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Zusammenfassung

In vielen Anwendungsbereichen wird Software mehr und mehr zum Hauptin-
novationsfaktor. Immer größere Teile der Funktionalität von Systemen werden
durch Software implementiert, die auf generischer Hardware läuft. Dafür hat
sich der Begriff der software-intensiven Systeme etabliert. Mittlerweile sind
solche Systeme auch in sicherheitskritischen Bereichen weit verbreitet. Mit
ihrer Verwendung geht eine enorme Erhöhung der Komplexität einher, welche
den Nachweis der funktionalen Sicherheit immer schwieriger macht. Ein
solcher Nachweis ist in sicherheitskritischen Bereichen jedoch notwendig und
wird von den entsprechenden Zertifizierungsstellen gefordert. Die genauen An-
forderungen dafür sind in domänenspezifischen Normen und Standards spez-
ifiziert.
Die Verwendung formaler Methoden zur modellbasierten Sicherheitsanalyse
kann den Sicherheitsnachweis für solche Systeme unterstützen. Dazu wird
ein gemeinsames formales Systemmodell erstellt, welches sich der Entwickler
und der Sicherheitsingenieur teilen. Dieses Modell besteht dabei aus einem
abstrakten Modell des funktionalen Systems, einem Modell des physikalis-
chen Umweltverhaltens, sowie einem Modell des Fehlverhaltens. Ein solches
Modell kann in einer Sprache mit formaler Semantik ausgedrückt werden.
Dies erlaubt dann eine Analyse mit automatischen Modellprüfern und un-
terstützt so den Sicherheitsanalyseprozess für komplexe Systeme. Der Vorteil
gegenüber bisherigen Verfahren liegt dabei einmal in der Verwendung eines
gemeinsamen Modells, was den notwendigen Aufwand bei Designänderungen
verringert. Der zweite Vorteil liegt in der erhöhten Automatisierung, wodurch
ein Sicherheitsnachweis effizienter durchgeführt werden kann.
Die Ergebnisse dieser Dissertation verbessern die bisher existierenden mod-
ellbasierten Analysemethoden wesentlich. Hauptaspekte dabei sind einmal
die Erweiterung der analysierbaren Systemklasse sowie die Erweiterung der
analysierbaren Eigenschaften. Desweiteren wurde eine neue, probabilistis-
che Sicherheitsanalysemethodik geschaffen, die wesentlich genauere Ergeb-
nisse liefern kann als dies mit bisherigen Analysen möglich war. Die Ba-
sis dazu bildet die formale Beschreibungssprache SAML (Safety Analysis
and Modeling Language). Für diese wurde eine prototypische Werkzeugun-
terstützung geschaffen, die es erlaubt, SAML Modelle durch Modelltransfor-
mationen mit verschiedenen Verifikationstools zu analysieren. Dadurch profi-
tiert der Ansatz von jeder Erweiterung der unterstützten Analysetools. Dieser
Ansatz erlaubt eine Kombination verschiedener Analysemethoden und bildet
die Basis für eine toolunabhängige Analyseplattform. Der Ansatz wird mit
der Analyse von drei Fallstudien illustriert und bildet die Basis für das DFG
Einzelforschungsprojekt “ProMoSA” (Probabilistic Models for Safety Analy-
sis).
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Abstract

Software is becoming the main innovation factor in many domains. Every
more functionality is implemented in software running on relatively generic
hardware. For this the notion of software-intensive systems has been estab-
lished. By now such systems are already common in safety-critical domains.
Their application causes an increase of complexity which makes the assurance
of functional safety ever harder. Such evidence of safety is required in safety-
critical domains and is required by the responsible certification authorities.
The exact requirements are specified in domain-specific standards.
Using formal methods for model-based safety analysis can support the safety
assurance of such systems. The basis is the construction of a common formal
system model which is shared between the developer and the safety engineer.
Such a model generally consists of an abstract model of the system, a model of
the physical behavior of the environment and a model of the possible faults and
failure modes. A model expressed in a language with formal semantics allows
for the analysis using automatic verification tools and can therefore support
the safety analysis process of complex systems. Compared to more traditional
approaches the advantages are firstly that using a common system model
requires less effort in case of design changes and secondly in the increased
automation which make more efficient safety analysis possible.
The results of this dissertation thesis significantly advance existing safety anal-
ysis methods. Firstly, the class of analyzable systems is extended and secondly
the set of analyzable properties is extended. In addition, a new probabilistic
safety-analysis method was developed which produces much more accurate
results than possible using existing methods. The basis is the formal specifi-
cation language SAML (Safety Analysis and Modeling Language). A proto-
typical tool support with model transformations was developed which allows
for analysis of SAML models with different verification tools. Therefore the
approach benefits from all advancement in the development of the supported
analysis tools. This allows the combination of different analysis methods and
forms the basis for a tool-independent analysis framework. The approach is
illustrated with three case studies and is the foundation for a new research
project “ProMoSA” (Probabilistic Models for Safety Analysis) founded by the
German Research Foundation (DFG).
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1. Introduction

If there’s more than one possible outcome of a job
or task, and one of those outcomes will result in
disaster or an undesirable consequence, then
somebody will do it that way.

(Edward A. Murphy, Jr.)

The last decades have seen a very strong increase in the use of software-intensive
systems in all areas of life. Embedded systems are becoming ubiquitous and software
is one of the main innovation factors in most technical domains. This development also
leads to application of software-intensive systems in many safety-critical areas where a
malfunctioning poses major risks, not only in terms of economic loss, but also often
endangers people. This makes safety assessment of these systems ever more important,
but at the same time the complexity of these systems is increasing which steadily makes
this more difficult.

1



1. Introduction

This increase in complexity and the accompanying increased difficulty of conducting
traditional safety analyses have already led to several tragic accidents. Examples are the
Therac-25 accidents in the years 1985 to 1987 which are described by Leveson [LT93].
The Therac-25 was a device for radiation cancer therapy which – due to software errors
– could deliver far too high a dose of radiation under certain circumstances. This led
to three deaths and three severe injuries. The ultimate cause was erroneous software.
However, the main reason for the consequences being so hazardous was that the original
safety analysis system did not even consider software, and that the software was written
without any method of self-checking or error correction [LT93].
One approach to prevent this kind of software errors is the use of programming lan-

guages specifically designed for the development of safety-critical systems. One very
prominent example is the Ada language which was developed by Honeywell Bull in re-
sponse to a request for proposals from the Department of Defense (DoD) of the USA and
became standardized as ISO/IEC 8652 [Te95]. Its main features are strict static typing,
various run-time checks and exceptions for different common programming errors. As a
subset of Ada, SPARK was developed with even more properties for the development of
software for safety-critical systems. Its formal definition allows for several static checks
and encourages design by contract implementations with well defined pre- and postcon-
ditions. A further step in the development of correct software for safety-critical systems
is Esterel Technologies’ SCADE Suite [Est11]. It allows model-based graphical software
development and provides a verification tool that can even prove some of the dynamic
properties of the software and also facilitates traceability of requirements. Today, Ada,
SPARK and SCADE are widely and successfully used to develop safety-critical soft-
ware, especially in the domain of avionics, where malfunctioning of an important device
potentially endangers hundreds of people.
Nevertheless, these approaches concentrate on software correctness only, but this alone

cannot guarantee the overall safety of a system. Software is not used in isolation and
therefore is not the only possible cause of a hazard. This can be seen from the accident
during the first flight of Ariane 5. A well-tested and reliable software implementation
became problematic, as it was used in an inappropriate environment. In 1996, the first
flight of the rocket lead to the loss of the carrier and its satellite payload, marking an
enormous economic loss. The accident is described by Lions [Lio96]. The software had
been developed for the Ariane 4 which had very different flight properties. The different
flight trajectories of the Ariane 5 led to the overflow of a variable which ultimately
triggered the self-destruction mechanism of the rocket. More detailed analyses of the
causes of the accident are given by LeLann [LL96] and Dowson [Dow97]. This illustrates
that an isolated concentration on the software is not sufficient to guarantee safety.
A way to tackle this problem is to use a model-based approach which considers the

complete system – including software, hardware and its surrounding physical environ-
ment – for safety analysis. The model-based approach proposed in this dissertation is
based on the construction of a system model consisting of both the nominal behavior
according to the system specification, as well as a model of potential erroneous behavior.

2



1.1. Main Contribution

Such a model is used for safety analysis, both to find bugs that prevent correct function-
ing of the system and to analyze the behavior of the system following the occurrence
of failures. The advantage of this is that model-based safety analysis is possible in the
early phases of system design, when the elimination of design flaws is less expensive than
in later phases.
Model-based safety analysis can partially be automated using automatic verification

tools. These tools can deliver counterexamples if the specification is not fulfilled. The
information from the counterexamples can be further examined and the results used for
later tests of the implemented systems. A safety engineer can use such counterexamples
to decide which failure mode combinations can lead to an overall system hazard and
then refine the system design with risk-reducing measures. This is normally done until a
desired level of failure tolerance is reached. Of course for every system there will always
be a combination of failures which cannot be compensated for and the system can no
longer work according to its specification. Whether this is tolerable for a specific system
is most often decided by considering the probability that such a situation occurs.
The results of this dissertation allow to combine different safety analysis methods

which provide information about the effect of failure occurrences and analysis methods
which provide accurate quantitative measurements. This is a big step forward in design
and development of safety-critical systems. Its application allows the early discovery of
design flaws and also quantitative comparison of different system designs.

1.1. Main Contribution

This dissertation presents an approach for model-based safety analysis which for the first
time allows for a combined consideration of both qualitative and quantitative aspects as
well as the consideration of different types of failure modes. The main new contributions
to the field of analysis of safety- critical systems are the following:

• Definition of the formal safety analysis and modeling language (SAML) for the
convenient specification and analysis of safety-critical systems unifying existing
and newly-developed methods in a semantically well-founded way.

• Extension of failure mode modeling methodologies with probabilistic aspects that
allow a combination of per-time and per-demand failure mode types.

• Extension of existing qualitative model-based safety analysis methods, by mak-
ing a broader class of systems analyzable and by making additional properties
analyzable.

• Development of a new, quantitative model-based safety analysis method which
allows much more accurate assessment of hazard probabilities than existing meth-
ods.
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1. Introduction

• Prototypical implementation of SAML.

• Prototypical implementation of semantically founded transformations for different
formal verification tools.

• Application of the developed techniques to several realistic case studies to show
the feasibility and validate the benefit of the developed modeling and analysis
techniques.

The work presented in this dissertation resulted in 16 peer-reviewed publications that
were presented at international conferences and workshops. The results developed in
this dissertation form the basis for the project Probabilistic Models in Safety Analysis
(ProMoSA) which is funded by the German Research Foundation (DFG). This project
aims at creating an integrated model-driven development process for safety critical-
systems and to use quantitative safety analysis to optimize systems.

1.2. Outline of the Dissertation

The outline of the dissertation is as follows: Chapter 2 gives an overview of different
existing safety analysis methods which are used in different application domains. These
are general related work from the field of safety analysis; specific related work topics are
presented at the end of each of the following chapters. Chapter 3 presents formal basics,
in particular syntax and semantics of SAML and temporal logic properties. This forms
the basis for the following Chapters 4, 5 and 6.
Chapter 4 presents modeling guidelines for safety-critical systems analyzed with SAML.

This includes, in particular, accurate failure mode modeling and physical behavior mod-
eling in SAML. How such models can be analyzed correctly using different temporal logic
proof obligations is presented in Chapter 5. The semantically founded transformation of
SAML models into different state-of-the-art verification tools is explained in Chapter 6.
The application of the results of these chapters to the safety analysis of case studies is
shown in Chapter 7. Chapter 8 concludes the dissertation by giving a summary and an
outlook of promising further research. All the proofs for the presented theorems and
corollaries can be found in Appendix A. Appendix B lists the resulting peer-reviewed
publications.
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2. Safety Analysis Overview

Essentially, all models are wrong, but some are
useful.

(George Box)

This chapter presents the definitions of the basic concepts that are used in this dis-
sertation. This includes safety, hazard and failure modes. Their respective definitions
are based on their usage in the scientific literature. An overview of other approaches
to safety analysis is presented – although no overview can be complete, it includes the
approaches most widely used in industry today as well as the most relevant related
work – along with a classification of the proposed formal qualitative and quantitative
model-based safety analysis.
Section 2.1 introduces the concepts used for safety analysis. Section 2.2 discusses

a number of structured safety analysis approaches. Section 2.3 discusses failure logic
modeling as a first step in the direction of automatic failure analysis, while Section 2.4
discusses some failure-injection based safety analysis methods. An overview of the pro-
posed approach of this dissertation and its relation to existing approaches is given in
Section 2.5.
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2. Safety Analysis Overview

2.1. Motivation and Concepts

In the area of safety analysis, the relevant concepts are often used with a slightly different
meaning. Therefore the definitions used throughout this dissertation are given in the
following section, which are based on the available scientific literature and standards of
this domain.

Concepts

In [Lap95], Laprie defines the safety of a system as the “non-occurrence of catastrophic
consequences on the environment” and lists safety as one of the different aspects of
the broader concept of dependability. The other aspects are reliability, maintainability,
confidentiality, integrity and availability. The meaning of safety as used in this disser-
tation is based on this definition. The safety of a system is quantified as a measure of
dependability of the system in a context where its malfunction poses a risk and possibly
endangers lives.

Such a situation is called a hazard which in accordance with Ladkin [Lad08] is charac-
terized as a “potential source of harm”. A bit more strict definition of a hazard is given
by Leveson in [Lev11] (p. 157) as a “system state or set of conditions that, together with
a particular set of worst-case environmental conditions, will lead to an accident” where
accident is defined as leading to a specified level of loss. For the formal safety analysis
presented in this dissertation, a hazard is considered to be a system state in which the
system potentially causes harm and the system itself cannot prevent this any more. This
means that a hazard is dangerous, as it may lead to an accident in the worst case.
A hazard can be caused by the malfunctioning of one or more components of the

system under consideration. Such malfunctioning is the result of the occurrence of a
failure mode. Not every occurrence of a failure mode must have such an effect. For
example a system component might not be active at the moment of the occurrence or
the failure mode might be of a transient nature. On the other hand, every malfunction
of a system component is always caused by the occurrence of one or more specific failure
modes.

In this dissertation, safety is measured quantitatively as the occurrence probability of
a hazard. This is the probability that the system itself cannot prevent the occurrence of
a potential source of harm resulting from the occurrence of failure modes in the system
components. Safety is measured qualitatively as the combinations of failure modes that
must occur in combination as a necessary requirement for the occurrence of a hazard.

Standards and Norms

The basis for many standards in the field of safety analysis is the IEC 61508 [Int98]
standard (“Functional safety of electrical / electronic / programmable electronic safety-
related systems”). In this standard, safety is considered as the “freedom from unac-
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ceptable risk”, where risk means the “combinations of the probability of occurrence of
harm and the severity of harm” [Lad08]. The severity of the potential harm caused
by hazard is not measured, but determined a-priori. When the occurrence probability
of the occurrence of harm is known, it can then be checked whether the posed risk is
unacceptable, i.e. the system is considered unsafe or if it is acceptable and the system
is therefore considered safe.
The notion of risk as defined above is still slightly unclear. To clarify this, guidelines

exist which define certain maximal occurrence probabilities for a hazard, depending on
the severity of the potential harm caused. Based on this, risk is classified into three
areas (see [Lad08]):

• Acceptable: So low that it can be ignored for all practical purposes.

• Intolerable: So high that is it unacceptable in all circumstances.

• ALARP region: Between acceptable and intolerable, the developer is required to
reduce the risk to “as low as reasonably possible” (ALARP).

Depending on the potential severity of a hazard, maximal hazard occurrence prob-
abilities are specified. In IEC 61508, the probabilities are defined as safety integrity
levels (SIL) and the developer must provide evidence that the system fulfills the required
threshold probabilities. Similar concepts exist in domain-specific standards derived from
IEC 61508, such as ISO 26262 [Int09] for automotive or DO 178-B [RTC92] for avionics
systems.
To which extend the required quantitative results can accurately be computed is an

ongoing debate in the domain of safety analysis, in particular if software is to be quan-
tified (e.g. see Butler and Finelli [BF93] or Alexander and Kelly [AK09]). Many of
the existing methods that were developed to determine whether a system fulfills the
imposed requirements for threshold probabilities, rely on assumptions like stochastic
independence which are often not fulfilled.

Model-Based Safety Analysis

The main concept of model-based safety analysis is defined by Joshi et al. in [JMWH05]
as using a common system model by both the system developer and the safety engineer.
In practice the degree of sharing varies greatly and many different variations of this
rather basic principle are used in safety analysis. The common factor between all is that
there exists a model of the failure modes and how they may cause a system hazard.
The variants of model-based safety analysis span from a manually specified model of

the failure effects to fully integrated automatic combination of both nominal and failure
behavior in a single model. Here the classification is roughly as follows: structured ap-
proaches use an additional manually created model of the failure behavior which mainly
considers the components of the system but not the structure of the system. Approaches
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based on failure logic modeling often directly use the structure of the analyzed system
to model the possible propagation of failure effects. This allows for semi-automatic de-
duction of possible failure effects behavior from a structural model the system. Failure
injection based approaches model the failure effects behavior directly into the nominal
system model and use various (semi-) automatic analysis techniques to compute possible
causes for a system hazard. Of course for some approaches, an exact classification is not
possible and they could fit in different classes.
The following section presents an overview, ranging from more traditional but widely-

used approaches to new developments in the area of model-based safety analysis tech-
niques.

2.2. Structured Approaches

Structured approaches generally consist of the manual creation of a model for safety
analysis. Therefore they rely heavily on the experience and skill of the safety engineer.
Furthermore, if a system changes, very often the whole analysis must be conducted again.
The identification of only the relevant changes is often very difficult as the connection
between the system and the safety analysis model is not clear.

2.2.1. Fault Tree Analysis

Fault tree analysis (FTA) [VDF+02, Int06] is widely used in industry for safety analysis.
It is a structural approach, in which a complex system hazard is broken down in events
that may lead to this hazard. Such events may be intermediate events which are further
broken down into basic events. Fault tree gates connect the intermediate or basic events,
resulting in a tree with the hazard at the root as the top event and the basic events on
the leaves. The following description is adapted from [GOR08]. A simple fault tree with
basic events (here failure modes) fmi (i=1. . . 5) and hazard H is shown in Fig. 2.1.

H

3fm 4fm

fm1fm 2 5fm

Figure 2.1.: Example Fault Tree [GOR08]

The fault tree gates which connect basic and intermediate events are most often simply
the Boolean AND and OR gates as shown in Fig. 2.2. More complex variants of gates,
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e.g. INHIBIT, also exist [STR02], but tool support for fault trees is most often limited
to Boolean gates. The informal semantics of the Boolean gates is that for the AND gate,
all connected events must occur, for the OR gate, one of the connected event is enough
to trigger the top level event.

OR AND

Figure 2.2.: Boolean Fault Tree Gates

When the desired accuracy in the form of basic events which are not broken further
down has been reached, then minimal cut sets can be computed automatically from
the fault tree. Every such set contains a combination of basic events which may cause
the occurrence of the hazard if they appear together. This combination is inclusion
minimal in the sense that if at least one basic event from every minimal cut set can be
prevented, the hazard cannot occur. This fact is called the minimal cut set theorem. An
example fault tree with corresponding minimal cut sets is shown in Fig. 2.3. It contains
3 minimal cut sets marked by dashed lines, two of size 2 and one with a single point of
failure (minimal cut set of size one).

H

3fm 4fm

fm1fm 2 5fm

Figure 2.3.: Minimal Cut Sets [GOR08]

Using the Boolean logic semantics, it is possible to compute the minimal cut sets of
very large fault trees. In practice, symbolic representations as binary decision diagrams
(BDD) are used for this as proposed by Sinnamon and Andrews in [SA97]. This is
generally implemented in tools supporting the modeling and construction of fault trees.

2.2.2. Failure Modes And Effects Analysis

Another structured approach which is widely used for safety analysis in industrial
practice is the failure modes and effects analysis (FMEA) (e.g. see McDermott et
al. [MMB96]). It basically consists of the following three steps: identification of the
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failure modes, determination of the causes for the failure modes and the number of
times they occur and definition of detection methods for the failure modes.
Using these concepts, a FMEA table is constructed (most often manually). In this

table, the severity is noted for each failure mode. This ranges from 1 (no danger) to 10
(critical). The occurrence rating is noted from 1 (very seldom) to 10 (very often) and the
detection rate is also noted from 1 (easy to detect) to 10 (impossible to detect). From
these ratings, the risk priority number (RPN) is calculated. It is used to determine
the sequence in which the failure modes must be prevented or their effect limited by
risk-reducing mechanisms. The associated risk of the entries of the FMEA table with
the higher RPN are considered with higher priority.
An extension of basic FMEA is the failure modes, effects and criticality analysis

(FMECA) [MIL]. It extends FMEA with a notion of criticality that connects the prob-
ability of failure modes with the severity of their effects. This probability can either be
given directly as a failure rate or via levels defined by upper and lower bounds similar to
the safety integrity levels (SIL) of IEC 61508. Recently, Grunske et al. [GLYW05] devel-
oped an automatic way to deduce FMEA tables from a system model. This method has
been extended by Grunske et al. in [GCW07] to also support the computation of hazard
probabilities and can therefore also be used for criticality analysis. An application of
this method to the safety analysis of an airbag system is described by Aljazzar et al.
in [AFG+09].

2.2.3. Why-Because Analysis

Another structured approach to finding the cause of accidents is the Why-Because Anal-
ysis (WBA) described by Ladkin [Lad01]. Its main focus is to determine the causal
relations between recorded events and states of an accident. The basic concept is the
Why-Because Graph (WBG) in which events and states are connected if one is the causal
factor [Lad99] of the other. Being a causal factor is formulated as: “A is a causal factor
of B, in which A, respectively B, is either an event or state” if “in the nearest possible
world in which A did not happen, neither did B” [Lad99] (based on Lewis [Lew73]). This
means that if everything else is the same, but the state or event A being absent, B would
not have happened. This is formulated in the modal logic EL [Lad01] (pp. 295-320) as
the Counterfactual Test and a hierarchical proof scheme is applied to the WBG that can
prove that the explanation of the causality in the WBG is correct [Lad01] (pp. 339-378).
Paul-Stüve defines in [PS05] the following steps for a full WBA: gathering information,

determination of the facts, creation of a list of facts, creation of a why-because list,
creation of an auxiliary list of facts, determination of the top node (most often the
accident itself), determination of the necessary causal factors and quality assurance
and correction of the WBG. Several tools to support this structured approach have been
developed and WBA has been successfully applied to several real accidents, in particular
aircraft accidents as described by Ladkin in [Lad00].
A big advantage of WBA over many other analysis approaches is the absence of the
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“closed-world assumption”1. This is not needed for WBA, as the list of states and
events is constructed a-posteriori from all facts that are available from an accident. On
the other hand this applies only if it is applied to explain the causes of an accident that
has already happened. It does not solve the problem of the closed-world assumption in
a-priori safety assessment of a system.

2.2.4. System-Theoretic Analysis Model and Processes

A very interesting approach which aims at an a-posteriori explanation of accidents is
the Systems-Theoretic Analysis Model and Processes (STAMP) [Lev04b, Lev04a] and
STAMP based Process Analysis (STPA) [Lev03] developed by Leveson. It differs con-
siderably from the approaches discussed before. STPA is based on a systems theoretic
approach to safety-analysis and considers safety an emergent property of a system which
addresses the increasing complexity of systems and the problems that purely analytic
safety analysis approaches can have. Leveson argues in [Lev92] that many of the ap-
proaches based on causal consequence analysis have simply been adapted from mechan-
ical systems, but are not well suited for modern software-intensive systems which are
inherently much more complex.

The three main concepts of STAMP are: constraints, hierarchical levels of control and
process models. In this approach, every system is viewed as a hierarchical structure,
where each level imposes constraints on the possible behavior of the level beneath. An
accident is then not viewed as a result of events in a given order, but as a result from
insufficient control. The process model in STAMP is typically a process-control loop
with an automated controller and a human supervisor for this controller. This model
views accidents as a failure to adequately satisfy the systems goal condition, action
condition, model condition or observability condition [Lev04b].

STAMP (and STPA) has successfully been applied to the different case studies,
e.g. the Comair accident by Nelson [Nel08], the U.S. Ballistic Missile Defense System by
Pereira [PLH06] and an unmanned space transfer vehicle by Ishimatsu [ILT+10].

2.3. Failure Logic Modeling

Another class of safety analysis approaches use an explicit modeling of the propagation of
the effects of failure modes. The information about possible causes for a system hazard
is then (semi-) automatically deduced from the structural model of a system. These
methods are called failure logic modeling approaches in the classification of Lisagor and
McDermid [LM06].

1A full list of important events and states is known.
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2.3.1. Failure Propagation and Transformation Notation

The Failure Propagation and Transformation Notation (FPTN) by Fenelon et al. [FM93,
FM92] is a graphical notation which describes the structure of a system and the genera-
tion and propagation of failure dependent on this structure. Components are connected
via inputs and outputs to other components, which defines the possible propagation of
failures in a system.
An enhancement of FTPN is the Failure Propagation and Transformation Calculus

(FPTC) described by Wallace [Wal05] which uses a formalized approach. Structural
models of systems are expressed as real-time networks (RTN). The nodes of these net-
works represent components of the analyzed system and analogous to basic FPTN, the
possible propagation of failures is defined via inputs and outputs that connect the nodes.
Different types of failures can be defined: late and early for timing failures and omission
or value for data failures. Using the formal transformation rules described in [Wal05]
this can then be used to analyze the potential effect of the failures. A newer extension of
FTPC is the Probabilistic Failure Transformation and Propagation Analysis (PFTPA)
developed by Ge et al. [GPM09]. It allows for the specification of failure occurrence
probabilities of the single failure modes. The overall hazard occurrence probability of
the system is then computed in an automatic way.

2.3.2. Hierarchically Performed Hazard Origin and Propagation

Studies

Hierarchically Performed Hazard Origin and Propagation Studies (Hip-Hops) developed
by Papadopoulos et al. [PM91, PPM99] is a safety analysis technique that allows for
automatic generation of fault trees and of FMEA tables, based on a structural system
model. It describes the structure of the system, in which the basic elements are the
system components. Components can be connected via input and output ports which
model the dataflow through the system. The failure behavior is specified as the failure
of system components, failure effects can then propagate along the defined connections
to other components.
An advantage over the FTPN approach is the tool support which allows for auto-

matic generation of fault trees from such a model. Another advantage of Hip-Hops is
that the hierarchical system structure is reflected in the generated fault tree, in contrast
to the flat fault trees2 often extracted from other approaches, based on failure injec-
tion (see Section 2.4). Based on the synthesis of the fault trees, an automated FMEA
table generation is possible [WWGP10]. Extensions of the Hip-Hops technique allow
for automatic extraction of dynamic fault tree information as described by Walker et
al. [WBP07, WP07]. Dynamic fault trees are a generalization which introduces addi-
tional gates that require for example an ordering on the occurrence of the basic events.

2Which have only a top event, one layer of Boolean logic fault tree gates and then one layer of basic
events.
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The Hip-Hops approach has also successfully been used to develop an automatic,
optimal allocation of safety functions for the automotive domain [PP07]. In this case the
structure of the system is exploited to reach a target overall automotive safety integrity
level (ASIL) of a system, by breaking it down to the necessary ASIL assignment to sub-
components. In [PWP+10], Papadopoulos et al. show how this can be used to optimize
the structure of a system.

2.3.3. AltaRica

AltaRica is a formal dataflow language for hierarchically structured safety-critical sys-
tems. It was described by Arnold et al. in [APGR99]. Its main design goal was the
specification of the behavior of concurrent systems and it is often used to specify fault
occurrence in such systems as observed in the overview of Joshi et al. [JWH05]. It allows
for state based system behavior modeling of parallel system nodes. A failure is an event
that can affect the state of a node. Several formal analysis tools have been developed
for the analysis of AltaRica models, for example the Mec 5 model-checker by Griffault
and Vincent [GV04]. Bieber describes in [BCS02] a tool for the automatic generation of
fault trees from Altarica models. Current development is on the integration of different
analysis methods in the Altarica Studio.

Modeling in AltaRica sometimes has the problem that the failure propagation spec-
ification is cyclic and therefore the model is invalid [BBC+04]. On the other hand it
provides excellent support for the creation of a library of components that can graphi-
cally be used to construct a AltaRica model [ea03], which is seen as a great advantage
in the application of AltaRica to case studies, see e.g. Bieber et al. [BBC+04]. Current
research focuses on extension of model-checking capabilities in AltaRica Studio and the
elimination of the limitations to acyclic models in AltaRica Next Generation by a new
execution model based on fix points [PPRd10].

2.4. Failure-Injection Based Analysis Techniques

In failure-injection based safety analysis [LM06], a functional system model is con-
structed first on which the nominal system behavior can be verified. After then, the
effects of different failure modes are successively injected into the model and the nomi-
nal behavior is tried to be verified. If this fails, the injected failure modes are considered
to be critical. A system model which contains the modeling of the effects of failure modes
is commonly called the extended system model by Ortmeier et al. [ORS06] and Joshi et
al. [JMWH05, JH07]. The combination of the functional behavior and the failure model
into the extended system model can either be done manually or automatically.
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2.4.1. ESACS and ISAAC Project

In the Enhanced safety assessment for complex systems (ESACS) project [ea03], the
FSAP / NuSMV-SA tool was developed by Bozzano et. al [BV03b]. It contains a
library of possible failure modes (bit-inversion, bit-stuck) for Boolean state variables.
The failure model can then automatically be integrated into a nominal system model.
This integration is done on the syntactical level, the resulting models are analyzed with
the NuSMV model-checking tool developed by Cimatti et al. [CCG+02]. It computes
flat fault trees and can extract some temporal ordering information from the system
models [BV03a]. The flat fault trees are used to estimate the overall system hazard
probability based on the assumption of stochastic independence of the failure mode
occurrence.

In the ISAAC project [rBB+06] the successor of ESACS, two main approaches for
safety analysis were implemented. The first one was he further development of the FSAP
/ NuSMV-SA tools. The other main approach was to use failure injection in SCADE
models as described by Abdulla et al. [ADS+04]. In contrast to FSAP / NuSMV-SA,
the failure models were integrated manually into the system model and the extended
system model was analyzed with the SCADE Design Verifier. A similar approach is
described by Joshi and Heimdahl in [JH05, JH07] where Matlab / Simulink models were
analyzed. The concrete analysis was conducted in SCADE (or Lustre) via the Simulink
import function of the tool. This method allows to find counterexamples if a safety
property was not fulfilled, but analogous to our own work in [GOR07], verification was
not possible. The formal analysis tool built into SCADE is not very efficient if compared
to other state of the art tools as it is also observed by Moy in his dissertation [Moy05]
(p. 142).

2.4.2. COMPASS Project

In the Correctness, Modeling and Performance of Aerospace Systems (COMPASS) re-
search project [BCK+09a], a subset of the architecture analysis and design language
(AADL) [SA04, GH08] and its error annex [SA06] was formalized in the SLIM lan-
guage as described by Bozzano et al. in [BCK+09b, BCR+09]. This allows for the
combination of continuous state variables and probabilistic failure mode specifications.
Continuous data is supported via the SMT solver MathSAT developed by Bruttomesso
et al. [BCF+08]. Probabilistic models are analyzed with the probabilistic model-checker
MRMC developed by Katoen et al. [KKZ05, KZH+10]. The already existing FSAP /
NuSMV-SA tool which was developed in the ESACS and ISAAC project was further
extended and now allows for the specification and automatic inclusion of probabilistic
failure modeling. In [Boz11], Bozzano showed how this also allows for calculation of
FMEA tables directly from SLIM models for safety analysis.

The approach has successfully been applied to industrial case studies from the aerospace
domain [BCK+09a]. The developed tool [BCK+10a] allows for the specification of differ-
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ent kinds of failure mode effects, similar to the library offered in the FSAP / NuSMV-SA
tool, but extended with probabilistic behavior. System properties are specified via pat-
terns which aim at enabling users who are not experienced with temporal logic. This is
similar to the safety properties specification described by Bitsch [Bit01] and quantitative
safety properties specification described by Grunske [Gru08].

2.4.3. AVACS Project

In the automatic verification and analysis of complex systems (AVACS) project [AVA03],
different approaches for the analysis of critical systems are developed. The main focus
is the development of new verification algorithms that can analyze a broader range of
systems.
This includes mainly hybrid systems which allow for using continuous data variables.

In this project, first steps for the verification of probabilistic hybrid systems have been
made by Zhang et al. [ZSR+10]. In contrast to the safety analysis in COMPASS, this
would allow a probabilistic analysis of model with hybrid variables. Other topics in-
clude the usage of symbolic methods for probabilistic model-checking which allows for
the analysis of even larger systems as described by Herbstritt et al. [HWP+06]. The ap-
plication of this technique has been used by Böde et al. [BPRW08a, BPRW08b] to rank
critical failure combinations according to their relative influence of the overall hazard
probability of a safety-critical system. In general the modeling is conducted in variants
of Statemate Statecharts [BDW00, HN96] and different tools for state space reduction
and bisimulation are applied on the resulting labeled transition systems.

2.5. Formal Model-Based Safety Analysis

The proposed model-based safety analysis approach described in this dissertation is
based on failure-injection. The considered extended system models include both nom-
inal and failure behavior. Critical failure mode combinations can be computed auto-
matically and in contrast to the other approaches the result is provably correct and
complete. The overall hazard occurrence probabilities are also computed automatically.
An advantage over most of the related model-based approaches is that probabilistic
failure mode behavior is supported for different types of failure modes, in particular
per-time and per-demand. To my knowledge the only other approach that directly sup-
ports these different failure mode types are Bouissou’s Boolean Logic Driven Markov
Processes [Bou07, BB03], which are mainly a failure logic modeling approach.
The foundations are the results described in Ortmeier’s dissertation [Ort06]. Ort-

meier describes a formal safety analysis based on the formal analysis of Statemate Stat-
echarts, expressed as Kripke structures in the specification language of the Cadence
SMV [McM90] model-checker. It is a purely qualitative method which allows for the
automatic computation of (inclusion) minimal sets of failure modes that can cause a
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hazard. This is done with the deductive cause-consequence analysis (DCCA) (see Sec-
tion 5.2.1).
These qualitative analysis results are used to optimize the system under consider-

ation. This uses an orthogonal, simple mathematical model of the system, based on
probabilistic distribution functions as optimization goal. These distribution functions
have application-specific free parameters, the variation of these parameters allows for
balancing a system between its safety goals (an upper bound for the hazard probabil-
ity) and other objectives, like cost or delay times, this safety optimization approach is
described by Ortmeier et al. in [OSR04, OR04].

based on DCCA
safety analysis
Model−based

class of systems

Extension of the supported

More accurate qualitative analysis

Quantitative model−based safety analysis

Common specification language SAML

Figure 2.4.: Extension of Existing Safety Analysis Approach

The safety analysis approach presented in this dissertation extends the existing one
in several ways (see Fig. 2.4). It renders the qualitative analyses much more accurate,
allows for the analysis of a broader range of systems and enables quantitative analyses
directly on the system model. More detailed, the extensions are the following:

• Definition of a formal specification language (SAML) which allows for the specifi-
cation of both qualitative and quantitative system behavior.

• Deductive Failure Ordering analysis allows for the automatic deduction of temporal
dependencies of critical failure mode combinations.

• Formal safety analysis of self-healing systems which can recover after a temporal
loss of function.

• Accurate probabilistic failure mode and physical environment modeling based on
the formal specification language SAML.

• Model-based quantitative safety analysis that allows for direct computation of
hazard probabilities on the system model.
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• Concrete implementation of model transformations of SAML models into the spec-
ification languages of different formal analysis tools.

Because of the implemented model transformations, the approach is tool-independent
and therefore benefits from any increased efficiency of the already supported analysis
tools. In addition, the integration of new analysis tools, e.g. those developed in the
AVACS project, is possible by implementing the corresponding model transformations.
SAML is designed to be well suited for the actual model specification as it offers a
convenient textual representation of both qualitative and quantitative behavior of a
system. The increased accuracy of the computed hazard probabilities also make it an
ideal candidate in a completely model-based safety optimization approach as proposed
for the ProMoSA project [OG10], replacing the approximations via distribution functions
previously developed by Ortmeier et al. for safety optimization [OSR04, OR04].

Summary

This chapter presented the definition of the basic concepts of safety, hazard and failure
mode as used in this dissertation. It gave an overview of different existing approaches
for safety analysis, namely purely structured approaches, failure propagation based ap-
proaches and failure-injection based approaches. It outlined the benefits of the approach
proposed in this dissertation which greatly extends the existing qualitative safety anal-
ysis approach based on DCCA and allows for much more precise quantitative analyses
than possible before.
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Make things as simple as possible, but not simpler.

(Albert Einstein)

This chapter introduces the formal foundations of the qualitative and quantitative
formal model-based safety analysis. At first the syntax of the Safety Analysis and
Modeling Language (SAML) is defined which serves as modeling framework. Its formal
semantics is based on Markov chain models from probability theory.
Properties of SAML models are formulated as temporal logic proof obligations. The

semantics of different temporal logics are presented, qualitative properties are specified
in computational tree logic (CTL) and linear time logic (LTL), quantitative properties
in a probabilistic temporal logic (PCTL).
The motivations for the design of SAML are explained in Section 3.1. Its syntax is

presented in Section 3.2 together with a small example model. Section 3.3 describes
the semantics of the underlying formal models by providing its formal definition and
also an illustration of the semantics of the introduced example. In Section 3.4 temporal
logics for both qualitative and probabilistic assertions are introduced which are used in
later chapters to specify the various formal analyses. Section 3.5 introduces a convenient
graphical representation of SAML modules. Related work is discussed in Section 3.6.
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3.1. Motivation

A specification framework for the analysis of safety-critical systems has several strong
requirements. The most important aspects are the following:

1. Feasibility of formal analysis by using formal semantics

2. Efficient transformation of models into the specification frameworks of existing
state of the art formal analysis tools

3. Convenient system modeling directly in the framework

4. Expressibility of probabilistic and non-deterministic behavior

Having formal semantics and being able to transform the language into existing for-
mal analysis tools are somehow antagonistic to the requirement that direct modeling is
convenient. On the one hand, if too many high level modeling artifacts are introduced,
their expression as a formal model can get very complicated and lead to state explosion
which makes formal analysis unfeasible for all but very simple models. On the other
hand, it is often very difficult to create models in a specification language that is very
close to the analysis model of a tool, comparable to programming in assembly language.
Therefore a compromise between convenient modeling and formal aspects is needed.

SAML allows for the specification via parallel finite state automata. These can easily
be visualized which is very useful to visualize models and to analyze analysis results.
A formal semantics is defined by specifying a parallel composition of the finite state
automata and the semantics of the resulting product automaton. Finite state automata
are also the basis for the analysis model for most state of the art analysis tools. This
allows for the efficient transformation of SAML models into models suitable for these
tools.
For accurate quantitative model-based safety analysis, a possibility to model proba-

bilistic behavior as well as non-deterministic behavior is necessary. Not only the isolated
correctness of a modeled system itself is of interest, but its behavior in a real environ-
ment. This environment includes failing components as well as non-exact or unforeseen
physical behavior. A lot of this type of behavior can be described in concepts of proba-
bilities, e.g. as failure rates or via probabilistic distributions. On the other hand, if the
correct probabilities are not known or a behavior is inherently not probabilistic, then
non-deterministic modeling is often more adequate. Therefore both non-deterministic
and probabilistic modeling is possible in SAML and an explicit timing model is specified
for accurate environment modeling.
Its design allows SAML to be both a modeling language in which safety-critical sys-

tems and their environment can be expressed and analyzed, as well as a potential in-
termediate language. SAML is tool-independent and supports the transformation of
models into input specifications of different formal analysis tools. Therefore any lan-
guage that can be transformed into SAML benefits from this, as its models can also
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be analyzed with all tools supported in the SAML framework. SAML has been first
presented in [GO10a]. Transformations for widely used verification tools is explained in
Chapter 6. In the outlook in Chapter 8, some further ideas for language extensions built
on top of SAML will be discussed.

3.2. Syntax of the Formal Models

The most important aspects of the grammar for SAML models is shown in Extended
Backus Naur Form (EBNF) in Fig. 3.1. Keywords and symbols are presented in bold
font, symbols are enclosed between ‘ for better visibility. The keywords are: constant,
formula, int, double, bool, true, false, module, endmodule, init and choice.
IDENT is a general lexer rule for identifiers, DOUBLE and INT are lexer ruler for
double, respectively integral numbers.
Lexer rules start in uppercase, parser rules in lowercase. The actual implementation of

SAML is realized as a grammar specification for the ANTLR parser generator developed
by Parr [Par07] with Java as target language.

SAML Language Concepts

The syntax of SAML is basically an extended subset of the input language of the
PRISM model-checker developed by Kwiatkowska et al. [KNP02b]. The most promi-
nent differences are the omission of explicit synchronization labels and the explicitness
of non-deterministic choices with the choice keyword. The explicit indication of non-
determinism has the advantage that it is less likely to be missed when reading such a
model specification. It also prevents some modeling which is not in accordance with the
proposed modeling approach for safety critical systems presented in the next chapter.

SAML Model A SAML model consists of various definitions of constants and formulas
and of one or more SAML modules. These modules represent finite state automata that
are executed in a synchronously parallel manner.

