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1. Introduction 

Polymers have existed on this planet since the beginning of life as they form the 

basis of life. Nevertheless, the first synthetic polymer, nitrocellulose, was discovered 

by Christian Frederick Schönbein in 1846 and was first produced from natural 

cellulosic material by Alexander Parkes in 1862. The commercial production of 

polymer materials started with the second synthetic plastic, developed by Dr. Leo 

Baekeland in 1907 and commercially produced in 1910. In the 1930s and 1940s, the 

development of new polymers speeded up, and some other polymers, such as 

Polyvinylchloride (PVC), polystyrene, and polyethylene, were discovered in this 

period [1–3]. During this time, the main focus was on the chemical composition of 

these materials, and the molecular structure remains unregarded.  

Meanwhile, the German chemist Hermann Staudinger introduced his theory which 

considered polymer materials as giant molecules and used the word, macromolecule, 

to express them [4–6]. A better understanding of the polymer molecular structure 

as a consequence of Staudinger’s theory resulted in a growing number of 

commercialized polymeric products between 1925-1950. In March 1933, ethylene 

was polymerized unintentionally by Eric Fawcett and Reginald Gibson for the first 

time at high temperature and under high pressure. Then the commercial production 

of Polyethylene (PE) started in 1938. Two main types of polyethylene exist, High-

density polyethylene (HDPE), a linear polymer with a low number of branches, and 

low-density polyethylene (LDPE), a branched polymer with a high number of 

branches. With 100 million tons of annual production (in 2018) and over 31% of the 

global plastic market share, polyethylene is “the world’s leading synthetic 

macromolecule” [7,8]. Due to the importance of PE, it is the main focus of the current 

thesis. 

The word polymer is a Greek word that means many parts. A polymer is a set of 

repeated chemical units (monomers) connected end to end via covalent bonds. The 

chemical units can include the same type, named homopolymer, or possibly different 

types, named copolymer. The number of monomers that form a polymer chain is 

called the degree of polymerization and defines the length of a polymer chain. This 
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length can be expressed by molecular weight that equals to 𝑀0 × 𝑁. M0 and N are 

the monomer molecular weight and degree of polymerization, respectively. The final 

polymeric product's properties are defined not only by the chemical nature of the 

monomers but even by the degree of polymerization. 

The polymer materials can be categorized diversely based on the different 

classification types. In this work, according to our demand, we categorize polymers 

based on chain structure into linear, branched, star-shaped, and network. Figure 

1.1 depicts a schematic representation of these kinds of chain structures.  

 

Figure 1.1: Different forms of a polymer chain, a) linear polymer, b) branched polymer, c) 

star polymer, d) polymer network (the mentioned network structure is not the actual 

structure, but due to the limitations, it is depicted in this manner. According to the 

definition, the shortest path to returning to a crosslink should contain many crosslinks.) 

After Staudinger’s well-known macromolecular hypothesis, the basics of polymer 

physics, including the size of the macromolecules, thermodynamics, and behavior of 

a polymer chain in good and theta solvents, rubber elasticity, single polymer chain 

dynamics, and the tube model were introduced [9–12]. Via expanding knowledge 

about polymer physics, polymer scientists have been capable of tuning the physical 

and mechanical properties without changing the chemical nature of polymers. 

Among the modification approaches, forming the cross-links between polymer 

chains to make a three-dimensional network is highly used in the rubber and 

polyolefins industries. 

The cross-linking of high-molecular-weight PE chains via high-energy irradiation 

was first reported from changes in the stress- strain behavior of the PE samples 

after being irradiated in the heavy water pile of the Argonne National Laboratory 

near Chicago in 1947. The crosslinks were produced in the semi-crystalline state at 
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room temperature without making any changes in the shape of the samples [13]. It 

was also deduced that the final product has a memory effect [14], which means it 

keeps and recovers its permanent shape. Beyond the shape memory effect (SME) 

[15–17], crosslinking of PE enhances the mechanical properties and prevents the 

undesirable hot flow (flowing of PE in high-temperature usage) and cold flow (creep) 

[18–20]. Due to this property, cross-linked PE is highly used in power cable 

insulation [21–23], piping [24–26], the automobile industry [7], and medical 

implants [27–30]. 

Cross-linking of PE can be carried out via a peroxide agent [31–38] or silane grafting 

[39–46] or by using the electron-induced reactive process (EIReP) [14,47–51]. Since 

no chemical agent is used in the irradiation technique, it is a clean and practical 

approach that can be used for the specimens at room temperature and molded parts. 

The relevent architectures of crosslinked PE via irradiation are shown in figure 1.2. 

In the first stages of irradiation, some branched and star polymers are produced by 

irradiation, whereas in the final stages, these structures connect and form the final 

network. In the final product, the system contains a mixture of a network structure, 

star, branched and linear polymers. 

 

Figure 1.2: possible chain structures of PE produced by irradiation. According to reactions 

1.4, 1.5, after irradiation, different types of polymer chain structures can be produced in the 

system, including (a) a three-arm star polymer (by a CH2 radical), (b) a four-arm star 

polymer, (c) a branched polymer, (d) a polymer network. It is noted that in the first steps, 

three-arm or four-arm star polymers are produced. Then via producing more radicals, they 

turn into the branched polymer and eventually a polymer network 

Although the gel content measurement is the most common method to probe the 

efficiency of the cross-linking process in this class of materials [52–54], swelling 

tests based on the Flory-Rehner theory [55,56], mechanical measurements based on 
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the rubber elasticity [20,57] and dynamic mechanical measurements based on the 

gelation theories [58–64] are also used to investigate the network structure. Due to 

difficulties of the current approaches, like safety issues and the precision of the 

obtained parameters, finding an alternative approach is of interest to the current 

research. 

In addition to probing the network structure for studying the crosslinking efficiency, 

investigation of the entangled defects like branched polymers (see figure 1.2) can be 

practical. Incorporating some concepts such as constraint release, primitive path 

fluctuations, branch-arm retraction, and dynamic tube dilation (DTD) into the 

original tube model has enabled to predict of the rheological properties of the 

monodisperse star [65–68], comb [69–72], H [73,74] and Cayley-tree polymers [75–

77] and even some polymer blends [78–80]. According to the DTD model, a relaxed 

segment is considered an effective theta solvent, and by its dilution effect, the 

remaining segments move in a dilated tube.  

As well as the macroscopic properties expressed in mentioned methods, network 

structure can be probed in terms of molecular dynamics via solid-state NMR. One 

of the first works in probing crosslinking in chemically crosslinked PE was done by 

Jurkiewicz al. [81], measuring the proton spin-lattice relaxation time. His method 

is an indirect qualitative measurement of the chain dynamics based on changes in 

the overall time scale and conformational restrictions of fast segmental fluctuations. 

Orientation-dependent nature of the dipolar coupling interaction between 

neighboring protons provides the opportunity for a direct study of chain dynamics 

due to access to the anisotropy of segmental motions of the constrained chains. An 

averaged residual dipolar coupling (Dres), appearing as a result of the fast 

anisotropic motions, is proportional to the inverse number of segments between two 

topological constraints [82,83]. Dres and its distribution can be measured precisely 

via time-domain double-quantum (DQ) NMR to study the network structure and 

defects in the rubbers and hydrogels [84–87]. In more general studies for the case of 

monodisperse polymer melts [88–91] and transient networks [92,93], DQ NMR has 

been used to probe the segmental dynamics in terms of orientation auto-correlation 

function (OACF) of the second Legendre polynomial C(t) = 5 < P2(cosθ(t + 
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τ))P2(cosθ(t))>, where θ represents the instantaneous segmental orientation with 

respect to the magnetic field. 

The demand for precise microscopic access to chain dynamics in more complex 

architectures of polymers, particularly partially crosslinked PE and polymer comb 

for which the DQ NMR is applied for the first time, is the primary motivation of the 

given thesis. In this work, we intend to introduce DQ NMR as the molecular 

rheology tool of choice for complex polymer architecture by establishing consistency 

between DQ NMR results and rheological measurements. We also look for a 

replacement for the classical experiments relying on hazardous solvents at high 

temperatures, such as gel content and swelling test. This research also focuses on 

understanding comb-polymer chain dynamics and the DTD model's interpretation 

in the NMR-based OACF.  

The given thesis is structured as follows. In chapter 2, the polymer chain 

conformation and the basics of the polymer chain size are presented. In the 

following, rubber elasticity, the Rouse motion, and reptation as part of the tube 

model are discussed. In the final part, the tube model for branched polymers and 

gelation in dynamic-mechanical tests are reviewed. The theories and basics of solid-

state NMR and all used NMR techniques are explained in detail in chapter 3. In 

this chapter, the OACF and its importance in the DQ NMR will be introduced. 

Afterward, the different forms of OACF function and interpretation of the DTD 

model in DQ NMR measurements will be discussed. The experimental details about 

the samples and used techniques are described in chapter 4. The experimental 

results of studying the irradiated HDPEs (key results are published in Ref. [94]) and 

PI-comb via rheology and DQ NMR technique are discussed in chapters 5 and 6, 

respectively. In chapter 7, a summary, conclusion, and outlook of the current work 

will be presented. 

  



 

6 

2. Polymer chains: properties and motions 

2.1. Single-chain conformations 

A polymer material is an aggregation of high molecular-weight polymer chains 

composed of many connected low-molecular-weight units called monomers. In order 

to understand the macroscopic properties of the polymer materials, it is necessary 

to have a clear picture of single-chain dynamics. Although the monomers within a 

polymer chain interact with each other, the essential starting point of most models 

in polymer dynamics is the conformation of an ideal chain, with no interaction 

between the monomers. Let us consider a polyethylene molecule as an example 

(figure 2.1). There are two types of motions within a molecule. The first group of 

motions includes changes in valance angles and bond lengths during molecular 

vibrations in high frequencies and does not affect the overall form of the molecule. 

The second group concerns the rotational motions around C-C bonds, which have 

the potential to change the form of the molecule. For example, a transition between 

different conformational states can lead to a conversion of planar molecular form 

into a coil [95]. The rotational angle of bond i is defined as the angle between two 

planes, including the plane defined by bonds i-2 and i-1 and the one defined by bonds 

i-1 and i. Three possible states can be defined based on the potential energy level 

(figure 2.1). Trans state is the planar zigzag conformation with the lowest energy 

level where the rotational angle is zero. Gauche+ and gauche- states are defined for 

the rotational angle of ±120°. 
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Figure 2.1: The potential energy associated with rotational motion around the C-C bond. 

According to the minima in the potential energy, three possible states, including trans (0°), 

gauche+ (+120°), and gauche- (-120°), can be occupied by the bonds. 

A polymer chain with n bonds has the longest possible end-to-end distance only if 

all rotational angles of the whole chain are in trans conformation. This maximum 

end-to-end distance which is called contour length can be written as 

𝑅𝑚𝑎𝑥 = 𝑛𝑙 cos
𝜃

2
 , (2.1) 

where l and θ are the bond length and the angle between neighboring bonds, 

respectively. In a polymer chain with n bonds oriented freely to each other, the end-

to-end vector is zero because their orientations are statistically independent. Thus, 

to explain the size of such a polymer chain, we use the mean-square end-to-end 

distance [96]: 

〈𝑅2〉 =  ∑∑〈𝑟𝑖. 𝑟𝑗〉

𝑛

𝑗=1

𝑛

𝑖=1

=  ∑〈𝑟𝑖
2〉

𝑛

𝑖=1

+ 2𝑙2∑ ∑ 〈cos𝜃𝑖𝑗〉

𝑛

𝑗=𝑖+1

𝑛−1

𝑖=1

= 𝑛𝑙2 + 2𝑙2∑ ∑ 〈cos𝜃𝑖𝑗〉

𝑛

𝑗=𝑖+1

𝑛−1

𝑖=1

 (2.2) 

In the case of a freely jointed chain, the second term would be zero, but in real 

polymer chains, as c-c bonds can only occupy the positional orientation with solid 

angle dθ, 〈cos θij〉≠0. Therefore, the second term can represent a deviation from 

freely jointed behavior by defining the characteristic ratio 𝐶∞. The mean-square end-

to-end distance can be approximated for long chains: 
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〈𝑅2〉 ≅ 𝐶∞𝑛𝑙
2 (2.3) 

The characteristic ratio depends on the local stiffness of the polymer chain and 

ranges from 4 to 12 for typical polymers. Via defining the effective bond length as 

𝑙𝑘
2 = 𝐶∞𝑙

2, which is called Kuhn length, and N as the number of freely jointed 

effective bonds; the modified chain can be assumed as a freely jointed chain. The 

mean square end-to-end distance and contour length can be written as: 

𝑅𝑚𝑎𝑥 = 𝑁𝑙𝑘 (2.4) 

〈𝑅2〉 = 𝑛𝑙𝑘
2 (2.5) 

The Kuhn model assumes that Kuhn segments take all orientations randomly, thus 

the mean square end-to-end distance change continuously and can be described by 

a Gaussian distribution function P(R, N) according to the central limit theorem: 

𝑃(𝑅,𝑁) =  (
3

2𝜋𝑁𝑙2
)

3
2
 exp (

3𝑅2

2𝑁𝑙2
) (2.6) 

 This distribution is only valid for the end-to-end distance much shorter than the 

maximum extension of the polymer chain. For real chains, P(N, R) =0 for R>Nb, 

whereas the distribution function provides a non-zero probability in such a case. The 

self-similarity characteristic of polymer chains can be derived from the possibility of 

rescaling a freely jointed chain. Self-similarity means, independent of the chosen 

length, any part of the polymer chain exhibits the same internal structure, and 

internal distance vectors follow a Gaussian distribution [95]. 

2.2. Crystallization in polymers 

Polymer chains can form crystalline structures by orienting themselves parallel to 

other chains in a regular and fixed low-energy conformation (helical, all-trans for 

PE). This ability, being much reduced in polymers with non-regularity of structure, 

such as polymers with side chains and heteropolymers with random sequence 

configuration, can provide some characteristic properties for a polymer material. 
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Since the formation of crystalline structure reduces the entropy significantly, from 

the thermodynamic aspect of view, this structure can be formed at lower 

temperatures (below the melting point). The kinetics of crystallization is governed 

by nucleation and growth processes. The transport term of the growth process is 

governed by chain mobility and correlates with temperature, whereas the nucleation 

process is proportional to the inverse of temperature. Accordingly, the 

crystallization of a polymer system at low temperatures is governed by nucleation, 

while at high temperatures, the transport process becomes dominant [97,98]. 

In this chapter, from now on, we focus on the dynamics of the polymer chains in the 

molten state. 

2.3. Rubber elasticity 

Although the trans-state is an energetically favorable state (for PE), it reduces the 

number of available conformations in a chain and, consequently, the entropy. In a 

stretched chain, an entropic nature retractive force rises to keep the chain ends in 

the unperturbed state (recoiling). This phenomenon, called rubber elasticity, is 

discussed in both cases of a single chain extension and a polymer network. In the 

case of a Gaussian chain, the external force f required to keep the ends of a polymer 

chain at a fixed distance of R is given by 

𝑓 =
3𝑘𝑇

𝑅0
2 ∆𝑅 . (2.7) 

Here, R0, ΔR(=R-R0), T, and k are the mean-squared end-to-end distance of the 

unperturbed chain, the magnitude of extension, the temperature, and the 

Boltzmann constant, respectively. This equation shows the linear relation of the 

force with the distance between two chain ends which reminds one of Hooks law for 

springs. The temperature dependency of the elastic force demonstrates its entropic 

nature. 

On the macroscopic scale, polymer networks can be assumed to be a large group of 

chains fixed by cross-links. The affine network model is the simplest in rubber 
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elasticity that assumes the relative deformation of each network strand is equal to 

the macroscopic relative deformation. Based on this model, the stress exerted on the 

rubber material upon uniaxial stretching can be written as [95] 

𝜎𝑒𝑛𝑔 = 𝑛𝑅𝑇 (𝜆 −
1

𝜆2
) , (2.8) 

where n is the number of crosslinks per volume, R is the gas constant, and λ is the 

extension ratio. This equation is only valid for an incompressible Gaussian polymer 

chain network with affine deformation and fixed cross-links. Consequently, the 

shear modulus can be obtained as 

𝐺 =
𝜌𝑅𝑇

𝑀𝑐
 . (2.9) 

Here, ρ is the polymer network density, and Mc is the number-average molar mass 

between two crosslinks. 

In real polymer networks, the crosslinks are not fixed in space, and also 

entanglements can carry some load. These two aspects are not reflected in the affine 

network's assumptions and make it an unrealistic model. Other models, such as the 

phantom model, should be employed for a more realistic description. 

2.4. Rouse model 

As explained in the rubber elasticity part, when a polymer chain deforms from its 

coiled conformation, an entropic force pulls back the polymer segments and returns 

them to the initial coiled form. This force is linearly dependent on the extension 

amount and can be simulated by an extended spring. Moreover, when a polymer 

segment in a melt starts moving through the surroundings, set up by other chains, 

every monomer experiences a frictional force. In order to simplify the motion of the 

segments, Rouse [99] considered the polymer chain as a set of beads connected via 

springs (figure 2.2) and then developed the first successful molecular model of 

polymer dynamics. In this model, beads and springs represent frictional and elastic 

forces, respectively. A polymer chain is subdivided into N Rouse sequences which 
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are sufficiently long to obey the Gaussian chain statistics. Each sequence is 

characterized by its friction coefficient ξ, and the total friction coefficient of the 

whole Rouse chain is 

𝜉𝑅 = 𝑁𝜉 . (2.10) 

The time that a polymer chain needs to diffuse a distance of the order of its size is 

called Rouse time 𝜏𝑅: 

𝜏𝑅 =
𝑅2

𝐷𝑅
=

𝑅2

3𝜋2
𝑘𝑇
𝑁𝜉

= 𝑁𝑅2
𝜉

3𝜋2𝑘𝑇
 (2.11) 

R2 is the mean-squared end-to-end distance, and DR is the diffusion coefficient of the 

Rouse chain obtained from the Einstein relation. By replacing R≈bN1/2, the Kuhn 

segment relaxation (shortest relaxation time) and the whole chain relaxation time 

(longest relaxation time) of an ideal chain can be written as  

𝜏0 =
𝜉𝑏2

3𝜋2𝑘𝑇
 , (2.12) 

𝜏𝑅 = 𝜏0𝑁
2 . (2.13) 

 

Figure 2.2: In the Rouse model, a chain of N monomers is considered a chain of N 

beads connected by springs. 
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According to the self-similarity of the polymer chains, the relaxation of an 

unentangled chain can be described by different relaxation modes, which are 

assigned by mode index p = 1, 2, 3, …, N. These mode indices demonstrate the 

number of subdivided chains in the  relaxation mode. For example, p=1 is the 

relaxation mode of the whole chain, and p=N refers to the relaxation of a single 

Kuhn segment (𝜏0). Since the pth mode consists of N/p segments, the relaxation time 

of the pth mode is similar to the relaxation time of a chain with N/p segments: 

𝜏𝑝 = 𝜏0 (
𝑁

𝑝
)
2

 (2.14) 

In pth mode, the whole chain is divided into p sections, and each relaxes 

independently. From the definition of the Rouse time, one can conclude that the 

mean-square displacement of a chain section with N/p monomer is proportional to 

the size of a chain with N/p monomers, which equals b(N/p)1/2. The following 

relation can be written: 

〈[𝑟𝑗(𝑡) − 𝑟𝑗(0)]
2
〉 ≈ 𝑏2 (

𝑡

𝜏0
)
1/2

for 𝜏0 < 𝑡 < 𝜏𝑅 (2.15) 

This relation expresses that the motion on a faster time scale than the Rouse time 

is sub-diffusive and has an exponent of 0.5, whereas, for a diffusive motion, the mean 

square displacement must be linear in time [100].  

Also, for the stress relaxation modulus, the following equation was derived by Rouse: 

𝐺(𝑡) = 𝑘𝑇
𝜑

𝑁𝑏3
∑exp (−𝑡/𝜏𝑝)

𝑁

𝑝=1

 (2.16) 

2.5. Tube model 

The Rouse model expressed the chain motions in unentangled polymers, assuming 

chain motion is not hindered by the existence of other chains. In high molecular 

weight polymers, chains start interpenetrating each other and pose constraints. The 
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constraints arise from the nature of the polymer chains, which are one-dimensional 

connected objects and cannot cross each other. The constraints impose restrictions 

on polymer motions, it is thus impossible for a polymer chain to move freely. Thus, 

the free diffusion that the Rouse model suggests after Rouse time (the longest Rouse 

mode) is unrealistic in high MW polymers. 

The entanglement time 𝜏𝑒, is defined as the Rouse time of an entanglement strand 

with Ne segments. After this time, chain motions affected by the imposed constraints 

and in very high molecular weight polymers lead to a rubber-elastic plateau in time 

or frequency-dependent mechanical response functions.  

de Genes and Edwards [10,11] suggested considering the motion of a single-chain 

polymer within a confining tube. The tube is defined by the spatial constraints 

imposed by the surrounding polymer chains, and its diameter is assumed 𝑎 =  𝑁𝑒𝑏
2. 

Along the tube, the polymer chain can diffuse by reptation, like a snake or a worm. 

 

Figure 2.3: schematic representation of tube model. a) The entangled chain is constrained 

by a hypothetical confining tube formed by the surrounding chains. As it is seen, the tube 

diameter is proportional to the entanglement spacing (Ne), and the primitive path is assigned 

with the red dashed line. b) The initial conformation of the chain in the confining tube. c) 

Effect of the motion of the chain into the right-hand side, where parts of the chain leave the 

initial tube. The empty parts of the tube left by the chain disappear (be assigned by a dotted 

line). The length of the remaining tube is denoted by σ(t), being a function of time which 

correlates with the tube survival probability, ψ(t). 
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For understanding the reptation motion, let’s assume a single chain moving within 

a fixed tube. The reptation can be considered as a Rouse motion of a chain consisting 

of N segments with length b with the friction constant of ξ in the tube imposed by 

the entanglements. The primitive path (primitive chain) is defined as the shortest 

path connecting the two chain ends with the same topology of the confined tube 

(figure 2.3). On short time scales, the polymer chain motion is a rapid wriggling 

around the primitive path, which is negligible. On longer time scales, the motion 

can be described by the time-dependent evolution of the primitive path. Since the 

motion of the primitive chain is analogous to the overall translational of the Rouse 

chain along the tube, the curvilinear diffusion coefficient Dc can be written as the 

diffusion coefficient of a Rouse chain [100]: 

𝐷𝑐 =
𝑘𝑇

𝑁𝜉
 (2.17) 

The reptation time is defined as the time takes for a chain to escape from its original 

tube. For this purpose, the chain needs to diffuse the distance equal to the contour 

length of the original primitive path, which is 

〈𝐿〉 ≈  
𝑁𝑏2

𝑎
≈
𝑏𝑁

√𝑁𝑒
 , (2.18) 

where a is the step length size of the primitive chain and equals the size of a chain 

with Ne monomers. The reptation time can be found as: 

𝜏𝑟𝑒𝑝 ≈
𝐿2

𝐷𝑐
≈
𝜉𝑏2

𝑘𝑇
𝑁𝑒
2 (
𝑁

𝑁𝑒
)
3

 (2.19) 

According to figure 2.3, the tube disappears when it is passed by the end of the 

primitive chain. Hence, the fraction of tube remaining after time t can be 

represented by the tube survival probability [11]: 
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𝜓(𝑡) = ∑
8

𝑝2𝜋2
exp (−𝑝2𝑡/𝜏𝑟𝑒𝑝)

𝑝;𝑜𝑑𝑑

 (2.20) 

Accordingly, the stress relaxation modulus is: 

𝐺(𝑡) = 𝐺𝑒𝜓(𝑡) (2.21) 

Over a wide time range, the dynamics of the polymer chains can be subdivided into 

different regimes. At very short times, the segment does not feel the presence of the 

confining tube and moves as a free Rouse chain. At 𝑡 > 𝜏𝑒, the Rouse motion of the 

polymer segments is constrained perpendicular to the primitive path, whereas, 

along the primitive path, the motion is unrestricted. The constrained Rouse 

dynamics perpendicular to the primitive path scaled with 𝑡1/4. 

At this point, we can divide the polymer chain dynamics into a subdivision of 

motional regimes based on scaling laws in terms of mean-squared displacement of 

the polymer segments [101]: 

𝛷(𝑡) =  〈[𝑅𝑛(𝑡) − 𝑅𝑛(0)]
2〉 (2.22) 

I) Free Rouse motion: 

𝑡 ≲ 𝜏𝑒                      𝛷(𝑡)~𝑡
1/2 (2.23) 

II) Constrained Rouse motion: 

𝜏𝑒 ≲ 𝑡 ≲ 𝜏𝑅             𝛷(𝑡)~𝑡
1/4 (2.24) 

III) Reptation: 

𝜏𝑅 ≲ 𝑡 ≲ 𝜏𝑟𝑒𝑝         𝛷(𝑡)~𝑡
1/2 (2.25) 

IV) Free diffusion: 
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𝜏𝑟𝑒𝑝 ≲ 𝑡                    𝛷(𝑡)~𝑡
1 (2.26) 

2.6. Contour length fluctuation and constraint release 

The reptation relaxation times are obtained under the fixed tube length assumption. 

In reality, the contour length fluctuates with time, changing the dynamical 

processes. Contour length defines the distance the polymer chain diffuses along the 

tube. When this distance is shortened, the relaxation time would be shorter than 

predicted by the reptation model. The reptation time including contour length 

fluctuation, 𝜏𝑟𝑒𝑝
𝐶𝐹, can be found as 

𝜏𝑟𝑒𝑝
𝐶𝐹 ≈ 𝜏𝑟𝑒𝑝 [1 − 𝜇√

𝑁𝑒
𝑁
 ]

2

, (2.27) 

where τrep is the reptation time without contour length fluctuation and μ is a 

numerical constant. 

Moreover, the surrounding chains are not fixed chains, which means the chains that 

form the tube can move away, and another chain comes in and forms another 

constraint. The change in the neighboring chains leads to the constraint release 

process [100]. Constraint release shortens the reptation relaxation time and 

increases the exponent of the mean-square displacement in the constrained Rouse 

regime. 

2.7. Time-Temperature superposition 

So far, the different relaxation regimes are expressed and distinguished by 

relaxation times. Since these can be written as the product of a temperature-

independent factor and the monomer relaxation time (shortest Rouse mode 

relaxation time), all the relaxation modes follow the same temperature dependency, 

which is governed by the ratio of friction coefficient and absolute temperature (𝜏~
𝜉

𝑇
). 

By defining a shift factor, it is possible to superimpose different data taken at 
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different temperatures into the reference temperature (𝑇𝑟𝑒𝑓) and provide a master 

curve of the response function. The shift factor aT is 

𝑎𝑇 =
𝜉(𝑇)/𝑇

𝜉(𝑇𝑟𝑒𝑓)/𝑇𝑟𝑒𝑓
 . (2.28) 

By using the shift factor, the stress relaxation modulus can also be written as 

𝐺(𝑇, 𝑡) = 𝑏𝑇𝐺 (𝑇𝑟𝑒𝑓 ,
𝑡

𝑎𝑇
) . (2.29) 

Here, 𝑏𝑇 = 
𝜌𝑇

𝜌0𝑇0
 is the modulus shift factor that has a weak temperature dependence 

and recovers the entropic temperature dependence of the modulus. 

The shift factor can be obtained by the well-known empirical equation called 

Williams-Landel-Ferry (WLF) 

log 𝑎𝑇 = −𝐶1
𝑇 − 𝑇𝑟𝑒𝑓

𝑇 − 𝑇𝑟𝑒𝑓 + 𝐶2
 , (2.30) 

where C1 and C2 are the empirical constants depending on the choice of Tref. 

2.8. Tube model in long-branched polymers 

In linear polymers, the polymer motions are restricted to diffusion along the tube 

formed by the neighboring chains. In a long-branched polymer, the reptation along 

the tube is not simply linear. In this material class, multiple tubes must be 

considered since the branches are also constrained by their neighboring chains. For 

the relaxation of the backbone, the arms must be relaxed first. The first models for 

predicting the dynamical behavior of the branched polymers [69] were constructed 

based on the dynamic tube dilation (DTD) models developed for the star 

polymers[66,102]. 

The set of arm’s tubes localizes the central branch point of a star. By imagining an 

arm confined inside a tube, it can be understood that the star polymer relaxes stress 

by arm retraction. This is the process in which the free ends of the star arms retract 
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back along their primitive path and orient themselves into a new tube (a tube 

belongs to another arm to make the reptation motion possible). Figure 2.4 shows the 

arm retraction process in a star and a comb polymer. This process is not entropically 

favorable as the number of available conformations for the arm chain highly reduces 

during arm retraction. Thus, thermal tension pushes the arm’s end outward to 

explore new conformations. The retraction process would be unlikely if the arm's 

length is much longer than the entanglement spacing. Pearson and Helfand [103] 

considered a star polymer confined in a fixed network of entanglements. They 

defined a potential U(x) as a function of the segmental curvilinear dimensionless 

coordinate that an arm segment must pass this barrier during the retraction 

process, 

𝑈(𝑥) =
15

8

𝑁

𝑁𝑒
𝑥2, (2.31) 

𝜏(𝑥) = 𝜏0 exp(𝑈(𝑥)), (2.32) 

where x is the segmental curvilinear dimensionless coordinate, and τ0 is a time 

constant. They assumed a hierarchy of single exponential relaxations based on the 

segmental curvilinear dimensionless coordinate. This model, however, predicted an 

incorrect relaxation spectrum when applied to star polymer melts. It predicts far too 

strong an exponential dependence on N/Ne in compare to experiments [66,103]. 

 

Figure 2.4: Arm retraction process as represented schematically in a star polymer (a, b) and 

a comb-polymer (c, d). it is seen that the retracted arm orients itself toward the dilated tube 

(the dilated tube has been expanded due to the relaxation of the arms). The segmental 

curvilinear dimensionless coordinate starts from 0 at the chain ends and goes to 1 at the 

branch point.  
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2.9. Dynamic tube dilation (DTD) model 

For modeling the arm retraction process, it is necessary to check whether the 

assumption of a fixed network of entanglements is valid. Because of the broad 

spectrum of relaxation times, at time 𝜏(𝑥), only a segment with the segmental 

curvilinear dimensionless coordinate of x from the free end is relaxing, while all the 

chain segments with x’<x have already relaxed. In other words, at time 𝜏(𝑥), x 

fraction of the arm has just relaxed, and the entanglements regarding this part of 

the chain disappeared. Accordingly, during the arm retraction process, the 

remaining unrelaxed segments are constrained by a diluted entanglement network. 

