
Cellular DBMS:

Customizable and autonomous data management using a

RISC-style architecture

Dissertation

zur Erlangung des akademischen Grades

Doktoringenieur (Dr.-Ing.)

angenommen durch die Fakultät für Informatik

der Otto-von-Guericke-Universität Magdeburg

von: M.S. Syed Saif ur Rahman

geb. am 23. December 1980 in Hyderabad, Pakistan

Gutachter:

Prof. Dr. Gunter Saake

Prof. Dr. Kai-Uwe Sattler

Dr. Stefan Manegold

Ort und Datum des Promotionskolloquiums: Magdeburg, den 06. September 2011

Rahman, Syed Saif ur:

Cellular DBMS: Customizable and autonomous data management using a RISC-style

architecture

Dissertation, Otto-von-Guericke-Universität Magdeburg, 2011.

Abstract

Database management systems (DBMS) were developed decades ago with consid-

eration for the legacy hardware and data management requirements. Over years,

developments in the hardware and the data management have forced DBMS to

grow in functionalities. These functionalities got tightly integrated into the DBMS

core because of their monolithic architecture. This has resulted in increased com-

plexity of DBMS, which makes them difficult to tune for consistent performance.

Furthermore, the decreasing cost of the hardware and the software has resulted in

making the human resource a major factor in the total cost of ownership for the

data management. There exists a need to revisit existing database architecture us-

ing unconventional and unexplored techniques towards more diversified and loosely

coupled architectures.

We present the Cellular DBMS architecture, which is designed according to the

RISC-style self-tuning database architecture proposed by Chaudhuri and Weikum

in their VLDB 2000 paper. The Cellular DBMS architecture proposes to construct

a large DBMS by using multiple RISC-style cells in concert, where each cell is

atomic, customized, and autonomous instance of an embedded database. Using

the Cellular DBMS architecture, we designed and implemented a customizable and

self-tuning storage manager; we termed as Evolutionary Column-oriented Storage

(ECOS). ECOS supports the storage model customization at table-level using dif-

ferent variations of the decomposed storage model. It supports the storage struc-

ture customization at the column-level using evolving hierarchically-organized stor-

age structures. These storage structures automatically evolve themselves with the

growth of data considering the workload. Their evolution behavior is defined using

evolution paths. The Cellular DBMS architecture uses innovative software engineer-

ing approaches, such as the software product line, the feature-oriented programming,

and the aspect-oriented programming to realize customization and autonomy. We

implemented the Cellular DBMS prototype constituting the ECOS storage manager

in C++ using FeatureC++ and AspectC++ tools. We evaluated our prototype im-

plementation using a custom micro benchmark to show the benefits of our proposed

architecture.

I

II

Zusammenfassung

Die Entwicklung der heutigen Datenbankmanagementsysteme (DBMS) begann vor

Jahrzehnten, wobei die damalige Hardware und die damaligen Anforderungen an das

Datenmanagement zugrunde gelegt wurden. Während der letzten Jahrzehnte haben

sich aber sowohl die Hardware als auch die Anforderungen verändert. Dies zwang die

Hersteller von DBMS, die gebotene Funktionalität der bis dahin existierenden DBMS

auszuweiten. Über die Zeit wurden mehr und mehr Funktionen hinzugefügt, und

diese sind wegen der monolithischen Architektur dieser DBMS tief in den Systemk-

ern integriert und miteinander verflochten. Heutige DBMS haben sich zu komplexen

Systemen entwickelt, und die vielfältigen abhängigen Funktionalitäten erschweren

die Optimierung mit dem Ziel einer konsistenten Performanz. Der Einfluss einer

Tuning-Maßnahme auf andere ist schwer abzuschätzen. Außerdem haben sinkende

Hardware- und Software-Kosten dazu geführt, dass die Kosten für Administratoren

und DBMS-Fachleute ein dominierender Kostenfaktor innerhalb der gesamten Be-

triebskosten für die Datenverwaltung wurden. Deshalb ist es notwendig, existierende

Datenbankarchitekturen zu überdenken und dabei unkonventionelle und bisher uner-

forschte Techniken zu verwenden, und diese in Richtung breiter gefächerter und lose

gekoppelter Architekturen zu entwickeln. Ein solcher Ansatz ist die RISC-style Self-

Tuning Datenbankarchitektur, welche von Chaudhuri und Weikum in ihrer VLDB

2000 Arbeit vorgeschlagen worden ist.

Wir haben die Cellular DBMS-Architektur vorgeschlagen und vorgestellt, welche

die RISC-style Self-Tuning Datenbankarchitektur umsetzt. Diese Architektur setzt

große DBMS um, indem viele Instanzen von RISC-style Zellen (Cells) zusammenge-

setzt werden, wobei jede Zelle atomar, angepasst und autonom in ihrer Datenman-

agementfunktionalität ist. Wir präsentieren einen anpassbaren Speichermanager mit

Self-Tuning-Funktionalität, der entsprechend der vorgeschlagenen Cellular DBMS-

Architektur implementiert wurde. Den vorgestellten Speichermanager bezeichnen

wir als Evolutionary Column-oriented Storage (ECOS). ECOS unterstützt die An-

passbarkeit auf Tabellen- und auf Spaltenebene. Für die Anpassung auf Tabel-

lenebene haben wir vier Varianten des Decomposed Storage Model (DSM)-Modells

vorgeschlagen. Zur Anpassbarkeit auf Spaltenebene verwenden wir hierarchisch or-

ganisierte Speicherstrukturen, welche als kleinste und minimale Speicherstrukturen

für die anfängliche kleine Datenverwaltung initialisiert werden, um sich dann au-

tomatisch entsprechend der Datenbankgröße und den Anforderungen des aktuellen

Workloads evolutionär zu entwickeln. Wir haben das Konzept des Evolutionsp-

III

fades (Evolution Path) vorgestellt, welches festlegt, wie sich Speicherstrukturen

entwickeln können. Das Design der Cellular DBMS-Architektur legt die Verwen-

dung innovativer Software Engineering-Ansätze nahe, wie zum Beispiel Software-

produktlinien (SPL), Feature-orientierte Programmierung (FOP) und Aspektorien-

tierte Programmierung (AOP). Wir haben den Cellular DBMS-Prototyp inklusive

des ECOS Speichermanagers in C++ unter Verwendung von FeatureC++ und As-

pectC++ Werkzeugen implementiert. Die prototypische Implementierung wurde

unter Verwendung eines angepassten Micro Benchmarks evaluiert, um die Vorteile

der vorgeschlagenen Architektur zu demonstrieren.

IV

Dedications

To my lovely parents, wife, siblings, and friends.

V

VI

Acknowledgments

I am thankful to Prof. Dr. Gunter Saake, who gave me the opportunity to work

under his supervision within his workgroup. All that I have learned and achieved

during my PhD became possible with his support. He has been very cooperative

during ups and downs of my PhD academics. It was his support that enabled me

to work on my PhD topic, which was and is too ambitious as a PhD project for a

single person with limited time. He gave me full flexibility to bring my full potential

into use. He was always available for suggestions and guidance overcoming his busy

and tough schedule of work.

I am thankful to Dr. Marko Rosenmüller, who gave me guidance and support

during the earlier years of my PhD. He helped me out during the admission process

for my PhD. He supported me in quickly adjusting with my new workgroup. I

have worked with him during an early stage of my PhD, and I have learned many

important things from him.

I am thankful to Dr. Christian Kästner. He became my third mentor during my

PhD. It was his guidance that brought me out of the mess that I was in, towards

a focused research topic in the most professional manner. His mentoring has a

huge positive impact on my research, both in terms of conducting useful research

and presenting research results in the best understandable manner. His efforts and

guidance have a big contribution in the completion of this PhD research.

I am thankful to Dr. Eike Schallehn. His support played a pivotal role for me

to complete this PhD research. As a senior colleague and as an expert in the

database domain, he directed me well to stimulate my research motivation and to

focus on finishing within my time constraints through finalizing the contributions.

The technical quality of my work has a high impact from his suggestions.

I am thankful to Azeem Lodhi, Ateeq Lodhi, Dr. Sagar Sunkle, and Ingolf Geist.

They were with me during the complete period of my PhD as good and supportive

colleagues. Ingolf Geist also provided me the important last review on my thesis for

final corrections. I am also thankful to Andreas Lübcke, Dr. Sven Apel, Norbert

Siegmund, Dr. Nasreddine Aoumeur, Michael Soffner, and all other colleagues for

their support.

I will also like to acknowledge Higher Education Commission of Pakistan (HEC),

National Engineering and Scientific Commission of Pakistan (NESCOM), Deutscher

Akademischer Austausch Dienst (DAAD), and Database Research Group of Univer-

sity of Magdeburg for providing the funds and facilities during my PhD.

VII

VIII

List of author publications that contributed to this

dissertation

• Syed Saif ur Rahman, Eike Schallehn, and Gunter Saake, ECOS: Evolution-

ary Column-Oriented Storage, In Proceedings of the 28th British National

Conference on Databases (BNCOD 2011), pages 18-32, Springer-Verlag, The

University of Manchester, United Kingdom, 12 - 14 July 2011.

• Syed Saif ur Rahman, Eike Schallehn, and Gunter Saake, ECOS: Evolutionary

Column-Oriented Storage, Technical Report No. FIN-03-2011, Department of

Technical and Business Information Systems, Faculty of Computer Science,

University of Magdeburg, 2011.

• Syed Saif ur Rahman, Using Evolving Storage Structures for Data Storage,

In Proceedings of the International Conference on Frontiers of Information

Technology (FIT 2010), pages 3:1-3:6, ACM, Islamabad, Pakistan, 21 - 23

December 2010.

• Syed Saif ur Rahman, Veit Köppen, and Gunter Saake, Cellular DBMS: An

Attempt Towards Biologically-Inspired Data Management, Journal of Digital

Information Management, Volume 8 Issue 2, ISSN: 0972-7272, April, 2010.

• Syed Saif ur Rahman, Marko Rosenmüller, Norbert Siegmund, Gunter Saake,

and Sven Apel, Specialized Embedded DBMS: Cell Based Approach, In Pro-

ceedings of the 20th International Workshop on Database and Expert Systems

Application (DEXA 2009), pages 9-13, IEEE Computer Society, Linz, Upper

Austria, Austria, 31 August - 4 September 2009.

• Syed Saif ur Rahman and Gunter Saake, Cellular DBMS - An Attempt To-

wards Biologically-Inspired Data Management, Technical Report No. FIN-

012-2009, Department of Technical and Business Information Systems, Faculty

of Computer Science, University of Magdeburg, 2009.

• Syed Saif ur Rahman, Azeem Lodhi, and Gunter Saake, Cellular DBMS -

Architecture for Biologically-Inspired Customizable Autonomous DBMS, In

Proceedings of the 2009 First International Conference on ’Networked Digital

Technologies’ (NDT2009), pages 310-315, IEEE Computer Society, Ostrava,

The Czech Republic, 29 - 31 July 2009.

IX

• Syed Saif ur Rahman, Cellular DBMS (Abstract), In Dagstuhl Seminar Pro-

ceedings 08281, 08281 Abstracts Collection - Software Engineering for Tailor-

made Data Management, 06.07.2008-11.07.2008, http://drops.dagstuhl.

de/opus/volltexte/2008/1579.

X

http://drops.dagstuhl.de/opus/volltexte/2008/1579
http://drops.dagstuhl.de/opus/volltexte/2008/1579

Contents

Contents 3

List of Figures 5

List of Tables 7

Listings 9

List of Abbreviations 11

1 Introduction 13

1.1 Contributions . 15

1.2 Outline . 16

2 Background 19

2.1 DBMS architecture . 19

2.2 Embedded database . 20

2.3 Storage models . 20

2.4 Autonomy and self-tuning . 21

2.5 NoSQL databases . 22

2.6 Reduced Instruction Set Computer (RISC) and a RISC-style database

system . 22

2.7 Related software engineering concepts 23

2.7.1 Software product line . 23

2.7.2 Feature-oriented programming 23

2.7.3 Aspect-oriented programming 24

2.7.4 Customization . 24

3 The Cellular DBMS architecture 25

3.1 Motivation for the customization in an architecture 25

3.2 Motivation for the autonomy in an architecture 26

1

Contents

3.3 The Cellular DBMS architecture and the Cell 28

3.4 Autonomy in the Cellular DBMS architecture 30

3.5 Realization of a cell . 33

3.5.1 Using the software product line to achieve customizability . . 35

3.5.2 Using the aspect-oriented programming to realize autonomy . 39

3.6 Related work . 40

3.7 Summary . 43

4 A customizable and self-tuning storage manager 45

4.1 Motivation . 46

4.2 Evolutionary Column-oriented Storage (ECOS) 50

4.2.1 Table-level customization . 50

4.2.2 Column-level customization and storage structure hierarchies . 54

4.3 Evolution paths . 59

4.4 Theoretical explanation for evolving hierarchically-organized storage

structures . 62

4.4.1 Ordered read-optimized storage structure 63

4.4.2 Unordered write-optimized storage structure 66

4.5 Related work . 70

4.5.1 Column-oriented DBMS . 71

4.5.2 ECOS in comparison with other self-tuning solutions 73

4.6 Summary . 75

5 The prototype implementation: Problems faced and lessons learned 77

5.1 Our database system implementation experience 77

5.2 Prototype implementation details . 80

5.3 Implementation of evolution mechanism 90

5.3.1 Monitoring functionality implementation 91

5.3.2 Trace functionality implementation 91

5.3.3 Analysis and fixing functionality implementation 91

5.4 Summary . 94

6 Evaluation 97

6.1 Micro benchmark details . 97

6.2 Evaluation results . 99

6.3 Summary . 109

2

Contents

7 Concluding remarks and future work 111

7.1 Summary of the dissertation . 111

7.2 Future work . 113

7.2.1 Query processing . 113

7.2.2 Mechanisms to adapt storage structures according to evolution

paths alteration . 114

7.2.3 The Cellular DBMS architecture and the multi-core era 115

7.2.4 Multiple storage models . 117

7.2.5 The Cellular DBMS architecture and the cloud data services . 117

7.2.6 Resource balancing in the Cellular DBMS architecture 118

7.2.7 Future work from software engineering perspective 119

7.2.8 Miscellaneous . 120

A List of features in the Cellular DBMS prototype 121

Bibliography 127

3

Contents

4

List of Figures

3.1 Different types of cell. 31

3.2 Evolving cell. 32

3.3 Sample DBMS SPL and its few possible variants. 36

3.4 Sample Cellular database realization for the relational model using

multiple embedded database variants. 37

4.1 Evolving hierarchically-organized storage structures. 48

4.2 Evolutionary column-oriented storage. 55

4.3 HLC SL and HLC B+-Tree storage structures in the Cellular DBMS

prototype. 57

5.1 Page and record structures in the Cellular DBMS prototype. 79

5.2 Source code transformation. 81

5.3 The Cellular DBMS prototype feature model. 82

5.4 The Cellular DBMS prototype minimal variant feature model. 83

5.5 Increase in features also increases the LOC and the binary size. . . . 90

5.6 Increase in features also increases the tuning knobs. 90

6.1 Micro benchmark results using the Berkeley DB: Minimal configura-

tions consume less CPU cycles and memory. 99

6.2 Micro benchmark results using the Berkeley DB: Minimal configura-

tions cause less instruction cache misses. 100

6.3 Micro benchmark results using the Berkeley DB: Minimal configura-

tions cause less data cache write misses. 100

6.4 Micro benchmark results using the Berkeley DB: Minimal configura-

tions cause fewer branches and their mispredictions. 101

6.5 Performance comparison of different storage structures for a single

record. 101

6.6 Performance comparison of different storage structures for 4048 records.102

6.7 Performance comparison of different storage structures for 100K records.102

5

List of Figures

6.8 Performance comparison of different storage structures for 500K records.102

6.9 Evolving storage structures reduce memory and CPU cycles usage. . . 103

6.10 Evolving storage structures generate less cache references. 103

6.11 Evolving storage structures cause less data cache misses. 103

6.12 Evolving storage structures generate less branches and their mispre-

diction. 104

6.13 Evolving HLC SL storage structure evolution. 105

6.14 Evolving HLC B+-Tree storage structure evolution. 105

6.15 Performance comparison of different DSM based schemes in ECOS

with a primary key based search criteria. 106

6.16 Performance comparison of different DSM based schemes in ECOS

with a non-key based search criteria. 107

6.17 Performance improvement for dictionary based DSM schemes for large

column width. 108

6.18 Performance comparison of different DSM based schemes in ECOS

for read and write intensive workloads. 108

6

List of Tables

3.1 TPC-H LINEITEM table observed statistics, possible customization,

and anticipated evolution. 27

4.1 Storage structures classification. 46

4.2 DSM. 50

4.3 KDSM. 51

4.4 MDSM. 52

4.5 Dictionary columns for DMDSM and VDMDSM. 53

4.6 DMDSM. 53

4.7 VDMDSM. 53

4.8 Example for evolution paths. 60

4.9 Column-oriented DBMS. 72

5.1 Statistics and details for the Cellular DBMS prototype implementa-

tion variants. 84

5.2 Feature derivatives and higher order feature derivatives for important

features in the Cellular DBMS prototype. 89

6.1 List of abbreviations used in figures with their details. 98

7

List of Tables

8

Listings

5.1 Monitoring implementation code snippet 92

5.2 Autonom class implementation code snippet 93

5.3 Evolution implementation code snippet 95

5.4 ECOS interface code snippet . 96

A.1 The configuration file of the Cellular DBMS prototype listing all features121

9

Listings

10

List of Abbreviations

AOP Aspect-oriented Programming

API Application Programming Interface

DBMS Database Management System

DMDSM Dictionary based Minimal Decomposed Storage Model

DSM Standard 2-copy Decomposed Storage Model

ECOS Evolutionary Column-oriented Storage

FOP Feature-oriented Programming

HLC High-level Composite

HLC B+Tree High-level Composite using B+Tree

HLC SL High-level Composite using Sorted List

HOD Higher Order Derivative

KDSM Key-copy Decomposed Storage Model

LOC Lines Of Code

MDSM Minimal Decomposed Storage Model

NSM N-Ary Storage Model

RISC Reduced Instruction Set Computer

SPL Software Product Line

VDMDSM Vectorized Dictionary based Minimal Decomposed Storage Model

11

1 Introduction

We can’t solve problems by using the same kind of thinking we

used when we created them.

Albert Einstein

The database management system (DBMS) is one of the backbone technologies

for the information technology industry. The relational DBMS technology itself is

not new, rather it dates back to 70’s when the emergence of System R [Astrahan

et al., 1976] and Ingres [Stonebraker et al., 1976] started a new era for data man-

agement. The architecture for System R and INGRES was designed considering

requirements for the transaction processing systems and the legacy hardware. The

legacy hardware of that era was mainly mainframe systems. Maximum processing

power available in 70’s and 80’s was low relative to hardware capacity of current

era. Main memories and hard disks were expensive and scarce resources. The tape

was considered as the most economical storage medium for high capacity data stor-

age. Taking into account the price ratio of processor, memory, and disk access of

that time, Gray and Putzolu [1987] in 80’s gave the five minute rule, i.e., “Data

referenced every five minutes should be memory resident” and the ten bytes rule,

i.e., “Spend 10 bytes of main memory to save 1 instruction per second”. Existing

commercial DBMS, such as DB2 and Oracle do find their ancestry relation in some

form to earlier DBMS, such as System R.

Over the last four decades, we came across a tremendous change in the hardware

and the software technology and its usage. The hardware has grown powerful. Now

we have abundance of processing power. Main memory and hard disk densities have

exploded. The tape is considered dead, whereas we have another effective medium of

flash memory to change the traditional memory hierarchy [Graefe, 2008]. The effect

of change in the hardware on the data management during next two decades with

the reference to the earlier work of Gray and Putzolu [1987], is properly documented

by Gray and Graefe [1997] and later by Graefe [2008] at the interval of ten years.

Database researchers acknowledge that the impact of change in the hardware on

13

the data management is high [Agrawal et al., 2009] and they stress on the need of

revisiting existing DBMS architecture for better utilization of new hardware features.

One major impact of improved hardware resources in conjunction with the advent

of the Internet is the explosion in data sizes, which setup the need for more sophis-

ticated DBMS to handle large data volumes. Over the last four decades, DBMS

vendors have equipped their DBMS with more and more functionalities to fulfill

the market requirements. However, the wish list for a DBMS is too long. It wants

a DBMS to be scalable, speedy, stable, secure, small, simple, self-managing, self-

adapting, self-organizing, self-tuning, and this list goes on and on [Manegold et al.,

2009]. Existing DBMS now have grown complex with a multitude of functionali-

ties covering hundreds of affecting parameters [Kersten, 2008]. Database researchers

blame monolithic architecture of existing DBMS for complexity and call for a revisit

in the existing database architecture [Agrawal et al., 2009; Chaudhuri and Weikum,

2000; Kersten et al., 2003].

The complexity of existing DBMS makes them difficult to manage. They are

difficult to tune for consistent performance because of the existence of many inter-

dependent functionalities, which makes them highly unpredictable. It requires

highly skilled administrators to manage a consistently functioning DBMS. However,

highly skilled human resources are expensive. They make the major cost factor

for the data management because of the decrease in the hardware cost. Database

researchers have proposed and explored autonomic data management approaches

to reduce the total cost of ownership for the data management [Chaudhuri and

Narasayya, 2007; Weikum et al., 2002]. Autonomic data management includes many

self-* functionalities, such as self-tuning, self-managing, self-organizing, self-healing,

self-configuring, self-protection, and self-optimization, but this list could be easily

extended with more wishes.

We revisit existing database architecture towards a self-tuning RISC-style database

architecture according to the work from Chaudhuri and Weikum [2000]. They pro-

posed the RISC-style database architecture where a database is constructed from

small RISC-style components with specialized API, limited interaction among com-

ponents, and built-in self-tuning capabilities. The goal of their design is to make

a database system more predictable and easy to self-tune. Revisiting an existing

database architecture and to challenge the prevalent assumption on how a DBMS is

constructed is a difficult task [Kersten, 2008]. It requires system-oriented research,

which is an ambitious task for a PhD research [Chaudhuri and Weikum, 2000]. For

example, it took MonetDB seven years to reach a mature system with many excep-

14

CHAPTER 1. INTRODUCTION

tionally talented resources [Kersten, 2008]. However, our motivation to undertake

this work can be best expressed by the words from Kersten [2008]:

Taking a side-road is risky, takes quite some years to mature, but also

opens vistas of new architectural adventures.

1.1 Contributions

1. We present the Cellular DBMS architecture, a RISC-style database architec-

ture for customizable and autonomous DBMS development that we designed

according to suggestions from Chaudhuri and Weikum [2000]. We show that

an instance of a customizable embedded database can be used as a RISC-style

data manager, which we termed as cell. We use the software product line

approach to achieve the customization of each cell in a Cellular DBMS by

extending the contribution of the FAME-DBMS project1 [Leich et al., 2005;

Rosenmüller et al., 2008]. We also propose structures and mechanisms for

autonomic behavior in a database architecture focusing specifically on the

self-tuning. We use the aspect-oriented programming to realize autonomy in

a DBMS. We also provide details about the realization of a DBMS using the

proposed architecture.

2. We present a customizable and self-tuning storage manager realized according

to the Cellular DBMS architecture. The storage manager use the decomposed

storage model (DSM) [Copeland and Khoshafian, 1985] and its four proposed

variations for storage model customization at the table-level. The storage

manager also use hierarchically-organized storage structures, evolution, and

evolution paths at the column-level to achieve both customization and auton-

omy. The proposed hierarchically-organized storage structures can be opti-

mized according to a hardware hierarchy. We present a mechanism to increase

and decrease the hierarchy of hierarchically-organized storage structures us-

ing different storage structures that we dynamically select according to the

workload. We show an evolution mechanism that transforms a storage struc-

ture from one form to another autonomically. We introduce the mechanism of

evolution paths, which defines how hierarchically-organized storage structures

evolve.

1“Fame-DBMS project”, http://fame-dbms.org/, Accessed: 21-06-2011

15

http://fame-dbms.org/

1.2. OUTLINE

3. We document our experience of the Cellular DBMS prototype implementa-

tion. We outline problems that we faced and our design decisions to solve

those problems. We present in detail our prototype implementation. We use

our prototype implementation statistics to present the effect of an increase

in functionalities on the increase in the number of tuning knobs, LOC, and

binary size. We also present the effect of an increase in the number of fea-

tures on the increase in the number of feature derivatives. We explain our

evolution mechanism implementation using the aspect-oriented programming

by presenting the code snippets.

4. We provide the evaluation results for the following:

a) The impact of unused functionalities on the performance of a database

b) The change in the performance of a storage structure with the growth in

the database size

c) The performance gain from the use of evolving hierarchically-organized

storage structures

d) The performance difference of different DSM schemes

We also present the evolution behavior of evolving hierarchically-organized

storage structures. We used Berkeley DB to assess the impact of unused

functionalities, whereas other evaluations are performed on the Cellular DBMS

prototype. We used a custom micro benchmark for our evaluation.

1.2 Outline

In this section, we provide the outlook of the thesis structure. We distributed the

related work content among chapters according to their relevance taking into account

the fact that the required related work in this thesis comes from multiple domains.

Similarly, we also distributed the motivation for each chapter among them. The

outline of the thesis content is as follows:

In Chapter 2 (Background), we introduce the reader with basic terms and

concepts that are mandatory for the understanding of the thesis. This chapter

introduces concepts from both the data management and the software engineering

domains.

In Chapter 3 (The Cellular DBMS architecture), we motivate the reader

regarding the need for customization and autonomy support in a database archi-

16

CHAPTER 1. INTRODUCTION

tecture. This chapter introduces our Cellular DBMS architecture. It outlines the

design principles for customization and autonomy in the architecture and provides a

detailed explanation from the software engineering perspective about, how these de-

sign principles can be realized using the innovative software engineering techniques.

In Chapter 4 (A customizable and self-tuning storage manager), we

present a customizable and self-tuning storage manager that we designed and im-

plemented according to the Cellular DBMS architecture. We provide a separate

motivation for our design decisions specific to the storage manager implementation.

We explain how the relational model can be realized in the Cellular DBMS archi-

tecture. We introduce four variations for the DSM scheme to be used for storage

model customization at the table-level. We introduce hierarchically-organized stor-

age structures. We present concepts of the evolution and the evolution path that

enables a storage manager to self-tune itself with reduced human intervention. We

also provide the theoretical explanation for evolving hierarchically-organized storage

structures that we used in our storage manager.

In Chapter 5 (The prototype implementation: Problems faced and

lessons learned), we document our experience with the Cellular DBMS prototype

implementation. It discusses the details about the problems that we faced and our

different design decisions to solve those problems. It presents the Cellular DBMS

prototype implementation with detailed discussion from the software engineering

perspective. It also provides the insight about the source code implementation of

the evaluation mechanism in the prototype.

In Chapter 6 (Evaluation), we present the evaluation results for our prototype

implementation. It explains the micro benchmark that we used for evaluation and

provides a detailed discussion on the presented results.

In Chapter 7 (Concluding remarks and future work), we conclude the

thesis by providing the summary of our work and outlining the conclusions that

we reached from our experiences and results. We outline the foreseen future work

during the research with a detailed explanation on most of them with a focus on

their possible solutions.

17

1.2. OUTLINE

18

2 Background

Completion of the database jigsaw puzzle calls for organizations of

its pieces, trying out combinations, and assembling bits and

pieces. Staring at the same piece over and over again will not lead

to the satisfaction of understanding the complete picture. Our

community calls for adventurous academics who explore unknown

territory and mark it with paradigm shifts.

Martin L. Kersten

The Database Architecture Jigsaw Puzzle (Keynote Talk),

ICDE 2008

In this thesis, we introduce a unique and novel DBMS architecture, which requires

knowledge of concepts from both the data management and the software engineering

domains. Therefore, we introduce and explain them with many other background

concepts in this chapter.

2.1 DBMS architecture

The architecture of a DBMS defines its structure in terms of components, the be-

havior of components, and the relationship and interaction among them [Özsu and

Valduriez, 1999]. Existing DBMS are designed and developed according to the lay-

ered DBMS architecture. The layered DBMS architecture stems from earlier work

of the Data Independent Accessing Model (DIAM) presented by Senko et al. [1973].

DIAM defines an information system using multiple self-sufficient abstractions, such

that each higher level is more abstract than the lower level and provides a simpler

environment for solving information system design problems. DIAM defines four

layers of abstraction namely entity set model, string model, encoding model, and

physical device model. Later on Härder and Reuter [1983a; 1983b] presented a five

layer DBMS architecture constructing further on the DIAM. Their five proposed

layers are namely file management, propagation control, access path management,

19

2.2. EMBEDDED DATABASE

navigational access, and nonprocedural access. The design theme for the layered

DBMS architectures is the data independence to overcome the change with chang-

ing data management requirements.

2.2 Embedded database

An embedded database is a database management solution that is embedded/tightly

integrated into its user-application. This term is also used for data management

software for embedded systems [Olson, 2000]. Embedded databases are intended to

operate in a management-less environment hidden from the end-user. Two popular

open-source embedded databases are Berkeley DB [Olson et al., 1999; Oracle Berke-

ley DB] and SQLite [SQLite]. MySQL also provides the embedded version of their

DBMS servers, which they call the embedded MySQL library [MySQL Database].

2.3 Storage models

The storage model selection is an important design decision for a DBMS architecture.

Two most commonly used storage models are N-Ary Storage Model (NSM) and

Decomposed Storage Model (DSM). The NSM stores data as seen in the relational

conceptual schema, i.e., all attributes of a conceptual schema record are stored

together [Copeland and Khoshafian, 1985]. Most of popular commercial DBMS,

such as DB2, Oracle, MS SQL Server, and MySQL use the NSM. The DSM is a

transposed storage model [Batory, 1979] that store all values of the same attribute of

the relational conceptual schema relation together [Copeland and Khoshafian, 1985].

Svensson [2008] mentioned the Cantor project [Karasalo and Svensson, 1983, 1986]

as the pioneer for this approach. In literature column-oriented [Stonebraker et al.,

2005], vertical fragmentation [de Vries et al., 2001], and vertical partitioning [Abadi

et al., 2007] are terms used to refer to solutions similar to the DSM.

Copeland and Khoshafian [1985] analyzed both approaches and concluded that

neither of the two approaches could be an ideal solution for all domains. The DSM

requires relatively more storage space, however, the required storage can be reduced

by using compression techniques [Holloway and DeWitt, 2008]. Update and retrieval

performance of both models depends on the nature of data and implementation of

models. The DSM is known for fast retrieval whereas the NSM is efficient in fast

updates [Holloway and DeWitt, 2008]. Copeland and Khoshafian [1985] suggest

that many disadvantages of DSM can be avoided by using hardware and software

20

CHAPTER 2. BACKGROUND

techniques, such as differential files, multiple disks, and large main-memory. The

DSM allows using the CPU cache efficiently [Zukowski et al., 2005]. Zukowski et

al. [2008] compared the two approaches on the most recent hardware to assess the

CPU performance trade-offs in the block-oriented query processing. Zukowski et

al. concluded that it depends on a query to identify, which data layout is bet-

ter. Furthermore, they recommended on-the-fly conversion between these formats

for better performance and stressed for further research on a hybrid data layout

using the best of both approaches. Example of hybrid data layout can be found

in PAX [Ailamaki et al., 2002], fractured mirrors [Ramamurthy et al., 2002], and

MonetDB/X100 [Zukowski et al., 2005].

2.4 Autonomy and self-tuning

By autonomy, we mean the capability of a DBMS to monitor, diagnose, and adjust

itself. It is a generic term that covers all functionalities of a DBMS that are required

to automatically manage, maintain, tune, or heal a DBMS. In contrast, self-tuning

is the specialization of autonomy. By self-tuning, we mean the automation of DBMS

tuning activities performed by a DBMS administrator. Shasha and Bonnet [2003]

defines tuning as:

“Database tuning is the activity of making a database application run

more quickly. “More quickly” usually means higher throughput, though

it may mean lower response time for some applications. To make a

system run more quickly, the database tuner may have to change the

way applications are constructed, the data structures and parameters

of a database system, the configuration of the operating system, or the

hardware.”

