqpZ⃗ ´ Φkq “ Bpeqpe˚q “ ρ˚pZ⃗kqpU⃗ ´ Ξkq,
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which in turn leads to

Qpeq “ min
ΦPYk

ρpU⃗kqpZ⃗ ´ Φkq “ min
ΞPXk

ρ˚pZ⃗kqpU⃗ ´ Ξkq “ F pe˚q.

Equivalently

QpU⃗q ´QpU⃗kq “
1

2
min
ΦPYk

ρpU⃗kqpZ⃗ ´ Φkq `
1

2
min
ΞPXk

ρ˚pZ⃗kqpU⃗ ´ Ξkq. (4.2)

This identity serves as the basis of the a posteriori error representation discussed here. For
a linear case, using both the primal and the adjoint residuals in the error estimator is not
necessary. It is sufficient to use the residual of the primal problem only. However, a full
formulation of the estimator will become relevant for nonlinear problems.

4.2.2 Nonlinear Case

The error representation above can be easily extended to nonlinear problems as well. Then,
the adjoint solution corresponding to (4.1) is given by

Problem 4.3. Find Z⃗ P X such that

B1

U⃗
pΞqpZ⃗q “ Q1

U⃗
pΞq, for all Ξ P X,

where by B1

U⃗
pΞqp¨q and Q1

U⃗
pΞq we denote Gâteaux derivatives at the primal solution U⃗ in the

direction of the test function Ξ.

The analogous semi-discrete system reads as

Problem 4.4. Find Z⃗k P Yk such that

B1

U⃗
pΞkqpZ⃗kq “ Q1

U⃗
pΞkq, for all Ξ P Xk.

Again, we associate primal and adjoint residuals with errors e, and e˚, respectively

ρpU⃗qpΦq :“ F pΦq ´BpU⃗qpΦq,

ρ˚pZ⃗qpΞq :“ Q1

U⃗
pΞq ´B1

U⃗
pΞqpZ⃗q.

After some simple analysis of the Lagrangian Lp¨qp¨q, it is possible to represent the error of
the goal functional as

QpU⃗q ´QpU⃗kq “
1

2
min
ΦPYk

ρpU⃗kqpZ⃗ ´ Φkq `
1

2
min
ΞPXk

ρ˚pZ⃗kqpU⃗ ´ Ξkq `R. (4.3)

The remainder term R “ Op|e|3, |e˚|3q is cubic in the errors e, e˚ and vanishes if Bp¨qp¨q is
bilinear and Qp¨q is quadratic. In this error approximation technique, the weights are given
by the terms Z⃗ ´ Φk and U⃗ ´ Ξk. They capture the influence of local fluctuations on the
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global error.
For nonlinear problems using both of the residuals is significant. It can be seen in the

relation between both of them given by

ρ˚pZ⃗kqpU⃗ ´ Ξkq “ min
ΦPYk

ρpU⃗kqpZ⃗ ´ Φkq ` ∆ρ,

where ∆ρ “ Op|e|2, |e˚|2q. That means that by omitting the adjoint residual ρ˚p¨qp¨q we lose
one order of convergence. The term ∆ρ can be understood as an indicator of the influence
of nonlinearity on the error. For a more detailed analysis, again, we would like to refer to
articles [3] and [4].

Remark 4.2.1. One might ask whether it is too costly to solve an additional variational
problem just to obtain an adaptivity criterion. And that is a valid question. Especially
in the case of linear problems where computing the adjoint solution doubles computational
costs. However, by construction, the adjoint problem is always linear. So for nonlinear primal
problems, solving one additional linear system is a fraction of needed computational resources.

4.2.3 Approximation of Exact Solutions

Evaluation of the error estimator in the current form of (4.3) requires exact solutions U⃗
and Z⃗. Since we do not have access to them, we will need to use appropriate approximations
instead. Here we would like to present some of the existing approaches.

The first, and probably the most obvious one, is to compute more accurate primal
ˆ⃗
Uk P X̂k

and adjoint
ˆ⃗
Zk P Ŷk solutions and use them to substitute exact solutions from (4.3). This can

be done by either choosing X̂k and Ŷk as higher order polynomial degree spaces or by refining
mesh. Then, the weights are approximated by

min
ΦPYk

ρpU⃗kqpZ⃗ ´ Φkq « ρpU⃗kqp
ˆ⃗
Zk ´ iYk Z⃗kq,

min
ΞPXk

ρ˚pZ⃗kqpU⃗ ´ Ξkq « ρ˚pZ⃗kqp
ˆ⃗
Uk ´ iXk U⃗kq,

where by iYk and iXk we denote interpolation operators iYk : Yk Ñ Ŷk and iXk : Xk Ñ X̂k.
This method yields very good results. Unfortunately, it is also computationally expensive and
rarely used in practise. It was proposed in one of the original papers [4].

The method has been improved in the context of the hp-finite element method in [50].

Instead of computing the solutions
ˆ⃗
Uk and

ˆ⃗
Zk globally, the authors define them locally. As a

result, for every element K in the mesh, the approximate solution is only computed on a patch
consisting of neighboring elements with either homogenous Neumann or Dirichlet boundary
conditions. This method has the advantage of being easily parallelizable.

The final approach we would like to discuss here is the reconstruction method. There,
we try to obtain a higher order solution without solving an additional problem. One can
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do that by partitioning the time mesh into patches and then reinterpreting the solutions as
solutions from higher polynomial degree spaces. The validity of this approach is based on
the assumption of superconvergence at the nodes given sufficient regularity of the mesh. The
weights are therefore approximated by

min
ΦPYk

ρpU⃗kqpZ⃗ ´ Φkq « ρpU⃗kqpZ⃗
p1q

k ´ Z⃗kq,

min
ΞPXk

ρ˚pZ⃗kqpU⃗ ´ Ξkq « ρ˚pZ⃗kqpU⃗
p2q

k ´ U⃗kq,
(4.4)

We will use reconstructions of one order higher than the original solutions. Assuming that the
time discretization is given by the cG(1) method, the reconstructions of the primal solution

U⃗
p2q

k and the adjoint solution Z⃗
p1q

k will be quadratic and linear in time, respectively. The exact
formulas are given below

U⃗
p2q

k ptq

ˇ

ˇ

ˇ

ˇ

In

:“
ptn ´ tqptn`1 ´ tq

knpkn ` kn`1q
U⃗kptn´1q `

pt´ tn´1qptn`1 ´ tq

knkn`1
U⃗kptnq

`
pt´ tn´1qpt´ tnq

knpkn ` kn`1q
U⃗kptn´1q,

Z⃗
p1q

k ptq

ˇ

ˇ

ˇ

ˇ

In

:“
t´ t̄n`1

t̄n´1 ´ t̄n`1
Z⃗kptn´1q `

t´ t̄n´1

t̄n`1 ´ t̄n´1
Z⃗kptn`1q

(4.5)

with the interval midpoints t̄n :“ tn`tn´1

2 . For the dG(0) method, the reconstruction of the

primal solution U⃗
p1q

k is given by the same formulation as Z⃗
p1q

k . For the sake of simplicity, we
omitted the indices corresponding to the micro time-steps. In our algorithm, we use patches
consisting of micro time-steps instead. We would like to point out that the patch structure
does not necessarily coincide with the time mesh structure. It is possible for two micro
time-steps from the same patch to belong to two different macro time-steps. Additionally, to
make the primal reconstruction more robust, we demand two micro time-steps from the same
local patch to have the same length. The reconstructions are illustrated in Figure 4.1. This
technique was as well for the first time introduced in one of the original papers on the DWR
method [4]. The extension to the time component was presented in the papers mention before
on the topic [22], [21], and [42]. This is the approach we choose for our applications.

4.2.4 Construction of the Error Estimator

Finally, we are ready to define the error estimator. We use the identity (4.2) for linear
and (4.2) for nonlinear problems. In the nonlinear case, remainder term R is omitted. The
weights are approximated using the reconstruction method. We replace the exact solutions
with (4.5) and use (4.4). Once we implement these steps, we get

ηpU⃗kqpZ⃗kq :“
1

2
ρpU⃗kqpZ⃗

p1q

k ´ Z⃗kq `
1

2
ρ˚pZ⃗kqpU⃗

p2q

k ´ U⃗kq. (4.6)
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tntn´1 tn`1

U⃗kptn`1qU⃗kptn´1q

U⃗kptnq

tn´2 t̄n´1 tn´1 tn t̄n`1 tn`1

Z⃗kptn`1q

Z⃗
p1q

k pt̄n´1q

Z⃗kptn´1q

Z⃗
p1q

k pt̄n`1q

Figure 4.1: Reconstruction of the primal solution U⃗
p2q

k (left) and the adjoint solution Z⃗
p1q

k

(right).

Although we have already mentioned that in the introduction to this chapter, we would like
to repeat that both of these steps introduce inaccuracies. Therefore, the DWR method does
not result in strict error bounds. Hence, in a strict sense, it is more of an error approximation
technique rather than a true error estimator. We use this name for convenience.

In the current formulation of the estimator (4.6), it is not possible to distinguish between
contributions from the fluid and the solid subproblem. Moreover, this formulation is not
localized, that is, it is not possible to tell apart contributions from different time-steps. Thus,
we will now split it into corresponding parts. The extended version of the adjoint continuous
Problem 4.1 reads as

Problem 4.5. Find Z⃗ P X such that

B1

U⃗
f pΞf qpZ⃗q “Q1

Uf pΞf q, for all Ξf P Xf ,

B1

U⃗
spΞsqpZ⃗q “Q1

UspΞsq, for all Ξs P Xs.

The primal residual is split into

ρpU⃗qpΦq :“ ρf pU⃗qpΦf q ` ρspU⃗qpΦsq

where
ρf pU⃗qpΦf q :“ F f pΦf q ´Bf pU⃗qpΦf q,

ρspU⃗qpΦsq :“ F spΦsq ´BspU⃗qpΦsq.

The adjoint residual is split in a similar fashion

ρ˚pZ⃗qpΞq :“ ρf,˚pZ⃗qpΞf q ` ρs,˚pZ⃗qpΞsq

and
ρf,˚pZ⃗qpΞf q :“ Q1

U⃗
f pΞf q ´B1

U⃗
f pΞf qpZ⃗q,

ρs,˚pZ⃗qpΞsq :“ Q1

U⃗
spΞsq ´B1

U⃗
spΞsqpZ⃗q.
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Finally, we introduce a divided version of the estimator (4.6), where a division based on
different subproblems is considered. Each of these contributions is further split between the
primal and adjoint residuals

ηkpU⃗kqpZ⃗kq :“ ηfk pU⃗kqpZ⃗
f

kq ` ηskpU⃗kqpZ⃗
s

kq ` ηf,˚k pU⃗kqpZ⃗
f

kq ` ηs,˚k pU⃗kqpZ⃗
s

kq

with

ηfk pU⃗kqpZ⃗
f

kq :“
1

2
ρf pU⃗kqpZ⃗

f,p1q

k ´ Z⃗
f

kq,

ηskpU⃗kqpZ⃗
s

kq :“
1

2
ρspU⃗kqpZ⃗

s,p1q

k ´ Z⃗
s

kq,

ηf,˚k pZ⃗
f

kqpU⃗kq :“
1

2
ρf,˚pZ⃗kqpU⃗

f,p2q

k ´ U⃗
f

kq,

ηs,˚k pZ⃗
s

kqpU⃗kq :“
1

2
ρs,˚pZ⃗kqpU⃗

s,p2q

k ´ U⃗
s

kq.

(4.7)

The localization of the error estimator (4.7) is simply given by

ηfn,m :“ ηf pU⃗kqpZ⃗
f

kq

ˇ

ˇ

ˇ

ˇ

Ifn,m

, ηsn,m :“ ηspU⃗kqpZ⃗
s

kq

ˇ

ˇ

ˇ

ˇ

Isn,m

,

ηf,˚n,m :“ ηf,˚pZ⃗
f

kqpU⃗kq

ˇ

ˇ

ˇ

ˇ

Ifn,m

, ηs,˚n,m :“ ηs,˚pZ⃗
s

kqpU⃗kq

ˇ

ˇ

ˇ

ˇ

Isn,m

.

(4.8)

The same technique is used for the thermoelasticity problem.

4.2.5 Adaptivity

Once we have successfully defined an error indicator, we can use it to propose an adaptivity
strategy. In other words, based on the error estimators (4.8), one can decide which time-steps
will be refined on every refinement level. Generally, the most efficient discretizations have
balanced error indicators. Thus, the most natural choice is to pick the time-steps with the
highest error indicators. However, it is unclear how many of these time-steps should be picked
on every refinement level. Guidelines to answer this question are usually highly heuristic.
According to [25], three most common strategies are

1. Fixed number strategy - refine p% of the elements with the highest error indicator
value.

2. Fixed fraction strategy - refine all the elements, whose error indicators sum up to
p% of the overall error.

3. Equilibration strategy - refine all the elements, whose error indicators are larger than
an average scaled by α.
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tn´1 tn

refine

tn´1 tn

refinerefine

Figure 4.2: Preservation of the local patch structure. We either refine none or both time-steps
within one patch.

fluid

solid

Figure 4.3: From top to bottom we present fluid nodes, global nodes, and solid nodes. On
the left, we can see a mesh before refinement. In the middle drawing, due to refinement, one
node is added to the fluid mesh. Since the node also belongs to the solid mesh, on the right,
it is added to the global mesh as well.

Here, we are going to use the equilibration strategy adjusted to our specific case. We define
the average by

η̄k :“
1

Nf

N
ÿ

n“1

Nf
n

ÿ

m“1

ˇ

ˇηfn,m ` ηf,˚n,m

ˇ

ˇ `
1

N s

N
ÿ

n“1

Ns
n

ÿ

m“1

ˇ

ˇηsn,m ` ηs,˚n,m

ˇ

ˇ

and propose refining criteria using

´ˇ

ˇ

ˇ
ηfn,m ` ηf,˚n,m

ˇ

ˇ

ˇ
ě η̄k

¯

ùñ refine Ifn,m,
`ˇ

ˇηsn,m ` ηs,˚n,m

ˇ

ˇ ě η̄k
˘

ùñ refine Isn,m.
(4.9)

The adaptivity algorithm is supplemented by two additional objectives:

1. Preserve symmetry of the patches used for quadratic reconstruction. If only one time-
step in a specific patch is refined, refine the other one as well, see Figure 4.2.

2. Introduce micro time-stepping only when necessary. An example is given in Figure 4.3.
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Chapter 4. A Posteriori Error Estimation and Adaptivity

4.3 Discretization of the Adjoint Problem

In this section, we will discuss in detail the formulation of adjoint problems. We will
tackle both the linear and nonlinear cases of our model problems. For all of them, we will
first present continuous, then semi-discrete, and fully discrete variational formulations.

While analyzing adjoint formulations, one encounters a dilemma similar to the one, which
is very well known in the optimal control community. This correspondence is not surprising
since we already mentioned a connection between the optimal control framework and the
DWR method. There, one has to decide between two available approaches arising from
problem optimization. In the first one, called first-discretize-then-optimize, the problem is
first discretized and then the optimality system is solved. In the other one, first-optimize-
then-discretize the order is reversed - one first formulates the optimality system and then
applies discretization. In our case, we have to decide whether we want to consider the adjoint
problem of the continuous primal problem and then discretize it, or whether we want to
study the adjoint of the discrete primal problem. These two pathways can lead to the same
destination but not necessarily. For linear problems, there is a have full correspondence
between space-time formulations and traditional time-stepping schemes such as implicit Euler
and Crank-Nicolson. As a result, one can obtain the same scheme by either discretization
of the adjoint of the continuous primal variational problem or by directly taking the adjoint
of the discretized primal problem. In the discretization of nonlinear problems, we introduce
quadrature errors (dealing with nonlinear terms, time derivatives, and making the pressure
terms fully implicit). Therefore, the first-discretize-then-optimize and first-optimize-then-
discretize approaches lead to different results. In this thesis, we decided to use the former.

4.3.1 Continuous Variational Formulation

We are going to present continuous adjoint variational problems needed to successfully com-
pute the error estimator. We will present exact formulations for each of the model problems
and define the following system given by the Gâteaux derivatives of the primal formulation

Problem 4.6. Find Z⃗ P X such that for a given solution U⃗ P X

B1

U⃗
f pΞf qpZ⃗q “Q1

Uf pΞf q, for all Ξf P Xf ,

B1

U⃗
spΞsqpZ⃗q “Q1

UspΞsq, for all Ξs P Xs.

The variant of this problem suitable for the volume coupled approach is given by

Problem 4.7. Find pZ⃗, Sq P X such that for a given solution pU⃗, T q P X

B1

U⃗
pΞqpZ⃗, Sq “Q1

UpΞq, for all Ξ P Xs,

B1
T pΘqpZ⃗, Sq “Q1

T pΘq, for all Θ P XT .

71



4.3. Discretization of the Adjoint Problem

4.3.1.1 Heat and Wave Equation

We will start with defining the adjoint test and trial functions

Z⃗
f

:“

ˆ

zf

yf

˙

, Z⃗
s

:“

ˆ

zs

ys

˙

, Z⃗ :“

˜

Z⃗
f

Z⃗
s

¸

,

Ξf :“

ˆ

ζf

ξf

˙

, Ξs :“

ˆ

ζs

ξs

˙

, Ξ :“

ˆ

Ξf

Ξs

˙

.

Because the forms are linear, the derivatives are created simply by switching the positions
between the trial and test functions. Integration by parts was applied to the time derivatives
to remove derivatives of test functions

B1

U⃗
f pΞf qpZ⃗q “ ´

ż

I
xζf , Btz

f yf dt`

ż

I
a1

U⃗
f pΞf qpZ⃗q dt` pζf pT q, zf pT qqf ,

B1

U⃗
spΞsqpZ⃗q “ ´

ż

I
xζs, Btz

sys dt´

ż

I
xξs, Bty

sys dt`

ż

I
a1

U⃗
spΞsqpZ⃗q dt

` pζspT q, zspT qqs ` pξspT q, yspT qqs.

The derivatives of the forms af and as are created similarly. Note that the derivatives of some
of the coupling conditions from the primal problem are shifted from the fluid to the solid form
and vice versa. It happens because the forms have to be sorted regarding the test functions.

a1

U⃗
f pΞf qpZ⃗q “ pν∇ζf ,∇zf qf ` pβ ¨ ∇ζf , zf qf ` p∇ξf ,∇yf qf ´ xBn⃗f

ξf , yf yΓ

` γxξf , yf yΓ ´ xνBn⃗f
ζf , zf yΓ ` γxνζf , zf yΓ ` xνBn⃗f

ζf , zsyΓ,

a1

U⃗
spΞsqpZ⃗q “ pλ∇ξs,∇zsqs ` pδ∇ζs,∇zsqs ´ pζs, ysqs ´ γxξs, yf yΓ

´ γxνζs, zf yΓ ´ xδBn⃗s
ζs, zsyΓ.

(4.10)

4.3.1.2 FSI Problem

Here, we present the adjoint continuous formulation of the nonlinear model problem. The
definitions of the test and trial functions are given by

Z⃗
f

:“

¨

˝

zf

yf

qf

˛

‚, Z⃗
s

:“

ˆ

zs

ys

˙

, Z⃗ :“

˜

Z⃗
f

Z⃗
s

¸

,

Ξf :“

¨

˝

ζf

ξf

χf

˛

‚, Ξs :“

ˆ

ζs

ξs

˙

, Ξ :“

ˆ

Ξf

Ξs

˙

.

As we will see, the formulation is arguably much more complicated than the linear case.
Nevertheless, despite nonlinearities in the primal problem, the adjoint problem is always
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linear. We will start the derivation of the problem with time derivatives. The fluid problem
is defined as

xρfJBtv
f ,φf yf ùñ xρfJtrpF´1∇ξf qBtv

f , zf yf ` xρfJBtζ
f , zf yf ,

xρfJ∇vfF´1Btu
f ,φf yf ùñ xρfJtrpF´1∇ξf q∇vfF´1Btu

f , zf yf

` xρfJ∇ζfF´1Btu
f , zf yf

´ xρfJ∇vfF´1∇ξfF´1Btu
f , zf yf

` xρfJ∇vfF´1Btξ
f , zf yf

To get rid of the time derivative of a test function, one can use integration by parts

ż

I
xρfJBtζ

f , zf yf dt “ ´

ż

I
xρfBtJζ

f , zf yf dt´

ż

I
xρfJζf , Btz

f yf dt

` pρfJζf pT q, zf qf pT q,
ż

I
xρfJ∇vfF´1Btξ

f , zf yf dt “ ´

ż

I
xρfBtpJ∇vfF´1qξf , zf yf dt´

ż

I
xρfJ∇vfF´1ξf , Btz

f yf dt

` pρfJ∇vfF´1ξf pT q, zf pT qqf .

