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Abstract
This cumulative dissertation deals with the analysis of cardiorespiratory bio-
signals in combination with high resolution accelerometry. Today smartwatches
and smartphones can often record similar data, albeit at slightly lower quality,
opening up a huge field of possible applications.

In the first part, we have focused on biosignals hidden in acceleration measure-
ments with high resolution that come as a by-product besides the quantification
of physical activity and the detection of sleep, wake, and non-wear times, in large
cohort studies like the “NAKO Gesundheitsstudie”. For wrist accelerometer data
we have developed algorithms to extract the pulse wave propagating through the
wrist, and also detect respiration movements during sleep. We found that pulse
waves can be better reconstructed than respiration signals. Comparing sleep
stages we found best reconstruction during deep sleep, while during wakefulness
the reconstruction quality drops due to movement artifacts. We used the advan-
tage of three dimensional accelerometry to identify the best axis for 30 second
epochs and to identify epochs with poor signal quality.

The second part of the thesis investigates the scaling behavior of cardiorespira-
tory signals, in order to better understand the regulatory pathways in the human
cardiorespiratory system. Therefore, detrended fluctuation analysis was applied,
differentiating between short-term (6-16 seconds) and long-term (50-200 seconds)
correlations. We found that heart and pulse rates are characterized by sex- and
age-dependent short-term fluctuations, while their long-term fluctuations exhibit
a clear sleep stage dependence: weak long-term correlations during non-REM
sleep and pronounced long-term correlations during REM sleep and wakefulness.
In contrast, pulse transit times do not show differences between short-term and
long-term scaling behavior; their short-term fluctuations are less correlated and
hardly depend on age or sex. The long-term scaling of all observed systems seems
to be modulated by sleep stage patterns generated in the brain, while short-term
control differs between the organ systems. Furthermore, fluctuation analysis of
hip and wrist accelerometry were analyzed and compared on scales of 50 to 200
seconds, 5 to 20 minutes and 0.5 to 2 hours. We found that with increasing activ-
ity, the correlation increases on all mentioned scales. Moreover hip accelerometry
appears to vary more on different scales than wrist accelerometry.
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Zusammenfassung
Diese kumulative Dissertation befasst sich mit der Analyse von kardiorespirato-
rischen Biosignalen in Kombination mit hochauflösender Akzelerometrie. Smart-
watches und Smartphones können ähnliche, wenn auch qualititiv etwas schlech-
tere, Daten aufzeichnen, wodurch sich ein riesiges Feld möglicher Anwendungen
ergibt.

Im ersten Teil haben wir uns auf Biosignale konzentriert, die in hochaufgelös-
ten Beschleunigungsmessungen verborgen sind. Diese Beschleunigungsmessungen
werden eigentlich zur Quantifizierung der körperlichen Aktivität und der Erken-
nung von Schlaf-, Wach- und Nicht-Tragezeiten in großen Kohortenstudien ein-
gesetzt, wie zum Beispiel in der NAKO-Gesundheitsstudie.

Für Beschleunigungsmessungen am Handgelenk haben wir Algorithmen ent-
wickelt, die das Handgelenk durchlaufende Pulswellen extrahieren, sowie At-
mungsbewegungen während des Schlafs detektieren. Wir konnten zeigen, dass sich
Pulswellen besser rekonstruieren lassen als Atmungssignale. Bei dem Vergleich
von Schlafstadien fanden wir die beste Rekonstruktion im Tiefschlaf, während
im Wachzustand die Rekonstruktionsqualität aufgrund von Bewegungsartefakten
abnimmt. Wir nutzten den Vorteil dreidimensionaler Beschleunigungsmessung,
um die beste Achse für 30-Sekunden-Epochen zu identifizieren und Epochen mit
schlechter Signalqualität zu erkennen.

Der zweite Teil der Arbeit behandelt das Skalenverhalten kardiorespiratori-
scher Signale, um die Regulationswege im menschlichen kardiorespiratorischen
System besser zu verstehen. Dafür wurde die trendbereinigte Fluktuationsana-
lyse (DFA) verwendet, wobei zwischen kurzzeitigen (6–16 Sekunden) und lang-
zeitigen (50–200 Sekunden) Korrelationen unterschieden wurde. Wir fanden her-
aus, dass Herz- und Pulsrate durch geschlechts- und altersabhängige kurzzeiti-
ge Fluktuationen gekennzeichnet sind, während ihre langzeitigen Fluktuationen
eine klare Schlafstadienabhängigkeit aufweisen: schwache Langzeitkorrelationen
während des Non-REM-Schlafs und ausgeprägte Langzeitkorrelationen während
des REM-Schlafes und der Wachphase. Im Gegensatz dazu zeigen Pulslaufzei-
ten keine Unterschiede zwischen kurzzeitigem und langzeitigem Skalenverhal-
ten; ihre kurzzeitigen Fluktuationen sind weniger korreliert und kaum alters-
oder geschlechtsabhängig. Das Langzeitskalenverhalten aller beobachteten Syste-
me scheint durch im Gehirn generierte Schlafstadienmuster moduliert zu werden,
während die kurzzeitige Regulation zwischen den Organsystemen unterschiedlich
ist. Weiterhin wurden die Fluktuationen der Hüft- und Handgelenkakzelerome-
trie analysiert und auf Skalen von 50 bis 200 Sekunden, 5 bis 20 Minuten und 0,5
bis 2 Stunden verglichen. Wir fanden heraus, dass mit zunehmender Aktivität
der Skalierungsexponenten auf allen genannten Skalen zunimmt. Darüber hinaus
scheint die Hüftakzelerometrie auf den verschiedenen Skalen stärker zu variieren
als die Handgelenkakzelerometrie.
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1 | Introduction

1.1 Motivation

Accelerometry. The use of accelerometers increased over the last years not only
in personal devices, like smartphones and smartwatches, but also in huge studies like
“NAKO Gesundheitsstudie”[1], “SHIP studies”[2], and “UK Biobank”[3]. Basically,
this data is collected to score physical activity, to differentiate between lying, seden-
tary behavior or standing, but also to measure circadian rhythms.

However, highly time resolved (≥ 100 Hz) accelerometer data contain much more
valuable information. It is possible to distinguish between wake, sleep and non-wear
times based on the accelerometer measurements. Recent results show that modern
machine learning approaches can even detect sleep stages [4]. Furthermore, pattern
recognition can be used to distinguish between different kinds of physical activities,
like jogging, cycling or rowing [5]–[7]. But that is not the end of the possibilities.

A deeper look into the raw accelerometer data of Fig. 1.1 unfolds a new world of
hidden information and interesting areas. The upper plots show a typical 24 hour
three dimensional (3D) accelerometry measurement for wrist (Fig. 1.1 a.1, blue) and
hip (a.2, blue), extended by an activity parameter derived from the 3D acceleration
values (a.1 and a.2, orange). High amplitudes indicate high activity, while low values
indicate rest, sleep or non-wear time. In addition, the heart rate is shown (a.3, red).

The mentioned hidden information is revealed on the lower left hand side in Fig. 1.1.
The y axis wrist accelerometry signal is chosen as an example (i.1 and ii.2, blue) and
plotted in a 60 second (i.1, blue) and a 10 second (ii.1, blue) window, an episode
during sleep. In Fig. 1.1 i.1 respiratory flow is shown together with the raw accel-
eration signal, and besides of a phase shift and a high-frequency component, the
signal matches perfectly the respiratory flow. The high-frequency component of the
acceleration signal, which seems to disturb the hidden respiratory signal, is shown in
detail in Fig. 1.1 i.2. It shows multiple spindles perfectly aligned with the R peaks
of the electrocardiography (ECG) signal with respect to pulse transit time (PTT)
approximately 0.2 seconds after the R peak.

Detrended fluctuation analysis (DFA). Besides hidden information in acceler-
ometry data, the structure of the biosignals itself is of interest, which could give a clue
about regulation mechanisms in the human body. Temporal fluctuations in the car-
diorespiratory system indicate adaptions to external or internal stimuli. Fluctuations
may also be seen in accelerometry data during sleep as implied in the paragraph above.

1



1. Introduction

Figure 1.1: Complexity of accelerometry data. Upper plot (a) shows 3D accelerometry
measurements for wrist (a.1, blue) and hip (a.2, blue), expanded by an activity norm
(mean amplitude deviation, MAD, orange), and the heart rate (a.3, red). Lower
left panel (i) reveals the potential of accelerometry data, which contains information
about respiration and the pulse. In i.1 a snippet of respiratory flow (green) during
sleep is plotted together with the same time window of the y axis of the wrist
accelerometer data (blue), similarly for i.2 with ECG (red) and accelerometer data
(blue). The lower right panel (ii) gives a brief idea of fluctuation analysis of the heart
rate time series for sleep, wake and both together. The curves have been shifted
vertically for better visualization. ii.1 is showing a power spectrum of the heart
rate. ii.2 presenting the primary results of a DFA analysis, the scaling behavior of
the heart rate.
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1.2. Goals

Figure 1.1 ii.1 and ii.2 show the scaling behavior of heart rate data, for wake, sleep
and both together.

In the power spectrum during sleep (Fig. 1.1 ii.1, purple) a peak around 0.3 Hz can
be seen, indicating parasympathetic activity (relaxing), but also respiratory activity
(respiratory sinus arrhythmia), while during wake (ii.1, orange), we see a 0.1 Hz
peak, corresponding to sympathetic activity (physical activity) [8]. Since the subject
is awake most of the day, the 0.1 Hz peak is present in the spectrum of the whole
time series (ii.1., black), while the 0.3 Hz peak disappears.

Figure 1.1 ii.2 shows the results of DFA, which is used in this work. Here, the focus
is on the different slopes of the fluctuation function F (s), which differs between the
ranges of 10 seconds and 100 seconds, but also between sleep and wake, indicating
different regulation mechanisms on short and long time scales, but also between sleep
and wake.

All together, acceleration measurements have a huge potential. Besides, heart rate,
pulse waves and respiration have to be investigated at the same time, to know what
to expect from acceleration data.

1.2 Goals

This thesis will focus on the unused potential of accelerometry data and scaling
behavior of cardiorespiratory biosignals. This results in the following goals for this
thesis:

(i) Establish a method to extract pulse waves from wrist worn accelerometry during
sleep, in order to reconstructed pulse to pulse beats, which allows to estimate
pulse rate, pulse rate variability and therefore heart rate and heart rate variability.

(ii) Develop an algorithm to reconstruct breathing activities via wrist worn ac-
celerometers during sleep.

(iii) Evaluate pulse wave and breathing reconstruction during different sleep stages,
and find possible improvements. In addition, the influence of apneas shall be
examined.

(iv) Investigate the scaling behavior of PTT, and compare to the scaling behavior
of heart rate, pulse rate, respiration rate and EEG alpha-band amplitudes.

(v) Characterize the scaling behavior of hip and wrist accelerometry data.

3



1. Introduction

1.3 Outline

The following Chapter 2 covers the basic methods and devices used for data acquisi-
tion, data analysis and evaluation. First, Section 2.1 presents the-state-of-the-art data
recording and monitoring of human biosignals during sleep - known as polysomnogra-
phy (PSG) - consisting in particular of recording respiration, ECG, electroencephalog-
raphy (EEG), photoplethysmography (PPG), etc.. In Section 2.2 accelerometry and
its technical components are introduced. The data used in this thesis was provided
by two studies, which are described in Section 2.3.

Chapter 3, “Part I: Hidden signals in accelerometer data” is the first main part
of this cumulative thesis. In the beginning, Section 3.1 gives a brief introduction
to the idea behind signal reconstruction from accelerometry data. This introduction
is followed by three publications (Section 3.2 - 3.4) considering the reconstruction
of pulse wave and breathing activity from accelerometer data [JZ1], [JZ2] and its
evaluation during different sleep stages [JZ3], which correspond to the goals (i), (ii)
and (iii).

Chapter 4, “Part II: Fluctuation analysis studies”, investigates the scaling behavior
of biosignals. In Section 4.1, DFA and its relevance on this work is introduced. Results
of DFA are presented in Section 4.2, which contains a publication about DFA of heart
rate, pulse rate, PTT, respiration rates and EEG alpha band amplitudes [JZ4]. Here,
for the first time the scaling behavior of PTT is investigated, which corresponds to the
goal (iv). Furthermore, we present in Section 4.3 preliminary results for investigating
accelerometry data with DFA, which correspond to the goal (v).
Finally, this work ends with a conclusion in Chapter 5. The results of this thesis will
briefly be summarized and an outlook on promising projects related to this work is
given.

1.4 Remark to the term “pulse transit time”

We note that the term “pulse transit time” (PTT) is used in a colloquial way in this
thesis as well as in the publications. We use PTT to describe the time between the
R peak in the ECG, and a pulse wave peak at the finger tip or at the wrist, which is
denoted as pulse arrival time in other works [9], [10]. More exactly, PTT is the time,
that the pressure wave takes to travel from the heart to the extremities. The time
we measured, pulse arrival time, includes the pre-ejection time, the time between the
R peak (polarization) and the ejection of the blood in the heart.

Unfortunately, literature is mostly not clear about this, and, PTT is often misused
for the term pulse arrival time, e.g. as in [11], [12]. To be consistent with our
publications, the term “pulse transit time” is used in this thesis.
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2 | Methodology

2.1 Polysomnography

Polysomnography (PSG) is the most important tool in sleep medicine. Subsec-
tion 2.1.1 presents a brief summary of the development of sleep scoring. More details
can be found in “The History of Polysomnography” by Deak and Epstein [13]. The
state of the art of PSG and its technical terms will be explained in the Subsection 2.1.2.
Lastly, Subsection 2.1.3 explains the different sleep stages.

2.1.1 Historic development

For long times humankind was wondering about sleep, its meaning and regulation.
Systematic research of sleep began in the 20th century. In 1929 Berger recorded elec-
trical brain activity in humans, introducing the therm “electroencephalogram” and
demonstrated changes in the electrical activity between wake and sleep [14]. In 1957,
Dement and Kleitman provided a further basis with their publication on the descrip-
tion of sleep stages using EEG and electrooculography (EOG) [15].
Unfortunately, sleep stage scoring reliability between sleep laboratories was poor be-
cause of the lack of “standardization of recording techniques and scoring criteria”
as Monreo et al. stated in 1969 [16]. This lack was remedied by the well-known
manual “A Manual of Standardized Terminology, Techniques and Scoring Systems for
Sleep Stages of Human Subjects” of Rechtschaffen and Kales in 1968 [17], the gold
standard of sleep scoring for nearly 40 years. Nevertheless, the manual was designed
for normal sleep in a non-digital world and “did not take into account important
phenomenon including arousals; autonomic nervous system activity, such as cardiac
rate and rhythm; respiratory abnormalities; body movement; or behavior in sleep”
[13]. This leads to the need of a revised version. Furthermore, researchers starting
to implement devices to measure cardiac and respiratory parameters [13] coined the
term “polysomnography” in 1974 [18].
Finally, the American Academy of Sleep Medicine (AASM) initiated a new scoring
manual, which was published in 2007 “AASM Manual for the Scoring of Sleep and
Associated Events: Rules, Terminology, and Technical Specifications” [19]. In 2012
the AASM Scoring Manual Version 2.0 was introduced, which has continuously been
updated by then [20], [21].

The term “polysomnography” refers to the setup of several diagnostic tools to
observe sleep but is also used to describe a certain type of studies for the examination
of sleep.
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2. Methodology

2.1.2 Modern polysomnography

Today PSG is a standard tool in sleep medicine. Containing several measurements to
describe sleep, sleep stages and sleep disorders, it characterizes brain activity, muscle
activity, air flow, chest movement, heart rate and oxygen saturation. The following
items are part of a PSG measurement:

• Electroencephalography (EEG) detects electrical activity of the brain with
electrodes attached to the scalp in the 10/20 system. The appearance of
different wave patterns in the EEG is the basis for sleep stage scoring [22], [23].

• Electrooculography (EOG) measures electrical activity created by the di-
pole of the eye. It is used to identify rapid-eye-movement sleep (REM) and
sleep onset associated with slow-rolling eye movements [23].

• Electrocardiography (ECG) records electrical activity of the heart muscles
with electrodes attached to the chest wall. On the one hand it monitors heart
rate and function, on the other hand it identifies cardiac artifacts in the EEG
[23].

• Electromyography (EMG) senses electrical activity of muscle cells. Typically
it is applied to chin and legs, in order to measure muscle tonus, which decreases
during REM. It is also used to detect periodic limb movement disorders and
restless legs syndrome [23].

• Respiratory movements are detected by thorax and abdomen belts; used
for measuring diaphragm and chest breathing. In combination with air flow
sensors obstructive apneas (breathing movement, but locked air paths) and
central apneas (no breathing movement) can be distinguished.

• Air flow is captured by oronasal thermal sensors and pressure sensors at the
nostrils [23].

• Photoplethysmography (PPG) monitors blood flow and oxygen saturation
of the blood at the fingertip. This allows also to calculate PTT.

• Video (with infrared illumination) is recorded to visualize the movements during
the measurement. It allows to describe the body position, but also sleep related
movement disorders and unexpected events during the night.

• Snoring microphone attached to the neck will exclusively record snoring
sounds.

This greatly developed system is currently the gold standard of sleep assessment. It
provides detailed information about sleep architecture, sleep quality and sleep quantity
[24]. Sleep architecture is related to the sequence and proportions of the sleep stages.
Sleep quality is, on the one hand, a subjective perception of the patient and, on the
other hand, sleep quality can be described by objective parameters, such as the number
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2.1. Polysomnography

of nocturnal wakings, sleep latency, sleep efficiency, and sleep-related diseases. Sleep
quantity describes the amount of sleep.

A disadvantage of PSG is the necessity of a sleep laboratory, including a lot of
cables, technical devices and well-trained personal. This is not only inflexible, cost-
intensive and complex but also combined with some side effect for the subjects, as
first night effects [25]–[28], caused by a new sleep environment and a lot of attached
cables. To avoid this problem mobile devices are upcoming [29]. PSG is furthermore
focused on the time in bed, and cannot care for sedentary and more active episodes
during day, which could help to understand sleep disorders.

2.1.3 Sleep stages

One of the most important results of a PSG examination is the sleep stage classifi-
cation. Basically sleep can divided into non-rapid-eye-movement sleep (NREM) and
rapid-eye-movement sleep (REM), which can identified by rapid eye movements in
the EOG. The NREM is further divided into three sleep stages: light sleep, N1 and
N2, and deep sleep N3. Wakefulness can be considered as an additional stage, which
is mostly short awakenings associated with sleep stage changes or external stimuli
like noises. During a normal night, there are 4 to 6 sleep cycles of 90 minutes each,
with pronounced variations between subjects and nights. A cycle consists of light
sleep, deep sleep and REM. Abnormalities in this sequence can help to identify sleep
problems. The following will explain briefly the four sleep stages. Details about the
classification can be found in the AASM sleep scoring manuals [20].

N1 is the lightest sleep and the transition between wake and sleep. It is easy to wake
up from this stage. Heart and breathing rate decreases and eye movements slow
down. The associated EEG typically shows so-called θ waves. The stage typically
lasts for several minutes before transition to N2. About 5 % of total sleep is spent
in N1 [23], [30], [31].

During N2 heart and breathing rate decrease and muscles relax while eye movements
stops. The body temperature decreases. In the EEG, N2 is characterized by sleep
spindles and K-complexes. One episode lasts about 10 to 25 minutes before transition
to N3. 45 % of the night is typically spent in N2 [23], [30], [31].

N3 is the deepest sleep, where it is difficult to wake up. Heart and respiration rate
reach the lowest frequencies and almost no movements are visible. Typical for N3
are so-called δ waves in the EEG. An episode of N3 lasts about 30 minutes, before
mostly transitioning to REM sleep. Typically, N3 accounts for 25 % of the nighttime
sleep [23], [30], [31].

In REM sleep, as the name says, eyes move rapidly from one side to the other
while the lids are closed. Heart and respiration rates increase, accompanied by more
movements. One episode lasts for about 10 to 50 minutes before transition back to

7



2. Methodology

N1 or N2. 25 % of the night is typically spent in REM sleep [23], [30], [31].

2.2 Accelerometry

This section will cover the development and technical details of accelerometers (Sub-
section 2.2.1 and 2.2.2) focused on the area of sleep research. Two accelerometry
devices from which we used data, are described in Subsection 2.2.3. Furthermore,
modern problems and solutions in the use of accelerometers will be discussed in Sub-
section 2.2.4.

2.2.1 Historic development

After Rechtschaffen and Kales [17] laid the foundation for modern sleep assessment
based on EEG, so-called telemetric mobility recorders were introduced and tested
at the wrist to add information about motoric activity. These tests showed a high
correlation between activity and wakefulness [32], [33]. In 1978, Kripke et al. [34]
introduced the term actigraphy and used a piezoceramic element attached to a moving
mass to measure movements via displacement of the mass. With this approach, sleep
and wakefulness could be estimated [34], [35].

The first automated sleep-wake scoring algorithm based on actigraphy was devel-
oped by Webster et al. in 1982 [36] and improved by Cole et al. in 1992 [37] with
a reported accuracy of 88 % compared to PSG. Unfortunately, such algorithms score
sleep much better than wake episodes, a problem which still exists [38]. If we score all
episodes as sleep, we would get an agreement rate as high as sleep efficiency, which
is for most subjects above 80 % [39], [40]. For this reason actigraphy sleep-wake
scoring algorithms may fail for subjects with sleep issues such as insomnia [40], [41]
or a disturbed sleep-wake cycle like jet lag or shift work [38]. Therefore it is crucial
to improve the detection of wakefulness episodes.

The next improvement was the piezoelectric accelerometer. Attached to the wrist,
it measured accelerations along the radius-to-ulna axis1 [42]. However, with each
new device available, new algorithms and device specifications came such as pre-filter
and amplifier setting, sampling rate and acceleration resolution. Basically, the devices
reported epochwise so-called “counts”, calculated by one of three operation modes:
time above threshold, numbers of zero crossings or cumulative sum [42]. These
counts were then used to score sleep-wake. As a consequence the results of different
devices were not comparable.

Terrill et al. [43] improved actigraphy by using a triaxial accelerometer (3D, three
accelerometers orthogonal to each other) and storing the raw sensor data instead of
counts. This allows to use detailed analysis of the signals, like spectral analysis, to
score sleep-wake [44], [45]. Furthermore, machine learning can be used to estimate
not only sleep and wake but also sleep stages [4], [JZ5].

1Radius-to-ulna axis is the axis parallel to the forearm.
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2.2. Accelerometry

But as this work will show, a lot of more information can be found in acceleration
data.

Modern accelerometer devices still use proprietary software and algorithms to cal-
culate counts and other metrics, but it is becoming increasingly possible to download
and to use the raw acceleration data.

2.2.2 Technical details

Basically, acceleration sensors use the inertia of a mass in relation to the sensor hous-
ing. Therefore, three sensor types should be mentioned:

Capacitive accelerometers consist of two capacitor plates, one connected to the
housing and one to the internal mass. The capacity of this capacitor is modulated by
the acceleration acting on the mass [46], [47].

Piezoresistive accelerometers use the piezoresistive effect of metals or semicon-
ductors, which is basically a change of their electrical resistance due to strain. There-
fore, the electrical resistance from the mass-carrying spring or strips can be measured
as a function of acceleration [46], [47].

Piezoelectric accelerometers use the piezoelectric effect of crystals that generate
an electrical potential when mechanically compressed or stretched. Therefore accel-
eration can measured as function of the crystal’s voltage [46], [47].

2.2.3 Accelerometer devices

In this work the data of two accelerometer brands has been used, SOMNOwatch and
ActiGraph.

SOMNOwatch™ plus
The SOMNOwatch™ plus (SOMNOmedics, Randersacker, Germany) is a watch-like
device, which can record 3D accelerometry up to 128 Hz. In addition, attached via
cable an ECG (up to 256 Hz) and nasal air flow can be measured. The used ac-
celerometer sensor type is unfortunately a trade secret, but it measures in the range
of -6 to 6 g. The unit g is the gravitational acceleration of 9.81 m/s2, for small move-
ments 1 mg = 0.001 g is commonly used. The device records with 12-bit resolution,
which leads to a theoretical resolution of 12 g/212 = 2.9 mg, but noise levels reduce
the resolution to 5 mg [JZ1].

ActiGraph™
ActiGraph™ GT3X+ and ActiGraph™ wGT3X-BT (ActiGraph, Pensacola, USA) are
similar devices, which measure 3D acceleration in range of -6 to 6 g and -8 to
8 g, respectively, with a piezoelectric sensor and up to 100 Hz. As both models
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2. Methodology

have the same bit number of 12 bit, the resolutions are 12 g/212 = 2.9 mg and
16 g/212 = 3.9 mg, respectively. Our findings indicate a higher noise level in this
sensors compared with the SOMNOwatch sensor.

In this work SOMNOwatch was exclusively worn at the wrist and the ActiGraph
models exclusively at the hip.

2.2.4 Advantages of accelerometry

Accelerometers are usually very small devices in the size of a watch and are very easy
to handle, which means subjects can put them on and take them off themselves. In
addition, accelerometer sensors, though usually with lower precision and no calibra-
tion, are already implemented in smartphones and smartwatches, which will make the
transition from resulting algorithms of scientific research to costumers applications a
bit easier.

Another advantage is the long operational time, depending on the device, but
often more than 7 days. This allows not only to measure physical activity, sedentary
behavior and sleep times on one day but also to compare the parameters for several
consecutive days and week versus weekend.

Furthermore, large epidemiological studies, e.g. “NAKO Gesundheitsstudie” [1],
“SHIP studies” [2] and “UK-biobank” [3], are increasingly often using accelerometer
devices with data accessible for researches.

The problem of black-box algorithms and incomprehensible counts based on com-
pany secrets is resolved in access to the raw data and open scientific algorithms,
metrics and software. Examples are mean amplitude deviation (MAD) [48], euclidic
norm minus one (ENMO) [49] and the GGIR package [50]. MAD and ENMO are
metrics to estimate physical activity from 3D accelerometer data. As an open source
package, GGIR includes both and further metrics and algorithms.

Especially the MAD metric is already well-established for physical activity, as MAD
is strongly correlated with oxygen consumption [51], and is defined as the mean
derivation of the amplitude over a certain interval. It can be calculated in the following
steps [48]:
First, the magnitude ri of the 3D accelerometer signal (x, y, z) is calculated,

ri =
√
x2 + y2 + z2. (2.1)

In a second step, this magnitude is averaged in epochs of length N , e.g. in a 128 Hz
signal with N equals to 128, an epoch has a duration of one second.

Rave =
1

N

j+N−1∑

i=j

ri (2.2)

Finally, the MAD values of the epoch length N can be calculated as

MAD =
1

N

j+N−1∑

i=j

| ri −Rave | . (2.3)
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2.2. Accelerometry

As mentioned above, basic sleep parameters can be estimated on a good level.
Nevertheless, there is a difference between PSG and actigraphy, which is not random,
and can therefore be partially corrected [52]. However, it cannot be expected that the
agreement between actigraphy and PSG will be better than between two PSG scorings
[52], which means that e.g. sleep stage scoring of the same data differs between the
scorers [53].
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2.3 Data acquisition studies

The heart of data analysis is the data itself. Poor quality in data collection cannot
lead to meaningful results. Therefore a valid, systematic and high quality acquisition
of biosignals is crucial.

This section presents two important studies for this work. The first study is
the “NAKO Gesundheitsstudie”, also known as German National Cohort (Subsec-
tion 2.3.1).

Accompanying the NAKO Gesundheitsstudie a smaller observatory study (Subsec-
tion 2.3.2) has been conducted. This study has the advantage of a fast data availabil-
ity and the special characteristic of measuring PSG and accelerometry at the same
time. The latter one allows to investigate motion behavior during the night, develop
algorithms for biosignal reconstruction and sleep stage detection via accelerometry.
The gained knowledge and algorithms can be transferred to the NAKO study.