For self-tuning, a DBMS monitors itself for performance tuning related parameters,

diagnoses the causes for identified performance degradation, and performs the tuning

activities to maintain the required performance (or if possible, performs preventive

actions to avoid similar performance degradation in the future). Self-tuning can be

performed statically as well as online. Static self-tuning means the self-tuning that

requires manual initiation of tuning process. With static self-tuning approaches,

the self-tuning advisors provide the database administrator with the advices to tune

the DBMS. Then it waits for the administrator to select among the recommended

activities for tuning. In contrast, the online self-tuning means the self-tuning that is

21

2.5. NOSQL DATABASES

performed continuously and automatically [Bruno and Chaudhuri, 2007b]. Online

self-tuning approaches are normally tightly integrated with the DBMS functionality,

and it requires minimal human intervention for adjusting the DBMS parameters.

2.5 NoSQL databases

NoSQL database is the terminology used for API-based non-relational databases.

They are gaining attraction because of their capability to handle unstructured data

efficiently in comparison with relational databases. They are also known for tak-

ing benefit from the distributed processing using the commodity hardware. Dy-

namo [DeCandia et al., 2007] and Big Table [Chang et al., 2008] are the two examples

for NoSQL databases. They both possess key/value interfaces for data storage.

2.6 Reduced Instruction Set Computer (RISC) and a

RISC-style database system

Chaudhuri and Weikum [2000] used the term RISC in their proposal for different

self-tuning RISC-style database system architecture. Their presented concepts are

inspired from RISC-based central processing unit (CPU) design, which advocates

the construction of a CPU using simpler and faster instructions instead of complex

and slow instructions [Patterson and Ditzel, 1980]. Use of complex instruction for

CPU design has its own benefits, which includes upward compatibility and better

marketing opportunities. We believe similar benefits as a factor that derived ex-

isting DBMS components towards prevailing complexity. However, Patterson and

Ditzel [1980] discussed both approaches in the context of CPU design and presented

the benefits of RISC-based design, such as simple and fast instruction, a possibility

of careful pruning of an instruction set, and minimizing complexity to maximize per-

formance. We intend to achieve similar benefits in our RISC-style Cellular DBMS

architecture.

Chaudhuri and Weikum [2000] suggested the use of RISC-style data managers with

narrow functionality, specialized API, small footprint, and limited interaction. Their

aim is to reduce the number of tuning knobs for a DBMS to make it more predictable

in terms of performance and behavior making it easy to self-tune. They defended

their proposal with the notion of “gain/pain” ratio, which suggests to tolerate a

moderate degradation in “gain” with the introduction of overheads present in their

22

CHAPTER 2. BACKGROUND

approach to reduce the “pain” related to tuning with more predictable performance.

2.7 Related software engineering concepts

Software engineering concepts of the software product line, the feature-oriented pro-

gramming, and the aspect-oriented programming are relatively unfamiliar in the

database domain. Therefore, we introduce and explain them in this section.

2.7.1 Software product line

Software product line (SPL) engineering is an approach to generate related and

similar software products using the same code-base [Pohl et al., 2005]. It is inspired

from the concept of product line used in industry for production of related and

similar products. SPL uses the term of variant to define the different products that

are related and similar in some fashion [Kang et al., 1990]. It uses the term of feature

to precisely identify the differences and similarities between variants [Zave, 2003].

The use of SPL for developing tailor-made data management solutions have been

successfully demonstrated by many researchers. Rosenmüller et al. [2009a] presented

the use of SPL for developing tailor-made data management solutions for embedded

domain. Saake et al. [2009] presented the benefit of using SPL from the perspective

of downsizing the existing data management solutions for embedded systems.

2.7.2 Feature-oriented programming

An SPL can be realized using different software development techniques. However,

we confine our discussion with the feature-oriented programming (FOP), which we

used to realize our DBMS SPL. FOP is a mechanism to develop a software product

line, where software products are manufactured by composing features [Batory et al.,

2003]. FOP is formulated for construction of customizable large-scale software sys-

tems. In FOP, a feature is a functional unit of a software system [Batory et al., 2003].

It satisfies a user requirement and at the same time provides us with the configura-

tion option to achieve customization. Many researchers have presented the benefit

of using FOP for realizing a DBMS SPL. Leich et al. [2005] presented the design

and implementation of database storage manager family for resource constrained

and heterogeneous embedded system scenario. They showed that high degree of

flexibility makes FOP an appropriate mechanism to realize tailor-made data man-

agement solutions. As mentioned in Section 2.7.1, both Rosenmüller et al. [2009a]

23

2.7. RELATED SOFTWARE ENGINEERING CONCEPTS

and Saake et al. [2009] realized SPL using FOP. They showed that fine-grained

customization of FOP provides a better solution for tailoring data management for

resource constrained systems.

2.7.3 Aspect-oriented programming

Aspect-oriented programming (AOP) [Kiczales et al., 1997] is a methodology that

emerged with an aim to separate cross-cutting concerns from core concerns of a

source code. By concern, we mean a small manageable piece of source code that is

a semantically coherent and identifiable functionality. By cross-cutting concern, we

mean a functionality that is scattered and tangled with other functionalities all over

the source code. AOP ensures code scalability and maintenance by preventing code

tangling and scattering [Kiczales et al., 1997]. Using AOP, a cross-cutting concern

is separated from the core source code using a construct of an aspect. An aspect

is a modular way to separate the concern code that otherwise is part of different

software components. Aspects, such as data persistence, transaction management,

and data security, etc., can either be provided by a software component or could be

required by it [Kiczales et al., 1997]. Using concepts, such as join-points, pointcuts,

and advice; an aspect weaver component brings the program code and aspect code

together [Kiczales et al., 2001]. The process of joining the program code and aspect

code together is called aspect weaving. Join-points are points in the execution

of a program and are events of interest for aspect weaving [Kiczales et al., 2001].

Pointcuts is the collection of join-points and is used for selection of related method-

execution points [Kiczales et al., 2001]. An advice is the intended behavior to be

weaved [Kiczales et al., 2001]. With all above-mentioned benefits, AOP also has

few shortcomings, such as lack of tools support, existing tools are not mature, and

difficulty to debug.

2.7.4 Customization

Customization is a mechanism to tailor the software according to the end-user re-

quirements. For a database, customization means the tailoring of a database ac-

cording to the data management requirements, which requires precise selection of

required functionality. A customized database instance constitutes of only the se-

lected functionality, and it is intended for the use of specialized data management.

24

3 The Cellular DBMS architecture

This chapter shares material with the DEXA’09 paper “Specialized

Embedded DBMS: Cell Based Approach” [ur Rahman et al., 2009b], the

NDT’09 paper “Cellular DBMS - Architecture for Biologically-Inspired

Customizable Autonomous DBMS” [ur Rahman et al., 2009a], and the

JDIM’10 paper “Cellular DBMS: An Attempt Towards Biologically-Inspi-

red Data Management” [ur Rahman et al., 2010].

This chapter lays the conceptual foundation for this thesis by introducing the Cellu-

lar DBMS architecture from both data management as well as software engineering

perspective. It outlines the motivation for the need of customization and autonomy

in a DBMS architecture. It presents the design principles for the Cellular DBMS

architecture. It explains how the software product line approach is used to achieve

customization in it. It also explains how the aspect-oriented programming can be

used to implement autonomy functionality in a DBMS.

3.1 Motivation for the customization in an

architecture

Existing data management systems are complex [Chaudhuri and Weikum, 2000;

Harizopoulos and Ailamaki, 2003]. There are two major reasons behind their com-

plexity. First, the data management systems were developed decades ago. They

were developed for legacy hardware and applications. Secondly, over the time the

hardware kept changing and the data management needs were also changed. To

overcome the changing data management and hardware requirements existing data

management solutions were forced to evolve. Functionalities were added to the exist-

ing engines over time. Because of monolithic architectures of these engines, each new

functionality got tightly coupled with an engine and the inter-dependencies among

functionalities made it difficult to later remove the unused functionalities [Chaudhuri

and Weikum, 2000; Härder, 2005; Harizopoulos and Ailamaki, 2003]. Furthermore,

25

3.2. MOTIVATION FOR THE AUTONOMY IN AN ARCHITECTURE

functionalities were not only added to satisfy the emerging data management require-

ments, instead many of them were added to take an edge in the data management

market. It resulted in data management solutions, which are full of functionalities;

however, many of these functionalities are not required for most of the application

scenarios. Moreover, existing DBMS vendors provide their customers a bundled

package of their DBMS product. These bundled packages contain many features

that customer might never use in their application scenarios. The price of these

bundled packages contains the cost of these unnecessary functionalities resulting in

high total cost.

All above-mentioned reasons motivated us and many other database researchers to

revisit the existing DBMS architecture towards more diversified architecture [Agrawal

et al., 2009]. The revisited architecture should be able to reduce the complexity

through the capability of removing the unused functionalities. We use the term

customization to refer to this capability in this thesis. Customization requires

loose coupling among functionalities, which could only be possible with reduction

in dependencies among them. We revisit existing DBMS architecture to support

better customization. Our work is motivated by the proposal of Chaudhuri and

Weikum [2000] for rethinking existing database system architecture towards a self-

tuning RISC-style database system architecture.

3.2 Motivation for the autonomy in an architecture

In the previous section, we discussed the complexity of existing DBMS, high number

of functionalities in them, and tight interdependencies among those functionalities.

All above-mentioned reasons contribute to their unpredictable performance [Chaud-

huri and Weikum, 2000]. Existing DBMS require continuous administration and

tuning to achieve the consistent performance over the time. These administra-

tion and tuning tasks become more difficult with the change in data management

requirements, workloads, hardware and software platforms, and many other influ-

ential parameters. Furthermore, the tuning tasks become more difficult because of

the fact that it is difficult to assess the effect of tuning of one knob on another in

existing DBMS [Weikum et al., 2002]. Because of this reason, traditional tuning of

a DBMS for consistent performance is rather a process of trial and error, instead of

a systematic procedure.

Existing DBMS require human resources for administration and maintenance.

Experienced technical human resources are expensive. The human resource cost has

26

CHAPTER 3. THE CELLULAR DBMS ARCHITECTURE

Table 3.1: TPC-H LINEITEM table observed statistics, possible customization, and
anticipated evolution.

Column Distinct Workload Data Storage Structure Storage Structure Storage Structure

Name Count Access Initial 1st Evolution 2nd Evolution

L ORDERKEY 1500000 Sorted Array Sorted List B+-Tree

L COMMENT 4501941 Sorted Array Sorted List Hash Table

L DISCOUNT 11 Read-Intensive Sorted Array

L SHIPMODE 7 Heap Array

L SHIPINSTRUCT 4 Heap Array

L RECEIPTDATE 2554 Heap Array Heap List

L COMMITDATE 2466 Ordered Sorted Array Sorted List

L SHIPDATE 2526 Ordered Sorted Array Sorted List

L LINESTATUS 2 Heap Array

L RETURNFLAG 3 Heap Array

L TAX 9 Read-Intensive Sorted Array

L EXTENDEDPRICE 933900 Read-Intensive Sorted Array Sorted List B+-Tree

L QUANTITY 50 Read-Intensive Ordered Sorted Array

L LINENUMBER 7 Heap Array

L SUPPKEY 10000 Heap Array Heap List

L PARTKEY 200000 Sorted Array Sorted List Hash Table

become the major contributor to the total cost of ownership for data management,

because of the decrease in hardware and software cost [Weikum et al., 2002]. This

motivates the need to reduce the required human intervention for DBMS adminis-

tration and maintenance. To reduce the human intervention, we have to simplify

the DBMS management and tuning tasks. The first suggestion that came as the

solution is the possible reduction in the number of tuning knobs [Chaudhuri and

Narasayya, 2007; Chaudhuri and Weikum, 2000; Weikum et al., 2002]. Self-tuning

is the second solution to reduce human intervention through automating as many

tuning tasks as possible.

Here onwards, we make use of the Transaction processing Performance Council

benchmark H (TPC-H) schema [TPC-H] for our discussion as needed. Consider the

distinct data count of two large columns, i.e., L ORDERKEY and L COMMENT

in Table 3.1 for the LINEITEM table of the TPC-H schema. For the benchmark

scenario, we generate the data altogether to test our data management solutions,

and we customize the storage structure to best suit our desired results. However, in

27

3.3. THE CELLULAR DBMS ARCHITECTURE AND THE CELL

a real world scenario, the data growth is a continuous process. Database designer

can predict, how large data can grow and at what rate, but he/she should maintain

the database over time. We can elaborate the problem with two possible scenarios.

For example, in a first scenario, we suggest a B+-Tree as a suitable storage structure

(assume data stored with index) for the L ORDERKEY column, but what if only

after 30 years the expected maximum data size is reached? During the first year, a

sorted list could have been good enough to store the data. When we select a complex

storage structure for small database management, for each data management oper-

ation, we waste resources (cache, memory, and CPU cycles) until and unless data

size grows to make the use of the selected storage structure appropriate [ur Rahman,

2010]. For the contrary second possible scenario, a database designer selects a sorted

list as a storage structure. However, the data growth is much higher than expected.

In a year, the sorted list will become inadequate for the desired performance. The

database will need maintenance, which includes changing the storage structure by

human intervention.

Another important issue is the change in the workload patterns. It is possible that

a workload that was previously populated with write-intensive queries, later in the

lifetime of the database becomes more read-intensive. A classical approach would

require a manual analysis of the queries. Then according to the results it might

require changing the configuration parameters or managing the database structures,

such as creating an index, dropping a materialized view, or partitioning a table. All

these tasks require human intervention, which is expensive. Therefore, we suggest

that an autonomic approach for adjusting data management solutions with changing

data management needs is required.

3.3 The Cellular DBMS architecture and the Cell

The Cellular DBMS architecture is based on the RISC-style database system ar-

chitecture proposed by Chaudhuri and Weikum [2000]. The Cellular DBMS archi-

tecture proposes to construct a large DBMS by using multiple cells. The Cell in

the Cellular DBMS architecture is an instance of a small, simple, and customized

database. Here onwards, we use the term of cell to represent the smallest possible

data management unit of our architecture. By small, we mean that a cell contains

few limited functionalities. For example, a database with only in-memory data man-

agement capability using an array for the data storage of 4 KB of data. By simple,

we mean that the cell exposes a narrow and consistent interface. For example, a

28

CHAPTER 3. THE CELLULAR DBMS ARCHITECTURE

database with simple Put(), Get(), and Delete() function interface for data manage-

ment operation. Two constraints of making cells small and simple are according to

the proposal of RISC-style database system architecture. By customized, we mean

that each cell is tailored according to its data management needs. For example,

for read-optimized data management, a database contains only the data structures

that store data in sorted order, whereas for a write-optimized data management, a

database contains only the data structures that store data in the insertion order,

such as a heap. When we say composing a cell, this means precisely selecting the

required functionalities and pruning the not-required functionalities from the list of

all possible functionalities that a cell can possess. Cell composition is performed

at the compile time, i.e., it is static, which means we cannot add or remove the

functionalities from the cell at runtime. In the Cellular DBMS architecture, each

cell is an atomic unit of data management functionality, i.e., each cell is capable of

performing its data management operations independently. By composing multiple

cells, we mean the composition of all cells in concert to achieve the required data

management capability of a complete DBMS.

In the Cellular DBMS architecture, each cell stores key/value pairs of data. This

design decision enables us to generate a cell of a limited functionality and simple

interface, which results in a cell with more predictable performance. By predictable

performance, we mean the capability of a cell to execute each data management

operation in predictable time and with predictable resources. Furthermore, the

performance of a cell should also be predictable with the change in data size, i.e.,

with the growth of data, we should be able to precisely identify the change in re-

quired time and resources to complete a data management operation. Moreover,

customization and key/value pair storage also reduces the complexity of a cell. The

complexity of a cell is dependent on the number of functionalities it contains and the

interdependencies among those functionalities. We suggest the reduction in com-

plexity because each cell contains only the required functionalities, which are further

simplified with the requirement of storing only key/value pairs of data. However,

the overall complexity of a Cellular DBMS is expected to increase with many differ-

ently composed cells performing the data management tasks in concert. Here, we

have discussed how each cell complexity is reduced with reduction in cell functional-

ities, and we continue our discussion in this chapter with an assumption that there

exists a mechanism to manage and hide the overall Cellular DBMS complexity. In

Chapter 4, we explain in detail our mechanism to realize a more complex relational

model using these simple key/value pair stores.

29

3.4. AUTONOMY IN THE CELLULAR DBMS ARCHITECTURE

3.4 Autonomy in the Cellular DBMS architecture

Autonomy of each cell is an important design principle for the Cellular DBMS archi-

tecture. The Cellular DBMS architecture envisions the development of a complete

autonomous DBMS by accumulating autonomic behavior of all participating cells.

For autonomy, the most fundamental functionalities are monitoring, diagnostics,

and tuning [Chaudhuri and Narasayya, 2007; Lightstone et al., 2002]. Autonomy

requires runtime transformations. These transformations could be behavioral as well

as structural. For an architecture to be autonomous, it should support both auto-

nomic structures and behaviors. In the Cellular DBMS architecture, we introduce

different compositions of cells as autonomic structures to enable execution of au-

tonomic behavior. The Cellular DBMS architecture proposes that each cell should

be an autonomous data management unit. It should be able to monitor itself. If

an abnormal behavior is observed, it should be able to diagnose the cause of the

behavior. Finally, it should be able to transform itself structurally or behaviorally

or in both forms to achieve and maintain the required normal behavior.

According to our definition of a cell in the previous section, each cell is an instance

of a small, simple, and customized database. Here, we extend the cell definition as:

each cell is an instance of a small, simple, customized, and autonomous database.

According to the proposed architecture, monitoring, diagnostic, and tuning com-

ponents should also be customizable according to the cell functionalities to ensure

reduced monitoring overhead, however; it is part of our future work.

According to our discussion in previous section, we customized each cell to few

minimal functionalities. By minimal functionality, we also mean to constrain the

storage capability of each cell. We suggest that this limitation enables us to execute

data management operations in predictable time and with predictable resources.

However, for large data storage, we propose to induce more cells with data growth.

The Cellular DBMS architecture introduces different compositions of cells that are

as follows:

Composite cell A cell can be composed of multiple similar or dissimilar cells re-

lated to each other as shown in Figure 3.1. Such composition of cells is termed as

the composite cell. Each composite cell itself has limited (optimal) data-handling

capacity to ensure that it has manageable complexity and predictable performance.

With the data growth, more cells could be inducted into the DBMS to extend its

data management capacity. Each composite cell maintains a meta-data of cell com-

position. By meta-data of cell composition, we mean the information related to cell

30

CHAPTER 3. THE CELLULAR DBMS ARCHITECTURE

C

B B B …

B

A A A …

B

A A A …

E

B B B …

D

C C C …

Cell:

Embedded

database instance

A, B, C, D, E, F, X
Embedded

database variants

B

A A A …

X

B A C B

B

Composite High-level

Composite

A

Data

F

C B C …

Horizontal

Hybrid
Vertical

Hybrid

Figure 3.1: Different types of cell.

organization and relationship within a composite cell. This includes configuration

information, such as maximum cells limit and references to buffer managers. It also

includes statistics, such as cells count, records count, first record, and last record.

A composite cell can be used to realize a table structure for the relational model in

a Cellular DBMS, where each column is realized by a cell that could be of differ-

ent type, e.g., one column cell contains un-indexed data management functionality,

whereas another column cell uses indexes. We explain in detail our mechanism to

realize the relational model in Chapter 4.

High-level composite cell (HLC) In the Cellular DBMS architecture, we propose

to build composite cells from simple cells, as well as from composite cells, which

results in the high-level composite cell (HLC) as shown in Figure 3.1. HLC is initial-

ized as simple cell that transforms to composite cell, which further transforms into

HLC. Each transformation increases the hierarchy of HLC and each new level of

hierarchy is restricted with definite storage capacity limitation. The Cellular DBMS

architecture uses HLC cell for handling large amount of data.

Hybrid cell For diversified data management, the Cellular DBMS architecture in-

troduces the concept of the Hybrid Cell. We could have horizontal as well as vertical

hybrid cells as shown in Figure 3.1. By horizontal hybrid cell, we mean a composite

cell that is composed of different types of cells, such that each type is handling a

definite data range. For example, we want to store city codes to be used in the

contact book of a mobile phone product. If mobile is to be used in European Union

31

3.4. AUTONOMY IN THE CELLULAR DBMS ARCHITECTURE

B

A A A …

A

Data

C

B B B …

Evolve Evolve

Constructive evolution

Destructive evolution

C

B B B …

B

A A A …

A

Data

Evolve Evolve

Destructive evolution

Figure 3.2: Evolving cell.

(EU), frequency to access city codes of EU countries is much higher as compared to

city codes of Africa. Using horizontal hybrid cell, we can store data in a composite

cell in such a way that EU city codes should be stored in cell with a type that is

suitable for faster access time, whereas we store remaining city codes in a cell, which

requires less storage space. We can exploit this feature in conjunction with auton-

omy to move data among different cells based on their usage scenario and available

resources.

By vertical hybrid cell, we mean a HLC cell that is composed of different types

of cells at different levels of hierarchy. We provide an extensive discussion on verti-

cally hybrid HLC cells in Chapter 4, where it is referred as evolving hierarchically-

organized storage structures.

Evolution Evolution in the Cellular DBMS architecture means run-time transfor-

mation of a cell from one form into another according to the cell types we defined

above. We term a cell that supports evolution as an evolving cell. Evolution can be

constructive as well as destructive. By constructive evolution, we mean the trans-

formation of a cell from one form into another in such a way that the previous form

becomes an atomic integral unit of the new form as shown in Figure 3.2. The new

form of such an evolved cell should have a larger data-handling capacity. By de-

structive evolution, we mean the transformation of a cell from an existing form to a

previous form as shown in Figure 3.2.

32

CHAPTER 3. THE CELLULAR DBMS ARCHITECTURE

Distributed cells In the Cellular DBMS architecture, cells are not confined to

a single computing resource. Cells can be distributed across a network, or more

ambitiously speaking across the Internet. Important distribution criteria could be

size and locality of data. Distributed cells interact with each other through API calls

over the network. For distributed deployment, we envision a Cellular DBMS using a

global data dictionary and statistics as well as distributed monitoring functionality

to implement distributed autonomy. However, it has to be further analyzed how

distributed deployment of interacting cells can be achieved in a Cellular DBMS. It

is a part of our future work.

Cell classification According to the Cellular DBMS architecture, we can also clas-

sify cells in two types based on the data they store, i.e., data cell and meta-data

cell. A data cell manages data, whereas a meta-data cell stores meta-data.

3.5 Realization of a cell

In the Cellular DBMS architecture, we do not confine our discussion to formal con-

cepts. Instead, we take a step forward to explain the realization of these concepts.

In the Cellular DBMS architecture, each cell is realized as an instance of an em-

bedded database. For the Cellular DBMS architecture, we impose three important

constraints on the definition of an embedded database (also suggested as charac-

teristics of an embedded database in literature [Olson et al., 1999]), which are as

follows:

Small footprint An embedded database should possess a small footprint. By a

footprint, we mean a memory space required by a process for execution. Footprint of

an embedded database is directly related to the number of functionalities it encloses.

Through reducing the functionalities, we are able to shrink the memory required by

an embedded database to execute. Reducing the footprint of an embedded database

enables us to reduce the overall footprint of a Cellular DBMS. Moreover, it enables

us to trace the memory requirement of differently customized embedded databases,

which equips us with the capability to assess the need of additional memory with

the increase in data size.

Limited set of tasks An embedded database should be able to execute a limited set

of tasks. It helps us to limit the functionality of an embedded database, which further

33

3.5. REALIZATION OF A CELL

enables us to expose a narrow interface for these functionalities. In accordance with

the concept of RISC-style architecture [Chaudhuri and Weikum, 2000; Patterson

and Ditzel, 1980], we make use of few, simple, and fast tasks instead of many,

complex, and slow tasks. Furthermore, we suggest that it also facilitates us with

more predictable execution of these tasks. This design decision is also supported by

the results from Harizopoulos et al. [2008], which showed the 20-time performance

gain for executing their modified TPC-C benchmark [TPC-C] through pruning the

not-needed features from their original transaction processing database system (i.e.,

Shore [Shore]).

API-based access An embedded database should expose its functionalities using

API-based access (i.e., no SQL interface for embedded databases). This design de-

cision empowers us to remove the overheads associated with SQL language parsing,

optimization, and execution. We can simply say that for our proposed footprint

and task constrained embedded databases, we do not need SQL language and query

processing. An API-based mechanism should be sufficient for the data management

needs of an embedded database. This design decision is also motivated by the sug-

gestion from Stonebraker et al. [2007], who called SQL language as a “one size fits

all” solution. Similarly, Chaudhuri and Weikum [2000] referred to SQL language as

painful. They supported their statement with the facts that SQL language provides

a high number of features, the complexity of the language is high, and to learn and

use most of these features is difficult.

SQL language and query processing also has many benefits that cannot be under-

mined, what we need is a mechanism to reduce the complexity by careful pruning

of not needed features [Rosenmüller et al., 2009b] and increase the usability of the

available features [Chaudhuri and Weikum, 2000]. In the Cellular DBMS archi-

tecture, we propose to implement the query processing system at the higher-level

(i.e., at overall DBMS-level), but as an optional functionality, i.e., it should not

be mandatory for a Cellular DBMS to contain a query processor rather a Cellular

DBMS could also be a NoSQL database. For the Cellular DBMS architecture, we

also envision the need to revisit the query processing system, however, the query

processing for the Cellular DBMS architecture is part of our future work and is

discussed in detail in Section 7.2.1.

34

CHAPTER 3. THE CELLULAR DBMS ARCHITECTURE

According to our discussion above, we can revise our definition for the architecture,

such that:

The Cellular DBMS architecture proposes to construct a large DBMS

by using multiple atomic, customized, and autonomous instances of em-

bedded databases in concert.

3.5.1 Using the software product line to achieve customizability

In our discussion above, we outlined the details of our Cellular DBMS architecture

from the perspective of the database domain. In this section, we discuss our archi-

tectural details from the software engineering perspective. How the Cellular DBMS

architecture utilizes software engineering techniques to realize customizability is the

theme of our discussion in this section. We use the software product line (SPL)

approach to generate a customizable embedded database, which can be instantiated

as a cell. The benefits of using the SPL for tailor-made data management in the

embedded domain have already been presented by Leich et al. [2005], Rosenmüller

et al. [2009a], and Saake et al. [2009].

The SPL approach allows us to implement an embedded database in such a

way that the same code-base can be used to generate different types of embedded

databases. By different type of embedded database, we mean that each embedded

database differ from another in terms of functionalities it contains. SPL uses the

term variant for these types. Here onward, we use the term variant to refer to differ-

ent type of embedded database. SPL uses the term feature to precisely identify the

difference in variants. In our discussion scenario of database domain, heap storage,

B+-Tree, transaction management, logging, and similar functionalities are exam-

ples of features. Whereas, in-memory embedded database, embedded database with

only B+-Tree index, and embedded database with only hash-based index are few

examples of embedded database variants. Each of these embedded database variants

can be used as cell in a Cellular DBMS. We use the feature-oriented programming

(FOP) to implement the SPL of our Cellular DBMS architecture. The FOP is not

the only approach to realize an SPL. Component-based programming [Szyperski,

2002], AOP, or simple #ifdef directives could be alternatives to implement an SPL.

The details of our prototype implementation are provided in Chapter 5.

In Figure 3.3, we present a sample DBMS SPL. As it can be seen, the DBMS SPL

contains all the features that can be selected or removed to generate the software

products, which in our case are embedded database variants. A DBMS SPL realizes

35

3.5. REALIZATION OF A CELL

In-memory read-optimized

embedded database variant 2

Access API

Record

Page

In-memory

buffer

manager

Data

dictionary

Sorted list

Database

Write-optimized

embedded database variant 3

Access API

Record

Page

Persistent

buffer

manager

Data

dictionary

Heap list

Database

DBMS software product line containing all features

realized using common code-base
DBMS software products with selected features

Feature Variant

DBMS SPL

Access API

Record

PageIn-memory

buffer

manager

Persistent

buffer

manager

Data

dictionary

In-memory

index

manager

Persistent

index

manager

Index

dictionary

Sorted list

Heap list

B+Tree

Column

Database

SPL

In-memory minimal

embedded database variant 1

Access API

Record

Page

Database

B+Tree-indexed read-optimized

embedded database variant 4

Access API

Record

Page

Persistent

buffer

manager

Data

dictionary

Persistent

index

manager

Index

dictionary

Sorted list

B+TreeDatabase

Figure 3.3: Sample DBMS SPL and its few possible variants.

all features using the common code-base. The dashed line in the middle of the

figure separates the DBMS SPL from its variants. The arrow in the middle shows

the composition process that generates the variants. In our sample scenario of

Figure 3.3, we generated four different variants from our DBMS SPL. Each of these

four variants differs from each other in terms of features. Each of them is suitable

for different data management scenarios. Variant 1 is the minimal possible variant

for an embedded database, i.e., it shows that at-minimum every variant should

contain four features of access API, record, column, and database. To this point,

for our SPL-based design, we make use of the concepts contributed by FAME-

DBMS [Rosenmüller et al., 2008] project and its related publications from Leich

et al. [2005], Rosenmüller et al. [2009a], and Saake et al. [2009]. We make use of

multiple instances of each of these variants as cells in a Cellular DBMS.

In our sample scenario of Figure 3.4, we present the contribution of the Cellular

DBMS architecture. It shows, how the Cellular DBMS architecture proposes to

make use of multiple instances of embedded database variants generated from a

DBMS SPL to construct a large DBMS. In Figure 3.4, we also show a glimpse of,

how the Cellular DBMS architecture realizes the relational model. In Figure 3.3,

36

CHAPTER 3. THE CELLULAR DBMS ARCHITECTURE

Table:

Gender

Column:

Name

Variant 1

Table: Personnel

Column:

Name

Variant 4

Variant 2

Variant 1 Variant 1

Variant 2

Variant 1 Variant 1

Column:

Gender

Variant 4

Variant 2

Variant 1 Variant 1

Variant 2

Variant 1 Variant 1

Column:

Country

Variant 4

Variant 2

Variant 1 Variant 1

Variant 2

Variant 1 Variant 1

Table:

Country

Column:

Name

Cell

B+-Tree

Column:

Car number

Variant 3

Variant 1 Variant 1

Variant 2

Variant 1 Variant 1

Figure 3.4: Sample Cellular database realization for the relational model using mul-
tiple embedded database variants.

we generated four possible embedded database variants from our sample DBMS

SPL. In Figure 3.4, we use those variants to show the instantiation of a sample

Cellular database, where we use different variants for different columns in a table.

Each column can consist of multiple cells according to the cell types we defined in

Section 3.4.

In our sample scenario of Figure 3.4, we show the realization of three different

tables in a hypothetical sample Cellular database. The three tables are namely

Personnel, Gender, and Country. The Gender and Country tables are related to

the Personnel table using foreign key relationships, i.e., keys from the Gender and

Country tables are used in the Gender and Country columns of the Personnel table

to reference the data from the Gender and Country tables. It can be seen that we

used smallest possible variant 1 of the Cellular DBMS SPL (shown in Figure 3.3)

to instantiate the Gender table with single column. The Gender table stores only

two entries, i.e., Male and Female. A simple in-memory array structure should be

sufficient to store this data. We used variant 2 to instantiate the Country table,

which is expected to store around 203 records. An in-memory sorted list structure

37

3.5. REALIZATION OF A CELL

should be sufficient to store the list of countries. The reason of making these two

tables in-memory is the high frequency of their use, e.g., frequent retrieval by a GUI

during data entry operations, frequent retrieval by a reporting tool during report

generation, etc. Moreover, the data in these two tables is not expected to change for

long time. The Personnel table in Figure 3.4 contains four columns, three of them

instantiated as variant 4, whereas one of them (i.e., Car number) is instantiated as

variant 3. The three columns (i.e., Name, Gender, and Country) are instantiated as

variant 4, because all of them are expected to grow similar in size with no NULL

values in any of them. However, we instantiated the Car number column as variant

3, because it may contain NULL values, i.e., it is expected to be smaller in size

as compared to other columns. Furthermore, a person can change car many times

requiring the Car number column to be updated frequently. Therefore, we used

variant 3, which use the heap list that is efficient for frequent write and update

operations.

