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Abstract

Attractor network models of associative learning provide a plausible sce-

nario for the formation of context-dependent associations. Such models

make a strong qualitative prediction for temporal context: the learning of

associations encompasses not only current inputs but also reverberant ‘delay

activity’. This implies that learned associations will include the temporal

sequence of input events, whether task-relevant or not. Indeed, learning

of task-irrelevant sequence information is observed in behaving non-human

primates. This thesis aims at confirming and extending the above findings

to human observers in order to formulate additional constraints for attractor

network models.

We investigated how temporal context affects the learning of arbitrary visuo-

motor associations. Human observers viewed highly distinguishable, fractal

objects and learned (by trial and error) to choose for each object the one

motor response (out of four possible) that is rewarded. Temporal context

was introduced through the sequence of objects: some objects were con-

sistently preceded by specific other objects, while other objects lacked this

task-irrelevant but predictive context.

The results of five experiments showed that predictive context consistently

and significantly accelerated associative learning. A simple model of re-

inforcement learning, in which three successive objects informed response

selection, reproduced our behavioral results.

Our results imply that not just the representation of a current event, but

also the representations of past events, are reinforced during conditional

associative learning. In addition, these findings are broadly consistent with

the prediction of attractor network models of associative learning and their

prophecy of a persistent representation of past objects.



Zusammenfassung

Auf Attraktorennetzen basierende Modelle für assoziatives Lernen liefern

einen plausiblen Erklärungsansatz für die Entstehung von kontextabhängi-

gen Assoziationen. Solche Modelle stellen eine qualitativ starke Vorhersage

hinsichtlich des zeitlichen Kontextes auf: das Lernen von Assoziationen

umfasst nicht nur gegenwärtige Eingabe, sondern auch die reverberierende

Verzögerungsaktivität (engl. ‘delay activity’). Das impliziert, dass die

zeitliche Reihenfolge der Eingabe-Ereignisse mitgelernt wird. Dabei spielt

es keine Rolle, ob die darin enthaltene Information aufgabenrelevant ist oder

nicht. In der Tat wurde das Lernen von aufgabenirrelevanter Sequenzinfor-

mation in Verhaltensexperimenten mit Primaten beobachtet.

Die vorliegende Arbeit setzt sich zum Ziel, die Gültigkeit dieser Befunde für

menschliche Probanden zu bestätigen und die erzielten Ergebnisse zu ver-

wenden, um zusätzliche Randbedingungen für Attraktorennetze formulieren

zu können.

Für diesen Zweck untersuchten wir den Einfluß des zeitlichen Kontextes

auf das Lernen von arbiträren visuomotorischen Assoziationen bei men-

schlichen Probanden. Unsere Versuchspersonen besichtigten Sequenzen von

irregulären geometrischen Objekten mit verschiedenen Formen und Farben.

Ihre Aufgabe war es, durch Versuch und Irrtum zu lernen, für jedes dieser

Objekte die belohnungsrelevante motorische Antwort zu wählen (visuomo-

torische Assoziation). Insgesamt gab es vier mögliche motorische Antworten

für jedes Objekt. Der zeitliche Kontext wurde durch die Sequenz der Ob-

jekte definiert: während einige Objekte stets denselben Vorgänger in der

Sequenz hatten, fehlte dieser, zwar aufgabenirrelevante, jedoch prädiktive

Kontext bei anderen Objekten.

Die Ergebnisse von fünf Experimenten zeigen, dass ein prädiktiver Kontext

das assoziative Lernen sowohl konsistent als auch signifikant beschleunigt.



Ein Modell des verstärkten Lernens (engl. reinforcement learning) bildete

die Verhaltensdaten unserer Probanden nach. Das Modell postulierte, dass

die Selektion der motorischen Antwort von drei aufeinanderfolgenden Ob-

jekten vorhergesagt wird.

Diese Ergebnisse implizieren, dass bei kontextabhängigem assoziativem Ler-

nen nicht nur die Repräsentation eines gegenwärtigen Ereignisses belohnt

wird, sondern auch die Repräsentationen von früheren Ereignissen. Diese

Resultate stimmen allgemein mit den Vorhersagen von Modellen der At-

traktorennetze überein.
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Chapter 1

Introduction

In the early days of artificial intelligence (AI), the term ‘behavioral flexibility’ was used

to describe an agent’s ability to adapt its actions to a certain environment [11, 110].

Given that the investigated environments were usually fixed [69], behavioral flexibility

denoted the ability of an inexperienced actor to acquire experience through learning in

a, more or less, stationary environment.

Today, as artificial systems are becoming increasingly inspired by their biological

counterparts [89] and research is considering also changing environments, ‘behavioral

flexibility’ now connotes the ability of an already experienced actor to exploit experience

in order to navigate a non-stationary environment.

1.1 Context-Dependent Learning

The way how we learn and act is characterized by a wide-ranging flexibility in adapt-

ing to both (i) endogenous manipulations in ourselves that are due to changes in our

motivational states and to (ii) exogenous changes in environmental factors. This very

ubiquitous flexibility stems, among other things, from the facility to distill past experi-

ences into general rules that enhance learning and shape our future behavior. Indeed,

12



1.1 Context-Dependent Learning

doing well in a complex and unstable world requires a perpetual capacity to appropri-

ately assign different forms of behavior to a given situation. Take the cultural diversity

and its role in our social life as example. While Germans might shake hands, it is not

unusual for Kuwaitis to kiss one another when greeting. Thus, doing business between

Germany and Kuwait may well include alternating between handshaking and kissing,

if etiquette forms were to contribute to a good stroke of business1.

Advanced mammals and primates are said to be particularly quick in learning

flexible rules that extend their behavioral repertoire to unfamiliar tasks and condi-

tions. For example, well-trained monkeys can learn large numbers of arbitrary sen-

sorimotor mappings within a few tens of trials and re-learn the new associations,

when reward contingencies are unexpectedly changed, in only a small number of tri-

als [4, 10, 15, 90, 94, 95, 97, 107, 138, 144]. A major determinant of this behavioral

flexibility is ‘context-dependent learning’. It helps the animal adjust to changing task

situations without the need of extensive re-learing procedures [29, 123]. Synonymous

terms are ‘context conditioning’ [47], ‘occasion setting’ [124], ‘model-based reversal

learning’, ‘goal-directed behavior’, and ‘outcome re-valuation/devaluation’ [5, 29, 76].

They all refer to the idea of manipulating the context, in order to discern control

strategies. But what is ‘context’ in the first place and how does it act?

The Cambridge Advanced Learner’s Dictionary defines ‘context’ as “the situation

within which something exists or happens, and that can help explain it”. Applying

this definition to animal learning, we may state: if a stimulus triggers more than one

response during its lifetime in a certain setting, then the context should determine

which of these responses is valid at any point in time [56]. For this to be possible,

two conditions have to be satisfied during acquiring the context-dependency. First, the

relation between the various realizations of the context in question and the different

meanings of the stimulus embedded in it should be well defined [38, 85]. Second, and
1Do we always know what the real reason for a good deal has been?

13



1.1 Context-Dependent Learning

equally important, there should be enough opportunity (mostly in terms of time and/or

number of repetitions) for the context to become associated with the desired meaning

of the stimulus [60]. Given this, the context would act in much the same way as an

additional cue would. Hence, the widely held view: “context is just another stimulus”

[46, 75].

1.1.1 The Temporal Context Hypothesis

This thesis sheds light on a special kind of context, termed ‘temporal context’. Inspired

by previous works [e.g. 2, 3, 91], we define the temporal context to be the amount of

reward-relevant information provided by the temporal statistics of an environment in

terms of the conditional probability for an event to be preceded or followed by some

other events. We hypothesize that the temporal statistics of a given environment play

a fundamental, and hitherto unrecognized, role in context-dependent learning. The

incidental learning of temporal sequence information does not constitute an optimal

decision strategy, as it gives unwarranted weight to irrelevant cues. However, incidental

learning of consistent sequence information may represent a heuristic strategy suitable

for natural learning scenarios, in which the relevance of environmental cues may change

and previously irrelevant cues may suddenly become vitally important. For this to be

shown, the current work represents behavioral data from human observers that affirm

the relevance of temporal sequence information in accelerating conditional associative

learning. In addition, our findings pave the way for further investigations concerning

both abstract and computational frameworks like the influential ‘attractor theory’ and

the normative theory of ‘reinforcement learning’, respectively.

1.1.2 Conditional Associative Learning: the Paradigm

In the laboratory, context-dependent learning was investigated using conditional asso-

ciative tasks; a learning paradigm that probes the ability of primates to learn arbitrary

14



1.1 Context-Dependent Learning

sensorimotor mappings [52, 109]. Typically, the experimental design takes a set of

visual stimuli from the same category and maps them randomly onto a set of motor

responses. Subjects learn by trial and error which response produces the reward in

the case of each stimulus (e.g., if stimulus S, then response R secures the reward).

As all stimuli are potentially associated with reward, the subject cannot simply learn

stimulus-reward associations. Instead, subjects must link each stimulus to the specific

response that ensures the reward in each case.

Learning in this way is what has been known among researchers of ‘animal learn-

ing’ as the law of effect, which was first formulated by Edward L. Thorndike [135]. It

states that learning progresses incrementally by strengthening positively experienced

associations between environmental cues and animals’ responses. This requires not only

stimulus recognition and response selection, but also keeping track of (at least some of)

the stimulus-response pairings already tried and the outcomes obtained. Depending

on the size of the stimulus set, this may generate a considerable memory load. To be

more explicit, if S and R are the sets of stimuli and motor responses, with sizes |S|

and |R|, respectively, then the subject has to learn a unique correspondence among the

|R||S| many distinct and equally probable correspondences that assign the elements of

S to those of R. The context could help reduce the search space, as it provides addi-

tional information, which, when taken into account, might well restrict the number of

potentially relevant mappings. Yet until then, subjects have to memorize the rewarded

pairings and keep on trying to find out the correct motor responses for the unrewarded

ones.

When the space of visual features is extended to include further dimensions (e.g.

size, shape, color, orientation) or when the number of possible motor responses in-

creases, searching for the unique correspondence becomes even more complicated. This

problem has been known among researchers of ‘machine learning’ as the scaling prob-

lem. It refers to the idea that the computational time needed to reach a stable optimal

15



1.2 Lingering Representation of Past Events

behavior grows exponentially with increasing number of environmental states and/or

available actions [8, 14, 40, 69, 72, 80, 81, 129].

1.1.3 Conditional Associative Learning and the Brain

Where in the brain does conditional associative learning take place and which network

of neurons is involved in this type of task managing? It is evident that conditional

associative learning incorporates a wide variety of subtasks. Animals have to identify

visual objects, issue motor commands, form associations, process reward values, and

whenever necessary remember all of these activities at once [4, 123, 135]. Successful

managing of such a complex bundle of tasks suggests that several brain areas should

engage in this kind of problem solving (Fig. 1.1). In fact, studies with behaving non-

human primates reveal an extensive network of brain regions underlying conditional

associative learning [21, 95, 144]. The associative link between visual object recognition,

subserved by inferior temporal cortex [35, 49, 83, 128, 134], and response selection,

mediated by prefrontal and premotor cortex [90, 97, 138] does not, however, appear to

involve a direct interaction of these brain areas [43]. Instead, conditional associative

learning seems to rely on indirect pathways through the striatum [16, 58, 59, 106] and

the medial temporal lobe [17, 44, 142, 146].

With more extensive stimulus sets, conditional associative tasks are suitable also for

human observers. Functional imaging studies confirm that such tasks involve a similar

network of prefrontal, parietal, and striatal areas in the human brain as in the brain of

non-human primates [13, 19, 45, 105].

1.2 Lingering Representation of Past Events

Attractor network models of associative learning [2, 64] predict that memories should

be shaped by the order in which different events are rehearsed. Commonly, these

16



1.2 Lingering Representation of Past Events
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Figure 1.1: Conditional associative learning in the human’s brain. A: A transparent sectional
view, showing different regions of the human brain that are involved in conditional associative
learning. whereas the premotor cortex contributes mainly to selecting movements in regards
to the context of the action, the prefrontal cortex is responsible for executive functions. This
includes action planning and decision-making. Another area is that of the basal ganlia. Be-
side being associated with motor control and learning, the basal ganglia are thought to also
contribute to the selection of actions [29]. Located inside the medial temporal lobe, the hip-
pocampus plays an important role in long-term memory. Finally, the inferior temporal cortex
(shown in B) is crucial for visual object recognition. B: An exterior view of the cerebral cortex,
showing the four major lobes named: frontal, parietal, temporal, and occipital. Each lobe in-
cludes many distinct functional domains. The temporal lobe, for example, has distinct regions
that carry out auditory, visual, or memory functions. Adapted and modified from [65].
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1.2 Lingering Representation of Past Events

models assume that sufficiently strong synaptic excitations lead to the generation of

self-sustained stable states of neural representations, which are manifested in the form

of a persistent ‘delay activity’ [3]. The neural representation of an event class – its

attractor state – should linger even after a triggering event has passed. Due to this

reverberatory ‘delay activity’, events that occur consistently in a particular temporal

order should eventually become subsumed under the same event class in associative

memory. Importantly, it is the consistent temporal order, not mere temporal proximity,

that should lead to these expanded memory representations.

1.2.1 Temporal Order Effects with Non-Human Primates

More direct evidence for an effect of temporal order on associative memory comes

from electrophysiological recordings in behaving non-human primates. When monkeys

are trained to perform a delayed match-to-sample task, in which they are required to

determine whether a test stimulus following a delay interval matches with a sample

stimulus that was presented before the delay period, neurons in the inferior temporal

(IT) cortex increase their firing rates during the delay interval selectively for some

visual stimuli [92, Fig. 1.2]. Although the monkey could perform the task also with

novel visual stimuli, elevated firing rates during the delay period were observable only

for highly familiar ones. This phenomenon has been known in the literature as a

‘stimulus-selective delay activity’ or simply ‘delay activity’ and was considered to be

the neural correlate for forming long-term visual stimulus-stimulus associations [91].

When different sample stimuli are presented in a consistent order over successive trials,

some neurons in the IT cortex develop a task-irrelevant selectivity for successive sample

pairs [145].

