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         Abstract

Sorangicin is a macrolide polyether antibiotic which was isolated from  Sorangium Cellu-

losum.  The structural  complexity and exciting biological  activity of sorangicin have pro-

moted our effort to develop an efficient and effective synthetic approach to fragments of sor-

angicin. To date there have been one total synthesis of sorangicin A and three partial syn-

theses reported. In this work a new modern and compact method for synthesizing the C(1)-

C(19) fragment of sorangicin A has been evaluated and as well as a new approach for syn-

thesizing the L-glucose fragment was developed. The construction of fragment III started by 

synthesizing fragment D, fragment E and fragment F. Fragment D was synthesized in twelve 

steps by starting from ethylene glycol and cis-2-butenediol. The ethylene glycol 170 was se-

lectively protected and oxidized to give TBS-protected aldehyde 18 and subsequent enanti-

oselective aldol reaction using D-proline as catalyst furnished the aldol product 23. The cis-

2-butenediol 173 was converted into the corresponding alkene 22 in three steps. The aldol 23 

and TMS-protected alkene  22 underwent Mukaiyama aldol reaction using MgBr2
.Et2O and 

subsequent treatment with HBr/AcOH afforded TBS-protected glucal  25  which underwent 

carbon-Ferrier rearrangement and oxidized using Sharpless condition to give 31. The alde-

hyde  31 was protected,  deprotected,  underwent Grignard addition and oxidized to afford 

ketone 180. Deprotection of methyl ketone 180, Mitsunobu inversion and finally protection 

with TBSCl afforded fragment  D. Fragment  E was synthesized by starting from D-valine 

which afforded in  three  steps  Seebach auxiliary  3.  The auxiliary  3  and 6-heptenoic-acid 

chloride 4 were coupled using n-BuLi and the coupled product 5 was changed in three steps 

to the corresponding alcohol 7. Subsequent Mitsunobu reaction condition and oxidation fur-

nished the corresponding sulfones, fragment  E and benzothiazole sulfone  14. Fragment  F 

was synthesized in three steps from 1,4-butanediol. The synthesis of fragment III was tested 

by coupling fragment D, fragment E and fragment F using modified Julia olefination by em-

ploying LiHMDS, KHMDS, NaHMDS, LDA and t-BuLi as bases. Different coupling reac-

tion conditions were evaluated including both premetallate and barbier conditions to couple 

the fragments.  
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Zusammenfassung
Sorangicin ist ein Makrolid-Polyether-Antibiotikum das aus  Sorangium cellulosum isoliert 

wurde. Die strukturelle Komplexität und interessante biologische Aktivität von Sorangicin 

haben uns in unseren  Bemühungen, einen  effizienten und effektiven synthetischen Ansatz 

für die Fragmente von Sorangicin zu entwickeln, gestärkt. Bisher ist eine Totalsynthese von 

Sorangicin  A bekannt und es ist von drei Teilsynthesen  berichtet worden.  In dieser Arbeit 

wurde  ein  neues,  modernes  und  kompaktes  Verfahren  zur  Synthese  des  C(1)-C(19)-

Fragment  von  Sorangicin  A getestet,  sowie  ein  neuer  Ansatz  für  die  Synthese  des  L-

Glucose-Fragmentes entwickelt. Die Synthese von Fragment  III baut auf die Synthese von 

Fragment  D, Fragment  E und  Fragment F auf. Fragment  D wurde,  ausgehend  von 

Ethylenglykol und cis-2-Butendiol in zwölf Stufen in einer Gesamtausbeute von über 25% 

synthetisiert. Ethylenglykol  170 wurde selektiv geschützt und oxidiert um den geschützten 

Aldehyd 18 zu erhalten. Die anschließende enantioselektive Aldolreaktion mit D-Prolin als 

Katalysator lieferte das Aldolprodukt 23. Aus cis-2-Butendiol 173 wurde in drei Stufen das 

entsprechend geschützte Alken 22 gebildet. Das Aldolprodukt 23 und das geschützte Alken 

22 wurden  einer  Mukaiyama-Aldolreaktion  mit  MgBr2
.Et2O  unterzogen  und  weiter  mit 

HBr/AcOH behandelt, um das TBS-geschützte Glucal  25 zu erhalten.  Um Fragment  D zu 

erhalten,  wurde  das  Glucal  25  einer  Carbon-Ferrier-Umlagerung  und  einer  Sharpless-

Oxidation  unterzogen,  danach  geschützt  und  wieder  entschützt,  einer  Grignard-Addition 

unterzogen  und  schließlich  oxidiert. Das  so  erhaltene  Methylketon  180  wurde  mittels 

Entschützung,  Mitsunobu-Inversion  und  abschließendes  TBS-Schützung  in  Fragment  D 

überführt.  Fragment  E wurde ausgehend von D-Valin synthetisiert, welches zunächst nach 

drei Stufen das Seebach-Auxiliar 3 lieferte. Das Auxiliar 3 wurde mit 6-Heptensäurechlorid 

4 zum  Produkt  5 gekuppelt.  Das  Kupplungsprodukt  5 wurde  über  drei  Stufen  zum 

entsprechenden Alkohol  7  umgewandelt und über eine anschließende Mitsunobu-Reaktion 

und Oxidation konnten die entsprechenden Sulfone,  Fragment  E und  14  erhalten werden. 

Die Synthese von Fragment  III wurde durch die Kopplung von Fragment  D, Fragment  E 

und Fragment   F mittels modifizierter Julia-Olefinierung durch den Einsatz von KHMDS, 

NaHMDS,  LDA  und  t-BuLi  als  Base  getestet.  Weiterhin  wurde  u.a.  der  Einfluß  der 

Reaktionsführung (Prämetallieg.  bzw.  Barbierbedingungen) untersucht. 
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Chapter 1- Background

Natural  products  have  been major  sources  of  medicine  in  the  last  few decades  and the 

development of various screening approaches improved the ease with which natural products 

can be used in drug discovery. Natural products can be extracted from various resources 

including plants, marine world, microorganisms, animals, venoms and toxins. Plants have 

always been a rich source of lead compounds (morphine, cocaine, nicotine). Many of these 

lead compounds are useful drugs in themselves (morphine) and others have been basis for 

synthetic drugs (local anesthetics developed from cocaine). Clinically useful drugs which 

have been recently isolated from plants include anticancer agent paclitaxel (taxol) from yew 

tree. Microorganisms such as bacteria and fungi have been invaluable for discovering drugs 

and lead compounds (Sorangicin, Epothilone). Soil and water samples collected have been 

leading to an impressive arsenal of antibacterial and antagonist agents such as cephalosporin, 

tetracycline,  and amino glycosides.  The marine  world has been a  source of biologically 

potent chemicals with interesting inflammatory, antiviral, and anticancer activity. Antitumor 

agents  derived  from  marine  sources  includes,  curacin,  discodermolide,  and  lovastatin. 

Animals  can  sometimes  be  a  source  of  new lead  compounds.  For  example,  a  series  of 

peptide antibiotics were extracted from skin of the African clawed frog. Epibatidine, potent 

analgesic, was obtained from the skin extracts of Ecuadorian frog. Venoms and toxins have 

been used as lead sources in the development of novel drugs such as teprotide, a peptide 

isolated from venom of the Brazilian viper, was the lead compound for the development of 

antihypertensive agents cilazapril and captopril. 

The reasons for the success of natural products are their great structural diversity and the fact 

that  evolution  over  millions  of  years  preselected  these  compounds  for  interaction  and 

activity. The dominance and pharmaceutical success of natural products is most obvious in 

the field of antibiotics. This was particularly evident in the areas of cancer and infectious 

diseases, where over 60% and 75% of these drugs, respectively, were shown to be of natural 

product origin[1]. Most antibacterial drugs introduced worldwide in the last three decades can 

be traced to natural products.  It is surprising that more than 200 antibacterial drugs which 

have been launched for human therapy since the invention of sulfonamides by Domagk in 

1935[2] belong to a limited number of antibacterial  classes. From 11 antibacterial  classes 

introduced for systemic use in humans, 8 are derived from natural products[4].
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Despite  the  overall  success  of  natural  products  and the  fact  that  antibiotics  have  saved 

millions  of lives, downsizing or even termination of both natural  products and antibiotic 

research have been observed in large pharmaceutical companies[4] in the last decade. Reasons 

for the decline of natural products research includes the following: (i) traditional extract-

based screening leads to the rediscovery of previously known compounds;  (ii)  structural 

complexity of natural products made total synthesis and derivation of them more difficult; 

(iii) because of supply problems, the time required to develop a natural product from an 

extract  hit  to  a  pharmaceutical  drug  is  long;  (iv)  focus  on  combinatorial  chemistry  to 

generate  huge  compound  library  is  needed  to  fulfill  the  demand  of  high-throughput- 

screening (HTS) technologies.

There are several reasons underlying the urgent need for new antibiotics, firstly, the fact that 

infectious  diseases  are  still  the  second major  cause  of  death  worldwide[4].  Secondly  the 

emergence and spread of multi-resistant pathogens particularly in the hospital environment 

as  well  as  constant  decrease  in  the  total  number  of  antibacterial  agents  that  have  been 

approved by drug controlling authorities.

1.1 Introduction

Gliding bacteria are a fascinating group of diverse microorganisms which have adapted to 

environments such as hydrothermal vents, tropical rainforests, marine shores, wastewater, 

deserts and intestinal tract of man and animals[3]. Due to their ubiquitous occurrence, gliding 

bacteria  play  a  major  role  in  microbial  ecology.  Gliding  is  defined  as  a  slow  surface 

associated translocation of a non-flagellated cell in the direction of its long axis. Bacteria 

with  gliding  motility  are  known  from  both  Gram-positive  and  Gram-negative  genera, 

crossing the entire spectrum of physiological types. Creeping movement is a consistent trait 

within  the  chloroflexi  which  represents  the  only  phylum  consisting  exclusively  gliding 

bacteria.  However most  gliding  species  originate  from cyanobacteria,  proteobacteria  and 

bacteroidetes. Based on their physiology gliding bacteria can be roughly divided into two 

distinct  groups.  The first  group consists  of  heterotrophic  organisms,  heterotrophs,  which 

decomposes macromolecular  substrates such as proteins and polysaccharides.  This group 

lack  genes  required  for  an  endogenous  production  of  certain  amino  acids  as  a  result 

predation has evolved as a reliable alternative to biosynthesis for this group. It comprises 
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myxobacteria, lysobacter, herpetosiphon, cytophaga and flavobacterium. The second group, 

phototrophs  and  autotrophs,  produce  complex  carbohydrates,  fats,  and  proteins  by 

themselves,  exhibit  an  autotrophic  way  of  life.  The  group  covers  cyanobacteria, 

proteobacteria,  thiothrix,  achromatium,  beggiatoa and  thioploca.  The autotrophs typically 

use  gliding  motility  in  order  to  adapt  to  shifting  growth conditions  within  their  natural 

habitat.

In the last four decades there have been an increase in the interest of research on gliding 

bacteria due to their great potential as source of potent natural products. Some of the potent 

natural  products  include  angiolam,  antibacterial  macrolide  agent,  which  inhibits  protein 

synthesis.  Phenalamide,  antifungal  and  anti-HIV  polyene  agent.  Epothilone,  a  cytotoxic 

macrolide which inhibits tubulin depolymerization. Myxochromide, a lipopeptide which acts 

as a pigment. Ripostatin, an antibacterial macrolide agent which inhibits RNA polymerase. 

Sorangicin, an antibacterial macrolide agent that inhibits RNA polymerase.

1.2 Myxobacteria as Proficient Producers of Novel Natural Products

The myxobacteria are a group of Gram-negative eubacteria belonging to the delta group of 

proteobacteria. They were originally isolated in 1892 by Roland Thaxter[5] who recognized 

them as a distinct and unusual group of bacteria. They are common in animal dung and or-

ganic-rich soils of neutral or alkaline medium. They are found everywhere, in all climate 

zones and vegetation belts, but are particularly numerous in semi-arid, warm areas such as 

Egypt, Northern India, and Southwestern United States. Some of them grow by utilizing cel-

lulose, but many of them feed themselves by secreting antibiotics to kill other bacteria and 

then produce an enzyme that lyses the cells of their prey. Myxobacteria have the largest gen-

omes known from bacteria and genome of one strain of sorangium cellulosum,  a cellulose 

degrader, which has been fully sequenced, is 13.04 Mbp long, about three times the size of 

the E. coli genome[3]. They are social bacteria with developed communication systems and 

produce fruiting bodies in starvation conditions. Fruiting bodies usually are 0.1-1mm in size 

and often can be recognized with the naked eye. Inside the maturing fruiting body, the veget-

ative cells convert into desiccation resistant myxospores and in this form the bacteria may 

survive 5-15 years of drought.  The vegetative cells of all myxobacteria are aerobic, elong-

ated rods with either rounded or tapered ends. They glide in water film across solid surfaces 

secreting slime (polysaccharide) tracks in which many cell migrate to produce feathery
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extensions at the colony margin. At the onset of nutrient depletion the cells migrate back 

along the slime tracks, aggregating by chemotaxis, to form large concentrations of cells.

Many compounds from myxobacteria are entirely new, mostly they are polyketides or pep-

tides often with very unusual amino acids and are synthesized by multienzyme complexes [3]. 

Myxobacteria has been source of many biologically active compounds such as rhizopodin 

which has a dramatic effect on cell morphology, chondramides which stimulate actin poly-

merization and stabilize the F-actin. Disorazol and tubulysin can be used as potential antic-

ancer drugs. Epothilone  which promotes tubulin polymerization and stabilizes microtubuli. 

Sorangicin a macrolide polyether antibiotic. The picture below represents a typical colony of 

myxobacteria (Figure. 1).

Figure. 1 Vegetative Cell of Myxobacteria Representative of the Suborder Cystobacterineae

1.3 Isolation and Structural Determination of Sorangicin

Sorangicin a macrolide polyether antibiotic which was first isolated in 1985 is a new class of 

macrolide natural products. The research groups of G. Höfle and H. Reichenbach [6] at the 

Helmholtz  Zentrum  fur  Infektionsforschung  in  Braunschweig,  Germany,  reported  the 

isolation of the novel antibiotic sorangicin from the gliding bacteria sorangium cellulosum. 

Importantly,  (+)-sorangicin  A,  the most  potent congener,  has demonstrated extraordinary 

antibiotic activity against a broad panel of both Gram-positive and Gram-negative bacteria. 

Subsequent mechanistic examination revealed that the selective biological response induced
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by sorangicin in prokaryotic cells arises from the inhibition of ribonucleic acid polymerase 

(RNAP). The minimal inhibitory concentration (MIC) values against Gram-negative bacteria 

range from 2-32 μg/ml  and for  Gram-positive  bacteria  the  MIC may be  less  10 μg/ml. 

Sorangicin has proved to be effective against experimental staphylococcal infections in rats 

and the mechanism of action has been shown to be the inhibition of the DNA dependent 

RNA  polymerase  in  staphylococcus  aureus and  E.  coli.  The  structure  of  sorangicin 

comprises a signature dioxabicyclo[3.2.1]octane skeleton in conjunction with a rare (Z,Z,E)-

trienoate  linkage,  both inscribed within  a highly unsaturated  31-membered macrolactone 

ring containing 15 stereogenic centers. The structure was determined by extensive use of 1H- 

NMR, 13C NMR, MS and UV data. From the main classes of sorangicin, sorangicin A and 

sorangicin  B,  (Figure. 2) have been studied in more details  compared with sorangioside 

(Figure. 2) and sorangicin C (Figure. 3). Sorangicin A has been effective antibiotic against 

tuberculosis and sorangicin B has been effective in treating hepatitis-B-virus.

Figure. 2 Classes of Sorangicin, Sorangicin A, Sorangicin B, Sorangioside

Figure. 3 Sorangicin C
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1.4 Overview of the Biological Activity of Sorangicin A    

A detailed study[7] into the structural, functional and genetic analysis of sorangicin suggests 

that sorangicin A is very much similar in antibiotic activity, with rifampicin (Figure. 4), an 

antibiotic which is commonly used to treat tuberculosis. This study revealed that sorangicin 

A lacks the chemical and structural similarity with  rifampicin, nevertheless it binds in the 

same antibiotic-binding subunit pocket as rifampicin.    

Figure. 4 Rifampicin

The results from sorangicin  A study[7] confirms that rifampicin and sorangicin  A binding 

sites of  RNA polymerase (RNAP) largely overlap. However the lack of cross-resistance at 

all of the tested positions suggests that there are subtle differences in the way the two antibi-

otics interact with RNAP. Functional analysis further revealed that the two antibiotics inhibit 

RNAP transcription in the same way, by blocking the synthesis of transcripts no longer than 

2–3 nucleotides in length. This is clearly by virtue of occupying the same site, which directly 

blocks the path of the elongating RNA product within the growing RNA/DNA hybrid. Sor-

angicin  A was observed to inhibit transcription initiation, but not elongation, similar to  ri-

fampicin. This genetic analysis also indicates that rifampicin is extremely sensitive to muta-

tions expected to change the shape of the antibiotic binding pocket but sorangicin A is not. 

This intrinsic conformational flexibility of sorangicin A allows it to adapt to change in the 

shape of the antibiotic binding pocket and this feature of sorangicin A has an important im-

plication in the design of drugs against rapidly mutating targets. The study also suggested 

that the three hydroxyls (C-21, C-22 and C-25) of sorangicin A are very important (Figure. 

5) for the antibiotic activity of sorangicin A. The two hydroxyls (C-21 and C-22) are critical 

for transcription inhibition as well as participate in hydrogen bonds when sorangicin inter-

acts with RNAP. Breaking the ring structure of  sorangicin, along with other chemical or 
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stereochemical changes eliminates the antibiotic activity of sorangicin, suggesting that the 

overall structure of sorangicin is critical for its activity[8]. Sorangicin A, the myxobacterium 

Sorangium  (Polyangium)  cellulosum,  strain  So  ce12,  was  initially  isolated  from  a  soil 

sample in 1978 from Xcaret[9], Mexico. It has a molecular weight of 806 g/mol, and molecu-

lar formula, C47H66O11, which was confirmed by negative ion F.A.B mass spectrometry and 

elemental analysis[10].

Figure. 5 Biological Activity of Sorangicin A

O

O

O

O

OH

HO

O

OH
HH

O

OH

O

1
9

21
22

25

31

37 43



Theoretical Part                                                                                                                         8

1.5 Prior Progress to the Total Synthesis of Sorangicin A 
1.5.1 Synthetic Efforts by Smith 
1.5.1.1 Synthesis of the THP Fragment

The Smith work group published the synthesis of the four fragments[11], [12] as well as the first 

total synthesis of sorangicin  A[13]. The Smith group developed synthetic route for the syn-

thesis of the bicyclic ether fragment, tetrahydropyran fragment (THP), dihydropyran frag-

ment (DHP), as well as the dienoate moiety. 

Scheme 1. Smith's Retrosynthesis of Sorangicin A

The synthesis of the THP fragment started by silylaton of the known conjugated β-hydroxy 

acid (+)-1 followed by condensation with the aldehyde (+)-2, facilitated by TMSOTf to af-

ford the dioxanone (+)-3 (Scheme 2). Petasis-Tebbe methylenation and exposure of the de-

rived enol ether to Me2AlCl to trigger Petasis-Ferrier rearrangement which provided tetrahy-
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Scheme 2. Initial THP Synthesis Trial
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Scheme 3. THP Synthesis
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(+)-12, (+)-13 in excellent yield. The minor diastereomer (+)-12 was completely converted 

to (+)-13 via oxidation and reduction. Reduction of methyl ketal  (+)-13 with  Et3SiH  pro-

moted by TMSOTf and MOM protection of the hydroxyl afforded tetrahydropyran fragment 

(+)-14 as a single diastereomer. Hydrozirconation/iodination followed by Suzuki-Miyaura 

coupling with alkyl boronate 15 next provided the trans olefin (+)-16. Removal of the benzyl 

group, protection of the diol and selective removal of the tert-butyldiphenylsilyl (BPS) group 

with hydroxide consecutively led to alcohol  (+)-17. Thio-ether formation of (+)-17 via a 

Mitsunobu reaction and oxidation of the sulfide to sulfone completed construction of frag-

ment  A. Sulfone (-)-A was thus prepared in 17 steps from commercially available starting 

material, with 17% overall yield. 