Now we will define a1

U⃗
pΞqpZ⃗q and show adjoints of the relevant terms. We will start with the

stress term

pJσfF´T ,∇φf qf ùñ pJtrpF´1∇ξf qσfF´T ,∇zf qf ` pJpσf q1

U⃗
f pΞf qF´T ,∇zf qf

´ pJσfF´T p∇ξf qTF´T ,∇zf qf .

That is followed by the adjoint of the convective term

pJ∇vfF´1vf ,φf qf ùñ pJtrpF´1∇ξf q∇vfF´1vf , zf qf ` pJ∇ζfF´1vf , zf qf

´ pJ∇vfF´1∇ξfF´1vf , zf qf ` pJ∇vfF´1ζf , zf qf

as well as the incompressibility condition

pJtrpF´1∇vf q, ωf qf ùñ pJtrpF´1∇ξf qtrpF´1∇vf q, qf qf ´ pJtrpF´1∇ξfF´1∇vf q, qf qf

` pJtrpF´1∇ζf q, qf qf .

The derivatives of the stress tensors are defined as

pσf q1

U⃗
f pΞf q “ ρfνf

`

∇ζfF´1 ´ ∇vfF´1∇ξfF´1 ´ F´T p∇ξf qTF´T p∇vf qT

` F´T p∇ζf qT
˘

´ χfI,

pσsq1

U⃗
spΞsq “ µsp∇ξsqTF ` µsFT∇ξs ` λstr

`

p∇ξsqTF ` FT∇ξs
˘

.
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4.3. Discretization of the Adjoint Problem

4.3.1.3 Thermoelasticity

Following the previously establish adjoint problems, we start by defining the trial and test
functions, which for the structure problem are given by

Z⃗ :“

ˆ

z
y

˙

, Ξ⃗ :“

ˆ

ζ
ξ

˙

.

The trial and test function for the temperature problem will be denoted by S and Θ, respec-
tively. The resulting adjoint variational forms are listed below

B1

U⃗
pΞqpZ⃗, Sq “ ´

ż

I
xρζ, Btzy dt´

ż

I
xξ, Btyy dt`

ż

I
a1

U⃗
pΞqpZ⃗, Sq dt

` pρζpT q, zpT qq ` pξpT q,ypT qq,

B1
T pΘqpZ⃗, Sq “ ´

ż

I
xCρΘ, BtSy dt`

ż

I
a1
T pΘqpZ⃗, Sq dt` pCρΘpT q, SpT qq.

In these equations unfortunately we were not able to avoid overlapping notations. Therefore,
we would like to point out that the notation T denotes here both the primal solution of the
temperature equation as well as the final time of the time interval I “ r0, T s. The adjoint
forms used in the formulation above, are equal to

a1

U⃗
pΞqpZ⃗, Sq “

`

σ1

U⃗
pΞq,∇z

˘

`
`

δ∇ζ,∇z
˘

´
`

ξ,y
˘

´
`

αdiv ξ, S
˘

a1
T pΘqpZ⃗, Sq “

`

σ1
T pΘq,∇z

˘

`
`

κ∇Θ,∇S
˘

,

where
σ1

U⃗
pΞq “2µϵ1

U⃗
pΞq ` λtr ϵ1

U⃗
pΞqI,

σ1
T pΘq “2µ1

T pΘqϵ` λ1
T pΘqtr ϵI.

Below we list derivatives of the material parameters

ϵ1

U⃗
pΞq “

1

2

´

∇ξ ` p∇ξq
T
¯

, λ1
T pΘq “

´νE0βS

p1 ` νqp1 ´ 2νq
, µ1

T pΘq “
´E0βS

2p1 ` νq
.

In the formulation of these equations, we can see a slight nonlinearity of this problem.

4.3.2 Semi-discrete Variational Formulation

Let us remind that the primal solution U⃗k was computed using the trial space Xk consisting
of piecewise linear functions in time and the test space Yk of piecewise constant functions in
time. As we already stated, for a linear case, the Gâteaux derivative is given by swapping
the positions of the test and trial functions. As a consequence, in the discretization, the trial
and the test spaces are swapped as well. That in turn directly impacts the time-stepping
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scheme for the adjoint problem. This way, we can acquire a scheme similar to the Crank-
Nicolson scheme. The main difference is that the adjoint semi-discrete problem has to be
solved backward in time - first we acquire the solution Z⃗N , then Z⃗N´1, and so on. Here as
well we skip the indices corresponding to micro time-stepping.

We start with presenting the semi-discrete adjoint variational problems

Problem 4.8. Find Z⃗k P Yk such that for a given solution U⃗k P Xk

pBkq1

U⃗
f
k

pΞf
kqpZ⃗kq “Q1

Uf
k

pΞf
kq, for all Ξf

k P Xf
k ,

pBkq1

U⃗
s
k
pΞs

kqpZ⃗kq “Q1
Us

k
pΞs

kq, for all Ξs
k P Xs

k.

Problem 4.9. Find pZ⃗k, Skq P Yk such that for a given solution pU⃗k, Tkq P Xk

pBkq1

U⃗k
pΞkqpZ⃗k, Skq “Q1

Uk
pΞkq, for all Ξk P Xs

k,

pBkq1
Tk

pΘkqpZ⃗k, Skq “Q1
Tk

pΘkq, for all Θk P XT
k .

4.3.2.1 Heat and Wave Equation

Let us remind that the linear forms can be obtained by either discretization of the continu-
ous adjoint problem or by considering an adjoint problem to the semi-discrete primal problem.
As a result, we obtain a scheme given by

`

ζfk ptnq, zfk ptn
˘

f
´
`

ζfk ptnq, zfk ptn`1q
˘

f

`
1

2
kna

1

U⃗
f
k

pΞf
kptnqqpZ⃗

f

kptnq, IfkZ⃗
s

kptnqq

`
1

2
kn`1a

1

U⃗
f
k

pΞf
kptnqqpZ⃗

f

kptn`1q, IfkZ⃗
s

kptn`1qq “ Q1

U⃗
f
k

pΞf
kq

ˇ

ˇ

ˇ

In
,

`

ζskptnq, zskptnq
˘

s
´
`

ζskptnq, zskptn`1q
˘

s

`
`

ξskptnq, yskptnq
˘

s
´
`

ξskptnq, yskptn`1q
˘

s

`
1

2
kna

1

U⃗
s
k
pΞs

kptnqqpIskZ⃗
f

kptnq, Z⃗
s

kptnqq

`
1

2
kn`1a

1

U⃗
s
k
pΞs

kptnqqpIskZ⃗
f

kptn`1q, Z⃗
s

kptn`1qq “ Q1

U⃗
s
k
pΞs

kq

ˇ

ˇ

ˇ

In
.

The solution at the initial time instead follows from

´
`

ζfk pt0q, zfk pt1q
˘

f
`

1

2
k1a

1

U⃗
f
k

pΞf
kpt0qqpZ⃗

f

kpt1q, IfkZ⃗
s

kpt1qq “ Q1

U⃗
f
k

pΞf
kq

ˇ

ˇ

ˇ

I1
,

´
`

ζskpt0q, zskpt1q
˘

s
´
`

ξskpt0q, yskpt1q
˘

s
`

1

2
k1a

1

U⃗
s
k
pΞs

kpt0qqpIskZ⃗
f

kpt1q, Z⃗
s

kpt1qq “ Q1

U⃗
s
k
pΞs

kq

ˇ

ˇ

ˇ

I1
.
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4.3. Discretization of the Adjoint Problem

We obtain the last solution by

`

ζfk ptN q, zfk ptN q
˘

f
`

1

2
kNa

1

U⃗
f
k

pΞf
kptN qqpZ⃗

f

kptN q, IfkZ⃗
s

kptN qq “ Q1

U⃗
f
k

pΞf
kq

ˇ

ˇ

ˇ

IN
,

`

ζskptN q, zskptN q
˘

s
`
`

ξskptN q, yskptN q
˘

s
`

1

2
kNa

1

U⃗
s
k
pΞs

kptN qqpIskZ⃗
f

kptN q, Z⃗
s

kptN qq “ Q1

U⃗
s
k
pΞs

kq

ˇ

ˇ

ˇ

IN
.

This scheme is similar to the one given by standard θ-schemes. The difference lies in the fact
that here the test functions are piecewise linear and the terms in the time-stepping scheme
have to be sorted with regard to the indices of the test functions.

4.3.2.2 FSI Problem

Using Gâteaux derivative on the semi-discrete primal problem we can obtain a semi-discrete
adjoint formulation. The discretization of the time derivatives in the fluid problem is given
by

xρfJkBtv
f
k ,φ

f
kyf ùñ

`

ρfJ 1

U⃗
f
k

pΞf
kptnqqpvf

kptnq ´ vf
kptn´1qq, zfkptnq

˘

f

`
`

ρfJkptnqζfkptnq, pzfkptnq ´ zfkptn`1q˘f ,

xρfJk∇vf
kF

´1
k Btu

f
k ,φ

f
kyf ùñ ´

1

2

`

ρf pJk∇vf
kF

´1
k q1

Uf
k

pΞf
kptnqquf

kptnq, zfkptnq
˘

f

`
1

2

`

ρf pJk∇vf
kF

´1
k q1

Uf
k

pΞf
kptnqquf

kptn´1q, zfkptnq
˘

f

´
1

2

`

ρf pJk∇vf
kF

´1
k q1

Uf
k

pΞf
kptnqquf

kptn`1q, zfkptn`1q
˘

f

`
1

2

`

ρf pJk∇vf
kF

´1
k q1

Uf
k

pΞf
kptnqquf

kptnq, zfkptn`1q
˘

f

´
1

2

`

ρf pJk∇vf
kF

´1
k qptnqξfkptnq, zfkptnq

˘

f

´
1

2

`

ρf pJk∇vf
kF

´1
k qptn´1qξfkptnq, zfkptnq

˘

f

`
1

2

`

ρf pJk∇vf
kF

´1
k qptn`1qξfkptnq, zfkptn`1q

˘

f

`
1

2

`

ρf pJk∇vf
kF

´1
k qptnqξfkptnq, zfkptn`1q

˘

f
.

Here, we assumed that n ‰ 1 and n ‰ N . In these cases, the scheme has to be adjusted
analogously to the linear case. The discretization of the time-derivatives in the solid problem,
up to multiplication by the solid density ρs, is the same as in the previously presented linear
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Chapter 4. A Posteriori Error Estimation and Adaptivity

example. Finally, we account for the fully implicit terms

af pUkqpΦf
kq ùñ pθ ` knqknpaCN q1

U⃗
f
k

pΞf
kptnqqpZ⃗

f

kptnq, IfkZ⃗
s

kptnqq

` pθ ´ kn`1qkn`1paCN q1

U⃗
f
k

pΞf
kptnqqpZ⃗

f

kptn`1q, IfkZ⃗
s

kptn`1qq

` knpaIEq1

U⃗
f
k

pΞf
kptnqqpZ⃗

f

kptnq, IfkZ⃗
s

kptnqq,

aspUkqpΦs
kq ùñ pθ ` knqkna

1

U⃗
s
k
pΞs

kptnqqpIskZ⃗
f

kptnq, Z⃗
s

kptnqq

` pθ ´ kn`1qkn`1a
1

U⃗
s
k
pΞs

kptnqqpIskZ⃗
f

kptn`1q, Z⃗
s

kptn`1qq.

4.3.2.3 Thermoelasticity

The semi-discrete forms describing the thermoelasticity problem are very similar to the
ones from the first model problem, where we coupled together heat and wave equations. In
both cases, we arrive at an adjoint version of the Crank-Nicolson time-stepping scheme. The
only difference lies in the way this scheme is acquired. As we remember, the first model
problem is fully linear, and therefore taking the adjoint of the continuous problem and then
discretizing it as well as deriving the adjoint of the semi-discrete primal problem lead to the
same destination. This model problem is slightly nonlinear which means that the equivalence
described above is lost. As a result, the scheme that we are going to present comes only from
directly applying the Gâteaux derivative to the semi-discrete primal variational formulation

`

ρζkptnq, zkptnq
˘

´
`

ρζkptnq, zkptn`1q
˘

`
`

ξkptnq,ykptnq
˘

´
`

ξkptnq,ykptn`1q
˘

`
1

2
kna

1

U⃗k
pΞkptnqqpZ⃗kptnq, IskSkptnqq

`
1

2
kn`1a

1

U⃗k
pΞkptnqqpZ⃗kptn`1q, IskSkptn`1qq “

ż

In

Q1

U⃗k
pΞkq dt,

`

CρΘkptnq, Skptnq
˘

´
`

CρΘkptnq, Skptn`1q
˘

`
1

2
kna

1
Tk

pΘkptnqqpITk Z⃗kptnq, Skptnqq

`
1

2
kn`1a

1
Tk

pΘkptnqqpITk Z⃗kptn`1q, Skptn`1qq “

ż

In

Q1
Tk

pΘkq dt.

We omit the equations corresponding to the fringe cases of the very first and very last time-
step given how similar they are to the previously shown examples.

4.3.3 Fully Discrete Variational Formulation

For the space discretization, we use the same classical approaches and function spaces
already discussed in Section 2.2 devoted to the space discretization of the primal problems.
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This leads us to one of the following fully discrete adjoint formulations

Problem 4.10. Find Z⃗k,h P Yk,h such that for a given solution U⃗k,h P Xk,h

pBk,hq1

U⃗
f
k,h

pΞf
k,hqpZ⃗k,hq “Q1

Uf
k,h

pΞf
k,hq, for all Ξf

k,h P Xf
k,h,

pBk,hq1

U⃗
s
k,h

pΞs
k,hqpZ⃗k,hq “Q1

Us
k,h

pΞs
k,hq, for all Ξs

k,h P Xs
k,h.

Problem 4.11. Find pZ⃗k,h, Sk,hq P Yk,h such that for a given solution pU⃗k,h, Tk,hq P Xk,h

pBkq1

U⃗k,h
pΞk,hqpZ⃗k,h, Sk,hq “Q1

Uk,h
pΞk,hq, for all Ξk,h P Xs

k,h,

pBkq1
Tk,h

pΘk,hqpZ⃗k,h, Sk,hq “Q1
Tk,h

pΘk,hq, for all Θk,h P XT
k,h.

In the first two model problems, we have to account for the fully discrete version of the Nitsche
coupling conditions.

4.4 Numerical Results

In this section, we will test the error estimator given by the DWR method on our model
problems. To evaluate the performance of our method on each of them, we introduce the
notion of effectivity given by

effk :“
ηk

rQpU⃗q ´QpU⃗kq
,

where rQpU⃗q stands for an appropriate approximation of the exact value of the functional
QpU⃗q. This quantity can be computed using extrapolation in time. Indeed, let us assume
that the functional Q is computed on a sequence of time meshes. Given these values, we can
formulate a system of equations

$

’

’

&

’

’

%

Q1 :“ QpU⃗kq “ rQpU⃗q ` Ckq “ rQpU⃗q ` rC,

Q2 :“ QpU⃗ k
2

q “ rQpU⃗q ` C
`

k
2

˘q
“ rQpU⃗q ` rC

`

1
2

˘q
,

Q3 :“ QpU⃗ k
4

q “ rQpU⃗q ` C
`

k
4

˘q
“ rQpU⃗q ` rC

`

1
4

˘q
,

where q stands for convergence rate and rC for an extrapolation constant. Below we state the
solutions to this system

rQ “
Q1Q3 ´ pQ2q2

Q1 ´ 2Q2 `Q3
, q “

ln
´

Q2´Q3

Q1´Q2

¯

´ ln 2
, rC “

pQ1 ´Q2q
2

Q1 ´ 2Q2 `Q3
.

For each model problem, we will examine different goal functionals in the effort to extract
the characteristics of each of the subproblems. We will first look at uniform time-steppping
and its residuals and effectivities. The three finest meshes from the uniform time-stepping will
be used to approximate the exact value of the goal functional. Then we will either proceed
to asymmetrical uniform time-stepping, where one subsystem has twice finer time mesh than
the other or to fully adaptive time-stepping.
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Ωf
2

Ωs
1

Ωs
2Ωf

1

Figure 4.4: In this figure we show the splitting of the domains used in the computation of
functionals, where we only use the right half of the domains, that is Ωf

2 for the functionals
concentrated on the fluid domain and Ωs

2 in case the functional is applied to the solid problem.

N ηfk ηsk ηf,˚k ηs,˚k ηk rQ´QpU⃗kq effk

50 3.62 ¨ 10´8 5.01 ¨ 10´10 1.05 ¨ 10´7 5.03 ¨ 10´10 1.42 ¨ 10´7 8.06 ¨ 10´8 1.76
100 9.66 ¨ 10´9 1.37 ¨ 10´10 9.96 ¨ 10´9 1.40 ¨ 10´10 1.99 ¨ 10´8 2.05 ¨ 10´8 0.97
200 2.48 ¨ 10´9 3.00 ¨ 10´11 2.52 ¨ 10´9 3.02 ¨ 10´11 5.07 ¨ 10´9 5.22 ¨ 10´9 0.97
400 6.28 ¨ 10´10 9.44 ¨ 10´12 6.33 ¨ 10´10 9.56 ¨ 10´12 1.28 ¨ 10´9 1.31 ¨ 10´9 0.98
800 1.58 ¨ 10´10 2.02 ¨ 10´12 1.58 ¨ 10´10 2.06 ¨ 10´12 3.20 ¨ 10´10 3.28 ¨ 10´10 0.98

Table 4.1: Residuals and effectivities for the fluid subdomain functional in case of uniform
time-stepping Nf “ N s “ N .

4.4.1 Heat and Wave Equation

We start by examining our first linear example. We will look at three different goal
functionals here - one concentrated in the fluid domain, one concentrated in the solid domain,
and the third being the sum of the first two. Each of the functionals is associated with a
different source term, that is a different configuration of the right hand side. For each of
these functionals, we will only use the right half of each of the domain. The sketch of this
partitioning is presented in Figure 4.4. As the time interval, we take I “ r0, 1s.

4.4.1.1 First Test Case

The first functional corresponds to Configuration 1, where we apply an external force only
to the fluid problem. The functional itself is also nonzero only on the fluid domain, where
we look at the gradient of velocity scaled by the diffusive parameter ν over a domain Ωf

2 “

p2, 4q ˆ p0, 1q. We use the notation vf2 :“ vf
ˇ

ˇ

Ωf
2

Qf pU⃗q :“

ż T

0
ν}∇vf2 }2f dt, QspU⃗q :“ 0.
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4.4. Numerical Results

N ηfk ηsk ηf,˚k ηs,˚k ηk rQ´QpU⃗kq effk

50 9.66 ¨ 10´9 4.99 ¨ 10´10 9.96 ¨ 10´9 5.01 ¨ 10´10 2.06 ¨ 10´8 2.17 ¨ 10´8 0.95
100 2.48 ¨ 10´9 1.37 ¨ 10´10 2.52 ¨ 10´9 1.39 ¨ 10´10 5.28 ¨ 10´9 5.45 ¨ 10´9 0.97
200 6.28 ¨ 10´10 2.99 ¨ 10´11 6.33 ¨ 10´10 3.01 ¨ 10´11 1.32 ¨ 10´9 1.43 ¨ 10´9 0.92
400 1.58 ¨ 10´10 9.44 ¨ 10´12 1.58 ¨ 10´10 9.56 ¨ 10´12 3.35 ¨ 10´10 3.58 ¨ 10´10 0.94

Table 4.2: Residuals and effectivities for the fluid subdomain functional in case of uniform
refinement in the fluid domain Nf “ 2N and N s “ N .

N Nf N s ηfk ηsk ηf,˚k ηs,˚k ηk rQ´QpU⃗kq effk

50 56 50 3.08 ¨ 10´8 5.01 ¨ 10´10 3.16 ¨ 10´8 5.04 ¨ 10´10 6.34 ¨ 10´8 6.64 ¨ 10´8 0.95
50 100 50 9.66 ¨ 10´9 4.99 ¨ 10´10 9.96 ¨ 10´9 5.01 ¨ 10´10 2.06 ¨ 10´8 2.17 ¨ 10´8 0.95
50 110 50 8.21 ¨ 10´9 4.99 ¨ 10´10 8.32 ¨ 10´9 5.02 ¨ 10´10 1.75 ¨ 10´8 1.84 ¨ 10´8 0.95
50 156 50 5.08 ¨ 10´9 4.99 ¨ 10´10 5.18 ¨ 10´9 4.97 ¨ 10´10 1.13 ¨ 10´8 1.20 ¨ 10´8 0.94

Table 4.3: Residuals and effectivities for the fluid subdomain functional in case of adaptive
time-stepping.

Its integration in time is computed using a 2-point Gaussian quadrature rule. The Gâteaux
derivative is equal to

pQf q1

U⃗
pΞf q “

ż T

0
2ν

`

∇vf2 ,∇ζ
f
2

˘

f
dt,

where similarly ζf2 :“ ζf
ˇ

ˇ

Ωf
2
.