2.3.1 NAKO Gesundheitsstudie

The NAKO Gesundheitsstudie (German National Cohort) is one of the largest German
population-based prospective cohort studies2.

Organized in 18 study centers spread all over Germany, the study includes over
205.000 participants, which were randomly drawn from general population of the area
of the study centers with strata of age and sex [1], [54], [JZ6]. At the recruitment,
the age of the participants ranged from 20 to 69 years.

The longitudinal study contains a baseline examination of all participants, written
follow up questionnaires every two to three years and several follow up examinations
every five years. At the moment3 the first follow up examination is in progress and
the second follow up examination is in planning.

2014 till 2019 the baseline examination of all participants was performed. The ex-
amination program was split in Level 1 for all participants and Level 2 for only 25 %
of the participants with additional measurements.

Level 1. Level 1 includes several questionnaires (e.g. socio-economic status, medical
history, drugs, life quality, mental health, physical activity, diet), several examinations
(e.g. blood pressure, 12 leads ECG, spirometry, tooth count, olfactory test, hand grip
strength, anthropometric measurements) and the collection of biosamples (blood,
saliva, nasal swab, stool, urine). In addition, a subgroup of about 80.000 subjects
wore a accelerometer device (ActiGraph™ GT3X+ or wGT3X-BT) for 7 days at the

2The NAKO study was funded by the Federal Ministry of Education and Research (BMBF)
(project funding reference numbers: 01ER1301A/B/C and 01ER1511D) and the federal
states and the Helmholtz Association, with additional financial support by the participating
universities and the institutes of the Leibniz Association.

3December 2022

12



2.3. Data acquisition studies

hip.

Level 2. The Level 2 examination contained a 24 hour accelerometry measurement
recorded by a SOMNOwatch™ plus. Only 30.9 % of Level 2 participants (8.3 % of
all participants) got a SOMNOwatch measurement, which equals to approximately
17.000 records, due to problems with the SOMNOwatch device itself (e.g. battery
failure, shortages of devices in the study centers) and rejection of wearing the device.
The SOMNOwatch™ plus device was worn at the non-dominant arm, recording si-
multaneously 3D wrist acceleration with a sampling rate of 128 Hz and in addition a
one channel ECG at 256 Hz. Three electrode patches, placed at the chest wall, were
connected to the SOMNOwatch with a small wire to measure the one channel ECG
in parallel with the accelerometer data.

2.3.2 Detection of the sleep-wake structure at night from
actimetry and ECG recordings

The results of this thesis are mainly based on this additional study. In the project
“Dynamical and causal relationships in the coupling of heartbeat, respiration and
motion activity”4, a clinical trial “Detection of the sleep-wake structure at night from
actimetry and ECG recordings” was performed.

The study includes 450 subjects, who spent a diagnostic night in a clinical sleep
laboratory of the Charité-Universitätsmedizin Berlin, Germany, between April 2017
and March 2019. All subjects wore a SOMNOwatch™ plus device, recording simul-
taneously 3D wrist acceleration of the non-dominant arm at 128 Hz sampling rate
and a one channel ECG at 256 Hz, in accordance to the NAKO standard operating
procedures for SOMNOwatch. In addition, full PSG was recorded using either an
ALICE (Philips, Amsterdam, Netherlands), an Embla® (Natus, Pleasanton, USA),
or a SOMNOscreen™ PSG system (SOMNOmedics, Randersacker, Germany).
Sleep stages based on 30 second epochs have been determined from the PSG data
by trained experts following standard guidelines of the AASM manuals [21]. R peak
detection was applied for the SOMNOwatch ECG data and for the PSG ECG data.
Since both measurements have been performed independently, time shifts and off-
sets had to be corrected. To do this, the R peak positions of both systems were
synchronized.

4This project was founded by the German-Israeli Foundation for Scientific Research and De-
velopment, GIF Grant No: I-1372-303.7/2016.
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3 | Part I: Hidden signals in
accelerometer data

The present chapter addresses the possibility of reconstructing biosignals from 3D
wrist accelerometry during sleep. First, in Section 3.1, basic ideas and mechanisms
behind the reconstruction are introduced (Subsection 3.1.1) together with a metric to
compare reconstructed and measured signals (Subsection 3.1.2). This introduction
is followed by the presentation of the published results. A first publication (Sec-
tion 3.2) is concerned with an algorithm to reconstruct pulse waves. The second
publication (Section 3.3) deals with the extraction of respiration activity and rate.
The third publication (Section 3.4) compares both with respect to sleep stages and
apnea events.

3.1 Introduction to signal reconstruction

3.1.1 A first hint - power spectra of accelerometry data

Simple frequency spectra of nightly accelerometer data are presented in Fig. 3.1.
The periodogram is calculated for different sleep stages (Fig. 3.1, blue colors), wake
episodes (green colors) and for the whole night measurement (black). During sleep,
two interesting peaks can be seen, one around 0.25 Hz and one around 8 Hz.

The peak around 0.25 Hz is clearly in the range of the respiration frequency during
rest of 0.2 Hz (5 seconds per breath or 12 breaths per minute) till 0.3 Hz (3.3 seconds
per breath or 18 breaths per minute). Accelerometers worn at the wrist are coupled to
the upper body and its respiration movements. Especially during sleep, the wrist could
lie on the chest or the respiration movements are transferred via the mattress to the
wrist lying on it, which is why respiration frequency can be seen in accelerometry data.

The origin of the 8 Hz peak has no trivial explanation. The phenomena has already
been discovered in the 19th century [55] and has been labeled as tremor [56], [57]. A
lot of publications stayed with the term “tremor” while the origin remained subjected
to speculations. Some suggested oscillations in reflex loops [58], [59] or a central
oscillatory process [60]. In a later work, Lakie et al. showed in 2012 that the tremor
peak was not a result of EMG modulations and therefore is not neuronally regulated
[61]. Also it has been shown that the tremor frequency is only a mechanical property
of oscillating limbs [62]. In 1969, Marsden et al. [63] could not find any coherence
of the tremor between two hands and furthermore assumed as origin cardiac thrust.
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3. Part I: Hidden signals in accelerometer data

Figure 3.1: Periodogram. Periodogram of the y axis of accelerometry data during different
sleep stages (blue colors), wake before the light off time, i.e. before bed time, (dark
green), time of wakefulness during the light off, i.e. during bed time, (light green),
and the whole night (black) on a double logarithmic plot. Data is averaged over 30
second episodes, in which the MAD value (see Eq. 2.3) does not exceed a threshold
of 5 mg, indicating movements [JZ1]. The data was taken from one subject of the
study described in Subsection 2.3.2.

Rohracher [64] introduced the term “microvibration”, as small rhythmic vibrations of
warm-blooded organisms, and suggested its origin in muscle contractions. In 1997,
Gallasch and Kenner [65] identified ballistocardiac forces as mechanism behind the
microvibrations, as the motion is transferred via bone tissue and is finally damped to
a 7 to 13 Hz resonant response over muscle tissue. Nevertheless all reported tremor
frequencies or microvibration frequencies lay between 7 and 14 Hz.

As we will show in the first publication [JZ1] we support strongly that this tremor
or microvibrations are of cardiac origin. We suggest that the pulse wave triggers the
8 Hz peak, as the peak occurs around 200 to 300 ms after the R peak, typical for
PTT. This enables the measurements of the pulse rate via accelerometry.

Wohlfahrt et al. 2013 [44] used both peaks of the accelerometry periodogram in
episodes of 30 seconds to distinguish between sleep, wake and non-wear time. A
problem in accelerometry data analysis is the detection of non-wear time, because
sleep and non-wear time are very similar on timescales of minutes. But in high-
resolution accelerometers, the respiration peak or the 8 Hz peak will be visible only
during sleep, which would solve the problem [45].

Following this idea, we inspected a spectrogram, see Fig. 3.2. Both peaks at 0.25
and 8 Hz can seen over the whole night, only interrupted by movement artifacts or
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3.1. Introduction to signal reconstruction

wake episodes. As we see in Fig. 3.2 a-c, the peaks are not permanently visible in all
three axis, which depends on the orientation of the wrist. Artifacts, indicated by a
high intensity of all frequencies (Fig. 3.2 a-c, red vertical lines), are correlated with
sleep stage changes (Fig. 3.2, d) or movements, which can be seen in Fig. 3.2 e, when
the activity value (MAD, see Eq. 2.3) crossed the 5 mg limit (horizontal black line).

Figure 3.2: Spectrogram. Spectrogram of wrist accelerometry data during sleep. The upper
three plots (a-c) show the spectrograms of each axis, while (d) contains a hypno-
gram, showing the sleep stages. Plot (e) shows the movement activity (MAD, see
Eq. 2.3) of the subject, the black horizontal line indicates the 5 mg threshold. The
data was taken from one subject of the study described in Subsection 2.3.2.

The analysis of both peaks during the night is the topic of the following three
Publications: pulse wave peaks extraction via accelerometry [JZ1], the estimation of
respiration activity [JZ2] and both compared for different sleep stages [JZ3].
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3. Part I: Hidden signals in accelerometer data

3.1.2 How to compare signals

Event-to-event comparison. There are several approaches to compare two time
series. In the first publication Section 3.2 [JZ1] we used an event to event comparison
to match R peaks and pulse wave peaks. In our case this has the disadvantage that
time shifts between events, like PTT, lead to a certain degree of uncertainty.

Another problem arises when comparing respiration signals. Respiration can mea-
sured via flow sensors but also via chest belts. While the flow is maximal during
inhalation, the chest belt signal (stretching) is maximal during the change between
inhalation and exhalation. If we want to discern a derived signal from the wrist
movement, we cannot determine the actual phase of respiration, which leads to an
unknown time shift between the maxima of the signals.

Cross-correlation between reconstructed and measured signals could determine the
shift, but changes in wrist position during sleep could change the shift and the am-
plitude of the signal. Therefore, this approach is not best suited.

Phase synchronization index (PSI). To avoid these problems we used phase
synchronization in the second and third publication (Section 3.3 [JZ2] and 3.4 [JZ3]).
Specifically, we focused on analyzing and comparing phases. To extract the phase
of a signal, we used some pre-filters (details can be found in the publications [JZ2],
[JZ3]), a Hilbert transform [66] to gain a complex signal, and applied arctan2 to the
complex signal to get a phase oscillating from −π to +π in a sawtooth curve. The
PSI γ, to compare two phases, is defined as followed [67]:

γ(t0) =

∣∣∣∣∣
1

T

∫ t0+T

t0
exp{i · Phasesignal1(t)− i · Phasesignal2(t)}dt

∣∣∣∣∣ , (3.1)

where i is the imaginary unit, T is the epoch length over which we want to average
(30 seconds in the publications, according to scoring of sleep stages in 30 seconds),
and t0 is the actual time point as multiple of T , running till the end of the signals.

This definition, to compare signals, has two advantages. First, a constant phase
difference (in the 30 second epoch) between both phases (signals) can be disregarded,
which solves the described problem due to PTT in R peaks and pulse wave peaks,
and the unknown phase of the reconstructed respiration signal. Second, the signals’
amplitude has no effect on the phase signal.
By definition, the PSI γ runs from 0, no synchronization between the signals, to
1, matching signals, and can be used to determine the accordance between recon-
structed signals and measured signals. To compare the PSI between subjects, it was
averaged over the whole night of each subject, and then compared subject wise (see
Section 3.3 [JZ2]). In addition, synchronization indices are averaged sleep stage wise
and compared (see Section 3.4 [JZ3]).
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3.2. Publication: Pulse wave reconstruction

3.2 Publication: Pulse wave reconstruction

About this publication. The following publication “Detection and analysis of pulse
waves during sleep via wrist-worn actigraphy” [JZ1] introduces a method for mea-
suring pulse rate via wrist accelerometry and identifying single pulse wave peaks at
the wrist. Using 3D accelerometry data, the algorithm provides pulse wave peaks for
each of the three axes, from which a best axis selection for 30 second epochs was
implemented. In addition, the comparison of tachograms1 shows a higher influence of
respiration on pulse-to-pulse intervals than on heart beat-to-beat intervals. This leads
to the assumption that respiration influences the PTT by blood pressure or arterial
stiffness regulation paths, or that the respiration motion influences the accelerometry
measurement at the wrist. Furthermore, pulse rate variability parameters, derived
from reconstructed pulse wave peaks, are larger than the heart rate variability (HRV)
parameters, which indicates a higher modulation of other origin, maybe resulting from
blood pressure and arterial stiffness changes. Over all the developed algorithm is sen-
sitive to movement artifacts, which are therefore detected and excluded, and it seems
to depend on subjects, which may be related to the tightening strength of the wrist
accelerometer.

Copyright statement
©2019 Zschocke et al. This publication is licensed under a Creative Commons At-
tribution 4.0 International (CC BY 4.0) license cb.
J. Zschocke, M. Kluge, L. Pelikan, A. Graf, M. Glos, A. Müller, R. Mikolajczyk,
R. P. Bartsch, T. Penzel, and J. W. Kantelhardt, „Detection and analysis of pulse
waves during sleep via wrist-worn actigraphy“, PloS one, vol. 14, no. 12, e0226843,
2019. doi: 10.1371/journal.pone.0226843. Reference [JZ1]

1The tachogram is a plot of heart beat intervals versus time and provides therefore time-
resolved information of heart rate variability. See Fig. 6 in publication [JZ1], Section 3.2.
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Abstract

The high temporal and intensity resolution of modern accelerometers gives the opportunity

of detecting even tiny body movements via motion-based sensors. In this paper, we demon-

strate and evaluate an approach to identify pulse waves and heartbeats from acceleration

data of the human wrist during sleep. Specifically, we have recorded simultaneously full-

night polysomnography and 3d wrist actigraphy data of 363 subjects during one night in a

clinical sleep laboratory. The acceleration data was segmented and cleaned, excluding

body movements and separating episodes with different sleep positions. Then, we applied a

bandpass filter and a Hilbert transform to uncover the pulse wave signal, which worked well

for an average duration of 1.7 h per subject. We found that 81 percent of the detected pulse

wave intervals could be correctly associated with the R peak intervals from independently

recorded ECGs and obtained a median Pearson cross-correlation of 0.94. While the low-

frequency components of both signals were practically identical, the high-frequency compo-

nent of the pulse wave interval time series was increased, indicating a respiratory modula-

tion of pulse transit times, probably as an additional contribution to respiratory sinus

arrhythmia. Our approach could be used to obtain long-term nocturnal heartbeat interval

time series and pulse wave signals from wrist-worn accelerometers without the need of

recording ECG or photoplethysmography. This is particularly useful for an ambulatory moni-

toring of high-risk cardiac patients as well as for assessing cardiac dynamics in large cohort

studies solely with accelerometer devices that are already used for activity tracking and

sleep pattern analysis.

1 Introduction

Full-night polysomnography (PSG) has been regarded as the reference standard in sleep medi-

cine since 1968 [1, 2]. Besides signals used for sleep stage classification, respiratory activity and

an electrocardiogram (ECG) are usually recorded and analyzed [3]. However, the applicability
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of PSG for the assessment of sleep characteristics in large prospective studies is limited due to

its costs and its intricacy, requiring many electrodes and cables attached to the subject’s head

and chest.

Alternatively to PSGs, actigraphy (or accelerometry) is commonly used to monitor human

sleep/wake cycles [4–8]. Usually, the accelerometer is placed on the subjects’ wrist of the non-

dominant arm. Advantages of accelerometry are low costs, higher availability, easy recording

of multiple nights, and a less disturbed natural sleep [9, 10]. However, its accuracy varies

between different sleep variables and depends on population-specific characteristics [7, 9, 11].

Yet, recent technological progress has led to advanced recording devices with high temporal

resolution (above 100 Hz), high acceleration resolution (down to 3 mg� 0.03 m/s2), and sepa-

rate recording of all three spatial directions (see e.g., [12] for a review).

First investigations that demonstrated physiological relevance in the distribution and auto-

correlations of wrist activity fluctuations independent of level of physical activity were pub-

lished by Hu et al. [13, 14]. In later studies it has been shown that wrist activity fluctuations are

also related to the circadian rhythm and to the role of the suprachiasmatic nucleus in the brain

[15, 16] that is responsible for regulating many different body functions on a 24-hour cycle.

In this paper, we present an approach for exploiting nocturnal wrist accelerometry record-

ings to identify pulse waves and heartbeats, and assess detection accuracy of individual

heartbeats. By comparing with simultaneously recorded ECGs (as part of clinical PSG), we

demonstrate that accelerometry could help assessing sleep-related changes not only in heart

rate but also in heart rate variability (HRV), including measures that rely on changes between

neighboring inter-beat intervals. In Section 2, we summarize previous efforts to derive heart

activity without electrodes. In Section 3, we describe our database and present the methods

and data processing approaches. Section 4 reports our results including the achieved heartbeat

detection reliability, statistics for pulse transit times, and influences of respiration on pulse

wave intervals, including age dependences. We conclude in Section 5.

2 Alternative approaches for assessing heart activity

Besides the ECG as gold standard for heart rate and HRV measurements [17], there are several

other methods to detect heartbeats not requiring electrodes attached to the body.

Plethysmography

A common approach for measuring pulse waves is photoplethysmography. It relies on the

propagation of pulse waves throughout the body. During heart contraction, blood is pumped

into the arteries, creating a pressure (“pulse”) wave. The velocity and shape of the pulse wave

depend mainly on arterial stiffness that is affected by age, physical fitness, heart rate, body

height, and gender [18]. According to O’Rourke et al. [18], the ideal aortic pulse wave profile is

described as “sharp upstroke, straight rise to the first systolic peak, a definite sharp incisura,

and near exponential pressure decay in late diastole”. With the pulse waves’ propagation to the

periphery, the systolic pressure increases, while diastolic and mean pressures decrease due to

increased arterial stiffness and incoming reflected pulse waves [19]. Pulse wave measurements

on the wrist typically show wave profiles that are a superposition of three waves: an incident

wave due to blood flow as well as two reflected waves from the hand and from the lower body,

respectively [19, 20]. In plethysmography the pulse wave is recorded by light reflexion and

light absorption [21]. We refer to [22] for an early application of using pulse wave intervals

from plethysmography to study cardiac dynamics and investigate HRV during rest and exer-

cise without ECG electrodes.

Detection and analysis of pulse waves during sleep via wrist-worn actigraphy
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Seismocardiography

Recording chest wall motion via radar-facilitated distance measurements is a possible but

rather intricate approach [23]. Another not frequently used method is seismocardiography,

where acceleration sensors placed on the chest wall measure the vibrations caused by heart-

beats [24]. With higher resolution of acceleration sensors this technique became more interest-

ing in the last years [25–27]. Seismocardiography is closely related to ballistocardiography, a

method which measures whole body motions (or vibrations) caused by the heartbeat. Sensors

are commonly placed on the chair or bed of the subject [26]. Seismocardiography and ballisto-

cardiography are often used as synonyms.

Measurements of seismocardiography not only detect heartbeats but also respiratory activ-

ity. Beside respiration (< 1 Hz), low frequency (0.6 to 5 Hz) chest wall motions related with

heart muscle contraction and high frequency (> 5 Hz) chest wall vibrations related with acous-

tic waves of the valve closing are measured [25, 28]. Both signals can be used to detect respira-

tion and heartbeats [29].

Accelerometry

In spectral analysis of nocturnal wrist-worn acceleration measurements also two distinct peaks

have been identified [6]. As shown in Fig 1, there is a rather narrow peak at� 0.3 Hz reflecting

respiratory activity and a much broader peak around 10 Hz, which we somewhat incorrectly

coined “tremor peak” in the original publication. Both peaks are most pronounced if the

variations of acceleration are at an intermediate level for the nocturnal recording, i.e., there is

neither strong motion activity (often corresponding to wakefulness episodes or turns, Fig 1

Fig 1. Spectral intensity of wrist acceleration during different levels of motion activity. Periodograms are shown

for five exponentially increasing acceleration variance thresholds (black: smallest threshold; magenta: largest

threshold). Peaks related with respiratory motion (at� 0.3 Hz) and pulse waves (at� 6 − 10 Hz) are most clearly

visible for intermediate acceleration variance levels (red and green curves) (after [6]).

https://doi.org/10.1371/journal.pone.0226843.g001
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magenta curve), nor hardly any motion at all (probably corresponding to time intervals when

the arm is practically fixed between other body parts and the bed; Fig 1 black curve). Hence,

when exploiting these peaks, we cannot expect to get reliable data at all times, but only when

there is an intermediate level of total acceleration variations.

Looking closer at the high-frequency (� 10 Hz) peak, we have recently identified the main

reason for its broadness—the corresponding oscillation is strongly damped, being triggered

approximately each second, but then decaying within� 0.2 s. By comparing with a simulta-

neously recorded ECG, the origin of this “tremor peak” finally became clear to us—it is

caused by the pulse wave transversing the subject’s wrist shortly after the heartbeat and proba-

bly triggering a short wiggling of the wrist and/or the recording device attached to it. These

high frequency vibrations in the wrist caused by the arrival of the pulse wave have some anal-

ogy to the above mentioned high frequency chest wall vibrations (> 5 Hz) as detected by

seismocardiography.

3 Materials and methods

Measurements

All sleep recordings were performed at the clinical sleep laboratory of the Charité-Universitäts-

medizin Berlin, Germany, between April 2017 and December 2018. The study was approved

by the ethics committee of the Charité-Universitätsmedizin Berlin and registered at the Ger-

man Clinical Trial Register (DRKS) with ID DRKS00016908. In total, 392 subjects were

included and signed informed consent. During their first diagnostic night at the sleep labora-

tory, all subjects wore a SOMNOwatch™ plus device, recording simultaneously 3d wrist accel-

eration of the non-dominant arm at 128 Hz sampling rate and a one channel ECG at 256 Hz.

Furthermore, full PSG (including electroencephalography (EEG), electrooculography (EOG),

electromyography (EMG), ECG, respiratory effort, etc.) was recorded using either an ALICE,

an Embla1, or a SOMNOscreen™ PSG system.

Due to noisy or low quality ECG recordings, 29 subjects were excluded from further analy-

sis. The final 363 subjects (180 females, 183 males), aged between 18 and 80 years (mean

50.1 ± 13.7 years) with average body mass index 28.0 ± 5.8 kg/m2, had an average time in bed

(TiB) of 7.6 ± 0.8 h. All subjects were reffered to the sleep laboratory with complaints and an

indication to test for sleep disorders. In Table 1 we list the frequency of sleep disorders classi-

fied by ICSD-3.

Table 1. Overview of all subjects included in the analysis. Subjects with multiple diagnoses are counted in each appropriate diagnosis line, i.e., multiple times. The last

line reports data for all subjects irrespective of diagnosis. The column “duration” reports the median total duration (per subject) of all pulse wave intervals (PWI) correctly

associated with corresponding heartbeat intervals from the ECG at an accuracy limit of 0.1 s (see Methods and also Table 2). It is followed by the median fraction of cor-

rectly associated PWI and the corresponding median Pearson cross correlation r in the subsequent columns (see Results section for details).

Diagnosis females males duration cor. PWI r

No sleep disorders 19 18 1.2 h 0.82 0.89

Sleep-related breathing disorders 67 115 1.2 h 0.79 0.93

Insomnia 65 25 1.3 h 0.84 0.93

Central disorders of hypersomnolence 36 20 1.3 h 0.78 0.95

Sleep-related movement disorder 35 26 1.0 h 0.80 0.94

Parasomnias 9 7 1.0 h 0.74 0.95

Circadian rhythm sleep-wake disorders 1 9 1.7 h 0.86 0.95

Other sleep disorders 8 7 1.3 h 0.83 0.95

All subjects 180 183 1.3 h 0.81 0.94

https://doi.org/10.1371/journal.pone.0226843.t001
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Data segmentation and stationarity transform

Fig 2 shows a section of a typical nocturnal recording of a three-axis wrist accelerometer.

There are segments of nearly constant acceleration, e.g., from t = 2500 s to t� 4100 s, from t�
4200 s to t� 5250 s, etc. During such segments, the broad orientation of the wrist with respect

to the gravitational field (i.e., the vertical direction) is constant, so that all three components of

acceleration (€x, €y, and €z) represent mainly the constant projections of the gravitational acceler-

ation g0 = 9.81 m/s2 on each axis of the device. Specifically, the x axis points towards the hand,

while y and z are orthogonal to x and to each other with directions possibly changing between

the subjects and throughout the night.

Segments of nearly constant acceleration components (due to gravitational force only) are

interrupted by obvious changes of the wrist orientation with respect to the gravitational field.

In order to automatically identify such broad orientation changes, we calculated a mean ampli-

tude deviation (MAD) very similar to MAD5s introduced by Vähä-Ypyä et al. [30],

MAD1sðtÞ ¼
1

128

Xt�128Hzþ64

i¼t�128Hz� 63

jai � haiij; ð1Þ

with ai ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
€x2
i þ €y2

i þ €z2
i

p
and haii ¼ 1

128

Pt�128Hzþ64

i¼t�128Hz� 63
ai, considering non-overlapping windows

of one second here. In our cleaning procedure, all acceleration data are set to zero, if their cor-

responding MAD1s(t) values exceed the ad-hoc threshold of 5 mg (= 0.005 g0).

In the following, we refer to continuous time segments not interrupted by MAD1s values

above the 5 mg threshold as sleeping position segments (SPS). We assume that the subjects

did not change their sleeping positions without increased motion activity. In each SPS and for

each acceleration component (€xi, €yi, and €zi), we eliminated the offsets (caused by gravity) by

Fig 2. Raw acceleration signals and MAD. A typical nocturnal 100 minute part of the raw data is shown with all three

directions (€x—red, €y—green, €z—black) of the acceleration signal according to the left vertical axis. Furthermore, one-

second mean amplitude deviation (MAD) values are plotted in blue with the MAD threshold of 5 mg shown as dashed

gray line according to the right vertical axis. Time periods in which the MAD1s values are above this threshold were

labeled as a position change (i.e., change in wrist orientation, see for example the peak at 4150 s).

https://doi.org/10.1371/journal.pone.0226843.g002
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subtracting the mean values of each second. Fig 3 shows two examples for this acceleration

data preprocessing procedure. We note that a subtraction of mean values of each second

turned out to be sufficient, since—besides the stronger motions exceeding the threshold—

there are only very slowly drifting wrist orientation changes with respect to the gravitational

axis, see, e.g., Fig 2 in the range from t = 6800 s to 7200 s. The subtraction of one-second aver-

ages also turned out to be sufficient for an elimination of the slow (� 0.3 Hz) respiratory signal

often superimposed on the acceleration recordings via tiny turns of the wrist, see also Fig 4(a)

and 4(b). Approximately stationary acceleration data with zero means and only short interrup-

tions have thus been obtained in the data cleaning procedure.

Pulse wave peak (PWP) and pulse wave interval (PWI) detection

Fig 3 shows that amplitude variations of typically 10 − 40 mg remain after the acceleration data

have been cleaned. These signals often exhibit a rather periodic behavior, see Fig 4(a) and 4(b)

for details at a high temporal resolution. Note that the corresponding variations of measured

acceleration are quite small and in fact close to the resolution of the recording device, which

digitizes measurements between −6 g0 and +6 g0 at 12 bits, yielding a resolution of 2.9 mg. The

small spikes at an approximate periodicity somewhat below one second already look like indi-

cations of heartbeats. Most probably, pulse wave propagations through the wrist lead to tiny

turns of the wrist with respect to the vertical (gravitational) axis, resulting in changes of the

gravitation vector projections on the axes of the acceleration recording device.