Scheme 4. Completion of THP Synthesis         
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1.5.1.2 Synthesis of the DHP Fragment

The synthesis of the DHP fragment B was started with enone (-)-24 exploiting a conjugate 

addition/oxygenation sequence.  Synthesis  of the requisite vinyl  bromide (-)-21 entailed a 

Myers alkylation between ketone (+)-18 and iodide 19 to furnish amide (+)-20. Reduction of 

amide (+)-20 followed by Corey-Fuchs homologation and hydrozirconation/bromination led 

to vinyl bromide (-)-21 as a single stereoisomer. Enone (-)-24 was prepared enantioselect-

ively via  cyclocondensation  between Danishefsky's  diene and aldehyde  22,  catalyzed  by 

chromium complex 23 (Scheme 5).

 Scheme 5. Synthesis of DHP Fragment
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Scheme 6. Completion of DHP Synthesis
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afforded the primary sulfonate (-)-37. Exposure of (-)-37 to KHMDS effected both epoxide 

formation  and  subsequent  epoxide  opening  providing  the  five  membered  ring  bicyclic 

ether(-)-38. 

Scheme 7. Bicycles Synthesis 
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Scheme 8. Synthesis of Bicycles and Trienoate Fragments
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Scheme 9. Modification of DHP Synthesis
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Scheme 10. First Total Synthesis of Sorangicin A
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1.5.2 Synthetic Efforts by Crimmins

Crimmins et al. reported[15] the construction of the C(29)-C(37) bicyclic ether by using the 

epoxy tosylate 65 (Scheme 11). The approach was designed around a three-step sequence of 

epoxide opening, epoxide formation and a second epoxide opening to afford the bicyclic 

fragment 66 from epoxide 65.

Scheme 11. Crimmins's Bicycles Synthesis        
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aldehyde 58 was immediately subjected to Brown asymmetric allylation to afford the diol 60 

which was exposed to PPTS and 4-methoxybenzaldehyde dimethyl acetal to afford the  p-

methoxyphenyl acetal  61. Treatment of alkene  61 with two equivalent of ethyl acrylate in 

the presence of Grubb's second generation catalyst G2 at room temperature provided unsat-

urated ester 62. Reduction of ester 62 by exposure to i-Bu2AlH afforded allylic alcohol 63 

and subsequent Sharpless asymmetric epoxidation furnished epoxide 64. Epoxy alcohol 64 

was  treated  with  p-toluenesulfonyl  chloride  under  basic  condition  to yield  tosylate  65 

(Scheme 11). Treatment of the epoxide 65 successively by 10% HCl, 10% NaOH and 10% 

aqueous HCl in THF/MeOH in one-pot synthesis furnished bicyclic ether  66. Crimmins et  

al. developed a very efficient route to the bicyclic fragment 66 of (+)-sorangicin A with only 

nine steps and proceeds in good overall yield.

1.5.3 Synthetic Efforts by Lee 

The Lee laboratory group published[16] synthetic routes for the dihydropyran fragment with 

out the side chain using ring closing metathesis reaction to form the six membered ring. The 

synthesis of DHP fragment  74 started with known chiral alcohol  67 and alkylation of  67 

with bromoacetic acid in the presence of NaH furnished glycolic acid 68. Treatment of the 

glycolic acid 68 with pivaloyl chloride and use of the lithiated oxazolidinone provided 70. 

Treatment of the acylated oxazolidinone 70 with acrolein provided the hydroxyl compound 

71.  TBS-protection  of  the  resulting  secondary alcohol  71 and  subsequent  reductive 

elimination of the auxiliary afforded the primary alcohol 72. Olefinic ring closing metathesis 

reaction in the presence of Grubb's first generation catalyst  73 provided the desired DHP 

core 74. 
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Scheme 12. Lee's DHP Fragment Synthesis
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Chapter 2- Objective of Thesis Research
2.1 Objective

The objective of this work was to develop an efficient synthetic route to the C(1)-C(19) 

fragment of sorangicin with high yield and very good stereoselectivity (Scheme13).

Scheme 13. Retrosynthesis of Sorangicin  
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2.2 Synthesis of Fragment I and II

The  synthesis  of  fragment  I  and  fragment II  as  well  as  trials  to  the  synthesis  of  the 

dihydropyran fragment were reported[17], [18], [19] from our work group.

The  synthesis  of  fragment  I and  fragment  II was  reported  by  Claudia  Schulz[20].  The 

synthesis of both tetrahydropyran fragment  I and bicyclic ether fragment  II were accessed 

from one common intermediate.

The synthesis of the fragments started from propanediol 81 which was selectively protected 

and  oxidized  to  provide  TBS-protected  aldehyde  82 and  subsequent asymmetric  Brown 

crotylation gave homoallylic alcohol 84. Protection of 84 with TIPSOTf gave terminal olefin 

85 (Scheme  14). Dihydroxylation  of olefin 85 under  Sharpless  condition gave  two 

diastereomeric diols 86a and 86b. The syn,syn-diol 86a was able to afford the THP fragment 

I while the anti,syn-diol 86b gave the bicyclic fragment II. 

The  construction  of  the  THP  fragment  was  continued  by  protecting  diol 86a and 

deprotection of the TBS-ether and oxidation of the alcohol provided aldehyde 87. Selective 

Horners-Wadsworth-Emmons  olefination  and  1,2-reduction  gave  allylic  alcohol 88. 

Epoxidation of the internal olefin followed by protection of the alcohol with BnBr provided 

the epoxide 89 and subsequent acidic deprotection promoted the exo-cyclization to afford 

the THP fragment I.



Theoretical Part                                                                                                                    22

Scheme 14. Synthesis of Fragment I
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and fragment  II. Selective cleavage of the PMB functionality of mesylate  96 with DDQ 

furnished alcohol 97 which was exposed to KHMDS to afford fragment II.

Scheme 15. Synthesis of Fragment II
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2.3 Synthesis of the Dihydropyran Fragment 

The trial to the synthesis of the dihydropyran fragment was reported from our work group by 

Olga Krug[21]. The synthesis of the DHP subunit started with known conversion of glucose 

98 to tri-O-acetyl glucal which was reduced by basic methanol solution to afford glucal 99 

(Scheme  16). Subjection  of  the  glucal  to TMSOTf  followed  by  the  addition  of 

allyltrimethylsilane (ATMS) afforded diol  100.  The diols were protected with TBSCl and 

underwent Sharpless dihydroxylation, oxidative cleavage of the diols with NaIO4 as well as 

subsequent  deprotection  and protection  afforded alcohol  101. Compound 101 underwent 

swern oxidation, Grignard addition and DMP oxidation to afford methyl ketone  102. The 

synthesis of the side chain fragment started by coupling the known Seebach auxiliary  103 

with 6-heptenoyl chloride 104. Subsequent alkylation with MeI and reductive removal of the 

auxiliary with LAH resulted in alcohol  77. Treatment of 77 with Mitsunobu condition and 

subsequent oxidation gave the desired sulfone 105. The methyl ketone 102 and sulfone 105 

were coupled  using Julia-Kocienski  olefination  condition  to  afford  in  three  steps  the  Z- 

isomer acid 106.
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Scheme 16. DHP fragment Synthesis trial
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Chapter 3- Synthesis of Fragment D

3.1 Synthesis of L-hexoses

The synthesis of L-hexoses has been an interest for organic chemists for the past few dec-

ades. Many organic chemists have been trying to develop methods for synthesizing hexoses. 

The synthesis of L-hexoses involves the construction of four stereocenters with five similar 

hydroxyl groups. The hexoses are stereoisomers having a concatenation of four contiguous 

hydroxy-bearing carbogenic centers. Their enantio-controlled synthesis therefore requires a 

procedure leading to eight pairs of stereoisomers in enantio-and diastereo-controlled manner. 

3.1.1 Sharpless's Reiterative Two Carbon Extension Cycle

Sharpless et al.[22] described a systematic, stereoselective synthesis of all eight L-hexoses by 

a  synthetic  methodology  developed in  their  laboratories  for  the  preparation  of  polyhy-

droxylated natural products. Their strategy is based on the reiterative two-carbon extension 

cycle  (Scheme 17). It  consists  of four  steps,  (i)  conversion of  an  aldehyde into  its  corres-

ponding E-allylic alcohol, (ii) asymmetric epoxidation (AE) with titanium tetraisopropoxide, 

t-butylhydroperoxide, and (+) or (-) diethyl tartrate, (iii) treatment of the epoxy alcohol with 

benzenethiolate anion in a basic medium, (iv) oxidation and Pummerer reaction of the sulf-

ide followed by the net hydrolysis of the resulting gem-acetoxysulfide with or without inver-

sion of  the carbon center. The synthesis of the hexoses was accomplished in 14 synthetic 

steps and most of the reaction proceeding in a very good regio- and stereoselectivity.

Scheme 17. Sharpless's Synthesis of Hexoses
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3.1.2 Modifications to Sharpless's Strategy

Ogasawara et al.[23] reported an alternative to Sharpless route which required reiteration of 

two-carbon elongation and asymmetric epoxidation. They described a new strategy capable 

of producing all stereoisomers of L-hexoses from a single starting material employing an 

asymmetric chiral induction step (Scheme 18). 

Scheme 18. Ogasawara's Synthesis of L-Hexoses
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hydroxyl function by modification of the enone functionality. The most salient feature of the 

strategy is the use of the key intermediate 115 in two ways, namely the acetal carbon and the 

C-2 of the glycol carbons are placed at either the C-1 formyl functionality or the C-6  hy-

droxymethyl functionality of the target hexoses so as to produce the isomeric and/or the en-

antiomeric hexoses from the same precursor.

3.1.3 Hetero-Diels-Alder Reaction

Tietze  et  al.[24] reported  the  synthesis  of  sugars  using  hetero Diels-Alder  reactions.  The 

hetero Diels-Alder reactions of  130 with  132 was carried out using TMSOTf or Me2AlCl 

which  has  provided  in  a  very  good  yield  and  with  high  endo-selectivity  133.  The 

dihydropyran 133 was converted into carbohydrates in five step reaction sequences in a very 

good yield and high stereoselectivity (Scheme 19).

Scheme 19. Tietze's Synthesis of L-Hexoses
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zed by D-proline which was then followed by a tandem Mukaiyama aldol addition- cycliza-

tion step catalyzed by a Lewis acid. The initial step requires that the α-oxyaldehyde 137 par-

ticipate both as a nucleophile and an electrophile, whereas the product 138 must be inert for 

further aldol reactions. Mukaiyama aldol reaction of oxy-enolsilane 139 with TIPS- protec-

ted  β-oxyaldehyde  138 in the presence of a Lewis acid afforded the cyclization products, 

carbohydrate ring system (Scheme 20).  Exposure of the β-oxyaldehyde 138 and enolsilane 

139 to TiCl4 in CH2Cl2 affords high selectivity for allose 140a with a 97% yield and 19:1 se-

lectivity. The use of MgBr2
.OEt2 in solvents such as Et2O, toluene or pentane shows prefer-

ence for glucose 140b with 8:1-10:1 selectivity. Using optimized condition, a 79% yield and 

a 10:1 preference for glucose in Et2O was obtained, whereas using MgBr2
.OEt2  in CH2Cl2 

resulted in 87% yield and 19:1 selectivity for mannose 140c. 

Scheme 20. MacMillan's Synthesis of Hexose
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The aldehyde  142, was used both as nucleophile and electrophile, underwent dimerization 

using  D-proline/DMSO  condition  to  afford  TBS-protected  β-oxyaldehyde  143 in  76% 

(syn:anti, 1:3.4) yield (Scheme 21). 

Scheme 21. Synthesis of Oxyaldehyde
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Scheme 22. Synthesis of Oxy-enolsilane

TBS-protected β-oxyaldehyde 143 underwent Mukaiyama aldol reaction with oxy-enolsilane 
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Scheme 23. Synthesis of L-glucose Fragment
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Scheme 24. Modified Ferrier Reaction Trials
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the tri-O-acetyl-L-glucal  150. The treatment of  150 with ATMS/TMSOTf afforded the di-

acetal alkene 154 in 96% and in a very good selectivity in 30 minutes[32] (Scheme 25).

Scheme 25. Classical Ferrier Reactions 
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3.4 Oxidative Cleavage of the Terminal Double Bond 

3.4.1 Sharpless Asymmetric Dihydroxylation

The TBS-protected  alkene  76 was oxidized  using  Sharpless  reaction  condition[33].  Initial 

trial of oxidation using AD-mix-β in combination with t-BuOH/H2O (10:1) afforded the in-

termediate product  cis-diol  155 after 24 h of stirring. Oxidative cleavage of the diol with 

NaIO4 afforded the aldehyde 156 in a cumulative yield of 40%. Being discouraged by long 

reaction time, we employed[34] the use of catalytic amount of OsO4/NMO in combination 

with THF/H2O (1:1) which resulted in more clean intermediate cis-diol 155 in less than 5 h. 

Oxidative cleavage of diol 155 with NaIO4 afforded aldehyde 156 with a cumulative yield of 

61% (Scheme 27).

Scheme 27. Sharpless's Hydroxylation of the Terminal Alkenes
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3.5 Protection of the Aldehyde 

3.5.1 Selective Protection of the Aldehyde 

The treatment of aldehyde  156 with HC(OMe)3 gave the protected alkene  157 which was 

subjected[36] to Camphorsulfonic acid (CSA) to afford alcohol 101 in a reaction time of 36 h 

and cumulative yield of 63% (Scheme 29). 

Scheme 29.  Selective Protection of the Aldehyde
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Scheme 30. Simultaneous Protection and Deprotection
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Scheme 31. Grignard Reaction 
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3.7 Review of Synthetic Routes Tested

In developing a  synthetic  route for  fragment  D a  number  of  routes  as  well  as  different 

precursors were evaluated.  In these synthetic  routes we tested D-glucose,  L-glucose and 

ethylene glycol/cis-2-butenediol as a starting material.

 In our initial attempt D-glucose was used to test different reactions as well as develop new 

synthetic route for the DHP fragment synthesis as it is the cheaper isomer to test reactions. It 

was possible to change D-glucose 163 to the corresponding methyl ketone 171 in 8 reaction 

steps with an overall yield of more than 20% (Scheme 33). 

Scheme 33. D-glucose Synthetic Route 
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less than 6 reaction steps with an overall yield 25% and very good selectivity (Scheme 34).

Scheme 34. L-glucose Synthetic Route
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Scheme 35. Ethylene Glycol Synthetic Route
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Chapter 4- Synthesis of Fragment E

4.1 Synthesis of Seebach Auxiliary 

The synthesis of the side chain fragment E started by synthesizing Seebach auxiliary 103 to 

insert the proper stereochemistry on the side chain fragment[44]. The Seebach auxiliary was 

synthesized by starting from D-valine 80 which was treated with thionyl chloride to afford 

the hydrochloride methyl ester 173 in 99% yield. The methyl ester hydrochloride 173 under-

went Grignard addition reaction using PhMgBr to afford the diphenyl alcohol  174 in 72% 

yield. Compound 174 was treated with acetyl chloride and triethylamine to afford the See-

bach auxiliary 103 in 52% yield (Scheme 36).

Scheme 36. Seebach Auxiliary Synthesis
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Scheme 37. Synthesis of (2R)-Methyl-hept-6-en-1-ol
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       tetrazole

The modified Julia olefination[53] precursor fragment E synthesis was started by using the al-

cohol  77 which was converted to thiol  178 by employing the classical Mitsunobu reaction 

condition, PPh3/ DIAD/PTSH, in 92% yield. Sulfide 178 was converted to the corresponding 

sulfone fragment E in 63% yield using (NH4)6Mo7O24/H2O2 reaction condition (Scheme 38).
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4.4 Synthesis of (2R)-2-(2-Methylhept-6-en-1-sulfonyl)-Benzothiazole

The  synthesis  of benzothiazole 105 began with alcohol  77 which  was  converted  to  the 

corresponding thiol 179 using classical Mitsunobu reaction condition, PPh3/DIAD/BTSH, in 

90%  yield.  Compound  179 was  oxidized  to  the  corresponding  sulfone  using 

(NH4)6Mo7O24/H2O2  condition to afford sulfone 105 in 60% which was used as a precursor 

for the modified Julia olefination[49] (Scheme 39).       

Scheme 39. BT Sulfone Synthesis
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Scheme 40. Classical Julia Precursor Synthesis
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5 Coupling of the Fragments

5.1 Modern Olefination Methods

The  coupling  of  fragments  by  olefination  dates  back  to  first  olefination  of  carbonyl 

compounds by Georg Wittig back[65] in 1950 and he was awarded the Nobel prize for his 

pioneer work in 1960.  The olefination reaction has been an indispensable strategic tool in 

total synthesis as well in the construction of complex structure natural products for the last 

six decades. There are couple of strategies developed in the last four decades that allow 

synthesis of alkene with broad structural variety and functional group tolerance. The reaction 

of the carbanion being stabilized by leaving group (LG) that acts at the same time as good 

leaving group with aldehydes  or ketones.  Depending on the type of leaving group these 

transformation are known as Wittig reaction[66] (LG = PR3), Horner-Wittig[67] (LG = P(O)Ph2, 

Horner-Wadsworth-Emmons[68] (LG  =  P(O)(OR)2),  Julia  olefination[69] (LG  =  SO2R) or 

Peterson olefination[70] (LG = SiR3). In addition to these olefination methods, reactions were 

developed with direct or cross coupling of alkenes which includes Heck reaction [71] (Y = H) 

or with alkenyl metal Stille reaction[72] (Y = SnR3) or Negishi reaction[73] (Y = ZnR) by using 

appropriate  activated alkyl  subustrate  (Scheme 41).  The discovery of robust and readily 

availiable catalyst by Schrock[74] and Grubbs[75] made it also possible for synthesizing olefins 

through metathesis reactions.

Scheme 41. Olefination Methods
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The currently accepted  mechanism for Wittig  olefination is  through the formation  of an 

intermediate phosphaoxetanes which stereospecifically collapse to give Z-or E-alkenes.

Scheme 42. Wittig Olefination
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Scheme 43. Horner-Wadsworth-Emmons Olefination
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5.1.3 The Horner-Wittig Olefination 

Phosphine  oxide  is  another  class  of  phosphor  ylide  which  can  be  used  for  carbonyl 

olefination  for  a  reaction  that  is  commonly  referred  as  Horner-Wittig  reaction.  The 

mechanism is  similar  to  Wittig  and HWE but  the  important  difference  is  the  ability  to 

separate hydroxy phosphine oxides when lithium bases and low temperature are employed.

Scheme 44. Horner-Wittig Olefination

There are numerous examples of Wittig type of olefination in a natural product synthesis. A 

particular impressive example is the synthesis of the antibiotic aurodox by K. C. Nicolaou 

group[76].