Table 4.1 shows the values of partial residuals, as well as the effectivities on a series of
five uniform time meshes, without any micro time-stepping with Nf “ N s “ N . On the
coarsest mesh, we have N “ 50 and kn “ 0.02. On the finest mesh, these values are equal to
N “ 800 and kn “ 0.00125. The exact value of the goal functional is reconstructed using the
previously described extrapolation in time procedure. Using the three finest available meshes,
we obtained the value rQ “ 6.029469 ¨ 10´5. The corresponding convergence rate is almost
perfectly quadratic with q “ 1.997127. In the table, we can see that the effectivities, except
the coarsest mesh, are very close to one. That convincingly proves the excellent performance
of the error estimator in this example. We would also like to note that the primal and adjoint
residuals corresponding to each of the domains are very close to each other. That can be eas-
ily explained by the linear nature of this problem. On each level of refinement, the residuals
in the fluid domain are roughly two orders of magnitude higher. That suggests introducing
further refinements in this domain.

In Table 4.2 we show the results where the time-steps in the fluid domain were once uni-
formly refined and therefore Nf “ 2N and N s “ N . As the reference value Q̄, we take the
same number as in the previous, fully uniform, example. In order not to exceed its accuracy,
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Figure 4.5: This figure shows the adaptive time mesh for the fluid functional.

only four simulations are performed. The deterioration of the effectivity is very minimal and
we can achieve a significant reduction of the extrapolated error rQ ´ QpU⃗kq. In fact, based
on the extrapolated error, we can deduce that partial refinement in the fluid domain is just
as effective in its reduction as a uniform refinement in both of the domains. Partial residuals
indicate that we should continue refining the time mesh in the fluid domain.

In Table 4.3 we collect the numbers and consider fully adaptive time-stepping. Our pro-
cedure starts with the coarsest mesh Nf “ N s “ N “ 50. From there, we run four iterations
of the adaptive time-stepping. The total sum of time-steps in both of the domains is equal
to Nf ` N s. Again, we obtain very good performance with only slight deterioration of the
effectivities. Because of the concentration of errors in the fluid domain, only the fluid time-
steps were refined. At the end of this adaptive procedure, we obtain the extrapolated error
equal to 1.20 ¨ 10´8 with a total number of time-steps equal to 206. The closest corresponding
value from Table 4.1 is 1.99 ¨ 10´8 in the case of N “ 100 and therefore 200 time-steps in both
domains. That is a significant reduction with only 6 additional time-steps.

Finally, Figure 4.5 represents a sequence of adaptive meshes that result from the previously
discussed refinement strategy. From top to bottom, we show the initial time mesh, mesh after
two steps and four steps of our adaptive procedure. In the top row, we show the initial mesh
with 50 macro time-steps and no further splitting in fluid and solid. For a better presenta-
tion, we only take a small subset of the temporal interval r0.0, 0.2s. In the middle plot, one
can see the mesh after 2 steps of adaptive refinement. The bottom plot illustrates the mesh
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4.4. Numerical Results

N ηfk ηsk ηf,˚k ηs,˚k ηk rQ´QpU⃗kq effk

50 2.03 ¨ 10´10 2.66 ¨ 10´6 1.93 ¨ 10´10 1.03 ¨ 10´5 1.30 ¨ 10´5 2.49 ¨ 10´5 0.52
100 4.53 ¨ 10´11 2.59 ¨ 10´6 4.26 ¨ 10´11 2.67 ¨ 10´6 5.26 ¨ 10´6 4.77 ¨ 10´6 1.10
200 1.28 ¨ 10´11 5.18 ¨ 10´7 1.26 ¨ 10´11 5.21 ¨ 10´7 1.04 ¨ 10´6 9.80 ¨ 10´7 1.06
400 3.30 ¨ 10´12 1.17 ¨ 10´7 3.29 ¨ 10´12 1.17 ¨ 10´7 2.34 ¨ 10´7 2.23 ¨ 10´7 1.05
800 8.32 ¨ 10´13 2.82 ¨ 10´8 8.32 ¨ 10´13 2.80 ¨ 10´8 5.62 ¨ 10´8 5.07 ¨ 10´8 1.11

Table 4.4: Residuals and effectivities for the solid subdomain functional in case of uniform
time-stepping Nf “ N s “ N .

N ηfk ηsk ηf,˚k ηs,˚k ηk rQ´QpU⃗kq effk

50 4.13 ¨ 10´10 2.61 ¨ 10´6 1.91 ¨ 10´9 2.68 ¨ 10´6 5.29 ¨ 10´6 4.68 ¨ 10´6 1.13
100 8.69 ¨ 10´11 5.20 ¨ 10´7 ´3.72 ¨ 10´11 5.23 ¨ 10´7 1.04 ¨ 10´6 9.54 ¨ 10´7 1.09
200 1.80 ¨ 10´11 1.17 ¨ 10´7 1.40 ¨ 10´12 1.17 ¨ 10´7 2.34 ¨ 10´7 2.16 ¨ 10´7 1.08
400 3.94 ¨ 10´12 2.82 ¨ 10´8 1.87 ¨ 10´12 2.80 ¨ 10´8 5.62 ¨ 10´8 4.90 ¨ 10´8 1.15

Table 4.5: Residuals and effectivities for the solid subdomain functional in case of uniform
refinement in the solid domain Nf “ N and N s “ 2N .

after 4 steps of refinement. In each separate graph, the middle line corresponds to the macro
time mesh, the top line represents the fluid micro mesh and the bottom line the solid micro
mesh. As expected, this example leads to sub-cycling within the fluid domain and there is no
refinement in the solid time mesh. Refinement in the fluid domain is fully uniform.

4.4.1.2 Second Test Case

As our second test problem, we choose a set-up somewhat symmetric to the previous one.
This time, we take a functional which is concentrated only on the right half of the solid domain
Ωs
2 “ p2, 4q ˆ p´1, 0q with Configuration 2 as the right hand side in the primal problem. Here,

instead of the velocity, we look at a gradient of displacement scaled by parameter λ and
therefore the functional is given by

Qf pU⃗q “ 0, QspU⃗q “

ż T

0
λ}∇us2}2s dt

and its Gâteaux derivative is equal to

pQsq1

U⃗
pΞsq “

ż T

0
2λ p∇us2,∇ξs2qs dt,
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N Nf N s ηfk ηsk ηf,˚k ηs,˚k ηk rQ´QpU⃗kq effk

50 50 88 3.77 ¨ 10´10 6.57 ¨ 10´6 6.72 ¨ 10´8 6.91 ¨ 10´6 1.35 ¨ 10´5 1.06 ¨ 10´5 1.28
50 50 166 5.17 ¨ 10´10 1.35 ¨ 10´6 7.16 ¨ 10´8 1.38 ¨ 10´6 2.80 ¨ 10´6 2.52 ¨ 10´6 1.11
50 50 286 5.80 ¨ 10´10 4.54 ¨ 10´7 4.16 ¨ 10´8 4.56 ¨ 10´7 9.52 ¨ 10´7 7.34 ¨ 10´7 1.30
54 54 400 5.70 ¨ 10´10 1.19 ¨ 10´7 4.12 ¨ 10´8 1.19 ¨ 10´7 2.81 ¨ 10´7 1.10 ¨ 10´7 2.55

Table 4.6: Residuals and effectivities for the solid subdomain functional in case of adaptive
time-stepping.

N ηfk ηsk ηf,˚k ηs,˚k ηk rQ´QpU⃗kq effk

50 3.74 ¨ 10´8 2.26 ¨ 10´6 8.73 ¨ 10´8 1.03 ¨ 10´5 1.27 ¨ 10´5 2.58 ¨ 10´5 0.49
100 9.87 ¨ 10´9 2.30 ¨ 10´6 7.93 ¨ 10´9 2.43 ¨ 10´6 4.76 ¨ 10´6 4.51 ¨ 10´6 1.06
200 2.52 ¨ 10´9 4.53 ¨ 10´7 2.38 ¨ 10´9 4.70 ¨ 10´7 9.27 ¨ 10´7 9.23 ¨ 10´7 1.00
400 6.36 ¨ 10´10 1.08 ¨ 10´7 6.28 ¨ 10´10 1.11 ¨ 10´7 2.20 ¨ 10´7 2.12 ¨ 10´7 1.04
800 1.60 ¨ 10´10 2.68 ¨ 10´8 1.59 ¨ 10´10 2.75 ¨ 10´8 5.47 ¨ 10´8 4.87 ¨ 10´8 1.12

Table 4.7: Residuals and effectivities for the combined functional in case of uniform time-
stepping Nf “ N s “ N .

where again us2, ξ
s
2 :“ us

ˇ

ˇ

Ωs
2
, ξs

ˇ

ˇ

Ωs
2
.

Similarly, as in the previous example, we start with simulations that do not contain any
micro time-stepping (Nf “ N s “ N). The same sequence of uniform time-meshes is used.
The extrapolation in time of the results from the three last simulations yields the exact value
rQ “ 3.458826 ¨ 10´4 and a surprisingly high convergence rate of q “ 2.135897. Although the
effectivities are still highly satisfactory, one can observe a slight deterioration in comparison
with the previous test case. That seems to be analogous to our numerical tests of decoupling
strategies in Section 3.4.1, where we also discovered that Configuration 2 of the right hand
side requires more iterations to obtain the prescribed tolerance. That might be explained by
the more challenging hyperbolic character of the wave equation compared to the parabolic
nature of the heat equation. We can also see that the extrapolated errors and consequently
the residuals are significantly higher than in the first test case. Of course, partially it can
be explained by the higher value of the functional itself. However, even after taking that
into account, we can still see that the error on the coarsest mesh is only one order of mag-
nitude lower than the value of the functional. Also here we can observe that the primal and
adjoint residuals have almost identical values. The residuals are highly concentrated in the
solid domain which justifies why in the following simulation we decided to introduce micro
time-stepping in this subdomain.

In Table 4.5 we collect the numbers for a simulation where the time-steps in the solid
domain were once uniformly refined , that is Nf “ N and N s “ 2N . This refinement does
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Figure 4.6: This figure shows the adaptive time mesh for the solid functional.

not have a significant impact on the effectivity values and yet it can considerably reduce the
extrapolated error rQ ´ QpU⃗kq. Also here, partial refinement yields similar results as global
uniform refinement. The numbers encourage even more aggressive refinement in the solid
domain.

In Table 4.6 we present the outcomes of a fully adaptive procedure starting from the uni-
form simulation on the coarsest mesh for N “ 50. In comparison to a similar simulation
for the fluid functional, we can make a few observations. First, the refinement in the solid
domain is indeed much more aggressive with a total number of 400 time-steps at the last level
of refinement. In the final simulation, there is also some refinement in the fluid domain. We
can however observe a worsening of effectivities, especially in the last simulation. That being
said, the reduction of extrapolation error is still impressive. After these simulations with the
total number of 454 time-steps the extrapolated error is equal to 1.10 ¨ 10´7. For comparison,
in Table 4.4 for 800 total number time-steps we have rQ´QpU⃗kq “ 2.34 ¨ 10´7.

In Figure 4.6 we give a glimpse into the adaptive refinement procedure for the solid func-
tional. The same time interval r0.0, 0.2s is examined. Unsurprisingly, the vast majority of
refinements happen in the solid domain. Compared to Figure 4.6, refinement is much more
aggressive. On the last two levels, the fluid problem also requires some local refinement.
Whenever possible, we avoid excessive sub-cycling by refining the macro mesh as described
in Section 4.2.5.
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N ηfk ηsk ηf,˚k ηs,˚k ηk rQ´QpU⃗kq effk

50 3.74 ¨ 10´8 2.51 ¨ 10´6 8.13 ¨ 10´8 2.63 ¨ 10´6 5.26 ¨ 10´6 5.10 ¨ 10´6 1.03
100 9.84 ¨ 10´9 4.75 ¨ 10´7 7.87 ¨ 10´9 4.91 ¨ 10´7 9.84 ¨ 10´7 1.08 ¨ 10´6 0.91
200 2.52 ¨ 10´9 1.11 ¨ 10´7 2.39 ¨ 10´9 1.14 ¨ 10´7 2.30 ¨ 10´7 2.52 ¨ 10´7 0.91
400 6.36 ¨ 10´10 2.72 ¨ 10´8 6.31 ¨ 10´10 2.79 ¨ 10´8 5.64 ¨ 10´8 5.87 ¨ 10´8 0.96

Table 4.8: Residuals and effectivities for the combined functional in case of uniform refinement
in the solid domain Nf “ N and N s “ 2N .

N Nf N s ηfk ηsk ηf,˚k ηs,˚k ηk rQ´QpU⃗kq effk

50 50 88 3.77 ¨ 10´8 6.21 ¨ 10´6 1.57 ¨ 10´7 6.63 ¨ 10´6 1.30 ¨ 10´5 1.08 ¨ 10´5 1.21
50 50 166 3.73 ¨ 10´8 1.28 ¨ 10´6 1.60 ¨ 10´7 1.33 ¨ 10´6 2.80 ¨ 10´6 3.15 ¨ 10´6 0.89
52 52 280 3.57 ¨ 10´8 4.74 ¨ 10´7 5.96 ¨ 10´8 4.85 ¨ 10´7 1.054 ¨ 10´6 1.59 ¨ 10´6 0.66
56 56 396 3.36 ¨ 10´8 1.32 ¨ 10´7 5.44 ¨ 10´8 1.36 ¨ 10´7 3.55 ¨ 10´7 8.66 ¨ 10´7 0.41

Table 4.9: Residuals and effectivities for the combined functional in case of adaptive time-
stepping.

4.4.1.3 Third Test Case

In our third and final test case for this model problem, we examine a functional which is
a sum of the two previously studied functionals

Qf pU⃗q :“

ż T

0
ν}∇vf2 }2f dt, QspU⃗q “

ż T

0
λ}∇us2}2s dt.

In this case, we take Configuration 3 of the source term, which in turn is a sum of the right
hand sides in Configuration 1 and 2.

In Table 4.7 we look at a simulation consisting of a series of uniform meshes. Using the last
three simulations, we obtain an extrapolated exact value of the functional rQ “ 4.206957 ¨10´4

with a convergence rate q “ 2.122432. The resulting functional value is close to the sum of
the two previously examined functionals. The effectivities in this example are again excellent.
For N “ 200 we were even able to reach exactly 1.00 (up to rounding to two decimal places).
Similarly as in the case of the functional, the partial fluid and solid residuals are close to sums
of the corresponding terms from the two previous examples. Since the contribution from the
solid problem is dominant, we will introduce micro time-stepping there.

In Table 4.8 we gather numbers for a uniformly refined case with micro time-stepping in the
solid domain. The effectivities worsen only slightly. Here one can also observe a comparable
reduction of the overall extrapolated error as in the case of a full uniform refinement in both
domains. Further, by comparing Table 4.8 and 4.5 we can see similar performance. Indeed,
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Figure 4.7: This figure shows the adaptive time mesh for the combined functional.

after the last refinement, the extrapolated error is equal to 5.87 ¨ 10´8 compared to a similar
value of 5.62 ¨ 10´8 in Table 4.5. Although the number here is a bit higher, the difference is
not significant.

In Table 4.9 we look at a fully adaptive case. Here we can observe a noticeable reduction
in the accuracy of our error estimator. Although the drop in effectivity is similar to the fully
adaptive simulations of the second test case, this configuration also exhibits a lesser reduction
of the extrapolated error. Even though the distribution of refined time-steps is similar with
the total number of time-steps in the fluid domain equal to 56, and in the solid domain to
396, the extrapolated error is reduced to 8.66 ¨ 10´7 compared to 1.10 ¨ 10´7 in Table 4.6.
That suggests that our adaptive algorithm is the most effective when we consider functionals
concentrated on only one subproblem.

Finally, in Figure 4.7 we present the adaptive time mesh. Again, the same time interval
r0.0, 0.2s is considered. Also here, there is extensive refinement in the solid domain. Interest-
ingly, in spots where the solid time mesh is coarser, we can see some refinement in the fluid
domain as well. To avoid unnecessary micro time-stepping, refinement in the fluid domain
also leads to refinement of the macro time mesh.
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N ηfk ηsk ηk rQ´QpU⃗kq effk

50 2.98 ¨ 10´3 1.79 ¨ 10´2 2.09 ¨ 10´2 3.96 ¨ 10´2 0.53
100 6.76 ¨ 10´4 1.90 ¨ 10´3 2.57 ¨ 10´3 9.38 ¨ 10´3 0.27
200 1.68 ¨ 10´4 4.53 ¨ 10´4 6.22 ¨ 10´4 2.15 ¨ 10´3 0.29
400 4.38 ¨ 10´5 1.16 ¨ 10´4 1.60 ¨ 10´4 4.93 ¨ 10´4 0.33

Table 4.10: Residuals and effectivities for the FSI2 benchmark in case of uniform time-stepping
Nf “ N s “ N .

N ηfk ηsk ηk rQ´QpU⃗kq effk

50 2.97 ¨ 10´2 1.12 ¨ 10´1 1.42 ¨ 10´1 9.87 ¨ 10´2 1.44
100 9.36 ¨ 10´3 8.87 ¨ 10´3 1.82 ¨ 10´2 2.76 ¨ 10´2 0.66
200 2.46 ¨ 10´3 2.05 ¨ 10´3 4.51 ¨ 10´3 7.79 ¨ 10´3 0.58
400 6.30 ¨ 10´4 5.37 ¨ 10´4 1.17 ¨ 10´3 2.20 ¨ 10´3 0.53

Table 4.11: Residuals and effectivities for the FSI3 benchmark in case of uniform time-stepping
Nf “ N s “ N .

4.4.2 FSI Problem

In the following numerical tests, we are going to consider the FSI benchmark. For this
example, a shorter time interval I “ r0, 0.5s is chosen. Since the movement of the elastic
structure is the most interesting and challenging part of these simulations, we examine a goal
functional consisting of solid displacement over the whole solid domain. To achieve a better
regularity, we look at its norm instead of its gradient and therefore

Qf pU⃗q :“ 0, QspU⃗q :“

ż T

0
λs}us}2s dt.

The Gâteaux derivative is given by

pQsq1

U⃗
pΞsq “

ż T

0
2λs pus, ξsqs dt.

Because of the oscillatory character of this problem, we decided to slightly modify how the
residuals are computed. Let us recall the formula which we used previously

ηk “

N
ÿ

n“1

Nf
n

ÿ

m“1

`

ηfn,m ` ηf,˚n,m

˘

`

N
ÿ

n“1

Ns
n

ÿ

m“1

`

ηsn,m ` ηs,˚n,m

˘

.
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N ηsk ηTk ηk rQ´QpU⃗kq effk

50 1.57 ¨ 10´3 6.08 ¨ 10´6 1.57 ¨ 10´3 1.15 ¨ 10´2 0.14
100 5.08 ¨ 10´4 1.52 ¨ 10´6 5.09 ¨ 10´4 2.76 ¨ 10´3 0.18
200 1.23 ¨ 10´4 3.80 ¨ 10´7 1.23 ¨ 10´4 6.90 ¨ 10´4 0.18
400 3.05 ¨ 10´5 9.51 ¨ 10´8 3.06 ¨ 10´5 1.72 ¨ 10´4 0.18
800 7.60 ¨ 10´6 2.38 ¨ 10´8 7.62 ¨ 10´6 4.31 ¨ 10´5 0.18

Table 4.12: Residuals and effectivities for the thermoelasticity model problem in case of
uniform time-stepping N s “ NT “ N .

N ηsk ηTk ηk rQ´QpU⃗kq effk

50 5.08 ¨ 10´4 6.08 ¨ 10´6 5.14 ¨ 10´4 2.75 ¨ 10´3 0.19
100 1.24 ¨ 10´4 1.52 ¨ 10´6 1.25 ¨ 10´4 6.89 ¨ 10´4 0.18
200 3.05 ¨ 10´5 3.81 ¨ 10´7 3.09 ¨ 10´5 1.72 ¨ 10´4 0.18
400 7.60 ¨ 10´6 9.52 ¨ 10´8 7.69 ¨ 10´6 4.31 ¨ 10´5 0.18

Table 4.13: Residuals and effectivities for the thermoelasticity model problem in case of
uniform refinement in the structure problem N s “ 2N and NT “ N .

For the FSI example, we will absolute values inside the sums and instead consider

ηk “

N
ÿ

n“1

Nf
n

ÿ

m“1

ˇ

ˇηfn,m ` ηf,˚n,m

ˇ

ˇ `

N
ÿ

n“1

Ns
n

ÿ

m“1

ˇ

ˇηsn,m ` ηs,˚n,m

ˇ

ˇ . (4.11)

This new formulation can be justified by the fact that a similar formula was already present
in the adaptive time-stepping criterion (4.9).