At any time 𝜏(𝑥), the fraction of the unrelaxed polymer segments equals 1-x. 

The tube assumption that considers the entanglements as binary events involving 

two chains implies 𝑁𝑒(𝛷) = 𝑁𝑒𝛷
−1, when Φ is the fraction of unrelaxed segments [102]. 

On the other hand, Colby and Rubenstein [104], who studied the effect of the 

dilution on the screening length and tube diameter, found that the tube diameter 

correlates with the concentration by an exponent of -2/3 in a θ solvent. Based on the 

self-similarity properties of polymer chains (i.e., 𝑎2~𝑁𝑒𝑏
2), 𝑁𝑒(𝛷) can be found as: 

𝑁𝑒(𝜑) = 𝑁𝑒𝛷
−𝛼, α = 4/3 (2.33) 

Accordingly, shear modulus can be written as: 

𝐺(𝛷) =
𝑘𝑇𝛷

𝑁𝑒(𝛷)𝑏
3
 ⇒  𝐺(𝛷) ~𝐺0𝛷

𝛼+1  (2.34) 

To describe the hierarchy of relaxation time regarding arm retraction, consider the 

relaxation of x + Δx segment. This segment has to pass the additional potential 

barrier to retract: 

𝜏(𝑥 + Δ𝑥) =  𝜏(𝑥) exp(𝑈(𝑥 +  𝛥𝑥,𝑁𝑒(𝑥 +  𝛥𝑥)) − 𝑈(𝑥,𝑁𝑒(𝑥))) (2.35) 

For small Δs: 
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𝑑

𝑑𝑥
ln  𝜏(𝑥)~ 

𝑑𝑈𝑒𝑓𝑓

𝑑𝑥
(𝑥)~

𝜕𝑈(𝑥,𝑁𝑒(𝑥))

𝜕𝑥
 (2.36) 

 

2.9.1. Full spectrum of arm relaxation in polymer combs 

The outermost part of the arm follows constrained Rouse motion, whereas the 

retraction process of the intermediate and innermost segments is governed by 

diffusion over the potential barrier 𝑈𝑒𝑓𝑓(𝑥𝑎). The entire relaxation spectrum of the 

arms is derived by smoothly crossing over from the early rouse-like relaxation time 

𝜏𝑎𝑒(𝑥𝑎)  to the slower “activated” relaxation time 𝜏𝑎𝑙(𝑥𝑎). Hence the full spectrum 

reads: 

𝜏𝑎(𝑥𝑎) =
𝜏𝑎𝑒(𝑥𝑎) exp(𝑈𝑎(𝑥𝑎))

1 + 𝜏𝑎𝑒(𝑥𝑎) exp(𝑈𝑎(𝑥𝑎)) /𝜏𝑎𝑙(𝑥𝑎)
 (2.37) 

𝜏𝑎𝑒(𝑥𝑎) , 𝜏𝑎𝑙(𝑥𝑎)  and 𝑈𝑎(𝑥𝑎) are: 

𝜏𝑎𝑒(𝑥𝑎) =  
225𝜋3

256
𝑍𝑎
4𝑥𝑎

4𝜏𝑒 (2.38) 

𝜏𝑎𝑙(𝑥𝑎) =
𝜏𝑒𝑥𝑎

3/2 (
2𝜋5

15
) exp(𝑈𝑎(𝑥𝑎))

𝑥𝑎(1 − 𝜑𝑎𝑥𝑎)
𝛼

 
(2.39) 

𝑈𝑎(𝑥𝑎) =
15𝑍𝑎(1 − (1 − 𝜑𝑎𝑥𝑎)

𝛼+1(1 + (1 + 𝛼)𝜑𝑎𝑥𝑎))

4(1 + 𝛼)(2 + 𝛼)𝜑𝑎
2

 (2.40) 

Here xa, Za, 𝜏𝑒, 𝜑𝑎 and 𝛼 are the segmental curvilinear dimensionless coordinate in 

an arm, the number of entanglement strands along the dangling arm, the Rouse 

relaxation time of an entanglement strand, the volume fraction of arms, and dilution 

exponent (=1 or 4/3), respectively. For small xa, Ua and 𝜏𝑎𝑒(𝑥𝑎)/𝜏𝑎𝑙(𝑥𝑎) goes to zero, 

then 𝜏𝑎𝑒(𝑥𝑎) governs the relaxation hierarchy, while for intermediate values of xa, 

𝜏𝑎𝑒(𝑥𝑎) exp(𝑈𝑎(𝑥𝑎)) /𝜏𝑎𝑙(𝑥𝑎) >>1 and consequently 𝜏𝑎𝑙(𝑥𝑎) is dominant. The 

equations 2.37-2.40 were derived from the Milner and Mcleish theory for the star 

polymers and modified for the polymer comb [66,69,73]. 
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2.9.2. Backbone relaxation in polymer combs 

In this part, the dynamics of the polymer comb backbone will be discussed beyond 

the arm retraction time. Two different relaxation methods govern the motion of the 

backbone: a) contour length fluctuation and b) reptation motion. On short time 

scales, the polymer comb backbone behaves like a star arm corrected with extra 

friction due to the presence of the arms at the branch points. On longer time scales, 

the reptation dynamics dominate and control the system's dynamic behavior. From 

another viewpoint, the segments near the free ends (xb close to zero) relax through 

CLF, and the segments close to the center of the polymer backbone (xb close to 1) 

follow reptation relaxation, which is the terminal relaxation time. Eventually, the 

backbone relaxes by whichever relaxation method is faster. 

The CLF relaxation of the backbone is calculated by using the same cross-over 

function as used in the retraction process from an early relaxation time, 𝜏𝑏𝑒(𝑥𝑏), to 

a late one, 𝜏𝑏𝑙(𝑥𝑏): 

𝜏𝑏(𝑥𝑏) =
𝜏𝑏𝑒(𝑥𝑏) exp(𝑈𝑏(𝑥𝑏))

1 + 𝜏𝑏𝑒(𝑥𝑏) exp(𝑈𝑏(𝑥𝑏)) /𝜏𝑏𝑙(𝑥𝑏)
 (2.41) 

The form of the early relaxation time depends on the number of branch points. In 

the case of H-polymers, pom-poms, and lightly branched combs, the early-time 

relaxation reads: 

𝜏𝑏𝑒(𝑥𝑏) =  
25

64𝑝2
𝑓𝑍𝑏

2𝑥𝑏
2𝜏𝑎(1)𝜑𝑏

2𝛼 , (2.42) 

where f, 𝞽a(1), and φb are the number of free arms at one branch point, the arm 

retraction time at the branch point, and the volume fraction of backbone segments, 

respectively. p is an empirical constant of order unity which corresponds to the mean 

distance that the branch point hops along the tube at the time scale of the relaxation 

of an arm. McLeish et al. [72] have assumed p2 as a fixed parameter with a value of 

1/12. In contrast, Frischknecht et al. [67] found that the value of p2 needs to be 

adjusted for each hierarchy separately to reach a reasonable agreement with the 
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experiment. Also, a value of p2 =1/40 has been reported in work on the stress moduli 

of the PI asymmetric star and H polymers that provide a good agreement with 

experimental data [105]. For highly branched combs, the early relaxation time is 

controlled by the frictional dynamics that arise from more than one branch point 

and can be written approximately as 

𝜏𝑏𝑒(𝑥𝑏) =  
375𝜋

8192 𝑝2
𝑞𝑍𝑏

3𝑥𝑏
4𝜏𝑎(1)𝜑𝑏

3𝛼 . (2.43) 

Here, q is the number of branches along the backbone. The late relaxation time and 

the effective potential felt by the backbone in the CLF process are calculated as 

follows: 

𝜏𝑏𝑙(𝑥𝑏) =
25𝑍𝑏

2𝜑𝑏
2𝛼𝑞𝜏𝑎(1) exp(𝑈𝑏)√

2𝜋
𝑈"𝑏(𝑥𝑏 = 0)

8 𝑈′𝑏(𝑥𝑏) 𝑝
2

 
(2.44) 

𝑈𝑏(𝑥𝑏) =
15𝑍𝑏𝜑𝑏

𝛼(1 − (1 − 𝑥𝑏)
𝛼+1(1 + (1 + 𝛼)𝑥𝑏))

8(1 + 𝛼)(2 + 𝛼)
 (2.45) 

It is noted that the backbone is considered a two-armed star chain of length 𝑍𝑏/2, 

which explains the factor of 
1

2
 compared to equation 2.40. The CLF relaxation time 

increases significantly as x shifts to the central part of the chain. As it exceeds the 

reptation time, the dominant relaxation process changes into reptation. The 

reptation relaxation time of the backbone polymer comb is 

𝜏𝑟𝑒𝑝 =
25(1 − 𝑥𝑑)

2𝑍𝑏
2𝜑𝑏

2𝛼𝜏𝑎(1)𝑞

8𝜋2𝑝2
 , (2.46) 

where xd is the dimensionless distance from the chain-free end at which the 

reptation becomes the dominant relaxation process. This distance can be obtained 

by solving 𝜏𝑟𝑒𝑝(𝑥𝑑) = 𝜏𝑏(𝑥𝑑). 
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2.9.3. Stress Relaxation 

As explained, the effective modulus of a diluted entanglement network can be 

written as follows: 

𝐺(𝛷) = 𝐺0𝛷
𝛽 (2.47) 

Here 𝛷 is the fraction of unrelaxed segments. It can be defined at any 𝜏(𝑥), as a 

function of the segmental curvilinear dimensionless coordinate 𝛷(𝑥) = 1 − 𝑥. Thus, 

for stress relaxation modulus, a general expression can be written: 

𝐺(𝑡) = ∫
𝜕𝐺[𝛷(𝑥)]

𝜕𝑥
exp (−

𝑡

𝜏(𝑥)
) 𝑑𝑥

1

0

 (2.48) 

This expression assumes that the effective modulus at time t depends on the fraction 

of the unrelaxed tube. The above equation can be divided into two contributions for 

a comb polymer [73]: 

𝐺(𝑡) =  𝐺0 𝛽

{
 
 

 
 ∫ 𝜑𝑏

𝛽(1 − 𝑥𝑏)
𝛽−1 exp (

−𝑡

𝜏𝑏(𝑥𝑏)
) 𝑑𝑥𝑏

1

0

+∫ 𝜑𝑎(1 − 𝜑𝑎𝑥𝑎)
𝛽−1 exp (

−𝑡

𝜏𝑎(𝑥𝑎)
)𝑑𝑥𝑎

1

0

 (2.49) 

The equation's first term represents the backbone's contribution and the second 

term expresses the arms' contribution to stress relaxation. Equation 2.49 has 

usually been written in terms of 𝛼 = 𝛽 − 1 for simplicity, but in the current work 

that we will use this model to describe DQ NMR data, it is essential to emphasize 

the differences between 𝛽 and 𝛼. The stress relaxation for the different regimes can 

be found as follows: 

Rouse regime: The chain motion below the length scale of an entanglement strand 

is expressed by the Rouse model and, beyond this length scale, is described by the 

longitudinal dynamics within the confined tubes: 
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𝐺(𝑡) = (
𝐺0𝜑𝑎
𝑍𝑎

) [𝐺𝑅𝑜𝑢𝑠𝑒,𝑎(𝑡) +
𝐺𝑙𝑜𝑛𝑔,𝑎(𝑡)

5
] + (

𝐺0𝜑𝑏
𝑍𝑏

) [𝐺𝑅𝑜𝑢𝑠𝑒,𝑏(𝑡) +
𝐺𝑙𝑜𝑛𝑔,𝑏(𝑡)

5
] (2.50) 

𝐺𝑙𝑜𝑛𝑔,𝑎(𝑡) = ∑ exp(−
𝑝2𝑡

𝑍𝑎
2𝜏𝑒
)

5𝑍𝑎
4
−1

𝑝=1

 (2.51) 

𝐺𝑅𝑜𝑢𝑠𝑒,𝑎(𝑡) = ∑ exp(−
2𝑝2𝑡

𝑍𝑎
2𝜏𝑒
)

∞

𝑝=
5𝑍𝑎
4
−1

 (2.52) 

The factor of 5/4 in the summation limits is taken from the Milner-MCleish 

definition of the number of entanglements [106]. The factor of 2 in the relaxation 

time of the sub-tube Rouse arises because the stress relaxes with half of the Rouse 

relaxation time [72,107]. In the backbone, the presence of the branches suppresses 

the motion for Rouse modes less than q, thus: 

𝐺𝑙𝑜𝑛𝑔,𝑏(𝑡) = ∑ exp(−
𝑝2𝑡

𝑍𝑏
2𝜏𝑒
)

5𝑍𝑏
4
−1

𝑝=𝑞

 (2.53) 

𝐺𝑅𝑜𝑢𝑠𝑒,𝑏(𝑡) = ∑ exp(−
2𝑝2𝑡

𝑍𝑏
2𝜏𝑒
)

∞

𝑝=
5𝑍𝑏
4
−1

 (2.54) 

Arm retraction: 

𝐺𝑎𝑟𝑚 𝑟𝑒𝑡𝑟𝑎𝑐𝑡𝑖𝑜𝑛 = 𝐺𝑁(1 + 𝛼) 𝜑𝑎∫ (1 − 𝜑𝑎𝑥𝑎)
𝛼 exp (

−𝑡

𝜏𝑎(𝑥𝑎)
)

1

0

𝑑𝑥𝑎 (2.55) 

Contour length fluctuation (in backbone): 

𝐺𝐶𝐿𝐹 = 𝐺𝑁(1 + 𝛼) 𝜑𝑏
1+𝛼∫ (1 − 𝑥𝑏)

𝛼 exp (
−𝑡

𝜏𝑏(𝑥𝑏)
)

𝑥𝑑

0

𝑑𝑥𝑏 (2.56) 
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Reptation: 

𝐺𝑟𝑒𝑝𝑡𝑎𝑡𝑖𝑜𝑛 = 𝐺𝑁(𝜑𝑏(1 − 𝑥𝑑))
1+𝛼 ∑

8

𝑝2𝜋2
𝑝=𝑜𝑑𝑑

exp(−
𝑝2𝑡

𝜏𝑑(𝑥𝑑)
) (2.57) 

2.10. Polymer chain dynamics at the gel point 

Gelation is a transition from liquid-like behavior into solid network behavior, which 

happens at a critical extent of cross-linking reaction (pc). The divergence of the zero-

shear viscosity can also express the gel point during the crosslinking process [63]. It 

was experimentally observed that the critical gels exhibit a characteristic relaxation 

behavior that represents itself in a self-similar relaxation modulus [108,109] 

𝐺(𝑡) = 𝑆𝑡−𝑛 , (2.58) 

where S is named gel stiffness and n is the critical relaxation exponent. The self-

similar relaxation behavior is valid in the terminal zone at long times. As the longest 

relaxation time diverges at the gel point, the self-similar behavior has to be valid to 

infinite time. In branched polymers, self-similar behavior is of course observed on a 

finite time range. In contrast, the terminal flow will be observed for these polymers 

at very long times due to the constraint disengagement. 

Theoretical [110–113] and experimental [114–119] works reveal that the rheological 

properties of a polymer system at rather low frequencies in the vicinity of the gel 

point follow a scaling law. It means that at the gel point, the correlation of G*(ω) 

with time is power-law: 

𝐺′~𝐺"~𝜔𝑛 (2.59) 

𝐺"

𝐺′
= tan 𝛿 =  𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 (2.60) 
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According to previous studies, the relaxation exponent decreases by progressing 

cross-linking reaction after the gel point and does not show any universality feature 

at the gel point in different systems [63,64]. 
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3. NMR fundamentals 

 

The starting point of nuclear magnetic resonance (NMR) spectroscopy goes back to 

December 1945 and January 1946, when Felix Bloch and Edward M. Purcell, 

respectively, independently reported the first successful observation of the 

phenomenon of NMR in solids and liquids. Their findings brought them the Noble 

prize in physics in 1952. Since then, the applications of NMR spectroscopy have 

become vast and have led to other Noble prizes for scientists who developed NMR 

spectroscopy into new fields. Nowadays, the characterization of the molecular 

structure of a moiety without NMR spectroscopy seems impossible. Particularly in 

polymer science, NMR spectroscopy's application is not limited to the molecular 

characterization of polymer chains (chemical structure and tacticity). Actually, it 

even assists polymer physicists in studying fast and slow chain dynamics [120]. 

The basis of NMR spectroscopy relies on an intrinsic property of atomic nuclei called 

nuclear spin I, specified by nuclear spin quantum number. Protons and neutrons 

that form the atomic nuclei have a spin. According to the number of nucleons 

(protons and neutrons) in atomic nuclei, a net nuclear spin denotes every nucleus. 

For example, 1H and 13C, as the most utilized NMR-active nuclei, have spin 
1

2
 while 

12C is an inactive-NMR nucleus (I=0).  

Spins possess the lowest energy level, called the ground state. In an external 

magnetic field 𝐵⃗⃗0, the interaction of the spin with the magnetic field leads splitting 

of the ground energy level into 2I+1 energy levels (Zeeman splitting), which are 

characterized by another quantum number m that is restricted to the values -I to 

+I. In the case of 1H and 13C, 𝑚 = ±
1

2
 which denotes to α and β states. The energy 

difference between these two states is equal to the Larmor frequency 𝜔0 = −𝛾𝐵0 

[121]. 
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As the α state has lower energy than the β state, more spins possess the α state 

based on Boltzmann statistics. The difference in the population of spins in these two 

states results in a net magnetic moment (macroscopic longitudinal magnetization) 

in the same direction as 𝐵⃗⃗0. This macroscopic magnetization can be altered by a 

radio frequency (RF) pulse oscillating at the Larmor frequency. When the RF pulse 

is applied over a specific time (pulse length), the original longitudinal magnetization 

starts rotating around the pulse axis (in the rotating frame, see below) during pulse 

length at nutation frequency 𝜔𝑛𝑢𝑡.  

Rotating the magnetization by 90° about the y-axis results in a net magnetization 

along the x-direction, called transverse magnetization. Once the RF pulse is turned 

off, the spins start precessing around the z-axis, leading to the macroscopic net 

magnetization rotation in the xy plane (fig 3.1). The frequency of this rotational 

motion is equal to the nuclear Larmor frequency. The time-dependent function of 

transverse magnetization is [122]: 

𝑀𝑥 = 𝑀𝑒𝑞 cos(𝜔0𝑡) exp(−𝑡/𝑇2) (3.1) 

𝑀𝑦 = −𝑀𝑒𝑞 sin(𝜔0𝑡) exp(−𝑡/𝑇2) (3.2) 

 

Figure 3.1: The magnetization flips 90° via RF pulse around the y-axis. The magnetization 

along the x-axis starts precessing around the z-axis in the xy plane, providing two projections 

on the x and y-axis as a function of time. 

The transverse magnetization decays with the time constant 𝑇2 which is called the 

transverse relaxation time. For liquids, 𝑇2 can be several seconds, whereas, in solids, 

it can be as short as milliseconds or even microseconds. In order to simplify the 

transverse magnetization time dependency, one can remove the oscillating term by 

using a rotating frame. In the rotating frame, the observer (receiver) is rotating with 
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the same frequency as 𝜔0. In this frame, the transverse magnetization appears 

static, and consequently, equation 3.1 turns into: 

𝑀𝑥
𝑟𝑜𝑡 = 𝑀𝑒𝑞exp(−𝑡/𝑇2) (3.3) 

Meanwhile, in the z-axis, magnetization grows gradually towards the equilibrium 

value: 

𝑀𝑧 = 𝑀𝑒𝑞(1 − exp(−𝑡/𝑇1)) (3.4) 

Here T1 is the exponential time constant called spin-lattice relaxation or 

longitudinal relaxation time. In the current work, we mainly focus on transverse 

relaxation. 

3.1. Spin-half interactions 

Among the spin interactions, chemical shift and direct dipole-dipole coupling are the 

most relevant ones in 1H NMR in solids. Electron clouds around the atoms due to 

the state in a magnetic field induce a secondary local sub-molecular magnetic field 

𝐵⃗⃗𝑙𝑜𝑐, which opposes the applied field at the center of motion and changes the 

magnetic field experienced by nuclei and the Larmor frequency of the nucleus. This 

effect, called chemical shift interaction denoted by δ, depends on the strength of the 

main magnetic field and the molecule's orientation with respect to the magnetic field 

vector [123]. 

Dipole-dipole coupling is a mutual interaction between the spins through their 

generated magnetic field in the surrounding space. The dipole-dipole coupling for 

an isolated spin pair depends on the distance between two spins and the orientation 

of the internuclear vector with respect to the magnetic field with the second 

Legendre polynomial 𝑃2(cos 𝜃) = (3 cos
2 𝜃 − 1)/2 (𝜃 is the angle between the 

internuclear vector and 𝐵⃗⃗0, which is shown in figure 3.2).  A spin-pair interaction 

changes the Lorrentzain peak shape into a Pake powder pattern, while an extra 

broadening occurs in multispin systems due to the interaction between distant spins 

and turns the shape into a Gaussian spectrum (figure 3.2). Dipole-dipole coupling is 
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averaged to zero for isotropic motions like in liquids or dilute solutions, but in solids, 

anisotropic motion leads to a preaveraged residual dipolar coupling, Dres. The 

maximum magnitude of static-limit dipolar coupling is about 30 kHz as seen in rigid 

solids [123,124], depends on the typical proton desnsity. 

 

Figure 3.2: a) The angle between the magnetic field and the internuclear vector. In liquids 

with isotropic motions due to tumbling motions, this angle takes all the values between 0°-

90°, and consequently, the dipolar coupling is time-averaged to zero. b) In solids like crystals 

in which the segmental motion is absent or highly restricted, the dipolar coupling attains its 

maximum value. c) In polymer melts, due to topological constraints, it is impossible that θ 

covers all the angles like in a liquid. This restricted motion leads to a residual dipolar 

coupling of hundreds of Hz. 

3.2. Free induction decay (FID) 

The free induction decay of protons in solids is governed mainly by the dipole-dipole 

coupling. The various chain motions in a system lead to different dipolar coupling 

and T2* relaxation. The segments in a semicrystalline polymer can be categorized 

into three phases based on the chain dynamics. These phases consist of a crystalline 

phase (denoted as c) with very high Dres, an amorphous phase (denoted as a) with 

much lower dipolar coupling, and an intermediate phase (denoted as i) that is 

located between these two phases. Since T2* correlates with the inverse Dres, the 

crystalline phase signal decays with a much shorter T2
* than the amorphous phase. 

One can estimate the fraction of each phase by measuring the time domain FID and 

decomposing it based on the different relaxation times. For this purpose, the 

following equation can be used [125]: 

𝐼𝐹𝐼𝐷 = 𝑓𝑐𝑒
−(𝑎2𝑡2)

 sin(𝑏𝑡)

𝑏𝑡
 + 𝑓𝑖𝑒

−(𝑡/𝑇2,𝑖
∗ )
𝜈𝑖
+ 𝑓𝑎𝑒

−(𝑡/𝑇2,𝑎
∗ )

𝜈𝑎
 (3.5) 
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Here, f, T*
2, and ν are the fraction of the corresponding phase, the apparent 

transverse relaxation time, and the shape exponent, respectively. a and b are the 

Abragam-function parameters that relate to the second moment with the following 

equation: 

𝑀2 = 𝑎
2 +

𝑏2

3
=
9

20
𝐷𝑟𝑒𝑠

2 (3.6) 

Due to the so-called dead time of the spectrometer, which is usually of the order of 

10 μs, the initial fast-decaying signal is not fully accessible. In order to avoid losing 

this part of the signal, the so-called Magic Sandwich Echo (MSE) can be used before 

detecting the FID signal. The MSE sequence refocuses fast-decaying NMR signals, 

governed by the strong dipolar coupling interaction via reversing the dipolar 

dephasing. Detailed information can be found in Ref. [125]. 

3.3. Proton double-quantum NMR 

Proton double-quantum (DQ) NMR is a sensitive method for measuring residual 

dipolar coupling, particularly in polymer melts and networks. The presence of 

entanglements and cross-links as topological constraints in a polymer structure 

causes an anisotropic motion of chains that leads to a residual dipolar coupling. In 

the fast-motion limit where the segments move fast enough to occupy all the possible 

conformations on the time scales of hundreds of microseconds and ms, Dres reflects 

the local dynamic order parameter Sb via this equation: 

𝑆𝑏 = 〈𝑃2(cos𝜃)〉 = 𝑘
𝐷𝑟𝑒𝑠
𝐷𝑠𝑡𝑎𝑡

=
3

5

𝑟2

𝑁
 (3.7) 

Dstat is the static dipolar coupling constant, k is a constant that corrects static dipolar 

coupling for very fast intra-segmental motions, r is the ratio of the end-to-end 

distance of the polymer chain to its unperturbed averaged value in the molten state, 

and N is the number of Kuhn monomers between two topological constraints. 
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Figure 3.3: Schematic representation of the DQ NMR sequence used in this work. Spin-

temperature inversion (STI) is used to remove T1-related artifacts. The excitation and 

reconversion part consists of 4 cycles of the improved Baum-pines pulse sequence with 

different phases. The reference and DQ signals are recorded with an appropriate receiver 

phase in the detection part. 

In this work, an optimized Baum-Pines pulse sequence [126,127] has been used for 

DQ NMR analysis. As depicted in figure 3.3, the MQ coherences were excited in the 

first part (excitation) and reconverted into detectable magnetization in the second 

part (reconversion). The DQ evolution time 𝜏𝐷𝑄 can be altered by increasing the 

delays between pulses (on low-field machines) or by repetition of the block (on high-

field machines). By phase cycling, two signals, Iref and IDQ, are recorded as a function 

of DQ evolution time. The double-quantum intensity IDQ contains signals from 

coupled protons which correspond to the chains with anisotropic motions, whereas 

the reference intensity Iref carries the signal from all protons, including anisotropic 

moieties (coupled protons) and isotropic moieties. The amount of isotropically mobile 

defects (see figure 3.4) is usually reflected by a mono- or bi-exponential long-time 

tail of Iref. In the “DQ NMR in networks” part, we will discuss the data analysis to 

remove the relaxation effect from DQ intensity. 
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Figure 3.4: schematic representation of isotopically mobile defects in a network structure. 

Defects can be a dangling chain, a loop, or an entanglement-free chain 

Following a spin-pair-based quantum-mechanical treatment [83], 

𝐼𝐷𝑄 = 〈sin𝜙1 sin𝜙2〉 , (3.8) 

𝐼𝑟𝑒𝑓 = 〈cos𝜙1 cos𝜙2〉 , (3.9) 

𝐼∑𝑀𝑄 = 𝐼𝑟𝑒𝑓 + 𝐼𝐷𝑄 = 〈sin𝜙1 sin𝜙2〉 + 〈cos𝜙1 cos𝜙2〉 , (3.10) 

with: 

𝜙1 =
𝐷𝑠𝑡𝑎𝑡
𝑘
∫ 𝑃2(cos 𝜃(𝑡))
𝜏𝐷𝑄

0

𝑑𝑡 , (3.11) 

𝜙2 =
𝐷𝑠𝑡𝑎𝑡
𝑘
∫ 𝑃2(cos 𝜃(𝑡))
2𝜏𝐷𝑄

𝜏𝐷𝑄

𝑑𝑡 . (3.12) 

θ expresses the instantaneous angle between the segmental orientation and the 

external magnetic field. 

The Andersson-Weiss (AW) approximation [128] assumes a Gaussian distribution 

for the local magnetic field to analytically express NMR signals in the presence of 

molecular motions. The frequency distribution of an isolated spin-pair with 

anisotropic motion is of course Pake-like but, due to the interaction between distant 

spins in multispin systems, the actual spectrum shape turns into a Gaussian 

spectrum (figure 3.2). In the middle of the spectrum, which reflects the contribution 

of isotropic moieties, the distribution of the interaction frequency is Lorentzian and 
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deviates from the Gaussian shape. In the time domain NMR, this part of the 

spectrum corresponds to the signals at longer times. Due to this deviation from the 

Gaussian distribution, the validity of the AW approximation is limited to short times 

(where the decaying signal is mainly governed by the anisotropic moieties). 

According to the AW approximation, the above equations turn into: 

𝐼𝐷𝑄 = sinh〈𝜙1𝜙2〉 𝑒
−〈𝜙1

2〉 (3.13) 

𝐼𝑟𝑒𝑓 = cosh〈𝜙1𝜙2〉 𝑒
−〈𝜙1

2〉 (3.14) 

𝐼∑𝑀𝑄 = 𝑒
〈𝜙1𝜙2〉𝑒−〈𝜙1

2〉 (3.15) 

In the second step of the AW approximation, the time and ensemble averages are 

determined in terms of the orientation autocorrelation function (OACF) via simple 

time integrals [101,129,130]: 

〈𝜙1(0, 𝜏)
2〉 =

4

9
𝑀2𝑒𝑓𝑓 × 2∫ (𝜏 − 𝑡′)

𝜏

0

𝐶(𝑡′) 𝑑𝑡′ (3.16) 

〈𝜙1(0, 𝜏) 𝜙2(𝜏, 2𝜏)〉 =
4

9
𝑀2𝑒𝑓𝑓 [∫ 𝑡′

𝜏

0

𝐶(𝑡′) 𝑑𝑡′ + ∫ (2𝜏 − 𝑡′)
2𝜏

𝜏

𝐶(𝑡′) 𝑑𝑡′]  (3.17) 

C(t) is the probability of finding a segment in the same orientation after a specific 

time. The above equations are entirely independent of the choice of OACF, which 

will be discussed in the following sections. 

3.3.1. DQ NMR in networks 

In polymer networks far above the glass transition temperature, the absence of the 

reptation motion due to permanent topological constraints results in a plateau in 

OACF, proportional to the order parameter and thus the cross-link density. In order 

to determine the order parameter, it is necessary to remove the relaxation effect due 

to the segmental motion from the DQ signal. Since the relaxation in the IDQ and IΣMQ 

is almost equal for anisotropic moieties, it can be removed via point-by-point 
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normalization. Before the normalization, the contribution of isotropic moieties 

(defects) has to be subtracted from 𝐼∑𝑀𝑄. For this purpose, 𝐼∆𝑀𝑄 = 𝐼𝑟𝑒𝑓 − 𝐼𝐷𝑄1 is 

plotted as a function of time, and the long-time tail is fitted with a single or bi-

exponential decay function, as it is seen in figure 3. 5 [131]. 