Benefits of using the software product line approach Here, we summarize

the benefits of the SPL approach that we found in literature [Leich et al., 2005;

Rosenmüller et al., 2009a; Saake et al., 2009], as well as the ones that we observed

from our own experience. A detailed discussion on our experience with the SPL

approach can be found in Chapter 5.

• Negligible overhead on database performance for unused functionalities

• Deployment package holds only functionalities for which the client has paid

• Cost effective for client in terms of product price

• Common code-base for all database products

• Easy to manage the DBMS code-base

• Common features of different database products become more mature through

rigorous testing and usage

• Better support for hardware and platform heterogeneity

38

CHAPTER 3. THE CELLULAR DBMS ARCHITECTURE

Drawbacks of using the software product line approach The software product

line approach also comes-up with few problems that we want to outline here. We

provide a detailed discussion of our experience for using the SPL and problems we

faced in Chapter 5.

• High initial customization effort

• Large code-base is more prone to bugs because of high interdependencies

among features

• Complex product testing process [Kästner et al., 2011]

• High source code redundancy [Schulze et al., 2010]

• SPL is not yet mature, lack of tool support hinders the development and

maintenance for large DBMS SPL

3.5.2 Using the aspect-oriented programming to realize

autonomy

In the Cellular DBMS architecture, we propose using aspect-oriented programming

(AOP) to realize an autonomic behavior in a DBMS. We classify autonomy as a

cross-cutting behavior, i.e., it is required by many functionalities in a DBMS. If

autonomy is implemented using normal classes and components, then it will be dif-

ficult to keep the autonomy source code separate from the other functionalities. It

will get tightly coupled with other functionalities. Implementing autonomy using

AOP allows us to keep the implementation clean and with proper separation. For

monitoring functionality of autonomy, we suggest to exploit the dynamic join point

model of AOP, which allows us to perform the monitoring of required data manage-

ment functionality without implementing monitoring as a separate source code. Our

mechanism to implement autonomy is similar to the concept of feedback control loop

mechanism suggested by other researchers [Hellerstein, 1997; Weikum et al., 2002].

Furthermore, when included, our monitoring implementation is an integrated mon-

itoring functionality and results in negligible overhead, which is also in agreement

with the results from Thiem and Sattler [2009]. The details about our autonomy

implementation in the Cellular DBMS prototype is provided in Section 5.3.

39

3.6. RELATED WORK

3.6 Related work

Use of the “Cellular DBMS” term in literature We found the use of the Cellu-

lar DBMS term in literature and industry. However, the use of the Cellular DBMS

term in our architecture is different from its former use. We use the term cell for an

atomic and autonomic instance of an embedded database variant, whereas, we call

our DBMS Cellular, because it is composed of multiple such cells. The Infobionics

company1 uses the term Infobionics Cellular DBMS for their Infobionics Knowledge

Server. According to an Infobionics news release2, “The Infobionics Cellular DBMS

places information in individual Data Cells, which can be flexibly compiled via Link

Cells into an infinite number of DataSets”. However, in patent [Sabry et al., 2003]

it is stated as “A system for acquiring knowledge from cellular information. The

system has a database comprising a database management module (“DBMS”).” The

last news release from the company listed on their website is dated 27 January 2009.

Internal architectural details of the Infobionics Cellular DBMS are not publicly avail-

able, however, based on the available information in the form of patent [Sabry et al.,

2003] and press release2, we found our work quite different in terms of both con-

cept and implementation, because we attempt to work in the direction of revisiting

existing database architecture using the RISC-style approach exploiting innovative

software engineering approaches, which is quite unique in its own.

Kersten [1998] proposed an architecture for a cellular database system. According

to the proposal, each cell is a bounded container, i.e., a workstation or a mobile unit

linked into a communication infrastructure. It assumes the Internet as the under-

lying communication network. This work also envisions a cell as an autonomous

DBMS as we do, however, realization of autonomy is different in our approach (dis-

cussed in detail in Section 3.4). Furthermore, we suggest freedom of using any

customizable embedded database as cell.

Kersten et al. [2003] along with other researchers again tried to draw the focus of

database community towards organic databases. In 2006, Kersten and Siebes took

a step forward with the concept of an organic database system. They provided the

vision of new database architectures as “an Organic Database System where a large

collection of connected, autonomous data cells implement a semantic meaningful

store/recall information system” [Kersten and Siebes, 2006]. In the Cellular DBMS

architecture, we also started with similar inspiration. We wanted to use biological

1“The Infobionics Knowledge Server”, http://www.infobionics.com/, Accessed: 21-06-2011
2“Cellular DBMS Seeks Business Intelligence Beta Sites”, PRESS RELEASE, infobionics, http:
//www.infobionics.com/news/news_2/file_item.pdf, Accessed: 21-06-2011

40

http://www.infobionics.com/
http://www.infobionics.com/news/news_2/file_item.pdf
http://www.infobionics.com/news/news_2/file_item.pdf

CHAPTER 3. THE CELLULAR DBMS ARCHITECTURE

inspiration for data management. It is also one reason to call our architecture the

Cellular DBMS architecture and the smallest data management unit a cell. For

example, the concept of starting the data management with a single cell and then

induction of more cells with increasing data size is inspired from the concept of

Binary Fission [Angert, 2005]. In binary fission, biological cell grows to twice of its

starting size and then splits-up into two cells, each cell having a complete copy of

its essential genetic material. Not exactly, but similarly each Cellular DBMS cell

splits the data into two equal halves. One-half is left in the parent cell where as the

other half is moved to a newly induced cell. However, we skipped this dimension of

our work in this thesis, to avoid any further difficulty of understanding by inclusion

of another domain.

Verroca et al. [1999] used the term Cellular Database for a solution for cellular

network data management. Toshio et al. [2002; 2004] proposed a Cellular DBMS

that is based on the layer model. It is based on incremental modular abstraction

hierarchy. They have applied the cellular model to model web-based information

spaces for designing the Cellular DBMS [Toshio and Toshiyasu, 2002].

Embedded databases The Cellular DBMS architecture takes many inspirations

from Berkeley DB [Olson et al., 1999], an embedded database system. Key/value

pairs, API-based access, main-memory database, and small footprint for database;

all these concepts have their counterpart in Berkeley DB. FAME-DBMS [Rosenmüller

et al., 2008] is another customizable embedded database developed based on the soft-

ware product line approach. Our Cellular DBMS prototype implementation emerged

from the prototype implementation of FAME-DBMS; however, the concept of the

Cellular DBMS architecture can be implemented using any customizable embedded

database. We have many unique features in the Cellular DBMS prototype that were

not part of the FAME-DBMS prototype, such as column-oriented storage, different

cell type implementations, autonomy, evolution, etc. It is not an exhaustive list

of features for the Cellular DBMS prototype implementation. Data management

of an embedded system is the focus of the FAME-DBMS; in contrast, the Cellular

DBMS architecture is not confined to data management for embedded systems. The

FAME-DBMS focus derivation of a concrete instance of a database by composing

features of a database product line, whereas the Cellular DBMS uses one or more

instances of any customizable embedded database and exploits them in concert for

data management.

41

3.6. RELATED WORK

Slim-down approach vs. bottom-up approach for DBMS customization We

classify DBMS customization approaches into two categories, i.e., the slim-down

approach and the bottom-up approach. The slim-down approach is used for cus-

tomizing existing DBMS. It requires identification of separable functionalities and

their dependencies. For existing data management solutions the slim-down approach

is a difficult choice. According to our discussion in this chapter, existing DBMS have

many functionalities and these functionalities are tightly integrated with each other.

It makes them difficult to customize using the slim-down approach. Harizopoulos

et al. [2008] used a similar approach to slim-down an existing Shore version. They

reported the drawback of this approach through identification of difficulties in re-

moving all references to unused or pruned functionalities. Rosenmüller et al. [2009a]

used the slim-down approach to down-size Berkeley DB. However, they also used

the software product line approach to achieve the down-sizing by careful pruning

of functionalities that they refactored as features. A bottom-up approach suggests

the development of the DBMS from scratch with customization as a main design

goal. The Cellular DBMS architecture is designed according to this approach. The

bottom-up approach requires additional effort to rebuild the DBMS; however, at

the same time it allows the implementation of clean loosely-coupled functionalities

for DBMS. The bottom-up approach has also been used by other projects, such as

FAME-DBMS. They reported benefits of this approach, such as high customizabil-

ity [Rosenmüller et al., 2008]. Considering the limitation of slim-down approach

for existing DBMS, we suggest that bottom-up approach is a better alternative for

creating specialized DBMS using customization.

Other RISC-style data management solutions Chaudhuri and Weikum in their

VLDB 2000 paper suggested the transition towards a self-tuning RISC-style database

system architecture, however, until the writing of this thesis in 2011, we observed

only two data management solutions that made use of their or a similar design. BAT

algebra3 used by MonetDB4 [Boncz et al., 2008] is one solution designed according

to RISC-style architecture, which processes a query with the column-at-a-time ap-

proach with each operator operating on one or two columns. The second solution is

RDF-3X, an implementation of SPARQL that is a RISC-style engine for RDF from

Neumann and Weikum [2008].

3“BAT Algebra: the RISC approach to Query Languages” http://monetdb-xquery.org/
MonetDB/Version4/Documentation/monet/index.html, Accessed: 21-06-2011

4“MonetDB”, http://www.monetdb.org/, Accessed: 21-06-2011

42

http://monetdb-xquery.org/MonetDB/Version4/Documentation/monet/index.html
http://monetdb-xquery.org/MonetDB/Version4/Documentation/monet/index.html
http://www.monetdb.org/

CHAPTER 3. THE CELLULAR DBMS ARCHITECTURE

Other approaches for DBMS customization Irmert et al. [2009] presented a com-

ponent based approach for DBMS adaptation and extension at the runtime. They

termed their approach Component Based Runtime Adaptable DataBase (CoBRA)

DB. They made use of service-oriented component model [Cervantes and Hall, 2004]

to achieve a runtime adaptable environment, where each component implements

at-least one service and the components that implement the same service are inter-

changeable.

AOP for autonomy The use of AOP to implement autonomic behavior is not a

new concept. Many researchers in the past have used it successfully to develop

autonomic systems. Greenwood and Blair [2004] outlined the case of the use of

dynamic AOP for autonomic systems. Truyen and Joosen [2008] demonstrated

the applicability of AOP for implementing self-adaptive frameworks. Tesanovic et

al. [2004] proposed the concept of aspectual component-based real-time system de-

velopment (ACCORD) and applied it successfully in the design and development of

a component-based embedded real-time database system (COMET). In the Cellular

DBMS architecture, we use an AOP based model to implement autonomic behavior

at the cell as well as at the DBMS level.

3.7 Summary

This chapter introduced the Cellular DBMS architecture as a customizable and

autonomous database architecture. The Cellular DBMS architecture proposed to

use multiple instances of customized autonomous embedded database as RISC-style

data managers, which we termed as cell. From software engineering perspective, a

cell is an instance of a variant of a DBMS SPL. We made each cell small, simple,

consistent with an interface, and atomic in its operations according to the suggestion

from Chaudhuri and Weikum [2000]. We used the software product line approach

to customize embedded databases according to the work from the FAME-DBMS

project [Leich et al., 2005; Rosenmüller et al., 2008]. This chapter also introduced

the design principles related to autonomy in the Cellular DBMS architecture, which

includes the details of the different cell types and an evolution process that is manda-

tory to realize an autonomic behavior. We also explained our use of AOP to realize

autonomy in the Cellular DBMS architecture.

43

3.7. SUMMARY

44

4 A customizable and self-tuning

storage manager

This chapter shares material with the FIT’10 paper “Using Evolving

Storage Structures for Data Storage” [ur Rahman, 2010] and the BN-

COD’11 paper “ECOS: Evolutionary Column-Oriented Storage” [ur Rah-

man et al., 2011].

In the previous chapter, we outlined and explained all the design principles that

we have defined for the Cellular DBMS architecture. In this chapter, we explain

our realization of those concepts for a real DBMS implementation. In the previous

chapter, we have introduced the Cellular DBMS architecture concepts for a complete

DBMS; however, here onwards we confine our discussion at the storage manager

level. This chapter also explains how the relational model can be realized using the

Cellular DBMS architecture.

We present a customizable and self-tuning storage manager that we designed and

implemented according to the Cellular DBMS architecture. We named the storage

manager as Evolutionary Column-oriented Storage (ECOS). ECOS supports the

storage model customization for each table and the storage structure customization

for each column. Each column in ECOS self-tunes itself with the data growth and

according to the workload characteristics. ECOS uses the decomposed storage model

(DSM) [Copeland and Khoshafian, 1985], however, we also proposed four variations

of the standard 2-copy DSM that can be used as an alternative. ECOS uses the

mechanism of evolution paths to keep the human intervention for the self-tuning to

a minimum.

45

4.1. MOTIVATION

Storage
structure

Complexity
class

Data size class Benefits Problems

Sorted Array Simple Small
Read optimized (Good data reference
locality)
Cache and space efficient

Write/Update (Requires
rearrangement)

Heap Array Simple Small Write optimized
Search time (Poor data reference
locality)
Complete scan for duplicates

Sorted List Average Medium Read optimized
Write/Update(Requires
rearrangement)

Heap List Average Medium Write optimized
Search time (Poor data reference
locality)
Complete scan for duplicates

Hash Table Average/Complex Medium/Large
Write optimized
Memory efficient
Unordered data access

High space overhead (For dynamic
hash tables)
It does not preserve order
Complete bucket scan for duplicates
Range queries

B-Tree Average/Complex Medium/Large

Suited for disk use
Good for memory
Fast search
Fast update

Poor cache behavior (Because of
pointers)

T-Tree Average/Complex Medium/Large

Good for memory
Fast search
Fast update
Ordered data access

Poor cache behavior (Because of
pointers)

B+-Tree Average/Complex Medium/Large

Suited for disk use
Fast search and update
More cache conscious
Range queries efficient

Not good for main memory

Table 4.1: Storage structures classification (uses the results provided by Lehman and
Carey [1986]).

4.1 Motivation

Different storage structures in existing data management solutions have different

execution complexity. By storage structure, we mean the data structure used by the

storage manager to physically store data and indexes. For example, sorted array,

heap list, T-Tree, and B+Tree. By execution complexity, we mean the memory

footprint, function calls, branches and mispredictions, cache references and misses,

etc., caused by a storage structure during data management operations. We use

the term storage manager in its standard meaning for DBMS, i.e., a component to

physically store and retrieve data. Data storage efficiency is assumed to be the main

goal for a storage manager.

We classify storage structures complexity into three categories, i.e., simple, aver-

age, and complex. We argue that simple storage structures are appropriate for small

database management. They consume fewer resources in comparison with complex

storage structures. With an increase in data size, average complexity storage struc-

tures start performing better with appropriate resource consumption in comparison

with simple and complex storage structures. For large database management, com-

plex storage structures are the appropriate solutions. To be more concrete with our

example, we use a sample classification in Table 4.1, which uses the results pro-

46

CHAPTER 4. A CUSTOMIZABLE AND SELF-TUNING STORAGE
MANAGER

vided by Lehman and Carey [1986]. It can be observed from Table 4.1 that different

storage structures are suitable for different workloads and data sizes. Each storage

structure exposes different merits and demerits. We cannot find a universal storage

structure that can perform optimally for all data sizes and workloads with appro-

priate resource consumption. To prove our argument, we evaluated different storage

structures over different data sizes with the similar workload. The evaluation results

are provided in Chapter 6.

The requirement for workload and data size specific customization is also sug-

gested by other research and commercial data management solutions. C-Store [Stone-

braker et al., 2005] proposed the use of two different data stores within same DBMS,

i.e., read-optimized and write-optimized stores. Another customization C-Store

proposed is that the write-optimized store operates in main-memory fashion. Dy-

namo [DeCandia et al., 2007], a highly available key-value store from Amazon, uses

pluggable architecture for storage engine. It enables the choice of the storage engine

that best suits the data management need for application, i.e., Berkeley DB can be

used to store a database of few kilo bytes, whereas for database of large size, MySQL

can be used [DeCandia et al., 2007]. MySQL DBMS also supports storage engine

customization at the table-level.

In real world scenarios, we face diversified data management needs. Selecting

appropriate storage structures for specific scenarios require extensive tuning. There

exists a need for a mechanism that should facilitate appropriate storage structure

selection and tuning with minimum human intervention. We make use of concepts

of evolving hierarchically-organized storage structures and the evolution path as

an alternative solution, which enables us the selection of an appropriate storage

structure through customization. They also support automatically adjusting the

storage structures with change in the data management needs.

Why hierarchically-organized storage structures? A hierarchical organization of

storage structures is a composition of similar or different storage structures in a hier-

archy as depicted in Figure 4.1. The hierarchically-organized storage structure is the

realization of the concept of HLC cell that we introduce in Chapter 3. Figure 4.1 is

an example of the vertically hybrid HLC cell. Initially, these structures do not have

any hierarchy, i.e., they are initialized as a simple cell. They increase their hierarchy

with data growth through inclusion of new storage structures (induce cells) using

the concept of evolution that we introduced in Chapter 3. We suggest that these

structures provide us an opportunity for selection of appropriate storage structures

47

4.1. MOTIVATION

Persistent

O
p

ti
m

iz
a

ti
o

n
 a

c
c

o
rd

in
g

 t
o

 h
a

rd
w

a
re

 h
ie

ra
rc

h
y B+-Tree (D)

x

C C

…

Index
Storage

Generate index
using ordered
read-optimized

E
v
o

lu
ti

o
n

 w
it

h
 d

a
ta

 g
ro

w
th

d
a

ta
 a

n
d

 i
n

d
e

x
 s

to
ra

g
e

 s
tr

u
c

tu
re

 s
e

le
c

ti
o

n

Memory

O
p

ti
m

iz
a

ti
o

n
 a

c
c

o
rd

in
g

 t
o

 h
a

rd
w

a
re

 h
ie

ra
rc

h
y

T-Tree (C)

+

B B
…

Sorted List (B)

A A
…

A

Storage

Heap List (Y)

X X
…

X

read-optimized

storage

E
v
o

lu
ti

o
n

 w
it

h
 d

a
ta

 g
ro

w
th

d
a

ta
 a

n
d

 i
n

d
e

x
 s

to
ra

g
e

 s
tr

u
c

tu
re

Cache

O
p

ti
m

iz
a

ti
o

n
 a

c
c

o
rd

in
g

 t
o

 h
a

rd
w

a
re

 h
ie

ra
rc

h
y

Sorted Array (A)

Data

A A A

Ordered Read-optimized Storage

Data
Storage

Heap Array (X)

Data

X X X

Unordered Write-optimized Storage
E

v
o

lu
ti

o
n

 w
it

h
 d

a
ta

 g
ro

w
th

A
u

to
n

o
m

ic
 d

a
ta

 a
n

d
 i

n
d

e
x

 s
to

ra
g

e
 s

tr
u

c
tu

re

Figure 4.1: Evolving hierarchically-organized storage structures.

along the hierarchy through the analyzes of existing data and gathered statistics for

current storage structures. Another benefit is better utilization of the hardware hier-

archy. Previously published results from Bender et al. [2000] and Chen et al. [2002]

also motivates our decision for the use of hierarchically-organized storage struc-

tures. Bender et al. [2000] presented a weight-balanced B-Tree organized according

to the van Emde Boas layout, showing that it is capable of achieving near-optimal

performance on any memory hierarchy. Chen et al. [2002] presented fractal prefetch-

ing B+-Trees, which embed “cache-optimized” trees within “disk-optimized” trees

showing better cache performance in comparison with disk-optimized B+-Trees.

Why column-oriented storage model? The column-oriented storage model is de-

rived from the earlier work of DSM [Copeland and Khoshafian, 1985]. DSM is a

transposed storage model [Batory, 1979] that stores all values of the same attribute

of the relational conceptual schema relation together [Copeland and Khoshafian,

48

CHAPTER 4. A CUSTOMIZABLE AND SELF-TUNING STORAGE
MANAGER

1985]. DSM is a natural choice as a storage model for the Cellular DBMS archi-

tecture implementation, and it can be realized using the concept of the composite

cell. Copeland and Khoshafian [1985; 1986] concluded many advantages of DSM

including:

• Simplicity (Copeland and Khoshafian related it to RISC [Patterson and Ditzel,

1980])

• Less user involvement

• Less performance tuning requirement

• Reliability

• Increased physical data independence and availability

• Support of heterogeneous records

Plattner [2009] suggests that column-oriented storage model is best suited for mod-

ern CPU. It allows a DBMS to better utilize CPU cache and parallel processing

capabilities. He also suggests that column storage performs superior to row stor-

age with regards to memory consumption. They are also known for their superior

performance for analytical data applications [Stonebraker et al., 2005]. The advan-

tages listed above give strong motivation for use of the DSM in a self-tuning storage

manager.

Why customization at the column-level? Table 3.1 on page 27 includes some

characteristics of the TPC-H schema LINEITEM table. We can observe that dis-

tinct data count (cardinality) for all columns is different. We can classify three types

of columns according to distinct data count, i.e., large, medium, and small. We

further observed (general observation) the TPC-H queries that access LINEITEM

table and predicted (using a layman-approach) the workload and data access pat-

tern for columns. We identified that four columns (i.e., L DISCOUNT, L TAX,

L EXTENDEDPRICE, and L QUANTITY) involve read-intensive workload, whereas

three columns (i.e., L COMMITDATE, L SHIPDATE, and L QUANTITY) involve

ordered data access. The differences in distinct data count, workload, and data ac-

cess pattern for different columns raise the need for the support of storage structure

customization at the column-level. If a storage manager supports column-level cus-

tomization of storage structure, we can hypothetically customize LINEITEM table

columns as shown in Table 3.1.

49

4.2. EVOLUTIONARY COLUMN-ORIENTED STORAGE (ECOS)

4.2 Evolutionary Column-oriented Storage (ECOS)

In this section, we explain the concepts of ECOS in detail. We explain the DSM and

four DSM based schemes that we proposed to reduce the high storage requirements

of the standard 2-copy DSM. We also discuss the concepts of column customiza-

tion, hierarchical-organization of the storage structures, evolution of the storage

structures, and the evolution path.

4.2.1 Table-level customization

ECOS is a customizable self-tuning storage manager. It stores data according to the

column-oriented storage model, where each column stores a key/value pair of data.

It realizes the column-oriented storage model using the design of the composite cell.

ECOS supports customization of the storage model for each table. We use five vari-

ations of the DSM for this purpose, which are: Standard 2-copy DSM [Copeland

and Khoshafian, 1985], Key-copy Decomposed Storage Model (KDSM), Minimal De-

composed Storage Model (MDSM), Dictionary based Minimal Decomposed Storage

Model (DMDSM), and Vectorized Dictionary based Minimal Decomposed Storage

Model (VDMDSM). The motivation for proposing and testing different variations of

DSM arises from high storage requirements of standard 2-copy DSM. For example,

we have eight tables in the TPC-H schema. By table-level customization, we mean

selecting an appropriate storage scheme from above-mentioned DSM based schemes

for each table. The details for the five variations of DSM are as follows.

Table 4.2: DSM.

Columnk0

Key Value

k1 731

k2 137

k3 173

k4 371

k5 317

k6 713

Columnk1

Key Value

k1 20090327

k2 20071201

k3 20010925

k4 20090327

k5 20090327

k6 20010925

Columnk2

Key Value

k1 Jana

k2 Tobias

k3 Christian

k4 Tobias

k5 Tobias

k6 Jana

(a) Columns clustered on key

Columnv0

Key Value

k2 137

k3 173

k5 317

k4 371

k6 713

k1 731

Columnv1

Key Value

k3 20010925

k6 20010925

k2 20071201

k1 20090327

k4 20090327

k5 20090327

Columnv2

Key Value

k3 Christian

k1 Jana

k6 Jana

k2 Tobias

k4 Tobias

k5 Tobias

(b) Columns clustered on value

Standard 2-copy DSM The DSM is a transposed storage model [Batory, 1979],

which pairs each value of a column with the surrogate of its conceptual schema

50

CHAPTER 4. A CUSTOMIZABLE AND SELF-TUNING STORAGE
MANAGER

record as key [Copeland and Khoshafian, 1985]. It suggests storing two copies of

each column, one copy clustered on values, whereas another copy is clustered on

keys. We took the DSM as the base storage model and then altered it to propose

different schemes. We suggest that the DSM is suitable for read-intensive workloads

where data contain a negligible number of duplicates and NULL values, write and

updates are minimal relative to read operations and there are negligible storage

constraints. An example for the DSM is depicted in Table 4.2. We argue that

for a self-tuning storage manager, the 2-copy DSM is the most suitable storage

model. It is easy to implement and easy to use, moreover, it does not require

human intervention to identify, which column to cluster or index, instead it is done

in a uniform way [Valduriez et al., 1986]. To justify our argument, we evaluated the

standard 2-copy DSM with four other proposed variations and found it the most

appropriate one in terms of performance but at the cost of an additional storage

requirement. The evaluation results are presented in Chapter 6.

Table 4.3: KDSM.

Columnk0

Key Value

k1 731

k2 137

k3 173

k4 371

k5 317

k6 713

Columnk1

Key Value

k1 20090327

k2 20071201

k3 20010925

k4 20090327

k5 20090327

k6 20010925

Columnk2

Key Value

k1 Jana

k2 Tobias

k3 Christian

k4 Tobias

k5 Tobias

k6 Jana

(a) Columns clustered on key

Columnv0

Key Value

k2 137

k3 173

k5 317

k4 371

k6 713

k1 731

(b) Columns clustered
on value

Key-copy decomposed storage model (KDSM) The KDSM is the first variation

of the DSM that we propose to reduce the high storage requirements of the standard

DSM. The KDSM stores the data similar to the DSM, i.e., for each column, data

is stored in values, whereas keys are unique numeric values that relate attributes of

a row together. All columns are clustered on the keys. However, unlike the DSM,

we store an extra copy of only key columns (primary key or composite primary key)

clustered on values. This design alteration reduces the storage requirement of the

KDSM, but it increases the access time for read operations that involve non-key

columns in search criteria. However, for read operations with the key column in the

search criteria it performs similar to the DSM with less storage requirements. We

51

4.2. EVOLUTIONARY COLUMN-ORIENTED STORAGE (ECOS)

propose the use of the KDSM for tables that mostly require querying data using key

columns. The KDSM allows a conversion to the DSM by simply creating a copy of

the non-key columns clustered on values. We suggest that the KDSM is suitable for

data storage where columns have few duplicates and NULL values. An example for

the KDSM is shown in Table 4.3.

Table 4.4: MDSM.

Columnk1

Key Value

k1 20090327

k2 20071201

k3 20010925

k4 20090327

k5 20090327

k6 20010925

Columnk2

Key Value

k1 Jana

k2 Tobias

k3 Christian

k4 Tobias

k5 Tobias

k6 Jana

(a) Columns clustered on key

Columnv0

Key Value

k2 137

k3 173

k5 317

k4 371

k6 713

k1 731

(b) Primary key columns
clustered on value

Minimal decomposed storage model (MDSM) The MDSM stores the data sim-

ilar to the DSM except that we do not store any extra copy for any columns thus

reducing the high storage requirement of the DSM to a minimum. Instead, the de-

sign idea of the MDSM is to store primary key columns clustered on values, whereas

non-primary key columns are clustered on key as depicted in Table 4.4. The MDSM

performs similar to the DSM and the KDSM for the read operations with search

criteria on key column attributes, but it performs worst for the read operations with

non-key column attributes in search criteria. The MDSM can be transformed into

the KDSM and the DSM by creating an extra copy of the key columns clustered on

key and non-key columns clustered on values. However, our results in Chapter 6 sug-

gest that if we do not have any space constraints, this scheme is not recommended.

Dictionary based minimal decomposed storage model (DMDSM) To improve

the performance of the MDSM, we introduced the DMDSM, which stores the unique

data values for each column separately as a dictionary column. The DMDSM is

inspired from the concept of the dictionary encoding scheme, which is frequently used

as light-weight compression technique in many column-oriented data management

systems [Abadi et al., 2006; Lemke et al., 2010]. In the DMDSM, for each column,

52

CHAPTER 4. A CUSTOMIZABLE AND SELF-TUNING STORAGE
MANAGER

Table 4.5: Dictionary columns for DMDSM and VDMDSM.

Dict. Column 0

Keyd0 Valued0

d02 137

d03 173

d05 317

d04 371

d06 713

d01 731

Dict. Column 1

Keyd1 Valued1

d11 20090327

d12 20071201

d13 20010925

Dict. Column 2

Keyd2 Valued2

d23 Christian

d21 Jana

d22 Tobias

(a) Dictionary columns

Table 4.6: DMDSM.

Columnv0

Keyv0 Valuev0

k2 d02

k3 d03

k5 d05

k4 d04

k6 d06

k1 d01

(a) Primary key columns clus-
tered on value

Columnk1

Key Value

k1 d11

k2 d12

k3 d13

k4 d11

k5 d11

k6 d13

Columnk2

Key Value

k1 d21

k2 d22

k3 d23

k4 d22

k5 d22

k6 d21

(b) Columns clustered on key

Table 4.7: VDMDSM.

Vector Column

Key Value

v1 d01,d11,d21

v2 d02,d12,d22

v3 d03,d13,d23

v4 d04,d11,d22

v5 d05,d11,d22

v6 d06,d13,d21

(a) Vector column

values are the keys for the data from dictionary column as depicted in Table 4.6. All

dictionary columns are clustered on value. All other concepts for the DMDSM are

similar to the MDSM, which is presented in Table 4.4. The DMDSM is suitable for

tables with many duplicates or NULL values. In this scheme, for columns, database

operators always manipulate numeric data for data management operations, which

execute much faster on modern hardware [Lemke et al., 2010]. Furthermore, it

gives us the provision to exploit our innovative concept of evolving hierarchically-

organized storage structures (discussed in Section 4.2.2) to its maximum potential

for dictionary columns because they only store non-null unique data and most of

them can be stored using simple and small storage structures.

Vectorized dictionary based minimal decomposed storage model (VDMDSM)

In the DMDSM, each column stores keys/values, where values are record identifiers

from dictionary columns (see Table 4.6). We can optimize this with a better storage

scheme by avoiding the storage of keys for every column separately. The VDMDSM

is an extension of the DMDSM, such that it stores the values (i.e., dictionary column

53

4.2. EVOLUTIONARY COLUMN-ORIENTED STORAGE (ECOS)

keys) for all columns together as a vector in the vector column, i.e., instead of saving

each column separately, it generates the vector of all attributes in the row and stores

it as a value for vector column as depicted in Table 4.7. Similar to the DMDSM, the

VDMDSM provides the opportunity to exploit the benefit of evolving hierarchically-

organized storage structures to their full potential for dictionary columns. The

VDMDSM is suitable for tables with many duplicate or NULL values.

The VDMDSM needs a special mechanism for searching the data, because the

table only contains a single vector column with vectorized data stored in it as values.

For searching, first we need to create a search vector to search for the data in

the vector column. One approach could be to search in the vector column for

each column identifier from the search vector one by one. This could be quite

inefficient and will perform similar to the DMDSM with a little benefit in terms of

storage space, which could be nullified with the overhead of vectorization. Rather,

the goal is to make use of search vector all together to traverse the all related

record. A naive implementation could be to scan the vector column for search

vector using plain linear search, which we assume as our solution in this thesis. A

more appropriate implementation could be to use a special storage structure to store

the vector column, which could enable us to extract the data with a minimum scan.

However, it is part of our future work.

4.2.2 Column-level customization and storage structure

hierarchies

Once we select the appropriate storage model scheme from above-mentioned schemes

at the table-level, we move forward to customize the columns. At the column-

level, we customize the storage structure for each column. Each column is initially

customized as either ordered read-optimized or unordered write-optimized storage

structure. For ordered read-optimized storage structures, we store data in sorted

order with respect to key or value, whereas for unordered write-optimized storage

structure, we store data according to insertion order.