Due to the added mass effect, we, unfortunately, were not able to introduce micro time-
stepping in the solid domain. Because of that, here we present the results only for the fully
uniform time interval partitioning. We would also like to recall that due to nonlinearities in
the equations governing this example, the time discretization does not fully correspond to the
formulation given by the space-time approach. In addition, the resulting quadrature errors
are of the same order as the error estimator itself. Since these additional errors were not
accounted for, we should not expect as good effectivities as in the previous linear test model.
Given these reasons, as we will see, the numbers achieved by us are highly satisfactory.

In Table 4.10 we show residuals and effetcivities for the FSI2 benchmark test. We take a
series of four fully uniform time meshes, where the time-step sizes ranging from kn “ 0.01 up
to kn “ 0.00125 were considered. Again, using extrapolation in time we obtained the exact
functional value rQ “ 5.627679 and a high convergence rate of q “ 2.125132. This is quite
surprising knowing that some of the terms were discretized using the implicit Euler scheme,
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N N s NT ηsk ηTk ηk rQ´QpU⃗kq effk

50 78 50 4.47 ¨ 10´3 6.40 ¨ 10´6 4.48 ¨ 10´3 5.23 ¨ 10´3 0.86
50 114 50 4.74 ¨ 10´3 8.96 ¨ 10´6 4.75 ¨ 10´3 1.98 ¨ 10´3 2.39
50 142 50 1.45 ¨ 10´3 8.29 ¨ 10´6 1.46 ¨ 10´3 1.36 ¨ 10´3 1.08
50 180 50 1.12 ¨ 10´3 7.36 ¨ 10´6 1.13 ¨ 10´3 1.20 ¨ 10´3 0.94
50 226 50 2.80 ¨ 10´3 9.86 ¨ 10´6 2.81 ¨ 10´3 5.79 ¨ 10´4 4.86

Table 4.14: Residuals and effectivities for the thermoelasticity model problem in case of
adaptive time-stepping.

which has only a linear convergence rate. The effectivities are not as close to one as in the
previous example. However, they consistently reach similar values which in turn means that
the residuals and the extrapolated errors have a similar convergence rate. We can also see
in this example the dominance of contributions coming from the solid problem over the ones
from the fluid problem. Noteworthy, however, this difference is smaller than in the results of
the previous test model.

In Table 4.11 we gather our findings for the FSI3 benchmark problem. We obtained
rQ “ 2.179523 and q “ 1.824982. The effectivities are higher than in the previous problem.
Except for the coarsest mesh, they consistently reach similar values. Having said that, one can
observe a modest deterioration of the effectivities here which indicates a small mismatch in the
convergence rates of the extrapolated error and the residual. Further, the extrapolated errors
have higher values than in the previous FSI2 test case. That can be easily explained by the
shorter period of the displacement oscillations. For visualization of this fact, see Figure 1.5.
Here we can also see the dominance of the solid residuals but the difference is even smaller
than in the previous FSI2 problem.

4.4.3 Thermoelasticity

We continue our analysis and proceed to the thermoelasticity problem. Due to the oscil-
latory nature of this problem, we consider a very short time interval I “ r0, 0.1s. For this
example, only one functional is examined. It takes into account contributions from both the
structure as well as the temperature variables and is defined by a squared norm of the stress
tensor scaled by a Lamé parameter. As a result, the functional is given by

QpU⃗, T q :“

ż T

0
λ}ϵ}2 dt.

Since this functional depends on variables from both of the subproblems, we need to consider
both of the partial Gâteaux derivatives

Q1

U⃗
pΞq “

ż T

0
2λϵϵ1

U⃗
pΞq dt, Q1

T pΘq “

ż T

0
λ1
T pΘq}ϵ}2 dt.
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Figure 4.8: This figure shows the adaptive time mesh for the thermoelasticity example.

Let us recall

ϵ1

U⃗
pΞq “

1

2

´

∇ζ ` p∇ζq
T
¯

, λ1
T pΘq “

´νE0βS

p1 ` νqp1 ´ 2νq
.

Also here, small modifications will be implemented in the computation of partial residuals.
We will use the same algorithm as in the previous FSI problem (4.11) with a difference that
we will consider contributions from the structure and thermal problems instead of the fluid
and structure ones.

In Table 4.12 we explore the results for the uniform time-stepping. In each simulation,
the computations were performed over the same interval I. On the coarsest mesh, we divided
it into N “ 50 time-steps, where for each of them kn “ 0.002. We then introduced a
sequence of binary refinements until N “ 800 and kn “ 0.000125. Using the extrapolation
in time procedure with the last three most accurate results, we obtained rQ “ 13.108507 and
q “ 2.000106. Also here, the convergence rate here is almost perfectly quadratic. Although
the effectivities achieved here are not as good as in the first linear example, they are very
stable and except for the coarsest level, stay at effk “ 0.18. That means that we managed
to achieve an excellent alignment of the convergence rates between the estimator and the
extrapolated error.

Following the same path as in the previous examples, in Table 4.13 we show computation
results for a case, where an additional level of uniform refinement was introduced in variables
corresponding to the structure problem. We decided to introduce micro time-stepping there
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based on values of partial residuals which are not present in this thesis. Similarly as in the first
test problem, introducing partial refinement is just as effective in reducing the extrapolated
error as uniform refinement. For example, the extrapolated error rQ ´ QpU⃗kq in Table 4.13
for N “ 400 and in Table 4.12 for N “ 800 are equal. A similar phenomenon happens on
coarser levels as well. The effectivities have very stable values and stay close to effk “ 0.18.

In Table 4.14 we finally present the fully adaptive case. As our initial set-up, we took
the coarsest solution in Table 4.12. Unsurprisingly, given the results in Table 4.13, only the
variables corresponding to the structure subproblem are refined. The effectivities values are
more volatile with the worst value on the finest mesh effk “ 4.86. That being said, this
deterioration is acceptable and typical of adaptive refinement. More importantly, we achieved
a significant reduction in the extrapolation error. On the finest level, we have N s “ 226,
NT “ 50, and rQ ´ QpU⃗kq “ 5.79 ¨ 10´4. The closest value from Table 4.13 is for N s “ 200,
and NT “ 100 with rQ´QpU⃗kq “ 5.79 ¨ 10´4. That indicates a significant improvement given
that the performance of the partial refinement is already much better than fully uniform
time-stepping. Such extensive refinement only in the structure problem indicates a limited
influence of the Lamé parameter λ on the values of the goal functional Q.

We show the final adaptive time mesh in Figure 4.8. For the thermoelasticity example,
a shorter time interval r0.0, 0.02s was considered. We can notice intense refinement in the
structure problem. Compared to the previously shown adaptive meshes, this one is the least
regular with distinct coarser and finer regions. Particularly the onset region is highly refined.
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Chapter 5

A Priori Estimates for Interface
Coupled Problems

In the previous part of this thesis, we presented a multirate adaptive time-stepping algo-
rithm equipped with an a posteriori error estimator. However, despite its flexibility, robust-
ness, and other attractive attributes, this estimator did not yield any rigorous error bounds.
We will address this issue in this chapter. Since a strict analysis of physically meaningful
models is exceedingly difficult, we will instead choose a set of simplified linear problems.

After a brief general introduction to interface coupled problems, we will look at a simple
system of ordinary differential equations. Then we will proceed to two interface coupled sys-
tems of partial differential equations. The first one will consist of two heat equations scaled
by different diffusivity constants. In the second one, we will additionally impose an incom-
pressibility condition resulting in two Stokes systems. All of them will be discretized using the
implicit Euler time-stepping scheme. The scheme will allow for independent time-step sizes in
each of the subproblems. The transfer of values between the non-matching time meshes will
be handled using an average operator. We will prove a priori estimates with mostly optimal
linear convergence rates. Only the convergence rate of pressure in the Stokes problem will
be reduced by half an order. To prove this last estimate, a modified version of the inf-sup
condition will be used. The estimates for the fully discrete solutions of the heat and Stokes
equations will be proved in a modified energy norm that takes into account a Nitsche jump
term on the interface. We are in the process of publishing excerpts from this chapter.

5.1 Interface Coupled Problems

Resolving the interface for coupled problems is a crucial step in deriving successful dis-
cretization techniques. As we briefly discussed in the introduction to this thesis, there exist
two main approaches to solving such systems. In a monolithic approach, one solves the whole
coupled system using one solver. That allows defining trial and test spaces globally. In a con-
tinuous setting, that means that trial and test functions are continuous across the interface.
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From the continuity of the former, one directly obtains a global continuity of the solution.
The latter condition implies continuity of a stress tensor in the normal direction. This way, we
can embed the coupling conditions in the proper choice of trial and test spaces. That results
in a stable scheme. Unfortunately, the lack of flexibility prohibits us from using different
time-step sizes for each of the problems and therefore this approach is not available to us.

In a partitioned approach, each of the subproblems is considered separately and has its
own set of test and trial spaces. The continuity of neither trial nor test functions on the
interface is automatically fulfilled. In this set of methods, we can distinguish between two
different techniques to enforce the coupling conditions. The first solution is to enrich the
trial space by introducing additional basis functions to the approximation. This approach is
especially useful when one considers unfitted space meshes, where the interface does not have
to align with the facets of mesh cells. It is called either extended or generalized finite element
method. The enrichment is based on the concept of partition of unity. It is often combined
with level set functions for tracking the interface. In this case, the absolute value of the level
set function is used as the enrichment. If we enrich the solution space with functions with
compact support, the resulting system is sparse, making the computations cost effective. A
review on this topic can be found in [51]. A similar idea stands behind the immersed finite
element method. There, not only the internal interface but also outer boundaries do not have
align with the space mesh structure. The interface is resolved using modified function spaces.
The method was first developed in [52, 53], then extended to interface problems [54, 55]. In
the weak Galerkin finite element method [56], functions from a solution space are allowed to
have different values in the interior and on the boundary of elements. This method proved to
be especially advantageous in the case of complex interfaces.

Alternatively, one can enforce conditions on the interface by introducing additional terms
to a variational formulation. Most of these techniques are based on the Nitsche method [26].
According to this method, one introduces an additional stabilization term scaled by h´1 to
enforce the continuity of the solution across the interface. The term h´1 is used to balance
the normal derivative on the interface. It provides the necessary power of h to use an inverse
discrete inequality of the form

h
1
2 ||Bn⃗u

k,h||Γ ď ||∇uk,h||Ω.

This is the approach we used until now and will continue to use it in this chapter. Nitsche
method is used in a wide variety of contexts. Its generality allows for different polynomial
degrees, space meshes, and physical models on each side of the interface. In [57] the authors
present multiple applications. A discontinuous elasticity model has been analyzed in [58].
A study on a full FSI model in ALE coordinates with Nitsche boundary is shown in [59].
This method is also consistent and stable with optimal convergence rate in a mesh-dependent
energy norm and L2 norm. A priori and a posteriori estimates are proved in [60]. Convergence
of an adaptive algorithm for elliptic interface problems is presented in [61].
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5.2 Coupling of Ordinary Differential Equations

As our first example we chose a standard system of two ordinary equations where we look
for a solution u “ pu1, u2qT : I ˆ I Ñ RˆR with u P L2pĪq2 to a system

dtu1ptq “ f1
`

t, u1ptq, u2ptq
˘

, dtu2ptq “ f2
`

t, u1ptq, u2ptq
˘

, up0q “ 0. (5.1)

We assume that the function f “ pf1, f2q is Lipschitz continuous. Next, Follows a semi-
discrete formulation. The two problems are coupled across the macro mesh over the time
interval I “ r0, T s

0 “ t0 ă t1... ă tN “ T, kn “ tn ´ tn´1, In “ ptn´1, tns.

Every time subinterval In has its own time interval partitioning corresponding to each of the
subproblems

tn´1 “ tn,01 ă tn,11 ... ă t
n,Nn

1
1 “ tn, tn´1 “ tn,02 ă tn,12 ... ă t

n,Nn
2

2 “ tn.

On top of that,

kn,m1 :“ tn,m1 ´ tn,m´1
1 , In,m1 :“ ptn,m´1

1 , tn,m1 s,

kn,m2 :“ tn,m2 ´ tn,m´1
2 , In,m2 :“ ptn,m´1

2 , tn,m2 s

as well as
k1 :“ max

n,m
kn,m1 , k2 :“ max

n,m
kn,m2 , k :“ max tk1, k2u .

An example of this kind of time mesh is shown in Figure 2.1.
We assume that in this time partitioning, micro time-steps are introduced only when

necessary, see Figures 2.1 and 2.2 in Chapter 2. Besides, we assume that these time meshes
are a result of an adaptive time-stepping procedure where time-steps are refined only in the
middle. Based on these two assumptions for every macro time-step In we either have Nn

1 “ 1
or Nn

2 “ 1. The space of discrete solutions consists of piecewise constant functions defined
over each of the meshes

Xk
j “

␣

u P L2pĪq

ˇ

ˇ

ˇ
u|In,m

j
P R for all In,mj Ă I and up0q “ 0

(

, j “ 1, 2 (5.2)

We take discrete solutions uk P Xk, where uk “ puk1, u
k
2qT and Xk “ Xk

1 ˆ Xk
2 . To further

specify the time-stepping scheme, we define the operator ik “ pik1, i
k
2qT with ik : L2pĪq2 Ñ R2

by
ikju

ˇ

ˇ

In,m
j

:“ uptn,mj q, j “ 1, 2. (5.3)

The initial condition is given by pikuqp0q “ up0q. This choice of projection operators indicates
the implicit Euler method. We follow this route and introduce a finite difference quotient dkt
typical for this time-stepping scheme

dkt u
k
j

ˇ

ˇ

ˇ

In,m
j

“
ukj ptn,mj q ´ ukj ptn,m´1

j q

kn,mj

, j “ 1, 2. (5.4)
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Since we are interested in coupled problems, we also need an apparatus to deal with
the transfer of solutions between the non-matching time meshes. To resolve this issue, we
additionally introduce an operator Ik “ pIk1 , I

k
2 qT with Ik : L2pĪq2 Ñ R2 given by an average

over each partitioning, where on every interval In,m1 and In,m2 it holds

Ikj u
ˇ

ˇ

In,m
j

:“
1

kn,mj

ż

In,m
j

udt, j “ 1, 2. (5.5)

A similar operator Īk will be used which is defined accordingly on the coarse time mesh
consisting of the macro time-steps

Īku
ˇ

ˇ

In
:“

1

kn

ż

In
udt. (5.6)

At the initial point, we impose pIkuqp0q “ up0q and pĪkuqp0q “ up0q. Further information
is given in Figure 5.1. The key property of the operator Ik is that its error has average zero
over each macro time-step

ż

In

´

u ´ Iku
¯

dt “ 0.

Moreover, for any uk1 P Xk
1 and uk2 P Xk

2

ż

In

´

uk1 ´ Ik2u
k
1

¯

dt “

ż

In

´

uk2 ´ Ik1u
k
2

¯

dt “ 0. (5.7)

This identity directly follows from the hierarchical structure in the discretization, where we
know that nodes tn and tn´1 belong to both of the discretizations.

We would like to reiterate the difference between operators ik and Ik. The former is our
primary operator used in the implicit Euler time-stepping scheme and will be a part of a
projection error that will be estimated in each of the following proofs. The latter is used
exclusively to transfer the solutions between different time meshes. The difference between
the two is further illustrated in Figure 5.2. Finally, both ik and Ik are properly defined
projection operators and therefore, for any uk P Xk, we have

ikuk “ Ikuk “ uk. (5.8)

Given this preliminary information, the semi-discrete problem is defined as

dkt u
k
1 “ f1pik1t, u

k
1, I

k
1u

k
2q, dkt u

k
2 “ f2pik2t, I

k
2u

k
1, u

k
2q. (5.9)

We will now prove a stability estimate of this semi-discrete system using Gronwall’s lemma.

Theorem 1. Let u be a continuous solution to (5.1) and uk P Xk its discrete counterpart
and a solution to (5.9). Further, let us assume that f P C1pĪq2 with Lipschitz constants L1

and L2, respectively. If we further assume that pkN1 ` kN2 qpL1 ` L2q ď 1
2 , where k

N
1 :“ k

N,NN
1

1
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uk1ptnq

tn´1 tn

ÞÝÑ
Ik2 pIk2u

k
1qptnq

tn´1 tn

uk1ptnq

tn´1 tn

ÞÝÑ
Ik2 pIk2u

k
1qptnq

tn´1 tn

Figure 5.1: We present two examples of the transformation given by the projection opera-
tor Ik. In the top sketch, one macro time-step is split into two smaller micro time-steps and
pIk2u

k
1qptn,12 q “ pIk2u

k
1qptnq “ uk1ptnq. In the bottom sketch, two smaller micro time-steps are

merged together with pIk2u
k
1qptnq “

kn,1
1
kn u

k
1ptn,11 q `

kn,2
1
kn u

k
1ptnq.

and kN2 :“ k
N,NN

2
2 that is the sizes of the last time-steps in each of the timelines, then the

following estimate holds

ˇ

ˇ

ˇ

ˇek1ptN q
ˇ

ˇ

ˇ

ˇ `
ˇ

ˇ

ˇ

ˇek2ptN q
ˇ

ˇ

ˇ

ˇ ď e2T pL1`L2q
´

2}τk1 } ` 2}τk2 }

¯

,

with the truncation errors (for j “ 1, 2 and using the notation ĵ “ 3 ´ j)

}τkj } ď

N
ÿ

n“1

Nn
j

ÿ

m“1

#

1

2
pkn,mj q2 max

tPI
||dtfjpt, u1, u2q|| ` Ljk

nkn,mj max
tPI

||fjpt, u1, u2q||

` Lĵpk
n,m
j q2 max

tPI
||fjpt, u1, u2q||

+

(5.10)

and where the errors ek “ pek1, e
k
2qT are defined as

ekj :“ ukj ´ ikjuj , j “ 1, 2.
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ÞÝÑ
ik

ÞÝÑ
Ik

Figure 5.2: An example showing a difference between projection operators ik and Ik. The top
figure shows the projection given by the ik operator and in the bottom one, we instead have
a look at the Ik operator.

Proof. Since the analysis of both the errors ek1 and ek2 is analogous, in this proof we will only
estimate ek1. Using both the continuous (5.1) as well as the discrete (5.9) formulation we have

ek1ptn,m1 q “ ek1ptn,m´1
1 q `

ż

In,m
1

!

f1ptn,m1 , uk1, I
k
1u

k
2q ´ f1ptn,m1 , u1ptn,m1 q, Īku2q

)

dt´ τn,m1,k ,

where

τn,m1,k :“u1ptn,m1 q ´ u1ptn,m´1
1 q ´

ż

In,m
1

f1ptn,m1 , u1ptn,m1 q, Īku2q dt.

We sum up the values of the errors over the whole time interval

ek1ptN q “

N
ÿ

n“1

Nn
1

ÿ

m“1

ż

In,m
1

!

f1ptn,m1 , uk1, I
k
1u

k
2q

´ f1ptn,m1 , u1ptn,m1 q, Īku2q

)

dt´

N
ÿ

n“1

Nn
1

ÿ

m“1

ż

In,m
1

τn,m1,k dt.

(5.11)
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Note that ek1p0q “ 0. We will use the notation

τk1 :“
N
ÿ

n“1

Nn
1

ÿ

m“1

ż

In,m
1

τn,m1,k dt.

After applying the triangle inequality to equation (5.11) as well as the Lipschitz continuity of
the function f1

}ek1ptN q} ď

N
ÿ

n“1

Nn
1

ÿ

m“1

kn,m1 L1}ek1ptn,m1 q} `

N
ÿ

n“1

Nn
1

ÿ

m“1

ż

In,m
1

L1}Ik1u
k
2 ´ Īku2} dt´ τk1 . (5.12)

We proceed with the estimation of the term
řNn

1
m“1

ş

In,m
1

L1}Ik1u
k
2 ´ Īku2} dt. Based on the

definition of our time meshes, for each macro time-step In, there is micro time-stepping in only
one of the submeshes. Therefore, it is sufficient to only consider the following possibilities:

1. There is no micro time-stepping in Ik1 , from which follows that Nn
1 “ 1 and Ik1

ˇ

ˇ

ˇ

In
“ Īk

ˇ

ˇ

ˇ

In

Nn
1

ÿ

m“1

ż

In,m
1

L1}Ik1u
k
2 ´ Īku2} dt “

ż

In
L1}Īkuk2 ´ Īku2} dt

“ L1

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

Nn
2

ÿ

m“1

kn,m2 uk2ptn,m2 q ´

ż

In
u2psq ds

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ď L1

Nn
2

ÿ

m“1

kn,m2

!

}ek2ptn,m2 q} `
1

kn,m2

ż

In,m
2

||u2ptn,m2 q ´ u2psq|| ds
)

ď

Nn
2

ÿ

m“1

L1k
n,m
2 }ek2ptn,m2 q} `

Nn
2

ÿ

m“1

L1pkn,m2 q2 max
tPI

}f2pt, u1, u2q}.