 

Figure 3.5: The DQ NMR data of PI melt with a molecular weight of 157 kDa at 100°C. a) 

𝐼∆𝑀𝑄 = 𝐼𝑟𝑒𝑓 − 𝐼𝐷𝑄 plotted as a function of DQ evolution time. The long-time tail is fitted with 

a single exponential decay. b) Point-by-point normalization cancels the relaxation effect, and 

the build-up curve to 0.5 can be seen. In a polymer melt that entanglements as physical 

constraints form a temporary network structure, Dres reflects the number of entanglements 

per volume. 

The normalized DQ intensity InDQ can be written as: 

𝐼𝑛𝐷𝑄 =
𝐼𝐷𝑄

𝐼∑𝑀𝑄 − 𝑓𝑑𝑒𝑓exp (−
2𝜏𝐷𝑄
𝑇2,𝑖𝑠𝑜

)

 
(3.18) 

For networks, InDQ is a relaxation-free build-up curve to 0.5 that contains only the 

structural information (figure 3.5). By substituting 𝐶(𝑡) ≈ 𝑆𝑏
2 = [

𝐷𝑟𝑒𝑠 𝑘

𝐷𝑠𝑡𝑎𝑡
]
2
 and 

 

 

1 Since without tails IDQ=Iref in the long-time limit, it is more reliable to fit the tails with the 

Iref-IDQ curve which is free of the coupled-proton contribution at long times. 
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𝑀2𝑒𝑓𝑓 =
9

20
(
𝐷𝑠𝑡𝑎𝑡

𝑘
)
2
 into equations 3.16 and 3.17, the following function is obtained 

[127,132]: 

𝐼𝑛𝐷𝑄(𝜏𝐷𝑄, 𝐷𝑟𝑒𝑠) = 0.5 [1 − exp (−
2

5
𝐷𝑟𝑒𝑠

2𝜏𝐷𝑄
2)] (3.19) 

This equation is valid for fitting the data at short and intermediate times up to 

𝐼𝑛𝐷𝑄 ≈ 0.45. An empirical equation called Abragam-like (A-l) function was derived 

for fitting the entire build-up curve. A-l function is a modified version of the equation 

3.19 [84]: 

𝐼𝑛𝐷𝑄
𝐴𝑙 (𝜏𝐷𝑄, 𝐷𝑟𝑒𝑠) = 0.5 [1 − exp {−(0.378 𝐷𝑟𝑒𝑠 𝜏𝐷𝑄)

1.5
}] cos(0.583𝐷𝑟𝑒𝑠 𝜏𝐷𝑄) (3.20) 

With this function, the fitting range of the InDQ curve can be extended up to longer 

times. As discussed, Dres is proportional to the inverse number of segments between 

two constraints. In real polymer networks, this parameter is not fixed. Thus, a 

distribution function can be assumed for the Dres value that can be determined by 

the following function 

𝐼𝑛𝐷𝑄(𝜏𝐷𝑄) = ∫𝑃(𝐷𝑟𝑒𝑠) 𝐼𝑛𝐷𝑄(𝜏𝐷𝑄, 𝐷𝑟𝑒𝑠) 𝑑𝐷𝑟𝑒𝑠 , (3.21) 

where 𝑃(𝐷𝑟𝑒𝑠), is the predefined distribution function. Although a Gaussian 

distribution can be a good choice for the distribution function, the possible negative 

values for Dres, when the width is large, are physically meaningless. Hence the log-

normal distribution function is a better choice: 

𝑃𝑙𝑜𝑔(ln(𝐷𝑟𝑒𝑠)) =
1

𝜎𝑙𝑛√2𝜋
𝑒𝑥𝑝 [

−(ln(𝐷𝑟𝑒𝑠) − ln (𝐷𝑚𝑒𝑑))
2

2𝜎𝑙𝑛
2

] (3.22) 

The probability distribution depends on the median Dres and dimensionless 

distribution width 𝜎𝑙𝑛. The signal function for fitting the data can be obtained by 

numerical integration over the distribution: 
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𝐼𝑛𝐷𝑄(𝜏𝐷𝑄) = ∫𝑃(ln(𝐷𝑟𝑒𝑠)) 𝐼𝑛𝐷𝑄(𝜏𝐷𝑄, 𝐷𝑟𝑒𝑠) 𝑑𝑙𝑛(𝐷𝑟𝑒𝑠) (3.23) 

In addition to the tail subtraction and point-by-point normalization, it is feasible to 

consider the relaxation effect by simultaneously fitting the IΔMQ and IDQ signals with 

an exponential decay (representing the transverse relaxation). For the A-l function, 

it reads [87]: 

𝐼𝐷𝑄(𝜏𝐷𝑄) =
1

2
∑𝑎𝑖 [1 − exp (−(0.378  2𝜋𝐷𝑟𝑒𝑠

𝑖 𝜏𝐷𝑄)
1.5
)

3

𝑖=1

× cos(0.583  2𝜋𝐷𝑟𝑒𝑠
𝑖 𝜏𝐷𝑄)] exp [− (

𝜏𝐷𝑄
𝑇2𝑖
)
𝛽𝑖
] 

(3.24) 

𝐼Σ𝑀𝑄(𝜏𝐷𝑄) =∑𝑎𝑖 exp [− (
𝜏𝐷𝑄
𝑇2𝑖
)
𝛽𝑖
]

3

𝑖=1

 (3.25) 

Here, i represents the moieties (isotropic or anisotropic), a and 𝛽 are the fraction 

and the shape exponent, respectively. This method is suitable for cases the build-up 

curve to 0.5 is not accessible. 

3.3.2. DQ NMR in polymer melts: Anderson-Weiss power-law model (AWPl) 

When talking about polymer melts, we mean the polymer chains above their glass 

transition temperature without any crosslinks between the chains. In polymer 

melts, unlike polymer networks, all the topological constraints can be disengaged at 

long times. In other words, the polymer chain can free itself from the entanglements 

over a long time due to the reptation motion, as discussed in chapter 2. In terms of 

the scaling law, four characteristic subdivisions are predicted for the MSD of the 

polymer segments according to the tube model beyond the glassy state. Figure 3.6 

demonstrates the schematic representation of the OACF and MSD in different 

regimes. In the Rouse regime, the OACF decays with a scaling exponent of 1, twice 

the corresponding value in the MSD. The reason for this discrepancy arises from the 

different nature of OACF and MSD; while the MSD presents a first-order correlation 

function and OACF corresponds to a second-order correlation function [133]. In the 
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constrained Rouse and Reptation regimes, the OACF will reflect the return-to-origin 

(RTO) and tube survival probabilities, respectively, which scales as the inverse of 

the MSD [101]. The tube model predicts the characteristic exponent value for these 

two regimes as 1/4 and 1/2, respectively. 

 

Figure 3.6: Schematic representation of the predicted OACF and the MSD in different 

regimes according to the tube model in a polymer melt far above Tg. In the free Rouse regime, 

due to the different nature of MSD and OACF, there is a factor of 2 between the detected 

NMR-based OACF exponent and the inverse of the MSD exponent. Due to the constraint 

release in the constrained Rouse regime, the detected exponents exceed the predicted 

absolute values. This is shown by a sum with constraint release contribution. Reproduced 

from Ref. [90]with permission from the ACS. 

According to the scaling law, the OACF can be assumed as a power-law function for 

a polymer melt: 

𝐶(𝑡) = {
𝑆𝑏
2                                                  𝑓𝑜𝑟 |𝑡| < 𝑡0
𝑆𝑏
2 (𝑡/𝑡0)

−𝜅                                𝑓𝑜𝑟 |𝑡| ≥ 𝑡0 
 (3.26) 

The signal functions turn into (by substituting C(t) in equations 3.16, 3.17): 
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𝐼𝐷𝑄 = exp{−

1
5
𝐷𝑟𝑒𝑠
2

(𝜅 − 2)(𝜅 − 1)
((𝜅 − 𝜅2)𝑡0

2 + (2𝜅2 − 4𝜅)𝜏𝐷𝑄𝑡0 + 2𝜏𝐷𝑄
2−𝜅𝑡0

𝜅)}

× sinh{

1
5
𝐷𝑟𝑒𝑠
2

2(𝜅 − 2)(𝜅 − 1)
((𝜅2 − 𝜅)𝑡0

2 + (23−𝜅 − 4)𝜏𝐷𝑄
2−𝜅𝑡0

𝜅)}

× exp (−
𝜏𝐷𝑄
𝑇2
) 

(3.27) 

𝐼Σ𝑀𝑄 = exp {−

1
5
𝐷𝑟𝑒𝑠
2

(𝜅 − 2)(𝜅 − 1)
(
3

2
(𝜅 − 𝜅2)𝑡0

2 + (2𝜅2 − 4𝜅)𝜏𝐷𝑄𝑡0

+ (4 − 22−𝜅)𝜏𝐷𝑄
2−𝜅𝑡0

𝜅)} × exp (−
𝜏𝐷𝑄
𝑇2
) 

(3.28) 

Here, Sb ~ Dres defines the amplitude of the C(t) at time t0, which is the power-law 

decay onset time and can be taken to be very close to the lower end of the fit interval, 

and 𝜅 is the power-law exponent of the OACF [134]. These two functions are used 

for the simultaneous fitting of the defects-free signals by considering an exponential 

decay for coupled protons which is multiplied by the signal functions. The tails can 

be considered explicitly in a simultaneous fit, like what has been shown for the Al 

function (equation 3.24), to avoid the ambiguity of tail subtraction in polymer melts. 

It has to be noted that the current model neglects spin displacements between the 

actual RF pulses. This displacement (expressed by OACF) modifies the signal 

functions, in particular at very short times. Brekotkin et al. [135] recently suggested 

a model to determine this contribution for the power-law OACF and proved that this 

contribution is almost negligible for κ<0.5. 

3.3.3. DQ NMR in comb polymers: Anderson-Weiss exponential model (AWexp) 

In this part, we will look at the polymer comb as a complex polymer hierarchy and 

map out the chain dynamics based on the DTD model discussed in chapter 2. As 

indicated, stress relaxation is governed at short times by the arm retraction process 

and contour length fluctuations (in the backbone) and at longer times by reptation 
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motion. In the first two processes, a relaxation time spectrum is defined as a 

function of segmental curvilinear dimensionless distance from the free end. 

DQ NMR can probe the hierarchy of the relaxation times in terms of OACF. 

According to the DTD model, tube dilation results from the relaxation of segments. 

Thus, an explicit relation between the OACF and the fraction of unrelaxed segments 

seems necessary. According to equation 3.7, which is valid for linear polymer melts 

as well as networks, the order parameter correlates with the inverse entanglement 

spacing. Consequently, we can write: 

𝐶(𝑡) ≈ 𝑆𝑏(𝑡)
2 ≈ 𝑁𝑒(𝑡)

−2  ≈ 𝛷(𝑡)2𝛼 (3.29) 

On the other hand, Lang and Sommer [136] have shown by computer simulation 

that in lowly cross-linked systems with many entanglements between permanent 

constraints, the order parameter scales with (N Ne)-0.5, where N is the number of 

segments between two permanent strands. The inner part of the polymer comb 

backbone states between two branch points temporarily immobilized by the long 

arms. Due to the described analogy, the OACF can be written in terms of the 

entanglement spacing as: 

𝐶(𝑡) ≈ 𝑆𝑏(𝑡)
2 ≈ 𝑁𝑒(𝑡)

−1  ≈ 𝛷(𝑡)𝛼 (3.30) 

Since we are using the DTD model to describe DQ NMR signals for the first time in 

the current work, both exponents in equations (3.29) and (3.30) are considered for 

analyzing the data in chapter 6. From now on, the OACF-related dilution exponent 

is denoted by β to avoid any misunderstanding: 

𝐶(𝑡) ≈ 𝛷(𝑡)𝛽 (3.31) 

A characteristic OACF can be defined for every segment based on the relaxation 

time spectrum: 
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𝐶(𝑡, 𝑥𝑎,𝑏) = 𝑆𝑏(𝛷)
2 exp(−

𝑡

𝜏(𝑥𝑎,𝑏)
) (3.32) 

Here, Sb depends on the fraction of unrelaxed segments. The fraction of relaxed 

segments is equal to the segmental coordinate at any time according to the 

suggested interpretation of the DTD model for monodisperse comb (and H) polymers 

by McLeish et al. [73]. In this interpretation, it is assumed that when a segment 

relaxes, all segments with shorter relaxation times have already relaxed 

[69,73,137]. Thus the fraction of relaxed segments is defined only based on the 

segmental coordinate (e.g. for a segment in an arm at xa position, the fraction of 

relaxed segment is φaxa.) at any time whereas, this is only valid at times longer than 

the corresponding relaxation time. In rheology, although fits predict the tube model 

parameters perfectly, this assumption leads to an overestimation of the arms’ 

contribution in the storage modulus at short times. In the DQ NMR, it causes 

physically meaningless correlation functions for arms and backbone. This will be 

discussed in detail in chapter 6. 

The OACF for arm segments and backbone segments can be written, respectively: 

𝐶(𝑡, 𝑥𝑎) = 𝑆𝑏,0
2(1 − 𝜑𝑎𝑥𝑎)

β exp (−
𝑡

𝜏(𝑥𝑎)
) (3.33) 

𝐶(𝑡, 𝑥𝑏) =  𝑆𝑏,0
2𝜑𝑏(1 − 𝑥𝑏)

β exp (−
𝑡

𝜏(𝑥𝑏)
)  (3.34) 

𝑆𝑏,0 is defined as the order parameter corresponding to the rubbery plateau in OACF 

(that would arise if constraints were fixed). 

Using the Andersson-Weiss approximation, the signal functions for a simple 

exponential decay read [88]: 



3.3. Proton double-quantum NMR 

42 

𝐼𝐷𝑄(𝜏𝐷𝑄, 𝜏𝑝, 𝐷𝑟𝑒𝑠) = 𝑒𝑥𝑝 {−0.4𝐷𝑟𝑒𝑠
2𝜏𝑝

2 (𝑒
−
𝜏𝐷𝑄
𝜏𝑝 +

𝜏𝐷𝑄

𝜏𝑝
− 1)}

× 𝑠𝑖𝑛ℎ {0.2𝐷𝑟𝑒𝑠
2𝜏𝑝

2 (𝑒
−
2𝜏𝐷𝑄
𝜏𝑝 − 2𝑒

−
𝜏𝐷𝑄
𝜏𝑝 + 1)} 

(3.35) 

𝐼Σ𝑀𝑄(𝜏𝐷𝑄, 𝜏𝑝, 𝐷𝑟𝑒𝑠) = 𝑒𝑥𝑝 {−0.2𝐷𝑟𝑒𝑠
2𝜏𝑝

2(4𝑒
−
𝜏𝐷𝑄
𝜏𝑝 − 𝑒

−
2𝜏𝐷𝑄
𝜏𝑝 +

2𝜏𝐷𝑄
𝜏𝑝

− 3)} (3.36) 

Here, τp is the relaxation time of a single segment corresponding to the relevant 

process (p denotes arm retraction or CLF processes). 

The above equations are valid for arm retraction and CLF until t= τd when the 

reptation process becomes dominant. The OACF in the reptation regime can be 

expressed as: 

𝐶(𝑡) = 𝑆𝑏,0
2(𝜑𝑏(1 − 𝑥𝑑))

β ∑
8

𝑝2𝜋2
𝑝=𝑜𝑑𝑑

exp(−
𝑝2𝑡

𝜏𝑑(𝑥𝑑)
) (3.37) 

The corresponding signal functions read: 

𝐼𝐷𝑄(𝜏𝐷𝑄, 𝜏𝑑 , 𝐷𝑟𝑒𝑠) = exp { ∑
−8

𝑝2𝜋2
𝑝=𝑜𝑑𝑑

0.4𝐷𝑟𝑒𝑠
2(
𝜏𝑑(𝑥𝑑)

𝑝2
)2(𝑒

−
𝑝2𝜏𝐷𝑄
𝜏𝑑(𝑥𝑑) +

𝑝2𝜏𝐷𝑄
𝜏𝑑(𝑥𝑑)

− 1)}

× sinh{ ∑
8

𝑝2𝜋2
𝑝=𝑜𝑑𝑑

0.2𝐷𝑟𝑒𝑠
2(
𝜏𝑑(𝑥𝑑)

𝑝2
)2(𝑒

−
2𝑝2𝜏𝐷𝑄
𝜏𝑑(𝑥𝑑) − 2𝑒

−
𝑝2𝜏𝐷𝑄
𝜏𝑑(𝑥𝑑) + 1)} 

(3.38) 

𝐼Σ𝑀𝑄 = exp{ ∑
−8

𝑝2𝜋2
𝑝=𝑜𝑑𝑑

0.2𝐷𝑟𝑒𝑠
2 (
𝜏𝑑(𝑥𝑑)

𝑝2
)

2

(4𝑒
−
𝑝2𝜏𝐷𝑄
𝜏𝑑(𝑥𝑑) − 𝑒

−
2𝑝2𝜏𝐷𝑄
𝜏𝑑(𝑥𝑑) +

2𝑝2𝜏𝐷𝑄
𝜏𝑑(𝑥𝑑)

− 3)} 

(3.39) 

The overall signal can be written as the sum of the segmental contributions of arms 

and backbone: 
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𝐼𝐷𝑄 = 𝜑𝑎∫ 𝐼𝐷𝑄
𝑎 (𝜏𝐷𝑄, 𝜏(𝑥𝑎), 𝐷𝑟𝑒𝑠(𝑥𝑎))𝑑𝑥𝑎

1

0

+𝜑𝑏 [∫ 𝐼𝐷𝑄,𝐶𝐿𝐹
𝑏 (𝜏𝐷𝑄, 𝜏(𝑥𝑏), 𝐷𝑟𝑒𝑠(𝑥𝑏))𝑑𝑥𝑏

𝑥𝑑

0

+ (1 − 𝑥𝑑)𝐼𝐷𝑄,𝑟𝑒𝑝𝑡
𝑏 (𝜏𝐷𝑄, 𝜏(𝑥𝑑), 𝐷𝑟𝑒𝑠(𝑥𝑑)) ] 

(3.40) 

𝐼Σ𝑀𝑄

= 𝜑𝑎∫ 𝐼Σ𝑀𝑄
𝑎 (𝜏𝐷𝑄 , 𝜏(𝑥𝑎), 𝐷𝑟𝑒𝑠(𝑥𝑎))𝑑𝑥𝑎

1

0

+𝜑𝑏 [∫ 𝐼Σ𝑀𝑄,𝐶𝐿𝐹
𝑏 (𝜏𝐷𝑄, 𝜏(𝑥𝑏), 𝐷𝑟𝑒𝑠(𝑥𝑏))𝑑𝑥𝑏

𝑥𝑑

0

+ (1 − 𝑥𝑑)𝐼Σ𝑀𝑄,𝑟𝑒𝑝𝑡
𝑏 (𝜏𝐷𝑄, 𝜏(𝑥𝑑), 𝐷𝑟𝑒𝑠(𝑥𝑑))] 

(3.41) 

By considering the T2 relaxation effect arising from faster motions that are not 

modeled explicitly and assuming a component representing the isotropic moieties 

(tail), the DQ signals can be fitted to extract the structural information of a branched 

polymer (e.g. a comb). In our argument, the total DQ NMR signals (IΣMQ, IDQ) are a 

sum of contributions from each segment, each of which has its own specific 

correlation function that depends on its position in the hierarchical structure. 
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4. Experimental details 

 

In this chapter, detailed information about the samples and experimental work is 

introduced. In the given thesis, the samples can be categorized into two groups, 

HDPE grades and a comb-polyisoprene. These two groups' experimental details are 

different and will be introduced separately. 

4.1. Materials 

Two grades of HDPE were irradiated by an electron beam to form crosslinks. 

Hostalen ACP 6031D with melt flow rate = 0.35 g/10min at 190°C/2.16kg, density = 

0.96 g/cm3 obtained under ISO 1183-1, produced by LyondelBasel Co., with a broad 

molecular weight distribution was used in this work. The mentioned grade contains 

antioxidants and is suitable for blow molding and packaging applications. This 

grade will be denoted in the following chapters as B-HDPE, in which ‘B’ represents 

‘broad molecular weight distribution’. 

Total Lumicene® mPE M5510 EP (a second-generation metallocene HDPE) with 

flow rate = 1.2 g/10min at 190C/2.16kg, density = 0.955 g/ml obtained under ISO 

1183-1, Mn = 27,700 g/mol, PDI = 2.8, produced by TOTAL Co., was used as the 

second grade and will be refered to as N-HDPE which ‘N’ represents ‘narrow 

molecular weight distribution’. 

A polyisoprene comb polymer was synthesized via anionic polymerization by Dr. 

Jonas Sebastian Keller in Professor Dr. Manfred Wilhelm’s research group. In the 

fully protonated comb polymer structure, the backbone and the arm length are 68 

kg/mol and 13.8 kg/mol, respectively. On average, each backbone carries 8.5 arms.  

Also, a backbone-deuterated sample with an almost identical structure was 

produced (the average molecular weight of the backbone and the arm are 72.6 

kg/mol and 13.8 kg/mol, respectively and each backbone carries 8.5 arms on 



4. Experimental details 

 

45 

average). According to the obtained DQ NMR data (see Appendices part A), this 

sample unfortunately degraded during the experiment. 

4.2. Irradiation of the samples 

The electron beam treatment at STERIS-AST (Bitterfeld, Germany) was carried out 

at room temperature on polymer sheets (10×10 cm2) with a thickness of 2.3 mm 

using their 10 MeV IBA Rhodotron TT200 J116 accelerator. The applied doses 

varied from 28 kGy to 168 kGy in 28 kGy steps. 

4.3. Characterization techniques 

4.3.1. Gel content 

Sol-gel analysis was performed by IKTR (Weißandt-Gölzau, Germany) to extract the 

amount of soluble parts in the material. Approximately 250 mg of the sample with 

1.5% stabilizer was kept in boiling xylene for 8 hours. After extraction, the sample 

was dried in vacuum in two steps: 16 hours at room temperature and 2 hours at 90 

˚C. Two replicates were tested for each sample, and the average value was reported. 

The gel content value was calculated according to  

Gel content (%) =
𝑚1
𝑚0
× 100% , 

where m1 and m0 are the sample masses after and before extraction, respectively. 

4.3.2. Rheological measurements 

a) Irradiated HDPEs: 

Dynamic shear measurements were done using Anton Paar MCR 501 rheometer 

with 8 mm parallel-plate geometry. Frequency sweeps from 0.1 to 100 rad/s are 

performed on rubbery samples at 130°C -190°C, well above the melting point of PE. 

 

b) PI-comb: 

Small-amplitude oscillatory shear measurements were carried out using ARES-G2 

rheometer with a 13 mm parallel plate geometry by Dr. Jonas Sebastian Keller. 
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4.3.3. NMR measurements: 

a) x-HDPEs: 

NMR measurements were carried out on a Bruker minispec mq20 benchtop 

spectrometer operating at a Larmor frequency of 20 MHz (B0 = 0.47 T), with 90° 

pulse and 180° pulses of 1.6 or 2.8 μs and a receiver dead time of 14 μs. The sample 

temperature was controlled using a Bruker BVT 3000 temperature controller with 

an accuracy of ±0.5 K.  

The DQ-NMR experiments were conducted using a compensated version of the 

Baum-Pines pulse sequence to probe the time evolution of the dipolar coupling 

interaction in HDPE samples. The samples in the form of 8mm disks were placed 

into the 10mm NMR glass tube filled with argon and flame-sealed to prevent 

degradation. For measuring DQ NMR at 130°C, the samples were heated up to 

150°C to be sure that all the crystals disappeared, and then they were cooled down 

to 130°C. 

The samples crystallized by first heating up to 150°C to be sure that all the crystals 

disappeared, then they were cooled down to 100°C with a cooling rate of 2 K/min. 

After keeping them at 100°C for 1 hour, the FID and MSE signals were measured 

for FID decomposition method (to assess the crystallinity). 

b) PI-comb: 

The PI-comb samples were measured in a sealed 5mm NMR glass tube on a 400 

MHz (9.4 T) AvanceIII-Bruker spectrometer with 90° pulse and 180° pulses of 4 and 

8 μs, respectively, using a static probe. A temperature controller unit regulated the 

sample temperature with an accuracy of 0.5 K. 
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5. Chain dynamics in electron-beam irradiated HDPEs 

 

In this chapter, two different grades of irradiated HDPE (in a semi-crystalline state 

at room temperature) are characterized via probing chain dynamics and gel fraction. 

First, the gel content results will be presented to evaluate the amount of network 

formed in each sample due to the irradiation crosslinking process. Then the samples 

are characterized in the melt via rheological and DQ NMR measurements to map 

out the chain dynamics and network structure of the irradiated polymers. The key 

results of this part are published in Ref. [94]. 

In the second part of this chapter, the correlation between the chain dynamics 

observables (DQ NMR and rheological results) and the gel fraction is discussed to 

find a potential replacement technique for the classical experiments relying on 

hazardous solvents used at high temperatures. 

5.1. Irradiation of the samples and gel content values 

Two grades of HDPE samples (N-HDPE: narrower molecular weight distribution, 

B-HDPE: broad molecular weight distribution) were irradiated in a semi-crystalline 

state with a crystallinity of more than 70%. In the electron-induced reactive process 

(EIReP), the electron beam can break hydrogen-carbon or carbon-carbon bonds and 

form two radicals [138]: 

−CH2 − 
𝑖𝑟𝑟𝑎𝑑𝑖𝑎𝑡𝑖𝑜𝑛
→         −ĊH − + Ḣ (5.1) 

−CH2 − CH2 − 
𝑖𝑟𝑟𝑎𝑑𝑖𝑎𝑡𝑖𝑜𝑛
→        −ĊH2  +  ĊH2 − (5.2) 

The former can form a bond with another chain and produce a 4-arm star PE, which 

eventually results in a network structure. The latter, called chain scission, reduces 

the chain's molecular weight but can also react with another radical and form a 

branched PE with a higher molecular weight. The associated reactions are: 
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−CH2 −+ Ḣ 
                     
→       − ĊH − + H2 (5.3) 

2 − ĊH − 
                     
→        (5.4) 

−ĊH − + − ĊH2
                     
→        (5.5) 

It must be noted that the possible reactions in the system are much more than that 

listed here, but as they are not relevant to our research focus, they were not 

mentioned. More details about the reactions can be found in Ref. [138]. 

During the electron beam irradiation of HDPE in the semi-crystalline state, radicals 

are produced in the crystalline as well as the amorphous phase. Though, the 

crosslinking reactions are assumed to mainly take place in the amorphous phase. 

The lack of mobility of the chains in the crystalline phase reduces the reactions 

between radicals significantly [139,140]. Consequently, the final product would be 

a network with non-uniform distributed cross-links, as depicted in figure 1.2. The 

results of the gel content experiment, which was performed to determine the fraction 

of network chains in the irradiated samples, were summarized in Table 5.1. In both 

grades, the gel content values increase with increasing irradiation dose in low 

irradiated samples (below 84 kGy). In x-B-HDPE-1, irradiated with 28 kGy, 10% of 

the chains formed a network structure, whereas, in another grade with the same 

irradiation dose, no gel-like structure was found. 

Moreover, another difference between the two grades can be seen in the highest 

network fraction formed at very high irradiation doses. The highest gel fraction in 

B-HDPEs is around 70%wt, while 92% of irradiated N-HDPE chains are part of the 

gel at 140 kGy. The existence of the very short-unentangled chains in broad HDPE 

can be a reason for the lower maximum gel content value. This will be discussed in 

detail in the following parts. 

As discussed, the cross-linking reaction occurs mainly in the amorphous phase. 

Since most segments are located in the crystalline region, only a limited part of the 

chain is available for cross-linking. Therefore, the gel content value increases 

CH 

CH2 

CH 

CH 
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significantly at low irradiation doses until it reaches a regime that, even by further 

irradiation, does not change significantly. This behavior can be seen for both 

samples in irradiation doses above 84 kGy. In conclusion, the cross-linking and 

chain scission reactions are in equilibrium at high irradiation doses, and further 

irradiation results in degradation that is revealed in the samples irradiated with 

168 KGy due to a slight drop in gel content values. 

Table 5.1: Irradiation dose and gel content values for two different HDPE grades. The ‘B’ 

and ‘N’ represent broad and narrow molecular weight distribution, respectively. 

Samples Irradiation 

dose (kGy) 

Gel 

content 

(%) 

NMR network 

fraction (Al) 

NMR network 

fraction (AWPl) 

x-B-HDPE-1 28 10% ± 2.7% 0.27 0.68 

x-B-HDPE-2 56 51% ± 4.6% 0.3 0.68 

x-B-HDPE -3 84 70% ± 0.1% 0.3 0.67 

x-B-HDPE -4 112 68% ± 1% 0.34 0.69 

x-B-HDPE-5 140 73% ± 1% 0.36 0.68 

x-B-HDPE-6 168 72% ± 0.1% 0.36 0.68 

x-N-HDPE-1 28 < 1% 0.19 0.85 

x-N-HDPE-2 56 40% ± 10% 0.24 0.82 

x-N-HDPE-3 84 85% ± 1% 0.29 0.85 

x-N-HDPE-4 112 87% ± 1% 0.32 0.83 

x-N-HDPE-5 140 92% ± 2% 0.32 0.83 

x-N-HDPE-6 168 88% ± 1% 0.33 0.81 
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5.2. Rheological measurements 

Frequency-dependent shear data measured at 190°C is demonstrated in figure 5.1 

for two series of HDPE samples. It is noted that the experiments at lower 

temperatures (starting at 140 °C) above Tm were conducted, but due to weakly 

temperature-dependent segmental dynamics at such high temperatures above the 

nominal Tg, constructing a master curve using TTS did not expand the frequency 

range for more than half a decade. Therefore, only in the isothermal frequency 

sweeps are shown. 

The moduli of the non-crosslinked sample in both HDPE grades show the typical 

behavior of a polydisperse polymer melt in the flow region. In N-HDPE-0, the 

storage and loss moduli cross each other at around 100 rad/s frequency, whereas in 

B-HDPE-0, the crossover is at around 10 rad/s. In figures 5.1b and d, the crossovers 

can be seen in tan(δ) passing unity. Due to the broader molecular weight 

distribution in B-HDPE grade, this can reveal the existence of longer chains with a 

slower relaxation process in this sample. 