Scheme 45. Wittig Type Olefination Reactions
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Scheme 46. Peterson Olefination

5.1.5 Classical Julia Olefination 

The classical Julia[59] (Julia-Lythgoe) olefination was developed 40 years ago by Marc Julia 

and Jean-Marc Paris and it makes use of phenylsulfones. It has a high stereo-selectivity for 
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Scheme 47. Classical Julia Olefination
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Scheme 48. Modified Julia Sulfone Sources

The stereochemical  outcome of  the BT-variant  of modified  Julia  olefination  is  substrate 
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Scheme 49. Wittig Coupling Trials
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triene 185 (Scheme 50). 

Scheme 50. Modified Julia Coupling Trials
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The TIPS-protected phenyltetrazole sulfone fragment F and the phosphonium salt 188 were 

synthesized in three steps from 1,4-butanediol  78. Selective protection of the diol  78 with 

NaH/TIPSCl  afforded  TIPS-protected  alcohol  75 in  82% which  was  converted  into  the 

corresponding  sulfone,  fragment  F,  or  phosphonium  salt  188 in  two  synthetic  steps. 

Mitsunobu  condition  reaction  of  75 followed  by  oxidation  with  (NH4)6Mo7O24/H2O2 

condition provided fragment F with a cumulative yield of 70% for two steps. Treatment of 

75 with  I2/Imidazole  condition  afforded  iodide  187 in  90%  which  was  subjected  to 

PPh3/CH3CN to afford phosphonium salt 188 in 69% (Scheme 52).

Scheme 52. Synthesis of Fragment F
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Scheme 53. Initial coupling trials I
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Scheme 54. Initial coupling trials II
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In addition to the type of sulfone source used, the order of addition of the substrates have 

been found to influence the outcome of the reaction as a result we tested both premetallate 

and barbier reaction conditions. Initially we tested premetallate condition, where the sulfone 

191 or fragment E and the base are added together to form the premetallate, followed by the 

addition  of  the  methyl  ketone  102 subsequently  to  the  reaction  mixture.  Different 

combination of bases and solvents were employed, but none of the reactions tested afforded 

triene 184 or 192 (Scheme 55). 

Scheme 55. Premetallate Conditions
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Scheme 56. Barbier Conditions

In further attempt to couple the fragments, modfied Julia olefination reactions were tested by 
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fragment  E, and  benzothiazole  sulfone 105 were  used  as  a  Julia  olefination  precursors. 

Despite  the  different  combination  of  solvents  and  bases,  NMR  analysis  revealed  the 

presence of the coupling partners fragment E or 105 and 102 substantially (Scheme 57).

Scheme 57. Coupling trials with DMPU
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6. Summary and Outlook

6.1 Summary

This  work focused on the  synthesis  of  C(1)-C(19)  fragment  of  sorangicin  A as  well  as 

developing highly-selective and good yield synthetic routes for the synthesis of precursor 

fragments.

In the first part, we have evaluated different synthetic routes for the synthesis of fragment D 

by starting  from L-glucose.  We have improved the synthetic  route reported [21] from our 

group by reducing the reaction steps as well developing new reaction steps which are highly 

selective, proceed with very good yield and which resulted in more clean products. But the 

use of L-glucose as starting material was not feasible as a gram of L-glucose costs nearly 

100 Euro as a result we have developed a new synthetic route for synthesizing fragment D 

by starting from a commercially available cheap starting material, ethylene glycol  79 and 

cis-2-butenediol 144. It was possible to synthesize fragment D in less than 12 steps with an 

overall yield of more than 17%. 

Scheme 58. Synthesis of Fragment D

In the second part we have developed efficient synthetic route for synthesizing fragment E 

by starting  from D-valine 80 as  well  as  employing  reagents  which  are  less  toxic. The 

synthesis of Julia olefination precursors 191, fragment E and 105 were achieved in less than 

eight reaction steps and in an overall yield of more than 25%. In addition a new approach 

has been developed for synthesizing the precursor for classical Julia olefination.

Scheme 59. Synthesis of Fragment E
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In the final part of this work we tested different reaction conditions to couple fragment  D, 

fragment E  and  fragment  F.  A new  synthetic  route  approach  was  developed for  the 

construction of C(15)-C(16) double bond as well as a new approach has been developed for 

synthesizing the C(8)-C(19) fragments of sorangicin (Scheme 60).

Scheme 60. Coupling Trials

6.2 Future Direction

In the overall synthesis of the C(1)-C(19) fragment of sorangicin A there are still rooms for 

improvements as well as to develop new synthetic routes to couple the fragments.

In synthesizing fragment D, the route for synthesizing the L-glucose fragment can be further 

improved by employing substrates possessing the right protecting group and stereochemistry 

which  can  undergo  olefin  metathesis[16] to  afford  the  DHP  fragment  with  the  right 

stereochemistry at C-10 of sorangicin A. 

In synthesizing fragment E, heptenoic acid in combination with Seebach auxiliary were used 

as a starting material, it would be very reasonable to produce the intermediate alcohol 77 by 

starting from very cheap starting material as heptenoic acid is relatively expensive. 

In coupling the fragments by employing Julia olefination the following adjustments can be 

made in the future which could improve the coupling of the fragments as well as for the 

reaction to proceed with better selection for the trans-isomer.
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A. Introduction of strong polar aprotic solvents such as HMPA

The use of polar aprotic solvent such as HMPA in combination with THF, DME or DMF 

has been found[60] to improve the rate of coupling of the substrates as well as provides a 

higher selectivity for the trans-isomer. 

Scheme 61. Julia Olefination using aprotic solvents 

B. Using DHP Fragment as Julia Olefination precursor
         
The use of DHP or THP fragment as Julia olefination precursor instead of a side chain 

fragment has resulted [13], [60] in a better coupling results as well as gives higher selectivity for 

the  trans-isomer.  Thus it  could  be possible  to  couple  the fragments  by synthesizing  the 

aldehyde from the side chain fragment and the sulfone from the L-glucose fragment.

Scheme 62. DHP Fragment as Julia precursor  
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C. Employing Classical Julia Olefination 

It would be also possible to use the classical Julia olefination  by using the phenyl-sulfone 

199 and methyl-ketone 200 as a last alternative to couple the fragments as classical Julia 

olefination is known to give predominantly trans-isomer[59]  despite the need for four distinct 

synthetic operation.

Scheme 63.  Classical Julia Olefination. 

Based  on  the  different  synthetic  route  tested  and  experiments  done  in  this  work,  the 

synthesis of C(1)-C(28) fragments of sorangicin A can be easily achieved by using a simple 

operation of protection, deprotection and olefination (Scheme 66). Olefination of aldehyde 

156 with the phenyltetrazole sulfone fragment  F could afford diene 189 in four steps. The 

diene  189 will be coupled with the side chain fragment  E to give in three steps the triene 

fragment III.  Deprotection  of  the  TIPS  group  in  fragment III  followed  by  subsequent 

Mitsunobu reaction  and oxidation  will  afford  the  sulfone 200.  Metathesis  or  olefination 

between sulfone  200 and aldehyde 201 and subsequent deprotection manipulations could 

afford, 202, the C(1)-C(28) fragment of sorangicin A.
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Scheme 64.  Classical Julia Olefination. 
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7. Experimental Part

     7.1 Materials and Methods 

All reactions involving air-sensitive compounds were carried out under nitrogen by using 

oven-dried (90 °C) or flame dried glasses. 

The commercially available chemicals products were used without further purification or 

when appropriate were distilled before use. 

Tetrahydrofuran  (THF)  and  diethyl  ether  were  distilled  with  sodium/benzophenone  and 

dichloromethane (DCM) was distilled with calcium hydride absolutely under nitrogen before 

use  and  reaction  solvents  were  purified  according  to  standard  methods  or  dried  over 

molecular sieves before use. 

Preparative Column Chromatography 

Chromatographic purification of products (flash chromatography) was performed on E. Mer-

ck Silica Gel 60 (230-400 mesh) using a forced flow of eluant at 0.3-0.5 bar. 

Concentration under reduced pressure was performed by rotary evaporation at 40 °C at the 

appropriate pressure, unless otherwise stated.

Yields refer to chromatographically purified and spectroscopically pure compounds.

Nomenclature 

The compounds are named essentially according to IUPAC rules. The evaluation of the 

spectroscopic data used in quantifying the carbon centers was for reasons of clarity, and 

synthetic sequence is maintained.

Analysis 

For analytical thin-layer chromatography, TLC Cards PolyGram SIL G/UV254 with 

fluorescent indicator of the company Macherey & Nagel were used. The detection was 

carried out by irradiation with UV light (254 nm) and by immersing the developing TLC 

cards in vanillin, cerium (IV)-sulfate/phosphormolybdium acid or KMnO4 reagent followed 

by heating. 
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1H-NMR spectra were measured with Bruker using CDCl3 as a solvent. The chemical shifts 

are given in (δ, ppm), coupling constants (J, Hz) specified. For the signal-multiplicity the 

following abbreviations were used: s = singlet, d = doublet, t = triplet, q = quartet, m = 

multiplet, dd = double doublets, dt = double triplets, ddd = doublet of a doublets etc. 

13C-NMR spectra were measured with Bruker using CDCl3 as a solvent. To determine the 

signal-multiplicity DEPT-135-were used. The signal-multiplicities are as follows. q= CH3 

groups, t = CH2 groups, d = CH-group, s = quaternary C-atoms. 

Signal assignment is partly based on comparative data and analyzed using 
1
H, 

1
H-COSY, 

1
H, 

13
C-coupling experiments and NOESY experiments.

Mass Spectra was measured with a Finnigan SSQ 7000 mass spectrometer. The relative 

intensities are in [%] relative to the Base peak (100%) indicated. Ionization method was used 

with CH4 as a reactant gas.

High Resolution Mass Spectrometry (HRMS) were measured with a Finnigan MAT 95 

mass spectrometer after escan methods. 

IR Spectra were measured with a Perkin-Elmer FT-IR-2000-spectrometer. The spectra of 

liquids were measured as a thin film on KBr discs with an IR microscope. The position of 

the absorption bands are indicated in wave numbers ν [cm-1]. The relative band intensities 

are abbreviated as follows: w = weak, m = medium, s = strong, b = broad signal.

UV / VIS Spectra were measured with a Perkin-Elmer Lambda 19 spectrometer.

Specific Rotation values were measured with a Perkin-Elmer 341-polarimeter. The specific 

rotation value (α) is given in (10
2
deg kg

-1
m

-2
) at 25 °C and the concentration. 
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Coloring agents for Thin-Layer Chromatography 

a) Vanillin Reagent:- Dissolve 8.6 g of vanillin in 200 ml of ethanol and add slowly  

     2.5 ml of sulfuric acid

b) Cerium (IV)-Sulfate/Phosphomolybdic acid: - Slowly add 16 ml of concentrated   

     sulfuric acid to 5 g of Phosphomolybdic acid in 200 ml of water and 2 g of 

     cerium (IV)-sulfate. 

c) Potassium Permanganate:-  Slowly add 5 ml of 5% caustic soda to a mixture of 3 g  

     KMnO4 and 20 g K2CO3 in 300 ml water. 
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D-Valine-hydrochloride-methylester (173)

D-valine (10 g, 85.4 mmol) was dissolved in methanol (100 ml), cooled to 0 °C and thionyl 

chloride (15 g, 126 mmol) was added dropwise over a period of 30 minutes [44]. The reaction 

mixture was warmed up to room temperature, stirred for 24 h and volatiles were removed in 

vacuo to afford a white crystalline product 173 (14.3 g, 85 mmol, 99%). 

General Data:                                         C6H14ClNO2, M = 167.63 g/mol, white solid; 

                                                                   Rf  = 0.1 (100% EtOAc); UV (+); Vanillin (-);

1H-NMR (400 MHz, CDCl3, δ ppm)      δ = 4.82 (s, H-6, 3H); 3.88 (d, 4.7 Hz, H-2, 1H); 

                                                                   2.40 (m, H-3, 1H); 1.08 (d, 5.7 Hz, H-4, 3H); 

                                                                   1.07 (d, 5.4 Hz, H-5, 3H);       

13C-NMR (100MHz, CDCl3, δ ppm)      δ = 172.48 (C-1), 60.54 (C-2), 55.58 (C-6), 31.44 

                                                                   (C-3), 19.47 (C-4), 19.20 (C-5);

MS (EI)                                                 167.1 (5%), 149.1 (36%), 131.2 (28%), 88.1 (85%)

                                                                   74.0 (16%), 72.1 (100%), 55.1 (100%);        

IR (Cap. Film)                                        3431 (br), 2968 (s), 1942 (s), 1586 (s), 1437 (s),

                                                                   1334 (s), 1294 (s);                  

HRMS                                                  C6H14 ClNO2

                                                              Calcd: 167.070

                                                            Found: 167.075

O
O

NH3Cl
1

2
34

5

6
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2-Amino-3-methyl-1,1-diphenyl-butane-1-ol (174)

To  a  freshly  prepared  solution  of  PhMgBr  (45  g,  248  mmol)  in  abs.  Et2O  (150  ml) 

compound 173 (14.3 g, 85.3 mmol) was added dropwise[44]. The reaction mixture was stirred 

at room temperature for 30 minutes and further refluxed for 24 h. The reaction was cooled to 

room temperature quenched by adding ice cold water and treated with HCl (1N) and EtOAc 

(110  ml)  consecutively. The  reaction  mixture  was  brought  to  pH=5 by using  ammonia 

solution and the water phase was extracted with Et2O (3 x 50 ml). Methanol (5 ml) was 

added to the solution and the combined organic layer was dried over MgSO4. The volatiles 

were concentrated in vacuo to afford the alcohol 174 (15.7 g, 61.5 mmol, 72%). 

General Data:                                       C17H21NO, M = 255.35 g/mol, yellowish solid; 

                                                                  Rf  = 0.53 (100% EtOAc); UV (+); Vanillin (-);

1H-NMR (400 MHz, CDCl3, δ ppm)     δ = 7.62-7.12 (m, Ph, 10H); 3.83 (m, H-2, 1H); 2.5 

                                                                  (m, H-3, 1H); 0.92 (d, 7.0 Hz, H-4, 3H); 0.89 (d, 

                                                                  7.0 Hz, H-5, 3H);                                                 

13C-NMR (100MHz, CDCl3, δ ppm)     δ = 147. 85 (Ph), 144.80 (Ph), 128.33 (Ph), 127.95

                                                                  (Ph), 126.52 (Ph), 126.19 (Ph), 125.82 (Ph), 125.3 

                                                                  (Ph), 79.64 (C-1),  60.11 (C-2), 27.75 (C-3), 22.91 

                                                                  (C-4), 16.05 (C-5);   

MS (EI)                                                 255.3 (15%), 238.3 (28%), 212.2 (24%), 195.2   

                                                                  (68%), 183.2 (64%), 165.2 (68%), 105.1 (92%),

                                                                  72.2 (100%), 55.1(82%);    

Ph

HO
H NH2

Ph1
2 3

4

5
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IR (Cap. Film)                                       3900 (m), 3817(s), 2964 (s), 1739 (s), 1661 (s)

                                                                  1595 (s), 1490 (s), 704 (s), 639 (s); 

4(R)-Isopropyl-5, 5-diphenyl-oxazolidin-2-one (103)

To a solution of alcohol 174 (3.15 g, 12.35 mmol) in abs. CH2Cl2 (63 ml) and Et3N (1.9 ml, 

13.6 mmol) cooled to -25 °C was added acetyl chloride (1.9 ml, 24.7 mmol) [44]. The reaction 

was warmed up to room temperature and was stirred for 24 h. The reaction mixture was 

treated with HCl (1N) and the volatiles were removed in vacuo. The remaining solution was 

treated with 1N NaOH in CH3OH (150 ml)  and was refluxed for 9 h. The reaction was 

diluted  with  water,  cooled  to  0  °C  and  the  solid  residue  was  washed  with  H2O,  Et2O 

(1ml/mmol) and pentane consecutively to afford auxiliary 103 (1.8 g, 6.4 mmol, 52%). 

General Data:                                         C18H19NO2, M = 281.35 g/mol, White solid; 

                                                                   Rf = 0.55 (100% EtOAc); UV (+); Vanillin (-); 

1H-NMR (400 MHz, CDCl3, δ ppm)    δ = 7.56-7.54 (m, 2H, Ph); 7.40-7.27 (m, 8H, Ph)

                                                                   6.17 (br, 1H, NH); 4.36 (d, 3.6 Hz, H-4, 1H);

                                                                   1.90-1.86 (m, H-6, 1H); 0.90 (d, 7.0 Hz, H-8, 3H)

                                                                   0.70 (d, 6.8 Hz, H-7, 3H);

13C-NMR (100MHz, CDCl3, δ ppm)      δ = 158.47 (C-2), 143.84 (Ph), 139.10 (Ph), 128.51 

                                                                  (Ph), 128.19 (Ph), 128.06 (Ph), 127.67 (Ph), 126.28

                                                                  (Ph), 125.66 (Ph), 89.32 (C-5), 65.77 (C-4), 29.54 

O NH

O

Ph
Ph
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45
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                                                        (C-6), 20.82 (C-8), 15.56 (C-7);

MS (EI)                                                 281.3 (8%), 261.3 (4%), 238.2 (3%), 194.3 (20%),

                                                                  183.2 (100%), 165.2 (16%), 105.1 (24%), 77.1

                                                                  (8%);   

IR (Cap. Film)                                       3294 (s), 2982 (s), 1765 (s), 1745 (s), 1468 (s),

                                                                  1452 (s), 1393 (s), 1316 (s), 1252 (s), 708 (s);

HRMS                                                  C18H19NO2

                                                                  Calcd: 281.140

                                                                  Found: 281.142

Hept-6-enoylchloride (104)

To a solution of 6-heptenoic acid 175 (2.6 g, 20.3 mmol) in CH2Cl2 (10 ml) was added oxalyl 

chloride (5.15 g, 40.6 mmol) and the reaction was stirred for 1 h at room temperature and 

refluxed at 40 °C for 1 h[21]. Volatiles were removed in vacuo to afford the acid chloride 104 

(2.97 g, 20.2 mmol, 99%). 

General Data:                                      C7H11ClO, M = 146.62 g/mol, colorless oil;

                                                                    Rf = 0.64 (100% EtOAc); Vanillin: blue, UV (-);

1H-NMR  (400 MHz, CDCl3, δ ppm)    δ = 5.86-5.66 (m, H-6, 1H), 5.06-4.92 (m, H-7,

                                                                    2H); 2.88 (m, H-2, 2H); 2.55-2.01 (m, H-5, 2H);

                                                                    1.52-1.36 (m, H-3, H-4, 4H);

13C-NMR (100MHz, CDCl3, δ ppm)       δ = 173.64 (C-1), 137.75 (C-6), 115.12 (C-7),

                                                                   46.87 (C-2), 33.05 (C-5), 27.52 (C-3), 24.41 (C-4);

Cl
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5
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3'-Hept-6-enoyl-4'(R)-isopropyl-5',5'-diphenyl-oxazolidin-2'-one (176)

To a solution of the auxiliary 103 (856 mg, 3.0 mmol) in THF (5 ml) cooled to 0 °C was 

added n-BuLi (2.22 ml, 3.45 mmol, 1.6 M in Hexane). To the resulting clear solution was 

added acid chloride 104 (558 mg, 3.81 mmol) in one portion[21]. The reaction was stirred for 

24 h and quenched with saturated aqueous NaHCO3 and the water phase was extracted with 

Et2O (4 x 25 ml). The organic phase was washed successively with HCl (1M), NaOH (1M) 

and saturated aqueous NaCl. The organic phase was dried over Na2SO4 and volatiles were 

removed in vacuo and residue was purified by flash chromatography with Pentane:Ether 

(5:1) to afford 176 (1.07 g, 2.73 mmol, 91%).

