

Modeling, Evaluation and Predicting

of

IT Human Resources Performance

Dissertation

zur Erlangung des akademischen Grades

Doktoringenieurin (Dr.-Ing.)

vorgelegt der Fakultät für Informatik

der Otto-von-Guericke-Universität Magdeburg

von M.Sc. Konstantina Richter, geb. Georgieva

geb. am 30.04.1982 in Varna, Bulgarien

Magdeburg, den 30.05.2012

1

Contents
List of Figures .. 3

List of Tables ... 5

1 Chapter ‐ Introduction .. 7

1.1 Motivation .. 7

1.2 Structure of the Thesis ... 9

2 Chapter ‐ Software Risk Management and Human Factors .. 11

2.1 Overview over the Development of the Risk Management .. 11

2.2 The Incompleteness of the Risk Assessment Methods ... 13
2.2.1 Neural Networks Based Risk Analysis Methods ... 14
2.2.2 Qualitative Based Risk Analysis Methods ... 15
2.2.3 Software Metrics Based Risk Analysis Methods ... 16
2.2.4 Early Risk Estimation Based Risk Analysis Methods ... 16

2.3 Summary over the Risk Management and Motivation of our Further Research 17

2.4 Human Factors in the Software Engineering .. 22
2.4.1 Human Errors, Mistakes and Failures ... 23
2.4.2 Influencing Factors ... 25

2.5 Summary over the Human Factors ... 29

3 Chapter ‐ Software engineering, team and responsibilities .. 31

3.1 The Software Engineering Background... 31
3.1.1 Software Engineering characterization .. 31
3.1.2 The Software Product ... 33
3.1.3 The Software Development Process ... 37
3.1.4 The Software Development Resources .. 41
3.1.5 The Use of the Software Product ... 44
3.1.6 The Software Maintenance .. 46

3.2 The Software Team ... 48
3.2.1 Organizational Structures in the IT ... 48
3.2.2 Software Roles and Responsibilities ... 55

3.3 Summary over the Software Engineering and the Software Roles .. 65

4 Chapter – Discovery of the IT Human Factors ... 69

4.1Classical Failure Mode and Effect Analysis .. 69
4.1.1 Concept of the Failure Mode and Effect Analysis ... 70
4.1.2 The methodological steps in the FMEA .. 72
4.1.3 Software FMEA ... 76

4.2 Adopted FMEA for the Software Personnel .. 77
4.2.1 Performing the Software Human Factor FMEA .. 78

4.3 Summary over the Software Human Factors FMEA .. 102

5 Chapter – Definition and Evaluation of the IT Human Factors 105

5.1 The five personal features ... 105

2

5.2. Matching between the Big Five traits and the IT Human Factors 108

5.3 The evaluation test .. 109

5.4 Summary over the definition & evaluation of the IT Human Factors 113

6 Chapter – Development of the model for IT human performance prediction 115

6.1. Experimental design for the need of the IT human performance prediction 115

6.2. Algorithm for conducting Experimental Design ... 117
6.2.1 Recognition of and statement of the problem ... 117
6.2.2 Pre‐planning of the Experiment ... 118
6.2.3 Performing the experiment and analysis of the results ... 121

6.3 The development of the model for IT human performance prediction 127
6.3.1 Recognition and statement of the problem ... 127
6.3.2 Pre‐planning of the Experiment ... 133
6.3.3 Realizing and Analysis of the Experiment ... 135

6.4 The developed model for IT human performance prediction ... 157

6.5 Summary over the development of the predictive model .. 159

7 Chapter – Experimental validation of the predictive model for IT human performance . 163

7.1 The actual application of the model ... 163
7.1.1 Examples ... 163

7.2 The Software Human Factors Test web application .. 167
7.2.1 Analysis of the gained information ... 173

7.3 Summary over the experimental model validation .. 174

Conclusion and Future Work .. 175

Appendix: .. 183
One‐dimensional intersections by Motivation of 55% .. 183
One‐dimensional intersections by Motivation of 70% .. 187
One‐dimensional intersections by Motivation of 85% .. 192
The response surface graphics by Motivation of 70% ... 197
The response surface graphics by Motivation of 85% ... 198
Complete list of the validation results ... 200