Evolving hierarchically-organized storage structure ECOS utilizes hierarchically-

organized storage structures for data and index storage, such that a storage structure

at each new level of hierarchy is composed of multiple lower level storage structures

as depicted in Figure 4.1, which is according to the design principles we introduced in

Chapter 3. The usage of hierarchically-organized storage structures is motivated by

54

CHAPTER 4. A CUSTOMIZABLE AND SELF-TUNING STORAGE
MANAGER

Column 1
Column 2 Column 3

PSMeta-data

Column 2 Column 3

PS

Data

Storage

Structure

PS

Meta-data

PS

Data

Storage

Structure

PS

Index

Storage

Structure

PS

Meta-data

PS

Data

Storage

Structure

PS

Index

Storage

Structure

PS: Persistent Storage

Figure 4.2: Evolutionary column-oriented storage.

the possibility of optimizing the storage structure hierarchy according to hardware

hierarchy and data management needs. For example, consider the memory hierarchy

in modern hardware. We optimize storage structures for cache, main memory, and

persistent storage in the specified order. As shown in Figure 4.1, the lowest level of

hierarchy is using array storage structures, which are optimized for cache. On the

second level above, T-Tree storage structure is used, which is optimized for main

memory. At the third level, B+-Tree is used, which is optimal for persistent storage.

The storage structures that we discuss in this thesis include heap array, sorted

array, heap list, sorted list, B+-Tree, T-Tree, and hash table. From heap array/list,

we mean a storage structure that always appends new data to existing data in

chronological order and uses the linear search algorithm to traverse the data. From

sorted array/list, we mean storage structures that always maintain the sort order for

the data. For data retrieval sorted array uses the binary search algorithm. B+-tree,

T-Tree, and hash table operate according to their de facto standards. Before we

continue our discussion, we outline the hierarchically-organized storage structures,

which we use further in our discussion. At the lowest level of hierarchy, we use:

Sorted array: It is the simplest storage structure, which is optimized for read-access

with minimal space overhead. To use an array, we do not need to instantiate

a buffer manager or an index manager.

Heap array: It is also the simplest storage structure, which is optimized for write-

access with minimal space overhead.

55

4.2. EVOLUTIONARY COLUMN-ORIENTED STORAGE (ECOS)

At the next level above, we use a composite storage structure, which is according

to the design of the composite cell introduced in Chapter 3. A sorted array can

evolve into any of the below-mentioned three storage structures, whereas a heap

array can only be evolved into a heap list.

Sorted list: Sorted list is composed of multiple sorted arrays. It requires the in-

stantiation of a buffer manager for managing multiple sorted arrays.

Heap list: Heap list is composed of multiple heap arrays. It also requires the in-

stantiation of a buffer manager for managing multiple heap arrays.

B+-Tree: B+-Tree is composed of multiple arrays as leaf nodes. It requires the

instantiation of a buffer manager for managing multiple arrays as well as an

index manager to manage multiple index nodes.

On the higher levels, we use HLC storage structures, which we also introduced in

Chapter 3:

HLC SL: HLC SL is a B+-Tree based storage structure, where each leaf node is a

sorted list. HLC SL instantiates a buffer manager to manage multiple sorted

lists and an index manager to manage multiple index nodes. Each sorted list

manages its own buffer manager, which ensures the high locality of data for

each sorted list. HLC SL storage structure is depicted in Figure 4.3.

HLC B+-Tree: HLC B+-Tree is a B+-Tree based storage structure, where each

leaf node is also a B+-Tree. HLC B+-Tree instantiates a buffer manager to

manage multiple B+-Trees and an index manager to manage multiple index

nodes. Each B+-Tree at leaf nodes manage its own buffer manager and index

manager, which ensures the high locality of data and index nodes for each

B+-Tree. HLC B+-Tree storage structure is depicted in Figure 4.3.

We provide a detailed theoretical explanation for evolving hierarchically-organized

storage structure in Section 4.4.

Once a column is customized as either ordered read-optimized or unordered write

optimized storage, ECOS initializes each column to the smallest possible storage

structure according to the design principle of the Cellular DBMS architecture, i.e.,

ordered read-optimized column is initialized as a sorted array, whereas unordered

write-optimized column is initialized as a heap array. According to the Cellular

DBMS architecture design principles, ECOS enforces that each storage structure

should be atomic and should be directly accessible using an access API. The reason

56

CHAPTER 4. A CUSTOMIZABLE AND SELF-TUNING STORAGE
MANAGER

SL SL ...

...

HLC SL

B+-Tree ...

...

HLC B+-Tree

B+-Tree

SA ...

...

B+-Tree

SASASA SA...

...

Sorted list
Sorted

array

Sorted

array

Sorted

array
...

Sorted list
Sorted

array

Sorted

array

Sorted

array
...

SL = Sorted list

SA = Sorted array

SA ...

...

B+-Tree

SASASA SA...

...

Figure 4.3: HLC SL and HLC B+-Tree storage structures in the Cellular DBMS
prototype.

for this approach is that small storage structures consume less memory and generate

reduced binary size for small data management [ur Rahman, 2010]. If we can use

them directly, then there is no reason to use them as part of complex storage struc-

tures (we use storage structure as a common term for both data storage structure

and index storage structure), such as B+-Tree or T-Tree; avoiding the overheads

of complexity associated with these storage structures. This approach ensures that

using smallest suitable storage structures, desired performance is achieved using

minimal hardware resources for small database management.

Storage capacity limitation for predictable performance According to the Cel-

lular DBMS architecture design principles, ECOS imposes data storage capacity

limitation for each storage structure. We enforce this for more predictable perfor-

mance and to ensure that storage structure performance does not degrade because

of unlimited data growth. In ECOS, once limited storage capacity of a storage struc-

ture is consumed, it evolves to a larger more complex storage structure composed of

multiple existing ones considering the important decision factors, such as hardware,

the data growth, and the workload. For ordered read-optimized data storage, a

sorted array is evolved into a sorted list, such that the sorted list is composed of

multiple sorted arrays linked together. For unordered write-optimized data storage,

a heap array is evolved into the heap list. The evolution of a storage structure is an

important event for assessing the next suitable storage structure by analyzing the

57

4.2. EVOLUTIONARY COLUMN-ORIENTED STORAGE (ECOS)

existing data and the previously monitored workload.

Similarly, each new storage structure also has a definite data storage capacity

limitation and once again as it is consumed, ECOS further evolves and increases

the hierarchy of the hierarchically-organized storage structures. For ordered read-

optimized data storage, once sorted list storage capacity is consumed it evolves into

new storage structure, such that it becomes part of a new index structure. For

example, it becomes the data leaf node of a B+-Tree. For ordered read-optimized

data storage, ECOS does not perform data management operations separately for

data and index structures, instead, each operation interact directly with the index

structure. Here onwards, index structure will identify, in which sorted list the data

will be stored. For unordered write-optimized storage, operations execute separately

on data and index structures, such that first data is inserted into the heap list, and

then the index structure is updated with the new key or index value. Index structures

for unordered write-optimized storage are based on ordered read-optimized storage

and will evolve subsequently.

API consistency to hide complexity and ensure ease of use To hide the com-

plexity of different storage structure over different levels of hierarchy, ECOS keeps

the interface for all storage structures consistent. We provide a standard interface

to access columns with simple, Put(), Get(), and Delete() functionality with record

as argument. It is invisible to an end-user, which storage structure is currently in

use for each column.

Automatic partitioning ECOS separates physical storage for each column to re-

duce the I/O contention for storage of large database. For large columns, it also

separates the data for a column into multiple separate physical storage units, which

is similar to horizontal partitioning. In Figure 4.2, at a minimum, each column

has its own separate physical storage. With the growth of data, each column may

spread over multiple physical storage units. For example, for storage structures of

Table 3.1, each sorted list or heap list is stored in a separate data file, whereas each

B+-Tree or T-Tree is stored in a separate index file. These physical storage units

may be stored on the single hard disk, or they may spread across the network. This

separation also allows using different compression algorithms for each column (or

each physical storage unit) based on the data type.

58

CHAPTER 4. A CUSTOMIZABLE AND SELF-TUNING STORAGE
MANAGER

Meta-data for efficient traversal ECOS proposes to maintain important meta-

data for efficient traversal of the hierarchically-organized storage structures, which

includes count, minimum key/value, and maximum key/value for each storage struc-

ture. This avoids the access to unnecessary data and improves the efficiency of hi-

erarchy traversal. ECOS also proposes to maintain the frequently used important

aggregates, e.g., summation, average, etc., as the meta-data at every level of hier-

archy. The request for these aggregates should be satisfied by accumulating them

using the meta-data to reduce the overhead of accessing each value separately to

calculate them again and again.

4.3 Evolution paths

Evolution path is the mechanism to define how ECOS evolves a smallest simple

storage structure into a large complex storage structure. The path consists of many

storage structure/mutation rules pair entries that ECOS uses to identify, how to

evolve the storage structures. Each storage structure can have multiple mutation

rules mapped to it. These mutation rules consist of three information elements, i.e.,

Event, Heredity based selection, and Mutation. The event identifies, when this mu-

tation rule should be executed. Different mutation rules can have the same event,

but not all of them execute the mutation. The heredity based selection identifies

precisely, when evolution should occur based on the heredity information gathered

for existing storage structure. Heredity information comprises the gathered statis-

tics about the storage structure, e.g., workload type, data access pattern, previous

evolution details, etc. The mutation defines the actions that should be executed to

evolve the storage structure. A sample evolution path is shown in Table 4.8.

We envision that common DBMS maintenance best practices can be documented

using the evolution path mechanism. ECOS assumes that DBMS vendors provide

the evolution paths that best suit their DBMS internals, with the provision of al-

teration for a database administrator. The only liability for configuration that lies

with database designers and administrator is to have a look at the evolution path

for the DBMS and alter it with desired changes, if needed. The evolution process

in ECOS is autonomic, and it exploits evolution path to automatically evolve the

storage structures, i.e., our approach for self-tuning is online [Bruno and Chaudhuri,

2007b].

Consider the L ORDERKEY column of the LINEITEM table as shown in Ta-

ble 3.1. Suppose as a database designer, we design this table. According to our

59

4.3. EVOLUTION PATHS

Table 4.8: Example for evolution paths.

Storage
Structure
Initial

Mutation Rules
Storage
Structure
1st Evolution

Mutation Rules

Storage
Structure
2nd Evolution

Sorted
array

Event:
Sorted array=Full
Heredity based
selection:
Workload=Read intensive
Data access=Unordered
Mutation:
=> Evolve
(Sorted array − >Sorted
list)

Sorted list

Event:
Sorted list=Full
Heredity based
selection:
Workload=Read intensive
Data access=Ordered
Mutation:
=> Evolve
(Sorted list − >HLC SL)

HLC SL

Sorted
array

Event:
Sorted array=Full
Heredity based
selection:
Workload=Read intensive
Data access=Ordered
Mutation:
=> Evolve
(Sorted array − >B+-Tree)

B+-Tree

Event:
B+-Tree=Full
Heredity based
selection:
Workload=Read intensive
Data access=Ordered
Mutation:
=> Evolve
(B+-Tree − >HLC
B+-Tree)

HLC B+-Tree

Sorted
array

Event:
Sorted array=Full
Heredity based
selection:
Workload=Write intensive
Data access=Unordered
Mutation:
=> Evolve
(Sorted array − >Heap
array)

Heap list
according to
heap array
mutation rules

Heap
array

Event:
Heap array=Full
Heredity based
selection:
Workload=Write intensive
Data access=Ordered
Mutation:
=> Evolve
(Heap array − >Heap list)
&
Generate secondary index
(Sorted list)

Heap list
+
Index

Event:
Heap list=Full
Heredity based
selection:
Workload=Write intensive
Data access=Ordered
Mutation:
=> Evolve
(Heap list− >Hash table) &
Evolve secondary index
(Sorted list − >HLC SL)

Hash table
+
Index

Heap
array

Event:
Heap array=Full
Heredity based
selection:
Workload=Write intensive
Data access=Unordered
Mutation:
=> Evolve
(Heap array − >Heap list)

Heap list

Event:
Heap list=Full
Heredity based
selection:
Workload=Write intensive
Data access=Unordered
Mutation:
=> Evolve
(Heap list − >Hash table)

Hash table

60

CHAPTER 4. A CUSTOMIZABLE AND SELF-TUNING STORAGE
MANAGER

application design, we select the L ORDERKEY column as a part of the primary

key. As we already discussed in Section 4, we have to customize each column as ei-

ther ordered read-optimized or unordered write-optimized. Therefore, we customize

the L ORDERKEY column as ordered read-optimized as a sample case. However,

we design according to the domain knowledge, our experiences, and predictions at

the initial design time. As a designer, it is difficult to guarantee, how much this

column grows, and how long it takes to reach that size. When we customize the

column as ordered read-optimized, it is initialized as a sorted array. Now for the

L ORDERKEY column, three initial rows of the sample evolution path of Table 4.8

are relevant.

As we mentioned in Section 4, ECOS limits the storage capacity of each storage

structure. Therefore, the initial sorted array has a certain data storage capacity

limit. For example, consider it as 4 KB. As long as data is within the 4 KB limits,

sorted array is the storage structure for the L ORDERKEY column, and we gather

the heredity information for the column, such as the number of Get(), the number

of Put(), the number of Delete(), the number of point Get() (for point queries),

the number of range Get() (for range queries), the number of Get() for all records

(for scan queries), etc. What heredity information should be gathered may vary

from one implementation to another. Here, we simplify our discussion by assuming

that a system can identify using heredity information that the workload is either

read-intensive or write-intensive and the access to data is either ordered (range) or

unordered (point or all).

The moment the storage limit of the sorted array is consumed, an event is raised

for notification. This event triggers all three initial mutation rules of Table 4.8. Now

heredity based selection identifies, which one of them to execute. We suppose that for

the L ORDERKEY column, the workload is the read-intensive, and the data access

is unordered, this scenario executes the first mutation rule of Table 4.8, which evolves

the existing sorted array into a sorted list. Now-onwards sorted list is the storage

structure for L ORDERKEY column, and it is also constrained with the storage

limit according to the design principle of ECOS. As long as the L ORDERKEY

column data is within the storage limit of the sorted list, heredity information is

gathered, and it is used for the next evolution.

It is observed from Table 3.1 that only half of columns in LINEITEM table

with high data growth (i.e., eight out of sixteen) evolves during first evolution (i.e.,

L ORDERKEY, L EXTENDEDPRICE, L RECEIPTDATE, L COMMITDATE,

L SHIPDATE, L SUPPKEY, L PARTKEY, and L COMMENT). The rest of the

61

4.4. THEORETICAL EXPLANATION FOR EVOLVING
HIERARCHICALLY-ORGANIZED STORAGE STRUCTURES

columns can be stored within an array (either heap array or sorted array). Fur-

thermore, only half of the columns, i.e., four out of eight, which are evolved dur-

ing first evolution evolve again during the second evolution (i.e., L ORDERKEY,

L COMMENT, L EXTENDEDPRICE, and L PARTKEY). The final state of ta-

ble presented in Table 3.1 shows that each column is using the appropriate storage

structure (we assume for explanation) according to the stored data size and observed

workload. We can add more parameters for evolution decision, but we only used

limited parameters (i.e., data size, workload, and data access) to keep our discussion

simple and understandable.

What heredity information should be gathered for each storage structure, and

how to improve the efficiency of storage and retrieval of heredity information is a

separate topic. Here, we simplify our discussion with an assumption that we have

an efficient and precise mechanism for gathering heredity information. As a sample

demonstration of how storage structures in the LINEITEM table evolves for the

sample evolution path in Table 4.8 is shown in Table 3.1. Before we conclude this

section, to avoid any confusion, we want to mention that the terms and concepts

of evolution, evolution path, mutation rules, and heredity information used in this

report have no relevance with their counterpart in evolutionary algorithms or any

other non-relevant domain.

4.4 Theoretical explanation for evolving

hierarchically-organized storage structures

In this section, we provide the theoretical explanation of evolving hierarchically-

organized storage structures used in ECOS using time and space complexity anal-

ysis. As we explained in Section 4, we customize a column as either ordered read-

optimized storage structure or unordered write-optimized storage structure. In both

categories, many different combinations of storage structures are possible, however,

we confine our discussion to the storage structures that we have implemented in our

prototype implementation, i.e., sorted array, sorted list, HLC SL, heap array, heap

list, and B+-Tree. We use three parameters that are common for both classes of

storage structures, which are as follows:

n = Number of key/value pairs in a storage structure

T (n) = Worst-case running time for operations

62

CHAPTER 4. A CUSTOMIZABLE AND SELF-TUNING STORAGE
MANAGER

S(n) = Worst-case space complexity for storage structure

Ei = Evolution overhead, where i is the evolution identifier, such that Ei occurs

before Ei+1 and Ei < Ei+1

4.4.1 Ordered read-optimized storage structure

For ordered read-optimized storage structure, we explain a storage structure that

evolves from a sorted array to a sorted list (of sorted arrays) and then to a HLC SL

(a B+-Tree based storage structure with sorted lists as data leaf nodes).

Initial storage structure (Sorted array) For sorted array, we only have one

important parameter to consider, which is as follows:

nsa = Maximum number of key/value pairs that can be stored as a sorted array

The time complexity for different data management operations for a sorted array is

as follows:

Get = Θ(lg nsa) //Binary search

Put = Θ(nsa)

Delete = Θ(nsa)

The space complexity for a sorted array is as follows:

S(n) = O(nsa)

As long as n ≤ nsa, the data storage structure will be the sorted array. When

n > nsa evolution occurs, the existing sorted array becomes the part of a new data

storage structure, e.g., a sorted list.

First evolution (Sorted array to sorted list) For a sorted list, we have three

important parameters to consider, which are as follows:

nsl = Maximum number of key/value pairs that can be stored as a sorted list

lsa = Number of list blocks (sorted array) in a sorted list

np = Number of next and previous pointers in a sorted list

63

4.4. THEORETICAL EXPLANATION FOR EVOLVING
HIERARCHICALLY-ORGANIZED STORAGE STRUCTURES

The time complexity for different data management operations for a sorted list

is as follows:

Get = Θ(lg lsa) + Θ(lg nsa)

Put = Θ(lg lsa) + Θ(nsa)

Delete = Θ(lg lsa) + Θ(nsa)

The space complexity for a sorted list is as follows:

lsa =
nsl

nsa

//Number of sorted arrays in list

np = lsa ∗ 2 //Number of next and previous pointers in a sorted list

=> np =
nsl

nsa

∗ 2 //Number of next and previous pointers in a sorted list

∴ S(n) = O(nsl) + O(
nsl

nsa

∗ 2)

As long as n ≤ nsl, the data storage structure will be the sorted list. When n > nsl

evolution occurs, the existing sorted list becomes the part of a new storage structure,

e.g., B+-Tree, we term this storage structure as HLC SL.

Second evolution (Sorted list to HLC SL) HLC SL is a B+-Tree based storage

structure with a sorted list as leaf nodes for storing data. For HLC SL, we have five

important parameters to consider, which are as follows:

nbt = Maximum number of key/value pairs that can be stored in a sorted list

using HLC SL

lsl = Number of sorted lists as data leaf nodes

t = Minimum degree of HLC SL B+-Tree, such that t ≥ 2

k = Maximum number of elements in each node, such at each index node can have

k-1 keys and k children where k=2t.

h = Height of the HLC SL B+-Tree

64

CHAPTER 4. A CUSTOMIZABLE AND SELF-TUNING STORAGE
MANAGER

The time complexity for different data management operations for a HLC SL with

a sorted list (of sorted arrays) as its data leaf node is as follows:

Get = O(t logt lsl) + Θ(lg lsa) + Θ(lg nsa)

Put = O(t logt lsl) + Θ(lg lsa) + Θ(nsa)

Delete = O(t logt lsl) + Θ(lg lsa) + Θ(nsa)

The space complexity for the HLC SL with a sorted list (of sorted arrays) as its

data leaf node is as follows:

lsl =
nbt

nsl

//Number of sorted list as a data leaf node

=> S(nbt) = O(lsl) //We store one key for each sorted list

∴ S(n) = O(lsl) + O(nsl) + O(
nsl

nsa

∗ 2)

As long as n ≤ nbt, the data storage structure will be the HLC SL. When n > nbt

evolution may again occur, however, we confine our discussion to this level. Overall

ECOS behavior for our example of ordered read-optimized data storage structure

with two levels of evolution can be summarized as follows:

Get:

T (n) =


Θ(lg nsa) if n ≤ nsa

Θ(lg lsa) + Θ(lg nsa) if n ≤ nsl

O(t logt lsl) + Θ(lg lsa) + Θ(lg nsa) if n ≤ nbt

Put:

T (n) =


Θ(nsa) if n ≤ nsa

Θ(lg lsa) + Θ(nsa) if n ≤ nsl

O(t logt lsl) + Θ(lg lsa) + Θ(nsa) if n ≤ nbt

Delete:

T (n) =


Θ(nsa) if n ≤ nsa

Θ(lg lsa) + Θ(nsa) if n ≤ nsl

O(t logt lsl) + Θ(lg lsa) + Θ(nsa) if n ≤ nbt

65

4.4. THEORETICAL EXPLANATION FOR EVOLVING
HIERARCHICALLY-ORGANIZED STORAGE STRUCTURES

Space complexity

S(n) =


O(nsa) if n ≤ nsa

O(nsl) + O(nsl

nsa
∗ 2) if n ≤ nsl

O(lsl) + O(nsl) + O(nsl

nsa
∗ 2) if n ≤ nbt

4.4.2 Unordered write-optimized storage structure

As a second example, we discuss write optimized hierarchically-organized storage

structures used in ECOS. For unordered write-optimized storage structure, we ex-

plain a heap array that evolves into a heap list, and then we generate a B+-Tree

based index structure on the heap list, which further evolves as an ordered read-

optimized storage structure.

Initial storage structure (Heap array) For heap array, we only have one im-

portant parameter to consider similar to the sorted array, which is as follows:

nha = Maximum number of key/value pairs that can be stored as a heap array

The time complexity for different data management operations for a heap array

is as follows:

Get = Θ(nha) //Linear search

Put = Θ(1)

Delete = Θ(1) //Mark deleted

Defragmentation = Θ(nha) //Linear

By defragmentation, we mean an operation, which restructures an array to remove

the empty spaces between the data that are generated because of delete operations.

The space complexity for a heap array (with defragmentation) is as follows:

S(n) = O(nha)

As long as n ≤ nha, the data storage structure will be the heap array. When n > nha

evolution occurs, the existing heap array becomes part of a new data storage struc-

ture, e.g., heap list.

66

CHAPTER 4. A CUSTOMIZABLE AND SELF-TUNING STORAGE
MANAGER

First evolution (Heap array to heap list) For a heap list, we have three im-

portant parameters to consider, which are as follows:

nhl = Maximum number of key/value pairs that can be stored as a heap list

lhl = Maximum number of list blocks(heap array) in a heap list

np = Number of next and previous pointers in the heap list

The time complexity for different data management operations for a heap list of

heap arrays is as follows:

Get = Θ(nhl) //Linear Search

Put = Θ(1)

Delete = Θ(1) //Mark deleted

Defragmentation = Θ(nhl) //Linear

The space complexity for a heap list of heap arrays (with defragmentation) is as

follows:

lha =
nhl

nha

//Number of heap arrays in a heap list

np = lha ∗ 2 //Number of next and previous pointers in a heap list

=> np =
nhl

nha

∗ 2 //Number of next and previous pointers in a heap list

∴ S(n) = O(nhl) + O(
nhl

nha

∗ 2)

It can be observed that we do not get any benefit in terms of performance, when

we evolve a heap array to a heap list. However, we should also consider here the

possibility of evolving to different storage structure, e.g., hash table. Each evolution

is the point to observe the statistics that we gather as long as previous storage

structure is usable. These statistics give us insight for the workload on the column.

For example, in case of a heap array evolving to a hash table, we have following

67

4.4. THEORETICAL EXPLANATION FOR EVOLVING
HIERARCHICALLY-ORGANIZED STORAGE STRUCTURES

time complexity for new hash table storage structure:

Get = Θ(nha) //Ignoring the hash calculation and bucket

selection overhead

Put = Θ(1)

Delete = Θ(1) //Mark deleted

Defragmentation = Θ(nhl) //Linear

However, for our discussion, here we do not evolve a heap list to a hash table. As

long as n ≤ nhl, the data storage structure will be the heap list. When n > nhl

evolution occurs, however, in unordered write-optimized storage scenario, we do not

evolve a heap list to any other storage structure. Instead, we use the heap list as

the primary storage structure for data, and we generate index on it according to the

statistics we generated while populating this heap list. Since an index is an ordered

data storage structure, we use the evolving storage structure for storing an index as

we have discussed above in Section 4.4.1. In this scenario, we assume that according

to the gathered statistics, we identify B+-Tree as an appropriate index. Here we

mean a standard B+-Tree, i.e., leaf node stores the pointer/identifier to data in the

heap list.

Second evolution (Heap list with a B+-Tree as an index) For a heap list

with a B+-Tree as an index, we have five important parameters to consider, which

are as follows:

nibt = Maximum number of keys that can be stored in the B+-Tree

lhl = Number of heap lists for data storage

t = Minimum degree of the B+-Tree, such that t ≥ 2

k = Maximum number of elements in each node, such at each index node can have

k-1 keys and k children where k=2t.

h = Height of the tree

68

CHAPTER 4. A CUSTOMIZABLE AND SELF-TUNING STORAGE
MANAGER

The time complexity for different data management operations for a heap list of

heap arrays with a B+-Tree as an index is as follows:

Get = O(t logtnibt) + Θ(1)

Put = O(t logtnibt) + Θ(1)

Delete = O(t logtnibt) + Θ(1) //Mark deleted

Defragmentation = O(t logtnibt) + Θ(nhl)

The space complexity for a heap list (with defragmentation) of heap arrays with a

B+-Tree as an index is as follows:

S(n) = O(nibt) + O(nhl) + O(
nhl

nha

∗ 2)

since nibt = nhl//Number of keys in B+-Tree is same as the number of

records in a heap list

∴ S(n) = O(2 ∗ nibt) + O(
nhl

nha

∗ 2)

As long as n ≤ nibt, the data storage structure will be heap list with the B+-Tree

as an index. When n > nibt evolution may again occur for index storage structure,

however, we confine our discussion to this level. Overall ECOS behavior for our

example of unordered write-optimized data storage structure with two levels of evo-

lutions is as follows:

Get:

T (n) =

{
Θ(nhl) if n ≤ nhl

O(t logtnibt) + Θ(1) if n ≤ nibt

Put:

T (n) =

{
Θ(1) if n ≤ nhl

O(t logtnibt) + Θ(1) if n ≤ nibt

Delete:

T (n) =

{
Θ(1) if n ≤ nhl

O(t logtnibt) + Θ(1) if n ≤ nibt

69

4.5. RELATED WORK

Defragmentation:

T (n) =

{
Θ(nhl) if n ≤ nhl

O(t logtnibt) + Θ(nhl) if n ≤ nibt

Space complexity:

S(n) =


O(nha) if n ≤ nha

O(nhl) + O(nhl

nha
∗ 2) if n ≤ nhl

O(2 ∗ nibt) + O(nhl

nha
∗ 2) if n ≤ nibt

It can be observed from above-provided time and space complexity analysis of evolv-

ing storage structures that for different database sizes, we obtain different resource

consumption (i.e., we take both CPU time and storage space as resources). To sim-

plify our discussion, we take an example of ordered read-optimized storage. It can be

observed that space requirement of complex storage structure, such as the B+-Tree

is high in comparison with the sorted array. Whereas insertion and deletion CPU

time for the sorted array is high. However, as we have mentioned and discussed ear-

lier, we restrict the data storage capacity of storage structure. This ensures that we

keep the insertion and deletion time for each storage structure within the acceptable

limit.

4.5 Related work

Hardware-oblivious approaches, such as cache-oblivious in-memory query processor

EaseDB [He and Luo, 2008], cache-oblivious hashing [Pagh et al., 2010], and cache-

oblivious B-Trees [Bender et al., 2000] are also important tools for self-tuning DBMS.

Bender et al. [2000] proposed the cache-oblivious B-Trees that perform the optimal

search across different hierarchical memories with varying memory levels, cache size,

and cache line size. Fractal prefetching B+-Trees proposed by Chen et al. [2002] is

the most relevant work for the ECOS and is similar in concept to cache-oblivious

B-Trees with an additional concept of prefetching. Fractal prefetching B+-Trees are

optimized for both cache and disk performance, which is also a goal for the ECOS.

However, the ECOS concepts do not restrict the use of any fixed structure; instead

it suggests the use of different storage structures in the hierarchy to support an

efficient use of underlying hardware.

70

CHAPTER 4. A CUSTOMIZABLE AND SELF-TUNING STORAGE
MANAGER

Lemke et al. [2010] presented the dictionary based compression technique to speed

up the query processing in an in-memory column store. They replaced the original

column by an index vector that stores only bit-compressed pointers to a dictionary.

They further used the prefix, sparse coding, cluster coding, indirect coding, and

run length coding techniques to compress the index vector for the column. These

techniques can be used to improve our presented approaches of DMDSM and VD-

MDSM.

Database cracking is an innovative approach proposed by Kersten and Mane-

gold [2005]. It proposes the continuous physical reorganization of a database ac-

cording to the query processing. It cracks the database into manageable pieces

according to the user queries to decrease the access time and implementing self-

organizing behavior. Our approach is different from the database cracking. ECOS

in comparison implements self-organization at the storage manager level. ECOS

evolves storage structures with data growth to ensure consistent performance while

maintaining minimal resource consumption.

The partitioned B-Trees presented by Graefe [2003] has some similarities with

our proposed HLC B+Tree storage structure. However, HLC B+Tree is not the

only storage structure possible from our HLC design. In HLC B+Tree, we also

have partitions and a separate B+-Tree for each partition, but these partitions are

according to the keys or values rather than any artificial key column. Moreover,

according to HLC design these partitions could be different storage structures, such

as sorted list or T-Tree.

4.5.1 Column-oriented DBMS

There exist many column-oriented DBMS in industry as shown in Table 4.91. We

found only few of them important for further discussion based on their similarities

with the Cellular DBMS. However, the purpose of this discussion is to introduce

readers about the features of other existing column-oriented DBMS, rather than per-

forming a comparison with the Cellular DBMS. The Cellular DBMS implementation

is a research prototype and currently only includes a storage manager. Therefore, a

comparison with other full-fledged DBMS is part of the future work.

1List of column-oriented DBMS is not exhaustive.

71

4.5. RELATED WORK

DBMS Web Reference (Accessed: 21-06-2011)

MonetDB http://www.monetdb.org/

Vertica (Formerly: C-Store)
http://www.vertica.com

http://db.csail.mit.edu/projects/cstore/

Infobright (Formerly: Brighthouse) http://www.infobright.com

HBase http://hadoop.apache.org/hbase/

Kdb+ http://kx.com/Products/kdb+.php

TokuDB for MySQL http://www.tokutek.com

Calpont http://www.calpont.com

The ParAccel Analytic Database http://www.paraccel.com

EXASolution http://www.exasol.com

Sybase IQ http://www.sybase.com/products/datawarehousing/sybaseiq

LucidDB http://www.luciddb.org

Table 4.9: Column-oriented DBMS.

MonetDB MonetDB2 [Boncz et al., 2008] is an open-source database system for

high-performance applications (e.g., data mining, OLAP, etc.). It is a column-

oriented database. MonetDB supports multiple data models simultaneously. Mon-

etDB architecture is based on the RISC-approach for database systems. MonetDB

uses MonetDB Interpreter Language (MIL) to abstract internal implementation

from higher-level models. To support extensibility, it supports MonetDB Exten-

sion Language (MEL), which can be used to extend the MonetDB functionality,

e.g., datatypes, commands, etc.

MonetDB/X100 Zukowski et al. [2005] presented X100. A new execution engine

for the MonetDB system. X100 uses in-cache vectorized processing that improves

execution speed of MonetDB and overcomes its main-memory limitation. It further

introduced the ColumnBM storage layer to handle large disk-based datasets using

techniques of ultra lightweight compression [Zukowski et al., 2006] and cooperative

scans [Zukowski et al., 2007]. The Cellular DBMS architecture gets inspiration from

MonetDB/X100 and intends to adapt and integrate the best of MonetDB/X100

concepts with its unique cellular architecture in the future.