General Data:                                       C25H29NO3, M = 391.50 g/mol, yellowish oil;

                                                                    Rf = 0.69 (100% EtOAc); UV (+);

                                                                    [α]20 = +179.0° (c = 1.30 CHCl3); Vanillin: rose;

1H-NMR (400 MHz, CDCl3, δ ppm)     δ = 7.49-7.25 (m, Ph, 10H); 5.79 (m, H-6, 1H);

                                                                    5.37 (d, 3.4 Hz, H-4', 1H); 4.99 (m, H-7, 2H); 

                                                                    2.91-2.72 (ddd, 16 Hz, 8.2 Hz, 6.7 Hz, H-2, 2H); 

                                                                    2.07-1.93 (m, H-5, H-1'', 3H); 1.66-1.28 (m, 

                                                                    H-3, H-4, 4H); 0.88 (d, 7.0 Hz, H-3'', 3H); 0.77 

                                                                    (d, 6.8 Hz, H-2'', 3H); 

13C-NMR (100MHz, CDCl3, δ ppm)       δ = 173.05 (C-1), 153.03 (C-2'), 142.37 (Ph),  

                                                                    138.39 (C-6), 138.17 (Ph), 128.86 (Ph), 128.54 

                                                                    (Ph), 128.35 (Ph), 127.91 (Ph),  125.91 (Ph), 

                                                                    125.60 (Ph), 114.58 (C-7), 89.33 (C-5'), 64.49
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                                                                    (C-4'), 34.95 (C-2), 33.35 (C-5), 29.83 (C-3), 

                                                                    28.12 (C-1''),  24.07 (C-4), 21.75 (C-3''), 16.40 

                                                                    (C-2'');

MS (EI)                                                  391.5 (100%), 355.3 (28%), 348.4 (68%), 169.3

                                                                    (60%), 143.3 (100%), 85.2 (69), 57.1 (24);

 IR (Cap. Film)                                        3064 (br), 2968 (s), 2934 (s), 2877 (br), 1785 (s),

                                                                    1706 (s), 1450 (s), 1364 (s), 1318 (s), 1210 (s),

                                                                    1175 (s), 761 (s), 704 (s);

HRMS                                                   C25H29NO3

                                                                   Calcd: 391.214

                                                                   Found: 391.215

(2R,4'R)-Isopropyl-3'-(2-methyl-hept-6-enoyl)-5',5'-diphenyl-oxazolidin-

2'-one (177)

To a solution  of  176 (2.0 g,  5.11 mmol)  in  THF (27 ml)  cooled  to  -78 °C was added 

NaHMDS (6.01 ml, 6.01 mmol, 1.0 M in THF). After stirring it for 1 h, CH3I (1.0 g, 7.05 

mmol) was added and the reaction was allowed to warm up slowly to room temperature and 

was stirred for 24 h[21]. The reaction was quenched with saturated aqueous NH4Cl and the 

water phase was extracted with Et2O (4 x 50 ml) and the combined organic phase was dried 

over MgSO4.  The volatiles were removed in vacuo and the residue was purified by flash 

chromatography with Pentane:Ether (10:1) to afford 177 (1.52 g, 3.75 mmol, 74%).
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General Data:                                     C26H31NO3, M = 405.53 g/mol, yellowish oil;

                                                                      Rf = 0.70 (100% EtOAc); UV (+); Vanillin: rose;

                                                                   [α]20 = +139.1° (c = 1.05 CHCl3);

1H-NMR (400 MHz, CDCl3, δ ppm)      δ = 7.58-7.22 (m, Ph, 10H); 5.61-5.51 (m, H-6,

                                                                   1H); 5.38 (d, 3.5 Hz, H-4', 1H); 4.86-4.81 (m, H-7,

                                                                   2H); 3.66 (m, H-2, 1H); 2.01 (m, H-1'', 1H); 1.78-

                                                                   1.72 (m, H-5, 2H); 1.56-1.41 (m, H-3, 2H); 1.20

                                                                   (d, 6.8 Hz, H-8, 3H); 1.07-1.05 (m, H-4, 2H); 0.87

                                                                   (d, 7.0 Hz, H-2''); 0.77 (d, 6.7 Hz, H-3'', 3H); 

13C-NMR(100MHz, CDCl3, δ ppm)        δ = 176.75 (C-1), 152.88 (C-2'), 142.31 (Ph),  

                                                                   138.19 (C-6), 137.96 (Ph), 128.70 (Ph), 128.43 

                                                                   (Ph), 128.37 (Ph), 127.91 (Ph), 125.86 (Ph), 

                                                                   125.56 (Ph), 114.34 (C-7), 89.12 (C-5'), 64.55

                                                                   (C-4'), 36.98 (C-2), 33.37 (C-5), 32.70 (C-3),

                                                                   29.62 (C-1''), 25.75 (C-4), 21.57 (C-8), 17.84 

                                                                   (C-3''), 16.29 (C-2'');

MS (EI)                                                  405.2 (5%), 337.2 (21%), 238.1 (13%),  220.1

                                                                   (50%), 125.1 (48), 97.1 (46%), 77.0 (100%), 

                                                                   55.0 (79%);

IR (Cap. Film)                                          3392 (b), 2968 (s), 2935 (s), 1786 (s), 1703 (s),

                                                                   1451 (s),  1385 (s), 1363 (s), 1317 (m), 1210 

                                                                   (m), 761 (s), 705 (s);
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HRMS                                                  C26H31NO3

                                                            Calcd: 405.230

                                                            Found: 405.227

(2R)-Methyl-hept-6-en-1-ol (77)

To a 0 °C cooled solution of 177 (1.55 g, 3.71 mmol) in Et2O (25 ml), was added LAH (1.15 

g, 30.23 mmol). The reaction was refluxed for 2 h and then cooled to room temperature and 

quenched with water[21]. The reaction was filtered over celite and extracted with Et2O (8 x 50 

ml).  The  volatiles  were  removed  in  vacuo  and  the  residue  was  purified  by  flash 

chromatography with Pentane:Ether (3:1) to afford alcohol 77 (0.45 g, 3.52 mmol, 96%).

General Data:                                           C8H16O, M = 128.21 g/mol, colorless liquid;

                                                                         [α]20 = + 19.1 (c = 1.00CHCl3); UV(-);

                                                                         Rf  = 0.5 (100% EtOAc); Vanillin: Violet;

1H-NMR (400 MHz, CDCl3, δ ppm)            δ = 5.79-5.76 (m, H-6, 1H); 5.03-4.93 (m, H-7,

                                                                         2H); 3.41 (m, H-1, 2H); 2.07-2.03 (m, H-5,

                                                                         2H); 1.65-1.42 (m, H-2, H-3, H-4, 5H); 1.02

                                                                         (d, 6.6 Hz, H-8, 3H); 

13C-NMR (100MHz, CDCl3, δ ppm)            δ = 138.91 (C-7), 114.39 (C-6), 68.31 (C-1), 

                                                                         35.66 (C-2), 34.11 (C-5), 32.60 (C-3), 26.29

                                                                         (C-4), 16.52 (C-8);

MS (EI):                                                          130.1 (8%), 128.1 (15%), 110 (9%),  97 (12%)

                                                                         81.1 (44%), 71.1 (28%), 69.1 (34%), 67.1 (35),

OH
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                                                                         56.1 (33%), 55.0 (100%), 43.1 (20%);

IR (Cap. Film):                                                3351 (b), 2931 (s), 2879 (s), 1644 (s), 1468

                                                                         (s), 1379 (s), 1039 (s), 910 (s);

HRMS                                                             C8H16O

                                                                         Calcd: 128.120

                                                                         Found: 128.109

(Hept-6-en-1-sulfonyl)-benzene (181)

To a stirred solution of  the hept-6-en-1-ol 180 (50 mg, 0.39 mmol) and PPh3  (419 mg, 1.6 

mmol) in THF (5 ml) under N2 was added NBS (315 mg, 1.6 mmol) in small portion over 15 

minutes and the reaction was stirred further for 30 minutes[56]. To the reaction was added 

ArSO2Na (360 mg, 2.0 mmol) and NaI (15 mg, 0.1 mmol) in three portions over 10 minutes 

and was stirred for 4 h. The reaction was diluted with EtOAc (10 ml)  and 3% aqueous 

solution Na2S2O3 (10 ml).  The organic phase was separated  and the aqueous phase was 

extracted with EtOAc (4 x 50 ml) and the organic phase was successively washed with H 2O, 

brine and dried over Na2SO4.  The volatiles  were removed in vacuo and the residue was 

purified by flash chromatography with Hexane:EtOAc (9:1) to afford sulfone 181 (70.6 mg, 

0.28 mmol, 72%).

General Data:                                          C13H18O2S, M = 238.35 g/mol, yellowish oil;

                                                                    Rf = 0.61 (100% EtOAc); UV (+); Vanillin: blue; 

1H-NMR (400 MHz, CDCl3, δ ppm)       δ = 7.92-7.89 (m, Ph, 2H); 7.72-7.55 (m, Ph, 3H);

                                                                    5.79 (m, H-6, 1H); 4.98-4.91 (m, H-7, 2H); 3.49- 

                                                                    3.10 (m, H-1, 2H); 2.07-1.93 (m, H-5, 2H); 1.76-
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                                                                    1.51 (m, H-2, 2H); 1.38-1.20 (m, H-3, H-4, 4H); 

13C-NMR (100MHz, CDCl3, δ ppm)        δ = 144.73 (Ph), 138.61 (C-7), 132.01 (Ph),128.9

                                                                    (Ph), 125.22 (Ph), 114.49 (C-6), 64.66 (C-1),

                                                                    33.50 (C-5), 29.51 (C-2), 28.31 (C-3), 25.15

                                                                    (C-4);       

MS (EI)                                                       238.1 (5%), 218.0 (15%), 143 (38%), 125 (35%),

                                                                    97.1 (45%), 77.1 (25%), 55.0 (100%); 

IR (Cap. Film)                                           3469 (br), 3065 (s), 2930 (m), 2857 (s), 1959 (s)

                                                                    1640 (s), 1462 (s), 1383 (s),  1306 (s), 1135 (s)

                                                                    753 (s), 698 (s), 595 (s), 564 (s), 536 (s).   

HRMS                                                       C13H18O2S  

                                                                    Calcld: 238.100

                                                                    Found: 238.103

5'-(Hept-6-enylsulfanyl)-1'-phenyl-1H-tetrazole (203)

A solution of the hept-6-en-1-ol (31 mg, 0.27 mmol), 1-phenyl-1H-tetrazole-5-thiol (28 mg, 

0.44 mmol) and PPh3  (114 mg, 0.44 mmol) in THF (2.5 ml) was cooled to 0 °C. After 45 

minutes of stirring DIAD (88 mg, 0.44 mmol, 86 µl) was added, reaction was allowed to 

warm up to room temperature and stirred for 4 h. The volatiles were removed in vacuo and 

the residue was dissolved in Et2O (20 ml) and was kept for 4 h at -20 °C. The precipitated 

OPPh3 was removed by filtration and Et2O was removed in vacuo. The residue was purified 

by flash chromatography with Pentane:Ether (10:1) to afford 203 (61 mg, 0.22 mmol, 82%).
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General Data:                                          C14H18SN4, M = 274.39 g/mol, yellowish oil;

                                                                    Rf = 0.56 (Pe/Et2O 10:1); UV (+); Vanillin: blue; 

1H-NMR (400 MHz, CDCl3, δ ppm)       δ = 7.51-7.27 (m, H-2'', H-3'', H-4'', H-5'', H-6'', 

                                                                   5H); 5.79 (ddt, 6.7 Hz, 10.2 Hz, 17.0 Hz, 1H, H-6)

                                                                    5.01-4.92 (m, H-7, 2H); 3.39 (dd, 14.8 Hz, 7.4 Hz

                                                                    H-1, 2H); 2.08-2.03 (m, H-5, 2H); 1.87-1.77 (m,

                                                                    H-2,  2H); 1.55-1.40 (m, H-4, H-3, 4H);

13C-NMR (100MHz, CDCl3, δ ppm)        δ = 154.38 (C-5''), 138.44 (C-6), 133.68 (C-1''),

                                                                     129.99 (C-2'', C-6''), 129.69 (C-4''), 123.77 (C-3'',

                                                                     C-5''), 114.56 (C-7), 33.40 (C-1), 33.20 (C-5),

                                                                      28.86 (C-2), 28.15 (C-3), 27.96 (C-4); 

 MS (EI)                                                       274.1 (5%), 241.1 (55%), 227.1 (10%), 213 

                                                                     (12%), 199.1 (15%), 165 (100%), 104 (100%);

IR (Cap. Film)                                            1959 (s), 1885 (s), 1809 (s), 1641 (s), 1596 (s),

                                                                     1498 (s), 1462 (s), 1342 (br), 1153 (s), 1077 (m), 

                                                                       914 (s), 726 (s), 544 (s). 

HRMS                                                       C14H18SN4 

                                                                    Calcld: 274.130

                                                                    Found: 274.141
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5'-(Hept-6-ene-1-sulfonyl)-1'-phenyl-1H-tetrazole (191)

The prepared sulfide 203 (29 mg, 0.11 mmol) was dissolved in EtOH (3.2 ml), cooled to 0 

°C and a premixed, bright yellow solution of (NH4)6Mo7O24 (5.12 mg, 0.022 mmol) in 35% 

aqueous  solution  of  H2O2 (5.34  ml,  5.5  mmol)  was  added  slowly  over  5  minutes.  The 

reaction was allowed to warm up to room temperature and stirred for 6 h. A mixture of 

EtOAc:H2O (1:1) (10 ml) was added and the layers were separated. The aqueous layer was 

extracted with EtOAc (3 x 15 ml) and the combined organic layer was washed with H2O (5 

ml),  brine (50 ml), and dried over MgSO4. The solvents were removed in vacuo and the 

residue was purified by flash chromatography with Pentane:Ether (10:1) to afford sulfone 

191 (48 mg, 0.029 mmol, 65%).     

General Data:                                       C14H18N4O2S, M = 306.38 g/mol, yellowish oil; 

                                                                 Rf = 0.50 (Pe/Et2O, 10:1); UV (+); Vanillin: blue;

1H-NMR (400 MHz, CDCl3, δ ppm)    δ = 7.61-7.52 (m, H-2'', H-3'', H-4'', H-5'', H-6'', 

                                                                 5H); 5.79 (ddt, 6.7 Hz,10.2 Hz, 17.0 Hz, H-6, 1H); 

                                                                 5.02-4.95 (m, H-7, 2H); 3.75-3.72 (dd, 16.1 Hz,

                                                                 7.2 Hz, H-1, 2H); 2.08 (d, 8.1 Hz, H-5, 2H); 1.98-

                                                                 1.94 (m, H-2, 2H); 1.53-1.44 (m, H-4, H-3, 4H);   

13C-NMR (100MHz, CDCl3, δ ppm)    δ = 153.42 (C-5'), 138.04 (C-6), 132.99 (C-1''),

                                                                131.43 (C-2'', C-6''), 129.68 (C-4''), 125.02 (C-3'',  

                                                                C-5''), 114.97 (C-7), 55.88 (C-1), 33.17 (C-5), 29.65

                                                                (C-2), 28.03  (C-3), 27.47 (C-4);
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MS (EI)                                                  307.1 (5%), 277.1 (55%), 258.1 (10%), 213 (12%),

                                                                163.1 (15%), 118.1 (100%), 91.0 (18%), 77.0 (18%),

                                                                55.0 (65%);

IR (Cap. Film)                                       3462 (br), 3075 (s), 2928 (m), 2858 (s), 2486 (s),

                                                                1959 (s), 1885 (s), 1809 (s), 1641 (s), 1596 (s), 1498 

                                                                (s), 1462 (s), 1342 (br), 1153 (s), 1077 (m), 914 (s),

                                                                726 (s), 544 (s); 

HRMS                                                  C14H18N4O2S

                                                                Calcld: 306.120

                                                                Found: 306.115

5'-(2(R)-Methyl-hept-6-enylsulfanyl)-1'-phenyl-1H-tetrazole (178)

A solution of the alcohol 77 (31 mg, 0.24 mmol), 1-phenyl-1H-tetrazole-5-thiol (28 mg, 0.44 

mmol) and PPh3 (114 mg, 0.44 mmol) in THF (2.5 ml) was cooled to 0 °C. After 45 minutes 

of stirring DIAD (88 mg, 0.44 mmol, 0.086 ml) was added and reaction was allowed to 

warm up to room temperature and stirred for 4 h. The volatiles were removed in vacuo and 

the residue was dissolved in Et2O (20 ml) and was kept for 4 h at -20 °C. The precipitated 

OPPh3 was removed by filtration and Et2O was removed in vacuo. The residue was purified 

by flash chromatography with Pentane:Ether (10:1) to afford sulfide 178 (61 mg, 0.22 mmol, 

92%). 

General Data:                                                   C15H20SN4, M = 288.41 g/mol, yellowish oil; 

                                                                             Rf = 0.85 (100% EtOAc); Vanillin: blue;
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                                                                             [α]20 = -3.1° (c = 1.03 CHCl3); UV (+);

1H-NMR (400 MHz, CDCl3, δ ppm)                δ = 7.60-7.51 (m, H-2'', H-3'', H-4'', H-5'', H- 

                                                                             6'', 5H); 5.79 (ddt, 6.8 Hz, 10.4 Hz, 17.1 Hz

                                                                             H-6, 1H); 5.01-4.95 (m, H-7, 2H); 3.48-3.23 

                                                                            (dd, 12.6 Hz, 7.5Hz, H-1, 2H); 2.06 (dd, 13.2

                                                                             Hz, 6.5 Hz, H-5, 2H); 1.99 (d, 6.5 Hz, H-2,

                                                                             1H); 1.55-1.19 (m, H-3, H-4, 4H); 1.04 (d,

                                                                             6.7 Hz, H-1''', 3H); 

13C-NMR (100MHz, CDCl3, δ ppm)                δ = 154.69 (C-5'), 138.54 (C-6), 133.72 

                                                                             (C-1''), 130.04 (C-2'', C-6''), 129.74 (C-4''),  

                                                                             123.86  (C-3'', C-5''), 114.63 (C-7), 40.42 

                                                                             (C-1), 35.28 (C-3), 33.73 (C-5), 32.80 (C-2), 

                                                                             26.05 (C-4), 19.06 (C-1'''); 

MS (EI)                                                               288.1 (8%), 255.1 (52%), 227.1 (6%), 179.2

                                                                             (96%), 150.2 (52%), 143.1 (60%), 118.2 

                                                                             (100%), 101 (45%), 91.1 (28%), 77.1 (40%)

                                                                             69 (36%), 55.1 (58%);

IR (Cap. Film)                                                    2963 (b), 2935 (s), 2858 (b), 1591 (b), 1499 

                                                                             (s), 1463 (b), 1414 (s), 1389 (s),  1246 (s),

                                                                             (s), 1089 (s), 1077 (s), 968 (b), 761 (s);

HRMS                                                               C15H20SN4 

                                                                             Calcld: 288.140

                                                                             Found: 288.141
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5'-(2(R)-Methyl-hept-6-ene-1-sulfonyl)-1'-phenyl-1H-tetrazole (E) 

The sulfide 178 (29 mg, 0.11 mmol) was dissolved in EtOH (3.2 ml), cooled to 0 °C and a 

premixed bright yellow solution of (NH4)6Mo7O24 (5.12 mg, 0.022 mmol) in 35% aqueous 

solution of H2O2 (5.34 ml, 5.5 mmol) was added slowly over 5 minutes. The reaction was 

allowed to warm up to room temperature and stirred for 6 h. A mixture of EtOAc:H2O (1:1) 

(10 ml) was added and the layers were separated.  The aqueous layer  was extracted with 

EtOAc (3 x 15 ml) and the combined organic layer was washed with H2O (5 ml), brine (50 

ml),  and dried  over  MgSO4.  The  volatiles  were  removed  in  vacuo and the residue  was 

purified by flash chromatography with Pentane:Ether  (10:1) to afford sulfone  E (22 mg, 

0.069 mmol, 69%).   