List of Acronyms: .. 205

References: .. 207

3

List of Figures

FIGURE 1 THE RISKS DIGEST ... 8
FIGURE 2 INPUT FOR THE RISK ASSESSMENT METHODS .. 20
FIGURE 3 RISK IN THE DIFFERENT STAGES OF THE DEVELOPMENT PROCESS................................ 21
FIGURE 4 THE HUMAN EYE .. 22
FIGURE 5 THE HUMAN BRAIN ... 22
FIGURE 6 UNSAFE ACTS CATEGORIES .. 24
FIGURE 7 BASIC CHARACTERISTICS OF SOFTWARE ENGINEERING ... 31
FIGURE 8 THE GENERAL SOFTWARE DEVELOPMENT PROCESS .. 33
FIGURE 9 SIMPLIFIED VISUALIZATION OF THE PRODUCT CHARACTERISTICS AND RISKS

INVOLVEMENTS .. 35
FIGURE 10 COMPONENTS OF THE SOFTWARE PRODUCT... 36
FIGURE 11 SIMPLIFIED VISUALIZATION OF THE PROCESS CHARACTERISTICS AND THE RISKS

INVOLVEMENTS .. 37
FIGURE 12 COMPONENTS OF THE SOFTWARE ENGINEERING PROCESS .. 39
FIGURE 13 COMPONENTS OF THE RISK MANAGEMENT ... 40
FIGURE 14 SIMPLIFIED VISUALIZATION OF THE RESOURCES CHARACTERISTICS AND THE

RISKS INVOLVEMENTS.. 41
FIGURE 15 COMPONENTS OF THE SOFTWARE DEVELOPMENT RESOURCES 44
FIGURE 16 COMPONENTS OF THE SOFTWARE PRODUCT APPLICATION.. 46
FIGURE 17 COMPONENTS OF THE SOFTWARE MAINTENANCE .. 47
FIGURE 18 FUNCTIONAL ORGANIZATION. GRAY BOXES REPRESENT THE PEOPLE ENGAGED IN

THE SAME PROJECT ... 49
FIGURE 19 PROJECTIZED ORGANIZATION. GRAY BOXES REPRESENT STAFF ENGAGED IN

PROJECT ACTIVITIES ... 51
FIGURE 20 MATRIX ORGANIZATIONAL STRUCTURE. GRAY COLOR INDICATES THE STAFF

ALLOTTED TO A PARTICULAR PROJECT MANAGER ... 52
FIGURE 21 BALANCED MATRIX ORGANIZATION. GRAY BOXES REPRESENT STAFF ENGAGED IN

PROJECT ACTIVITIES ... 54
FIGURE 22 SOFTWARE DEVELOPMENT ORGANIZATIONAL STRUCTURE. THE PEOPLE IN THE

DOTTED LINE INDICATE STAFF ENGAGED FOR A PROJECT, DEV IS THE DEVELOPER 55
FIGURE 23 THE FMEA PROCESS ... 70
FIGURE 24 THE BOTTOM-UP APPROACH OF FMEA .. 72
FIGURE 25 APPLICATION OF THE SOFTWARE FMEA ... 77
FIGURE 26 MAPPING OF ROLE-BASED HUMAN FACTORS TO BIG-FIVE AND THEIR INDUSTRIAL

EVALUATION ... 114
FIGURE 27 RESPONSE SURFACE FOR TWO-FACTOR MODEL .. 117
FIGURE 28 DOMAIN OF A FUNCTION FOR TWO-FACTOR EXPERIMENT. .. 119
FIGURE 29 CORRELATION BETWEEN MOTIVATION AND PERFORMANCE 129
FIGURE 30 CORRELATION BETWEEN CONSCIENTIOUSNESS AND PERFORMANCE 129
FIGURE 31 CORRELATION BETWEEN INTELLIGENCE AND PERFORMANCE 130
FIGURE 32 CORRELATION BETWEEN AGREEABLENESS AND PERFORMANCE 130
FIGURE 33 CORRELATION BETWEEN EXPERIENCE AND PERFORMANCE 131
FIGURE 34 CORRELATION BETWEEN EXTRAVERSION AND PERFORMANCE 132
FIGURE 35 CORRELATION BETWEEN EMOTIONAL STABILITY AND PERFORMANCE 132
FIGURE 36 CHOOSING THE NUMBER OF THE FACTORS ... 135
FIGURE 37 SELECTING NAMES AND DIMENSIONS FOR THE FACTORS .. 136
FIGURE 38 DETERMINING THE INPUT INFORMATION FOR THE CONSCIENTIOUSNESS 137
FIGURE 39 INPUT VALUES FOR THE FACTORS ... 137