Constants A constant has an associated name, the identifier, a type and an optional
value. The values can either specified directly or as an arithmetic expression. The type
of a constant is either double, int or bool.

Value A value is either an integral value, a Boolean value or a floating point value.
Floating point values can be expressed in scientific notation.

Formulas A formula is comprised of its name and a Boolean condition. It is generally
used to specify an abbreviation of a more complex Boolean expression.
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saml-model : (constant | formula)∗ module+ ;

constant : constant (int | double | bool) IDENT (‘:=‘ value)? ;

formula : formula IDENT ‘:=‘ condition ;

condition : ( condition )
| ‘!‘ condition

| condition ‘&‘ condition

| condition ‘|‘ condition

| predicate ;

predicate : IDENT (‘ = ‘ |‘ < ‘ |‘ > ‘ |‘ >= ‘ |‘ <= ‘) state expr

| IDENT | true | false;

module : module IDENT declaration+ update rule+ endmodule;
declaration : IDENT ‘:‘ ‘[‘ INT ‘..‘ INT ‘]‘ init INT ;

update rule : condition ‘->‘ non-det assigns

| prob assigns ;

non-det assigns : non-det assign

(‘+‘ non-det assign)∗ ;

non-det assign : choice ‘(‘ prob assigns ‘)‘ ;

prob assigns : prob assign (‘+‘ prob assign)∗ ;

prob assign : probability : nextstate assign

(‘&‘ nextstate assign)∗ ;

probability : IDENT | DOUBLE | arith expr;

nextstate assign : ‘(‘ IDENT‘’‘ ‘=‘ state expr ‘)‘ ;

state expr : IDENT | INT | ( state expr )
| state expr (‘+‘ | ‘-‘) state expr ;

arith expr : INT | DOUBLE | IDENT | ‘(‘ arith expr ‘)‘
| arith expr (‘+‘ | ‘-‘ | ‘/‘ | ‘*‘) arith expr

Figure 3.1.: Basic SAML Syntax
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Condition A condition is a Boolean expression in propositional logic. It is comprised
of negation, conjunction or disjunction of conditions or predicates.

Predicate A predicate is a Boolean truth value or a predicate of expressions over the
state variables or a reference to a formula identifier.

Modules Each module declaration has a name and is contained between the keywords
module and endmodule. Within a module at least one state variable is declared and at
least one update rule is specified.

Declaration State variables have an associated identifier as name, are of integral type,
have a single initial value and represent a range with lower and upper bound.

Update Rules An update rule is comprised of a Boolean activation condition and has
at least one non-deterministic choice for assignments or a single probabilistic assignment.
Each non-deterministic choice is characterized by the choice keyword. If several such
non-deterministic choices are specified, they are written as a sum.

Non-Deterministic Assignment Each non-deterministic assignment consists of one or
more probabilistic assignments.

Probabilistic Assignment Each single probabilistic assignment starts with its proba-
bility. This probability can be given directly as value of type double, as a floating point
constant or as an arithmetic expression. The probability is then followed by parallel
assignments of new values to state variables.

Parallel Assignments Each assignment of a new value refers to the name of the state
variable and a state expression. The assignments are separated from each other with &.
For a state variable v, the name for the next value is written as v’. A state expression
defines this new value v’ which can be either an integral value, the name of a constant
or an arithmetic expression. It is required, that in each parallel assignment all variables
of the respective module get a new value assigned.

State Expressions State expressions are generally an expression over the value of the
states. As states are of integral value, state expressions allow to specify the sum or
difference of the value of states. They can also consist directly of an identifier referring
to a state variable, an integral constant or directly an integral value.

Arithmetic Expressions An arithmetic expression can be the sum, difference, quotient
or product of integral values or doubles, specified as constants or directly via values.
The interpretation of sum, difference, quotient and product is the standard one.
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Example SAML Model

Fig. 3.2 shows a small SAML example model which is used to illustrate the different
available modeling artifacts. It consists of two modules: a and b. In the first part of the
model, several constants of type double are declared directly with a specified value of type
double. The keyword formula declares an abbreviation of a Boolean formula, here the
name case3 refers to the condition v_a = 0 & !(v_b1 = 0 & v_b2 = 0 | v_b1 = 1 &

v_b2 = 1) and can be used interchangeably anywhere in the model.

constant double p_a := 0.9;

constant double p_b1 := 0.9;

constant double p_b2 := 0.09;

constant double p_b3 := 0.01;

formula case3 := v_a = 0 & !(v_b1 = 0 & v_b2 = 0 | v_b1 = 1 & v_b2 = 1);

module a

v_a : [0..2] init 0;

v_a = 0 & v_b1 = 0 & v_b2 = 0 ->

choice (p_a : (v_a’ = 0) + (1 - p_a) : (v_a’ = 1));

v_a = 0 & v_b1 = 1 & v_b2 = 1 -> choice (1 : (v_a’ = 2));

case3 -> choice (1 : (v_a’ = 1));

v_a = 1 -> choice (1 : (v_a’ = 1));

v_a = 2 -> choice (1 : (v_a’ = 2));

endmodule

module b

v_b1 : [0..1] init 0;

v_b2 : [0..1] init 0;

true -> choice:(p_b1 : (v_b1’ = 0) & (v_b2’ = 0) +

p_b2 : (v_b1’ = 1) & (v_b2’ = 0) +

p_b3 : (v_b1’ = 1) & (v_b2’ = 1))

+ choice:( 1 : (v_b1’ = 1) & (v_b2’ = 1));

endmodule

Figure 3.2.: Example SAML Model

Module a contains one state variable named v_a with a domain ranging from 0 to 2
and an initial value of 0. The module contains 5 update rules. The first update rule has
a single probabilistic distribution, where the next value of v_a is 0 with probability pa
and 1 with probability 1− pa. The other update rules assign the new value for v_a each
with probability 1.
Module b contains two state variables, v_b1 and v_b2 both with a range from 0 to

1 and an initial value of 0. The module contains exactly one update rule with the
activation condition true, i.e. which is always active. It consists of a non-deterministic
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choice between two different probabilistic distributions, the first assigns the values 0 to
both v_b1 and v_b2 with probability pb1, 1 to v_b1 and 0 to v_b2 with probability pb2
and 1 to both with pb3. The second non-deterministic choice assigns 1 to both state
variables with probability 1.

The example is used only for illustration purpose and is deliberately modeled in a very
abstract way. It is large enough to exhibit most SAML modeling artifacts but still small
enough to construct its whole state-space manually. In Chapter 4, detailed modeling
guidelines for SAML models for safety analysis are explained with a larger example.

In Table 3.1 the composition of the update rule of the module b from the example
model is shown. The whole update rule consists of the activation condition and two
non-deterministic choices. The non-deterministic choices consist of probability distribu-
tions and each probability distribution consists of one or more probabilistic assignment.
Each such probabilistic assignment consists of a probability and parallel assignments and
parallel assignments finally consist of one or more single assignments.

Update Rule

Activation Non-Deterministic Choice
Condition Probabilistic Assignment
Condition Probability Parallel Assignments

Single
Assignment

true -> choice : (

p_b1 : (v_b1’ = 0) & (v_b2’ = 0) +






Probability
p_b2 : (v_b1’ = 1) & (v_b2’ = 0) +

Distribution
p_b3 : (v_b1’ = 1) & (v_b2’ = 1)

)

+ choice : ( 1 : (v_b1’ = 1) & (v_b2’ = 1));

Table 3.1.: Composition of an Update Rule

3.3. Semantics of the Formal Models

The semantics of SAML is defined for a single module. As a SAML model typically
consists of several modules, a syntactical parallel composition which constructs a single
module from several parallel ones is specified. A very important factor for SAML was
the ability to express both quantitative and qualitative aspects. Therefore, the semantics
for both interpretations of SAML models is given. Firstly the more general quantita-
tive semantics is described and afterwards the qualitative one. Finally the connection
between these two is discussed.
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3.3.1. Parallel Composition

The parallel composition transforms a SAML model with several modules into an equiv-
alent model with a single module. The semantics of a SAML model is defined in Sec-
tion 3.3.2 based on this single module. For the parallel composition of two modules, the
parallel composition operator || is used analogously to the synchronous parallel compo-
sition described by Norman et al. in [NPK10].
Every update rule of a SAML model contains parallel assignments of new values to

the state variables. For a state variable v, v′ denotes its value for the next time step.
The assigned value is an expression over the other state variables, constants and integers.
The common interpretation of addition and subtraction for + and − is used. Parallel
assignments to several state variables are denoted by the operator & in the form:

v′1 = exprV ar
1 & · · ·&v′n = exprV ar

n

Each possible variable assignment has an corresponding probability p and is of the form:

p :
(

v′1 = exprV ar
1 & · · ·&v′n = exprV ar

n

)

Several of these parallel variable assignments form a discrete probability distribution,
which requires that

∑

i pi = 1:

p1 : (v
′
1 = expr11&v

′
2 = expr12& · · ·&v′m = expr1m)+

· · ·

pn : (v′1 = exprn1&v
′
2 = exprn2& · · · v′m = exprnm))

Each update rule of a SAML model is comprised of one or more non-deterministic
choices, where each such choice corresponds to exactly one of these discrete probability
distributions of transitions. Together with the Boolean activation condition φi, the
general form of an update rule is as follows:

φi → choicei1 : ( pi11 : (v
′
1 = expr111&v

′
2 = expr112& · · ·&v′m = expr11m) + · · ·

pi1n : (v′1 = expr1n1&v
′
2 = expr1n2& · · · v′m = expr1nm))

...

+ choiceik : ( pik1 : (v
′
1 = exprk11&v

′
2 = exprk12& · · ·&v′m = exprk1m) + · · ·

pikn : (v′1 = exprkn1&v
′
2 = exprkn2& · · · v′m = exprknm)) (3.1)

For simplicity it is assumed that all the requirements for a proper specification are
fulfilled. This means that the probabilities specify correct probability distributions and
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that the variables are uniquely named, i.e. there are no modules that contain a variable
with the same name.
This notation is chosen to simplify the usage of update rules in the parallel composition

definition. The single update rule of the module b (see table 3.1) of the example above
would be written in the following way:

true→ choice : ( pb1 : (v
′
b1 = 0&v′b2 = 0) +

pb2 : (v
′
b1 = 1&v′b2 = 0) +

pb3 : (v
′
b1 = 1&v′b2 = 1))

+ choice : ( 1 : (v′b1 = 1&v′b2 = 1))

Using this notation, update rules can be written using the mathematical notation for
sums and the parallel composition of two SAML modules with the operator || can be
defined as in Def. 1 which is adapted from Kwiatkowska et al. [NPK10]. For two modules
Mi and Mj , each probability distribution of each of the non-deterministic choices of the
first module (Eq. (3.2)) is combined with each probability distribution of each of the
non-deterministic choices of the second module (Eq. (3.3)). The result is an update
rule with an activation condition which is the conjunction of the activation conditions
of the original update rules. Each of these choices is comprised of a new probability
distribution and parallel assignments of the state variables.

Definition 1. Parallel Composition of SAML Modules
For M = Mi||Mj set stateV ars(M) := stateV ars(Mi) ∪ stateV ars(Mj) and create

for each update rule

φi →
c
∑

k=1

choiceik

(

dk
∑

l=1

pikl : u
i
kl

)

(3.2)

of Mi and

φj →
e
∑

m=1

choicejm

(

fm
∑

n=1

pjmn : ujmn

)

(3.3)

of Mj a product update rule for M of the form

φi ∧ φj →
c
∑

k=1

e
∑

m=1

choice

(

dk
∑

l=1

fm
∑

n=1

(

pikl · p
j
mn : uikl&u

j
mn

)

)

This parallel composition is well-defined and unique. The variable ordering in the
parallel assignments does not change the semantics of the result. Reordering of variables
in the parallel assignments or in the definition of state variables creates an isomorphic
state space. Therefore the semantics of the underlying Markov chain model is invariant
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under ordering of state variable definitions or parallel assignments1. If a SAML model
has more than two modules, the parallel composition is conducted iteratively. A complete
SAML model is defined as the parallel composition of its modules (Def. 2).

Definition 2. Complete Model
For a SAML model which consists of the single modules M1, . . .Mn, the complete

model M is defined as M :=M1|| · · · ||Mn.

The complete model generated from the parallel composition a_b := a||b of the two
modules of the example of Fig. 3.2 is shown in Fig. 3.3. The complete model is comprised
of 5 updates rules, resulting from 5 update rules of module a and 1 update rule from
module b. Each update rule of the complete model consists of two choices, resulting
from the 2 choices of module b and 1 choice of module a. In the first update rule of
the product module a_b, the first choice has 6 possible transitions, resulting from the
product of 2 possibilities in the first choice of module a and 3 possibilities in the first
choice of module b. The second update rule of a_b has 2 possible transitions, resulting
from the 2 possibilities of module a and only 1 possibility of module b. The rest of the
update rules are constructed analogously.
From the length and complexity of the complete model resulting from the parallel

composition of the rather simple modules of the originating SAML model, it becomes
clear that direct specification of the complete module is not practical. Therefore in
general multiple parallel modules are specified in SAML and the construction of the
single module is left to the specific analysis tool.
The informal semantics of a SAML model is as follows: All the modules of the original

model are executed synchronously in parallel. At each time step, all activation conditions
of each module are evaluated. The models are constructed in such a way that there is
always exactly one active update rule per module per time-step. In every module, one
probability distribution of the active update rule is chosen non-deterministically. This
probability distribution is a set of assignments of new values for all the state variables
of the module. One of these assignments is then chosen probabilistically and the state
variables get new values assigned in parallel. The parallel composition retains this
behavior, but combines all the modules into one single module in which the update rules
are the enumeration of all possible combinations of updates rules of the original model.

3.3.2. Quantitative Formal Models

The basis for the formal semantics of SAML is a variant of Markov chains which can
express both probabilistic and non-deterministic behavior. Markov chain models are
often used for modeling probabilistic behavior. Different variants exist which are appro-
priate for different modeling applications. Markov models basically describe a system
as discrete states with probabilistic transitions between these states.

1The internal representation of the state space often uses variable reordering to achieve a more compact
representation.

28



3.3. Semantics of the Formal Models

module a_b

v_a : [0..2] init 0;

v_b1 : [0..1] init 0;

v_b2 : [0..1] init 0;

true & v_a = 0 & v_b1 = 0 & v_b2 = 0 ->

choice (p_b1 * p_a : (v_a’ = 0) & (v_b1’ = 0) & (v_b2’ = 0)

+ p_b1 * (1 - p_a) : (v_a’ = 1) & (v_b1’ = 0) & (v_b2’ = 0)

+ p_b2 * p_a : (v_a’ = 0) & (v_b1’ = 1) & (v_b2’ = 0)

+ p_b2 * (1 - p_a) : (v_a’ = 1) & (v_b1’ = 1) & (v_b2’ = 0)

+ p_b3 * p_a : (v_a’ = 0) & (v_b1’ = 1) & (v_b2’ = 1)

+ p_b3 * (1 - p_a) : (v_a’ = 1) & (v_b1’ = 1) & (v_b2’ = 1))

+ choice (1 * p_a : (v_a’ = 0) & (v_b1’ = 1) & (v_b2’ = 1)

+ 1 * (1 - p_a) : (v_a’ = 1) & (v_b1’ = 1) & (v_b2’ = 1));

true & v_a = 0 & v_b1 = 1 & v_b2 = 1 ->

choice (p_b1 * 1 : (v_a’ = 2) & (v_b1’ = 0) & (v_b2’ = 0)

+ p_b2 * 1 : (v_a’ = 2) & (v_b1’ = 1) & (v_b2’ = 0)

+ p_b3 * 1 : (v_a’ = 2) & (v_b1’ = 1) & (v_b2’ = 1))

+ choice (1 * 1 : (v_a’ = 2) & (v_b1’ = 1) & (v_vb2’ = 1));

true & v_a = 0 & !(v_b1 = 0 & v_b2 = 0 | v_b1 = 1 & v_b2 = 1) ->

choice (p_b1 * 1 : (v_a’ = 1) & (v_b1’ = 0) & (v_b2’ = 0)

+ p_b2 * 1 : (v_a’ = 1) & (v_b1’ = 1) & (v_b2’ = 0)

+ p_b3 * 1 : (v_a’ = 1) & (v_b1’ = 1) & (v_b2’ = 1))

+ choice (1 * 1 : (v_a’ = 2) & (v_b1’ = 1) & (v_vb2’ = 1));

true & v_a = 1 ->

choice (p_b1 * 1 : (v_a’ = 1) & (v_b1’ = 0) & (v_b2’ = 0)

+ p_b2 * 1 : (v_a’ = 1) & (v_b1’ = 1) & (v_b2’ = 0)

+ p_b3 * 1 : (v_a’ = 1) & (v_b1’ = 1) & (v_b2’ = 1))

+ choice (1 * 1 : (v_a’ = 1) & (v_b1’ = 1) & (v_vb2’ = 1));

true & v_a = 2 ->

choice (p_b1 * 1 : (v_a’ = 2) & (v_b1’ = 0) & (v_b2’ = 0)

+ p_b2 * 1 : (v_a’ = 2) & (v_b1’ = 1) & (v_b2’ = 0)

+ p_b3 * 1 : (v_a’ = 2) & (v_b1’ = 1) & (v_b2’ = 1))

+ choice (1 * 1 : (v_a’ = 2) & (v_b1’ = 1) & (v_vb2’ = 1));

endmodule

Figure 3.3.: Parallel Composition of the SAML Model of Fig. 3.2
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The most important difference between different Markov models is their model of
passing time. It is either modeled as a continuous real-valued variable or as a discrete
fixed amount of time. In the continuous model, transitions between two states have
a parameter2, which describes the mean time in which the system changes from the
current state to the state the transition leads to. In the discrete model, after every fixed
amount of time, there is a change of state and the transition parameter describes the
probability that a specific transition is taken. The sum of these transition parameters
must always be 1, in order to form a proper discrete probability distribution.
Hermanns et al. note in [HKMKS00] that continuous time Markov models are well

suited to describe asynchronous, interleaved system behavior, whereas discrete time
Markov models are better suited to describe parallel synchronous behavior. Many safety-
critical systems are developed using clocked systems or processing units with synchronous
parallel components3. Therefore the underlying formal model for SAML is a Markov
decision process (MDP) which is a discrete-time Markov chain model with additional
non-deterministic behavior. The following definitions (3)-(13) for the formal definitions
of MDPs are based on the descriptions by Hansson and Jonsson [HJ94], Ciesinski and
Grösser [CG04] and de Alfaro et al. [dAFH+05].

Definition 3. Markov Decision Process
A Markov Decision Process (MDP) is a tuple

τMDP = (S,Steps, AP, L, s0)

where

• S is a finite set of states

• Steps : S → 2Idx×Dist(S) is the transition probability function, where Idx is a set
of indices and Dist(S) is the set of discrete probability distributions over the set
S, i.e. each pair (i, p) ∈ Idx × Dist(S) defines a discrete probability distribution
p : S × S → [0, 1] such that

– ∀s, t ∈ S : p(s, t) ≥ 0

– ∀s ∈ S : Σt∈Sp(s, t) = 1

• AP is a finite set of atomic propositions

• L is a labeling function L : S → 2AP that labels each state s ∈ S with a subset of
the atomic propositions that hold in this state

• s0 ∈ S is the initial state

2This corresponds to the parameter λ of an exponential probability density function.
3For example SCADE Suite which is based on the synchronous data-flow language LUSTRE developed
by Halbwachs [HCRP91] is widely used in industry for the development of safety-critical systems.
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A MDP as in Def. 3 represents a labeled transition system with a finite set of states.
Each state s ∈ S corresponds to a valuation of all state variables of a single SAML
module, in general the complete model of parallel SAML modules . The initial valuation
of the state variables in the model correspond to the initial state so of the MDP. Each
state s is labeled with the set of atomic propositions (AP ) that hold in s by the labeling
function L. By the definition of L, all ψ ∈ AP : ψ 6∈ L(s) do not hold in s. In
SAML, these atomic propositions correspond to the set of conditions, i.e. are Boolean
expressions over the values of the state variables of the model.
The update rules of the SAML model describe the possible transitions of the MDP.

Each activation condition φ describes a subset S ′ ⊆ S of all states such that for each
state s ∈ S ′, its label L(s) implies φ. For each state s, Steps(s) maps s to a set of
pairs of indices and discrete probability distributions. These describe the probability of
reaching a successor state s′ from s, where s′ corresponds to a new valuation of the state
variables of the model. The index specifies which probability distribution is chosen. The
probability distribution specifies the probability to reach successor states.
The state space of the parallel composition of the example in Fig. 3.2 is shown in

Fig. 3.4. Each node corresponds to a state of the MDP. Each state represents a valuation
of the state variables, written inside the nodes as a vector of the form (v_a,v_b1,v_b2).
There is an edge from state s to s′ if there exists an index and probability distribution
pair (i, p) in Steps(s), such that p(s, s′) > 0, i.e. the state s′ is reachable from state s
with non-zero probability.
The edges represent these probability distributions. They are labeled in the form

j : pj , where j is the index of the possible probability distributions in Steps(s) and pj
is the probability to reach the state s′ from s if the probability distribution p is chosen,
i.e. pj = p(s, s′).
The paths of the MDP are all infinite sequences of states (starting from the initial

state (0,0,0)) and probabilities such that for each successor state s′ of a state s there
exists a directed edge from s to s′ in the graph representation of the state space.
This describes the semantics of a SAML module as a MDP. In order to be interpretable

in such a way, a SAML module must fulfill the following constraints on the activation
conditions and probabilities of the update rules:

1.
∑

i pi = 1 for each probabilistic assignment and pi > 0 for each probability

2.
∨

i φi ≡ true for all activation conditions φi

3. ∀i 6= j : φi ∧ φj ≡ false for each pair of activation conditions

The first constraint states that every probabilistic assignment must define a proper
discrete probability distribution, by demanding that the probabilities to reach a new
state sum to 1. The second constraint specifies that there is always an activation con-
dition that holds. This means, in every state s there exists at least one element in
Steps(s). These two constraints assure that there is always a successor state that can
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Figure 3.4.: State Space and Transitions of the Complete Model of Fig. 3.3

be reached with a positive probability. A proper SAML model therefore has no deadlock
state4. The third constraint assures, that there are no overlapping activation conditions
and in every state exactly one activation condition holds.
If overlapping activation conditions are allowed, normalization of the probability dis-

tributions would be required in order to retain a proper MDP (see [NPK10]). This
easily leads to unintended behavior of the model, as the specified probabilities are dif-
ferent from those in the analyzed model. Such a behavior is not desired in the context
of safety analysis.
A run of a MDP is a sequence of states that are reached, starting from the initial state.

This sequence together with the non-deterministically chosen probability distributions
and the probabilities to reach a successor states is called a path of the MDP (see Def. 4).

Definition 4. Path of a MDP
A finite or infinite path of a MDP is a sequence of states and pairs of indices and

probability distributions such that for a sequence s0(j0, p0)s1(j1, p1) . . .

(ji, pi) ∈ Steps(si) and ∀i ≥ 0 : pi(si, si+1) > 0

holds.

4Of course the successor state to s can be s itself. A deadlock would be no successor at all.
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When all states of a path are labeled with their labeling function, the resulting se-
quence is called a trace of the MDP (see. Def. 5). Properties of the MDP are most often
formulated based on the set of possible traces.

Definition 5. Trace of a MDP
A trace σ of a path ω = s0(j0, p0)s1(j1, p1) . . . of a MDP Model τMDP is the word over

the alphabet 2AP , generated from

σ(s0(j0, p0)s1(j1, p1) . . .) = L(s0)L(s1) · · ·

In a path of a MDP, every state s is followed by a pair (j, p). This describes an index
j and a probability p. Here j is the index of the non-deterministically chosen probability
distribution P of Steps(s). This distribution describes a probability p = P (s, s′) as the
probability to make the step from s to s′ in the MDP. By definition p > 0 holds if s′

is a successor of s on a path of the MDP. A valid sequence of indices and probability
distributions is described by an adversary (see Def. 6).

Definition 6. Adversary / Scheduler
An adversary A of an MDP τMDP is a function that maps all finite paths ω =

s0(j0, p0)s1 . . . sn to one element of Steps(sn).

An adversary describes an infinite sequence of non-deterministic choices of probabil-
ity distributions. A specific adversary resolves the non-determinism by defining which
probability distribution is chosen from Steps(sn) for every finite path of the MDP.
In general there are infinitely many adversaries possible in a MDP. Of most interest

are the “worst-case” and “best-case” adversaries, which always make the “worst” or
“best” decision. This will be discussed in more detail in Section 3.4. Here, the adver-
saries are used to eliminate non-determinism from the model (an adversary consists of
concrete choices) by projecting the non-deterministic choices onto one specific determin-
istic model. In order to get a probability measure for MDP using adversaries, a formal
model of such deterministic probabilistic behavior is needed (see. Def. 7).

Definition 7. Discrete Time Markov Chain
A discrete time Markov chain (DTMC) is a tuple

τDTMC = (S, p, AP, L, s0)

where

• S is a finite or infinite, non-empty set of states

• p : S × S → [0, 1] is a function such that ∀s ∈ S:

– ∀s, t ∈ S : p(s, t) ≥ 0

– Σt∈Sp(s, t) = 1
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• AP is a finite set of atomic propositions

• L is a labeling function L : S → 2AP that labels each state s ∈ S with a subset of
the atomic propositions that hold in this state

• s0 ∈ S is the initial state

A DTMC is a special case of a MDP that has a constant Steps function, where only
a single global probability distribution exists to choose from. Paths (Def. 8) and traces
(Def. 9) are defined analogously to paths and traces of a MDP. The difference here is
that a path is comprised of a sequence of only states.

Definition 8. Path of a DTMC
A path π of a DTMC model τDTMC is a finite or infinite sequence of states si ∈ S of

the form π = s0, s1, . . . and p(si, si+1) > 0.

Definition 9. Trace of a DTMC
A trace σ of a path π = s0, s1, . . . of a DTMC Model τ is the word over the alphabet

2AP , generated from
σ(π) = L(s0)L(si) · · ·

Every finite path π of a DTMC has an associated set of infinite paths called the basic
cylinder (Def. 10). Each infinite path in the basic cylinder has π as a prefix, i.e. the
elements of the basic cylinder of π are all infinite postfixes of π.

Definition 10. Basic Cylinder of a DTMC
For any finite path π of a DTMC, the set Pathinfin(π) of infinite postfixes of π, the

basic cylinder is defined as

∆(π) = {ρ ∈ Pathinfin(π)|π is prefix of ρ}

This basic cylinder is used to define the probability space for a DTMC as in Def. 11. It
defines a probability measure for the infinite continuations of a finite path of a DTMC.

Definition 11. Probability Space of DTMC Model
For τDTMC = (S, p, AP, L, so) and s ∈ S, the probability space Υdtmc is defined as:

Υdtmc = (∆(s),∆s, probs)

such that

• ∆s is the σ-algebra generated by the empty set and the basic cylinders over S that
are contained in ∆(s).

• probs is the uniquely induced probability measure which satisfies the following:
probs(∆(s0)) = 1 and for all basic cylinders ∆(s0, s1, . . . , sn) over S:

probs(∆(s0, s1, . . . , sn)) = p(s0, s1) · p(s1, s2) · . . . · p(sn−1, sn)
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The probability measure is defined over the basic cylinders of finite paths. The path
starting in s0 of length one, therefore has probability 1. For every finite path, the
probability of its basic cylinder is defined as the product of the probabilities to reach
the respective successor states on the path in the sequence they appear on it.
This definition is sound, as from the definition of a DTMC it is known that from every

reachable state there is always a successor state. This means that from every reachable
state s there exists a continuation with probability 1 and no deadlock is possible. So for
a finite path ending in state sn, the basic cylinder ∆(sn) is the set of all possible infinite
continuations. Therefore the probability that a successor of sn exists on any of those
continuations is 1.

Definition 12. Probability Measure for Paths of an Adversary
For each possible adversary A, a probability measure PrAs can be defined by considering

a variant of DTMC with infinitely many states τDTMC∞ = (PathAfin(s), T, P r
A
s , AP, L, s)

where

• the set of states PathAfin(s) are the finite paths starting in state s

• initial state s, the path starting in s with length 0

• PrAs (ω, ω
′) = p(sn, s) if ω = s0(a0, p0)s1 . . . sn, ω

′ = ω(a, p)s and A(ω) = (a, p)

• PrAs (ω, ω
′) = 0 otherwise

This probability measure for paths of an adversary is used to specify the probability
space of a MDP. Every adversary corresponds to an infinite sequence of non-deterministic
choices which projects a MDP to an infinite state DTMC. The states of this DTMC
represent the finite paths starting in the state s. As there is an infinite number of finite
paths in the MDP, there are infinitely many states in the DTMC. If sn is the last state of
such a finite path, then the probability to reach a state s′ from sn is defined as P (sn, s

′)
where P is the probability distribution chosen by the adversary at step n.

Definition 13. Probability Space of a MDP
For τMDP = (S,Steps, AP, L, s0), an adversary A and s ∈ S, the probability space

ΥA
mdp is defined as:

ΥA
mdp = (PathAinfin(s),Σ

A
s , P r

A
s )

such that

• ΣA
MDP is the σ-algebra generated by the empty set and the infinite paths of the

associated (countable) infinite state DTMC τDTMC∞ = (PathAfin(s), P r
A
s , AP, L, s)

in Def. (12)

• PrAs is the uniquely induced probability measure as defined in Def. (12) such that
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– PrAs (Path
A
infin(s)) = 1

– for a finite path ω = s0(j0, p0) · · · sn(jn, pn)sn+1 :

PrAs (Path
A
infin(ω)) =

n−1
∏

i=0

A(ω)(si+1)

So to compute the probability of the paths of a MDP, at first all non-deterministic
choices are resolved. This is done by choosing a specific adversary. This results in
an infinite-state DTMC for which a probability measure can be defined as shown in
Def. 11. As there are infinitely many possible adversaries, it is not possible to compute
the probability for all. Realistically only two choices for adversaries are of interest, the
“worst-case” and the “best-case” adversary5. A more detailed explanation about this is
given in Section 3.4.

3.3.3. Qualitative Formal Model

For some analyses, probabilistic information is not relevant or desired. Reasons for this
are that the analysis itself does not make use of the probabilistic information or that the
computation of the associated probabilities does not provide an advantage. An analysis
without probabilistic information is called qualitative. An example for such a qualitative
analysis would be the question: “Is a state s reachable from the initial state of a SAML
model?”. This is the same as computing the probability to reach the state s from the
initial state and using only the information that the probability is non-zero6.
One prominent advantage of qualitative in contrast to quantitative analyses is that

they are easier and therefore less costly to compute. The reason is mainly that no
arithmetic operations must be conducted and the state space can be represented in a
more compact way. Therefore it is reasonable not to use quantitative analyses if an
equivalent qualitative analysis method exists. This is supported in SAML by exploiting
the fact that every MDP has an associated Kripke structure which forms the basis for
qualitative analyses. The following definitions (14)-(16) are adapted from Clarke et
al. [CGP00] (pp. 14-15).

Definition 14. Kripke Structure
A Kripke structure over a set AP of atomic propositions is a tuple

τKripke = (S, S0, T, L, AP )

with

5What the worst and best case is depends of course on the type of probability that is computed. For
safety analysis the worst case is a higher probability of the occurrence of a hazardous situation.

6There are cases where an infinite path exists but has probability 0, this will be discussed in Section 3.4.
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• S a finite, non-empty set of states

• S0 ⊆ S a set of initial states

• T ⊆ S × S a total transition relation, i.e. for each state s ∈ S there is a state
s′ ∈ S such that (s, s′) ∈ T holds

• L : S → 2AP is a mapping that labels each state s ∈ S with a subset of the atomic
propositions that hold in this state (all others are false)

The composition of a Kripke structure is similar to a MDP. It consists of a finite set
of states, a labeling function and a set of atomic propositions. The difference here is the
existence of a transition relation instead of a Steps function. The transition relation
eliminates the probability distributions and only non-deterministic behavior is retained.
Due to this similarity, paths (Def. 15) and traces (Def. 16) of a Kripke structure can be

defined analogously as for MDPs. The only difference is the absence of the probability
distributions in the definition of a path.

Definition 15. Path of a Kripke Structure
A path π of a Kripke structure τKripke is a finite or infinite sequence of states si ∈ S,

s0 ∈ So with (si, si+1) ∈ T of the form

π = s0, s1 . . .

Definition 16. Trace of a Kripke Structure
A trace σ of path π = s0, s1 . . . of a Kripke structure τKripke is the word over the

alphabet 2AP , generated from

σ(π) = L(s0)L(s1) · · ·

Every SAML model has an embedded Kripke structure, which has the same state
space and transitions as the underlying MDP. This Kripke structure defines the quali-
tative semantics of a SAML model. It is obtained by eliminating the probabilistic but
keeping the non-deterministic behavior of the SAML model.

Definition 17. Embedded Kripke Structure
Let κ(τMDP ) be a mapping of the MDP

τMDP = (S,Steps, AP, L, s0)

to a tuple (S, {s0}, T, L, AP ) with

T := {(s, t)|s, t ∈ S ∧ ∃(j, p) ∈ Steps(s) : p(s, t) > 0}

then τKripke = (S, {s0}, T, L, AP ) is called the embedded Kripke structure of τMDP .
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The embedded Kripke structure of a MDP is constructed by abstracting from the
probabilities by the introduction of additional non-deterministic choices. All those pairs
of states s, s′ for which a probability distribution exists such that p(s, s′) > 0, the pair
(s, s′) is included in the transition relation of the embedded Kripke structure.
Formally every discrete probability distribution is therefore replaced by a set of proba-

bility distributions. For each probability distribution p′ in this set p′(s, s′) = 1 for which
p(s, s′) > 0 held in the original MDP and p′(s, t) = 0 for every state t for which no
probability distribution with p(s, t) > 0 existed in the MDP. Formally, this results in a
set of probability distributions where each successor state is reached with probability 1.
The choice which probability distribution is used and therefore which successor state is
reached is made non-deterministically. When this transformation is conducted for each
probability distribution, all probabilistic behavior is transformed to non-deterministic
behavior resulting in a proper Kripke structure (Lemma 1).

Lemma 1. Embedded Kripke Structure
Let τKripke = κ(τMDP ) be the tuple τKripke = (S, {s0}, T, L, AP ) as defined in Def. 17,

then τKripke is a Kripke structure.

proof see p. 167
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Figure 3.5.: Mapping of the state space of the MDP in Fig. 3.4 to a Kripke structure

An example of the mapping of the example SAML model shown in Fig. 3.3 onto
its embedded Kripke structure is presented in Fig. 3.5. Unsurprisingly its structure is
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basically equivalent to the state space of the MDP in Fig. 3.4. The differences are the
edge labels without probabilities and the merging of transitions between the same states
but from different probability distributions.
This structural similarity is exploited in Lemma 2 which shows that the set of paths

generated by a MDP τMDP when projected onto the state sequences is equivalent to the
set of paths of the embedded Kripke Structure.

Lemma 2. Embedded Kripke Structure Path Equivalence
Let ρ be the projection of a path of the MDP of the form ω = s0(j0, p0)s1 . . . to a state

sequence π of the form π = s0s1 . . ..
Then the diagram in Fig. 3.6 is commutative, i.e. Paths(κ(τMDP )) = ρ(Paths(τMDP )).

proof see p. 167

MDP

Paths(MDP)

Paths Paths

Kripke
structure

Paths

κ

ρ

Figure 3.6.: Mapping of MDP Paths to Kripke Structure Paths

This means that for each path of the MDP when it is projected onto its sequence
of states, there exists an analogous path in the set of paths of its embedded Kripke
structure. Conversely, every path π of the embedded Kripke structure corresponds to
a path of the MDP whose projection onto the state sequence is equivalent to π. A
corollary of this is that the set of traces generated by a MDP and its embedded Kripke
structure are the same.

Corollary 1. Embedded Kripke Structure Trace Equivalence
A MDP τMDP and its embedded Kripke structure τKripke = κ(τMDP ) are isomorphic

wrt. their set of traces.

proof see p. 168

Therefore every qualitative assertion on the sequence of labellings of a trace of the
MDP holds if and only if there exists a trace of its embedded Kripke structure on which
it holds. This forms the sound basis to conduct a qualitative analysis of properties of
the MDP on its embedded Kripke structure. These properties can often be formulated
conveniently using temporal logic formulas.
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3.4. Temporal Logics

Temporal logic is well applicable to formalize properties of a MDP or a Kripke structure
in such a way that they can be checked automatically. Temporal logic was introduced by
Pnueli in [Pnu77]. Since then, different variants have been developed, varying in their
degree of expressiveness and suitability for automatic proving. Temporal logic allows to
specify properties of systems which change over time. The two most important classes
of properties for temporal logics (originally introduced by Lamport in [Lam77]) which
are used for analyses in SAML are:

• Liveness properties: “Something will eventually happen”

• Safety properties: “Something will never happen”

Liveness properties are often of importance where functional properties of a system
should be verified. Safety properties are used for model-based safety analysis in the form
of: something bad will never happen. For the SAML framework, only decidable logics
are of interest which can efficiently be checked using automatic analysis techniques.
More expressive logics which are often undecidable can be used with interactive proof
systems for state-based models like SAML. One example using a first order variant of
Interval Temporal Logic (ITL) is described by Thums et al. in [TOWS04]. Nevertheless,
these are often of limited practical value, as the resulting proof obligations are too
numerous even for small examples. In addition, to conduct such a proof, an expert
in the domain of interactive theorem proving is needed and the goal of SAML is the
integration into industrial tools and development processes which requires automation
as much as possible.
Similar to the definition of the semantics of SAML models, different temporal logics

for the specification of qualitative and quantitative properties are employed.

3.4.1. Syntax and Semantics of CTL*

Analogous to the traces generated by the labeling of the paths of a MDP, temporal logic
formulas also describe traces. The qualitative computation tree logic CTL* formalizes
the behavior of a system as a computation tree with the initial state at its root. Whenever
a system has different possibilities to continue on a path, there are several successor
child nodes in the tree. A CTL* formula holds in a MDP τMDP , if the traces that τMDP

describes are a subset of the traces that the formula describes. CTL* uses the modal
operators “Always” (A ) and “Exists” (E ) and the temporal operators “Globally” (G ),
“Finally” (F ) and “Next” (X). The following definitions (18)-(21) for the syntax and
semantics are adapted from Clarke et al. [CGP00] (pp. 27-32).

Definition 18. Syntax of CTL*

• If p ∈ AP , then p is a state formula.
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• If φi and φ2 are state formulas, then ¬φi, φi ∨ φj and φi ∧ φj are state formulas.

• If φ is a path formula, then Eφ and Aφ are state formulas.

• If φ is a state formula, then φ is also a path formula.

• If φi and φj are path formulas, then ¬φi, φi ∨ φj, φi ∧ φj, Xφi, Gφi and φiUφj

are path formulas.

In the case of SAML, the atomic propositions of the set AP generally are Boolean
expressions over the values of the state variables of SAML modules. Note that in
contrast to SAML models, there is currently no parser developed for the proof obligations
and these have to be specified manually in the required format. Nevertheless, such an
implementation would be rather straightforward.

Definition 19. Semantics of CTL*
Let τKripke be a Kripke structure, φ denote state and ψ path formulae and πi denote

the suffix of the path π starting in the state si, then the CTL* semantics is defined as:

τKripke, s |= p ⇔ p ∈ L(s)

τKripke, s |= ¬φ ⇔ τKripke, s 6|= φ

τKripke, s |= φ1 ∨ φ2 ⇔ τKripke, s |= φ1 or τKripke, s |= φ2

τKripke, s |= φ1 ∧ φ2 ⇔ τKripke, s |= φ1 and τKripke, s |= φ2

τKripke, s |= Eψ ⇔ there is a path π from s such that τKripke, π |= ψ

τKripke, s |= Aψ ⇔ for every path π starting from s : τKripke, π |= ψ

τKripke, π |= φ ⇔ s is the first state of π and τKripke, s |= φ

τKripke, π |= ¬ψ ⇔ τKripke, π 6|= ψ

τKripke, π |= ψi ∨ ψj ⇔ τKripke, π |= ψi or τKripke, π |= ψj

τKripke, π |= ψi ∧ ψj ⇔ τKripke, π |= ψi and τKripke, π |= ψj

τKripke, π |= Xψ ⇔ τKripke, π
1 |= ψ

τKripke, π |= Fψ ⇔ ∃i ≥ 0 : τKripke, π
i |= ψ

τKripke, π |= Gψ ⇔ ∀i ≥ 0 : τKripke, π
i |= ψ

τKripke, π |= ψ1Uψ2 ⇔ ∃i ≥ 0 : τKripke, π
i |= ψ2

∧∀j < i : τKripke, π
j |= ψ1

The distinction of state and path formulas in CTL* allows for the specification of two
commonly used subsets, namely CTL (computation tree logic) and LTL (linear time
logic). The advantage of using one of these logics is that for both these logics, automatic
model-checking algorithms and tool implementations exist. These are more efficient than
full CTL* model-checking. More details of the algorithms can be found for example in
McMillan [McM90] (pp. 35-40) or Clarke et al. [CGP00] (pp. 35-51 and pp. 61-97).

41



3. Formal Basics

Definition 20. Computation Tree Logic (CTL)

CTL is the subset of CTL* in which each modal operator is immediately followed by
a temporal operator and each temporal operator is preceded directly by a modal operator.