General Data                                           C15H20N4O2S, M = 320.41 g/mol, yellowish oil; 

                                                                    Rf = 0.73 (Pentane: Ether, 1:1); 

                                                                    [α]20 = +17.1° (c = 1.0 CHCl3); UV (+); 

1H-NMR (400 MHz, CDCl3, δ ppm)       δ = 7.69-7.58 (m, H-2'', H-3'', H-4'', H-5'', H-6'',

                                                                   5H); 5.78 (ddt, 6.8 Hz, 10.6 Hz, 17.1 Hz, H-6, 1H)

                                                                   5.00-4.95 (m, H-7, 2H); 3.84-3.56 (dd, 12.6 Hz,

                                                                   7.5 Hz, H-1, 1H); 2.06 (d, 7.6 Hz, H-5, 2H); 1.99-

                                                                   1.93 (m, H-2, 1H); 1.58-1.38 (m, H-4, H-3, 4H); 

                                                                   1.25 (d, 7.0 Hz, H-1''', 3H);  

13C-NMR (100MHz, CDCl3, δ ppm)       δ = 154.07 (C-5'), 138.14 (C-6), 133.08 (C-1''),

                                                                   131.45 (C-2'', C-6''), 129.68 (C-4''), 125.05 (C-3'',  

                                                                   C-5''), 114.97 (C-7), 61.82 (C-1),  35.94 (C-3), 
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                                                                   33.45 (C-5), 28.1 (C-2), 25.58 (C-4), 19.70 (C-1'''); 

 MS (EI)                                                    320 (5%), 309 (6%), 279 (5%), 268 (15%), 241.1 

                                                                   (50%), 231.1 (16%), 227.1 (55%), 199.1 (55%), 

                                                                   173 (8%), 118.0 (100%), 91.1 (6%), 77.1 (25%),  

                                                                   55.0 (35%);

IR (Cap. Film)                                           3463 (b), 2931 (s), 2859 (b), 1737 (s), 1641 (s),

                                                                    1498 (s), 1462 (s), 1373 (s), 1243 (b), 1153 (s), 

                                                                    1047 (s), 1016 (s), 916 (s), 764 (s), 521 (s); 

HRMS                                                      C15H20N4O2S

                                                                   Calcld: 320.130

                                                                    Found: 320.131

2'-(2(R)-Methylhept-6-enylsulfanyl)-Benzothiazole (179)

A solution of the alcohol  77 (93 mg, 0.72 mmol), benzothiazole-thiol (84 mg, 1.32 mmol) 

and PPh3  (198.3 mg, 0.76 mmol) in THF (7.5 ml) was cooled to 0 °C and DIAD (264 mg, 

1.32 mmol, 0.25 ml) was added after 45 minutes[21]. The reaction was allowed to warm up to 

room temperature and stirred for 4 h. The volatiles were removed in vacuo and the residue 

was dissolved in Et2O (20 ml) and was kept for 4 h at -20 °C. The precipitated OPPh3 was 

removed by filtration and Et2O was removed in vacuo. The residue was purified by flash 

chromatography with Pentane:Ether (10:1) to afford sulfide 179 (180 mg, 0.65 mmol, 90%).

General Data:                                                   C15H19NS2, M = 277.10 g/mol, colourless oil; 

                                                                           Rf = 0.69 (100%EtOAc); Vanillin: blue;
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                                                                           [α]20 = - 49.5° (c = 1.03 CHCl3), UV (+);

1H-NMR (400 MHz, CDCl3, δ ppm)              δ = 7.78 (d, 7.6 Hz, H-5', 1H); 7.65 (d, 8.0 Hz

                                                                          H-8', 1H); 7.31-7.27 (m, H-6', H-7', 2H); 

                                                                          1.1 Hz, H-7', 1H); 5.75 (m, H-6, 1H); 5.02-

                                                                           4.85 (dd, 17.0 Hz, 10.0 Hz, H-7, 2H); 3.41-

                                                                           3.19 (dd, 12.0 Hz, 5.7 Hz, H-1, 2H); 2.06 (d, 

                                                                           6.9 Hz, H-5, 2H); 1.99-1.89 (m, H-2, 1H);

                                                                           1.62-1.25 (m, H-4, H-3, 4H); 0.99 (m, H-1''',

                                                                           3H);                                                  

13C-NMR (100MHz, CDCl3, δ ppm)              δ = 167.54 (C-2'), 153.27 (C-4'), 138.75 (C-6) 

                                                                           135.10 (C-9'), 125.91 (C-8'), 124.02 (C-5'),

                                                                           121.36 (C-6'), 120.82 (C-7'), 114.52 (C-7),

                                                                           40.56 (C-1), 35.46 (C-3),  33.75 (C-5), 33.08

                                                                           (C-2), 26.20 (C-4), 19.29 (C-1'''); 

MS (EI)                                                             277.1 (90%), 262.1 (20%), 223.1 (28%),

                                                                           167.1 (100%), 166.1 (50%), 77.1 (100%);

IR (Cap. Film)                                                   2928 (b), 1458 (s), 1428 (s), 996 (s), 755 (s), 

                                                                           726 (b); 

HRMS                                                             C15H19NS2

                                                                          Calcld: 277.100

                                                                          Found: 277.097
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2'-(2(R)-Methylhept-6-en-1-sulfonyl)-Benzothiazole (105)

The sulfide 179 (40 mg, 0.15 mmol) was dissolved in EtOH (4.4 ml), cooled to 0°C and a 

premixed bright yellow solution of (NH4)6Mo7O24 (7.15 mg, 0.03 mmol) in 35% aqueous 

solution of H2O2 (6.69 ml, 6.89 mmol) was added slowly over 5 minutes[21]. The reaction was 

allowed to warm up to room temperature and stirred for 6 h. A mixture of EtOAc:H2O (1:1) 

(10 ml) was added and the layers were separated.  The aqueous layer  was extracted with 

EtOAc (3 x 15 ml) and the combined organic layer was washed with H2O (5 ml), brine (50 

ml),  and dried  over  MgSO4.  The  solvents  were  removed  in  vacuo and  the residue  was 

purified with flash chromatography with Pentane:Ether (10:1) to afford sulfone 105 (29 mg, 

0.094 mmol, 63%).  

General Data:                                                 C15H19NO2S2, M = 309.45 g/mol; yellowish oil; 

                                                                       Rf = 0.61 (Pentane: Ether, 1:1); Vanillin: blue; 

                                                                       [α]20 = -7.2° (c = 1.03 CHCl3);  UV (+);

1H-NMR (400 MHz, CDCl3, δ ppm)           δ = 8.21 (d, 7.9 Hz, 1H, H-5'); 8.02  (dd, 8.1 Hz

                                                                       1.5 Hz, H-8', 1H); 7.62-7.57 (m, H-6', H-7', 2H);

                                                                       5.73 (ddt, 10.0 Hz, 17.0 Hz, 6.7 Hz, H-6, 1H);

                                                                       4.93-4.87 (m, H-7, 2H); 3.56-3.35 (dd, 4.0 Hz

                                                                       8 Hz, H-1, 1H); 2.32-2.24 (m, H-2, 1H);2.00- 

                                                                       1.95 (m, H-5, 2H); 1.6-1.23 (m, H-3, H-4, 4H);

                                                                       1.14 (m, H-1''', 3H);

13C-NMR (100MHz, CDCl3, δ ppm)           δ = 166.61 (C-2'), 152.57 (C-4'), 138.13 (C-6), 

                                                                       136.61 (C-9'), 127.91 (C-8'), 127.55 (C-5'),

                                                                       125.28 (C-6'), 122.27 (C-7'), 114.70 (C-7),
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                                                                       60.62 (C-1), 35.90 (C-3),  33.36 (C-5), 28.33

                                                                       (C-2), 25.47 (C-4), 19.73 (C-1'''); 

MS (EI)                                                            310.1 (43%), 295.1 (95%), 268.1 (100%), 188.0

                                                                       (90%), 135.0 (100%), 55.0 (55%);

IR (Cap. Film)                                                  3452 (s), 3069 (s), 2931 (s), 1738 (s), 1640 (s), 

                                                                       1473 (s), 1325 (s), 1148 (s), 763 (s), 631 (s);

HRMS                                                          C15H19NO2S2

                                                                                                                          Calcld: 309.090

                                                                       Found: 309.085

2-Triisopropylsilanyloxy-ethanol (204) 

Ethylene  glycol  79 (1.00 g,  15.6 mmol)  was added dropwise to  NaH (624 mg,  60% in 

mineral oil, 15.6 mmol) suspended in THF (30 ml). After 1 h vigorous stirring, TIPSCl (3.34 

ml, 46.8 mmol) was added in a single portion and the solution was further stirred for 3.5 h at 

room temperature[25]. The reaction was acidified with saturated aqueous NH4Cl (250 ml) and 

extracted with EtOAc (3 x 75 ml). The organic layer was successively washed with 10% 

aqueous  NaHCO3  (100  ml),  brine  (100  ml)  and  dried  over  Na2SO4.  The  volatiles  were 

concentrated  in  vacuo  and  the  residue  was  purified  by  flash  chromatography  with 

Pentane:Ether (2:1) to afford TIPS-protected alcohol 204 (2.80 g, 12.8 mmol, 80%).

General Data:                                     C11H26O2Si, M = 218.41 g/mol, colorless oil; 

                                                                      Rf = 0.58 (100% EtOAc); UV (-); Vanillin: blue; 

1H-NMR (400 MHz, CDCl3, δ ppm)          δ = 3.70 (m, H-1, 2H); 3.57 (m, H-2, 2H); 2.72 

                                                                      (s, OH, 1H); 1.12,0.98 (m, OTIPS, 21H); 

HO
OTIPS
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13C-NMR (100MHz, CDCl3, δ ppm)          δ = 64.24 (C-1), 63.48 (C-2), 17.68  (OTIPS), 

                                                                       11.73 (OTIPS);

MS (EI)                                                         218.1 (11%), 157.3 (100%), 115.2 (45%), 103.2

                                                                      (20%), 87.2 (20%), 75.1 (19%), 59.1 (16%);

IR (Cap. film)                                               3351 (b), 2944 (s), 2893 (s), 2868 (s), 1464 (s), 

                                                                      1384 (s), 1368 (s), 1249 (s), 1120 (s), 1060 (s),

                                                                      937 (s), 681 (s);

HRMS                                                          C11H26O2Si

                                                                      Calcld: 218.170

                                                                      Found: 218.172

2-(tert-Butyldimethylsilanyloxy)-ethanol (141)

Ethylene glycol 79 (3.00 g, 46.8 mmol) was added dropwise to NaH (1.87 g, 60% in mineral 

oil, 46.8 mmol) suspended in THF (90 ml). After 1 h vigorous stirring, TBSCl (7.02 g, 46.8 

mmol) was added in a single portion and the solution was further stirred for 3.5 h at room 

temperature.  The  reaction  was  acidified  with  saturated  aqueous  NH4Cl  (250  ml)  and 

extracted with EtOAc (5 x 150 ml). The organic layer was successively washed with 10% 

aqueous  NaHCO3  (300  ml),  brine  (300  ml)  and  dried  over  Na2SO4.  The  volatiles  were 

concentrated in vacuo and was purified by flash chromatography with Pentane:Ether (2:1) to 

afford TBS-protected alcohol 141 (7.0 g, 39.7 mmol, 85%).

General Data:                                          C8H20O2Si, M = 176.33 g/mol, colorless oil;  

                                                                        Rf = 0.56 (100% EtOAc); 

                                                                             UV (-); Vanillin: dark blue; 

1H-NMR (400 MHz, CDCl3, δ ppm)               δ = 3.66 (m, H-1, 2H); 3.58 (m, H-2, 2H);

OTBS
HO
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                                                                            2.57 (br, OH, 1H); 0.85 (s, OTBS, 9H); 0.03 

                                                                             (s, OTBS, 6H);

13C-NMR (100MHz, CDCl3, δ ppm)               δ = 64.12 (C-1), 63.52 (C-2), 25.79 (OTBS),

                                                                             18.22 (OTBS), -5.47 (OTBS);

MS (EI)                                                         176.1 (5%), 161.1 (35%), 147.1 (100%),  

                                                                             119.0 (8%), 89.0 (20%), 75.0 (19%), 59.0

                                                                             (16%);     

IR (Cap. film)                                                 3402 (b), 2955 (s), 2931 (s), 2886 (s), 1473 

                                                                       (s), 1464 (s), 1390 (s), 1060 (s), 664 (s);

HRMS                                                           C8H20O2Si

                                                                       Calcld: 176.120

                                                                             Found: 176.123    

2-Triisopropylsilanyloxy-acetaldehyde (137)

Oxalyl  chloride (2.16 ml,  24.8 mmol) was added dropwise to -78 °C cooled solution of 

DMSO (3.52 ml, 49.5 mmol) and Et3N (8.63 ml, 61.9 mmol) dissolved in CH2Cl2 (115 ml). 

After stirring for 5 minutes, 204 (2.73 g, 12.4 mmol) was added via cannula as a solution in 

CH2Cl2 (10 ml). After 30 minutes, the reaction was allowed to warm to 0 °C over the course 

of 1 h and CH2Cl2  (75 ml) was added to the reaction mixture[25]. The reaction mixture was 

successively washed with saturated aqueous NH4Cl (100 ml), 10% aqueous NaHCO3  (100 

ml), brine (100 ml) and dried over Na2SO4. The volatiles were concentrated in vacuo and the 

oily residue was purified by flash chromatography with  Pentane:Ether (2:1)  to afford the 

aldehyde 137 (2.31 g, 10.6 mmol, 86%).

O
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General Data:                                                C11H24O2Si, M = 216.39 g/mol, colorless oil; 

                                                                           Rf = 0.65 (100% EtOAc); 

                                                                           UV (-); Vanillin: dark brown; 

1H-NMR (400 MHz, CDCl3, δ ppm)              δ = 9.74 (m, H-1, 1H); 4.26 (m, H-2, 2H); 

                                                                           1.25,1.08 (m, OTIPS, 21H);

13C-NMR (100MHz, CDCl3, δ ppm)              δ = 203.02 (C-1), 69.70 (C-2), 17.81 (OTIPS),

                                                                           11.88 (OTIPS); 

MS (EI)                                                         217.3 (5%), 175.3 (38%), 131.2 (85.1%), 

                                                                           103.1 (100%), 75.1 (35%), 65.1 (20%);

IR (Cap. film)                                                    3651 (s), 3314 (s), 2944 (s), 2893 (s), 2867(s)

                                                                           1464 (s), 1384 (s), 1368 (s), 883 (s) 788 (s);

HRMS                                                              C11H24O2Si

                                                                           Calcld: 216.150

                                                                           Found: 216.161 

2-(tert-Butyldimethylsilanyloxy)-acetaldehyde (142)

Oxalyl  chloride  (0.42 ml  4.96 mmol)  was added dropwise to  -78 °C cooled solution of 

DMSO (0.65 ml, 9.9 mmol) and  Et3N (1.6 ml, 12.39 mmol) dissolved in  CH2Cl2 (27 ml). 

After stirring it for 5 minutes compound 141 (0.5 g, 2.48 mmol) was added via cannula as a 

solution in CH2Cl2 (5 ml). After 30 minutes, the reaction was allowed to warm to 0 °C over 

the course of 1h. Then, CH2Cl2 (75 ml) was added and the reaction mixture was successively 

washed with saturated aqueous NH4Cl (100 ml), 10% aqueous NaHCO3 (100 ml), brine (100 

ml) and dried over Na2SO4. The volatiles were concentrated  in vacuo and the oily residue 

was purified by flash chromatography with Pentane:Ether (2:1)  to afford the aldehyde  142 

(0.35 g, 2.0 mmol, 81%).
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General Data:                                                 C8H18O2Si, M = 174.31 g/mol, colorless oil;   

                                                                           Rf = 0.68 (100% EtOAc);

                                                                           UV (-); Vanillin: brown; 

1H-NMR (400 MHz, CDCl3, δ ppm)               δ = 9.65 (m, H-1, 1H); 4.17 (m, H-2, 2H); 

                                                                      0.89 (s, OTBS, 9H); 0.06 (s, OTBS, 6H); 

13C-NMR (100MHz, CDCl3, δ ppm)               δ = 202.03 (C-1), 69.51 (C-2), 25.77 (OTBS), 

                                                                           18.32 (OTBS), -5.54 (OTBS); 

MS (EI)                                                            175.1 (5%), 159.1 (12%), 133.0 (28%),

                                                                           117.0 (69%), 75.1 (100%);

IR (Cap. film)                                                    3469 (b), 2955 (s), 2887 (s), 1764 (s), 1739  

                                                                           (s), 1464 (s), 1389 (s), 1256 (s), 1150 (s), 

                                                                           837 (s), 664 (s);

HRMS                                                             C8H18O2Si

                                                                           Calcld: 174.110

                                                                           Found: 174.120

Acetic acid 2-hydroxy-ethyl ester (205)

Trimethyl-orthoacetate  (2.98  ml,  23.4  mmol)  was  added  to  a  room temperature  stirring 

solution of ethylene glycol 79 (1.00 g, 15.6 mmol), PPTS (148 mg, 0.78 mmol) and CH2Cl2 

(150 ml)[25]. After stirring it for 6 minutes, distilled water (422 µl) was added in a single 

portion and the mixture  was stirred further  for additional  6 minutes.  The volatiles  were 

removed in vacuo and the residue was purified by flash chromatography with Hexane:Ether 

(9:1) to afford alcohol 205 (1.50 g, 14.4 mmol, 93%).

AcO
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General Data:                                                        C4H8O3, M = 104.10 g/mol, colorless oil; 

                                                                                  Rf = 0.45 (100% EtOAc) 

                                                                                  Vanillin: yellow; UV(-); 

1H-NMR (400 MHz, CDCl3, δ ppm)                      δ = 3.89 (m, H-1, 2H);  3.78 (s, OH, 1H); 

                                                                                  3.51 (m, H-2, 2H); 1.81 (s, OAc-CH3, 

                                                                                  3H); 

13C-NMR (100MHz, CDCl3, δ ppm)                      δ = 171.0 (COCH3), 65.3 (C-1), 59.7 

                                                                                  (C-2), 20.1 (COCH3);       

MS (EI)                                                                   104.1 (19%), 91.0 (76%), 87.0  (100%),

                                                                                  77.0 (63%), 57 (25%);

IR (Cap.film)                                                            3439 (s), 2955 (s), 1738 (s), 1442 (s), 

                                                                                  1380 (s), 1247 (b), 1083 (s), 1047 (s),

                                                                                  885 (s), 607 (s);

HRMS                                                                    C4H8O3

                                                                                  Calcld:104.050

                                                                                  Found:104.048

Acetic acid 4-acetoxy-but-2-enyl ester (145)

To a solution of cis-2-butene-1,4-diol 144 (1.0 g, 11.4 mmol) in pyridine (5 ml) was added 

Ac2O (6.4 ml, 34.2 mmol). The mixture was stirred at room temperature for 1 h and was 

then extracted with EtOAc (3 x 50 ml). The organic phase was successively washed with 1N 

HCl (5 x 25 ml), brine (25 ml) and was dried over Na2SO4. Volatiles were concentrated in 

vacuo and the residue was purified by flash chromatography with Pentane:EtOAc (20:1) to 

AcO OAc
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afford the diacylated alkene 145 (1.68 g, 9.8 mmol, 86%).