2. There is no micro time-stepping in Ik2 , from which follows that Nn
2 “ 1 and Ik2

ˇ

ˇ

ˇ

In
“ Īk

ˇ

ˇ

ˇ

In

Nn
1

ÿ

m“1

ż

In,m
1

L1}Ik1u
k
2 ´ Īku2} dt “

Nn
1

ÿ

m“1

L1k
n,m
1

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

uk2ptnq ´
1

kn

ż

In
u2psq ds

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

“ L1

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

knuk2ptnq ´

ż

In
u2psq ds

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ď L1k
n}ek2ptnq} ` L1pknq2 max

tPI
}f2pt, u1, u2q}

“

Nn
2

ÿ

m“1

L1k
n,m
2 }ek2ptn,m2 q} `

Nn
2

ÿ

m“1

L1pkn,m2 q2 max
tPI

}f2pt, u1, u2q}.

Let us continue with the estimation of the remaining term in the error equation (5.11)
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}τk1 } ď

N
ÿ

n“1

Nn
1

ÿ

m“1

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

u1ptn,m1 q ´ u1ptn,m´1
1 q ´ kn,m1 f1ptn,m1 , u1ptn,m1 q, u2ptn,m1 qq

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

`

N
ÿ

n“1

Nn
1

ÿ

m“1

ż

In,m
1

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

f1ptn,m1 , u1ptn,m1 q, u2ptn,m1 qq ´ f1ptn,m1 , u1ptn,m1 q, Īku2q

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

dt.

It holds

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

u1ptn,m1 q ´ u1ptn,m´1
1 q ´ kn,m1 f1ptn,m1 , u1ptn,m1 q, u2ptn,m1 qq

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ď
1

2
pkn,m1 q2 max

tPI
}dtf1pt, u1, u2q}

as well as

ż

In,m
1

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

f1ptn,m1 , u1ptn,m1 q, u2ptn,m1 qq ´ f1ptn,m1 , u1ptn,m1 q, Īku2q

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

dt

ď L1
kn,m1

kn

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ż

In
pu2ptn,m1 q ´ u2psqq ds

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ď L1k
n,m
1 kn max

tPI
}f1pt, u1, u2q}.

Analogously, one can analyze ek2. Once it is done, we can proceed with Gronwall’s lemma.
The terms corresponding to the last time-step in the inequality (5.12) are then transferred
from the right to the left side. Assuming that pkN1 ` kN2 qpL1 ` L2q ď 1

2 , then it holds

1

2

´

}ek1ptN q} ` }ek2ptN q}

¯

ď
␣

1 ´ kN1 pL1 ` L2q
(

}ek1ptN q} `
␣

1 ´ kN2 pL1 ` L2q
(

}ek2ptN q}.

Applying Gronwall’s lemma yields the results.

Remark 5.2.1 (Separation of the time scales). In a simplified form, we were able to prove

ˇ

ˇ

ˇ

ˇekptN q
ˇ

ˇ

ˇ

ˇ “ O pk1 ||dtf1pt, u1, u2q||q ` O pk ||f1pt, u1, u2q||q

` O pk2 ||dtf2pt, u1, u2q||q ` O pk ||f2pt, u1, u2q||q .

Based on that, let us make a few observations. First, we obtained linear convergence in
time typical for the implicit Euler scheme. Second, while we were not able to fully decouple
the two problems, the macro time step k only acts on the lower order term f but not its
derivative. This indicates that the oscillations of functions f1, and f2 are localizable to each
of the two subproblems and an efficient discretization by a multirate method is possible. This
is in agreement with the a posteriori error estimate and the numerical results demonstrated
in [23].
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Ω2

Ω1Ω1

Γ

Figure 5.3: We show the splitting of the domain Ω into Ω1 and Ω2 with a common interface Γ.

5.3 Coupling of Heat Equations

In this section, we consider a heat equation prescribed on two domains Ω̄1 Y Ω̄2 “ Ω Ă Rd

for d P t2, 3u with a common interface Γ. The domains are illustrated in Figure 5.3. On each
of the domains, we choose different diffusivity constants ν “ pν1, ν2qT and external forces
f “ pf1, f2qT P L2pΩqd. We define a space-time domain for any arbitrary function space V

XpV q :“
␣

v P L2pI, V q| Btv P L2pI, V ˚q
(

, (5.13)

and take u “ pu1,u2qT with uj P XpH1pΩjqqd for j “ 1, 2. The solution u : Ω ˆ I Ñ Rd is
governed by the equations

Btu1 ´ ν1∆u1 “ f1 in Ω1 and Btu2 ´ ν2∆u2 “ f2 in Ω2. (5.14)

On the interface Γ “ BΩ1 X BΩ2 we impose coupling conditions typical for continuous
two-phase flow problems, see, for instance [62], that is continuity of the solutions (kinematic
condition) and balance of stress in the normal direction (dynamic condition)

u1 “ u2 on Γ,

ν1Bn⃗1
u1 “ ´ν2Bn⃗2

u2 on Γ.
(5.15)

n⃗1 and n⃗2 denote normal vectors corresponding to each of the domains. In particular, on
the interface n⃗1 “ ´n⃗2. On the outer boundary BΩ we choose a no-slip boundary condition
u1 “ u2 “ 0. Similarly, at initial time we set u1p0q “ u2p0q “ 0. After integration by parts
using test functions φ “ pφ1,φ2qT with φj P XpH1pΩjqqd for j “ 1, 2, we obtain

ż

I

!

pdtu,φqΩ ` ν p∇u,∇φqΩ ´ xν1Bn⃗1
u1,φ1yΓ ´ xν2Bn⃗2

u2,φ2yΓ

)

dt

“

ż

I
pf,φqΩ dt.

(5.16)
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5.3. Coupling of Heat Equations

Given the coupling conditions (5.15), we have

ν1Bn⃗1
u1 “

1

2
pν1Bn⃗1

u1 ´ ν2Bn⃗2
u2q “ ´ν2Bn⃗2

u2 (5.17)

and therefore the interface terms are equal to

´ xν1Bn⃗1
u1,φ1yΓ ´ xν2Bn⃗2

u2,φ2yΓ “
1

2
xν1Bn⃗1

u1 ´ ν2Bn⃗2
u2,φ2 ´φ1yΓ .

To symmetrize the formulation, we subtract

1

2
xu2 ´ u1, ν1Bn⃗1

φ1 ´ ν2Bn⃗2
φ2yΓ , (5.18)

which vanishes once u1 “ u2 on the interface. Further a Nitsche term is added

γ xu2 ´ u1,φ2 ´φ1yΓ .

γ denotes the Nitsche constant. Traditionally, this interface term is scaled by γ
h instead of

γ, where h stands for the space mesh size. Since we consider both semi-discrete and fully
discrete cases, h will be included in fully discrete formulations only. For more details on the
Nitsche method, we refer to the original paper [26] and to [63], where similar approaches are
applied to two-phase flow problems and fluid-structure interactions. Since the exact solution
fulfills coupling conditions and therefore the interface terms are equal to zero, we obtain a
consistent and, as we will later see, coercive formulation

apu,φq :“

ż

I

!

pdtu,φqΩ ` ν p∇u,∇φqΩ `
1

2
xν1Bn⃗1

u1 ´ ν2Bn⃗2
u2,φ2 ´φ1yΓ

´
1

2
xu2 ´ u1, ν1Bn⃗1

φ1 ´ ν2Bn⃗2
φ2yΓ ` γ xu2 ´ u1,φ2 ´φ1yΓ

)

dt

“

ż

I
pf,φqΩ dt.

(5.19)

This formulation guarantees the fulfillment of coupling conditions (5.15) even without any
assumptions on the continuity of trial and test functions on the interface. Due to the ar-
bitrariness of test functions, condition (5.18) leads to the continuity across the interface of
solutions. Additional interface terms coming from integration by parts and returning to the
strong formulation (5.14) as well as property (5.17) guarantee the balance of stress. This
variational treatment of the interface conditions was first proposed by P. Hansbo and M. G.
Larson in [5].

We will use the notations p¨, ¨qΩ1 , p¨, ¨qΩ2 and p¨, ¨qΩ to indicate the L2-product over a
corresponding domain. The norms over each of the domains will be denoted in a similar way.
On the interface, using Riesz representation theorem, we then define

xu,φyΓ :“ xu,φy
H´ 1

2 pΓqdˆH
1
2 pΓqd

, ||u||Γ :“
a

xu,uyΓ .
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Chapter 5. A Priori Estimates for Interface Coupled Problems

5.3.1 Semi-discrete Case

With the help of the projection operators Ik1 and Ik2 (we use bold letters to indicate that
projections are performed on multidimensional functions), we are ready to formulate a semi-
discrete variational problem again using the implicit Euler time-stepping scheme

akpuk,φkq :“

ż

I

!

`

dk
tu

k,φk
˘

Ω
` ν

´

∇uk,∇φk
¯

Ω
´

1

2

A

ν1Bn⃗1
uk
1 ´ ν2Bn⃗2

Ik1u
k
2,φ

k
1

E

Γ

`
1

2

A

ν1Bn⃗1
Ik2u

k
1 ´ ν2Bn⃗2

uk
2,φ

k
2

E

Γ
´

1

2

A

Ik1u
k
2 ´ uk

1, ν1Bn⃗1
φk

1

E

Γ

`
1

2

A

uk
2 ´ Ik2u

k
1, ν2Bn⃗2

φk
2

E

Γ
´ γ

A

Ik1u
k
2 ´ uk

1,φ
k
1

E

Γ

` γ
A

uk
2 ´ Ik2u

k
1,φ

k
2

E

Γ

)

dt

“

ż

I

´

f,φk
¯

Ω
dt.

(5.20)

The corresponding function spaces are defined as (j “ 1, 2)

Xk
j :“

␣

φ P L2pĪ , H1pΩjqq

ˇ

ˇ

ˇ
φ|In,m

j
P P0pH1pΩjqqfor all In,mj Ă I, φp0q “ 0

(

(5.21)

and Xk :“ Xk
1 ˆXk

2 . We also introduce a similar space defined over the whole domain Ω

Y k :“
␣

φ “ pφ1, φ2qT P L2pĪ , H1pΩqq

ˇ

ˇ

ˇ
φ1|Ω1 P Xk

1 , φ2|Ω2 P Xk
2

(

,

By testing the semi-discrete formulation with functions concentrated only on the interface,
on each macro time-step In, we have for any φk

1 P pXk
1 qd and φk

2 P pXk
2 qd

0 “

ż

In

@

Ik1u
k
2 ´ uk

1,φ
k
1

D

Γ
dt “

ż

In

@

uk
2 ´ Ik2u

k
1,φ

k
2

D

Γ
dt,

0 “

ż

In

@

ν1Bn⃗1
uk
1 ` ν2Bn⃗2

Ik1u
k
2,φ

k
1yΓ dt “

ż

In

@

ν1Bn⃗1
Ik2u

k
1 ` ν2Bn⃗2

uk
2,φ

k
2yΓ dt.

These identities together with the property (5.7) allow us to recover the coupling conditions
in a weak form, that is for any φk

1 P pXk
1 qd and φk

2 P pXk
2 qd

0 “

ż

In

@

uk
2 ´ uk

1,φ
k
1

D

Γ
dt “

ż

In

@

uk
2 ´ uk

1,φ
k
2

D

Γ
dt,

0 “

ż

In

@

ν1Bn⃗1
uk
1 ` ν2Bn⃗2

uk
2,φ

k
1yΓ dt “

ż

In

@

ν1Bn⃗1
uk
1 ` ν2Bn⃗2

uk
2,φ

k
2yΓ dt.

(5.22)

Now we will prove an error estimate given by the following estimation
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5.3. Coupling of Heat Equations

Theorem 2. Let u P XpH1
0 pΩqqd, uj P W 1,8pH2pΩjqqd for j “ 1, 2 be continuous solutions

to (5.19) and uk P pXkqd their semi-discrete counterpart and a solution to (5.20), then the
following estimate holds

ˇ

ˇ

ˇ

ˇekptN q
ˇ

ˇ

ˇ

ˇ

2

Ω
`

ż

I
ν2

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ
∇ek

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

2

Ω
dt

ď C1

N
ÿ

n“1

Nn
1

ÿ

m“1

#

pkn,m1 q3 max
tPI

||dt∇u1||
2
Ω1

` pkn,m1 q3 max
tPI

||dtBn⃗1
u1||

2
Γ

+

` C2

N
ÿ

n“1

Nn
2

ÿ

m“1

#

pkn,m2 q3 max
tPI

||dt∇u2||
2
Ω2

` pkn,m2 q3 max
tPI

||dtBn⃗2
u2||

2
Γ

+

,

where the errors ek “ pek1, e
k
2qT are defined as

ek1 :“ uk
1 ´ ik1u1, ek2 :“ uk

2 ´ ik2u2.

Proof. Using Galerkin orthogonality, we have akpuk, ekq “ apu, ekq and therefore it holds

akpuk, ekq ´

ż

I

!

`

dk
t i

ku, ek
˘

Ω
` ν

`

∇iku,∇ek
˘

Ω

)

dt

“ apu, ekq ´

ż

I

!

`

dk
t i

ku, ek
˘

Ω
` ν

`

∇iku,∇ek
˘

Ω

)

dt.

(5.23)

By adding and subtracting terms, the lest side of this identity can be rewritten as

akpuk, ekq ´

ż

I

!

`

dk
t i

ku, ek
˘

Ω
` ν

`

∇iku,∇ek
˘

Ω

)

dt

“

ż

I

!

`

dk
t e

k, ek
˘

Ω
` ν

ˇ

ˇ

ˇ

ˇ∇ek
ˇ

ˇ

ˇ

ˇ

2

Ω
`

1

2

A

ν1Bn⃗1
uk
1 ´ ν2Bn⃗2

uk
2, e

k
2 ´ ek1

E

Γ

´
1

2

A

uk
2 ´ uk

1, ν1Bn⃗1
ek1 ´ ν2Bn⃗2

ek2

E

Γ
` γ

A

uk
2 ´ uk

1, e
k
2 ´ ek1

E

Γ

´
1

2

@

ν2Bn⃗2
puk

2 ´ Ik1u
k
2q, ek1

D

Γ
`

1

2

@

ν1Bn⃗1
pIk2u

k
1 ´ uk

1q, ek2
D

Γ

´
1

2

@

Ik1u
k
2 ´ uk

2, ν1Bn⃗1
ek1
D

Γ
`

1

2

@

uk
1 ´ Ik2u

k
1, ν2Bn⃗2

ek2
D

Γ

´ γ
@

Ik1u
k
2 ´ uk

2, e
k
1

D

Γ
` γ

@

uk
1 ´ Ik2u

k
1, e

k
2

D

Γ

)

dt.

(5.24)

Since the semi-discrete solution fulfills the coupling conditions in the sense of (5.22), specifi-
cally the Dirichlet condition, we have

ż

I

"

´
1

2

A

uk
2 ´ uk

1, ν1Bn⃗1
ek1 ´ ν2Bn⃗2

ek2

E

Γ
` γ

A

uk
2 ´ uk

1, e
k
2 ´ ek1

E

Γ

*

dt “ 0.
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One can further simplify expression (5.24) by noticing, that on every macro time-step In

ż

In

!

´
1

2

@

ν2Bn⃗2
puk

2 ´ Ik1u
k
2q, ek1

D

Γ
`

1

2

@

ν1Bn⃗1
pIk2u

k
1 ´ uk

1q, ek2
D

Γ

´
1

2

@

Ik1u
k
2 ´ uk

2, ν1Bn⃗1
ek1
D

Γ
`

1

2

@

uk
1 ´ Ik2u

k
1, ν2Bn⃗2

ek2
D

Γ

´ γ
@

Ik1u
k
2 ´ uk

2, e
k
1

D

Γ
` γ

@

uk
1 ´ Ik2u

k
1, e

k
2

D

Γ

)

dt “ 0.

(5.25)

To explain that, let us look at the integral
ş

In

@

uk
1 ´ Ik2u

k
1, e

k
2

D

Γ
dt. From the construction of

our time meshes, there are two possibilities. According to the first one, there is no micro time-
stepping in the domain Ω1, in other words, Nn

1 “ 1 and Ik1
ˇ

ˇ

In
“ Ī

kˇ
ˇ

In
. Then Ik2u

k
1 “ uk

1 and

therefore
@

uk
1 ´ Ik2u

k
1, e

k
2

D

Γ
“ 0. Otherwise, we have no micro time-stepping in the domain Ω2

(Nn
2 “ 1 and Ik2

ˇ

ˇ

In
“ Ī

kˇ
ˇ

In
). In this case, knowing that the test function ek2 is a continuous

constant over the interval In and using the property (5.7) of the projection operator Ik2, we
can write

ż

In

@

uk
1 ´ Ik2u

k
1, e

k
2

D

Γ
dt “

B
ż

In
puk

1 ´ Ik2u
k
1q dt, ek2

F

Γ

“ 0.

The reasoning corresponding to the remaining terms in (5.25) is analogous. Let us look at the
unresolved interface term. The weak coupling conditions can be further exploited and lead to

ż

In

1

2

A

ν1Bn⃗1
uk
1 ´ ν2Bn⃗2

uk
2, e

k
2 ´ ek1

E

Γ
dt “

ż

In

1

2

A

ν1Bn⃗1
uk
1 ´ ν2Bn⃗2

uk
2, i

k
1u1 ´ ik2u2

E

Γ
dt

Let us look closely at the implications of our time mesh structure. Because of the symmetry
of this expression, without loss of generality, we can assume that Nn

1 “ 1 and Ik1
ˇ

ˇ

In
“ Ī

kˇ
ˇ

In
.

The use of both the weak (5.22) and the strong (5.15) coupling conditions leads us to
ż

In

1

2

A

ν1Bn⃗1
uk
1 ´ ν2Bn⃗2

uk
2, i

k
1u1 ´ ik2u2

E

Γ
dt

“

B

ν1Bn⃗1
uk
1,

ż

In
pik1u1 ´ u1q dt

F

Γ

`

B

ν1Bn⃗1
uk
1,

ż

In
pu2 ´ ik2u2q dt

F

Γ

“ 0.

The left side of the identity (5.24), with the help of the strong coupling conditions, is equal
to

apu, ekq ´

ż

I

!

`

dk
t i

ku, ek
˘

Ω
` ν

`

∇iku,∇ek
˘

Ω

)

dt

“

ż

I

!

`

dtu ´ dk
t i

ku, ek
˘

Ω
` ν

`

∇pu ´ ikuq,∇ek
˘

Ω

`
1

2

A

ν1Bn⃗1
u1 ´ ν2Bn⃗2

u2, e
k
2 ´ ek1

E

Γ

)

dt

While analyzing the remaining terms in (5.24), we will concentrate on the error ek1 since the
estimations corresponding to the second error are very similar. Therefore, a single interval
In,m1 will be considered. Let us start with the time discretization error
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ż

In,m
1

dtu1 dt “ u1ptn,m1 q ´ u1ptn,m´1
1 q “

ż

In,m
1

dk
t i

k
1u1 dt.

As a result, we have
ż

In,m
1

`

dtu ´ dk
t i

k
1u, e

k
˘

Ω
dt “ 0. (5.26)

We will now examine the Laplacian terms on the right side of (5.24). Knowing that the
error ek1 is constant in time on every interval In,m1 , we have

ˇ

ˇ

ˇ

ˇ

ˇ

ż

In,m
1

ν1

´

∇pu1 ´ ik1u1q,∇ek1

¯

Ω1

dt

ˇ

ˇ

ˇ

ˇ

ˇ

“

ˇ

ˇ

ˇ

ˇ

ˇ

ż

In,m
1

ż tn,m
1

t
ν1

´

dt∇u1psq,∇ek1ptn,m1 q

¯

Ω1

ds dt

ˇ

ˇ

ˇ

ˇ

ˇ

ďcpkn,m1 q3 max
tPI

||dt∇u1||
2
Ω1

`
1

8
ν21

ż

In,m
1

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ
∇ek1ptn,m1 q

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

2

Ω1

dt.

(5.27)

The remaining time discretization term in (5.24) can be rewritten as

ż

In,m
1

´

dk
t e

k
1, e

k
1

¯

Ω1

dt “
1

2

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ
ek1ptn,m1 q

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

2

Ω1

´
1

2

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ
ek1ptn,m´1

1 q

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

2

Ω1

`
1

2

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ
ek1ptn,m1 q ´ ek1ptn,m´1

1 q

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

2

Ω1

.

(5.28)

Summing these terms over the whole time interval, we obtain

ż

I

´

dk
t e

k
1, e

k
1

¯

Ω1

dt “
1

2

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ
ek1ptN q

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

2

Ω1

`
1

2

N
ÿ

n“1

Nn
1

ÿ

m“1

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ
ek1ptn,m1 q ´ ek1ptn,m´1

1 q

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

2

Ω1

and therefore
ˇ

ˇ

ˇ

ˇekptN q
ˇ

ˇ

ˇ

ˇ

2

Ω
ď

ż

I
2
´

dk
t e

k, ek
¯

Ω
dt.