Definition 21. Linear Time Logic (LTL)

LTL is the subset of CTL* in which no modal operators are allowed.

These two logics do have a common subset of properties, but for each there exist
properties which can be specified in one but not in the other and vice versa. In addition
there are properties that are expressible in CTL* but in neither LTL or CTL alone. For
a more detailed discussion about this see for example Maidl [Mai00].

For the usage for the safety analysis methods presented in Chapter 5, either LTL
or CTL is used. Full CTL* is only used to prove certain properties of the analysis
techniques, but not for the automatic proofs for safety analysis. These are checked
using efficient model-checking tools for safety analysis in SAML.

3.4.2. Syntax and Semantics of PCTL

The previous logics allow for the specification of qualitative properties of a system,
i.e. refer to the semantics of the embedded Kripke structure of a MDP. In order to
specify quantitative properties, the probabilistic variant probabilistic computation tree
logic (PCTL) is used. The syntax and semantics definitions (22)-(24) are derived from
Hansson and Jonsson [HJ94]. PCTL allows to formalize properties like:

• “The probability that something will eventually happen is higher than p.”

• “The probability that something will never happen is at least p.”

Definition 22. Syntax of PCTL

• If p ∈ AP , then p is a state formula.

• If φi and φ2 are state formulas, then ¬φi, φi ∨ φj and φi ∧ φj are state formulas.

• If φ is a path formula, then [φ] p with ∈ {≤, <,≥, >} and p ∈ [0, 1] is a state
formula.

• If φ is a state formula, then φ is also a path formula.

• If φi and φj are path formulas, then ¬φi, φi ∨ φj, φi ∧ φj, Xφi, Gφi, φiUφj and
φiU

≤kφj are path formulas.
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Definition 23. Semantics of PCTL
Let τMDP be a MDP, φ denote state and ψ path formulae and πi denote the suffix of

the path π of the MDP starting in state si, then the PCTL semantics is defined as:

τMDP , s |= p ⇔ p ∈ L(s)

τMDP , s |= ¬φ ⇔ τKripke, s 6|= φ

τMDP , s |= φ1 ∨ φ2 ⇔ τKripke, s |= φ1 or τKripke, s |= φ2

τMDP , s |= φ1 ∧ φ2 ⇔ τKripke, s |= φ1 and τKripke, s |= φ2

τMDP , s |= P [ψ]∼p ⇔ for all adversaries A: ProbA(s, φ) ∼ p

ProbA(s, ψ) := PrAs {π ∈ Pathsinf(s) :

τMDP , π |= ψ}

with ∼∈ {>,≥, <,≤} (3.4)

τMDP , π |= φ ⇔ s is the first state of π and τMDP , s |= φ

τMDP , π |= ¬ψ ⇔ τMDP , π 6|= ψ

τMDP , π |= ψi ∨ ψj ⇔ τMDP , π |= ψi or τMDP , π |= ψj

τMDP , π |= ψi ∧ ψj ⇔ τMDP , π |= ψi and τMDP , π |= ψj

τMDP , π |= Xφ ⇔ τMDP , π
1 |= φ

τMDP , π |= Fψ ⇔ ∃i ≥ 0 : τMDP , π
i |= ψ

τMDP , π |= Gψ ⇔ ∀i ≥ 0 : τMDP , π
i |= ψ

τMDP , π |= ψ1Uψ2 ⇔ ∃i ≥ 0 : τMDP , π
i |= ψ2

∧∀j < i : τMDP , π
j |= ψ1

τMDP , π |= ψ1U
≤tψ2 ⇔ ∃i, 0 ≤ i ≤ t : τMDP , π

i |= ψ2 ∧

∀j < i : τMDP , π
j |= ψ1 (3.5)

The main difference to the qualitative logic CTL is the quantification over paths. In
CTL, there exist the modal operators A and E . In PCTL these are generalized by a
probability threshold. These quantitative aspects of a PCTL formula can be computed
as shown in Eq. (3.4). It is defined that with probability p′ := ProbA(s, φ) a given
formula holds in the MDP and for a threshold value p, a relation of the form p′ ∼
p, (∼∈ {>,≥, <,≤}) holds for all possible (infinitely many) adversaries A. As already
mentioned, the computation of infinitely many is not possible. Fortunately it is possible
to compute the explicit probabilities that a PCTL formula holds for two very important
adversaries. These two adversaries are the “best-case” and “worst-case” and lead to the
minimal and maximal probabilities that a given PCTL formula holds.

Definition 24. Minimal / Maximal Probability of a PCTL Formula

Pmin[φ] := min{PrA{π ∈ Pathsinf(s0) : τMDP , π |= φ}, adversary A}
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Pmax[φ] := max{PrA{π ∈ Pathsinf(s0) : τMDP , π |= φ}, adversary A}

The logics CTL and PCTL are closely related and a lot of properties are expressible
in both logics. An important difference are formulas of the form EGφ which are not
directly translatable into PCTL as Pmax[Gφ]>0, although this seems quite obvious.
The reason for this is that is possible that a path exists on which φ holds globally, but

this path has a probability of 0. An example for this is the MDP in Fig. 3.7. Assume
the proposition q holds in state 0 but not in state 1, i.e. q ∈ L(0) but q 6∈ L(1). Then
EG q holds as there exists a loop from state 0 to itself. But if p < 1 the probability to
stay in state 0 forever is limn→∞ pn = 0, therefore Pmax[Gφ]>0 does not hold.

0: (1-p)

0: 1

0: p

1

0

Figure 3.7.: Example MDP for EGφ 6≡ Pmax[Gφ]>0

Further discussions on different temporal logics for quantitative and qualitative as-
pects of MDPs and their relation to each other are described for example by Huth and
Kwiatkowska [HK98] and Chatterjee et al. [CdAFL09]. For the safety analysis meth-
ods introduced in this dissertation, CTL/LTL and PCTL are sufficient. They have the
advantage that efficient and robust formal analysis tools exist for property verification.

3.5. Graphical Representation of SAML Models

Although the formal semantics is based on the textual representation of SAML models,
it is often very convenient and more comprehensible to represent a model in a graphical
way. MDPs and Kripke structures have already been represented in a similar way in
Fig. 3.4 and Fig. 3.5.
These diagrams showed the complete state-space of a model. As SAML is specified

using parallel finite state automata, an informal graphical notation for parallel automata
can be used to represent the parallel modules. This notation is well suited for a first
conceptual expression, before a SAML model is developed, or to visualize such a model.
A SAML model is visualized as its parallel single modules. The state of each module is

represented as a node of a directed graph, each node represents one valuation of all state
variables of the module. A directed edge from one state s to a small filled intermediate
node corresponds to a non-deterministic choice of a probability distribution. The labeling
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Figure 3.8.: Graphical Representation of the Example Model

of the edges is the corresponding activation condition7. The directed dashed edges from
an intermediate node to a state s′ are labeled with the probability to reach the state s′

from state s.

In Fig. 3.8 the graphical representation of the SAML model of Fig. 3.2 is shown. It
consists of the two parallel finite state modules a and b. Each possible state of a module
is represented as a node of a directed graph. As the module a consists of only a single
state variable, each state holds only one value. Module b consists of two state variables,
its states therefore hold a vector of values of the form (v_b1, v_b2). The initial state
of a is indicated via the thicker boundary and has the value 0, the initial state of b is
(0, 0). For this graphical notation it is often more convenient to use symbolic names for
the values of a state variable instead of integers. This notation will be used in many of
the presented examples in the following chapters.

3.6. Related Work

The TopCased project is a large open source approach to build a modeling framework
for different modeling languages for software and systems modeling. The approach is
described by Vernadat et al. in [VPF+06]. Target input languages are SysML [Sys08],
UML [Gro06] and the Architecture analysis and design language (AADL) [SA04]. One
aspect of TopCased is to allow for the formal analysis of these models. The approach here
is to use the language FICARE as an intermediate language which is described by Fairail
et al. [FGP+08]. Models specified in the modeling framework are then transformed into
FIACRE as intermediate language. From there models are transformed into the input

7The parts of the activation condition that refer to the values of the state variables of the current
module are left out. This constraint is implicitly fulfilled by the source node of an edge.

45



3. Formal Basics

language of different analysis tools like the CADP toolbox developed at INRIA and
described by Fernandez et al. [FGK+96] or the TINA petri net analyzer described by
Berthomieu et al. in [BaFV04].

Some of the problems arising from the approach taken in the TopCased project are
described by Farail et al. [FGP+08]. The modeling framework provides so many modeling
artifacts, that the resulting FIACRE models are often too complex for the analysis.
Effectively only very small examples can be analyzed at the moment. Mainly structural
aspects can be verified. SAML has deliberately been kept as simple as possible to
prevent such a situation.

Harel’s Statemate state-charts [HN96] provide a well-defined formal semantics and
have a reduced set of modeling artifacts compared to TopCased models. They can
therefore be used for qualitative formal analysis of the modeled systems. In Thums et
al. [TOWS04] the interactive theorem prover KIV is used for verification. In Chan et
al. [CAB+01] and Clarke and Heile [CH00], automatic model-checking techniques are
used. In the AVACS [AVA03] project, Böde et al. [BPRW08a] developed a state-chart
extension with probabilistic behavior and used it for safety analysis. The resulting
model is transformed into a labeled transition system and minimized with bisimulation
techniques using the CADP [FGK+96] toolbox. The final transition system is then
analyzed with the MRMC [KKZ05] probabilistic model-checker of Katoen et al. [KKZ05].

Maybe the most elaborate framework especially for the specification of safety-critical
systems and model-based safety analysis is developed in the Correctness, Modeling and
Performance of Aerospace Systems (COMPASS) project [BCK+09a] described by Boz-
zano et al. [BCK+10b]. It combines both qualitative and quantitative modeling capa-
bilities via a formalization of a subset of AADL [SA04] and its error annex [SA06]. The
quantitative analysis is then conducted using the MRMC model checker.

The developed language is called SLIM [BCK+09b]. Models in SLIM can contain hy-
brid continuous behavior, the failure modeling can contain continuous time failure rates.
There is a strict discrimination between the nominal behavior (without occurrence of
failures) and the failure behavior. One drawback here is that it is not possible to specify
probabilistic nominal behavior, but only probabilistic failure behavior. Probabilistic be-
havior can often be used to specify realistic environment models which is very important
for safety analysis as safety-critical system cannot be examined in isolation. In Chapter
4 the usage of probabilistic behavior in SAML to model realistic environment for both
nominal and failure behavior will be presented.

Both approaches use a continuous time model which, according to Hermanns et
al. [HKMKS00], is well suited for asynchronous interleaved systems. Many safety-critical
systems are developed using synchronous parallel components, SAML is based on dis-
crete time synchronous parallel semantics. Of course, modeling asynchronicity is possible
in SAML , but must be done explicitly. In addition, probabilistic discrete time modeling
is an advantage if different failure types must be modeled. This is explained in more
detail in Chapter 4.
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Summary

This chapter introduced the syntax and formal semantics of the SAML framework. It de-
scribes synchronous parallel automata which can have a combination of non-deterministic
and probabilistic transitions. This allows for the expression of both quantitative models
and also purely qualitative ones. The underlying formal semantics are Markov Decision
Processes (MDP). Properties are expressed as temporal logics formulas. Qualitative
properties in LTL or CTL and quantitative properties in PCTL. Any SAML model
can be abstracted to a purely qualitative model by the transformation into its embed-
ded Kripke structure. This allows for the analysis of both qualitative and quantitative
properties of a SAML model.
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On two occasions I have been asked: “Pray, Mr.
Babbage, if you put into the machine wrong figures,
will the right answers come out?”
I am not able rightly to apprehend the kind of
confusion of ideas that could provoke such a
question.

(Charles Babbage)

This chapter describes how models for safety analysis can be constructed using SAML.
These models generally consist of modeling of hardware, software and the surrounding
environment and are called extended system models. Correct environment modeling is
very important for accurate safety analysis, as the safety of a system cannot be under-
stood in isolation of its surroundings. Important aspects of the environment modeling
are general physical behavior and especially accurate modeling of different kinds of fail-
ure modes and their effects.
Section 4.1 gives a motivation for a general guideline for the creation of SAML sys-

tem models for safety analysis. Section 4.2 introduces a case study (taken from safety
analysis literature) which will be used for illustration purposes throughout the disserta-
tion and to illustrate SAML modeling for safety analysis. Section 4.3 shortly describes
the approaches for hardware and software modeling in SAML. Section 4.4 describes the
approach for realistic probabilistic environment modeling in SAML and Section 4.5 de-
scribes correct and accurate failure mode modeling which is essential for safety analysis.
Some related work is discussed in Section 4.6.
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4.1. Motivation

To conduct a realistic model-based safety analysis, a meaningful modeling of the sys-
tem under consideration is necessary. Especially if an accurate quantitative analysis is
desired, the precision of the analysis result depends heavily on the accuracy of the mod-
eling. Safety analysis cannot be conducted in isolation, but the environment into which
the system is embedded always has to be considered too, as it often strongly influences
the possible behavior.
In general, a formal system model of a software-intensive system will include software

and hardware components as well as a model of the environment. Hardware components
are often sensors and actors that the software uses to get information about the current
environment and to make the system react to it. The environment model specifies the
behavior of the surroundings of the system that influence it directly or indirectly.
When a model is built consisting of these aspects, it is possible to verify the functional

correctness of a system. This means that the system works as intended and fulfills its
specification. For a safety-critical system, the analysis of functional correctness alone is
not sufficient. The assumption that all components work according to their specification
is in general wrong as different components may fail. Therefore the most important
question for safety analysis is:

“How safe is the system, if one or more components do not behave according
to their specification?”

To answer this question, the potential occurrence of faulty behavior of components and
also the effects of this misbehavior must also be modeled accurately and be integrated
into the formal system model. When the faulty behavior is integrated into a SAML
model, it is called the extended system model. Qualitative and quantitative safety
analyses can be conducted on an extended system model expressed in SAML. With the
construction presented in this chapter, it is possible to integrate different types of failure
modes while preserving the functional correctness of the system model.
Fig. 4.1 shows the general structure of an extended system model for model-based

safety analysis. The software model interacts with the hardware model, reading and
processing inputs and emitting control commands. The interaction of the software with
the environment is generally indirectly via the hardware model. Actors and sensors
are influenced by the physical environment model. All hardware components can be
influenced by the occurrence of component failures and their effects specified by the
failure model.
Very often there will not be a one-to-one correspondence between SAML modules

and one of these aspects. But on the conceptual level, all those aspects are required for
an accurate model-based safety analysis. This allows for giving some general modeling
guidelines for both environmental and failure mode modeling in SAML which will often
be helpful in the analysis of safety critical systems.
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Figure 4.1.: Structure of a SAML Model for Safety Analysis

The second part of the extended system model is the modeling of the failure modes
and erroneous behavior of the system. The occurrence of the failure modes is specified
by occurrence probabilities (for per-demand failure modes) or failure rates (for per-
time failure modes). The effect of the failure mode occurrence is modeled as additional
possible behavior of the system on top of the functional model.

4.2. Example Case Study

The construction of SAML models for model-based safety analysis is illustrated with a
case study originally proposed by Walker et al. [WBP07]. It will be used to illustrate
the necessary steps to create an extended system model and will serve to illustrate the
formal safety analysis presented in Chapter 5.
The case study is a generic system with built-in hot-spare redundancy. If the primary

system operation is not possible anymore, the system enters a degraded mode as sec-
ondary operational mode. The system processes a measured input signal and produces a
resulting output signal. Redundancy is used to increase the dependability of the system.
A first purely qualitative modeling and analysis of this case study has been presented
in [GOR08], quantitative modeling and analysis in [GO10b]. A schematic view of the
case study is depicted in Fig. 4.2.
The case study consists of two redundant input sensors (S1 and S2) measuring the

input signal (I). This signal is then processed in an arithmetic unit to generate the
desired output signal. Two arithmetic units exist, a primary unit (A1) and its backup
unit (A2). The primary unit reads the input signal from both input sensors, the backup
unit only from one of the two sensors. If the primary unit produces no output signal,
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Figure 4.2.: Schematic View of Example Case Study [GOR08]

then a monitoring unit (M) switches to the backup unit for the generation of the output
signal. The backup unit will only produce an output signal if it has been triggered by
the monitor. If the secondary unit is triggered, the primary unit will get switched off.
The system is functionally correct if it delivers a correct output signal. It is easy to

imagine that if such a system is used in a safety-critical environment, a malfunctioning
(omission of values) could be very dangerous and the system can become safety-critical.
Therefore the redundancy and the degraded mode have been integrated.

4.3. Hardware and Software Modeling

For safety analysis, the first step is to construct a model of the functional behavior of
the system. This functional system model specifies the intended behavior of the system
under consideration and is used to verify the functional correctness of the system, proving
that it works as intended. The modeling of hardware and software forms the basis for
such functional formal models expressed in SAML. It defines the basic behavior of the
modeled system and its reaction to and its influence on its surrounding environment. To
get the most accurate analysis results, it is important to analyze a system model which
behaves as similar as possible as the system under consideration.

4.3.1. Software Modeling

For formal model-based safety analysis, most often software will be specified in an ab-
stract way. Not every detail of the algorithms will be modeled, only the most important
concepts. The reason for this is firstly the fact that fine-grained software specifications
would increase the state space enormously, making an analysis very difficult or even
impossible. Secondly, the correctness of the algorithms and the software specification
can better be assured using other techniques than model-checking, e.g. interactive the-
orem proving, as this is often undecidable or requires infinite state spaces. Thirdly and
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most important, the main interest in safety analysis is the combination of hardware,
software and its behavior in a (possibly failing) environment. For such an analysis the
implementation details are not of interest, but only the important effects1 of the im-
plemented software. Therefore abstract specifications of software are generally used in
SAML models which show primarily these intended effects.

4.3.2. Hardware Modeling

The hardware model of a formal SAML model will most often represent the interface
of the system under consideration to its surrounding physical environment. This typi-
cally consists of sensors and actors. Sensors are used to get feedback from the physical
environment of the system. Depending on this feedback, the system changes its internal
state according to its software specification. Actuators are then used to influence the
environment according to the changed system state.
Depending on the system under consideration, the hardware model may also consist

of additional aspects. Examples for this are aspects which define the spatial structure
of a system and therefore the possible interactions of different components. Other pos-
sible aspects are for example general technical modeling of aspects like communication
channels and component interfaces.

4.3.3. Case Study Model

One component of the example case study which reads input from hardware (sensors)
and acts according to a (simple) software specification is the model of the secondary
arithmetic unit (A2). Its modeling is shown in Fig. 4.3. Initially it is in state idle, i.e.
a hot stand-by state where no output is produced. It stays in this state until it gets
activated (predicate activate is true) by the monitoring unit. It then is in state sig,
as long as there is data available (the predicate signal holds which means sensor S2
produces data). If there is no data available, the unit enters the state noSig, as no signal
can be produced. If the sensor starts delivering data again, A2 switches back to state
sig. Here the software controls the different states of the A2 unit, the hardware model
consists of the sensors that deliver the data and the production of the output signal of
the system from the arithmetic units.
The whole functional system model of the case study consists of 5 parallel SAML

modules. One for each of the two sensors that indicates whether the sensor delivers a
signal, one for the primary arithmetic (A1) unit and one for the monitoring unit that
detects when A1 fails to deliver a signal and activates A2. The functional system model
is then the parallel composition of these five SAML modules. The functional correctness
of the system can be verified by proving that there is always an output signal produced
once the system enters its normal operating mode.

1Most often the change of the internal state of the system.
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Module arith2 / arith2
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Figure 4.3.: SAML Module of Second Arithmetic Unit

4.4. Physical Environment Modeling

The accuracy of the physical environment modeling is very important for the accuracy
of the analysis of a SAML model. Physical behavior can often be described in ways
of measurable units and the rate of change of these units. In mathematical terms,
measurable units are described as functions and the rate of change of these units is
described as the derivations of these functions. An often used example of this in physical
environment modeling is the function from time to space which describes the position at a
given time. Its derivation is the velocity and its second derivation is the acceleration (for
an example using this type of environment modeling see Section 7.1). Other physical
behavior can often be modeled analogously, but it is important to note that SAML
models are discrete and values can only use finite domains, so all continuous values have
to be discretized.

4.4.1. Temporal Resolution

To model physical behavior realistically, the correct interpretation of the passing of time
and its correct integration into the model is of biggest importance. In SAML, a discrete
time model is used. In such a context, there exists a basic time unit which passes
whenever the system performs a step (i.e. all parallel finite state machines execute an
update rule).
This means that whenever the state variables change, the same amount of time passes

for all modules. This basic unit is called the temporal resolution ∆t of the system.
In synchronous parallel systems this will usually be a basic system clock2. All time-

2This basic system clock is not equal to the CPU clock of a system, but most often a (large) multiple
thereof.
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dependent SAML modeling, physical behavior modeling of the environment model and
especially the failure mode modeling is done relative to ∆t.

Definition 25. Temporal Resolution of a SAML model

The amount of time ∆t that passes at each time-step of a SAML model is called the
temporal resolution. In general its unit is given in seconds or fractions thereof.

The value of ∆t is very much system-dependent. As it defines the basic system clock,
it must be chosen accordingly to the abstraction level of the software and hardware
modeling (e.g. the sensor reading frequency). Some discussion on the effect of ∆t for
a formal system model is presented in Section 4.5.2 on formal failure modeling and in
Section 5.3.3 on the interpretation of quantitative analysis results.

4.4.2. Case Study Model

In the functional system model of the case study, the core aspect of the physical modeling
is the frequency that input signals are read, processed and sent to the output. The
temporal resolution of the system is modeled as ∆t = 10ms, which means that the
signal frequency is 100Hz. The frequency of the hardware in the processing units of A1
and A2 would of course be higher, but as already mentioned, ∆t does not necessarily
correspond to the CPU clock of the system but is an abstract basic clock.

4.5. Failure Mode Modeling

After the construction of the functional system model and the modeling of the physical
environment, the most important step from the point of model-based safety analysis is
conducted: the accurate modeling of the failure modes. The basic idea is to integrate
the effect of the failure mode occurrence into the functional model. It is important to
do this in such a way, that the original behavior is still retained. For the formal model
this means that the functional correctness of the system model is retained although it
is extended with possible defective behavior. This assures that the later safety analysis
reflects properly the behavior of the system under consideration in the case of compo-
nent failures. This makes the presented modeling and integration of the failure modes
conservative. This concept was introduced by Ortmeier et al. in [ORS05], some exten-
sions can be found in [OGR07]. But until now this integration was limited to purely
qualitative failure mode modeling.

The identification of possible failure modes for a given system is not discussed here,
the existence of a set of relevant failure modes is assumed. Such a set is often given
directly for components for which the possible failure modes are known. Methods to
systematically find possible failure modes can also be applied, for example HaZop as
described by Kletz [Kle86].
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4.5.1. Qualitative Formal Failure Modeling

The basic concept is to separate the occurrence pattern of a failure mode from its
direct effects (based on [OGR07]). This allows for convenient modeling of failure modes
that affect different system components. The occurrence pattern of a failure mode
describes when a failure mode can appear and when or if it disappears again. It is
modeled orthogonally to the system model as a parallel SAML module. The effect of
a failure mode is modeled as the local effect of its occurrence and is integrated into
the system model itself, most often as new states and transitions. This general failure
mode modeling forms the basis for the quantitative failure mode modeling described in
Section 4.5.2.
The occurrence patterns are modeled as failure modules that signal the occurrence

or absence of a failure mode via the value of their state variable. This modeling can
be expressed in SAML by representing the qualitative failure module as an additional
parallel SAML module with non-deterministic behavior for each modeled failure mode.
Fig. 4.4 shows an example for a simple failure mode occurrence pattern as graphical
representation of a SAML module.

Module TransFails / transFails

no yes

1

true true

1

Figure 4.4.: Transient Failure Mode Occurrence Pattern

The state variable transFails signals the occurrence or absence of the failure mode.
The state variable has two possible values, no for the absence of the failure mode and
yes for its presence. Initially the failure mode is absent3. The failure mode in Fig. 4.4
is an example of a transient failure mode, i.e. the failure mode can become absent again
after its occurrence. This is realized by adding a non-deterministic choice with activation
condition true to both states of the state variable. This non-deterministic choice consists
of two probability distributions, both with exactly one successor state which is reached
with probability 1.

3If this is not intended, an additional start state must be modeled for all system modules
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A transient failure mode modeling is appropriate for example for sensor failures. A
sensor failure often results from a temporary disturbance which is reversible and therefore
the sensor can function correctly again afterwards.

yes

Module PersFails / persFails

no

1

true true

1

Figure 4.5.: Persistent Failure Mode Occurrence Pattern

In Fig. 4.5 a simple persistent failure mode modeling is shown. Once the failure
occurred, there is no possibility for the failure mode to disappear. This is realized
by allowing only a single non-deterministic choice from state yes which has only itself
as possible successor state. Such a persistent modeling is for example appropriate for
broken hardware which cannot become operational by itself again.

More complex qualitative failure mode models are possible using this modeling tech-
nique. Possible variants are repairable failures that get absent again after either some
time passes or an external repair occurs. Another possibility is to have failure modes
triggering others, thus modeling dependent failure modes like common-cause failures.
The drawback of this previous formal failure modeling described in [OGR07] is, that it
is purely qualitative. Any quantitative analysis has to be done a-posteriori using coarse
approximations. A big benefit of SAML is the possible extension to also include prob-
abilistic behavior directly in the failure modules. This allows for much more accurate
modeling and therefore analysis results than previously possible. The foundations for
quantitative failure mode modeling have first been introduced in [GO10b].

4.5.2. Quantitative Failure Mode Modeling

For accurate quantitative model-based safety analysis, probabilistic modeling of the
failure occurrence pattern is used in the extended system model. Accurate modeling of
the occurrence probabilities of the failure modes is essential as the accuracy of the safety
analysis results depends heavily on it. Two main types of failure probabilities exist. The
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first is per-demand failure probability, which is the probability that a system component
fails to deliver its function at a given demand (comparable to low demand mode in IEC
61508 [Lad08]). The second is per-time failure probability which is specified by a rate
of failures in relation to time (comparable to high demand or continuous mode in IEC
61508).
Which type of failure probability is best fitting for a given failure mode can only be

decided on a case-by-case basis. Transient sensor failures will very often be modeled as a
per-time failure mode, as they are active the whole time and a failure can always occur.
Other failure modes, like the activation of a mechanical device, will often be modeled as
a per-demand failure, as a clear moment of activation exists. Per-demand failures often
are of persistent nature4.

Per-Time Failure Mode Modeling

For per-time failure modes, the occurrence probability is specified by a failure rate. This
per-time failure rate λ specifies the parameter for the exponential distribution as shown
in Eq. (4.1). It is the expected value of occurrences of the failure mode in a given
time interval. P (X ≤ t) as in Eq. (4.1) describes the probability that the failure mode
appears before or at time t.

P (X ≤ t) =

∫ t

0

e−λtdt = 1− e−λt (4.1)

This distribution is often used for failure modes in continuous time models e.g. by
Grunske et al. [GCW07] and Bozzano et al. [BCK+10b]. Continuous probability distri-
butions are not directly expressible in a discrete time context as SAML. Nevertheless,
using the temporal resolution ∆t (see Def. (25)) it can be approximated using the ge-
ometric distribution as shown in Eq. (4.2). Here P (X ≤ k) computes the probability
that the failure mode occurs within the first k time-steps of length ∆t, i.e. within the
time t = k ·∆t.

P (X ≤ k) = 1− P (X > k) = 1− (1− p)k (4.2)

Using the identity ex = limn→∞(1 + x
n
)n the continuous exponential distribution can

be approximated with the discrete geometric distribution as shown in Eq. (4.3). For
longer time intervals, k approximates n and the smaller the basic time unit ∆t is, the
better this approximation becomes [GO10b].

1−e−λt = 1−limn→∞

(

1 +
−λt

n

)n

= 1−limn→∞

(

1−
λk∆t

n

)n

≈ 1−(1−λ∆t)k (4.3)

4But there exist of course other failure modes, which are transient and should be modeled as per-
demand probabilities resp. persistent failure modes, which should be modeled with per-time failure
rates.
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In SAML per-time failure mode occurrence patterns are modeled as failure mod-
ules as shown in Fig. 4.6 for transient (Fig. 4.6(a)) and persistent occurrence patterns
(Fig. 4.6(b)). These are similar to the SAML variants of the purely qualitative failure
modules. The main difference is that the non-deterministic choices in the failure mod-
ules in Fig. 4.4 and Fig. 4.5 are replaced with probabilistic transitions and the failure
state yes is reached with the probability pfails and the failure module stays in state no
with probability 1− pfails.

Module TransFails / transFails

no yes

pfails

true
true

1 − pfails

(a) Transient Per-Time Failure Module

no yes

Module PersFails / persFails

pfails

true
true

1

1 − pfails

(b) Persistent Per-Time Failure module

Figure 4.6.: Quantitative Per-Time Failure Mode Modeling

Combining the result of Eq. (4.3) and Eq. (4.2), λ∆t is an approximation for the prob-
ability pfails in a per-time failure module and is called the per-step failure probability.

Definition 26. Per-Step Failure Probability

For a per-time failure mode with a failure rate λ and the temporal resolution ∆t(both
with compatible time units) the per-step failure probability pstep is defined as:

pstep = λ∆t

Failure modes which are not exponentially distributed can often be modeled via an
approximation using a combination of multiple exponential distributions. Nevertheless,
single exponential distributions are often used for per-time failure mode modeling in
other safety analysis approaches as developed by Grunske et al. [GCW07], Bozzano et
al. [BCK+10b] and also by Raiteri et al. [CR05, BPRW08a].

One important case of non-exponentially distributed failure mode occurrence are per-
demand failure modes. In SAML it is possible to directly model per-demand failure
occurrence patterns in addition to per-time, which is currently not supported in these
other approaches.
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Per-Demand Failure Mode Modeling

Occurrence patterns for a per-demand failure mode are more difficult to model than for
per-time failure modes. It must be assured, that the failure effect can only appear at
the moment of a request to the safety-critical component. The basic idea is to define
a predicate demand for each possible per-demand failure mode. For each request, the
activation condition of the failure module for the per-demand failure mode is then this
demand predicate. This assures that the failure can occur only when the safety-critical
system is requested.
One problem with the direct application of this approach is that the occurrence of the

per-demand failure mode can only be observed one time-step after the demand. The
problem with this is that the effect modeling is dependent on the state of the failure
module. The observation of this state would then only be possible one time-step too
late.
Nevertheless, this problem can easily be solved as shown in Fig. 4.7 (for transient

failure modes). The idea is it to use the result of a previous probabilistic transition of
the failure module to signal whether the current demand can be met and to make the
current probabilistic transition in order to signal the outcome for the next demand. So
if ti specifies the time of the jth demand, a transition of the failure module at time tk
with k < i will decide the outcome at ti. The demand at time ti in turn will then decide
the outcome at some time tl where l > i.
To be able to cope with the very first demand, a new initial state is introduced to the

failure module, the state init5. The activation condition of the transition leaving init
is set to true which guarantees that this state is left in the first time-step. It reaches
state no with probability 1− pfails and state yes with probability pfails. The state that
is reached after this first transition decides the outcome for the first demand to the
possibly failing component. This general per-demand modeling for per-demand failure
modes is shown in Fig. 4.7 for a transient failure module and in Fig. 4.8 for a persistent
one.
Strictly speaking, this solution delays the occurrence possibility of a per-demand fail-

ure mode for one time-step after the beginning of a system run, as in the initial state
of the per-demand failure module there is no information whether the first demand will
succeed or not. If this is a problem, an additional start state for each module can be
added. If the transition leaving this start state has activation condition true and is
purely non-deterministic, i.e. has the probability 1 to reach any of the real initial states,
there is no change in the overall computed probability.
Another possibility is to use the per-demand failure mode integration as described

in [GO10b] and [GO10c]. This modeling introduces additional undecided states and
requires rather complex changes of the module in which the failure effect is modeled.
This potentially increases the state space and is much more difficult to conduct. In most
cases, the per-demand integration is feasible the way described here which is simpler

5Most often modeled with the numeric value −1.
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Module TransDemand / transDemand

no yes

init

1

¬demand

¬demand

1

demand
demand

true

1 − pfails pfails

Figure 4.7.: Transient Per-Demand Failure Automaton

Module PersDemand / persDemand

no yes

init

1

¬demand

1

demand

true

true

pfails1 − pfails

Figure 4.8.: Persistent Per-Demand Failure Automaton

than the outlined alternatives. Note, that this is a similar design choice to make for the
per-time failure mode modeling, where the failure modules are generally modeled with
no as initial state.

Case Study Model

These two different kinds of failure occurrence patterns are used for the modeling of the
case study. A variety of failures modes is possible, it is assumed that a list of the relevant
failure modes exists. The ones considered in the modeling and analysis are the following:
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The sensors can omit a signal (S1FailsSig, S2FailsSig), making it impossible for one of
the arithmetic units to process the data from the sensors correctly. The arithmetic units
themselves can omit producing output data (A1FailsSig, A2FailsSig). The monitor
can fail to detect that situation (MonitorFails), either switching if not necessary or not
switching if necessary. The activation of the A2 unit may fail (A2FailsActivate) although
the monitor sent the activation signal to A2. The failure occurrence patterns for these
six failure modes are integrated into the SAML model of the case study for its safety
analysis.

no yes

Module MonitorFails / monitorfails

true
true

1 − pMonitorFails pMonitorFails

Figure 4.9.: MonitorFails Failure Occurrence Pattern

Example of a Per-Time Failure Mode As an example of a per-time failure mode, the
modeling of the transient failure mode MonitorFails is presented. The per-time failure
module is shown in Fig. 4.9. At any system step, the failure may appear or disappear
depending on its per-step probability pMonitorFails.
The failure rate for the MonitorFails is assumed to be λMonitorFails = 1 · 10−6 1

h
which

translates to a per-step probability of pMonitorFails = 2.7778 · 10−12 for ∆t = 10ms.
The approximation errors for this per-time failure mode are shown in Fig. 4.10. in two
time-vs-error (time in ms) plots. The absolute approximation error

ǫabs(t) := |(1− e−λt)− (1− (1− λ∆t)k)|

in Fig. 4.10(a), the relative approximation error

ǫrel(t) := |
ǫabs(t)

1− e−λt
|

is shown in Fig. 4.10(b). Both decrease for longer run-times as expected from Eq. (4.3).
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Figure 4.10.: Approximation Error for Per-Time Failure Modeling
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Example of a Per-Demand Failure Mode The failure mode A2FailsActivate, the
failure to activate the A2 unit if required, can only appear if there is a request from
the monitor and is therefore modeled as a per-demand failure mode. The corresponding
failure module can be seen in Fig. 4.11. The predicate demand is defined as arith2 =
idle∧activate, i.e. the backup arithmetic unit is in its idle state and should be activated
because A1 does not deliver any more signal (predicate activate holds). The per-demand
occurrence probability of this failure mode is modeled as 1 · 10−7.

Module a2failsActivate / a2failsActivate

no yes

init

11

true

true

1 − pfails pfails

activate

arith2 = idle∧

activate)

¬(arith2 = idle∧

Figure 4.11.: A2FailsActivate Failure Occurrence Pattern

Additional Failure Modes For the analysis of the complete case study, the failure
modules for the four remaining failure modes are also modeled. S2FailsSig is modeled as
a per-time failure mode analogous to S1FailsSig, both with a failure rate of λS1FailsSig =
1 · 10−2 1

h
. The failure modes A2FailsSig, A1FailsSig are modeled as per-time failure

modes. The failure rate for A2FailsSig is also 1 · 10−2 1
h
, the failure rate for A1FailsSig

is 1 · 10−6 1
h
, as it is assumed that the primary unit A1 is of better quality than the

secondary unit. With a temporal resolution ∆t = 10ms, this translates to a per-step
failure probability of 2.7778 · 10−8 for the failure rates 1 · 10−2 1

h
and 2.7778 · 10−12 for

the failure rates 1 · 10−6 1
h
.

The modeling presented here only defines the various occurrence patterns and there-
fore when a certain failure mode can occur and how probable that is. This forms the
foundation of the modeling of the effects of the occurrence of the failure modes, i.e. what
happens if the failure mode occurs.
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4.5.3. Failure Effect Modeling

The failure modules specify the occurrence pattern of a failure mode but not its effect.
Effects are not modeled using additional parallel SAML modules, but by the direct
integration into the modules of the functional system. This integration is done in a
conservative way, which is characterized by the following:

1. The failure effect cannot occur if the failure mode is not present.

2. The original behavior6 of the SAML module is preserved, if the failure mode does
not occur.

Conservative Integration

To achieve these aspects of a conservative integration in a formal system model, the
effects of the failure modes have to be integrated in a special way. For purely qualitative
failure mode modeling, rules to achieve this have been introduced in [OGR07]. These
rules specify how the failure effect integration can be kept conservative for purely qual-
itative statechart modeling. They are adapted to quantitative modeling in SAML as
follows, where failsi refers to the state variable of a failure module for the failure mode
to integrate:

1. Start with the functional SAML system model.

2. Model the failure modules accordingly to their type as parallel SAML modules as
described in Section 4.5.2.

3. To model the direct effects of a failure mode

a) new values for the state variables (and update rules for successor states from
these) may be introduced

b) additional update rules may only be introduced if their activation condition
is of the form φ ∧ failsi = yes and the activation condition of the “original”
update rules then must be changed to φ ∧ failsi 6= yes

4. The rest of the functional SAML system model is not changed, in particular not
the initial states of the state variables

A very important aspect of the modeling of the failure occurrence patterns, which
had not explicitly been mentioned in [OGR07] is the possibility that the failure does not
occur at all. For a SAML failure module this means that the probability that the state
no is not left will always be non-zero. If this holds and the above rules are followed,
the failure mode integration is conservative. This is formulated in Lemma 3. Note that
instead of the symbolic values for the state variable failsi, the integral representations
−1 for init, 0 for no and 1 for yes are used.

6The paths of the model of the system
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Lemma 3. Conservative Integration

Let M be a SAML model with the set of state variables V ar and M ′ be the SAML
model in which the effect of a failure mode γi is integrated into M adhering to the rules
above. Let Fi be the corresponding failure module, failsi the state variable that indicates
that the failure mode is absent (failsi ≤ 0) or present (failsi > 0). Let τMDP be the
MDP corresponding to M and τ ′MDP be the MDP corresponding to M ′||Fi. Then:

∀π ∈ Paths(κ(τMDP )) : ∃π
′ ∈ Paths(κ(τ ′MDP )) : π ≡ π′|V ar (4.4)

where π′|V ar is the projection of π′ onto the state variables v ∈ V ar

proof see p. 168

It is important to note that this notion of conservative integration applies only to the
presence of the same paths and traces. Typically the probabilities will change by the
introduction of the failure mode modeling, as this modeling is probabilistic. In general
this is not a problem, as the relation of the probabilities in the original model and the
equivalent paths in the extended system model is not changed.

If more than one failure mode is integrated into the model, there exists the possibility
that the modeling of effects of one failure mode γi is masked by the modeling of the
effects of another failure mode γj. This situation can be resolved at modeling time by
specifying a priority on the failure modes, e.g. always first considering γi before γi.
Another possibility to cope with this situation is to use non-deterministic modeling in
such a way that the adversary resolves this situation at the time of the analysis. Which
approach is better depends on the nature of the modeled system and on the amount of
information on the failure effect that is available.

Lemma 3 also applies to the successive integration of all failure modes. This means
that each successive integration is conservative. Therefore the original behavior of the
system model is still possible after each of the failure mode occurrence patterns and
failure mode effects modeling is integrated. The resulting SAML model in which all
failure modes are integrated conservatively, is called the extended system model. If non-
deterministic modeling is used or the priority of failure effects modeling is always the
same, then all possible orderings of conservative failure effect integration as described
above produce isomorphic extended system models.

Definition 27. Extended System Model

Let M be a functional SAML model, ∆ the set of failure modes γi with corresponding
failure module Fi and (M ′)i the conservative integration of the failure mode γi into the
model M ′ adhering to the construction rules. Then ((M)1 . . .)n||F1|| · · · ||Fn is called the
extended system model M+.
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Case Study Model

The failure effects of the failure modes of the case study can now be integrated conser-
vatively. For illustration purpose, the changes that are necessary for the integration of
the per-time failure mode MonitorFails are presented here. A more detailed modeling of
the case study and the integration of the remaining failure modes is given in Section 7.2.
The original SAML model of the monitoring unit is shown in Fig. 4.12.