General Data:                                                       C8H12O4, M = 172.18 g/mol, colorless oil; 

                                                                                 Rf = 0.65 (100% EtOAc);

                                                                                 Vanillin: Violet; UV (-); 

1H-NMR (400 MHz, CDCl3, δ ppm)                     δ = 5.5 (m, H-2, H-3, 2H); 4.5 (m, H-1, 

                                                                                 H-4, 4H); 1.84 (s, COCH3, 6H);

13C-NMR (100MHz, CDCl3, δ ppm)                    δ = 170.16 (COCH3), 127.55 (C-2, C-3), 

                                                                                 59.37 (C-1, C-4), 20.16 (COCH3); 

MS (EI)                                                                  172 (85%), 142 (46%), 87 (100%), 70

                                                                                 (100%), 43 (100%);

IR (Cap. film)                                                          3462 (s), 3036 (s), 2945 (s), 2464 (s), 

                                                                                 2062 (s), 1742 (s), 1439 (s), 1374 (s),  

                                                                                 1227 (b), 1033 (s), 967 (s), 890 (s), 840 

                                                                                 (s), 731 (s), 635 (s), 607 (s);

HRMS                                                                   C8H12O4

                                                                                Calcld: 172.070

                                                                                Found: 172.074

Acetic acid 2-oxo-ethyl ester (146)

The protected alkene 145 (1.00 g, 19.2 mmol) was dissolved in CH2Cl2  (15 ml), CH3OH (5 

ml) and cooled to -78 °C. Ozone was run into the reaction and the color turned to blue in

AcO
O
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just  10 minutes.  The reaction  mixture  was treated  with PPh3  (2.5 g,  8.4 mmol)  and the 

volatiles were concentrated in vacuo. The residue was purified by flash chromatography with 

Pentane:Ether (1:1) to afford the aldehyde 146 (0.98 g, 9.6 mmol, 51%).

General Data:                                                         C4H6O3, M = 102.09 g/mol, colorless oil; 

                                                                                   Rf = 0.53 (100% EtOAc);

                                                                                   Vanillin: Dark brown, UV (-); 

1H-NMR (400 MHz, CDCl3, δ ppm)                       δ = 9.53 (m, H-2, 1H); 4.66 (m, H-1, 

                                                                                   2H); 2.18 (s, COCH3, 3H); 

13C-NMR (100MHz, CDCl3, δ ppm)                       δ = 195.6 (C-2), 170.6 (COCH3), 68.9 

                                                                                   (C-1), 20.7 (COCH3);   

IR (Cap. film)                                                            2953 (s), 1739 (s), 1725 (s), 1677 (s), 

                                                                                   1436 (s), 1377 (s), 1234 (s), 1042 (s); 

4-Triisopropylsilanyloxy-butan-1-ol (75)

To a solution of NaH (1.9 g, 60% in mineral oil, 46.8 mmol) suspended in THF (90 ml) was 

added dropwise 1,4-butanediol  78 (4.2 g, 46.8 mmol). After 1 h vigorous stirring, TIPSCl 

(10.02 ml, 140.4 mmol) was added in a single portion and the solution was stirred further for 

3.5 h at room temperature. The reaction was acidified with saturated aqueous NH4Cl (250 

ml) and extracted with EtOAc (3 x 75 ml). The organic layer was successively washed with 

10% aqueous NaHCO3  (100 ml), brine (100 ml) and dried over Na2SO4. The volatiles were 

concentrated  in  vacuo  and  the  residue  was  purified  by  flash  chromatography  with 

Pentane:Ether (2:1) to afford TIPS-protected alcohol 75 (9.5 g, 38.4 mmol, 82%).

General Data:                                         C13H30O2Si, M = 246. 46 g/mol, colourless liquid; 

                                                                   Rf  = 0.74 (100% EtOAc); UV (+); Vanillin (-);

HO OTIPS
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1H-NMR (400 MHz, CDCl3, δ ppm)      δ = 3.70 (m, H-1, 2H); 3.60 (m, H-4, 2H); 3.0 (s,

                                                                   OH, 1H); 1.60 (m, H-2, H-3, 4H); 1.63,0.98 (m,

                                                                   OTIPS, 21H); 

13C-NMR (100MHz, CDCl3, δ ppm)       δ = 63.49 (C-1), 62.56 (C-4), 30.52 (C-3), 29.91 

                                                                   (C-2), 17.87 (OTIPS), 11.87 (OTIPS); 

MS (EI)                                                  246.2 (25%), 203.2 (46%), 143.1 (100%), 131.1

                                                                   (78%), 119.1 (100%), 103.1 (100%), 75.0 (35%);

IR (Cap. Film)                                        3339 (b), 2943 (m), 2867 (s), 2727 (b), 1464 (s),

                                                                   1384 (s), 1367 (s), 1248 (s), 951 (s), 681 (s); 

HRMS                                                  C13H30O2Si

                                                               Calcld: 246.200

                                                               Found: 246.201

1'-Phenyl-5'-(4-Triisopropylsilanyloxy-butane-1-sulfonyl)-1H-tetrazole (F) 

A solution of the alcohol 75 (2 g, 8.11 mmol), PT-SH (1.52 g, 8.51 mmol) and PPh3 (2.24 g, 

8.51 mmol, 1.05 equiv.) in THF (81 ml) was cooled to 0 °C and DIAD (1.93 ml, 9.6 mmol,  

1.2 equiv) was added after 45 minutes of stirring. The reaction mixture was allowed to warm 

to room temperature and stirred for 4 h. Volatiles were removed under reduced pressure and 

the crude reaction mixture was dissolved in Et2O (72 ml) and kept for 4 h at -20°C. The 

precipitated OPPh3 was removed by filtration and volatiles were removed under reduced 

pressure. The residue was dissolved in EtOH (40 ml) and cooled to 0 °C and a premixed 

bright yellow solution of (NH4)6Mo7O24 (372.5 mg, 1.62 mmol) in 35% aqueous solution of

NN
N
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H2O2 (78.6 ml 80.0 mmol)  was added slowly over 5 minutes.  The reaction mixture was 

allowed to warm up to room temperature and stirred for 6 h. A mixture of EtOAc:H2O (100 

ml) was added and the layers were separated. The aqueous layer was extracted with EtOAc 

(3x150 ml) and the combined organic phase was washed with H2O (50 ml), brine (50 ml), 

dried over MgSO4. The solvents were evaporated in vacuo and crude product was purified 

by flash chromatography with EtOAc:MeOH (100:0→25:1)  to afford sulfone  fragment F 

( 2.5 g, 5.7 mmol, 70 %).

General Data:                                          C20H34N4O3SSi, M = 438.66 g/mol, white solid; 

                                                                    Rf  = 0.79 (Pentane: Ether, 1:1); 

                                                                    UV (+); Vanillin (-);

1H-NMR (400 MHz, CDCl3, δ ppm)       δ = 7.58-7.43 (m, aromatic CH, 5H), 3.80 (m, H-4 

                                                                    2H); 3.73 (m, H-1, 2H); 2.04 (m, H-2, 2H); 1.70

                                                                    (m, H-3, 2H); 1.21,1.02 (m, OTIPS, 21H);

13C-NMR (100MHz, CDCl3, δ ppm)        δ = 153.32 (C-5'), 132.95, 131.23, 129.51, 124.97

                                                                    (aromatic CH), 62.26 (C-4), 55.80 (C-1), 30.93 

                                                                       (C-3),  18.76  (C-2), 17.87 (OTIPS), 11.87

                                                                       (OTIPS);  

IR (Cap. Film)                                           3468 (b), 2893 (s), 2867 (b), 1711 (s), 1463 (s),

                                                                    1366 (s), 1344 (s), 1256 (s), 1151 (b), 1108 (s), 

                                                                    1073 (s), 1014 (s), 918 (s), 761 (s), 668 (s); 

(4-Iodo-butoxy)-triisopropyl-silane (187)

To a  0 °C cooled  solution  of  PPh3  (3.07 g,  11.7 mmol)  in  CH2Cl2   (50 ml)  was added 

imidazole (810 mg, 11.7 mmol) and I2 (2.96 g, 11.7 mmol). The reaction was stirred for 10

I OTIPS
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minutes at 0°C and alcohol  75 (1.91 g, 7.8 mmol) was added to the reaction mixture. The 

reaction was stirred for another 30 minutes with the same temperature and  volatiles were 

concentrated  in  vacuo.  The  residue  was  purified  by  flash  chromatography  with 

Pentane:Ether (10:1)  to afford 187 (2.5 g, 7.01 mmol, 89.9 %).

General Data:                                       C13H29IOSi, M = 356.36 g/mol, colourless liquid; 

                                                                  Rf  = 0.69 (Pentane: Ether, 1:1); 

                                                                  UV (+); Vanillin (-);

1H-NMR (400 MHz, CDCl3, δ ppm)     δ = 3.71 (m, H-1, 2H); 3.20 (m, H-4, 2H); 1.93 (m, 

                                                                  H-2, 2H); 1.62 (m, H-3, 2H); 1.25,1.04 (m, OTIPS,

                                                                  21H); 

13C-NMR (100MHz, CDCl3, δ ppm)     δ = 62.07 (C-1), 33.61 (C-2), 30.19 (C-3), 17.95

                                                                  (OTIPS), 11.88 (OTIPS), 6.52 (C-4); 

MS (EI)                                                 356.1 (5%), 313.0 (14%), 241.0 (40%), 228.9  

                                                                  (100%), 212.9 (28%), 115.1 (18%), 75 (11%);

IR (Cap. Film)                                       2942 (m), 2866 (s), 2726 (m), 1463 (s), 1383 (s),

                                                                     1367 (s), 1292 (s), 957 (s), 681 (s); 

HRMS                                                 C13H29IO2Si                 

                                                                 Calcld: 356.100

                                                                  Found: 356.105 

Triphenyl-(4-triisopropylsilanyloxy-butyl)-phosphonium iodide (188)

Iodide 187 (1 g, 2.8 mmol) and PPh3 (810 mg, 11.7 mmol) was dissolved in  CH3CN (33.5 

IPh3P OTIPS
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ml) and the reaction was stirred at room temperature for 24 h. Solvents were removed in 

vacuo and the residue was cleaned by flash chromatography with Pentane:Ether (100:1) to 

afford 188 (1.2 g, 1.94 mmol, 69%). 

General Data:                                          C31H44IOPSi, M = 618.14 g/mol, white solid; 

                                                                    Rf  = 0.72 (Pentane: Ether, 1:1);

                                                                    UV (+); Vanillin (-);

  1H-NMR (400 MHz, CDCl3, δ ppm)       δ = 7.41-7.28 (m, Ph, 15H); 3.85 (m, H-1, 2H); 

                                                                      3.27 (m, H-4, 2H); 2.03 (m, H-2, 2H); 1.71 (m

                                                                      H-3, 2H); 1.37,1.16 (m, OTIPS, 21H); 

13C-NMR (100MHz, CDCl3, δ ppm)       δ = 136.86-128.10 (Ph, 18C);  61.85 (C-1), 33.32  

                                                                    (C-2), 29.89 (C-3), 17.75 (OTIPS), 11.61 (OTIPS)

                                                                    6.92 (C-4); 

MS (EI)                                                      618.2 (5%), 491.3 (14%), 241.0 (40%), 228.9  

                                                                    (100%), 212.9 (28%), 115.1 (18%), 75 (11%);

IR (Cap. Film)                                         3834 (m), 3339 (s), 2891 (m), 2922 (s), 2863 (s),

                                                                       2220 (s), 1586 (s), 1462 (s), 1435 (s), 1110 (s),

                                                                    997 (s), 881 (s), 741 (s), 500 (s), 690 (s);

HRMS                                                   C31H44IOPSi                         

                                                                Exact Mass: 618.190                              

                                                          Found: 618.205
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(Z)-Acetic acid 2-trimethylsilanyloxy-vinyl ester (139)                      

To a room temperature solution of TMSCl (3.95 ml, 24.4 mmol), Et3N (5.1 ml, 36.5 mmol), 

and CH3CN (11 ml) was added aldehyde 146 (1.35 g, 6.1 mmol) dissolved in CH3CN (1.5 

ml). In less than 5 minutes, the solution becomes a hot white suspension that turned into a 

rust colored suspension with in 15 minutes. The reaction was stirred for 2 h and volatiles 

were removed in vacuum and the residue was extracted with Et2O (3 x 50 ml). The volatiles 

were concentrated in vacuo to afford TMS-protected alkene  139 (0.69 g, 4.0 mmol, 66%, 

E:Z, 1:7.5).

General Data:                                                    C7H14O3Si, M = 174.27 g/mol, colorless oil; 

                                                                               Rf = 0.67 (100% EtOAc) 

                                                                               UV (-); Vanillin: brown;

1H-NMR (400 MHz, CDCl3, δ ppm)                 δ = 6.55 (d, 3.5 Hz, H-1, 1H); 5.59 (d, 3.3  

                                                                               Hz, H-2, 1H); 1.94 (s, COCH3, 3H); 0.03

                                                                               (s, OTMS, 9H); 

13C-NMR (100MHz, CDCl3, δ ppm)                 δ = 169.8 (COCH3), 127.3 (C-1), 120.4 

                                                                               (C-2), 20.9 (COCH3), -0.24 (OTMS); 

(2R,3R)-2,4-Bis-(tert-butyl-dimethyl-silanyloxy)-3-hydroxy-butanal (143)

D-proline (38.2 mg, 0.33 mmol) was added to a room temperature mixture of aldehyde 142 

(1.45 g, 8.33 mmol) dissolved in DMSO (13.3 ml). After 28 h, the solution was diluted with 

EtOAc (150 ml) and successively washed with water (100 ml), brine (100 ml), and dried 

over Na2SO4. The volatiles were concentrated in vacuo and the residue was purified by flash 
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chromatography with Pentane:THF (49:1) to afford yellowish oily liquid as diasteromers 

143 (2.18 g, 6.3 mmol, 76%, syn:anti, 1:3.4).

General Data:                                          C16H36O4Si2, M = 348.63 g/mol, yellowish oil;

                                                                         Rf = 0.55 (100% EtOAc); 

                                                                         UV(-); Vanillin: brown;

1H NMR (400 MHz, CDCl3, δ ppm)             δ = 9.64 (d, 1.65 Hz, H-1, 1H); 4.10 (m, H-2, 

                                                                         1H); 3.90 (m, H-3, 1H); 3.70 (m, H-4, 2H);

                                                                         2.44 (s, OH, 1H); 0.92 (s, OTBS, 9H); 0.89 (s,

                                                                         OTBS, 9H), 0.08,0.06 (s, OTBS, 12H);

13C NMR (100MHz, CDCl3, δ ppm)             δ = 201.85 (C-1), 78.31 (C-2), 72.91 (C-3), 

                                                                         62.30 (C-4), 25.81,25.70 (OSiC(CH3)3), 18.2

                                                                         (OSiC(CH3)3), -4.58,-4.66 (OSi(CH3)2);

MS (EI)                                                               349.1 (43%), 319.2 (95%), 301.1 (25%), 273.1

                                                                         (35%), 231.1 (100%), 117.1 (100%), 73.0 (72);

IR (Cap. Film)                                            3437 (b), 2930 (s), 2886 (s), 2859 (s),  2251 

                                                                         1740 (s), 1701 (s), 1390 (s), 1255 (b), 837 (s)

                                                                         779 (s), 671 (s);

HRMS                                                   C16H36O4Si2

                                                              Calcld: 348.220

                                                                        Found: 348.216
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3-(tert-Butyl-dimethyl-silanyloxy)-2-(tert-butyl-dimethylsilanyloxymethyl) 

-3,4-dihydro-2H-pyran-4-ol (149)      

The aldol 143 (100 mg, 0.23 mmol) was added as a solution in Et2O (2.3 ml) to a mixture of 

MgBr2
.Et2O (129 mg, 0.65 mmol) in Et2O (2.3 ml) which was cooled to –20 °C. After 30 

minutes at -20 °C, 139 (85 μl, 0.92 mmol) was added[25]. The suspension was stirred at -20 

°C for 2 h, and then allowed to warm to +4 °C over the course of 4 h. After stirring for an 

additional 24 h at +4 °C, the reaction was acidified by the addition of 100 ml saturated  

aqueous NH4Cl and extracted with EtOAc (2 x 50 ml). The organic layer was washed with 

brine (100 ml), dried over Na2SO4  and concentrated in vacuo. The residue was poured to a 

solution of THF:TFA:H2O (5 ml, (7:2:1)) at 0 °C and stirred for 30 minutes before being 

basified with 10% NaHCO3 (50 ml), extracted with EtOAc (100 ml), dried over Na2SO4. The 

volatiles  were  concentrated  in  vacuo  to  afford  suspension 148 (85  mg,  0.17  mmol). 

Compound  148 was dissolved in  Ac2O (1.80  mg,  0.07  mmol)  and  HBr  (100 mg,  33% 

solution in AcOH) was added in small portion. After 1 h the solution was treated with HBr 

(740 mg, 33% solution in AcOH). After 24 h stirring the reaction mixture was treated with 

NaOAc  (300  mg)  and  the  resulting  solution  was  immediately  added  in  portions  to  an 

aqueous suspension of CuSO4
.5H2O (13 mg), Zinc (1.02 g) in H2O (5 ml) and AcOH (7.5 

ml)  containing  NaOAc.3H2O  (1.25  g).  The  mixture  was  vigorously  stirred  at  room 

temperature for 2 h and inorganic solid was filtered off and successively washed with EtOAc 

(3.5 ml) and H2O (5 ml). The organic layer was washed with saturated aqueous NaHCO3 (5 

ml), brine (2.5 ml) and dried over Na2SO4. The solvents were evaporated in vacuo to afford 

149 (43 mg, 0.11 mmol, 60%).

General Data                                          C18H38O4Si2 M = 374.66 g/mol, colorless syrup; 

                                                                       Rf = 0.65 (100 % EtOAc); 

                                                                       UV(-); Vanillin: dark brown;

1H NMR (400 MHz, CDCl3, δ ppm)          δ = 6.27 (d, 7.4 Hz, H-6, 1H), 4.62 (d, 8.5 Hz, 
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                                                                       H-5, 1H), 4.22-3.75 (m, H-2, H-3, H-4, H-1', 

                                                                       5H), 2.64 (s, OH, 1H), 0.90,0.86 (s, OSiC(CH3)3

                                                                       18H); 0.11,0.08 (s, OSi(CH3)2, 12H); 

13C NMR (100MHz, CDCl3, δ ppm)          δ = 143.29 (C-6), 103.43 (C-5), 77.96 (C-2),

                                                                       70.93 (C-3), 69.86 (C-4), 63.11 (C-1'), 25.92, 

                                                                       25.82 (OSiC(CH3)3); 18.39, 18.12 (OSiC(CH3)3)

                                                                       -3.60 (OSi(CH3)2); -4.47 (OSiCH3); -4.50

                                                                       (OSiCH3);

IR (Cap. Film)                                          3468 (b), 3070 (s), 2986 (s), 2930 (s), 2858 (s)  

                                                                       1651 (s), 1463 (s), 1390 (s), 1257 (s), 837 (s)

                                                                       779 (s), 669 (s); 

(2S,3R,4S) Acetic acid 3,4-diacetoxy-3,4-dihydro-2H-pyran-2-yl-methyl 

ester (150)

To a magnetically stirred suspension of L-glucose 98 (1.0 g, 5.37 mmol) in Ac2O (3.61 g, 

0.7  mmol),  was  added  HBr  (1.0  g,  33%  solution  in  AcOH)  in  small  portion  while 

maintaining the reaction to room temperature with the help of water bath[21]. After 1 h the 

clear solution was treated with the remaining HBr (7.4 g, 33% solution in AcOH) and the 

resulting solution was stirred overnight at room temperature. Anhydrous NaOAc (3.0 g) was 

added to neutralize the excess HBr and the resulting solution was immediately added in 

portions to an aqueous suspension of CuSO4
.5H2O (260 mg) and zinc (10.2 g) in water (100 

ml) and acetic acid (150 ml) containing NaOAc.3H2O (12.5 g). The mixture was vigorously 

stirred at room temperature for 2 h. The inorganic solid was filtered off and washed with 

EtOAc (70 ml) and water (100 ml). The organic layer was washed with saturated NaHCO3 
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(100 ml) and brine (50 ml) and dried over Na2SO4. The solvents were evaporated in vacuo to 

afford tri-O-acetyl L-glucal 150 (1.4 g, 5.15 mmol, 96%). 