According to the gel content values in Table 5.1, the lowest irradiated N-HDPE did 

not form a gel, while x-B-HDPE-1 has already passed the gel point and formed a 

network structure. For x-B-HDPE-1, irradiation causes a power-law behavior in 

storage and loss moduli decay which is a characteristic behavior close to and above 

the gel point [64,114]. Moreover, tan(δ) becomes independent of angular frequency 

at a low-frequency range. x-N-HDPE-1 shows identical behavior to x-B-HDPE-1 at 

the high-frequency range, though, unlike x-B-HDPE-1, a rise in tan(δ) toward one 

is observed at low frequencies.  

According to the crosslinking mechanism in the early stages, x-N-HDPE-1 can be 

considered a mixture of the star and branched polymers that extend the Rouse 

regime due to postponing the reptation and the free-diffusion regime and 

consequently shows a branched polymer incipient-gel behavior [64]. The incipient-

gel behavior in x-N-HDPE-1 rheological data confirms the presence of branched 

structures in the irradiated samples. In this sample, this delay shifts the crossover 

of storage and loss moduli to lower frequencies out of the accessible frequency range. 
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However, it can be claimed that in the very initial stages of irradiation, the 

mechanical gelation (according to the scaling law) occurs due to the long chain 

branching (sample x-N-HDPE-1). Afterward, these structures are connected via 

chemical bonds by further irradiation and become a part of the permanent network. 

 

Figure 5.1: Rheological frequency sweeps of the irradiated and non-irradiated samples at 

190°C; the storage and loss moduli of a) N-HDPE and c) B-HDPE samples. tanδ  for b) N-

HDPE and d) B-HDPE samples  

A systematic increase of storage modulus with irradiation dose is observed in all the 

irradiated samples. In general, a transition from free diffusion into power-law and 

a gradual decrease in the rheological power-law exponent toward a plateau as a 
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consequence of irradiation can be addressed for all the samples though a plateau is 

not observable in the given frequency range. A continuous decay of the storage 

modulus is even seen in highly irradiated samples. 

A polymer network mainly contains a contribution of elastically inactive moieties 

incapable of taking a mechanical load. These moieties, such as soluble fraction 

(including high molecular weight star-polymers, branched polymers, and linear 

polymers), long dangling chain ends, and trapped entanglements add relaxational 

contributions to the system, which is reflected in significant loss moduli and non-

constant storage moduli in all irradiated samples. The loss modulus is always below 

the storage modulus and tan(δ) remains below unity in the studied frequency range. 

Therefore, the irradiated samples are far from a perfect network and contain a 

significant amount of imperfections. Although drawing a conclusion about the gel 

point based on the rheological data alone is tricky, the continuous increase of the 

storage modulus that highlights the increase of crosslinks facilitates a comparative 

conclusion. It is noted that the increase in the number of crosslinks in highly 

irradiated samples does not increase the gel content values, so it may increase the 

average molecular weight of the defects, or in other words, it slows down the 

relaxation of defects.  

5.3. DQ NMR measurements 

As explained in chapter 3, to extract the structural information from DQ NMR data, 

the signal contribution of isotropic moieties should be subtracted. The contribution 

of the isotropic moieties is reflected in the ΔMQ signal as an along-time tail that is 

fitted with a bi-exponential decay function (see section 3.3.1). Subtraction of the 

defect contribution from the ΣMQ signal leads to a visibly single exponential decay 

curve (see figure 5.2a).  

Figure 5.2b shows the relaxation-free InDQ build-up curve obtained via point-by-point 

normalization. Unlike in well-developed networks, the InDQ build-up curve does not 

reach a long-time limiting intensity of 0.5. This behavior has been observed for a 

polymer melt in the reptation and free-diffusion regimes. In our samples being 
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partial networks, one reason to see this behavior may be the presence of a large 

number of defects and short uncross-linked chains, which can be classified as 

coupled defects (have an anisotropic motion) but relax on the time scale of the 

experiment. 

As an alternative option, the simultaneous fitting of ΣMQ and DQ signals with an 

exponential decay for transverse relaxation, described in chapter 3, is used to 

extract the structural information from DQ NMR data. The signal functions are 

obtained based on the defined OACF function according to the sample’s 

characteristics (polymer melt or network).  

 

Figure 5.2: a) fitting the slow decaying signal at long times with a bi-exponential function 

for x-N-HDPE-6 measured at 170°C. The best-fit line is assigned with the red dashed line. 

b) the tail subtracted ΣMQ, and point-by-point normalized DQ is shown. Unlike the well-

developed network, the normalized DQ build-up curve did not reach 0.5 value. 

In this study, the irradiated samples are investigated in two different ways of 

thinking. In the first one, the irradiated samples are considered polymer networks 

described by the Abragam-like (A-l) model diluted with a large number of defects. 

The defects as the moieties with isotropic motion are reflected in the slow decaying 

signal, whereas coupled protons show a faster decay. In this approach, the OACF is 

assumed to exhibit a plateau, although this plateau may not be accessible in the 

investigated time range of the DQ NMR necessarily. 
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In the second approach, the whole system is assumed as a polymer melt with a 

spectrum of relaxation times. In this approach, short linear chains relax faster than 

the chains with higher molecular weight (network chains can be considered a 

polymer with a molecular weight of infinity). The OACF associated with this 

complex polymer melt can be approximated by a power-law function. Figure 5.3 

shows the simultaneous signals fitting with the A-l function and the Andersson-

Weiss power-law (AWPl) function. As seen, with the A-l function, it is possible to fit 

the IDQ at longer times, whereas with the AWPl model, the fit interval is limited to 

the maximum of IDQ. 

 

Figure 5.3: Simultaneous fitting of the DQ NMR signals via a) A-l function and b) AWPL 

model. with the A-l function, the DQ signals can be fitted to pretty long times, while in the 

AWPL model, the fitting range is limited to the maximum of DQ intensity. 

The DQ NMR data are fitted with the A-l function with and without assuming 

distribution for Dres, and a bi-exponential function fits the defect contribution. In the 

AWPl model, a log-normal distribution was considered for Dres, and a single 

exponential function fits the defects contribution. 

5.3.1. Abragam-like model (A-l) 

Dres and the apparent fraction of coupled protons (network-like protons) are shown 

at different temperatures for two grades of HDPE in figure 5.4. Due to the 

anisotropic motion of the polymer segments located between two topological 

constraints, whether permanent (crosslink) or temporary (entanglement), a finite 
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Dres arise. In both HDPE grades, Dres decreases with temperature, revealing some 

relaxation processes on the studied timescale. These relaxation processes make it 

impossible to see a plateau purely arise from the crosslinks.  

 

Figure 5.4: The NMR observables as a function of temperature obtained via simultaneous 

fitting based on the A-l function; Dres for a) N-HDPEs, b) B-HDPEs and the fraction of 

network-like protons for c) N-HDPEs, d) B-HDPEs 

In non-irradiated samples, Dres values reflect only the average number of 

entanglements on the measured timescale, whereas, in irradiated ones, this value 

reflects the combined number of entanglements and cross-links. Distinguishing 

between physical and chemical constraints is tricky unless in case of a plateau in 

Dres value, which reveals that all the physical constraints have already disengaged 

and Dres arises only from chemical crosslinks. Although Dres does not quantitatively 
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reflect the number of crosslinks, the effect of irradiation on the chain dynamics can 

be seen in Dres values, particularly at temperatures above 170 °C. 

Increasing the temperature enhances the segmental dynamics and increases the 

possibility that the segments free themselves from physical constraints. In other 

words, it is expected that the amount of isotropic moieties increases (= decrease of 

the network-like protons) with increasing temperature, as observed in figure 5.4c, d 

for non-irradiated samples. In irradiated samples, as the irradiation dose increases, 

not only the fraction of network-like protons is increasing, but even its dependency 

on temperature is gradually disappearing. The amount of defects (isotropic moieties) 

is much higher compared to well-developed networks, which confirms that the 

network is partially cross-linked and diluted with a considerable amount of defects. 

Comparing the amount of DQ NMR defects with the fraction of defects obtained 

from the extraction experiments (Table 5.1), two kinds of discrepancy can be 

highlighted in highly and lowly irradiated samples. In highly irradiated samples 

amount of soluble moieties is much less than the fraction of defects measured by DQ 

NMR. The A-l function is originally well-suited for assessing network structure in 

elastomers (well-developed networks). Therefore, by using this function for a 

partially cross-linked network, weakly coupled protons belonging to the segments 

in weakly entangled chains are considered defects. This can explain the high amount 

of defects determined by the A-l model. In lowly irradiated samples (even non-

irradiated ones), DQ NMR measured a smaller fraction of defects in comparison to 

the extraction experiment since DQ NMR, as well as rheology, is sensitive to the 

transient elasticity in their respective time/frequency window. 

The inhomogeneity of the network can be probed by assuming a lognormal 

distribution for Dres. In figure 5.5, the distribution of Dres obtained based on the A-l 

model is shown for different irradiation doses at 170 °C for two series of HDPE. The 

effect of the irradiation is not only observed in shifting the median Dres into higher 

values, but also it enhances the distribution width. This effect is more intense in 

highly irradiated samples (higher than 84 kGy), where for large Dres values, a tail 

starts appearing. Based on the gel content values, samples irradiated at 84 kGy are 
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close to their maximum gel content, and further irradiation increases the gel content 

only insignificantly. The distribution data reveals that further irradiation leads to 

an over-crosslinking in some parts of the samples. Since less than 30% of the 

segments (according to the crystallinity data) can form crosslinks, this result is 

expected. 

 

Figure 5.5: Log-normal distribution of Dres at 170°C obtained via simultaneous fitting based 

upon A-l function for a) N-HDPEs and b) B-HDPEs 

5.3.2. Andersson-Weiss power-law model (AWPl) 

According to the mentioned results from the extraction experiment, rheology, and 

DQ NMR, it is stressed again that a significant amount of defects dilutes the x-

HDPE networks and adds relaxation pathways to the system. Moreover, a 

significant level of entanglements, some trapped between cross-links, exists in the 

network structure and disengages or relaxes like in a polymer melt. Also, the 

presence of the complex polymer structure (whether connected or not connected to 

the network structure), i.e., star and branched polymers, adds an extra broad 

relaxation spectrum (see chapter 2) to the relaxation pattern of the mentioned 

defects. Since the AWPl model is better suited for studying polymer melt dynamics 

and providing access to the actual shape of the OACF, it is a good choice for 

examining the irradiated HDPE networks. The best-fit results obtained via the 

AWPl model are shown in figure 5.6. 
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Figure 5.6: OACF exponent κ as a function of temperature, obtained via AWPl simultaneous 

fitting for a) N-HDPEs and b) B-HDPEs. The inset depicts the fraction of coupled protons in 

the AWPl model versus temperature. The fraction of coupled protons in both insets is almost 

independent of temperature and irradiation dose. OACF master curves at a reference 
temperature of 130°C according to the obtained κ and Dres values from the AWPl model for c) 

N-HDPEs and d) B-HDPEs. The constructed OACF at different temperatures were shifted 

using rheological shift factors. 

The effect of irradiation on the chain dynamics can be observed in the power-law 

exponents κ (figure 5.6 a, b). In both HDPE grades, κ values associated with non-

irradiated samples increase with temperature and shift into 1. This reveals a 

transition to the free-diffusion regime. In contrast, for other samples, the 

temperature dependency of κ becomes weaker even in N-x-HDPE-1, which does not 

form a permanent network but, due to the formation of stars and branched 

structures, hinders the reptation motion. In highly irradiated samples (>84 kGy), 

unlike gel content experiment and rheology, the decrease of κ values sensitively 
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demonstrates the gradual increase of the cross-linking reactions in x-HDPE-3 to x-

HDPE-6. 

The inset plots show the fraction of coupled protons in different temperatures. 

Unlike for the A-l model, this fraction varies only in a narrow range (from 80% to 

90% for the N-HDPE series and 65% to 75% for the B-HDPE series) in both HDPE 

grades. This means that in all experiments (for the same HDPE grade), the OACF 

is roughly constructed for a fixed fraction of the chains at different temperatures. 

This is necessary for using TTS (see below) and facilitating the comparison of the 

data. 

Figures 6c and d show the constructed OACF based on the AWPl model for different 

samples using TTS. Although using TTS provides no more than half an additional 

decade in time, monitoring small changes in the fitted κ values and representing an 

average power-law exponent over the fitted time interval is instructive. According 

to the data, we can confirm that in irradiated samples, the OACF follows a power-

law decay. Above the gel point, the reptation motion is hindered, and the irradiated 

polymers are more network-like, whereas the associated OACF indicates a 

constrained Rouse motion, ultimately tending to a network-like plateau.   

As discussed in the rheological measurements part, even though x-N-HDPE-1 is not 

a gel, due to the restriction caused by branches, the chains cannot display reptation 

motion and thus act like a network on the timescale of the experiment. Although 

the OACF increases monotonically with increasing the irradiation doses, this 

increase is reduced significantly above 84 kGy, where the gel content values are 

close to the maximum value. Similar to a slight decrease of κ values in highly 

irradiated samples, the gradual increase of the OACF reveals further crosslinking. 

5.4. Direct comparison of rheology and DQ NMR 

Table 5.2 summarizes the key parameter from rheological measurements and the 

DQ NMR technique for comparison. As mentioned, since the fraction of network-like 

protons was independent of the temperature and irradiation dose in the AWPl 

model, the obtained OACF can be compared to the rheology. The DQ NMR technique 



5.4. Direct comparison of rheology and DQ NMR 

60 

assesses the chain dynamics approximately one decade faster than rheology. 

Therefore, for comparing these two techniques, the data obtained by DQ NMR at 

the highest possible temperature are used in table 5.2. The reported Dres value is not 

the fitting parameter as before, but it is obtained from the OACF curves (Dres
2 ~ C(t)) 

at the longest time accessible by DQ NMR, i.e., 5 ms). It is noted that rheological 

power-law exponents were obtained via a power-law fitting in a narrow frequency 

range, which makes it feasible for non-network samples. 

It is seen in table 5.2 that the Dres increases monotonically, as the storage modulus, 

with increasing the irradiation dose. Nevertheless, comparing the κ values and 

rheological power-law exponents reveals the most significant discrepancy between 

the DQ NMR and rheological measurements. In the samples with a significant 

amount of the network, the κ values are roughly twice higher than the rheological 

power-law exponents. As discussed in chapter 2, this apparent NMR-rheology 

discrepancy is generally observed in polymer melts for the Rouse regime since the 

OACF is a second-order correlation function (only beyond τe up to constrained Rouse 

regime where the return-to-origin probability argument becomes relevant, 

according to which the exponent should be the same) [10,133].  

Figure 5.7 illustrates the relation between the square root of the OACF with storage 

modulus at approximately comparable times/frequencies (the dynamic windows of 

the experiments do not entirely overlap). The plot confirms the offset-free relation 

of Dres with the storage modulus, which is consistent with the previous study on the 

well-entangled polymer melts and well-crosslinked elastomers [141]. It has to be 

considered that the storage moduli are all below the entanglement plateau modulus 

of PE (G’e). 
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Table 5.2: Comparison between DQ NMR and rheological observables in different irradiated 

samples 

Sample 

Fraction of 

network-like 

protons (AWPl) 

Dres/2π [Hz] 

(at 5 ms) 

κ (at 

200˚C) 

Storage 

modulus 

[kPa]a 

Rheological 

power-law 

exponent 

N-HDPE-0 0.86 10 0.86 166 0.9b 

x-N-HDPE-1 0.85 14 0.55 267 0.37b 

x-N-HDPE-2 0.82 20 0.49 397 0.24 

x-N-HDPE-3 0.85 27 0.36 577 0.15 

x-N-HDPE-4 0.83 35 0.31 561 0.13 

x-N-HDPE-5 0.83 38 0.28 636 0.12 

x-N-HDPE-6 0.81 43 0.25 722 0.12 

B-HDPE-0 0.67 8 0.82 178 0.52 

x-B-HDPE-1 0.68 12 0.56 282 0.34 

x-B-HDPE-2 0.68 17 0.46 326 0.23 

x-B-HDPE-3 0.67 20 0.42 346 0.14 

x-B-HDPE-4 0.69 29 0.28 430 0.12 

x-B-HDPE-5 0.68 33 0.24 460 0.12 

x-B-HDPE-6 0.68 34 0.22 483 0.11 

a) storage modulus measured at 190°C and 100 rad/s.  

b) narrow frequency range of 5 to 100 rad/s. 

A tentative direct comparison of the DQ NMR and rheological measurements is 

illustrated in figure 5.8. For this purpose, the OACF curves obtained from DQ NMR 

results are transferred to the frequency domain simplistically with 1/τDQ, which is 

the inverse of the power-law slopes. This transformation is only valid in the case of 
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a single power law with a constant exponent. The discussed factor of 2 difference in 

the exponents is considered by doubling the vertical range of the OACF axis. By 

looking at the figure, it is observed that G’ values are indeed proportional to the 

square root of C(t) (due to the doubling of the C(t) axis scale), as it was shown in 

table 5.2 and figure 5.7. In highly irradiated samples, the normalized storage 

modulus nicely follows the decay in the normalized OACF. 

 

Figure 5.7: Dres corresponding to the OACF at 5 ms as a function of storage modulus at 100 

rad/s normalized by the rheological plateau modulus for N-HDPEs (black points) and B-

HDPEs (red points) with different irradiation dose. The linear fit slope and y-intercept are 

155.5 and -1.69 respectively. 

Since the non-irradiated samples are close to their free-diffusion regime, the direct 

comparison of the rheology with DQ NMR is not straightforward, and the observed 

discrepancies in slopes and vertical values are expected. On the one hand, 

crosslinking reactions effectively increase the molecular weight (even in x-N-HDPE-

1 due to the formation of star and branched structures), leading to an extended 

Rouse regime, which enables the direct comparison of the data sets. On the other 

hand, a significant amount of short chains, chain ends, and branched polymers (the 

dynamics of the branched polymers follow a complex exponential spectrum 

discussed in chapter 2) in lowly irradiated samples caused a significant 

superposition effect. This superposition and the enhanced dynamics possibly moving 

into the constrained-Rouse and reptation regimes, may influence the validity of the 
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comparison, as in x-B-HDPE-1 and x-N-HDPE-1, the power-law exponent is not 

fully consistent with our argument about considering the factor of 2. 

 

Figure 5.8: Direct visual comparison of normalized storage modulus and OACF plotted 

versus the inverse of DQ evolution time on a logarithmic scale at 130°C for a)N-HDPEs and 

b) B-HDPEs. The OACF vertical scale is extended by a power of 2 to visually cancel the 

different exponents of OACF and storage modulus in irradiated samples. 

5.5. Relation of gel fraction with rheological and DQ NMR observables 

So far, we have investigated the chain dynamics affected by irradiation in two HDPE 

grades using DQ NMR and rheology. In the DQ NMR technique, we examined two 

different methods to assess a model that can better describe the complex chain 

dynamics and finally showed that the results are consistent with rheological 

measurements. From now on, we focus on finding an empirical relation between DQ 

NMR and rheological observables with the extraction based gel fraction to 

characterize the partially cross-linked networks based on our findings for practical 

applications. 

In figure 5.9, the fraction of network-like protons obtained from the AWPl model for 

non-irradiated samples is compared with the highest actual gel content value of two 

HDPE grades separately. At first glance, the fraction of the network-like protons in 

non-irradiated samples is surprisingly close to the maximum gel content values 

obtained in highly irradiated HDPEs (irradiated at 140kGy). In order to find a 

reasonable explanation for this, two questions should be answered. The first 
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question is regarding the reason for different maximum gel content values obtained 

in different samples, and the second question is how the fraction of NMR-based 

network-like protons can be related to the maximum gel content value in highly 

irradiated samples. 

 

Figure 5.9:  Fraction of network-like protons obtained by the AWPl model for two HDPE 

grades as a function of temperature. The highest gel content values of each grade (associated 

with the sample irradiated at 140 kGy) are shown as a dashed line. 

The main reason for relatively lower gel content values in the semi-crystalline 

irradiated polyethylene compared to the molten irradiated ones is the presence of 

the crystalline region in which the cross-linking reaction is mainly surpassed due to 

the very restricted segmental mobility. A polymer chain needs at least one crosslink 

to be part of the network structure (from the gel content point of view). This means 

a radical should be produced in the polymer chain by absorbing the electron beam 

energy to react with another radical to form a crosslink. Since the reaction between 

the radicals relies on the segmental mobility, the crosslinking reaction in the 

crystalline region is not favored. Thus, the chains with smaller contributions in the 

crystalline phase have a higher chance of forming a chemical bond to the permanent 

network (see figure 5.10). 
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Figure 5.10: Schematic representation of the amorphous and crystalline phases. As seen for 

the low molecular weight green chain, most segments are mainly located in the crystalline 

phase. In the case of the blue and red chains, the fraction of segments located in the 

amorphous phase is higher than for the green chain (shorter chains are more easily included 

in crystalline structures). Due to the limited dynamics, only the amorphous part (shown as 

blue, red, and green) of the chains can form crosslinks with other chains. As it is seen, the 

longer chains have more chance to form crosslinks, whereas this probability is low for shorter 

chains (green chain). It has to be mentioned that if this chain even forms crosslinks, the 

number of crosslinks would be low, and most segments behave as dangling defects that 

eventually relax. 

According to previous studies, the crystallinity and the crystallization rate of 

polyethylene chains increase (up to 90% crystallinity) with decreasing the average 

molecular weight [142,143]. This means that not only the short chains in 

polydisperse polyethylene tend to crystallize more fully, but also, they crystallize 

faster. In other words, for the low molecular weight chains, the fraction of segments 

placed in the crystalline region is much higher as compared to the longer chains. 

Therefore, shorter chains have a lower chance of making a chemical crosslink due 

to their higher crystallinity. In conclusion, increasing the number of low molecular 

weight chains in a polydisperse polymer system decreases the maximum network 

fraction obtained in high irradiation doses.  

It is noted that a chain with just one crosslink to the network structure is not an 

elastically active chain, meaning that after its disengagement time, this chain 

moves isotropically and is considered a dangling chain in the fast-motion limit by 
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DQ NMR and rheology. Nevertheless, this chain is detected as part of the network 

structure in the gel content experiment. 

The different kinds of possible defects were introduced in chapter 3. In the current 

system, the fraction of isotropic moieties in non-irradiated samples contains the 

dangling chain ends and the disengaged short chains. According to the explained 

minor role of short chains in the network structure, it is seen that the fraction of 

defects reported by DQ NMR is expected to reflect the fraction of short chains, which 

can hardly form a crosslink to the network. 

By looking at figure 5.9 again, it is seen that by increasing the temperature in the 

B-HDPE-0 sample, the fraction of network-like protons gradually decreases, which 

is caused by the disengagement of the short chains. It can be concluded that because 

of the relatively higher population of short chains in the B-HDPE grade, the 

maximum gel content value of B-HDPE is less than the N-HDPE grade. 

Figure 5.11 shows the gel content values as a function of irradiation dose. The 

averaged fraction of network-like protons accurately predicts the maximum gel 

content value. Also, the growth of the gel fraction in both samples is similar, while 

the maximum gel content is the main difference. In figure 5.11b, the normalized gel 

content (normalized with the maximum gel content value of each) values are plotted 

vs. irradiation dose. Both samples reach above 90% of the maximum accessible gel 

fraction at 84 kGy irradiation dose, then insignificant variations are seen. After 84 

kGy, the relative gel fractions of the samples look identical. 
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Figure 5.11: a) Gel content value as a function of irradiation dose in N-HDPEs and B-

HDPEs. b) Normalized gel content value versus irradiation dose. The two HDPE grades 

show similar behavior in terms of normalized gel content values. 

In the previous section, it was shown that the storage modulus and Dres, as the 

rheological and DQ NMR observables, are sensitive to the density of cross-links. As 

shown in figure 5.12, these observables increase with the irradiation dose, even in 

highly irradiated samples in which the gel content values do not vary significantly. 

On the contrary, it is observed that the rheological power-law exponents are more 

sensitive to the gel content value. 

 

Figure 5.12: the dependency of a) the storage modulus at 0.1 rad/s and b) Dres at 5 ms on 

the irradiation dose in two HDPE grades. 
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Figure 5.13 shows the normalized gel content values against rheological and OACF 

power-law exponents, storage modulus and Dres. It is observed that a linear relation 

can be identified between the normalized gel content value and the rheological 

power-law exponent, unlike the case of the OACF power-law exponent, storage 

modulus and Dres. As shown, the rheological power-law exponent shows a weak 

dependency on the number of crosslinks whereas the OACF power-law exponent, 

storage modulus and Dres sensitively reveal the effect of further crosslinking,. This 

is a consequence of the different timescales probed by these methods (see figure 5.8). 

As seen in figure 5.13, the green line can linearly fit the data with an acceptable 

error according to the error bar of the normalized gel content values.  

 

Figure 5.13: Normalized gel content value versus a) rheological power-law exponent, b) 

OACF power-law exponent, c) storage modulus at 0.1 rad/s and d) Dres at 5 ms . The green 

line is the best linear fit. 
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5.6. x-HDPEs in the semicrystalline state 

Crystallization in polymers is governed by two processes, i.e., nucleation and growth 

which both slowdown with decreasing the undercooling, i.e. at higher temperatures. 

At high crystallization temperatures, the crystal growth becomes slow enough to see 

the effect of chain mobility on the crystallinity. Accordingly, the irradiated samples 

crystallized isothermally at 100 °C (where the crystal growth is slow and the chain 

mobility is mainly governed by the crosslinks) were probed by the FID 

decomposition approach (for more details, see chapter 3).  In table 5.3, the main 

results of the FID decomposition method are summarized. It is observed that the 

crystallinity slightly decreases as the irradiation dose increases even in the samples 

with roughly the same amount of gel fraction. In conclusion, the chain dynamics are 

hindered due to the crosslinking, leading to a lower crystallinity at 100 °C at which 

the growth process is slow enough such that the crystallinity proceeds to a maximum 

governed by the crosslinking-induced constraints. 

The NMR T2 relaxation times of the intermediate and mobile parts, reflecting 

segmental mobility and constraints in the semicrystalline state, do not vary 

significantly by irradiation. The small changes in the relaxation times may be 

caused by the change in the overall crystallinity. It would be necessary to increase 

the temperature (higher than the melting point) to be in fast motion limit to see the 

influence of the cross-linking on the relaxation time associated with the mobile part 

(T2, m). This means that the relaxation time is governed by the shorter-range 

segmental (Rouse) motion at the current temperature and is not reflecting the cross-

links. 

 

 

 

 

 

 



5.7. DQ NMR measurements on the extracted samples 

70 

Table 5.3: The best-fit results obtained from FID decomposition for different irradiated 

samples. 

samples f
c
 f

a
 T2, i (μs) T2, m (μs) gel fraction 

N-HDPE-0 0.78 0.1 58 206 0 

X-N-HDPE-1 0.76 0.14 56 232 0.4% 

X-N-HDPE-2 0.73 0.17 56 246 40% 

X-N-HDPE-3 0.7 0.2 57 255 85% 

X-N-HDPE-4 0.68 0.21 57 258 87% 

X-N-HDPE-5 0.67 0.23 60 253 92% 

X-N-HDPE-6 0.68 0.22 60 256 88% 

B-HDPE-0 0.77 0.14 44 226 0 

X-B-HDPE-1 0.76 0.15 49 250 10% 

X-B-HDPE-2 0.73 0.18 47 248 51% 

X-B-HDPE-3 0.71 0.2 47 263 70% 

X-B-HDPE-4 0.69 0.2 50 269 68% 

X-B-HDPE-5 0.67 0.22 51 282 73% 

X-B-HDPE-6 0.67 0.22 54 293 72% 

 

5.7. DQ NMR measurements on the extracted samples 

The remaining network after extraction in the gel content experiment is probed in 

this part using DQ NMR. It needs to be mentioned that since only a tiny amount of 

the network remained, doing rheological measurements is not feasible. The AWPl 

model is used for studying the remainder network, similar to the irradiated samples. 

The comparison between the remainder networks and the corresponding irradiated 

samples in terms of constructed OACF and κ values is shown in figure 5.14. 
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The plots reveal that by removing the sol chains, the extracted network becomes 

more network-like, though the OACF still gradually decays in all the samples. This 

relaxation behavior confirms our argument about the trapped entanglements and 

branched or star polymer structure connected to the network that relaxes slowly 

and precludes the observation of a plateau. The growth of the network-like behavior 

can be seen not only by the visible increase in the OACF but also by decreasing the 

κ values of the remainder networks. It is also observed that both types of networks 

(remainder from the gel content test and diluted networks with defects) are 

approaching the same rubbery plateau at very short times on the left-hand side of 

the plots.  

 

Figure 5.14: Comparing the extracted networks from the gel content experiment with the 

corresponding irradiated samples (before extraction) in terms of the OACF (a-e). f) The 

temperature dependency of the OACF exponent κ for the remainder network and irradiated 

samples (before extraction). 

It must be noted that 50% of x-B-HDPE-2 chains have been removed via the gel 

extraction process, whereas this value is around 30% for other samples. This 

difference causes a significant drop in the κ values and a remarkable increase in the 



5.8. Summary 

72 

OACF. By increasing the irradiation dose, the differences between the two types of 

networks (diluted and remainder networks) become insignificant. Also, the κ  values 

and the OACF of the remainder networks from highly irradiated samples (>84kGy) 

are approximately identical, which confirms our argument that at very high 

irradiation doses, the cross-linking reaction and chain scission approach an 

equilibrium. 

5.8. Summary 

Two different grades of HDPE with broad and narrow poly-dispersity were 

crosslinked via electron beam irradiation. The irradiated samples were assessed 

using the gel-content experiment, rheological measurements, and low-field DQ 

NMR spectroscopy. According to the gel-content values, an equilibrium between 

chain scission and cross-linking reactions was observed upon increasing the 

irradiation doses. This equilibrium leads to a constant extractable fraction, whereas 

the degree of cross-linking increases slightly in the remainder of the sample. The 

rheological data shows a power-law behavior of the storage and loss moduli in the 

vicinity of the gel point. 