Module monitor / mode

normal
A1 = sig

1

degraded
true

1

A1 = noSig

Figure 4.12.: Functional Model of Monitoring Unit

The monitoring unit stays in state normal as long as A1 is in state sig and produces
an output signal. If A1 does not produce any more output signal and switches to state
noSig, the monitoring unit enters state degraded. This signals the off-switching of A1
and the activation of A2. The state degraded cannot be left any more, a reset of the
system would require an external trigger and is not part of the modeling presented here.
The integration of the effect of MonitorFails is shown in Fig. 4.13. The effect of

this failure mode can be either the switch to degraded without being necessary or no
switch although A1 still delivers a signal. These effects are modeled by introducing new
transitions. If the failure mode occurs, the state normal can be left although A1 is in
sig or normal is not left although A1 is in noSig.
As described in the rules for failure mode integration, the original transitions are now

labeled with the conjunction of their original activation condition and monitorfails =
no. This means the original behavior is preserved as long as the failure mode is absent.
If the failure mode is present, the monitoring unit makes a non-deterministic choice be-
tween staying in state normal or entering state degraded, independent of the actual state
of A1. If the monitoring unit is already in state degraded, the failure mode occurrence
has no effect. Note that the failure probability is modeled in the occurrence pattern, i.e.
the corresponding failure module.
The integration of a per-demand failure mode is illustrated with the A2FailsActivate

failure mode. The effect of this failure mode is that the intended activation of the second
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Module monitor / mode

normal

1

degraded

1

monitorfails = yes

∧A1 = noSig

∧A1 = sig

1

true

monitorfails 6= yes

monitorfails 6= yes

Figure 4.13.: MonitorFails Failure Effect Modeling

arithmetic unit does not succeed. The original modeling of the secondary arithmetic unit
is shown in Fig. 4.14. It stays in state idle as long as the predicate activate does not
hold (the monitoring unit is in state normal). Once the activation signal is received, it
enters the sig state and stays in that state as long as there is a signal. If there is no
more signal it enters the state noSig.

Module arith2 / arith2

idle noSig1

1

1

¬signal

1

¬signal

signal

1

signal

¬activate

activate

sig

Figure 4.14.: Functional Model of A2

The integration of A2FailsActivate into this model can be seen in Fig. 4.15. The
modeling of the failure effect is straightforward: whenever the unit A2 should be acti-
vated, it will enter state sig only if the failure mode did not appear, i.e. the predicate
actFailure 6= yes holds. If the predicate activate holds, but the failure mode occurred
(actFailure = yes holds), the idle state is not left and as result the activation of A2
fails. This models the same behavior as if activate did not hold at all. As explained in
the last section, the demand in this case is that A2 is in state idle and activate holds.
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Module arith2 / arith2

idle noSig1

1

1

¬signal

¬signal

signal

1

signal

activate

sig

noSig

¬activate∨ (activate ∧ actFailure = yes)

∧¬actFailure = yes

Figure 4.15.: A2FailsActivate Failure Effect Modeling

A possible state sequence of the original module of arith2 is shown in Table 4.1. Here
the second arithmetic unit is in its idle state until the activate signal is sent at t = 3 by
the monitoring unit. After then it enters its sig state where it delivers an output signal.

time-step 1 2 3 4 5
arith2 idle idle idle sig sig
activate false false true false false

Table 4.1.: State Sequence of the Functional System Model

Table 4.2 shows a state sequence of the arith2 module and the failure module for
A2FailsActivate of the extended system model. It shows that if there is no failure mode
occurrence, the state sequence of the arith2 module stays exactly the same as before.
The failure module enters the state no, i.e. absence of the failure mode at the first
demand after its initial state, therefore there is no failure mode effect at time-step 3
when the demand (arith2 = idle ∧ activate) occurs.

time-step 1 2 3 4 5
A2FailsActivate init no no yes yes
arith2 idle idle idle sig sig
activate false false true false false
demand false false true false false

Table 4.2.: Trace of Extended System Model without Failure Mode Occurrence

The effect on the state sequence of the arith2 module of the occurrence of the
A2FailsActivate failure mode is shown in Table 4.3. Here the failure module enters
its yes state immediately after the initial state which results in the occurrence of the
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failure mode when the demand occurs at time-step 3. The effect of the occurrence of the
failure mode is that arith2 stays in the state idle and therefore fails to deliver a signal.

time-step 1 2 3 4 5
A2FailsActivate init yes yes no no
arith2 idle idle idle idle idle
activate false false true false false
demand false false true false false

Table 4.3.: Trace of Extended System Model with Failure Mode Occurrence

For the analysis of the complete case study, the remaining failure modes were inte-
grated analogously. The effect of the occurrence of S1FailsSig or S2FailsSig is to switch
either sensor S1 or S2 from state sig to state noSig. The effect of the failure modes
A1FailsSig, A2FailsSig is to switch either A1 or A2 to state noSig from their idle or
sig states, independent of the presence of a signal from one of the input sensors, for the
description of the rest of the modeling see Section 7.2.
This forms the extended system model of the example case study as a SAML model.

All the necessary information for a safety analysis is contained in it. Methods for accurate
formal qualitative and quantitative model-based safety analysis of such a model are
introduced in the next chapter.

4.6. Related Work

The presented modeling is a direct extension of the modeling presented in the works of
Ortmeier et al. on DCCA [ORS05, ORS06] and the formal failure mode modeling pre-
sented in [OGR07, Ort06]. Previously only qualitative modeling was used and therefore
the presented quantitative modeling greatly extends the accuracy of the models with re-
spect to physical environment modeling and especially failure mode occurrence pattern,
in particular the distinction between per-time and per-demand failure modes.
Other failure injection based approaches with similar failure effects modeling in which

the effect of a failure is integrated a system model were developed in the ISAAC [rBB+06]
project for SCADE by Abdulla et al. [ADS+04] and in the ESAC [B+03] and ISAAC
projects for the FSAP / NuSMV-SA tool by Bozzano et al. [BV03b]. The integration
into SCADE models was in an ad-hoc fashion, for the FSAP/NuSMV-SA tool, a library
of possible failure modes was created. This library presently includes different types
of failure modes for single bits, e.g. bit-inversion, stuck at 0 or 1 or random non-
deterministic value assignment. A very interesting aspect is the automatic integration
of the failure mode effects into the formal system model. Probabilistic modeling is not
supported and therefore only qualitative analyses are possible.
Quantitative failure mode modeling was studied by Grunske et al. in [GCW07] and

within the AVACS [AVA03] project by Böde et al. [BPRW08a]. Both employ continuous
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failure mode modeling with failure rates which does not allow for per-demand failure
mode modeling. The integration of the failure effects is similar to the methods pre-
sented here and the conservative integration principle could also be extended to these
approaches for failure mode modeling. Nevertheless in these approaches there is no ex-
plicit failure occurrence pattern modeling. On the one hand, this reduces state space
as there is no need for additional state variables modeling the occurrence. But on the
other hand, this reduces the expressiveness of the modeling or at least increases the
complexity of the models, as more has to be integrated into the system model itself.
A very recent approach to formal safety analysis was developed in the COMPASS

project [BCK+09a] where a subset of the architecture analysis and design language
(AADL) [SA04] and its error annex [SA06] is used. It allows for the specification of
failure modes and is formalized in the SLIM language described by Bozzano et al.
in [BCK+09b, BCK+10b]. This is a further development based on the FSAP/NuSMV-
SA tool. It allows for the specification of hybrid systems with constant continuously
changing variables and failure modes with a continuous time model. Analogously to the
FSAP/NuSMV-SA tool, the integration of the failure modes into the formal system can
be done automatically. As only continuous modeling is provided, no per-demand fail-
ure mode modeling is supported. Per-demand failure mode modeling is one part of the
AADL error annex not supported by SLIM. The usage of the established modeling lan-
guage AADL is very interesting. A formal semantics of AADL and its error annex which
allows for the integration of per-time and per-demand failure mode modeling would be
a promising application of using SAML as an intermediate language.

Summary

This chapter introduced a modeling guideline to construct extended system models in
SAML for formal model-based safety analysis. Extended system models consist of hard-
ware, software and environment modeling. The environment model specifies the physical
behavior of the system’s surroundings and the failure modes that are possible in the sys-
tem. The existing formal failure modeling was extended with probabilistic failure mode
modeling. The modeling of different types of probabilistic failure modes, namely per-
time and per-demand was introduced and the conservative integration of the failure
modes was shown which provably retains the original behavior of the system after the
integration of the failure effects. The modeling approach was illustrated using a case
study taken from the safety analysis literature.
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There are two ways to write error-free programs;
only the third one works.

(Alan J. Perlis)

This chapter introduces methods which allow for formal model-based safety analysis
of extended system models specified in SAML. Qualitative analyses allow for the com-
putation of critical combinations of failure modes and deduction of temporal ordering
sequences of these failure modes. Extensions of existing qualitative safety analysis meth-
ods are developed which allow for analysis of self-healing systems. New methods can
deduce dynamic fault trees (DFT) information directly from a SAML extended system
model.
This chapter also introduces new, quantitative safety analysis methods which allow for

computation of the occurrence probability of a system hazard with much higher accuracy
than previously possible. The methods use current state-of-the art probabilistic model-
checking tools to compute hazard probabilities directly from SAML extended system
models.
All analyses are formulated as temporal logic proof obligations which can be verified

automatically. The proof obligations are constructed in such a way that the resulting
safety analysis is guaranteed to be sound and complete. The application of the analysis
methods is illustrated on the case study introduced in the previous chapter.
Section 5.1 gives a motivation for the formal safety analysis techniques. Section 5.2

presents qualitative safety-analysis techniques which extend the existing qualitative
safety analysis methods. Section 5.3 presents a new quantitative model-based safety
analysis method. Related work is discussed in Section 5.4.
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5.1. Motivation

From the safety engineer’s point of view the most important questions in the development
of a safety critical system are:

• “What can cause a hazard?”

• “What is the probability that a hazard occurs?”

The model-based safety analysis methods presented in this chapter serve to answer
these questions correctly. If a formal system model is available, formalizing them as proof
obligations can be very convenient, as model checking tools can compute the answers
fully automatically.
Nevertheless, the correct formalizing of these properties is not trivial. The main

considerations for the formalization are correctness and completeness of the analysis. For
safety analysis, completeness refers to the fact that no cause of the hazard is forgotten.
This means that each combination of failure modes is found which can cause the hazard.
Correctness on the other hand means that for each combination of failure modes that
can cause the hazard, there actually exists a run of the system on which it causes the
hazard.
A safety analysis technique should be both complete and correct. If it is correct,

it is never too optimistic and will never label an unsafe system as safe, which might
render the system more dangerous than presumed. If the analysis is complete, then it is
not too pessimistic and will not label a potentially safe system as unsafe, which might
prevent its realization. So proving completeness and correctness of an analysis technique
is important for the actual applications, especially if a system is to be certified. If the
applied analysis is not considered correct, a certification may not be granted.
In addition to find failure mode combinations that can cause a hazard, it is also very

interesting to analyze temporal dependencies of the failure modes. This means that two
failure modes may only cause the hazard if they occur in a given sequence. If for example
two failure modes γ1, γ2 can only cause a hazard if γ1 appears before γ2, the system can
be made safer by the introduction of a warning or entering a safe mode if γ1 occurs.
Even more beneficial is the extension to quantitative safety analysis methods which

compute the occurrence probability of a hazard. In traditional analysis techniques, this
is often conducted a-posteriori by a quantitative estimation based on the qualitative
analysis results. New developments in the field of probabilistic model checking and the
increase of available computing resources now allow for the direct quantitative analysis of
the extended system model itself. Such an approach gives much more precise and reliable
results, because all dependencies inherent in the system are automatically considered.
Overall, the qualitative analysis methods give a “yes or no” answer whereas quantita-

tive analysis methods provide a more differentiating and precise answer. Nevertheless,
both kinds of analysis methods are necessary. Firstly because qualitative analysis are
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much more efficient and should therefore be used were adequate. Secondly, for some
aspects the näıve reasoning that probability zero means impossible is wrong.
In general for a model-based safety analysis one will (i) built an extended system

model (as described in the previous chapter) (ii) analyze the qualitative properties of
the system (potentially using the qualitative results to improve the system) and (iii)
analyze the quantitative properties of the system.

5.2. Qualitative Model-Based Safety Analysis

Qualitative safety analysis techniques are of possibilistic nature. They compute whether
and how failure modes can cause a hazard in the worst case. These analyses are typi-
cally the first which are conducted on an extended system model. One example is the
deductive cause-consequence analysis (DCCA). In this dissertation it forms the basis
for further qualitative analysis and is also the starting point of the quantitative safety
analysis methods presented in this chapter.

5.2.1. Deductive Cause Consequence Analysis

DCCA is an approach to deduce information about critical failure mode combinations
from an extended system model. It forms the basis for the formal model-based safety
analysis of SAML models. It computes whether a subset of the set of all failure modes
is critical with respect to a hazard. Critical here means that the combined occurrence
of the failure modes can actually cause the hazard. The result of a DCCA is a set of
all critical combinations of failure modes. This information can be used to implement
risk-reducing measures. If from every such critical combination at least one failure mode
can be prevented, then the occurrence of the hazard is impossible1. DCCA has been
introduced by Ortmeier et al. in [ORS05] and has been successfully applied to several
case studies [ORS06, ORS05, GOR08]. In the following, the notion of a SAML model
M or extended system model M+ is used in the formal specifications, instead of τMDP ,
e.g. κ(M+) actually refers to the embedded Kripke structure of the corresponding MDP
of M+. From the context the meaning is always clear. The definitions (28)-(29) and the
following description are adapted from [ORS05].

Definition 28. DCCA / Minimal Critical Set
For an extended system modelM+ and a set of failure modes ∆, a subset of component

failures Γ ⊆ ∆ is called critical wrt. a system hazard H if

κ(M+), s0 |= E [ΓUH ], where Γ :=
∧

δi∈∆\Γ

¬δi

Γ is called minimal critical if is has on proper critical subset.

1This is often called the “minimal cut set theorem” whose name is derived from FTA.
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Informally this formula states that a set of failure modes Γ is critical, if there exists a
path of the system on which no failure mode which is not in Γ occurs (Γ), until finally
the hazard H occurs. The predicates δi are defined to be true if the failure module
corresponding to the failure mode γi is in state yes and false otherwise. If modeled as
described in the previous chapter, in this situation only the failure modes in Γ and their
effects could have been the cause for H .
DCCA generalizes functional correctness, failure modes and effect analysis (FMEA)

and minimal cut sets of fault tree analysis (FTA). Functional correctness corresponds
to the analysis whether the empty set ∅ is critical. If that is true, the system hazard
can occur without any failure mode as its cause and therefore the system is considered
functionally incorrect. The main focus of FMEA is the analysis whether single failure
modes can cause the hazard. This can be expressed in DCCA via the analysis of failure
sets with a single failure mode.
Compared to FTA, which is widely using in industrial practice (see Section 2.2.1),

DCCA has several advantages. It is proven to be both correct and complete [ORS06]2,
therefore it is guaranteed never to produce worse results than a (formal) FTA. Fault
tree analysis can be complete but it is very difficult to conduct correctly and therefore
can be too pessimistic. This is because fault trees are in general not compositional as
shown by Ortmeier and Schellhorn [OS06]. DCCA and FTA can be combined, by using
results from an (informal) FTA as the starting point of the analysis of minimal critical
sets, i.e. using the results of an informal FTA as first candidates for minimal critical
sets. This typically reduces the number of necessary proof obligations for a complete
DCCA significantly.
Although the number of possible combinations of failure modes for a DCCA is expo-

nential (2n for n failure modes), the actual number in a concrete example is most often
much lower. This results from the fact that criticality is monotone. Therefore if a set Γi

is critical, then any superset Γi ⊂ Γj is also critical and does not have to be analyzed,
see Ortmeier’s dissertation [Ort06].

Definition 29. Complete DCCA
For an extended system model M+ and a set of failure modes ∆, a DCCA is called

complete with respect to H if each minimal critical set has been found. The result is the
set of minimal critical sets of the system:

MCSS(M+,∆, H) := {Γ|Γ is critical ∧ 6 ∃Γ′ ⊂ Γ : Γ′ is critical }

While DCCA computes all combinations of failure modes that can cause a hazard,
it does not discern between different sequences of these failure modes. For this, a new
method which analyzes the necessary orderings of failure modes in a minimal critical
sets in order to potentially cause the hazard has been developed in this dissertation.

2Complete here means that no combination of failure modes that is a possible causes for the hazard
is missed. Correct means that for each critical combination there actually exists a system run on
which the hazard is caused.
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5.2.2. Ordered Minimal Critical Sets

Failure modes that are causes for hazards can occur at different times on a system
trace. If failure modes are in the same minimal critical set, then their appearance on a
trace is considered critical, regardless of the sequence in which they occur. The results
of a DCCA can be augmented by analyzing whether there exits a necessary temporal
ordering for the failure modes to be critical.

Failure Mode Ordering Relation

If a critical combination of failure modes for a system hazard is established, i.e. a
minimal critical set is found by conducting a DCCA, then a partial order relation on
the failure modes can be defined. This relation captures the temporal ordering between
two failure modes in a minimal critical set3.

Definition 30. Before Order / Strict Before Order
For an extended system model M+, a set of failure modes ∆, a predicate logic hazard

H, and a minimal critical set Γ ⊆ ∆, two failures modes γ1, γ2 ∈ Γ are in

• before order: γ1 �Γ γ2, if on all paths π of κ(M+) on which the failures in Γ
were the cause for the hazard H, the first occurrence of the failure mode γ1 is not
after the first occurrence of the failure mode γ2

• strict before order: γ1 ≺Γ γ2, if on all paths π of κ(M+) on which the failures
in Γ were the cause for the hazard H, the failure mode γ2 does appear after the
failure mode γ1

If such an ordering exists, i.e. the relations are not empty, concentrating the risk-
reducing measures on γ1 can be very beneficial. Alternatively, watchdogs can be used
to detect the occurrence of γ1 and if possible the system can enter a degraded “safe
mode”, in which no more safety-critical functions are executed. Based on these two
relations an additional relation for temporal ordering can be defined which describes the
simultaneous occurrence of two failure modes:

Definition 31. Simultaneous Order
For an extended system model M+, a set of failure modes ∆, a predicate logic hazard

H and a minimal critical set Γ ⊆ ∆, two failure modes γ1, γ2 ∈ Γ are in simultaneous
order γ1 ∼Γ γ2, if on all paths π of κ(M+) on which the failures in Γ were the cause
for the hazard H, the first occurrence of the failure mode γ1 is at the same time as the
first occurrence of the failure mode γ2

∼Γ:= {(γi, γj)|γi �Γ γj ∧ γj �Γ γi} (5.1)

3This is not dependent on DCCA, but can also be employed to minimal cut sets of a fault tree analysis.
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Note that the temporal relations are not total, because for two failure modes γ1 and
γ2 from the same minimal critical set, different traces may exist on which they are cause
the hazard, but their ordering is different. This is often the case with transient failures,
as they can appear and disappear totally at random.

tj′

γ1

t0 ti

γ1
γ2

tj

Hγ2

tktl

H

π1

π2

Figure 5.1.: Example Traces with Before Ordering between γ1 and γ2

In Fig. 5.1 two different possible traces of a system and the first occurrences of the
failure modes and the hazard are shown. In both traces the hazard H finally occurs,
either at time-step tj or at tj′ and the minimal critical set Γ consists of the two failure
modes γ1 and γ2. In the upper trace, γ1 occurs at time ti and γ2 at some time tk
afterwards. In the lower trace, both failure modes occur at the same time-step tl for the
first time. From these traces, γ1 6≺Γ γ2, γ1 6∼Γ γ2 and γ2 6�Γ γ1 can be deduced. γ1 6≺Γ γ2
because in the lower trace the first occurrence of both failure modes is at the same time,
γ1 6∼Γ γ2 and γ2 6�Γ γ1 hold because in the upper trace the first occurrence of γ2 is after
γ1. If no other trace exists on which γ1 and γ2 cause the hazard, γ1 �Γ γ2 would hold.

All these partial temporal ordering relations can be deduced using temporal logic for-
mulas, which allow for the automatic computation of the relations from an extended
system model expressed in SAML. This deductive computation of ordered minimal crit-
ical sets was introduced in [GOR08].

Deductive Failure Order Analysis

To deduce the temporal ordering of the failure modes directly from an extended system
model, it is necessary to analyze all the paths on which the combination of the failures
modes in Γ is the cause of the hazard. For each minimal critical set Γ, these are all
paths on which the non-critical failure modes do not appear before the occurrence of the
hazard. This can concisely be expressed in linear time logic (LTL). CTL is not suited
for this, as we neither want to express something about a single trace of the system nor
about all traces of the system, but about the subset of traces on which the failure modes
of a selected minimal critical set caused the hazard. For each of the ordering relations, a
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LTL formula is specified which computes whether the specified temporal ordering exists
for two failure modes of a minimal critical set.

Lemma 4. Deductive Before Ordering / Strict Before Ordering
For an extended system model M+, a set of failure modes ∆, a predicate logic hazard

H, a minimal critical set Γ and two failure modes γ1, γ2 ∈ Γ:

γ1 �Γ γ2 ⇔

κ(M+), π |= (ΓUH) → [(¬H ∧ ¬γ1 ∧ ¬γ2)

U(γ1 ∧ ((¬H ∧ ¬γ2)

U((γ2 ∧ ¬H) ∧ FH)))] (5.2)

γ1 ≺Γ γ2 ⇔

κ(M+), π |= (ΓUH) → [(¬H ∧ ¬γ1 ∧ ¬γ2)

U((γ1 ∧ ¬γ2 ∧ ¬H)∧

X((¬H ∧ ¬γ2)

U((γ2 ∧ ¬H) ∧ FH)))] (5.3)

proof see p. 170

The left part of the implications (ΓUH) describes those paths of the extended system
model on which the failure modes in Γ are the cause of the hazard (i.e. no failure mode
in ∆ \ Γ appears before H). The right part of the implication describes the relation
of the failure modes on the path. For the before ordering it is assured that the first
occurrence of γ2 is not after the first occurrence of γ1 (Eq. (5.2)). For the strict before
relation, the temporal next (X) operator describes the situation that at least one time
step passed after the occurrence of γ1 before the first occurrence of γ2 (Eq. (5.3)).
The relation ∼Γ can be checked either if for two failure modes γ1 �Γ γ2∧γ2 �Γ γ1 holds

or by checking the proof obligation in Eq. (5.4). In this proof obligation it is assured
that the very first occurrence of both failure modes under consideration happens at the
same time and before the first occurrence of the hazard.

Lemma 5. Deductive Simultaneous Order
For an extended system model M+, a set of failure modes ∆, a predicate logic hazard

H,a minimal critical set Γ and two failure modes γ1, γ2 ∈ Γ

γ1 ∼Γ γ2 ⇔

κ(M+), π |= (ΓUH) → [(¬H ∧ ¬γ1 ∧ ¬γ2)

U((γ1 ∧ γ2 ∧ ¬H) ∧ FH)] (5.4)
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proof see p. 171

All the described proof obligations are formulated for two failure modes. This means
the temporal relation between two failure modes can be computed at a time. If more than
two failures are included in a minimal critical set, then the relations must be computed

for all pairs of failures, i.e.

(

n

2

)

combinations for n failures. All these combinations

can easily be generated automatically from a given minimal critical set of failures modes.

Application of DCCA and Ordering Analysis

To illustrate a qualitative analysis using DCCA and the deductive ordering analysis, the
case study presented in the previous chapter is used. The six possible failure modes in
this case study are sensor signal omitting (S1FailsSig, S2FailsSig), malfunction of the
arithmetic units (A1FailsSig, A2FailsSig), failure of the watchdog monitor (Monitor-
Fails) which results in either unnecessary switching of arithmetic processing units or
missing a necessary switch and the failure of the activation of the backup arithmetic
unit (A2FailsActivate). Using DCCA to analyze the case study presented in Section 4.2
with the hazard “no output produced” results in the following minimal critical sets:

• Γ1 := {A1FailsSig}

• Γ2 := {A2FailsSig,MonitorFails}

• Γ3 := {MonitorFails,A2ActivateFails}

• Γ4 := {MonitorFails,S2FailsSig}

• Γ5 := {S1FailsSig,S2FailsSig}

The deductive ordering analysis of these five minimal critical sets shows that Monitor-
Fails ≺Γ3 A2ActivateFails holds. Therefore the failure modes in the set {MonitorFails,
A2ActivateFails} can only cause the system hazard if the monitor fails before the activa-
tion of A2 fails. The critical situation arises when the monitor misdetects a malfunction
of A1, sends the activation signal but A2 does not get properly activated.
The set Γ2 is critical when the monitor misdetects a malfunction of A1, the activation

of A2 succeeds, but then A2 fails. A similar situation occurs if S2 fails after the activation
of A2 (Γ4). Here A2 does not receive an input signal from its only signal source S2. The
set Γ5 is critical because if both input sensors fail, then no more output signal can be
produced. These three sets do not exhibit any temporal ordering.
The surprising result is the fact that Γ1 contains only A1FailsSig as a single point

of failure. As the system is built with A2 as a hot spare unit, this should not happen.
Luckily, verification tools provide counterexamples for violated proof obligations which
can be further analyzed to identify the flaw. A closer analysis of this situation reveals
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that when A1 fails, the system needs a short amount of time to activate A2. In this
time, no output signal is produced and therefore A1FailsSig is considered a single point
of failure.

Nevertheless omitting the signal in this situation is only temporary and the system
gets operational again. This can be seen in the state sequence shown in Table 5.1. Here
the A1 unit fails to deliver a signal at causing the temporary hazard. This is observed
by the monitoring unit which activates A2. When A2 starts delivering a signal, the
temporary malfunctioning is resolved.

time-step 1 2 3 4 5 6
A1FailsSig no yes no no no no
arith1 sig sig noSig noSig noSig noSig
arith2 idle idle idle idle sig sig
Monitor normal normal normal degraded off off
H false false true true false false

Table 5.1.: Temporary Hazard Occurrence

Such an effect is not directly detectable with DCCA as the hazard is a Boolean pred-
icate. One solution to this problem is to introduce an observer module which signals
the hazard after a certain time passes. In this way some time-dependent hazards can
be expressed as Boolean predicates. This approach will be used for the quantitative
analysis in Section 5.3.

But for qualitative safety analysis, on the other hand, a much more general and elegant
approach to cope with this problem is also possible. It can cope with more general self-
healing systems which can recover from a temporary hazardous state. In order to analyze
such systems correctly, a new variant of DCCA was developed in this dissertation that
can cope directly with such situations.

5.2.3. Adaptive DCCA

To address the increasing complexity of modern systems, new paradigms of the de-
velopment of system are developed which allow the system to decide certain aspects
autonomously. Prominent examples of these paradigms are IBM’s Autonomic Comput-
ing Initiative proposed by Kephart and Chess [KC03] and Organic Computing proposed
by Müller-Schloer et al. [MS04, MSvW04].

A very important subclass of these systems which could be very beneficial for safety-
critical system are self-healing systems. These can recover autonomously from a tem-
porary system hazard. This will most often be realized by the introduction of a certain
amount of redundancy in the system. The drawback of the autonomy is that it is much
harder to give guarantees of the behavior of self-healing systems. Nevertheless, this is
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essential for using such systems in safety-critical applications. This dissertation presents
a new method for safety analysis and verification of such systems.

As shown in the example case study, DCCA cannot directly be applied to a self-healing
system, as the hazard occurrence may only be temporary. If this is not reflected, a safety
analysis would be too pessimistic, as a recovery after the occurrence of the hazard is
possible. As long as enough redundancy is available, a self-healing system can get back
to its functional mode again or at least enter a degraded “safe mode”. Only a permanent
occurrence of the system hazard is considered critical. This fact is reflected in adaptive
DCCA (aDCCA) which was first introduced in [GOR06b] from where the definition (32),
the following description and Lemma 6 are adapted.

Definition 32. aDCCA / Minimal Adaptive-Critical Set for Adaptive DCCA

For a system M+ and a set of failure modes ∆ a subset of component failures Γ ⊆ ∆
is called adaptive-critical for a system hazard for a hazard H if

κ(M+), s0 |= E [Γ U (EG ( H ∧ Γ))] where Γ :=
∧

δ∈(∆\Γ)

¬ δ

Γ a minimal adaptive-critical set if Γ is adaptive-critical and no proper subset of Γ is
adaptive-critical.

The aDCCA proof obligation in Def. 32 states that a set of failure modes Γ is adaptive-
critical if there exists a trace such that only these failure modes can lead to permanent
system failure. The permanent occurrence of the hazard is expressed as EG (H ∧ Γ)
which means that a continuation exists on which H holds in all states. The last part in
the formula (∧Γ) is necessary to assure the failures modes of Γ are the reason for the
permanent system hazard and no other failure mode occurs on the path continuation.

Just like with DCCA, the adaptive-criticality property of a set of failures is also
monotonic for the notion of adaptive-critical sets. This means: ∀ Γ1,Γ2 ⊆ ∆ : Γ1 ⊆
Γ2 ⇒ (Γ1 is adaptive-critical set ⇒ Γ2 is adaptive-critical set). A complete aDCCA
and the resulting set of minimal adaptive-critical sets aMCSS(M+,∆, H) are defined
analogously to Def. 29.

Lemma 6. aDCCA Completeness

For a complete aDCCA of an extended system model M+, a set of failure modes ∆
and a hazard H the following formula holds:

κ(M+), s0 |= A ((
∧

Γ∈aMCSS(M+,∆,H)

¬
∧

γj∈Γ

F γj) → ¬FGH)

proof see p. 172
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For the formulation of the completeness lemma, CTL* logic is used. Fortunately the
CTL subset – for which model-checking is much more efficient – is sufficient to compute
the minimal adaptive-critical sets. The formula of Lemma (6) states, that on all (A )
those traces on which from each minimal adaptive-critical set the occurrence of at least
one failure mode can be prevented (¬

∧

γj∈Γ
F γj), the hazard can always be repaired by

the system again (¬FGH). In other words: the hazard can only become permanent if
all failure modes of at least one minimal adaptive-critical set occur. This means that
aDCCA is complete and no cause for the hazard is omitted. The correctness of aDCCA
can also be guaranteed. For each minimal adaptive-critical set, the proof obligation in
Def. 6 can compute a witness run of the system on which the combination of failure
modes causes the hazard4.
The relation of aDCCA to DCCA is shown in Lemma (7). It states that every set

of failures that is considered adaptive-critical with aDCCA is also considered critical
with DCCA. The other direction of the implication does not hold. As a counterexample
consider a system where the hazard H can occur but is always repaired after k > 0 time-
steps and is then absent for at least one time-step. Such a system never fails permanently
and therefore is not considered adaptive-critical. Note that this also means that there is
no necessary subset inclusion relation between the minimal critical sets and the minimal
adaptive-critical sets. In the example above the occurrence of the temporary hazard
would be considered the cause of a minimal critical set, but there would be no minimal
adaptive-critical superset of it.

Lemma 7. DCCA Implication for aDCCA
Let M+ be an extended system model, ∆ be a finite set of failure modes, Γ ⊆ ∆, and

M be the embedded Kripke structure of κ(M+) then

κ(M+), s0 |= E [ΓUEG (H ∧ Γ)] ⇒ κ(M+), s0 |= E [ΓUH ]

proof see p. 173

Just as in DCCA, the adaptive variant computes the critical combinations of failure
modes without considering any temporal ordering. Analogous to the deductive ordering
analysis of traditional systems, it is possible to specify proof obligations to compute the
ordering relations for a self-healing system.

Adaptive Deductive Ordering Analysis

The ordering relation of minimal adaptive-critical sets of a self-healing system can be
deduced from a SAML model analogously to non-self-healing systems. For non-self-
healing systems, all traces on which only the failure modes of a minimal adaptive-
critical set appear before the hazard are of interest. For self-healing systems, the traces

4Most often this will be computed by specifying the negation of the proof obligation and using a
model-checker to compute a counterexample. A counterexample to the negation is then equivalent
to a witness of the original proof obligation.
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to consider are those on which the non-critical failure modes do not appear at all and
the hazard finally becomes permanent.
This situation is formalized as (ΓU(G (H ∧ Γ)). This is the precondition for each of

the proof obligations in the Lemmas (8) and (9). For a minimal adaptive-critical set Γ,
this precondition describes all those traces on which the hazard H eventually becomes
permanent and all failure modes that are not in Γ do not occur at all.

Lemma 8. Adaptive Deductive Before Ordering / Strict Before Ordering
For an extended system model M+, a set of failure modes ∆, a predicate logic hazard

H, a minimal adaptive-critical set Γ and two failure modes γ1, γ2 ∈ Γ,

γ1 �Γ γ2 ⇔

κ(M+), π |= (ΓU(G (H ∧ Γ)) → [(¬γ1 ∧ ¬γ2)

U(γ1 ∧ ((¬γ2)

U(γ2 ∧ (FGH)))] (5.5)

γ1 ≺Γ γ2 ⇔

κ(M+), π |= (ΓU(G (H ∧ Γ))) → [(¬γ1 ∧ ¬γ2)

U((γ1 ∧ ¬γ2)∧

X((¬γ2)

U(γ2 ∧ (FGH))))] (5.6)

proof see p. 173

Analogously to the deductive ordering analysis for non-self-healing systems, the proof
obligations assure that the first occurrence of γ1 is not after the first occurrence of γ2 for
the before ordering, respectively the first occurrence of γ2 is at least one time step after
the first occurrence of γ1. The difference here is the omission of ¬H , as the eventual
permanent occurrence of the hazard (FGH) is of interest.

Lemma 9. Adaptive Deductive Simultaneous Order
For an extended system model M+, a set of failure modes ∆, a predicate logic hazard

H, a minimal adaptive-critical set Γ and two failure modes γ1, γ2 ∈ Γ

γ1 ∼Γ γ2 ⇔

κ(M+), π |= (ΓU(G (H ∧ Γ)) → [(¬γ1 ∧ ¬γ2)

U((γ1 ∧ γ2) ∧ (FGH))] (5.7)

proof see p. 174

The combination of aDCCA and adaptive deductive ordering analysis can easily be
applied to the example case study, by checking the respective proof obligations.
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Application of adaptive DCCA and Deductive Ordering Relation Analysis

In contrast to the first analysis with DCCA, where the recovery from the temporary
hazard after the failure of A1 was not anticipated, no more single point of failure is
identified with this more accurate analysis. For the analysis of combinations of two
failure modes, 15 combinations had to be checked with aDCCA. This lead to the following
8 minimal adaptive-critical sets:

• Γ1 := {A1FailsSig,A2FailsSig}

• Γ2 := {A1FailsSig,MonitorFails}

• Γ3 := {A1FailsSig,A2FailsActivate}

• Γ4 := {A1FailsSig,S2FailsSig}

• Γ5 := {A2FailsSig,MonitorFails}

• Γ6 := {MonitorFails,A2FailsActivate}

• Γ7 := {MonitorFails,S2FailsSig}

• Γ8 := {S1FailsSig,S2FailsSig}

The minimal adaptive-critical sets Γ5,Γ6,Γ7,Γ8 are equivalent to the results of DCCA.
For Γ6, the temporal relation MonitorFails≺Γ6A2FailsActivate holds. The differences of
DCCA and aDCCA are the first four minimal adaptive-critical sets which all include
the failure of A1, which was considered a single point of failure in the prior analysis.
The first set Γ1 describes the situation that both arithmetic units fail. If this happens,

no more output signal can be produced. The critical combination in set Γ4 results from
the situation where A1 fails, A2 gets activated, but S2 fails to deliver a signal. Neither
of these two minimal adaptive-critical sets exhibits a temporal ordering.
The sets Γ2 and Γ3 describe two situations where A1 fails, but the system does not cor-

rectly enter its degraded mode. Either because the monitor fails to detect that A1 failed
(Γ2) or because the activation of A2 fails (Γ3). The temporal ordering analysis of these
two sets reveals that bothMonitorFails�Γ2A1FailsSig and A1FailsSig≺Γ3A2FailsActivate
hold. This means that the minimal adaptive-critical set Γ2 is only critical if the monitor
fails before or at the same time as A1 fails. For Γ3 to be critical, the failure mode
A1FailsSig must occur strictly before A2FailsActivate.
In the case of Γ3 and Γ6 the failure mode which must appear after the first failure

mode is the per-demand failure mode A2FailsActivate. This is not surprising, as the
demand is triggered by the watchdog monitor which tries to activate A2. This demand
can only be triggered if either the monitor detects a malfunction of A1 or if the monitor
itself fails with a misdetection. Therefore per-demand failure modes will often be in such
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a temporal relation. Nevertheless it is not mandatory, e.g. if not a single failure mode
occurrence is critical, but a sequence.
Summarizing, a precise qualitative analysis of extended SAML system models is pos-

sible with the new qualitative analysis methods aDCCA for minimal adaptive-critical
sets and the deductive ordering analyses. These extend the range of systems which are
analyzable and allow for a further refinement of the analysis. This results in a more
precise qualitative analysis of extended SAML system models than possible before. For
each critical combination of failure modes, witness paths can be computed and analyzed
that show how the combination of the failure modes can cause the hazard. This informa-
tion can be used to augment the systems by the integration of risk-reducing measures.
Once this has been completed, quantitative analysis can be used to compute the overall
probability of the occurrence of a hazard.

5.3. Quantitative Model-Based Safety Analysis

After the possibilistic qualitative safety analysis and the potential introduction of risk-
reducing measures, the next step is to apply a probabilistic, quantitative safety analysis.
In many traditional safety analysis approaches, the occurrence probability of a system
hazard is computed a-posteriori on the results of a qualitative analysis. Starting from
the occurrence probabilities of the single failure modes, the overall hazard probability
is estimated. This is most often based on the “fault tree formula” shown in Eq. (5.8)
which is used in FTA to estimate the probability for the minimal cut sets to cause
the top-level event. But is also used for the minimal critical sets of DCCA or in the
FSAP/NuSMV-SA tool by Bozzano and Villafiorita [BV03b].

P (H) ≤
∑

Γ∈MCSS(M+,∆,H)

∏

γ∈Γ

P (γ) (5.8)

This estimation can be very coarse, it cannot even be guaranteed that the result of
the sum on the right hand part is below 1! The reason for this is that only the results
of a qualitative analysis of the formal system model are used. Therefore the estimation
must be very conservative. It is also assumed that all failure modes are stochastically
independent, which is very often not the case. For example, if there exists a temporal
ordering relation for some minimal critical sets. In addition, it is completely unclear
how per-time failure rates and per-demand failure probabilities can be combined in such
an approach.

5.3.1. Probabilistic DCCA

To overcome this problem, a new method was developed in this dissertation which ex-
ploits the probabilistic information in an extended system model expressed in SAML. It
computes the overall occurrence probability of a hazard directly on the formal system
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model. Analogous to the usage of CTL for DCCA and aDCCA, the probabilistic logic
PCTL (see Section 3.4.2) is used for probabilistic DCCA (pDCCA) which was introduced
in [GO10b].

Definition 33. Probabilistic DCCA (pDCCA)
For an extended system model M+ and a hazard H, if

M+, s0 |= Pmax[trueUH ]>0 (5.9)

holds, then the computation of the probability

P (H) := Pmax=?[trueUH ] (5.10)

is called the probabilistic DCCA.

By using pDCCA, the problems outlined above are eliminated. The coarse estimation
is replaced with an accurate computation of the occurrence probability. Assumptions
about the stochastic independence are not necessary, as existing dependencies are auto-
matically considered. This of course also includes the effect of possible temporal ordering
relations. All these influences on the overall hazard probability are implicitly and au-
tomatically considered in the pDCCA formula and can be checked directly on a SAML
extended system model [GO10a].
It is important to note that this analysis computes the overall hazard probability of all

minimal critical sets together. The probability that a single minimal critical set causes
the hazard cannot easily be calculated. The reason for this is that the PCTL analogon
of the DCCA proof obligation, Pmax[ΓUH ]>0, does not formalize “maximal probability
of traces on which only failure modes in Γ may cause H”. Traces can exist where the
failure modes of Γ cause the hazard, but other failure modes also appear, but without
having an effect. Any such trace would not be considered in this formula which therefore
does not formalize this property. A correct formalization of this property would require
the ability to reference the caused effect of a failure mode and should be formalized as:
“maximal probability of traces on which only the failure effects of failure modes in Γ
may cause H”. Unfortunately it is not yet clear whether it is possible to express this
without elaborate changes to the SAML system model.
pDCCA in the form as shown in Def. 33 is well suited for non-reactive systems which

do not continue to run infinitely. A reactive system potentially runs infinitely long (at
least in an abstract view). This means that the system hazard will occur eventually.
The reason for this is that semantics of PCTL is defined over infinite traces of a system.
If a reactive system were analyzed with pDCCA as in Eq. (5.10), this would result in
hazard probability of 1, as in general every combination of failure modes will eventually
occur on an infinite trace and therefore the hazard is inevitable. This does not offer
more information than pure qualitative analysis, and is therefore not adequate for the
quantitative analysis of reactive systems.
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5.3.2. Probabilistic DCCA for Reactive Systems

To overcome this problem and to make pDCCA feasible for the analysis of reactive
systems, the computation of the occurrence probability of the hazard is restricted to
finite traces. In particular a mission time of the safety-critical system is specified which
represents the considered time interval for the quantitative analysis.
This mission time is defined as a multiple of the temporal resolution of the system.

Then the occurrence probability of the hazard can be computed using the bounded until
PCTL operator (see Eq. (3.5)). If Pmax[φU

≤kψ]>0 holds, then there exists, with non-zero
probability, a bound j ≤ k, so that ψ becomes true after no more that j steps and φ is
true for all time steps i < j. Using this, the overall probability of the occurrence of the
hazard of a reactive system can be computed with the bounded variant of pDCCA for
a given mission time t = k ·∆t.

Definition 34. Bounded pDCCA
For an extended system model M+ and a hazard H, if

M+, s0 |= Pmax[trueU
≤kH ]>0 (5.11)

holds, the computation of the probability

P (H) := Pmax=?[trueU
≤kH ] (5.12)

is called the bounded pDCCA with mission time t = k ·∆t.