General Data                                              C12H16O7, M = 272.25 g/mol, colorless syrup; 

                                                                             Rf = 0.54 (CH2Cl2/EtOAc, 1:1); 

                                                                             UV(-); Vanillin: brown; 

1H NMR (400 MHz, CDCl3, δ ppm)               δ = 6.38 (d, 8.3 Hz, H-6, 1H), 5.25-5.10 (m, 

                                                                             H-5, H-4, 2H), 4.3 (m, H-3, 1H), 4.75 (m, 

                                                                             H-2, 1H), 4.20-4.00 (m, H-1', 2H), 2.00 (s,  

                                                                             COCH3, 9H); 

13C NMR (100MHz, CDCl3, δ ppm)               δ = 170.31 (COCH3), 170.14 (COCH3), 

                                                                            169.32 (COCH3), 145.40 (C-6), 98.75 (C-5), 

                                                                            73.68 (C-3), 67.19 (C-2), 66.91 (C-4), 61.10 

                                                                             (C-1'), 20.70,20.51,20.08 (COCH3);

MS (EI)                                                        272.1 (5%), 202.1 (5%), 152.1 (25%), 139.1 

                                                                             (70%), 110 (64%), 97 (100%);

 IR (Cap. Film)                                                   3456 (b), 2960 (s), 1748 (m), 1649 (s), 1372 

                                                                             (s), 1228 (s), 1045 (s); 

HRMS                                                 C12H16O7  

                                                                             Calcld: 272.090

                                                                             Found: 272.089
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(2S,3R,4S)-2-Hydroxymethyl-3,4-dihydro-2H-pyran-3,4-diol (99)

A mixture of the solvents CH3OH/H2O/Et3N (10 ml,  4:5:1) was added to tri-O-acetyl  L-

glucal 150 (0.7 g, 2.75 mmol). The reaction was stirred for 4 h and solvents were evaporated 

in vacuo to afford L-glucal 99 as syrup (0.37 g, 2.53 mmol, 91%).

General Data:                                              C6H10O4, M = 146.14g/mol, colourless syrup; 

                                                                            Rf = 0.22 (CH2Cl2/ EtOAc, 1:1); 

                                                                            Vanillin: brown; UV(-); 

1H NMR (400 MHz, CDCl3, δ ppm)              δ = 6.33 (d, 6.0 Hz, H-6, 1H); 4.75 (m, H-5,  

                                                                            1H); 4.30 (m, H-2, 1H); 3.98-3.77 (m, H-3, 

                                                                            H-4, H-1', 4H), 2.0 (s, OH, 3H); 

13C NMR (100MHz, CDCl3, δ ppm)               δ = 143.99 (C-6), 103.16 (C-5), 78.06 (C-3), 

                                                                            70.41 (C-2), 69.84 (C-4), 61.64 (C-1'); 

MS (EI)                                                       146.2 (5%), 101.2 (40%), 86.2 (100%), 73.1

                                                                            (12%), 58.1 (48%);

HRMS                                                C6H10O4

                                                                            Calcld: 146.061

                                                                            Found: 146.050
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(2S,3R,6S)-3-Acetoxy-2-acethoxymethyl-6-allyl-3,6-dihydro-2H-pyran 

(154)

To a solution of tri-O-acetyl L-glucal  150 (2.72 g, 10 mmol) in dry CH3CN (40 ml) was 

added ATMS (1.91 ml, 12 mmol) at 0 °C followed by TMSOTf (1.93 ml, 10 mmol). After  

stirring it for 30 minutes, the reaction was quenched with saturated aqueous NaHCO3 and 

the phases were separated. The organic phase was washed with brine and the aqueous layer 

was extracted with EtOAc (4 x 50 ml). The combined organic layer was dried over MgSO4 

and volatiles were concentrated in vacuo to afford clear brownish syrup  154 (2.30 g, 9.06 

mmol, 91%). It was used for the next step directly.

General Data:                                                C13H18O5, M = 254.28 g/mol; brownish syrup; 

                                                                           Rf = 0.58 (Pentane: Ether, 1:1); Vanillin: blue; 

                                                                           [α]20 = -61.3° (c = 1.8 CHCl3); UV (-); 

1H NMR (400 MHz, CDCl3, δ ppm)             δ = 5.93 (ddd, 10.3 Hz, 2.4 Hz, 1.6 Hz, H-4 

                                                                          1H); 5.84 (dddd, 17.3 Hz, 7.0 Hz, 7.0 Hz, 3.0  

                                                                          Hz, H-2'', 1H); 5.80 (ddd, 10.3 Hz, 2.7 Hz,

                                                                          1.9 Hz, H-5, 1H); 5.14-5.11 (m, H-3'', 2H),

                                                                          4.28- 4.20 (dddd, 7.8 Hz, 7.8 Hz, 4.1 Hz, 1.6 

                                                                          Hz, H-1', 2H); 4.15 (dd, 11.9 Hz, 3.5 Hz, 

                                                                          H-3, 1H); 3.96 (dd, 6.5 Hz, 5.0 Hz, H-6, 1H);

                                                                          3.47 (ddt, 14.6 Hz, 7.8 Hz, 6.8 Hz, H-2, 1H);

                                                                          2.32 (ddt, 14.3 Hz, 7.0 Hz, 5.9 Hz, 1.1 Hz, 

                                                                          H-1'', 2H), 2.09 (s, COCH3, 6H); 

13C NMR (100MHz, CDCl3, δ ppm)               δ = 170.82 (COCH3), 170.42 (COCH3),  
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                                                                          133.98 (C-2''), 132.82 (C-4), 123.71 (C-5), 

                                                                          117.59 (C-3''), 71.35 (C-3), 69.78 (C-2), 

                                                                           (C-6), 62.87 (C-1'), 37.87 (C-1''), 21.06 

                                                                           (COCH3), 20.08 (COCH3); 

MS (EI)                                                       253.1 (5%), 213.1 (68%), 153.0 (24%), 

                                                                           111.0 (100%), 94 (12%), 63 (20%); 

IR (Cap. film)                                                3460 (b), 2937 (s), 1732 (s), 1644 (s),

                                                                           1435 (s), 1231 (m), 1048 (m), 1031 (m), 

                                                                           915 (s);

HRMS                                               C13H18O5

                                                                           Calcld: 254.120

                                                                           Found: 254.116

(2S,3R,6S)-6-Allyl-2-hydroxymethyl-3,6-dihydro-2H-pyran-3-ol (100)

To a solution of the diacetate 154 (3.0 g, 11.8 mmol) in CH3OH (40 ml) was added K2CO3 

(6.9 g, 50 mmol) at room temperature. After stirring it for 1 h, the reaction mixture was 

quenched with saturated aqueous  NH4Cl and CH3OH was removed  in vacuo. The aqueous 

layer was extracted with EtOAc (7 x 25 ml). The combined organic layer was washed with  

brine, dried over MgSO4 and concentrated in vacuo to give the diol 100 (1.9 g, 11.1 mmol, 

95%). It was used for the next step directly. 

General Data:                                             C9H14O3, M = 170.21, yellowish oil; 

                                                                           Rf = 0.30 (Pe/EtOAc, 1:1); Vanillin: dark blue
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                                                                                                               [α]20 = +23.8° (c = 0.94 CHCl3); UV(-);

 1H NMR (400 MHz, CDCl3, δ ppm)              δ = 5.85-5.79 (m, H-2'', H-4, H-5, 3H); 5.14-

                                                                           5.10 (m, H-3'', 2H); 4.25-4.23 (m, H-3, 1H); 

                                                                           4.10 (d, 7.6 Hz, H-6, 1H); 3.83 (dd, 10.9 Hz,

                                                                           4.2 Hz, H-1', 1H); 3.78 (dd, 11.5 Hz, 4.2 Hz,

                                                                           H-1', 1H); 3.55 (ddt, 7.9 Hz, 5.9 Hz, 4.3 Hz,

                                                                           H-2, 1H); 2.50 (br, OH, 2H); 2.33 (ddt, 13.8

                                                                           Hz, 6.8 Hz, 6.0 Hz, H-1'', 1H); 2.30 (ddt, 13.8 

                                                                           Hz, 6.8 Hz, H-1'', 1H);

13C NMR (100MHz, CDCl3, δ ppm)              δ = 134.45 (C-2''), 130.58 (C-4), 128.61 (C-5) 

                                                                          117.60 (C-3''), 73.27 (C-2), 72.05 (C-6), 64.06

                                                                           (C-3), 62.91 (C-1'),  37.83 (C-1''); 

MS (EI)                                                            170.2 (15%), 169,2 (100%), 129.1 (100%), 

                                                                           111.1 (38%), 85.0 (64%), 55.0 (28%);

IR (Cap. Film)                                             3438 (b), 2930 (s), 1732(s), 1644 (s), 1384(s) 

                                                                           1257 (s), 918 (s), 729 (s), 578 (s);

HRMS                                                             C9H14O3

                                                                           Calcd: 170.090

                                                                           Found: 170.092
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(2S,3R,6S)-6-Allyl-3-(tert-butyldimethylsilanyloxy)-2-(tert-butyldimethyl-

silanyloxymethyl)-3,6-dihydro-2H-pyran (76) 

The  diol  100 (800 mg,  4.7  mmol)  was  dissolved  in  pyridine  (10  ml,  12.6  mmol).  The 

reaction was cooled to 0 °C and TBSCl (1.74 g,  11.5 mmol)  was added to the reaction 

slowly[21]. The reaction was allowed to warm up to room temperature and stirred for another 

12 h. It was quenched with 5% aqueous NaHCO3 (11.2 ml) and was extracted with Et2O (3 x 

50 ml). The combined organic phase was dried over MgSO4 and volatiles were removed in 

vacuo.  The residue was purified by flash chromatography with Pentane:Ether  (100:1)  to 

afford TBS- protected alkene 76 (1.85 g, 4.64 mmol, 99%).   

General Data:                                          C21H42O3Si2, M = 398.73 g/mol, colorless oil; 

                                                                       Rf = 0.85 (100% EtOAc); Vanillin: dark blue; 

                                                                   [α]20  = - 28.9° (c = 0.98 CHCl3); UV(-); 

1H NMR (400 MHz, CDCl3, δ ppm)           δ = 5.81 (dd, 17.0 Hz, 7.1 Hz, H-2'', 1H); 5.64 

                                                                        (m, H-4, H-5, 2H) 5.05-4.98 (m, H-3'', 2H);

                                                                        4.12 (m, H-3, 1H); 4.00-3.99 (m, H-6, 1H); 

                                                                        1H); 3.79,3.63 (d, 11.0 Hz, H-1', 2H); 3.38 

                                                                        (ddt, 2.5 Hz, 6.0 Hz, 8.1 Hz, H-2, 1H); 2.47, 

                                                                        2.27 (m, H-1'', 2H); 0.84 (s, OTBS, 18H); 0.03 

                                                                        (s, OTBS, 6H); 0.02 (s, OTBS, 6H); 

13C NMR (100MHz, CDCl3, δ ppm)            δ = 134.01 (C-2''), 129.69 (C-4), 128.67 (C-5),

                                                                        115.90 (C-3''), 73.41 (C-2), 71.37 (C-6), 63.02 

                                                                        (C-3),  62.18 (C-1'), 37.78 (C-1''), 24.86 
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                                                                         (OSiC(CH3)3), 24.79 (OSiC(CH3)3), 17.31

                                                                        (OSiC(CH3)3), 17.08 (OSiC(CH3)3), -5.26

                                                                        (OSiCH3), -5.77 (OSiCH3), -6.12 (OSiCH3);

                                                                        -6.30 (OSiCH3); 

MS (EI)                                                      398.1 (15%), 383.2 (20%), 357.2 (9%), 341.1 

                                                                        (44%), 117.0 (100%), 73.1 (95%), 59 (20%); 

IR (Cap. Film)                                            3864 (s), 3468 (s),  2956 (s), 2930 (s), 2886

                                                                        (b), 2858 (s), 1473 (s), 1463 (s), 1255 (s), 

                                                                        1093 (s), 1020 (s), 878 (s), 837 (s), 777 (s); 

HRMS                                                       C21H42O3Si2, 

                                                                        Calcd: 398.270

                                                                        Found: 398.267

(2S,3R,6S)-5-(tert-Butyldimethylsilanyloxy)-6-(tert-butyldimethyl-

silanyloxymethyl)-5,6-dihydro-2H-pyran-2''-yl-acetaldehyde (156)

To a stirred solution of alkene 76 (220 mg, 0.58 mmol) in 50% THF/H2O (10 ml) solution 

was added NMO (81.6 mg, 0.70 mmol) and OsO4 (0.25 ml, 2.5% in t-BuOH) at 0 °C and the 

reaction was stirred vigorously at room temperature for 5 h. The reaction was quenched with 

1M Na2S2O3, extracted with EtOAc (3 x 50 ml) and dried over Na2SO4. The organic layer 

was concentrated in vacuo and purified by flash chromatography with Hexane:EtOAc (4:1 to 

1:2) to give the intermediate diol 155 (173 mg). To a solution of the intermediate diol 155 

(173 mg,  0.40 mmol)  in THF (10 ml)  was added a suspension of NaIO4 (288 mg,  1.62 

mmol) in H20 (2 ml) at 0 °C. The mixture was stirred for 3.5 h, extracted with EtOAc (4 x 25 
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ml) and dried over Na2SO4. The organic layer was concentrated in vacuo and purified by 

flash  chromatography  with  Pentane:EtOAc  (4:1)  to  afford  aldehyde  156 (140  mg,  0.35 

mmol, 61%).

General Data:                                            C20H40O4Si2, M = 400.70 g/mol, yellowish oil;

                                                                          Rf  = 0.63 (100% EtOAc); Vanillin:dark blue;

                                                                     [α]20 = -43.7° (c = 0.85 CHCl3); UV (-); 

1H NMR (400 MHz, CDCl3, δ ppm)             δ = 9.80 (dd, 2.3 Hz, 2.1 Hz, H-2'', 1H); 5.77

                                                                          (dd, 8.5 Hz, 1.8 Hz, H-4, 1H); 5.69 (dd, 8.5Hz

                                                                          1.6 Hz, H-5, 1H); 4.73 (m, H-6, 1H); 4.10 (m

                                                                          H-3, 1H); 3.81 (dd, 11.1 Hz, 2.7 Hz, H-1',1H);

                                                                          3.69 (ddt, 2.7 Hz, 5.6 Hz, 11.1 Hz, H-1', 1H); 

                                                                          3.41 (m, H-2, 1H); 2.56-2.52 (m, H-1'', 2H);

                                                                          0.89,0.88 (s, OSiC(CH3)3, 18H); 0.08,0.03 (s,

                                                                          OSi(CH3)2, 12H); 

13C NMR (100MHz, CDCl3, δ ppm)             δ = 200.75 (C-2''), 130.71 (C-5), 128.52 (C-4),

                                                                          74.64 (C-2), 68.01 (C-6), 63.43 (C -3), 62.71

                                                                          (C-1'), 46.75 (C-1''), 25.90 (OSiC(CH3)3),

                                                                          25.74 (OSiC(CH3)3), 18.37 (OSiC(CH3)3);

                                                                          18.00 (OSiC(CH3)3), -4.32 (OSiCH3), -4.82 

                                                                          (OSiCH3), -5.01 (OSiCH3), -5.34 (OSiCH3); 

MS (EI)                                                        401.2 (2%), 369.2 (26%), 355.2 (100%), 345.1

                                                                          (26%), 315.2 (31%), 272.1 (20%), 180.1

                                                                          (24%), 169.1 (11%), 75.0 (48%), 61 (100%);
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IR (Cap. Film)                                                    3432 (br), 3039 (s), 2930 (s), 2858 (m), 2179 

                                                                         (s), 1726 (s), 1544 (s), 1463 (s), 1375 (s), 1361

                                                                         (s), 1254 (s), 1087 (s), 939 (s), 881 (s), 838 (s),

                                                                         778 (s), 724 (s), 670 (s); 

HRMS                                                        C20H40O4Si2

                                                                         Calcd: 400.246

                                                                         Found: 400.247

(2S,3R,6S)-3-(tert-Butyldimethylsilanyloxy)-2-(tert-butyldimethyl-

silanyloxymethyl)-6-(2'',2''-dimethoxyethyl)-3,6-dihydro-2H-pyran (157)

To a solution of the aldehyde  156 (90 mg, 0.23 mmol) in abs. CH2Cl2  (2 ml) was added 

PPTS  (1.0  mg)  and  CH(OCH3)3 (167  mg).  The  reaction  was  stirred  for  2  h  at  room 

temperature  and  volatiles  were  removed  in  vacuo.  The  residue  was  purified  by  flash 

chromatography with Pentane:EtOAc (20:1) to afford 206 (67 mg, 0.15 mmol, 63%).

General Data:                                        C22H46O5Si2, M = 446.78 g/mol, yellowish oil; 

                                                                     Rf  = 0.69 (100% EtOAc); Vanillin: blue; UV (-);

                                                                 [α]20  = - 43.4 (c = 1.16 CHCl3);

1H NMR (400 MHz, CDCl3, δ ppm)        δ = 5.70-5.68 (m, H-4, H-5, 2H); 4.56 (m, H-2'', 

                                                                                                                      1H);  4.35 (d, 10.5 Hz, H-3, 1H); 4.12 (m, H-6,

                                                                    1H)); 3.81-3.65 (m, H-1', 2H); 3.36 (s, H-3'', 3H); 

                                                                    3.33 (s, H-4'', 3H); 2.04 (m, H-1'', 2H); 0.89 (s, 
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                                                                    OSiC(CH3)3, 18H); 0.10,0.09 (s, OSi(CH3)2,

                                                                     12H); 

13C NMR (100MHz, CDCl3, δ ppm)         δ = 130.15 (C-5), 129.45 (C-4), 102.52 (C-2''), 

                                                                     72.77 (C-2), 69.89 (C-3), 64.20 (C-1'), 62.56 

                                                                     (C-6), 53.53 (C-3''), 52.80 (C-4''), 35.58 (C-1''), 

                                                                     25.94 (OSiC(CH3)3), 25.74 (OSiC(CH3)3), 18.39

                                                                     (OSiC(CH3)3), 18.02 (OSiC(CH3)3), -4.82

                                                                     (OSiCH3), -4.90 (OSiCH3), -5.33 (OSi(CH3)2); 

MS (EI)                                                    446.3 (16%), 431.2 (28%), 389.2 (6%), 357.2

                                                                     (100%), 184.9 (17%), 88.9 (15%), 74.9 (100%); 

IR (Cap. Film)                                          2959 (s), 2937 (s), 2886 (s), 2852 (s), 1474 (s),

                                                                     1464 (s), 1119 (s), 1089 (s), 883 (m), 775 (s); 

HRMS                                                    C22H46O5Si2

                                                                     Calcd: 446.288

                                                                     Found: 446.290

(2S,3R,6S)-3-(tert-Butyldimethylsilanyloxy)-6-(2'',2''-dimethoxy-ethyl)-3,6-

dihydro-2H-pyranyl)-methanol (101)

To a solution of aldehyde  156 (200 mg, 0.5 mmol) in CH3OH (6.7 ml) was added I2 (0.2 

mmol, 15 mg) and was stirred for 5 h. The reaction was diluted with Et2O (10 ml) and 
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successively washed with 5% Na2S2O3 (5 ml), saturated aqueous NaHCO3  (5 ml) and dried 

over Na2SO4. The volatiles were evaporated in vacuo and purified by flash chromatography 

with Pentane:EtOAc (5:1) to afford the alcohol 101 (119 mg, 0.35 mmol, 70%).