Moreover, in monkeys trained to perform paired-associate tasks, in which they

associate different objects that are presented successively, delay activity for the first

object and neuronal selectivity for the pairs become evident concurrently and in the

18



1.2 Lingering Representation of Past Events

Visual fractal objects (a-d) and corresponding rasters of firing patterns (i-iv)A

B

delay of 16 s

sample
phase

match 
phase

C

1 s

Spike-density histograms Stimulus-stimulus association

Figure 1.2: Delay activity in a delayed match-to-sample task. A(a-d): examples of the visual
fractal objects used by Miyashita & Chang [92]. The raster plots A(i-iv) represent patterns
of spike activity (dots) of one neuron among the 188 neurons tested in the IT cortex, with
A(i) referring to the object presented in A(a) and A(ii-iv) corresponding to the objects shown
in A(b-d), respectively. B shows spike-density histograms for the delay activity evoked by
the object presented in A(a) and other six visual objects, for which the tested neuron was
not highly selective. C: correlation coefficients (Kendall rank coefficients) of spike activities
in a neuronal population during the delay period along the serial position number (SPN) of
objects within the presented sequences. In the neurons that were tested with both learned and
novel stimuli, responses to the the learned stimuli (full circles) were significantly correlated in
the nearest neighbor of the SPNs, compared with the responses to the novel stimuli (empty
circles). Subplots A and B adapted from [92], whereas subplot C from [91].

19



1.3 The Attractor Framework

same neurons [121, 122] [see also 114]. These observations directly link consistent

temporal order, the presence of ‘delay activity’, and the merging of associative memory

representations.

1.2.2 Behavioral Tests with Human Observers

Behavioral results from human observers are consistent with the idea that temporal

order shapes associative learning [12, 113]. For example, observers suffer in their ability

to distinguish two face images after viewing image sequences in which the face identity

changes as the head rotates [137]. Apparently, the correlated appearance over time leads

observers to classify the two faces as the same person. Similarly, human observers come

to classify two distinct objects as “similar” when they have repeatedly viewed a series

of intermediate objects [112]. Importantly, the distinct objects become associated only

if the intermediate objects were presented in a systematic order, starting with the most

similar and ending with the most dissimilar to the initial object. Once again, it appears

as if perceiving objects in a consistent temporal order would merge their representations

in associative memory.

More generally, temporal order effects are well documented for serial reaction time

tasks [27, 28, 116] and serial visual search tasks [24, 25], with human observers, as well

as for serial button press tasks with non-human primates [62, 63].

1.3 The Attractor Framework

Exhibiting delay activity in ‘working memory’ tasks (like the one of the delayed match-

to-sample paradigm) is not that surprising. For the animal needs (in order to perform

well) to preserve the identity of the visual stimuli in ‘working memory’ during the delay

period. Yet by using fixed sequences, the intriguing point in Miyashita’s finding was

the observation that the few stimuli for which a neuron was jointly selective, were fre-
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1.3 The Attractor Framework

quently temporal neighbors in the sequence of the visual stimuli which was presented in

the training phase. Beside providing a neural correlate of associative long-term mem-

ory of pictures, this result has also confirmed the temporal order effects experimentally

and corroborated the attractor network models in their predictions of persistent rep-

resentations of past events in a more convincing way. Amit, Brunel & Tsodyks [2]

argued that the observed delay activity is not a single neuron property, but rather an

expression of the collective neuronal dynamics, which ultimately leads to the concretion

of self-sustained stable states, termed attractors [see also 1].

The central tenets of attractor theory are that (i) the network is plastic, that is,

connection strengths develop in an activity-driven, Hebbian manner and that (ii) asso-

ciations (e.g., stimulus-response pairings) are maintained as self-sustained, persistent

patterns of activity which represent attractors of the neural dynamics. These tenets

predict the formation of associative links whenever a set of events occurs repeatedly in

a consistent temporal order [1, 3, 20, 57]. Concerning Miyashita’s work, the attractor

picture can be viewed as follows: every time a visual stimulus is presented, the same

pattern of firing rates (delay activity) is built up across the neuronal population. Re-

peated presentation of a visual stimulus results in this stimulus becoming increasingly

familiar and the corresponding pattern being more and more stimulus-specific. When

a familiar stimulus is removed, most neurons get back to fire at their spontaneous lev-

els, whereas some distinct ones continue firing at elevated rates in response to strong

synaptic excitations by the recurrent feedback connections between the neurons. Con-

sequently, the dynamics of the neuronal population will eventually be attracted into a

stable state, even after the removal of the stimulus that triggered this process [1, 7, 20].

This scenario has a number of straightforward implications. Of considerable impor-

tance are the pattern-completion property and the ability of linking events in temporal

order. The pattern-completion property holds that the distributed nature of neural

representations of delay activity enables an attractor network to complete imperfect
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patterns of delay activity, making it insensitive to possible noise. Linking events in

temporal order implies in our situation that different stimulus-response pairings should

not form independently, when they are rehearsed in a consistent temporal order. In-

stead, they should form a wider set of associative links that span successive pairings.

Presumably, the corresponding attractor state would involve more neurons, be more

stable, and form more rapidly. In the following we briefly explain these ideas.

1.3.1 Pattern-Completion and Noise-Insensitivty

That ‘delay activity’ is stimulus-specific implies that the attractor network has the

ability of pattern-completion. Specifically, because each visual stimulus evokes a char-

acteristic pattern of delay activity, the delay activity distribution must be referring to

the neural representation of the familiar stimulus which had been seen last [145]. The

distributed nature of the neural representations enables the network to store a large

number of patterns in the same neural module, using the same synaptic structure [1].

If it happened that, due to noise, the delay activity of the currently presented visual

stimulus is not identical (yet somehow similar) to the one, which is characteristic for

that stimulus, then the network recognizes the similarity between the noisy and the

noise-free (original) patterns of delay activity. As a result, the neuronal dynamics of

the network will be directed to flow toward the same attractor [20]. Indeed, this ability

of an attractor network to become relatively insensitive to noise has been reported for

the pattern of delay activity shown by neurons in the IT cortex [3, 145].

1.3.2 Linking Events in Temporal Order

Most important for our purpose is that the attractor framework explains elegantly

how associations can be formed between stimuli that are repeatedly presented in a

temporal order. The basic idea is that during the delay activity, some of the neurons

which are part of the current attractor will remain active, that is, they will keep firing
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at higher rates until the presentation of the next visual stimulus makes the way free

for the emergence of a new attractor. Meanwhile, the joint activity, which can be

observed within a time window of tens of milliseconds [145], will strengthen the synaptic

connections between the neuronal populations of the two attractors (the current and

the previous ones). If the two stimuli were consistently presented in a fixed order, the

modification of the Hebbian-manner synaptic connections, will result in both neuronal

populations to have similar patterns of firing rates. This leads to the formation of

associative memory [1, 2, 3, 20].

1.4 Reinforcement Learning

Understanding what the computational function of the brain is, requires to address

three questions [88]. First, what is the problem the brain is trying to solve? (com-

putational level). Second, what are the strategies it uses to solve it? (algorithmic

level). Third, which networks of neurons in the brain do this and how? (implementa-

tion level). The attractor framework is a theory at the level of neural implementation.

When neuronal activity is described at an appropriate level of abstraction, an attractor

network model captures the collective dynamics of interacting populations of spiking

neurons that is generated by recurrent connections between the neuronal populations

[18]. Reinforcement learning (RL) framework provides a complementary approach at

the level of algorithms. Specifically, whatever tasks conditional associative learning is

dealing with, it is after all about making decisions. This can be defined as the process

of choosing an option from a set of given alternatives. Initially, a decision maker should

accumulate adequate information about candidate alternatives, then assess the corre-

sponding values through predictions of their relative importance, then perform suitable

actions, before he finally evaluates his decision in the light of the actual outcomes. RL

is the algorithmic theory for doing this with the objective of learning optimal action
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control [29, 31, 42, 69].

Though the implementation level is more concrete, as it directly deals with the

structure and function of the brain, it is clear that both the computational and al-

gorithmic levels are abstract in the sense that they can be studied and analyzed by

normative treatments. Namely, in terms of developing and validating computational

models and solving optimization problems. In fact, it is this point that makes RL

so special and interesting for a wide spectrum of researchers, ranging from computer

scientists and electrical engineers on the one side to biologists and computational neu-

roscientists on the other [100]. Specifically, from evolutionary perspective, animals have

higher survival chances the fitter they are in terms of managing to adapt to their en-

vironments. This implies that certain behaviors turn out to be optimal solutions for

problems encountered in certain situations. Studying these cases may well help theo-

reticians put hypotheses that can be tested computationally [68]. Moreover, observed

behavior can often be better understood in the light of existing normative models.

Resulting discrepancies between the predictions of a model and the real behavior can

then be investigated, so as to see whether the postulated assumptions about the neu-

ral and/or informational processes do not hold or the animal is, indeed, optimizing

different parameters than the ones suggested by the model.

1.4.1 Background and Inception

Historically, RL was born out of mathematical psychology and operations research

[33]. Inspired by the psychological literature on Pavlovian (classical) and instrumental

conditioning, Richard Sutton developed, together with Andrew Barto, algorithms for

agent-based learning that later on became the core ideas for the theory of RL [132].

Parallel to their research, yet in a separate line, Dimitri Bertsekas and John Tsitsiklis,

two electrical engineers working in the field of operations research, developed stochastic

approximations to dynamic programming that allow a system to learn about its be-
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havior through simulation (experience) and improve its performance through iterative

reinforcement [11]. These lines of research marked the emergence of RL as an algorith-

mic theory for optimal decision making on the basis of behavior and subsequent effects

[100].

Compared with other areas of machine learning that either base learning on a

set of training examples (supervised learning) or seek to determine how the data are

organized, by using data mining techniques (unsupervised learning), RL stands out

in that it directly addresses the ‘critical’ question of how to optimize a policy, so as

to be able to infer which of the agent’s past actions led to the putative success or

failure. This problem is well known in the literature as the credit assignment problem

[132]. It comes about in situations where actions have a far reaching effect or when

the outcomes depend on a sequence of actions (delayed outcomes). We encounter the

credit assignment problem in several facets of our daily life.

In the animal world, however, the same problem can be encountered in natural

scenarios like aging in case of bees or ants or even in experimental settings like search-

ing for food in a maze [31]. Whatever the form of the credit assignment problem is,

RL methods solve this issue by taking long-term predictions into account rather than

only considering immediate outcomes when deciding which action to select in a given

situation [29].

The problem of RL can be described as follows: a goal-directed agent, which might

be a natural (i.e. biological) system or an artificial one, is interacting with an envi-

ronment via sensory inputs and subjective actions. The inputs provide the agent with

some information about the state of the environment. The agent responds with an

action, changing the current state, before it then receives a numerical signal telling him

how close it moved towards its goal or further away from it. The goal is defined in

terms of some long-term measure of future utility. The simplest of conceivable mea-

sures is the cumulative expected future reward. Another possible one is the average
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rate of acquisition net rewards, which is the discrepancy between positive and negative

reinforcements [33]. Whatever the nature of the chosen measure is, the agent’s task is

to find a policy that optimizes it.

1.4.2 Markov Decision Processes

The decision process of an actor can be modeled as a Markov decision process (MDP)

or as a partially observable Markov decision process (POMDP) – in case of inherent un-

certainty regarding the state of the operating environment [69, 132]. An MDP process

consists of two functions, R and T, defined over two sets, S and A. Specifically, the

set S of states describes the different situations the agent encounters during operating

(learning). The defined states differ in their nature according to the setting, in which

learning is taking place. For example, while states in an operant box may best be re-

ferring to the existence or absence of different stimuli, a setting like a maze suggests to

define states as possible locations within the maze. The set A of actions determines all

feasible choices in every possible state. Examples of actions are selections of directions

or presses on different levers. The reward function R : S×A→ R refers to affectively

important outcomes in form of real-valued (positive, negative, or null) reinforcements.

Importantly, the outcomes can change either as a result of modifications in the moti-

vational state of the decision-maker [5, 6, 32] or according to deliberate experimental

manipulations [4, 29]. The transition function T : S×A→ Π(S) sets probabilities for

state transitions in such a way that a member of Π(S) is a probability distribution over

the set S. Finally, the policy π : S→ A is defined as a mapping from the set of states

into the set of actions.

In the process described above, the environment evolves stochastically under simple

discrete temporal dynamics in the following way: at time t, the environment is in

state st (which might not be completely accessible to the agent). The agent chooses

some action at ∈ A, through which it expects to receive a certain reward r̂ (expected
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outcome). Whether matching with its expectation or not, the agent experiences the

actual consequence of its choice (either immediately or later on) in form of a numerical

reinforcement r ∈ R (actual outcome). Subsequently, the state of the environment

changes into a new state st+1 at the next time step. The agent needs to update its

knowledge, so as to reflect its very experience with reward contingencies within the

operating environment.

To denote the probability P (st+1 = s′|st = s, at = a) of moving from state s

to state s′ when taking action a, we write T(s, a, s′). Analogously, we refer to the

probability P (rt = r|st = s, at = a) for receiving a reward at state st when taking

action a by R(s, a, r). The fact that the probability of a state transition depends only

on the current state, rather than the whole history of the environment is known as

the Markov property. Its importance in RL derives from the simplicity it provides in

formalizing the reward and transition functions as functions of the current state rather

than the entire history. This implies a clear computational advantage, because we need

to remember and work with only the parameters related to the current state, which is

definitely easier than dealing with all previous states of the environment [86].

1.4.3 Model-Free and Model-Based RL

Based on their optimization philosophy, RL methods can be sorted into two main

classes: model-free and model-based methods [33]. Synonymous terms are direct and

indirect adaptive control, respectively [69].