4

FIGURE 40 PLAN AND RESULTS OF THE EXPERIMENT (MOTIVATION=55%) 138
FIGURE 41 COEFFICIENTS AND THE REGRESSION EQUATION IN CODED FORM 139
FIGURE 42 REGRESSION EQUATION IN NATURAL FORM AND STATISTICAL ANALYSIS OF THE

MODEL ... 140
FIGURE 43 TWO-DIMENSIONAL INTERSECTIONS ... 141
FIGURE 44 A) RESPONSE SURFACE BY (MOTIVATION=55% AND CONSCIENTIOUSNESS=52%) .. 142
FIGURE 44 B) RESPONSE SURFACE BY (MOTIVATION=55% AND CONSCIENTIOUSNESS=64%) .. 143
FIGURE 44 C) RESPONSE SURFACE BY (MOTIVATION=55% AND CONSCIENTIOUSNESS=76%) .. 143
FIGURE 45 A) RESPONSE SURFACE BY (MOTIVATION=55% AND INTELLIGENCE=68%) 145
FIGURE 45 B) RESPONSE SURFACE BY (MOTIVATION=55% AND INTELLIGENCE=78%) 145
FIGURE 45 C) RESPONSE SURFACE BY (MOTIVATION=55% AND INTELLIGENCE=88%) 146
FIGURE 46 A) RESPONSE SURFACE BY (MOTIVATION=55% AND AGREEABLENESS=55%) 147
FIGURE 46 B) RESPONSE SURFACE BY (MOTIVATION=55% AND AGREEABLENESS=70%) 147
FIGURE 46 C) RESPONSE SURFACE BY (MOTIVATION=55% AND AGREEABLENESS=85%) 148
FIGURE 47 PLAN AND RESULTS OF THE EXPERIMENT (MOTIVATION=70%) 149
FIGURE 48 COEFFICIENTS AND THE REGRESSION EQUATION IN CODED FORM 150
FIGURE 49 REGRESSION EQUATION IN NATURAL FORM AND STATISTICAL ANALYSIS OF THE

MODEL ... 150
FIGURE 50 TWO-DIMENSIONAL INTERSECTIONS ... 151
FIGURE 51 PLAN AND RESULTS OF THE EXPERIMENT (MOTIVATION=85%) 153
FIGURE 52 COEFFICIENTS AND THE REGRESSION EQUATION IN CODED FORM 154
FIGURE 53 REGRESSION EQUATION IN NATURAL FORM AND STATISTICAL ANALYSIS OF THE

MODEL ... 155
FIGURE 54 TWO-DIMENSIONAL INTERSECTIONS ... 155
FIGURE 55 QUANTIFIED IT HUMAN FACTORS FOR HIGH PERFORMANCE 159
FIGURE 56 HOME PAGE OF THE WEB-APPLICATION ... 167
FIGURE 57 WEB-APPLICATION QUIZ PAGE .. 168
FIGURE 58 WEB-APPLICATION'S QUESTION TYPES ... 168
FIGURE 59 THE END OF THE QUIZ PAGE ... 169
FIGURE 60 THE WEB - APPLICATION'S QUIZ FINISHED PAGE ... 169
FIGURE 61 SCREENSHOT OF THE APPLICATION'S POPUP WHEN "SHOW RESULTS/RESUME TEST"

BUTTON IS CLICKED .. 170
FIGURE 62 WINDOW SHOWN, WHEN THE TEST DOES NOT EXIST ... 170
FIGURE 63 THE TEST RESULTS PAGE FOR A CONCRETE PERSON .. 171
FIGURE 64 THE SOFTWARE HUMAN FACTORS TEST STATISTICS PAGE .. 172
FIGURE 65 THE IT HUMAN FACTORS APPROACH KEEPING HIGH PERFORMANCE 179