Let us proceed to the last interface term on the right side of (5.23). Implementing very similar
solutions as in the analysis of the previous interface terms, we can show that

ż

In

1

2

A

ν1Bn⃗1
u1 ´ ν2Bn⃗2

u2, e
k
2 ´ ek1

E

Γ
dt

“

ż

In

1

2

A

ν1Bn⃗1
pu1 ´ Ik1u1q ´ ν2Bn⃗2

pu2 ´ Ik2u2q, ek2 ´ ek1

E

Γ
dt

ď

ż

In

1

2

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ
ν1Bn⃗1

pu1 ´ Ik1u1q ´ ν2Bn⃗2
pu2 ´ Ik2u2q

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

Γ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ
ek2 ´ ek1

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

Γ
dt.

(5.29)
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The first term in (5.29) can be estimated using the fundamental theorem of calculus, from
which follows

νj

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ
Bn⃗j

puj ´ Ikjujq

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

Γ
ď νjk

n,m
j max

tPI

ˇ

ˇ

ˇ

ˇdtBn⃗j
uj

ˇ

ˇ

ˇ

ˇ

Γ
, j “ 1, 2.

The other term can be dealt with by using the trace inequality
ˇ

ˇ

ˇ

ˇ

ˇ

ˇ
ek2 ´ ek1

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

Γ
ď

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ
ek1

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

Γ
`

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ
ek2

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

Γ
ď c1

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ
∇ek1

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

Ω1

` c2

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ
∇ek2

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

Ω2

.

After combining these estimates using the Young and Poincaré inequalities
ˇ

ˇ

ˇ

ˇ

ż

In

1

2

A

ν1Bn⃗1
u1 ´ ν2Bn⃗2

u2, e
k
2 ´ ek1

E

Γ
dt

ˇ

ˇ

ˇ

ˇ

ď

Nn
1

ÿ

m“1

#

c1pkn,m1 q3 max
tPI

||dtBn⃗1
u1||

2
Γ `

1

8
ν21

ż

In,m
1

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ
∇ek1ptn,m1 q

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

2

Ω1

dt

+

`

Nn
2

ÿ

m“1

#

c2pkn,m2 q3 max
tPI

||dtBn⃗2
u2||

2
Γ `

1

8
ν22

ż

In,m
2

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ
∇ek2ptn,m2 q

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

2

Ω2

dt

+

(5.30)

Performing the same steps for the solution u2 and summing these terms over the whole interval
I will lead to the final result.

In a more compact way, we just proved that

ˇ

ˇ

ˇ

ˇekptN q
ˇ

ˇ

ˇ

ˇ `

ż

I
ν
ˇ

ˇ

ˇ

ˇek
ˇ

ˇ

ˇ

ˇdt “ O
`

k1 ||dt∇u1||Ω1

˘

` O
`

k1 ||dtBn⃗1
u1||Γ

˘

` O
`

k2 ||dt∇u2||Ω2

˘

` O
`

k2 ||dtBn⃗2
u2||Γ

˘

.

The convergence is linear which is expected for the implicit Euler method. Here, we were
able to fully decouple the system. Due to the interface coupling conditions, we avoided
interdependencies between contributions from different time discretizations.

5.3.2 Fully Discrete Case

To discretize the problem in space, we introduce regular triangulations T h
1 and T h

2 . We
assume that they match across the interface Γ. K1 denotes an element of the mesh T h

1 and
by K2 an element of T h

2 . Their sizes are denoted by hK1 and hK2 , respectively. Further,

h1 :“ max
K1PT h

1

hK1 , h2 :“ max
K2PT h

2

hK2 , h :“ max th1, h2u .

As function spaces, we take the space of continuous polynomials of order r

Xk,h
1 prq “

␣

φ P Xk
1

ˇ

ˇ

ˇ
φ|K1 P PrpΩ1q for all K1 P T h

1 and φ|BΩ1zΓ “ 0
(

,

Xk,h
2 prq “

␣

φ P Xk
2

ˇ

ˇ

ˇ
φ|K2 P PrpΩ2q for all K2 P T h

2 and φ|BΩ2zΓ “ 0
(

.
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We similarly define the function space

Y k,hprq :“
␣

φ P Y k
ˇ

ˇ

ˇ
φ|Ω1 P Xk,h

1 prq and φ|Ω2 P Xk,h
2 prq

(

.

Let us introduce a Ritz projection operator. To ensure continuity over the interface, we will
define it over the space Y k,hprq instead of

Xk,hprq :“ Xk,h
1 prq ˆXk,h

2 prq.

As a consequence, we take

Rhu “ pRh
1u1,R

h
2u2qT P pY k,hprqqd

defined by

`

∇Rhu,∇φk,h
˘

Ω
“
`

∇u,∇φk,h
˘

Ω
for all φk,h P pY k,hprqqd. (5.31)

Again, since the Ritz projection operator is imposed on a function space consisting only of
functions continuous across the interface, we have

Rh
1u1

ˇ

ˇ

ˇ

Γ
“ Rh

2u2

ˇ

ˇ

ˇ

Γ
. (5.32)

We will now list some of the useful properties of the Ritz operator.

Corollary 1. Given u P XpH1
0 pΩqqd, uk

j P XpHr`1pΩjqqd for j “ 1, 2, the Ritz projection
operator defined by (5.31) has the following properties:

(i)
ˇ

ˇ

ˇ

ˇu ´ Rhu
ˇ

ˇ

ˇ

ˇ

Ω
ď c1h

r`1
ˇ

ˇ

ˇ

ˇ∇r`1u1

ˇ

ˇ

ˇ

ˇ

Ω1
` c2h

r`1
ˇ

ˇ

ˇ

ˇ∇r`1u2

ˇ

ˇ

ˇ

ˇ

Ω2
,

(ii)
ˇ

ˇ

ˇ

ˇ∇pu ´ Rhuq
ˇ

ˇ

ˇ

ˇ

Ω
ď c1h

r
ˇ

ˇ

ˇ

ˇ∇r`1u1

ˇ

ˇ

ˇ

ˇ

Ω1
` c2h

r
ˇ

ˇ

ˇ

ˇ∇r`1u2

ˇ

ˇ

ˇ

ˇ

Ω2
,

(iii)
ˇ

ˇ

ˇ

ˇ∇pu1´Rh
1u1q¨n⃗1

ˇ

ˇ

ˇ

ˇ

Γ
`
ˇ

ˇ

ˇ

ˇ∇pu2´Rh
2u2q¨n⃗2

ˇ

ˇ

ˇ

ˇ

Γ
ď c1h

r´ 1
2

ˇ

ˇ

ˇ

ˇ∇r`1u1

ˇ

ˇ

ˇ

ˇ

Ω1
`c2h

r´ 1
2

ˇ

ˇ

ˇ

ˇ∇r`1u2

ˇ

ˇ

ˇ

ˇ

Ω2
.

Then, our variational problem is given by

ak,hpuk,h,φk,hq “

ż

I

!

`

dk
tu

k,h,φk,h
˘

Ω
` ν

´

∇uk,h,∇φk,h
¯

Ω

´
1

2

A

ν1Bn⃗1
uk,h
1 ´ ν2Bn⃗2

Ik1u
k,h
2 ,φk,h

1

E

Γ
`

1

2

A

ν1Bn⃗1
Ik2u

k,h
1 ´ ν2Bn⃗2

uk,h
2 ,φk,h

2

E

Γ

´
1

2

A

Ik1u
k,h
2 ´ uk,h

1 , ν1Bn⃗1
φk,h

1

E

Γ
`

1

2

A

uk,h
2 ´ Ik2u

k,h
1 , ν2Bn⃗2

φk,h
2

E

Γ

´
γ

h

A

Ik1u
k,h
2 ´ uk,h

1 ,φk,h
1

E

Γ
`
γ

h

A

uk,h
2 ´ Ik2u

k,h
1 ,φk,h

2

E

Γ

)

dt

“

ż

I

´

f,φk
¯

Ω
dt.

(5.33)
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Moreover, we introduce a new norm

|||u|||G :“
´

ν2 ||∇u||
2
G `

γ

h
||u2 ´ u1||

2
Γ

¯
1
2
,

where G can be substituted with Ω1, Ω2, or Ω and use the appropriate component of ν. Let
us proceed with the error estimation for the fully discrete case.

Theorem 3. Let u P XpH1
0 pΩqqd, uj P W 1,8pHr`1pΩjqqd for j “ 1, 2 be continuous solutions

to (5.19) and uk P pXkqd their discrete counterpart and a solution to (5.33), then the
following estimate holds

ˇ

ˇ

ˇ

ˇek,hptN q
ˇ

ˇ

ˇ

ˇ

2

Ω
`

ż

I

ˇ

ˇ

ˇ

ˇ

ˇ

ˇek,h
ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

2

Ω
dt

ď C
N
ÿ

n“1

Nn
1

ÿ

m“1

#

pkn,m1 q3 max
tPI

||dt∇u1||
2
Ω1

` pkn,m1 q3hmax
tPI

||dtBn⃗1
u1||

2
Γ

` kn,m1 h2r`2 max
tPI

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ
dt∇r`1u1

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

2

Ω1

` kn,m1 h2r
ˇ

ˇ

ˇ

ˇ

ˇ

ˇ
∇r`1u1ptn,m1 q

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

2

Ω1

+

` C
N
ÿ

n“1

Nn
2

ÿ

m“1

#

pkn,m2 q3 max
tPI

||dt∇u2||
2
Ω2

` pkn,m2 q3hmax
tPI

||dtBn⃗2
u2||

2
Γ

` kn,m2 h2r`2 max
tPI

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ
dt∇r`1u2

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

2

Ω2

` kn,m2 h2r
ˇ

ˇ

ˇ

ˇ

ˇ

ˇ
∇r`1u2ptn,m2 q

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

2

Ω2

+

,

where the errors ek,h “ pek,h1 , ek,h2 qT are defined as

ek,h1 :“ uk,h
1 ´ ik1R

h
1u1, ek,h2 :“ uk,h

2 ´ ik2R
h
2u2.

Proof. Here we also start with the Galerkin orthogonality

akpuk,h, ek,hq ´ akpikRhu, ek,hq “ apu, ek,hq ´ akpikRhu, ek,hq. (5.34)

On the left side of this equation, using the symmetry of the interface terms, we have

akpuk,h, ek,hq ´ akpikRhu, ek,hq “

ż

I

!

`

dk
t e

k,h, ek,h
˘

Ω
`
ˇ

ˇ

ˇ

ˇ

ˇ

ˇek,h
ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

Ω

´
1

2

@

ν2Bn⃗2
pek,h2 ´ Ik1e

k,h
2 q, ek,h1

D

Γ
`

1

2

@

ν1Bn⃗1
pIk2e

k,h
1 ´ ek,h1 q, ek,h2

D

Γ

´
1

2

@

Ik1e
k,h
2 ´ ek,h2 , ν1Bn⃗1

ek,h1

D

Γ
`

1

2

@

ek,h1 ´ Ik2e
k,h
1 , ν2Bn⃗2

ek,h2

D

Γ

´
γ

h

@

Ik1e
k,h
2 ´ ek,h2 , ek,h1

D

Γ
`
γ

h

@

ek,h1 ´ Ik2e
k,h
1 , ek,h2

D

Γ

)

dt.
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Carrying out identical reasoning as in the previous proof leads us to

akpuk,h, ek,hq ´ akpikRhu, ek,hq “

ż

I

!

`

dk
t e

k,h, ek,h
˘

Ω
`
ˇ

ˇ

ˇ

ˇ

ˇ

ˇek,h
ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

Ω

)

dt.

To explain the disappearance of the interface terms, we refer to the equation (5.25). We
continue by analyzing the right side of the orthogonality identity (5.34). Here we already
omit the unnecessary interface terms including the projection operators

apu, ek,hq ´ akpikRhu, ek,hq

“

ż

I

!´

dtu ´ dk
t i

kRhu, ek,h
¯

Ω
` ν

´

∇pu ´ ikRhuq,∇ek,h
¯

Ω

`
1

2

A

ν1Bn⃗1
pu1 ´ Ik1R

h
1u1q ´ ν2Bn⃗2

pu2 ´ Ik2R
h
2u2q, ek,h2 ´ ek,h1

E

Γ

´
1

2

A

pu2 ´ Ik2R
h
2u2q ´ pu1 ´ Ik1R

h
1u1q, ν1Bn⃗1

ek,h1 ´ ν2Bn⃗2
ek,h2

E

Γ

`
γ

h

A

pu2 ´ Ik2R
h
2u2q ´ pu1 ´ Ik1R

h
1u1q, ek,h2 ´ ek,h1

E

Γ

)

dt.

(5.35)

We will again estimate these terms by taking u1 over the interval In,m1 . Starting with the
time discretization error, it can be split between the contributions coming from the time and
space meshes

ż

I

!

`

dtu ´ dk
t i

kRhu, ek,h
˘

Ω

)

dt “

ż

I

!

`

dtu ´ dk
t i

ku, ek,h
˘

Ω
`
`

dk
t i

ku ´ dk
t i

kRhu, ek,h
˘

Ω

)

dt.

The first term we already examined in the previous proof and based on (5.26) is equal to zero.
Estimation of the second term directly follows from property (i) in Corollary 1 with the help
of the Young and Poincaré inequalities.

ˇ

ˇ

ˇ

ˇ

ˇ

ż

In,m
1

`

dk
t i

k
1u1 ´ dk

t i
k
1R

h
1u1, e

k,h
1

˘

Ω1
dt

ˇ

ˇ

ˇ

ˇ

ˇ

ď kn,m1 max
tPI

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ
dtpu1 ´ Rh

1u1q

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

Ω1

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ
ek,h1 ptn,m1 q

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

Ω1

ď ckn,m1 h2r`2 max
tPI

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ
dt∇r`1u1

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

2

Ω1

`
1

8

ż

In,m
1

ν21

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ
∇ek,h1

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

2

Ω1

dt.

(5.36)

The Laplacian term in (5.35) can be split similarly

ż

I
ν
´

∇pu ´ ikRhuq,∇ek,h
¯

Ω
dt

“

ż

I

!

ν
´

∇pu ´ ikuq,∇ek,h
¯

Ω
` ν

´

∇piku ´ ikRhuq,∇ek,h
¯

Ω

)

dt.
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The first term was estimated in the previous proof by (5.27). The second term in the identity
above can be also estimated by relying on property property (ii) in Corollary 1

ˇ

ˇ

ˇ

ˇ

ˇ

ż

In,m
1

ν1
`

∇pik1u1 ´ ik1R
h
1u1q,∇ek,h1

˘

Ω1
dt

ˇ

ˇ

ˇ

ˇ

ˇ

ď ckn,m1 h2r
ˇ

ˇ

ˇ

ˇ

ˇ

ˇ
∇r`1u1ptn,m1 q

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

2

Ω1

`
1

8

ż

In,m
1

ν21

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ
∇ek,h1

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

2

Ω1

dt.

(5.37)

We can proceed to the coupling conditions in (5.35). We estimate the first one on each macro
time-step In

ˇ

ˇ

ˇ

ˇ

ˇ

ż

In

1

2

A

ν1Bn⃗1
pu1 ´ Ik1R

h
1u1q ´ ν2Bn⃗2

pu2 ´ Ik2R
h
2u2q, ek,h2 ´ ek,h1

E

Γ
dt

ˇ

ˇ

ˇ

ˇ

ˇ

ď

ż

In

#

h

2γ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ
ν1Bn⃗1

pu1 ´ Ik1R
h
1u1q ´ ν2Bn⃗2

pu2 ´ Ik2R
h
2u2q

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

2

Γ
`

γ

8h

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ
ek,h2 ´ ek,h1

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

2

Γ

+

dt.

The normal derivatives in (5.35) can be estimated by splitting the errors similarly
ż

In

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ
ν1Bn⃗1

pu1 ´ Ik1R
h
1u1q ´ ν2Bn⃗2

pu2 ´ Ik2R
h
2u2q

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

2

Γ
dt

ď

Nn
1

ÿ

m“1

c1k
n,m
1 pν1q2

#

pkn,m1 q2 max
tPI

||dtBn⃗1
u1||

2
Γ ` h2r´1

ˇ

ˇ

ˇ

ˇ∇r`1u1ptn,m1 q
ˇ

ˇ

ˇ

ˇ

2

Ω1

+

`

Nn
2

ÿ

m“1

c2k
n,m
2 pν2q2

#

pkn,m2 q2 max
tPI

||dtBn⃗2
u2||

2
Γ ` h2r´1

ˇ

ˇ

ˇ

ˇ∇r`1u2ptn,m2 q
ˇ

ˇ

ˇ

ˇ

2

Ω2

+

.

(5.38)

Estimation of the space component follows from property (iii) in Corollary 1. The time
component was estimated in (5.30). The analysis of the remaining two interface terms is very
similar. Since the last one is slightly simpler, we will take it as an example. We have, given
the continuity of u

ż

In

γ

h

A

pu2 ´ Ik2R
h
2u2q ´ pu1 ´ Ik1R

h
1u1q, ek,h2 ´ ek,h1

E

Γ
dt

“

ż

In

γ

h

A

Ik1R
h
1u1 ´ Ik2R

h
2u2, e

k,h
2 ´ ek,h1

E

Γ
dt.

Using an identical set of arguments as in the previous proof, we can show that
ż

In

γ

h

A

Ik1R
h
1u1 ´ Ik2R

h
2u2, e

k,h
2 ´ ek,h1

E

Γ
dt “

ż

In

γ

h

A

Rh
1u1 ´ Rh

2u2, e
k,h
2 ´ ek,h1

E

Γ
dt.

Finally, given the continuity of the Ritz operator (5.32), it holds
ż

In

γ

h

A

Rh
1u1 ´ Rh

2u2, e
k,h
2 ´ ek,h1

E

Γ
dt “ 0. (5.39)

The last interface term in (5.35) can be estimated similarly. That ends the proof.
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5.4. Coupling of Stokes Equations

The theorem is equivalent to

ˇ

ˇ

ˇ

ˇek,hptN q
ˇ

ˇ

ˇ

ˇ `

ż

I

ˇ

ˇ

ˇ

ˇ

ˇ

ˇek
ˇ

ˇ

ˇ

ˇ

ˇ

ˇ dt

“ O
`

k1 ||dt∇u1||Ω1

˘

` O
`

k1h
1
2 ||dtBn⃗1

u1||Γ

˘

` O
`

hr`1
ˇ

ˇ

ˇ

ˇdt∇r`1u1

ˇ

ˇ

ˇ

ˇ

Ω1

˘

` O
`

hr
ˇ

ˇ

ˇ

ˇ∇r`1u1

ˇ

ˇ

ˇ

ˇ

Ω1

˘

` O
`

k2 ||dt∇u2||Ω2

˘

` O
`

k2h
1
2 ||dtBn⃗2

u2||Γ

˘

` O
`

hr`1
ˇ

ˇ

ˇ

ˇdt∇r`1u2

ˇ

ˇ

ˇ

ˇ

Ω2

˘

` O
`

hr
ˇ

ˇ

ˇ

ˇ∇r`1u2

ˇ

ˇ

ˇ

ˇ

Ω2

˘

.

Also here, we were able to fully decouple this system. In fact, we were able to equip the the
terms ||dtBn⃗1

u1||Γ and ||dtBn⃗2
u2||Γ with an additional half an order of convergence in space

compared to the semi-discrete case. That being said, a comprehensive comparison between
the fully discrete and semi-discrete cases is not possible since both of the inequalities are
proved in different norms. Overall, we preserved the linear convergence in time.

5.4 Coupling of Stokes Equations

As our third and final problem, we consider a system composed of two time-dependent
Stokes equations. Each of them has a separate kinematic viscosity pν1, ν2qT “ ν. Velocity
u “ pu1,u2qT : Ω ˆ I Ñ Rd, uj P XpH1pΩjqqd and pressure p “ pp1, p2qT : Ω ˆ I Ñ R,
pj P XpL2pΩjqq for j “ 1, 2 are solutions to the system

Btu1 ´ 2ν1div 9ϵpu1q ` ∇p1 “ f1 in Ω1,

div u1 “ 0 in Ω1,

Btu2 ´ 2ν2div 9ϵpu2q ` ∇p2 “ f2 in Ω2,

div u2 “ 0 in Ω2,

where

9ϵpuq “
1

2

`

∇u ` ∇uT
˘

.

On the outer boundary we set u1 “ u2 “ 0. Also at the initial time, we impose u1p0q “

u2p0q “ 0. On the interface we set

u1 “ u2 on Γ,

σ1pu1, p1q ¨ n⃗1 “ ´σ2pu2, p2q ¨ n⃗2 on Γ,

where the stress tensors σ “ pσ1, σ2qT are given by

σ1pu1, p1q “ 2ν1 9ϵpu1q ´ p1I, σ2pu2, p2q “ 2ν2 9ϵpu2q ´ p2I.