Though both use experience, model-free RL methods assume no prior knowledge

of the environment but learn a state-action value function, termed as ‘value function’

[30]. Starting from a given state, the agent distills advantageous actions into an optimal

policy by ‘caching’ actually observed information about the long-term rewarding poten-

cies of the probed actions. In terms of computational effort, this approach represents

a simple way to exploit experience, as the model needs only to learn one or two simple
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quantities (state/action values). However, it is statistically less efficient, because the

cached information is stored as a scalar quantity without connecting outcomes to their

direct causes in a distinguishable manner. Consequently, the model’s performance is

most likely to suffer from two shortcomings. First, the model cannot (later on) extri-

cate insights about rewards or transitions from the cached value. Second, the cached

information intermixes previous estimates or beliefs about state values regadless their

sometimes erroneous valence. As a result, model-free RL methods lack an appropriately

quick adaptation to sudden changes in reward contingencies. Because of this charac-

teristic, model-free RL was proposed as the underlying model for habitual controllers,

in which actions are presumably based on habits [29]. This key characteristic links

model-free RL to corticostriatal circuits involving, in particular, ventral striatum and

regions of the amygdala in the human’s brain [6, 32, 104].

By contrast, model-based RL captures the dynamics of the system in terms of state

transition probabilities. Such probabilities can be presented as a tree connecting short-

term predictions about immediate outcomes of each action in an arbitrary sequence

of actions. Deciding which action is more beneficial can then be done by exploring

branching sets of possible future situations. There are several ‘tree search’ techniques

that can do this [29]. It turns out that exploiting experience as in the case of model-

based RL is more efficient than in case of model-free RL for two reasons. First, it

provides a more statistical reliability, especially, when storing the sometimes unrelated

morsels of information. Second, and importantly, it ensures more flexibility in terms

of adaptive planning, which becomes necessary when changes occur in the learning

environment. Hence, model-based RL accounts best for goal-directed behavior that

contain more cognitive planning. This key characteristic links model-based RL to the

prefrontal cortex in the primate’s brain [103].
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1.4.4 The Rescorla-Wagner Model

One of the first and still most influential model-free approaches in animal learning is

the Rescorla-Wagner (RW) rule. It was suggested as a model for Pavlovian condition-

ing; a common learning paradigm, in which animals learn to predict a reward following

the presentation of a conditioned stimulus. Confirming the ‘linear operator’ model of

Bush & Mosteller [22], which emphasized the role of ‘surprise’ in associative learning

[39, 71], the RW model proposed that learning is driven by a prediction error, which

signals the discrepancy between expected and actual outcomes. Specifically, to learn

the association between a conditioned stimulus and any certain event, termed as un-

conditioned stimulus, one has to update expectations about the outcome in proportion

to prediction error, so that across trials, the expected outcome converges to the actual

outcome [118]. Formally, if the associative strength of a specific conditioned stimulus

St in trial t was denoted by V (St), then its value changes in the next trial (t + 1)

according to

V (St+1) = V (St) + α(St)δt (1.1)

where α(St) is a learning rate that can depend on the salience properties of both the

conditioned and unconditioned stimuli subject to association. δt is a prediction error

that can be computed from

δt = r − r̂ (1.2)

with

r̂ =
∑
S̃

V (S̃t) (1.3)

Here, r is the actual outcome which practically limits the maximal associative strength

that can be supported by the unconditioned stimulus [also known as the asymptote of

conditioning 108]. r̂ is the predicted outcome, which is calculated additively, by consid-

ering all conditioned stimuli that were presented in the trial. This assumption, however,
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is neither the only nor always the most sensible option for combining predictions [34].

The RW model could successfully explain several characteristics of animal learning,

e.g. blocking [71], overshadowing [119], and inhibitory conditioning [117]. It also proved

able to predict new phenomena such as over-expectation [78]. Nevertheless, it had two

shortcomings. First, it failed to account for ‘secondary conditioning’ [31]; a phenomenon

in which a predictor of a predictor serves as a predictor. Second, and importantly,

it lacked the required sensitivity to temporal aspects [100] in that it doesn’t precisely

handle temporal relations between conditioned and unconditioned stimuli within a trial.

This is due to the fact that the RW model uses only discrete trials as temporal units,

ignoring the otherwise continuous events whether in realm or even in experimental

settings.

1.4.5 Temporal Difference Learning

A more time-conscious model-free method that became popular among researchers of

‘machine learning’ as well as those in the ‘animal learning’ community is the temporal

difference (TD) learning algorithm. Sutton & Barto [131] introduced it as a solution

to overcome the shortcomings of the Rescorla-Wagner model. As a result, the TD

learning rule doesn’t only take timing within a trial into account [126], but it also

handle higher-order conditioning, so that problems with delayed rewards can be solved

properly [31].

In this model, learning aims at optimizing the expected total future reward (starting

from time t onward) by basing predictions solely on current stimuli (states) rather than

considering past ones (see Markov property in section 1.4.2). Accordingly, state values

can be best defined as

V (St) = E

[ ∞∑
τ=t

γτ−trτ |St

]
(1.4)

where rτ is the reward at time τ , E[·] denotes the expected value, and γ ∈ [0, 1] is
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a discount factor that confirms the preferability of earlier rewards to delayed ones.

Assuming that rewards are Bernoulli distributed with a constant probability for each

state, equation (1.4) turns out to be equivalent to

V (St) = P (r|St) + γ
∑
St+1

P (St+1|St)V (St+1) (1.5)

In fact, the above formula constitutes the crucial part of the TD learning rule, from

which the temporal difference prediction error δt is derived. The basic idea is that the

recursive relationship between consecutive state values given in equation (1.5) holds as

long as the values are correctly predicted. In case of incorrect predictions, however,

there will be a difference

δt = P (r|St) + γ
∑
St+1

P (St+1|St)V (St+1)− V (St) (1.6)

between the left and right hand sides of equation (1.5), which can be used as a nat-

ural signal to drive learning. Yet the problem remains that the above definition of

the prediction error δt requires knowledge of two probability distributions: the one of

reward in each state P (r|St) and that of state transitions P (St+1|St). This stochastic

information, however, can be provided by the environment incrementally. The learning

system should then use experience in a way that allows to sample the missing proba-

bilities [11, 100, 132]. However, in order to learn the true predictive state values in a

model-free way, we may use the stochastic prediction error as an approximation of the

true temporal difference prediction error as follows

δt = rt + γV (St+1)− V (St) (1.7)

where rt is the reward delivered at time t, when in state St, and St+1 is the next state
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of the environment. As a result, state values can be updated by

Vnew(St) = Vold(St) + α(St)[rt + γV (St+1)− V (St)] (1.8)

Applying the additivity assumption of the Rescorla-Wagner model described in equa-

tion (1.3) to the above formula, we may present the temporal difference learning rule

as has been done by Sutton & Barto [131] in the following manner

Vnew(Si, t) = Vold(Si, t) + α(St)

rt + γ
∑
Sk,t+1

Vold(Sk, t+ 1)−
∑
Sj,t

Vold(Sj , t)

 (1.9)

From equation (1.9) it becomes clear that the associative strength of the stimulus

at time t does not restrict its predictions to the immediately forthcoming reward rt.

But rather, it transcends time limitations by considering also future predictions that

are due to those stimuli, which will still be available in the next time step. Hence,

using TD learning, animals can acquire the true predictive values of different events,

even when the environment is stochastic and prior knowledge about its dynamics is not

available.

1.4.6 Temporal Difference and Temporal Order

What is so interesting about the TD learning model from a neuroscientific point of

view? When applied to neurobiological and behavioral data concerning the role of

dopamine in reward learning and working memory, it turned out that the neurotrans-

mitter dopamine, indeed, simulates the TD learning rule in coding the reward predic-

tion error (Fig. 1.3). Initially, Wise, Spindler, deWit, & Gerberg [143] believed that

the level of dopamine in the brain is equivalent to the reward value. Thus, blocking

dopamine receptors should result in the extinction of responding by the animal, which

can be, de facto, observed whenever the reward delivery is cut [48]. However, when
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behaving monkeys underwent a simple instrumental or Pavlovian conditioning tasks, in

which the delivery of food (reward) was consistently preceded by a conditioned stimulus

like a tone or light, dopaminergic neurons in the ventral tegmental area (VTA) of the

monkey’s midbrain shifted their reward-characteristic phasic bursts of activity, after a

number of trials, from the time of receiving the reward back to the time of perceiving

the stimulus as a result of learning the underlying temporal association between the

conditioned stimulus and the reward [82, 125]. This result challenged the ‘anhedonia

hypothesis’ by Wise et al. [143], for it showed that the lack of measurable dopaminer-

gic response was connected with acquisition rather than extinction. Drawing on this

finding, Montague, Dayan & Sejnowski [93] pointed out that such pattern of dopamin-

ergic neurons’ activity conforms, in fact, exactly to the characteristics of the reward

prediction error as the the TD learning rule has it [126]. Such a finding servers as a

role model for the advantages of normative theories [100].

1.5 Aims of the Present Work

Historically, Miyashita’s classical experiments on the learning of arbitrary visuomo-

tor associations with non-human primates [91, 92], led to the development of at-

tractor neural network theory of associative learning by Daniel Amit and colleagues

[1, 2, 3, 7, 20, 51]. Attractor network models predict the formation of associative links

whenever a set of events occurs repeatedly in a consistent temporal order. This thesis

makes an attempt toward confirming and extending the Miyashita’s findings, in or-

der to formulate additional constraints for attractor network models. We introduce a

novel approach to studying the effect of temporal order on associative learning with

human observers. Our approach is patterned on established paradigms of conditional

associative learning with non-human primates [91, 92, 121, 122, 145]. Unlike the pre-

vious studies mentioned above (section 1.2.2), the present approach does not involve
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Figure 1.3: Dopamine neurons encode the reward prediction error. A-C: firing patterns of
dopaminergic neurons in the ventral tegmental area of monkeys’ midbrains performing instru-
mental conditioning task. The raster plots represent potential actions (dots) with each row
referring to a trial, aligned to the time of the stimulus or the reward. The bar histograms at
the top of each raster show the summed activity over the trials plotted below. Before learning
(A), a drop of appetitive fruit juice is delivered without the animal could have predicted it. As
expected, dopamine neurons fired at elevated rates at the time of reward delivery, indicating a
positive reward prediction error. However, after learning the temporal association between a
predictive visual stimulus and reward (B), dopamine neurons shifted their elevated firing rates
from the time of reward delivery to that of the stimulus presentation. Hence, there could be no
error in the prediction of reward. However, when the reward delivery was unexpectedly omitted
(C), firing of the dopamine neurons stopped precisely at the time where reward would have
come about. D-F: plots of temporal difference prediction errors in a simple Pavlovian condi-
tioning task. A tone (conditioned stimulus) is presented at random, followed 2 seconds later
by a food (reward). Before learning (D), the prediction error occurred at the time of reward
delivery as a result of the unlearned association between the stimulus and reward. Over the
course of trials (E), however, the prediction error propagates back in time in correspondence
to updating the values of previous time steps according to Eqn.1.8 (the plot presents trials 5
and 10 as examples). Omitting the reward unexpectedly (F), generates a negative prediction
error at the time reward used to be delivered at, indicating that expectation was higher than
reality. Subplots (A-C) adapted from [126], whereas (D-F) from [100].
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sequences of self-similar images, whether incrementally rotated [137] or morphed faces

[112]. This choice was motivated by several considerations. Firstly, we wanted to

stay as close as possible to the behavioral situation of the non-human primate studies

in which temporal order effects were first described [91, 145]. Secondly, we wanted

more freedom to manipulate temporal order than was possible with self-similar images.

Thirdly, we wanted to conceal the presence of temporal order from observers, in or-

der to minimize complications arising from cognitive strategies that often beset human

studies.

Specifically, our observers viewed highly distinguishable, fractal objects and learned

to select one of four possible motor responses for each object. Some objects were con-

sistently preceded by specific other objects, while other objects lacked such a predictive

temporal context (Fig. 2.2). Our aim was to keep observers engaged in the immediate

task (learning visuomotor associations) and to discourage as far as possible any per-

formance strategies relying on temporal context. For this reason, we intermixed (in

most experiments) visual objects with and without temporal context and ensured that

knowledge of temporal context was not necessary for accurate performance. Our results

show that observers expended comparable attention and/or memory resources on ob-

jects with and without temporal context, confirming that observers applied comparable

learning strategies in both cases.

In addition to experimental work, we developed several reinforcement learning mod-

els of increasing complexity [132]. Initially, a general model was devised to throw light

on the way human observers solve the given task. In particular, we wanted to use the

model in order to quantify the learning rate and the relevance of temporal context.

This basic model, however, failed to account for our behavioral findings, for it lacked

context-dependency. Consequently, we developed another model, which is (i) context-

sensitive and (ii) consistent with a form of model-free RL. In this model, response choice

is based on multiple action values, some attaching to the object of the current trial and
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others attaching to objects of preceding trials. As a consequence, our model exhibits a

similar dependence on temporal context as do human observers.

Although these models were not meant to capture the underlying processes (i.e. the

plasticity and dynamics of attractor neural networks), they proved enormously help-

ful in developing our thinking and in shaping further experiments with non-stationary

environments. In a preliminary pilot ‘reversal’ study, we disrupted the order of events

by replacing either an individual visual object (‘object reversal’), or an individual re-

warded action (‘action reversal’), or both of them (‘combined reversal’). In either type

of reversals, performance of human observers fell to chance level, contrary to the pre-

dictions of the reinforcement model. It is clear therefore, that our reinforcement model

does not fully capture the way in which human observers take advantage of temporal

context.

In summary, the present dissertation addressed the following:

1. We have studied the effect of temporal context on conditional associative learning.

2. Our behavioral situation is based on non-human primate paradigms but conceals

the presence or absence of temporal context from human observers.

3. Our results confirm the Miyashita’s findings and the predictions of attractor net-

work models [2] in that repeated presentation of stimulus-response pairings in a

consistent temporal order leads to the formation of associative links that span

successive pairings.

4. We believe that this is a promising approach to testing the predictions of attractor

theory of associative learning with human observers.
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Chapter 2

Methods

2.1 Observers

A total of 38 female human observers (mean age: 22.5; range: 20 - 32) were recruited

from the university campus. All observers reported normal or corrected-to-normal

visual acuity and were naive about the purpose of the experiment. Observers completed

an informed-consent form approved by the ethics committee of the university.

2.2 Apparatus and Stimuli

Highly distinguishable fractal objects with characteristic shapes and colors (Fig. 2.1)

were generated in Matlab using Psychophysics Toolbox (Brainard, 1997; Pelli, 1997)

with an Apple computer (Dual 2 GHn PowerPC G5; 3.5 GB SDRAM, OS x 10.4).