In the next step, for a better identification of the pulse wave events, we applied a fast Fourier

transform (FFT) based band pass filter with a lower cutoff at 5 Hz and an upper cutoff at 14 Hz

Fig 3. Raw and cleaned acceleration data. The upper panel shows raw acceleration data (€x—red, €y—green, €z—black)

during two parts of a recording. A weak steady trend appears in the €y component on the left hand side, and a wrist

position change appears at time 4150 s on the right hand side (as already mentioned in Fig 2). The lower panel shows a

magnification of the cleaned data in both parts, with constant offsets and slow trends removed. All acceleration data

with their corresponding MAD1s values above the MAD threshold were set to zero. The data for €y and €z have been

shifted upwards by multiples of 50 mg for visibility.

https://doi.org/10.1371/journal.pone.0226843.g003
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to the data of each axis. We have empirically optimized these cutoff frequencies by studying

acceleration data of many subjects. A typical result is shown in Fig 4(c), gray line. For a reliable

identification of the pulse wave-related peaks we then applied a Hilbert transform [31] to the

cleaned and band-pass filtered acceleration data ~ai of each axis to supplement the original sig-

nal with an imaginary part and calculate the instantaneous amplitudes A(t) in an analytic sig-

nal approach,

~aðtÞ þ iHT½~aðtÞ� ¼ AðtÞ exp½iφðtÞ�; ð2Þ

(Fig 4(c), green line). Among the first applications of this approach to physiological dynamics

are the works of Ivanov et al. who used Hilbert transform to detect the amplitude of heart rate

variability fluctuations [32, 33].

Finally, a peak detection algorithm was used to identify candidate peaks in these pseudo

pulse wave time series (Fig 4(c) red dots). Specifically, a local maximum of the time series was

accepted as the next pulse wave peak candidate if it exceeded an ad-hoc threshold of 2.9 mg

and has a minimum distance to the previous accepted peak of 0.5 s. Note that, in analogy to R

peak detection from ECGs, we refer to the peaks as pulse wave peaks (PWP) and to the time

intervals between them as pulse wave intervals (PWI). We also note that PWP are not real

pulse (pressure) wave peaks, but closely related to them. Fig 4(d) shows that each detected

PWP is clearly associated with an R peak of the simultaneously recorded ECG. The Figure also

demonstrates the delay of the PWP with respect to the R peaks caused by pulse wave transit

time (PTT) from the heart to the wrist.

Fig 4. Reconstruction of pulse waves from acceleration data. In (a) and (b) the raw (red) and cleaned (blue) x-axis

acceleration data from a typical recording is shown for ten seconds. Panel (c) shows the signal after the 5-14 Hz FFT-

bandpass-filtering (gray), the absolute of the Hilbert transform (green), and the results of the peak detection (red dots).

In (d) the ECG-signal (black) is presented and compared to the pulse wave peak (red vertical lines). Please also note the

impact of respiration in panel (a) leading to a modulation of the acceleration data with a period of about 4 s. These

modulations are removed in panel (b) by subtracting one-second averages.

https://doi.org/10.1371/journal.pone.0226843.g004
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Having three time series of candidate PWP (from each accelerometer axis) we have to select

the best position estimate for each pulse wave. Fig 5 shows that—in this case—the x axis (part

(a)) yields the most consistent PWP positions with respect to the R peaks in the ECG. How-

ever, in order to select candidate PWP without assessing ECG signals, we defined two criteria

to choose—for each SPS—the best acceleration axis. Firstly, the plausibility of the candidate

PWP was checked by calculating average pulse rate, requiring a value of at least 40 beats per

minute for a plausible signal. If no signal was plausible, the considered SPS has not been used

for further analysis. Secondly, if two or all three signals passed the first test, we applied a self-

consistency check. Specifically, we calculated auto-correlation functions for the Hilbert ampli-

tude signals and chose the axis with the highest auto-correlation peak in the range from 0.4 s

to 1.5 s (40 beats/min to 150 beats/min).

In the final step, we calculated the PWI. In analogy with similar approaches for checking

the validity of detected R peaks in an ECG, the duration of each PWI must either be between

0.7 s and 1.5 s (corresponding to instantaneous values of 40 beats/min to 86 beats/min) or in

the range of ± 30 percent of the previous PWI. Furthermore, we accepted only uninterrupted

sequences of at least 20 PWI, thereby excluding very short SPS. This way we obtained time

series of PWI comparable to RR-interval (RRI) time series. For comparing the two types of

time series, we have calculated mean heart rate and the following two standard parameters of

HRV [17]: standard deviation of normal-normal intervals (SDNN) and root mean square of

successive differences (RMSSD).

To derive RRI time series from ECG, these data were processed with the software LibRasch

[34]. We visually verified and manually checked QRS classifications (normal, ventricular

Fig 5. Selection of best axis for pulse wave reconstruction. The bandpass-filtered acceleration signals (gray), the

corresponding Hilbert amplitudes (green) and the automatically identified candidate pulse wave peaks (red) are

compared with the ECG (black) for all three axes of acceleration for another typical ten-second section of the

recordings. Clearly, the detection reliability differs between the axes; in this case the best choice for beat detection is the

x axis shown in panel (a).

https://doi.org/10.1371/journal.pone.0226843.g005
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ectopic, and supra-ventricular ectopic) and corrected them if necessary. Noisy parts where no

QRS detection was possible were manually marked and excluded from further analysis.

Comparison of PWI and RRI

Due to the transition time between each heartbeat and the arrival of the pulse wave at the

wrist, a direct comparison of R peaks and PWP is not appropriate. Hence, we compared RRI

and PWI, defining their temporal positions as the middle of each interval. A PWI matches an

RRI if its position is within 0.0 to 0.3 s after the RRI’s position. Note that the empirical value of

this threshold is post-hoc justified by the distribution of PTT we observe in Fig 9. A matching

PWI is considered as correct, if its value is less than 0.1 s smaller or larger than the correspond-

ing RRI (accuracy limit). This accuracy limit has been varied to check for its effects on the

results (see Table 2 below).

4 Results and discussion

Reliability of reconstructed pulse wave intervals (PWI)

As described in the method section, we have reconstructed PWI from wrist accelerometry

time series independent of the ECG. In our 363 datasets we were able to reconstruct PWI dur-

ing 25.7 percent of the total recording time (in the sleep laboratory), which corresponds to an

average duration of 1.7 h per subject.

Fig 6 shows a direct comparison of tachograms of PWI and RRI derived from the simulta-

neous acceleration and ECG recordings of two subjects. A very close match between the two

curves can be seen, although one ventricular heartbeat in (a) is not correctly identified by the

pulse wave analysis, and there seems to be an increased high-frequency (HF) component in

the PWI data.

In total, 80.9 percent of the detected PWI could be correctly associated with RRI at an

accuracy limit of 0.1 s. In terms of time, 1.3 hours of correct PWI were detected per night.

Table 2 reports median values and inter-quartile ranges regarding the achieved levels of cor-

rectness for the reconstructed PWI also for smaller and larger accuracy limits (see Methods

subsection on Comparison of PWI and RRI above). We find that the results do not strongly

depend on this accuracy limit, since the fraction of correctly reconstructed and associated

PWI varies only between 0.73 and 0.88 for a broad variation of the limit from 0.05 s to 0.25 s

(Table 2). In particular, increasing the limit from 0.2 s to 0.25 s does not change this frac-

tion. Since most correctly detected PWI differ from the RRI by less than 0.05 s (1.2 h total

time per subject) and doubling or tripling the limit increases this total time only by 0.1 h

and 0.2 h, respectively, we conclude that an accuracy limit of 0.1 s is appropriate for a fair

comparison.

Table 2. PWI reconstruction correctness for different accuracy limits. Results are shown for five different maximally

accepted differences between RRI and PWI (accuracy limits). The column “time” reports the median total duration of

all PWI that are correctly associated with RRI (per subject). As in Table 1, it is followed by the fraction of correctly asso-

ciated PWI and the corresponding Pearson cross correlation r. Values are median [0.25 quantile; 0.75 quantile].

accuracy limit time correct PWI r

0.05 s 1.2 [0.4; 2.1] h 0.73 [0.61; 0.83] 0.96 [0.93; 0.98]

0.10 s 1.3 [0.5; 2.3] h 0.81 [0.69; 0.89] 0.94 [0.88; 0.96]

0.15 s 1.4 [0.5; 2.4] h 0.84 [0.74; 0.91] 0.89 [0.82; 0.94]

0.20 s 1.4 [0.5; 2.4] h 0.88 [0.77; 0.94] 0.85 [0.77; 0.91]

0.25 s 1.4 [0.5; 2.4] h 0.88 [0.77; 0.94] 0.83 [0.74; 0.90]

https://doi.org/10.1371/journal.pone.0226843.t002

Detection and analysis of pulse waves during sleep via wrist-worn actigraphy

PLOS ONE | https://doi.org/10.1371/journal.pone.0226843 December 31, 2019 9 / 18

29



At the 0.1 s accuracy limit, the Pearson cross-correlation coefficient r between the values of

reconstructed PWI and correctly associated RRI is quite large, r = 0.94. Note, that r can only

be calculated with respect to the PWI correctly associated with RRI. As expected, it decreases

somewhat with larger accuracy limits as more and more PWI are included. However, r = 0.85

at the 0.2 s limit is still very good. Note that r is based on only 351 datasets (instead of 363),

since no correct PWI were detected in 12 datasets. In addition, the different ICSD-3 diagnoses

of the subjects have little effect upon our results as shown in the last two columns of Table 1.

Next we want to check the variation of the PWI detection performance of our algorithm

across all 363 subjects. Fig 7 shows histograms for the total time of detected PWI in each sub-

ject and the fraction of correctly reconstructed and associated PWI. Although we have 74

datasets with less than 30 minutes of usable acceleration signals, most recordings—233 data-

sets—yield reconstructed PWI totaling between 30 minutes and 3.5 hours. In five datasets,

we could detect PWI for more than 5.5 hours. The histogram for the fraction of correctly

reconstructed and associated PWI (Fig 7(b)) has a small peak at 0 to 10 percent (15 datasets),

which includes 12 recordings without any correctly detected PWI, and rises to a maximum

at 80 to 90 percent correct detection. In 216 datasets more than 80 percent of the detected

PWI were correct.

These percentages hardly depend on the age of the subjects. No systematic differences

between three age groups of approximately equal size (see Table 3) can be observed when com-

paring the corresponding histograms for each color in Fig 7. This indicates that the reconstruc-

tion of pulse waves from wrist actigraphy as presented in this paper does not depend on age.

Furthermore, the results in Table 3 show that there is no systematic age dependence in the

PWI algorithm selection of particular orientation axes. Across all age groups, the y axis

Fig 6. Comparison of tachograms from RRI and PWI. In these two examples from different subjects, RRI derived

from the ECG (black) and PWI independently derived from wrist accelerometry (red) are plotted versus time. All

detected PWP and all R peaks were used; the PWI are strongly correlated with RRI. However, unexpected heartbeat

events, as for example the premature beat at t = 120 s in (a), are not present in the PWI signal.

https://doi.org/10.1371/journal.pone.0226843.g006
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acceleration data is selected most frequently for the PWI detection, followed by the z axis data.

The x axis, pointing towards the hand, is only quite rarely selected.

Estimation of heart rate and HRV parameters from PWI

Table 4 compares heart rates and two standard HRV parameters [17] across all three steps of

our PWI-RRI matching procedure. Clearly, the effect on resulting mean heart rate is minimal.

In addition, there seems to be only little selection bias regarding correctly reconstructed and

not reconstructed heartbeats, since the SDNN and RMSSD values for the matched RRI subset

are close to the values for the whole (nocturnal) RRI time series. Furthermore, the results for

Fig 7. Histograms for total PWI duration and correctness of PWI identification. (a) Histogram of total duration of all detected PWI for each

night; (b) histogram of fraction of correctly reconstructed and associated PWI (as compared to RRI from ECG) for each night. No clear

differences between the three age groups (see Table 3) can be seen.

https://doi.org/10.1371/journal.pone.0226843.g007

Table 3. Age dependence of SDNN and RMSSD and origin of matched PWI. For three similarly sized age groups the

fractions of matched PWI derived from each of the three accelerometer axes are reported, showing the y axis data is

used for more than half of all PWI correctly associated with RRI. The mean values of the HRV parameters SDNN and

RMSSD and the mean PTT as derived from matched RRI and PWI are shown for comparison with literature [35, 39].

Regarding SDNN and RMSSD, all differences between the young age group and the other two groups are highly signifi-

cant (p� 0.002), while no significant differences occur between the intermediate and the elderly group. The results

indicate that the reduction in SDNN and RMSSD with age is similar in RRI (as derived from the ECG) and PWI (as

reconstructed through wrist actigraphy). The differences between the mean PPT values of the young group and the

other two groups are weak but still highly significant (p = 0.004 and p< 0.001, respectively), but also not significant

between the intermediate and the elderly group.

age range 18-45 y 46-56 y 57-80 y

number of subjects 117 114 120

fraction for x axis 0.13 0.15 0.09

fraction for y axis 0.51 0.53 0.52

fraction for z axis 0.35 0.32 0.39

SDNN from RRI 78.5 ms 65.9 ms 65.7 ms

SDNN from PWI 83.5 ms 72.6 ms 72.3 ms

RMSSD from RRI 54.5 ms 39.8 ms 39.5 ms

RMSSD from PWI 71.9 ms 61.6 ms 61.7 ms

mean PTT 216.9 ms 206.7 ms 200.7 ms

https://doi.org/10.1371/journal.pone.0226843.t003
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the matched PWI closely resemble those for the whole RRI time series. On the other hand,

SDNN and in particular RMSSD would be a bit overestimated if no ECGs were available for

comparison and these parameters were calculated from all accelerometer-detected PWI (bot-

tom row in Table 4). However, as will be shown below in the results section on the influence

of respiration, this cannot be regarded as a problem of our approach, since indeed SDNN and

RMSSD are increased by influences of respiratory activity on pulse transit times.

Fig 8 shows Bland-Altman plots as a detailed comparison between the SDNN and RMSSD

values derived from RRI and PWI for each subject. Except for six outliers SDNNPWI is larger

than SDNNRRI (Fig 8(a)). We can see a slight linear trend in the Bland-Altman plot with a

Pearson correlation coefficient of 0.53, since the difference between SDNNPWI and SDNNRRI

decreases with higher SDNN. In Fig 8(b) and 8(c) we compared the values of RMSSD, which

is a common HRV parameter to estimate parasympatic activity [17]. Furthermore, RMSSD

is independent of sleep stages [35]. In nearly all subjects RMSSDPWI is clearly larger than

RMSSDRRI; the average difference is approximately equal to two standard deviations. This

relation holds for both, associated RRI and PWI (Fig 8(b)) and all RRI and PWI (Fig 8(c)),

although the difference is much larger in the second case (see also Table 4). The subjects of the

three outliers in panel (b) are a subgroup of the six outliers in the SDNN plot (Fig 8(a)). We

also see a slight linear trend in the Bland-Altman plot of RMSSD for associated RRI and PWI

with a Pearson correlation coefficient of 0.46 (Fig 8(b)), but no clear trend for all RRI and PWI

with a Pearson correlation coefficient 0.005 (Fig 8(c)).

The colored symbols in Fig 8, corresponding to the results of the three age groups (see

Table 3), show no systematic dependence on age, supporting the conclusion from Fig 7 that

our reconstruction of PWI from wrist actigraphy does not depend on age. Furthermore, the

mean SDNN and RMSSD values listed in Table 3 for each of the three groups show that the

reduction of SDNN and RMSSD with age reported by Schmitt et al. [35] similarly occurs for

the HRV parameters derived from RRI and PWI, although their absolute values are different.

Apparently, the decrease occurs before the age of approximately 40−50 years, since our results

for the last two age groups (46−56 and 57−80 years, respectively) are practically identical.

We note that a recent work also used wrist accelerometry in the frequency range from 4

to 11 Hz to estimate heart rates [36]. However, the study focused on average heart rate (and

breathing rate) in intervals of 20 s as determined via spectral analysis, not trying to identify

individual heartbeats or beat-to-beat intervals. Besides that, it was limited to 32 h of sleep

data from three subjects and 72 minutes of daytime data from twelve subjects. Another

recent study determined the average heart rates in 15 subjects using wrist accelerometry [37],

reporting an average deviation of 1.6 percent with respect to heart rate from a pulse-oximeter

attached to the index finger. This deviation is comparable to the deviation of 0.9 percent

we observe between the mean heart rate for all RRI and the PWI-based estimate (Table 4).

Another paper from the same group reported that heart rate can be most reliably estimated

Table 4. Comparison of heart rate and HRV parameters from RRI and PWI. We calculated mean heart rate, SDNN,

and RMSSD for (i) all RRI detected in the ECGs, (ii) all RRI associated with PWI (at an accuracy limit of 0.1 s, see

Table 2), (iii) all PWI associated with RRI, and (iv) the total set of all detected PWI. Group averages over 351 subjects

with detected PWIs are presented.

mean heart rate SDNN RMSSD

all RRI 65.1 1/min 93 ms 52 ms

matched RRI 64.4 1/min 70 ms 45 ms

matched PWI 64.4 1/min 76 ms 65 ms

all PWI 64.4 1/min 115 ms 138 ms

https://doi.org/10.1371/journal.pone.0226843.t004
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Fig 8. Bland-Altman plots of SDNN and RMSSD. The plots show that SDNN and RMSSD values derived from PWI

are larger than those derived in the standard way from RRI for nearly all 351 subjects. There are only six outliers for (a)

SDNN comparing associated RRI and PWI, three for (b) RMSSD comparing associated RRI and PWI, and eight for (c)

RMSSD comparing all RRI and all PWI. In panel (c), one extreme outlier for a subject with 16 percent of ectopic beats

and RMSSDall RRI = 377 ms, RMSSDall PWI = 163 ms does not appear in the plot. No clear differences between the three

age groups (see Table 3) can be seen.

https://doi.org/10.1371/journal.pone.0226843.g008
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via accelerometry, if the sensor is attached to the subjects’ upper forearm or the subjects’ belly

[38].

Pulse transit times (PTT)

In addition to heartbeat estimation, accelerometer-detected PWP can be used to calculate the

time delay between heart beats and PWP, better known as pulse transit time (PTT), if an ECG

is simultaneously recorded. The histogram of the mean PTT values in all subjects is shown in

Fig 9(a). On average we estimated a PTT of 207 ± 26 ms. This result as well as its range agree

with literature [39]. However, PTT values in young subjects seem to be a bit longer than those

in the elderly, since a slight difference between the young group and the other two groups can

be seen in Fig 9(a) and leads to significantly different means as reported in Table 3. Fig 9(b)

shows that the standard deviation of PTT values in each subject (the temporal PTT variation)

is distributed around 42 ms and thus comparable with the inter-subject PTT variation.

We think that time series of PTT derived this way could be used in a similar way as ECG-

derived RRI are used for studies of HRV, see, e.g., [40]. However, further research will be

needed to identify useful PTT-based parameters comparable to the standard HRV parameters.

Besides, PTT measurements were suggested to be used as an estimate for continuous blood

pressure recording during sleep [41].

Influence of respiration on PWI

In this subsection, we want to address the reason for the increased values of SDNN and partic-

ularly RMSSD as observed when calculating these HRV parameters from acceleration-derived

PWI instead of ECG-derived RRI (Tables 3 and 4). It has been known since 1860 that respira-

tion modulates heartbeat frequency, a phenomenon called respiratory sinus arrhythmia (RSA)

[42]. A closer look at the tachograms of both RRI and PWI data (Fig 10) clearly shows these

periodic oscillations due to RSA. It can also be seen that PWI yield larger variations than RRI

suggesting a stronger respiration related modulation.

In order to investigate this observation in greater detail, we compared the power spectra of

RRI and PWI time series. We selected all uninterrupted episodes of detected PWI of at least

Fig 9. Histograms of mean PTT and its standard deviation. Histograms of average PTT defined as the time delay between ECG R peak and

the associated PWP, as well as the corresponding standard deviations of the reconstructed PTT intervals. Data of 351 subjects is presented

distinguishing three age groups (see Table 3); no PWP were detected in 12 subjects.

https://doi.org/10.1371/journal.pone.0226843.g009
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five minutes duration and calculated the spectra via FFT. Fig 11 shows average power spectra

of at least ten five-minute intervals for six typical subjects. Respiration frequency normally lies

in the LF band of HRV, between 0.15 and 0.4 Hz [17], see also [43]. The spectra in Fig 11(a)

and 11(b) exhibit a high and broad respiratory peak in both, RRI and PWI. The amplitude of

the respiratory peak is considerably higher for PWI than for RRI especially in Fig 11(a). But

also in Fig 11(c) to 11(e) higher respiratory peaks appear for PWI compared with RRI. Besides

this difference the spectra are very similar for both types of intervals. In Fig 11(f) data from a

subject with low RSA is presented. We conclude that respiration tends to modulate PWI stron-

ger than RRI.

Fig 10. Tachogram of respiratory sinus arrhythmia. This plot shows how RRI (black) and PWI (red) follow

oscillations due to respiratory sinus arrhythmia.

https://doi.org/10.1371/journal.pone.0226843.g010

Fig 11. Spectral analysis of PWI and RRI time series. The spectra of PWI data (red) and RRI data (black) are shown

for six subjects. In all cases except for (f), the peak in the (respiratory) HF band (0.15 to 0.4 Hz) is increased in the

PWI-based spectra.

https://doi.org/10.1371/journal.pone.0226843.g011
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Conclusion

Although further development, optimization, and validation is necessary, our work represents

a novel approach for obtaining long-term nocturnal heartbeat interval time series without the

need of ECG recordings (involving electrodes). This could create the possibility to reliably

asses heart rate and HRV in large cohort studies solely through accelerometers already used

for actigraphy measurements (to characterize activity and sleep patterns). Moreover, our

approach could be used to improve plethysmogram-based techniques for measuring heart-

beats at the wrist, as currently done in smart watches.

In physiological terms, we show that respiration affects pulse wave velocity in such a way

that the respiratory sinus arrhythmia of pulse wave intervals is increased compared with

the modulation of RR intervals. However, further research is needed to identify whether the

underlying mechanism of increased RSA in PWI is more related to blood pressure modula-

tions or to arterial stiffness modulations.
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3.3. Publication: Respiration reconstruction

3.3 Publication: Respiration reconstruction

About this publication. The publication “Reconstruction of the respiratory signal
through ECG and wrist accelerometer data” compares several methods to estimate
respiration during sleep. As reference signal for respiration the nasal flow was used.
The comparison was mainly based on PSI [67], but also breaths per minute in epochs
of 30 seconds were calculated and compared.
First, established ECG features (ECG baseline, amplitude and frequency change) to
derive respiration were analyzed, which have been used successfully in the past [68].
Second, respiration movements, extracted from accelerometry data, are investigated.
In detail, we used each axis of the accelerometer separately (x, y and z), and derived
two angles, ϕ and θ, as combination of the three axis. ϕ corresponds to a rotation of
the wrist around the radius-to-ulna axis2 and θ represents a turning angle with respect
to the elbow. All five channels are pre-filtered to extract the respiration motion and
its phase, as indicated in Fig. 3.1 and 3.2.
It can be shown that accelerometry data are more reliable in reconstructing respira-
tion, than the ECG features, with respect to the PSI.
In addition, to see differences between the reconstructions, the PSIs between re-
constructed signals were analyzed. The acceleration channels show more similarity
between each other than the ECG features.
Comparing the influence of the nocturnal hours, e.g. 1 am to 2 am with 3 am to 4
am, an influence on the reconstruction is barely seen.
In general, the reconstruction of respiration via wrist accelerometry yields promising
results and opens new possibilities, while movement artifacts and the restriction to
sleep are still limiting factors.
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2Rotation around the axis of the forearm.
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Reconstruction of the respiratory 
signal through ECG and wrist 
accelerometer data
Julian Leube1, Johannes Zschocke1,2, Maria Kluge3, Luise Pelikan3, Antonia Graf3, 
Martin Glos3, Alexander Müller4, Ronny P. Bartsch5, Thomas Penzel3,6 & Jan W. Kantelhardt1*

Respiratory rate and changes in respiratory activity provide important markers of health and 
fitness. Assessing the breathing signal without direct respiratory sensors can be very helpful in large 
cohort studies and for screening purposes. In this paper, we demonstrate that long-term nocturnal 
acceleration measurements from the wrist yield significantly better respiration proxies than four 
standard approaches of ECG (electrocardiogram) derived respiration. We validate our approach by 
comparison with flow-derived respiration as standard reference signal, studying the full-night data 
of 223 subjects in a clinical sleep laboratory. Specifically, we find that phase synchronization indices 
between respiration proxies and the flow signal are large for five suggested acceleration-derived 
proxies with γ = 0.55± 0.13 for males and 0.58± 0.14 for females (means ± standard deviations), 
while ECG-derived proxies yield only γ = 0.36± 0.16 for males and 0.39± 0.14 for females. Similarly, 
respiratory rates can be determined more precisely by wrist-worn acceleration devices compared 
with a derivation from the ECG. As limitation we must mention that acceleration-derived respiration 
proxies are only available during episodes of non-physical activity (especially during sleep).

There is substantial evidence that deviations of the respiratory rate from its normal behavior can be used as a 
predictor of clinically relevant and potentially fatal events and conditions (see, e.g., the very recent review paper 
by Liu et al.1 and references therein), although the relevance of respiratory rate has long been overlooked in 
clinical setting2 and other fields3. For example, spontaneous breathing rates below six breath per minute (bpm) 
was prospectively shown to be a stronger predictor of subsequent in-hospital mortality than abnormal heart 
rate, hypertension or the decrease (or loss) of consciousness4. In a very recent study of non-invasive risk assess-
ment for cardiac patients, abnormally high respiratory rate ( > 18.6 bpm ) and low expiration-triggered sinus 
arrhythmia turned out to be among the three most sensitive early risk indicators as components of the Polyscore 
index5; previous work also demonstrated the importance of respiratory rate for cardiac patients6,7. Therefore, it is 
appropriate to include measurements of respiratory rate and the influence of respiration activity on the heart in 
large cohort studies that aim at identifying early indicators for health risks and to study effects of healthy aging8,9.

Although many methods and technologies for the measurement of respiratory rate and the identification of 
breathing intervals have been suggested over the past decades1,10,11, there is still a need for inexpensive, reliable, 
and non-obtrusive sensors. In order to assess respiratory behavior in large epidemiological cohort studies with 
many thousands of participants from the general population, the handling of the measurement technology 
should be as easy as possible with a minimum of additional costs. The derivation of respiration proxies from the 
recordings of devices already used in such studies are thus particularly valuable. An important approach in this 
regard is exploiting the respiratory modulation of other physiological signals, such as the electrocardiogram 
(ECG) often registered in long-term (Holter) recordings for 24 h1,12–14 or during sleep studies15. ECG amplitude 
and baseline as well as frequency are modulated by respiration via motions of the heart axis and respiratory sinus 
arrhythmia (RSA), respectively, leading to more than a dozen of respiration proxies12.
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In addition, similar proxies can be derived from the photoplethysmogram (PPG)16,17, with best signals 
recorded at the forehead and the finger for normal and deep breathing pattern, respectively18. In a systematic 
comparison study, feature-based techniques in the time domain turned out to be generally superior to filter-
based techniques and techniques in the frequency domain1,12. In addition, feature-based time-domain techniques 
facilitate the determination of the individual breathing intervals (instead of a mere breathing rate), and they are 
more useful for studying the data of patients with possibly irregular breathing (e.g., due to apneas) or extremely 
low or high breathing rates.

A few approaches tried a fusion of ECG or PPG derived respiration with respiration proxies from accelerom-
eter and gyroscope data19–21. Accelerometer-based methods for measuring breathing-related movements have 
been roughly validated22–24. However, mainly accelerometers and gyroscopes, appropriately positioned over the 
diaphragm1, the dome-shaped skeletal muscle of the thoracic cavity25 (or the chest wall11), as well as the forehead26 
have been considered, so that an additional sensor is needed in these efforts.

In this paper we propose and validate an approach for extracting proxy signals for respiratory events from 
wrist accelerometer data. Wrist accelerometers are often employed in large cohort studies for the purpose of 
activity/inactivity tracking as well as sleep/wake identification of the subjects. No cables nor obtrusive sensors 
are needed, since a wrist accelerometer is worn like a common wrist watch. There are a few previous studies on 
wrist accelerometer data10,26,27 that focus on estimating mean respiratory rate using spectral techniques.