5

List of Tables

TABLE 1 SELECTED EXAMPLES OF UNSAFE ACTS .. 24
TABLE 2 TAXONOMY OF PERSONAL TRAITS AND ATTRIBUTES ... 26
TABLE 3 KIM AND JUNG’S HUMAN FACTOR TAXONOMY ... 28
TABLE 4 GENERAL ROLES IN THE SOFTWARE DEVELOPMENT ... 48
TABLE 5 SOFTWARE HUMAN FACTOR FMEA TEMPLATE FORM .. 79
TABLE 6 HUMAN FACTORS FOR THE PROJECT MANAGER .. 81
TABLE 7 SHF-FMEA OVER THE PROJECT MANAGER ROLE ... 82
TABLE 8 HUMAN FACTORS FOR THE TEAM LEADER ... 84
TABLE 9 SHF-FMEA OVER THE TEAM LEADER ROLE ... 85
TABLE 10 HUMAN FACTORS FOR THE BUSINESS ANALYST ... 87
TABLE 11 SHF-FMEA OVER THE BUSINESS ANALYST ROLE ... 88
TABLE 12 HUMAN FACTORS FOR THE SOFTWARE ARCHITECT ... 90
TABLE 13 SHF-FMEA OVER THE SOFTWARE ARCHITECT ROLE ... 91
TABLE 14 HUMAN FACTORS FOR THE SOFTWARE DEVELOPER .. 93
TABLE 15 SHF-FMEA OVER THE SOFTWARE DEVELOPER ROLE .. 94
TABLE 16 HUMAN FACTORS FOR THE SOFTWARE TESTER .. 96
TABLE 17 SHF-FMEA OVER THE SOFTWARE TESTER ROLE .. 97
TABLE 18 HUMAN FACTORS FOR THE SOFTWARE QUALITY ENGINEER ... 99
TABLE 19 SHF-FMEA OVER THE SOFTWARE QUALITY ENGINEER ROLE .. 100
TABLE 20 DEFINING FACETS FOR THE BIG FIVE TRAIT DOMAINS .. 107
TABLE 21 MATCHING BETWEEN THE BIG FIVE TRAITS AND THE SOFTWARE HUMAN FACTORS

 ... 108
TABLE 22 BIG FIVE QUESTIONS .. 110
TABLE 23 POINTS FOR THE DIFFERENT ANSWERS ... 111
TABLE 24 ADDITIONAL QUESTIONS FOR ‚EXPERIENCE AND MOTIVATION 111
TABLE 25 SUMMARIZED DATA FROM THE TEST-RESULTS ... 112
TABLE 26 CORRELATION ANALYSIS ... 113
TABLE 27 NUMBER OF EXPERIMENTAL POINTS AND SIZE OF THE STAR ARM BY ROTATABLE

PLANS WITH DIFFERENT NUMBERS OF FACTORS ... 123
TABLE 28 MATRIX FOR ROTATABLE PLAN OF SECOND LEVEL - TYPE 23 123
TABLE 29 VALUES OF THE COEFFICIENTS ... 124
TABLE 30 CORRELATION ANALYSIS BETWEEN THE PERSONAL FEATURES AND THE

PERFORMANCE.. 128
TABLE 31. COMPARISON BETWEEN THE PERFORMANCE VALUES BY MOTIVATION OF 55% AND

OF 70%.. 152
TABLE 32 COMPARISON BETWEEN THE PERFORMANCE VALUES BY MOTIVATION OF 55%, 70%

AND 85% .. 156
TABLE 33 PART OF THE RECEIVED EMPLOYEE INFORMATION ... 173

6

7

1 Chapter - Introduction

1.1 Motivation

In the nowadays era of globalization, based especially on the computer media and
applications, organizations of all industrial sectors have to face various problems in order to
be successful on the market. Competitors have to respond to the demands for low prices and
high quality, along with bright service capabilities and short development life-cycle. It is
obvious that these demands are almost impossible to be met and because of this the
requirements against the employees in the software development are continuously growing
up. The employers are demanding more and more but very often they choose the
inappropriate person for a particular job or expect results that are beyond the capabilities of
the particular employee.

The subject-matter guru Capers Jones (Jones 2001) characterizes the sad state of software
production efforts today and summarizes: ‘’In general, software is a troubled technology
plagued by project failures, cost overruns, schedule overruns and poor quality levels. Even
companies as Microsoft have trouble meeting published commitments or shipping trouble-
free software.’’