Stimuli were displayed on a grey background of an 22 inch Iiyama color monitor with

a resolution of 1900 x 1200 pixels and a frame rate of 100 Hz. The display subtended

53◦ at the viewing distance of 50 cm. Fractal objects were presented foveally (diameter

4◦) and four response options (grey disks of diameter 4◦) appeared at 4◦ of eccentricity

above, below, to the left and to the right.
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Figure 2.1: Fractal objects with characteristic shapes and colors similar to the ones
used by Miyashita [91] served as visual stimuli in the present learning paradigm.
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2.3 Task

2.3 Task

Observers were instructed to learn to respond ‘correctly’ to each fractal object. It was

explained that, for each fractal object, one of the four possible responses was ‘correct’,

while the other three responses were ‘incorrect’. Observers were told that they had to

become familiar with and learn to recognize each fractal object and that they had to

learn the ‘correct’ response of each object by trial and error. They were further told

that there was no pattern or system that would enable them to predict which response

a particular fractal object required. No mention of or reference to the sequence of trials

and fractal objects was made.

2.4 Procedure

Each trial comprised three phases (Fig. 2.2 A): 500 ms foveal presentation of a fractal

object and four response options; 500 − 2000 ms response interval (terminated by the

pressing of either ↑,→, ↓, or ← on the keyboard); 500 ms reinforcement (the chosen

response option turned green if correct and red if incorrect). Blocks of 56 to 336 trials

(‘sequences’) were performed without interruption. Each sequence used a new set of

fractal objects, which had never before been seen by the observer.

All sequences contained ‘recurring objects’, each of which appeared a certain number

of times (6 to 14 times) during the sequence. At least 2 trials intervened between

successive recurrences of the same object. Observers typically learned the correct motor

response of recurring objects (although usually the sequence was terminated before

performance reached 100% correct). With sufficiently long sequences observers do

reach ceiling performance.

In experiments 2 to 5, sequences also contained ‘one-time objects’, which appeared

only once per sequence. Obviously, observers could not hope to learn the ‘correct’ re-

sponse for such objects. However, the results suggest that observers did not distinguish
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2.4 Procedure

ReinforcementMotor responseStimulus presentation

A

C

tt-1 t+mt-1+m

.  .  .B

tt-1 t+mt-1+m

.  .  .

time

Figure 2.2: Experimental design (schematic). A: each trial comprises three phases: stimulus
presentation, motor response, and reinforcement. Firstly, a fractal object appears (center),
surrounded by four response options (grey discs). Secondly, the observer reacts by pressing the
key that corresponds to one response option (outlined disk). Thirdly, a color change of the
chosen option provides reinforcement (green if correct, red if incorrect). B: object sequence
with temporal context. Target objects recur every 2 to 48 trials. Thus, successive trials always
present different objects. A consistent temporal context is created by the fact that each target
object (e.g., trials t and t+m) is preceded consistently by a specific (other) object (trials t− 1
and t + m − 1). C: object sequence without temporal context. Each time an object appears
(trials t and t+m), it is preceded by a different object (trials t− 1 and t+m− 1).

40



2.5 Temporal Context

Object type
Experiment A B C D E F

1 100% 2.0%
2 0% 100% 2.8%
3 0% 100% 0.5%
4 1.5% 20.3%
5 0% 100% 0% 0%

Table 2.1: Informativeness of temporal context. Mutual information between predecessor
object and correct response of current object, as a percentage of 2 bits (mutual information
between object and correct response). See section 2.7 for details.

between recurring and one-time objects and expended comparable effort on both types

of objects.

2.5 Temporal Context

Object sequences were manipulated to create a more or less predictive ‘temporal con-

text’. The current object completely determined the correct response (1 of 4 possible

responses), corresponding to 2 bits of information. It is convenient to express the infor-

mation provided by objects of previous trials about the correct response in the current

trial as a percentage of 2 bit.

For example, the sequences in experiment 1 were either maximally deterministic

or maximally random. In the deterministic sequence, each object from an earlier trial

was just as informative about the correct response in the current trial as the current

object (100% information). In the random sequence, objects from earlier trials carried

no information about the correct response in current trials (2% information). The

informativeness of the temporal contexts used in different experiments is summarized in

table 2.1. The calculation of informativeness is described in the “Mutual information”

section 2.7.

In experiments 2 to 5, different temporal contexts were intermixed in the same

sequence. Some objects were consistently embedded in a highly informative context
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2.6 Sequences

(and other objects in a highly uninformative context). The types of temporal contexts

used can be conveniently classified into types A to F in the following manner.

Type A: Objects were preceded by a one-time object and followed by one particular

other recurring object (probability 100%). The temporal context provided by the

preceding object was 0% informative in experiments 2, 3, and 5.

Type B: Objects were preceded by one particular other recurring object (probability

100%) and followed by a one-time object. The temporal context provided by the

previous object was 100% informative (experiments 2, 3, and 5).

Type C: Objects were preceded (followed) by one-time objects (probability 50%) and

by each of several other recurring objects (cumulative probability 50%). On

average, the previous object was 2.8%, 0.5%, and 1.5% as informative as the

current object (experiments 2, 3, and 4).

Type D: Objects were preceded (followed) by one-time objects (probability 50%) and

by one particular other recurring object (probability 50%). On average, the

previous object was 20.3% as informative as the current object (experiment 4).

Type E: Objects were preceded by a one-time object and followed by each of four other

recurring objects (probability 25%). The previous object was 0% informative.

Type F: Objects were preceded by one of four other recurring objects (probability

25%) and followed a one-time object. On average, the previous object was 0%

informative.

2.6 Sequences

Experiment 1: Eight fractal objects appeared seven times each, in either a determin-

istic or a random sequence (Fig. 2.3). Deterministic sequences were characterized
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2.6 Sequences

by the fact that the number of occurrences of any pair of objects, consisting of an

arbitrary object and its predecessor (successor), was the same as the number of

occurrences of the objects that make up this pair, that is seven times. Similarly

determined pairs of objects in random sequences, however, appeared exactly once

each. Both types of sequence were 56 trials long.

Experiment 2: Thirty two fractal objects were used to create sequences of 72 trials

(Fig. 2.4). Eight of these objects were of the recurring kind. Four of the recurring

objects formed two consistent pairs (5, 6) and (7, 8), each of which appeared six

times in the sequence. The ‘predecessor’ objects (5 and 7) were termed type A

and the ‘successor’ objects (6 and 8) type B. Four additional recurring objects

were used to form twelve random pairs (1, 2), (1, 3), (1, 4) . . ., (4, 1), (4, 2), (4, 3),

each appearing once per sequence (type C). Random pairs and consistent pairs

were alternated and separated by 24 one-time objects to form sequences of 72

trials.

Experiment 3: 128 fractal objects, 16 of them recurring, were used to create se-

quences of 336 trials (Fig. 2.5). Eight recurring objects formed four consistent

pairs (9, 10), (11, 12), (13, 14), and (15, 16), each of which appeared fourteen times

in the sequence. The ‘predecessor’ objects (odd numbers) were termed type A

and the ‘successor’ objects (even numbers) type B. A type A object was always

preceded by an one-time object. A type B object was always followed by an

one-time object. Eight additional recurring objects were used to form 56 random

pairs (1, 2), (1, 3), . . ., (1, 7), . . ., (8, 1), (8, 2), . . ., (8, 7), each appearing once per

sequence. Random pairs and consistent pairs were alternated and separated by

112 one-time objects to form sequences of 336 trials.

Experiment 4: Fifty fractal objects, ten of them recurring, were used to create se-

quences of 120 trials (Fig. 2.6). Five recurring objects formed twenty random
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2.7 Mutual Information

pairs (1, 2), (1, 3), (1, 4), (1, 5). . ., (5, 1), (5, 2), (5, 3), (5, 4), each of which ap-

peared twice per sequence. Objects in such pairs were termed type C objects. As

before, a type C object was preceded (followed) by either another type C object or

by an one-time object. Further five recurring objects were used to form five con-

sistent pairs (6, 7), (7, 8), (8, 9), (9, 10), and (10, 6), each of which appeared eight

times in the sequence. In contrast to earlier experiments, each object occurred

in both the ‘predecessor’ and the ‘successor’ position. To mark this difference,

we termed these objects type D objects. Random pairs and consistent pairs were

alternated and separated by 40 one-time objects to form sequences of 120 trials.

Experiment 5: Eighty objects, sixteen of them recurring, were used to create se-

quences of 192 trials (Fig. 2.7). Eight recurring objects formed four consistent

pairs (9, 10), (11, 12), (13, 14), and (15, 16), each of which appeared eight times in

the sequence (type A and B). A further eight recurring objects were used to form

sixteen semi-consistent pairs (1, 5), (1, 6), (1, 7), (1, 8), . . ., (4, 5), (4, 6), (4, 7),

(4, 8), each of which appeared twice in the sequence. The ‘predecessor’ objects

were termed type E (1, 2, 3, 4) and the ‘successor’ objects were termed type F (5,

6, 7, 8). Despite being always a predecessor object, a type E object differed from

a type A object in that it did not have the same successor object. Analogously,

type F objects, being always successor objects, differed from type B objects in

that they never had the same predecessor object. Consistent and semi-consistent

pairs were alternated and separated by 64 one-time objects to form sequences of

192 trials.

2.7 Mutual Information

To convey information about the visual stimuli, reward values must be different for

different stimulus-response parings. Shannon entropy [127] is a measure of variability
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2.7 Mutual Information
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Figure 2.3: Deterministic and random sequences (experiment 1). Eight fractal objects ap-
peared in either deterministic or random sequences. Both types of sequences were 56 trials
long. A: deterministic sequences were defined by repeating a permutation of the eight objects
seven times. B: random sequences were obtained by making each target object precede (follow)
every other object exactly once (14% probability). Accordingly, target objects in both types
of sequences had the same number of appearances (seven times each). Yet they differed in
the number of trials between two successive appearances of the same target object (i.e. cyclic
order). Consequently, each target object in deterministic sequences recurred every eight tri-
als, whereas their counter parts in random sequences appeared every 3 to 14 trials. C and D
illustrate examples of a deterministic and a random sequence, respectively.
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Figure 2.4: Short mixed sequences with type A, B, and C objects (experiment 2). Eight
recurring objects (2 type A, 2 type B, and 4 type C) appeared six times each, intermixed with
24 one-time objects. A-B: four of the recurring objects were used to form two consistent pairs
(5, 6) and (7, 8), each of which appeared six times in the sequence. The ‘predecessor’ objects (5
and 7) were termed type A and the ‘successor’ objects (6 and 8) type B. A type A object was
always preceded by an one-time object. A type B object was always followed by an one-time
object. C: the remaining four recurring objects 1, 2, 3, and 4 were used to form twelve random
pairs (1, 2), (1, 3), (1, 4) . . ., (4, 1), (4, 2), (4, 3), each of which appeared exactly once per trial
sequence (type C). However, a type C object was preceded (followed) either by another type
C object or by an one-time object. D: random pairs and consistent pairs were alternated and
separated by 24 one-time objects to form sequences of 72 trials.
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Figure 2.5: Long mixed sequences with type A, B, and C objects (experiment 3). A-B: eight
recurring objects were used to form four consistent pairs (9, 10), (11, 12), (13, 14), and (15, 16),
each of which appeared fourteen times in the sequence. The ‘predecessor’ objects (odd numbers)
were termed type A and the ‘successor’ objects (even numbers) type B. A type A object was
always preceded by an one-time object. A type B object was always followed by an one-time
object. C: eight additional recurring objects were used to form 56 random pairs (1, 2), (1, 3),
. . ., (1, 7), . . ., (8, 1), (8, 2), . . ., (8, 7), each appearing once per sequence. Type C objects were
preceded (followed) either by type C objects or by one-time objects. D: random pairs and
consistent pairs were alternated and separated by 112 one-time objects to form sequences of
336 trials.
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Figure 2.6: Mixed sequences with type C and D objects (experiment 4). A: five recurring
objects were used to form twenty random pairs (1, 2), (1, 3), (1, 4), (1, 5). . ., (5, 1), (5, 2), (5,
3), (5, 4), each of which appeared twice per sequence. As before, these objects were termed
type C objects. A type C object was preceded (followed) by either another type C object or
by an one-time object. B: further five recurring objects were used to form five consistent pairs
(6, 7), (7, 8), (8, 9), (9, 10), and (10, 6), each of which appeared eight times in the sequence. In
contrast to earlier experiments, each object occurred in both the ‘predecessor’ and the ‘successor’
position. To mark this difference, we termed these objects type D objects. C: random pairs
and consistent pairs were alternated and separated by 40 one-time objects to form sequences
of 120 trials.
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Figure 2.7: Mixed sequences with type A, B, E, and F objects (experiment 5). A-B: eight
recurring objects were used to form four consistent pairs (9, 10), (11, 12), (13, 14), and (15, 16),
each of which appeared eight times in the sequence (type A and B). As before, type A objects
were always preceded by one-time objects, whereas type B objects were always followed by one-
times objects. C-D: further eight recurring objects were used to form sixteen semi-consistent
pairs (1, 5), (1, 6), (1, 7), (1, 8), . . ., (4, 5), (4, 6), (4, 7), (4, 8), each of which appeared twice
in the sequence. The ‘predecessor’ objects were termed type E (1, 2, 3, 4) and the ‘successor’
objects were termed type F (5, 6, 7, 8). E: consistent and semi-consistent pairs were alternated
and separated by 64 one-time objects to form sequences of 192 trials.
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2.7 Mutual Information

that, by itself, does not tell us anything about the source of this variability [31]. The

mutual information, however, measures how much the Shannon entropy of a random

variable is reduced when we know the realization of another random variable.

We quantified the informativeness of temporal contexts in terms of mutual infor-

mation. Assuming that responses are selected randomly (as is necessarily the case for

unfamiliar objects), we computed the Shannon entropy H of the joint distribution of

reward and motor response, conditional on the previous object

H = −
∑
(m,r)

p(rt,mt|st−1) log2 p(rt,mt|st−1) (2.1)

where p(rt,mt|st−1) is the joint probability of a reinforcement rt ∈ {0, 1} and a motor

response mt ∈ {1, 2, 3, 4}, given that a particular object st−1 occurred at the preceding

trial t− 1.