Results
Here, we present our results for respiratory proxies derived from wrist accelerometer data. Specifically, we con-
sider the instantaneous respiratory phases and respiratory rates derived from acceleration recorded for all three 
perpendicular axes (x, y, and z) on the non-dominant arm of 223 subjects. For details, we refer to the “Methods” 
section and Tables 1 and 2, in particular. In addition to the proxies Accx , Accy , and Accz for the normal axes, we 
have studied data for the corresponding rotational angles ϑ and ϕ of the wrists.

In order to relate with previous literature, we compare our results with respiratory proxies derived from ECG 
recordings. Specifically, we have considered the following four previously established ECG-derived proxies of 
respiration: averages of maximum and minimum of QRS complex (B1), differences of maximum and minimum 
of QRS complex [B2, also commonly referred to as ECG-derived respiration (EDR)], duration of RR intervals 
(B3), and maxima of QRS complex (B5), see also Table 1 and “Methods” section. We have selected these four 
proxies based on their superior performance in a previous study13.

Table 1.   List of respiration proxies considered in this work; see “Methods” section below for the description of 
the signals and particularly Fig. 6 for wrist acceleration measurements.

Measure Description

Accx Wrist acceleration in longitudinal direction (in mg)

Accy Wrist acceleration in lateral direction (in mg)

Accz Wrist acceleration in lateral direction (in mg)

ϑ rotational angle of the wrist (in rad)

ϕ rotational angle of the wrist (in rad)

B1 Average of maximum and minimum of QRS complex (in µV)

B2 (EDR) Difference of maximum and minimum of QRS complex (in µV)

B3 Duration of RR interval (in ms)

B5 Maximum of QRS complex (in µV)

Table 2.   Overview of all subjects included in the analysis. Subjects with multiple diagnoses are counted in 
each appropriate diagnosis line, i.e., multiple times. The last line reports data for all subjects irrespective of 
diagnosis.

Diagnosis Females Males

No diagnosed sleep disorder 5 6

Sleep-related breathing disorders (SRBD) 42 69

Insomnia 29 15

Central disorders of hypersomnolence 25 16

Sleep-related movement disorder 20 11

Parasomnias 6 5

Circadian rhythm sleep-wake disorders 0 6

Other sleep disorders 5 7

All subjects 110 113
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Phase synchronization.  Figure 1 shows a boxplot of the phase synchronization indices γ [Eq. (5)] for all 
considered respiration proxies (see Table 1) compared to flow as the respiration standard signal, including the 
results for all 223 subjects (see Table 2). Although many previous works focused on EDR proxies (see “Meth-
ods”), we found that all wrist acceleration proxies perform significantly better (t-tests: p < 0.001 ). The rotational 
angles ϕ and ϑ performed best with averages γ = 0.55± 0.13 ( 0.58± 0.14 ) and 0.55± 0.13 ( 0.58± 0.15 ) for 
males (females), respectively (mean ± standard deviation). Accx ( γ = 0.55± 0.13 and 0.58± 0.15 for males 
and females, respectively), Accy ( γ = 0.53± 0.13 and 0.56± 0.13 ), and Accz ( γ = 0.53± 0.13 and 0.58± 0.15 ) 
also achieved significantly larger average synchronization indices than each of the ECG-derived proxies. The 
best ECG proxies were B3 (based on RSA) with γ = 0.34± 0.12 ( 0.39± 0.14 ) and B5 with γ = 0.36± 0.12 
( 0.37± 0.18 ) for males (females). Differences between males and females were significant for Accz ( p < 0.05 ) 
and B3 ( p < 0.01).

A direct comparison of all subjects with sleep-related breathing disorders (SRBD) and all other subjects 
yielded similar results for both subgroups, although, in the SRBD subgroup, the γ values were significantly 
( p < 0.05 ) smaller for all acceleration-derived proxies and even reached p < 0.01 for ϑ and Accz . ECG-derived 
proxies B1 and B5 yielded slightly larger γ values in the SRBD subgroup ( p < 0.05 ), while differences were not 
significant for B2 and B3.

Figure 2 shows the mean values of all pairwise synchronization indices γ between the proxies and the flow. 
Clearly, all acceleration-derived proxies are quite well synchronized to each other. ϑ is very similar to Accx , 
while ϕ is similar to Accy and Accz , for example [cp. Eq. (2)]. Many ECG-derived proxies (particularly B1, B2 
and B5) are well synchronized with each other, but not so well synchronized with the recorded respiratory flow.

In Fig. 3 the phase synchronization of all proxies to the recorded flow signal is traced for several nocturnal 
hours with least wakefulness (1:00 am to 5:00 am). Overall, ϕ and Accx yielded the best synchronization, but the 
differences compared with ϑ , Accy , and Accz are tiny. It seems that the synchronization of B3 slightly increases 
with time.

Figure 4 shows the distributions of synchronization indices for all 30 s segments of all recordings. If only 
ECG-derived proxies were available for the selection, synchronization indices between 0.2 and 0.3 would be 
most common, and values above 0.9 could rarely be achieved. However, for accelerometer data derived proxies, 
synchronization indices above 0.9 turned out to be the most frequent. In fact, the distributions of γ values reached 
if all proxies are considered is not much different from the distribution achieved for acceleration-derived proxies 
only, except in the regime of γ < 0.2.

Figure 1.   Boxplot of the average synchronization between proxies and measured respiration. Phase 
synchronization indices γ according to Eq. (5) between all respiration proxies (see Table 1) and the recorded 
flow signal have been averaged over the complete sleeping period and all 223 subjects (see Table 2). The orange 
part of each box represents the values between the lower quartile and the median, and the blue part represents 
the values between the median and the upper quartile. The ends of the whiskers mark the 2.5% quantile and 
the 97.5% quantile, respectively. The total average values appear as black crosses in the boxplot along with the 
averages for male (yellow dots) and female (red dots) subjects. According to t-tests, the results for Accx , Accy , 
Accz , ϑ , and ϕ were significantly different from all other results ( p < 0.001 ), but not significantly different from 
each other. The same holds for the results regarding the ECG-derived proxies B1, B2, B3 and B5. Differences 
between males and females were marginally significant ( 0.05 > p ≥ 0.01 ) for Accx , Accy , ϕ , ϑ , and B2, and 
significant ( p < 0.01 ) for Accz and B3.
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Respiratory rates.  Figure 5 shows the differences of average respiratory rates derived from all proxies and 
the recorded flow signal. The acceleration-derived respiratory rates closely agreed with the real respiratory rate 
with average deviations between −0.38 breaths per minute (bpm, −2.6 %) for ϕ and up to + 0.32 bpm (+ 2.1%) 
for the other acceleration-derived proxies. The ECG-derived proxies generally underestimated respiratory rates 
with average deviations between −3.1 bpm and −1.5 bpm ( −21.2 to −10.4%). However, we would like to stress 
that the estimation of mean respiratory rates is not the main goal of our medically oriented approach, which 
shall also capture interruptions of respiration (apneas) as well as times with very low and high respiratory rates, 

Figure 2.   Synchronization matrix. Phase synchronization indices γ according to Eq. (5) between all pairs of 
respiration proxies (see Table 1) and the flow have been averaged over the complete sleeping period and all 223 
subjects. They are presented in a symmetrical color-coded matrix with brown indicating full synchronization 
and white indicating no synchronization—see color bar on the right.

Figure 3.   Best synchronization with flow during nocturnal hours. For each respiration proxy (see Table 1), this 
matrix shows the average phase synchronization index γ with respect to the flow signal (see color bar on the 
bottom) during the considered nocturnal hour.
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i.e., extreme events and respiratory variability. In this respect, we would like to note that significant differences 
between subjects with and without SRBD (present in the flow signal) could be identified in most acceleration-
based proxies ( Accx , Accy , ϑ , and ϕ ) and in B1, but not in B2, B3, or B5.

Figure 4.   Histogram of best achievable proxy synchronization. The histograms show the numbers of 30 s 
segments of the total data (all 223 subjects) for which a γ value in the particular interval (0.0 to 0.1, 0.1 to 0.2, 
etc.) could be achieved taking into account all proxies (green), only acceleration-derived proxies (orange), and 
only ECG-derived proxies (blue).

Figure 5.   Boxplot of average difference of respiratory rate. The differences of respiratory rates calculated 
from each respiration proxy and the measured flow signal has been averaged over all 30 s segments and all 223 
subjects. The boxes and markers correspond to those in Fig. 1. Note that ϕ yielded a slightly lower respiratory 
rate (negative difference) than the other acceleration-derived proxies. The results regarding the ECG-derived 
proxies B1, B2, and B5 were also lower. Differences between males and females were not significant.
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Discussion
In this paper, we have introduced and validated an approach for obtaining respiration proxies from nocturnal 
long-term wrist acceleration measurements from 223 clinical subjects including (but not restricted to) patients 
with various sleep-related disorders. We have shown that each of the the suggested five acceleration-derived 
proxies is significantly ( p < 0.001 ) more reliable than each of the four known standard ECG-derived respiration 
proxies, exploiting ECG baseline, amplitude, and frequency changes.

For comparison, we have considered four established ECG-derived proxies of respiration, B1, B2, B3, and B5, 
selected because of their superior performance in the study by Charlton et al.13, where 15 proxies for a recon-
struction of respiratory activity from one-channel ECGs were compared in healthy subjects. Measures B1, B2, 
and B5 are based on the varying direction of the heart axis during the respiratory cycle, leading to ECG baseline 
wander (exploited in B1 and B5) and ECG amplitude modulation (exploited in B2 and B5). B2 is also known as 
ECG-derived respiration (EDR) method and considered in many other studies, see e.g.28 B3 is based on the effects 
of RSA29 leading to ECG frequency modulation and thus also known as RSA method30. Specifically, in the study 
of Charlton et al., B2 yielded the highest median subject-specific correlation coefficients (CC) with respiratory 
activity in both, young and elderly subjects (CC = 0.76 and 0.77, respectively), B5 performed similarly well (CC 
= 0.74 and 0.76, respectively), and B1 was at the third rank for elderly subjects (CC = 0.72, versus 0.66 in the 
young). We also included the best frequency modulation based proxy B3 for comparison, although it performed 
well in young subjects only (CC = 0.66, versus 0.44 in the elderly)13.

The variation of phase synchronization values among the subjects was large for the acceleration-derived 
γ values as indicated by the widths of the box plots and their whiskers in Fig. 1. This is most probably due to 
multiple possibilities of arm placement of the subjects during sleep. While an arm lying on the chest will lead to 
an improved respiration proxy, a widely extended arm leads to weaker respiratory movements at the wrist. As 
expected, the length of the acceleration vector, r, reached a drastically lower phase synchronization index (not 
shown in Fig. 1), since the magnitude of the gravitational force does not change with respiration. Nevertheless, 
the directions of this vector in the reference frame of the wrist-fixed recording device change as respiration causes 
slight repetitive turns of the wrist1, as exploited in our other accelerometer-derived proxies. While B2 was the 
best proxy in earlier studies13, in our study all ECG-derived respiration proxies yielded similar (not significantly 
different) results.

The respiratory rate can be determined more exactly by wrist worn acceleration devices. Respiration proxies 
obtained from the data of all three accelerometer axes using a simple moving average smoothening ( Accx , Accy , 
Accz ) as well as the derived rotation angle ϑ turned out to be similarly reliable. Since the derived rotation angle 
ϕ yielded a significant deviation in the respiratory rate, we suggest not using it although the approach seemed 
very promising initially. Based on our data, our recommendation goes to Accx and ϑ.

We note that recent work on a BioWatch26 used single-axis wrist accelerometer data in the frequency domain 
from 0.13 to 0.66 Hz (corresponding to 8 and 40 breaths per minute) to estimate respiratory rates. The technique 
focused on average breathing rate in intervals of 20 s as determined via spectral analysis, not trying to identify 
individual breaths, breathing interruptions, or breath-to-breath intervals. Besides that, it was limited to 32 h of 
sleep data from three subjects and 72 mins of daytime data (sitting, standing and lying without motion) from 
twelve subjects. Another recent study determined the average respiratory rates in 15 subjects using wrist acceler-
ometer data27, reporting an average deviation of 16.6% with respect to respiratory rate from a chest band. Another 
paper from the same group reported that respiratory rate can be most reliably estimated via accelerometry, if the 
sensor is attached to the subjects’ torso or shoulders31.

As an improvement compared to BioWatch, the recently introduced SleepMonitor10 exploited wrist acceler-
ometer data recorded at 16 Hz in 30-s windows, fusing the spectrally determined respiratory rates from all three 
axes and this way obtaining results with errors about half as large as those of BioWatch. Mean absolute errors 
for the wrist-motion determined respiratory rate as compared with the chest-motion determined rate were 0.72 
and 1.08 breaths per minute for normally and disorderedly (either sleep apnea or intentional strong breathing 
variations) breathing subjects, respectively. The technique, validated with data from 70 nights of 16 subjects 
(including two subjects with sleep-disordered breathing), included a Kalman filter working with predictions of 
respiratory rate in addition to FFT filtering and did not try to capture interruptions of respiration (apneas) nor 
extreme variations of respiratory rates.

Since our approach fully works in the time domain, not involving spectral analysis, it is rather insensitive to 
non-stationarities of the recorded data and not limited to certain ranges of respiratory rate or requiring smooth 
changes of respiratory activity. Therefore, not only respiratory rate but also possibly clinically relevant extreme 
events and interruptions of respiratory activity can be assessed. Although further development, optimization, 
and validation is necessary before our approach could be clinically applied, we think our method can be used 
in its current form to derive the respiratory signal from nocturnal accelerometer recordings obtained in large 
cohort studies. Such cohorts are currently recorded in the framework of, e.g., the UK Biobank study and the 
German National Cohort (GNC) study.

Limitations.  We must certainly mention that acceleration-derived respiration proxies are available during 
episodes of non-physical activity (especially during sleep) only, while ECG-derived respiration is not limited 
in this way. We also remark that our approach for using accelerometer data as a respiratory proxy will fail in a 
zero-gravity environment, e.g. in a space station, since it requires the vertical gravitational direction as reference.
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Methods
Measurements.  All measurements took place in the sleep laboratory of the Charité-Universitätsmedizin 
Berlin, Germany, between April 2017 and December 2018. The study was approved by the ethics committee of 
the Charité-Universitätsmedizin Berlin and registered at the German Clinical Trial Register (DRKS) with ID 
DRKS00016908. All methods were performed in accordance with the relevant guidelines and regulations. In 
total, 392 subjects were included in the study after signing informed consent. During their first diagnostic night 
at the sleep laboratory, all subjects wore a SOMNOwatch  plus device (Somnomedics GmbH, Randersacker, 
Germany), recording simultaneously 3d wrist acceleration of the non-dominant arm at 128 Hz sampling rate 
(see Fig. 6) and a one channel ECG at 256 Hz. Furthermore, full polysomnography (PSG, including recordings 
of electroencephalography (EEG), electrooculography (EOG), electromyography (EMG), ECG, respiratory flow, 
etc.) was recorded using either the system Alice (Löwenstein Medical, Bad Ems, Germany), Embla (Embla sys-
tems, Broomfield, CO, United States), or SOMNOscreen (Somnomedics GmbH, Randersacker, Germany). For 
our analysis we used the acceleration and ECG data recorded by SOMNOwatch and the respiratory flow signal 
recorded by the PSG system.

The measurements of the SOMNOwatch device and the PSG system were synchronized after recording by 
matching the R peaks of the ECGs recorded by both of them. 145 subjects had to be excluded from further analy-
sis, since reliable synchronization could not be established this way because of poor ECG quality in either of the 
two recordings. We note that this synchronization method required matching R peaks from the simultaneously 
recorded ECGs during each 20 minutes of the recordings, since we identified jumps (i.e. unmarked time gaps) 
in more than 15% of all PSG recordings across all three recording systems; no such gaps occurred in the Som-
nowatch recordings. In addition, we had to determine and take into account drifts of the recorded time cumulat-
ing to typically 1–2 s per night. Another 24 subjects had to be excluded because their respiratory recordings from 
the SOMNOscreen system could not be successfully exported into the European data format (EDF+) leading to 
completely or substantially (for more than half of the recording time) missing flow signals. The final 223 subjects, 
aged between 18 and 78 years (mean 47.9 ± 13.7 years ) with average body mass index 27.7 ± 5.7 kg/m2 , had 
an average time in bed (TiB) of 7.6 ± 0.8 h . Only data recorded during the lights-off period were considered. 
All subjects were regular patients of the sleep laboratory with confirmed sleep disorders. In Table 2 we list the 
frequency of sleep disorders classified by ICSD-3 (International Classification of Sleep Disorders).

Reconstruction of respiratory signals from accelerometry.  Our initial observation of a peak in the 
0.3 Hz range (corresponding to ≈ 18 breaths per minute) in nocturnal three-axis accelerometry data recorded at 
the wrist32 was the starting point for our approach towards respiration proxies. After we had found that the high 
amplitude resolution of modern accelerometers (down to 3mg ≈ 0.03m/s2 ) can resolve tiny motions caused 

Figure 6.   Acceleration recording at the wrist. The photo shows the placement of the SOMNOwatch plus 
device (Somnomedics GmbH, Randersacker, Germany) at the wrist with the coordinate axes (x, y, and z; 
yellow) according to the device’s orientation as well as the gravity acceleration vector (red) pointing vertically 
upwards from the center of the earth. The device measures the three components of the gravity acceleration with 
respect to its coordinate axes. From this data the two orientational angles, ϑ = angle between x axis and gravity 
acceleration and ϕ = angle between y axis and projection of the gravity acceleration into the y − z plane (dashed 
red vector), can be calculated according to Eq. (3).
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by respiratory activity10,32,33, we have systematically studied if this effect can be used for a practical derivation of 
respiration proxies.

The data processing consists of several steps and starts by smoothing the recorded 128 Hz raw acceleration 
data ẍ(t) by calculating a moving average. Specifically, we calculated a moving average with a window width of 
±0.5 s (i.e., ±64 data points),

to obtain smoothened longitudinal acceleration (with the x axis in the direction towards the elbow and the hand, 
see Fig. 6) as first respiration proxy. Similarly, we obtained smoothened lateral accelerations for the the y and z 
axes oriented perpendicular to x, Accy and Accz , see Table 1. The window size of 1 s in Eq. (1) was chosen such 
that there is typically one heartbeat in each window so that effects of heartbeats and pulse wave propagation 
through the wrist (see also34) are systematically dampened in this moving average procedure. Finally, a resampling 
to a rate of 4 Hz is applied, since respiration proxies do not need temporal resolutions beyond that.

The red curve in Fig. 7a shows an example for the final respiration proxy determined from y axis accelerom-
etry during sleep. The respiratory cycles can clearly be identified.

We note however, that wrist accelerations caused by respiratory activity are relatively small. In fact, what the 
acceleration measurement device registers is not an respiration-caused acceleration per se, but instead a slight 
turning of the wrist in synchrony with the respiratory activity (see also1). This turning leads to slightly modified 
projections of the (vertical) gravitational force onto the axes of the coordinate system of the sensor device and 
thus to slight variations of the x, y and z components of the registered gravitational vector, see Fig. 6. Therefore, 
one can expect that one or both of the two angles representing the direction of the gravitational vector are even 
better proxies for respiration than the components in particular directions. Hence, in addition to Accx , Accy 
and Accz , we consider their angles in spherical coordinates, ϑ (angle between gravity vector and x axis), and ϕ 
(angle between projection of gravity vector into the y − z plane and y axis) as shown in gravity vector Fig. 6:

corresponding to

see also Table 1. We have applied the same smoothening [Eq. (1)] and resampling procedure to r, ϕ , and ϑ as to 
the acceleration components above. We expect that ϕ and/or ϑ are much better respiration proxies than r if our 
assumption regarding changing directional projections of the (constant) gravitational vector holds. Hence, the 
suggested transformation can facilitate the selection of an optimal proxy.

Finally, instantaneous respiratory phases have been calculated from all respiration proxies as well as the 
directly registered respiratory signal flow(t) (blue curve in Fig. 7a). The first step in this procedure was the 
normalization of the time series via (i) subtraction of a moving average similar as in Eq. (1) and (ii) division by 
a moving standard deviation. Both of these moving quantities have been calculated for windows of ±5 s dura-
tion around the center point, so that effectively frequencies between 0.1 Hz (cutoff by moving average with 10 
s window size) and 1 Hz (cutoff by moving averag with 1 s window size) remain in the respiration proxies. The 
resulting narrow-banded signals oscillating around zero can easily be transformed into instantaneous respiratory 
phases φ(t) via a Hilbert transform35,

using φx(t) = arctan2(HT[x(t)], x(t)) for x = Accx , Accy , …, flow(t). Fig. 7b shows these reconstructed respira-
tory phases for all signals of Fig. 7a.

In this study we focus on analyzing and comparing instantaneous respiratory phases (instead of respiratory 
rates or breathing cycles), because the phases comprise all information without the need to define certain points 
in the breathing cycle, e.g., beginning or ending, transition form inspiration to expiration, etc. Respiratory 
phases increase continuously from −π ≈ −3.14 to +π and then jump back to −π in a sawtooth-like pattern, 
see Fig. 7b. However, since phases are actually defined on a circle, the values of −π and +π refer to identical 
phase angles, the selection of the jump point is arbitrary, and constant phase shifts (possibly including multiples 
of 2π ) have no relevance. Therefore, when comparing instantaneous phase signals, their differences are always 
taken modulo 2π , and constant differences are disregarded. This is advantageous, since proxies derived, e.g., 
from inverted flow or acceleration (or ECG) signals, leading to phases differing by +π or −π exactly, will be con-
sidered as equivalent. Nevertheless, pauses and flow variations within the respiratory cycle are well reproduced 
by instantaneous phases as can be seen by the deviations from a straight sawtooth pattern for the flow phases in 
the bottom panel of Fig. 7b.

Reconstruction of respiratory signals from ECG.  To derive measures B1, B2, B3, and B5, the ECG 
data were processed with the software LibRasch36 to identify QRS complexes. We visually verified and manually 
checked QRS classifications (normal, ventricular ectopic, and supra-ventricular ectopic) and corrected them if 
necessary. Noisy parts where no QRS detection was possible were manually marked and excluded from further 
analysis. All normal QRS complexes were used for B1, B2, and B5, while only time intervals between two succes-
sive normal QRS complexes were used for B3. The resulting time series were homogeneously resampled at a rate 

(1)Accx(t) =
1

129

+64∑

j=−64

ẍ(t + (j/128Hz))

(2)Accx = r cosϑ , Accy = r cosϕ sinϑ , Accz = r sin ϕ sinϑ ,

(3)r =
√

Acc2x + Acc2y + Acc2z ,ϕ = arctan2(Accz , Accy),ϑ = arccos(Accx/r),

(4)x(t)+ iHT[x(t)] = A(t) exp[iφx(t)],
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Figure 7.   Proxy data and reconstructed respiratory phases. (a) Respiration proxies determined from the 
averages of maximum and minimum of each QRS complex (proxy B1, green) and smoothened lateral y axis 
acceleration Accy (red) recorded at the subjects wrist during sleep. For comparison, the respiratory flow 
recorded by a separate sensor placed at the subject’s nose is also shown (blue). The vertical line at t = 30s marks 
the window size we have used for our comparisons. (b) Corresponding respiratory phases φ(t) derived from 
each of the signals shown in part (a) via Hilbert transform and Eq. (4).
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of 4 Hz by cubic spline interpolation. Subsequently, a FFT band pass filter with limit frequencies 0.01 Hz and 0.5 
Hz was applied to eliminate variations clearly outside the respiratory band. As an example, the green curve in 
Fig. 7a shows the B1 proxy for a typical subject during sleep.

Phase synchronization and comparison of respiratory rates.  In order to compare and test two 
reconstructed respiratory phases φx(t) and φy(t) (for x, y = Accx , Accy , …, flow(t)), we calculate the phase 
synchronization index γ by37

where the average 〈. . .〉 runs over all times from t − 15s to t + 15s with t = k · 30s and k is the index of the 30 
s windows. This definition has the advantage that constant phase differences between the two proxies (and 
differences by multiples of 2π ) as well as changing proxy amplitudes are disregarded. A γ value close to one 
indicates strong phase synchronization, i.e., a close similarity of the two phase signals, while a γ value close to 
zero indicates dissimilarity. The approach will be used for comparisons of two proxies as well as comparisons of 
proxies with the flow signal considered as a reference for real respiration. As examples for the typical values of 
γ , we note that the first (second) 30-s window of the signals presented in Fig. 7b yields γ = 0.35 (0.57) for the 
comparison of EDR (the B1 proxy, green) with the flow (blue), and γ = 0.98 (0.90) for the comparison of the 
Accy proxy (red) with the flow.

We note that we used respiratory phases derived from the PSG-recorded flow signal as reference without a 
validation in this study. However, this approach does not lead to any bias regarding the comparison with different 
respiration proxies, since a corrupted flow signal will not be synchronized with any respiration proxy. Exclud-
ing subjects with partly unreliable flow recordings would probably have led to somewhat larger group averages 
of the phase synchronization index γ for all proxies. But since it would also have led to excluding subjects with 
nocturnal breathing disorders, we have decided against this. Nevertheless, for a subset of 118 PSG recordings, we 
compared the flow-derived respiratory phase signal with respiratory phases derived from thorax and abdomen 
inductive plethysmography by calculating the average synchronization indices according to Eq. (5) for each of 
the three pairs. Our results of γ = 0.68± 0.19 (comparison flow versus thorax plethysmography), 0.42± 0.33 
(flow versus abdomen plethysmography), and 0.45± 0.34 (thorax versus abdomen plethysmography) indicate 
that (i) phase synchronization indices γ in the range from 0.4 to 0.7 indicate good phase synchronization and 
(ii) flow and thorax inductive plethysmography recordings are probably more reliable than abdomen recordings.

In another approach to compare the respiration proxy signals, we calculated and compared respiratory rates. 
A breathing interval was defined by jumps of the instantaneous respiratory phase φx(t) from a value above + 1 
to a value below −1 one time step (0.25 s) later, see Fig. 7b (for x = Accx , Accy , …, flow(t)). We calculated the 
average respiratory rate for each 30 s window, and finally obtained an average respiratory rate of all windows for 
each respiration proxy and the flow signal. We note that this approach defines the beginning of a breath by the 
phase jump, however, since we only count number of breaths in large windows of 30 s, different beginnings for 
different proxies are not relevant.

Since the distributions of both, γ values and respiratory rates, are close to Gaussian, we applied a two-tailed 
Student’s t-test to check for the significance levels of differences between our results for all proxies. In addition, 
we checked for the significance of differences between two sets of similarly sized subgroups, (i) males and females 
and (ii) subjects with and without diagnosed sleep apnea syndrome; see Table 2 for the numbers of subjects in 
these subgroups.
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3.4. Publication: Reconstruction dependencies on sleep stages

3.4 Publication: Reconstruction dependencies on
sleep stages

About this publication. The final publication of the first part “Reconstruction of
the pulse wave and respiration from wrist accelerometer during sleep” combines the
results of the previous two publications, and adds a characterization of sleep-stage
dependencies. In here, the PSI was applied to compare heart beats and pulse wave
peaks derived from accelerometry data, as already done for respiration and its re-
construction from accelerometry in the previous publication, Section 3.3 [JZ2]. In
addition, we compare surrogate pulse wave peaks and respiration reconstructions,
which results in a PSI below 0.1, describing the lower limit of the PSI. Furthermore,
pulse wave peaks from PPG, the gold standard for pulse wave detection, are com-
pared to heart beats, which revealed a PSI above 0.9, the upper limit of PSI under
real conditions. Nevertheless the pulse wave reconstruction compared to heart beats
yields better PSI (≈ 0.7) then the respiration reconstruction (PSI ≈ 0.6) based on
accelerometry.
The main focus is on the reconstruction quality during different sleep stages. As
expected, best results are reached during N3, followed by N2, and REM sleep, while
PSI drops during episodes of wakefulness.
The investigation of the influences of apneas on the PSI of respiration indicates lower
synchronization in subjects with an higher apnea index3. But also during apnea events,
the PSI decreases. However, PSI of pulse wave reconstruction is hardly effected by
apnea events.
Additionally, we show, that an internal evaluation process of the accelerometer data
can improve the quality of reconstruction by identifying epochs of poor quality, due
to noise and weak signal power, at the cost of using less data.
Finally, the results of the previous publications are confirmed, and one way to elimi-
nate movement artifacts is demonstrated.