If the analyzed system is not a reactive system, the mission time is basically system-
inherent and does not influence the outcome of the analysis5. In this case the constant k
of the equation (5.12) can be set to∞ and the bounded until operator effectively becomes
unbounded and it corresponds to a general pDCCA. As the probability of a bounded
until operator is computed iteratively and the unbounded operator can be computed
directly in one single step, it is advisable to use pDCCA if possible, to minimize the
time needed for the analysis.
Specifying a “correct” mission time for a bounded pDCCA is not trivial. It is obvious

that a single step or too few steps in general may result in a zero hazard probability,
which will often be unrealistic. The specification of too long mission times can render
the analysis infeasible because of the required running time. The goal is to specify a
realistic mission time that covers a representative time interval for the system. At the
end of the next section first approaches to address these challenges are presented.

5.3.3. Adaptive pDCCA

Unfortunately, using pDCCA directly for adaptive systems is not as straightforward as
it is for qualitative analysis. The PCTL analogon of the aDCCA formula would be

5After a given time, “nothing interesting” will happen in such systems, in particular no hazard occur-
rence.
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Pmax=?[trueUPmax[GH ]>0]. This cannot be used to compute the probability that the
hazard eventually becomes permanent. The reason for this is that the CTL formula
EGφ is not equal to Pmax[Gφ]>0. An example for this has been shown in Fig. 3.7. The
same holds for the bounded variant of the above formula Pmax=?[trueU

≤kPmax[GH ]>0].

A solution which can be used to handle this problem if the maximal time of the
temporary hazard is known, is to introduce an additional observer module. The states
of such a module then signal whether the hazard has occurred permanently or just
temporary and the permanent hazard occurrence can therefore be reduced to a Boolean
predicate. Most often this will be realized by counting the number of time-steps the
hazard is present. If it is possible to decide whether the occurrence is permanent (e.g.
the hazard was present longer than the maximal time to be only temporary), then
a Boolean predicate (“Observer is in state X”) can be used to signal the permanent
hazard occurrence. pDCCA (or bounded pDCCA for reactive systems) can then be
used for quantitative analysis of such a system.

This additional observer module must of course not be allowed to change the probabil-
ity of the resulting traces. This means that the observer must only contain deterministic
transitions and no non-deterministic or probabilistic choices6. Then the parallel compo-
sition with the other SAML modules does not change the probability of the resulting
traces.

Application of pDCCA

An observer module was added for the quantitative analysis of the example case study.
The observer module was modeled as shown in Fig. 5.2. Its initial state init is left if the
system is started. The successor states of init is state ok if either A1 or A2 produces a
signal, or state “error1” if no valid signal is produced from either arithmetic unit. This
situation is similar for the waiting states error1 and error2, there is a return to state ok
if a signal is produced or a state change to the next state if no such signal is available.
If this happens in state error2, the successor is the state hazard. If the observer enters
this state, the system did not produce a signal for three time steps in a row which is
considered as a permanent hazard.

The case study was analyzed for a running time of 10h. It is a reactive system,
therefore bounded pDCCA was used. As described in the failure mode modeling in the
previous chapter, the temporal resolution was ∆t = 10ms. This translates to an analysis
time of k = 3.600.000 steps for a mission time of 10h. The overall maximal probability
that the system fails to deliver an output signal within 10h of operational time (using
the failure rates and probabilities as described in Section 4.5.2 is therefore:

Pmax=?[trueU
≤3.600.000(observerSig = hazard)] = 9.1490 · 10−7 (5.13)

6This means all probabilistic choice must have probability 1
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Module observer / observerSig
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Figure 5.2.: Observer Automaton

Extrapolation of Results and Effects of Different Temporal Resolutions

The probability that the hazard occurs in the case study was computed for the mission
time of 10h. The time needed for a bounded pDCCA is directly dependent on the
number of time-steps, as the algorithms used for the computation carry out k matrix-
vector multiplications for k time-steps. This can lead to very long or even infeasible
running times for large case studies. Reducing the number of necessary multiplications
for the algorithm itself, e.g. by using a square and multiply approach, is not possible, as
this generally destroys the sparsity of the underlying models and significantly increases
the memory requirements.
Because of this, methods to reduce the analysis time without reducing the accuracy

(or only slightly reducing the accuracy) would be very beneficial. The most important
factors that determine the number of steps k are the temporal resolution and the mission
time. This raises the question how different temporal resolutions affect the results and
whether the pDCCA results for a mission time t can be extrapolated to a longer time
t′ > t without explicitly analyzing this mission time.
Whether and how this is possible in general is still an open question. But the effect

of different temporal resolutions on the overall analysis result and the possibility to
extrapolate from a shorter to a longer analysis interval can be analyzed experimentally.

Accuracy of the Failure Approximation The accuracy of the discrete approximation
of the per-time failure rates with the geometric distribution has been discussed in Sec-
tion 4.5.2. To analyze the effect of this accuracy on the overall hazard probability, two
different temporal resolutions, ∆t1 = 10ms and ∆t2 = 1s were considered. For the
failure rate 10−2 1

h
of the failure mode S1FailsSig, the maximal and cumulative relative
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error for t = 10h is shown in table 5.2.

∆t1 = 10ms ∆t2 = 1s
maximal relative error 1.2710 · 10−8 4.4577 · 10−4

cumulative relative error 1.3889 · 10−6 0.048764

Table 5.2.: Relative Approximation Error for Failure Rates

This table shows that the order of magnitude of the approximation error is roughly
the same as the ratio of the lower to the higher temporal resolution, and that the higher
resolution approximates slightly better than explainable only by the ratios. The two
different temporal resolutions were then used to analyze the system with pDCCA (after
all other model parameters were adjusted accordingly). The result for ∆t1 is shown in
Eq. (5.14), the result for ∆t2 is shown in Eq. (5.15).

Pmax=?[trueU
≤3.600.000H ] ≈ 9.1490 · 10−7 (5.14)

Pmax=?[trueU
≤36.000H ] ≈ 9.2707 · 10−7 (5.15)

From these results, one can conclude that the orders of magnitude of the approxi-
mation errors for the failure rates does not necessarily influence the overall result in a
comparable way. For a coarser first estimate, a lower temporal resolution can be ade-
quate. This could be used to compare different variants of a system, possibly identifying
the most promising variants and analyze those later with more accuracy.

Extrapolation of pDCCA Results For this experiment, the computed pDCCA of the
case study were used to determine the accuracy of an extrapolation of a mission time of
10h (with ∆t = 10ms) from shorter mission times. The computed hazard probabilities
up to 10h are shown in Fig. 5.3. The results were computed in 10s steps.
Three different methods were used to extrapolate a longer mission time from the com-

puted results for t = 10s, 20s, 30s, 40s. A simple, rather obvious form of extrapolation is
a directly proportional one. This means to use the quotient t′

t
(the quotient of the longer

time interval to the analyzed interval) as a scaling factor to extrapolate the probabilities.
This results in a linear approximation.
As second approach a cubic approximation was chosen which is based on the numer-

ical derivations of the computed probabilities. The function graph of the computed
probabilities for every continuous cumulative probability distribution is monotone and
changes its curvature. Therefore a cubic extrapolation was used because it is the simplest
approach that can also change the curvature.
The third approach was to use an exponential function of the form 1− b · e−ct and to

use optimization techniques to find the parameters b and c such that the approximation
is best for the computed values wrt. the sum of squared deviances.
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Figure 5.3.: Computed Hazard Probabilities

value for t = 10h cumulative deviance max. rel. error
linear 1.3120 · 10−9 0.0011048 0.99857
cubic 9.1421 · 10−7 4.9125 · 10−7 7.5364 · 10−4

exponential 4.2785 · 10−10 0.0010835 53.982

Table 5.3.: Results of the Extrapolation Experiments

The results are shown in table 5.3. These first experiments show that simple linear
extrapolation is likely not sufficient and will not yield good results. Surprisingly, the
exponential extrapolation approach is not much better considering the cumulative de-
viance and even worse considering the extrapolation for t = 10h. In contrast, the cubic
approximation led to good results in the case study and seems a promising candidate
for further study.
From the experiments and the properties of the case study, some important factors

that influence the quality of the extrapolation approach were identified:

• Persistent changes in the system under consideration: Persistent changes
in a system lead to stochastic dependencies which are clearly not representable in
a simple linear model.

• Representative extrapolation interval: The computed results which form the
basis for the extrapolation must reflect the representative details of the behavior
of the system.
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Whether there are persistent changes in a system can be verified by checking whether
a representative state after the starting phase of a system can always be reached again.
If this is possible, then there is always a way to “reset” the system and an extrapolation
of the probabilities is reasonable. Some ongoing research in this area is done by Seguin
et al. [TIS11] for the new EPOCH probabilistic model-checker. Here strongly connected
components in the MDP are exploited to increase the efficiency of probabilistic model-
checking. Such components could correspond to “non-resettable” system states.
The choice of a representative interval can be reduced to find a good coverage of

states. This means that the mission time must be chosen in such a way that within its
corresponding time steps, as many states as possible are reachable. One approach to
check for a representative interval could be to use bounded model checking described by
Clarke et al. [CBRZ01] to check whether all states are reachable within k steps. The
influence of probabilistic choices on the overall result is reduced with the length of the
considered path. As pDCCA is a reachability analysis, such an extrapolation could be
suited to identify promising system variants. Such approaches will be studied further in
the ProMoSA project (see the outlook in Section 8.2).

5.4. Related Work

The failure injection methods as developed by Abdulla et al. for SCADE [ADS+04] and
by Bozzano and Villafiorita for FSAP / NuSMV-SA [BV03b] also employ a qualitative
analysis for critical failure modes. In general, first a safety property is specified and
then a combination of failure modes is integrated into the system. If the verification of
the safety property fails, the failure mode combination is considered critical. Using this
method, a fault tree consisting of three layers can be deduced from the formal system.
The lowest layer is the conjunction of the critical combinations of failure modes, the
second layer is the disjunction of each critical failure mode set and the highest layer
is the system hazard. This will always lead to a complete FTA, but in contrast to
DCCA and aDCCA, there is no proof of correctness of the analysis. The chosen safety
properties do not require the failure modes to be the actual cause of the hazard, this is
only assumed implicitly.

Dynamic Fault Trees Analysis (DFT) [vM02] extends qualitative fault tree analysis
with several addition fault tree gates that also capture some dynamics of the system.
Two of these are priority-AND (PAND) and simultaneous-AND (SAND) which corre-
spond to the temporal ordering of two basic events. A very similar notion of ordering is
employed in an algebraic technique based on Papadopoulos’ and McDermid’s Hip-HOPS
notation [PM91], developed by Walker et al. [WP07, WBP07]. In this approach besides
PAND, a priority-OR (POR) relation is defined. The correlation of the different tem-
poral ordering relations, temporal fault tree gates and the Hip-HOPS notation is shown
in Table 5.4.

The computation of temporal ordering of failure modes in minimal critical sets can
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Failure Order Relation Temporal Fault Tree Gate Hip-HOPS
φ1 �Γ φ2 (φ1SANDφ2)OR(φ1PANDφ2) φ1 < φ2 + φ1&φ2

φ1 ≺Γ φ2 φ1PANDφ2 φ1 < φ2

φ1 ∼Γ φ2 φ1SANDφ2 φ1&φ2

Table 5.4.: Temporal Ordering Notations

automatically construct dynamic fault trees with the temporal ordering gates PAND and
SAND. For minimal (adaptive-)critical sets, failure modes in POR relation are considered
as single point of failures. Therefore no automatic deduction of a priority OR relation is
specified. A technique to deduce dynamic fault tree gates via a temporal failure mode
ordering from a formal system model is presented by Bozzano and Villafiorita in [BV03a]
and integrated into the FSAP / NuSMV-SA tool by Bozzano et al. [BV03b]. In contrast
to deductive ordering analysis, an additional state variable is introduced into the system
which signals the failure mode ordering. Therefore formally, each time a different system
is analyzed. This is in contrast to deductive temporal ordering analysis, where the same
extended system model is analyzed, but with different proof obligations. Nevertheless,
for most systems the analysis results will be similar for both methods.

The quantitative assessment of hazard probabilities of failure modes with temporal
ordering dependencies has been approached in different ways. Many approaches derive
state space based systems from a dynamic fault tree which represent the temporal or-
dering of the failure modes. The underlying models for analysis can be stochastic Petri
Nets which are used for example by Raiteri [CR05] or Bernardi and Donatelli [BD04].
Another possibility to analyze dynamic fault trees is to use Markov Chain variants as
described by Boudali et al. [BCS07b, BCS07a]. These models are then analyzed as
continuous time Markov Chains (CTMC). Very often these approaches also support ad-
ditional dynamic fault tree gates like functional dependency (FDEP), sequence (SEQ)
or warm spare (WSP). As with all CTMC analysis, the assumption is made that all
probabilities are exponentially distributed.

An interesting approach was developed by Merle et al. [MRLB10, MRLV10] and is
described in detail by Merle in his dissertation thesis [Mer10]. It uses algebraic tech-
niques to deduce probabilities from a dynamic fault tree. This allows for using arbitrary
probability distributions and is therefore more flexible than approaches based on Markov
models. In SAML as in most other safety analysis approaches based on probabilistic
model-checking, arbitrary probability distributions can only be approximated with sev-
eral exponential (respectively geometric) distributions. This will very likely increase the
state space of the underlying MDP and is therefore less practical for non-exponentially
distributed failure mode probabilities.

Quantitative analysis of system models similar to the ones presented here is often
conducted on the basis of CTMC models. Bozzano et al. developed the SLIM lan-
guage [BCK+09b, BCK+10b], which formalizes a subset of the AADL error annex. SLIM
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models can include a failure model which is analyzed with the MRMC model checker
after the non-probabilistic parts of the system are abstracted away with bisimulation
techniques. This approach is described by Katoen et al. in [KKZJ07] and uses the
SigRef tool developed by Wimmer et al. [WHH+06]. This “Performability Analysis”
restricts the analyzable models at the moment to non-hybrid models which do not use
continuous variables.

Grunske et al. introduced probabilistic failure modes and effects analysis (pFMEA)
in [GCW07]. This technique allows to deduce FMEA tables with probabilities and over-
all system hazard probabilities from a formal system description which also expresses
functional properties. This approach is very similar to failure injection and is not only
a state space representation of an existing dynamic fault tree. It is extended by Al-
jazaar et al. [AFG+09, AKLFL10] to also extract counterexamples from a quantitative
system description, namely those with the highest probability of occurrence. Compared
to qualitative SAML analysis, this is more computationally expensive. But if feasible, it
delivers more information how the dependability of a system can be increased. An inte-
gration of the generation of probabilistic counterexamples would also be very beneficial
for safety analysis based on SAML.

Within the AVACS project [AVA03], an approach to find the failure mode combination
that accounts for the biggest part of the overall hazard probability is presented by
Böde et al. [BPRW08a]. The approach is called “Importance Analysis of Minimal Cut
Sets”. Here, failure modes are integrated into a functional system model analogous to
failure injection. For the analysis, a quotient system is constructed using bisimulation
techniques. In the quotient system all traces are eliminated on which failure modes
appear which are not currently analyzed. This is accomplished using the SigRef tool
developed by Wimmer et al. [WHH+06]. It is then used to rank the critical combinations
of failure modes relative to another. The problem here is that the analyzed system is
different for each analysis, and therefore strict propositions about the probabilities are
not possible. A relative ranking of minimal critical sets would also be possible in SAML,
by using the PCTL analogon of the DCCA formula [GO10b].

Summary

This chapter introduced new qualitative and quantitative model-based analysis methods.
New qualitative methods are the deductive temporal ordering analysis, adaptive DCCA
and adaptive deductive temporal ordering analysis. The ordering analyses allow for a
more precise analysis of the temporal relations of critical failure modes. In contrast to
other approaches these analysis rely only on different temporal logic proof obligations
and do not require changes to the system model itself. Adaptive DCCA allows for
provably complete and correct qualitative safety analysis of self-healing systems. Safety
analysis of these systems was not possible before the development of aDCCA.

This chapter also presented the quantitative analysis method pDCCA. It allows a
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much more precise computation of the occurrence probability than previous a-posteriori
methods which rely on the quantitative analysis of the results of a prior qualitative
analysis. In contrast to other model-based safety analysis methods, the combination
of per-time and per-demand failure modes is possible. First experiments on the effects
of different temporal resolutions and the possibility to extrapolate pDCCA results to
longer mission times were very promising. pDCCA and approaches based on these
extrapolations will further be used to quickly identify promising system variants in the
DFG-funded ProMoSA project [OG10] were the probabilistic analysis results will be
used as objective function for system optimization.
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SAML Models

A man’s got to know his limitations.

(Harry Callahan)

The previous chapters introduced SAML, its semantics and several model-based safety
analysis methods. SAML is designed to be a tool-independent intermediate language.
For concrete analysis, an extended system model of a safety-critical system must be
transformed into the input specification language of an appropriate analysis tool. This
chapter presents exemplary transformations to translate SAML models for state of the
art probabilistic and symbolic model-checkers.
Section 6.1 motivates the usage of model-checking tools for the analysis and explains

how SAML benefits from the design as tool-independent modeling and intermediate
language. Section 6.2 very briefly describes some details of the implementation of the
transformations. The transformations necessary for the analysis of quantitative aspects
of a SAML model with a probabilistic analysis tool are described in 6.3. The required
transformation for a qualitative analysis tool is described in Section 6.4. Related work
is discussed in Section 6.5.
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6.1. Motivation

Several efficient model-checking tools have been developed for the analysis of formal
system specifications. For a long time, most research was focused on the analysis of
qualitative properties of systems, specified in different qualitative logics. The current
state of the art is the compact representation of Kripke structures as (ordered) binary
decision diagrams (BDD) and their analysis based on symbolic model-checking developed
by Burch et al. [BCM+90].

For the analysis of labeled Markov chains, probabilistic model-checking has become
practical in recent years. It is driven primarily by the massive increase of computing
resources, the development of efficient numerical model-checking algorithms and the
development of space-efficient representations of Markov models. While representations
based on sparse matrices are very time-efficient, new approaches based on multi-terminal
binary decision diagrams (MTBDD) as described by de Alfaro et al. [dAKN+00] allow for
a much more space-efficient representation of Markov models. This makes even very large
state spaces accessible for analysis, analogously to the BDD representation of symbolic
model-checkers. In both cases giving a concise number of states for an analyzable system
is not possible in general, as this depends on many different system-specific factors.

The development of both qualitative and quantitative model-checkers is still an ac-
tive research area. A lot of current research for probabilistic model-checking focuses
on exploiting parallelism. Bernadat et al. focus on multi-core architectures [BBC+08],
Bosnacki et al. [BES09] use the GPUs of modern graphic hardware to accelerate the
necessary numerical computations. Maisonneuve presents in her Master’s thesis [Mai09]
approaches to optimize the MTBDD representation with heuristic variable reordering
which increases the range of analyzable models. Other methods are based on bisimula-
tion techniques for more efficient analyses [KKZJ07, HWP+06, WHH+06]. To benefit
from this ongoing research and the resulting improvements, in particular from the in-
crease in analysis efficiency, SAML is designed as a tool-independent language that can
be transformed into the input specification of different analysis frameworks.

This can be achieved by using model transformations to transform SAML models
into model descriptions suitable for formal analysis with verification tools. An impor-
tant aspect for this was to keep SAML as simple as possible, but at the same time being
expressive enough for accurate modeling of extended system models for safety analy-
sis. Using semantically founded transformations, it can be assured that the analyzed
models are equivalent1. Therefore the analysis results of different verification tools are
“compatible” with each other. This allows to choose the most appropriate analysis tool
depending on the character of the property but also on the efficiency of the available
verification tool. Obvious examples are the model-based safety analyses presented in the
last chapter. DCCA / aDCCA and deductive ordering analysis would be analyzed with
qualitative verification tools and pDCCA with quantitative ones.

1For example the equivalency between the paths of the MDP and its embedded Kripke structure.
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6.2. Implementation of Transformations

A prototypical implementation of the transformations described in this chapter has been
developed. Technically, the implementation is based on Parr’s ANTLR parser genera-
tor [Par07] to read SAML specifications. The SAML specifications are then converted
into a tree representation. This tree representation is transformed by a Common Lisp
program2 into the input specification of the different verification tools. Common Lisp
was chosen because it offers functional programming capabilities which are well-suited for
model transformations. It is also very appropriate for rapid-prototyping of algorithms.
The foundations of these model transformations have been introduced in [GO10a].

Fig. 6.1 shows the currently implemented transformations for SAML models. For
qualitative analysis (for example with DCCA / aDCCA and deductive ordering analysis),
the embedded Kripke structures can be transformed into the input specification language
of either NuSMV or Cadence SMV. NuSMV is the open source reimplementation of the
original symbolic model verifier (SMV) [McM90] developed at the Fondazione Bruno
Kessler, Cadence SMV is a proprietary implementation available from Cadence Berkeley
Labs.

NuSMV Cadence SMV PRISM MRMC

quantitative analysisqualitative analysis

SAML

Figure 6.1.: Implemented SAML Transformations

For the analysis of quantitative properties like pDCCA, the most widely used prob-
abilistic model-checker is PRISM which is developed by Kwiatkowska et al. [KNP02b,
KNP02a] at the University of Oxford. It allows for the analysis of MDPs and uses an
internal representation based on MTBDD. If the SAML model does not contain any
non-deterministic choices, but is purely probabilistic, then it can be analyzed with the
Markov Reward Model Checker (MRMC) of Katoen et al. [KKZ05] developed at the
RWTH Aachen. Its advantage over PRISM is its increased speed. Its main disadvan-
tage – besides the fact that only DTMCs are analyzable – is the representation as sparse
matrices which is much less space efficient than symbolic MTBDD representation and
is not feasible for larger models.

2Steel Bank Common Lisp
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6.3. Transformation for Quantitative Analysis

The transformation of a SAML model into the input language of the probabilistic model
checker PRISM for quantitative analysis is rather straightforward. The PRISM seman-
tics is described in [NPK10]. SAML was designed in dependence on the PRISM language
and is basically an extended subset thereof. Therefore PRISM models are structured in
a very similar fashion in parallel modules and further in update rules for state variables
with potentially parallel assignments. The PRISM language itself was not chosen, as it
allows modeling which is not in accordance with the guidelines presented in Chapter 4.
The two main differences between SAML and the PRISM language are the synchro-

nization of update rules and the specification of non-deterministic choices. In general,
PRISM modules are completely asynchronous. This means that at each time-step only
one module assigns new values to its state variables and the state variables of all other
modules stay the same. As already mentioned in Chapter 4, this interleaved semantics
is less appropriate for safety analysis, especially in a discrete time model. In order to
synchronize update rules, synchronization labels can be specified in PRISM. Active up-
date rules in different modules, but with the same synchronization label, are executed
in parallel.
Non-deterministic choice is specified in the PRISM language only implicitly. If the

activation conditions of two different update rules are semantically equivalent, then these
update rules specify an intrinsic non-deterministic choice. Therefore it is also possible
to have partially “overlapping” activation conditions which results in normalization of
the associated probabilities. This means that the probabilities in the underlying MDP
are not the same as those specified in the model. This often leads to undesired effects
which are not anticipated. Because of this all non-determinism is specified explicitly in
SAML and overlapping activation conditions are considered modeling errors.

6.3.1. Example Transformation

To illustrate the transformation of a SAML model into the specification language of
PRISM, the small example model (introduced in Section 3.2) shown in Fig. 6.2 is used.
Its first module a contains the following update rule:

v_a = 0 & v_b1 = 0 & v_b2 = 0 ->

choice:(p_a : (v_a’ = 0) + (1 - p_a) : (v_a’ = 1));

It is a purely probabilistic update rule, because there is only a single probability dis-
tribution which assigns the value 0 to v_a with probability pa and the value 1 with a
probability 1− pa. As mentioned above, the synchronization of the probabilistic update
rules must be assured. The PRISM language allows for the usage of synchronization la-
bels which are used analogously to synchronization in process algebras (e.g. see Bergstra
and Klop [BK86]). Only update rules that have the same label are executed in parallel.
Therefore to achieve full synchronicity of the resulting PRISM models, the same label t
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constant double p_a := 0.1;

constant double p_b1 := 0.9;

constant double p_b2 := 0.09;

constant double p_b3 := 0.01;

formula case3 := v_a = 0 & !(v_b1 = 0 & v_b2 = 0 | v_b1 = 1 & v_b2 = 1);

module a

v_a : [0..2] init 0;

v_a = 0 & v_b1 = 0 & v_b2 = 0 ->

choice:(p_a : (v_a’ = 0) + (1 - p_a) : (v_a’ = 1));

v_a = 0 & v_b1 = 1 & v_b2 = 1 ->

choice:(1 : (v_a’ = 2));

case3 -> choice:(1 : (v_a’ = 1));

v_a = 1 -> choice:(1 : (v_a’ = 1));

v_a = 2 -> choice:(1 : (v_a’ = 2));

endmodule

module b

v_b1 : [0..1] init 0;

v_b2 : [0..1] init 0;

true -> choice:(p_b1 : (v_b1’ = 0) & (v_b2’ = 0) +

p_b2 : (v_b1’ = 1) & (v_b2’ = 0) +

p_b3 : (v_b1’ = 1) & (v_b2’ = 1))

+ choice:(1 : (v_b1’ = 1) & (v_b2’ = 1));

endmodule

Figure 6.2.: Example SAML Model

(for “tick”) is used for every update rule of the model. For the update rule above this
would be written as:

[t] v_a = 0 & v_b1 = 0 & v_b2 = 0 ->

(p_a : (v_a’ = 0) + (1 - p_a) : (v_a’ = 1));

The other probabilistic update rules of the example model are transformed anal-
ogously. The parallel composition mechanism of PRISM then composes all the trans-
formed modules equivalently to the synchronous parallel composition adapted for SAML
modules as described in Section 3.3.1. This assures that the active update rules in the
parallel modules are executed synchronously.
The transformation for update rules with non-deterministic choices is slightly more

complex, as the representation of non-determinism in PRISM and SAML differs. The
single update rule of the module b contains a non-deterministic choice between two
different probability distributions:

101



6. Transformation and Analysis of SAML Models

1 convert−updates−SAML−to−PRISM (updateSetSAML)
2 updatesPRISM := ∅
3 for ( update u : updateSetSAML)
4 (φ , va r i ab l eSe t , pDi s tL i s t ) := u
5 for ( i = 0 ; i < | pDi s tL i s t | ; i++)
6 updatesPRISM := updatesPRISM ∪ {(φ , va r i ab l eSe t , pDi s tL i s t [ i ] ) }
7 for ( update u : updatePRISM)
8 addSynchronizat ionTick (u)
9 return (updatesPRISM)

Listing 6.1: Pseudocode to Convert a SAML Module to a PRISM Module

true -> choice:(p_b1 : (v_b1’ = 0) & (v_b2’ = 0) +

p_b2 : (v_b1’ = 1) & (v_b2’ = 0) +

p_b3 : (v_b1’ = 1) & (v_b2’ = 1))

+ choice:(1 : (v_b1’ = 1) & (v_b2’ = 1));

This non-determinism is denoted by the choice keyword. In a PRISM specification,
non-determinism is given implicitly, by defining update rules with semantically equiva-
lent activation conditions. The single SAML update rule is therefore transformed into
two separate update rules, synchronized with the system tick and having an equivalent
activation condition:

[t] true -> p_b1 : (v_b1’ = 0) & (v_b2’ = 0) +

p_b2 : (v_b1’ = 1) & (v_b2’ = 0) +

p_b3 : (v_b1’ = 1) & (v_b2’ = 1);

[t] true -> 1 : (v_b1’ = 1) & (v_b2’ = 1);

This approach is used to transform all update rules of all modules of a SAML model
to the input language of the PRISM model-checker.

6.3.2. Transformation to PRISM

The transformation of a SAML model to a PRISM model is conducted for each module.
For each module all update rules are transformed in the way described above. The
pseudocode in listing 6.1 shows the transformation of a set of SAML update rules to a
set of PRISM update rules. Firstly, all non-deterministic updates rules are split into a
set of update rules with the same activation condition. Secondly, all resulting update
rules are labeled with the “tick” synchronization label.
When the transformation is applied to the example SAML model in Fig. 6.2 it results

in a PRISM model with the same state space, the same non-deterministic choices and the
same probability distributions as the original SAML model. The transformed PRISM
model of the example is shown in Fig. 6.3. In addition to the transformation of the
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mdp

const double p_a = 0.1;

const double p_b1 = 0.9;

const double p_b2 = 0.09;

const double p_b3 = 0.01;

formula case3 = v_a = 0 & !(v_b1 = 0 & v_b2 = 0 | v_b1 = 1 & v_b2 = 1);

module a

v_a : [0..2] init 0;

[t] v_a = 0 & v_b1 = 0 & v_b2 = 0 -> p_a : (v_a’ = 0) + (1 - p_a) : (v_a’ = 1);

[t] v_a = 0 & v_b1 = 1 & v_b2 = 1 -> 1 : (v_a’ = 2);

[t] case3 -> 1 : (v_a’ = 1);

[t] v_a = 1 -> 1 : (v_a’ = 1);

[t] v_a = 2 -> 1 : (v_a’ = 2);

endmodule

module b

v_b1 : [0..1] init 0;

v_b2 : [0..1] init 0;

[t] true -> p_b1 : (v_b1’ = 0) & (v_b2’ = 0) +

p_b2 : (v_b1’ = 1) & (v_b2’ = 0) +

p_b3 : (v_b1’ = 1) & (v_b2’ = 1);

[t] true -> 1 : (v_b1’ = 1) & (v_b2’ = 1) ;

endmodule

Figure 6.3.: Transformed PRISM Model

update rules, the constant definitions and the Boolean variables are also adjusted to the
PRISM syntax.

An additional detail of PRISM models is the explicit specification whether it is a MDP
or a DTMC. This is noted in the first line with the keywords dtmc or mdp. Although
any DTMC is just a special case of MDP, the analysis of DTMCs can be much more
time efficient. In addition, if a SAML model can be expressed as a DTMC, it can also
be analyzed with the MRMC model-checker. Its current version cannot analyze MDPs
but experiments have shown that it is much more time efficient than PRISM for the
analysis of feasible models. Its input language is very simple and requires the explicit
sparse transition matrix and the labeling of each state. The easiest way to create this
is to use the export function of PRISM which constructs the state space of the DTMC
and then exports the state space and the labeling function in the format appropriate for
MRMC.
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6.4. Transformation for Qualitative Analysis

For qualitative safety analysis, a SAML model is converted into a description of its
embedded Kripke structure. One possible approach would be to convert the MDP of a
SAML model directly into a Kripke structure on the semantic level. This means that its
transition relation would be encoded directly and not using a notion of parallel modules
with state variables. Another possible approach is the transformation on the syntactical
level, i.e. transforming SAML modules into similar parallel module representation of
the embedded Kripke structure.

The disadvantage of a transformation on the semantic level compared to a syntactic
transformation is that it would require the construction of the whole state space. This
is very inefficient as this has to be done for both the transformation and also for the
later analysis. An important advantage of the transformation on the syntactical level is
that it allows for a much better traceability of the model artifacts. This is very helpful
in safety analysis, in particular for the interpretation of counterexamples. Therefore
the choice was made to transform SAML models on the syntactical level for qualitative
safety analysis.

Perhaps the most prominent example of a model-checker for Kripke structures is the
symbolic model verifier (SMV) [McM90, BCM+90] which can verify both CTL and LTL
property specifications. Several variants of SMV exist, the most current and accessible
one is the open-source reimplementation NuSMV by Cimatti et al. [CCG+02]. It is
available for many platforms in binary and source code form and is under ongoing
development. Because of its availability and good performance it is used here as analysis
tool for qualitative properties of SAML models. The described transformation for other
SMV variants like Cadence SMV differs only in minor details and is not explained in
detail here3.

Analogously to SAML, NuSMV models are also structured as parallel modules which
can contain one or more state variables. An obvious difference of NuSMV to SAML
is of course the absence of probabilistic update rules as NuSMV models can only be
non-deterministic. A minor difference is that a complete model is constructed from the
parallel composition of a set of single modules which must explicitly be imported in a
distinguished main module. This means that every NuSMV model has to include a main
module and that a SAML module named main must be renamed for the transformation.

A more subtle difference of SAML and the NuSMV specification language makes
the transformation challenging. SAML allows for parallel assignments of new values
to variables in a single update rule. This can be very convenient in a probabilistic
environment, where not only the fact is of interest that a parallel assignment is possible,
but also how probable a specific one is. As to my current knowledge, such parallel
assignments are not directly expressible in the specification language of NuSMV (or of

3The transformation to Cadence SMV is also implemented, the syntax of the input language is slightly
different, the method of the transformation and the structure of the transformed models is the same.
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other SMV variants). NuSMV only allows the assignment of a new value to a single
state variable v via the next(v) construct.
The problem of the lack of parallel assignments is solved by introducing an additional

state variable for each update rule with parallel assignments. Basically, an index number
is assigned to each possible parallel assignment and the new state variable (choosei

4 for
update rule ui) has a domain of these indices. The possible values for such a chooser
variable are called the admissible values. At each time-step, the assigned new value for
this chooser variable is selected non-deterministically and indicates which of the parallel
assignments is to be carried out for the other state variables.
In order to transform a SAML module into a NuSMV module, first all probabilistic

distributions are transformed into a set of non-deterministic choices. Next for each
parallel assignment, a new chooser variable is introduced which indicates the possible
new values. This chooser variable is then referenced in the activation conditions of the
update rules of the original state variables. The basic principles of this approach are
best described using an example.

6.4.1. Example Transformation

For illustration purposes, the transformation is explained for the SAML model shown
in Fig. 6.2. The first step of the transformation of this model into a NuSMV model
representation is to transform it into its embedded Kripke structure. This means that
all probability distributions are replaced with non-deterministic choices.
In module a there is no non-deterministic or parallel assignment, therefore only the

probabilistic choices have to be eliminated. The following update rule for the state
variable v_a assigns the new value of 0 with a probability of pa and a new value of 1
with probability 1− pa:

v_a = 0 & v_b1 = 0 & v_b2 = 0 ->

choice:(p_a : (v_a’ = 0) + (1 - p_a) : (v_a’ = 1));

The transformation of this probabilistic distribution into a purely non-deterministic
choice is achieved by splitting it into two distinct probabilistic distributions, each with
probability 1. This results in one non-deterministic choice for each element of the prob-
abilistic distribution:

v_a = 0 & v_b1 = 0 & v_b2 = 0 ->

choice:(1 : (v_a’ = 0));

+ choice (1 : (v_a’ = 1));

Module b contains two state variables and therefore updates rules with parallel as-
signments. The transformation for these is more difficult as parallel assignments are not
directly possible in NuSMV. The single update rule of module b is:

4The name of this chooser variable must of course be distinct from all other state variables in the
model.
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true -> choice:(p_b1 : (v_b1’ = 0) & (v_b2’ = 0) +

p_b2 : (v_b1’ = 1) & (v_b2’ = 0) +

p_b3 : (v_b1’ = 1) & (v_b2’ = 1))

+ choice:(1 : (v_b1’ = 1) & (v_b2’ = 1)) ;

As outlined above, firstly the two probabilistic distributions are transformed into a
set of non-deterministic choices:

true -> choice:(1 : (v_b1’ = 0) & (v_b2’ = 0)) // index 1

+ choice:(1 : (v_b1’ = 1) & (v_b2’ = 0)) // index 2

+ choice:(1 : (v_b1’ = 1) & (v_b2’ = 1)) // index 3

+ choice:(1 : (v_b1’ = 1) & (v_b2’ = 1)); // index 4

Each of these four non-deterministic choices5 is labeled with an index from 1 to 4
and the chooser variable choose_b_1 (for module b update rule number 1) with the set
of admissible values {1, 2, 3, 4} is defined. The original update rule in the module b is
then split into two updates rules, one for the state variable v_b1 and one for v_b2. In
addition, the single module containing these two state variables is split into two separate
modules, each containing one of the state variables. The activation condition of these
update rules becomes the conjunction of the original activation condition (true) and
the value of the choose_b_1 variable:

module split_b_1

v_b1 : [0..1] init 0;

true & choose_b_1 = 1 -> choice:(1 : (v_b1’ = 0));

true & choose_b_1 = 2 -> choice:(1 : (v_b1’ = 1));

true & choose_b_1 = 3 -> choice:(1 : (v_b1’ = 1));

true & choose_b_1 = 4 -> choice:(1 : (v_b1’ = 1));

endmodule

module split_b_2

v_b2 : [0..1] init 0;

true & choose_b_1 = 1 -> choice:(1 : (v_b2’ = 0));

true & choose_b_1 = 2 -> choice:(1 : (v_b2’ = 0));

true & choose_b_1 = 3 -> choice:(1 : (v_b2’ = 1));

true & choose_b_1 = 4 -> choice:(1 : (v_b2’ = 1));

endmodule

In this way, for each possible value of choose_b_1, there is exactly one active update
rule for the state variable v_b1 and one for v_b2. Together, these correspond to exactly
one parallel assignment in the original module. The remaining task is the definition of
the update rule of the choose_b_1 state variable. This is simply a non-deterministic
choice between any of its possible valuations6:

5The fourth choice is equivalent to the third and could be eliminated in an optimization.
6Note that this does not change any probabilities, as the behavior is purely non-deterministic.
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true -> choice:(1 : (choose_b_1’ = 1))

+ choice:(1 : (choose_b_1’ = 2))

+ choice:(1 : (choose_b_1’ = 3))

+ choice:(1 : (choose_b_1’ = 4));

At each time step, the new value for choose_b_1 is selected non-deterministically
from the set {1, 2, 3, 4} of admissible values. The only problem arises at the very first
time step, because MDPs (and therefore SAML modules) allow only for a single initial
state and therefore the specification of non-deterministic assignments of initial values
is not possible. But in order to retain the behavior of the original model, any of the
new activation conditions must be satisfiable at the very first time-step. This problem
is solved by defining one MDP for each of the possible initial values of the choose_b_1

chooser variable.
One of the 4 possibilities for the definition of the SAML module for choose_b_1 is

shown below. The other 3 would be completely analogous, but with a different value for
the initial state.

module choose_1

choose_b_1 : [1..4] init 1;

true -> choice:(1 : (choose_b_1’ = 1))

+ choice:(1 : (choose_b_1’ = 2))

+ choice:(1 : (choose_b_1’ = 3))

+ choice:(1 : (choose_b_1’ = 4));

endmodule

This syntactical transformation has the following effect on the semantic level: the
elimination of parallel assignments in a SAML module leads to a set Λ of MDPs. Each
element τi ∈ Λ
of this set differs from the other elements in its initial state. This effect of the outlined

parallel assignment elimination does not directly pose a problem, as the analysis is
conducted on the embedded Kripke structures. These allow for the specification of a
set of initial states (see Def. 14), so that the resulting set of MDPs which differ only
by their initial state can be mapped to one single Kripke structure, whose paths then
consist of the paths in

⋃

τi∈Λ
Paths(κ(τi)).

Nevertheless this can be problematic, as the definition of the semantics of temporal
logic properties is based on a single initial state (see Section 3.4.1). Both NuSMV and
Cadence SMV verification tools accept specifications of Kripke structures with multiple
initial states, but the semantics of the temporal logic formulas is then defined in the
following way:

τKripke, S0 |= φ⇔ ∀s0 ∈ S0 : τKripke, s0 |= φ

This means for example that an existentially quantified CTL* formula ∃φ which would
be valid for one initial state s0, does not hold for the whole Kripke structure if it is invalid
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for one of the other initial states. On the other hand, its negation A¬φ would also be
false, if φ holds for one initial state s0.

This behavior can be rather counter-intuitive and may lead to undesired results. Es-
pecially for existentially quantified temporal properties like the DCCA or aDCCA proof
obligations. One possible solution to this problem is to verify each formula for each
of the generated Kripke structures. An existentially quantified formula then holds if it
holds for one of the Kripke structures, and an always quantified formula holds if it holds
for each of the generated Kripke structures.
Although valid, such an approach would be rather inefficient and impractical for all

but very simple models, as a potentially very large number different Kripke structures
were to be analyzed. A much more practical approach is to add an explicit new initial
starting state which unifies the set of MDPs into a single one. In the example this would
work as follows: add 0 as new initial state of the choose_b_1 variable and then add a
non-deterministic step from this initial state to any of its other admissible states.