When temporal context is uninformative, a previous object does not restrict the set

of possible next objects. In this case, the reward probabilities associated with the four

responses are (1/4, 1/4, 1/4, 1/4). The full probability matrix for the joint occurrence

of a particular response and a particular motor response is then

 1/16 1/16 1/16 1/16

3/16 3/16 3/16 3/16


corresponding to an entropy of Hmax = 2.8113 bit. When temporal context is fully

informative, the presence of a previous object completely determines the next object.

In this case, the reward probabilities change to (1, 0, 0, 0) and the full probability matrix

becomes  1/4 0 0 0

0 1/4 1/4 1/4


with an entropy of Hmin = 2 bit. The mutual information between the current object
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2.7 Mutual Information

and the rewarded response is the difference between these values, or 0.8113 bit.

More generally, the informativeness of a previous object (trial t−1) about response-

reward realization in the current trial was computed according to

I =
Hmax −H
Hmax −Hmin

× 100% (2.2)

where the Hmax = 2.8113 bit and Hmin = 2 bit.

In the deterministic sequence of experiment 1, the previous object changes re-

ward probabilities to (1, 0, 0, 0) (H = 2 bit), whereas, in the variable sequence, the

previous object changes reward probabilities to (2/7, 2/7, 2/7, 1/7) (H = 2.7953 bit).

Accordingly, in deterministic and variable sequences the previous object provides, re-

spectively, 100% and 2.0% of the information that is provided by the current object.

Conditioning on the preceding object alters the reward probabilities for type A and

type B objects to (1/4, 1/4, 1/4, 1/4) and (1, 0, 0, 0), (entropy H = 2.8113 bit and

H = 2 bit) respectively. Accordingly, the temporal context of type A and type B

objects is 0% and 100%, respectively, as informative as the objects themselves. Condi-

tioning on the predecessors of type C objects alters the average reward probabilities to

(7/24, 7/24, 7/24, 3/8) in experiment 2 (H = 2.789 bit), to (15/56, 15/56, 15/56, 11/56)

in experiment 3 (H = 2.8075 bit), and to (9/32, 9/32, 9/32, 5/32) in experiment 4

(H = 2.7992 bit), resulting in 2.8%, 0.5%, and 1.5% informativeness. Conditioning

on the predecessors of type D objects in experiment 4 alters the average reward proba-

bility to (5/8, 1/8, 1/8, 1/8) with an entropy of H = 2.6463 bit. Thus, the predecessors

are 20.3% as informative as the objects themselves. The predecessors of type E and

type F objects in experiment 5 leave reward probabilities unchanged and thus are 0%

informative.
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Chapter 3

Behavioral Results

To ascertain whether temporal context influences the process of associative learning (or

not), we conducted five behavioral experiments. In all experiments, observers learned

to recognize and to classify fractal objects [91]. The objects were initially unfamiliar

but highly distinguishable. For each object, observers were asked to learn the ‘correct’

motor response (one of four) associated with this object. After the observer’s choice,

the response was identified as ‘correct’ or ‘incorrect’. Most objects recurred multiple

times during the session (‘recurring objects’), providing ample opportunity for learning

by trial and error. Some experiments also used ‘one-time objects’, which appeared only

once.

A trial consisted of the presentation of one object, the observer’s response to that

object, and reinforcement (Fig. 2.2 A). Trial sequences differed in length (56 to 336

trials) and in the number of recurring objects (8 to 16 objects), resulting in learning

situations of greatly varying difficulty. Each trial sequence used new and unfamiliar

objects, forcing observers to relearn the objects each time.

Pilot experiments established that human observers consistently approach ceiling

performance (P = 100% correct) if the trial sequence is sufficiently long. A conve-

nient performance measure is therefore the negative logarithm of the distance to ceiling
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3.1 Experiment 1

performance (− log2(1 − P )). In terms of this measure, performance improves almost

linearly with every object appearance (Fig. 3.1 A and Fig. 3.2).

The ‘correct’ response of each trial was determined completely by the object of that

trial, which thus provided 2 bits of information. However, the object of the preceding

trial was sometimes informative as well. This ‘temporal context’ information was re-

dundant and, except in experiment 1, observers appeared unaware of its availability.

When asked about their behavioral strategy, observers indicated consistently that they

had concentrated their efforts on the current object.

The informativeness of the object in the previous trial (about the correct response in

the current trial) was quantified as percentage of informativeness of the current object

(see section entitled “Mutual information” in Methods). Thus, the informativeness of

this temporal context ranged from 0% to 100% (Fig. 2.2 BC). Table 2.1 summarizes

the informativeness of the various temporal contexts employed in experiments 1 to 5.

The level of significance adopted for all the statistical comparisons reported here was

set at p < 0.05.

3.1 Experiment 1

Eight fractal objects appeared seven times each, in either a deterministic or a random

sequence (Fig. 2.3). Both types of sequence were 56 trials long. In deterministic

sequences, each object was preceded (followed) seven times (100% probability) by one

particular of the other seven objects. In random sequences, each object was preceded

(followed) once (14% probability) by each of the seven other objects. Accordingly, the

temporal context of deterministic and variable sequences was, respectively, 100% and

2% as informative about the correct response as the current object itself (see Tab. 2.1

and “Mutual information” in the Methods section).

Observers quickly understood the existence and nature of the two types of sequences
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3.1 Experiment 1

(even though the instructions had been silent on this point). Accordingly, it seemed

likely that observers applied a different learning strategy in each case. The average

results for 10 observers are presented in (Fig. 3.1). Post hoc t-tests revealed that

learning was significantly faster in deterministic than in variable sequences (t(239) =

2.3, p < 0.03), exhibiting initial learning rates of 0.13 bit and 0.04 bit per appearance,

respectively (average across subjects). While this difference may have been due to

the disparate temporal contexts, it could also have reflected differential allocation of

attentional and/or memory resources on the part of the observers.
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Figure 3.1: Behavioral results (experiment 1). A: average behavioral results for 10 human
observers performing on two types of 56 trials long deterministic and random sequences (Fig.
2.3). Error bars refer to the 95% confidence intervals (α = 0.05) for binomially distributed
data. Observers learned the correct motor responses for objects within deterministic sequences
(green curve) faster than those of objects that were presented in a random order (pink curve).
B: average reaction times as a function of the amount of informativeness of temporal context
(Tab. 2.1). Error bars show the standard deviation across experiments for each object type.
Beginning with the second appearance, reaction times in experiment 1 were significantly shorter
for fully predicted objects.
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3.2 Experiment 2

3.2 Experiment 2

To ascertain whether learning rate depends on the temporal context of individual ob-

jects, we created sequences that intermixed ‘recurrent objects’ with different temporal

contexts as well as ‘one-time objects’. In this situation, observers are less likely to

allocate differential attentional and/or memory resources to different object types.

Eight recurring objects appeared six times each, intermixed with 24 one-time ob-

jects, in sequences of 72 trials (Fig. 2.4 D). Each of two type A recurring objects

was preceded by a one-time object and followed consistently (100% probability) by one

particular other recurring object (type B). Each of two type B recurring objects was

consistently (100% probability) preceded by one particular other recurring object (type

A) and followed by a one-time object. Each of four type C recurring objects was pre-

ceded (followed) once (16.7% probability) by each of the three other recurring objects

(type C) and three times (50% probability) by a one-time object.

The temporal context of type A, B, or C objects was, respectively, 0%, 100%, and

2.8% as informative as the object itself (Tab. 2.1). The average results for 8 observers

are presented in (Fig. 3.2 A). Beginning with the second appearance, learning was

significantly faster for objects with more informative (type B) than with less informative

(type C, type A) temporal contexts (type B vs. type A: t(227) = 3.1, p < 0.01; type B

vs. type C: t(227) = 2.9, p < 0.01). The initial average rates of learning were 0.12 bit,

0.05 bit, and 0.03 bit per appearance for type B, C, and A objects, respectively.

3.3 Experiment 3

The previous experiment demonstrated that learning rate depended on the temporal

context of each object in a sequence. To ascertain whether this effect would persist

with a higher memory load, we conducted a similar experiment with 16 (rather than

8) recurring objects. To increase the sensitivity of the measurements, each recurring
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Figure 3.2: Behavioral results (experiments 2 to 5). Trial sequences were composed of ‘recur-
ring objects’ (types A-F) distinguished by their temporal context. Error bars refer to the 95%
confidence intervals (α = 0.05) for binomially distributed data. A: eight recurring objects (2
type A, 2 type B, and 4 type C) appeared six times each, intermixed with 24 one-time objects.
B: sixteen recurring objects (4 type A, 4 type B, and 8 type C) appeared 14 times each, inter-
mixed with 112 one-time objects. C: ten recurring objects (5 type C and 5 type D) appeared
eight times each, intermixed with 40 one-time objects. D: sixteen recurring objects (4 each of
types A, B, E, and F) appeared 8 times each, intermixed with 64 one-time objects.
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3.4 Experiment 4

object appeared 14 (rather than 6) times.

Sixteen recurring objects appeared 14 times each, intermixed with 112 one-time

objects, in sequences of 336 trials (Fig. 2.5 D). Each of four type A recurring objects

was preceded by a one-time object and followed consistently (100% probability) by

one particular other recurring object (type B). Each of four type B recurring objects

was consistently (100% probability) preceded by one particular other recurring object

(type A) and followed by a one-time object. Each of eight type C recurring objects was

preceded (followed) once (7% probability) by each of the seven other recurring objects

(type C) and seven times (50% probability) by a one-time object.

The temporal context of type A, B, or C objects was, respectively, 0%, 100%,

and 0.5% as informative as the current object (Tab. 2.1). The results of 5 observers

are summarized in (Fig. 3.2 B). Beginning with the fifth appearance, learning was

significantly faster for objects with more informative (type B) than with less informative

(type C, type A) temporal contexts (type B vs. type A: t(59) = 2.2, p < 0.04; type B

vs. type C: t(59) = 2.7, p < 0.01). The initial average rates of learning were 0.10 bit,

0.06 bit, and 0.05 bit per appearance for type B, C, and A objects, respectively.

3.4 Experiment 4

Previous experiments compared temporal contexts that were either maximally or min-

imally informative. In a further experiment, we compared temporal contexts with an

intermediate degree of informativeness. To this end, we presented each object in several

contexts, only some of which were informative.

Ten recurring objects appeared 8 times each, intermixed with 40 one-time objects, in

sequences of 120 trials (Fig. 2.6 C). Each of five type C recurring objects was preceded

(followed) once (12.5% probability) by each of the four other recurring objects (type C)

and four times (50% probability) by a one-time object. Each of five type D recurring
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3.5 Experiment 5

objects was preceded (followed) four times (50% probability) by one particular other

recurring object (type D) and four times by a one-time object.

The temporal context of a type C or D object was, respectively, 1.5% and 20.3% as

informative as the object itself (Tab. 2.1). Figure 3.2 C summarizes the results of 10

observers. Initial learning rates were comparable for type C and D objects (0.06 bit and

0.07 bit, respectively), although type D objects gained a modest advantage after further

appearances. Only at the eighth (last) appearance was there a significant difference

in learning between type D and type C objects (t(689) = 2.2, p < 0.03). The fact

that observers failed to learn type D objects more rapidly than type C objects suggests

that partially informative temporal contexts do not accelerate learning. Of course, it

remains possible that learning would be accelerated by temporal contexts that are, say,

75% informative (i.e., more than 20%, yet less than 100% informative).

3.5 Experiment 5

To allay any concern that observers might have allocated differential attention and/or

memory resources to different object types, we conducted one further experiment on

this point. Specifically, we presented recurrent objects in ordered pairs, some objects

serving consistently as first members and others consistently as second members of these

pairs. In some pairs (type A and type B objects), the first members were informative

about the second members whereas, in other pairs (type E and type F objects), the first

members were uninformative about the second members. If consistent object pairings

had attracted additional attention/memory resources to the second member of each

pairing, then this should have been true for both types of pairs, resulting in faster

learning of both type B and type F objects.

Sixteen recurring objects appeared 8 times each, intermixed with 64 one-time ob-

jects, in sequences of 192 trials (Fig. 2.7 E). Each of four type A objects was preceded
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3.6 One-Time Objects

by a one-time object and followed consistently (100% probability) by one particular

other recurring object (type B). Each of four type B objects was preceded consistently

(100% probability) by one particular other recurring object (type A) and followed by

a one-time object. Each of four type E objects was preceded by a one-time object

and followed twice (25% probability) by each of four other recurring objects (type F).

Each of four type F objects was preceded twice (25% probability) by each of four other

recurring objects (type E) and followed by a one-time object.

The temporal context of type A, B, E, or F objects was, respectively, 0%, 100%,

0%, and 0% as informative as the object itself. Figure 3.2 D summarizes the results of

5 observers. Beginning with the seventh appearance, learning was significantly faster

for objects with more informative (type B) than less informative (type A, type E, and

type F) temporal contexts (type B vs. type A: t(29) = 2.24, p < 0.04; type B vs. type

E: t(29) = 4.5, p < 0.001; type B vs. type F: t(29) = 2.8, p < 0.01). The initial average

rates of learning were 0.15 bit, 0.09 bit, 0.06 bit, and 0.09 bit per appearance for type B,

type A, type E, and type F objects, respectively. In short, only informative temporal

context led to faster learning. Merely presenting objects as consistent pairs (without the

first object being informative about the second) did not accelerate learning. This failure

shows conclusively that accelerated learning is due to informative temporal context, not

to additional attention/memory resources.

3.6 One-Time Objects

As learning progresses, observers tend to react faster to recurring objects, whether with

or without temporal context (Fig. 3.3). However, reaction times to one-time objects

remained consistently slow throughout the trial sequence, suggesting that observers do

try to learn (i.e., expend attentional and memory resources) even on one-time objects.

To assess the predictive value, if any, of one-time objects, we compared performance
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Figure 3.3: Average reaction times due to the various degrees of temporal context (Tab. 2.1).
Error bars show the standard deviation across experiments for each object type. A: beginning
with the third appearance, reaction times in experiment 2 were significantly shorter for fully
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3.7 Ideal-Learner-Like Performance

Object type
Experiment A B C D E F

1 59% 38%
2 35% 49% 39%
3 23% 30% 23%
4 12% 13%
5 34% 37% 33% 29%

Table 3.1: Ideal-learner-like performance. The listed values refer to the percentage proportion
of the number of blocks in which observers’ responses were correct from the fourth appearance
of a certain object to the last appearance of that object for each object type.

and reaction time for type C objects that followed a one-time-object and for (the

identical) type C objects that followed other type C objects (experiments 2, 3, and

4). We found no significant difference in either performance or reaction time patterns

between type C objects in these different contexts.