C-Store C-Store [Abadi et al., 2008; Stonebraker et al., 2005] is an open-source

read-optimized relational DBMS. It is a column-oriented DBMS. Its architecture is

2“MonetDB”, http://www.monetdb.org/, Accessed: 21-06-2011

72

http://www.monetdb.org/

CHAPTER 4. A CUSTOMIZABLE AND SELF-TUNING STORAGE
MANAGER

designed to reduce the number of disk accesses per query. It proposed the use of two

different stores within same DBMS, i.e., read-optimized and write-optimized stores,

from which the write-optimized store operates in main-memory fashion.

Brighthouse Brighthouse [Ślȩzak et al., 2008] is a column-oriented data warehouse

with the concept of a meta-data layer called Knowledge Grid. The knowledge grid is

used as an alternative to classical indexes. In use of meta-data, the Cellular DBMS

architecture finds some similarity with the concept of the Brighthouse; however, they

are different. The Cellular DBMS architecture allows the use of common indexes.

Meta-data in the Cellular DBMS architecture is not used as an alternative to clas-

sical indexes. For database functionality, the Brighthouse uses MySQL’s pluggable

storage engine platform, whereas the Cellular DBMS architecture can be developed

using any customizable embedded database. The Cellular DBMS architecture also

gets inspiration from Brighthouse and intends to adapt and integrate the best of

the Brighthouse concepts within its unique cellular architecture in the future. One

such an important feature of the Brighthouse is the selection of different compres-

sion algorithms for different Data Packs, based on the data types and regularities

automatically observed over data.

4.5.2 ECOS in comparison with other self-tuning solutions

An automated tuning system (ATS) [Hellerstein, 1997] is a feedback control mecha-

nism that automatically adjusts the tuning knobs using the defined tuning policies,

according to the monitoring statistics. ECOS also works in similar fashion as sug-

gested in ATS. ECOS also monitors and adjust storage structures with changing

data management needs. Malik et al. [2008] suggested the benefit of online physical

design techniques and proposed an online vertical partitioning technique for physi-

cal design tuning. Bruno and Chaudhuri [2007b] presented an online algorithm for

index tuning. The QUIET tool by Sattler et al. [2003] and COLT self-tuning frame-

work by Schnaitter et al. [2006] are also online self-tuning approaches. Similarly,

ECOS also operates in online fashion.

Automated physical design research focuses on finding the best physical design

structure for running workload, e.g., indexes, materialized views, partitioning, clus-

tering, and views [Agrawal et al., 2006]. Existing automated physical design tools

assume the workload as a set of SQL statements [Agrawal et al., 2006; Sattler et al.,

2003]. Most of the existing physical design tools require a synthetic workload from

a DBA to select the appropriate indexes and materialized views, which is assumed

73

4.5. RELATED WORK

to be similar to the real workload [Bruno and Chaudhuri, 2007a]. These tools use

query optimizer to identify the appropriate physical design selection from various

proposed candidate designs [Papadomanolakis et al., 2007; Sattler et al., 2003]. The

size of proposed candidate designs could grow large, which requires pruning using

the heuristic approach. Dash and Ailamaki [2010] questioned the quality guaran-

tee for the solution achieved from the heuristically prunned candidate designs and

presented CoPhy, a physical design tool developed exploiting the technique of the

combinatorial optimization problem, as a solution. Furthermore, the cost of us-

ing a query optimizer for automated physical design is huge. Papadomanolakis et

al. [2007] mentioned that for index selection algorithms on average 90% of running

time is spent in the query optimizer. Bruno and Nehme [2008] also accepted the

existence of this overhead and presented a solution of parametric query optimization

to reduce the number of calls for query optimizer. ECOS also performs automated

physical design, but at the different level, i.e., at the storage manager level. It

does not rely on a query optimizer. Furthermore, ECOS design is motivated from

the idea of exploring new architectures for developing self-tuning DBMS instead of

developing techniques to self-tune the existing ones.

There are several different self-tuning based solutions for commercial DBMS,

such as AutoAdmin [Chaudhuri and Narasayya, 2007], Oracle automatic SQL tun-

ing [Dageville et al., 2004], and DB2 design advisor [Zilio et al., 2004]. DB2 design

advisor is a physical database design tool to recommend indexes, materialized views,

partitioning, and clustering for a given workload [Zilio et al., 2004]. Oracle auto-

matic SQL tuning is an integrated solution with Oracle query optimizer. Using

query optimizer it analyzes the SQL statements and procedures and gives the rec-

ommendations for the tuning [Dageville et al., 2004].

During late 80’s and early 90’s, the active database management system (ADBMS)

was a hot research topic in the database domain [Consortium, 1996; McCarthy and

Dayal, 1989; Paton and Dı́az, 1999]. The ADBMS can be seen as a classical variant

for existing self-tuning DBMS with a focus on automating different functionality

rather than tuning. Many concepts introduced by ADBMS, such as event-condition-

action (ECA)-rule model and event driven execution of functionalities has their

counterparts in existing self-tuning technologies with different names. Our presented

approach of the evolution path is quite similar in concept to the concept of ECA-

rule model in ADBMS. However, our realization of the evolution path using different

software engineering approaches and its usage for self-tuning data management is

different.

74

CHAPTER 4. A CUSTOMIZABLE AND SELF-TUNING STORAGE
MANAGER

4.6 Summary

In this chapter, we presented ECOS; a customizable self-tuning storage manager

realized using the concepts from the Cellular DBMS architecture. ECOS allows

customization of each table using five different variations of DSM schemes. It also

allows customization of storage structures for each column in a table. It uses evolving

hierarchically-organized storage structures to realize autonomy for each column. We

also introduced the concept of the evolution path, which allows us to reduce the

human intervention for long-term DBMS maintenance.

75

4.6. SUMMARY

76

5 The prototype implementation:

Problems faced and lessons learned

The success of research is more and more measured in terms of

product impact, and for an academic idea to be intriguing to

product developers, major prototype implementation and

extensive experimentation is often required. With commercial

database system being such a highly complex target, this kind of

work becomes less and less rewarding and all too often exceeds the

available resources in a university environment.

Surajit Chaudhuri and Gerhard Weikum

Rethinking Database System Architecture: Towards a Self-Tuning

RISC-Style Database System, VLDB 2000

This chapter reports our experience with the Cellular DBMS prototype implemen-

tation. It discusses the details about the problems that we faced and our different

design decisions to solve those problems. It presents the Cellular DBMS prototype

implementation with detailed discussion from the software engineering perspective.

It also provides the insight about the source code implementation of the evaluation

mechanism in the Cellular DBMS prototype.

5.1 Our database system implementation experience

The development of the Cellular DBMS prototype started with the development of

the FAME-DBMS prototype1 [Rosenmüller et al., 2008]. The target for the FAME-

DBMS project was data management for low-end embedded systems. Development

of data management for embedded systems is different from the traditional data

management system, because of resource limitations in embedded devices, such as

less memory, low processing power, and limited or sometimes no persistent storage

1“Fame-DBMS project”, http://fame-dbms.org/, Accessed: 21-06-2011

77

http://fame-dbms.org/

5.1. OUR DATABASE SYSTEM IMPLEMENTATION EXPERIENCE

space. Battery time is also an important resource for embedded devices operating

on batteries.

The first important decision for developing a data management system for embed-

ded systems is the selection of a programming language. Assembly and C languages

are the two most successful languages in this domain. They provide the best per-

formance, but if the size of the project is expected to grow large, they may become

a management nightmare. However, the largest data management solution for an

embedded system should be within the limited size, because of the memory lim-

itations, which should be easily manageable with Assembly or C language. For

the Cellular DBMS prototype, we preferred to use C++ language, estimating the

maximum expected size of the software to grow large. Our programming language

design decision was also biased because of the availability of FOP in C++, i.e.,

FeatureC++ [Apel et al., 2005]. If we had the tool available to implement our

DBMS prototype using FOP in C, then we might have gone towards C for better

performance, and the compatibility of small database variants with embedded sys-

tems. Another important decision was about the memory allocation, that either we

want to do static or dynamic memory allocation. Many embedded platforms do not

support dynamic memory allocation, whereas if few of them do support it, most of

them recommend not using it. In contrast, use of dynamic memory allocation for

a self-tuning database is imminent. We observed that the programming language

selection and the memory allocation decision also have an impact on the binary size

and execution footprint of a database.

According to our Cellular DBMS prototype development experience, for a data

management solution, we argue that the performance is directly proportional to

the resources, i.e., to increase the performance, we have to use more resources.

In contrast, if we want to preserve resources, there will be a compromise on the

performance. Furthermore, three important resources of CPU cycles, memory, and

persistent storage also have a direct relation with each other in terms of their access

and utilization. If we want to reduce the access to persistent storage because of high

access cost, we have to use more CPU cycles and memory. If we want to reduce the

access to memory because of high memory latency, we have to use more CPU cycles.

Our research observations are in agreement with the observations documented by

Gray, Putzolu, and Graefe [Graefe, 2008; Gray and Graefe, 1997; Gray and Putzolu,

1987]. Considering the high growth rate of processor speed in comparison with

memory and persistent storage [Patterson et al., 1997], it is essential to change

focus of database development towards better CPU utilization. Many database

78

CHAPTER 5. THE PROTOTYPE IMPLEMENTATION: PROBLEMS FACED
AND LESSONS LEARNED

Record structure

Page structure

Header OffsetKey0 OffsetKey1 OffsetKey2 ...

Free space Value0Value1Value2...

SizeKey Value

Figure 5.1: Page and record structures in the Cellular DBMS prototype.

researchers are already focused in this research direction, such as [Ailamaki et al.,

1999], [Boncz et al., 2005], [Zukowski et al., 2006], and [Ailamaki et al., 2002] are

few examples.

We also argue that self-tuning of a data management solution is inversely propor-

tional to the customization, i.e., if we remove all unneeded functionalities during our

initial customization, we confine our self-tuning options to a minimum. In contrast,

the more functionalities we have, less customized is our data management solution,

which means we have more options to self-tune our DBMS. However, in Chapter 3,

we have explained in detail the negative impact of a high number of functionalities

on a DBMS performance.

According to our above-mentioned observations during the Cellular DBMS pro-

totype development, we found that the term customization should be further clas-

sified as hard and soft customization to increase the understandability. By hard

customization, we mean the removal of features from a variant. By soft customiza-

tion, we mean the selection of a required minimal feature at initial design time, such

that the unused features are available in the binary footprint and can be used when

required. Efficient soft customization requires an implementation, which ensures

that when unused, the unused functionalities should have minimal effect on the

used functionalities. Moreover, unused functionalities should be usable with mini-

mal overhead. According to our explanation in Chapter 3, the generation of variants

through feature selection is an example of hard customization, whereas according

to our explanation in Chapter 4, the selection of a small minimal optimal storage

structure (such as sorted array) is an example of soft customization. In the Cellular

DBMS prototype implementation, we attempted to find a right balance between

customization and self-tuning through suggesting precisely what to customize and

how to self-tune.

79

5.2. PROTOTYPE IMPLEMENTATION DETAILS

Storage model selection is an important design decision for a DBMS implemen-

tation. This design decision has a direct impact on the design of page and record

structures of a DBMS. Page and record structures for the Cellular DBMS prototype

implementation are depicted in Figure 5.1. Both page and record structures store

key/value pairs of data, where keys are fixed sized and values are variable sized.

For a simple data management scenario, a key/value pair could be a good enough

solution. For an online transaction processing (OLTP) specific solution, the NSM

is considered more suitable, whereas for an online analytical processing (OLAP)

specific solution, the DSM is considered more suitable [Stonebraker and Cetintemel,

2005]. We used the DSM because of its suitability for self-tuning DBMS imple-

mentation. Detailed discussion about our decision to use the DSM is provided in

Chapter 4. We observed that the data management need of embedded devices does

not need complex data and index storage structures, such as the B+-Tree. Instead,

simple data storage structures, such as array, list, queue, and stack can be equally

efficient in most of the scenarios. Moreover, after several experimentations with

different storage structures, we arrived at the conclusion that any storage structure

can be optimized for either read-optimized workload or write-optimized workload at

a time, but not for both.

The Cellular DBMS SPL is capable to generate the variants for different types of

databases. Our current implementation is capable of generating embedded database,

column-oriented storage manager, key/value store, relational database, in-memory

database, and persistent database. Therefore, the Cellular DBMS SPL is too gen-

eralized. Our experience with this SPL suggests that it is not a practical approach

for a real or commercial DBMS SPL. Rather our experience for SPL is in agreement

with what Chaudhuri and Weikum [2000] referred as “universality trap”. We suggest

that DBMS SPL should be specific for certain type of DBMS, such as DBMS SPL

for an in-memory column-oriented relational storage manager. The reason for this

recommendation is the high difference in the requirements and implementation of

different types of databases. For example, algorithm and implementation techniques

that are suitable for in-memory database and persistent database are different.

5.2 Prototype implementation details

The Cellular DBMS prototype is implemented using the software product line ap-

proach by considering benefits that we discussed in detail in Chapter 3. We used

the FOP to realize the Cellular DBMS SPL. The source code of the Cellular DBMS

80

CHAPTER 5. THE PROTOTYPE IMPLEMENTATION: PROBLEMS FACED
AND LESSONS LEARNED

C++
FC++

FC++
AspectC++

AspectC++

Source

Code

C++
C++ Executable

C++

Source

Code

FC++

Compiler

FC++

Source

Code

AspectC++

Compiler

C++

Source

Code

C++

Compiler

Executable

Binary

Figure 5.2: Source code transformation.

prototype is written in FeatureC++2. “FeatureC++ is a C++ language extension

to support FOP” [Apel et al., 2005]. Autonomy is implemented in the Cellular

DBMS prototype using the AOP. The source code for autonomy is written using

the AspectC++3, which is a set of C++ language extensions to facilitate AOP with

C++. The reason behind using the AOP for autonomy implementation is to keep

the monitoring functionality source code separate from other functionalities, which

otherwise gets tangled and scattered across the source code of other functionalities

making it difficult in long-term to separate it. The code transformation model for our

prototype implementation using the FeatureC++, the AspectC++, and the C++

compiler is shown in Figure 5.2. To the best of our knowledge, the Cellular DBMS

prototype is the first relational column-oriented storage manager implementation

using an SPL approach and FOP.

The storage structures that we have implemented in our Cellular DBMS prototype

are sorted array, heap array, sorted list, heap list, B+-Tree, HLC SL, and HLC B+-

Tree. Details about these storage structures are provided in Section 4.2.2. We have

implemented the DSM storage model and its four variations, i.e., KDSM, MDSM,

DMDSM, and VDMDSM. Details about the DSM and its variations are provided

in Section 4.2.1. The Cellular DBMS SPL can generate both in-memory database

variants as well as persistent storage database variants.

The feature model of the Cellular DBMS prototype is shown in Figure 5.3. “A

feature model (a.k.a. domain model or product line variability model) describes the

features of a domain or SPL and their relationships” Kästner et al. [2009]. The

feature model shows an important characteristic for every feature, i.e., either it is

mandatory or optional. Mandatory are features that are always part of a variant,

whereas optional features can be removed from a variant. The customizability of

an SPL is dependent on the number of optional features it contains. A feature

model can also show a relationship among features. In the Cellular DBMS proto-

2“FeatureC++”, http://wwwiti.cs.uni-magdeburg.de/iti_db/fcc/, Accessed: 21-06-2011
3“AspectC++”, http://www.aspectc.org/, Accessed: 21-06-2011

81

http://wwwiti.cs.uni-magdeburg.de/iti_db/fcc/
http://www.aspectc.org/

5.2. PROTOTYPE IMPLEMENTATION DETAILS

Cellular

DBMS

prototype

OS

Windows

Linux

NutOS

Record

structure

Database

structure

ConsoleUser interface

Buffer

manager

In-memory

Persistent

Page

replacement

Least recently

used

Least

frequently

used

Buffer

allocation
Hash

Storage

manager

buffer

manager

Index

manager

In-memory

Persistent

Buffer

allocation
Hash

Index

replacement

Least recently

used

Least

frequently

used

Autonomy

Evolution

Monitoring

Index

dictionary

In-memory

Persistent

Data

dictionary

In-memory

Persistent

Testing

SQLite

BerkeleyDB

Storage

manager
ECOS

Page

Sorted

Heap

List

Sorted

Heap

B+Tree

HLC

Storage

structure

DSM

KDSM

MDSM

DMDSM

VDMDSM

Storage

model

Feature

Alternative

Optional

Mandatory

Figure 5.3: The Cellular DBMS prototype feature model.

82

CHAPTER 5. THE PROTOTYPE IMPLEMENTATION: PROBLEMS FACED
AND LESSONS LEARNED

type feature model, we only used one relationship type that is called alternative

relation. Alternative relation means that when two or more features have an al-

ternative relationship, only one of them can be selected in a variant at a time. In

Figure 5.3, Record structure is an example of a mandatory feature, Testing is an

optional feature, and Sorted and Heap are alternative features to each other.

Figure 5.3 shows all of the high-level features for the Cellular DBMS SPL. We

avoided the details about small features to keep the feature model simple. In the

Cellular DBMS prototype implementation, we have approximately 151 features. The

snippet of the configuration file listing all the features of the Cellular DBMS pro-

totype is provided in Appendix A. However, because of many dependencies among

features, we are able to generate only 34 functional database variants using this

feature model. The 17 in-memory database variants that we used for discussion and

evaluation in this thesis are listed with details in Table 5.1. The configuration file

in Appendix A is configured to generate the variant 8 from the variants listed in

Table 5.1.

The smallest possible database variants that can be generated from the Cellular

DBMS SPL are variants 1 and 2 as listed in Table 5.1. Both, variant 1 and 2, use

a single in-memory page as a database. Variant 1 stores sorted data according to

key-order, where as variant 2 stored data according to insertion-order. The minimal

feature model for database variant 1 is presented in Figure 5.4.

Cellular

DBMS

prototype

OS Linux

Record

structure

Database

structure

ConsoleUser interface Feature

Alternative

Optional

Mandatory

Storage

manager
ECOS Page Sorted

Storage

structure

Figure 5.4: The Cellular DBMS prototype minimal variant feature model.

We used the feature derivative approach to handle the optional feature depen-

dencies [Liu et al., 2006]. The optional feature means the functionality that can

be removed from the database. The optional feature problem is well known in the

SPL domain [Kästner et al., 2009]. It emerges from the existence of optional fea-

tures that are dependent on each other, i.e., if any one of those dependent optional

features is to be selected, then all other dependent optional features should also be

83

5.2. PROTOTYPE IMPLEMENTATION DETAILS

selected or vice versa none of them is selected. For example, in Figure 5.3, it can be

observed that both B+-Tree and Index manager are optional in the Cellular DBMS

SPL. However, the B+-Tree cannot work without the Index manager feature. If we

generate a variant by selecting any one of them then the variant will not compile as

the references to the Index manager in B+-Tree will not be available.

A feature derivative is used to separate the dependent source code from all depen-

dent optional features [Liu et al., 2006]. Feature derivative is an additional module

created using the dependent code from optional features refactored as a separate

module. Feature derivative for dependent optional features is only included in the

generation process of source code if and only if all dependent optional features are

selected. A detailed discussion about the optional feature problem and use of the

feature derivative approach as a solution can be found in work from Liu et al. [2006]

and Kästner et al. [2009]. We found 152 feature derivatives for 151 features in the

Cellular DBMS prototype implementation, which is quite high. The reason for this

high number of feature derivatives is the granularity of features. For example, dur-

ing initial design, we made Put, Get, and Delete functionality as a separate feature.

However, with introduction of relatively complex storage structures, such as B+-

Tree, these fine-grained features became useless because they were always needed

for all variants. These fine-grained features still exist in our prototype implementa-

tion and can be seen in the configuration file presented in Appendix A. We concluded

according to our observation that the finer is the granularity of features the higher

is the number of feature derivatives. According to our experience, we suggest using

FOP with coarser-grained features to avoid the maintainability headaches, which

is also compatible with the results presented by Liebig et al. [2010] and problems

reported by Kästner et al. [2008].

Table 5.1: Statistics and details for the Cellular DBMS prototype implementation
variants.

V
a
r
ia

n
t

B
in

a
r
y

si
z
e

(K
B

)

L
in

e
s

o
f
c
o
d
e

(L
O

C
)

N
o
.

O
f
fe

a
tu

r
e
s

Tuning knobs
Database

type

Storage

model

Storage

structure

1 103 5665 45 Page size
key/value

data store
None

Sorted

array

2 82 3795 42 Page size
key/value

data store
None

Heap array

Continued on next page. . .

84

CHAPTER 5. THE PROTOTYPE IMPLEMENTATION: PROBLEMS FACED
AND LESSONS LEARNED

V
a
r
ia

n
t

B
in

a
r
y

si
z
e

(K
B

)

L
in

e
s

o
f
c
o
d
e

(L
O

C
)

N
o
.

O
f
fe

a
tu

r
e
s

Tuning knobs
Database

type

Storage

model

Storage

structure

3 123 8027 58

Page size

Max. page buffer size

Max. pages

key/value

data store
None Sorted list

4 92 4845 53

Page size

Max. page buffer size

Max. pages

key/value

data store
None Heap list

5 165 9945 53

Page size

Max. page buffer size

Max. pages

Max. index buffer size

Max. index nodes

Max. index node elements

key/value

data store
None B+-Tree

6 188 13078 76

Page size

Max. page buffer size

Max. pages

Max. storage manager buffer size

Max. storage manager nodes

Max. HLC index buffer size

Max. HLC index nodes

Max. HLC index node elements

key/value

data store
None HLC SL

7 217 15020 78

Page size

Max. page buffer size

Max. pages

Max. index buffer size

Max. index nodes

Max. index node elements

Max. storage manager buffer size

Max. storage manager nodes

Max. HLC index buffer size

Max. HLC index nodes

Max. HLC index node elements

key/value

data store
None

HLC

B+-Tree

8 263 17563 101

Page size

Max. page buffer size

Max. pages

Max. storage manager buffer size

Max. storage manager nodes

Max. HLC index buffer size

Max. HLC index nodes

Max. HLC index node elements

Max. columns

Relational

data store
DSM HLC SL

Continued on next page. . .

85

5.2. PROTOTYPE IMPLEMENTATION DETAILS
V

a
r
ia

n
t

B
in

a
r
y

si
z
e

(K
B

)

L
in

e
s

o
f
c
o
d
e

(L
O

C
)

N
o
.

O
f
fe

a
tu

r
e
s

Tuning knobs
Database

type

Storage

model

Storage

structure

9 293 19505 104

Page size

Max. page buffer size

Max. pages

Max. index buffer size

Max. index nodes

Max. index node elements

Max. storage manager buffer size

Max. storage manager nodes

Max. HLC index buffer size

Max. HLC index nodes

Max. HLC index node elements

Max. columns

Relational

data store
DSM

HLC

B+-Tree

10 263 17525 101

Page size

Max. page buffer size

Max. pages

Max. storage manager buffer size

Max. storage manager nodes

Max. HLC index buffer size

Max. HLC index nodes

Max. HLC index node elements

Max. columns

Relational

data store
KDSM HLC SL

11 293 19467 104

Page size

Max. page buffer size

Max. pages

Max. index buffer size

Max. index nodes

Max. index node elements

Max. storage manager buffer size

Max. storage manager nodes

Max. HLC index buffer size

Max. HLC index nodes

Max. HLC index node elements

Max. columns

Relational

data store
KDSM

HLC

B+-Tree

12 262 17548 101

Page size

Max. page buffer size

Max. pages

Max. storage manager buffer size

Max. storage manager nodes

Max. HLC index buffer size

Max. HLC index nodes

Max. HLC index node elements

Max. columns

Relational

data store
MDSM HLC SL

Continued on next page. . .

86

CHAPTER 5. THE PROTOTYPE IMPLEMENTATION: PROBLEMS FACED
AND LESSONS LEARNED

V
a
r
ia

n
t

B
in

a
r
y

si
z
e

(K
B

)

L
in

e
s

o
f
c
o
d
e

(L
O

C
)

N
o
.

O
f
fe

a
tu

r
e
s

Tuning knobs
Database

type

Storage

model

Storage

structure

13 291 19490 104

Page size

Max. page buffer size

Max. pages

Max. index buffer size

Max. index nodes

Max. index node elements

Max. storage manager buffer size

Max. storage manager nodes

Max. HLC index buffer size

Max. HLC index nodes

Max. HLC index node elements

Max. columns

Relational

data store
MDSM

HLC

B+-Tree

14 266 17711 101

Page size

Max. page buffer size

Max. pages

Max. storage manager buffer size

Max. storage manager nodes

Max. HLC index buffer size

Max. HLC index nodes

Max. HLC index node elements

Max. columns

Relational

data store
DMDSM HLC SL

15 296 19653 104

Page size

Max. page buffer size

Max. pages

Max. index buffer size

Max. index nodes

Max. index node elements

Max. storage manager buffer size

Max. storage manager nodes

Max. HLC index buffer size

Max. HLC index nodes

Max. HLC index node elements

Max. columns

Relational

data store
DMDSM

HLC

B+-Tree

16 294 19220 106

Page size

Max. page buffer size

Max. pages

Max. storage manager buffer size

Max. storage manager nodes

Max. HLC index buffer size

Max. HLC index nodes

Max. HLC index node elements

Max. columns

Relational

data store
VDMDSM HLC SL

Continued on next page. . .

87

5.2. PROTOTYPE IMPLEMENTATION DETAILS
V

a
r
ia

n
t

B
in

a
r
y

si
z
e

(K
B

)

L
in

e
s

o
f
c
o
d
e

(L
O

C
)

N
o
.

O
f
fe

a
tu

r
e
s

Tuning knobs
Database

type

Storage

model

Storage

structure

17 294 21162 104

Page size

Max. page buffer size

Max. pages

Max. index buffer size

Max. index nodes

Max. index node elements

Max. storage manager buffer size

Max. storage manager nodes

Max. HLC index buffer size

Max. HLC index nodes

Max. HLC index node elements

Max. columns

Relational

data store
VDMDSM

HLC

B+-Tree

Liu et al. [2006] introduced the term of the higher order derivatives (HOD) for the

feature derivatives that are dependent on more than two optional features. In the

Cellular DBMS prototype, we found forty two HOD. Table 5.2 shows the statistics

for the number of features and the number of HOD in our prototype source code.

We conclude according to our observation that the hierarchy of HOD grows deeper

as the number of dependent optional features grows. Moreover, the deeper grows

the hierarchy of HOD the more difficult it becomes to manage the source code.

We also conclude from our experience that the use of preprocessor directives is

unavoidable even with the use of the FOP and the AOP. In our prototype implemen-

tation, we were constrained to use preprocessor directives sixty eight times. All of

them are related to platform and compiler. The four preprocessor directives that we

used are: #ifdef LINUX, #ifdef btnode3, #ifdef MAKEGXX, #ifdef cplusplus,

and #ifdef GNUG . Thirty five of preprocessor directives appeared in feature

derivatives. Forty five of directives were used in the testing source code. Seven of

directives were used in the user interface source code. According to our observation,

we recommend to use preprocessor directives for platform and compiler specific cus-

tomizations rather than feature refinements of FOP. A refinement means an addition

of new elements (such as method or variable) to a class or extending an existing el-

ement, and its use for platform and compiler specific customizations will eventually

result in many smaller feature derivatives. We also observed that the time for a

cross platform DBMS development increases because of the compatibility issues. It

is a difficult task to guarantee 100% similarity in DBMS behavior across different

platforms and compilers.

88

CHAPTER 5. THE PROTOTYPE IMPLEMENTATION: PROBLEMS FACED
AND LESSONS LEARNED

Table 5.2: Feature derivatives and higher order feature derivatives for important
features in the Cellular DBMS prototype.

Feature Feature Higher order

derivatives feature derivatives

Main.UserInterface 10 2

Autonomy.Evolve 15 8

Test 16 2

HPage 4

Page 4

SortedList 2

HeapList 2

B+-Tree 9

HLComposite 9

DSM.* 13 6

KDSM.* 13 6

MDSM.* 13 6

DMDSM.* 13 6

VDMDSM.* 13 6

BufferManager.* 5

To further analyze the Cellular DBMS SPL source code, we used the CLOC tool4

to count the LOC. Our Cellular DBMS SPL consists of 42953 LOC excluding com-

ments and whitespaces. Approximately, 23.48% of LOC resides in feature deriva-

tives, i.e., 10086 LOC. Our result is quite close to the evaluation results provided

by Liebig et al. [2010] for the analysis of the variability in forty preprocessor-based

SPL, which showed that approximately on average 23% of code-base in a software

project is variable. It can be observed from Table 5.1 that the largest in-memory

database variant in terms of LOC is variant 17, which consists of 21162 LOC, i.e.,

it only uses approximately 50% of the SPL source code.

According to Table 5.1, the number of features in variant increases from variant

1 to variant 17, i.e., variant 1 is the smallest and variant 17 is the largest database

variant. In Figure 5.5, we present the effect of an increase in the number of feature

on the LOC and binary size for database variants. It can be observed that LOC

and binary size increases with the increase in the number of features. Vice versa our

results are also agreeable with the results presented by Liebig et al. [2010], which

4CLOC (Count Lines of Code) tool, http://cloc.sourceforge.net/, Accessed: 21-06-2011

89

http://cloc.sourceforge.net/

5.3. IMPLEMENTATION OF EVOLUTION MECHANISM

10000

15000

20000

25000

100

150

200

250

300

350

N
o

.
o

f
LO

C

B
in

a
ry

 s
iz

e
 i

n
 K

B
 /

 N
o

.
o

f
fe

a
tu

re
s

No. of features Binary size (KB) LOC

0

5000

0

50

100

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

B
in

a
ry

 s
iz

e
 i

n
 K

B
 /

 N
o

.
o

f
fe

a
tu

re
s

No. of features increase for variants from left to right

Figure 5.5: Increase in features also increases the LOC and the binary size.

shows that variability of a software system increases with the increase in its source

code size. Similarly, in Figure 5.6, we show the effect of an increase in the number

of features on the number of tuning knobs. It can be observed that the number of

tuning knobs increase with the increase in the number of features.

4

6

8

10

12

14

40

60

80

100

120
N

o
.

o
f

tu
n

in
g

 k
n

o
b

s

N
o

.
o

f
fe

a
tu

re
s

No. of features No. of tuning knobs

0

2

4

0

20

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

N
o

.
o

f
tu

n
in

g
 k

n
o

b
s

N
o

.
o

f
fe

a
tu

re
s

No. of features increase for variants from left to right

Figure 5.6: Increase in features also increases the tuning knobs.

5.3 Implementation of evolution mechanism

In this section, we explain, how we implemented the evolution mechanism for our

ECOS implementation in our Cellular DBMS prototype. Our aim for evolution

mechanism implementation was to keep the overheads to be negligible, whereas at

the same time we wanted to ensure that the implementation of evolution should

not get tightly coupled with standard storage manager implementation. For this

purpose, we used the innovative software engineering technique of the AOP to ensure

that the evolution behavior can be added or removed from the storage manager

without affecting the other storage manager functionalities.

90

CHAPTER 5. THE PROTOTYPE IMPLEMENTATION: PROBLEMS FACED
AND LESSONS LEARNED

5.3.1 Monitoring functionality implementation

The most important functionality of the evolution mechanism is the monitoring

functionality. ECOS monitors existing storage structures to gather the heredity

information and to observe the data management operation events (see Section 4.3

for details of the heredity information and events). The code snippet 5.1 of our

monitoring functionality is implemented as an aspect (a modular way to separate

the common code that otherwise is part of different software components) using the

AspectC++ language constructs.

In the code snippet 5.1, the code between line numbers 6 to 11 is an advice code.

An advice is used to specify the additional code that could be executed before, after,

or at both points (i.e., around) during the flow of a program. For example, on the

line number 6 in the code snippet 5.1, the before keyword ensures that the advice is

executed before the execution of the ICPutData function.

5.3.2 Trace functionality implementation

Another important functionality of evolution implementation is the trace function-

ality, which executes before the execution of data management operation and stores

the heredity information, such as column information and record details. The ad-

vice defined at the line number 6 in the code snippet 5.1 is a sample trace code,

in which we gather the statistics for all ICPutData function executions, which for

presented sample source code include taking reference to the involved column and

record objects. We use this information to call ICPutData again, if it fails to execute

successfully.