The addition of the new update rule with activation condition choose_b_1 = 0 and
the conjunction of all other activation conditions with !(choose_b_1 = 0) is then also
added to the other SAML modules. If choose_b_1 = 0 holds, the state variables stay in
their initial state. In this way there is one additional initial state for each state variable
in the resulting model. Therefore the complete transformation of the example model
results in the following:

module choose_1

choose_b_1 : [0..4] init 0;

true -> choice:(1 : (choose_b_1’ = 1))

+ choice:(1 : (choose_b_1’ = 2))

+ choice:(1 : (choose_b_1’ = 3))

+ choice:(1 : (choose_b_1’ = 4));

endmodule

module split_a

v_a : [0..2] init 0;

choose_b_1 = 0 -> choice:(1 : (v_a’ = 0))

!(choose_b_1 = 0) & v_a = 0 & v_b1 = 0 & v_b2 = 0 ->

choice:(p_a : (v_a’ = 0) + (1 - p_a) : (v_a’ = 1));

!(choose_b_1 = 0) & v_a = 0 & v_b1 = 1 & v_b2 = 1 ->

choice:(1 : (v_a’ = 2));

!(choose_b_1 = 0) & case3 -> choice:(1 : (v_a’ = 1));

!(choose_b_1 = 0) & v_a = 1 -> choice:(1 : (v_a’ = 1));

!(choose_b_1 = 0) & v_a = 2 -> choice:(1 : (v_a’ = 2));

endmodule

module split_b_1

v_b1 : [0..1] init 0;
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choose_b_1 = 0 -> choice:(1 : (v_b1’ = 0));

!(choose_b_1 = 0) & true & choose_b_1 = 1 -> choice:(1 : (v_b1’ = 0));

!(choose_b_1 = 0) & true & choose_b_1 = 2 -> choice:(1 : (v_b1’ = 1));

!(choose_b_1 = 0) & true & choose_b_1 = 3 -> choice:(1 : (v_b1’ = 1));

!(choose_b_1 = 0) & true & choose_b_1 = 4 -> choice:(1 : (v_b1’ = 1));

endmodule

module split_b_2

v_b2 : [0..1] init 0;

choose_b_1 = 0 -> choice:(1 : (v_b2’ = 0));

!(choose_b_1 = 0) & true & choose_b_1 = 1 -> choice:(1 : (v_b2’ = 0));

!(choose_b_1 = 0) & true & choose_b_1 = 2 -> choice:(1 : (v_b2’ = 0));

!(choose_b_1 = 0) & true & choose_b_1 = 3 -> choice:(1 : (v_b2’ = 1));

!(choose_b_1 = 0) & true & choose_b_1 = 4 -> choice:(1 : (v_b2’ = 1));

endmodule

As all of the safety analyses presented in Chapter 5 are reachability analyses, this is
a valid approach for SAML extended system models. The soundness of the outlined
transformation is shown in the next section.

6.4.2. Formal Transformation

The general transformation of a SAML model for qualitative analysis works as follows:

1. Eliminate the probabilistic distributions

2. Eliminate the parallel assignments

3. Assemble the resulting set of models to a single one

To show the soundness of the outlined transformation of a SAML model some addi-
tional definitions are necessary. To formalize the mapping of a SAML update rule to a
set of update rules of solely non-deterministic choices without parallel assignments, an
update tuple is defined as in Def. 35.

Definition 35. Update Tuple
An update tuple (φ, V,Θ) consists of

• a Boolean activation condition φ

• a set of variables V

• a set Θ of probabilistic choices θ where each θ is a set of pairs of the form (p, Expr)
where p is a probability and Expr is a set of pairs of state variables v ∈ V and
expressions that define their new values.
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The update tuple is a triple of an activation condition φ, a set V of variables for which
the update rule defines new values and the set of probability distributions. The set of
variables is comprised of all the state variables of the SAML module in which the update
rule is specified. A probability distribution is defined as a set of pairs (p, Expr) where
p is a probability and Expr defines an expression over the state variables and constants
for each state variable.
The following update rule of module a has a corresponding update tuple as shown in

Eq. (6.1):

v_a = 0 & v_b1 = 0 & v_b2 = 0 ->

choice:(p_a : (v_a’ = 0) + (1 - p_a) : (v_a’ = 1));

(

va = 0 ∧ vb1 = 0 ∧ vb2 = 0, {va},

{{

(pa, {(va, 0)}),
(1− pa, {(va, 1)})

}

,

})

(6.1)

As this module only holds a single state variable, there is no parallel assignment
elimination necessary.
Eq. 6.2 shows the update tuple representation of the following update from module b

of the example:

true -> choice:(p_b1 : (v_b1’ = 0) & (v_b2’ = 0) +

p_b2 : (v_b1’ = 1) & (v_b2’ = 0) +

p_b3 : (v_b1’ = 1) & (v_b2’ = 1))

+ choice:(1 : (v_b1’ = 1) & (v_b2’ = 1)) ;



true, {vb1, vb2},













(pb1, {(vb1, 0), (vb2, 0)}),
(pb2, {(vb1, 1), (vb2, 0)}),
(pb3, {(vb1, 1), (vb2, 1)})







, {(1, {(vb1, 1), (vb2, 1)})}









 (6.2)

The activation condition φ is simply true, the set of variables that get a new value as-
signed in the update rule is V := {vb1, vb2} and there are two different probabilistic distri-
butions in Θ. The first, θ1 has 3 elements (pb1, {(vb1, 0), (vb2, 0)}), (pb2, {(vb1, 1), (vb2, 0)})
and (pb3, {(vb1, 1), (vb2, 1)}). The second, θ2 has only one element (1, {(vb1, 1), (vb2, 1)}).
Each element of the probabilistic distributions consists of a pair of a probability p and
a set of pairs of variables and expressions that define their respective new value in the
update.

Parallel Assignment Elimination

To formalize the indexing of the different possibilities of parallel assignments, a function
is required that maps each element of a set to a unique index. This is used to specify
the index to mark parallel assignments.
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Definition 36. Set Element Index
Let ηS be a mapping of each element of a set s ∈ S to a distinct element of the interval

[1; |S|] ⊆ N.

Using this mapping, the elimination of parallel assignments from a parallel update
tuple can formally be defined as shown in Def. 37. Here ηS is used to assign an index to
the different possible parallel assignments.

Definition 37. Parallel Assignment Elimination
Let (φ, V,Θ) be an update tuple um, and ν(Expr, v) be a mapping from the set of

expression Expr of new values for the state variables to the new values for the state
variable v, the parallel assignment elimination mapping µ is defined as

µ ((φ, V,Θ)) :=
⋃

v∈V

{(φ ∧ choosem = i, {v}, (1, ν(Expr, v)))|(i, Expr) ∈ Π} (6.3)

where
Π := {(ηT(Expr), Expr)|Expr ∈ T}

T := {Expr|(p, Expr) ∈ θ, θ ∈ Θ}

and choosem is a new identifier chosen as name of the chooser variable.

This definition can now be applied to the parallel assignment of the example module
b. The original update tuple is presented in Eq. 6.2. The first step is to construct the
auxiliary sets T and Π.

T = {{(vb1, 0), (vb2, 0)}, {(vb1, 1), (vb2, 0)}, {(vb1, 1), (vb2, 1)}, {(vb1, 1), (vb2, 1)}}

Π =















(1, {(vb1, 0), (vb2, 0)}),
(2, {(vb1, 1), (vb2, 0)}),
(3, {(vb1, 1), (vb2, 1)}),
(4, {(vb1, 1), (vb2, 1)})















This eliminates the probability distributions and replaces them with non-deterministic
choices. The result consists of a set of update tuples where each modifies exactly one
state variable and each one has exactly one probability distribution with a single element
and probability 1. The non-determinism is expressed in the update tuple that modifies
the choose b 1 variable which is shown in Eq. (6.6). Each of the sets of update tuples
of Eq. (6.4)-(6.6) modifies exactly one state variable. In the transformed model, each
module contains exactly one state variable and all the update tuples of one of these sets.















(true ∧ choose b 1 = 1, {vb1}, {{(1, {(vb1, 0)})}}) ,
(true ∧ choose b 1 = 2, {vb1}, {{(1, {(vb1, 1)})}}) ,
(true ∧ choose b 1 = 3, {vb1}, {{(1, {(vb1, 1)})}}) ,
(true ∧ choose b 1 = 4, {vb1}, {{(1, {(vb1, 1)})}})















(6.4)
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













(true ∧ choose b 1 = 1, {vb2}, {{(1, {(vb2, 0)})}}) ,
(true ∧ choose b 1 = 2, {vb2}, {{(1, {(vb2, 0)})}}) ,
(true ∧ choose b 1 = 4, {vb2}, {{(1, {(vb2, 1)})}}) ,
(true ∧ choose b 1 = 3, {vb2}, {{(1, {(vb2, 1)})}})















(6.5)























true, {choose b 1},















{(1, {(choose b 1, 1)})}
{(1, {(choose b 1, 2)})}
{(1, {(choose b 1, 3)})}
{(1, {(choose b 1, 4)})}





































(6.6)

In summary, the parallel assignment elimination of a SAML system model for quali-
tative analysis works as follows: each update rule with parallel assignments

1. is transformed using the parallel assignment elimination mapping µ (Def. 37)

2. gets an associated new chooser variable which models parallel assignments

3. defines new SAML modules, each containing exactly one of the original state
variables

This results in a partitioning of the original model into single modules with only a
single state variable and one single module for each newly introduced chooser variable.
The parallel composition of this leads to a set of MDPs, each with a different initial
state, due to differing initial valuations of the chooser variables.
The behavior of the resulting MDPs is identical to the behavior of the original model

with respect to the non-deterministic behavior, represented by the embedded Kripke
structures. Lemma (10) states that the paths of the original and the transformed set
of MDPs in Λ are equivalent in the following sense: for each path π of the embedded
Kripke structure of the original model, there exists a path π′ in one of the embedded
Kripke structures of the transformed models such that for the projection of π′ onto the
original state variables var: π′|{var} ≡ π holds. The same holds the other way round for
each embedded Kripke structure of each of the MDPs in the set Λ.

Lemma 10. Transformation Equivalence
Let M be a SAML model with state variables v1, . . . , vk, and update rules u1 . . . um

and the corresponding MDP τMDP . Let U :=
⋃m

i=1{µ(ui)} be the set of update tuples of
M with eliminated parallel assignments.
Let M ′ be the parallel composition M1|| · · · ||Mk||Mchoose1|| · · · ||Mchoosem where Mi is

a SAML module with the single state variable vi and all the updates of the set U of the
form (φ, vi,Θ) and Mchoosei is a SAML module with the chooser variable choosei and
the update rules for choosei from U of the form

(true, {choosei}, {{(1, {(choosei, [1, j] ⊆ N}}})
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1 e l i m i n i a t e p a r a l l e l a s s i g n (updateSetSAML)
2 newStateVars := samlStateVars
3 updatesNoPara l l e l := ∅
4 for ( update u : updateSetSAML)
5 i f hasPar a l l e lA s s i gn s (u) then
6 chooseVar := getFreshVar iab le ( )
7 newStateVars := newStateVars ∪ { chooseVar }
8 (φ , va r i ab l eSe t , pDi s tL i s t ) := u
9 for ( variableName v : variableSAML )

10 for ( i = 0 ; i < | pDi s tL i s t | ; i++)
11 updatesNoPara l l e l := updatesNoPara l l e l ∪
12 {(φ ∧ chooseVar = i ,{v } , [ getExpr (v , pDi s tL i s t [ i ] ) ] ) }
13 updatesNoPara l l e l := updatesNoPara l l e l ∪
14 {( true ,{ chooseVar } , { 0 . . | pDi s tL i s t | }}
15 else
16 updatesNoPara l l e l := updatesNoPara l l e l ∪ {u}
17 return ( updatesNoPara l l e l )

Listing 6.2: Pseudocode to Eliminate Parallel Assignments from a Set of Update Tuples

Let Λ := {τ ′MDP} be the set of MDPs corresponding to the set of possible M ′ with a fixed
initial value for each choosei variable, then

∀π : (π ∈ Paths(κ(τMDP )) ⇔ ∃τ ′MDP ∈ Λ : π ≡ π′|{v1,...,vk} ∧ π
′ ∈ Paths(κ(τ ′MDP )))

proof see p. 174

Listing 6.2 shows the pseudocode to implement the above parallel assignment elimi-
nation. Its input is a set of SAML update tuples (updateSetSAML). Its output is a set
of update tuples with eliminated parallel assignments and the necessary update tuples
of newly introduced state variables. The resulting set of update tuples is then used to
define new SAML modules, each holding a single state variable.

Single State Extension

As described in the last section, the simple combination of these embedded Kripke
structures of the MDPs to a single Kripke structure with multiple initial states can be
problematic. Although it is well defined, it can lead to problems with the semantics
of temporal logic specification on these Kripke structures. As mentioned before, the
intended semantics of the transformations is unfortunately not equivalent to the seman-
tics implemented in the verification tools. Therefore an additional initial state which
combines the set of MDPs into a single one is introduced as follows:
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1 s i n g l e i n i t i a l s t a t e ( saml−model )
2 i f mod e l h a s p a r a l l e l a s s i g n s ( saml−model ) then
3 g l oba l ch oo s e r := s e l e c t on e ch oo s e r v a r ( saml−model )
4 t r an s choo s e r := ad d n ew i n i t i a l s t a t e ( g lobal−chooser )
5 chooser name := get name ( t r an s choo s e r )
6 c h o o s e r i n i t := g e t i n i t i a l v a l ( t r an s choo s e r )
7 for (module m : get modules ( saml−model ) )
8 i f i s c h o o s e r v a r ( g e t s t a t e v a r (m) ) then
9 chooser = g e t s t a t e v a r (u ) ;

10 s e t i n i t i a l s t a t e ( chooser , s e l e c t on e ( i n i t v a l ( chooser ) ) )
11 else
12 for ( update−r u l e u : g e t upda t e r u l e s (module ) )
13 (φ , varSet , pDi s tL i s t ) := u
14 u := (φ∧ chooser name 6= choo s e r i n i t , varSet , pDi s tL i s t )
15 v := g e t s t a t e v a r (module )
16 u := ( chooser name = ch oo s e r i n i t ,{ v } ,{{(1 , i n i t v a l ( v ) )}} )
17 add update ru le (u , m)
18 return ( saml−model )
19 else
20 return ( saml−model )

Listing 6.3: Pseudocode for Single State Extension

• select one of the chooser variables as global chooser

• add a new state 0 to the global chooser

• define 0 as initial state of global chooser

• for each of the other chooser variables use any of their admissible values as single
initial state (generally the value 1 as the smallest one)

• for each state variable add a new update tuple of the form

(global chooser = 0, {v}, {(1, {v, init(v)})})

• for each other update tuple of the state variables, set the activation condition to
the conjunction of the original one and ¬global chooser = 0

This means that the global chooser variable is in its new initial state 0 for exactly one
time-step and then enters one of its admissible states. All other chooser variables have a
single well-defined value in the first time-step and all non-chooser state variables stay in
their respective initial states for one additional time-step. This means that now, there
exists a single initial state in the transformed model. Listing 6.3 shows the pseudocode
to add an additional unique single initial state to the SAML model.
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This construction leads to a new single initial state s−1 of the embedded Kripke
structure from which any of the original initial states of the set S0 can be reached in one
time-step via a non-deterministic choice. In particular this means for a SAML modelM
and a SAML model M ′ which is the result from the transformation as described above,
that for each path of the embedded Kripke structure of M ′, the postfix of this path has
an equivalent path in the embedded Kripke structure ofM and vice versa. This is shown
in Lemma (11).

Lemma 11. Single Initial State Extension
Let M be a SAML model with state variables v1 . . . vk and M ′ the SAML model which

results from parallel assignment elimination and single state extension of M , then

∀π : (π = s0s1 . . . ∈ Paths(κ(M))

⇔ ∃π′ = s′−1s
′
0 . . . ∈ Paths(κ(M ′)) : s0 ≡ s′−1|v1,...,vk ∧ ∀i ≥ 0 : si ≡ s′i|v1,...,vk)

proof see p. 175

In general this additional initial state must be reflected in the temporal logic proof
obligations. But as the transformation is done in such a way that the values of all
non-chooser state variables of the original model in s−1 are exactly the same as in state
s0, all the qualitative safety analysis methods presented in Section 5.2 are equivalent
on both models. The reason for this is that they consist of reachability analyses and
the construction does not change the reachable states (for v1 . . . vk), but only delays
everything for one time-step. The safety analysis proof obligations do also not contain
Boolean expression over the values of the chooser variables.
Nevertheless this effect must be accounted for if other temporal logic properties should

be checked. Then the one time-step delay must be considered by using the next operator
to skip the new initial state. For an LTL formula φ, this will generally simply be the
formula X(φ). For CTL formulas, it is a bit trickier. The intended semantics of an
existentially quantified ψE formula is that “there exists an initial state such that ψE

holds”. This can be accounted for with EX(ψE), i.e. there exists a state s0 reachable
in one time-step from s−1 such that ψE holds. For an always quantified formula ψA,
the intended semantics is “ψA holds for all possible initial states”. This can analogously
be expressed in the transformed model as AX(ψA). Note, that parsing and automatic
transformation of temporal logic specifications is not implemented at the moment, but
such an implementation would be rather straightforward.
For practical purposes, the addition of the new initial state seems to be a more con-

venient solution than to check every temporal logic property on the multiple Kripke
structures resulting from the parallel assignment elimination. Yet it should be noted
that other possible semantically sound transformations of SAML models for qualitative
safety analysis are conceivable.
For the concrete verification of qualitative properties on the transformed model, it now

only has to be expressed in an appropriate format for a verification tool like NuSMV.
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6.4.3. Transformation to NuSMV

The specification of the transformed SAML example model as a NuSMV model is shown
in Fig. 6.4. Analogous to SAML models, it is also structured in separate modules, here
labeled with the MODULE keyword. In the declaration of the modules, the state variables
of all other modules must explicitly be passed as input variables.
Inside the modules, the declaration of the domain of the state variables is located in

the variable declaration part (keyword VAR). In the assignment (keyword ASSIGN) part,
the initial value is defined via the init keyword. The update rules for the new values
are defined via next. The different activation conditions are treated as separate cases,
the new values for the state variable are given after the colon. All cases are enclosed be-
tween the case and esac keywords. The parallel composition of the modules in NuSMV
is synchronously parallel, analogous to SAML. The semantics of the assignment with
next(v) is equivalent to the assignment to v’ in SAML. This subset of the full speci-
fication language of NuSMV is sufficient to express the transformed model, a detailed
overview on the syntax of the input language of NuSMV can be found in the manual by
Cavada et al. [CCOR11].
Non-deterministic assignments are expressed as the assignment of a set of possible new

values. This can be seen in the very first update rule of the module A. In the original
model this was a probabilistic choice to assign V_A the new value 0 with probability pa
and the value 1 with probability 1− pa. This is transformed into the non-deterministic
assignment of the set {0, 1} to next(V_A).

next (V_A) := case

((!(G1332 = 0)) & (((V_A = 0) & (V_B1 = 0)) & (V_B2 = 0))) : {1,0};

...

esac;

The names for the introduced chooser variables are selected randomly from a pool of
unused variable names. The update rules for the chooser variable G1332 of the module
SPLIT_G1332 consist of non-deterministic assignments of any of its admissible values. Its
initial value is 0 as it is used as the global chooser variable for the single state extension
and indicates the very first time-step of the system.
The new module main holds the instances of all the other modules and corresponds

to the main function of many programming languages which marks the entry point for
program execution. This module is responsible to provide an instance of each module
and to pass the state variables explicitly as parameters and is required in all NuSMV
models.
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MODULE SPLIT_V_B2 (V_A,G1332,V_B1)

VAR

V_B2 : 0..1;

ASSIGN

init (V_B2) := 0;

next (V_B2) := case

((!(G1332 = 0)) & ((G1332 = 4) & TRUE)) : 0;

((!(G1332 = 0)) & ((G1332 = 3) & TRUE)) : 0;

((!(G1332 = 0)) & ((G1332 = 2) & TRUE)) : 1;

((!(G1332 = 0)) & ((G1332 = 1) & TRUE)) : 1;

(G1332 = 0) : 0;

esac;

MODULE SPLIT_V_B1 (V_A,G1332,V_B2)

VAR

V_B1 : 0..1;

ASSIGN

init (V_B1) := 0;

next (V_B1) := case

((!(G1332 = 0)) & ((G1332 = 4) & TRUE)) : 0;

((!(G1332 = 0)) & ((G1332 = 3) & TRUE)) : 1;

((!(G1332 = 0)) & ((G1332 = 2) & TRUE)) : 1;

((!(G1332 = 0)) & ((G1332 = 1) & TRUE)) : 1;

(G1332 = 0) : 0;

esac;

MODULE SPLIT_G1332 (V_A,V_B1,V_B2)

VAR

G1332 : 0..4;

ASSIGN

init (G1332) := 0;

next (G1332) := case

TRUE : {1,2,3,4};

esac;

MODULE A (G1332,V_B1,V_B2)

VAR

V_A : 0..2;
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DEFINE

CASE3 := (((V_A = 0) & (!(((V_B1 = 0) & (V_B2 = 0))

| ((V_B1 = 1) & (V_B2 = 1))))));

ASSIGN

init (V_A) := 0;

next (V_A) := case

((!(G1332 = 0)) & (((V_A = 0) & (V_B1 = 0)) & (V_B2 = 0))) : {1,0};

((!(G1332 = 0)) & (((V_A = 0) & (V_B1 = 1)) & (V_B2 = 1))) : 2;

((!(G1332 = 0)) & CASE3) : 1;

((!(G1332 = 0)) & (V_A = 1)) : 1;

((!(G1332 = 0)) & (V_A = 2)) : 2;

(G1332 = 0) : 0;

esac;

MODULE main

VAR

G1333 : SPLIT_V_B2(G1336.V_A,G1335.G1332,G1334.V_B1);

G1334 : SPLIT_V_B1(G1336.V_A,G1335.G1332,G1333.V_B2);

G1335 : SPLIT_G1332(G1336.V_A,G1334.V_B1,G1333.V_B2);

G1336 : A(G1335.G1332,G1334.V_B1,G1333.V_B2);

Figure 6.4.: NuSMV Specification of the SAML Model in Fig. 6.2

This model specification can then be analyzed with the NuSMV model checker. For
each state variable of the original SAML model, there exists exactly one correspond-
ing state variable in the transformed model. Therefore counterexamples computed by
NuSMV can easily be traced back into the SAML model (ignoring the additional initial
state).
This syntactical transformation is sound, as only the parallel composition and the

assignment of new values to state variables is NuSMV specific. The module composition
is also synchronously parallel and the assignment for the next values is equivalent to the
semantics of the assignment in SAML. Therefore the SAML model with the eliminated
parallel assignments and the single initial state is semantically equivalently expressible
as a NuSMV model in this way.

6.5. Related Work

In the Topcased project [VPF+06], Farail et al. [FGP+08] use the formal language FI-
ACRE as an intermediate language for formal analysis. Different models (mainly in
AADL) which are constructed in the Eclipse Modeling Framework (EMF) are trans-
formed into FIACRE, the FIACRE models are then transformed into the verification
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tools of the CADP toolbox developed by Fernandez et al. [FGK+96] or the TINA petri
net analyzer developed by Berthomieu et al. [BaFV04]. Due to the amount of model-
ing artifacts that are supported in FICARE, only structural properties of systems can
be proven, the models are too complex for a successful verification of behavioral as-
pects [FGP+08]. SAML has deliberately been designed to be as simple as possible for
formal analysis while retaining the expressiveness needed for extended system modeling.

The SLIM formalization by Bozzano et al. [BCK+09b] of an AADL subset and the
AADL error annex [SA06] developed in the COMPASS project [BCK+10b] can also
transformed into different analysis tools for either qualitative or quantitative analysis.
SLIM separates the specification in nominal and failure parts. The nominal part, which
can also include continuous variables with change rate in addition to discrete state
variables, is transformed into a variant of the NuSMV model checker which also supports
satisfiability modulo theory (SMT) solving techniques that can solve such hybrid system
behavior. This is achieved by the integration of the MathSAT SAT solver developed by
Bruttomesso et al. [BCF+08] into the COMPASS toolchain.

The probabilistic failure modeling uses continuous time models which are analyzed
with the MRMC model-checker. This is called performability analysis in COMPASS.
The transformation consists of two steps: firstly, the state space of the SLIM model is
generated. The semantics allows instantaneous transitions which are not probabilistic
and do not consume time and therefore are of no effect on the quantitative model. In
a second step, all states resulting from such transitions are collapsed together using the
“lumping” mechanism. This is conducted using bisimulation minimization of the labeled
transition system with the SigRef tool developed by Wimmer et al. [WHH+06] in the
AVACS project. Nevertheless, this performability analysis is only possible on models
that do not express such hybrid behavior [Ngu10]. The necessary transformations for
SLIM are realized on the semantic level and are directly integrated into the verifica-
tions tools (NuSMV and MRMC are developed by groups participating in COMPASS).
Therefore it is not easily possible to use other verification tools for the analyses (e.g. like
PRISM for quantitative analysis of larger models) as with the tool-independent approach
based on SAML.

Summary

This chapter presented model transformations which allow for safety analysis of ex-
tended SAML models with different verification tools. At the same time, they guaran-
tee that the transformed models are equivalent in some sense, rendering the approach
tool-independent. Therefore it benefits directly from improved analysis tools and it is
also possible to add newly developed analysis tools. The currently implemented trans-
formations allow to use PRISM and MRMC for quantitative analysis and NuSMV and
Cadence SMV for qualitative analysis. The transformations are on the syntactical level,
which facilitates the integration of additional verification tools.
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The transformations of SAML models into the input language of PRISM requires the
explicit synchronization of the update rules and the transformation of non-deterministic
choices into update rules with equivalent activation conditions.
The transformation for qualitative analysis is more complex. Many analysis tools do

not allow for parallel assignments for multiple state variables which is possible in SAML.
This problem was solved by the introduction of one additional state variable per parallel
assignments that signals which possibility was chosen. The result of this transformation
is a set of SAML models, for which path inclusion equivalency holds. It is possible
to combine this set of models into a single equivalent model of a Kripke structure, on
which all of the qualitative model-based safety analyses can be conducted. This can be
analyzed using qualitative verification tools like the different SMV variants.
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Programming is usually taught by examples.

(Niklaus Wirth)

This chapter presents three case studies which are analyzed using the formal model-
based analysis methods presented in the previous chapter. It describes how systems from
different application domains can be modeled and analyzed. The chapter discusses ad-
vantages as well as limitations of the modeling and model-based safety analysis methods
presented in this dissertation. The results of the analysis of each case study are pre-
sented, as well as information about the computational effort that is required to conduct
the analyses.
A larger industrial case study from the railway domain is described in Section 7.1.

Section 7.2 presents the full modeling of the case study which was used in Chapter 4 and
Chapter 5. Section 7.3 discusses a case study of a self-healing system from production
automation. Section 7.4 concludes the chapter with some discussion about related work
on the selected case studies.

121



7. Case Studies

7.1. Radio-Based Railroad Control

This case study is currently the largest and most realistic one that has been analyzed
using the methods described in the last chapters. It clearly shows that the developed
techniques are applicable in a real-world context.

7.1.1. Description

The following case study of a radio-based railroad control was used as a reference case
study in the priority research program 1064 “Integrating software specifications tech-
niques for engineering applications” of the German Research foundation (DFG). It was
supplied by the German railway organization, Deutsche Bahn and addresses a proposed
novel technique for controlling railroad crossings. This technique aims at medium speed
routes with a maximum speed of 160km

h
. It is described Reif et al. in [RST00] where a

first FTA of the case study was presented. Its purely qualitative modeling and safety
analysis using DCCA was presented by Ortmeier et al. in [ORS05] and its quantitative
modeling and safety analysis with pDCCA in [GO10c].

radio communication

central office

route
profile defects

Figure 7.1.: Radio-based Railroad Crossing [RST00]

The following description of the case study is taken directly from Reif et al. [RST00]:

“The main difference between this technology and the traditional control
of level crossings is, that signals and sensors on the route are replaced by
radio communication and software computations in the train and in the level
crossing. This offers cheaper and more flexible solutions, but also shifts
safety-critical functionality from hardware to software.
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Instead of detecting an approaching train by a sensor, the train computes
the position where it has to send a signal to secure the level crossing. There-
fore the train has to know the position of the level crossing, the time needed
to secure the level crossing, and its current speed and position, which is
measured by an odometer.
When the level crossing receives this command, it switches on the traffic

lights, first the yellow light, then the red light, and finally closes the barri-
ers. When they are closed, the level crossing is safe for a certain period of
time. The stop signal, indicating an insecure crossing, is also substituted by
computation and communication. The train requests the status of the level
crossing. Depending on the answer the train will brake or pass the crossing.
The level crossing periodically performs self-diagnosis and automatically in-
forms the central office about defects and problems. The central office is
responsible for repair and provides route descriptions for trains. These de-
scriptions indicate the positions of level crossings and maximum speed on
the route.”

For the formal modeling in SAML and model-based safety analysis, the case study is
adapted as follows: The train continuously monitors its position and its speed via the
odometer. When it approaches the crossing, it initiates the communication by sending
a secure request. When the crossing receives this, it starts closing the barrier. Shortly
before the train reaches the latest braking point – the smallest distance to the barrier
where it is possible for the train to stop in front of the crossing with its current speed –
it requests the status of the crossing. The crossing acknowledges this signal if the sensor
at the barrier detects that the barrier is closed. If there is no secured signal, the train
brakes immediately. The passing of the train is detected by a sensor located after the
crossing, allowing the crossing to reopen the barrier. The central office was not modeled
for the analysis.

7.1.2. Modeling

The structure of the modeling of the case study is similar to the original modeling for
Statecharts presented by Ortmeier et al. [ORS05]. But of course, here the quantitative
information is directly integrated into the extended system model. In return, a more
accurate modeling of the case study, in particular of the probabilistic failure mode mod-
eling and of the physical environment, and a more accurate quantitative analysis with
pDCCA is possible.

Modeling of Hardware and Software

The hardware and software modeling in this case study is the crossing itself which is
modeled by its states, the crossing control which is responsible to control the state
changes of the crossing and the control of the train.

123



7. Case Studies

Crossing The control of the crossing is triggered by signals from the communication
with the approaching train. The module representing the crossing is shown in Fig. 7.2.
The state variable crossing has three possible states: an opened state which is also
the initial state, a closing state and a fully closed state. The state opened is left when
the activation condition close holds, which means that the train has sent its closing
request to the crossing and the request has been received. This also starts an (external)
timer and the crossing is in state closing as long as the timer counts (timer1 > 0). The
closing of the barrier of the crossing needs some time, 30s in the model of the case study.
When this has passed, the crossing enters state closed. This starts another timer and
the crossing gets opened again (enters state opened) when either a predefined amount
of time elapses (timer2 = 0)1 or the trainPassed signal arrives which announces that
the train has passed the crossing.

Module Crossing / crossing

opened

closing closed

1

¬timer1 = 0

1
timer1 = 0

1

1

1

1

Close

¬Close

¬(timer2 = 0 ∨ trainPassed)

timer2 = 0 ∨ trainPassed

Figure 7.2.: Original Crossing Model

Train Control The behavior of the train is defined by the train control. It models
the current state of the train. The train control continuously monitors the speed of the
train as well as its position and initiates the communication with the crossing in such
way that it can still stop before the dangerous position if the crossing is not closed. To
compute the positions from where to initiate the communication and when to brake if
there is no answer received, the train uses the reading from the odometer of the train
called virtual speed.

1This is a requirement from the Deutsche Bahn to assure that people who become impatient after a
long waiting and decide to cross the track anyway do so at least fast.
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The corresponding module is shown in Fig. 7.3. It consists of the state variable
trainControl. Its initial state is idle which means that the train approaches the cross-
ing. When the train determines that the position to initiate the closing of the crossing is
reached (posCloseReached holds), it enters the state waitClose where it stays until the
status reporting position has been reached at which it requests the state of the barrier of
the crossing. It then enters the state waitSig where it stays until either the crossing sig-
nals that it is closed (ackReceived holds) or the last breaking position has been reached
(posBrakeReached holds). If the crossing signals its closed state, the train enters the
ok state and passes the crossing without braking.

If the last breaking position has been reached without a signal from the crossing, the
train brakes to prevent entering the crossing and the state of the train control is set to
brake. All the positions are not fixed, but are computed by the train control dependent
on the virtual speed reading of the odometer.

Module TrainControl / trainControl

ok

brake

waitSig

idle

waitClose

1

1

1
1

1

1

¬posCloseReached

true

true

1

¬posStatusReached

¬(ackReceived ∨ posBrakeReached)

1

posBrakeReached

1

posStatusReached

posCloseReached

¬posBrakereached

∧ackReceived

Figure 7.3.: Train Control

Modeling of Physical Behavior

The modeling of the physical behavior of the train covers mainly its movement. In order
to be realistic, not only the current position and velocity must be considered, but also
the modeling of acceleration and deceleration (braking). This is separated into three
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parts: the position, the speed and the acceleration2.

Train Position The movement of the train is modeled as the change of this position.
The train is therefore modeled as a module with a state variable that tracks the current
train position, as shown in Fig. 7.4. The update rules define the value of the change
of the corresponding state variable. The railroad track that is of interest is 10km long
and the state variable representing the train position has to cover this distance. Its
domain is the interval from 0 to 1000, one spatial unit therefore corresponds to 10m.
The danger spot, i.e. the position at which the train must come to a halt if the crossing
is not closed, is at the 9km position (pos_gp = 900). The position of the sensor, that
detects whether the train has passed, is located at 9.5km (pos_sensor_passed = 950).
The first update rule changes the the position of the train by adding the current

speed to the current position. This works, as the speed is defined as rate of change per
time-unit. The activation condition of the second update rule is active once the train
has completely passed by the crossing and continues on the track outside the observed
10km. Therefore the position of the train will not get larger than 1000.

module TrainPos

trainPos : [0..1000] init 0;

trainPos + trainSpeed < 1000 -> choice (1 : (trainPos’ = trainPos + trainSpeed));

!(trainPos + trainSpeed < 1000) -> choice (1 : (trainPos’ = 1000));

endmodule

Figure 7.4.: Train Position Module

Train Speed The speed of the modeled train on such a track is assumed to be v =
115km

h
or 32m

s
. For a temporal resolution of ∆t = 5s, i.e. for every discrete system

time step 5 seconds pass, this means that the position of the train increases by (∆t·v)
10m

units. The current real speed of the train is modeled by a second module holding the
trainSpeed state variable. The corresponding module is shown in Fig. 7.5. The initial
value is 16 which corresponds to 32m

s
and is also the maximal speed. The minimal speed

is 0.

Train Acceleration The value of trainSpeed on the other hand depends on the value
of the acceleration of the train. The current acceleration is modeled in a third module
as shown in Fig. 7.6. It contains the trainAcc state variable with specifies the current
acceleration of the train and has the domain {−1, 0, 1}. The meaning of an acceleration

2This is an example of the general approach to model physical units via their rate of change, as
mentioned in Sect. 4.4
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module TrainSpeed

trainSpeed : [0..16] init 16;

(trainSpeed + trainAcc < 0) -> choice (1 : (trainSpeed’ = 0));

(trainSpeed + trainAcc > 16) -> choice (1 : (trainSpeed’ = 16));

!(trainSpeed + trainAcc < 0 | trainSpeed + trainAcc > 16) ->

choice (1 : (trainSpeed’ = trainSpeed + trainAcc));

endmodule

Figure 7.5.: Train Speed Module

of value 1 is that trainSpeed changes 1 unit in one time-step. As one trainSpeed

unit corresponds to 2m
s
and ∆t = 5s this means that if trainAcc has the value 1, the

acceleration is 2
5
m
s2

(and −2
5
m
s2

for the deceleration with trainAcc = -1).

0

−1

1

Module TrainAccel / trainAcc

trainControl 6= brake

1

trainControl = brake

1

1

trainControl = brake

trainControl = brake

trainControl 6= brake

trainControl 6= brake

Figure 7.6.: Train Acceleration Module

Modeling of Failure Modes

In this case study, different failure modes are possible. The relevant ones for the safety
analysis are the following: failure of the brakes (error brake) which models that the train
does not decelerate as intended, failure of the communication between the train and the
crossing (error comm), failure of the crossing closed sensor (error closed) which results in
wrongly signaling a closed barrier, failure of the actuator of the barrier (error actuator)
which means that the barrier does not close as intended, failure of the sensor that detects
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the passage of the train (error passed) and finally a deviation of the odometer of the
train (error odo) which means that the train is faster or slower than reported by its
odometer, i.e. the virtual speed – which is used by the train to compute the points to
communicate with the crossing and the last braking point – is not equal to the value of
trainSpeed.

Error passed This failure mode models the malfunction of the sensor that detects
whether the train has passed the crossing. A malfunction can either be a signal that
a train has passed although there was none or omitting a signal although a train has
passed. This failure is integrated into the original model of the crossing (see Fig. 7.2).
The misdetection of the trainPassed signal is integrated as shown in Fig. 7.7. The

crossing can now also leave the state closed if the failure module corresponding to the
error passed failure mode is in state yes, i.e. the sensor misdetects a passed train and
the crossing gets opened as result.

Module Crossing / crossing

closing

opened

closed

1

¬timer1 = 0

1
timer1 = 0

timer2 = 0 ∨ trainPassed

1

1

1

1

Close

¬Close

∧error passed 6= yes

∨fails passed = yes

¬(timer2 = 0 ∨ trainPassed)

Figure 7.7.: Failure Effect Modeling of error passed

The occurrence pattern of the failure mode is modeled as follows: The failure rate
λerror passed is assumed to be 7 · 10−9 1

s
. This means that the expected value of failures

per time-step with ∆t = 5s of this sensor is 5s×λerror passed = 3.5 ·10−8 which is used as
the per-step failure probability for the modeling of a transient per-time failure module.
The failure occurrence pattern is modeled transiently, as the intended failure mode is a
sensor misdetection which is only a temporary disturbance.

Error comm This failure mode models the malfunction of the radio communication
between the arriving train and the railroad crossing such that the requested close com-
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mand is not received. In Fig. 7.8 the module representing the crossing with the failure
effect modeling of both the error passed as well as the error comm failure mode is shown
together with the parallel failure modules for the failure modes.
The integration of error comm is achieved by splitting the activation condition Close

of the original module into Close ∧ (error comm 6= yes)3 for the original behavior and
Close ∧ (error comm = yes) for the failure effect. Whenever Close ∧ (error comm =
yes) holds, the state opened is not left although the train tries to signal the Close
command and therefore the demand to close the crossing fails.

Module Crossing / crossing

closing closed

opened

∧error passed 6= yes

¬(timer2 = 0 ∧ trainPassed)

1

¬timer1 = 0

1
timer1 = 0

timer2 = 0 ∨ trainPassed

1

1

1

1

Close

¬Close
∨(close ∧ error comm = yes)

∧error comm 6= yes

∨error passed = yes

Figure 7.8.: Integration of error passed and error comm

The failure mode is integrated as a per-demand failure mode with a per-demand failure
probability of 3.5 · 10−5. In the case study, there are generally three demands to the
communication function. The first one is the initial command to close the barrier sent
from the train to the crossing. In this case the demand is that the crossing is in state
opened and that the Close command is sent by the arriving train. This modeling is
shown in the per-demand failure module in Fig. 7.9 modeling the occurrence pattern of
error comm. The second demand is when the train requests the state of the barrier and
the third demand is when the crossing acknowledges a correctly secured barrier.

Error closed This failure mode models the effect that the secured signal is sent from
the crossing to the train, although the barrier of the crossing is not closed. This means
that the sensor at the crossing misdetects the closing of the barrier. The failure mode
is modeled in the following way: the secured signal of the crossing is sent to the train

3The value of error comm would be either 0 or −1 in the model to signal the absence of the failure
mode.
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init

no yes

Module Error_comm / error_comm

1

1 − p fails p fails

∧Close
crossing 6= opened crossing = opened

∨¬Close

1true

crossing 6= opened

∨¬Closecrossing = opened

∧Close

Figure 7.9.: Per-demand Failure Module for error comm

although the crossing is not closed and the train mode therefore changes from waitSig
to ok and passes the crossing without braking. This can be seen in Fig. 7.10, the
activation condition of the transition from state waitSig to ok can now also become true
if error closed=yes holds. The activation conditions of the transitions to state brake or
waitSig can only be active if the failure mode does not occur.

normal ok

brake

waitSigwaitClose

Module TrainControl / trainControl

1

1

1
1

1

1

¬posCloseReached

true

true

1

¬posStatusReached

posCloseReached

1

¬(ackReceived ∨ posBrakeReached)

posBrakeReached

1

∧error closed 6= yes

∧error closed 6= yes

posStatusReached

(¬posBrakereached

∧ackReceived)

∨error closed = yes

Figure 7.10.: Modeling of error closed
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Error actuator This failure mode models the fact that the actuator of the barrier does
not work correctly and therefore the crossing gets stuck and does not close properly.

Module Crossing / crossing

closing closed

stuck

opened

1

1

timer2 = 0 ∨ trainPassed

1

1

1

1

¬Close

1

1

true

∧error passed 6= yes

∨(Close ∧ error comm = yes)

∨error passed = yes

¬(timer2 = 0 ∨ trainPassed)

∧error actuator 6= yes
timer1 = 0

¬timer1 = 0

∧error actuator 6= yes

error actuator = yes

Close

∧error comm 6= yes

Figure 7.11.: Integration of error passed, error comm and error actuator

The effects modeling is shown in Fig. 7.11. The integration of the failure effect is
modeled with an additional state. The model of the crossing is extended with the
additional state stuck. This state is reached when the error actuator failure mode occurs
while the crossing is in state closing. Once this state is entered, it cannot be left again,
i.e. the barrier is stuck and the crossing stays opened.

This failure mode is integrated as a persistent per-time failure mode with a failure
rate of 7 · 10−9 1

s
. The per-time failure modeling was chosen, because the effect of the

failure mode is that the barrier can get stuck at any time while closing and not only
directly at the start of the movement.

Error brake This failure modes models the malfunctioning of the brakes of the train.
Its effect is therefore integrated into the train acceleration model. If the train does not
brake, it can choose non-deterministically between keeping constant speed (trainAcc =
0) or accelerating (trainAcc = 1). If the train brakes, then the train decelerates
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(trainAcc = −1). The malfunctioning of the brakes is modeled that the train does
not decelerate although trainControl = brake holds.