It remains possible that the (comparatively poor) performance on type A objects

may have benefitted from their consistent temporal association with one-time objects.

However, our sequences lacked a suitable control object so that we could not test this

possibility.

3.7 Ideal-Learner-Like Performance

Since learning in our task is achieved by trial and error, any learner who never makes

the same mistake twice would be an ideal learner. Drawing on this idea, we counted

for each object type the number of blocks in which observers performed like an ideal

learner in that they managed to respond correctly to each object from the fourth to the

last appearance of that object. Though absolute correct responses within this range

of trials conforms to an ideal learner’s performance, yet human observers might differ

from an ideal learner in the first three trials. For instance, a human observer could

repeat a mistake within the first three trials or he could simply make a wrong decision

after having responded correctly before. Yet in neither case can we be completely sure
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3.8 Summary

that the observer, indeed, failed to recognize the object, as the probability to press the

wrong button, i. e. make a bad decision, in the acquisition phase is higher than when

observers have already learned the correct object-response associations. Therefore, we

consider observers’ performance from the fourth appearance of each object and term

this as an ‘ideal-learner-like’ performance, if an observer continued to respond correctly

till the last appearance of the considered object. Table 3.1 summarizes the result of

this analysis.

3.8 Summary

An ‘ideal learner’ accumulates information about the correct response to a particular

object at an initial average rate of 0.5 bit per appearance (see below). Human observers

performed substantially less well, accumulating on average 0.09 and 0.07 bit during

the initial appearance of a recurrent object in experiments 1 and 2 (memory load 8

objects), 0.07 bit in experiment 4 (10 objects), and 0.07 and 0.1 bit in experiments 3

and 5 (16 objects). These values represent learning in the absence of any temporal

context provided by previous objects.

In the presence of temporal context, the accumulation of information was acceler-

ated by 0.13 bit during the initial appearance of objects embedded in a fully predictive

temporal context (Fig. 4.3 A).
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Chapter 4

Computational Results

4.1 Basic Model, Insensitive to Context

A simple model for our situation is that response probabilities are modified directly such

as to maximize expected reward. For each object n, four response probabilities p(n)
j ,

where j ∈ {1, · · · , 4} and
∑

j p
(n)
j = 1 must be learned. When object n is observed,

action k is selected, and reward rk ∈ {0, 1} is received, a suitable rule for updating

response probabilities is

p
(n)
j →


p
(n)
j + λ

(
δjk − p

(n)
j

)
: rk = 1

p
(n)
j − µ

(
δjk − p

(n)
k

)
p
(n)
j∑

j 6=k p
(n)
j

: rk = 0
(4.1)

where λ and µ are learning rates in the range of [0, 1] and δjk is the Kronecker delta

(which equals 1 if j = k and 0 if j 6= k). This rule ensures 0 ≤ p(n)
j ≤ 1 and

∑
j p

(n)
j = 1.

Choosing λ > µ makes learning faster in rewarded than in unrewarded trials. Choosing

the maximal rates λ = µ = 1 implements an ‘ideal learner’.

Note that this simple model ignores temporal context and focuses on the explicit

task (associating the current object with the rewarded choice). As a result, this model

does not predict any dependence of learning rate on temporal context and therefore
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4.2 Extended Model, Sensitive to Context

does not account for our behavioral results.

4.2 Extended Model, Sensitive to Context

We now introduce a more elaborate model that is sensitive to temporal context. We

choose an indirect actor model that responds probabilistically on the basis of reward

expectations. Figure 4.1 compares the model’s predictions with behavioral results by

human observers.

4.2.1 Probabilistic Response

The probability of choosing response k in trial t is

p
(t)
k =

exp
(
β q

(t)
k

)
∑

j exp
(
β q

(t)
j

) (4.2)

where q(t)k is the reward expected from response k in trial t. The parameter β determines

whether the model behaves in a more exploratory or a more exploitative manner. We

use β = 20.

4.2.2 Reward Expectation

Reward expectations are based on ‘action values’ that have accumulated for the objects

of the current trial, t, and the two previous trials, t − 1 and t − 2. Each object x is

associated with 12 action values m(x)
ij , where i indexes current, next, and after-next

trials (i ∈ {0, 1, 2}) and j indexes the response possibilities (j ∈ {1, · · · , 4}). In the

case of a familiar object, action values reflect past experience as to which responses

were rewarded and which unrewarded after the object in question had been observed.

In the case of unfamiliar objects, all action values are initialized to 0.

Specifically, if objects n′′, n′, and n appeared in trials t−2, t−1, and t, respectively,
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Figure 4.1: Behavioral and modeling results. A-E: for each of the experiments 1 to 5,
temporal context, behavioral performance, and predicted performance are shown (left,
middle, and right columns, respectively).
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4.2 Extended Model, Sensitive to Context

and if each object is recognized unambiguously, the reward expectation for response j

in trial t is

q
(t)
j = m

(n)
0j +m

(n′)
1j +m

(n′′)
2j (4.3)

combining action values of the current, the previous, and the before-previous objects.

Temporal context determines which action values are reinforced consistently and, thus,

which values come to indicate the correct response. In the absence of temporal context,

only the current object’s action values are reinforced consistently and thus become

indicative of the correct response (Fig. 4.2). Note that the model does not assume

any attenuation of past objects: current, previous, and before previous objects all

contribute equally to reward expectation.

4.2.3 Action Values

Action values are reinforced by a modified Rescorla-Wagner rule [118]. If a response

k receives a reward r
(t)
k in trial t, the prediction error is

δt = r
(t)
k − q

(t)
k (4.4)

and the three action values m(n)
0k ,m

(n′)
1k , and m(n′′)

2k associated with action k are modified

as follows:

m
(x)
ik → m

(x)
ik + ε α

(x)
t δt (4.5)

where x = n, n′, and n′′ when i = 0, 1, and 2 respectively, ε is the general learning

rate, and α(x)
t is the specific learning rate of object x ∈ {n, n′, n′′} in trial t (see below).

Action values associated with other actions j 6= k remain unchanged.
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Figure 4.2: Reinforcement of action values (schematic). Each object is associated with
12 action values. For the object in trial t, 4 action values inform the response of the
current trial t, 4 values concern the response of the next trial t+ 1, and the remaining
4 values contribute to the response of the second next trial t+ 2. Correspondingly, the
response of trial t is based on 12 actions values: 4 values of the current object t, 4 values
of the previous object t − 1, and 4 values of the pre-previous object t − 2. Temporal
context determines which action values are reinforced consistently. A: in the absence
of temporal context, only the current object’s action values are reinforced consistently
and come to reflect the correct choice. In this case, the decision in trial t is based on
4 action values of object t. B: in the presence of temporal context, both the current
and the previous object’s action values are reinforced consistently. Thus, the decision
in trial t is based on 4 action values of object t and 4 action values of object t− 1.
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4.2 Extended Model, Sensitive to Context

4.2.4 Recognition Parameter

Human observers sometimes fail to recognize an object they have seen before. To model

this confusion about object identity, we introduce a recognition parameter γ, 0 ≤ γ ≤ 1,

which parametrizes the extent to which an actual object is recognized as being present.

The value of γ affects learning in two ways. Firstly, it influences the reward expectation

by taking into account not only the objects actually present but also all other objects.

As a result, equation (4.3) becomes

q
(t)
j = M

(n)
0j +M

(n′)
1j +M

(n′′)
2j (4.6)

where M (x)
ij = γ m

(x)
ij + 1−γ

N−1

∑
y 6=xm

(y)
ij for i ∈ {0, 1, 2} and x ∈ {n, n′, n′′}. N is the

total number of objects. Secondly, γ < 1 removes some reinforcement from action

values of objects actually present and distributes the reinforcement over the action

values of all other objects. Accordingly, equation (4.5) modifies to

m
(y)
ik →


m

(y)
ik + ε α

(y)
t γ δt, : y = x

m
(y)
ik + ε α

(y)
t

1−γ
N−1 δt : y 6= x

(4.7)

where i ∈ {0, 1, 2} and x ∈ {n, n′, n′′}.

The recognition parameter γ is an admittedly crude way of modeling confusion

about object identity. In human observers, one might expect that recognition rates

increase with every appearance of a particular object. In our model, the value of γ

does not reflect this (hypothetical) improvement and remains constant throughout the

sequence.
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4.2.5 Specific Learning Rates

Another fundamental feature of learning that has been postulated by the Rescorla-

Wagner rule is the learning rate. It reflects the extent to which current knowledge

about the environment should be considered when the learner receives new information.

Despite its necessity in the learning process, whether in biological or artificial systems,

it has never been clear, how or why it changes [9, 41]. In general, several stimuli may be

associated with rewards [34]. As to reflect how reliably a particular object is associated

with the reward, we computed ‘specific’ learning rates using the Kalman-filter algorithm

[70] as proposed by Sutton [130].

Specifically, let x(t) be the augmented stimulus vector of trial t which comprises three

components for each object ni ∈ {n1, . . . , nN} (one component for each the current,

the previous, and the before-previous trial). The values of x(t) reflect the recognition

parameter and differ for present and absent objects in the following manner:

x
(t)
j =

 γ : ni present

1−γ
N−1 : ni absent

(4.8)

where j ∈ {1, . . . , 3N} and i = j mod N . The specific learning rate of object xi is

computed from

α
(xi)
t =

∑
i P

(t)
ij x

(t)
j

1 +
∑

i

∑
j x

(t)
i P

(t)
ij x

(t)
j

(4.9)

where P (t)
ij is a drift covariance matrix that is accumulated iteratively.

Sutton [130] evaluated several dynamic-learning-rate methods for the selection of

learning rates or gain parameters during learning of stochastic time-varying linear sys-

tems. He showed that the Kalman-filter, though requires prior knowledge for an es-

timate of the drift covariance matrix P , indeed performs optimally well in terms of

asymptotic error when compared with least-squares methods. However, in practice the

drift covariance matrix is never known exactly. Thus an approximation must be used.
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4.2 Extended Model, Sensitive to Context

In order to update the drift covariance matrix P (t), we used the same equation as

the one given in Sutton [130]:

P (t+1) = P (t) − P (t)xxTP (t)

1 + xTPx
+ I

where I is the identity matrix and x is the augmented stimulus vector. Once initialized

(P (0) = I), the drift covariance matrix P (t) is computed recursively and an iteration

takes place as follows:

1. AT = xTP = [
∑

i Pijxi]
T

2. B = Px =
∑

j Pijxj

3. C = xTPx = xTB =
∑

i

∑
j xiPijxj

4. α(t) = B(1 + C)−1

5. P (t+1) = P (t) −BAT (1 + C)−1

The superscript T in AT indicates the transpose of A and (·)−1 denotes the inverse

matrix, which is the reciprocal in case of numbers.

It is important to note that we could have passed on the specific learning rates,

as they barely contribute to a substantial improvement of the model’s performance in

the current situation. In fact, our simulations (not included here), in which identical

learning rates were used, instead of differential ones (like those obtained by the Kalman

filter) have shown that even in this case the model manages to capture the essence of

temporal context. Yet the reason why we chose to implement this part of the model

using ‘specific’ learning rates was to generalize this approach to non-stationary environ-
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4.3 Model Fitting

ments. Such environments are characterized by changing reward contingencies (reversal

learning), which yield a change in the informativeness of objects. The Kalman filter

approach specifies how the uncertainty accompanying predictions about the informa-

tiveness of the various objects change over time. Compared to the identical-learning-

rates-approach it provides a better solution in that it adjusts the speed of learning

according to the uncertainty of the prediction. This ‘competitive’ allocation of learn-

ing between the objects according to their uncertainties imply that certain predictions

change more slowly, whereas comparatively uncertain predictions more quickly [34].

4.3 Model Fitting

In both basic and extended models, response choices depend on ‘action values’ that

are learned by reinforcement. The basic model, in which action values are associated

exclusively with the current object, ignores temporal context in choosing the current

response. As a result, the basic model does not account for the sensitivity to temporal

context exhibited by human observers. Nevertheless, the basic model provides a useful

benchmark to which human performance can be compared.

With learning rates set to their maximal values of λ = µ = 1, the basic model

implements an ‘ideal learner’. Its average performance increases from 25% correct on

the first appearance of an object, to 50%, 75%, and 100% correct on the second, third,

and fourth appearance of the object. The combined entropy of response and reward

falls from 2.81 bit on the first appearance, to 2.16 bit, 1.41 bit, and 0 bit on the second,

third, and fourth appearances, respectively.

In the extended model, action choices are influenced equally by three objects: the

current, the previous, and the one preceding the previous object. In addition to this

sensitivity to temporal context, the extended model also allows for probabilistic object

recognition and employs differental learning rates that depend on the reliability of a
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reward-association [130].

The extended model has two free parameters, namely, the general learning rate ε

and the recognition parameter γ (Eqn. 4.7). The parameter β did not materially affect

the results and its value was kept equal to β = 20 throughout (Eqn. 4.2).

The extended model was fit to the behavioral results in the ranges of 0 ≤ ε ≤ 1

and 0.25 ≤ γ ≤ 0.9 (Fig. 4.3). The results of experiment 1 are consistent with a

comparatively rapid learning rate of ε ≈ 0.48 and a near-perfect recognition probability

of γ ≈ 0.9 (Fig. 4.3 B). Apparently, the simple sequence structure facilitated object

recognition.

The results of experiments 2, 4, and 5 are consistent with somewhat lower learn-

ing rates and reduced recognition probabilities in the range of γ = 0.5 to 0.9 (Figs.

4.3 CEF). The learning rates appear to decrease with increasing object number, with

ε ≈ 0.25 in experiment 2 (8 recurring objects and 24 one-time objects), ε ≈ 0.16 in

experiment 4 (10 recurring objects, 40 one-time objects), and ε ≈ 0.15 in experiment 5

(16 recurring objects, 64 one-time objects). Presumably, learning rates decrease as

limited memory capacity is spread ‘more thinly’ over a larger number of objects.