5.3.3 Analysis and fixing functionality implementation

The advice between line numbers 14 to 38 in the code snippet 5.1 define the code that

analyzes the execution of different data management functions. It also executes the

fixing code if some problem is identified. For example, advice at the line number 14

in the code snippet 5.1 checks the execution result of the PutData function of the

Page implementation class. If some problem is identified, such as NO SPACE at

the line number 22 in the code snippet 5.1, it executes the code that analyzes the

problem according to the recorded trace data and fixes the problem. All functions

used in advices in the code snippet 5.1 are defined in the Autonom class. The code

snippet 5.2 is the implementation of Autonom class.

91

5.3. IMPLEMENTATION OF EVOLUTION MECHANISM

Listing 5.1: Monitoring implementation code snippet

1 aspect Monitor {
Autonom a ;

3 MSG _msgid ;

5 /∗ Monitoring f o r t r a c i n g ∗/
advice execution ("MSG Composite::ICPutData(...)") : before () ←↩
{

7 Composite ∗c ;
_msgid = (MSG) ∗ tjp−>result () ;

9 c = tjp−>that () ;
a . TraceICPutData ((RECORD ∗) tjp−>arg (0) , (COLUMN ∗) tjp−>←↩

arg (1)) ;
11 }

13 /∗ Monitoring f o r p o s s i b l e events , ana ly s i s , and f i x i n g s ∗/
advice execution ("MSG Page::PutData(...)") : after () {

15 Page ∗pg ;
i f (tjp−>result () != NULL) {

17 _msgid = (MSG) ∗ tjp−>result () ;
switch (_msgid) {

19 case SUCCESS :
// Result i s SUCCESS

21 break ;
case NO_SPACE :

23 // Result i s NO SPACE
pg = tjp−>that () ;

25 _msgid = a . AnaFixCheckStorageNoSpace (pg) ;
∗tjp−>result () = _msgid ;

27 i f (_msgid == SUCCESS) {
a . TraceReset () ;

29 }
break ;

31 case NOT_FOUND :
. . .

33 default :
// Unexpected r e s u l t

35 break ;
}

37 }
}

39 . . .
}

92

CHAPTER 5. THE PROTOTYPE IMPLEMENTATION: PROBLEMS FACED
AND LESSONS LEARNED

Listing 5.2: Autonom class implementation code snippet

class Autonom {
2 public :

// Evolve c l a s s implements the evo lv ing f u n c t i o n a l i t y
4 Evolve evo ;

// Trace func t i on f o r PutData method
6 void TraceICPutData (RECORD∗ _r , COLUMN∗ _c) ;

// Ana lys i s and f i x i n g f u n c t i o n s
8 MSG AnaFixCheckStorageNoSpace (Page ∗p) ;

. . .
10 } ;

12 /∗Trace f u n c t i o n s ∗/
void Autonom : : TraceICPutData (RECORD∗ _r , COLUMN∗ _c) {

14 this−>evo . r = _r ;
this−>evo . c = _c ;

16 this−>evo . isbyval = false ;
}

18

/∗ Analys i s and f i x a t i o n f u n c t i o n s ∗/
20 MSG Autonom : : AnaFixCheckStorageNoSpace (Page ∗p) {

// This i s f o r evo lv ing from Sorted Array to Sorted L i s t
22 this−>evo . _msgid = NO_SPACE ;

// Evolut ion AnaFix func t i on implements the a n a l y s i s and ←↩
f i x i n g

24 return this−>evo . AnaFix () ;
}

93

5.4. SUMMARY

It can be observed from the code snippet 5.2 that the Autonom class contains the

implementation of trace functions and uses the Evolve class to execute the analysis

and fixing. However, we use the code snippet 5.1 and 5.2 for a twofold purpose.

As the first purpose during analysis we identify, when to evolve the existing storage

structure. For example, as shown at the line number 22 in the code snippet 5.1, each

case triggers an event for possible evolution of existing storage structure. Further-

more, as the second purpose we also identify, either the existing storage structure

should be evolved into new storage structure or not. The AnaFix function at the line

number 25 in the code snippet 5.2 contains the functionality to take this decision.

The code snippet 5.3 presents our evolution code, in which the function EvolveCol-

umnIM() at the line number 1 evolves a sorted array storage structure into a sorted

list storage structure. The c− > im object refers to a sorted array storage structure

and the c− > sl refers to a newly instantiated sorted list storage structure. Each

storage structure implements an Evolver function, such as the one used at the line

number 16 in the code snippet 5.3.

The Evolver function contains the implementation that makes the existing storage

structure, which is provided as an argument, an integral component of the newly

instantiated storage structure. For example, the Evolver function at the line num-

ber 16 in the code snippet 5.3 takes a sorted array as an argument and makes it

an integral part of the sorted list. For better understanding, the implementation

of the Evolver function of the sorted list is also provided at the line number 23

in the code snippet 5.3. The Evolver function at the line number 23 in the code

snippet 5.3 instantiates a new sorted array and distributes the data of the existing

sorted array among them equally, then it makes both new and old sorted arrays a

part of the new sorted list. It is a naive implementation that we used to demon-

strate the concept, however, the Evolver function is an important code fragment.

The implementation of an Evolver function identifies the associated overhead for an

evolution. The interface provided to the end-user or external application by ECOS

is simple and consistent. Which storage structure is in use by the column?, when it

is evolved?, all these aspects are hidden. A sample code snippet to give an insight

for ECOS interface is provided as the code snippet 5.4.

5.4 Summary

In this chapter, we presented our experiences with the database implementation. We

outlined problems we faced and solutions we adopted. We provided details about

94

CHAPTER 5. THE PROTOTYPE IMPLEMENTATION: PROBLEMS FACED
AND LESSONS LEARNED

Listing 5.3: Evolution implementation code snippet

1 MSG Evolve : : EvolveColumnIM () {
//We evo lve Sorted array to Sorted l i s t

3 // or Heap Array to Heap L i s t
// This column should be t raced during t r a c i n g

5 i f (this−>c == NULL) { return UNRESOLVED ; }

7 // F i r s t we change column type to so r t ed l i s t
this−>c−>columntype = SL ;

9 // I n s t a n t i a t e new Sorted L i s t
this−>c−>sl = new StorageManager () ;

11 _msgid = c−>sl−>CreateDatabase (this−>c−>im−>database) ;
i f (_msgid != SUCCESS) return _msgid ;

13

//Now evo lve from Array to L i s t
15 //Such that e x i s t i n g Array w i l l become an i n t e g r a l un i t o f ←↩

L i s t
_msgid = this−>c−>sl−>Evolver (this−>c−>im) ;

17 i f (_msgid != SUCCESS) return _msgid ;

19 //Now a f t e r evo lut ion , redo l a s t bu f f e r ed operat i on
return this−>EvolveColumnIMPutData () ;

21 }

23 MSG StorageManager : : Evolver (Page∗ _page) {
MSG _msgid = pb−>EvolvePB (_page) ;

25 i f (_msgid != SUCCESS) return _msgid ;
this−>tuplecount += _page−>CountTuples () ;

27 dd−>SetStartPage (_page−>GetID ()) ;
dd−>SetEndPage (_page−>GetID ()) ;

29 return SUCCESS ;
}

31

MSG PageBuffer : : EvolvePB (Page∗ page) {
33 tmpPID++;

pg [tmpPID − 1] = page ;
35 pg [tmpPID − 1]−>SetID (tmpPID) ;

++usedPageCount ;
37 fOnUsedPageCountChanged (evenSink , usedPageCount) ;

return SUCCESS ;
39 }

95

5.4. SUMMARY

Listing 5.4: ECOS interface code snippet

1 RECORD∗ crecords =
(RECORD ∗) malloc (s izeof (RECORD) ∗ <No . of columns>) ; . . .

3 crecords [<index >] . key = <key>;
crecords [<index >] . columnindex = <column index>;

5 crecords [<index >] . size = <No . of bytes for value>;
crecords [<index >] . value =

7 (cbyte ∗) malloc (s izeof (cbyte) ∗ <No . of bytes for value>) ; . . .
_msgid = cell . GetDataNext (crecords) ; //Scan . . .

9 _msgid = cell . GetData (crecords) ; //Get record . . .
_msgid = cell . PutData (crecords) ; //Put record . . .

11 _msgid = cell . DeleteData (crecords) ; // Delete record . . .

our Cellular DBMS prototype implementation and presented statistics that gave

many insights about the impact of an increase in features on the complexity of the

implementation. We concluded that increase in the number of features also increase

the number of tuning knobs, LOC, binary size, feature derivatives, and HOD. We

showed that even in the presence of FOP, the use of preprocessor directives for cross

platform DBMS development is imminent. We recommended to make use of FOP

with coarser-grained features and to avoid making a DBMS SPL general for all data

management needs.

96

6 Evaluation

This chapter shares material with the FIT’10 paper “Using Evolving

Storage Structures for Data Storage” [ur Rahman, 2010] and the BN-

COD’11 paper “ECOS: Evolutionary Column-Oriented Storage” [ur Rah-

man et al., 2011].

This chapter presents details about the micro benchmark that we used to perform

the evaluation of the Cellular DBMS prototype. It also presents and discusses

the evaluation results to assess the impact of unused functionalities on a DBMS

performance, the performance and resource consumption comparison of different

storage structures for different data sizes, the comparison of different DSM based

schemes, and most importantly the behavior and related performance improvement

from hierarchically-organized storage structures.

6.1 Micro benchmark details

For evaluation of the Cellular DBMS prototype, we set up a micro benchmark with

repeated insertion, selection, and deletion of data using API based access method.

The data contain keys in ascending, descending, and random order, which also

represents their insertion, selection, and deletion order in a database. For different

columns, the number of records and the distinct data count (cardinality) is kept

different to assess the impact of change in data size using ECOS. We defined seven

columns with two unique non-null columns and three columns with varying number

of NULL values. We used one of two unique non-null columns as a primary key. We

used three different widths for columns, i.e., 16, 85, and 4096 bytes to assess the

impact of tuple width on performance of different DSM based schemes. All storage

structures used in evaluation operate in main-memory. For the Cellular DBMS

prototype evaluation, we used CPU cycles and heap memory as resources. One

reason for selecting these parameters is that we evaluated only in-memory database

variants. Another reason for selecting these parameters is the change in bottlenecks.

97

6.1. MICRO BENCHMARK DETAILS

In the last two decades, the processor speed has been increasing at the much faster

rate of around 60% per annum in comparison with the memory speed that increases

only around 10% per year [Patterson et al., 1997]. Therefore, it is essential for a

DBMS to make optimal use of increased processing power and large main memories

while avoiding the overheads associated with memory latencies.

We used OpenSuse 11.2 operating on Intel(R) Core(TM)2 Duo CPU E6750 @

2.66GHz with 4 GB of RAM. It contains two 32 KBytes 8-way set associative L1 in-

struction and data cache with 64-byte line size; and one 4 MB 16-way set associative

L2 cache with 64-byte line size. We used Valgrind tool [Valgrind] to generate cache

references and misses, and heap usage. We measured execution speed by taking the

average of CPU cycles observed over multiple iterations of micro benchmark. All

presented evaluation results are valid for comparison of storage structures and should

not be considered as the benchmark for the Cellular DBMS performance comparison

with other DBMS. For better visibility of charts, we used few abbreviations that we

have listed in Table 6.1.

Table 6.1: List of abbreviations used in figures with their details.

Abbreviation Detail

I Instruction cache reference

D rd Data (read) cache reference

D wr Data (write) cache reference

I1 L1 Instruction cache miss

D1 rd L1 Data (read) cache miss

D1 wr L1 Data (write) cache miss

L2i L2 Instruction cache miss

L2d rd L2 Data (read) cache miss

L2d wr L2 Data (write) cache miss

We used a micro benchmark to generate empirical results. We understand the

need for empirical results using standard benchmarks, such as TPC-H, however,

the existing Cellular DBMS prototype implementation only consist of the ECOS

storage manager and can only be tested using a micro benchmark. Furthermore,

the Cellular DBMS is a research prototype with many implementation details still in

progress. We are using our best effort to provide reliable and repeatable results that

can compare the Cellular DBMS with the performance of other existing commercial

products; however, it is left as part of the future work.

98

CHAPTER 6. EVALUATION

6.2 Evaluation results

To present the impact of unused functionalities on a DBMS performance, we first

used the Berkeley DB as our data management solution. As shown in Figure 6.1, 6.2,

6.3, and 6.4; RECNO, Queue, Hash, and B+-Tree represent the storage struc-

tures of the Berkeley DB that we used for evaluation. To evaluate the impact

of unused functionalities on a database performance, we tested all four Berke-

ley DB storage structures with two Berkeley DB configurations, i.e., Default(D)

and Minimal(M). The default configuration contains all features of the Berkeley

DB, whereas for minimal configuration, we removed all removable features. The

flags that we used to generate minimal configuration include: –disable-largefile, –

disable-cryptography, –disable-hash, –disable-queue, –disable-replication, –disable-

statistics, –disable-verify, –disable-partition, –disable-compression, –disable-mutexs-

upport, and –disable-atomicsupport. For RECNO and Queue, –disable-queue flag

is not used, whereas for Hash, –disable-hash flag is not used. It can be observed

that with minimal configuration of the Berkeley DB, storage structures consume

much fewer resources showing better performance in comparison with the default

configuration of Berkeley DB. Furthermore, it can be observed that for our micro

benchmark data size of 4048 records, all simple storage structures perform better

than B+-Tree.

150000000

200000000

250000000

300000000

1500000

2000000

2500000

3000000

N
o

.
o

f
cy

cl
e

s

B
y

te
s

Memory CPU Cycles

0

50000000

100000000

0

500000

1000000

RECNO

(M)

RECNO

(D)

Queue

(M)

Queue

(D)

Hash

(M)

Hash

(D)

B+-Tree

(M)

B+-Tree

(D)

N
o

.
o

f
cy

cl
e

s

Figure 6.1: Micro benchmark results using the Berkeley DB: Minimal configurations
consume less CPU cycles and memory.

We also observed the effect of an increase in data size on performance of different

storage structures. We executed our benchmark for different storage structures

using different number of records (i.e., single record, 4048 records, 100K records,

99

6.2. EVALUATION RESULTS

2000000

2500000

3000000

3500000

4000000

4500000

1500000

2000000

2500000

3000000

3500000

4000000

N
o

.
o

f
I1

 m
is

se
s

N
o

.
o

f
L2

i
m

is
se

s

Cache Misses L2i Cache Misses I1

0

500000

1000000

1500000

0

500000

1000000

1500000

RECNO

(M)

RECNO

(D)

Queue

(M)

Queue

(D)

Hash

(M)

Hash (D) B+-Tree

(M)

B+-Tree

(D)

N
o

.
o

f
I1

 m
is

se
s

N
o

.
o

f
L2

i
m

is
se

s

Figure 6.2: Micro benchmark results using the Berkeley DB: Minimal configurations
cause less instruction cache misses.

200000

250000

300000

350000

400000

450000

15000

20000

25000

30000

N
o

.
o

f
D

1
 w

r
a

n
d

 L
2

d
 w

r
m

is
se

s

N
o

.
o

f
D

1
 r

d
 a

n
d

 L
2

d
 r

d
 m

is
se

s

Cache Misses D1 wr Cache Misses L2d wr Cache Misses D1 rd Cache Misses L2d rd

0

50000

100000

150000

0

5000

10000

RECNO

(M)

RECNO

(D)

Queue

(M)

Queue

(D)

Hash

(M)

Hash (D) B+-Tree

(M)

B+-Tree

(D)

N
o

.
o

f
D

1
 w

r
a

n
d

 L
2

d
 w

r
m

is
se

s

N
o

.
o

f
D

1
 r

d
 a

n
d

 L
2

d
 r

d
 m

is
se

s

Figure 6.3: Micro benchmark results using the Berkeley DB: Minimal configurations
cause less data cache write misses.

and 500K records). It can be observed in Figure 6.5 that for a single record sorted

array consumes less CPU cycles in comparison with other storage structures. For

4048 records, array consumes much more CPU cycles in comparison with other

storage structures therefore we omitted it in Figures 6.6, 6.7, and 6.8. In Figure 6.6,

it can be observed that for 4048 records, sorted list and B+-Tree based storage

structures consume a similar amount of memory. However, Figure 6.7 and 6.8 shows

that B+-Tree based storage structures perform better for 100K and 500K records.

According to the above observation, we suggest the performance gain and reduced

resource consumption using the evolving storage structures because evolving storage

structures attempt to use minimal/simple storage structures as long as possible

100

CHAPTER 6. EVALUATION

30000000

40000000

50000000

60000000

70000000

1000000

1500000

2000000

2500000

N
o

.
o

f
b

ra
n

ch
e

s

N
o

.
o

f
m

is
p

re
d

ic
ti

o
n

s

Mispredicts Branches

0

10000000

20000000

0

500000

1000000

RECNO

(M)

RECNO

(D)

Queue

(M)

Queue

(D)

Hash

(M)

Hash

(D)

B+-Tree

(M)

B+-Tree

(D)

N
o

.
o

f
b

ra
n

ch
e

s

N
o

.
o

f
m

is
p

re
d

ic
ti

o
n

s

Figure 6.4: Micro benchmark results using the Berkeley DB: Minimal configurations
cause fewer branches and their mispredictions.

using the definitions from evolution paths, such as a sorted array for small data

management.

1000000

1500000

2000000

2500000

C
P

U
 c

y
cl

e
s

0

500000

Sorted

array

Sorted list B+-Tree HLC SL HLC B+-

Tree

Figure 6.5: Performance comparison of different storage structures for a single
record.

To evaluate the performance gain using evolving hierarchically-organized stor-

age structures, we executed our micro benchmark using evolving versions of B+-

Tree, HLC SL, and HLC B+-Tree storage structures. It can be observed from

Figure 6.9, 6.10, 6.11, and 6.12 that each evolving storage structure version per-

forms better than fixed storage structures in resource consumption and thus exhibit

enhanced performance. It shows an important feature of our self-tuning approach,

i.e., our approach to self-tuning has negligible overhead. Furthermore, Our design

decision to use AOP to implement the self-tuning functionality ensures that the

self-tuning is not integrated with any DBMS functionality; rather it can be removed

101

6.2. EVALUATION RESULTS

200000000

300000000

400000000

500000000

600000000

CPU cycles Memory (bytes)

0

100000000

HLC SL

Evolve

HLC SL SL HLC B+-

Tree

Evolve

HLC B+-

Tree

B+-Tree

Figure 6.6: Performance comparison of different storage structures for 4048 records.

5E+10

1E+11

1,5E+11

2E+11

2,5E+11

C
P

U
 c

y
cl

e
s

0

5E+10

HLC SL

Evolve

HLC SL SL HLC B+-

Tree

Evolve

HLC B+-

Tree

B+-Tree

Figure 6.7: Performance comparison of different storage structures for 100K records.

1E+11

2E+11

3E+11

4E+11

5E+11

6E+11

7E+11

C
P

U
 c

y
cl

e
s

0

1E+11

HLC SL

Evolve

HLC SL SL HLC B+-

Tree

Evolve

HLC B+-

Tree

B+-Tree

Figure 6.8: Performance comparison of different storage structures for 500K records.

when needed.

To further clarify the evolving storage structure’s evolution behavior, we present

the evaluation results for evolving HLC SL and evolving HLC B+-Tree storage

102

CHAPTER 6. EVALUATION

40000000

50000000

60000000

70000000

80000000

90000000

100000000

1000000

1500000

2000000

2500000

N
o

.
o

f
cy

cl
e

s

b
y

te
s

Memory CPU Cycles

0

10000000

20000000

30000000

40000000

HLC SL HLC SL

Evolving

HLC B+-Tree HLC B+-Tree

Evolving

B+-Tree B+-Tree

Evolving

0

500000

1000000N
o

.
o

f
cy

cl
e

s

Figure 6.9: Evolving storage structures reduce memory and CPU cycles usage.

60000000

80000000

100000000

120000000

140000000

160000000

30000000

40000000

50000000

60000000

In
st

ru
ct

io
n

 R
e

fe
re

n
ce

s

D
a

ta
 R

e
fe

re
n

ce
s

Cache References D rd Cache References D wr Cache References I

0

20000000

40000000

60000000

0

10000000

20000000

HLC SL HLC SL

Evolving

HLC B+-Tree HLC B+-Tree

Evolving

B+-Tree B+-Tree

Evolving

In
st

ru
ct

io
n

 R
e

fe
re

n
ce

s

D
a

ta
 R

e
fe

re
n

ce
s

Figure 6.10: Evolving storage structures generate less cache references.

80000

100000

120000

140000

160000

180000

10000

15000

20000

25000

W
ri

te
 M

is
se

s

R
e

a
d

 M
is

se
s

Cache Misses D1 wr Cache Misses L2d wr Cache Misses D1 rd Cache Misses L2d rd

0

20000

40000

60000

0

5000

10000

HLC SL HLC SL

Evolving

HLC B+-Tree HLC B+-Tree

Evolving

B+-Tree B+-Tree

Evolving

W
ri

te
 M

is
se

s

R
e

a
d

 M
is

se
s

Figure 6.11: Evolving storage structures cause less data cache misses.

structures in Figure 6.13 and 6.14. In both figures, evolving storage structures

evolves with the data growth. For both evaluations, we used the same page size for

103

6.2. EVALUATION RESULTS

420000

440000

460000

480000

8000000

10000000

12000000

14000000

16000000

18000000

N
o

.
o

f
m

is
p

re
d

ic
ti

o
n

s

N
o

.
o

f
b

ra
n

ch
e

s

Branches Mispredicts

360000

380000

400000

0

2000000

4000000

6000000

HLC SL HLC SL

Evolving

HLC B+-Tree HLC B+-Tree

Evolving

B+-Tree B+-Tree

Evolving

N
o

.
o

f
m

is
p

re
d

ic
ti

o
n

s

N
o

.
o

f
b

ra
n

ch
e

s

Figure 6.12: Evolving storage structures generate less branches and their mispredic-
tion.

HLC SL and HLC B+-Tree storage structures, therefore, first evolution takes place

for both of them at the same data size, i.e., around 3500 records. It can be observed

that the CPU cycles consumed for data management operations before first evolution

are same for both storage structures. During first evolution, HLC SL evolves from

a sorted array to a sorted list, whereas HLC B+-Tree evolves from a sorted array

to a B+-Tree. It can be observed that both storage structures (i.e., sorted list and

B+-Tree) consume different CPU cycles for data management operations. One can

argue that a sorted list or a B+-Tree should also have behaved the same for 3500

records as did the sorted array. However, it is not the case. We also presented the

behavior of the sorted list and the B+-Tree in both figures, and it can be observed

that they do consume more CPU cycles than a sorted array for initial 3500 records.

It can be seen that both HLC SL and HLC B+-Tree storage structures consume

more CPU cycles in comparison with sorted list and B+-Tree. This behavior is

due to the complexity of these storage structures, which are meant to be used for

extremely large data sizes. These two structures (i.e., HLC SL and HLC B+-Tree)

automatically partition the data and uses separate buffer and index managers for

each partition, which is not the requirement for presented 500K records storage.

However, for demonstration of the evolution concept, we forced storage structures

to evolve to HLC SL and HLC B+-Tree level for 500K records by defining it in

an evolution path. Our HLC B+-Tree structure has some similarities with the

partitioned B-Trees presented by Graefe [2003], which are designed to be used in

the data warehousing domain and has been found efficient for performing sorting,

index creation, and bulk insertion for large data. We could have reduced the CPU

cycles requirement of HLC SL and HLC B+-Tree by using a single buffer and index

104

CHAPTER 6. EVALUATION

6000

8000

10000

12000

14000

16000

C
P

U
 c

y
cl

e
s

Evolving storage structures evolve from simple to complex storage structure

HLC SL Evolve HLC SL SL Evolve SL

0

2000

4000

1 7

1
3

1
9

2
5

3
1

3
7

4
3

4
9

5
5

6
1

6
7

7
3

7
9

8
5

9
1

9
7

1
0

3

1
0

9

1
1

5

1
2

1

1
2

7

1
3

3

1
3

9

1
4

5

1
5

1

1
5

7

1
6

3

1
6

9

1
7

5

1
8

1

1
8

7

1
9

3

1
9

9

Data growth (1=500 Records)

Figure 6.13: Evolving HLC SL storage structure evolution.

4000

6000

8000

10000

12000

C
P

U
 c

y
cl

e
s

Evolving storage structures evolve from simple to complex storage structures

HLC B+tree Evolve HLC B+Tree B+Tree Evolve B+Tree

0

2000

4000

1 6

1
1

1
6

2
1

2
6

3
1

3
6

4
1

4
6

5
1

5
6

6
1

6
6

7
1

7
6

8
1

8
6

9
1

9
6

1
0

1

1
0

6

1
1

1

1
1

6

1
2

1

1
2

6

1
3

1

1
3

6

1
4

1

1
4

6

1
5

1

1
5

6

1
6

1

1
6

6

1
7

1

1
7

6

1
8

1

1
8

6

1
9

1

1
9

6

Data growth (1=500 Records)

Figure 6.14: Evolving HLC B+-Tree storage structure evolution.

manager for all sorted lists and B+-Trees. However, this leads to a decrease in the

locality of data and will eventually affect the cache utilization. Furthermore, this

design also leads to interdependencies among all sorted lists and B+-Trees making

self-tuning more problematic.

105

6.2. EVALUATION RESULTS

To demonstrate the difference of performance for different DSM based schemes and

the performance gains using the evolving storage structures, we executed our micro

benchmark in two configurations for all five schemes explained in Section 4. In the

first configuration, we instantiated all columns as fixed HLC SL storage structure.

In the second configuration, we used evolving HLC SL storage structure, which

instantiate all columns as a sorted array on start up and then evolve the column

with data growth to a sorted list, and finally to HLC SL (using the evolution path

presented in Table 4.8). As different dictionary columns contain the different size

of data for two dictionary based schemes, i.e., DMDSM and VDMDSM, in second

configuration data of few dictionary columns can be accommodated in a sorted

array, few evolve to a sorted list, and rest of the dictionary columns with large data

size evolves to HLC SL (a sample scenario is shown in Table 3.1). For three other

schemes, i.e., DSM, KDSM, and MDSM only columns with NULL values take benefit

from the evolving storage structure’s behavior of using minimal storage structure.

However, they can still get the benefit of evolving the storage structures differently

for each column exploiting the workload characteristics.

100000000

150000000

200000000

250000000

2E+09

2,5E+09

3E+09

3,5E+09

4E+09

B
y

te
s

N
o

.
o

f
cy

cl
e

s

Evolving storage structures give a minor performance gain for all schemes

Memory CPU cycles

0

50000000

100000000

0

500000000

1E+09

1,5E+09

DSM DSM

Evolve

KDSM KDSM

Evolve

MDSM MDSM

Evolve

DMDSM DMDSM

Evolve

VDMDSM VDMDSM

Evolve

N
o

.
o

f
cy

cl
e

s

Figure 6.15: Performance comparison of different DSM based schemes in ECOS with
a primary key based search criteria.

In Figure 6.15 and 6.16, results for evolving storage structures have evolve key-

word appended in front of the scheme name. It can be observed that evolving

storage structures perform better than fixed storage structures with minor perfor-

mance gains. As we have discussed in Chapter 3, our work is based on the ideology

from Chaudhuri and Weikum [2000]. They used the notion of “gain/pain ratio” to

discuss the overall gain of their proposed approach. They advocate the ideology of

less complex, more predictable, and self-tuning RISC-style components with minor

compromise on performance to achieve overall improvement in “gain/pain ratio”.

Our results show the minor performance gain, which should be a good achievement

considering the overall benefits we achieve in terms of simplicity, predictability, and

106

CHAPTER 6. EVALUATION

100000000

150000000

200000000

250000000

2E+09

2,5E+09

3E+09

3,5E+09

4E+09

4,5E+09

5E+09

B
y

te
s

N
o

.
o

f
cy

cl
e

s

Evolving storage structures give a minor performance gain for all schemes

Memory CPU cycles

0

50000000

100000000

0

500000000

1E+09

1,5E+09

2E+09

DSM DSM

Evolve

KDSM KDSM

Evolve

MDSM MDSM

Evolve

DMDSM DMDSM

Evolve

VDMDSM VDMDSM

Evolve

N
o

.
o

f
cy

cl
e

s

Figure 6.16: Performance comparison of different DSM based schemes in ECOS with
a non-key based search criteria.

self-tuning with reduced human intervention.

In four proposed variations of the DSM based schemes in Section 4, i.e., KDSM,

MDSM, DMDSM, and VDMDSM, we altered the 2-copy DSM by reducing the

duplicate copies for columns, which should affect the time for read operations with

search criteria on non-key attributes. For example, consider the KDSM scheme

presented in Table 4.3. If data is searched with criteria involving column 0, which

has two copies, i.e., Columnk0 clustered on keys, whereas Columnv0 clustered on

values. The search can make use of Columnv0 to search for data using binary search.

However, if the data is searched with criteria involving column 1 or column 2, which

does not has any extra copy clustered on values. The search can only be performed

using the linear search, which requires a scan through all records.

The performance of all proposed DSM schemes is also dependent on the number

of attributes required by the query. In our micro benchmark, we test with the worst

case scenario for all DSM based schemes by extracting all attributes [Holloway and

DeWitt, 2008]. The MDSM, DMDSM, and VDMDSM schemes are most affected

by this test case scenario, because these schemes also do not store any extra copy

clustered on keys for key columns. This requires complete scan for key column

attributes for search criteria on non-key attributes.

To assess the impact on performance for proposed changes in different DSM based

schemes, we evaluated all five schemes in two configurations, i.e., the first config-

uration with search criteria involving key attribute as shown in Figure 6.15, and

the second configuration with search criteria involving non-key attribute as shown

in Figure 6.16. The results show that the DSM and the KDSM perform better

for evaluation with search criteria on key-attributes, whereas for evaluation with

search criteria on non-key attributes the DSM outperforms the other schemes. It

is observed that storage requirement for the DSM is highest, whereas the storage

107

6.2. EVALUATION RESULTS

requirement is the lowest for the VDMDSM.

1,5E+11

2E+11

2,5E+11

3E+11

3,5E+11

6E+09

8E+09

1E+10

1,2E+10

C
P

U
 c

y
cl

e
s

fo
r

<
4

0
9

6

C
P

U
 c

y
cl

e
s

fo
r

<
1

6
 a

n
d

 <
8

5

DMDSM and VDMDSM perform better for large column width

Column width<16 bytes Column width<85 bytes Column width<4096 bytes

0

5E+10

1E+11

1,5E+11

0

2E+09

4E+09

DSM KDSM MDSM DMDSM VDMDSM

C
P

U
 c

y
cl

e
s

fo
r

<
4

0
9

6

C
P

U
 c

y
cl

e
s

fo
r

<
1

6
 a

n
d

 <
8

5

Figure 6.17: Performance improvement for dictionary based DSM schemes for large
column width.

The results of Figure 6.15 and 6.16 are based on values with width of 16. We

increased the width of value for all columns to 85 and then to 4096 to assess the

impact of change in tuple width on performance of different schemes. It can be

observed in Figure 6.17 that dictionary based schemes performance is improved

and becomes comparable with standard 2-copy DSM scheme for large tuple width.

However, KDSM and MDSM still perform poor. The reason of this improvement

lies with the light weight compression that we achieve using dictionary columns.

The dictionary columns ensure that the duplicate values are only stored once in the

dictionary column reducing the amount of data processed during data management

operations.

6E+10

8E+10

1E+11

1,2E+11

6E+11

8E+11

1E+12

1,2E+12

W
ri

te
 C

P
U

 c
y

cl
e

s

R
e

a
d

 C
P

U
 c

y
cl

e
s

DSM, VMDSM, and VDMDSM perform better for both workloads

Read-intensive Write-intensive

0

2E+10

4E+10

6E+10

0

2E+11

4E+11

6E+11

DSM KDSM MDSM DMDSM VDMDSM

W
ri

te
 C

P
U

 c
y

cl
e

s

R
e

a
d

 C
P

U
 c

y
cl

e
s

Figure 6.18: Performance comparison of different DSM based schemes in ECOS for
read and write intensive workloads.