Copyright statement
©2022 IEEE. Reprinted, with permission, from J. Zschocke, J. Leube, M. Glos,
O. Semyachkina-Glushkovskaya, T. Penzel, R. Bartsch, and J. Kantelhardt, „Recon-
struction of pulse wave and respiration from wrist accelerometer during sleep“, IEEE
Transactions on Bio-Medical Engineering, vol. 69, no. 2, pp. 830–839, 2022. doi:
10.1109/TBME.2021.3107978. Reference [JZ3].

In reference to IEEE copyrighted material which is used with permission in this the-
sis, the IEEE does not endorse any of Martin-Luther-Univeristy Halle-Wittenberg’s
products or services. Internal or personal use of this material is permitted. If in-
terested in reprinting/republishing IEEE copyrighted material for advertising or pro-
motional purposes or for creating new collective works for resale or redistribution,

3The apnea index or better apnea-hypopnea-index reports the average numbers of apneas (and
hypopneas) per hour.
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Reconstruction of Pulse Wave and Respiration
from Wrist Accelerometer During Sleep

Johannes Zschocke, Julian Leube, Martin Glos, Oxana Semyachkina-Glushkovskaya, Thomas Penzel,
Ronny P. Bartsch, and Jan W. Kantelhardt

Abstract— Objective: Nocturnal recordings of heart rate
and respiratory rate usually require several separate sen-
sors or electrodes attached to different body parts – a dis-
advantage for at-home screening tests and for large cohort
studies. In this paper, we demonstrate that a state-of-the-
art accelerometer placed at subjects’ wrists can be used
to derive reliable signal reconstructions of heartbeat (pulse
wave intervals) and respiration during sleep. Methods:
Based on 226 full-night recordings, we evaluate the per-
formance of our signal reconstruction methodology with
respect to polysomnography. We use a phase synchroniza-
tion analysis metrics that considers individual heartbeats
or breaths. Results: The quantitative comparison reveals
that pulse-wave signal reconstructions are generally better
than respiratory signal reconstructions. The best quality
is achieved during deep sleep, followed by light sleep N2
and REM sleep. In addition, a suggested internal evaluation
of multiple derived reconstructions can be used to iden-
tify time periods with highly reliable signals, particularly
for pulse waves. Furthermore, we find that pulse-wave
reconstructions are hardly affected by apnea and hypopnea
events. Conclusion: During sleep, pulse wave and respira-
tion signals can simultaneously be reconstructed from the
same accelerometer recording at the wrist without the need
for additional sensors. Reliability can be increased by inter-
nal evaluation if the reconstructed signals are not needed
for the whole sleep duration. Significance: The presented
methodology can help to determine sleep characteristics
and improve diagnostics and treatment of sleep disorders
in the subjects’ normal sleep environment.
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I. INTRODUCTION

SLEEP disturbances are associated with impaired health
and well-being, reduced performance and higher risk of

adverse events and accidents [1]–[5]. Specifically, there is
evidence of a link between insomnia, sleep apnea, or unusually
short or long total sleep durations and risk factors for ma-
jor cardiovascular diseases, morbidity, and mortality [6]–[8].
However, the explanatory value of many such studies is limited
because of restrictions in the study designs, or limitations in
the methods used for the assessment. Therefore, it is premature
to infer causal relationships from the current body of literature.
Additional large prospective studies thus have to address sleep
characteristics as possible determinants of personal health in
more differentiated ways in large subject populations [9].

Although cardiorespiratory polysomnography (PSG) has
been regarded as the gold standard in sleep medicine since
1968 [10], [11], its intricacy and costs disallow studying very
large subject populations. Beyond that, PSG may produce
first-night effects and may lead to a selection bias [12]–[14].
As an alternative to PSG, movement-based methods, such
as actigraphy (or accelerometry), have been established since
1974 [15], [16]. Advantages of accelerometry over PSG are
described as lower costs, higher availability, easy recording
of multiple nights, and lower influence on natural sleep [17]–
[20]. However, the full potential of modern accelerometers
with long-term three-axis recordings at sampling rates above
100 Hz and acceleration resolutions of just a few milli-g1, i.e.,
a few thousandth of the gravitational acceleration on earth, still
needs to be explored [9].

In this paper we describe and evaluate procedures for
deriving reconstructions of cardiac dynamics (through the
reconstruction of the pulse wave signal) and respiratory ac-
tivity from wrist accelerometer data. While we have already
introduced the overall methodological approaches in two pre-
vious publications [21], [22], this study is the first systematic
evaluation that takes into account sleep architecture, i.e.,
different sleep stages and sleep disorders such as sleep apnea.
Based on 226 full-night recordings from typical patients of
a clinical sleep laboratory, we characterize the reliability of

1In this paper we use g as gravitational acceleration of 9.81 m/s2.
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our pulse wave signal reconstructions and respiration signal
reconstructions by means of a phase synchronization analysis
that quantifies the similarity of the reconstructed data with
reference heartbeat (RR) and respiratory flow data as recorded
by PSG.

The paper is organized as follows. In Section II we describe
our study population, the data recordings, and the data pre-
processing, followed by our techniques for calculating pulse
wave reconstructions and respiratory reconstructions from the
same wrist acceleration time series. We also describe the
phase synchronization analysis technique we use to quantify
the similarity of the reconstructed signals with the recorded
reference signals as well as our surrogate data analysis for
statistical testing. The results are presented in Section III,
including an additional suggestion for internal evaluation of
the reconstructed data to identify temporal periods and chan-
nels with particularly reliable data. The paper concludes with
discussion and outlook presented in Section IV. Some technical
details regarding the synchronization of time series data from
different recording devices and reconstruction techniques are
reported in the supplementary material to facilitate other
implementations of our ideas.

II. DATA AND METHODS

A. Data

We analyzed single night data from 226 subjects recorded in
clinical sleep laboratories at the Charité-Universitätsmedizin
Berlin, Germany, between April 2017 and March 2019.
The study was approved by the ethics committee of the
Charité-Universitätsmedizin Berlin and registered at the Ger-
man Clinical Trial Register (DRKS) with ID DRKS00016908.
All enrolled subjects gave written informed consent prior to
the study. During their first diagnostic night at the sleep
laboratory, all subjects wore a SOMNOwatch™ plus device
(SOMNOmedics, Randersacker, Germany), recording simul-
taneously 3d wrist acceleration of the nondominant arm at
128 Hz sampling rate as well as one channel electrocardiogram
(ECG) at 256 Hz. For this purpose, a thin cable leading to three
electrodes placed below each collarbone and above the fifth
intercostal space of the left side of the body is attached to
the watch-like device worn at the wrist of the non-dominant
hand. A picture of the device is shown in the online supple-
mentary material. Furthermore, full polysomnography (PSG)
(including electroencephalography (EEG), electrooculography
(EOG), electromyography (EMG), ECG, photoplethysmogram
(PPG), oxygen saturation, respiratory effort, etc.) was recorded
using either an ALICE (Philips, Amsterdam, Netherlands), an
Embla® (Natus, Pleasanton, USA), or a SOMNOscreen™ PSG
system (SOMNOmedics, Randersacker, Germany).

Since accelerometry was recorded only by
SOMNOwatch™, while sleep stages and reference respiratory
activity were available only from the PSG systems, as initial
step we had to establish synchronization between the recording
devices. This turned out more intricate than expected because
the clocks of the devices drifted with respect to each other by
several seconds throughout the night, and brief interruptions
occurred in the PSG recordings. However, since all devices

recorded ECGs, a one-to-one matching of the R-peak
positions was used for establishing synchronization, see the
supplementary material for details. Due to insufficient ECG
quality mainly in the PSG systems’ data, this procedure was
unsuccessful for 105 subjects (i.e., recording nights), reducing
the number of available data correspondingly. Another 108
subjects had to be excluded because of noisy or corrupt
respiration recordings. Therefore, only 226 out of the original
439 data sets were available for analysis. To show that no bias
was introduced this way, we have compared many clinical
and sleep-related parameters for the 226 data sets we used
and the 213 we excluded, see Table II in the supplementary
material. The final used data set consists of single-night
recordings of 109 female and 117 male participants
with body mass index 27.9 ± 5.7 [17.0, 51.5] kg/m2,
age 48.6 ± 13.9 [18.1, 78.4] years, and time in bed
7.6 ± 0.8 [5.4, 10.2] hours (mean ± standard deviation
[minimum, maximum]). Each measurement was cropped to
only contain data between the ’lights off’ and ’lights on’ time
stamps, indicating beginning and end of the sleep opportunity
period, respectively.

B. Overview of Previous Works for Reconstructing
Cardiac and Respiratory Activity from Acceleration
Sensor Data

In seismocardiography, acceleration sensors placed on the
chest wall measure the vibrations caused by heartbeats [23].
In recent years, this technique became more relevant due to
better accelerometers [24], [25]; it has also been used to assess
respiratory activity [26], [27]. Besides respiration (< 1 Hz),
low frequency (0.6 to 5 Hz) chest wall motions caused by heart
muscle contraction and high frequency (> 5 Hz) chest wall
vibrations related with acoustic waves of the valve closing are
measured [26], [28]. In ballistocardiography whole body mo-
tions (or vibrations) caused by the heart (and respiration) are
measured. Sensors are commonly placed on the bed [24], [29],
[30], a recliner chair [31] or a vehicle seat [32]. Accelerometer-
based methods for measuring breathing-related movements
have been roughly validated [26], but mainly accelerometers
and gyroscopes positioned over the diaphragm [33], the chest
wall [34] or the forehead [35], [36] have been considered.
The latter two publications also used wrist accelerometry
to estimate heart rates and respiratory rates. However, they
focused on average rates in 20 s intervals as determined via
spectral analysis, not trying to identify individual heartbeats
or breaths, and were limited to 32 h of sleep data from
three subjects plus daytime data. Another paper reported that
heart rate can most reliably be estimated via accelerometry,
if the sensor is attached to the subjects’ upper forearm or the
subjects’ belly [37]. A recent study [38] also considered a
sensor placement on the upper arm, together with a sensor at
the foot and finger plethysmography, studying data recorded
during standing and hemodynamic interventions.

C. Reconstruction of Pulse Wave Signals from Wrist
Accelerometer Data

Pulse waves transversing the wrist initiate damped vibra-
tions of the tissue at frequencies around 8 Hz [9], [42]. These
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Fig. 1. Signal processing procedure as demonstrated for an epoch of 10 seconds of data for a typical subject. (a) In the ECG signal (black
curve) recorded by the SOMNOwatch™ device, R-peaks are marked by orange dots. The respiration flow signal recorded simultaneously by the
PSG system is shown in blue. (b) By passing through the wrist, pulse pressure waves cause tiny high frequency vibrations that can be measured
by an accelerometer. The light blue curve depicts these vibrations for the y axis after 5-14 Hz bandpass filtering. The envelope of this signal (red
curve), as derived by the analytic signal approach [39], [40], shows one high peak and several smaller peaks after each heartbeat, representing
the main pulse pressure wave as well as its reflections. These reflections are erased by a smoothing procedure, which results in our pulse wave
reconstruction (green curve). (c) The instantaneous phase of the oscillating pulse wave reconstruction (green curve) is plotted together with the
ECG phase (dotted orange curve) that is obtained by linear interpolation between the R-peaks (“Poincaré method” [41]). (d) The respiratory activity
signal is derived from the same y axis wrist accelerometer recording as used in (b) by applying a one-second moving average filter (light blue
curve). The respiration reconstruction (dashed blue curve) is obtained by further smoothing and down sampling. Panel (e) shows the instantaneous
respiratory phases derived from the flow signal (from panel (a), solid blue curve) and from the processed accelerometer signal (from panel (d),
dashed blue curve).

fast oscillations are slightly but sufficiently above the detection
threshold of the wrist accelerometer (at ≈ 3mg ≈ 0.003m/s

2;
the accelerometer digitizes at a resolution of 12 bit for the
range −6g to +6g)2. In the field of radio telecommunication,
the high frequency tissue vibration would represent a carrier
frequency, which is amplitude-modulated by the pulse wave.
Therefore, after bandpass filtering in the range of 5 to 14 Hz,
the registered acceleration signal appears like an amplitude
modulated carrier frequency (light blue curve in Fig. 1 (b)).
The instantaneous amplitudes of the carrier are obtained by
calculating its Hilbert transform, constructing the analytic
signal [39], [40] and taking the absolute value (red curve in
Fig. 1(b)). This envelope signal is modulated by systolic and
diastolic pressure changes as well as reflections of the pulse
wave coming back from the hand. After applying a suitable
smoothing procedure (see [21] and supplementary material),
we obtain a reconstruction for the systolic pulse wave (green
curve in Fig. 1 (b)).

We apply the same signal processing procedure to all three
recording axes (x, y, z) of the accelerometer to obtain the

2Corresponding to the technical details of a SOMNOwatch™.

acceleration-based pulse wave signal reconstructions APWx ,
APWy , and APWz . To take into account that combinations of the
three acceleration axes could improve our results, we derive
two additional pulse wave signal reconstructions APWφ and
APWθ for the wrist rotation angles φ, rotation around the
lower arm, and θ, turning angle with respect to the elbow
(see supplementary material for more details).

D. Reconstruction of Respiration Signals from Wrist
Accelerometer Data

Respiratory activity causes tiny periodic turns of the wrist,
which can be detected via high-resolution accelerometer
recordings [9], [22], [42], because the projection of the grav-
itational (vertical) direction on the recording axes changes
periodically with the breathing cycle. Since modulations of the
acceleration signal caused by respiratory activity are slower
compared to pulse wave modulations, a moving average over
intervals of one second is applied to the raw acceleration data
for preprocessing (Fig. 1 (d) (light blue curve)), followed by
downsampling to 4 Hz (Fig. 1 (d) (blue dotted curve)). The
rotational angles φ and θ are also derived. Further smooth-
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ing procedures lead to the respiration signal reconstructions
ARESPx , ARESPy , ARESPz , ARESPφ , and ARESPθ (see supple-
mentary material for more details).

E. Comparison between Reconstructed Signals and
Reference Signals

We evaluate the quality of the five pulse wave signal
reconstructions and the five respiration signal reconstructions
by systematically comparing them to the ECG and respiratory
flow signal, respectively. To this end, we need to take into
account that there is a small variable time delay between the
contraction of the ventricular muscles (as registered by the R-
peak in the ECG) and the pulse wave measured at the wrist.
This time delay corresponds to the pulse transit time and is
the reason for the few hundred milliseconds long shift between
R-peaks in the ECG and the pulse wave signal reconstructions
(compare R-peak positions and maxima of APWy in Fig. 1 (a)
(red curve) and (b) (black curve) and the phase shift in (c)).
In addition, respiratory activity derived from wrist motion is
also likely to be phase shifted with respect to the respiratory
flow, because variations of the wrist angles can either be in
synchrony with the maxima or the minima of the lung volume.
Hence, the quality of the signal reconstructions can be best
evaluated by studying the stability of the time or phase delays
or differences between reconstructions and their corresponding
reference signals. Looking at phases instead of the signals
themselves has the additional advantage of independence from
the signals’ amplitude, which is likely to fluctuate throughout
the night due to different arm and wrist positions as well
as varying positions of the recording device at the wrist. In
addition, a comparison based on phases takes into account
the full information in the signals’ cycles and not just one
data point from each cycle as for an event synchronization
[43] or coordination [44] approach. This leads to more reliable
statistics.

Instantaneous phases of the signal reconstruction have been
obtained by means of a Hilbert transform and the analytic sig-
nal approach [39], [40] (see supplementary material for more
details) and are shown in Fig. 1 (c) and (e) for pulse waves
and respiratory activity, respectively. In order to derive an
instantaneous phase from the ECG, we have performed a linear
interpolation between the R-peaks (“Poincaré method” [41]).
The R-peak-derived reference phase signal ϕECG has thus
sawtooth shape with jumps from +π to −π at the time
positions of the R-peaks (orange dotted curve in Fig. 1 (c)).
This signal is similar to the phase signal ϕPWy derived from
the reconstruction APWy (green curve in Fig. 1 (c)), however,
ϕPWy does not have a constant slope from −π to +π and
the phase jumps from +π to −π occur at shifted temporal
positions relative to ϕECG (due to the pulse transit time).

The temporal stability of a phase shift is quantified by phase
synchronization indices (PSIs) [41]. A particular PSI can be
calculated from pairs of phase signals, e.g., ϕPWy and ϕECG,
by averaging complex exponentials of the phase difference
over time epochs of duration T and taking the absolute value

of the complex result [45],

γPWy (t0) =

∣∣∣∣∣
1

T

∫ t0+T

t0

exp[iϕPWy (t) − iϕECG(t)] dt

∣∣∣∣∣ . (1)

Here, i denotes the imaginary unit, and the integration turns
into a sum for time series with a specific sampling rate.
Equation (1) further shows that the PSI γ is not affected by a
constant phase shift ∆ϕ since the exponential of an imaginary
constant, exp(i∆ϕ), has an absolute value of one. Choosing
time windows of T = 30 seconds duration, we obtain PSI
values γPW for each epoch of 30 seconds and each of the five
acceleration-derived pulse wave reconstructions, APWx , APWy ,
APWz , APWφ , and APWθ .

The same approach is used for comparing the acceleration-
derived respiratory reconstructions ARESPx , ARESPy , ARESPz ,
ARESPφ , and ARESPθ to the respiratory flow signal (Fig.
1 (a) (blue curve)). Fig. 1 (e) shows an example for the
instantaneous respiratory phases ϕFLOW derived from the
flow signal (solid blue curve) and the processed y axis
accelerometer signal ϕRESPy (dashed blue curve). We refer to
the supplementary material for more details on reconstruction
and phase computation.

F. Surrogate Data Testing
In order to probe the significance of our PSI results, we

have performed two types of surrogate data tests. In the first
test, the reference phases ϕECG and ϕFLOW are replaced by
surrogate phases created by inverting the time direction of the
corresponding ECG and flow recordings. The results will show
the level of PSI for unsynchronized data, i.e., the lower limit
for relevant PSI values.

In the second surrogate test, we have replaced the recon-
structed phases by phases ϕPPG derived from the PSGs PPG
measured at the finger tips for a subgroup of 134 subjects.
Since the PPG is assumed to represent the real pulse wave
activity, this approach will yield an upper limit for PSI values,
i.e., the PSI values that could be expected for optimal pulse
wave reconstructions. Instantaneous pulse wave phases are
derived from the PPG by the same filtering and smoothing
procedure as was used for the acceleration-based pulse wave
reconstructions.

III. RESULTS

A. Time-Dependent and Average Phase
Synchronization Index

Fig. 2 shows examples of PSI results for full nocturnal
measurements of two subjects. For each epoch of 30 seconds,
the quality of pulse wave reconstructions and respiratory
reconstructions is indicated by γPWj (Fig. 2 (orange curves))
and γRESPj (Fig. 2 (purple curves)), considering different
accelerometer axes and angles j = x, y, z, θ for the recon-
structions. While reconstruction of pulse wave signals works
very well, as indicated by γPWj values close to one (i.e.,
perfect phase synchronization), respiratory reconstructions ex-
hibit episodes of acceptable (γRESPj ≥ 0.5) as well as non-
acceptable (γRESPj < 0.5) quality. For example, for the time
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Fig. 2. Phase synchronization indices (PSIs) for whole-night
recordings of two subjects. (a-c) For the first subject, PSIs of two pulse
wave reconstructions, (a) γPWx and (b) γPWz (orange curves) show
good reconstruction quality except for around 7 h after lights-off for
γPWz . The quality of the respiratory reconstructions, (a) γRESPx , (b)
γRESPz (purple curves) is mixed, since PSI curves frequently drop to
low values in the second half of the night. A complementary behavior of
γRESPx and γRESPz in the period between 3 h and 5 h after lights-off
(i.e., low values of γRESPz vs. higher values in γRESPx between 3 h
and 4 h and high values of γRESPz vs. low values γRESPx between
4 h and 5 h) could indicate rearrangement of the arm or wrist during
this period. The hypnogram for this subject with hypersomnolence is
shown in (c). (d-e) For the second subject, the quality of the pulse wave
reconstruction γPWy (orange) is very good for almost the entire night,
while the respiratory reconstruction γRESPθ yields only low PSI values.
Panel (e) shows the hypnogram for this subject with a circadian rhythm
sleep-wake disorder.

window from 3 to 5 h after lights-off in Fig. 2 (a), (b) and for
long periods of the time in Fig. 2 (d) the respiratory signal can
not be sufficiently reconstructed. Sometimes the reconstruction
from one axis is clearly superior to the reconstruction from
another axis (cp. much larger values of γPWx in Fig. 2 (a)
than γPWz in (b) at around 7 h after lights-off).

There seems to be no obvious relationship between re-
construction quality and sleep stages throughout the night as
indicated by the hypnograms in panels Fig. 2 (c) and (e) for
each subject. However, as expected, PSI values are dropping
during wake episodes, see e.g. Fig. 2 (a) and (b) at times
3.9 h and 5.6 h. Furthermore, arm placement seems to be
more important for respiration detection via wrist acceleration
then for pulse wave detection.

Fig. 3 summarizes the PSI results for all 226 subjects. Av-
eraging over all 30 second epochs during the night, an average
PSI value has been calculated for each subject and each type
of reconstruction. The box plots show mean, median, quartiles
and 2.5 percent whiskers for the corresponding distributions
of 226 PSI values in each case. One can see in Fig. 3 (a) that
γPWy and γPWφ yield a slightly better synchronization with
the ECG-derived instantaneous phase (mean values ≈ 0.70)
as compared to γPWx , γPWz , and γPWθ (mean values ≈ 0.67).
The whiskers typically range from PSI values of 0.42 for
the subjects with worst reconstruction quality to 0.85 for the
subjects with best reconstruction quality. Regarding respiratory
reconstructions, Fig. 3 (c) shows that most PSI values are in
the range of 0.5 to 0.6. Here, the results derived from the wrist
rotation angles are slightly better.

γPWx γPWy γPWz γPWθ γPWϕ γPPG

Pulse Wave Reconstructions |   Photo-
plethys-
mogram

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

Ph
as

e 
Sy

nc
hr
on

iza
tio

n 
In
de

x

a b

γRESPx γRESPy γRESPz γRESPθ γRESPϕ
Respiration Reconstructions

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

c

Fig. 3. Box plots of phase synchronization indices between
acceleration-based reconstructions and ECG signal or respiration signal
averaged across subjects. Results for pulse wave reconstructions and
respiratory reconstructions are shown in (a) and (c), respectively. For
each reconstruction, the orange part represents the values between the
lower quartile and the median, and the blue part represents the values
between median and upper quartile. Whiskers mark the 2.5% and the
97.5% quantile of the distributions among the 226 subjects. The average
values appear as black crosses within the box plot. Box plots on the
bottom of the figure summarize the results of the surrogate analysis
utilizing time inverted data (see Section II-F). In addition, the results for
optimally synchronized pulse wave data based on the PPG are shown
in (b). In general, pulse wave reconstructions yield up to 20% higher
PSI values than respiratory reconstructions, and APWy and ARESPθ
perform slightly better than other signals to reconstruct pulse wave and
respiration signal, respectively.

We note that the existence of different superior channels,
i.e., y axis for pulse wave and rotation angle θ for respiration
reconstruction is not surprising. While pulse waves crossing
the wrist cause small internal wrist vibrations that are most
pronounced perpendicular to the axis of wave propagation,
respiration leads to changes of wrist orientation (i.e., wrist
rotation). In fact, respiratory activity causes wrist movements
only ’externally’ via the arm or due to wrist placement next to
the upper body. In this sense, it becomes clear why the quality
of respiratory reconstructions is more variable throughout the
night (Fig. 2) and their overall PSI values are lower than for
pulse wave reconstructions.

In order to probe the significance of the PSI values calcu-
lated for pulse wave and respiratory reconstructions, Fig. 3 also
includes PSI values for unsynchronized data (inverted time
direction) and optimally synchronized pulse wave data using
the PPG (see Section II-F for details). The corresponding box
plots indicate that 97.5 percent of the 30-second epochs of
surrogate data yield PSI values below 0.11 for pulse waves
(Fig. 3 (a)) and 0.21 for respiration (Fig. 3 (c)). In contrast,
optimally synchronized pulse waves derived from the PPG
yield an average PSI value of 0.94 ± 0.06 (Fig. 3 (b)).

B. Sleep-Stage Dependent Synchronization
As shown in Fig. 2, the quality of pulse wave and respiration

reconstructions may drop during nocturnal arousals and brief
awakenings due to changes in neuronal characteristics [46]. To
investigate systematically the reliability of our pulse wave and
respiration reconstructions throughout the night, we calculate
PSI values separately for each sleep stage taking into account
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TABLE I
AVERAGE PULSE WAVE AND RESPIRATION PHASE SYNCHRONIZATION INDICES SORTED BY RECONSTRUCTION SIGNAL AND SLEEP STAGE

γPWx γPWy γPWz γPWθ γPWφ γRESPx γRESPy γRESPz γRESPθ γRESPφ # of epochs

all 0,65 0.70 0.66 0.67 0.70 0.53 0.52 0.53 0.54 0.54 189,635
Wake 0.50 0.53 0.50 0.52 0.54 0.40 0.38 0.39 0.40 0.38 25,849
REM 0.67 0.72 0.67 0.69 0.71 0.49 0.49 0.50 0.49 0.51 28,491
N1 0.63 0.69 0.64 0.66 0.68 0.48 0.46 0.47 0.48 0.48 31,653
N2 0.68 0.74 0.70 0.70 0.74 0.57 0.56 0.56 0.58 0.58 72,637
N3 0.72 0.76 0.73 0.74 0.77 0.65 0.64 0.65 0.66 0.67 31,005
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Fig. 4. Box plots of phase synchronization indices during different
sleep stages for pulse waves, here γPWy in panel (a), and respiration,
here γRESPθ in (b). Average values for each subject were considered to
obtain the box plots. The orange part of each box represents the values
between the lower quartile and the median, and the blue part represents
the values between the median and the upper quartile. The ends of the
whiskers mark the 2.5% quantile and the 97.5% quantile, respectively.
The total average values appear as black crosses in the box plot. For
both reconstructions, best results are obtained for N2 and N3 sleep,
whereas during wake, reconstruction quality is rather low.

all 226 subjects. Sleep stages based on 30-second epochs have
been determined from the PSG data by trained experts follow-
ing standard guidelines [11] to distinguish light sleep (stages
N1 and N2), deep sleep (stage N3), and rapid eye movement
(REM) sleep. As example, we choose γPWy and γRESPθ

obtained from the pulse wave and respiration reconstruction,
respectively and depict results in Fig. 4, see also [22]. The
results for all pulse wave and respiration reconstructions for
each sleep stage are listed in Table I.

Overall, our results (Table I, Fig. 4) indicate that partic-
ularly large PSI values are obtained for both pulse wave
and respiration reconstruction during deep sleep N3 followed
by light sleep stage N2, while lowest reliability is achieved
during wakefulness. For REM sleep, pulse waves can be recon-
structed very well (comparable to non-REM sleep), however,
respiration reconstructions resemble the real respiratory signal
to much lower degree. Again, this can be explained by the
different nature of the reconstructions’ origins – ’internal’
pulse wave vibrations vs. ’external’ respiration triggered wrist
rotation. A lower reliability is also observed for the respiration
reconstruction during N1 sleep with comparable values as
for wakefulness and REM sleep. No particular advantage of
certain axes or angles can be observed for any sleep stage
(Table I). Fig. 4 also shows that the inter-quartile range is

generally larger for respiration reconstructions, in particular
during REM and N3 sleep. Although the averages of γRESPθ

are larger during N2 and N3, there are still outliers with nearly
unsynchronized reconstruction (γRESPθ < 0.2). In contrast, for
the pulse wave reconstructions, such outliers occur to much
lower extent.
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Fig. 5. Histograms for PSI values of pulse wave reconstruction
γPWy classified by sleep stages showing the values for all epochs
(green) and after internal evaluation and optimization of the pulse wave
reconstruction procedure with a threshold of ΓPWy,z > 0.5 (yellow).
The results indicate that pulse wave reconstruction from accelerometer
signals is much less reliable during consolidated wakefulness and that
an internal evaluation and optimization procedure needs to be applied.