Also, it was observed that the HDPE grade with narrower molecular weight 

distribution has a higher maximum gel content value than the grade with a broader 

distribution. The short chains in the broad molecular weight distribution sample 

tend to be in the crystalline structure more than the longer chains, so the possibility 

of making a crosslink for them becomes rather low. Consequently, a higher amount 

of non-network chains was measured for the sample with broader molecular weight 

distribution. 

Two different approaches were applied to analyze the DQ NMR data. In the first 

approach, the system was considered a diluted permanent network with a large 

amount of defects distinguished into two components: isotropically mobile moieties 

and network-like segments. The data showed that due to the irradiation, the 

fraction of network-like protons increases, similar as the gel content value but with 

high sensitivity to distinguishing elastically active inner parts and dangling outer 
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parts. The residual dipolar coupling, characterizing the constraint density on the 

microscopic level, increases with irradiation over the whole sample series. 

In the second approach, the partially cross-linked samples are considered a complex 

structure subject to temporary and permanent constraints with a broad relaxation 

spectrum resulting in a power-law correlation function, like an entangled polymer 

melt. Due to the consistency observed between the square-root of the correlation 

function amplitude characterizing Dres and the high-frequency limiting storage 

modulus, we showed that the DQ NMR data extend the frequency window of 

rheology by about two decades into 10 krad/s. In this range, where the transition 

from Rouse dynamics into developing elastic plateau can be addressed, a simple 

factor of 2 between the NMR-based power-law exponent and the rheological 

counterpart is confirmed. 

The NMR-based fraction of network-like protons in the AWPl model showed the 

same value as the maximum gel fraction of the highly irradiated samples. It was 

shown that the NMR power-law exponent is sensitive to the number of cross-links 

and decreases continuously with irradiation. On the other hand, an empirical linear 

relation with gel fraction values is obtained based on the rheological power-law 

exponents. 

By studying the remainder part from the gel content experiment, it was observed 

that even in such a network without any non-network-like chain, the OACF decays 

with time. It reveals the existence of trapped entanglements and branched polymers 

attached to the network structure, slowing down the relaxation of the defects. It is 

also understood that for determining the gel fraction of the irradiated HDPE, it is 

necessary to take into account the mentioned complex architecture of polymer 

chains in the model and consider the corresponding relaxation process to potentially 

be able to subtract it from the network structure. This is the motivation of the next 

chapter that the chain dynamics of a comb polymer is investigated by DQ NMR and 

rheology.  
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6. Chain dynamics in comb polyisoprene (PI) 

 

In the following chapter, chain motions in a polymer comb with a molecular weight 

of 185 kg/mol (backbone Mw = 68 kg/mol, arm Mw = 13.8 kg/mol and the average 

number of arms per backbone = 8.5 ) are probed via rheology and DQ NMR and are 

analyzed according to the dynamic tube dilation (DTD) model. This model has been 

used to predict rheological responses of star and branched polymers with good 

precision based on the tube-model-related parameters. In this chapter, a DTD model 

developed for monodisperse comb polymers [72] has been used to fit the rheological 

responses. Then, we will investigate the separate contribution of arms and backbone 

and revisit their physical meaning. In the next part, DQ NMR data will be fitted 

based on the mentioned model with some necessary modifications, which will be 

discussed further. 

According to the DTD model, a relaxed segment is considered an effective theta 

solvent (according to the Gaussian-chain assumption), and by its dilution effect, the 

remaining segments move in a dilated tube. Accordingly, it assumes a hierarchy of 

relaxation times depending on the segmental position and the fraction of relaxed 

segments. This means that the outermost segments relax much faster than the 

innermost segments and the relaxation of arms’ segments is a prerequisite for the 

reptation motion of backbone chains. 

In this work, by fixing the chain structure parameters (like the number of arms and 

the molecular weight of the arm and backbone), the obtained tube model-related 

constants, i.e., τe, entanglement time, and Me, averaged entanglement spacing 

(averaged molecular weight between two entanglements) will be compared to the 

reported values by previous studies to assess the interpretation of the DTD as 

applied to NMR-based OACF. 

It is noted that an identical sample (backbone Mw = 68 kg/mol, arm Mw = 13.8 

kg/mol and the average number of arms per backbone = 8.5) with a deuterated 
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backbone were prepared to be probed with the DQ NMR. The goal was to assess the 

relaxation hierarchy of the arm’s segments individually and investigate the possible 

difference in the dilution exponent with the backbone chains. Though it was 

recognized by analyzing the DQ NMR data that this sample unfortunately degraded 

during the experiment. The supplementary data regarding this sample are provided 

in the Appendices (part A). 

6.1. Rheological measurements of comb PI 

The rheological measurement of the comb PI sample has been done by Dr. Jonas 

Keller in the research group of Prof. Manfred Wilhelm at Karlsruhe Institute of 

Technology and is shown in figure 6.1. The master curve is constructed for Tref = 0 

°C using TTS and covers about seven decades. 

 

Figure 6.1: The rheological master curve constructed via TTS at a reference temperature of 

0°C. The green lines correspond to the best-fit line based on the DTD model. The contribution 

of the arm and backbone segments are depicted separately. 

At very high angular frequency, the Rouse relaxation can be seen, continuing into 

the entanglement rubbery plateau. In this regime, a hypothetical tube that 

represents the restriction applied by the neighboring chains is assumed. Since the 

arm’s tube is perpendicular to the backbone, the reptation motion in the backbone 
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can be executed only after the relaxation of the arms. In the first plateau, the 

dynamic behavior is governed by the retraction motion of the arms and contour 

length fluctuation in the outer backbone segments. This regime lasts until the arms 

relax entirely and the backbone can start its reptation motion. This can be seen at 

the very low angular frequency when the chains enter the free-diffusionregime. 

The DTD model explained in chapter 2 (according to equations 3.34-3.41) was 

applied to fit the rheological responses, using the known molecular weight and 

topological parameters. The best-fit values of GN, τe, and Me are listed in table 6.1.  

Table 6.1: The best-fit tube parameters (obtained from fitting the rheological moduli at Tref 

= 0°C according to the DTD model) and the reference values from previous works (The 

entanglement spacing is not a fitting parameter but is determined by G0). 

fitting parameter best fit value value from previous work[72,73] 

G0 (MPa) 0.39  0.36-0.44  

τe (s) 1.5*10-5 0.7 – 1.5 * 10-5 

Me (g/mol) 4329 4000-5000 

As seen in table 6.1, all the obtained parameters are in the range previously reported 

by other researchers. It is pointed out that Me is not a fitting parameter but obtained 

based on 𝑀𝑒 =
𝜌𝑅𝑇

𝐺0
𝑁   according to Milner and McLeish [66]. According to the Doi and 

Edwards tube model, 1/5 of the stress is relaxed by the longitudinal Rouse motions. 

Therefore, the entanglement spacing would be 4/5 of their reported Me [107]. This 

correction is applied to the obtained Me in Table 6.1 to be comparable with the 

reference values. 

Figure 6.1 also shows the best-fit model and the contributions of the backbone and 

arm in storage modulus. As observed, the best-fit storage and loss moduli fit the 

data with acceptable precision. By comparing the arms and backbone’s contribution, 

it can be understood that the arm contribution fits the first plateau, whereas, after 

the relaxation of the arms, the storage modulus is governed by the backbone 

relaxation. If we look closely at the high frequencies, we see a significant difference 

between the contribution of arms and backbones. 
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According to the rubber elasticity and tube models, the plateau modulus is 

proportional to the number of entanglement strands per unit volume. As thoroughly 

discussed in chapter 2, the number of entanglements is assumed as a function of 

unrelaxed segment fraction in the DTD model. Therefore, each segment, whether in 

arms or backbone, is expected to take the same mechanical load at a specific time. 

The contribution of the backbone and arms in the moduli depends on the fraction of 

each. To remove this dependency, the storage modulus per segment is defined, i.e., 

the storage modulus contribution of the arms or backbone divided by the associated 

fraction, 𝐺𝑎,𝑏
𝑝𝑒𝑟 𝑠𝑒𝑔𝑚𝑒𝑛𝑡

= 
𝐺𝑎,𝑏

𝑓𝑎,𝑏
. Since the mechanical behavior in the Rouse regime 

arises from the segmental motion shorter than the entanglement spacing, the 

storage modulus per segment should be identical for the backbone and arms, while 

in the limit of low frequencies, it should approach zero for arms. For a better 

understanding, figure 6.2 shows the ratio of the storage modulus per segment in the 

arms to the storage modulus per segment in a backbone. 

 

Figure 6.2: The ratio of storage modulus per segment in arms and backbone (contribution 

of arm segment in storage modulus per contribution of backbone segment in storage 

modulus) obtained from the best-fit model shown in Table 6.1 versus angular frequency. 

As it is seen in figure 6.2, all the arm segments have indeed relaxed at low 

frequencies, and the ratio equals zero on the left-hand side of the plot. In the Rouse 

regime, this ratio is close to 1 at very high frequencies. At mid-range frequency, this 

ratio increases and passes a maximum. Considering that the backbone segments 
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relax much slower than the arms, the mentioned trend is physically not entirely 

reasonable. It is expected that the contribution of arm segments becomes weaker 

due to faster relaxation. This may indicate a shortcoming of the suggested 

interpretation of the DTD model for monodisperse comb polymers by McLeish et al. 

[73]. Thus, it can be concluded that the DTD model modified for comb polymers was 

built based on averaging and may not have physical meaning for the separated 

contributions.  

The mentioned averaging follows from the suggested interpretation of the tube 

dilation by McLeish et al. [73] in a monodisperse comb polymer. They assume that 

when the backbone’s segments start the relaxation process, the whole arms have 

already relaxed, which is correct. However, their model used the same unrelaxed-

segments fraction for times shorter than the relaxation of the arms. In other words, 

a diluted modulus is used for backbone segments at high frequencies, which is 

incorrect. This problem results in an underestimation of the contribution of the 

backbone segments in storage and loss moduli. In the following, the interpretation 

of this method in fitting DQ NMR data will be assessed, keeping in mind this 

apparent shortcoming. 

6.2. DQ NMR measurements of comb PI 

The DQ NMR data is fitted with the NMR-modified DTD model explained in chapter 

3. As seen in equation 3.34, an exponential correlation function is assumed for each 

segment with a unique relaxation time determined based on the segmental 

curvilinear dimensionless coordinate. It is assumed that the order parameter 

correlates with the inverse of entanglement spacing with the power of 1 or 1/2 (see 

chapter 3), but in this section, we only assume the power of 1 for checking the OACF. 

In the DTD model modified for polymer comb, the unrelaxed-segments fraction of 

arms and backbone are (1 − 𝜑𝑎𝑥𝑎) and 𝜑𝑏(1 − 𝑥𝑏), respectively. In other words, the 

unrelaxed segment fraction is written as a function of the segmental curvilinear 

dimensionless coordinate. Unlike for rheology, where the relaxed segments do not 

have any observable response, in DQ NMR, the relaxed segments show a slowly 

decaying signal tail at long times. Since the Anderson-Weiss approximation is not 
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accurate for isotropic moieties, a tail fraction should be defined for the relaxed 

segments. Accordingly, the segments with relaxation times shorter than the first 

recorded τDQ are considered defects with a long transverse relaxation time. 

Table 6.2: The best-fit parameters resulting from the simultaneous fitting of the DQ NMR 

data at eight different temperatures using TTS. The parameter is reported at 25°C as the 

reference temperature 

fitting parameter best-fit value value from previous work 

τe (s) 2*10-4 0.7 – 1 * 10-5 

Me (g/mol) 3995 4000-5000 

Table 6.2 lists the best-fit parameters obtained via fitting the DQ NMR data with 

the positional-dependent unrelaxed-segments fraction. It is seen that the 

entanglement spacing is close to the reference range; however, the entanglement 

equilibration time is approximately one order of magnitude slower than the reported 

values. 

 

Figure 6.3: The simultaneous fitting of the DQ NMR data measured at a) 30°C, b) 60°C c) 

90°C. It is noted that the data were measured at eight different temperatures, from 30°C to 

90°C with 10°C intervals. The red and blue dashed lines show the best-fit model and the 

fitting interval of the DQ signal, respectively. Thus, the fit represents a prediction for times 

beyond the blue dashed line. 

Figure 6.3 shows the simultaneous fitting of MQ and DQ signals measured at three 

different temperatures (30°C, 60°C, 90°C) using TTS at 0°C as the reference 

temperature. Since the Andersson-Weiss approximation is not accurate for long 
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experimental times, the DQ signals are fitted until the blue vertical line, marking 

the τDQ at which the maximum DQ intensity is read. The fraction of relaxed 

segments increases with increasing temperature due to the enhanced segmental 

dynamics. As it is observed, at 30°C, the best-fit line can fit the data in the fitting 

interval with good precision, whereas at higher temperatures, the fits are not 

precise, particularly in DQ signals around its maximum and in MQ signals at long 

times (tail signal). 

Figure 6.4 demonstrates the constructed segmental OACF based on the best-fit 

parameters, shown in table 6.2. As it is highlighted on the time axis, more than five 

decades are covered by the DQ NMR technique using TTS. The highest OACF value 

belongs to the outermost segment of the arm, and the lowest one is associated with 

the segments relaxing via reptation motion in the backbone. At very short times in 

the left-hand side of figure 6.4, two orders of magnitude difference between the 

OACF associated with the outermost arm segment and innermost backbone 

segment is observed. Since the OACF is assumed to be proportional to the inverse 

of squared entanglement spacing, it means that the entanglement spacing in the 

innermost backbone part is ten times larger than in the outermost arm segments, 

which cannot be correct. The plotted OACF clearly illustrates the lack of physical 

meaning of the suggested interpretation of the DTD model [73] for monodisperse 

comb polymers. 

In rheology, the model focused on fitting the first plateau by arm relaxation and the 

second one with backbone relaxation without any concern about the contribution of 

the backbone segments in the first plateau region. This leads to an underestimation 

of the backbone contribution. Though it is not an important problem in the rheology 

of a monodisperse comb, it provides a significant error for DQ NMR signals. Unlike 

the rheology, the magnitude of the OACF affects the NMR signal relaxation times 

and leads to a systematically shifted best-fit time constant, as seen in Table 6.2. 
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Figure 6.4: The segmental OACF based on the segmental position obtained at 0°C as 

reference temperature from the best-fit model shown in Table 6.2. the highlighted time axis 

shows the covered time range by DQ NMR data using TTS. In fitting the data, 100 segmental 

parts have been assumed in the arms and backbone. 

Since this incorrect picture is the result of using time-independent unrelaxed-

segments fraction (𝜑𝑏
𝛼+1(1 − 𝑠𝑏)

𝛼 in the backbone), we now assume a time-

dependent unrelaxed-segments fraction to fit the rheological and DQ NMR data in 

the following. 

6.3. Time-dependent unrelaxed-segments fraction: rheology 

In order to render the modeling of the correlation function more accurate, the 

unrelaxed-segments fraction can be determined as an explicit function of time. A 

time-dependent unrelaxed-segments fraction has in fact been used in the 

hierarchical relaxation model to study polydisperse branched polymer and the blend 

of linear and star polymers [80,105,144,145]. In the mentioned model, the potential 

of the arm retraction and backbone contour length fluctuation depends on the time-

dependent unrelaxed segment fraction. In our case, as a monodisperse comb-

polymer, it is not necessary to alter the relaxation time hierarchy because the 

segmental-position-dependent unrelaxed-segments fraction is valid for use in the 

potential function. We only need to define the time-dependent unrelaxed-segments 

fraction for use in moduli or correlation functions. The general expression for the 

time-dependent modulus is: 



6.3. Time-dependent unrelaxed-segments fraction: rheology 

82 

𝐺(𝑡) = ∫
𝜕𝐺𝑁(𝜏)

𝜕𝜏

𝜏𝑓

𝜏𝑖

exp (
−𝑡

𝜏
)𝑑𝜏 (6.1) 

Since the diluted modulus is defined as 𝐺𝑁(𝜏) = 𝐺𝑁
0[𝛷(𝜏)]𝛼+1, equation 6.1 turns into: 

𝐺(𝑡) = 𝐺𝑁
0(1 + 𝛼)∫ [𝛷(𝜏)]𝛼  

𝜏𝑓

𝜏𝑖

exp (
−𝑡

𝜏
)
𝜕𝛷(𝜏)

𝜕𝜏
𝑑𝜏

=  𝐺𝑁
0(1 + 𝛼)∫ [𝛷(𝜏)]𝛼  

1

0

exp (
−𝑡

𝜏
)𝑑𝛷 

(6.2) 

The Fourier transform of this expression to use for dynamical responses can be 

written as: 

𝐺′(𝜔)

𝐺𝑁
0 = (1 + 𝛼)∫

𝜔2𝑡2

1 + 𝜔2𝑡2
[𝛷(𝑡)]𝛼  𝑑𝛷(𝑡)

1

0

 (6.3) 

𝐺"(𝜔)

𝐺𝑁
0 = (1 + 𝛼)∫

𝜔𝑡

1 + 𝜔2𝑡2
[𝛷(𝑡)]𝛼  𝑑𝛷(𝑡)

1

0

 (6.4) 

The best-fit parameter obtained via time-dependent unrelaxed-segments fraction 

can be found in table 6.3. The model predicts the G0, τe, and Me in the same range 

reported by the previous works, illustrating the minor role of the unrelaxed-

segments fraction. 

Table 6.3: The best-fit parameters obtained via the fitting of rheological responses for Tref = 

0°C based on the DTD model with time-dependent unrelaxed-segments fraction (equations 

6.3, 6.4) 

fitting parameter best-fit value value from previous work 

G0 (MPa) 0.35 0.36-0.44 

τe (s) 1.8* 10-5 0.7 – 1.5 * 10-5 

Me (g/mol) 4814 4000-5000 

Figure 6.5 shows the rheological data and best-fit model according to equations 6.3 

and 6.4. The best-fit line predicts the dynamic behavior of the polymer comb in the 

whole studied frequency range with satisfactory precision. The deviation from 
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experimental data is observed in the mid-range frequency in which the outermost 

part of the backbone and the innermost part of the arm relax simultaneously. This 

deviation has also been observed at the same frequency range in figure 6.1. 

 

Figure 6.5: The rheological master curve constructed via TTS at a reference temperature of 

0°C. The green lines correspond to the best-fit line resulting from the DTD model with time-

dependent unrelaxed-segments fraction. The contribution of the arm and backbone segments 

are depicted separately. 

At very high frequencies, the arm contribution in moduli is higher than the 

backbone’s, which is understandable according to the higher fraction of arm 

segments. Due to the relaxation of arm segments, the arm contribution decreases 

and gradually disappears at very low frequencies. In this frequency range, the 

dynamic behavior is mainly governed by the backbone segments. As can be seen in 

figure 6.5, the current picture of the contributions of arm and backbone chains is 

now actually physically realistic. 

Figure 6.6a shows the ratio of the storage modulus per segment in arms to the 

storage modulus per segment in the backbone against angular frequency. At very 

high frequencies, when the minority of arm segments has already relaxed, this ratio 

is close to unity. The arm relaxation speeds up at lower frequencies, and a decay is 

observed, leading to a plateau in the mid-range frequencies (5000 to 100 rad/s). This 
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plateau results from increasing the number of backbone segments relaxing via CLF 

in the mentioned frequency range. This can be seen clearly in figure 6.6b. At low 

frequencies, the reptation motion in the backbone becomes dominant, and the whole 

system enters the free-diffusion regime. This cannot be seen in figure 6.6a because 

the arm contribution disappears at 1 rad/s. 

 

Figure 6.6: a) The ratio of storage modulus per segment in arms and backbone (contribution 

of arm segment in storage modulus per contribution of backbone segment in storage 

modulus) obtained from the best-fit model shown in Table 6.3 versus angular frequency. b) 

The hierarchy of the relaxation times according to the curvilinear dimensionless coordinate. 

6.4. Time-dependent unrelaxed-segments fraction: DQ NMR 

As discussed so far, for fitting the DQ NMR data according to the DTD model, it is 

necessary to use time-dependent unrelaxed-segments fraction. This time-dependent 

fraction can be written as: 

Φ(𝑡) = 𝜑𝑎 [∫ exp (−
𝑡

𝜏(𝑥𝑎)
) 𝑑𝑥𝑎

1

0

] + 𝜑𝑏 [∫ exp (−
𝑡

𝜏(𝑥𝑏)
) 𝑑𝑥𝑏

𝑥𝑑

0

+ (1 − 𝑥𝑑)] 
(6.5) 

It is divided into the arm and backbone segments. In arms, the only relaxation 

process is arm retraction, whereas, in the backbone, the outer part of the chain 

relaxes via the CLF process, and the inner part (from xd to 1) follows reptation 

motion. 
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Since the chains are considered a set of segments, the integral can be transformed 

into a summation: 

Φ(t) = 𝜑𝑎 [
1

𝑛
∑exp(−

𝑡

𝜏 (
𝑖
𝑛)
)

𝑛

𝑖=1

] + 𝜑𝑏 [
1

𝑛
∑exp(−

𝑡

𝜏 (
𝑖
𝑛)
)

𝑛𝑑

𝑖=1

+ (1 − 𝑥𝑑)] (6.6) 

The reptation motion is the final relaxation process, which means the innermost of 

the backbone (1 − 𝑥𝑑), relaxes after the relaxation of all other segments. By 

replacing the unrelaxed-segments fraction into equation 3.32, the OACF becomes: 

𝐶(𝑡, 𝑥𝑎,𝑏) = 𝑆𝑏,0
2 [𝜑𝑎

1

𝑛
∑exp(−

𝑡

𝜏 (
𝑖
𝑛)
)

𝑛

𝑖=1

+ 𝜑𝑏  
1

𝑛
∑exp(−

𝑡

𝜏 (
𝑖
𝑛)
)

𝑛𝑑

𝑖=1

+ (1 − 𝑥𝑑)]

𝛽

exp(−
𝑡

𝜏(𝑥𝑎,𝑏)
) 

(6.7) 

The above equation represents the OACF based on the DTD model with a time-

dependent unrelaxed-segments fraction. As discussed in chapter 3, β can be equal 

to α or 2α (depending on the relation between the order parameter and the 

entanglement spacing).  

In chapter 3, it was extensively explained that for determining the signal functions, 

the phases during DQ NMR time evolution are determined by an integral over this 

time (resulting from AW approximation). To have explicit signal functions, we have 

to rewrite the OACF in the form of a summation of single exponential functions (to 

be able to solve the integrals analytically); otherwise, we have to fit the data by 

determining the signal functions via lengthy numerical integration. 

It is clear that for non-integer values of β, the integrals cannot be solved analytically. 

Moreover, for β=2, the number of terms increases significantly, and the numerical 

approach would probably be a better option (in the case of expanding the summation 

like what we will do for β=1). Nevertheless, for β=1, the OACF can be written as the 

summation of a finite number of exponential functions: 
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𝐶(𝑡, 𝑥𝑎,𝑏) = 𝑆𝑏,0
2𝜑𝑎

1

𝑛
∑exp(−

𝑡

𝜏𝑎 (
𝑖
𝑛)
)

𝑛

𝑖=1

exp(−
𝑡

𝜏(𝑥𝑎,𝑏)
)

+ 𝑆𝑏,0
2𝜑𝑏 [

1

𝑛
∑exp(−

𝑡

𝜏𝑏 (
𝑖
𝑛
)
)

𝑛𝑐

𝑖=1

exp(−
𝑡

𝜏(𝑥𝑎,𝑏)
)

+ (1 − 𝑥𝑑) exp (−
𝑡

𝜏(𝑥𝑎,𝑏)
)] 

(6.8) 

Then, two exponentials, multiplied within the summation, can be replaced by the 

summation of a single exponential: 

𝐶(𝑡, 𝑥𝑎,𝑏) = 𝑆𝑏,0
2𝜑𝑎

1

𝑛
∑exp(−

𝑡

𝜁𝑎(𝑥𝑎,𝑏 , 𝑖)
)

𝑛

𝑖=1

+ 𝑆𝑏,0
2𝜑𝑏 [

1

𝑛
∑exp(−

𝑡

𝜁𝑏(𝑥𝑎,𝑏 , 𝑖)
)

𝑛𝑐

𝑖=1

+ (1 − 𝑥𝑑) exp(−
𝑡

𝜏(𝑥𝑎,𝑏)
)] 

(6.9) 

And 𝜁𝑎(𝑥𝑎,𝑏 , 𝑖) and 𝜁𝑏(𝑥𝑎,𝑏 , 𝑖) are defined as: 

𝜁𝑎(𝑥𝑎,𝑏 , 𝑖) =  
𝜏𝑎 (

𝑖
𝑛) . 𝜏(𝑥𝑎,𝑏)

𝜏𝑎 (
𝑖
𝑛) +  𝜏(𝑥𝑎,𝑏)

 (6.10) 

𝜁𝑏(𝑥𝑎,𝑏 , 𝑖) =  
𝜏𝑏 (

𝑖
𝑛
) . 𝜏(𝑥𝑎,𝑏)

𝜏𝑏 (
𝑖
𝑛) +  𝜏(𝑥𝑎,𝑏)

 (6.11) 

To avoid misunderstanding, it needs to be mentioned that the fraction of unrelaxed 

segments and, accordingly, the order parameter only correlate with time and are 

identical for all segments. Nevertheless, when the summation is expanded and 

multiplied into the relaxation of one specific segment (whether in the arm or 

backbone), this OACF function is only valid for that specific segment. 

According to the rewritten form of the OACF, the signal functions can be obtained 

according to the equations 3.35, 3.36: 
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𝐼𝐷𝑄(𝜏𝐷𝑄, 𝜁𝑎,𝑏(𝑥𝑎,𝑏 , 𝑖),  𝜏𝑎,𝑏(𝑥𝑎,𝑏), 𝐷𝑟𝑒𝑠)

= exp{0.4𝐷𝑟𝑒𝑠
2 [𝜑𝑎∑𝜁𝑎(𝑥𝑎,𝑏 , 𝑖)

2
(𝑒
−

𝜏𝐷𝑄
𝜁𝑎(𝑥𝑎,𝑏,𝑖) +

𝜏𝐷𝑄

𝜁𝑎(𝑥𝑎,𝑏 , 𝑖)
− 1)

𝑛

𝑖=1

+ 𝜑𝑏∑𝜁𝑏(𝑥𝑎,𝑏 , 𝑖)
2
(𝑒
−

𝜏𝐷𝑄
𝜁𝑏(𝑥𝑎,𝑏,𝑖) +

𝜏𝐷𝑄

𝜁𝑏(𝑥𝑎,𝑏 , 𝑖)
− 1)

𝑛𝑑

𝑖=1

+ 𝜑𝑏(1 − 𝑥𝑑)𝜏(𝑥𝑎,𝑏)
2
(𝑒
−
𝜏𝐷𝑄
𝜏(𝑥𝑎,𝑏) +

𝜏𝐷𝑄

𝜏(𝑥𝑎,𝑏)
− 1)]} 

× sinh{0.2𝐷𝑟𝑒𝑠
2 [𝜑𝑎∑𝜁𝑎(𝑥𝑎,𝑏 , 𝑖)

2
(𝑒

−
2𝜏𝐷𝑄

𝜁𝑎(𝑥𝑎,𝑏,𝑖) − 2𝑒
−

𝜏𝐷𝑄
𝜁𝑎(𝑥𝑎,𝑏,𝑖) + 1)

𝑛

𝑖=1

+ 𝜑𝑏∑𝜁𝑏(𝑥𝑎,𝑏 , 𝑖)
2
(𝑒

−
2𝜏𝐷𝑄

𝜁𝑏(𝑥𝑎,𝑏,𝑖) − 2𝑒
−

𝜏𝐷𝑄
𝜁𝑏(𝑥𝑎,𝑏,𝑖) + 1)

𝑛𝑑

𝑖=1

+ 𝜑𝑏(1 − 𝑥𝑑) 𝜏(𝑥𝑎,𝑏)
2
(𝑒

−
2𝜏𝐷𝑄
𝜏(𝑥𝑎,𝑏) − 2𝑒

−
𝜏𝐷𝑄
𝜏(𝑥𝑎,𝑏) + 1)]} 

(6.12) 

𝐼Σ𝑀𝑄(𝜏𝐷𝑄, 𝜁𝑎,𝑏(𝑥𝑎,𝑏 , 𝑖), 𝜏(𝑥𝑎,𝑏), 𝐷𝑟𝑒𝑠)

= 𝑒𝑥𝑝{0.2𝐷𝑟𝑒𝑠
2 [𝜑𝑎∑𝜁𝑎(𝑥𝑎,𝑏 , 𝑖)

2
(4𝑒

−
𝜏𝐷𝑄

𝜁𝑎(𝑥𝑎,𝑏,𝑖) − 𝑒
−

2𝜏𝐷𝑄
𝜁𝑎(𝑥𝑎,𝑏,𝑖)

𝑛

𝑖=1

+
2𝜏𝐷𝑄

𝜁𝑎(𝑥𝑎,𝑏 , 𝑖)
− 3)

+ 𝜑𝑏∑𝜁𝑏(𝑥𝑎,𝑏 , 𝑖)
2
(4𝑒

−
𝜏𝐷𝑄

𝜁𝑏(𝑥𝑎,𝑏,𝑖) − 𝑒
−

2𝜏𝐷𝑄
𝜁𝑏(𝑥𝑎,𝑏,𝑖) +

2𝜏𝐷𝑄

𝜁𝑏(𝑥𝑎,𝑏 , 𝑖)
− 3)

𝑛𝑑

𝑖=1

+𝜑𝑏(1 − 𝑥𝑑) 𝜏(𝑥𝑎,𝑏)
2
(4𝑒

−
𝜏𝐷𝑄
𝜏(𝑥𝑎,𝑏) − 𝑒

−
2𝜏𝐷𝑄
𝜏(𝑥𝑎,𝑏) +

2𝜏𝐷𝑄

𝜏(𝑥𝑎,𝑏)
− 3) ]} 

(6.13) 

The signal function predicts the signal of a segment located in a specific 

dimensionless coordinate x, whether in the arm or backbone. The overall signal 

would be the sum of all proton signals of the segments in arms and backbone. 
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𝐼𝐷𝑄
𝑜𝑣𝑒𝑟𝑎𝑙𝑙 = 𝜑𝑎∑𝐼𝐷𝑄

𝑎𝑟𝑚 (𝜏𝐷𝑄 , 𝜁𝑎,𝑏 (
𝑗

𝑛
, 𝑖) , 𝜏𝑎 (

𝑗

𝑛
) , 𝐷𝑟𝑒𝑠)

𝑛

𝑗=1

+𝜑𝑏 [∑𝐼𝐷𝑄
𝑏𝑎𝑐𝑘𝑏𝑜𝑛𝑒,𝐶𝐿𝐹 (𝜏𝐷𝑄, 𝜁𝑎,𝑏 (

𝑗

𝑛
, 𝑖) , 𝜏𝑏 (

𝑗

𝑛
) , 𝐷𝑟𝑒𝑠)

𝑛𝑑

𝑖=1

+ (1 − 𝑥𝑑)𝐼𝐷𝑄
𝑏𝑎𝑐𝑘𝑏𝑜𝑛𝑒,𝑟𝑒𝑝𝑡𝑎𝑡𝑖𝑜𝑛(𝜏𝐷𝑄, 𝜁𝑎,𝑏(𝑥𝑑 , 𝑖),  𝜏𝑑(𝑥𝑑), 𝐷𝑟𝑒𝑠)] 

(6.14) 

𝐼Σ𝑀𝑄
𝑜𝑣𝑒𝑟𝑎𝑙𝑙 = 𝜑𝑎∑𝐼Σ𝑀𝑄

𝑎𝑟𝑚(𝜏𝐷𝑄, 𝜁𝑎,𝑏(𝑥𝑎 , 𝑖), 𝜏(𝑥𝑎), 𝐷𝑟𝑒𝑠)

𝑛

𝑖=1

+𝜑𝑏 [∑𝐼Σ𝑀𝑄
𝑏𝑎𝑐𝑘𝑏𝑜𝑛𝑒,𝐶𝐿𝐹(𝜏𝐷𝑄, 𝜁𝑎,𝑏(𝑥𝑏, 𝑖), 𝜏(𝑥𝑏), 𝐷𝑟𝑒𝑠)

𝑛𝑑

𝑖=1

+ (1 − 𝑥𝑑)𝐼Σ𝑀𝑄
𝑏𝑎𝑐𝑘𝑏𝑜𝑛𝑒,𝑟𝑒𝑝𝑡𝑎𝑡𝑖𝑜𝑛(𝜏𝐷𝑄, 𝜁𝑎,𝑏(𝑥𝑑 , 𝑖),  𝜏𝑑(𝑥𝑑), 𝐷𝑟𝑒𝑠)] 

(6.15) 

In table 6.4, the best-fit model parameters are listed for different α, β, and p values. 