At first glance, a second set of parameter values (ε ≈ 0.5 and γ ≈ 0.25) accounts

comparably well (and sometimes even better) for the experimental results (Figs. 4.3

DF). However, a closer look reveals that this ‘second’ fit results from an intrinsic sym-

metry of the model: the overall learning rate is proportional to the product of ε and γ

and thus may be matched equally well by (ε, γ) ≈ (0.25, 0.5) and by (ε, γ) ≈ (0.5, 0.25).

In addition, low values of γ erode the recognition probability and thus provide an in-

direct way of adjusting the degree of context dependence. If one introduces a further

parameter to modify the relative weights of current and previous objects, comparably

good fits are obtained with high values of γ (results not shown).

Finally, the results of experiment 3 are consistent with a learning rate of ε ≈ 0.14

and a wide range of recognition probabilities γ, with the best fit obtained for γ ≈ 0.75.
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Figure 4.3: Actual learning rates and estimated parameters. A: acceleration of learning
during the initial appearance of objects due to different degrees of temporal context.
In the presence of a fully predictive temporal context, the accumulation of information
was accelerated by 0.13 bit. Error bars show the standard deviation across experiments
for each object type. Plots B-F show regions of optimal values in the parameter space
(ε, γ), corresponding to the general learning rate and the recognition parameter, respec-
tively. The color scales to the right of each plot refer to the fit quality fQ for each pa-
rameter pair (ε, γ), which was computed as fQ = − log

(∑n
i (µHi − µMi)

2/(σ2
Hi

+ σ2
Mi

)
)
,

where µHi and µMi are the mean values of performance correct in the i-th appearance
for human observers and for the model simulations, respectively, and σHi and σMi are
the corresponding standard deviations. The higher the fQ values, the better the fit
between measured and predicted data.
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4.3 Model Fitting

The comparatively low value of ε reflects the memory load, which was highest in this

experiment (16 recurring and 112 one-time objects).
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Chapter 5

Discussion

5.1 Temporal Context Accelerates Associative Learning

We have compounded the learning of multiple visual-motor associations in various

sequential orders. In every trial, the rewarded response was fully predicted by a visible

visual object. Additionally, however, the rewarded response was predicted to varying

degrees by the visual objects of previous trials. Five experiments showed consistently

that learning is accelerated when objects of previous trials provide a predictive temporal

context.

In the first experiment, the trial sequence separated object-response-pairs with and

without temporal context into distinct blocks, so that the difference was evident to

observers. Reaction times were significantly shorter for objects with temporal context

than for objects without temporal context, indicating that observers might have ap-

plied differential cognitive strategies. In the second experiment (and all others), trials

with and without temporal context were intermixed, so that the difference remained

concealed from observers. Reaction time patterns showed no evidence that observers

allocated attentional/memory resources differentially to trials with and without tem-

poral context. The third experiment raised task difficulty by doubling the number
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5.1 Temporal Context Accelerates Associative Learning

of visual objects (from 8 to 16), but confirmed the basic result: object-response-pairs

with temporal context are learned faster than pairs without such context. In the fourth

experiment, a partially predictive (20.3%) temporal context failed to accelerate asso-

ciative learning. In the fifth and last experiment, the objects in successive trials formed

ordered pairs, some predictive and others not. Only predictive pairings accelerated

learning.

A number of previous studies have manipulated temporal context that (i) was

irrelevant to the overt behavioral task and (ii) remained concealed from the observer.

Typically, temporal context is altered by repeating a given set of trials in either fixed

or random order.

In serial reaction time tasks [99], human observers respond as rapidly as possible to

the locations of successive visual targets. After training, reaction times are faster when

the target locations follow a repeating rather than a random pattern, which is taken as

evidence of ‘sequence learning’ [27, 28, 116, 141]. Importantly, observers do not have

to be aware of the repeating sequence in order to benefit from it [36].

In serial button press tasks [62], non-human primates are presented with pairs of

visual targets and learn to press two corresponding buttons in a particular order. Both

within and between daily sessions, learning is facilitated when target pairs follow each

other in a repeating rather than reversed or random order [98, 115]. However, the

animals do not seem to acquire choice responses for individual target pairs but rather

motor sequences for ‘hyper-sets’ of several successive pairs [63, 115].

In visual search tasks, human observers locate a single target (which is identified by

certain distinguishing characteristics) among multiple distractors. Search performance

benefits from the ‘spatial context’ that is provided by recurring distractor configu-

rations [24]. Interestingly, observers are unaware of the repeating configuration and

contextual learning depends on an intact hippocampus [23, 25, 26]. Similar benefits

accrue from the ‘temporal context’ created when a fixed sequence of target locations is
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5.1 Temporal Context Accelerates Associative Learning

used in successive trials [66, 101]. This temporal effect is also implicit and appears to

be mediated by visual selective attention, in that observers learn to shift attention to

the next target location predicted by contextual information.

Finally, when different visual threshold discriminations (e.g., contrast, motion-

direction) are compounded, visual learning accelerates significantly if different displays

appear in a fixed (rather than random) temporal sequence [79]. It has been proposed

that predictive temporal context may facilitate the activation of an appropriate visual

template for each trial [147].

The present study differed from previous investigations in a number of ways. Firstly,

it forced observers to become familiar with a number of initially unfamiliar fractal

patterns. This emphasis on visual recognition was modeled on paradigms developed

for behaving non-human primates [91, 106, 145].

Secondly, we ensured that observers associated individual fractal patterns with par-

ticular responses and foiled alternative strategies such as acquiring motor sequences

that span several successive trials. We achieved this by keeping consistent sequences

short (two trials in most experiments) and by intermixing trials with different temporal

contexts. This sets our situation apart from serial reaction time [99] or serial button

press tasks [62].

Thirdly, observers were able to attend fully to the sole visual object presented on

each trial. This stands in contradistinction to visual search paradigms, where train-

ing improves performance mainly through the anticipatory guidance of visual selective

attention [66, 67, 147].

Attractor network models of associative learning [2, 64] are typically tested with

electrophysiological recordings from behaving non-human primates [50, 51, 84, 133,

136]. However, behavioral observations from human observers can also furnish useful

evidence, at least with respect to the more qualitative predictions of these theories. For

example, behavioral experiments with sequences of self-similar images suggest that ini-
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5.2 Comparison with Ideal Learner

tially distinct classes of objects in associative memory become merged when exemplars

of the two classes are repeatedly presented in the same temporal order [112, 137]. This

confirms the qualitative prediction that events occurring consistently in the same tem-

poral order are eventually subsumed under one and the same event class in associative

memory [3, 12, 20, 57, 113].

We have presented behavioral evidence that is consistent with another qualitative

prediction of attractor network models, namely, the persistent representation of past

events (‘delay activity’). Patterning our behavioral situation on established paradigms

of conditional associative learning, we have demonstrated that the presence of consistent

temporal context significantly improves choice performance. This finding implies that

not just the representation of a current event, but also the representations of past

events, are reinforced during conditional associative learning.

5.2 Comparison with Ideal Learner

An ideal learner is someone who has full knowledge of the structure of reward contin-

gencies and who narrows the remaining possibilities down as quickly as possible. In

our paradigm, the knowledge that each visual object deterministically predicts the re-

warded action would allow an ideal learner to identify the correct action for each object

after three appearances of this object.

In focusing on the current object, the ideal learner is oblivious to temporal context.

While this is no disadvantage in our paradigm, it could easily develop into one in other

situations. For example, consider a situation in which the current object predicts the

correct action probabilistically, that is, with a probability of less than unity. In this

case, it would be less than ideal to focus exclusively on the current object. Hence,

an ideal learner would be open to the possibility that preceding objects may also be

predictive. This kind of more ‘open minded’ ideal learner is realized by our model. The
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5.3 Reinforcement Learning

downside is, of course, that this type of ideal learner is vulnerable to ‘false positives’,

that is, to accidental configurations that are repeatedly associated with reward, without

being causally predictive of the reward. An interesting extension of our work would

be to compare the relative costs and benefits of considering more and more events as

potentially predictive of reward.

In the presence of temporal context, human observers become more like an ideal

learner only in the sense that beginning with the fourth appearance of some objects,

observers never make a mistake associating these objects with their correct motor re-

sponses (see section 3.7). How does temporal context bring performance closer to that

of an ideal learner? Does temporal context improve object recognition, for example

through the anticipatory guidance of attentional and/or memory resources? Or does

temporal context improve reward prediction, for example by cumulating predictive cues

in the manner predicted by our model? Though interesting, these questions, unfortu-

nately, cannot be settled on the basis of our observations. However, if the guidance of

attentional/memory resources is crucial, then one would expect that improved recog-

nition of some objects comes at the expense of other objects. In other words, when the

attentional/memory load is increased (as was the case in going from experiment 2 to

experiment 3), the benefit of temporal context should be diluted. Yet the behavioral

results do not bear out this prediction: in both experiments, objects with temporal

context (type B) enjoyed a similar advantage over objects without temporal context

(types A and C). This observation suggests that the effect of temporal context does

not depend on the redistribution of limited resources.

5.3 Reinforcement Learning

Our behavioral results are quantitatively consistent with a form of model-free reinforce-

ment learning [33, 132]. In this approach, response choice is probabilistic, but reflects
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5.3 Reinforcement Learning

reward expectations, which are being accumulated in the form of ‘action values’. The

reinforcement rule increments (decrements) these ‘action values’ when a chosen response

receives more (less) reward than expected. The key feature is that response choice is

influenced by multiple ‘action values’, some attaching to the object of the current trial

and others attaching to objects of preceding trials (Fig. 4.2). Their effect is cumulative

in the sense that the more ‘action values’ favor a particular response, the more likely

this response is chosen. Accordingly, when successive objects appear in a consistent

order, more than one ‘action value’ will favor the correct response, which will therefore

be chosen more frequently.

The model accounts qualitatively and quantitatively for our behavioral observations,

provided suitable values are chosen for learning rate ε and recognition parameter γ. The

value of ε decreases as the number of fractal objects increases. The value is smaller

than unity, which implies that observers concurrently acquire only a subset of stimulus-

response pairings. Overall, the values of ε are consistent with the possibility that two to

three pairings are being formed concurrently (i.e., at the ideal learner rate), while the

remaining pairings are being ignored. The value of γ also decreases with the number

of fractal objects, consistent with growing uncertainty about object identity.

In the present series of experiments, the task set remained stable in the sense that

the same stimulus-response pairings were rewarded throughout each trial sequence.

However, stable task sets pose only a weak test of the model and its underlying as-

sumptions. Far stronger tests can be devised with experimental designs that vary

the task sets (e.g., task reversal). To illustrate this point, we outline a hypothetical

experiment with variable task set:

Consider trials t−2, t−1 and t with stimuli St−2, St−1, St and trial t with response

Rt. While the overt task is to acquire the pairing St → Rt, the model additionally

reinforces the pairings St−2 → Rt and St−1 → Rt (Fig. 6.1). How will the model

perform when either stimulus St is replaced by S′t or response Rt is replaced by R′t? In
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5.3 Reinforcement Learning

the former case, two out of three pairings remain valid (St−2 → Rt and St−1 → Rt), so

that predicted performance remains above chance level. In the latter case, however, all

pairings become invalid and predicted performance falls below chance level. Accord-

ingly, this hypothetical experiment would test the model’s key assumption, namely, the

reinforcement of pairings between past stimuli and present response (St−2 → Rt and

St−1 → Rt).

As a preliminary test of this prediction, we have conducted a pilot study [61], in

which the order of events was disrupted by replacing either an individual visual object

(‘object reversal’), or an individual rewarded action (‘action reversal’), or both of them

(‘combined reversal’) in an otherwise unchanged trial sequence. The results of this

study are included in Appendix A (Figs. 6.2 and 6.3). Although preliminary, the

results of this study suggest that all kind of reversal reduces performance to chance

level. In other words, the results of this pilot study fail to bear out the predicted

difference between ‘action reversals’ and ‘object reversals’.

There are several ways in which a reinforcement model could be extended in order

to accommodate the additional observations just described. For example, the number

of ‘action values’ could be increased combinatorially, so that reinforcement applies not

just to the pairing of a stimulus St−i, with i = 0, 1, 2, and a response Rt, but also to

the triplet of past stimulus St−i, with i = 1, 2, current stimulus St, and a response Rt.

This would capture the intuition that the influence of accumulated experience on the

response probability is conditioned on the particular context provided by the current

object St. If this object is missing, past experience does not apply and cannot guide

the response.

Though feasible, this approach suffers from evident drawbacks. Firstly, the combi-

natorial increase of action values would lengthen training and slow the pace of learning.

This follows from the scaling property of reinforcement learning, which holds that the

time required to optimize behavior scales proportionately with the set size of both
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5.4 Models in the Attractor Framework

environmental states and available actions [8, 14, 40, 72, 80, 81, 129]. Secondly, if

performance suffers during the initial learning phase, it suffers even worse during the

re-learning phase that follows a reversal. For during this phase a large number of ‘ac-

tion values’ first have to be un-learned (as they have been rendered inappropriately by

the reversal) before a large number of other ‘action values’ can be re-learned.

These considerations point to a fundamental problem of reinforcement framework:

although context specificity is helpful to behavioral performance in stationary environ-

ments, it is detrimental to flexibility in non-stationary environments.

5.4 Models in the Attractor Framework

It is widely accepted that reinforcement mechanisms are optimal only if there is a pre-

defined set of distinct states that are predictive of reward [29, 33, 42, 100, 132]. Thus,

reinforcement models beg the question as to which events or combinations of events

could potentially predict reward in a non-stationary environment. This brings us to

the crucial question as to how our brain selects and creates neural representations for

potentially reward-predicting events. An interesting approach to this question is the at-

tractor framework, which postulates that the formation of such representations is based

on temporal statistics of the environment. The key idea is that mental representations

are realized by stable patterns of reverberating activity, which are stable steady-states

(‘attractors’) in the neural dynamics of the network [2, 3, 50, 64].