To illustrate the full distributions of the PSI values for the
pulse wave reconstruction, Fig. 5 shows the histograms of all
γPWy values (for each epoch) during the different sleep stages.
All histograms are peaked at PSI values close to 1, except
for the one referring to wakefulness. In this case, another
broad peak with very low PSI values indicates that pulse wave
reconstructions are unreliable for about half of the 30-second
epochs during wakefulness, most probably because of motion
artifacts that disturb the wrist accelerometer signal during
(consolidated) wakefulness but not during brief arousals. This
is consistent with the recent observation that longer arousals
and consolidated wakefulness lead to higher activity levels
[46].

Therefore, our results suggest that the proposed approach
of pulse wave (as well as respiration) reconstruction from
accelerometer signals is applicable only during sleep and
sedentary behaviour without significant wrist motion.
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C. Effects of Sleep-Disordered Breathing on the
Performance of Pulse Wave and Respiratory Signal
Reconstruction

Sleep-related breathing disorders and in particular sleep
apnea affect blood pressure regulation and lead to hyperten-
sion [47] and associated changes in pulse wave amplitude [48].
Therefore, it is reasonable to test the performance of pulse
wave reconstruction from accelerometer signals under the
condition of sleep apnea and to compare results to the obvious
effect of sleep apnea on respiratory signal reconstruction.
Fig. 6 shows that the largest pulse wave reconstruction PSI
values γPWy are obtained for healthy subjects with less than
5 apnea or hypopnea events per hour (i.e., AHI < 5). The
same holds for the respiratory reconstruction γRESPθ , however
a drop in respiration reconstruction quality but not in pulse
wave reconstruction quality is seen during the rare apneas
and hypopneas in these subjects. The quality of both recon-
structions is clearly reduced in subjects with more than 30
apnea or hypopnea events per hour, i.e., subjects suffering
from severe sleep apnea. Again a further drastic decrease of
γRESPθ is seen during the actual apneas (but not hypopneas) in
these patients, while this decrease is only marginal for γPWy .
When differentiating between obstructive apneas (caused by
obstruction of the upper airways) and central apneas (due to
absent respiratory drive from the brain stem), a slightly better
reconstruction quality can be seen for the obstructive apneas,
where the respiratory drive still persists.

D. Identification of Reliable Epochs for the
Reconstructed Signals

Checking the consistency (similarity) of pairs of recon-
structed signals can be used as internal evaluation to identify
30-second epochs with a particularly reliable reconstruction.
For this purpose, we have calculated the PSIs between pairs
of independently derived reconstructed signals for each epoch.
Then we selected time epochs with sufficient reconstruction
quality by analyzing the PSI between two reconstructions.
This approach represents an internal evaluation, which does
not require recordings of ECG, PPG or respiratory flow. More
specifically, we have calculated, e. g., the inter-reconstruction
PSI ΓPWx,y according to (1) for the two reconstructed phases
ϕPWx and ϕPWy (instead of ϕECG). Then, we have taken only
those 30-second epochs into account, where ΓPWx,y is above a
certain threshold τ , indicating good synchronization between
the reconstructions APWx and APWy . This internal evaluation
approach leads to gaps in the reconstructed time series but,
on the other hand, yields a much higher quality by only using
reliable epochs.

Fig. 7 (solid curves) shows how the fraction of usable 30-
second epochs decreases as the threshold τ for the inter-
reconstruction PSIs ΓPWi,j is increased. Simultaneously, the av-
erage quality of the remaining reconstructed signals becomes
higher as indicated by the increasing conditional averages of
γPWj (dash-dotted curves in Fig. 7).

For example, for reconstruction APWy the internal evaluation
yields an average γPWy = 0.81 if ΓPWy,z > 0.5 is used for
epoch selection (solid green curve in Fig. 7). In this case,

the reconstruction is available for 62 percent of all epochs.
Hence, if a pulse wave reconstruction for nearly two thirds
of all epochs during the night is sufficient in a particular
application, this simple internal evaluation procedure can be
used to increase the average reconstruction quality indicator
from 0.70 to 0.81 (green dash-dotted curve in Fig. 7 at τ =
0.5). Fig. 5 includes the histograms for the internally evaluated
data with the threshold ΓPWy,z > 0.5 shown in yellow. One can
see that the improvement is particularly effective for epochs
of wakefulness, where most epochs with low reconstruction
reliability (low γPWy ) are correctly identified and disregarded
by the internal evaluation.

An additional improvement can be achieved by
combinations of all three axes’ data. Here, we developed
two approaches for pulse wave reconstruction and one for
respiration reconstruction:

Approach (A) Use APWx if ΓPWx,z exceeds ΓPWx,y , ΓPWy,z and
the threshold τ , or else use APWy if ΓPWx,z or ΓPWy,z exceed τ .
The results are shown as black curves in Fig. 7.

Approach (B) Use APWx if (ΓPWx,y + ΓPWx,y )/2 > τ , or
else use APWy if (ΓPWx,y + ΓPWy,z )/2 > τ , or else use APWz
if (ΓPWx,z + ΓPWy,z )/2 > τ . The results are shown as red curves
in Fig. 7.

Approach (C) Use ARESPφ if ΓRESPy,z exceeds ΓRESPx,y ,
ΓRESPx,z and the threshold τ , or else use ARESPθ if ΓRESPx,y or
ΓRESPx,z exceed τ .

For both approaches (A) and (B) the number of 30-second
epochs decreases slower with increasing threshold, see Fig. 7.
For half of all 30-second epochs a PSI of 0.88 can be achieved
with approach (A) and 0.87 with approach (B). These results
correspond to a nearly perfect pulse wave reconstruction in the
considered epochs, since they are very close to the average PSI
for the PPG (γPPG = 0.94, see Fig. 4).

Fig. 8 shows our results for reconstructions optimized by
internal evaluation considering only 50% of all epochs. The
selection of particularly good epochs leads to generally much
larger PSI values than those reported in Fig. 4 for all epochs.
The improvement is much larger for the pulse wave recon-
structions than for the respiratory reconstructions, however, the
general sleep-stage stratification pattern as observed in Fig. 4
is preserved in both cases.

IV. DISCUSSION

We have conducted a systematic comparison between
PSG-recorded cardiac dynamics and respiratory activity and
corresponding signal reconstructions as derived from high-
resolution wrist accelerometer data. We show that all re-
constructions obtained from the accelerometer’s axes and
angles perform similarly well for both, pulse wave and
respiration reconstruction. The overall synchronization be-
tween reconstructed signal and PSG signal is higher for the
pulse waves with an average of γPW ≈ 0.68 as compared
to γRESP ≈ 0.53 for respiration. This may be because of
the different underlying phenomena giving rise to the re-
constructed signals. While the ’external’ respiration-triggered
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Fig. 6. Effects of sleep-related breathing disorders on the PSI for the pulse wave reconstruction γPWy (N) and the respiration reconstruction
γRESPθ (•) for subjects with low apnea hypopnea index (AHI) (< 5 events/h) and high AHI (> 30 events/h) averaged over all corresponding epochs
(i) without apnea, (ii) with hypopnea, and (iii) with full apnea. For subjects with high AHI, PSI values for central and obstructive apnea are also
reported separately. Error bars indicate the standard error. The labels include the number of epochs used for the corresponding averages. PSI
values are highest for the γPWy reconstruction for subjects with low AHI and about 10-15% lower for high AHI subjects. Interestingly, pulse wave
reconstruction reliability for high AHI subjects seems to decline only slightly when hypopnea and apnea epochs are analyzed; for central sleep
apnea this decline is most pronounced. For γRESPθ , values are consistently much lower than for γPWy . As expected γRESPθ shows a stronger
decline when apnea epochs are analyzed. However, for obstructive apnea, γRESPθ is only slightly better as compared to central sleep apnea.
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Fig. 7. Performance of internal evaluation for increasing the quality
of pulse wave reconstructions. Inter-reconstruction phase synchro-
nization indices ΓPWi,j were analyzed to identify 30-seconds epochs
with reliable pulse wave reconstructions. Solid curves indicate the frac-
tion of reliable 30-seconds epochs versus the inter-reconstruction PSI
threshold τ , solid blue curve for ΓPWx,y , green for ΓPWy,z , and orange for
ΓPWx,z . Furthermore, to increase the fraction of reliable epochs and the
reconstruction quality we introduced two approaches combining all three
reconstructions: (A) – solid black curve and (B) – solid red curve. Dash-
dotted curves show the average PSIs γPWy (green), γPW

(A)
(black), and

γPW
(B)

(red) between the selected reconstructions and our reference
(ECG), calculated using only the reliable epochs. For example, the green
dash-dotted curve shows γPWy based on reliable epochs selected
according to ΓPWy,z > τ .

wrist rotations could be sensitive to different placements of
the arm, the ’internal’ pulse wave vibrations caused by the
pulsatile blood flow in the wrist seem to be less affected by
arm positioning.

Such interpretation could explain the stronger sleep-
stage dependence we observe for the respiration reconstruc-
tions, where muscle atonia during REM sleep can diminish
respiratory-triggered wrist movements. Overall, we obtain for
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Fig. 8. Internal Evaluation Effect on Sleep Stages. Same as Fig. 4,
but for signals optimized by internal evaluation with signal selection
according to approach (A) and (C) (see text); 50% of all epochs are
used. The inter-reconstruction PSI threshold τ is 0.7 for the pulse wave
reconstructions and 0.92 for the respiration reconstructions.

the respiration reconstructions an average of γRESP ≈ 0.50
for REM and γRESP ≈ 0.61 for N2-N3 non-REM sleep. In
contrast, average values for the pulse wave reconstructions are
much higher with averages γPW ≈ 0.69 and γPW ≈ 0.73 for
REM and N2-N3 non-REM sleep, respectively. Our analyses
also show that pulse wave and respiration reconstruction from
accelerometer data does not work as well during wakefulness,
perhaps because of frequent body movements that are char-
acteristic for this stage. Surprisingly, however, we find that
pulse wave reconstructions are hardly affected by sleep apnea
epochs per se. The reduced overall quality that we observe in
patients with severe sleep apnea (during normal breathing as
well as during apnea epochs) could therefore be related to a
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more restless and shallow sleep that typically occurs in these
patients.

Compared with seismocardiography and ballistocardiogra-
phy (see Section II.B), our suggested approach using wrist
accelerometers has advantages for a screening of larger pop-
ulation groups and general population-based cohort studies,
since the sensor is worn like a normal wrist watch and can
thus be handed to each subjects in the study center with
very brief instructions. No preparation of a bed or chair at
the home of the subject, no data transmission infrastructure
and no visits of care personal to the home are needed. The
sensor can easily be returned to the study center by postal
mail, after the pre-programmed recording period has ended.
Ballistocardiography, on the other hand, has advantages for
monitoring specific subjects for a long time, in particular
disabled or elderly persons or children, since this method
requires less compliance of the subjects but more effort from
the study center or hospital.

Our proposed approach for simultaneously reconstructing
pulse wave and respiration signals from wrist accelerometers
has advantages and disadvantages compared to wrist or finger
photoplethysmography (PPG). Certainly, pulse waves are more
directly assessed by PPG. Our results show that if one has to
rely on wrist actigraphy only, reliable pulse waves can only
be reconstructed for parts of the night and particularly not for
periods of nocturnal wakefulness. However, the reconstruction
of breathing activity from a PPG is much more indirect
– a double reconstruction is involved, since one must first
obtain the timing of the heartbeats from the plethysmogram,
and then breathing activity has to be derived based on heart
rate modulations via respiratory sinus arrhythmia (RSA). In
addition, respiration can also affect pulse transition times,
so that the first reconstruction step becomes less reliable.
Furthermore, RSA is typically weaker in elderly subjects,
so that the reliability of the second reconstruction step will
become age dependent and probably also be affected by
cardio-respiratory impairments. In our previous work [22], we
have shown that the reconstruction of breathing activity from
the timing of the R peaks in the ECG is less reliable than
reconstruction from wrist accelerometry. Therefore, we are
convinced that PPG approaches cannot yield sufficient quality
of reconstructed respiration data in large general population-
based studies.

A possible next step of our research should study the
relationship between the two signals reconstructed from the
same wrist accelerometer. In this context, the overall question
would be whether the reconstructed pulse waves and respira-
tory activities are sufficiently reliable so that different aspects
of cardio-respiratory coupling [49]–[51] can be derived from
them. Additionally, one could probe, e.g., the dependence of
cardio-respiratory coupling on sleep stages (using data such
as those studied here) or derive cardio-respiratory coupling
in large population-based cohort studies with many thousands
of participants (see below). To test how reliable different
aspects of cardio-respiratory coupling can be derived from
the reconstructed data, several measures of cardio-respiratory
synchronization [52], [53] and cardio-respiratory coordina-
tion [44] shall be applied to the reconstructed data and the

reference PSG data.

V. CONCLUSION

Our paper introduces a novel approach for simultaneously
obtaining time series of cardiac and respiratory dynamics
during sleep. Unlike most previous approaches, the presented
methodology relies entirely on a single wrist accelerometer,
which is often used in large cohort studies, e.g., the German
National Cohort study [54] with ≈25,000 SOMNOwatch™
recordings up to now. Another example is the UK Biobank
study, in which wrist-worn accelerometers were used to assess
physical activity in 100,000 volunteers [55]. Large population-
based studies often include actigraphy (accelerometry) as the
only continuously measured physiological signal because it
can be easily recorded by a smart watch and does not require
electrodes, flow sensors, or chest belts.

Our proposed phase synchronization metric evaluates the
timing of pulse waves and respiratory cycles and is indepen-
dent of amplitude changes. This is adequate for our signal
reconstructions since changes in wrist position with respect
to the body as well as changes in the position of the device
at the wrist influence the signal amplitude. Therefore, our
approach may not be used for a reliable derivation of stroke
or breath volume variations. Furthermore, the approach works
only if no other (i.e., voluntary) movements occur and thus, is
limited to the sleep period. This is consistent with our finding
that the best reconstruction quality is achieved during deep
sleep, followed by light sleep N2 and REM sleep, and at last
nocturnal wakefulness. Nevertheless, pulse wave reconstruc-
tions are just weakly affected by apnea and hypopnea events,
and their reliability can be increased by internal evaluation if
the reconstructed signals are not needed for the entire sleep
duration. Ultimately, our approach could be used to monitor
pulse wave characteristics during sleep in combination with or
as a substitute of a wrist or finger photoplethysmogram.
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SUPPLEMENTARY MATERIAL i

Supplementary Material

PREFACE

This Supplementary Material contains additional informa-
tion about our studies and describe some methods in more
detail, mentioned in our paper ”Reconstruction of Pulse Wave
and Respiration from Wrist Accelerometer During Sleep”
Zschocke et al. 2021. The numbering follows the numbering
of the original paper.

SYNCHRONIZATION OF SOMNOWATCH™ AND PSG
RECORDINGS

The figure shows a photo of the SOMNOwatch™ device
placed at the wrist of a subject. Since ECGs were recorded
simultaneously by SOMNOwatch™ and the PSG systems,
these time series were used for establishing synchronization
between the recording devices. As first step, the temporal
positions of all R-peaks were determined using the package
BioSPPy in Python [56] for the PSG data and LibRasch [57]
for the SOMNOwatch™ data. Then, starting 5 minutes after
the lights-off time, for each segment of 20 minutes ECG data,
the SOMNOwatch™’s R-peak positions were linearly fitted to
the PSG system’s R-peak positions, yielding a time shift value
(offset) and a drift value (slope) of the linear fit. For each
segment, the fitting procedure was repeated 2401 times: for
R-peak position time series shifted with respect to each other
by −20 minutes up to +20 minutes with 1 second increment.
Only the best fit was retained for each segment of 20 minutes
ECG data, and the time shift used for that fit was added to
the offset. Segments with less than 500 R peaks in 20 minutes
for either SOMNOwatch™ or PSG system were disregarded,
assuming insufficient ECG signal quality. A visual inspection
of the best time shifts (offsets) obtained this way for all 20-
minutes segments was performed to check if any time gaps
occurred in the PSG data throughout the night and if the time
shift increased approximately linearly with the progressing
night. Then the result for the segment with the smallest fitting
error was used to correct time shift and drift for the whole
night.

COMPARISON OF GROUPS OF INCLUDED AND
EXCLUDED SUBJECTS

Table II compares many clinical and sleep-related parame-
ters for the group of 226 included data sets (subjects) and the
group of 213 excluded data sets. As written in Subsection
II.A, the procedure described in the previous section was
unsuccessful for 105 subjects, and another 108 subjects had to
be excluded because of noisy or corrupt respiration recordings.
Only small differences in age (∆age = 3.5 y, p = 0.009), total
sleep time (∆TST = 17.5 min, p = 0.018), and wake after
sleep onset (∆WASO = 12.9 min, p = 0.015) are significant.

Fig. 9. Acceleration and ECG recording at the wrist. The photo
shows the commercial medical device SOMNOwatch™ plus (Som-
nomedics GmbH, Randersacker, Germany) placed at the wrist with the
coordinate axes (x, y, and z; yellow) according to its orientation as well
as the gravity acceleration vector (red) pointing vertically upwards from
the center of the earth. The device measures the three components
of the gravity acceleration with respect to its coordinate axes. From
this data the two orientational angles, θ = angle between x axis and
gravity acceleration (see 4) andφ = angle between y axis and projection
of the gravity acceleration into the y − z plane (dashed red vector)
can be calculated (see 3). In addition, the device records the ECG
via the attached blue cable, using three electrodes. There is also a
passive light sensor used to identify lights-off periods during the night
and a LED indicating the recording period, but both are placed on
the front of the device and therefore cannot be used to measure a
photoplethysmogram.

We found no significant differences regarding pathologies,
smoking, alcohol consumption, and snoring habits.

TABLE II
COMPARISON OF INCLUDED AND EXCLUDED DATA SETS

included data excluded data
male / female 117 / 109 109 / 100
Age [y] 48.6 ± 13.9 52.1 ± 13.8
Size [cm] 173.1 ± 10.1 173.2 ± 10.2
Weight [kg] 83.7 ± 18.8 85.5 ± 20.4
BMI [kg/m2] 27.9 ± 5.7 28.4 ± 6.2
time in bed [min] 455.3 ± 46.3 452.0 ± 54.8
sleep onset latency [min] 18.4 ± 15.9 19.7 ± 20.2
total sleep time [min] 377.1 ± 72.3 359.6 ± 70.9
wake after sleep onset [min] 59.8 ± 49.1 72.7 ± 52.8
fraction of N1 0.204 ± 0.150 0.230 ± 0.149
fraction of N2 0.440 ± 0.123 0.428 ± 0.126
fraction of N3 0.186 ± 0.101 0.186 ± 0.112
fraction of REM 0.170 ± 0.081 0.157 ± 0.088
apnea hypopnea index [/h] 14.5 ± 18.7 16.6 ± 22.0
periodic limb movement ind. [/h] 13.8 ± 23.7 15.4 ± 27.4
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CALCULATION OF RECONSTRUCTED PULSE WAVE
PHASES

In the following, we describe the data processing from
the raw acceleration signal to the pulse wave phases, cor-
responding to the pulse wave peaks transversing the wrist.
As already mentioned in II-C*, the pulse wave information
is hidden behind a high-frequency tissue vibration. Therefore
we first apply a 5 to 14 Hz FFT bandpass filter on each raw
acceleration axis separately (e. g., light blue curve in Fig. 1
(b)*). for the y axis) and uncover the signal by the absolute
of its Hilbert transform (red curve in Fig. 1 (b)*). In order
to extract only the main systolic pulse wave, we (i) subtract a
moving average of 1.0 second window length and (ii) calculate
a moving average over 0.43 seconds to obtain periodic signals,
i.e., the pulse wave reconstructions APWx , APWy , and APWz
(green curve in Fig. 1 (b)*). We note that this procedure
corresponds to another narrow band pass filter applied to the
amplitude signal with a passband around 50 to 70 oscillations
per minute, which correspond to the typical heart rate during
sleep [58]. Both filter parameters, 1.0 second and 0.43 seconds,
have been optimized for best phase synchronization of the
pulse wave reconstructions with respect to the ECG-derived
reference.

Pulse wave phases ϕ(t) have been calculated by applying
another Hilbert transform to the pulse wave reconstructions
and using the arctan2 function,

ϕ(t) = arctan2(=(HT (A(t)),<(HT (A(t))), (2)

where < denotes the real part and = the imaginary part of the
Hilbert transform HT [39]*. The procedure was applied to all
pulse wave reconstructions APWx , APWy and APWz .

Furthermore, we derived rotation angles of the wrist from
the pulse wave reconstructions,

φ(t) = arctan2(APWz , APWy ) (3)

θ(t) = arccos


 APWx√

(APWx )2 + (APWy )2 + (APWz )2


 .(4)

The acceleration axes y and z are orthogonal to the wrist,
while the x axis is parallel to the lower arm. Therefore, φ
represents the rotation angle around the lower arm axis (roll
angle), and θ represents the turning angle with respect to
the elbow (pitch angle). φ(t) and θ(t) are smoothed by a
subtracting 1.0 second moving average and applying a moving
average of 0.43 seconds. Finally, we applied Hilbert transform
and calculated the corresponding phases ϕPWφ and ϕPWθ by
arctan2, as described above in (2).

CALCULATION OF RECONSTRUCTED RESPIRATION
PHASES

Wrist acceleration data recorded during sleep contains not
only pulse wave information but also respiration activity. To

*Referenced Section, Figure or Reference can be found in Zschocke et al.
2021

derive respiration reconstructions and obtain a phase informa-
tion ϕRESP from the raw acceleration signals, we followed
six steps, separately for each axis:

i) Apply a 1.0 second moving average. The window size
of one second for the moving average was chosen such
that there is typically one heartbeat in each window so
that effects of heartbeats and pulse wave propagation
through the wrist are systematically dampened.

ii) Down sampling from 128 Hz to 4 Hz, since respiratory
activity does not involve high-frequency components.

iii) Calculate φ and θ according to (3) and (4).
iv) Subtract a 10 seconds moving average, also for φ and

θ.
v) Divide by a 10 seconds moving standard deviation, also

for φ and θ. This leads to the respiration reconstructions
ARESPx , ARESPy , ARESPz , ARESPφ , and ARESPθ .

vi) Apply a Hilbert transform and arctan2 to calculate the
respiration phases (see (2)).

A detailed explanation of this procedure can be found in [22]*.
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4 | Part II: Fluctuation
analysis studies

In this part of the thesis, results of detrended fluctuation analysis (DFA) of biosignals,
like heart rate and PTT, will be presented. DFA is a powerful method for the analysis
of time series and the determinations of their short- and long-term auto-correlations.
The method was introduced by Peng et al. 1994 [69] and Bunde et al. 2000 [70],
and has been applied in thousands of studies.

In the following, the system of cardiorespiratory regulation and its investigation via
DFA are introduced. Subsequently our published results on the application of DFA
for studying the PTT are put into context. This chapter is concluded by unpublished
results of DFA for accelerometry data.

4.1 Introduction to detrended fluctuation analysis

4.1.1 Cardiorespiratory regulation

In general, the cardiorespiratory system is regulated by the autonomic nervous system,
consisting of the sympathetic and parasympathetic nervous system (an exception is
the respiration, which can be controlled consciously).

The parasympathetic nervous system relaxes the body (“rest and digest”) by de-
creasing blood pressure, heart rate and respiration rate, and it is with its longer
neuronal path ways the slower system.

The sympathetic nervous system increases the body’s performance (“fight or flight”)
by increasing blood pressure, heart rate and respiration rate. Both systems act as
opponents and thus enable specific adaption to different situations.

With the spectral analysis of HRV it is possible to quantify sympathetic and
parasympathetic activation of the heart rate [71]. Specifically, the low-frequency
components (0.04 - 0.15 Hz) reflect sympathetic activity and the high-frequency
components (0.15 - 0.4 Hz) are related to parasympathetic control [8]. Nevertheless,
the heart rate and its variability are not stationary over several nocturnal hours, as
they change from one sleep stage to another, and are also modulated by events like
apneas or waking noises. As a consequence, mean and standard deviation of the time
series are changing and therefore they are not stationary.
To solve this problem this work uses DFA to investigate short- and long-term corre-
lations in non-stationary biosignals. Fluctuations in biosignals, like changes in HRV,
are better resolved by DFA than by spectral analysis [72].
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4. Part II: Fluctuation analysis studies

4.1.2 Detrended fluctuation analysis

In the last 30 years DFA has been established as an important method to detect short
and long-range correlation in non-stationary time series. In short, the idea of DFA
is to decompose the signal into segments, detrend the segments and calculate the
mean square fluctuations. By varying the segments’ length, fluctuations on different
scales can be investigated. It is done as follows in detail [73].

For a time series xi with equidistant measuring points i = 1, 2, ...N , first the mean
x̄ will be subtracted to obtain a time series x̃i with zero mean, see Fig. 4.1 a. Now
the global profile, i.e. the cumulative sum, is calculated

X(j) =
j∑

i=1

x̃i, j = 1, 2, ..., N. (4.1)

In the next step, the profile X(j) is divided in Ns = int(N/s) non-overlapping
segments of length s, see Fig. 4.1 b and c, gray curves. In order not to neglect
information at the end of the time series, the segments are divided twice, once from
the beginning and once from the end, which leads to 2Ns segments of length s. Now
each segment ν is separately detrended. Therefore each segment is approximated
with a polynomial trend pmν,s(j) by least-square fitting

pmν,s(j) = a0 + a1j + a2j
2 + ...+ a2j

m, (4.2)

see Fig. 4.1 b and c, red dashed lines. Finally each segment of the profile X(j) is
detrended by subtracting the polynomial trend

X̃(j) = X(j)− pmν,s(j), (4.3)

see Fig. 4.1 b and c, green curves. The order m of the polynomial detrending is usually
mentioned in the DFA name, like DFA1 for m = 1 (linear detrending) or DFA2 for
m = 2 (quadratic detrending). The mean square fluctuation of each segment ν can
be calculated as follows

F 2
ν (s) =

1

s

s(ν+1)∑

j=ν

X̃2(j), (4.4)

see Fig. 4.1 b and c, dark red diamonds. In the last step, the mean square fluctuations
are averaged over all segments of the same length s

F 2(s) =
1

2Ns

2Ns∑

ν=1

F 2
ν (s). (4.5)

This fluctuation function is now investigated in its behavior on different scales s, i.e.
the different segment lengths s. Usually DFA analysis is looking into different ranges
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4.1. Introduction to detrended fluctuation analysis

Figure 4.1: Visualized DFA algorithm. The upper plot (a) shows a time series of heart
beat interval data (light blue) and the same time series with zero mean (dark blue).
The lower plots shows the single steps of the detrending algorithm, for two scales
(dividing the signal in segments ν), s = 100 in b and s = 200 in c. The cumulative
sum (gray) is detrended (green) by a second-order polynomial fit (red dashed lines)
segment wise (ν). Finally, for each segment ν the mean square fluctuation is calcu-
lated (dark red diamonds). The numbers in the legend correspond to the equations
4.1 to 4.4

.
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4. Part II: Fluctuation analysis studies

Figure 4.2: Fluctuation function F(s). The fluctuation function F (s) (orange triangles) is
shown versus scale in a double-logarithmic plot. Here, two scale ranges are investi-
gated, where we can find different power laws, indicated by different exponents α.

of scales to find power laws, which can be defined as follows:

F 2(s) ∼ s2α ⇒ F (s) ∼ sα for s1 < s < s2, (4.6)

where s1 and s2 define the range of scales, see Fig. 4.2. For different ranges, differ-
ent power laws may be found. The mean fluctuation function F (s) increases with
increasing s, as the root mean square fluctuation (or the standard deviation) is larger
on average with larger scales. That is why α is always positive and its values can be
interpreted as follows [74], [75]:

0.0 < α < 0.5: In this case an anti-power-law correlation is present, which means
small values are more likely to be followed by big values and vice versa [76].