For β values other than 1, the fittings were done via time-consuming numerical 

integration. Unlike rheology, the entanglement spacing is a fitting parameter in the 

DQ NMR data because for writing an explicit relation between Dres and 

entanglement spacing according to equation 3.7, the k and Dstat values need to be 

determined via molecular simulation by simplified assumptions. In this light, the 

determined values are model-dependent and may systematically deviate from 

rheology results. 
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Table 6.4: The tube model parameters obtained by fitting the DQ NMR data via the DTD 

model with time-dependent unrelaxed-segments fraction.  

Parameters Dres (Hz) τe (s) Me (g/mol) 

α = 4/3 

p2 = 1/12 

NMR_β = 1 

294 1.6 * 10-6 2584 

α = 1 

p2 = 1/40 

NMR_β = 1 

287 1 * 10-5 4154 

α = 1 

P2 = 1/12 

NMR_β = 1 

251 1.8 * 10-5 3822 

α = 4/3 

P2 = 1/12 

NMR_β= 2.66 

279 1.9 * 10-6 1754 

α = 1 

P2 = 1/40 

NMR_β = 2 

291 1.6 * 10-6 2115 

Ref. Value ---- 0.7 – 1.5 * 10-5 4000-5000 

 

In all the fittings, obtained Dres values are in a narrow range, while the other fitting 

parameters vary more strongly. Comparing the best-fit parameters with the 

reference data obtained in previous studies shows that the fittings with β = 1 provide 

consistent results. Surprisingly, the theoretical NMR-based β = 2 (or 8/3) failed to 

predict the PI-comb's dynamics. The latter exponent value has been obtained (was 

discussed in chapter 3) based on the relation between the order parameter and 

entanglement spacing (in polymer melts) or crosslink density (in polymer networks), 

while β = 1 has been taken from the analogy between the current system and a lowly 
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cross-linked polymer network studied by Lang and Sommer [136]. They reported 

that according to the molecular simulation, the order parameter of an entangled 

chain between two crosslinks correlates with the inverse square root of 

entanglement spacing and the number of segments between two crosslinks (𝑆𝑏 ∝

1/√𝑁 𝑁𝑒), which deviates from the classical relation of the order parameter, 𝑆𝑏 ∝
1

𝑁
+

1

𝑁𝑒
. Our results showed that the linear relation between the order parameter and the 

inverse of the entanglement spacing is indeed not fully correct. It is noted that the 

analogy used here is valid for backbone segments over a wide time range, while it 

may not be entirely correct for the arms relaxing from a free end. 

Figure 6.7 shows the normalized OACF constructed using TTS by fitting DQ NMR 

data with time-dependent unrelaxed-segments fraction over almost 12 decades. 

Unlike the previous fitting approach (time-independent unrelaxed-segments 

fraction), it is seen that all the segments have an identical OACF until they start 

the relaxation process via arm retraction, CLF, or reptation. The relaxation starts 

from the outermost segments of the arms. As the innermost arm segment relaxes, 

the second plateau appears, which is governed by the inner parts of the backbone. 

In longer times, the whole chain relaxes via reptation. 
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Figure 6.7: The segmental OACF based on the curvilinear dimensionless coordinate 

obtained at 0°C as reference temperature from the best-fit model shown in Table 6.4 (α = 1, 

p2 = 1/40, NMR_β = 1). The highlighted time axis shows the covered time range by DQ NMR 

data using TTS. In fitting the data, 50 segmental parts have been assumed in summating 

for arms and backbone. 

6.5. Summary 

The chain dynamics of a polyisoprene comb were studied via rheology and DQ NMR. 

The data was analyzed using the DTD model, which predicted the chain dynamics 

in star and branched polymers. The core of this theory is that the dilution effect 

arises from the relaxed chains, increasing the entanglement spacing and tube 

diameter. However, the DTD model predicted the rheological behavior of the sample 

perfectly, but it is observed that the contribution of the backbone segments in 

storage modulus is significantly underestimated at high frequencies. In DQ NMR 

data, this leads to an unrealistic picture of the OACF when the arm segments are 

mainly not relaxed. 

This problem arises from the assumption that considers the unrelaxed-segments 

fraction as a function of segmental dimensionless coordinate (time-independent 

function). This was modified by considering a time-dependent unrelaxed-segments 

fraction in the DTD model. Via this modification, the DTD model predicted the 

rheological behavior with a correct contribution of arm and backbone in storage 

modulus in the studied frequency range. 
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Since the relation between the OACF as the DQ NMR observable and the diluted 

entanglement spacing was unknown for the studied system, two possible scenarios 

were considered to fit the DQ NMR data. The results demonstrated that the classical 

relation between the order parameter and entanglement spacing is not valid in the 

case of a polymer comb system. Moreover, our results confirm the findings of Lang 

and Sommer [136], who reported that the order parameter correlates with the 

square-root of entanglement spacing in a lowly crosslinked polymer system. 

The results showed that the DQ NMR technique can be used for probing the 

branched and star polymers via the DTD model. DQ NMR probes the chain 

dynamics on a timescale being one decade and a half faster than rheology. Moreover, 

the segments with very fast relaxation times (faster than the studied time window) 

can be probed in the MQ signal (as a tail signal). Since in polyolefins, the segmental 

dynamics are fast, and the rheological measurement is restricted by the 

crystallization of the chains at low temperatures, the DQ NMR experiment can be a 

complementary technique to assess these polymeric systems. The current research 

represents the first attempt to apply the DTD model in the DQ NMR technique. 

Therefore, the results can be used in further investigations on the other systems 

using the DQ NMR technique. 
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7. Summary 

 

Characterizing polymer systems with complex architecture is a challenge in the 

polymer industry. The current methods usually rely on using hazardous solvents at 

high temperatures, making these methods pricey and unsafe. Therefore, there is a 

clear demand for an alternative efficient method. The core idea of the given thesis 

was to combine rheology and DQ NMR techniques to map out the chain dynamics 

precisely in complex polymer structures. In the case of polyolefins, the primary 

concern of our research, this combined method becomes more essential due to the 

limited probed frequency or time range imposed by the crystallization. Regarding 

chain dynamics, two systems, including a partial network and a polymer comb, were 

probed via rheology and DQ NMR. 

As the first system, two grades of HDPE with different polydispersity were 

irradiated by electron beam at different doses. The crosslinking efficiency was 

assessed via gel content experiment, rheology, and DQ NMR. The gel fraction 

evolution is similar in both grades according to the gel content values. Due to the 

irradiation, the gel content values increase significantly at low irradiation doses, 

but above 84 kGy, the changes are insignificant. Via constructed OACF of the 

remainder network from gel content experiments obtained via DQ NMR 

measurements, it was revealed that beyond 84 kGy, chain scission reactions become 

dominant, and the crosslinking reaction keeps increasing in the remainder of the 

samples. Though, at very high irradiation doses, the number of crosslinks remains 

constant. 

In the rheological measurements, the characteristic scaling law in the vicinity of the 

gel point was observed for all irradiated samples. Even in x-N-HDPE-1, which did 

not have any non-extractable gel content value, the significant amount of branched 

polymer structure leads to scaling-law behavior. It was seen that even in highly 

irradiated samples, the storage modulus decays continuously, which confirms the 

existence of the coupled defects in the network structure. 
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Two different approaches were applied to evaluate the DQ NMR data. It was 

observed that the model, which assumed the irradiated sample as a polymer melt 

with a broad spectrum of relaxation time as a consequence of being restricted by 

permanent and temporary topological constraints, provides more consistent results 

with the rheology and gel content experiment. Dres, as the core NMR observable, 

correlates with the storage modulus at different irradiation doses. Moreover, the 

OACF exponent κ reflected the effect of crosslinking on the chain dynamics. As for 

rheology, the gradual decay in highly irradiated samples was observed in the 

constructed OACF, which confirmed the existence of the trapped entanglements and 

branched polymer structures. A simple and expected factor of 2 in the obtained 

NMR-based OACF exponent κ and the rheological counterpart is confirmed by a 

direct comparison of the rheological and DQ NMR measurements. It was shown that 

the frequency window of rheology can be extended by about two decades into the 10 

krad/s range via DQ NMR data. 

In the extracted network from the gel content tests, the decay in the OACF was 

observed, which reveals that some of the complex architectures (star and branched 

polymers) are connected to the network structure via chemical bonds and relax 

slowly via Rouse motion, which has been observed in the irradiated network in 

rheology and DQ NMR-based OACF. According to the observed results, it is 

necessary to predict the chain dynamics of the branched polymers (either connected 

or not connected to the network) to develop a precise approach to assess these kinds 

of network structures. 

Concerning observations in partially network polyethylene and the importance of 

the characterization of the complex polymer architectures, the chain dynamics in a 

polyisoprene comb as a defined model system were probed via rheology and DQ 

NMR. The rheological moduli of the comb-PI were well analyzed using the DTD 

model, which considers the constraint release effect of the relaxed segments as the 

dilation of the tube (leading to an increase in the tube diameter and entanglement 

spacing). However, we identified an unrealistic relative contribution of arm vs. 

backbone segments in rheological moduli and NMR-based OACF, leading to the 

suggestion of a time-dependent unrelaxed-segments fraction rather than a time-

independent one (time independent at times shorter than the corresponding 
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relaxation time). By using the time-dependent unrelaxed-segments fraction, DQ 

NMR as well as rheology, predicts the dynamic behavior of the comb-PI over five 

decades of time via TTS newly quantitatively. 

The correlation between the unrelaxed-segments fraction and OACF was 

investigated. It was shown that the order parameter correlates with the inverse 

square root of the entanglement spacing in polymer combs which confirms the 

findings of Lang and Sommer [136] in lowly crosslinked systems, though this may 

not be valid for the arms due to their free ends. Further works on the analogous 

systems are necessary to clarify the relation between order parameters and the 

unrelaxed-segments fraction. 

A central goal of the given thesis was to introduce a safe and economically efficient 

method to assess the crosslinking reaction in irradiated polyethylene. It was shown 

that there is an empirical relation between the gel content values and the 

rheological power-law exponent. Though, the gel content values and rheological 

power-law exponent are insensitive to the density of crosslinks being important in 

highly irradiated samples (after reaching the maximum gel content value). On the 

other hand, DQ NMR observables (Dres and κ ) clearly illustrate the effect of the post 

crosslinking and local overcrosslinking in highly irradiated samples on the chain 

dynamics, unlike to gel content experiment.  

According to our findings, distinguishing the chain dynamics of entangled 

(particularly branched) defects and the network structure to precisely determine the 

gel content with DQ NMR in irradiated PE requires an accurate prediction of the 

dynamic behavior of the entangled and thus relaxing defect. For this purpose, along 

with the presented results in this thesis for monodisperse PI-comb, studying the 

polydisperse branched polymers with the DQ NMR technique is a viable option. For 

a partially crosslinked network, the suggested correlation function should be a 

combination of a plateau (the A-l model) representing the network structure and a 

hierarchy of relaxation times (the AWexp model) for entangled defects (branched 

polymer structures). It is noted that considering polydispersity in the mentioned 

DTD model for use in DQ NMR measurements leads to complex equations and time-

consuming fitting procedures that are not readily available for routine use.
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Appendices 

A. Supplementary DQ NMR data for backbone-deuterated PI-comb: 

A backbone deuterated PI-comb with identical architectures as the sample probed 

in chapter 6  was studied via DQ NMR. 

 

Figure A.1: DQ NMR data for two identical protonated and deuterated samples. As 63% of 

the signal comes from arms’ segments, the signal from the backbone-deuterated sample 

multiplied to 0.63 to be comparable with the fully protonated sample. 

It is seen in figure A.1 that the build-up curve in the fully protonated sample is much 

higher than in the deuterated one. Also in the IΣMQ signal the amount of isotropically 

mobile material (slowly decaying signal at long times) is much higher in the 

deuterated sample. By considering the fraction of the arms’ segments, it is possible 

to subtract the contribution of the arms’ signal, but it is observed at around 5 ms 

that the IΣMQ signal in the deuterated sample is significantly higher than the signal 

obtained from the fully protonated sample (by considering the fraction of arm 

protons in the PI-comb). This means that by subtraction of the arms’ signal, we 

would obtain a negative signal, which does not have any physical meaning. 
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Therefore, this shows that the deuterated sample is not identical to the fully 

protonated sample and probably is degraded. Since only a few milligrams of this 

sample were produced to be probed by DQ NMR, it was not possible to probe the 

possible degradation of this sample with standard methods. 

B. Python codes for fitting DQ NMR data based on the AWPl model 

The code needs the DQ data as a text file in a folder. By giving the address of the 

folder, the code automatically finds text files (data) and makes a new folder with the 

file’s name, and saves all results in that folder. 

“ 

def weight_dist_AWPL_twocomp(inputaddress, output): 

    n = 50 # number of points for distribution calculation 

    outputadress = output + "\weighted-distribution-PWLW-twocomp-SQRT-Norm" 

    if not os.path.exists(outputadress): 

        os.makedirs(outputadress) 

    # ASSIGN DIRECTORY FOR SAVING THE FIGURE 

    my_path = os.path.abspath(outputadress) 

    # READING THE TEXT FILE AND COPY IT TO DATA 

    data = np.loadtxt(inputaddress) 

    xmq = data[:, 0] 

    x = data[:, 0] 

    # IN XDQ WE OMIT ZERO, THE BOUNDRY IS NOT ACCOUNT TO AND IT IS CORRECT 

    dq = abs(data[:, 2]) 

    maxim = np.where(dq == np.amax(dq)) 

    maxdq = np.amax(dq) 

    # limited the fitting interval to the DQ maximum 

    i= 1 

    while dq[i] < 1 * maxdq: 

        i+=1   

    boundry = i 

    xdq = data[1:boundry,0] 

    ref = abs(data[:, 1]) 

    # NORMALIZING THE DATA 

    mq = dq+ref 

    maximum = mq[0] 

    mq = (mq/maximum) 

    dq = (dq/maximum) 

    mqreal = mq 

    maxdq = maxdq/maximum 

    normalization_factor = 1 

    dqreal = np.zeros(len(dq), dtype=float) 

    for i in range (len(dq)): 

        dqreal[i]=(dq[i]) 
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    xmqreal=xmq 

    MQ = np.zeros(len(mq), dtype=float) 

    for i in range (len(mq)): 

        MQ[i]=(mq[i])** (1/root) 

# zero can not be measured. So it assumed very close to zero 

    xmq[0]= 0.000000000001 

    # DELETING UNDESIRED POINT FOR FITTING 

    length = len(dq) 

    i =length - boundry 

    dq = dq[:-i] 

    dq = dq[1:] 

    DQ = np.zeros(len(dq), dtype=float) 

    for i in range (len(dq)): 

        DQ[i]=(normalization_factor * dq[i])**(1/root) 

    boundry-=1 

    global ML, Dres_ML, kap_ML, f1_ML, sigma_ML, T1_ML, T2_ML 

    if not ML: 

        Dres_ML = firstDres 

        kap_ML = firstkappa 

        f1_ML = 0.85 

        sigma_ML = 1 

        T1_ML = firstT1 

        T2_ML = 50 

    pi = np.pi  

    t0= xdq[0]-0.00001 

    b1= 1 

    b2= 1 

    Dres2 = 0 

    print (f1_ML) 

    #DEFINING VARIABLES AND INITIAL VALUES FOR FITTING 

    x_1, x_2, y_1, y_2 = variables('x_1, x_2, y_1, y_2') 

    f1 = sf.Parameter('f1',value= f1_ML, min=0.001, max=0.999) 

    Drs1 = sf.Parameter('Drs1',value=Dres_ML, min=0.001, max=4) 

    sigma1 = sf.Parameter('sigma1',value=sigma_ML ,min=0.000001, max=5) 

    kappa = sf.Parameter('kappa',value= kap_ML, min=0.00005, max= 3) 

    T1 = sf.Parameter('T1',value= T1_ML, min=0.01, max=100000000) 

    T2 = sf.Parameter('T2',value= T2_ML, min=0.1, max=8000) 

    res1=0 

    norm1=0 

    resmq=0 

    lnDres1= sf.log(Drs1) 

    for i in range(0,n+1): 

        lnDtemp1= (lnDres1+ ((i-(n/2))*3*sigma1/(n/2))) 

        Dres1= sf.exp(lnDtemp1) 

        gauss1= sf.exp(-0.5*((i-(n/2))*3/(n/2))**2)/(sf.sqrt(2*pi*(sigma1**2))) 

        res1= res1+ f1 * gauss1* ((sf.exp(-(x_1/T1)**b1)* sf.exp( -(0.2*(2*pi*Dres1)**2)/((kappa-

2)*(kappa-1))*(kappa*(2*(kappa-2)*x_1/t0-(kappa-1))*t0**2 + 2*x_1**(2-kappa)*t0**kappa) )* 

sf.sinh( 0.5*(0.2*(2*pi*Dres1)**2)/((kappa-2)*(kappa-1))*(kappa*(kappa-1)*t0**2+(2**(3-kappa)-

4)*x_1**(2-kappa)*t0**kappa) ))) 
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        resmq= resmq + f1* gauss1 * sf.exp(-(x_2/T1)**b1)* sf.exp( -(0.2*(2*pi*Dres1)**2)/((kappa-

2)*(kappa-1))*(t0**2 * kappa* ((2* (kappa-2)* x_2/ t0)- 1.5* (kappa-1)) + 4* x_2** (2-kappa)* 

t0**kappa * (1-2**(-kappa)))) 

        norm1= norm1 + gauss1 

        if i== n : 

            firstres= res1 

            firstnorm= norm1 

            firstresmq = resmq 

            res1= 0 

            norm1= 0 

            resmq= 0 

             

    # DEFINING MODEL FOR FITTING 

    funfit = CallableModel({ 

        y_1: (normalization_factor * firstres/firstnorm) ** (1/root) , 

        y_2: ((firstresmq/firstnorm) +(1-f1)* sf.exp(-(x_2/T2)**b2)) **(1/root), 

        }) 

    # DOING FITTING, FIRST FIND A GOOD GUESS WITH NELDERMEAD METHOD AND 

FINALLY FIT WITH BFGS METHOD 

    # in BasinHopping method symfit will choose BFGS. When bounds are provided, symfit will switch 

to using L-BFGS-B instead. 

 

    fit = Fit(funfit, x_1= xdq1, x_2=xmq, y_1=DQ1, y_2=MQ, minimizer=[NelderMead, BasinHopping]) 

    fit_result = fit.execute() 

    # Y_R IS THE FITTING LINE 

    y_r = funfit(x_1=xdq, x_2=xmq, **fit_result.params) 

    y_r_complete = funfit(x_1=xmq, x_2=xmq, **fit_result.params) 

    dqfit = y_r[0] 

    MQfit = y_r_complete[1] 

    DQfit = y_r_complete[0] 

    for i in range(len(dq)): 

        dqfit[i] = (dqfit[i]**root)/normalization_factor 

    for i in range (len(xmq)): 

        DQfit[i] = (DQfit[i]**root)/normalization_factor 

        MQfit[i] = (MQfit[i]**root)  

    #measuring residue 

    residue_DQ= (dq - dqfit) 

    residue_MQ= (mq - MQfit) 

    RsquareDQ= 1-(np.sum(residue_DQ**2) / np.sum(((dq-np.mean(dq))**2))) 

    RsquareMQ= 1-(np.sum(residue_MQ**2) / np.sum(((mq-np.mean(mq))**2))) 

    # PRINT THE RESULTS AND SAVING IT TO A FILE IN OUTADDRESS. 'a' is reffered to 

appending the file. it means it add new results to previous ones. if you want to delete previous you 

shod use 'w' 

    print("last point to fit",boundry+1, '\n', "duplication number", m, '\n', " Best-Fit Parameters: ", 

fit_result, '\n', "R^2DQ", RsquareDQ, '\n', "R^2MQ", RsquareMQ) 

    f = open(outputadress + "\Weighted-distribution-PWLW-RESULT.txt","a") 

    print("last point to fit", boundry+1, '\n', "duplication number", m, '\n', fit_result, '\n', "R^2DQ", 

RsquareDQ, '\n', "R^2MQ", RsquareMQ, file=f) 

    f.close() 

    print("t0", t0) 
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    # PLOT THE RESULTS 

    boundryliney = [0, 1] 

    boundrylinex = [xmq[boundry], xmq[boundry]] 

    fig= plt.plot(xmqreal,mqreal, 'k.', x,dqreal,'r.', xmq, DQfit,'c-.', xmq,MQfit,'c-.',boundrylinex, 

boundryliney, 'y:' ) 

    # ADD LEGEND TO THE FIGURE 

    plt.rcParams["legend.fontsize"]= 16 

    plt.gca().legend(('MQ','DQ', 'AWPL model')) 

    # DEFINE A LIMIT FOR FIGURE 

    plt.xlim(0, 40) 

    plt.ylim(0, 1) 

    # ADD TITLE AND LABELS TO THE AXIS 

    plt.ylabel('Intensity', fontsize= 11) 

    plt.xlabel('DQ-time evolution(ms)', fontsize= 11) 

    # ADJUST SAVE FIGURE FILE 

    plt.rcParams["savefig.jpeg_quality"]= 70 

    plt.savefig(my_path +"/Weighted-PWLW-distribution-figure.png", dpi=600) 

    plt.clf() 

    fig2= plt.plot(MQ,residue_MQ, 'r.', DQ, residue_DQ, 'b.') 

    plt.rcParams["savefig.jpeg_quality"]= 70 

    plt.savefig(my_path +"/Weighted-PWLW-residual-distribution.png", dpi=600) 

    plt.clf() 

    #Generating correlation function 

    Dres = fit_result.value(Drs1) 

    kap  = fit_result.value(kappa) 

    f = fit_result.value(f1) 

    lnDmed= sf.log(Dres) 

    sigma= fit_result.value(sigma1) 

    T_1= fit_result.value(T1) 

    T_2= fit_result.value(T2) 

    if RsquareDQ > 0.9 and T_1>0 and T_2>0 and f>0 and sigma>0 and kap>0: 

        Dres_ML = Dres 

        kap_ML = kap 

        f1_ML = f 

        sigma_ML = sigma 

        T1_ML = T_1 

        T2_ML = T_2 

        ML= True 

 

    L= len(xdq) 

    correlation_deg1 = np.zeros(L) 

    correlation_deg2 = np.zeros(L) 

    correlation_fraction_deg1 = np.zeros(L) 

    correlation_fraction_deg2 = np.zeros(L) 

    for j in range (0, L): 

        gauss_store = 0 

        for i in range(0,n+1): 

            lnDtemp= (lnDmed+ ((i-(n/2))*3*sigma/(n/2))) 

            Dtemp = sf.exp(lnDtemp) 

            gauss = sf.exp(-0.5*((i-(n/2))*3/(n/2))**2)/(sigma* sf.sqrt(2*pi)) 
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            correlation_deg1[j] = correlation_deg1[j] + gauss * (Dtemp**2)*((xdq[j]/t0)**(-kap)) 

            correlation_deg2[j] = correlation_deg2[j] + ((gauss * Dtemp)**2)*((xdq[j]/t0)**(-kap)) 

            correlation_fraction_deg1[j] = correlation_fraction_deg1[j] + f * gauss * 

(Dtemp**2)*((xdq[j]/t0)**(-kap)) 

            correlation_fraction_deg2[j] = correlation_fraction_deg2[j] + ((f * gauss * 

Dtemp)**2)*((xdq[j]/t0)**(-kap)) 

            gauss_store = gauss_store + gauss 

        correlation_deg1 [j] = correlation_deg1 [j]/ gauss_store 

        correlation_fraction_deg1 [j] = correlation_fraction_deg1 [j]/ gauss_store 

        correlation_deg2 [j] = correlation_deg2 [j]/ (gauss_store **2) 

        correlation_fraction_deg2 [j] = correlation_fraction_deg2 [j]/ (gauss_store **2) 

    g = open(outputadress + "\Wgh-dist-correlation-AWPL-deg1.txt","w") 

    for i in range(len(xdq)): 

        print(xdq[i],'    ',correlation_deg1[i], file=g), 

 

    g.close()  

    g = open(outputadress + "\Wgh-dist-correlation-AWPL-deg2.txt","w") 

    for i in range(len(xdq)): 

        print(xdq[i],'    ',correlation_deg2[i], file=g), 

    g.close() 

    g = open(outputadress + "\Wgh-dist-correlation-AWPL-fractiondeg1.txt","w") 

    for i in range(len(xdq)): 

        print(xdq[i],'    ',correlation_fraction_deg1[i], file=g), 

    g.close() 

    g = open(outputadress + "\Wgh-dist-correlation-AWPL-fractiondeg2.txt","w") 

    for i in range(len(xdq)): 

        print(xdq[i],'    ',correlation_fraction_deg2[i], file=g), 

    g.close() 

    h = open(outputadress + "\plot-AWPL-dist.txt","w") 

    for i in range(len(xmqreal)): 

        if i!=0: 

            print(xmqreal[i],'    ',mqreal[i],'    ', MQfit[i],'    ', dqreal[i], '    ',DQfit[i], file=h) 

        else: 

            print(xmqreal[i],'    ',mqreal[i],'    ', MQfit[i],'    ', dqreal[i], file=h) 

    h.close() 

“ 

 

C. Python code for fitting AWexp model (based on the DTD) 

The code fits 9 data sets simultaneously according to the DTD model via TTS (fitting 

DQ data for PI-comb). The code gets the address of text files (DQ NMR data), 

automatically finds the text files, and saves all results including text files and jpg 

files in the same folder. 