0

−1

1

Module TrainAccel / trainAcc

∧error brake 6= yes

trainControl = brakes

∧error brake = yestrainControl = brake

∧error brake = yes

trainControl 6= brake

trainControl 6= brake

1

1

trainControl = brake
∧error brake 6= yes

trainControl = brake

∧error brake 6= yes

trainControl = brake
∧error brake = yes

1

1

trainControl 6= brake

trainControl = brake

Figure 7.12.: Integration of error brake

The failure is integrated into the TrainAcc module as shown in Fig. 7.12. All orig-
inal updates rules with activation condition trainControl = brake are split up into
two orthogonal update rule with the activation conditions trainControl = brake ∧
error brake 6= yes and trainControl = brake∧error brake = yes. When error brake =
yes holds, the only possibility is an acceleration of 0, i.e. continuing at constant speed.

The failure mode is modeled as per-time failure mode with a failure rate of 7e−9 1
s
.

Although for this failure mode, one could also argue for a per-demand failure modeling.
The demand in this case would be the deceleration of the train, the failure effect modeling
would not change, only the failure module would have to be adjusted accordingly. But
as with the failure mode error actuator, the failure of the brakes can appear in a longer
time interval and not only at the moment of activation of the brakes.

Error odo This failure mode models the deviation of the measured speed of the train
from the real speed. As mentioned before, the train uses the reading of the odometer
as the virtual speed to compute the position from where to initiate the communication
and to compute the last braking point.
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Whenever the failure mode occurs, the actual reading of the odometer is chosen from
a discrete approximation of a normally distributed deviation with mean µ = 0m

s
and a

standard deviation of σ = 4m
s
and a maximal deviation of ±6m

s
. The deviation is stored

in the state variable errorOdoSkew, the corresponding module is shown in Fig. 7.13.
The deviation distribution is reflected in the probabilities of the update rules of the
errorOdoSkew state variable.

module ErrorOdoSkew

errorOdoSkew : [-3..3] init 0;

error_Odo = 1 -> choice (

0.0059770 : (errorOdoSkew’ = -3) +

0.060598 : (errorOdoSkew’ = -2) +

0.24173 : (errorOdoSkew’ = -1) +

0.38339 : (errorOdoSkew’ = 0) +

0.24173 : (errorOdoSkew’ = 1) +

0.060598 : (errorOdoSkew’ = 2) +

0.0059770 : (errorOdoSkew’ = 3));

error_Odo = 0 -> choice (1 : (errorOdoSkew’ = 0));

endmodule

Figure 7.13.: Deviation of Odometer for error odo

The effect of the occurrence of this failure mode is as follows: the value of the state
variable errorOdoSkew is used to compute the virtual speed as the deviation of the real
speed of the train, i.e. virtual speed = trainSpeed + errorOdoSkew. The occurrence
pattern of the error odo failure mode is modeled as a transient per-time failure mode
with a failure rate of 6 · 10−5 1

s
.

7.1.3. Results

DCCA

The safety analysis results were computed on a 8 core 2.66 Ghz Xeon computer with
16G RAM. The hazard for which the safety analysis was conducted is “the train is on
the crossing but the crossing is not closed”. This is formulated as:

crossing 6= closed ∧ trainPos < pos gp ∧ trainPos+ trainSpeed ≥ pos gp

This means that the train passes the danger point (pos gp) at a time when the crossing
not closed. In the formal model this means that the train position is before the danger
point at the current time-step, but will reach or cross the danger point in the next
time-step because of its current speed. This is a potential cause for an accident and
is therefore a hazard. The embedded Kripke structure of the extended system model
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was analyzed with DCCA using the NuSMV model-checker version 2.5. The analysis
required 14.518s and lead to the following minimal critical sets:

• Γ1 := {error passed}

• Γ2 := {error odo}

• Γ3 := {error comm, error closed}

• Γ4 := {error comm, error brake}

• Γ5 := {error closed, error actuator}

• Γ6 := {error actuator, error brake}

The failure mode error passed is a single point of failure. It is critical when the
sensor misdetects that the train has passed and therefore the crossing opens again. The
error odo failure mode is only critical as a single point of failure if the deviation is large
enough (in this case up to 6m

s
). Then the deviation of the real from the virtual speed is

large enough and the train brakes too late. The set Γ3 describes the situation that the
sensor at the barrier fails and therefore the signal to proceed is sent to the train, but
the barrier did not receive the close signal and therefore stays in state opened. The set
Γ4 describes the situation that the train cannot signal the close signal to the crossing,
but can also not brake and therefore enters the crossing while the barrier is opened. Γ5

describes the situation that the crossing actuator malfunctions, i.e. the crossing does
not close, but the sensor of the crossing misdetects it as closed. Finally, set Γ6 describes
the situation that the crossing does not close correctly and the train is not able to brake
in time because of the malfunctioning of its brakes. Note that this failure mode is not
a single point of failure (a minimal critical set of size 1) as it was conjectured in earlier
analyses based on FTA [RST00, TO03].

Deductive Ordering Analysis

For the minimal critical sets with two elements, deductive ordering analysis was con-
ducted. Using the NuSMV model-checker version 2.5, this required 30m and 47.6s and
revealed that there are no temporal dependencies between the failure modes.

pDCCA

This case study is a good example for a non-reactive system. The train passes the
crossing exactly once and only this hazard probability is of interest. Therefore pDCCA
can directly be applied for quantitative safety analysis without specifying a mission time.
For pDCCA, the resulting model consisted of 21.491.073 states, 803.961.338 proba-

bilistic transitions and 22.268.090 non-deterministic choices. The maximal occurrence
probability of the hazard was computed to be:
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Pmax(H) = 2.7331 · 10−6

Using the PRISM model-checker version 3.3, the computation required 3.7G RAM
and an analysis time of 12m and 9.4s in sparse matrix representation and 36M RAM
and an analysis time of 32m and 2.1s for MTBDD representation. Note, that both
methods compute the same hazard probability only up to a certain precision, due to
different numerical methods. In this case the difference is smaller than 10−13. If this is
of concern, the threshold values for the algorithms can be adjusted accordingly in the
configuration of the verification tools.
Advantage over existing methods For this case study, the major advantage of the

presented model-based safety analysis method is the more accurate determination of the
occurrence probability of the hazard. The existing more traditional analysis methods are
based on an a-posteriori estimation of the hazard probability on the resulting critical
combinations of failures (e.g. see [ORS05]). The following equations show the result
using the standard approach based on the quantitative fault tree analysis (FTA) formula
as shown in Eq. (7.1).

PFTA(H) ≤
∑

∆∈minimal cut sets

∏

δ∈∆

P (δ) (7.1)

This estimation relies on the stochastic independence of the occurrence of the failure
modes. Therefore the occurrence probabilities of failure modes in the same minimal cut
(or critical) set are multiplied and the estimated occurrence probabilities of all minimal
cut sets then summed together.
In the case study there are two single point of failures, error passed and error odo.

Both are per-time failure modes, so the time interval to consider in the analysis must
be defined. For this (see [GO10c]), the probabilities for error passed and error odo

were estimated for one train passing the crossing which in the example is roughly4

312s. As the occurrence probabilities of the other failure modes in sets of size two are of
similar value but are multiplied, their effect on the overall hazard probability is basically
neglectable, as it is in the order of O(1 · 10−14), see Eq. (7.2).

PFTA(H) ≤ P (error passed) + P (error odo) + P (cut sets of size ≥ 2) (7.2)

PFTA(H) ≤ 2.8 · 10−6 + 2.5 · 10−2 +O(1 · 10−14) ≈ 2.5 · 10−2 (7.3)

The previous approach to refine coarse results like in Eq. (7.3) was to use constraint
probabilities. For example, one could come to the conclusion that only deviations of at
least 4m

s
are dangerous. This would then lower the probability for error odo by the order

4Derived from the formal model of the railroad crossing, i.e. the length of 10.000m of the observed
track and the average speed of the train of the train.
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of 2, but would still be very imprecise. Another drawback of the previous approach is
that if the system is not carefully analyzed for dependencies, the estimation can even be
too optimistic. One example for this is the decision whether a deviation of the odometer
of 6m

s
could be justified or not.

With quantitative model-based safety analysis, the need for these coarse estimations is
enormously reduced. Per-Time and per-demand failure modes can be combined directly
in the extended system model. The distribution of the deviation of the odometer can
also directly be specified in the extended system model, with higher deviations having
a lower occurrence probability approximating a normal distribution. The limit for the
accuracy is the model size and verification effort and not an a-priori specification of
constraint-probabilities or manual dependency analysis.

But of course the biggest advantage of the quantitative model-based safety analysis is
that all the logical or stochastic dependencies5 which often are inherent in such a system
are automatically considered in the quantitative analysis of the system model.

7.2. Hot Spare Backup System

7.2.1. Description

This case study consists of two redundant input sensors (S1 and S2) measuring an input
signal (I). This signal is then processed in an arithmetic unit to generate the desired
output signal. Two arithmetic units process the signal, a primary unit (A1) and its
backup unit (A2). The primary unit gets an input signal from both input sensors, the
backup unit only from one of the two sensors. If the primary unit (A1) produces no
output signal, then a monitoring unit (M) switches to the backup unit (A2) for the
generation of the output signal. The backup unit will only produce an output signal if it
has been triggered by the monitor. If the secondary unit is triggered, the primary unit
will get switched off. A schematic view of the case study is depicted in Fig. 7.14. This
case study is adapted from Walker et al. and is described in [WBP07]. A first qualitative
analysis has been described in [GOR08] and a first quantitative analysis in [GO10b].

This system is functionally correct if it delivers a correct output signal. If it is used in a
safety-critical environment, a malfunctioning (omission of values) can be very dangerous
and the system can become safety-critical.

5One rather surprising result is for example that the faster the train, the more likely is the situation that
the sensor is passed without sensor failure. A slower train speed translates to a higher probability
of a error passed failure mode, as the more time passes the more the probability shrinks that the
failure does not occur.
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M

S1

A1

O

A2

S2

I

Figure 7.14.: Schematic View of Example Case Study [GOR08]

7.2.2. Modeling

Many aspects of the formal SAML model for this case study have already been pre-
sented in Chapter 4. Therefore this section describes in particular the integration of the
remaining failure modes.

Modeling of Failure Modes

The failure modes that are considered in the case study and their failure rates or failure
probabilities are the following: The per-time failure modes S1FailSig and S2FailsSig
model an omission of the signal from either S1 or S2. Both are modeled with a failure
rate of λ = 1 ·10−2 1

h
. Analogously, the per-time failure modes A1FailsSig and A2FailsSig

describe the omission of the processed signal from either A1 or A2. The failure rate of
A2FailsSig is 1 · 10−2 1

h
, the failure rate of A1FailsSig is 1 · 10−6 1

h
, as the primary unit

A1 is of better quality than its backup unit A2. The per-time failure mode Monitor-
Fails describes the situation that the monitoring unit fails to detect the signal omission
from A1. Its failure rate is λMonitorFails = 1 · 10−6 1

h
. The per-demand failure mode

A2FailsActivate describes the failure to activate the secondary backup unit A2 if the
primary unit fails. Its occurrence probability is 1 · 10−7.

S1FailsSig and S2FailsSig Fig. 7.15 shows the modeling of the S1 sensor and the
failure effect of the per-time S1FailsSig failure mode. The initial state of the sensor
S1 is the state sig – which is also its initial state – and produces an output signal as
long as the corresponding failure module is in state no. When the failure mode occurs,
the sensor S1 changes to state noSig where it does not deliver a signal any more. The
occurrence pattern is modeled transiently, therefore S1 becomes operational again when
the corresponding failure module reenters the state no. The second sensor S2 is modeled
analogously, as well as the failure module for the S2FailsSig failure mode.
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Module s1 / Sensor1

sig

1

1
noSig

s1FailsSig = yes

s1FailsSig 6= yes
s1FailsSig 6= yes

s1FailsSig = yes

Figure 7.15.: S1FailsSig Failure Effect Modeling

A1FailsSig The modeling of the first arithmetic unit A1 and the failure effects of the
per-time failure mode A1FailsSig is shown in Fig. 7.16. A1 is in the initial state start
when the system is switched on. Afterwards it enters state noSig if the failure mode
A1FailsSig occurs or the state Sig if no failure mode occurs. From any of these states it
can be switched off by the monitoring unit. This is normally done if the monitor detects
a signal omission of A1. Once A1 is switched off, it is not possible to become operational
again.

noSig

Module arith1 / arith1

start offsig

1

¬sigA1

Monitor = degraded

1

1
true

¬sigA1

sigA1

sigA1

Monitor = degraded

a1FailsSig 6= yes

∧a1FailsSig 6= yes

∨a1FailsSig = yes

a1FailsSig = yes

∧a1FailsSig 6= yes

∨a1Fails1Sig = yes

Figure 7.16.: A1 with A1FailsSig Failure Effect Modeling
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A2FailsSig Fig. 7.17 shows the modeling of the second arithmetic unit A2 and the
failure effect modeling for the per-time failure mode A2FailsSig, as well as the per-
demand A2FailsActivate failure mode. The integration of A2FailsActivate has already
e explained in Section 4.5.3.

The initial state of A2 is idle, as it is used as hot-spare backup for A1. If it is activated
by the monitoring unit (activate holds) and A2FailsActivate does not occur, it enters
either state sig if A2FailsSig does not occur or state noSig if A2FailsSig occurs. If
A2FailsActivate occurs when the activation should take place, A2 stays in the state idle
and never processes a signal from the sensors.

Module arith2 / arith2

idle noSig

1

1

¬signal
1

sig
∨a2FailsSig = yes

1

¬signal ∨ a2FailsSig = yes

activate

¬activate ∨ (activate ∧ actFailure = yes)

signal ∧ a2FailsSig 6= yes

signal ∧ a2FailsSig 6= yes

∧actFailure 6= yes

Figure 7.17.: A2 with A2FailsActivate and A2FailsSig Failure Effect Modeling

MonitorFails In Fig. 7.18 the monitoring unit and the failure effect modeling of the per-
time failure mode MonitorFails is shown. The monitor is initially in state normal where
it observes the primary arithmetic unit A1. If the failure mode MonitorFails occurs, it
either stays in normal or enters the state degraded non-deterministically, independent
of the state of A1. In state degraded it switches off A1 and tries to activate A2. If
MonitorFails does not occur, it stays in state normal as long as A1 works correctly. It
switches to state degraded and therefore activates A2 once A1 ceases to work. Once it
activated A2, the monitor stays in the state degraded.

7.2.3. Results

aDCCA

Using DCCA to analyze the case study gives a too pessimistic view of the system, as
A1FailsSig is considered to be a single point of failure because the degraded mode in
which the A2 unit delivers the output signal is not considered (see Section 5.3.2). There-
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Module monitor / mode
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1

degraded

1

monitorfails = yes

∧A1 = noSig

∧A1 = sig

1

true

monitorfails 6= yes

monitorfails 6= yes

Figure 7.18.: MonitorFails Failure Effect Modeling

fore the case study was analyzed using aDCCA and adaptive ordering analysis which
consider a failure mode combination as critical if the hazard can become permanent.
The resulting minimal adaptive-critical sets are:

• Γ1 := {A1FailsSig,A2FailsSig}

• Γ2 := {A1FailsSig,MonitorFails}

• Γ3 := {A1FailsSig,A2FailsActivate}

• Γ4 := {A1FailsSig,S2FailsSig}

• Γ5 := {A2FailsSig,MonitorFails}

• Γ6 := {MonitorFails,A2FailsActivate}

• Γ7 := {MonitorFails,S2FailsSig}

• Γ8 := {S1FailsSig,S2FailsSig}

The first set describes the situation, that both arithmetic units fail, and therefore
no processed signal can be produced at all. A similar situation occurs for the set Γ8

where both sensors fail and there is no input signal for any of the arithmetic units. The
second and third sets are critical, as in both the primary arithmetic unit fails but the
backup unit does not get activated. In set Γ2 the reason is the failure of the monitoring
unit, in set Γ3 the reason is that the activation of A2 itself does not succeed. Γ4 is
critical because the combined failure of A1 and S2 mean that there is no input signal
for A2 which can be processed. The fifth, sixth and seventh sets are critical because the
monitoring unit wrongly switches off A1. In Γ5 this does not work, as A2 itself fails, for
Γ6 the activation of A2 does not succeed and in Γ7 the S2 sensor fails which is the only
input for A2.
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Deductive Ordering Analysis

Using these eight minimal adaptive-critical sets, adaptive deductive temporal ordering
analysis proves the following adaptive temporal ordering relations:

• MonitorFails�Γ2A1FailsSig

• A1FailsSig≺Γ3A2FailsActivate

• MonitorFails≺Γ6A2FailsActivate

If the monitoring unit fails before or at the same time as the first arithmetic unit
fails, it cannot switch to A2 and therefore the hazard occurs. If the monitoring fails
after A1, it can detect the failure of A1 and activate the backup unit. The other two
minimal adaptive-critical sets show that A2FailsActivate is only critical if it occurs after
either A1FailsSig or MonitorFails. The reason for this is that it is a per-demand failure
mode which is triggered by the monitor, either by a detected failure of A1 or by a
malfunctioning of the monitor. So for Γ3 the critical situation arises just when the
monitor detected the malfunctioning of A1, but the activation of A2 does not succeed.
For Γ6 the critical situation arises when the monitor wrongly switches off A1 and then
the activation of A2 does not succeed.
The complete analysis time to compute all the adaptive minimal critical sets and

the adaptive temporal ordering relations required 10.114s on a 8 core 2.66 Ghz Xeon
computer with 16G RAM with NuSMV model-checker version 2.5.

pDCCA

As the case study is a reactive system, bounded pDCCA was conducted using the PRISM
model-checker version 3.3. Using a sparse matrix representation and a mission time of
10h with a temporal resolution of ∆t = 10ms, the full analysis required 3m and 36.7s.
The computed maximal probability that the systems fails to deliver an output signal
within 10h is

Pmax=?[trueU
≤3.600.000(observerSig = hazard)] = 9.1490 · 10−7

Advantages over existing methods If a quantitative method based on the a-
posteriori analysis of the qualitative results like FTA is used, the estimation of the
actual hazard probability is either very pessimistic (if the dependency of the ordering
is not considered) or it can get very complex. To increase the accuracy of the analysis,
the system model must be analyzed further and the dependencies of the effects of the
various failure modes must be explored (the model is based on finite state machines and
time passes if a state changes which can then be detected in the next time step).
The adaptive deductive ordering analysis clearly showed that the failure modes of this

system are not stochastically independent. Therefore as many of the orderings of the
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occurrence patterns of the failure modes as possible would have be examined to enhance
the result. The probabilistic model-based analysis pDCCA does this automatically and
will in general be more accurate and much less error prone than an a-posteriori analysis
of the model.

7.3. Self-Adaptive Production Cell

This case study is a self-healing system from the production automation domain. In
contrast to the simple adaptation to a failing component as in the case study shown
in Section 7.2, a much more elaborate approach is taken here. It allows for much
more autonomous behavior, while at the same time it can be formalized to allow for
specification and verification of behavioral guarantees of the system.

7.3.1. Restore Invariant Approach

The idea of the restore invariant approach (RIA) was first presented in [GOR06a]. It
allows for formal specification and verification of a class of autonomous systems. Its main
idea is to specify a corridor of acceptable behavior for a system and verify the desired
properties under the assumption that the system stays inside that corridor. How the
system achieves staying inside the corridor is not specified directly, but with an invariant
which is monitored continuously.
Using this technique, any algorithm that can restore this invariant is guaranteed to

preserve the verified properties, making the approach very modular. Only the correctness
of an algorithm with respect to the restoration of the invariant has to be proven, not its
correctness with respect to the system itself. This is clearly an advantage, as proving
correctness to the complete system would generally be more complex.

t0 t1 t2 t3

recoverable corridor

acceptable corridor

Figure 7.19.: Schematics of Restore Invariant Approach

The basic idea of RIA is illustrated in Fig. 7.19. The curved black line shows a
hypothetical trajectory of a self-healing system, the colored lines mark the corridors.
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This is of course not a spatial view of the system, but an abstract view of the states of
the system states and its behavioral corridor.
From the start at t0 to time t1 the system stays in the acceptable corridor (green), the

invariant holds and the system fulfills its desired properties. At t1 the invariant is vio-
lated, but the system stays in its recoverable corridor (red) and enters its reconfiguration
state. The adaptation algorithm restores the invariant at t2 and the system stays in the
acceptable corridor until t3 when the system leaves its recoverable corridor and a return
to acceptable operation is no more possible.
The concept of RIA modeling is rather general: The crucial point is that the adapta-

tion mechanism must be able to decide whether an invariants holds and to restore it if
not. Such a mechanism can be organized in different ways. For example it can be global
or local and centralized or distributed. Which realization is adequate depends on the
type of model that is considered and also on the available techniques for analysis and
verification.
The formal RIA modeling presented here considers a system consisting of agents,

each with a set of capabilities. The goal to be fulfilled requires a certain sequence of
application of these capabilities. The invariant holds if all required capabilities are
present and can be used in the correct order. In this situation, all the agents are
configured to use one of their capabilities to reach the specific goal. If any agent loses its
assigned capability, the invariant may be violated. As long as each required capability
is present, the invariant can be restored by changing the assignments of the agents in
order to achieve a valid configuration. This describes the recoverable corridor described
above. Such an adaptation mechanism corresponds to the definition of self-healing as
formalized by Seebach et al. in [SOR07]:

“[a system is called] self-healing for a given set C of capabilities and a goal
G, if after failure/loss of any capability c ∈ C, then it will eventually come
to [. . .] [an assignment of capabilities] in which G will be achieved again (as
long as this is theoretically possible).”

For modeling in SAML and for formal safety analysis, the possible forms of detection of
invariant violation and its restoration have to be restricted. The invariant is described
as a Boolean predicate and the restoration mechanism is specified via temporal logic
assertions. This will be described in detail in Section 7.3.3.

7.3.2. Description of the Case Study

The modeling approach is illustrated by applying it to a case study from production
automation. It consists of three robots, which are connected with autonomous trans-
portation units. The production cell is self-healing in case of failures of the tools of the
robots. This is the reference case study of the SAVE-ORCA project within the prior-
ity research program 1183 “Organic Computing” of the German Research Foundation
(DFG) and was introduced in [GOR06a] from where the description is adapted:
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Every robot has three capabilities: drill a hole in a workpiece (D), insert a screw
into a drilled hole (I) and tighten an inserted screw (T). These capabilities are executed
with exactly one of the three different tools available for each robot. Every workpiece
must be processed by all three tools in the given order (Drill, Insert, Tighten = DIT).
Workpieces are transported from and to the robots by autonomous carts. Changing the
tool of a robot is assumed to require some time, therefore the standard configuration
of the system is to distribute the capabilities between the three robots and to have the
carts transfer workpieces accordingly.
Generally, a valid configuration could be the assignment of multiple capabilities to

one robot. This is not considered here for the reason described above. Therefore a
configuration of the cell consists of assigning one capability to each robot and assigning
autonomous transportation units the task to bring processed workpieces from one robot
to the next one in correct processing order, as shown in Fig. 7.20.

Figure 7.20.: Configuration of Robot Cell [SOR07]

If one or more tools break, the current configuration allows no more correct DIT
processing of the incoming workpieces. Such a disturbance is shown in Fig. 7.21(a) in
which the drill of one robot broke and DIT processing is not possible any more, as no
other robot is configured to drill. A more traditional production cell would probably
stop working and wait for maintenance.
However in this situation, it is obvious that the robots would still be able to achieve

the overall goal, as in theory all three tools are available. The robot with the broken tool
just has to switch to another tool. So it should be possible for a self-healing system to
detect this situation and reconfigure itself. This works of course only if in addition to the
robot with the broken tool, at least one of the other robots also switches its capability.
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(a) Temporary Hazard due to Broken Drill (b) Reconfigured Robot Cell

Figure 7.21.: Invariant Violation and Restoration [SOR07]

One possible reconfiguration outcome is shown in Fig. 7.21(b). Now the left robot
drills, the right robot tightens the screws and the middle robot is left unchanged. For
this error resolution, not only the assignment of the tasks to the robots must be changed,
but also the routes of the carts and the routing of the incoming and outgoing workpieces.
If only the tools were switched, the processing of all tasks would be possible, but not in
the correct order.

This example only shows one reconfiguration for one error. Additional reconfigurations
can take place if other tools break. Of course there is an end to the possibility of adaption
when the necessary tools are no more available, i.e. when all drills break or when one
robot has no more intact tools at all.
In summary, this self-healing system tries to preserve its functionality as long as

possible even if some of the tools break. This is achieved by reconfiguration and works
as long as there is enough internal redundancy in the system.

7.3.3. Modeling

The purpose of the modeling of this case study was to validate the feasibility of a formal
safety-analysis of a self-healing system and to illustrate the application of the restore-
invariant approach. Currently it is not possible to use the restore invariant approach in
a probabilistic model, therefore the modeling presented here is purely qualitative. The
exact reason for this will be explained in more detail in the last part of this section. This
means that the different possible successor states are chosen in a purely non-deterministic
way. The basis for the formal modeling presented here was introduced in [GOR06a], its
safety analysis was introduced in [GOR06b].
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Modeling of Hardware

The hardware model of the case study consists of the models for the robots and for the
transportation units. The transportation units are used to fetch (partially) processed
workpieces from a robot and to deliver it to the next one in correct order. The robots
are responsible to process. the workpieces that are delivered by a transportation units.
At any time, every robot is configured to use exactly one of its capabilities, i.e. either
Drill, Insert or Tighten.

Robot Model The model of one of the robots is shown in Fig. 7.22. Initially the robot
is in state reconf until it gets a role assigned which processing step the robot should
execute, i.e. the predicate configured holds in conjunction with a predicate signaling
which capability to use.

reconf

Module robot / robot

1

¬configured

1

¬configured

1

configured ∧ robotDrill

drillReady

drillDone

drilling

¬workPiece

1

1

1

1

¬workPieceCollected

configured ∧ RobotInsert

configured ∧ RobotTighten

workPieceCollected

¬configured

configured

∧configured

∧configured

∧configured

∧configured

¬configured

workPieceArrived

Figure 7.22.: Robot Behavior Model

Once one of the three possible capabilities is assigned to the robot, it enters the
respective ready state. In the figure only the states for the Drill capability are shown,
Insert and Tighten are completely analogous but are omitted to keep the graphical
representation clearer. The robot waits in state drillReady until a transportation unit
delivers a workpiece to process (workP iceArrived holds). When this happens, it enters
state drilling and stays there as long as the processing takes6. After the processing is

6This can be defined by a constant for each of the capability, but is defined here uniformly as one
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finished, it enters the drillDone state in which it waits until the processed workpiece is
fetched by a transportation unit and then re-enters the drillReady state. Whenever the
configured does not hold, i.e. the production cell is not configured in a correct way, the
robot enters its reconf state and waits for a new capability assignment.

Transportation Unit Model The model of the two transportation unit consists of three
modules for each. The first one is the configuration of the transportation unit which
decides from which robot the partially processed workpieces are fetched and to which the
workpieces are delivered next. This defines the capability assignment of a transportation
unit. The corresponding module is shown in Fig. 7.23.

reconf

Module transportConf / transportConf

DI

IT

1

1

¬configured

1

1

configured

configured

¬configured

¬configured

configured ∧ confDI

configured ∧ confIT

Figure 7.23.: Transportation Unit Configuration

The initial state is reconf in which the transportation unit waits until a new config-
uration is assigned (analogous to the behavior of the robots). If that happens, it enters
either state DI indicating that it transports workpieces from the drilling to the inserting
robot. Or it enters state IT indicating that workpieces are transported from the insert-
ing robot to the one that tightens the screws. If a reconfiguration of the cell is triggered,
it re-enters the reconf state until a new capability is assigned.

The second module of the model of the transportation units represents its current
state. It indicates whether it is currently idle (waiting or unconfigured), whether it is
currently loaded with a partially processed workpiece for delivery or if it is heading back

time-step.
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to collect the next workpiece. The graphical representation of this module is shown in
Fig. 7.24.

idle

Module transportState / transportState

1

¬configured

1

1
configured ∧ wpFetch

headBack

loaded

1

delivered

1

collectPosReached

¬delivered

∧configured

¬configured

∨¬configured

∧configured

¬collectPosReached
∧configured

Figure 7.24.: Transportation Unit State

If the transportation unit is either unconfigured or is currently waiting for a partially
processed workpiece behind a robot, it is in the state idle. It is also in this state when it
waits in front of the robot that fetches the transported workpiece. On its way to deliver
a workpiece it is in state loaded and on the way back to collect the next workpiece, it is
in state headBack.

For both transportation units, there exists a third module that tracks its current
position in the production cell. The behavior of that module is shown in Fig. 7.25.

The initial state is undefined, i.e. there is no assigned position for the transportation
unit. Once a reconfiguration has assigned a valid configuration to the transportation
unit, the position changes to behind the respective robot. If, for example, the configu-
ration is DI then the transportation unit moves to behindDrill. It waits there until a
partially processed workpiece is available. The workpiece is then collected and brought
to the next processing step. On this way it is in state loaded and passes the position
between two robots and finally delivers the workpiece in front of the robot that is next
in processing order. At that position it waits until the workpiece is fetched and then
returns back to the configured behind position. On this way it is in state headBack.
Whenever there is a reconfiguration, the position becomes undefined again. The model-
ing is equivalent for the IT configuration of a transportation unit.
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undefined

Module TransportPos / transportPos

1

¬configured

1

behindDrill

betweenDI

1

configured ∧ DrillInsert

1

1

configured ∧ InsertTighten

¬configured

¬configured

¬configured

inFrontInsert

∧configured

∧configured

∧configured

transportState = loaded

transportState = loaded

transportState = headBack

transportState 6= loaded

∧configured

transportState = headBack
∧configured

1

1

Figure 7.25.: Transportation Unit Position

Modeling of Physical Behavior

The physical behavior model in the case study contains primarily the processing of the
workpieces. Each of the workpieces consists of two modules: one tracks the current
position of the workpiece, the other tracks its current processing state.

Workpiece Model The position of the workpiece is tracked throughout the production
cell. At the beginning it is located outside of the cell, in the storage. For each robot
and tool, it then passes from the in front position to the in position, onto the after
position. This can be seen in Fig. 7.26 for the Drill capability.
The workpiece stays in front of one of the robots until it is ready. When this happens,

its position changes to in, meaning it is currently processed. This position is changed
as soon as the robot signals the completion of the task, causing the position of the
workpiece to change to after, where it stays until one of the transportation units collects
it for delivery to the next robot. If both transportation units arrive to collect the
workpiece, the production would come to a standstill. This should of course prevented
by a correct capability assignment.
When the workpiece is located on one of the transportation units, it gets delivered to

either the drilling or inserting robot, where its position changes analogously as explained
above for the Drill capability. After the last processing step (Tighten capability), its
position changes to behindCell (not shown in the figure), indicating the completion of
the processing.
The processing state of the workpiece is described via three state variables: one to
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outside

Module WorkpiecePos / workpiecePos

1

¬configured

1

inFrontDrill

configured
¬drillReady

¬drillDone

workpieceCollected

∧transportPos2 = behindDrill

∧configured

∧configured

inDrill

1

1

¬configured

drillDone
∧configured

drillReady
∧configured

¬configured

transport1

transport2
1

1

1

1

1

inFrontInsert

¬configured

1

1

transportPos1 = inFrontInsert

transportPos2 = inFrontInsert ∧configured

∨(transportPos1 = behindDrill

1

afterDrill

(¬workpieceCollected

∧configured)

∧transportPos2 = behindDrill)∧configured
∧transportPos1 = behindDrill
workpieceCollected

Figure 7.26.: Workpiece Position

indicate every processing step that is executed by one of the tools. In an unprocessed
workpiece, all state variables are set to their initial value 0. This module is shown in
Fig. 7.27 in textual SAML notation.

module WorkpieceState

drilled : [0..1] init 0;

inserted : [0..1] init 0;

tightened : [0..1] init 0;

workpiecePos = afterDrill -> choice : (1 : (drilled’ = 1) &

(inserted’ = inserted) & (tightened’ = tightened));

workpiecePos = afterInsert -> choice : (1 : (inserted’ = 1) &

(drilled’ = drilled) & (tightened’ = tightened));

workpiecePos = afterTighten -> choice : (1 : (tightened’ = 1) &

(drilled’ = drilled) & (inserted’ = inserted));

workpiecePos = outside ->

choice : (1 : (drilled’ = 0) & (inserted’ = 0) & (tightened’ = 0));

endmodule

Figure 7.27.: Workpiece State

Whenever the position of the workpiece is directly after one of the robots, the cor-
responding process step has been finished. This is indicated by setting respective state
variable from 0 to 1. When the workpiece is completely processed and leaves the pro-

150



7.3. Self-Adaptive Production Cell

duction cell (its position becomes behindCell), all processing steps are deleted again and
it is reintroduced into the production cell (the position becomes outside again). The
reason for this is that there is only a finite amount of modules can be specified in a
SAML model. With this modeling, the production can continue arbitrary long, as there
will always eventually be unprocessed workpieces available.
Based on the described modules, the production cell can fulfill the goal to process

workpieces in DIT order, if a fixed and correct initial assignment of the capabilities is
specified. In such a situation, there would be a continuous processing of workpieces which
after leaving the cell will be “reset” and reintroduced in the storage. The continuous
and correct processing can be verified as shown in [GOR06a].

Modeling of Failure Modes

But of course from the point of safety analysis, more interesting than functional cor-
rectness of one specific configuration is its behavior under the occurrence of failures.
The failure modes that are modeled in the case study are the loss of capabilities of the
robots (i.e. the corresponding tool breaks). To model broken tools in the production
cell, persistent failure modules are used for all tools of all robots. The considered failure
modes are the following:

• R1FailsD : broken drill of robot 1

• R1FailsI : broken insertion mechanism of robot 1

• R1FailsT : broken tightening mechanism of robot 1

• R2FailsD : broken drill of robot 2

• R2FailsI : broken insertion mechanism of robot 2

• R2FailsT : broken tightening mechanism of robot 1

• R3FailsD : broken drill of robot 3

• R3FailsI : broken insertion mechanism of robot 3

• R3FailsT : broken tightening mechanism of robot 1

The most appropriate failure mode modeling in this case study would be a per-demand
modeling, as the abstraction is that the tools are used for exactly one time-step where
they can get broken. But as the model of the case study is not probabilistic, the dis-
crimination between per-time and per-demand is not necessary here and the simpler and
less complex per-time failure mode integration was chosen.
The integration of the failure modes into the extended system model works as follows:

whenever the tool breaks which belongs to the currently assigned capability, then the
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respective robot enters its reconf state and processes no more workpieces. This means
that the robot locally detects the occurrence of the failure mode, but not necessarily the
global invariant violation. The robot waits in that state until it gets a new capability
assignment from the invariant restoration mechanism. The integration is realized by
introducing new transitions from the working states of a robot to its reconfiguration
state.

Modeling of Software for RIA

After the integration of the failure modes, the mechanism of detection and restoration
of the invariant can be specified in the form of the restore invariant approach. The RIA
modeling presented here was first introduced in [GOR06a] and uses Boolean predicates
to monitor the invariant and temporal logic assertions to restore it. Its formalization is
presented in detail here for reasons of clarity, necessary for safety analysis is merely the
fact that it exists and works.

For a more compact expression, predicates are introduced which describe the state of
the robots. The predicates Ra

i with i ∈ {1, 2, 3} and a ∈ {d, i, t} hold if robot i has been
assigned to used the capability a (at most one single capability can be assigned to a
robot at a time, i.e. Ra

i →
∧

b∈{d,i,t}\a ¬R
b
i). This means for example that Rd

2 holds if the
module corresponding to the robot 2 is either in state drillReady, drilling or DrillDone.

The next predicates describe the state of the transportation units. Cx
j with j ∈

{1, 2} and x ∈ {it, di} are modeled analogously to the robot predicates and refer to
the capability assignment in the model of the carts. For example, Cdi

1 holds if the cart
1 has been assigned to fetch partially processed workpieces from robot with the Drill
capability for further processing of the robot with the Insert capability (analogous to Ra

i

at most one of the possible predicates can hold for each cart).

These predicates form the basis for the formalization of RIA. Using them, a configu-
ration of the robots (i.e. each robot has an assigned capability) is defined as shown in
Eq. (7.4). A configuration of the carts is defined as shown in Eq. (7.5). This means that
robotConf and carConf hold if neither one of the robot nor one of the cart awaits a
reconfiguration.

robotConf := (Rd
1 ∨ R

i
1 ∨ R

t
1) ∧ (Rd

2 ∨R
i
2 ∨ R

t
2) ∧ (Rd

3 ∨R
i
3 ∨ R

t
3) (7.4)

cartConf := (Cdi
1 ∨ C it

1 ) ∧ (Cdi
2 ∨ C it

2 ) (7.5)

This does not necessarily specify a configuration in such a way that all required ca-
pabilities are available for correct processing. This fact is described with ditCapable

in Eq. (7.6) for a valid robot configuration (not considering any failures) and with
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cartCapable in Eq. (7.7) for a valid cart configuration.

ditCapable :=
∧

a∈{d,i,t}





∨

j∈{1,2,3}

Ra
j ∧





∧

k∈{1,2,3}\j

¬Ra
k







 (7.6)

cartCapable :=
∧

x∈{di,it}





∨

j∈{1,2}

Cx
j ∧





∧

k∈{1,2}\j

¬Cx
k







 (7.7)

For the definition of the invariant, it is necessary to also consider the occurrence of
the various failure modes. To specify this, the predicates failsai with i ∈ {1, 2, 3} and
a ∈ {d, i, t} are used, where failsai holds if the tool a of robot i is broken. For example,
if the failure mode R1FailsD occurs and the corresponding failure module is in state yes,
then failsd1 holds. Using these, the failure of a single robot j is signaled by ditFailurej
(see Eq. (7.8)) which states that a robot has been assigned a capability that it can
no longer use because its required tool is broken. Eq. (7.9) defines ditFailure as the
disjunction of the failures of all robots in the cell.

ditFailurej :=
∨

a∈{d,i,t}

(Ra
j ∧ fails

a
j ) (7.8)

ditFailure :=
∨

i∈{1,2,3}

ditFailurej (7.9)

Therefore the invariant to monitor is the predicate ¬ditFailure which holds if the
system is in its acceptable corridor. It indicates that there is no robot which cannot use
its currently assigned capability. Now, whenever the invariant restoration mechanism
detects that ditFailure holds, it must trigger a reconfiguration and restore the invariant.
For proving functional properties and the specification of a correct reconfiguration

mechanism, it must be possible to identify whether the system is still in its recoverable
corridor so that it is theoretically possible to restore the invariant. This is expressed
with the predicate ditPossible. In this modeling, it is defined as the disjunction of the
enumeration of all possible valid configurations. The reason for this is the fact that
SAML currently does not support the usage of quantifiers7.
The abstract invariant restoration can then be defined using the previous definitions.

It consists of two temporal logic specifications: confDIT Eq. (7.10) and confCorrect
Eq. (7.11).

confDIT := G ((robotConf ∧ cartConf) → ditCapable ∧ cartCapable) (7.10)

7A possibility for a more general modeling based on the formal RIA approach introduced here, but
using the Alloy constraint solver is described by Güdemann et al. in [GNO+08]
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Here confDIT specifies that every reconfiguration results in a valid configuration of
the production cell according to the specification. Whenever (G ) the robots and the
carts are configured (robotConf ∧cartConf), then all required capabilities are available,
i.e. all required tools for the robots (ditCapable) are available and the routes for the
carts (cartCapable) are set correctly.

confCorrect := G ((endReconf) → X(ditPossible→ ¬ditFailure)) (7.11)

The confCorrect property specifies that whenever a reconfiguration has just been
finished (endReconf), then in the next time-step (i.e. the first processing step after the
reconfiguration) only available capabilities have been assigned (the invariant ¬ditFailure
holds) as long as the system is in the recoverable corridor (ditPossible). This means
that a reconfiguration is always successful as long as a correct reconfiguration is still
possible despite potential occurrences of single failures. Note, that no proposition about
the carts appears in confCorrect as there is no failure mode modeled for them.
These LTL formulas are used as assumptions to prove properties of the system. They

are assumed to be true – a correct invariant restoration mechanism exists – and other
properties (in particular the aDCCA proof obligations) are proven under this assump-
tion. This approach forms the basis of the invariant restoration mechanism. To my
current knowledge the only tool that supports this directly8 is the Cadence SMV model
checker. So currently an extended system model of a self-healing system specified using
RIA can only be analyzed with this verification tool. Either by direct specification in
its input language or by transforming a system model into it.
Now everything required for a detection of a violation of the invariant and the restora-

tion thereof has been defined, with the exception of a model of the actual capability
assignment. This is conducted by the additional module Control which consists of the
state variable control. Its graphical representation of the module is shown in Fig. 7.28.
Its initial value is reconf. From there it enters the state initialize, where it stays

until all three robots and both transportation units are also in their After then, it non-
deterministically enters one of the states r1D, r1I and r1T. Each signals which capability
is assigned to the first robot. This is repeated for the second and third robot (not shown
in the figure). After the assignment for the third robot, the control non-deterministically
enters the states t1DI or t1IT for the assignment of the route for the first transportation
unit and after then t2DI or t2IT which assigns the route to the second transportation
unit. Finally it enters the state endReconf, signaling the end of the reconfiguration.
Then it enters state idle and stays in this state until the predicate ditFailure holds, i.e.
a new reconfiguration must be done.
The assumption mechanism of the Cadence SMV model checker is used to assume

confDIT and confCorrect for verification of other properties. In effect, these LTL
formulas specify that whenever the Control module has just completed an assignment

8via the construct using confDIT, confCorrect prove ...
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Module Control / control
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Figure 7.28.: Capability Assignment for Robots and Carts

to each robot and cart and is in its endReconf state, then the invariant holds in the next
time-step, as long as this is still possible (see Eq. (7.11)).