General Data:                                         C16H32O5Si, M = 332.51 g/mol; yellowish oil;

                                                                        Rf  = 0.57 (100% EtOAc); Vanillin: dark blue;

                                                                        [α]20 = -57.7 (c = 1.05 CHCl3); UV(-); 

1H NMR (400 MHz, CDCl3, δ ppm)           δ = 5.72-5.67 (m, H-4, H-5, 2H); 4.56 (dd, 3.7 

                                                                        Hz, 7.1 Hz, H-2'', 1H); 4.35 (m, H-3, 1H); 4.12 

                                                                        (m, H-6, 1H); 3.80 (dd, 11.3 Hz, 2.7 Hz, H-1',

                                                                        1H); 3.63 (dd, 11.4 Hz, 5.7 Hz, H-1', 1H); 3.42

                                                                        (m, H-2, 1H); 3.35 (s, H-3'', 3H); 3.31 (s, H-4'',

                                                                        3H); 2.03-1.73 (m, H-1'', 2H); 0.88 (s,

                                                                        OSiC(CH3)3, 9H);  0.09,0.08 (s, OSi(CH3)2, 

                                                                        6H);                                                                     

13C NMR(100MHz, CDCl3, δ ppm)            δ = 130.14 (C-5), 129.44 (C-4), 102.50 (C-2''),

                                                                        72.77 (C-2), 69.86 (C-6), 64.18 ( C-3), 62.53

                                                                        (C-1'), 53.50 (C-3''), 52.78 (C-4''), 35.57 (C-1'')

                                                                        25.72 (OSiC(CH3)3), 17.96 (OSiC(CH3)3),

                                                                        -4.32 (OSiCH3), - 4.88 (OSiCH3);

MS (EI)                                                      332.2 (5%), 317.2 (25%), 315.2 (35%), 301.2 

                                                                        (15%), 281.1 (100%), 243.2 (15%), 117.1

                                                                        (12%),  89.1 (6%), 75.1 (100%);

IR (Cap. Film)                                             3470 (b), 2956 (s), 2930 (s), 2858 (s), 1739(s)
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                                                                        1472 (s), 1464 (s), 1388 (s), 1258 (s), 1086 (s), 

                                                                        1011 (s), 882 (s), 838 (s);

HRMS                                                       C16H32O5Si

                                                                        Calcd: 332.201

                                                                        Found: 332.202

(2S,3R,6S,1'S)-1'-[3-tert-Butyldimethylsilanyloxy-6-(2'',2''dimethoxy-

ethyl)-3,6-dihydro-2H-pyranyl]-ethanol (160)       

A solution of oxalyl chloride (60 mg, 0.47 mmol) in THF (0.15 ml) was cooled to -78 °C 

and DMSO (58.5 mg, 0.75 mmol) was added dropwise. After 1 h alcohol 101 (60 mg, 0.18 

mmol) was added to the mixture and the reaction was warmed to -30 °C and stirred for 2 h. 

The reaction was quenched with Et3N (90 mg, 0.92 mmol) warmed to 0 °C and CH3MgBr 

(0.1 ml, 3.0 M in THF) was added. After stirring for 24 h the reaction was quenched with 

freshly prepared saturated aqueous NH4Cl (1.25 ml) and stirred for 1 h. The mixture was 

extracted with Et2O (3 x 25 ml), the combined organic phase was dried over Na2SO4 and 

volatiles were concentrated in vacuo. The residue was purified by flash chromatography 

with Pentane:Ether (4:1) to afford 160 as yellowish oil (44.5 mg, 0.13 mmol, 73%).

General Data:                                         C17H34O5Si, M = 346.53 g/mol, yellowish oil;

                                                                        Rf  = 0.59 (100% EtOAc); Vanillin: dark blue;

                                                                    [α]20 = -63.4 (c = 1.60 CHCl3), UV(-); 

1H NMR (400 MHz, CDCl3, δ ppm)           δ = 5.74 (m, H-4, 1H); 5.66 (m, H-5, 1H); 4.57

                                                                        (dd, 8.1 Hz, 3.2 Hz, H-2'', 1H); 4.36 (m, H-3,
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                                                                        1H); 4.29 (dd, 3.9 Hz, 1.9 Hz, H-6, 1H); 3.99 

                                                                        (m, H-1', 1H); 3.38 (s, H-4'', 3H); 3.32 (s, H-3'', 

                                                                        3H); 3.13 (dd, 8.1 Hz,1.8 Hz, H-2, 1H);  2.04 (s

                                                                        OH, 1H); 1.93,1.75 (ddt, 14.3 Hz, 3.6 Hz, 8.1 

                                                                        Hz, H-1'', 2H); 1.29 (d, 6.7 Hz, H-2', 3H); 0.90

                                                                        (s, OSiC(CH3)3, 9H); 0.12 (s, OSi(CH3)2, 6H);

13C NMR (100MHz, CDCl3, δ ppm)            δ = 130.45 (C-5), 129.16 (C-4), 102.39 (C-2''), 

                                                                        75.06 (C-2), 69.89 (C-6), 65.24 (C-1'), 64.01

                                                                        (C-3), 53.87 (C-3''), 52.69 (C-4''), 35.83 (C-1''),

                                                                        25.79 (OSiC(CH3)3), 20.55 (C-2'), 18.01

                                                                        (OSiC(CH3)3); -4.26 (OSiCH3); - 4.78 

                                                                        (OSiCH3);

MS (EI)                                                      346.1 (5%), 257.2 (25%), 213.2 (35%), 199.2 

                                                                        (15%), 185.1 (65%), 159.9 (15%), 117.1 (12%)

                                                                        89.1 (6%), 75.1 (100%);

IR (Cap. Film)                                             3470 (b), 2956 (s), 2930 (s), 2896 (s), 2858(s)

                                                                        1388 (s), 1191 (s), 1087 (s), 882 (s), 777 (s);

HRMS                                                       C17H34O5Si,

                                                                        Calcd: 346.222

                                                                        Found: 346.228
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(2S,3S,6S)-1'-[3-tert-Butyldimethylsilanyloxy-6-(2'',2''-dimethoxyethyl)-

3,6-dihydro-2H-pyranyl]-ethanone (D)

To compound 102 (23 mg, 0.1 mmol) in THF (5 ml), was added 4-nitrobenzoic acid (36.4

mg, 0.2 mmol) and PPh
3 
(50.4 mg, 0.2 mmol). After 30 minutes DIAD (44 mg, 0.22 mmol) 

was  added  dropwise  at  a  rate  such  that  the  temperature  of  the  reaction  mixture  was 

maintained  below  10  °C.  The  solution  was  stirred  at  room  temperature  overnight  and 

subsequently at 40 °C for 3 h. The reaction mixture was cooled to room temperature, diluted 

with Et2O (15 ml), and washed with saturated aqueous NaHCO3 (10 ml). The aqueous layer 

was extracted with Et2O (100 ml) and combined organic layer was dried over Na2SO4   and 

volatiles were removed with vacuo. The residue was dissolved in CH3OH (3 ml) and K2CO3 

(30 mg, 0.22 mmol) was added at room temperature. After stirring it for 1 h, the reaction 

mixture was quenched with  saturated aqueous  NH4Cl and CH3OH was removed  in vacuo. 

The aqueous layer was extracted with EtOAc (7 x 25 ml) and the combined organic layer 

was washed with brine, dried over MgSO4 and concentrated in vacuo to give alcohol 162 (15 

mg, 0.065 mmol, 65%). Compound 162 was dissolved in pyridine (2.5 ml) and was treated 

with TBSCl (32.6 mg, 3 mmol) and stirred further for 12 h. The reaction was quenched with 

5% aqueous NaHCO3 (11.2 ml) and was extracted with Et2O (3 x 50 ml). The organic phase 

was dried over MgSO4 and volatiles were removed in vacuo. The residue was purified by 

flash chromatography with Pentane:Ether (10:1) to afford D (19 mg, 0.055 mmol, 85%).

General Data:                                           C17H32O5Si, M = 344.52 g/mol, yellowish oil; 

                                                                          Rf = 0.62 (100% EtOAc); Vanillin: blue;

1H NMR (400 MHz, CDCl3, δ ppm)             δ = 5.81-5.78 (m, H-4, H-5, 2H); 4.57 (dd, 7.8

                                                                          Hz, 3.6 Hz, H-2'', 1H); 4.37-4.33 (dd, 3.9 Hz, 

                                                                          1.8 Hz, H-2, H-6, 2H); 3.95 (m, H-3, 1H);

                                                                          3.36 (s, H-4'', 3H); 3.34 (s, H-3'', 3H); 2.27 (s,
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                                                                          H-2', 3H); 1.93,1.76 (ddt, 3.6 Hz, 8.2  Hz, 8.1

                                                                          Hz, H-1'', 2H); 0.86 (s, OSiC(CH3)3, 9H); 0.05

                                                                          0.03 (s, OSi(CH3)2, 6H);

13C NMR (100MHz, CDCl3, δ ppm)              δ = 206.50 (C-1'), 129.74 (C-5), 127.71 (C-4),

                                                                          102.10 (C-2''), 78.91 (C-2), 69.58 (C-6), 64.18

                                                                          (C-3), 53.78 (C-3''), 52.72 (C-4''), 36.56 (C-1'')

                                                                          27.72 (C-2'), 25.78 (OSiC(CH3)3), 18.03

                                                                          (OSiC(CH3)3), - 4.44 (OSiCH3), -4.78

                                                                          (OSiCH3); 

(2S,3R,6S)-1'-[3-tert-Butyldimethylsilanyloxy-6-(2'',2''-dimethoxyethyl)-

3,6-dihydro-2H-pyranyl]-ethanone (102)

To a solution of the alcohol 160 (102 mg, 0.3 mmol) in CH2Cl2 (2 ml), DMP (140 mg, 0.33 

mmol,  15% in CH2Cl2) was added and the reaction mixture was stirred for 4 h at room 

temperature. The volatiles were removed in vacuo and the crude product was purified by 

flash chromatography directly with Pentane:Et2O (1:1) to afford the Ketone 102 (96.2 mg, 

0.28 mmol, 94%).

General Data:                                           C17H32O5Si, M = 344.52 g/mol, yellowish oil;

                                                                          Rf = 0.63 (100% EtOAc); Vanillin: dark blue;

                                                                          [α]20 = -51.4 (c = 1.60 CHCl3); UV(-); 

1H NMR (400 MHz, CDCl3, δ ppm)             δ = 5.76-5.68 (m, H-4, H-5, 2H); 4.59 (dd, 7.8
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                                                                          Hz, 3.7 Hz, H-2'', 1H); 4.36-4.34 (dd, 4.1 Hz,

                                                                          2.0 Hz, H-2, H-6, 2H); 3.95 (m, H-3, 1H); 

                                                                          3.37 (s, H-4'', 3H); 3.32 (s,  H-3'', 3H); 2.26 (s,

                                                                          H-2', 3H); 1.95,1.78 (ddt, 3.6 Hz, 8.1 Hz, 8.1 

                                                                          Hz, H-1'', 2H); 0.89 (s, OSiC(CH3)3, 9H); 0.08

                                                                          0.05 (s, OSi(CH3)2, 6H);

13C NMR (100MHz, CDCl3, δ ppm)              δ = 206.49 (C-1'), 129.73 (C-5), 128.72 (C-4) 

                                                                          102.09 (C-2''), 78.90 (C-3), 69.57 (C-6), 64.16

                                                                          (C-2), 53.77 (C-4''), 52.71 (C-3''), 36.54 (C-1'')

                                                                          27.71 (C-2'), 25.77 (OSiC(CH3)3), 18.02

                                                                          (OSiC(CH3)3), - 4.45 (OSiCH3), -4.80 

                                                                          (OSiCH3);

MS (EI)                                                        343.9 (2%), 288.3 (5%), 257.1 (25%), 255.2

                                                                          (34%), 230.9 (5%), 197.1 (80%), 155.2 (40%) 

                                                                          89.1 (20%), 75 (100%);

IR (Cap. Film)                                              2957 (s), 2930 (s), 2858 (s), 1739 (s),1472 (s), 

                                                                          1464 (s), 1362 (s), 1258 (s), 1191 (s), 778 (s);

HRMS                                                                 C17H32O5Si

                                                                             Calcld: 344.200

                                                                          Found: 344.202
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3-(tert-Butyl-dimethyl-silanyloxy)-2-(tert-butyl-dimethylsilanyloxy-

methyl)-6-(6-triisopropylsilanyloxy-hex-2''-enyl)-3,6-dihydro-2H-pyran 

(190)

To a stirred solution of fragment F (21 mg, 0.05 mmol, 1.17equiv.) in THF (5 ml), cooled to 

-78 °C was added LDA (0.02 ml, 2M in THF) dropwise. The reaction was stirred at the same 

temperature for 10 minutes, the bright yellow mixture was treated with aldehyde  156 (20 

mg, 0.12 mmol) dissolved in THF (1.0 ml) and stirred for 3 h during this time the reaction is  

slowly warmed to room temperature.  The reaction was quenched with saturated aqueous 

NH4Cl and the aqueous phase was extracted with Et2O (3 x 25 ml). The combined organic 

phase was dried over MgSO4 and volatiles were removed in vacuo. The residue was purified 

with  flash  chromatography by using  Pentane:Ether  (10:1)  to  afford  190 (16.8  mg,  0.03 

mmol, 57%).

General Data:                                         C31H64O4Si3, M = 585.09 g/mol, white solid; 

                                                                      Rf = 0.91 (100% EtOAc); Vanillin: brown;

                                                                       [α]20 = +81.7 (c = 1.0 CHCl3); UV(-); 

1H NMR (400 MHz, CDCl3, δ ppm)          δ = 5.74-5.71 (m, H-4, H-5, 2H), 5.52-5.51 

                                                                       (m, H-2'', H-3'', 2H); 4.08 (m, H-3, 1H); 3.83-.   

                                                                       3.73 (m, H-4'', H-1', 4H); 3.66 (m, H-6, 1H);

                                                                       3.49 (ddt, 2.5 Hz, 6.0 Hz, 8.1 Hz, 1H, H-2);

                                                                       2.17-1.96 (m, H-1'', H-5'', 4H); 1.59 (m, H-1'',

                                                                       H-4'', 2H); 1.39,1.16 (m, OTIPS, 21H); 0.89 (s, 

                                                                      OTBS, 18H), 0.09,0.06 (s, OTBS, 12H); 
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13C NMR (100MHz, CDCl3, δ ppm)           δ = 132.58 (C-3''), 129.94 (C-5), 129.46 (C-4),

                                                                       126.36 (C-2''), 74.42 (C-2), 72.88 (C-6), 64.11 

                                                                       63.23 (C-6''), 62.89 (C-1'), 36.64 (C-4''), 29.70

                                                                       29.70 (C-1''), 25.97 (OSiC(CH3)3), 25.75 

                                                                       (OSiC(CH3)3), 18.44 (OSiC(CH3)3), 18.02 

                                                                       (OTIPS), 11.98 (OTIPS), -4.25 (OSi(CH3)2),

                                                                       -4.75 (OSi(CH3)2);

MS (EI)                                                     555.8 (12%), 554.8 (25%), 436.8 (8%), 356.9

                                                                      (100%), 224.9 (15%), 157.0 (32%), 116.2 (98%) 

                                                                      81.0 (52%), 73.0 (100%); 

IR (Cap. Film)                                            3434 (b), 3036 (s),  2929 (s), 2859 (s), 2738

                                                                       (s), 2032 (s), 1734 (s), 1689 (s), 1626 (s), 

                                                                       1530 (s), 1463 (s), 1361 (s), 1254 (s), 1095 (s), 

                                                                       882 (s), 837 (s), 777 (s), 680 (s);

HRMS                                                              C30H61O4Si3

                                                                          Calcld (M+ -CH(CH3)2): 569.390

                                                                       Found: 569.388 
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9 Spectral Data    

D-Valine-hydrochloride-methylester
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(R)-2-Amino-3-methyl-1, 1-diphenylbutane-1-ol 
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4(R) –Isopropyl-5, 5-diphenyl-oxazolidin-2-on 

 

O NH
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3-Hept-6-enoyl-4(R)-Isopropyl-5,5-diphenyl-oxazolidin-2-on
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(2R, 4’R)-Isopropyl-3-(2-methyl-hept-6-enoyl)-5,5-diphenyl-oxazolidin-2-on  
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(2R)-5-(2-Methyl-hept-6-enylsulfanyl)-1-phenyl
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5-Hept-6-enylsulfanyl-1-phenyl-1H-tetrazole
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5-(Hept-6-ene-1-sulfonyl)-1-phenyl-1H-tetrazole
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5-(1-Methyl-hept-6-enylsulfanyl)-1-phenyl-1H-tetrazole
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5-(Oct-7-ene-2-sulfonyl)-1-phenyl-1H-tetrazole
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(2R)-2-(2-Methylhept-6-enylsulfanyl)-Benzothiazol
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(2R)-2-(2-Methylhept-6-en-1-sulfonyl)-Benzothiazol
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2-Triisopropylsilanyloxy Ethanol
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2-(tert-Butyldimethylsilyloxy) Ethanol
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2-(Triisopropylsilyloxy) acetaldehyde
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2-(tert-Butyldimethylsilyloxy) Acetaldehyde
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Acetic acid 2-hydroxy-ethyl ester 
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Acetic acid 4-acetoxy-but-2-enyl ester
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(2S,3S)-2,4-bis(tert-Butyldimethylsilyloxy)-3-hydroxybutanal
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3-(tert-Butyl-dimethyl-silanyloxy)-2-(tert-butyl-dimethyl-silanyloxymethyl)-3,4-dihydro-2H-pyran-4-ol 
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Acetic acid 3-acetoxy-2-acetoxymethyl-3,4-dihydro-2H-pyran-4-yl ester
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(2S,3R,6S)-3-Acethoxy-2-acethoxymethyl-6-allyl-3,6-dihydro-2H-pyran 
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(2S,3R, 6S)-6-Allyl-2-(hydroxymethyl)-3,6-dihydro-2H-pyran-3-ol 
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(2S,3R,6S)–6-Allyl-3-tert-butyldimethylsilanyloxy-2-tert-butyldimethyl-silanyloxymethyl-3,6-dihydro-

2H-pyran                                                            
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(2S,3R,6S)-5-ter-Butyldimethylsilanyloxy-6-tert-butyldimethyl-silanyloxymethyl-5,6-dihydro-2H-

pyran-2-yl-acetaldehyde
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(2S,3R,6S)-tert-Butyldimethylsilanyloxy-6-(2,2-dimethoxy-ethyl)-3,6-dihydro-2H-pyranyl)-methanol 
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(2S,3R,6S)-1-3-tert-Butyldimethylsilanyloxy-6-(2,2-dimethoxyethyl)-3,6-dihydro-2H-pyranyl)-ethanol    
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(2S,3R,6S)-1-3-tert-Butyldimethylsilanyloxy-6-(2,2-dimethoxyethyl)-3,6-dihydro-2H-pyranyl-ethanon 
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