0.5 < α < 1.0: This indicates a long-range power law correlation.

1.0 < α: The data is non-stationary, so that a correlation function cannot be de-
fined. α = 1.5 corresponds to a random walk.

Furthermore, α can be seen as the “roughness” of a time series, while larger α
indicate smother signals.

In addition, for stationary time series, DFAs scaling behavior F (s) ∼ sα can be
compared with the scaling behavior of autocorrelation function C(s) ∼ s−γ and the
scaling of a signals power spectrum P (f) ∼ f−β, which are established methods to
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4.2. Publication: DFA of cardiorespiratory and brain signals.

describe correlation behavior.
One can find that α is related to the exponent of the power spectrum β by

β = 2α− 1. (4.7)

A relation between γ and α can only be found in the range of 0.5 < α < 1.0:

γ = 2− 2α. (4.8)

As already mentioned, these relations are only valid in stationary time series. There-
fore, the advantage of DFA over the analysis of autocorrelation functions and power
spectra lies mainly in its capability of analyzing also non-stationary signals.

4.2 Publication: DFA of cardiorespiratory and
brain signals.

About this publication. In the publication “Long- and short-term fluctuations
compared for several organ systems across sleep stages” [JZ4] we determined and
analyzed the following five time series: heart rate, pulse rate, respiration frequency,
PTT, and EEG alpha-band power during different sleep stages.

In a first step we compared the age and sleep-stage dependence of the average
values, the standard deviations and standard deviations of the increments for all five
time series. We confirmed that they follow the physiological expectations. In a second
step we applied DFA with second-order polynomial detrending (DFA2) to all five time
series and investigated the scaling exponent α of the results for two regimes: short-
term (6 to 16 seconds) α1 and long-term (50 to 200 seconds) α2 [77], separately for
different sleep stages and age groups.

We studied for the first time the dynamics of PTT, from heart to finger in a similar
way as previously done for inter-heart beat intervals [70], [77] respiratory intervals
[77], [78] and brain-wave amplitudes [79]. Our results regarding the scaling behaviors
of heart rate and respiration frequency are fully consistent with those reported in
previous works [70], [77]. Their long-term (α2) scaling patterns, reflecting the scaling
behavior of EEG alpha-band amplitudes, indicate that the long-term (α2) autonomic
control system of the heart is strongly affected by cerebral activity or, alternatively,
both are driven by the same regulatory process [80]. Our results for PTT are novel
and thus cannot be compared with previously published results. Surprisingly, we found
that there were no differences between the short- and long-term fluctuation scaling
behavior (i.e., α1 = α2) during NREM (N2 and N3) sleep. This might indicate that
only one control process is relevant for PTT during NREM sleep, and no additional
short-term (α1) correlations are introduced into PTT. This suggests that the auto-
nomic control of short-term (α1) variations in arterial stiffness and blood pressure
seems to be not tight (variations more random than for heartbeat control). Since
pronounced short-term correlations (α1 > 1) have been reported for blood pressure
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4. Part II: Fluctuation analysis studies

[81], our finding implies that the short-term dynamics of blood pressure and PTT are
different and that there seems to be no reliable direct relation between blood pressure
and PTT.
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Some details of cardiovascular and cardio-respiratory regulation and their

changes during different sleep stages remain still unknown. In this paper we

compared the fluctuations of heart rate, pulse rate, respiration frequency, and

pulse transit times as well as EEG alpha-band power on time scales from 6 to

200 s during different sleep stages in order to better understand regulatory

pathways. The five considered time series were derived from ECG,

photoplethysmogram, nasal air flow, and central electrode EEG

measurements from full-night polysomnography recordings of 246 subjects

with suspected sleep disorders. We applied detrended fluctuation analysis,

distinguishing between short-term (6–16 s) and long-term (50–200 s)

correlations, i.e., scaling behavior characterized by the fluctuation exponents

α1 and α2 related with parasympathetic and sympathetic control, respectively.

While heart rate (and pulse rate) are characterized by sex and age-dependent

short-term correlations, their long-term correlations exhibit the well-known

sleep stage dependence: weak long-term correlations during non-REM sleep

and pronounced long-term correlations during REM sleep and wakefulness. In

contrast, pulse transit times, which are believed to be mainly affected by blood

pressure and arterial stiffness, do not show differences between short-term and

long-term exponents. This is in constrast to previous results for blood pressure

time series, where α1 was much larger than α2, and therefore questions a very

close relation between pulse transit times and blood pressure values.

Nevertheless, very similar sleep-stage dependent differences are observed

for the long-term fluctuation exponent α2 in all considered signals including

EEG alpha-band power. In conclusion, we found that the observed fluctuation

exponents are very robust and hardly modified by body mass index, alcohol

consumption, smoking, or sleep disorders. The long-term fluctuations of all

observed systems seem to be modulated by patterns following sleep stages

generated in the brain and thus regulated in a similar manner, while short-term

regulations differ between the organ systems. Deviations from the reported

dependence in any of the signals should be indicative of problems in the

function of the particular organ system or its control mechanisms.
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1 Introduction

The regulation of quasi-periodic processes in the human body

is characterized by high degree of complexity. Therefore,

fluctuations in physiological signals often show nonlinear

dynamics and correlation behavior with (fractal) scaling

relations (Bassingthwaighte and Raymond, 1994; West, 2014).

For example, a scaling behavior of the power spectra similar to

1/f β (“coloured”) noise has been observed in series of time intervals

between successive heartbeats, breaths, and steps (Kobayashi and

Musha, 1982; Peng et al., 1993b; Hausdorff et al., 1995; Peng et al.,

2002; Ivanov et al., 2009). Their dynamics aremodified by different

physiological states (e.g., sleep/wake, sleep stages) and activities,

aging, and under pathological conditions (Ivanov et al., 1999b;

Bunde et al., 2000; Hausdorff et al., 2001; Karasik et al., 2002;

Goldberger et al., 2002; Kantelhardt et al., 2003; Bartsch et al.,

2007). Coloured noise is equivalent to long-term correlations as

described by a slowly decaying autocorrelation function

(“persistence”) (Bunde et al., 2000; Kantelhardt, 2011). Short-

term correlations, on the other hand, are equivalent to

exponentially (i.e., rather quickly) decaying autocorrelations and

characterized by white noise fluctuations at low frequencies.

By comparing the correlation behavior of many

physiological signals across different states in many

subjects, hypotheses regarding the control mechanisms for

the underlying physiological systems can be derived. Here, we

studied, for the first time, the dynamics of pulse-transit times,

from heart to finger, in a similar way as previously done for

inter-heartbeat intervals (Peng et al., 1993a; Bunde et al., 2000;

Schumann et al., 2010), respiratory intervals (Kantelhardt

et al., 2003; Schumann et al., 2010) and brain-wave

amplitudes (Kantelhardt et al., 2015). In particular, the

dynamics of the control of the pulse-wave

propagation—e.g., blood pressure, arterial stiffness,

etc.—can potentially be studied (Guo et al., 2022). Changes

of the scaling behavior in some subjects can also be used as

early indicators or diagnostic tools for pathologies that affect

one or many of the studied organ systems (Ivanov et al., 1999a;

Goldberger et al., 2002).

Specifically, in this paper based on polysomnography (PSG)

recordings from a clinical sleep laboratory, we studied the short-

and long-term correlations (“persistence”) in five time series

characterizing different organ systems.

• RRI (R-R intervals; heart): The time intervals between

successive R peaks in the electrocardiogram (ECG) as an

expression of autonomic cardiac control.

• PPI (pulse to pulse intervals; cardiovascular system):

The time intervals between successive pulse wave peaks

derived from a photoplethysmogram (PPG) as an

expression of autonomic cardiac control but slightly

influenced by pulse wave velocity regulation

mechanisms.

• PTT (pulse transit times, cardiovascular system): The time

intervals between each R peak (in the ECG) and the

corresponding pulse wave peak (in the PPG), believed to

be an expression of blood pressure (Allen and Kyriacou,

2022) and arterial stiffness.

• BBI (breath to breath intervals; respiratory system): The

time intervals between successive respiration maxima

during the sleep phase as an expression of autonomic

respiratory control.

• EEG (brain): The alpha-band amplitudes of a centrally

recorded electroencephalogram (EEG, electrodes C3 or

C4) as an expression of brain dynamics.

Based on previous work in the field, we address the

following hypotheses for short-term (α1) and long-term

(α2) fluctuation exponents, calculated for these five time

series and probably related to parasympathetic and

sympathetic control, respectively. Our implied medical

hypotheses are that deviations from normal dependence

should be indicative of problems in the function or control

mechanisms of the particular organ system.

1) Short-term correlations (α1) for RRI do slightly depend on

sleep stages and have a maximum for intermediate age groups

(Schumann et al., 2010).

2) Long-term correlations (α2) for RRI are weaker than

short-term correlations and nearly absent during non-

REM sleep (N2 and N3), but pronounced during

wakefulness and REM sleep (Bunde et al., 2000;

Schumann et al., 2010).

3) The scaling behavior of RRI and PPI is very similar. This is

expected because the two time series are closely linked

(Schäfer and Vagedes, 2013).

4) The α2 scaling behavior of BBI is similar to RRI, but the BBI

correlations are generally weaker, particularly during

wakefulness and REM sleep (Kantelhardt et al., 2003;

Schumann et al., 2010). Different trends of α2 with aging

occur for RRI and BBI in REM sleep and wakefulness

(Schumann et al., 2010).

5) There is no relevant influence of respiratory disorders—in

particular, sleep apnea as indicated by the apnea-hypopnea

index (AHI)—on the long-term scaling behavior of RRI and

BBI (Penzel et al., 2003).

6) Average PTTs decrease with aging due to increasing arterial

stiffness (Nichols, 2005).
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In addition, studying the fluctuation scaling behavior in

PTTs for the first time, we address the following novel

hypotheses:

7) Long-term correlations (α2) for PTT are similar to BBI.

8) Short-term correlations (α1) for PTT are weaker than for any

of the other considered time series, there is hardly any

crossover (i.e., α1 = α2), and α1 is only weakly changing

with age. This hypothesis implies that there is no close

relationship between PTT and blood pressure at short time

scales, since very strong (even non-stationary, α1 > 1) short-

term correlations have previously been reported for blood

pressure time series (Galhardo et al., 2009; Fuchs et al., 2010;

Castiglioni et al., 2020).

9) An increased body mass index (BMI) is associated with

increased PTT short-term correlations (α1) during

N2 sleep. Increased alcohol consumption is associated

with decreased PTT short-term correlations (α1) during

nocturnal wakefulness but not during sleep.

2 Methods

2.1 Data recordings

We analyzed single night PSG data from 246 subjects

with suspected sleep disorders recorded in clinical sleep

laboratories at the Charité-Universitätsmedizin Berlin,

Germany, between April 2017 and March 2019. The study

was approved by the ethics committee of the Charité-

Universitätsmedizin Berlin and registered at the German

Clinical Trial Register (DRKS) with ID DRKS00016908.

All enrolled subjects gave written informed consent prior

to the study. Full PSG including EEG, electrooculogram

(EOG), electromyogram (EMG), ECG, PPG, oxygen

saturation, and respiratory effort was recorded using

either an Embla® (Natus, Pleasanton, United States) or a

SOMNOscreen™ PSG system (SOMNOmedics,

Randersacker, Germany). The final used data set consisted

of single-night recordings of 130 female and 116 male

participants with body mass index 28.3 ± 6.2 (17.0, 51.9)

kg/m2, age 51.2 ± 14.2 (18, 79.6) years, and time in bed 7.5 ±

0.8 (2.3,7.9) hours [mean ± standard deviation (minimum,

maximum)].

All recordings were part of diagnostic examination and were

classified by the current rules of the International Classification

of Sleep Disorders (ICSD-3); multiple diagnoses are possible. The

dataset includes 12 subjects without sleep disorders, 132 subjects

with sleep-related breathing disorders, 70 subjects with insomnia,

32 subjects with central disorders of hypersomnolence,

37 subjects with sleep-related movement disorder, 8 subjects

with parasomnias and 8 subjects with circadian rhythm sleep-

wake disorders.

2.2 Data preprocessing

Each measurement was cropped to only contain data

between the ‘lights off’ and ‘lights on’ time stamps, indicating

beginning and end of the sleep opportunity period, respectively.

Sleep stages based on 30-second epochs have been determined

from the PSG data by trained experts following standard

guidelines of the American Academy of Sleep Medicine

(AASM) (Berry et al., 2018) to distinguish light sleep (stages

N1 and N2), deep sleep (stage N3), and rapid eye movement

(REM) sleep. We disregarded the N1 sleep episodes, since they

were too short for the time series analysis in most subjects, hence

distinguishing nocturnal wakefulness, N2, N3, and REM sleep.

Heartbeats were detected as R peaks in the ECGs using the

Biosppy algorithm (Carreiras et al., 2015). Intervals between

successive R peaks (RRIs) were regarded as normal if 1)

RRIi > 330 ms, 2) RRIi < 2000 ms, and 3) 0.7 RRIi−1 < RRIi <
1.6 RRIi−1. Non-normal RRIs were discarded and the remaining

data segments stitched together. Chen et al. (2002) and Ma et al.

(2010) have shown that cutting out and stitching together data

segments obtained from discontinuous experimental recordings

does not affect the outcome of the Detrended Fluctuation

Analysis (DFA, see Section 2.3). From the normal RRIs, we

calculated the average heartbeat interval, the standard deviation

of normal-to-normal intervals (SDNN), and the standard

deviations of the RRI increments (i.e., the root mean sum of

squared distance, RMSSD) applying standard heart rate

variability (HRV) analysis (Malik, 1996).

Pulse wave peaks were extracted from the PPGs using the

intersecting tangents method (Hemon and Phillips, 2016). This

approach determines the intersection between the tangent of the

PPG slopes maximum and the (horizontal) tangent of its

minimum, yielding the point of pulse arrival at the finger

tip. We have also considered other definitions of pulse wave

peaks, such as maxima or minima of the PPG signal, but—as in

Hemon and Phillips, (2016)—the intersecting tangents method

showed the best correspondence with R peaks. The reason behind

this observation lies in the changes of pulse wave shape with

aging, since the systolic peak of the pulse wave gets broader with

increasing age, and therefore more inaccurate in comparison to

heart beats (Kelly et al., 1989). We have also applied an offset

correction (subtracting a moving average over 3 s) and a low pass

filter [moving average over 0.1 s (Hemon and Phillips, 2016)] to

the raw PPG signal. In order to calculate the tangent at the point

of maximal slope, we used the first derivative of the PPG signal,

which was high pass filtered again (moving average over 0.1 s), to

reduce noise. Intervals between successive pulse wave peaks

(PPIs) were regarded as normal within the same limits as for

RRIs. Again, non-normal PPIs were discarded and the remaining

data segments stitched together, and averages as well as statistics

corresponding to SDNN and RMSSD were calculated.

Pulse transit times (PTTs) were defined as time differences

between a detected R peak and the corresponding pulse wave
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peak at the finger. Specifically, the pulse wave peak had to occur

between 0.1 and 0.8 s after the R peak. Due to missing pulse wave

peaks (temporarily low quality PPG signal, etc.) not every R peak

could be matched with a corresponding pulse wave peak. All

successfully derived segments of PTT series (0.1 s < PTTi < 0.8 s)

were stitched together, and averages as well as standard

deviations and standard deviations of the increments were

calculated.

Respiratory cycles were detected in the respiratory flow signal

by identification of the maxima. The signal was preprocessed by

subtracting a 10 s moving average and applying a high pass filter

(1 s moving average); see Leube et al. (2020) for details. We have

also considered other methods to derive respiratory intervals,

but—as we focused on respiration cycles rather than the true

respiration onset—the maxima methods turned out to be the

most robust approach. Intervals between successive respiration

peaks (BBIs) were regarded as normal if 1) BBIi > 2 s, 2) BBI i <
8 s, and 3) 0.7 BBIi−1 < BBIi < 1.6 BBIi−1. Non-normal BBIs were

discarded and the remaining data segments stitched together.

Brain-wave amplitudes for the alpha-band were derived from

the C4 (or C3) electrode EEG recordings by 1) employing the

Fourier filtering technique (Theiler et al., 1992) to extract the

alpha-band oscillations in the range from 7 to 12 Hz, 2) applying

a Hilbert transform to determine the instantaneous amplitudes

for each sampling point of the recording, and 3) re-sampling to

one amplitude value per second (rate 1 Hz). For a detailed

description of the procedure, we refer to Kantelhardt et al. (2015).

2.3 Detrended fluctuation analysis to
characterize correlation behavior

In the final step of our analysis procedure, for each subject,

we split all time series according to sleep stages (wakefulness, N2,

N3, REM sleep), applied DFA with second order polynomial

detrending (DFA2), and averaged the fluctuation functions for

each stage with statistical weights corresponding to the duration

of each episode. The DFA method first introduced by Peng et al.

(1994) for studying DNA sequences has been intensely applied to

study persistence (auto-correlations) in noisy, non-stationary

time series and later been improved for higher-order

detrending (Bunde et al., 2000). The method quantifies

fluctuations on different time scales s, see Kantelhardt et al.

(2001) for details. In brief, for each s the integrated (cumulated)

signal of length N is split into non-overlapping pieces (segments)

of length s. Within each segment an n-th order polynomial fit is

subtracted, and the remaining mean-square fluctuations are

averaged. Repeating the procedure for many scales s yields the

square of the DFA function F(s), which corresponds to a

detrended standard derivation on many time scales s.

In case of long-term (power-law) correlated data without

trends, the scaling behavior of the fluctuation function, F(s) ~ sα

with scaling exponent α > 0.5, is equivalent to a scaling of the

signal’s power spectrum, P(f) ~ f −β with frequency f and β = 2α −

1 (Bartsch et al., 2005). If the data is stationary, i.e., α < 1 and β <
1, this is also equivalent to a scaling of the autocorrelation

function C(s) ~ s−γ with γ = 2(1 − α) = 1 − β (Bashan et al.,

2008). The advantage of using DFA and studying F(s) instead of

P(f) or C(s) lies mainly in the detrending capability, that allows

analyzing nonstationary data. For data with only short-term

correlations, the scaling exponents approach α = 0.5 and β =

0 for asymptotically large s and small f, respectively. By

determining the effective scaling exponents α1 and α2 for

small and large scales, respectively, we can distinguish the

scaling behavior of short- and long-term fluctuations.

Figure 1 shows such DFA functions on a double-logarithmic

plot for an exemplary subject, the four different nocturnal sleep

stages, and all five time series as described in the Introduction. In

addition, we shaded in gray the areas for determining short-term

scaling exponents α1 (from 6 to 16 s) and for long-term scaling

exponents α2 (from 50 to 200 s). A scaling exponent α is, by

definition, the linear slope of the fluctuation function in the

double-logarithmic plot. In Figure 1 the corresponding linear fits

for α1 and α2 are plotted as black lines.

Short-term and long-term scaling exponents were calculated

for each subject, each signal, and each stage. However, to ensure

the data quality, in further analysis only scaling exponents with

coefficient of determination r2 > 0.9 were included. Since the total

durations of the sleep stages differ, we report the results for each

stage separately and did not calculate weighted averages over the

entire sleep period.

3 Results

The following results are averages of each considered

quantity for the whole group of subjects, often divided into

10-year age groups1; see the bottom right histogram in

Figure 2 for the age distribution in our sample. In all cases,

the four nocturnal states, wakefulness, N2, N3, and REM sleep

have been studied separately.

3.1 Age dependencies of averages and
variabilities

First, we studied the average values, the standard deviations

(corresponding to the HRV parameter SDNN for heartbeat

intervals) and standard deviations of the increments

(corresponding to the HRV parameter RMSSD for heartbeat

intervals) for all five time series, RRI, PPI, PTT, BBI and EEG (see

Introduction) to check if they follow the physiological

1 The age group 29 years contains two subjects below 20 years; both are
18 years old.
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FIGURE 1
The DFA2 fluctuation functions F(s) are shown on double-logarithmic plot for one exemplary subject and different nocturnal states (A)
wakefulness, (B) N2 (light) sleep, (C) N3 (deep) sleep, and (D) REM sleep. Time intervals between successive R peaks in the ECG (orange, triangles),
between successive pulse waves peaks (blue, circles), for pulse wave transition times (green, squares), for respiratory intervals (violet, rhombuses),
and for alpha-band amplitudes in the EEG (red, stars) have been analyzed. The scale on the horizontal axis has been rescaled by a factor of four
for the respiratory data. The dashed lines with slope α = 0.5 (randomwhite noise) and the dash-dotted lines with slope 1.0 (1/f-type correlated noise)
are shown for comparison. The two fitting regimes for the effective short-term fluctuation exponent α1 (6–16 heartbeat intervals or seconds) and the
effective long-term fluctuation exponent α2 (50–200 heartbeat intervals or seconds; 12 to 50 breaths) are marked by the gray shading. The
fluctuation functions have been shifted vertically for better visualization.

FIGURE 2
Average values (first column), standard deviations (second column), and standard deviations of the increments (third column) are shown versus
age group for RRI (top row), PPI (second row), PTT (third row), BBI (forth row), and EEG (bottom row) during different nocturnal states (see legend on
the right hand side). The histogram in the bottom right corner presents the numbers of subjects for each age group. Error bars indicate the standard
error.
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expectations. Figure 2 shows these three standard parameters

versus the age groups. As Schmitt et al. (2009) have already

shown for RRI and two age groups, there is an age dependence as

well as differences between the sleep stages. As expected, average

RRIs were shortest during wake, while at the same time, SDNN

and RMSSD showed the largest values. The parameters during

N2 and REM were always very similar. For N3 (deep sleep),

however, slightly lower values of SDNN were observed. For all

three statistical parameters, minimum values occurred around

the 50–59 years old group in all stages. As also expected (see

Hypothesis 3 in the Introduction), exactly the same behavior of

the statistical parameters was observed for PPI, since RRI and PPI

are closely related during rest and sleep as already reported by

Schäfer and Vagedes, (2013).

The study of PTTs in the third row of Figure 2 yielded the

expected behavior that generally average PTTs decrease with age

(see Hypothesis 6). This occurred for all nocturnal stages,

although slight deviations for the first and last age group

cannot be excluded within the error bars (standard error).

Standard deviations of PTT and standard deviation of PTT

increments showed similarly small values during all three

sleep stages, but much larger values (by a factor of

FIGURE 3
The age-dependence of short-term (α1, orange) and long-term (α2, blue) scaling exponents is shown for the series of time intervals between
successive R peaks in the ECG (RRI, first row), time intervals between successive pulse wave peaks at the finger tip (PPI, second row), pulse transit
times (PTT, third row), respiratory intervals (BBI, fourth row), and EEG amplitudes in the alpha-band (EEG, bottom row). For the evaluation, nocturnal
wake states (left column), N2 sleep (second column), N3 sleep (third column) and REM sleep (right column) were separated. All subjects were
binned to 10-year age groups; the standard error of each point for each group is indicated by the vertical error bars.
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approximately three) during nocturnal wakefulness. The

generally increasing but somewhat non-monotonous trend

with increasing age was identical for both standard deviation

parameters and all nocturnal states.

The breathing intervals exhibited the most pronounced

differences between N2, N3 and REM sleep. While average

BBI were shortest during REM sleep and of similar length for

N2 and N3 sleep, the two standard deviation parameters were

smallest during N3, followed by N2 and REM as expected.

Wakefulness yielded the largest BBI standard deviations. Each

standard deviation parameter showed the same age dependence

for all sleep stages. However, for the average respiration period,

BBI, a slightly different age dependence was observed during

wakefulness.

EEG alpha-band brain wave amplitudes, also showed the

expected behavior with clearly much larger values during

wakefulness as compared to sleep. These differences seem to

become slightly weaker with increasing age.

3.2 Age dependences of short- and long-
term correlations

Figure 3 summarizes the results of the DFA2 fluctuation

scaling analysis for the five considered time series during

different sleep stages. The results for short-term correlations

of RRI (α1) in the first row confirmed our Hypothesis 1, although

the maximum for intermediate age groups was a bit broader than

in Schumann et al. (2010) and reached the largest values at lower

ages (≈ 35 instead of ≈ 55 years). The long-term correlations of

RRI (α2) in the first row together with the results for brain-wave

amplitudes in the bottom row clearly confirmed our Hypothesis

2. Since the results for PPI (second row) were—within the error

bars—identical with those for RRI (first row), our Hypothesis

3 was also confirmed.

The results regarding BBI were also in agreement with

Schumann et al. (2010). Since we observed decreasing

(increasing) α2 exponents with aging for RRI and PPI during

wakefulness (REM sleep), but slightly decreasing α2 exponents

with aging for BBI during REM sleep, Hypothesis 4 was also

confirmed. Note however, that the observed age dependence of

BBI during wakefulness was not the same as in Schumann et al.

(2010).

Our main findings for PTT confirmed hypotheses (7), long-

term correlations (α2) for PTT were similar to BBI and (8), short-

term correlations (α1) were weaker than for any of the other

considered time series. It is important to note that for PTT

particularly during non-REM sleep (N2 and N3) short and long-

term correlations became identical (α1 = α2), so that the crossover

disappeared. Furthermore, there was no change of PTT α1 with

aging. Such behavior was not observed for any of the other

signals. PTT and EEG data did not seem to have a relevant age

dependence, except for a possible slight decay of PTT short-term

correlations (α1) with age above 40 years during wakefulness and

REM sleep.

3.3 Influences of sex, BMI, smoking,
alcohol consumption, and sleep apnea

Figure 4 shows how the short- and long-term scaling

exponents for RRI and PTT depend on sex, BMI, smoking

status and alcohol consumption. Interestingly, we found a

strong (highly significant, p < 0.001) sex dependence of the

short-term (α1) correlations in RRI (as well as those in PPI),

which were consistently higher in males than in females across all

sleep stages. In contrast, the long-term (α2) correlations in RRI

were not sex depended. For short- and long-term correlation in

PTT only marginal differences between males and females were

seen, with some significance reached for α1 during N2, N3, and

REM sleep (p = 0.020, 0.008, 0.032, respectively).

An increasing BMI led to slightly increasing short-term

correlations (α1) in PTT but not in RRI or any of the other

considered signals. Multivariable regression analysis2, adjusted

for age (in categories of 10 years as shown before) and sex,

showed a significant increase of α1 for PTT with BMI during

N2 sleep (p = 0.010). The same trend was observed for breathing

intervals (BBI, not shown). Body size was associated with short-

term correlations (α1) of the heart (also not shown). However,

this effect was mainly due to the increase of male population with

increasing body size and therefore not relevant.

Smoking led to a slightly higher heart rate (not shown), but

hardly affected SDNN and RMSSD over all sleep stages. In the

multivariable regression analysis, short-term correlations (α1)

were significantly decreased for smokers during wakefulness

regarding RRI (p = 0.038) and during REM sleep regarding

PTT (p = 0.012), while long-term correlations (α2) for PTT were

significantly increased for smokers during wakefulness (p =

0.007) and N3 (p = 0.021) sleep (see also Figure 4).

While the mean values of RRI and PPI increased (slower

heartbeat) with habitual alcohol consumption, PTT, BBI and

EEG amplitudes stayed rather constant. We also saw a decline of

PTT and EEG averages and possibly an increase in the average

BBI associated with a large increase of BBI standard deviations.

Regarding the short- and long-term correlations, only a slight

decline of α1 (short-term correlations) for RRI during N3 sleep

(p = 0.048) and for PTT with increasing alcohol consumption

was significant during wakefulness (p = 0.029).