So, here raises the question how can we help the software industry? How can we support the
software development process? There exist innumerable variety of methods that are meant to
be used in the process of development, but the main resource for every company - the people
seem to be left aside as a point of optimization.

In the nowadays development the importance is concentrated over the hardware and software.
Money, time and ideas are invested for new software and hardware achievements, but no one
takes care about the third component that is also very important for the successful software
engineering – the people. The employees are left alone, to manage on their own with the new
situation. Methods evaluating the influence of the individuals over the software process do not
exist and in this way everything is left to happen by itself.

Because of this the objective of this thesis is to develop a model that is able to evaluate the
employees’ performance. This method will assist in the process of personnel acquisition and
in this manner will introduce better quality in the software engineering process. The right
people chosen in the right manner and also their motivation are the most important software
resources, crucial for the achieving of better results.

The work quality in the today software companies is extremely important. It is the basis for
everything else and as we have already explained, as the goal is to develop fast and cheap, the
people and the way that they work are becoming an inseparable part of the good software
development process. Practical applications can be seen in the wide accepted methods for
optimization like process maturity (CMMI) and personal processes (PSP/TSP). ‘’Adopting
PSP and TSP can be a very effective method for accelerating an organization’s progress to
higher CMMI maturity levels.’’ This idea, proposed by the SEI shows how important is the
process of personnel elaboration and shows also where our model is meant to be applied.
Another point that motivated our research and that is also very important for the application
of our model is the AGILE development. This new type of software development-

8

organization, extremely dependent from communication and personality types shows once
again the importance of the human traits in the software process.

There is one more point that strengthens our motivation: the well-known list with risks from
Peter Neumann (Neumann 1985).

Figure 1 The Risks Digest

In the 26-th volume from 27.08.2011 (fig.1) we can see shocking news: ‘’Air France 447:
Smart planes still vulnerable to human error - On flight 447, the handoff from computer to
pilots proved fatal for the 228 aboard.’’ (Neumann 1985) Exactly this human mistake
motivates our statement that choosing personnel with a defined psychological profile can be
crucial for the performance in a particular software firma and even life-deciding like in this
accident.

Led by these ideas our research went through many different stages: from looking for existing
similar methods in other fields to adopting engineering solutions in order to find the most
important human characteristics in the software development and to the end – the
development of a method that is able to prognosticate an individual’s performance based on
his/her special traits.

In order to fulfill this complex task we had to go through the following steps:

1. Investigation about the existing Software Risk Assessment Methods in order to find
out if they cover the Human Factors – Chapter 2.

2. Summarizing all different methods for investigation of the Human slips, mistakes and
errors and looking for existing methods that evaluate the human influence in the
Software Process – Chapter 2.

9

3. Investigating the basics of the software engineering in order to find where the
personnel take critical part – Chapter 3.

4. Summarizing the basic software team roles and examining their responsibilities –
Chapter 3.

5. Adopting the FMEA method for the software engineering needs in order to find the
failure modes conducted from the software personnel and in this way the influencing
human factors – Chapter 4.

6. Finding a method that could be adopted for the evaluation of the specified in Chapters
2, 3 and 4 human factors. By adoption of the Big Five theory for the software
personnel we were able to measure the most important human traits and to observe
their influence over the Software Performance – Chapter 5.

7. Evaluating the human traits and choosing of a specific method for estimation of their
influence over the IT human resources performance. We used them as input factors
for designing of experiment, used to develop a predictive mathematical model for the
Human Productiveness – Chapter 6.

8. Validating the gained method for prediction of the IT human performance based on
the individuals’ characteristics and evaluating its effectiveness and correctness in real
conditions – Chapter 7.

1.2 Structure of the Thesis

While the introductory chapter of the thesis is concerned with the problem’s motivation, the
subsequent chapters will focus on the development steps of the proposed method and its
validation.

The remainder of the thesis is structured in the following way:

Chapter 2 examines and investigates the risk management field in the years and after this
focuses on the analysis of the risk assessment methods, in order to find out their
incompleteness. In the second part of this chapter are discussed the human factors in the
software engineering. There is given an overview of different types of characterizations for
the human errors, mistakes and failures and the influencing factors are brought to light. This
chapter is the basis for the following research as it reveals the problem of ignoring the critical
influence of the IT human factors in the software development. It concludes with the
observation that there does not exist an adequate method or model that can be used for IT
human performance evaluation.