“ 

import numpy as np 

import matplotlib.pyplot as plt 
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from scipy.optimize import curve_fit 

import os 

from datetime import datetime 

def pre(Dres, t0): 

    return 0.2*(np.pi**2 * Dres**2)*(t0**2) 

def relaxation (x, T): 

    return np.exp(-(x/T)) 

def exp_term_DQ (x_dq, Dres, t0, shift_factor): 

    return np.exp(-2* pre (Dres, t0)* (np.exp(-x_dq*shift_factor/t0) +x_dq*shift_factor/t0 -1)) 

def sinh_term_DQ (x_dq, Dres, t0, shift_factor): 

    return np.sinh(pre (Dres, t0)* (np.exp(-2*x_dq*shift_factor/t0)-2*np.exp(-x_dq*shift_factor/t0)+1)) 

def exp_term_MQ(x_mq, Dres, t0, shift_factor): 

    return np.exp(-pre (Dres, t0)* (4* np.exp(-x_mq*shift_factor/t0)- np.exp(-2*x_mq*shift_factor/t0)+ 

2* x_mq*shift_factor/t0- 3 )) 

def inside_exp_term_dq (x_dq, Dres, t0): 

    return -2 * pre (Dres, t0)* (np.exp(-x_dq/t0) +x_dq/t0 -1) 

def inside_sinh_term_dq (x_dq, Dres, t0): 

    return pre (Dres, t0)* (np.exp(-2* x_dq/t0) -2*np.exp(-x_dq/t0)+ 1) 

def inside_exp_term_mq (x_mq, Dres, t0): 

    return -pre (Dres, t0)* (4* np.exp(-x_mq/t0)- np.exp(-2*x_mq/t0)+ 2* x_mq/t0- 3 ) 

 

def residue (dat, fit_dat):  

    return (dat - fit_dat) 

def R_square (dat, fit_dat): 

    return  1-(np.sum(residue(dat, fit_dat)**2) / np.sum(((dat-np.mean(dat))**2))) 

def chi_squared (expec_val,comboY): 

    return np.sum((comboY-expec_val)**2/abs(expec_val)) 

def data_preparation() :     

    p = 1 

    for file in os.listdir(loc): 

        if file.endswith(".txt"): 

            inputaddress = os.path.join(loc, file) 

# The file name is the temperature that data were measured at 

            namefile = os.path.join(file) 

            namefile = namefile[:-4] 

            #addressfile = loc[:] + "\\" + namefile 

            temp[p] = int(namefile) #each file should named the associated teperature 

            shift_factor[p] = 10**(c1*temp[p]/(c2 + temp[p])) #rheological shift factor based on WLF 

            # READING THE TEXT FILE AND COPY IT TO DATA 

            data1 = np.loadtxt(inputaddress) 

            #data1 = data1[data1.min(axis=1)>=0,:] 

            num_rows, num_cols = data1.shape 

            maxim = np.where(data1[:,2] == np.amax(data1[:,2])) 

            #print (num_rows, num_cols) 

            boundry[p] = int(maxim[0]) + 0 

            length_MQ[p] = num_rows 

            data[p,0:num_rows,0] = np.round(data1[:,0],4) 

            data[p,0:num_rows,1] = (data1[:,1] + data1[:,2])/(data1[0,1] + data1[0,2]) 

            data[p,0:num_rows,2] = data1[:,2]/(data1[0,1] + data1[0,2]) 

            p=p+1 

    return p-1 

def print_result(fittedParameters,R2_DQ,  R2_MQ, chi_2, outputadress): 
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    f = open(outputadress + "\Awexp-RESULT-prediction.txt","a") 

    print("#------------------------------------------------------------------------------", file = f) 

    print("#fitting at", start_time, file= f) 

    print("#alpha_NMR = ", alpha_NMR,"    ", "#root =", root, file= f) 

    print("Dres= ", round(fittedParameters[0],3), '\n', "M_e= ", round(fittedParameters[1],3), '\n', 

"tau_e= ", round(fittedParameters[2],5), '\n', file= f) 

    #print("fi_bb ", round(fittedParameters[2]/(fittedParameters[2]+ 

fittedParameters[3]*fittedParameters[1]),3), '\n', "fi_a ", 

round(fittedParameters[3]*fittedParameters[1]/(fittedParameters[2]+ 

fittedParameters[3]*fittedParameters[1]),3), '\n', file= f) 

    for i in range (1, n+1): 

        print("f1_", str(i), "=", round(f1[i], 2),'\n', file=f) 

        print("T1_", str(i), "=", round(fittedParameters[2+i],1), "      ", "T2_", str(i), "=", 

round(fittedParameters[9+i],1),'\n', file=f) 

        #print("T2_", str(i), "=", round(fittedParameters[10+i],1),'\n', file=f) 

 

    #print("Tmed_1: ", fittedParameters[3], '\n', "Tmed_2: ", fittedParameters[4], '\n', "Tmed_3: ", 

fittedParameters[5], '\n', file= f) 

    #print("sigma1: ", fittedParameters[6], '\n', "sigma2: ", fittedParameters[7], '\n', "sigma3: ", 

fittedParameters[8], '\n', file= f) 

    for i in range (1, n+1): 

        print ("R2_DQ_" +str(i)+ "_"+ str(temp[i]) +"C=", round(R2_DQ[i],5), '\t', "R2_MQ_" +str(i) + "_"+ 

str(temp[i]) +"C=", round(R2_MQ[i],5), '\t', "chi-squared_" +str(i) + "_"+ str(temp[i]) +"C=", 

round(chi_2[i],6), file=f) 

    f.close() 

def plot_result ( yy, outputadress): 

    pointer = 0 

    for i in range(1,n+1): 

        boundryliney = [0, 1] 

        boundrylinex = [data[i,boundry[i],0], data[i,boundry[i],0]] 

        plt.plot(data[i,0:length_MQ[i],0],data[i,0:length_MQ[i],1], 'k.', 

data[i,1:length_MQ[i],0],data[i,1:length_MQ[i],2],'r.', data[i,1:length_MQ[i],0], 

yy[pointer:pointer+length_MQ[i]-1],'c-.', data[i,1:length_MQ[i],0],yy[pointer+length_MQ[i]-1:pointer+ 

2*(length_MQ[i]-1)],'c-.',boundrylinex, boundryliney, 'y:') 

        pointer = pointer + 2*(length_MQ[i]-1) 

        plt.rcParams["legend.fontsize"]= 10 

        plt.gca().legend(('MQ','DQ', 'simultaneous fitting-DTD theory')) 

        plt.ylim(0.001, 1) 

        plt.ylabel('Intensity', fontsize= 8) 

        plt.xlabel('DQ-time evolution(ms)', fontsize= 8) 

        plt.yscale('log') 

        # ADJUST SAVE FIGURE FILE 

        #plt.rcParams["savefig.jpeg_quality"]= 70 

        plt.savefig(outputadress +"/" + str(temp[i]) + "C-AW-arm-retraction.png", dpi=600) 

        #plt.show() 

        plt.clf() 

def combine_data (data_c, s): 

    if s == 0 : 

        return np.array([]), np.array([])  

    else: 
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        return np.concatenate((combine_data (data_c, s-1)[0] ,data_c[s,1:boundry[s],0], 

data_c[s,1:length_MQ[s],0])), np.concatenate((combine_data (data_c, s-1)[1] ,data_c[s,1:boundry[s],2], 

data_c[s,1:length_MQ[s],1])) 

def U_bb_xb(x_b): 

    return (1-((1-x_b)**(alpha+1) * (1+(1+alpha)*x_b))) 

def diff_1_Ub (x_b, fi_bb, s_b): 

    c = 15 *(-((1 + alpha)* (1 - x_b)**(1 + alpha)) + (1 + alpha)* (1 - x_b)**alpha *(1 + (1 + alpha)* x_b)) 

* fi_bb**alpha * s_b / (8* (1 + alpha)* (2 + alpha)) 

    return c 

def diff_2_Ub(x_b, fi_bb, s_b): 

    c = 15 *(2 *(1 + alpha)**2 *(1 - x_b)**alpha - alpha* (1 + alpha)* (1 - x_b)**(-1 + alpha) *(1 + (1 + 

alpha)* x_b))* fi_bb**alpha * s_b 

    return c 

def rett_bb(x_b, tau_a_long, p, q, s_b, fi_bb): 

    #fi_bb = fi_b #* (1- (2/(q+1))) 

    #tau_b early in case of lightly branched combs 

    #tau_bb_early = 25/64 *(1/(p**2)) * f * s_b**2 * x_b**2 *tau_a_long * fi_bb**(2*alpha) 

    tau_bb_early = 375/8192 *(np.pi/(p**2)) * q * s_b**3 * x_b**4 *tau_a_long * fi_bb**(3*alpha) 

    U_b = (15*s_b*(fi_bb**alpha)/(8*(1+alpha)*(2+alpha))) * U_bb_xb(x_b) 

    tau_bb_late = 25 * s_b**2 * fi_bb**(2*alpha) * q * tau_a_long * np.exp(U_b)* 

((2*np.pi/(diff_2_Ub(0, fi_bb, s_b)))**0.5)/(8*p**2 * diff_1_Ub (x_b, fi_bb, s_b)) 

    return (tau_bb_early * np.exp(U_b))/(1+(tau_bb_early * np.exp(U_b)/tau_bb_late)) 

 

def integral_fit (comboX, *par): 

    #Par[i], 0=Dres,1=Me, 2=tau_e, 3=T1, 4=T2,5=T2, 6=T2 7=T3 ,8=T4, 9=T5, 10= T6, 9=T7, 10 = 

T2_1, 11= T2_2 

    s_a = np.zeros(n_tau+1) 

    x_bb = np.zeros(n_tau+1) 

    for i in range (1, n_tau+1): 

        s_a[i] = i/n_tau 

        x_bb[i] = i/n_tau 

    fit_sum = np.array([]) 

#par[] are the fitting parameters 

    Me = par[1] 

    tau_e = par[2] 

    Z_a = M_a/Me 

    Z_bb = M_bb/Me# * (1-(2/(q+1))) 

    fi_b = M_bb/(M_bb + q*M_a) 

    fi_a = 1-fi_b 

    fi_bb = fi_b 

    U_a = (15/4)* Z_a* ((1-((1-fi_a*s_a)**(alpha+1))*(1+(1+alpha)*fi_a*s_a)))/(fi_a**2 * (alpha+1) * 

(alpha+2)) 

    tau_early = (225/256)*(np.pi**3) * tau_e* (Z_a* s_a)**4 

    tau_late = (np.pi**5 *( 2/15))**0.5 * tau_e * Z_a**1.5* np.exp(U_a)/(s_a * (1-(fi_a*s_a))**alpha) 

    tau_a = (tau_early * np.exp(U_a))/(1+(tau_early*np.exp(U_a)/tau_late)) 

    tau_a_longest = tau_a[n_tau] 

    tau_clf_bb = rett_bb(x_bb, tau_a_longest, p , q, Z_bb, fi_bb) 

    tau_rept_bb = (25/(8*np.pi**2 * p**2)) * (1-x_bb)**2 * Z_bb **2 * fi_bb**(2*alpha) * tau_a_longest 

* q 

    for i in range (1,n+1): 

        x_mq = data[i,1:length_MQ[i],0] 

        fit_DQ = np.zeros(len(x_mq)) 
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        fit_MQ = np.zeros(len(x_mq)) 

        fit_DQ_arm = np.zeros(len(x_mq)) 

        fit_MQ_arm = np.zeros(len(x_mq)) 

        fit_DQ_bb = np.zeros(len(x_mq)) 

        fit_MQ_bb = np.zeros(len(x_mq)) 

        fit_DQ_rep = np.zeros(len(x_mq)) 

        fit_MQ_rep = np.zeros(len(x_mq)) 

        x_c = 1 

        border_bb = 0 

        ret_rep = True 

        tau_arm = tau_a/shift_factor[i] 

        j=1 

        while tau_arm[j] *3 < x_mq[0]: 

            j+=1 

        border_arm = j-1 

        tau_s = tau_clf_bb /shift_factor[i] 

        tau_rept = tau_rept_bb /shift_factor[i] 

        tt = 1 

        while tau_s[tt] < tau_rept[tt]: 

            if tau_s[tt] * 3 < x_mq[0]: 

                border_bb = tt 

            tt+=1 

        x_c = (tt-1)/n_tau 

        tail = fi_a* ((border_arm/n_tau)) + (tail_bb)+ fi_bb* (border_bb/n_tau) 

        for j in range (1,n_tau+1): 

            if tau_arm[j] *3 > x_mq[0]: 

                fit_DQ_arm = fit_DQ_arm +  (exp_term_DQ(x_mq, par[0] * ((1-fi_a*s_a[j]))** alpha_NMR, 

tau_arm[j], 1) * sinh_term_DQ(x_mq, par[0]* ((1-fi_a*s_a[j]))** alpha_NMR, tau_arm[j], 1))/(n_tau) 

                fit_MQ_arm = fit_MQ_arm + (exp_term_MQ(x_mq, par[0]* ((1-fi_a*s_a[j]))** alpha_NMR, 

tau_arm[j], 1))/(n_tau) 

            if j/n_tau < x_c: 

                if tau_s[j] * 3 > x_mq[0]: 

                    fit_DQ_bb = fit_DQ_bb + (exp_term_DQ(x_mq, par[0] *(fi_bb * (1-x_bb[j]))**alpha_NMR, 

tau_s[j], 1) * sinh_term_DQ(x_mq, par[0] *(fi_bb * (1-x_bb[j]))**alpha_NMR, tau_s[j], 1))/(n_tau) 

                    fit_MQ_bb = fit_MQ_bb + (exp_term_MQ(x_mq, par[0] *(fi_bb * (1-

x_bb[j]))**alpha_NMR, tau_s[j], 1))/(n_tau) 

 

        tau_rep = tau_rept[tt] 

        inside_expterm_dq = np.zeros(len(x_mq)) 

        inside_sinhterm_dq = np.zeros(len(x_mq)) 

        inside_expterm_mq = np.zeros(len(x_mq)) 

        for tt in range(10): 

            pp = 2*tt +1 

            inside_expterm_dq = inside_expterm_dq + (8/(np.pi**2 * (pp)**2)) * 

inside_exp_term_dq(x_mq, par[0]* (fi_bb * (1-x_c ))**alpha_NMR, tau_rep/(pp**2)) 

            inside_sinhterm_dq = inside_sinhterm_dq + (8/(np.pi**2 * (pp)**2))* 

inside_sinh_term_dq(x_mq, par[0]* (fi_bb * (1-x_c ))**alpha_NMR, tau_rep/(pp**2)) 

            inside_expterm_mq = inside_expterm_mq + (8/(np.pi**2 * (pp)**2))* 

inside_exp_term_mq(x_mq, par[0]* (fi_bb * (1-x_c ))**alpha_NMR, tau_rep/(pp**2)) 

 

        fit_MQ_rep = np.exp(inside_expterm_mq) 

        fit_DQ_rep = np.exp(inside_expterm_dq)* np.sinh(inside_sinhterm_dq) 
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        #tail = fi_a* ((border_arm/n_tau)) + (tail_bb)+ fi_bb* (border_bb/n_tau) 

        f1[i] = 1-tail 

        fit_DQ = (fit_DQ_arm * fi_a + fi_bb* (fit_DQ_bb + (1-x_c)* fit_DQ_rep))* relaxation(x_mq, 

par[2+i]) #* f1[i] 

        fit_MQ = (fit_MQ_arm * fi_a + fi_bb* (fit_MQ_bb + (1-x_c)* fit_MQ_rep)) * relaxation(x_mq, 

par[2+i])  + (1-f1[i])* relaxation(x_mq, par[2+n+i]) # n is the number of data 

        fit_sum = np.concatenate((fit_sum, fit_DQ[0:boundry[i]-1], fit_MQ))                                 

    return fit_sum**(1/root) 

def integral_fit_compelete (x_m, *par): 

    #Par[i], 0=Dres,1=kappa,2=tau_d_0 3=f1,4=T1, 5=T2 6=T3 ,7=T4, 8=T5, 9= T6, 10=T7, 11 = T2_1, 

12= T2_2 

    s_a = np.zeros(n_tau+1) 

    x_bb = np.zeros(n_tau+1) 

    for i in range (1, n_tau+1): 

        s_a[i] = i/n_tau 

        x_bb[i] = i/n_tau 

    fit_sum = np.array([]) 

    Me = par[1] 

    tau_e = par[2] 

    Z_a = M_a/Me 

    Z_bb = M_bb/Me# * (1-(2/(q+1))) 

     

    fi_b = M_bb/(M_bb + q*M_a) 

    fi_a = 1-fi_b 

    fi_bb = fi_b# * (1- (2/(q+1))) 

    tail_bb = 0#fi_b * (2/(q+1)) 

    U_a = (15/4)* Z_a* ((1-((1-fi_a*s_a)**(alpha+1))*(1+(1+alpha)*fi_a*s_a)))/(fi_a**2 * (alpha+1) * 

(alpha+2)) 

    tau_early = (225/256)*(np.pi**3) * tau_e* (Z_a* s_a)**4 

    tau_late = (np.pi**5 *( 2/15))**0.5 * tau_e * Z_a**1.5* np.exp(U_a)/(s_a * (1-(fi_a*s_a))**alpha) 

    tau_a = (tau_early * np.exp(U_a))/(1+(tau_early*np.exp(U_a)/tau_late)) 

    tau_a_longest = tau_a[n_tau] 

    tau_clf_bb = rett_bb(x_bb, tau_a_longest, p , q, Z_bb, fi_bb) 

    tau_reptation = (25/(8*np.pi**2 * p**2)) * (1-x_bb)**2 * Z_bb **2 * fi_bb**(2*alpha) * 

tau_a_longest * q 

    for i in range (1,n+1): 

        x_mq = data[i,1:length_MQ[i],0] 

        fit_DQ = np.zeros(len(x_mq)) 

        fit_MQ = np.zeros(len(x_mq)) 

        fit_DQ_arm = np.zeros(len(x_mq)) 

        fit_MQ_arm = np.zeros(len(x_mq)) 

        fit_DQ_bb = np.zeros(len(x_mq)) 

        fit_MQ_bb = np.zeros(len(x_mq)) 

        fit_DQ_rep = np.zeros(len(x_mq)) 

        fit_MQ_rep = np.zeros(len(x_mq)) 

        x_c = 1 

        border_bb = 0 

        ret_rep = True 

        tau_arm = tau_a/shift_factor[i] 

        j=1 

        while tau_arm[j] *3 < x_mq[0]: 

            j+=1 
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        border_arm = j-1 

        tau_s = tau_clf_bb /shift_factor[i] 

        tau_rept = tau_reptation /shift_factor[i] 

        tt = 1 

        while tau_s[tt] < tau_rept[tt]: 

            if tau_s[tt] * 3 < x_mq[0]: 

                border_bb = tt 

            tt+=1 

        x_c = (tt-1)/n_tau 

        rep_treshold = tt 

        tail = fi_a* ((border_arm/n_tau)) + (tail_bb)+ fi_bb* (border_bb/n_tau) 

        for j in range (1,n_tau+1): 

            if tau_arm[j] *3 > x_mq[0]: 

                fit_DQ_arm = fit_DQ_arm +  (exp_term_DQ(x_mq, par[0] * ((1-fi_a*s_a[j]))** alpha_NMR, 

tau_arm[j], 1) * sinh_term_DQ(x_mq, par[0]* ((1-fi_a*s_a[j]))** alpha_NMR, tau_arm[j], 1))/(n_tau) 

                fit_MQ_arm = fit_MQ_arm + (exp_term_MQ(x_mq, par[0]* ((1-fi_a*s_a[j]))** alpha_NMR, 

tau_arm[j], 1))/(n_tau) 

            if j/n_tau < x_c: 

                if tau_s[j] * 3 > x_mq[0]: 

                    fit_DQ_bb = fit_DQ_bb + (exp_term_DQ(x_mq, par[0] *(fi_bb * (1-x_bb[j]))**alpha_NMR, 

tau_s[j], 1) * sinh_term_DQ(x_mq, par[0] *(fi_bb * (1-x_bb[j]))**alpha_NMR, tau_s[j], 1))/(n_tau) 

                    fit_MQ_bb = fit_MQ_bb + (exp_term_MQ(x_mq, par[0] *(fi_bb * (1-

x_bb[j]))**alpha_NMR, tau_s[j], 1))/(n_tau) 

 

        tau_rep = tau_rept[tt] 

        inside_expterm_dq = np.zeros(len(x_mq)) 

        inside_sinhterm_dq = np.zeros(len(x_mq)) 

        inside_expterm_mq = np.zeros(len(x_mq)) 

        for tt in range(10): 

            pp = 2*tt +1 

            inside_expterm_dq = inside_expterm_dq + (8/(np.pi**2 * (pp)**2)) * 

inside_exp_term_dq(x_mq, par[0]* (fi_bb * (1-x_c ))**alpha_NMR, tau_rep/(pp**2)) 

            inside_sinhterm_dq = inside_sinhterm_dq + (8/(np.pi**2 * (pp)**2))* 

inside_sinh_term_dq(x_mq, par[0]* (fi_bb * (1-x_c ))**alpha_NMR, tau_rep/(pp**2)) 

            inside_expterm_mq = inside_expterm_mq + (8/(np.pi**2 * (pp)**2))* 

inside_exp_term_mq(x_mq, par[0]* (fi_bb * (1-x_c ))**alpha_NMR, tau_rep/(pp**2)) 

 

        fit_MQ_rep = np.exp(inside_expterm_mq) 

        fit_DQ_rep = np.exp(inside_expterm_dq)* np.sinh(inside_sinhterm_dq) 

        #tail = fi_a* ((border_arm/n_tau)) + (tail_bb)+ fi_bb* (border_bb/n_tau) 

        f1[i] = 1-tail 

        fit_DQ = (fit_DQ_arm * fi_a + fi_bb* (fit_DQ_bb + (1-x_c)* fit_DQ_rep))* relaxation(x_mq, 

par[2+i]) #* f1[i] 

        fit_MQ = (fit_MQ_arm * fi_a + fi_bb* (fit_MQ_bb + (1-x_c)* fit_MQ_rep)) * relaxation(x_mq, 

par[2+i])  + (1-f1[i])* relaxation(x_mq, par[2+n+i]) 

        fit_sum = np.concatenate((fit_sum, fit_DQ, fit_MQ))                                

         

        fit_DQ_arm_report = (fit_DQ_arm * fi_a )* relaxation(x_mq, par[2+i]) 

        fit_DQ_bb_report = fi_bb* (fit_DQ_bb + (1-x_c)* fit_DQ_rep)* relaxation(x_mq, par[2+i])  

        f = open(outputadress + "\\" + str(temp[i])+ "C-fitdata.txt","w") 

        g = open(outputadress + "\\" + str(temp[i])+ "C-fit-arm and backbone contribution(first am-

secon bb).txt","w") 
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        for j in range (1 ,length_MQ[i]): 

            print(x_mq[j-1], '     ',data[i,j,1], '     ' , data[i,j,2], '     ' , fit_MQ[j-1], '     ' , fit_DQ[j-1], '     ' , 

data[i,boundry[i],0], file=f) 

            print(x_mq[j-1], '     ' , fit_DQ_arm_report [j-1] , '     ',fit_DQ_bb_report [j-1], file=g) 

        f.close() 

        g.close() 

    tau_a = tau_a / 1000 

    tau_clf_bb = tau_clf_bb /1000 

    tau_reptation = tau_reptation /1000 

    h = open(outputadress + "\\relaxation spectrum at 0C-arm-CLFbb-reptation.txt","w") 

    for j in range (1,n_tau+1): 

        print(j, '     ' , tau_a [j] , '     ',tau_clf_bb[j], '     ',tau_reptation[j], file=h) 

    h.close() 

    time_correlation = np.logspace (-8, 4, 60) 

    #fi_unrelaxed = v_frac_unrelaxed_segment(time_correlation , tau_reptation[rep_treshold], x_c, 

fi_a, fi_bb, rep_treshold) 

    corr_address_arm = outputadress + "\\correlation functions_arm"  

    corr_address_bb = outputadress + "\\correlation functions_bb" 

    corr_fun_bb_rept = np.zeros (len(time_correlation)) 

    if not os.path.exists(corr_address_arm): 

        os.makedirs(corr_address_arm) 

    if not os.path.exists(corr_address_bb): 

        os.makedirs(corr_address_bb) 

    for j in range(1, n_tau+1): 

        x= j/n_tau 

        corr_fun_arm = ((1-fi_a*x))** (2*alpha_NMR) * np.exp(-time_correlation/tau_a[j]) 

        f = open(corr_address_arm + "\\arm_Seg_No_" + str(j)+ ".txt","w") 

        for cc in range (len(time_correlation)): 

            print(time_correlation[cc], '     ',corr_fun_arm[cc], file=f) 

        if j <= rep_treshold:             

            if j < rep_treshold: 

                g = open(corr_address_bb + "\\clf_bb_Seg_No_" + str(j)+ ".txt","w") 

                corr_fun_bb_clf = (fi_bb*(1-x))** (2*alpha_NMR) * np.exp(-time_correlation/tau_clf_bb[j]) 

                for t in range(len(time_correlation)): 

                    print(time_correlation[t], '     ',corr_fun_bb_clf[t], file=g) 

 

            else: 

                g = open(corr_address_bb + "\\rept_bb_Seg_No_" + str(j)+ ".txt","w") 

                for tt in range(count_rep): 

                    pp = 2*tt+1 

                    corr_fun_bb_rept = corr_fun_bb_rept + (fi_bb*(1-x))** (2*alpha_NMR) * (8/(np.pi**2 * 

(pp)**2))* np.exp(-time_correlation/(tau_reptation[rep_treshold]/(pp)**2)) 

                for t in range(len(time_correlation)): 

                    print(time_correlation[t], '     ',corr_fun_bb_rept[t], file=g) 

            g.close() 

        f.close() 

    init_range = x_mq[0]* shift_factor[1]/1000 

    upper_range = x_mq[len(x_mq)-1] * shift_factor [n]/1000 

    f = open(outputadress + "\\NMR-covered range.txt","w") 

    print("initial range=", init_range, file=f) 

    print("end range=", upper_range, file=f) 
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    f.close() 

    return fit_sum 

def fitting_scipy(comboX, comboY,initialParameters, outputadress): 

    #initialParameters = np.array([0.1, 2, 0.2]) 

    bnd= [[0.00001, 68, 0.00001, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 

0.01],[2, 9000, 2000, "inf", "inf", "inf", "inf", "inf", "inf", "inf", "inf", "inf", "inf", "inf", "inf", "inf", "inf" ]] 

    # curve fit the combined data to the combined function 

    fittedParameters, pcov = curve_fit(integral_fit, comboX, comboY, initialParameters, bounds= bnd) 

    standard_dev = np.sqrt(np.diag(pcov)) # compute one standard deviation errors on the parameters 

    return fittedParameters 

def AWEXP_fit (): 

    global outputadress 

    outputadress = loc + "\hierarchical-sb-modified-by-Mcleisch" 

    if not os.path.exists(outputadress): 

        os.makedirs(outputadress) 

    # ASSIGN DIRECTORY FOR SAVING THE FIGURE 

    combo = combine_data (data,n) 

    comboX = combo[0] 

    comboY = combo[1] 

    initial_par= np.array([0.24, 4500, 0.15, 4 , 5 ,7 , 9, 9 , 10, 11, 15, 25, 35, 45, 45, 45, 50]) 

    #T2_i = np.array([21, 88, 5, 14, 6.6, 23, 8.5, 32, 12, 34, 16, 35, 15, 54, 17, 70]) 

    #initial_par = np.append(initial_par, T2_i) 

    results = fitting_scipy(comboX, abs(comboY) **(1/root), initial_par, outputadress) 

    y_r =(integral_fit(comboX, *results) )**root 

    R2_DQ = np.zeros(n+1) 

    R2_MQ = np.zeros(n+1) 

    chi_2 = np.zeros(n+1) 

    pointer = 0 

    for i in range (1,n+1): 

        R2_DQ[i] = R_square ((comboY[pointer:pointer + boundry[i]-1]), y_r[pointer: pointer + 

boundry[i]-1]) 

        R2_MQ[i] = R_square ((comboY[pointer + boundry[i]-1:pointer + boundry[i]-1 + length_MQ[i]-1]), 

y_r[pointer + boundry[i]-1:pointer + boundry[i]-1 + length_MQ[i]-1]) 

        chi_2[i] = chi_squared (y_r[pointer: pointer + boundry[i]-1 + length_MQ[i]-1],comboY[pointer: 

pointer + boundry[i]-1 + length_MQ[i]-1]) 

        pointer = pointer + boundry[i]-1 + length_MQ[i]-1 

     

    print_result(results,R2_DQ,  R2_MQ, chi_2, outputadress) 

    #comboX_compelete = time 

    y_r_compelete =(integral_fit_compelete(data[1,1:length_MQ[1], 0], *results) ) 

    plot_result (y_r_compelete, outputadress) 

    # PRINT THE RESULTS AND SAVING IT TO A FILE IN OUTADDRESS. 'a' is reffered to 

appending the file. it means it add new results to previous ones. if you want to delete previous you 

shod use 'w' 

    # build the correlation function 

     

    #plt.plot(correlation[:,0], correlation[:,1] , 'k.') 