As test functions, we take φ “ pφ1,φ2qT , φj P XpH1pΩjqqd and ψ “ pψ1, ψ2qT , ψj P

XpL2pΩjqq for j “ 1, 2. The incompressibility form is defined as

bpu,ψq “

ż

I

!

´ pdiv u,ψqΩ `
1

2
xψ2n⃗2 ´ ψ1n⃗1,u2 ´ u1yΓ

)

dt. (5.40)
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Chapter 5. A Priori Estimates for Interface Coupled Problems

In this formulation, we again follow the work presented in [5]. We note that the additional
interface term does not violate the incompressibility condition since the exact solution is
continuous across the interface and therefore

xψ2n⃗2 ´ ψ1n⃗1,u2 ´ u1yΓ “ 0.

Given that, the variational problem is defined as

apu,φq ` bpφ,pq ´ bpu,ψq “

ż

I

`

f,φ
˘

Ω
dt, (5.41)

where form ap¨, ¨q has a similar definition as in the case of the heat equation

apu,φq :“

ż

I

!

pdtu,φqΩ ` 2ν p 9ϵpuq,∇φqΩ ` xν1 9ϵpu1q ¨ n⃗1 ´ ν2 9ϵpu2q ¨ n⃗2,φ2 ´φ1yΓ

´ xu2 ´ u1, ν1 9ϵpφ1q ¨ n⃗1 ´ ν2 9ϵpφ2q ¨ n⃗2yΓ ` γ xu2 ´ u1,φ2 ´φ1yΓ

)

dt.

5.4.1 Semi-discrete Case

Similarly, one can construct a discrete incompressibility form. We have to pay attention
to the position of the trial and test functions. Therefore we define two versions of this form

b̄kpuk,ψkq :“

ż

I

!

´

´

div uk,ψk
¯

Ω
´

1

2

A

n⃗1ψ
k
1 , I

k
1u

k
2 ´ uk

1

E

Γ

`
1

2

A

n⃗2ψ
k
2 ,u

k
2 ´ Ik2u

k
1

E

Γ

)

dt,

bkpφk,pkq :“

ż

I

!

´

´

div φk,pk
¯

Ω
´

1

2

A

n⃗2I
k
1 p

k
2 ´ n⃗1p

k
1,φ

k
1

E

Γ

`
1

2

A

n⃗2p
k
2 ´ n⃗1I

k
2 p1,φ

k
2

E

Γ

)

dt.

(5.42)

These forms together with the form

akpuk,φkq :“

ż

I

!

`

dk
tu

k,φk
˘

Ω
` 2ν

´

9ϵpukq,∇φk
¯

Ω
´

A

ν1 9ϵpuk
1q ¨ n⃗1 ´ ν2 9ϵpIk1u

k
2q ¨ n⃗2,φ

k
1

E

Γ

`

A

ν1 9ϵpIk2u
k
1q ¨ n⃗1 ´ ν2 9ϵpuk

2q ¨ n⃗2,φ
k
2

E

Γ
´

A

Ik1u
k
2 ´ uk

1, ν1 9ϵpφk
1q ¨ n⃗1

E

Γ

`

A

uk
2 ´ Ik2u

k
1, ν2 9ϵpφk

2q ¨ n⃗2

E

Γ
´ γ

A

Ik1u
k
2 ´ uk

1,φ
k
1

E

Γ

` γ
A

uk
2 ´ Ik2u

k
1,φ

k
2

E

Γ

)

dt.

define the semi-discrete variational problem

akpuk,φkq ` bkpφk,pkq ´ b̄kpuk,ψkq “

ż

I

`

f,φk
˘

Ω
dt. (5.43)
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5.4. Coupling of Stokes Equations

From this formulation, we can derive semi-discrete coupling conditions

0 “

ż

In

@

uk
2 ´ uk

1,φ
k
1

D

Γ
dt “

ż

In

@

uk
2 ´ uk

1,φ
k
2

D

Γ
dt,

0 “

ż

In

@

σ1pu1, p1q ¨ n⃗1 ` σ2pu2, p2q ¨ n⃗2,φ
k
1yΓ dt

“

ż

In

@

σ1pu1, p1q ¨ n⃗1 ` σ2pu2, p2q ¨ n⃗2,φ
k
2yΓ dt

(5.44)

for any φk
1 P pXk

1 qd and φk
2 P pXk

2 qd. As it turns out, the theorem from the previous sections
can be easily extended to the Stokes equation as well

Theorem 4. Let u P XpH1
0 pΩqqd, uj P W 1,8pH2pΩjqqd, pj P W 1,8pL2pΩjqq for j “ 1, 2 be

continuous solutions to (5.41) and uk ˆ pk P
`

Xk
˘d`1

their semi-discrete counterparts and
solutions to (5.43), then the following estimate holds

ˇ

ˇ

ˇ

ˇekptN q
ˇ

ˇ

ˇ

ˇ

2

Ω
`

ż

I
ν2

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ
∇ek

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

2

Ω
dt

ď C
N
ÿ

n“1

Nn
1

ÿ

m“1

#

pkn,m1 q3 max
tPI

||dt 9ϵpu1q||
2
Ω1

` pkn,m1 q3 max
tPI

||dtp1||
2
Ω1

` pkn,m1 q3 max
tPI

||dtσ1pu1, p1q ¨ n⃗1||
2
Γ

+

` C
N
ÿ

n“1

Nn
2

ÿ

m“1

#

pkn,m2 q3 max
tPI

||dt 9ϵpu2q||
2
Ω2

` pkn,m2 q3 max
tPI

||dtp2||
2
Ω2

` pkn,m2 q3 max
tPI

||dtσ2pu2, p2q ¨ n⃗2||
2
Γ

+

,

where the errors ek “ pek1, e
k
2qT are defined as

ek1 :“ uk
1 ´ ik1u1, ek2 :“ uk

2 ´ ik2u2.

Proof. By again using Galerkin orthogonality

akpuk, ekq ` bkpek,pkq ´

ż

I

!

`

dk
t i

ku, ek
˘

Ω
` 2ν

`

9ϵpikuq,∇ek
˘

Ω

)

dt

“ apu, ekq ` bpek,pq ´

ż

I

!

`

dk
t i

ku, ek
˘

Ω
` 2ν

`

9ϵpikuq,∇ek
˘

Ω

)

dt.

(5.45)

For any ψk P Xk, we have
ż

I

´

div u,ψk
¯

Ω
dt “

ż

I

´

div uk,ψk
¯

Ω
dt “ 0.
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Knowing that the semi-discrete pressure is piecewise constant in time, we can claim that
ż

I

´

div ek,pk
¯

Ω
dt “

ż

I

!´

div uk,pk
¯

Ω
´

´

div iku,pk
¯

Ω

)

dt

“

ż

I

!´

div uk,pk
¯

Ω
´ ik

´

div u,pk
¯

Ω

)

dt “ 0.

(5.46)

Therefore, on the left side of (5.45), we have

akpuk, ekq ` bkpek,pkq ´

ż

I

!

`

dk
t i

ku, ek
˘

Ω
` 2ν

`

9ϵpikuq,∇ek
˘

Ω

)

dt

“

ż

I

`

dk
t e

k,h, ek,h
˘

Ω
dt`

ż

I
2ν

`

9ϵpek,hq,∇ek,h
˘

Ω
dt.

We can similarly show that
ż

I

´

div ek,p
¯

Ω
dt “

ż

I

´

div ek,p ´ ikp
¯

Ω
dt.

Indeed, it holds
ż

I

´

div ek, ikp
¯

Ω
dt “

ż

I

!´

div uk, ikpk
¯

Ω
´

´

div iku, ikpk
¯

Ω

)

dt

“ ´

ż

I
ik
´

div u, ikpk
¯

Ω
dt “ 0.

Further, on each interval In,m1 we have

ˇ

ˇ

ˇ

ˇ

ˇ

ż

In,m
1

´

div ek1, p1 ´ ik1p1

¯

Ω1

dt

ˇ

ˇ

ˇ

ˇ

ˇ

ď cpkn,m1 q3 max
tPI

||dtp1||
2
Ω1

`
1

8
ν1

ż

In,m
1

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ
∇ek1

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

2

Ω1

dt.

The Laplacian term in (5.45) can be symmetrized and using the first Korn inequality leads to

ż

I
2ν

`

9ϵpek,hq,∇ek,h
˘

Ω
dt

“

ż

I
ν
`

9ϵpek,hq,∇ek,h
˘

Ω
dt`

ż

I
ν
`

9ϵpek,hq,∇ek,h
˘

Ω
dt

“

ż

I
ν
`

9ϵpek,hq,∇ek,h
˘

Ω
dt`

ż

I
ν
`

9ϵpek,hq, p∇ek,hqT
˘

Ω
dt

“

ż

I
2ν

ˇ

ˇ

ˇ

ˇ 9ϵpek,hq
ˇ

ˇ

ˇ

ˇ

2

Ω
dt ě cK

ż

I
ν
ˇ

ˇ

ˇ

ˇ∇ek,h
ˇ

ˇ

ˇ

ˇ

2

Ω
dt.

cK denotes the constant from Korn inequality. The rest directly follows from Theorem 2
simply by using the appropriate Neumann coupling conditions on the interface (5.30) and
replacing ∇ek,h with 9ϵpek,hq in (5.27).
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5.4. Coupling of Stokes Equations

We just showed that

ˇ

ˇ

ˇ

ˇekptN q
ˇ

ˇ

ˇ

ˇ `

ż

I
ν
ˇ

ˇ

ˇ

ˇek
ˇ

ˇ

ˇ

ˇ dt

“ O
`

k1 ||dt 9ϵpu1q||Ω1

˘

` O
`

k1 ||dtp1||Ω1

˘

` O
`

k1 ||dtσ1pu1, p1q ¨ n⃗1||Γ

˘

` O
`

k2 ||dt 9ϵpu2q||Ω2

˘

` O
`

k2 ||dtp2||Ω2

˘

` O
`

k2 ||dtσ2pu2, p2q ¨ n⃗2||Γ

˘

.

These results are analogous to what we were able to show in Theorem 2. The differences
include replacing ∇ek,h with 9ϵpek,hq and adding new pressure terms. The newly introduced
volume pressure terms are also decoupled. We managed to preserve the optimal linear con-
vergence rate.

5.4.2 Fully Discrete Case

One can establish a similar estimate for the fully discrete coupled Stokes equations. Since
the main focus of this paper is time discretization, we consider classical inf-sup stable Taylor-

Hood elements, where uk,h ˆ pk,h P
`

Xk,hprq
˘d

ˆ Xk,hpr ´ 1q for r ě 2. The fully discrete
variational formulation reads as

ak,hpuk,h,φk,hq ` bkpφk,h,pk,hq ´ b̄kpuk,h,ψk,hq “

ż

I

`

f,φk,h
˘

Ω
dt, (5.47)

where

ak,hpuk,h,φk,hq :“

ż

I

!

`

dk
tu

k,h,φk,h
˘

Ω
` 2ν

´

9ϵpuk,hq,∇φk,h
¯

Ω

´

A

ν1 9ϵpuk,h
1 q ¨ n⃗1 ´ ν2 9ϵpIk1u

k,h
2 q ¨ n⃗2,φ

k,h
1

E

Γ

`

A

ν1 9ϵpIk2u
k,h
1 q ¨ n⃗1 ´ ν2 9ϵpuk,h

2 q ¨ n⃗2,φ
k,h
2

E

Γ

´

A

Ik1u
k,h
2 ´ uk,h

1 , ν1 9ϵpφk,h
1 q ¨ n⃗1

E

Γ
`

A

uk,h
2 ´ Ik2u

k,h
1 , ν2 9ϵpφk,h

2 q ¨ n⃗2

E

Γ

´
γ

h

A

Ik1u
k,h
2 ´ uk,h

1 ,φk,h
1

E

Γ
`
γ

h

A

uk,h
2 ´ Ik2u

k,h
1 ,φk,h

2

E

Γ

)

dt.

For the Stokes problem, we will use a modified version of the Ritz projection operator (5.31)
to account for the incompressibility condition

`

∇Rhu,∇φk,h
˘

Ω
´
`

q,div φk,h
˘

Ω
“
`

∇u,∇φk,h
˘

Ω
, φk,h P pY k,hprqqd

`

div Rhu,ψk,h
˘

Ω
“ 0, ψk,h P Y k,hpr ´ 1q.

All of the properties established in Corollary 1 still hold. The newly introduced pressure term
q is only a Lagrange multiplier needed to project the solution u into the space of divergence-
free functions. We will not come back to it in the proofs. However, for the pressure p, we will
use an additional projection operator Ih “ pIh1 , I

h
2 qT given by

`

Ihp,ψk,h
˘

Ω
“
`

p,ψk,h
˘

Ω
for all ψk,h P Xk,hpr ´ 1q. (5.48)

Below are listed some of the useful properties.
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Corollary 2. Given pj P LpĪ , HrpΩjqq for j “ 1, 2, the projection operator given by (5.48)
has the following properties:

(i)
ˇ

ˇ

ˇ

ˇp ´ Ihp
ˇ

ˇ

ˇ

ˇ

Ω
ď c1h

r
ˇ

ˇ

ˇ

ˇ∇rp1

ˇ

ˇ

ˇ

ˇ

Ω1
` c2h

r
ˇ

ˇ

ˇ

ˇ∇rp2

ˇ

ˇ

ˇ

ˇ

Ω2
,

(ii)
ˇ

ˇ

ˇ

ˇpp1 ´ Ih1 p1qn⃗1

ˇ

ˇ

ˇ

ˇ

Γ
`
ˇ

ˇ

ˇ

ˇpp2 ´ Ih2 p2qn⃗2

ˇ

ˇ

ˇ

ˇ

Γ
ď c1h

r´ 1
2

ˇ

ˇ

ˇ

ˇ∇rp1
ˇ

ˇ

ˇ

ˇ

Ω1
` c2h

r´ 1
2

ˇ

ˇ

ˇ

ˇ∇rp2
ˇ

ˇ

ˇ

ˇ

Ω2
.

We proceed to the velocity error estimation for the fully discrete problem.

Theorem 5. Let u P XpH1
0 pΩqqd, uj P W 1,8pHr`1pΩjqqd, pj P W 1,8pHrpΩjqq for j “ 1, 2

be continuous solutions to (5.41) and uk,h ˆ pk,h P
`

Xk,hprq
˘d

ˆ Xk,hpr ´ 1q their discrete
counterparts and solutions to (5.47), then the following estimate holds

ˇ

ˇ

ˇ

ˇek,hptN q
ˇ

ˇ

ˇ

ˇ

2

Ω
`

ż

I

ˇ

ˇ

ˇ

ˇ

ˇ

ˇek,h
ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

2

Ω
dt

ď C
N
ÿ

n“1

Nn
1

ÿ

m“1

#

pkn,m1 q3 max
tPI

||dt 9ϵpu1q||
2
Ω1

` pkn,m1 q3 max
tPI

||dtp1||
2
Ω1

` pkn,m1 q3hmax
tPI

||dtσ1pu1, p1q ¨ n⃗1||
2
Γ ` kn,m1 h2r`2 max

tPI

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ
dt∇r`1u1

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

2

Ω1

` kn,m1 h2r
ˇ

ˇ

ˇ

ˇ∇r`1u1ptn,m1 q
ˇ

ˇ

ˇ

ˇ

2

Ω1
` kn,m1 h2r ||∇rp1ptn,m1 q||

2
Ω1

+

` C
N
ÿ

n“1

Nn
2

ÿ

m“1

#

pkn,m2 q3 max
tPI

||dt 9ϵpu2q||
2
Ω2

` pkn,m2 q3 max
tPI

||dtp2||
2
Ω2

` pkn,m2 q3hmax
tPI

||dtσ2pu2, p2q ¨ n⃗2||
2
Γ ` kn,m2 h2r`2 max

tPI

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ
dt∇r`1u2

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

2

Ω2

` kn,m2 h2r
ˇ

ˇ

ˇ

ˇ∇r`1u2ptn,m2 q
ˇ

ˇ

ˇ

ˇ

2

Ω2
` kn,m2 h2r ||∇rp2ptn,m2 q||

2
Ω2

+

,

where the errors ek “ pek1, e
k
2qT , ηk “ pηk1 , η

k
2 qT are defined as

ek,h1 :“ uk,h
1 ´ ik1R

h
1u1, ek,h2 :“ uk,h

2 ´ ik2R
h
2u2,

ηk,h1 :“ pk,h1 ´ ik1I
h
1 p1, ηk,h2 :“ pk,h2 ´ ik2I

h
2 p2.

Proof. The Galerkin orthogonality gives us

akpek,h, ek,hq ` bkpek,h,ηk,hq ´ b̄kpek,h,ηk,hq

“ apu, ek,hq ´ akpikRhu, ek,hq ` bpek,h,pq ´ bkpek,h, ikIhpq

´ bpu,ηk,hq ` b̄kpikRhu,ηk,hq.

(5.49)

119



5.4. Coupling of Stokes Equations

One can show that the left side is equal to

akpek,h, ek,hq ` bkpek,h,ηk,hq ´ b̄kpek,h,ηk,hq “ akpek,h, ek,hq.

On the right side of (5.49), we have

akpek,h, ek,hq “

ż

I

!´

dtu ´ dk
t i

kRhu, ek,h
¯

Ω
` 2ν

´

9ϵpu ´ ikRhuq,∇ek,h
¯

Ω

´

´

div ek,h,p ´ ikIhp
¯

Ω
`

´

divpu ´ ikRhuq,ηk,h
¯

Ω

`

A

σ1pu1 ´ Ik1R
h
1u1, p1 ´ Ik1 I

h
1 p1q ¨ n⃗1, e

k,h
2 ´ ek,h1

E

Γ

´

A

σ2pu2 ´ Ik2R
h
2u2, p2 ´ Ik2 I

h
2 p2q ¨ n⃗2, e

k,h
2 ´ ek,h1

E

Γ

´

A

pu2 ´ Ik2R
h
2u2q ´ pu1 ´ Ik1R

h
1u1q, σ1pek,h1 , ηk,h1 q ¨ n⃗1

E

Γ

`

A

pu2 ´ Ik2R
h
2u2q ´ pu1 ´ Ik1R

h
1u1q, σ2pek,h2 , ηk,h2 q ¨ n⃗2

E

Γ

`
γ

h

A

pu2 ´ Ik2R
h
2u2q ´ pu1 ´ Ik1R

h
1u1q, ek,h2 ´ ek,h1

E

Γ

)

dt.

Most of these terms were already estimated in previous proofs. We dealt with the time contri-
butions of the time derivative (5.26), the Laplacian terms (5.27), and normal derivatives (5.30)
in Theorem 2. We looked at the space components in (5.36) and (5.37) in Theorem 3. The in-
terface terms were considered in equations (5.38) and (5.39). In (5.38) we have to additionally
account for the interpolation in space of the pressure

ż

In,m
1

h
ˇ

ˇ

ˇ

ˇpik1p1 ´ ik1I
h
1 p1q ¨ n⃗1

ˇ

ˇ

ˇ

ˇ

2

Γ
dt ď kn,m1 h2r ||∇rp1ptn,m1 q||

2
Γ .

The remaining divergence terms are equal to zero

ż

In,m
1

´

div ek,h1 , p1 ´ ik1I
h
1 p1

¯

Ω1

dt “ 0,

ż

In,m
1

´

divpu1 ´ ik1R
h
1u1q, ηk,h1

¯

Ω1

dt “ 0.

Indeed, the exact solution u and the fully discrete solution uk,h are divergence-free by defi-
nition. The Ritz projection Rhu is also divergence-free and the time projection operator ik

does not violate this property, see equation (5.46). That ends the proof.
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Equivalently, we obtained

ˇ

ˇ

ˇ

ˇek,hptN q
ˇ

ˇ

ˇ

ˇ `

ż

I

ˇ

ˇ

ˇ

ˇ

ˇ

ˇek
ˇ

ˇ

ˇ

ˇ

ˇ

ˇ dt

“ O
`

k1 ||dt 9ϵpu1q||Ω1

˘

` O
`

k1 ||dtp1||Ω1

˘

` O
`

k1h
1
2 ||dtσ1pu1, p1q ¨ n⃗1||Γ

˘

` O
`

hr`1
ˇ

ˇ

ˇ

ˇdt∇r`1u1

ˇ

ˇ

ˇ

ˇ

Ω1

˘

` O
`

hr
ˇ

ˇ

ˇ

ˇ∇r`1u1

ˇ

ˇ

ˇ

ˇ

Ω1

˘

` O
`

hr ||∇rp1||Ω1

˘

` O
`

k2 ||dt 9ϵpu2q||Ω2

˘

` O
`

k2 ||dtp2||Ω2

˘

` O
`

hr`1
ˇ

ˇ

ˇ

ˇdt∇r`1u2

ˇ

ˇ

ˇ

ˇ

Ω2

˘

` O
`

hr
ˇ

ˇ

ˇ

ˇ∇r`1u2

ˇ

ˇ

ˇ

ˇ

Ω2

˘

` O
`

k2h
1
2 ||dtσ2pu2, p2q ¨ n⃗2||Γ

˘

` O
`

hr ||∇rp2||Ω2

˘

It is another example of an optimal estimate. We again were able to fully decouple time-step
dependence. We will finish with a suboptimal estimate of the pressure error.