We also analyzed the performance difference for different DSM schemes on both

the read-intensive and write-intensive workloads with the tuple width of 4096. DSM

is known to perform well for read-intensive workload [Holloway and DeWitt, 2008].

108

CHAPTER 6. EVALUATION

It can be observed in Figure 6.18 that for DSM, DMDSM, and VDMDSM the

read-intensive workload consumes fewer resources in comparison with the write-

intensive workload, whereas for KDSM and MDSM, it is opposite with the same

workloads. It can also be observed that for both the write-intensive workload and

the read-intensive workload differences in performance between the 2-copy DSM

and the dictionary based DSM schemes is minimum. This is a promising result for

dictionary based schemes, and it shows their potential to act as a better alternative

to DSM if their shortcomings can be overcome.

6.3 Summary

In this chapter, we evaluated the Cellular DBMS prototype using a custom micro

benchmark. Our results showed that the presence of unused functionalities does af-

fect the performance of the DBMS. We evaluated different storage structures to show

their suitability for different database sizes. We also evaluated different DSM based

schemes to present their problems and benefits. Our results showed that evolving

storage structure provide minor performance gain over fixed storage structures.

109

6.3. SUMMARY

110

7 Concluding remarks and future

work

Database systems are the result of an assemblage of thousands of

pieces of code, which work flawlessly and in unison to provide the

required functionality. This complexity hinders scientific progress

within the time frame allotted for young researchers to complete

their PhD research and it drains established groups when they

embark on exploring a new route. Likewise, industry is enginee-

ring solutions that research projects must beat, making it even

harder to enter this field.

Martin L. Kersten

The Database Architecture Jigsaw Puzzle (Keynote Talk),

ICDE 2008

This chapter provides the summary of the thesis and present possibilities of the

future work with a detailed listing of identified open research problems.

7.1 Summary of the dissertation

We presented the Cellular DBMS architecture, a RISC-style DBMS architecture for

customizable and autonomous DBMS development, designed according to sugges-

tions from Chaudhuri and Weikum [2000]. The architecture proposed to construct

a large DBMS by using in concert multiple atomic, customized, and autonomous

instances of embedded databases, called cells. In the architecture, each cell stores

key/value pairs of data. This design decision enabled us to generate a cell of a

limited functionality and simple interface, which resulted in a cell with more pre-

dictable performance. The architecture envisions the development of a complete

autonomous DBMS by accumulating autonomic behavior of all participating cells.

In the Cellular DBMS architecture, we introduced different compositions of cells as

111

7.1. SUMMARY OF THE DISSERTATION

autonomic structures to enable execution of autonomic behavior. We proposed to

realize an autonomic behavior in DBMS using AOP.

We presented ECOS, a customizable self-tuning storage manager designed ac-

cording to the Cellular DBMS architecture. ECOS stores data according to the

column-oriented storage model, where each column stores key/value pairs of data.

ECOS suggested customizations for each table in a database at two levels, i.e., at the

table-level and at the column-level. At the table-level, we customized, how columns

are stored physically for a logical schema design. We presented four variations of

the DSM for table customization. ECOS utilized hierarchically-organized storage

structures for data and index storage and suggested customization of each column

initially to minimal suitable storage structure. We presented the concept of the

evolution path, which defines how ECOS evolves a smallest simple storage struc-

ture into a large complex storage structure with the growth of data and change in

workload.

The Cellular DBMS prototype is implemented as an SPL in the C++ program-

ming language using the FeatureC++ tool for the FOP. Autonomy is implemented

in the Cellular DBMS prototype using the AOP with the AspectC++ tool. The

Cellular DBMS SPL can generate both in-memory database variants as well as per-

sistent storage database variants. In the Cellular DBMS prototype, we used the

feature derivative approach to handle the optional feature dependencies. Our pro-

totype development experience suggested that the FOP should be used with coarser

features, the use of preprocessor directives is imminent for multi-platform DBMS

development, and the increase in the number of features also increases the number

of tuning knobs and the number of feature derivatives.

For evaluation of the Cellular DBMS prototype, we set up a micro benchmark

with synthetic data. Our evaluation results showed that if not-needed functionali-

ties are part of the system, they do affect used functionalities. We also observed that

for small databases, small and simple storage structures, such as the array and the

sorted list perform better than the B+-Tree or the T-Tree with fewer resources. We

evaluated proposed variations of different DSM schemes and found that the stan-

dard DSM and the KDSM perform better during evaluation with search criteria on

key-attributes, whereas during evaluation with search criteria on non-key attributes,

the standard DSM outperformed the other schemes. Furthermore, the storage re-

quirement for the DSM is highest, whereas the storage requirement is lowest for the

VDMDSM. We also observed that the dictionary based schemes (DMDSM and VD-

MDSM) performance was improved and became comparable with standard 2-copy

112

CHAPTER 7. CONCLUDING REMARKS AND FUTURE WORK

DSM scheme for large tuple width. Moreover, we also recognized that for DSM,

DMDSM, and VDMDSM the read-intensive workload consumes fewer resources in

comparison with the write-intensive workload, whereas for KDSM and MDSM, it is

opposite for the same workloads. We also showed that the evolving storage struc-

tures perform better than fixed storage structures.

7.2 Future work

Our work on the Cellular DBMS architecture proved to be an ambitious project.

Over the time with definition and implementation of foundation concepts, we came

across many opportunities to extend our work in numerous directions. A very basic

requirement of completely defining and implementing the Cellular DBMS architec-

ture for a full-fledged DBMS is in itself a huge task. Considering available resources

and time limitation, we have to restrict the scope of our work in this thesis. This

resulted in a long list of future work that we left behind to takeover in the future as

a research problem. In this section, we attempt to outline the possible future work

opportunities that we found during this research, however, the list is not exhaustive.

7.2.1 Query processing

The query processing is a mandatory feature for all existing DBMS. It is an im-

portant tool for adhoc decision making. The adaptation of SQL and its popularity

among database community is in itself a symbol for its success. However, not all

features and capabilities of SQL are commonly used, instead there is a subset of

popular features that are in common use [Chaudhuri and Weikum, 2000]. Chaud-

huri and Weikum [2000] suggested SQL as painful and a big headache because of

its high complexity and difficulty to learn and use it. However, they acknowledged

the benefits of its core features, which include execution of selection-projection-join

queries and aggregation. Stonebraker et al. [2007] also acknowledged the complexity

of SQL. They termed SQL as “one size fits all” solution and stressed on the need of

using a simple subset of DBMS specific SQL dialect. Considering the above facts,

we suggest to use the customized SQL for the Cellular DBMS architecture, i.e., the

features of SQL should be decided according to the features of the DBMS. Existing

work from Sunkle et al. [2008] and Rosenmüller et al. [2009b] already provide us with

the foundation work in this direction. They used the software product line approach

to generate small and simple SQL dialects from the complete SQL standard.

113

7.2. FUTURE WORK

For the Cellular DBMS architecture, we envision to revisit existing approaches for

the query processing system in traditional DBMS. We intend to exploit the concept

of an in-network acquisitional distributed query processor already in use for sensor

networks [Gehrke and Madden, 2004; Madden et al., 2005; Yao and Gehrke, 2002].

The idea is to treat each cell in a Cellular DBMS similar as a sensor node and the

concert of all cells for a complete DBMS should be treated as a network of sensor

nodes. Later on, with the addition of the transaction management in the Cellular

DBMS architecture, we will come up with scenarios in which few cells might not be

available for data management operations because of locking. In such as scenario, an

in-network acquisitional distributed query processor could benefit in querying data

from the available cells providing the end-user with some early results to work on,

meanwhile the locked cells get freed. We found the query processing functionality of

existing in-network acquisitional distributed query processors, i.e., TinyDB [Mad-

den et al., 2005] and Cougar [Yao and Gehrke, 2002], similar to Chaudhuri and

Weikum [2000] concept of the Select-Project-Join (SPJ) query processing engine

and Neumann and Weikum [2008] concept of the RISC-style RDF engine.

7.2.2 Mechanisms to adapt storage structures according to

evolution paths alteration

In the ECOS, we used the concept of evolution paths to define, how ECOS evolves

a smallest simple storage structure into a large complex storage structure using the

evolving hierarchically-organized storage structures. We envision possibilities, where

we need to alter evolution paths. This alteration could be done manually, or we can

devise a mechanism to do it automatically in future. In both cases, how existing

storage structures adapt to a new evolution path is still an open question and in

this section we provide few suggestions towards possible solutions.

For special data management scenarios, such as intermediate result materializa-

tion during the query processing, it is easy to adapt to a new evolution path after

alteration. Once the evolution path is altered, during next intermediate result ma-

terialization new evolution path will be used. However, for the most common data

management scenario, where data only grows, we need a mechanism to alter ex-

isting hierarchically-organized storage structures according to new evolution paths.

We propose three mechanisms for this purpose, which we termed as Disaster, War,

and Preaching.

114

CHAPTER 7. CONCLUDING REMARKS AND FUTURE WORK

Disaster Once started, the disaster mechanism completes currently running DBMS

operations and queues the new arriving requests. It instantiates the new instance

of a hierarchically-organized storage structure according to the new evolution path

and transfers the data to the new storage structure all-together. The old storage

structure is considered dead after data transfer and is eliminated. Once data trans-

fer is completed, queued requests of DBMS operations are completed with/over

the new storage structure. We suggest that the disaster mechanism is optimal for

hierarchically-organized storage structures with the small data and light workload.

It consumes resources all-together to optimize the storage structure. Furthermore,

we hypothesize that it improves the performance for all workloads simultaneously

as the complete storage structure is evolved according to new evolution paths all-

together. We term the time to adapt the new storage structure according to the

updated evolution path as the “Revolution Period”.

War The war mechanism instantiates the new instance of a hierarchically-organized

storage structure according to the new evolution path and transfers data recursively

starting from fine-grained atomic cell-level from the old storage structure to the

new one. One by one for each cell, data is transferred to a new cell in the new

storage structure, and then the old cell is considered dead and is eliminated. In

war mechanism only the current DBMS operations of a single cell are completed,

and new operations are queued before the data transfer, which ensures that DBMS

operations that do not involve the particular cell can be completed without any

delay. We suggest that war mechanism is appropriate for storage structures with

medium-sized data storage and workload.

Preaching The preaching mechanism works similar to the war mechanism except

the difference that decision to transfer data to a new cell is decided according to the

cell state. Preaching mechanism may take longer to change cells, but it attempts

to ensure that minimum overhead is incurred for ongoing DBMS operations. A cell

waits for data transfer until/unless either it is in an idle state, or it contains the

workload well within the threshold defined by the DBMS administrator.

7.2.3 The Cellular DBMS architecture and the multi-core era

We want to extend our existing Cellular DBMS architecture and implementation

to exploit parallelism of the many-core architecture using the message passing pro-

gramming model [Wilson, 2005]. Here we only outline the architecture specific fu-

115

7.2. FUTURE WORK

ture work that we found interesting. We intend to make use of the Intel Single-chip

Cloud Computer (SCC) 1, a research microprocessor with 48 IA cores integrated on

a single CPU chip. Each core on SCC is optimized for the message passing pro-

gramming model. Each SCC core can communicate with other cores using shared

memory, but there is no hardware coherence for shared memory. SCC suggests the

shared memory coherency using software. We observe a need to analyze the impact

of using the software coherence on the data management and possible optimization

of the software coherence schemes to suit the data management. Furthermore, the

message passing protocol of SCC introduces message passing (MP) read and write

misses [Howard et al., 2010], which raises the need to analyze the impact of MP

read/write misses on data management workloads. If the impact is significant, then

we should identify the mechanism to reduce it.

Second important research direction is the efficient use of fine-grained power man-

agement provided by SCC for the data management. SCC allows dynamic voltage

and frequency scaling (DVFS), which is a mechanism that allows the change in volt-

age and frequency levels of a core using software instructions. A Cellular DBMS

can use the SCC power-management provision to increase or decrease the number

of active cores according to the workload reducing the energy consumption. Here,

we found two important characteristics of SCC power management that are needed

to be analyzed. First one is related to frequency scaling. What will be the im-

pact of frequency scaling on data management when two cores are processing the

related/dependent data at different frequencies? The second important issue is the

power breakdown. According to [Howard et al., 2010], for the full power breakdown

of 125.3W, 69% of power is consumed by the cores and 19% power is consumed by

the memory controller (MC) and DDR3-800, whereas for the low power breakdown

of 24.7%; cores utilizes only 21% of power and MC with DDR3-800 utilizes 69%

of power. These facts show that MC and DDR3-800 power consumption is not re-

duced in proportion of reduction in power consumption of cores. This motivates us

to investigate the impact of using large memories on the power consumption for a

DBMS.

Third important research issue is to optimize a DBMS to reduce the overhead

of SCC DDR3 access fairness. Access fairness is a mechanism that ensures that

all cores get the equally likely access to the memory. SCC DDR3 access fairness2

1“Single-chip Cloud Computer ”, http://techresearch.intel.com/ProjectDetails.aspx?
Id=1, Accessed: 21-06-2011

2“Single-chip Cloud Computer” An experimental many-core processor from In-
tel Labs, Intel Labs Single-chip Cloud Computer Symposium, March 16, 2010,

116

http://techresearch.intel.com/ProjectDetails.aspx?Id=1
http://techresearch.intel.com/ProjectDetails.aspx?Id=1

CHAPTER 7. CONCLUDING REMARKS AND FUTURE WORK

results show that round-trip latency per core increases and bandwidth per core

decreases with an increase in the number of cores. We can argue that for memory

bound processes, increase in the number of cores will result in degraded performance

because of under-utilization of the processing cores. We observe many memory

bound operations in DBMS, e.g., in-memory join processing. One solution could be

to use the mechanisms that reduce the memory usage, such as the one proposed by

Zukowski et al. [Zukowski et al., 2005]. Another solution could be to minimize the

use of the number of cores for memory bound operations, but this may reduce the

benefit of using the SCC.

7.2.4 Multiple storage models

The current Cellular DBMS prototype implementation uses DSM as its storage

model. In future, we want to implement more storage models to have better cus-

tomization options. We plan to add only PAX [Ailamaki et al., 2002] in the Cellular

DBMS prototype because of its better cache and memory bandwidth utilization.

However, it is needed to be assessed, how much PAX is suitable for a self-tuning

storage manager. For NSM, we intend to use existing embedded databases with

NSM storage model. Motivation behind this effort is to customize cells to NSM

for transaction processing workload, to DSM for decision support workload, and to

PAX for a mix of both.

7.2.5 The Cellular DBMS architecture and the cloud data

services

The focus of cloud data services is to provide more predictable services with more

reliable service level agreements instead of functionalities [Agrawal et al., 2009].

Most often cloud data services provide limited services, i.e., restricted API, minimal

query language, limited consistency guarantee, and constraints on resource utiliza-

tion [Agrawal et al., 2009]. We suggest that the Cellular DBMS architecture is

suitable for cloud data services, because its autonomy ensures less human interven-

tion in administration, its customization allows efficient utilization of commodity

hardware in shared infrastructure, and its cells based implementation can handle

workload variance effectively.

http://communities.intel.com/servlet/JiveServlet/previewBody/5902-102-1-9037/
SCC_Sympossium_Mar162010_GML_final1123.pdf, Accessed: 21-06-2011

117

http://communities.intel.com/servlet/JiveServlet/previewBody/5902-102-1-9037/SCC_Sympossium_Mar162010_GML_final1123.pdf
http://communities.intel.com/servlet/JiveServlet/previewBody/5902-102-1-9037/SCC_Sympossium_Mar162010_GML_final1123.pdf

7.2. FUTURE WORK

7.2.6 Resource balancing in the Cellular DBMS architecture

In a distributed environment, we envision possibilities of resource balancing using

distributed cells in the Cellular DBMS architecture. We have listed down our vision

here as part of the future work.

Cell mobility The cell mobility means the capability of a Cellular DBMS to move

a cell from one processing environment to another. Mobility of cells could be across

processes on a single system or across systems connected via network. The cell

mobility becomes possible because of the design principle of the Cellular DBMS

architecture, which requires an instance of a small footprint customized embedded

database to be used as cell. The motivation behind mobility is to achieve load

balancing and to use resources efficiently. The cell mobility can be used in many

different ways. For example, one scenario is a distributed network of interconnected

embedded devices. Consider a case of an embedded device on which a cell is de-

ployed, and it is heavily loaded with processing. We envision moving a cell to

another relatively idle device. If all devices are over-consumed, then a new device

can be brought into the network and then cells can be moved to that new device

for load balancing. Cell mobility can also be used in other scenarios, such as dis-

tributed network of interconnected processors, or interconnected processor cores,

e.g., many-core processors.

Virtual resource Embedded systems have become an important part of hardware

industry. Most of the digital appliances that we use these days comes up with some

form of an embedded system in them. Moreover, these embedded systems also have

data management needs. We suggest that the Cellular DBMS architecture could be

used for data management on embedded systems, where cells deployed over multiple

devices operate in concert to achieve the data management need of the complete sys-

tems, providing the end-user a view of single DBMS. Embedded systems are different

from high-end systems by means of resources. In an embedded system, we normally

have resource constraints on a single device, but in the network of interacting em-

bedded systems, there are many resources that are available across a network and

are idle. We envision in the Cellular DBMS architecture to virtually-combine these

scattered resources as a virtual resource, i.e., it gives a virtual view of the scattered

small resources across embedded devices as one single large resource. For example,

on three embedded devices we have 10 KB, 6 KB, and 13 KB of free memory. Now

if we have to store data that is 18 KB large, none of these devices has an enough ca-

118

CHAPTER 7. CONCLUDING REMARKS AND FUTURE WORK

pacity on its own. In this case, the Cellular DBMS architecture approach is capable

of storing data distributed across devices using cells and transparently providing to

an application a view of a single large resource capable of accommodating 18 KB of

data. This concept also gives us a clue that how the Cellular DBMS architecture

can use cells for fragmenting data on multiple embedded devices, sensor nodes, or

high-end enterprise servers.

7.2.7 Future work from software engineering perspective

In this section, we outline few critical future directions from software engineering

perspective for the Cellular DBMS architecture.

Efficient variant testing For an SPL-based DBMS project, over a project time-

line, more and more features get introduced in a DBMS SPL and the number of

program variants tends to grow. With the introduction of each new feature or a

change in functionality of existing feature, every time a DBMS developer encounter

the problem of manual testing of the all possible variants for a DBMS SPL. It is

a time consuming and error prone process. Our development experience suggested

that more time is invested in testing an SPL then to develop it. Right now, we do

not have any quantitative results for our claim, however, this issue is well known

in SPL community specifically and for software testing generally. We do not plan

to add any new features into our DBMS SPL implementation unless we have an

automated SPL testing mechanism functional with us. We can benefit from many

existing approaches available in literature, such as [Tevanlinna et al., 2004], [Kim

et al., 2011], and [Stricker et al., 2010]. However, tool support is still a big problem

in this domain.

Minimizing code replication In FOP, it is often the case that we encounter

code replication and redundancy among features [Schulze et al., 2010]. Specifi-

cally in our case of the Cellular DBMS implementation, using differently composed

cells simultaneously while minimizing code replication is an important open issue.

A software engineering based solution is needed to solve this problem. Existing

work from Rosenmüller et al. on multiple SPL [Rosenmüller and Siegmund, 2010],

component families [Rosenmüller et al., 2010], multi-dimensional variability model-

ing [Rosenmüller et al., 2011b], and flexible feature binding in an SPL [Rosenmüller

et al., 2011a] is an important research progress from software engineering perspective

that needs to be used in our Cellular DBMS architecture implementation.

119

7.2. FUTURE WORK

7.2.8 Miscellaneous

Finally, here we briefly outline few more future directions of work that we found

necessary to mention.

• Our current implementation of a cell evolution is explicitly programmed. An

important future direction is to enable implicit learning in the Cellular DBMS

architecture for self-* capabilities.

• The transaction management is a critical functionality in existing DBMS. We

understand the need of transaction management support in the Cellular DBMS

prototype implementation for performance comparison of our approach with

other existing DBMS that support transaction. For transaction management

in the Cellular DBMS architecture, we intend to exploit the techniques from

distributed transaction management systems.

• We want to integrate our existing ECOS prototype implementation into MySQL

as a storage engine to evaluate its benefits and usability using a standard query

processor. It is also important to generate the standard TPC benchmark re-

sults for our prototype implementation. We intend to execute the standard

benchmarks (i.e., TPC-C [TPC-C], TPC-H [TPC-H], and TPC-E [TPC-E]) to

show the effectiveness and benefit of our approach.

• Weikum et al. [2002] stressed on the need of making the overhead of statistics

management in a self-tuning DBMS predictable. For a Cellular DBMS, it is an

important design decision to identify, how often and what information should

be monitored as heredity information. Additionally, what will be the life time

for certain heredity information and how to reduce the storage requirement

while at the same time ensuring efficient retrieval.

• How sensitive are tuning knobs to each other? How change in one tuning knob

effect the performance of another? A systematic study to assess the impact of

tuning knobs on each other in a database system is a well known open research

problem [Weikum et al., 2002].

120

A List of features in the Cellular

DBMS prototype

The Listing A.1 presents the configuration file for the Cellular DBMS prototype

listing all the 151 features. The symbol # is used to disable features as well as to

write comments.

Listing A.1: The configuration file of the Cellular DBMS prototype listing all fea-

tures

1 Base

Main

3 #Main .OPC #For s i n g l e c e l l

#Main .MPC #For mul t ip l e c e l l s

5 Main . CPC #For composite cells

#Main . HLComposite #For high−l e v e l composite c e l l

7 Main . UserInterface

9 #OS. i386 should be used f o r Windows and Linux

OS . i386

11 OS . Windows

#OS. Linux

13 #OS. NutOS

15 Test

#Test . Innovat ion

17

#Page implementation accord ing to so r t ed array

19 StorageManager . Page . FLRPage

#StorageManager . Page . FLRPage . P e r s i s t e n t

21 StorageManager . Page . FLRPage . ByVal

StorageManager . Page . FLRPage . Write

23 StorageManager . Page . FLRPage . Write . ByVal

121

StorageManager . Page . FLRPage . Delete

25 StorageManager . Page . FLRPage . Delete . ByVal

StorageManager . Page . FLRPage . Multi

27 StorageManager . Page . FLRPage . Multi . Write

StorageManager . Page . FLRPage . Multi . Status

29 StorageManager . Page . FLRPage . Multi . Delete

StorageManager . Page . FLRPage . Status

31

#Page implementation accord ing to heap array

33 #StorageManager . Page . HPage

#StorageManager . Page . HPage . P e r s i s t e n t

35 #StorageManager . Page . HPage . ByVal

#StorageManager . Page . HPage . Write

37 #StorageManager . Page . HPage . Write . ByVal

#StorageManager . Page . HPage . De lete

39 #StorageManager . Page . HPage . De lete . ByVal

#StorageManager . Page . HPage . Multi

41 #StorageManager . Page . HPage . Multi . Write

#StorageManager . Page . HPage . Multi . Status

43 #StorageManager . Page . HPage . Multi . De lete

#StorageManager . Page . HPage . Status

45

#Struc ture with key/ value d e f i n i t i o n

47 StorageManager . Page . RECORD

49 #Struc ture with DB d e f i n i t i o n

StorageManager . Page . DBI

51

#Buf f e r manager , mu l t ip l e pages support , in−memory only

53 BufferManager . InMemory

#BufferManager . InMemory . MemoryAlloc . S t a t i c

55 BufferManager . InMemory . MemoryAlloc . Dynamic

57 #Buf f e r manager , mu l t ip l e pages support with secondary s to rage

#BufferManager

59 #BufferManager . MemoryAlloc . S t a t i c

#BufferManager . MemoryAlloc . Dynamic

61 #BufferManager . PageFind . Hash

122

APPENDIX A. LIST OF FEATURES IN THE CELLULAR DBMS
PROTOTYPE

#BufferManager . PageReplace .LRU

63 #BufferManager . PageReplace .LFU

65 #Storage Manager Buf f e r Manager , in−memory

StorageManagerBufferManager . InMemory

67 #StorageManagerBufferManager . InMemory . MemoryAlloc . S t a t i c

StorageManagerBufferManager . InMemory . MemoryAlloc . Dynamic

69

#Index Buf f e r Manager , mu l t ip l e indexs support , in−memory only

71 IndexBufferManager . InMemory

#IndexBufferManager . InMemory . MemoryAlloc . S t a t i c

73 IndexBufferManager . InMemory . MemoryAlloc . Dynamic

75 #Index Buf f e r Manager , index support with secondary s to rage

#IndexBufferManager

77 #IndexBufferManager . MemoryAlloc . S t a t i c

#IndexBufferManager . MemoryAlloc . Dynamic

79 #IndexBufferManager . IndexFind . Hash

#IndexBufferManager . IndexReplace .LRU

81 #IndexBufferManager . IndexReplace .LFU

83 #Sorted l i s t

StorageManager . SortedList

85 StorageManager . SortedList . Read

StorageManager . SortedList . Read . ByVal

87 StorageManager . SortedList . Write

StorageManager . SortedList . Write . ByVal

89 StorageManager . SortedList . Manage

91 #Heap l i s t

#StorageManager . HeapList

93 #StorageManager . HeapList . Read

#StorageManager . HeapList . Read . ByVal

95 #StorageManager . HeapList . Write

#StorageManager . HeapList . Write . ByVal

97 #StorageManager . HeapList . Manage

99 #SQLite

123

#StorageManager . SQLite

101 #StorageManager . SQLite . Read

#StorageManager . SQLite . Read . ByVal

103 #StorageManager . SQLite . Write

#StorageManager . SQLite . Write . ByVal

105 #StorageManager . SQLite . Manage

107 #Berke ley DB

#StorageManager .BDB

109 #StorageManager .BDB. Read

#StorageManager .BDB. Read . ByVal

111 #StorageManager .BDB. Write

#StorageManager .BDB. Write . ByVal

113 #StorageManager .BDB. Manage

115

#B+−Tree

117 #StorageManager . BPlusTree

#StorageManager . BPlusTree . Manage

119 #StorageManager . BPlusTree . Read

#StorageManager . BPlusTree . Read . ByVal

121 #StorageManager . BPlusTree . Write

#StorageManager . BPlusTree . Write . ByVal

123 #StorageManager . BPlusTree . De lete

#StorageManager . BPlusTree . De lete . ByVal

125

#Composite c e l l , MDSM

127 #StorageManager . Composite

#StorageManager . Composite . IM #Autonom not needed

129 #StorageManager . Composite . SL #Autonom f e a t u r e i s mandatory

#StorageManager . Composite .HLC #Autonom and SL HLC mandatory

131 #StorageManager . Composite . SL HLC

#StorageManager . Composite . Read

133 #StorageManager . Composite . Write

#StorageManager . Composite . Manage

135

#Struc ture with COLUMN d e f i n i t i o n , MDSM

137 #StorageManager . Composite .COLUMN #Needed to HLComposite

124

APPENDIX A. LIST OF FEATURES IN THE CELLULAR DBMS
PROTOTYPE

139 #Composite c l a s s , KDSM

#StorageManager .KDSM

141 #StorageManager .KDSM. IM #Autonom not needed

#StorageManager .KDSM. SL #Autonom f e a t u r e i s mandatory

143 #StorageManager .KDSM.HLC #Autonom and SL HLC mandatory

#StorageManager .KDSM. SL HLC

145 #StorageManager .KDSM. Read

#StorageManager .KDSM. Write

147 #StorageManager .KDSM. Manage

149 #Struc ture with COLUMN d e f i n i t i o n , KDSM

#StorageManager .KDSM.COLUMN #Needed to HLComposite

151

#Composite c l a s s , DSM

153 StorageManager . DSM

#StorageManager .DSM. IM #Autonom not needed

155 #StorageManager .DSM. SL #Autonom f e a t u r e i s mandatory

StorageManager . DSM . HLC #Autonom and SL_HLC mandatory

157 StorageManager . DSM . SL_HLC

StorageManager . DSM . Read

159 StorageManager . DSM . Write

StorageManager . DSM . Manage

161

#Struc ture with COLUMN d e f i n i t i o n , DSM

163 StorageManager . DSM . COLUMN #Needed to HLComposite

165 #Composite c l a s s , DMDSM

#StorageManager .DICTCOS

167 #StorageManager .DICTCOS. IM #Autonom not needed

#StorageManager .DICTCOS. SL #Autonom f e a t u r e i s mandatory

169 #StorageManager .DICTCOS.HLC #Autonom and SL HLC mandatory

#StorageManager .DICTCOS. SL HLC

171 #StorageManager .DICTCOS. Read

#StorageManager .DICTCOS. Write

173 #StorageManager .DICTCOS. Manage

175 #Composite c l a s s , VDMDSM

125

#StorageManager .VECTCOS

177 #StorageManager .VECTCOS. IM #Autonom not needed

#StorageManager .VECTCOS. SL #Autonom f e a t u r e i s mandatory

179 #StorageManager .VECTCOS.HLC #Autonom and SL HLC mandatory

#StorageManager .VECTCOS. SL HLC

181 #StorageManager .VECTCOS. Read

#StorageManager .VECTCOS. Write

183 #StorageManager .VECTCOS. Manage

185 #HLC c e l l , Autonomy . Evolve & StorageManager mandatory

StorageManager . HLComposite

187 StorageManager . HLComposite . Manage

StorageManager . HLComposite . Read

189 StorageManager . HLComposite . Read . ByVal

StorageManager . HLComposite . Write

191 StorageManager . HLComposite . Write . ByVal

StorageManager . HLComposite . Delete

193 StorageManager . HLComposite . Delete . ByVal

195 #Handles memory a l l o c a t i o n f o r StorageManager f o r HLC

StorageManager . Buffers

197

#Evolving behaviour f o r c e l l s , Need COLUMN, used by HLC

199 Autonomy . Evolve

201 #Monitoring o f c e l l s , us ing aspect

Autonomy . Monitor

203

#Autonomic behaviour f o r c e l l s

205 Autonomy . Autonom

207 #Class with data d i c t i o n a r y f u n c t i o n a l i t y

#DataDict ionary

209 DataDictionary . InMemory

211 #Class with index d i c t i o n a r y f u n c t i o n a l i t y

#IndexDict ionary

213 IndexDictionary . InMemory

126

Bibliography

Daniel J. Abadi, Samuel R. Madden, and Miguel Ferreira. Integrating compres-

sion and execution in column-oriented database systems. In Proc. Int’l Conf.

Management of data (SIGMOD), pages 671–682. ACM Press, 2006.

Daniel J. Abadi, Adam Marcus, Samuel R. Madden, and Kate Hollenbach. Scalable

semantic web data management using vertical partitioning. In Proc. Int’l Conf.

Very large data bases (VLDB), pages 411–422. VLDB Endowment, 2007.

Daniel J. Abadi, Samuel R. Madden, and Nabil Hachem. Column-stores vs. row-

stores: how different are they really? In Proc. Int’l Conf. Management of data

(SIGMOD), pages 967–980. ACM Press, 2008.

Rakesh Agrawal, Anastasia Ailamaki, Philip A. Bernstein, Eric A. Brewer,

Michael J. Carey, Surajit Chaudhuri, Anhai Doan, Daniela Florescu, Michael J.

Franklin, Hector Garcia-Molina, Johannes Gehrke, Le Gruenwald, Laura M. Haas,

Alon Y. Halevy, Joseph M. Hellerstein, Yannis E. Ioannidis, Hank F. Korth,

Donald Kossmann, Samuel R. Madden, Roger Magoulas, Beng Chin Ooi, Tim

O’Reilly, Raghu Ramakrishnan, Sunita Sarawagi, Michael Stonebraker, Alexan-

der S. Szalay, and Gerhard Weikum. The Claremont report on database research.

Commun. ACM, 52(6):56–65, 2009. ISSN 0001-0782.

Sanjay Agrawal, Eric Chu, and Vivek Narasayya. Automatic physical design tuning:

workload as a sequence. In Proc. Int’l Conf. Management of data (SIGMOD),

pages 683–694. ACM Press, 2006.

Anastassia Ailamaki, David J. DeWitt, Mark D. Hill, and David A. Wood. DBMSs

on a Modern Processor: Where Does Time Go? In Proc. Int’l Conf. Very large

data bases (VLDB), pages 266–277. Morgan Kaufmann Publishers Inc., 1999.