Chapter 3 is concerned with the software engineering background on which the thesis is
build. After explaining the different parts of the software engineering field a deeper look in
the software organizations is taken. In this way we were able to find out the most common
organizational structure in the software field with its roles and the corresponding
responsibilities. The analysis of the IT roles with their competencies and responsibilities is
used as basis for specifying the important human factors in the process of software
engineering, which are input for the next chapter.

10

Chapter 4 examines a well-known method for failure analysis - the FMEA (Failure Mode and
Effect Analysis) and adopts it for the need of the software engineering. With the adoption of
the method and with the discovered competencies (specified in the previous two chapters) we
were able to analyze the roles in the software development process and to find the failure
modes by every role and the standing behind specific human factors. The discovered IT
human features will take part in the further evaluation process of the human performance.

Chapter 5 deals with the finding and adopting of a special theory that can evaluate the already
found human traits (from chapters 2, 3 and 4) and can also estimate the employee
performance in connection with them. These already specified human factors are estimated,
using the possibilities of the Big Five Theory. It gives us the opportunity to match the already
discovered human factors to the special psychological traits and to visualize the dependence
between them and the individuals’ productiveness.

Chapter 6 reflects the development of the specific model for IT human performance
evaluation. The discovered (in chapter 5) dependence between the personal factors and the
productiveness had to be modeled in an experimental way. For this goal we have chosen a
specific experimental design – Design of Experiments as it gives the possibility to find the
connection between different factors with a limited number of trials. The result from the
chapter is the obtaining of the adequate model that describes the employee performance in a
predictive way.

Chapter 7 is the validation of the developed prognostic models for prediction of the IT
humans’ performance. There are shown real case studies and a specific web-application,
which was developed as implementation of the new model. They all prove once again the
accurateness and adequacy of the developed method and show its extreme importance for
improving the quality in the software engineering process.

Conclusion and Future Work summarizes once again the results and the main contributions of
the thesis and gives proposals for further development and application of the model.

11

2 Chapter - Software Risk Management and Human Factors

In the following chapter we are focusing first on the risk management in general and after this
on the special risk assessment methods. We are investigating their mechanisms and the data
that they are using and in this way we were able to find their incompleteness in the sense that
they don’t consider the personnel as a crucial part in the risk management process. Based on
that observation we are continuing with research about existing methods, taxonomies and
types of human factors that play the role of risks in the software development. We end with
summarizing the influencing factors for the employee’s mistakes and failures and we use this
data as foundation for our further research.

2.1 Overview over the Development of the Risk Management

Trying to catch the complete history of risk management in the software engineering we have
to start from the first attempts made in this field by Nolan (Nolan 1973) (Nolan 1979) and
McFarlan (McFarlan 1974), they proposed models for managing the risks in the information
systems. In the late 70’s Alter and Ginzberg (Alter & Ginzberg 1978) prognosed that risk
factor analysis can increase the success rate in the software development. In 1982 Davis
(Davis 1982) announces a new method based on requirements determination for selecting the
most suitable development approach.
Despite these attempts, risks in their real scope were not addressed until the late 80’s, when
the pioneer in the software risk management Barry Boehm published his first and most
fundamental approach ‘’A Spiral Model of Software Development and Enhancement’’
(Boehm 1988). Later on his work has been complemented by Charette and others (Charette
1989), (Boehm & Ross 1989), (Charette 1990), (Ould 1990), (Boehm 1991). These
fundamental works are used later on from the Software Engineering Institute (SEI) (Van Scoy
1992), (Carr et al. 1993), (Higuera et al. 1994), (Higuera & Haimes 1996), (Sisti & Joseph
1994), (Dorofee et al. 1996) for developing a new methodology for risk management based on
risk taxonomies.
Other approaches for software risk management are invented from Karolak, Michaels,
Pandelios and Hefner (Karolak 1996), (Michaels 1996), (Pandelios, Rumsey & Dorofee
1996), (Hefner 1994). There exist also several risk categories and taxonomies proposed in the
fundamental methods of Boehm and SEI. In our paper (Georgieva, Farooq & Dumke 2009 a)
we make a summary over existing software development risks and propose new risk
taxonomy for the software testing process. Other quantitative approaches appear in the middle
of the 90’s from Bowers, Fairley and Berny (Bowers 1994), (Fairley 1994), (Berny &
Townsend 1993). Kontio proposes a new method for risk management (Kontio 1997), (Kontio
2001) where he proposes risk scenarios that are built over six elements (risk factor, risk event,
risk outcome, reaction, risk effect set and utility loss).