This models the restoration mechanism of the RIA approach in the case study. When-
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ever a reconfiguration is triggered, the configuration by the control module will be non-
deterministic, but will result in a valid one. Practically this limits the verification of
temporal logic properties to only those traces where valid configurations are reached.
Now it also becomes clear why this is difficult for quantitative analysis. One problem is

that the currently available probabilistic model checkers do not support the assumption
mechanism. This problem could perhaps be solved by transforming the LTL assump-
tions to an automaton. Nevertheless, the effect on the resulting probability space is
unclear which makes the interpretation of the analysis results very difficult. In effect
the RIA approach limits the traces on which the properties are verified to those where
the restoration works correctly. This means that the computed probabilities would al-
ways have to be considered in relation to the probability that the restoration does not
succeed. Nevertheless, currently it is not possible to compute this, as there are many
different (possibly infinitely many) adversaries possible that do not restore the invari-
ant correctly, but the verification allows only the computation of the maximizing or
minimizing adversary.
A possible solution would be the specification of one explicit reconfiguration mecha-

nism. But this would bypass RIA itself and be much less flexible. Quantitative model-
based safety analysis of self-healing systems with such a degree of autonomy must there-
fore still be considered an open research question.

7.3.4. Results

aDCCA

The analysis to compute all adaptive minimal critical sets on a 2.6Ghz Xeon CPU with
16G RAM required 262.76s. In total 262 proof obligations had to be checked for complete
aDCCA. This resulted in the following adaptive minimal critical sets:

• Γ1 := {R1FailsD,R1FailsI,R1FailsT}

• Γ2 := {R2FailsD,R2FailsI,R2FailsT}

• Γ3 := {R3FailsD,R3FailsI,R3FailsT}

• Γ4 := {R1FailsD,R2FailsD,R3FailsD}

• Γ5 := {R1FailsI,R2FailsI,R3FailsI }

• Γ6 := {R1FailsT,R2FailsT,R3FailsT}

• Γ7 := {R1FailsD,R1FailsI,R2FailsD,R2FailsI }

• Γ8 := {R1FailsD,R1FailsI,R3FailsD,R3FailsI }

• Γ9 := {R3FailsD,R3FailsI,R2FailsD,R2FailsI }
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• Γ10 := {R1FailsD,R1FailsT,R2FailsD,R2FailsT}

• Γ11 := {R1FailsD,R1FailsT,R3FailsD,R3FailsT}

• Γ12 := {R3FailsD,R3FailsT,R2FailsD,R2FailsT}

• Γ13 := {R1FailsI,R1FailsT,R2FailsI,R2FailsT}

• Γ14 := {R1FailsI,R1FailsT,R3FailsI,R3FailsT}

• Γ15 := {R3FailsI,R3FailsT,R2FailsI,R2FailsT}

The result of the analysis are 15 minimal adaptive-critical sets, 6 of size 3 and 9 of
size 4. The minimal adaptive-critical sets Γ1, Γ2 and Γ3 describe the situation that one
of the robots loses all its capabilities. This makes the production impossible, as in the
variant of the case study presented here the robots cannot be configured to fulfill two
capabilities at the same time. Nevertheless, this could be realized as a degraded mode
in a more complex version of the case study.

The minimal adaptive-critical sets Γ4, Γ5 and Γ6 describe the situation, that one of
the capabilities is completely unavailable. As every capability is required, this situation
is critical for the production cell.

The remaining 9 minimal adaptive-critical sets of size 4 (Γ7 to Γ15) describe a different
situation: each robot still has a capability left and overall all capabilities are available.
Still it is no longer possible to configure the production cell correctly, because two of the
robots have only the same single capability left and therefore the third one would have
to be configured to use more than one capability at a time.

Ordering Analysis

An adaptive ordering on the adaptive-critical sets could not be found. The reason for
this is that both the initial capability allocation as well as the resolving of the temporary
hazard is done autonomously by the invariant restoration. This means that there is no
fixed sequence of allocation of capabilities and therefore any sequence of failure mode
occurrence can be problematic.

Advantages over existing methods This case study clearly shows the advantage of
using aDCCA for an adaptive system. In general. it is difficult to know beforehand how
long the reconfiguration needs and how many broken tools can be tolerated. Using the
restore invariant approach is a convenient abstraction which allows for the verification
and safety analysis of a self-healing system, independent of the concrete implementation
of the reconfiguration algorithm. Any algorithm that manages to restore the invariant
as long as possible, retains the properties that are verified with RIA.
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7.4. Related Work

The first case study in Section 7.2 has been introduced by Walker et al. [WBP07], where
it is analyzed using an algebraic approach. A comparison of the analysis method used
by Walker et al. in [WBP07] and Walker and Papadopoulos in [WP07] is discussed in
Section 5.4.

The autonomous production cell and the restore invariant approach were introduced
in [GOR06a]. The approach has been extended in [GNO+08] to cover more general
resource-flow systems modeled in the Organic Design Pattern (ODP) developed by See-
bach et al. [SOR07]. In the ODP, an UML model is extended with OCL constraints which
are used to describe the invariant that must be restored. A method to check whether
this invariant is violated using constraint solvers like Alloy was developed by Güdemann
et al. in [GNO+08] and based on KodKod by Nafz et al. in [NOS+09]. These approaches
are still limited to a fixed number of robots, workpieces and autonomous transportation
units. The newest extension of the RIA formalization approach described by Nafz et
al. in [NSS+10] uses interactive theorem proving and modularization which allows an
unlimited number of agents in such a system. The functional properties of the system
are formulated in interval temporal logic (ITL) (e.g. see Cau [CMZ02]) which is for-
malized in KIV as described by Balser et al. [BBR08]. This is an interesting approach
which significantly extends the basic RIA modeling presented in this chapter. On the
other hand, this approach is not well suited for safety analysis, as this is inherently
state-based quickly becomes problematic for interactive theorem proving. In addition,
aDCCA (and of course pDCCA) is not directly expressible in ITL. It seems much more
suited to verify functional properties of larger self-healing systems that can be modeled
in the ODP framework than for safety analysis.

The radio based railway crossing was analyzed by Reif et al. using formal fault
tree analysis and interactive theorem proving in [RST00] and Thums and Schellhorn
in [TS02]. The first use of failure injection, model-based safety analysis and model-
checking for the analysis of the case study was presented by Ortmeier et al. in [ORS05].
Both these analyses where purely qualitative and did not allow for the computation of
hazard probabilities. For the estimation of hazard probabilities, the fault-tree formula
was used which is very coarse and assumes stochastic independence. A distinction be-
tween per-time and per-demand failure modes is not possible in any of these approaches.
Ortmeier et al. introduced safety optimization in [OSR04]. In this approach an addi-
tional safety margin and the allowed speed for the train were used as parameters of an
additional model of stochastic behavior based on distribution functions. This model con-
sisted of the opposing goal to minimize the time-delay at the crossing and to minimize
the hazard probability. These goals are weighted according to their projected costs and
the resulting scalar function can be optimized using mathematical optimization tech-
niques. A more detailed description can be found in Ortmeier’s dissertation [Ort06].
This basic approach can be extended using the quantitative model-based analysis pD-
CCA as objective function for optimization as described in [GO11a] which gives more
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accurate results than the a-posteriori estimations for the hazard probabilities used be-
fore. Using multi-objective optimization also allows for computing non-convex Pareto
sets (optimal compromises). A serious limitation of the previous scalarization approach
was that only convex Pareto sets could be found.

Summary

This chapter presented modeling and model-based safety analysis of three different case
studies. The case studies were selected to show how different types of systems can be
modeled and how different concrete analyses work. It also showed the current limits
of the approach. Quantitative analysis of a more autonomous case study is currently
not possible. On the other hand, the safety analyses of each case study were beyond
the current state of the art and more accurate than previously possible. The major
achievement is the successful quantitative model-based safety analysis of the larger case
study of the railroad crossing. It clearly shows that the full approach – in particular the
resource-intensive probabilistic analysis – is definitely applicable to real-world systems.
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8. Conclusion And Outlook

The true logic of this world is in the calculus of
probabilities.

(James Clerk Maxwell)

This dissertation introduced new formal, model-based qualitative and quantitative
safety analysis methods which advance the current state of the art. The foundation for
these is the new formal modeling framework SAML which allows convenient specification
of formal models of safety-critical systems for accurate qualitative and quantitative for-
mal safety analysis. Modeling guidelines showed how accurate models of different failure
modes and realistic physical behavior models can be expressed in SAML. Semantically
well-founded model transformations allow for using the most appropriate and efficient
verification tools. Several case studies showed the benefit and efficiency of the approach
and illustrated the application of formal modeling and safety analysis.
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8.1. Summary and Conclusion

8.1.1. Summary

SAML

The developed SAML modeling framework allows for convenient expression of formal
models for safety analysis. With SAML, it is possible to combine non-deterministic, qual-
itative and probabilistic, quantitative behavior in a single system model. This allows for
accurate specification of different kinds of failure modes and of the behavior of a system’s
physical environment. SAML is designed as a tool-independent language. Semantically
well-founded model transformations convert SAML models fora specific analyses with
appropriate verification tools . The model transformations are proven to be semantically
sound and preserve the model semantics. This tool-independent approach makes any
advancement of the verification tools directly usable for safety analysis.
Note that one example of this effect is the support for stochastic hypothesis testing

which allows computation of confidence intervals even in the case of models that are
too large for full model checking [You05]. This feature is introduced in version 4.0 of
the PRISM model checker, but was not available in version 3.3 that was available when
pDCCA was originally developed. Now stochastic hypothesis testing can be used for the
analysis of SAML models without any change to the model transformations.

Modeling and Safety Analysis Methods

Different new analysis techniques have been developed for accurate formal safety analysis
of SAML models. These extend the analyzable class of systems, augment the qualitative
safety analysis results and allow for a combined qualitative and quantitative, model-
based safety analysis of extended SAML system models.
The basis for accurate safety analysis are the modeling methods for different types

of failure modes. They allow for a sound combination of per-time and per-demand
failure mode modeling in the same model which was not possible in previous approaches.
Probabilistic modeling also allows for a more accurate modeling of the behavior of the
physical environment of a system resulting in more precise safety analysis results.
Critical combinations of failure modes, e.g. computed with the previous analysis

method DCCA, can be further analyzed using deductive ordering analysis. It allows for
a more precise qualitative safety analysis than before. Its results can be used to augment
the effect of the implementation of risk-reducing measures by identifying the failure
modes where a reduction of risk is most beneficial. Using deductive ordering analysis
also allows for an automatic deduction of several dynamic fault tree gates directly from
a system model.
Probabilistic DCCA enhances the previous quantitative safety analysis results which

were based on a-posteriori analysis of critical failure mode combinations. Quantita-
tive safety analysis with pDCCA allows for accurate computation of hazard occurrence
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probabilities directly on the system model. It does not rely on the assumption of stochas-
tic independence and allows for a combined analysis of per-time and per-demand failure
modes in a single model. This was not considered in any existing failure-injection, model-
based safety analysis approach. It is much more accurate than previous a-posteriori
estimations, in particular by automatically considering all system inherent logical and
stochastic dependencies which were very hard or even impossible to consider in previous
approaches.
Adaptive DCCA and adaptive deductive ordering analysis are an extension of the

qualitative safety analysis methods to self-healing systems with a certain degree of au-
tonomy. The restore invariant approach was developed as a very general way of formally
specifying self-healing systems. It allows a very flexible way to define self-healing be-
havior. Based on RIA, qualitative properties of self-healing systems can be verified with
aDCCA, which was not so generally possible before. Quantitative safety analysis of self-
healing systems is possible if a modeling approach based on an observer is used instead
which seems to be possible for a large class of systems.
The applicability of the presented modeling and safety analysis techniques to practical

examples has been demonstrated with several case studies with sizes of more than 107

states. It has been shown that these methods allow a much more accurate assessment
of the safety of a system than was possible before. One key aspect is that both quali-
tative and quantitative analyses are conducted on an equivalent model. This raises the
confidence in the computed results, as it is guaranteed that they are “compatible” to
each other. The effort needed for modeling and analysis has also proven to be accept-
able. Due to the tool-independence, the analysis effort will be reduced further by the
continuing advancement and increasing efficiency of verification tools.

8.1.2. Conclusion

In conclusion, the greatest benefit of the results of this dissertation is the possibility
of conducting probabilistic safety analysis directly on extended system models while
providing means of combining per-time and per-demand failure modes in the analysis.
This was not possible before and marks an important step forward in the state of the
art. The second main benefit is bridging the gap between qualitative and quantitative
safety analysis achieved by the definition of SAML and the semantically well-founded
transformations of SAML models into the input specification of different verification
tools. This increases confidence in the results of the safety analyses by assuring the
compatibility of these different views on the properties of a safety-critical system.
These techniques could be a great help for the safety engineer in assessing the safety of

a system in the early design phases. Different system variants can be compared, critical
failure combinations can be identified and risk-reducing measures can be applied. The
effects can be analyzed by inspecting the computed counterexamples which serve as
“witnesses” for properties. They can provide very useful insights into the functioning of
the system, as Edmund M. Clarke puts it in the Birth of Model-Checking [Cla08]:
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“It is impossible to overestimate the importance of the counterexample fea-
ture.”

New developments even allow the use of probabilistic analysis to compute the most
probable counterexamples. Approaches for this are described by Han et al. [HKB09]
and Aljazzar et al. [AKLFL10]. This means that risk-reducing measures can be applied
where their effect will be most significant. Due to the tool-independence of SAML, the
described safety analysis approach benefits directly from such new developments without
additional effort.
Nevertheless, it is important to note that the results of the safety analyses should be

interpreted by an expert in the field. Formal model-based safety analysis is primarily an
extension of existing safety analysis. The subtitle of this dissertation – “Push the safety
button” – is meant in the following way: using the safety analysis methods presented in
this dissertation, it is possible to support the safety engineer by allowing safety analysis
in early design phases of the development process and facilitating accurate comparison
of different design variants. In the future, this could be realized as an additional function
of a design tool used by a safety engineer.
A complete automated safety analysis, where the results are used without further

interpretation is not favored and was not the goal of this work. The developed methods
are powerful and objective tools for safety analysis – but like any other tool they must
be applied correctly (in this case by a safety engineer). Galloway et al. [GMMP02] and
Lisagor et al. [LSK10] argue that, in particular, producing traditional looking analysis
artifacts like fault trees or FMEA tables with novel, automatic techniques can lead to
problems if not correctly interpreted. This risk also exists with quantitative analysis
results. As noted by Alexander and Kelly [AK09], these are easily misinterpreted and
sometimes even misused by stakeholders not directly involved in the safety analysis
process itself.
Nevertheless, the developed automatic analysis techniques can provide highly valuable

support in the development process of safety-critical systems, both by pointing out
potential problems and also by calculating probabilities for the comparison of different
system design variants.

8.2. Outlook

Based on the results of this dissertation, several new possibilities for further research
were identified. A first extension to the presented approach would be to extend SAML
with an explicit failure model. This would allow automatic combination of the nominal
model and the failure model to form the extended system model. This step is currently
conducted manually and a change in the nominal behavior may therefore require a lot of
effort if the integration of the failure mode behavior has to be redone. Such an approach
has been taken by Bozzano et al. in their work on SLIM [BCK+10b]. However, the
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possibility to consider both per-time and per-demand failure modes is a major advantage
to the approach based on SLIM. Nevertheless it also makes automatic failure injection
much harder, as correct integration of per-demand failure effects is more complicated.
Such an extension would be a clear advance in the convenience of modeling safety-critical
systems in SAML and is currently ongoing work.
An orthogonal extension would be to use SAML as an intermediate language. Mod-

els from different higher-level specification languages could then be transformed into
SAML and further be analyzed with all supported verification tools. An outline of this
approach is shown in Fig. 8.1. In this figure, the approach described in this disserta-
tion is shown in the verification and intermediate layers (see also Fig. 6.1). On top of
this, an engineering layer is added in which models in existing specification frameworks,
such as SCADE or Matlab / Simulink, are extended to include failure mode models
and probabilistic modeling. Such models could then be transformed into SAML in a
semantically well-founded way. Once this has been achieved, the existing model trans-
formations from SAML into the verification layer can be used for formal analysis. An
additional challenge in such an approach would, of course, be the back-transformation
of the analysis results into the engineering layer. If successful, this approach would
allow the inclusion of qualitative and quantitative model-based safety analysis directly
into widely used development frameworks. A first overview of the planned approach is
described in [GO11b].

SAML

SCADE Matlab/Simulink

+Probabilistic Modelling+ Failure Mode Model

NuSMV Cadence SMV PRISM MRMC

Intermediate layer

Engineering layer

quantitative analysisqualitative analysis

Verification layer

Figure 8.1.: Outline of Model-Driven Safety Analysis [GO11b]

A completely different research topic is based on exploiting quantitative analysis re-
sults to optimize systems. Although many safety-critical systems are developed accord-
ing to the as low as reasonably possible (ALARP) principle, the definition of a reasonable
low risk is unclear. It depends not only on hazard probabilities, but also on other goals,
which are very often even antagonistic to safety. The most obvious examples are, of
course, economic factors, such as direct cost of a system or the costs of using a system
in a safer way, e.g. low permissible speed for a train. For the implementation of a
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concrete system, it will therefore very often be an important challenge to find a good
compromise between acceptable safety and the antagonistic goals. In order to find such
compromises, quantitative safety analysis can be used as an objective function for multi-
objective optimization of system designs and very promising first results have already
been achieved [GO11a].
Use of quantitative model-based safety analysis results based on pDCCA and SAML

forms the basis for the DFG-funded Probabilistic Models in Safety Analysis (ProMoSA)
project [OG10], which aims both at integrating qualitative and quantitative model-based
safety analysis into industrial engineering tools and at the automatic optimization of
safety-critical systems under different antagonistic goal functions.
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A. Proofs

Lemma 1. Embedded Kripke Structure
Let τKripke = κ(τMDP ) be the tuple τKripke = (S, {s0}, T, L, AP ) as defined in Def. 17,

then τKripke is a Kripke structure.

Proof. By definition the set of states, initial state, labeling and atomic propositions is
the same in τMDP as in τKripke = κ(τMDP ).
In order for τKripke to be a proper Kripke structure, the transition relation T must

be left-total, i.e. ∀s ∈ S : ∃t ∈ S : (s, t) ∈ T . From the definition of T and the
definition of a MDP (Def. 3) we know that for each state s, Steps(s) is a set of indices
and corresponding discrete probability distribution of the form (j, p). For each such p

we know that
∑

t∈S p(s, t) = 1. This means that for each state s there exists a state t
such that p(s, t) > 0 and (s, t) is in T (by definition). So for each reachable state s there
exists a successor state t and therefore the transition relation is total.

Lemma 2. Embedded Kripke Structure Path Equivalence
Let ρ be the projection of a path of the MDP of the form ω = s0(j0, p0)s1 . . . to a state

sequence π of the form π = s0s1 . . ..
Then the diagram in Fig. A.1 is commutative, i.e. Paths(κ(τMDP )) = ρ(Paths(τMDP )).

MDP

Paths(MDP)

Paths Paths

Kripke
structure

Paths

κ

ρ

Figure A.1.: Mapping of MDP Traces to Kripke Structure Traces

Proof. To show:

∀π : (π ∈ Paths(κ(τMDP )) ⇔ ∃ω ∈ Paths(τMDP ) : ρ(ω) = π)
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“⇒”:
Let π be an arbitrary element of Paths(κ(τMDP )). As κ maps a MDP τMDP to

a Kripke structure τKripke with the same states, for each pair of states (s, t) in the
transition relation T of τKripke there exists an index, probability distribution pair (j, p)
in τMDP such that p(s, t) > 0 holds (see Lemma (1)). Therefore for π = s0, s1 . . ., for
every pair (si, si+1) ∈ T there exists a pair (j, p) such that p(si, si+1) > 0 in the MDP and
ω = s0(j0, p0(s0, s1))s1 . . . is a path of τMDP (Def. (4)) and by its definition, ρ projects
ω onto π (as the sequence of states is preserved)
“⇐”:
By contradiction: Assume ∃ω ∈ Paths(τMDP ) : ρ(ω) = π ∧ π 6∈ Paths(κ(τMDP )).

This means that for ω = s0(j0, p0)s1 . . . si(ji, pi)si+1 . . . the probability pi(si, si+1) = 0
must hold (else π would be an element of Paths(κ(τMDP )), see Lemma (1)). But if such
a pair (ji, pi) exists, then ω is not a path of a MDP (see Def. (4)), as the probability to
reach the next state must always be non-zero.

Corollary 1. Embedded Kripke Structure Trace Equivalence
A MDP τMDP and its embedded Kripke structure τKripke = κ(τMDP ) are isomorphic

wrt. their set of traces.

Proof. From Lemma 2, for each Path π = s′0s
′
1 . . . of the embedded Kripke structure

κ(τMDP ) there exists a Path ω = s0(j0, p0)s1 . . . of the MDP τMDP such that the projec-
tion of ω is equal to π. The same holds vice versa.
From the construction of the embedded Kripke structure (see Def. 17) the labeling

function for each state L(s0) is equal to L(s
′
0), as the labeling function is the same.

Lemma 3. Conservative Integration
Let M be a SAML model with the set of state variables V ar and M ′ be the SAML

model in which the effect of a failure mode γi is integrated into M adhering to the rules
for conservative integration. Let Fi be the corresponding failure module, failsi the state
variable that indicates that the failure mode is absent (failsi ≤ 0) or present (failsi >
0). Let τMDP be the MDP corresponding to M and τ ′MDP be the MDP corresponding to
M ′||Fi. Then:

∀π ∈ Paths(κ(τMDP )) : ∃π
′ ∈ Paths(κ(τ ′MDP )) : π ≡ π′|V ar (A.1)

where π′|V ar is the projection of π′ onto the state variables v ∈ V ar

Proof. From the construction rules for failure effect modeling, it is assured that for all
traces for all states in which the failure mode is absent (the failure module is not in
state “yes”), there exists a successor state with non-zero probability on which the failure
mode is also absent1.

1This means that the occurrence pattern is modeled in a sensible way, so that the failure mode may
not appear at all and therefore the occurrence of the failure mode is not forced.
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Therefore assume that

κ(τ ′MDP ), s0 |= AG (failsi ≤ 0 → EX(failsi ≤ 0)) (A.2)

holds. This means that for all states on all traces if the failure mode is absent, then
there is also a successor state in which the failure mode is absent.

Then for each π ∈ Paths(κ(τMDP )) a corresponding π′ ∈ Paths(κ(τ ′MDP )) can be
constructed in the following way:

Let sk be the k− th state of a path π = s0, s1 . . . of κ(τMDP ). In the complete SAML
model, the activation condition that held in sk is of the form

∧m
j=1 φj (the conjunction

of all active activation conditions of all parallel SAML modules).

Now let φt be the activation condition of the SAML module that was changed in M ′

to integrate the failure effect. Assume there exists a path π′ of κ(τ ′MDP ) on which for
the k − th state s′k failsi ≤ 0 holds and sk ≡ s′k|V ar, i.e. φt also holds in s′k.

Let sk+1 be a successor state of sk on π. As failsi ≤ 0 holds in s′k, any possible
successor state s′k+1 on π′ cannot be a state introduced by the failure mode effects
modeling (rule 3b). As φt ∧ failsi ≤ 0 holds in s′k there also exists a successor state
s′k+1 such that failsi ≤ 0 (because of (A.2)) and for which sk+1 ≡ s′k+1|V ar holds. The
reason is that all active update rules of the complete model of the original model M
have a corresponding active update rule in M ′ if failsi ≤ 0 holds (and by construction
one which is active if failsi > 0 holds).

So for each path π of κ(τMDP ) for each state sk, if there exists an equivalent state s′k on
a path π′ of κ(τ ′MDP ) on which failsi ≤ 0 holds, there exists an equivalent continuation
of π and π′ such that π ≡ π′|V ar.

As the initial state does not change (rule 4), s0 ≡ s′0|V ar and failsi ≤ 0 ∈ L(s′0) holds
(the absence of the failure mode is the initial state of the failure module in the described
failure mode modeling) and the assertion follows by induction.

Lemma 4. Deductive Before Ordering / Strict Before Ordering

For an extended system model M+, a set of failure modes ∆, a predicate logic hazard
H,a minimal critical set Γ and two failure modes γ1, γ2 ∈ Γ,

γ1 �Γ γ2 ⇔

κ(M+), π |= (ΓUH) → [(¬H ∧ ¬γ1 ∧ ¬γ2)

U(γ1 ∧ ((¬H ∧ ¬γ2)

U((γ2 ∧ ¬H) ∧ FH)))] (A.3)
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γ1 ≺Γ γ2 ⇔

κ(M+), π |= (ΓUH) → [(¬H ∧ ¬γ1 ∧ ¬γ2)

U((γ1 ∧ ¬γ2 ∧ ¬H)∧

X((¬H ∧ ¬γ2)

U((γ2 ∧ ¬H) ∧ FH)))] (A.4)

Proof. Before Ordering:

At first the expression of equation (A.3) is expanded:

κ(M+), π |= (ΓUH) → [(¬H ∧ ¬γ1 ∧ ¬γ2)

U(γ1 ∧ ((¬H ∧ ¬γ2)

U((γ2 ∧ ¬H) ∧ FH))]

⇔ ¬(ΓUH) ∨ (A.5)

∃k ≥ 0 : κ(M+), sk |= γ1 ∧ (A.6)

(∃m ≥ k : κ(M+), sm |= (¬H ∧ γ2) ∧ (A.7)

(∃l ≥ m : κ(M+), sl |= H) ∧ (A.8)

∀j : k ≤ j < m : κ(M+), sj |= ¬H ∧ ¬γ2) ∧

∀i : 0 ≤ i < k : κ(M+), si |= ¬H ∧ ¬γ1 ∧ ¬γ2 (A.9)

The equation (A.5) is used to select the traces of the system where Γ actually was
the cause for the hazard. If it is true, then the failures did not appear before the hazard
and the failures were not the cause. Therefore we are only interested in the cases where
(A.5) is false and the rest is true.

If this is true, then there exist 3 special time steps on the path π. Let k0 be the
smallest k at which γ1 is true and m0 the smallest m at which γ2 is true, from equation
(A.7) and (A.6) we know that these exist and that m0 ≥ k0.

From (A.8) we know that there is a smallest l0 at which H is true and that l0 ≥ m0.
As (A.7) implies that H is false for m0 we have the following temporal relation for the
mentioned time steps: l0 > m0 ≥ k0. This implies that both failures appear before the
hazard and that γ1 does not appear after γ2, therefore γ1 �Γ γ2.

Strict Before Ordering:
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κ(M+), π |= (ΓUH) → [(¬H ∧ ¬γ1 ∧ ¬γ2)

U((γ1 ∧ ¬γ2 ∧ ¬H) ∧

X((¬H ∧ ¬γ2)

U((γ2 ∧ ¬H) ∧ FH)))]

⇔ ¬(ΓUH) ∨ (A.10)

∃k ≥ 0 : (κ(M+), sk |= γ1 ∧ ¬γ2 ∧ ¬H) ∧

(∃m ≥ k + 1 : κ(M+), sm |= (γ2 ∧ ¬H)) ∧ (A.11)

(∃l ≥ m : κ(M+), sm |= H) ∧ (A.12)

(∀j : k ≤ j < m : κ(M+), sj |= ¬γ2 ∧ ¬H) ∧

(∀i : 0 ≤ i < k : κ(M+), si |= ¬γ1 ∧ ¬γ2 ∧ ¬H) (A.13)

Assume (A.10) to be false and the rest to be true for the reason mentioned before.
Let k0 be the smallest k where γ1 ∧¬γ2 ∧¬H is true, let m0 be the smallest m where

γ2 ∧ ¬H is true and l0 the smallest l where H is true. From (A.11) we know that
m0 ≥ k0+1, i.e. m0 > k0 and from (A.12) and (A.11) we know that l0 > m0. Therefore
we know that if H appears on a trace, both failures appear before the hazard and γ1
appears before γ2, i.e. γ1 ≺Γ γ2.

Lemma 5. Deductive Simultaneous Order
For an extended system model M+, a set of failure modes ∆, a predicate logic hazard

H,a minimal critical set Γ and two failure modes γ1, γ2 ∈ Γ

γ1 ∼Γ γ2 ⇔

κ(M+), π |= (ΓUH) → [(¬H ∧ ¬γ1 ∧ ¬γ2)

U((γ1 ∧ γ2 ∧ ¬H) ∧ FH)] (A.14)

Proof. At first the expression of equation (A.14) is expanded:

κ(M+), π |= (ΓUH) → [(¬H ∧ ¬γ1 ∧ ¬γ2)

U((γ1 ∧ γ2 ∧ ¬H) ∧ FH))]

⇔ ¬(ΓUH) ∨ (A.15)

∃k ≥ 0 : κ(M+), sk |= (γ1 ∧ γ2 ∧ ¬H) (A.16)

∧(∃m ≥ k : κ(M+), sm |= H) ∧ (A.17)

∀i : 0 ≤ i < k : κ(M+), si |= ¬γ1 ∧ ¬γ2 ∧ ¬H (A.18)

Again, only the traces where Γ is the actual cause of H are of interest. Therefore we
assume (A.15) to be false and the second part of the whole equation to be true.
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A. Proofs

Let k0 be the smallest k where γ1 ∧ γ2 ∧ ¬H is true and m0 the smallest m where H
is true, then we know that m0 > k0 because H is false at k0 (A.16). On all time steps
before k0 both γ1 and γ2 are false (A.18). Therefore H appears after the failures and
the first time the failures appear, they appear together, i.e. γ1 ∼Γ γ2.

Lemma 6. aDCCA Completeness Lemma
For a complete aDCCA for an extended system model M+, a set of failure modes ∆

and a hazard H the following formula holds:

κ(M+), s0 |= A ((
∧

Γ∈aMCSS(M+,∆,H)

¬
∧

γj∈Γ

F γj) → ¬FGH)

Proof. By contradiction:

Assume:

κ(M+), s0 6|= A ((
∧

Γ∈aMCSS(M+,∆,H)¬
∧

γ∈Γ F γ) (A.19)

→ ¬FGH)

⇔ there exists π = s0, s1, . . . ∈ Paths(κ(M+)) : (A.20)

κ(M+), π |= (
∧

Γ∈aMCSS(M+,∆,H) ¬
∧

γ∈Γ F γ) (A.21)

and κ(M+), π |= FGH (A.22)

Since the set ∆ is finite, there is a state si on π such that all component failures γ ∈ ∆
that will ever happen have occurred at least once. This means all failure modes that
have not appeared on π before si will not appear at all.

∀γ ∈ ∆ : (∀j < i : κ(M+), sj |= ¬γ) (A.23)

→ κ(M+), si |= G¬γ

Let Γ := {γ ∈ ∆ | ∃ j < i : κ(M+), sj |= γ} (A.24)

(A.22),(A.24)
⇒ κ(M+), π |= (ΓU EG (H ∧ Γ))

⇔ Γ is adaptive-critical set (Def. 32)

⇒ ∃ Γ0 ⊆ Γ : Γ0 is minimal adaptive-critical set

therefore Γ0 ∈ aMCSS(M+,∆, H)

(A.24)
⇒ κ(M+), π |=

∧

γ∈Γ F γ (A.25)

⇒ κ(M+), π |=
∧

γ∈Γ0
F γ, as Γ0 ⊆ Γ

⇒ κ(M+), π 6|= (
∧

Γ∈aMCSS(M+,∆,H) ¬
∧

γ∈Γ F γ)

⇒ contradiction to (A.20)
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Lemma 7. DCCA Implication for aDCCA
Let M+ be an extended SAML model, ∆ be a finite set of failure modes, Γ ⊆ ∆, and

M be the embedded Kripke structure of κ(M+) then

κ(M+), s0 |= E [ΓUEG (H ∧ Γ)] ⇒ κ(M+), s0 |= E [ΓUH ]

Proof. Let π be a path of κ(M+) such that π = s0s1 . . . sn . . . where n is the smallest
index such that ∀j ≥ n : H ∈ L(sj), i.e. H holds globally after sn.
Such a trace exists because E [ΓUEG (H ∧ Γ)] holds. Therefore ∀i < n : Γ ∈ L(si)

and H ∈ L(sn) which together imply κ(M+), s0 |= E [ΓUH ].

Lemma 8. Adaptive Deductive Before Ordering / Strict Before Ordering
For an extended system model M+, a set of failure modes ∆, a predicate logic hazard

H, a minimal adaptive-critical set Γ and two failure modes γ1, γ2 ∈ Γ,

γ1 �Γ γ2 ⇔

κ(M+), π |= (ΓU(G (H ∧ Γ)) → [(¬γ1 ∧ ¬γ2)

U(γ1 ∧ ((¬γ2)

U(γ2 ∧ (FGH))))] (A.26)

γ1 ≺Γ γ2 ⇔

κ(M+), π |= (ΓU(G (H ∧ Γ))) → [(¬γ1 ∧ ¬γ2)

U((γ1 ∧ ¬γ2)∧

X((¬γ2)

U(γ2 ∧ (FGH))))] (A.27)

Proof. First the expressions in Eq. (A.26) and Eq. (A.27) are expanded, the following
reasoning is analogous to the reasoning of Lemma (4).

Lemma 9. Adaptive Deductive Simultaneous Order
For an extended system model M+, a set of failure modes ∆, a predicate logic hazard

H, a minimal adaptive-critical set Γ and two failure modes γ1, γ2 ∈ Γ

γ1 ∼Γ γ2 ⇔

κ(M+), π |= (ΓU(G (H ∧ Γ)) → [(¬γ1 ∧ ¬γ2)

U((γ1 ∧ γ2) ∧ (FGH))] (A.28)
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Proof. The reasoning is analogous to Lemma (5).

Lemma 10. Transformation Equivalence
Let M be s SAML model with state variables v1, . . . , vk, and update rules u1 . . . um

and the corresponding MDP τMDP . Let U :=
⋃m

i=1{µ(ui)} be the set of update tuples of
M with eliminated parallel assignments.
Let M ′ be the parallel composition M1|| · · · ||Mk||Mchoose1|| · · · ||Mchoosem where Mi is

a SAML module with the single state variable vi and all the updates of the set U of the
form (φ, vi,Θ) and Mchoosei is a SAML module with the chooser variable choosei and
the update rules for choosei from U of the form

(true, {choosei}, {{(1, {(choosei, [1, j] ⊆ N}}})

Let Λ := {τ ′MDP} be the set of MDPs corresponding to the set of possible M ′ with a fixed
initial value for each choosei variable, then

∀π : (π ∈ Paths(κ(τMDP )) ⇔ ∃τ ′MDP ∈ Λ : π ≡ π′|{v1,...,vk} ∧ π
′ ∈ Paths(κ(τ ′MDP )))

Proof. ⇒:
Let π ∈ Paths(κ(τMDP )), π = s0 . . . snsn+1 . . . be a path of κ(τMDP ). Then each

element (sn, sn+1) in the transition relation T of κ(τMDP ) results from the existence of
a probability distribution p in τMDP where p(sn, sn+1) > 0 (from the definition of the
embedded Kripke structure)
To the MDP τMDP and p(sn, sn+1), there exits an activation condition

∧m
j=1 φj which

holds in sn in the complete SAML model of M (see definition of parallel composition)
where each φj is the activation condition of one update rule uj of the parallel SAML
modules of M .
Let choosej be the chooser variable introduced by the parallel assignment elimination

µ of update rule uj and tj be one of the admissible indices of choosej .
Assume that there exists a state s′n on a path π′ ∈ Paths(κ(τ ′MDP )) of one τMDP ∈ Λ

that for each for each admissible value of chooserj of each update rule uj for which the

activation condition φj holds in sn the state s′n is of the form s′n|varj ,choosej =

(

sn
tj

)

where (si) denotes a vector of the values of all state variables of the state si and varj is
the set of variables of uj. Then the activation conditions of each uj also hold in s′n (in
the form φj ∧ chooserj = tj) and therefore there also exists a successor state s′n+1 of s′n
for which s′n+1|varj = sn+1 holds, because the state variables of each update rule uj get
new values assigned from a parallel assignment in τMDP which gets the index tj assigned
by the mapping µ and whenever choosej has the value tj (as in s′n), the next values of
the variables in varj are the same as in the original parallel assignment of the complete
SAML model of M . By construction of the update rules of the chooser variables, such
a successor state s′n+1 exists for all possible valuations of all chooser variables.
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By the definition of the chooser variables, there exists a MDP τ ′MDP in Λ such that

s′0|v1,...vk = s0 for the initial state s′0 of τ ′MDP and s′0|v1,...,vk,choosei =

(

s0
t′i

)

for each

possible chooser variable choosei and admissible index t′i of choosei. Therefore, a corre-
sponding successor states can be found for each path starting in the initial state s′0 of
κ(τMDP ) and the assertion follows by induction.

⇐:

By contradiction: Assume ∃π : ∃τ ′MDP ∈ Λ : π ≡ π′|{v1,...,vk} ∧ π
′ ∈ Paths(κ(τ ′MDP ))

but π 6∈ Paths(κ(τMDP )). For each successor states sn, sn+1 on π there existed states
s′n, s

′
n+1 with s′n|v1,...,vk = sn, s

′
n+1|v1,...,vk = sn+1 and a non-deterministic choice of a

probability distribution in τ ′MDP such that p(s′n, s
′
n+1) > 0 (else s′n, s

′
n+1 would not be

successor states on π′ and therefore sn, sn+1 not on π).

From the construction of τ ′MDP via the parallel assignment elimination with µ, any such
probabilistic distribution is of the form p(s′n, s

′
n+1) = 1 and results from the existence

of a probability distribution p of τMDP such that p(s′n|{v1,...,vk}, s
′
n+1|{v1,...,vk}) > 0 and

(s′n|{v1,...,vk}, s
′
n+1|{v1,...,vk}) is in the transition relation of the embedded Kripke structure

of τMDP .

Therefore for each pair of successor states (sn, sn+1) of π, for the transition relation
T of κ(τMDP ) : (s

′
n|{v1,...,vk}, s

′
n+1|{v1,...,vk}) = (sn, sn+1) ∈ T holds. This contradicts the

assumption that no such π exists in κ(τMDP ).

Lemma 11. Single Initial State Extension

Let M be a SAML model with state variables v1 . . . vk and M ′ the SAML model which
results from parallel assignment elimination and single state extension of M , then

∀π : (π = s0s1 . . . ∈ Paths(κ(M))

⇔ ∃π′ = s′−1s
′
0 . . . ∈ Paths(κ(M ′)) : s0 ≡ s′−1|v1,...,vk ∧ ∀i ≥ 0 : si ≡ s′i|v1,...,vk)

Proof. “⇒:”

From Lemma (10) it is known, that for each π = s0s1 . . . ∈ Paths(κ(M)), there
exists a path π′ = s′0s

′
1 . . . in one of the MDPs resulting from the parallel assignment

elimination of M for which ∀i ≥ 0 : si ≡ s′i|v1,...,vk . Therefore it is sufficient to show that
every initial state of one of the MDPs of Λ is a successor state of s′−1.

From the construction, it is known that s′−1|v1,...,vk ≡ s′0|v1,...,vk , i.e. all the state
variables do not change their value in the first transition. At the same time

s−1|choose1,...,choosej,...,choosen =















1
...
0
...
1














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holds, i.e. choosej is the global chooser variable with new initial state 0 and all other
chooser variables have the initial value 1 (or any other of their admissible values, but
always a unique fixed one for s−1).
By construction of the single state extension, the values for all chooser variables there-

fore are any of their possible admissible indices in the successor states of s−1 and for
every state s′n, n ≥ 0, choosej 6= 0. This means, in every successor state s′0 of s′−1 the
state variables v1 . . . vk have their respective initial values and there exists one such suc-
cessor state for every possible admissible valuation of the chooser variables. This means
the set of successor states of s′−1 is exactly the set of initial states of the MDPs in Λ.
“⇐:”
By Contradiction: Assume

∃π′ = s′−1s
′
0 . . . ∈ Paths(κ(M ′)) : s0 ≡ s′−1|v1,...,vk ∧ ∀i ≥ 0 : si ≡ s′i|v1,...,vk

but π = s0s1 . . . 6∈ Paths(κ(M)). From Lemma (10) we can conclude that in this
situation s′−1 must have a successor state s′0 which is not the initial state of one of the
MDPs resulting from the parallel assignment elimination (else π ∈ Paths(κ(M)) would
hold).
From the definition of the single state extension, all state variables do not change their

values in the transition from s′−1 to s
′
0, the global chooser gets one of its admissible values

assigned after the first step and all other chooser variable also get one of their respective
admissible values assigned. Therefore every successor state of s′−1 is the initial state of
one of the MDPs resulting from the parallel state assignment which is a contradiction
to the assumption.
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Frank Ortmeier, Proceedings of the 5th conference for Sicherheit, Schutz und
Zuverlaessigkeit (SICHERHEIT 2010), Lecture Notes in Informatics (LNI)

– SysML in Digital Engineering Matthias Güdemann, Stefan Kegel, Frank Ort-
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