Anastassia Ailamaki, David J. DeWitt, and Mark D. Hill. Data page layouts for

relational databases on deep memory hierarchies. The VLDB Journal, 11(3):

198–215, 2002. ISSN 1066-8888.

127

Bibliography

Esther R. Angert. Alternatives to binary fission in bacteria. Nature Reviews Micro-

biology, 3(3):214–224, 2005.

Sven Apel, Thomas Leich, Marko Rosenmüller, and Gunter Saake. FeatureC++: On

the Symbiosis of Feature-Oriented and Aspect-Oriented Programming. In Proc.

Int’l Conf. Generative Programming and Component Engineering (GPCE), pages

125–140. Springer-Verlag, 2005.

Morton M. Astrahan, Mike W. Blasgen, Donald D. Chamberlin, Kapali P. Eswaran,

James N. Gray, Patricia P. Griffiths, W. Frank King III, Raymond A. Lorie,

Paul R. McJones, James W. Mehl, Gianfranco R. Putzolu, Irving L. Traiger,

Bradford W. Wade, and Vera Watson. System R: relational approach to database

management. ACM Trans. Database Syst., 1:97–137, 1976. ISSN 0362-5915.

Don S. Batory. On searching transposed files. ACM Trans. Database Syst., 4(4):

531–544, 1979. ISSN 0362-5915.

Don S. Batory, Jacob Neal Sarvela, and Axel Rauschmayer. Scaling step-wise re-

finement. In Proc. Int’l Conf. Software Engineering (ICSE), pages 187–197. IEEE

Computer Society, 2003.

Michael A. Bender, Erik D. Demaine, and Martin Farach-Colton. Cache-oblivious B-

trees. In Proc. Annual Symposium on Foundations of Computer Science (FOCS),

pages 399–409. IEEE Computer Society, 2000.

Peter A. Boncz, Marcin Zukowski, and Niels Nes. MonetDB/X100: Hyper-

Pipelining Query Execution. In Proc. Biennial Conf. on Innovative Data Systems

Research (CIDR), pages 225–237, 2005.

Peter A. Boncz, Martin L. Kersten, and Stefan Manegold. Breaking the memory

wall in MonetDB. Commun. ACM, 51(12):77–85, 2008. ISSN 0001-0782.

Nicolas Bruno and Surajit Chaudhuri. Physical design refinement: The ‘merge-

reduce’ approach. ACM Trans. Database Syst., 32, 2007a. ISSN 0362-5915.

Nicolas Bruno and Surajit Chaudhuri. An Online Approach to Physical Design

Tuning. In Proc. Int’l Conf. Data Engineering (ICDE), pages 826–835. IEEE

Computer Society, 2007b.

Nicolas Bruno and Rimma V. Nehme. Configuration-parametric query optimization

for physical design tuning. In Proc. Int’l Conf. Management of data (SIGMOD),

pages 941–952. ACM Press, 2008.

128

Bibliography

Humberto Cervantes and Richard S. Hall. Autonomous Adaptation to Dynamic

Availability Using a Service-Oriented Component Model. In Proc. Int’l Conf.

Software Engineering (ICSE), pages 614–623. IEEE Computer Society, 2004.

Fay Chang, Jeffrey Dean, Sanjay Ghemawat, Wilson C. Hsieh, Deborah A. Wallach,

Mike Burrows, Tushar Chandra, Andrew Fikes, and Robert E. Gruber. Bigtable:

A Distributed Storage System for Structured Data. ACM Trans. Comput. Syst.,

26:4:1–4:26, 2008. ISSN 0734-2071.

Surajit Chaudhuri and Vivek Narasayya. Self-tuning database systems: a decade of

progress. In Proc. Int’l Conf. Very large data bases (VLDB), pages 3–14. VLDB

Endowment, 2007.

Surajit Chaudhuri and Gerhard Weikum. Rethinking Database System Architecture:

Towards a Self-Tuning RISC-Style Database System. In Proc. Int’l Conf. Very

large data bases (VLDB), pages 1–10. Morgan Kaufmann Publishers Inc., 2000.

Shimin Chen, Phillip B. Gibbons, Todd C. Mowry, and Gary Valentin. Fractal

prefetching B+-Trees: optimizing both cache and disk performance. In Proc.

Int’l Conf. Management of data (SIGMOD), pages 157–168. ACM Press, 2002.

Corporate Act-Net Consortium. The active database management system manifesto:

a rulebase of ADBMS features. SIGMOD Rec., 25:40–49, 1996. ISSN 0163-5808.

George P. Copeland and Setrag N. Khoshafian. A decomposition storage model.

SIGMOD Rec., 14:268–279, 1985. ISSN 0163-5808.

Benoit Dageville, Dinesh Das, Karl Dias, Khaled Yagoub, Mohamed Zait, and Mo-

hamed Ziauddin. Automatic SQL tuning in Oracle 10g. In Proc. Int’l Conf. Very

large data bases (VLDB), pages 1098–1109. VLDB Endowment, 2004.

Debabrata Dash and Anastasia Ailamaki. CoPhy: Automated Physical Design

with Quality Guarantees. Technical Report CMU-CS-10-109, Carnegie-Mellon

University School of Computer Science, 2010.

Arjen P. de Vries, Nikos Mamoulis, Niels J. Nes, and Martin L. Kersten. Efficient

image retrieval by exploiting vertical fragmentation. Technical Report INS-R0109,

CWI, 2001.

Giuseppe DeCandia, Deniz Hastorun, Madan Jampani, Gunavardhan Kakulapati,

Avinash Lakshman, Alex Pilchin, Swaminathan Sivasubramanian, Peter Vosshall,

129

Bibliography

and Werner Vogels. Dynamo: Amazon’s highly available key-value store. SIGOPS

Oper. Syst. Rev., 41(6):205–220, 2007. ISSN 0163-5980.

Johannes Gehrke and Samuel R. Madden. Query Processing in Sensor Networks.

IEEE Pervasive Computing, 3(1):46–55, 2004. ISSN 1536-1268.

Goetz Graefe. The Five-Minute Rule 20 Years Later: and How Flash Memory

Changes the Rules. Queue, 6:40–52, 2008. ISSN 1542-7730.

Goetz Graefe. Sorting And Indexing With Partitioned B-Trees. In Proc. Biennial

Conf. on Innovative Data Systems Research (CIDR), 2003.

Jim Gray and Goetz Graefe. The five-minute rule ten years later, and other computer

storage rules of thumb. SIGMOD Rec., 26:63–68, 1997. ISSN 0163-5808.

Jim Gray and Franco Putzolu. The 5 minute rule for trading memory for disc

accesses and the 10 byte rule for trading memory for CPU time. SIGMOD Rec.,

16:395–398, 1987. ISSN 0163-5808.

Philip Greenwood and Lynne Blair. Using Dynamic Aspect-Oriented Program-

ming to Implement an Autonomic System. In Proc. Dynamic Aspects Workshop

(DAW), pages 76–88, 2004.

Theo Härder. DBMS Architecture–The Layer Model and its Evolution. Datenbank-

Spektrum, 5(13):45–57, 2005.

Theo Härder and Andreas Reuter. Concepts for Implementing a Centralized

Database Management System. In Proc. International Computing Symposium

(ICS), pages 28–60, 1983a.

Theo Härder and Andreas Reuter. Database System for Non-Standard Applications.

In Proc. International Computing Symposium (ICS), pages 452–466, 1983b.

Stavros Harizopoulos and Anastassia Ailamaki. A Case for Staged Database Sys-

tems. In Proc. Biennial Conf. on Innovative Data Systems Research (CIDR),

2003.

Stavros Harizopoulos, Daniel J. Abadi, Samuel R. Madden, and Michael Stone-

braker. OLTP through the looking glass, and what we found there. In Proc. Int’l

Conf. Management of data (SIGMOD), pages 981–992. ACM Press, 2008.

130

Bibliography

Bingsheng He and Qiong Luo. Cache-oblivious databases: Limitations and oppor-

tunities. ACM Trans. Database Syst., 33:8:1–8:42, 2008. ISSN 0362-5915.

Joseph L. Hellerstein. Automated Tuning Systems: Beyond Decision Support. In

Proc. Int’l Conf. Computer Measurement Group, pages 263–270. Computer Mea-

surement Group, 1997.

Allison L. Holloway and David J. DeWitt. Read-optimized databases, in depth. The

VLDB Journal, 1:502–513, 2008. ISSN 2150-8097.

Jason Howard, Saurabh Dighe, Yatin Hoskote, Sriram Vangal, David Finan, Gre-

gory Ruhl, David Jenkins, Howard Wilson, Nitin Borkar, Gerhard Schrom, Fabrice

Pailet, Shailendra Jain, Tiju Jacob, Satish Yada, Sraven Marella, Praveen Sali-

hundam, Vasantha Erraguntla, Michael Konow, Michael Riepen, Guido Droege,

Joerg Lindemann, Matthias Gries, Thomas Apel, Kersten Henriss, Tor Lund-

Larsen, Sebastian Steibl, Shekhar Borkar, Vivek De, Rob Van Der Wijngaart,

and Timothy Mattson. A 48-Core IA-32 Message-Passing Processor with DVFS

in 45nm CMOS. In Proc. Int’l Conf. Solid-State Circuits (ISSCC), pages 19–21.

IEEE Computer Society, 2010.

Florian Irmert, Thomas Fischer, Frank Lauterwald, and Klaus Meyer-Wegener. The

Adaptation Model of a Runtime Adaptable DBMS. In Proc. British National

Conf. on Databases (BNCOD), pages 189–192. Springer-Verlag, 2009.

Kyo C. Kang, Sholom G. Cohen, James A. Hess, William E. Novak, and A. Spencer

Peterson. Feature-Oriented Domain Analysis (FODA) Feasibility Study. Technical

Report CMU/SEI-90-TR-21, Carnegie-Mellon University Software Engineering

Institute, 1990.

Ilkka Karasalo and Per Svensson. An overview of Cantor: a new system for data

analysis. In Proc. Int’l Workshop on Statistical and scientific database manage-

ment (SSDBM), pages 315–324. Lawrence Berkeley Laboratory, 1983.

Ilkka Karasalo and Per Svensson. The design of Cantor: a new system for data

analysis. In Proc. Int’l workshop on Statistical and scientific database management

(SSDBM), pages 224–244. Lawrence Berkeley Laboratory, 1986.

Christian Kästner, Sven Apel, and Martin Kuhlemann. Granularity in software

product lines. In Proc. Int’l Conf. Software Engineering (ICSE), pages 311–320.

ACM Press, 2008.

131

Bibliography

Christian Kästner, Sven Apel, Syed Saif ur Rahman, Marko Rosenmüller, Don S.

Batory, and Gunter Saake. On the Impact of the Optional Feature Problem:

Analysis and Case Studies. In Proc. Int’l Conf. Software Product Line (SPLC),

pages 181–190. SEI, 2009.

Christian Kästner, Sven Apel, Thomas Thüm, and Gunter Saake. Type Checking

Annotation-Based Product Lines. ACM Transactions on Software Engineering

and Methodology (TOSEM), 2011. to appear; submitted 8 Jun 2010, accepted 4

Jan 2011.

Martin L. Kersten. The Database Architecture Jigsaw Puzzle. In Proc. Int’l Conf.

Data Engineering (ICDE), pages 3–4. IEEE Computer Society, 2008.

Martin L. Kersten. A Cellular Database System for the 21st Century. In Proc.

Int’l Workshop on Active, Real-Time, and Temporal Database Systems (ARTDB),

pages 39–50. Springer-Verlag, 1998.

Martin L. Kersten and Stefan Manegold. Cracking the Database Store. In Proc.

Biennial Conf. on Innovative Data Systems Research (CIDR), pages 213–224,

2005.

Martin L. Kersten and Arno Siebes. Bio-Inspired Data Management. In Intelligent

Algorithms in Ambient and Biomedical Computing, pages 37–56. Springer-Verlag,

2006.

Martin L. Kersten, Gerhard Weikum, Michael J. Franklin, Daniel A. Keim, Alex

Buchmann, and Surajit Chaudhuri. A database striptease or how to manage your

personal databases. In Proc. Int’l Conf. Very large data bases (VLDB), pages

1043–1044. VLDB Endowment, 2003.

Gregor Kiczales, John Lamping, Anurag Mendhekar, Chris Maeda, Cristina Videira

Lopes, Jean-Marc Loingtier, and John Irwin. Aspect-Oriented Programming.

In Proc. Europ. Conf. Object-Oriented Programming (ECOOP), pages 220–242.

Springer-Verlag, 1997.

Gregor Kiczales, Erik Hilsdale, Jim Hugunin, Mik Kersten, Jeffrey Palm, and

William G. Griswold. An Overview of AspectJ. In Proc. Europ. Conf. Object-

Oriented Programming (ECOOP), pages 327–353. Springer-Verlag, 2001.

132

Bibliography

Chang Hwan Peter Kim, Don S. Batory, and Sarfraz Khurshid. Reducing combi-

natorics in testing product lines. In Proc. Int’l Conf. Aspect-oriented Software

Development (AOSD), pages 57–68. ACM Press, 2011.

Tobin J. Lehman and Michael J. Carey. A Study of Index Structures for Main

Memory Database ManagementSystems. In Proc. Int’l Conf. Very large data

bases (VLDB), pages 294–303. Morgan Kaufmann Publishers Inc., 1986.

Thomas Leich, Sven Apel, and Gunter Saake. Using Step-Wise Refinement to Build a

Flexible Lightweight Storage Manager. In Proc. East-European Conf. on Advances

in Databases and Information Systems (ADBIS), pages 324–337. Springer-Verlag,

2005.

Christian Lemke, Kai-Uwe Sattler, Franz Faerber, and Alexander Zeier. Speed-

ing up queries in column stores: a case for compression. In Proc. Int’l Conf.

Data Warehousing and Knowledge Discovery (DaWaK), pages 117–129. Springer-

Verlag, 2010.

Jörg Liebig, Sven Apel, Christian Lengauer, Christian Kästner, and Michael Schulze.

An analysis of the variability in forty preprocessor-based software product lines.

In Proc. Int’l Conf. Software Engineering (ICSE), pages 105–114. ACM Press,

2010.

Sam S. Lightstone, Guy Lohman, and Danny Zilio. Toward autonomic computing

with DB2 universal database. SIGMOD Rec., 31(3):55–61, 2002. ISSN 0163-5808.

Jia Liu, Don S. Batory, and Christian Lengauer. Feature oriented refactoring of

legacy applications. In Proc. Int’l Conf. Software Engineering (ICSE), pages

112–121. ACM Press, 2006.

Samuel R. Madden, Michael J. Franklin, Joseph M. Hellerstein, and Wei Hong.

TinyDB: an acquisitional query processing system for sensor networks. ACM

Trans. Database Syst., 30(1):122–173, 2005. ISSN 0362-5915.

Tanu Malik, Xiaodan Wang, Randal Burns, Debabrata Dash, and Anastasia Aila-

maki. Automated physical design in database caches. In Proc. Int’l Conf. Data

Engineering (ICDE) Workshop, pages 27–34. IEEE Computer Society, 2008.

Stefan Manegold, Martin L. Kersten, and Peter A. Boncz. Database architecture

evolution: mammals flourished long before dinosaurs became extinct. Proc. VLDB

Endowment, 2:1648–1653, August 2009. ISSN 2150-8097.

133

Bibliography

Dennis McCarthy and Umeshwar Dayal. The architecture of an active database

management system. SIGMOD Rec., 18:215–224, 1989. ISSN 0163-5808.

MySQL Database. http://www.mysql.com, last accessed: 21-06-2011.

Thomas Neumann and Gerhard Weikum. RDF-3X: a RISC-style engine for RDF.

The VLDB Journal, 1:647–659, 2008. ISSN 2150-8097.

Michael A. Olson. Selecting and Implementing an Embedded Database System.

Computer, 33(9):27–34, 2000. ISSN 0018-9162.

Michael A. Olson, Keith Bostic, and Margo Seltzer. Berkeley DB. In Proc. USENIX

Annual Technical Conf., pages 43–42. USENIX Association, 1999.

Oracle Berkeley DB. http://www.oracle.com/technology/products/berkeley-

db/index.html, last accessed: 21-06-2011.

M. Tamer Özsu and Patrick Valduriez. Principles of distributed database systems

(2nd ed.). Prentice-Hall, Inc., 1999. ISBN 0-13-659707-6.

Rasmus Pagh, Zhewei Wei, Ke Yi, and Qin Zhang. Cache-oblivious hashing. In Proc.

ACM SIGMOD-SIGACT-SIGART symposium on principles of database systems

of data (PODS), pages 297–304. ACM Press, 2010.

Stratos Papadomanolakis, Debabrata Dash, and Anastasia Ailamaki. Efficient use

of the query optimizer for automated physical design. In Proc. Int’l Conf. Very

large data bases (VLDB), pages 1093–1104. VLDB Endowment, 2007.

Norman W. Paton and Oscar Dı́az. Active database systems. ACM Comput. Surv.,

31:63–103, 1999. ISSN 0360-0300.

David A. Patterson and David R. Ditzel. The case for the reduced instruction set

computer. SIGARCH Comput. Archit. News, 8(6):25–33, 1980. ISSN 0163-5964.

David A. Patterson, Thomas Anderson, Neal Cardwell, Richard Fromm, Kimberly

Keeton, Christoforos Kozyrakis, Randi Thomas, and Katherine Yelick. A Case

for Intelligent RAM. IEEE Micro, 17:34–44, 1997. ISSN 0272-1732.

Hasso Plattner. A common database approach for OLTP and OLAP using an in-

memory column database. In Proc. Int’l Conf. Management of data (SIGMOD),

pages 1–2. ACM Press, 2009.

134

Bibliography

Klaus Pohl, Günter Böckle, and Frank J. van der Linden. Software Product Line En-

gineering: Foundations, Principles and Techniques. Springer-Verlag, 2005. ISBN

3-540-24372-0.

Ravishankar Ramamurthy, David J. DeWitt, and Qi Su. A case for fractured mir-

rors. In Proc. Int’l Conf. Very large data bases (VLDB), pages 430–441. VLDB

Endowment, 2002.

Marko Rosenmüller and Norbert Siegmund. Automating the Configuration of Multi

Software Product Lines. In Proc. Workshop on Variability Modelling of Software-

intensive Systems (VaMoS), pages 123–130. University of Duisburg-Essen, 2010.

Marko Rosenmüller, Norbert Siegmund, Horst Schirmeier, Julio Sincero, Sven Apel,

Thomas Leich, Olaf Spinczyk, and Gunter Saake. FAME-DBMS: tailor-made

data management solutions for embedded systems. In Proc. EDBT workshop on

Software engineering for tailor-made data management (SETMDM), pages 1–6.

ACM Press, 2008.

Marko Rosenmüller, Sven Apel, Thomas Leich, and Gunter Saake. Tailor-made

Data Management for Embedded Systems: A Case Study on Berkeley DB. Data

and Knowledge Engineering (DKE), 68(12):1493–1512, 2009a.

Marko Rosenmüller, Christian Kästner, Norbert Siegmund, Sagar Sunkle, Sven

Apel, Thomas Leich, and Gunter Saake. SQL à la Carte – Toward Tailor-made

Data Management. In 13. GI-Fachtagung Datenbanksysteme für Business, Tech-

nologie und Web (BTW), pages 117–136, 2009b.

Marko Rosenmüller, Norbert Siegmund, and Martin Kuhlemann. Improving Reuse

of Component Families by Generating Component Hierarchies. In Proc. Workshop

on Feature-oriented Software Development (FOSD), pages 57–64. ACM Press,

2010.

Marko Rosenmüller, Norbert Siegmund, Sven Apel, and Gunter Saake. Flexible

Feature Binding in Software Product Lines. Automated Software Engineering –

An International Journal, 18(2):163–197, 2011a.

Marko Rosenmüller, Norbert Siegmund, Thomas Thüm, and Gunter Saake. Multi-

Dimensional Variability Modeling. In Proc. Workshop on Variability Modelling of

Software-intensive Systems (VaMoS), pages 11–20. ACM Press, 2011b.

135

Bibliography

Gunter Saake, Marko Rosenmüller, Norbert Siegmund, Christian Kästner, and

Thomas Leich. Downsizing Data Management for Embedded Systems. Egyptian

Computer Science Journal (ECS), 31(1):1–13, 2009.

James H. Sabry, Cynthia L. Adams, Eugeni A. Vaisberg, and Anne M. Cromp-

ton. Database system for predictive cellular bioinformatics, United States Patent

6631331, October 2003. URL http://www.freepatentsonline.com/6631331.

html.

Kai-Uwe Sattler, Ingolf Geist, and Eike Schallehn. QUIET: continuous query-driven

index tuning. In Proc. Int’l Conf. Very large data bases (VLDB), pages 1129–1132.

VLDB Endowment, 2003.

Karl Schnaitter, Serge Abiteboul, Tova Milo, and Neoklis Polyzotis. COLT: contin-

uous on-line tuning. In Proc. Int’l Conf. Management of data (SIGMOD), pages

793–795. ACM Press, 2006.

Sandro Schulze, Sven Apel, and Christian Kästner. Code clones in feature-oriented

software product lines. In Proc. Int’l Conf. Generative Programming and Com-

ponent Engineering (GPCE), pages 103–112. ACM Press, 2010.

Michael E. Senko, Edward B. Altman, Morton M. Astrahan, and P. L. Fehder. Data

structures and accessing in data-base systems: III data representations and the

data independent accessing model. IBM Systems Journal, 12:64–93, 1973. ISSN

0018-8670.

Dennis Shasha and Philippe Bonnet. Database tuning: principles, experiments,

and troubleshooting techniques. Morgan Kaufmann Publishers Inc., 2003. ISBN

1-55860-753-6.

Shore. http://www.cs.wisc.edu/shore/, last accessed: 21-06-2011.

Dominik Ślȩzak, Jakub Wróblewski, Victoria Eastwood, and Piotr Synak. Bright-

house: an analytic data warehouse for ad-hoc queries. The VLDB Journal, 1(2):

1337–1345, 2008.

SQLite. http://www.sqlite.org/, last accessed: 21-06-2011.

Michael Stonebraker and Ugur Cetintemel. ”One Size Fits All”: An Idea Whose

Time Has Come and Gone. In Proc. Int’l Conf. Data Engineering (ICDE), pages

2–11. IEEE Computer Society, 2005.

136

http://www.freepatentsonline.com/6631331.html
http://www.freepatentsonline.com/6631331.html

Bibliography

Michael Stonebraker, Gerald Held, Eugene Wong, and Peter Kreps. The design and

implementation of INGRES. ACM Trans. Database Syst., 1:189–222, 1976. ISSN

0362-5915.

Michael Stonebraker, Daniel J. Abadi, Adam Batkin, Xuedong Chen, Mitch Cher-

niack, Miguel Ferreira, Edmond Lau, Amerson Lin, Samuel R. Madden, Eliz-

abeth O’Neil, Pat O’Neil, Alex Rasin, Nga Tran, and Stan Zdonik. C-store: a

column-oriented DBMS. In Proc. Int’l Conf. Very large data bases (VLDB), pages

553–564. VLDB Endowment, 2005.

Michael Stonebraker, Samuel R. Madden, Daniel J. Abadi, Stavros Harizopoulos,

Nabil Hachem, and Pat Helland. The end of an architectural era: (it’s time for

a complete rewrite). In Proc. Int’l Conf. Very large data bases (VLDB), pages

1150–1160. VLDB Endowment, 2007.

Vanessa Stricker, Andreas Metzger, and Klaus Pohl. Avoiding redundant testing

in application engineering. In Proc. Int’l Conf. Software Product Line (SPLC),

pages 226–240. Springer-Verlag, 2010.

Sagar Sunkle, Martin Kuhlemann, Norbert Siegmund, Marko Rosenmüller, and

Gunter Saake. Generating Highly Customizable SQL Parsers. In Proc. EDBT

workshop on Software engineering for tailor-made data management (SETMDM),

pages 29–33. ACM Press, 2008.

Per Svensson. The Evolution of Vertical Database Architectures — A Historical

Review (Keynote Talk). In Proc. Int’l Conf. Scientific and Statistical Database

Management (SSDBM), pages 3–5. Springer-Verlag, 2008.

Clemens Szyperski. Component Software: Beyond Object-Oriented Program-

ming. Addison-Wesley Longman Publishing Co., Inc., 2nd edition, 2002. ISBN

0201745720.

Aleksandra Tesanovic, Dag Nyström, Jörgen Hansson, and Christer Norström.

Towards Aspectual Component-Based Development of Real-Time Systems. In

Proc. Int’l Conf. Real-Time and Embedded Computing Systems and Applications

(RTCSA), pages 558–577. Springer-Verlag, 2004.

Antti Tevanlinna, Juha Taina, and Raine Kauppinen. Product family testing: a

survey. SIGSOFT Softw. Eng. Notes, 29:12–12, 2004. ISSN 0163-5948.

137

Bibliography

Alexander Thiem and Kai-Uwe Sattler. An Integrated Approach to Performance

Monitoring for Autonomous Tuning. In Proc. Int’l Conf. Data Engineering

(ICDE), pages 1671–1678. IEEE Computer Society, 2009.

Kodama Toshio and Kunii Toshiyasu. Development of new DBMS based on the cellu-

lar model-from the viewpoint of a data input. IEIC Technical Report (Institute of

Electronics, Information and Communication Engineers), 102(208):97–102, 2002.

ISSN 0913-5685.

Kodama Toshio, Kunii Toshiyasu, and Seki Yoichi. A Development of a Cellular

DBMS Based on an Incrementally Modular Abstraction Hierarchy. Joho Shori

Gakkai Kenkyu Hokoku, 2004(45):43–50, 2004. ISSN 0919-6072.

TPC-C. http://www.tpc.org/tpcc/, last accessed: 21-06-2011.

TPC-E. http://www.tpc.org/tpce/, last accessed: 21-06-2011.

TPC-H. http://www.tpc.org/tpch/, last accessed: 21-06-2011.

Eddy Truyen and Wouter Joosen. Towards an aspect-oriented architecture for self-

adaptive frameworks. In Proc. AOSD workshop on Aspects, components, and

patterns for infrastructure software (ACP4IS), pages 1–8. ACM Press, 2008.

Syed Saif ur Rahman. Using evolving storage structures for data storage. In Proc.

Int’l Conf. Frontiers of Information Technology (FIT), pages 3:1–3:6. ACM Press,

2010.

Syed Saif ur Rahman, Azeem Lodhi, and Gunter Saake. Cellular DBMS - Archi-

tecture for Biologically-Inspired Customizable Autonomous DBMS. In Proc. Int’l

Conf. Networked Digital Technologies (NDT), pages 310–315. IEEE Computer

Society, 2009a.

Syed Saif ur Rahman, Marko Rosenmüller, Norbert Siegmund, Gunter Saake, and

Sven Apel. Specialized Embedded DBMS: Cell Based Approach. In Proc. Int’l

Workshop on Database and Expert Systems Applications, pages 9–13. IEEE Com-

puter Society, 2009b.

Syed Saif ur Rahman, Veit Köppen, and Gunter Saake. Cellular DBMS: An Attempt

Towards Biologically-Inspired Data Management. Journal of Digital Information

Management, 8(2):117–128, 2010. ISSN 0972-7272.

138

Bibliography

Syed Saif ur Rahman, Eike Schallehn, and Gunter Saake. ECOS: Evolutionary

Column-Oriented Storage. In Proc. British National Conf. on Databases (BN-

COD), page <To appear>. Springer-Verlag, 2011.

Patrick Valduriez, Setrag Khoshafian, and George P. Copeland. Implementation

Techniques of Complex Objects. In Proc. Int’l Conf. Very large data bases

(VLDB), pages 101–110. Morgan Kaufmann Publishers Inc., 1986.

Valgrind. http://www.valgrind.org, last accessed: 21-06-2011.

Fabrizio Verroca, Carlo Eynard, Giorgio Ghinamo, Gabriele Gentile, Riccardo

Arizio, and Mauro D’Andria. A Centralised Cellular Database to Support Net-

work Management Process. In Proc. Workshops on Data Warehousing and Data

Mining, pages 311–322. Springer-Verlag, 1999.

Gerhard Weikum, Axel Moenkeberg, Christof Hasse, and Peter Zabback. Self-tuning

database technology and information services: from wishful thinking to viable

engineering. In Proc. Int’l Conf. Very large data bases (VLDB), pages 20–31.

VLDB Endowment, 2002.

Brent Wilson. Introduction to parallel programming using message-passing. J.

Comput. Small Coll., 21:207–211, October 2005. ISSN 1937-4771.

Yong Yao and Johannes Gehrke. The Cougar Approach to In-Network Query Pro-

cessing in Sensor Networks. SIGMOD Rec., 31(3):9–18, 2002. ISSN 0163-5808.

Pamela Zave. An experiment in feature engineering, pages 353–377. Springer-Verlag,

2003. ISBN 0-387-95349-3.

Daniel C. Zilio, Jun Rao, Sam Lightstone, Guy Lohman, Adam Storm, Christian

Garcia-Arellano, and Scott Fadden. DB2 design advisor: integrated automatic

physical database design. In Proc. Int’l Conf. Very large data bases (VLDB),

pages 1087–1097. VLDB Endowment, 2004.

Marcin Zukowski, Peter A. Boncz, Niels Nes, and Sándor Héman. MonetDB/X100

- A DBMS In The CPU Cache. IEEE Data Engineering Bulletin, 28(2):17–22,

2005.

Marcin Zukowski, Sándor Héman, Niels Nes, and Peter A. Boncz. Super-Scalar

RAM-CPU Cache Compression. In Proc. Int’l Conf. Data Engineering (ICDE),

page 59. IEEE Computer Society, 2006.

139

Bibliography

Marcin Zukowski, Sándor Héman, Niels Nes, and Peter A. Boncz. Cooperative scans:

dynamic bandwidth sharing in a DBMS. In Proc. Int’l Conf. Very large data bases

(VLDB), pages 723–734. VLDB Endowment, 2007.

Marcin Zukowski, Niels Nes, and Peter A. Boncz. DSM vs. NSM: CPU performance

tradeoffs in block-oriented query processing. In Proc. Int’l Workshop on Data

Management on New Hardware (DaMoN), pages 47–54. ACM Press, 2008.

140

	Contents
	List of Figures
	List of Tables
	Listings
	List of Abbreviations
	Introduction
	Contributions
	Outline

	Background
	DBMS architecture
	Embedded database
	Storage models
	Autonomy and self-tuning
	NoSQL databases
	Reduced Instruction Set Computer (RISC) and a RISC-style database system
	Related software engineering concepts
	Software product line
	Feature-oriented programming
	Aspect-oriented programming
	Customization

	The Cellular DBMS architecture
	Motivation for the customization in an architecture
	Motivation for the autonomy in an architecture
	The Cellular DBMS architecture and the Cell
	Autonomy in the Cellular DBMS architecture
	Realization of a cell
	Using the software product line to achieve customizability
	Using the aspect-oriented programming to realize autonomy

	Related work
	Summary

	A customizable and self-tuning storage manager
	Motivation
	Evolutionary Column-oriented Storage (ECOS)
	Table-level customization
	Column-level customization and storage structure hierarchies

	Evolution paths
	Theoretical explanation for evolving hierarchically-organized storage structures
	Ordered read-optimized storage structure
	Unordered write-optimized storage structure

	Related work
	Column-oriented DBMS
	ECOS in comparison with other self-tuning solutions

	Summary

	The prototype implementation: Problems faced and lessons learned
	Our database system implementation experience
	Prototype implementation details
	Implementation of evolution mechanism
	Monitoring functionality implementation
	Trace functionality implementation
	Analysis and fixing functionality implementation

	Summary

	Evaluation
	Micro benchmark details
	Evaluation results
	Summary

	Concluding remarks and future work
	Summary of the dissertation
	Future work
	Query processing
	Mechanisms to adapt storage structures according to evolution paths alteration
	The Cellular DBMS architecture and the multi-core era
	Multiple storage models
	The Cellular DBMS architecture and the cloud data services
	Resource balancing in the Cellular DBMS architecture
	Future work from software engineering perspective
	Miscellaneous

	List of features in the Cellular DBMS prototype
	Bibliography