Theorem 6. Let u P XpH1
0 pΩqqd, uj P W 1,8pHr`1pΩjqqd, pj PP W 1,8pHrpΩjqq for j “ 1, 2

be continuous solutions to (5.41) and uk,h ˆ pk,h P
`

Xk,hprq
˘d

ˆ Xk,hpr ´ 1q their discrete
counterparts and solutions to (5.47), then the following estimate holds

ż

I

ˇ

ˇ

ˇ

ˇηk,h
ˇ

ˇ

ˇ

ˇ

2

Ω
dt

ď C
N
ÿ

n“1

Nn
1

ÿ

m“1

#

pkn,m1 q2 max
tPI

||dt 9ϵpu1q||
2
Ω1

` pkn,m1 q2 max
tPI

||dtp1||
2
Ω1

` pkn,m1 q2hmax
tPI

||dtBn⃗1
u1||

2
Γ ` pkn,m1 q2hmax

tPI
||dtp1||

2
Γ ` h2r`2 max

tPI

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ
dt∇r`1u1

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

2

Ω1

` h2r
ˇ

ˇ

ˇ

ˇ∇r`1u1ptn,m1 q
ˇ

ˇ

ˇ

ˇ

2

Ω1
` h2r ||∇rp1ptn,m1 q||

2
Ω1

+

` C
N
ÿ

n“1

Nn
2

ÿ

m“1

#

pkn,m2 q2 max
tPI

||dt 9ϵpu2q||
2
Ω2

` pkn,m2 q2 max
tPI

||dtp2||
2
Ω2

` pkn,m2 q2hmax
tPI

||dtBn⃗2
u2||

2
Γ ` pkn,m2 q2hmax

tPI
||dtp2||

2
Γ ` h2r`2 max

tPI

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ
dt∇r`1u2

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

2

Ω2

` h2r
ˇ

ˇ

ˇ

ˇ∇r`1u2ptn,m2 q
ˇ

ˇ

ˇ

ˇ

2

Ω2
` h2r ||∇rp2ptn,m2 q||

2
Ω2

+

,

where the errors ek “ pek1, e
k
2qT , ηk “ pηk1 , η

k
2 qT are defined as

ek,h1 :“ uk,h
1 ´ ik1R

h
1u1, ek,h2 :“ uk,h

2 ´ ik2R
h
2u2,

ηk,h1 :“ pk,h1 ´ ik1I
h
1 p1, ηk,h2 :“ pk,h2 ´ ik2I

h
2 p2.
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Proof. We would like to obtain an estimate of the form

c

ż

In,m
1

kn,m1

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ
ηk,h1

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

2

Ω
dt ď

ż

In,m
1

pdk
t e

k,h
1 , ek,h1 q dt`

ż

In,m
1

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ
ek,h1

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

2

Ω
dt (5.50)

on each In,m1 for ek,h1 as well as an analogous set of estimates for ek,h2 . We will be then able
to use Theorem 5 on the right side of this identity. To achieve this goal, we need to use the
inf-sup stability of our trial space. We are going to use a generalized version of the inf-sup
stability condition proved in [5], from which follows that there exists a constant β such that
for every qk,h P Xk,hpr ´ 1q, we have

ż

I
||qk,h||Ω dt ď β sup

φk,hPV k,h

bpφk,h,qk,hq

|||φk,h|||Ω
,

where V k,h :“
`

Xk,hprq
˘d

. In particular, we can claim that

ż

I
||ηk,h||Ω dt ď β sup

φk,hPV k,h

bpφk,h,ηk,hq

|||φk,h|||Ω
.

After using again the Galerkin orthogonality

bpφk,h,ηk,hq “ ´ akpek,h,φk,hq ` akpu ´ ikRhu,φk,hq ` bpφk,h,p ´ ikIhpq.

Let us start with an estimation of the first term

sup
φk,hPV k,h

akpek,h,φk,hq

|||φk,h|||Ω

ď c

ż

I

!
ˇ

ˇ

ˇ

ˇ

ˇ

ˇ
dk
t e

k,h
ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

Ω
` ν

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ
∇ek,h

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

Ω
` ν1h

1
2

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ
Bn⃗1

ek,h1

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

Γ
` ν2h

1
2

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ
Bn⃗2

ek,h2

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

Γ

` h´ 1
2 p1 ` γq

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ
ek,h2 ´ ek,h1

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

Γ

)

dt ď c

ż

I

!
ˇ

ˇ

ˇ

ˇ

ˇ

ˇ
dk
t e

k,h
ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

Ω
`

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ
ek,h

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

Ω

)

dt.

(5.51)

The time derivative is equal to
ż

In,m
1

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ
dk
t e

k,h
1

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

Ω1

dt “

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ
ek,h1 ptn,m1 q ´ ek,h1 ptn,m´1

1 q

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

Ω1

.

That leads to an estimation
ż

In,m
1

||ηk,h||Ω1 dt ď

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ
ek,h1 ptn,m1 q ´ ek,h1 ptn,m´1

1 q

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

Ω1

`

ż

In,m
1

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ
ek,h1

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

Ω1

dt.

Knowing that all of these functions are piecewise constant in time, the inequality is equivalent
to

kn,m1 ||ηk,hptn,m1 q||Ω1 ď

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ
ek,h1 ptn,m1 q ´ ek,h1 ptn,m´1

1 q

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

Ω1

` kn,m1

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ
ek,h1 ptn,m1 q

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

Ω1

.
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By squaring both sides of the inequality and going back to the integral form, we get

ż

In,m
1

kn,m1 ||ηk,h||2Ω1
dt ď 2

˜

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ
ek,h1 ptn,m1 q ´ ek,h1 ptn,m´1

1 q

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

2

Ω1

`

ż

In,m
1

kn,m1

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ
ek,h1

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

2

Ω1

dt

¸

.

Then, based on (5.28), we have

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ
ek,h1 ptn,m1 q ´ ek,h1 ptn,m´1

1 q

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

2

Ω
ď

ż

In,m
1

2pdk
t e

k,h, ek,hqΩ1 .

Assuming that kn,m1 ď 1, we have
ż

In,m
1

kn,m1

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ
ek,h1

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

2

Ω1

dt ď

ż

In,m
1

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ
ek,h1

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

2

Ω1

dt.

This way, the estimate (5.50) can be acquired. We continue with the remaining terms

sup
φk,hPV k,h

akpu ´ ikRhu,φk,hq

|||φk,h|||Ω
ď c

ż

I

! ˇ

ˇ

ˇ

ˇ

ˇ

ˇ
dk
t pu ´ ikRhuq

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

Ω
` ν

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ
9ϵpu ´ ikRhuq

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

Ω

` h
1
2

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ
ν1Bn⃗1

pu1 ´ ik1R
h
1u1q ´ ν2Bn⃗2

pu2 ´ ik2R
h
2u2q

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

Γ

)

dt.

All of these terms were estimated in the previous proofs. For a detailed recollection, we refer
to the previous proof. The last term can be estimated using

sup
φk,hPV k,h

bpφk,h,p ´ ikIhpq

|||φk,h|||Ω
ď c

ż

I

! ˇ

ˇ

ˇ

ˇ

ˇ

ˇ
p ´ ikIhp

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

Ω
` h

1
2

ˇ

ˇ

ˇ

ˇpp1 ´ ik1I
h
1 p1qn⃗1

ˇ

ˇ

ˇ

ˇ

Γ

` h
1
2

ˇ

ˇ

ˇ

ˇpp2 ´ ik2I
h
2 p2qn⃗2

ˇ

ˇ

ˇ

ˇ

Γ

)

dt.

For the interface terms, we have
ż

In,m
1

ˇ

ˇ

ˇ

ˇpp1 ´ ik1I
h
1 p1qn⃗1

ˇ

ˇ

ˇ

ˇ

2

Γ
dt ď pkn,m1 q3 max

tPI
||dtp1||

2
Γ ` kn,m1 h2r´1 ||∇rp1ptn,m1 q||

2
Γ .

Combining together all of the steps ends the proof.

We showed a suboptimal estimate of the form
ż

I

ˇ

ˇ

ˇ

ˇηk,h
ˇ

ˇ

ˇ

ˇ

Ω
dt “ O

`

k
1
2
1 ||dt 9ϵpu1q||Ω1

˘

` O
`

k
1
2
1 ||dtp1||Ω1

˘

` O
`

k
1
2
1 h

1
2 ||dtBn⃗1

u1||Γ

˘

` O
`

k
1
2
1 h

1
2 ||dtp1||Γ

˘

` O
`

k
´ 1

2
1 hr`1

ˇ

ˇ

ˇ

ˇdt∇r`1u1

ˇ

ˇ

ˇ

ˇ

Ω1

˘

` O
`

k
´ 1

2
1 hr

ˇ

ˇ

ˇ

ˇ∇r`1u1

ˇ

ˇ

ˇ

ˇ

Ω1

˘

` O
`

k
´ 1

2
1 hr ||∇rp1||Ω1

˘

` O
`

k
1
2
2 ||dt 9ϵpu2q||Ω2

˘

` O
`

k
1
2
2 ||dtp2||Ω2

˘

` O
`

k
1
2
2 h

1
2 ||dtBn⃗2

u2||Γ

˘

` O
`

k
1
2
2 h

1
2 ||dtp2||Γ

˘

` O
`

k
´ 1

2
2 hr`1

ˇ

ˇ

ˇ

ˇdt∇r`1u2

ˇ

ˇ

ˇ

ˇ

Ω2

˘

` O
`

k
´ 1

2
2 hr

ˇ

ˇ

ˇ

ˇ∇r`1u2

ˇ

ˇ

ˇ

ˇ

Ω1

˘

` O
`

k
´ 1

2
2 hr ||∇rp2||Ω2

˘
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Ω1

Ω2

Γin
1

Γin
2

ΓD
1

ΓD
2

Γout
1

Γout
2

Γ

Figure 5.4: We show a sketch of the domains for our Stokes numerical example. The interface
is denoted by Γ. Parabolic inflows are prescribed on the inlets Γin

1 and Γin
2 and free Neumann

conditions on the outlets Γout
1 and Γout

2 . Otherwise, we take no-slip boundary conditions on
ΓD
1 and ΓD

2 .

Due to the inf-sup estimation (5.51), half an order of convergence in time was lost. Namely, the
source of this loss is the time derivative. We obtained the term ||dk

t e
k,h||2Ω “ pdk

t e
k,h,dk

t e
k,hqΩ,

whereas, on the left side of the orthogonality identity (5.49), we have pdk
t e

k,h, ek,hqΩ. We were
only able to show the estimate

kpdk
t e

k,h,dk
t e

k,hqΩ ď pdk
t e

k,h, ek,hqΩ.

This is a nontrivial problem and was encountered for example in the series of articles [64,
65, 66, 67] about the Navier-Stokes equations. Specifically, in [67] the authors comment on
the difficulties that come with the optimal estimation of the time derivative term. This issue
has been successfully circumvented in [68], where the optimal convergence rate of pressure
was retrieved. Indeed, the authors were able to show optimality for the Crank-Nicolson time-
stepping scheme in L2

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ
Ikp´ pk

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

L2pI,H1pΩqq
ď Ck2 (5.52)

and L8
ˇ

ˇ

ˇ

ˇ

ˇ

ˇ
Jkp´ pk

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

L8pI,H1pΩqq
ď Ck2 (5.53)

norms. The operator Jk is given by

Jkp
ˇ

ˇ

In
:“ upt̄nq,
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Uniform Refinement in water Refinement in oil

- Uniform Asymmetric Uniform Asymmetric

N1 N2 N1 N2 N1 N2 N1 N2 N1 N2

4 4 - - - - - - - -
8 8 8 4 8 4 4 8 4 8
16 16 16 8 16 4 8 16 4 16
32 32 32 16 32 4 16 32 4 32
64 64 64 32 64 4 32 64 4 64

Table 5.1: We show different ways to refine the time mesh. N1 and N2 denote the total
number of time-steps in each of the domains. We either use fully uniform time-stepping,
uniform refinement where time-steps in one domain are twice smaller than in the other, or
fully asymmetric refinement where time-steps in only one domain are refined.

where t̄n :“ tn`tn´1

2 . This publication considered neither coupled problems nor multirate
time-stepping.

5.4.3 Numerical Example

As a numerical example, we take a coupled Stokes problem. The configuration emulates
a coupling of water and oil, therefore ν1 “ 1 and ν2 “ 56. The domain consists of two
connected pipelines. Each of them is given by rectangular domains Ω1 “ r0, 4s ˆ r0, 1s and
Ω2 “ r1, 3s ˆ r´1, 0s. On each of the inlets parabolic inflows are prescribed

uin
1 “ sinpπtqx1p1 ´ x1q and uin

2 “ sinpπtqx2p1 ` x2q

for t P I “ r0, 1s. On the outlets, we choose free Neumann boundary conditions. Otherwise,
we take no-slip Dirichlet boundary conditions. A sketch of the domain is shown in Figure 5.4.
Since the flow is fully driven by the boundary conditions, we take f1 “ f2 “ 0.

In Figure 5.6 we show the results of a velocity convergence study. The problem is simulated
on a constant fine space mesh and perform refinement in the time component only. We start
with a very coarse time mesh with only 4 time-steps in both of the domains. Then we
either refine both time meshes or one of them only. Different types of time refinement are
described in more detail in Table 5.1 and Figure 5.5. The top figure in Figure 5.6 shows the
convergence rate of the total error appearing as the left hand side in the inequality proved
in Theorem 5. Since the error is squared, we expect a quadratic convergence rate and it is
exactly what we were able to achieve. In this figure as well as all the others, we included a
dashed triangle to illustrate quadratic convergence for comparison. In the figures below, we
present convergence rates of total and H1 errors corresponding to either the water or the oil
problem. There, only time-steps in one domain were refined, that is time-steps in the water
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N1 “ 4, N2 “ 8

N1 “ 8, N2 “ 16

N1 “ 4, N1 “ 16

N1 “ 8, N2 “ 4

N1 “ 16, N2 “ 8

N1 “ 16, N2 “ 4

Figure 5.5: We present different instances of time meshes described in Table 5.1 to illustrate
the differences between uniform and asymmetric meshes.

problem in the middle row, or in the oil problem in the bottom row. In both cases, the left
graphs correspond to the total errors and on the right, we show partial H1 errors. Since the
total error is heavily dominated by contributions from the oil problem, only partial refinement
in this subproblem leads to convergence of the overall error. This partial refinement does not
affect the convergence rate of partial H1 errors negatively in any way. It is especially apparent
in the water problem. That in turn, validates our findings in Theorem 5 where we were able
to fully decouple time contributions from different subproblems. In these figures, we did not
include the refinement where the time-steps in one domain were twice the size as in the other
because the corresponding curves fully overlap with the ones presented here.

In Figure 5.7 we present graphs corresponding to pressure. In the top figure, we show the
convergence rate of the joint L2 error. Again, we were able to achieve quadratic convergence
(we remind the readers that the plot includes a squared error). This way, our conjecture was
confirmed that the error estimate proved in Theorem 6 is suboptimal. However, in the graphs
of partial errors below we can see that they are not fully decoupled. There, we compare
asymmetric meshes and uniform meshes (time-steps in one domain are twice smaller as in
the other). Indeed, especially in the case of the water problem, one can see a deterioration
of the convergence rate in the case of asymmetric time meshes. The graphs suggest that
this deterioration is driven by the number of micro time-steps. This effect is much more
pronounced in the water problem. That might be due to the difference in viscosity between
the two problems.
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4 8 16 32 64

1

10

100

209

Number of time-steps

ˇ ˇ

ˇ ˇ

e
k
,h

pt
N

qˇ ˇ

ˇ ˇ

2 Ω
`
ş

I

ˇ ˇ

ˇ ˇ

ˇ ˇ

e
k
,h
ˇ ˇ

ˇ ˇ

ˇ ˇ

2 Ω
d
t

adjust to the next line
No multirate time-stepping

Uniform
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Conclusion

In this study, we looked at various aspects of multirate time-stepping methods for coupled
problems. In the first part, we were mostly concerned with the practical side of handling such
systems and introduced a special time partitioning that allowed for an independent choice
of time-step sizes without violations of coupling conditions. The time discretization was em-
bedded in a space-time framework. We examined decoupling algorithms that enabled solving
strongly coupled systems within the partitioned regime. After deriving and solving adjoint
formulations, we computed a DWR estimator and used it as an adaptivity criterion.

All of these considerations were supported by numerical results for three model problems
- a simple linear interface coupled problem, a highly complex nonlinear FSI system on mov-
ing domains and a slightly nonlinear volume coupled one. Except for the FSI problem, we
were able to achieve highly satisfactory results. Indeed, the newly proposed shooting method
performed much better than a commonly used relaxation method. Adaptive time-stepping
yielded significantly more efficient error reduction than the fully uniform refinement. The
results for the FSI system were only a partial success. Although conversely to the relaxation
method, the shooting method was capable of reaching convergence, it required a substantial
number of iterations. Additionally, introducing micro time-stepping in the solid domain gave
rise to oscillations in pressure which in turn caused the simulation to crash after just a few
time-steps. As a result, we only tested the error estimator on fully uniform time meshes.
We did not take into account the quadrature errors coming from the mismatch between the
space-time discretization and the one we actually used. Despite that, the effectivity values
were promising. We suspect that the failure of multirate time-stepping for the FSI problem
comes from the shift of the scheme to the explicit side whenever micro time-stepping is in-
troduced. Indeed, the intermediate solution is computed as a linear combination between the
previously computed one and the solution of a current system. As we discussed in Section 3.2,
these instabilities are only present when one considers a partitioned approach. Unfortunately,
standard monolithic discretizations are not flexible enough to allow for different time-step
sizes for each of the problems.

This issue can be circumvented by leaning more into the space-time direction. The cost
of solving algebraic systems arising from full space-time discretizations can be prohibitive.
There exists however an intermediate solution using, so-called, time slabs. There, one sequen-
tially solves full space-time formulations defined on patches consisting of a small number of
time-steps. This method has been presented in more detail for example in [69, 70]. Our time
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partitioning with macro and micro time-step seems to perfectly fit into this framework. At
the moment of writing this thesis, our research in this direction is at the very initial stage and
we can not yet say whether this method can indeed solve our problems, nor can we discuss
any implementation details. Before closing this paragraph, we would like to mention that
although we are disappointed that our approach did not provide us with a fully satisfactory
simulation of the FSI problem, we should remember that this is a very challenging benchmark.
It strongly couples two nonlinear systems with an additional incompressibility condition in
the fluid. The ALE coordinates introduce additional highly nonlinear terms. Therefore, the
limitations of our approach illustrated by this benchmark should not discredit it in other
contexts.

In the last chapter of this thesis, we were instead concentrated on more theoretical aspects
of multirate time-stepping. We proved a priori error estimates for a series of linear coupled
problems. All of them were discretized using the implicit Euler time-stepping scheme. We
looked at a standard system of coupled ordinary differential equations and then proceeded
to two systems of partial differential equations. The first one was given by two coupled heat
equations with different diffusivity constants. The second one was an extension of the former
and consisted of two Stokes equations. Except for the pressure, where the order of conver-
gence was reduced by one half, our estimates yielded an optimal linear convergence rate. To
handle the transfer of interface conditions between different domains, we introduced a new
interpolation operator. It was specifically designed to have an average zero over each time
interval. Due to using the dG(0) representation of the implicit Euler scheme, this property
is not violated after multiplying an average term with any trial or test function since both of
them are piecewise constant in time. This trick was used frequently in the proofs. The esti-
mates for the fully discrete heat and Stokes equation were proved in a modified energy norm
that incorporated the Nitsche jump over the interface. To prove the estimate for pressure, we
used a modified inf-sup condition [5] which is compatible with this new norm.

The suboptimality of the pressure estimate comes from the estimation of the time derivative
term in the inf-sup condition. This term is known to be difficult to estimate [67]. Moreover,
this problem has been successfully solved in [68], where the authors were able to derive op-
timal pressure estimates. Given these circumstances, we do not view this suboptimality as a
significant failure on our part. In fact, we are quite pleased with the results presented here.
They form a good complement to the previous part which was clearly more application ori-
ented. That being said, one can clearly spot ways, in which these findings could be extended.
One could consider problems coupling different physical models, for example, the heat and
wave equation. We could also extend the proofs to account for the Crank-Nicolson and other
time-stepping methods. Another possibility would be to introduce nonlinear terms.
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