A recent study of behavioral flexibility in reversal situations exemplifies the at-

tractor framework [51, 120]. The authors of this study postulate two neural circuits,

one for learning reward-relevant conditional associations (‘associative network’) and

another for observing temporal contingencies (‘context network’). The interaction be-

tween these two networks leads to the formation of distinct neural representations for

different contexts. More specifically, the associative network comprises two populations
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5.4 Models in the Attractor Framework

of excitatory neurons, which represent alternative stimulus-response associations. One

population represents the stimulus-response associations appropriate for one context,

whereas the other population codes the appropriate associations for another context.

The two excitatory populations compete through a third, inhibitory population. As

long as the reward predictions of one population are fulfilled, the currently dominant

population will continue to suppress the other population, and new stimuli will be evalu-

ated in the light of the experience encoded in the dominant population. However, when

predicted rewards fail to materialize, the other population may gain ascendancy and

behavior may now be governed by the experience accumulated in another, alternative

context.

So how can a representation of context be formed, which can link all the stimulus-

response associations that are rewarded in a particular context? The key idea is

that different stimulus-response associations become linked on the basis of temporal

statistics. Specifically, as long as one context holds for much longer than one trial,

stimulus-response associations within this context follow each other more frequently

than stimulus-response associations in different contexts. This correlational difference

can be translated by Hebbian mechanisms into selective meta-associations between the

stimulus-response associations of a given context. Mechanistically, the formation of

these meta-associations relies on the temporal overlap between the representation of a

current stimulus-response association and lingering representations of stimulus-response

associations in the recent past. Further details can be found in Rigotti et al. [120].

Although most attempts to test the attractor framework experimentally have used

single-unit recordings in behaving, non-human primates, we believe that this framework

makes some predictions even at the behavioral level. For example, the neurophysiolog-

ical findings of Miyashita [91] and Yakovlev et al. [145] imply that reverberative delay

activity exists only after an attractor representation has formed. In the context of our

paradigm, this suggests that lingering representations of past events are available only
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5.5 Cyclic Order: Another Kind of Temporal Information

after these past events have become familiar. On this basis, we would expect that the

presence of consistent predecessor objects becomes influential only after these objects

have become familiar and are recognized. Accordingly, it would be an interesting exten-

sion of the present study to examine whether the facilitative effect of temporal context

is conditional on correct performance with regard to predecessor objects.

5.5 Cyclic Order: Another Kind of Temporal Information

In the experiments presented here, observers experienced sequences of visual objects

and motor responses which exhibited different kinds of temporal structure. One type

of temporal structure, which we controlled and analyzed explicitly, was temporal cor-

relations between objects and their immediate predecessors. Another type of temporal

structure was the interval between two successive appearances of the same object. This

second type of temporal structure, which we did not manipulate systematically, can be

termed ‘cyclic order’. Note that both types of temporal structure are inter-dependent.

When an object has a consistent predecessor, this implies that both object and prede-

cessor re-appear after the same interval and thus have the same distribution of cyclic

orders.

Standard associative analysis of Pavlovian conditioning has focused on the forma-

tion of a predictive relation between the conditioned stimulus (CS) and the uncondi-

tioned stimulus (US) rather than on appropriate timing [54]. In one common paradigm

of Pavlovian conditioning, the onset of a tone (CS) was designed to predict a weak elec-

tric shock (US) to the skin surrounding the eye of a rabbit, which in turn caused the

rabbit to make an eye blink. In addition to the well-established finding that conditioning

makes the rabbit now blink to the tone onset, it has been observed that the time period

between the tone onset and the learned blink approximately equals the latency between

the tone onset and the shock, termed as the CS-US interval [54, 73, 74, 139, 140].
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5.5 Cyclic Order: Another Kind of Temporal Information

Moreover, the ratio between the CS-US interval and the interval between two succes-

sive shocks, termed as US-US interval, determines how fast the association between the

tone onset and the eye blink of the rabbit forms [53]. Another common paradigm of

Pavlovian conditioning establishes that a pigeon receives, but only sometimes, a reward

(e.g. grain) through pecking an illuminated key on the wall. Hence, the pigeon keeps

on pecking whether it got a reward or not. Yet, when the time between successive

appearances of the reward is fixed, pigeons stop pecking immediately after the last

appearance of reward and they wait approximately half the fixed interval before they

begin to peck again [37].

As these examples show, animals are able to learn the time interval between two

events and benefit when this time interval remains fixed. With respect to our work,

the cyclic order of a visual object can be seen as time intervals. Fixing the cyclic

order of a specific object provides more information as to when this object will recur.

Conceivably, this regular recurrence may contribute to accelerated learning. In short,

the appearance of an object is predicted both by cyclic order and by episodic context.

In our current paradigm, observers managed to learn fully predicted objects on

the basis of episodic context. However, reversal situations impose additional source

of uncertainty, regarding learning rates (before and after reversal) and the reliability

of temporal information. An fMRI study showed that human subjects adjust their

learning rates according to the volatility of the environment [9]. Which kind of temporal

information is most likely to be exploited in situations with multiple ‘regularly-spaced’

reversals? Could observers in such scenarios learn to predict context on the basis of the

cyclic order of reversals? If so, this would be a different mechanism than that suggested

by the attractor framework. However, further work is needed, in order to clarify this

point.
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5.6 Generalizing Experience in the Reinforcement and

Attractor Frameworks

Standing at the heart of RL theory, the Rescorla & Wagner [118] model postulates

that learning is driven by the discrepancy between what is expected and what actually

transpires. It is evident that animals (and humans) are able to generalize previous

experience and to derive some expectations even for novel settings. This has been

investigated in different species, for example, rats [96], birds (European starlings) [55],

non-human primates [102], and humans [87].

Reinforcement models do not explain how experience can be generalized and trans-

ferred from a familiar context, where it was acquired, to an unfamiliar context, where

it may neverthless prove helpful [33]. This question is one of the most difficult prob-

lems in learning theory [54, 77, 111]. The attractor framework, however, does offer

at least some rudimentary account for generalization. First, the pattern-completion

property (section 1.3.1) of attractor states already provides a foundation for a (very

limited) degree of generalization [3, 145]. Second, and more important, the possibility

of linking stimulus-response assocations into context-specific meta-associations (section

5.4) serves not only behavioral flexibility but also offers a way of activating experience

acquired in one context in another, unfamiliar context [51, 120].
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Chapter 6

Conclusions

Studying temporal context effects with human observers poses a number of difficulties.

Humans are particularly adept at developing cognitive strategies that allocate neural

resources in a task-dependent manner. In general, it cannot be assumed that human

observers will apply the same neural resources to different task situations. To compare

different task situations in a meaningful way, a stable allocation of resources must

therefore be assured.

The present study undertook several measures to this end. Attentional allocation

was stabilized by presenting only one visual object on each trial. The presence of tem-

poral context was concealed by intermixing recurring objects with context, recurring

objects without context, and one-time-objects. In addition, trial sequences were ter-

minated before the existence of different object types could become apparent to the

observer. We believe accordingly that we have developed a promising approach to

studying temporal context effects with human observers.

Our results imply that not just the representation of a current event, but also the

representations of past events, are reinforced during conditional associative learning. In

addition, these findings are broadly consistent with the prediction of attractor network

models of associative learning and their prophecy of a persistent representation of past

objects.
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Appendix: reversal learning

Reversal learning is a widely used approach to study context-dependent learning effects.

In such a paradigm, the context is manipulated (by the experimenter), in order to

discern control strategies [29]. This can be achieved either by changing the meaning

of contextual cues [4] or as a result of modifications in the motivational state of the

subject [5, 6, 32]. In a typical reversal learning paradigm, subjects learn to associate

different stimuli with their corresponding motor responses on the basis of changing

reward characteristics. The learning process comprises two phases: the learning and

the re-learning phase. At the beginning, a given stimulus S evokes a reward only if

associated with a specific motor response R (learning phase). However, at some point,

reward contingencies change in such a way that the same stimulus S now asks for a

different motor response R′ (re-learning phase). Importantly, the timing and nature

of reversals are not known to the observer. After the reversal, observers will receive a

reward only if they unlearn the old and relearn the new associations.

In our experiments, both visual objects and rewarded motor actions followed a

consistent temporal order. Accordingly, it was not possible to dissociate the relative

importance of the episodic context provided by preceding objects and that provided by

preceding motor actions. As a first step towards resolving this ambiguity, we conducted

a pilot experiment in which the sequence of events was modified once.

As before, we created sequences in which different types of objects (type A, type B,

type C) recurred 12 times each (see experiment 2 in the “Methods” chapter). One or
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two objects were selected for reversal. On the 7th to 12th recurrence of these object,

we either altered the rewarded response (‘action reversal’), or exchanged two objects

for each other or for novel objects (‘object reversal’), or both (‘combined reversal’). As

the findings of this pilot study remain preliminary, we have not described them in full.

With this qualification, we can briefly summarize the results as follows:

1. Contrary to the predictions of our reinforcement model, any type of reversal

reduced performance to chance level. (Fig. 6.2).

2. The rate of recovery seemed to differ between reversal types, appearing to be

faster for an ‘object reversal’ than for an ‘action’ or ‘combined reversal’. (Figs.

6.2 and 6.3).

3. Compounding an ‘object reversal’ with a second reversal on the preceding trial

also suggested that different types of temporal context are not of equal impor-

tance: the rate of recovery appeared to be faster when the preceding motor

response, rather than the preceding visual object, was retained (Fig. 6.3 B).

Taken together, these preliminary findings may suggest that episodic contexts formed

by both sensory and motor events facilitate associative learning, but that at least in

our paradigm the dominant factor may be the context constituted by rewarded motor

actions.
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Figure 6.1: Model’s predictions for ‘action’ and ‘object’ reversals (schematic). Let St−2 and
St−1 be the visual stimuli presented at trials t − 2 and t − 1, respectively. St is the target
stimulus at trial t with motor response Rt. A: learned response Rt for the target stimulus is
replaced by response R′t in the second run of the object sequence (‘action reversal’). Before
reversal, the model reinforces, in addition to the paring (St → Rt), the pairings (St−1 → Rt)
and (St−2 → Rt). After reversal, however, these pairings become invalid, as the model has to
learn the new response R′t. Hence, the model’s performance is expected to fall to chance level.
B: target stimulus St is replaced by stimulus S′t, which has the same response as that of St.
Before reversal, the model reinforces the pairings (St → Rt), (St−1 → Rt), and (St−2 → Rt).
These pairings remain valid after reversal. Hence, predicted performance remains above chance
level. Simulation results are plotted in (Fig. 6.2).
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Figure 6.2: Behavioral and modeling results for ‘action’ and ‘object’ reversals with the same
objects. Thirty two objects were used to create sequences of 144 trials. Eight of these objects
were of the recurring kind and the rest were one-time objects. Each of the recurring objects
appeared 12 times along the whole trial sequence (see experiment 2 in Methods and Fig. 6.1).
No novel objects were included. Subplots A and B show behavioral and modeling results,
respectively, for ‘action reversal’. Behavioral and modeling results for ‘object reversal’ are
plotted in C and D, respectively.
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Figure 6.3: Behavioral results for reversals with novel objects. In all experiments, type B
objects were replaced by novel objects after reversal. A: ‘combined reversal’: some of the new
type B objects had the same responses as their ancestors (B-SR), whereas others not (B-RR).
B: another ‘combined reversal’: response was reversed for some of the predicting type A objects.
Consequently, there were four categories of objects: type A objects with reversed response (A-
RR), type A with the same response (A-SR), a novel type B object whose predictor’s response
was reversed (B-RA), and a novel type B object whose predictor’s response remained the same
(B-SA). C: ‘object reversal’: some of type A objects were replaced by novel objects in the
second one, while having the same response as their ancestors. As a result, there were four
categories of objects: remaining type A objects (A-SO), novel type A objects (A-RO), novel
type B objects with novel predictors (B-RA), and novel type B objects with their predictors
unchanged (B-SA).
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Selbständigkeitserklärung
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Weiterhin erkläre ich, dass ich weder diese noch eine andere Arbeit zur Erlangung
des akademischen Grades doctor rerum naturalium (Dr. rer. nat.) an anderen Einrich-
tungen eingereicht habe.

Magdeburg, den 25.01.2011

108


	Nomenclature
	1 Introduction
	1.1 Context-Dependent Learning
	1.1.1 The Temporal Context Hypothesis
	1.1.2 Conditional Associative Learning: the Paradigm
	1.1.3 Conditional Associative Learning and the Brain

	1.2 Lingering Representation of Past Events
	1.2.1 Temporal Order Effects with Non-Human Primates
	1.2.2 Behavioral Tests with Human Observers

	1.3 The Attractor Framework
	1.3.1 Pattern-Completion and Noise-Insensitivty
	1.3.2 Linking Events in Temporal Order

	1.4 Reinforcement Learning
	1.4.1 Background and Inception
	1.4.2 Markov Decision Processes
	1.4.3 Model-Free and Model-Based RL
	1.4.4 The Rescorla-Wagner Model
	1.4.5 Temporal Difference Learning
	1.4.6 Temporal Difference and Temporal Order

	1.5 Aims of the Present Work

	2 Methods
	2.1 Observers
	2.2 Apparatus and Stimuli
	2.3 Task
	2.4 Procedure
	2.5 Temporal Context
	2.6 Sequences
	2.7 Mutual Information

	3 Behavioral Results
	3.1 Experiment 1
	3.2 Experiment 2
	3.3 Experiment 3
	3.4 Experiment 4
	3.5 Experiment 5
	3.6 One-Time Objects
	3.7 Ideal-Learner-Like Performance
	3.8 Summary

	4 Computational Results
	4.1 Basic Model, Insensitive to Context
	4.2 Extended Model, Sensitive to Context
	4.2.1 Probabilistic Response
	4.2.2 Reward Expectation
	4.2.3 Action Values
	4.2.4 Recognition Parameter
	4.2.5 Specific Learning Rates

	4.3 Model Fitting

	5 Discussion
	5.1 Temporal Context Accelerates Associative Learning
	5.2 Comparison with Ideal Learner
	5.3 Reinforcement Learning
	5.4 Models in the Attractor Framework
	5.5 Cyclic Order: Another Kind of Temporal Information
	5.6 Generalizing Experience in the Reinforcement and Attractor Frameworks

	6 Conclusions
	Appendix
	References
	Cirriculum Vitae
	List of Publications
	Selbständigkeitserklärung