    #plt.xscale('log') 

    #plt.yscale('log') 

    #plt.savefig(outputadress +"/streched-exp-correlation.png", dpi=600) 

 

    #plt.clf() 
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    #return correlation 

start_time = datetime.now() 

M_0 = 68.1 

M_a = 13800 

M_bb = 68800 

N_a = int(round(M_a / M_0,0)) 

N_bb = int(round(M_bb / M_0,0)) 

fi_a = 0.633 

fi_b = 1 - fi_a 

alpha = 4/3  

alpha_NMR = 4/3 

p = (12)**-0.5 

q = 8.5 

count_rep = 10 # number mods for determining reptation motion 

n_tau = 100  #number of segments in backbone or side chain 

root = 2 # all data fitted in the squared-root form 

c1 = 6.14015 #WLF constant 

c2 = 114.791 #WLF constant 

temp = np.zeros(10) 

files = 10 # maximum number of text file in the folder 

shift_factor = np.zeros(10) 

data_real = np.zeros(shape = (files,100,3)) 

data = np.zeros(shape = (files,100,3)) 

boundry =  np.zeros(10, dtype= int) 

length_MQ =  np.zeros(10, dtype=int) 

loc = input("please give me the address of the folder which contains your data") 

n = data_preparation() 

f1 = np.zeros(n+1) 

time = data[1,0:length_MQ[1],0] 

AWEXP_fit () 

end_time = datetime.now() 

print('Duration: {}'.format(end_time - start_time)) 

“ 

 

For fitting the data with the time-dependent fraction of unrelaxed segments 

(Dres~Ne^-0.5), just two functions are changed in the previous code: 

“ 

def fi_timedependent_calculator (x_mq, Dres, t0, tau_arm, tau_bb, tau_rep, x_c, fi_a, fi_bb): 

    DQ_exp_term= np.zeros(len(x_mq)) 

    DQ_sinh_term= np.zeros(len(x_mq)) 

    MQ_exp_term= np.zeros(len(x_mq)) 

    zeta_arm = np.zeros(n_tau) 

    zeta_bb = np.zeros(n_tau) 

    for i in range(1,n_tau+1): 

        x_ab = i/n_tau 

        zeta_arm = (t0* tau_arm[i])/(t0+ tau_arm[i]) 

        zeta_bb = (t0* tau_bb[i])/(t0+ tau_bb[i]) 

        DQ_exp_term= DQ_exp_term + fi_a* inside_exp_term_dq (x_mq, Dres, zeta_arm)/n_tau 

        DQ_sinh_term= DQ_sinh_term + fi_a* inside_sinh_term_dq (x_mq, Dres, zeta_arm)/n_tau 

        MQ_exp_term= MQ_exp_term + fi_a* inside_exp_term_mq (x_mq, Dres, zeta_arm)/n_tau 



Appendices 

 

111 

        if x_ab <= x_c: 

            DQ_exp_term= DQ_exp_term + fi_bb* inside_exp_term_dq (x_mq, Dres, zeta_bb)/n_tau 

            DQ_sinh_term= DQ_sinh_term + fi_bb* inside_sinh_term_dq (x_mq, Dres, zeta_bb)/n_tau 

            MQ_exp_term= MQ_exp_term + fi_bb* inside_exp_term_mq (x_mq, Dres, zeta_bb)/n_tau 

    zeta_rep = t0 

    DQ_exp_term= DQ_exp_term + fi_bb * (1-x_c)* inside_exp_term_dq(x_mq, Dres, zeta_rep) 

    DQ_sinh_term= DQ_sinh_term + fi_bb * (1-x_c)* inside_sinh_term_dq(x_mq, Dres, zeta_rep) 

    MQ_exp_term= MQ_exp_term + fi_bb * (1-x_c)* inside_exp_term_mq(x_mq, Dres, zeta_rep) 

     

    return DQ_exp_term, DQ_sinh_term, MQ_exp_term 

def integral_fit (comboX, *par): 

    #Par[i], 0=Dres,1=Me, 2=taue, 3=q, 4=T1,5=T2, 6=T2 7=T3 ,8=T4, 9=T5, 10= T6, 9=T7, 10 = T2_1, 

11= T2_2 

    #x_dq = comboX[:boundry] # first data 

    #x_mq = time[1:length_MQ[1]] # second data 

    s_a = np.zeros(n_tau+1) 

    x_bb = np.zeros(n_tau+1) 

    for i in range (1, n_tau+1): 

        s_a[i] = i/n_tau 

        x_bb[i] = i/n_tau 

    fit_sum = np.array([]) 

    Me = par[1] 

    tau_e = par[2] 

    #q = par[3] 

    Z_a = M_a/Me 

    Z_bb = M_bb/Me * (1-(2/(q+1))) 

    #p = (12)**-0.5 

    fi_b = M_bb/(M_bb + q*M_a) 

    fi_a_real = 1-fi_b 

    fi_bb = fi_b# * (1- (2/(q+1))) 

    fi_a = 1-fi_bb 

    tail_bb = 0 #fi_b * (2/(q+1)) 

    U_a = (15/4)* Z_a* ((1-((1-fi_a*s_a)**(alpha+1))*(1+(1+alpha)*fi_a*s_a)))/(fi_a**2 * (alpha+1) * 

(alpha+2)) 

    tau_early = (225/256)*(np.pi**3) * tau_e* (Z_a* s_a)**4 

    tau_late = (np.pi**5 *( 2/15))**0.5 * tau_e * Z_a**1.5* np.exp(U_a)/(s_a * (1-(fi_a*s_a))**alpha) 

    tau_a = (tau_early * np.exp(U_a))/(1+(tau_early*np.exp(U_a)/tau_late)) 

    tau_a_longest = tau_a[n_tau] 

    tau_clf_bb = rett_bb(x_bb, tau_a_longest, p , q, Z_bb, fi_bb) 

    tau_reptation = (25/(8*np.pi**2 * p**2)) * (1-x_bb)**2 * Z_bb **2 * fi_bb**(2*alpha) * 

tau_a_longest * q 

 

    for i in range (1,n+1): 

        x_mq = data[i,1:length_MQ[i],0] 

        fit_DQ = np.zeros(len(x_mq)) 

        fit_MQ = np.zeros(len(x_mq)) 

        fit_DQ_arm = np.zeros(len(x_mq)) 

        fit_MQ_arm = np.zeros(len(x_mq)) 

        fit_DQ_bb = np.zeros(len(x_mq)) 

        fit_MQ_bb = np.zeros(len(x_mq)) 

        fit_DQ_rep = np.zeros(len(x_mq)) 

        fit_MQ_rep = np.zeros(len(x_mq)) 
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        #x_c = 1 

        border_bb = 0 

        #ret_rep = True 

        tau_arm = tau_a/shift_factor[i] 

        tau_s = tau_clf_bb/ shift_factor[i] 

        tau_rept = tau_reptation/ shift_factor[i] 

        j=1 

        ss = True 

        while tau_arm[j] *tail_factor < x_mq[0] and ss: 

            j+=1 

            if j>n_tau: 

                ss= False 

                j-=1 

        border_arm = j-1 

         

        tt = 1 

        while tau_s[tt] < tau_rept[tt]: 

            if tau_s[tt] * tail_factor < x_mq[0]: 

                border_bb = tt 

            tt+=1 

        x_c = (tt-1)/n_tau 

        tail = fi_a_real* ((border_arm/n_tau)) + (tail_bb)+ fi_bb* (border_bb/n_tau) 

        tau_rep = tau_rept[tt] 

        for j in range (1,n_tau+1): 

            if tau_arm[j] *tail_factor > x_mq[0]: 

                inside_signalterms= fi_timedependent_calculator(x_mq, par[0], tau_arm[j], tau_arm, tau_s, 

tau_rep, x_c, fi_a, fi_bb) 

                fit_DQ_arm = fit_DQ_arm + np.exp(inside_signalterms[0]) * 

np.sinh(inside_signalterms[1])/(n_tau) 

                fit_MQ_arm = fit_MQ_arm + np.exp(inside_signalterms[2])/(n_tau) 

            if j < tt: 

                if tau_s[j] * tail_factor > x_mq[0]: 

                    inside_signalterms= fi_timedependent_calculator(x_mq, par[0], tau_s[j], tau_arm, tau_s, 

tau_rep, x_c, fi_a, fi_bb) 

                    fit_DQ_bb = fit_DQ_bb + np.exp(inside_signalterms[0]) * 

np.sinh(inside_signalterms[1])/(n_tau) 

                    fit_MQ_bb = fit_MQ_bb + np.exp(inside_signalterms[2])/(n_tau) 

 

        inside_expterm_dq = np.zeros(len(x_mq)) 

        inside_sinhterm_dq = np.zeros(len(x_mq)) 

        inside_expterm_mq = np.zeros(len(x_mq)) 

        for tt in range(count_rep): 

            pp = 2*tt +1 

            inside_signalterms= fi_timedependent_calculator(x_mq, par[0], tau_rep/(pp**2), tau_arm, 

tau_s, tau_rep, x_c, fi_a, fi_bb) 

            inside_expterm_dq = inside_expterm_dq +  (8/(np.pi**2 * (pp)**2))* inside_signalterms[0] 

            inside_sinhterm_dq = inside_sinhterm_dq + (8/(np.pi**2 * (pp)**2))* inside_signalterms[1] 

            inside_expterm_mq = inside_expterm_mq + (8/(np.pi**2 * (pp)**2))* inside_signalterms[2] 

 

        fit_MQ_rep = np.exp(inside_expterm_mq) 

        fit_DQ_rep = np.exp(inside_expterm_dq)* np.sinh(inside_sinhterm_dq) 

        #tail = fi_a* ((border_arm/n_tau)) + (tail_bb)+ fi_bb* (border_bb/n_tau) 
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        f1[i] = 1-tail 

        fit_DQ = (fit_DQ_arm * fi_a_real + fi_bb* (fit_DQ_bb + (1-x_c)* fit_DQ_rep))* relaxation(x_mq, 

par[2+i]) #* f1[i] 

        fit_MQ = (fit_MQ_arm * fi_a_real + fi_bb* (fit_MQ_bb + (1-x_c)* fit_MQ_rep)) * relaxation(x_mq, 

par[2+i])  + (1-f1[i])* relaxation(x_mq, par[2+n+i]) 

 

        fit_sum = np.concatenate((fit_sum, fit_DQ[0:boundry[i]-1], fit_MQ))                                 

    return fit_sum**(1/root) 

“ 

 

It is noted that the “integral_fit_complete” function should be written similarly to 

the “integral_fit” function. In the case of Dres~Ne
-1, numerical integration is applied 

for fitting the data. The functions being needed to be changed, are written in the 

following. 

“ 

def frac_unrelaxed_segment(t, tau_rep, x_c, fi_a, fi_bb): 

    #print(tau_arm) 

    unrelaxed_fraction = fi_a * relaxed_segments_counter (t, tau_arm[1:])/n_tau + 

fi_bb*(relaxed_segments_counter (t, tau_s[1:rep_treshold])/n_tau + (1-x_c))#* rep_tube_survival(t, 

tau_rep)) 

    return unrelaxed_fraction 

def frac_unrelaxed_segment_final(t, tau_rep, x_c, fi_a, fi_bb, rep_treshold): 

    #print(tau_arm) 

    unrelaxed_fraction = fi_a * relaxed_segments_counter (t, tau_a[1:])/n_tau + 

fi_bb*(relaxed_segments_counter (t, tau_clf_bb[1:rep_treshold])/n_tau + (1-x_c))#* 

rep_tube_survival(t, tau_rep)) 

    return unrelaxed_fraction 

def relaxed_segments_counter (t, tau): 

    #count= np.zeros(len(tau)) 

    count = np.exp(-t/tau) 

    return sum(count) 

def rep_tube_survival(t, tau_rep): 

    tube_survival = 0 

    for i in range(count_rep): 

        pp= 2*i+1 

        tube_survival = tube_survival + (8/(np.pi**2 * (pp)**2))* relaxation (t, tau_rep/(pp**2)) 

    return tube_survival 

         

def integration(x_mq, Dres, tau_d, tau_rep, x_c, fi_a, fi_bb): 

    integrand_fi_1 = lambda t: frac_unrelaxed_segment(t, tau_rep, x_c, fi_a, fi_bb)**NMR_alpha * 0.2* 

(np.pi**2)* (Dres**2 * np.exp(-t/tau_d))  

    integrand_fi_2 = lambda t: frac_unrelaxed_segment(t, tau_rep, x_c, fi_a, fi_bb)**NMR_alpha * t* 

0.2* (np.pi**2)* (Dres**2 * np.exp(-t/tau_d)) 

    #integrand_fi1_2 = lambda t: (x_mq-t)* 0.2* 2* (np.pi**2)* ((Dstat**2 - Dres**2) *np.exp(-

(t/tf)**B_f) + Dres**2 * np.exp(-(t/ts)**B_s)) 

    #integrand_fi1_fi2_1 = lambda t: t* 0.2* (np.pi**2)* ((Dstat**2 - Dres**2) *np.exp(-(t/tf)**B_f) + 

Dres**2 * np.exp(-(t/ts)**B_s)) 

    integrand_fi1_fi2_2 = lambda t: frac_unrelaxed_segment(t, tau_rep, x_c, fi_a, fi_bb)**NMR_alpha * 

(2*x_mq-t)* 0.2* (np.pi**2)* (Dres**2 * np.exp(-t/tau_d)) 
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    f_1 = integration_opt_fi1 (integrand_fi_1, x_mq) 

    f_2 = integration_opt_fi2 (integrand_fi_2, x_mq) 

    #f_1_check = quad(integrand_fi_1, 0, x_mq)[0] 

    #f_2_check = quad(integrand_fi_2, 0, x_mq)[0] 

    #print(x_mq,"   ",f_1, "   ", f_1_check) 

    #print(f_2, "   ", f_2_check) 

    return 2*(x_mq*f_1 - f_2), (f_2 + quad(integrand_fi1_fi2_2, x_mq, 2*x_mq)[0]) 

and the signal within the function integral_fit is measured as follows: 

for j in range (1,n_tau+1): 

            if tau_arm[j] * tail_factor > x_mq[0]: 

                fi1_2 , fi1_fi2 = v_integration(x_mq, par[0], tau_arm[j], tau_rep, x_c, fi_a, fi_bb) # V_... is 

the vectorized form of the function 

                fit_DQ_arm = fit_DQ_arm + np.sinh(fi1_fi2) * np.exp(-fi1_2)/n_tau 

                fit_MQ_arm = fit_MQ_arm + (np.exp(fi1_fi2) * np.exp(-fi1_2))/n_tau 

 

            if j < rep_treshold: 

                if tau_s[j] * tail_factor > x_mq[0]: 

                    fi1_2 , fi1_fi2 = v_integration(x_mq, par[0], tau_s[j], tau_rep, x_c, fi_a, fi_bb) 

                    fit_DQ_bb = fit_DQ_bb + np.sinh(fi1_fi2) * np.exp(-fi1_2)/n_tau 

                    fit_MQ_bb = fit_MQ_bb + (np.exp(fi1_fi2) * np.exp(-fi1_2))/n_tau 

 

        fi1_2_sum = np.zeros(len(x_mq)) 

        fi1_fi2_sum = np.zeros(len(x_mq)) 

        for tt in range(count_rep): 

            pp = 2*tt +1 

            fi1_2 , fi1_fi2 = v_integration(x_mq, par[0], tau_rep/(pp**2), tau_rep, x_c, fi_a, fi_bb) 

            fi1_2_sum = fi1_2_sum + (8/(np.pi**2 * (pp)**2))* fi1_2 

            fi1_fi2_sum = fi1_fi2_sum + (8/(np.pi**2 * (pp)**2))* fi1_fi2 

and this line has to be added to the main code 

v_integration = np.vectorize(integration) 

 

D. Python codes for fitting rheological data 

The following code was used for fitting rheological data of the comb-PI sample The 

code gets the address where the text file (data) is saved. The data is loaded and fit 

based on the DTD model (time-dependent unrelaxed-segments fraction) then the 

final results are saved in the same folder. 

“ 

import numpy as np 

import matplotlib.pyplot as plt 

import os 

from scipy.optimize import curve_fit, minimize 

import os 

from scipy.integrate import quadrature, quad 

from datetime import datetime 

import math 

def data_preparation() :     
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    for file in os.listdir(loc): 

        if file.endswith(".txt"): 

            inputaddress = os.path.join(loc, file) 

            namefile = os.path.join(file) 

            namefile = namefile[:-4] 

            global outputadress 

            outputadress = loc +"\\" + namefile + "\\time dependent unrelaxed fraction" 

            # READING THE TEXT FILE AND COPY IT TO DATA 

            data1 = np.loadtxt(inputaddress) 

            data1 = data1[data1.min(axis=1)>=0,:] 

    return data1 

def R_square (dat, fit_dat): 

    return  1-(np.sum((dat - fit_dat)**2) / np.sum(((dat-np.mean(dat))**2))) 

def residue (dat, fit_dat):  

    return (dat - fit_dat) 

def rouse_mode(w, tau_e, Z_a, N): 

    rouse_arm_stor = 0 

    rouse_arm_loss = 0 

    for i in range (1, N): 

        if i < int(round(Z_a,0)): 

            rouse_arm_stor = rouse_arm_stor + (0.2/Z_a)*(((tau_e*w*Z_a**2)**2)/((tau_e*w*Z_a**2)**2 + 

i**4)) 

            rouse_arm_loss = rouse_arm_loss + (0.2/Z_a)*((tau_e*w*Z_a**2 * i**2)/((tau_e*w*Z_a**2)**2 

+ i**4)) 

        else: 

            rouse_arm_stor = rouse_arm_stor + (1/(Z_a))*(((tau_e*w*Z_a**2)**2)/((tau_e*w*Z_a**2)**2 + 

4*i**4)) 

            rouse_arm_loss = rouse_arm_loss + (1/(Z_a))*((tau_e*w*Z_a**2 * i**2 * 

2)/((tau_e*w*Z_a**2)**2 + 4*i**4)) 

    return rouse_arm_stor, rouse_arm_loss 

 

def retraction_mode_arm (w, tau_e, Z_a): 

    retrac_arm_stor = 0 

    retrac_arm_loss = 0 

    for i in range(1, n_tau+1): 

        s_a = i/n_tau 

        U_a = (15/4)* Z_a* ((1-((1-fi_a*s_a)**(alpha+1))*(1+(1+alpha)*fi_a*s_a)))/(fi_a**2 * (alpha+1) * 

(alpha+2)) 

        tau_early = (225/256)*(np.pi**3) * tau_e* (Z_a* s_a)**4 

        tau_late = (np.pi**5 *( 2/15))**0.5 * tau_e * Z_a**1.5* np.exp(U_a)/(s_a * (1-(fi_a*s_a))**alpha) 

        tau_arm = (tau_early * np.exp(U_a))/(1+(tau_early*np.exp(U_a)/tau_late)) 

        relaxation_time_arm[i] = tau_arm 

        retrac_arm_stor = retrac_arm_stor + (((tau_arm*w)**2)/((tau_arm*w)**2+1))/n_tau 

        retrac_arm_loss = retrac_arm_loss + (((tau_arm*w))/((tau_arm*w)**2+1))/n_tau 

    return retrac_arm_stor, retrac_arm_loss 

def U_bb_xb(x_b): 

    return (1-((1-x_b)**(alpha+1) * (1+(1+alpha)*x_b))) 

def diff_1_Ub (x_b, fi_bb, s_b): 

    c = 15 *(-((1 + alpha)* (1 - x_b)**(1 + alpha)) + (1 + alpha)* (1 - x_b)**alpha *(1 + (1 + alpha)* x_b)) 

* fi_bb**alpha * s_b / (8* (1 + alpha)* (2 + alpha)) 

    return c 
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def diff_2_Ub(x_b, fi_bb, s_b): 

    c = 15 *(2 *(1 + alpha)**2 *(1 - x_b)**alpha - alpha* (1 + alpha)* (1 - x_b)**(-1 + alpha) *(1 + (1 + 

alpha)* x_b))* fi_bb**alpha * s_b/ (8* (1 + alpha)* (2 + alpha)) 

    return c 

def rett_bb(x_b, tau_a_long, p, q, s_b): 

    fi_bb = fi_b #* (1- (2/(q+1))) 

    #tau_b early in case of lightly branched combs 

    #tau_bb_early = 25/64 *(1/(p**2)) * f * s_b**2 * x_b**2 *tau_a_long * fi_bb**(2*alpha) 

    tau_bb_early = 375/8192 *(np.pi/(p**2)) * q * s_b**3 * x_b**4 *tau_a_long * fi_bb**(3*alpha) 

    U_b = (15*s_b*(fi_bb**alpha)/(8*(1+alpha)*(2+alpha))) * U_bb_xb(x_b) 

    tau_bb_late = 25 * s_b**2 * fi_bb**(2*alpha) * q * tau_a_long * np.exp(U_b)* 

((2*np.pi/(diff_2_Ub(0, fi_bb, s_b)))**0.5)/(8*p**2 * diff_1_Ub (x_b, fi_bb, s_b)) 

    return (tau_bb_early * np.exp(U_b))/(1+(tau_bb_early * np.exp(U_b)/tau_bb_late)) 

def retract_rep_bb (w, tau_e, Z_bb, Z_a, q): 

    fi_bb = fi_b #* (1- (2/(q+1))) 

    i = 1 

    s_a = 1 

    p = (12)**-0.5 

    U_a = (15/4)* Z_a* ((1-((1-fi_a*s_a)**(alpha+1))*(1+(1+alpha)*fi_a*s_a)))/(fi_a**2 * (alpha+1) * 

(alpha+2)) 

    tau_early = (225/256)*(np.pi**3) * tau_e* (Z_a* s_a)**4 

    tau_late = (np.pi**5 *( 2/15))**0.5 * tau_e * Z_a**1.5* np.exp(U_a)/(s_a * (1-(fi_a*s_a))**alpha) 

    tau_a_longest = (tau_early * np.exp(U_a))/(1+(tau_early*np.exp(U_a)/tau_late)) 

 

    retrac_bb_stor = 0 

    retrac_bb_loss = 0 

    rep_bb_stor = 0 

    rep_bb_loss = 0 

    ret_rep = True 

    while ret_rep: 

        x_bb = i/n_tau 

        tau_s = rett_bb(x_bb, tau_a_longest, p , q, Z_bb) 

        relaxation_time_clf_bb[i] = tau_s 

        tau_rep = (25/(8*np.pi**2 * p**2)) * (1-x_bb)**2 * Z_bb **2 * fi_bb**(2*alpha) * tau_a_longest * 

q 

        relaxation_time_rep_bb[i] = tau_rep 

        if tau_s < tau_rep : 

            retrac_bb_stor = retrac_bb_stor + (((tau_s*w)**2)/((tau_s*w)**2+1)) 

            retrac_bb_loss = retrac_bb_loss + (((tau_s*w))/((tau_s*w)**2+1)) 

            i = i+1 

        else: 

            ret_rep = False 

        if i == n_tau+1 : 

            ret_rep = False 

            i=n_tau 

    global rep_treshold 

    if i!=n_tau : 

        x_c = (i-1)/n_tau 

        rep_treshold = i 

        tau_rep = relaxation_time_rep_bb[rep_treshold] 

        for j in range (count_rep): 
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            pp = 2*j+1 

            rep_bb_stor = rep_bb_stor + ( (8/(np.pi**2 * 

(pp)**2))*(((tau_rep*w/(pp**2))**2)/((tau_rep*w/(pp**2))**2 + 1))) 

            rep_bb_loss = rep_bb_loss + ( (8/(np.pi**2 * (pp)**2))* ((tau_rep*w/ (pp)**2)/((tau_rep*w/ 

(pp)**2)**2 + 1))) 

 

    return (retrac_bb_stor/n_tau) + (1-x_c)* rep_bb_stor, (retrac_bb_loss/n_tau) + (1-x_c)* rep_bb_loss 

def frac_unrelaxed_segment(w, fi_a, fi_bb): 

    x_c = (rep_treshold-1)/n_tau 

    unrelaxed_fraction = fi_a * relaxed_segments_counter (w, relaxation_time_arm[1:])/n_tau + 

fi_bb*(relaxed_segments_counter (w, relaxation_time_clf_bb[1:rep_treshold])/n_tau + (1-x_c)) 

    return unrelaxed_fraction 

def relaxed_segments_counter (w, tau): 

    count = np.zeros(len(tau)) 

    for i in range(len(tau)): 

        if w*tau[i] >= 1: 

            count[i]= 1 *np.exp(-1/(w*tau[i])) 

        else: 

            count[i]=np.exp(-1/(w*tau[i])) 

    return sum(count) 

 

def combinedFunction_result(comboData, G0_e, G0_N, tau_e, N_e): 

    for i in range(n_tau): 

        relaxation_time_arm[i] = 0 

        relaxation_time_clf_bb[i] = 0 

        relaxation_time_rep_bb[i] = 0 

    Z_a = N_a/N_e 

    Z_bb = N_bb * (1-(2/(q+1))) /N_e 

    fi_bb = fi_b #* (1- (2/(q+1))) 

    w = comboData[0:length] # first data 

    retreac_rep = retract_rep_bb (w, tau_e, Z_bb, Z_a, q) 

    rouse_arm = rouse_mode(w, tau_e, Z_a, N_a) 

    rouse_bb = rouse_mode(w, tau_e, Z_bb, N_bb) 

    retraction_arm = retraction_mode_arm (w, tau_e, Z_a) 

    fi_t = v_frac_unrelaxed_segment(w, fi_a, fi_bb) 

    result_arm_1 = G0_e* fi_a* rouse_arm[0] + (fi_t**alpha_rheo)* G0_N* retraction_arm[0] 

    result_arm_2 = G0_e* fi_a* rouse_arm[1] + (fi_t**alpha_rheo)* G0_N* retraction_arm[1] 

    result_bb_1 = G0_e* fi_bb* rouse_bb[0]+ (fi_t**alpha_rheo)* G0_N* retreac_rep[0] 

    result_bb_2 = G0_e* fi_bb* rouse_bb[1] + (fi_t**alpha_rheo)* G0_N* retreac_rep[1] 

    result1 = (G0_e* fi_a* rouse_arm[0] + G0_e* fi_bb* rouse_bb[0]+ (fi_t**alpha_rheo)* fi_a* 

(1+alpha)* G0_N* retraction_arm[0] + (fi_t**alpha_rheo)* fi_bb* (1+alpha)* G0_N* retreac_rep[0]) 

    result2 = (G0_e* fi_a* rouse_arm[1] + G0_e* fi_bb* rouse_bb[1]+ (fi_t**alpha_rheo)* fi_a* 

(1+alpha)* G0_N* retraction_arm[1] + (fi_t**alpha_rheo)* fi_bb* (1+alpha)* G0_N* retreac_rep[1]) 

    print_data_result(result_arm_1, result_arm_2, result_bb_1, result_bb_2, result1, result2) 

    return np.append(result1, result2) 

     

def combinedFunction(comboData, G0_e, G0_N, tau_e, N_e): 

    Z_a = N_a/N_e 

    Z_bb = N_bb * (1-(2/(q+1))) /N_e 

    fi_bb = fi_b #* (1- (2/(q+1))) 

    w = comboData[0:length] # first data 
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    #fi_t is the fraction of unrelaxed segments as a function of t 

    retreac_rep = retract_rep_bb (w, tau_e, Z_bb, Z_a, q) 

    rouse_arm = rouse_mode(w, tau_e, Z_a, N_a) 

    rouse_bb = rouse_mode(w, tau_e, Z_bb, N_bb) 

    retraction_arm = retraction_mode_arm (w, tau_e, Z_a) 

    fi_t = v_frac_unrelaxed_segment(w, fi_a, fi_bb) 

    result1 = (G0_e* fi_a* rouse_arm[0] + G0_e* fi_bb* rouse_bb[0]+ (fi_t**alpha_rheo)* (1+alpha)* 

fi_a* G0_N* retraction_arm[0] + (fi_t**alpha_rheo)* fi_bb* (1+alpha)* G0_N* retreac_rep[0]) 

    result2 = (G0_e* fi_a* rouse_arm[1] + G0_e* fi_bb* rouse_bb[1]+ (fi_t**alpha_rheo)* fi_a* 

(1+alpha)* G0_N* retraction_arm[1] + (fi_t**alpha_rheo)* fi_bb* (1+alpha)* G0_N* retreac_rep[1]) 

     

    return np.append(np.log(result1), np.log(result2)) 

def combine_data (data_x1, data_y1, data_x2, data_y2): 

    combo_x = np.append(data_x1, data_x2) 

    combo_y = np.append(data_y1, data_y2) 

    return combo_x , combo_y 

def print_data_result(result_arm_1, result_arm_2, result_bb_1, result_bb_2, result1, result2): 

    f = open(outputadress + "\Result-data-arm.txt","w") 

    g = open(outputadress + "\Result-data-bb.txt","w") 

    h = open(outputadress + "\Resultdata.txt","w") 

    k = open(outputadress + "\Result-relaxation-times-arm-clf-rep.txt","w") 

    frc = data1[:,0] 

    for i in range (len(frc)): 

        print(frc[i], '     ',result_arm_1[i], '     ' , result_arm_2[i], file=f) 

        print(frc[i], '     ',result_bb_1[i], '     ' , result_bb_2[i], file=g) 

        print(frc[i], '     ',result1[i], '     ' , result2[i], file=h) 

    for i in range (n_tau): 

        print(relaxation_time_arm[i], '     ',relaxation_time_clf_bb[i], '     ' , relaxation_time_rep_bb[i], 

file=k) 

    f.close() 

    g.close() 

    h.close() 

    k.close() 

def chi_squared (variables): 

    G0_1, G0_2, G0_3, Tmed1, Tmed2, Tmed3, sigma1, sigma2, sigma3 = variables 

    expec_val = combinedFunction(comboX, G0_1, G0_2, G0_3, Tmed1, Tmed2, Tmed3, sigma1, 

sigma2, sigma3) 

    return np.sum((comboY-expec_val)**2) 

def print_result(fittedParameters,R2_G_stor,  R2_G_loss): 

    f = open(outputadress + "\Log-Maxwell-RESULT.txt","a") 

    print("fitting at", start_time, file= f) 

    print("G0_e: ", fittedParameters[0], '\n', "G0_N: ", fittedParameters[1], file= f) 

    print("tau_e: ", fittedParameters[2], '\n', "N_e: ", fittedParameters[3], '\n', file= f) 

    print ("R2_G_stor", R2_G_stor, '\t', "R2_G_loss", R2_G_loss, file=f) 

    f.close() 

def plot_result (X, Y, xx, yy): 

    plt.clf() 

    plt.plot(X[0:length],Y[0:length], 'k.', X[length:],Y[length:],'r.', xx[0:length], yy[0:length],'c-.', 

xx[length:], yy[length:],'c-.' ) 

    plt.rcParams["legend.fontsize"]= 10 

    plt.gca().legend(('storage modulus','loss modulus', 'dynamic dilution model')) 
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    plt.ylabel('modulus(Pa)', fontsize= 8) 

    plt.xlabel('angular frequency(w)', fontsize= 8) 

    plt.yscale('log') 

    plt.xscale('log') 

    # ADJUST SAVE FIGURE FILE 

    plt.savefig(outputadress +"/" + "Maxwell-model.png", dpi=600) 

    plt.clf() 

    f = open(outputadress + "\\datafit.txt","w") 

    for i in range(length): 

        print(X[i], Y[i], Y[i + length], yy[i], yy[i+length], file= f) 

    f.close() 

     

def fitting_scipy(frc, G_storage, G_loss): 

    if not os.path.exists(outputadress): 

        os.makedirs(outputadress) 

    global length  

    length = len (frc) 

    initialParameters = np.array([523284, 352974, 0.0001, 65]) 

    combo = combine_data (frc, G_storage,frc, G_loss) 

    global comboX, comboY 

    comboX = combo[0] 

    comboY = combo[1] 

    bnd= [[0, 0, 0.0000000001, 1],[np.inf, np.inf, 100, 150]] 

    # curve fit the combined data to the combined function 

    fittedParameters, pcov = curve_fit(combinedFunction, comboX, comboY, initialParameters, 

bounds= bnd) 

    y_r =(combinedFunction_result(comboX, *fittedParameters) ) 

    R2_G_stor = R_square (np.exp(comboY[0:length]), y_r[0:length]) 

    R2_G_loss = R_square (np.exp(comboY[length:]), y_r[length:]) 

    print_result(fittedParameters,R2_G_stor,  R2_G_loss) 

    plot_result (comboX, np.exp(comboY), comboX, y_r) 

    print (np.sqrt(np.diag(pcov))) 

    return fittedParameters 

 

M_0 = 68.1 

M_a = 13800 

M_bb = 68000 

q = 8.5 

N_a = int(round(M_a / M_0,0)) 

N_bb = int(round(M_bb / M_0,0)) 

fi_a = 0.633 

fi_b = 1 -fi_a 

alpha = 4/3 

alpha_rheo = 4/3 

f = 1 

v_frac_unrelaxed_segment = np.vectorize(frac_unrelaxed_segment) 

v_retract_rep_bb = np.vectorize(retract_rep_bb) 

v_retraction_mode_arm = np.vectorize(retraction_mode_arm) 

v_rouse_mode =np.vectorize(rouse_mode) 

n_tau = 100 

count_rep = 10 
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relaxation_time_arm = np.zeros(n_tau+1) 

relaxation_time_clf_bb = np.zeros(n_tau+1) 

relaxation_time_rep_bb = np.zeros(n_tau+1) 

root =2 

dist_num = 50 

start_time = datetime.now() 

loc = input("please give me the address of the folder which contains your data") 

data1 = data_preparation() 

result = fitting_scipy(data1[:,0], np.log(data1[:,1]),np.log(data1[:,2])) 

end_time = datetime.now() 

print('Duration: {}'.format(end_time - start_time)) 
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