Among the many possible disorders, our sample is most

suitable for addressing the effects of sleep apnea. This sleep-

related breathing disorder can be classified by the apnea

hypopnea index (AHI), which is defined as the average

2 Multivariable regression analysis was done in python using the package
statsmodels from Seabold and Perktold, (2010).

Frontiers in Network Physiology frontiersin.org07

Zschocke et al. 10.3389/fnetp.2022.937130

79



number of apneas and hypopneas per hour of sleep. We

distinguished healthy subjects (AHI < 5/h), mild apnea

(5–15/h), moderate apnea (15–30/h), and severe apnea (> 30/

h). While the mean values of RRI, PPI, and PTT clearly decreased

with increasing AHI during all four considered states, their

standard deviations were clearly decreasing only during

wakefulness. For BBI, we observed an increase of the standard

deviation with AHI as expected, since the apneas represent a

stopping of respiration. Mean respiratory intervals seemed to

peak for the moderate apnea group. Regarding the short- and

long-term correlations, however, we did not observe any relevant

changes with increasing AHI. This finding is consistent with

Penzel et al. (2003) and confirmed our Hypothesis 5. A detailed

analysis of five-minute epochs before apneas, after apneas, and

far from apneas did not reveal any significant differences in the

short- and long-term fluctuation exponents, even if we studied

central apneas, obstructive apneas, mixed apneas and hypopneas

separately.

Furthermore, we did not see any significant effect of the

ICSD-3 classifications on the scaling behavior of RRI, PPI, PTT,

BBI, and EEG. This could be due to the small numbers of patients

in some of the subgroups. In particular, we had only 12 subjects

without sleep related disease in our control group. As sleep

disorders (sleep-related breathing disorders and insomnia) can

have several causes and show very large variability, a systematic

manifestation in the examined signals (heart rate, pulse transit

time, respiration and EEG) is not visible in our method of

analysis.

4 Discussion

Our results in Figure 2 showed that the average values,

standard deviations and standard deviations of increments for

RRI, PPI, PTT, and BBI depend on sleep stages, while some of

them change non-linearly with aging. Regarding RRI, i.e., for

HRV parameters, similar changes have previously been reported

by Schmitt et al. (2009) for young and elderly subjects. For 24 h

averages, Umetani et al. (1998) reported that the HRV

parameters SDNN and RMSSD decreased till the age of

50–60 years and then stabilized. This is consistent with our

observations. Other studies reported decreases of heart rate

FIGURE 4
Influences of sex (male—blue, female—orange), BMI, smoking, and alcohol consumption on short- and long-term fluctuation exponents α1 and
α2 of RRI and PTT, indicated by the boxplots. The light part of each box represents the values between the lower quartile and themedian, and the dark
part represents the values between the median and the upper quartile. The ends of the whiskers mark the 2.5% quantile and the 97.5% quantile,
respectively. The total average values appear as black crosses in the box plot (see scale on the left axis for the boxplots). Additionally, numbers of
subjects available for each analysis are shown in the hatched bars on the bottom of each plot (scale on the right axis). In particular, we compared
normal weight (BMI <25 kg/m2) versus overweight (BMI 25–30 kg/m2) and obese (BMI >30 kg/m2), non-/ex-smokers versus smokers, and subjects
with low alcohol consumption ( ≤ once per month) versus subjects with high alcohol consumption (> once per month).
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and HRV parameters with aging (Voss et al., 2012; Xhyheri et al.,

2012; Jensen-Urstad et al., 1997). Since a decreasing heart rate

corresponds to increasing average RRI values, these observations

are not really coinciding with ours, see Figure 2 top left panel. A

reason could be that we focused on subjects with sleep related

disorders instead of healthy subjects. Hence, a study with better

statistics and a focus on healthy subjects as well as sleep stage

distinction is needed for a full clarification.

Furthermore, we found a close similarity between HRV

parameters (from RRI, top row in Figure 2) and pulse rate

variability parameters (from PPI, second row in Figure 2),

confirming our Hypothesis 3 from the Introduction. Chen

et al. (2015) and Khandoker et al. (2011) have reported

differences between these two kinds of parameters during

apnea events, but no differences during normal breathing.

Compared with our work, they studied shorter episodes

(2–3 min) of apnea or non-apnea data, while we averaged

over all identical sleep stages for the whole night, so that the

influence of apneas is probably averaged out in our results. We

note that Constant et al. (1999) have shown that pulse rate

variability can solely be induced by respiratory modulations as in

their study on children with a fixed cardiac pace maker rhythm,

possible effects of heart rate variability on PPI have been

excluded.

To our knowledge, this is the first paper that analyzes long

nocturnal series of PTT values, defined by the time intervals

between R peaks and corresponding pulse wave peaks at the

finger. We confirmed Hypothesis 6 based on Nichols, (2005) that

average PTT decreases with aging, likely due to increasing arterial

stiffness. There was hardly any sleep-stage dependence of the

average PTT values. However, like HRV (i.e., SDNN and

RMSSD), the two PTT variability parameters clearly decreased

during sleep as compared to wakefulness (see Figure 2 center and

right panels). Hardly any further decay in the PTT variabilities

occurred from REM to N2 to N3 sleep, although respiratory

variability clearly followed this decaying order. No clear age

dependence could be observed for PTT or BBI variabilities. More

statistics and a focus on healthy subjects is needed for a full

clarification of these dependencies.

The results for the correlation behavior on short and long

time scales, i.e., the exponents α1 and α2 of RRI, PPI, PTT, BBI,

and EEG alpha-band amplitude data were presented in Figure 3.

Our results regarding RRI and BBI are fully consistent with those

reported in previous work (Bunde et al., 2000; Kantelhardt et al.,

2003; Schumann et al., 2008; Schumann et al., 2010). In

particular, short-term correlations (α1) for RRI did only

weakly depend on sleep stages and had a maximum for

intermediate age groups, confirming our Hypothesis 1. This

suggests that the short-term autonomic control system of the

heart is not strongly affected by sleep-stage related brain activity

and that it ages in a non-monotonous way. Further research is

needed to clarify the reasons behind this unusual age

dependence.

Long-term correlations (α2) for RRI were weaker than short-

term correlations and nearly absent during non-REM sleep

(N2 and N3), but pronounced during wakefulness and REM

sleep, confirming our Hypothesis 2. This pattern, reflecting the

scaling behavior of EEG alpha-band amplitudes, indicates that

the long-term autonomic control system of the heart is

significantly affected by cerebral activity via sympathetic

control, or, alternatively, both are driven by the same

regulatory process (Günther et al., 2022). Since the type of

long-term correlations strongly differs between non-REM

sleep on the one hand and REM sleep or wakefulness on the

other hand, this dependence strongly indicates that an influence

from the brain is involved, because sleep stages originate in the

brain. In our opinion, it is not plausible that an organ or organ

system would independently from the brain create correlations

that simultaneously change with those in brain dynamics

following exactly the same sleep-stage stratification pattern.

Again, we observed a very similar behavior for PPIs (cp. first

and second row in Figure 3), also confirming our Hypothesis

3 from the Introduction (Schäfer and Vagedes, 2013).

Nevertheless, a comparison of the results for males and

females in Figure 4 revealed significant differences, which had

not been observed in previous studies of healthy subjects

(Schumann et al., 2008; Schumann et al., 2010). In particular,

α1 values were higher in men than in women, while α2 values

were similar. This finding may be related with differences in

parasympathetic control in men and women. However, since

most of our subjects had some kind of sleep-related disorder (see

end of Section 2.1), we cannot exclude an effect of these disorders

on our results, and suggest that a scaling analysis of data from a

larger group of healthy subjects is needed for a clarification.

Possibly, HRV parameters reported to be higher in men than in

women (Umetani et al., 1998) may be related with this

observation.

Our medical hypothesis is that organ-specific alternations in

the long-term fluctuation pattern (which seems to originate in

the brain) or short-term fluctuation pattern (with a more local

origin) can indicate medical problems related with this organ.

For example, if short-term fluctuations of RRI are described by a

lower exponent α1 than expected for the age of the subject, this

could be a hint towards premature aging of the cardiovascular

system. Or if long-term RRI fluctuations follow a nearly random

behavior (low α2) not only during non-REM sleep, but also

during REM sleep and/or wakefulness, this could indicate a

diminished sympathetic input. On the other hand, a high α2
also during non-REM sleep could indicate insufficiency of the

cardiovascular system to relax, which in turn may negatively

affect sleep quality. However, since we do not have data from

subjects with specific cardiac problems or diagnoses, such

hypotheses cannot be tested in this study.

Comparing the long-term (α2) scaling behaviors of RRI and

BBI, we confirmed previous reports of a very similar sleep-stage

dependence, but somewhat weaker correlations in BBI,
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particularly during wakefulness and REM sleep (Kantelhardt

et al., 2003; Schumann et al., 2010) (Figure 3), indicating that

cerebral activity also influences respiration during

sleep. Different trends of α2 with aging occurred for RRI and

BBI in wakefulness and REM sleep, confirming our Hypothesis 4.

This suggests that aging affects autonomic cardiac and

respiratory control in somewhat different ways. While our

results regarding RRI were fully in agreement with Schumann

et al. (2010), the trends for aging were less clear for BBI, so that a

study with more data and of healthy subjects would be needed for

a clarification of this detail.

Our results for the nonlinear dynamics of PTT series on short

and long time scales, i.e., their exponents α1 and α2, are novel and

thus cannot be directly compared with previously published

results. Surprisingly, we found that there were no differences

between the short- and long-term fluctuation scaling behavior

(i.e., α1 = α2) during non-REM (N2 and N3) sleep, so that no

crossover occurs, see Figure 3. This might indicate that only one

control process is relevant for PTT during non-REM sleep, and

no additional short-term correlations are introduced into PTT.

An alternative interpretation is that the parasympathetic and

sympathetic control of PTT are well and identically balanced

during the different sleep and wake stages so that practically no

crossover occurrs. During wakefulness and REM sleep, slight

differences between α1 and α2 were observed, but—contrary to

the behavior of RRI, PPI and EEG amplitude data—α1 was

smaller than α2 for all age groups.

According to a standard textbook (Allen and Kyriacou, 2022)

PTT intervals aremainly affected by blood pressure, although varying

levels of arterial stiffness and body and limb positions do also play a

certain role. Since body and limbpositions do not often change during

the sleep phase, their influence does probably not yield a relevant

contribution to the observed PTT fluctuations. Moreover, the stroke

volume mainly affects the pulse wave amplitude (which we do not

study here), but not the timing. Regarding arterial stiffness, we are not

aware of specific studies that address their short- and long-term

fluctuation behavior, so that currently no conclusions regarding its

(sleep-stage or age-dependent) influence on PTT seems possible.

Blood pressure, on the other hand, is known to be strongly correlated

on short time scales with α1 values of 1.4 for mice (Galhardo et al.,

2009) and 1.2 for humans (Fuchs et al., 2010) during wakefulness,

increasing to 1.3–1.4 during the night (Castiglioni et al., 2020).We are

not aware of published data regarding differences between the sleep

stages. Hence, if the fluctuations of PTT intervals wouldmainly reflect

blood pressure changes, a similarly large α1 value would have to occur

for PTT, which is not the case. Therefore, our result seems to indicate

that PTT is only reflecting long-term fluctuations of blood pressure,

while short-term correlations of PTT must be dominated by faster

and much closer to random fluctuations of arterial stiffness. It thus

suggests that the parasympathetic control of short-term variations in

arterial stiffness has no short-term memory (variations close to

random) and is not directly linked to autonomic cardiac and

respiratory control.

The sleep stage dependence of α2 for PTT is very similar to

BBI. This suggests that long-term PTT fluctuations are similarly

controlled via the sympathetic nervous system as long-term

respiratory fluctuations and also linked to cerebral activity.

We did not observe pronounced changes of PTT scaling

behavior with aging and only a marginally significant sex

dependence, see Figure 3 (third row) and Figure 4 (third and

fourth row).

An increased body mass index (BMI) was associated with

slightly increased PTT short-term correlations (α1) during

N2 sleep. Increased alcohol consumption was associated with

decreased PTT short-term correlations (α1) during nocturnal

wakefulness but not during sleep. For smokers, short-term

correlations (α1) in RRI decreased during wakefulness, while

those in PTT decreased during REM sleep; long-term

correlations (α2) in PTT increased during wakefulness and

N3 sleep. We think that a study with more subjects is needed to

confirm these apparently not very systematic effects, before a

medical interpretation can be provided. Nevertheless, the

observation of changes for PTT but (in most cases) not for the

other considered signals suggests that PTTs yield independent

information, probably related with changes in arterial stiffness

control and should be included in subsequent work.

Consistent with previous reports [see, e.g., Penzel et al.

(2003)] we did not observe any relevant changes of the scaling

behaviors of either RRI, PPI, PTT, BBI, or EEG alpha-band

amplitudes with increasing disease severity of apnea (i. e., AHI)

nor with other sleep disorders. This suggests that the observed

scaling behaviors of these signals and their long-term autonomic

control are very robust. However, studies with a larger samples

are needed for clarification.

Limitations of our study include our sample size of just

246 subjects, mainly with sleep related disorders, while most

previous studies regarding temporal correlations in biosignals

and HRV focused on healthy subjects.

5 Summary and conclusion

We confirmed the sleep-stage and age dependence of basic

statistical parameters characterizing cardiovascular, respiratory, and

brain dynamics, including mean RRI and its deviations (SDNN,

RMSSD), mean PPI and its deviations, mean PTT and its deviations,

mean BBI and its deviations and mean EEG alpha-band amplitude

and its deviation during different sleep stages. Additionally, we

investigated systematically aspects of nonlinear dynamics and the

correlation behavior of these time series by calculating the DFA

exponents α1 and α2. While the long-term correlations (α2) of all

analyzed physiological systems follow the same sleep-stage

stratification pattern, indicating a common regulatory

mechanism, short-term correlations do hardly vary across sleep

stages and may be governed by organ-specific physiological

processes. Surprisingly, PTT is an exception from this rule, since
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we have observed a complete absence of additional short-term

fluctuations, i.e., α1 ≈ α2 across all age groups and sleep stages.

This result indicates that short-term PTT fluctuations do not reflect

short-term blood pressure fluctuations, which are rather

characterized by very different exponents α1 > 1.
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4.3 Preliminary results of DFA in accelerometry
data

Finally preliminary results based on accelerometry data are presented. We investi-
gated the scaling behavior of simultaneously measured hip and wrist accelerometry
in different activity categories.

4.3.1 Preprocessing of accelerometry data

The NAKO Gesundheitsstudie provided us with a subsample of 3000 datasets, where
subjects wore an accelerometer at the wrist (SOMNOwatch) and one at the hip
(ActiGraph). While the hip data were recorded for 7 days, the wrist recording was
only about 24 hours. From previous analysis, we had already calculated the 5 second
MAD values (5s-MAD, see Eq. 2.3) of the hip data, with the GGIR package [50].
Thus, we had only to calculate the 5s-MAD of the wrists’ datasets. In order to assure
synchronicity, in a first step, time series of hip and wrist were synchronized by their
timestamps. As a second step, cross-correlation were calculated in the 5s-MAD time
series in blocks of two hours, to identify offsets and drifts. Recordings with little drift
(less than 5 seconds) were used and corrected based on the offset. Furthermore, the
7 day hip measurement was shortened to the matching 24 hour recording from the
wrist. In total, 2798 datasets could be successfully matched and analyzed.

4.3.2 Classification of accelerometry data

Wrist and hip accelerometry differ because of their wearing places. The wrist is moved
more frequently and with higher intensity in comparison to the hip. That leads to a
better usability of wrist accelerometry for sleep and low activity classification, while
hip accelerometry is better suited for scoring physical activity [83], [84].

As already mentioned, we used the 5s-MAD values, which agglomerate the 3D data
to one time series, and also reduce storage space and computing time. In Fig. 4.3
5s-MAD of the wrist is plotted versus the 5s-MAD of the hip in a double logarithmic
plot. The resulting curve reminds of a boomerang, and was introduced in the author’s
master thesis [85]. For low hip activity (1 to 10 mg) the wrist activity varies by a
factor of ten (0.5 to 100 mg). On the other hand, for higher wrist activity (50 to
200 mg), the hip activity varies from 2 to 500 mg. Therefore, wrist accelerometer
measurements provide more accurate results for sleep and sedentary activity, while hip
measurements provide better resolution for more intense physical activity. In addition,
the curve contains also example activities, like standing still, sweeping etc, reported
by [82].

As shown in Fig. 4.3 the data was ad-hoc divided in to four activity classes and an
outlier area. Values are scored as outliers, if

• 5s-MAD Wrist < 5s-MAD Hip · 0.05 or

• 5s-MAD Wrist > 5s-MAD Hip · 100
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Figure 4.3: Boomerang curve. 5s-MAD values for hip (ActiGraph) and wrist (SOM-
NOwatch) are plotted against each other. Four activity classes were defined based
on hip and wrist values (see gray labels). For further analysis, 12 consecutive data
points were always combined and assigned to the majority’s activity class, which
is why there are deviations between the classes and the cluster assignment. Ma-
genta numbered dots are example activities: (1) standing still, (2) washing pots,
(3) dusting, (4) sweeping floor, (5) self-paced free-living walk, as reported in [82].
Accelerometry data is from a subject of the NAKO Gesundheitsstudie, see Subsec-
tion 2.3.1.
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After all outliers were removed for further analysis, the following terms were applied:

• Rest: 5s-MAD Wrist · 5s-MAD Hip < 3 mg2

• Low activity: 3 mg2 ≤ 5s-MAD Wrist · 5s-MAD Hip < 500 mg2

• Moderate activity: 500 mg2 ≤ 5s-MAD Wrist · 5s-MAD Hip < 20000 mg2

• High activity: 20000 mg2 ≤ 5s-MAD Wrist · 5s-MAD Hip

In order to have longer uninterrupted activity clusters and to apply DFA to there
activity clusters, we looked into 12 consecutive data points (1 minute) and assigned
all 12 data points to the majorities’ class. For this reason, the activity scoring in
Fig. 4.3 differs from the defined classes.

4.3.3 Results and discussion of accelerometry DFA

DFA2 was applied to hip and wrist 5s-MAD time series. In addition, time series
snippets of the same activity cluster type were stitched together. The scaling exponent
was investigated in three regimes: α2 (50 to 200 seconds), α3 (5 to 20 minutes) and
α4 (0.5 to 2 hours)1. The exponent α was calculated in the same way as described
in the publication in Section 4.2 [JZ4].

In Fig. 4.4 the three scaling exponents of hip and wrist accelerometry are shown
for different activity clusters. The exponents α are plotted versus age, in bins of 10
years, and split by sex. An age dependency can hardly be seen. For the analysis
combining all activity levels we see a slight decrease of α2 with age and an increase
of α4 with age. While the wrist data hardly exhibits crossovers (αi ≈ 1, for i = 2,
3, 4), the hip data shows a crossover from α2 > 1 to α4 < 1 in all age groups. In
contrast, Hu et. al found a slight decrease of α with age on very long time scales (>
1.5 hours). In general, we found no sex dependencies either. Whereas Raichlen et.
al [86] found for α in the range of 10 minutes to 7 hours a slight, but clear age and
sex dependency.

However, we can see clear differences between the activity clusters. Rest has the
lowest exponents, followed by low and moderate activity. Both are very similar, and
the highest exponent is observed for the high activity cluster. This can also be found
in literature [86]–[88].

DFA2 for the whole 24 hour time series reveals exponents close to 1.0, which can
also found in literature, where Hu et. al reported α = 0.93 for a time scale of minutes
to hours for wrist actigraphy, but this value seems to be dependent on week days [89].
Besides Ivanov et. al report a similar value of α = 0.9 [90]. Higher activities will
dominate the DFA results and therefore, we generally find higher exponents α, in the
analysis combining all activity clusters.

Comparing the hip and wrist accelerometry, we can see, a higher exponent in hip
accelerometry, in time ranges of a few minutes (α2), except for the rest cluster. In
the time range of 5 to 20 minutes (α3), only differences for low and moderate activity

1The scaling exponents start with α2, to be consistent with [JZ4].
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Figure 4.4: DFA2 of accelerometry data. The behavior of scaling exponents α of DFA2
of hip (orange) and wrist (blue) accelerometry is plotted versus age, in bins of 10
years, and in addition split into females (dotted) and males (dashed). Three scaling
exponents are shown: α2, α3, and α4 (rows), each for different activity clusters
(columns). The error bars indicating the standard error of each bin. The high
activity cluster has too few data for α4.
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exists, where now wrist activity has higher values then hip. A similar picture emerges
in α4, except for all, were wrist has higher values than hip.

Movement patterns can be identified more easily in hip accelerometry than in wrist
accelerometry [91], because the wrist rotates a lot more frequently, but less strongly.
Hence, we can expect a larger DFA slope in hip accelerometry on time scales of
a few minutes (α2), as we see in Fig. 4.4. On longer time scales (>5 minutes),
movement episodes, like walking, are more likely to be interrupted by sitting etc., and
the DFA exponent drops in hip accelerometry. On the other hand, the DFA slope in
wrist accelerometry seems more stable for different time scales, as even in sitting the
wrist is moved a lot. A special case is the rest cluster. For larger time scales, the
exponents α3 and α4 during rest become close to 0.6, which is near the random noise
(α = 0.5). As the rest cluster is closely related to sleeping or just lying, it is consistent
with expectations that there is no long term (>5 minute) correlation. Besides, for
shorter time scales, we have α2 ≈ 0.8, indicating correlation of movements in the
range of a few minutes.

Finally, it should be mentioned, that we compared two different devices with differ-
ent specifications. The SOMNOwatch at the wrist has a better signal to noise ratio,
which can be seen in Fig. 4.3. For a comparison of smaller scales, e.g. 1s-MAD can
be used, but only for identical devices, since device differences are more important in
MAD values for shorter intervals.
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This thesis explored in the first part the mostly hidden potential of accelerometry
data to estimate pulse waves and respiration at the wrist. Methods and algorithms
to extract pulse wave peaks and respiration have been introduced, described and
discussed.
In the second part, the scaling behavior of biosignals and accelerometry was examined.
Especially, the short- and long-term correlations of PTT were investigated for the
first time. Furthermore, hip and wrist actigraphy scaling behavior was analyzed and
compared for different activity levels.

According to the goals (i - v) formulated in the Introduction, the following main
findings have been achieved:

(I) An algorithm to detect pulse wave peaks and estimate pulse wave rate via wrist
accelerometry was developed and successfully applied (Section 3.2 [JZ1]):

• It could be shown that the pulse waves traversing the wrist cause tiny
movements, which can detected by accelerometers during sleep, and can
therefore be used to investigate pulse to pulse intervals and also pulse
transit times.

• The values of the PTT estimated between R peak and reconstructed pulse
wave peak are in agreement with literature.

• Pulse rate variability (PRV) derived from wrist accelerometry is slightly
higher than HRV, so that it is not perfect surrogate.

• PRV is more strongly influenced by respiration (respiratory sinus arrhyth-
mia), which could explain the larger PRV.

(II) It has been shown, that respiration movements could be extracted from wrist
accelerometry in order to estimate respiratory activities (Section 3.3 [JZ2]):

• During sleep and in the absence of motion artifacts, wrist accelerometry
is able to capture the respiration-induced movements.

• Comparing respiration estimates from ECG and wrist accelerometry, the
latter one is superior.

(III) Methods from (I), pulse wave peak reconstruction, and (II), respiration estima-
tion from wrist accelerometry, have been successfully evaluated and investigated
in the context of sleep stages (Section 3.4 [JZ3]):

• During sleep, respiration and pulse wave signals can be reconstructed
simultaneously.
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• Pulse waves can be better reconstructed than respiration.

• Best results could be reached during N3 with hardly any movement ar-
tifacts, followed by N2 and REM sleep, while the synchronization drops
during epochs of wakefulness, which are associated with movements.

• Phase synchronization between pre-filtered accelerometry data from multi-
ple axes, can be used as a performance predictor of the 30 second episodes.
Discarding episodes based on this prediction could increase synchroniza-
tion with the real signal, and therefore the reliability of the reconstructed
signals, at the cost of less reconstructed data.

• Apnea events affects the reconstruction of respiration negatively, but
hardly affects pulse wave reconstruction.

(IV) The scaling behavior of heart rate, pulse rate, respiration frequency, PTT and
EEG alpha-band power during different sleep stages was studied and compared.

• Heart and pulse rates are characterized by sex- and age-dependent short-
term (6 to 16 seconds) fluctuations, while their long-term (50 to 200 sec-
onds) fluctuations exhibit a clear sleep stage dependence: weak long-term
correlations during NREM sleep and pronounced long-term correlations
during REM sleep and wakefulness.

• In contrast, PTTs do not show differences between short-term and long-
term scaling behavior; their short-term fluctuations are less correlated and
hardly depend on age or sex.

• Very similar sleep-stage dependent differences, are observed for respiration
frequency, EEG alpha-band power and PTT.

• The long-term scaling of all five observed signals seems to be modulated
by sleep stage patterns generated in the brain, while short-term control
differs between the organ systems.

(V) In our scaling analysis of accelerometry data we have, for the first time, com-
pared results for two different wearing locations (wrist and hip) and for four
activity classes, while simultaneously studying many (≈ 2800) subjects and
distinguishing scaling behaviors on three different time scale ranges.

• We could clearly show that activity clusters and wearing location of the
sensor have a stronger effect on the results than sex or age (except during
rest).

• Weak trends with aging are opposite for short-term and long-term corre-
lations when we combine data from all activity clusters.

• Our results that hardly show any age dependencies in the separate activity
classes suggest that the previously reported slight drop of the fluctuation
scaling exponent with aging [86] is probably due to a reduction of high
activity in the elderly and not due to an independent decrease of motion
complexity with aging.
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• No sex dependency could be observed in the long-term correlations.

• It was found that, with increasing activity, the scaling exponents increase.

• During rest, autocorrelations can be found on time scales of a few minutes
(α2, 50 - 200 seconds), while they vanish on longer scales.

• On time scales of a few minutes (α2), the scaling exponent of hip ac-
celerometry is larger than the one for wrist accelerometry, but vice-versa
on long time scales (α3 and α4), except for rest, where all exponents are
similar.

As a follow-up investigation connected to Part I of this thesis, the stronger influ-
ence of the respiratory sinus arrhythmia on the pulse wave peak signal needs further
investigations. Here, we only investigated wrist accelerometry, but recent investiga-
tions of our group indicate that the algorithms are transferable to hip accelerometry,
where respiration reconstructions seem to perform better. The combination of wrist
and hip accelerometry is suggested, since it matches to a smartwatch (wrist) and
smartphone (in a pocket at the hip) setup, leading to first algorithms for costumer
applications.

Certainly the reconstructed signals cannot replace a PSG setup. But even if the
reconstructed signals themselves are not reliable from a medical point of view, they
can be used to distinguish non-wear time and sleep [44], [45].

In connection to the results presented in Part II, the scaling behavior of human
accelerometry data deserves further investigation. We used the 5s-MAD value to
compare 24 hour measurements from wrist and hip, finding no age and sex depen-
dencies in scaling ranges of minutes to hours, while the scaling exponent increases
with increasing activity. The comparison of the scaling behavior in accelerometry and
biosignals could be improved by using accelerometry data with sleep stage scoring,
together with 24 hour heart rate, respiration and PPG data. For further research,
the scaling behavior of the reconstructed pulse waves and respiration rates could be
investigated and compared.

Another approach to investigate cardiorespiratory signals and regulation, is the ex-
amination of the coupling between respiration and heart rate, or in terms of this work,
the coupling between the reconstructed signals. This coupling could be described by
synchronization or coordination.

In this work we have given a small insight into the advanced application of ac-
celerometry data. On the one hand we showed how to derive cardiorespiratory in-
formation and on the other hand we dealt with the scaling behavior on different
time scales. This opens further possibilities for future research projects and costumer
applications.
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