In the late 90’s and after that several approaches for software risk analysis have been
developed separately from the famous ones and they are summarized in our paper (Georgieva,
Farooq & Dumke 2009 b), exactly because they are used for risk analysis, which is a part
from the risk management we will consider them with special attention and they will be the
milestone for our scientific motivation.

A small number of industrial reports have been published, so we will give just few examples:
(Boehm 1991), (Chittister, Kirkpatrick & Van Scoy 1992), (Eslinger et al. 1993), (Meyers &

12

Trbovich 1993), (Morin 1993), (Fairley 1994), (Gemmer & Koch 1994), (Hefner 1994),
(Williamson 1994), (Conrow & Shishido 1997).

Many different risk assessment frameworks were proposed in the years. For example
McComb and Smith’ framework that identifies system failure factors, covering 15 key risk
areas - from project planning and execution to technical and human factors (McComb &
Smith 1991). Barki et al., based on a literature survey over 120 projects composed a list of 35
features, connected with the software development risk (Barki, Rivard & Talbot 1993).

Thomsett (Thomsett 1992) invented a risk assessment questionnaire model and proposes a
new project management paradigm that recognizes people-oriented values as very important
in the traditional organization structure and with this he is one of the first that puts accent on
the people in the process of risk management.

SEI risk taxonomy, already mentioned before is an important contribution in the field of risk
management because it gives a very comprehensive questionnaire and software risk
evaluation method (Carr et al. 1993), (Sisti & Joseph 1994). Another risk assessment
framework is proposed by Lyytinen (Lyytinen, Mathiassen & Ropponen 1996) and later on is
enlarged from Keil (Keil et al. 1998).

Applegate (Applegate, McFarlan & McKenney 1996) publishes a book about Information
Systems management, where the project risk assessment questionnaire is the tool to evaluate
the risk-degree in the different IT applications. Another method was developed by Moynihan,
who collected a list of risks and planned their mitigation after interviewing particular project
managers (Moynihan 1997), (Moynihan 2002). Project failure because of unmanaged risk is
widely recognized theme in the project management community. The general process and
principles of project risk management are applicable to all kinds of software projects. There is
quite extensive literature on generic project risk management and we name only the most
comprehensive works such as (Wideman 1998), (Chong & Brown 2000) (Pritchard 2001),
(Chapman & Ward 2002), (Chapman & Ward 2003), (Kendrick 2003), (Mulcahy 2003) and
(Smith & Merritt 2002). The last trends are to extend the risk management over safety,
environmental and business risk (Waring & A.I. 1998), (Cooper et al. 2004) or to addresses
the so called ‘positive risk’ (Hillson 2004).

If we have to make an observation about the evolution of the software risk lists in the last two
decades than we have to start with McComb’s 50 issues (McComb & Smith 1991), (Barki,
Rivard & Talbot 1993). After that Thomsett created a bigger questionnaire (Thomsett 1992)
and the most famous questionnaire for software project risk originates from the SEI (Carr et
al. 1993). McConell creates another risk identification questionnaire but focused on the
software code and schedule (McConnell 1993), (McConnell 1996). In the well-known book of
Capers Jones can be found a list of 60 software project risks (Jones 1994). Lyytinen creates
also a questionnaire covering the main software development risks (Lyytinen 2000).
Cockburn has summarized some of the current knowledge on effective risk management
strategies into reusable risk resolution patterns (Cockburn 1997).

The Software Engineering Institute stresses their research on the importance of the teamwork
in the risk management and as a result they have united their ideas into a Team Risk
Management method (Higuera et al. 1994). Another work in this direction is from Kontio,
who examines the effectiveness of the group work in his method Riskit.

13

In the dynamic world that we are living in, the risk management is recognized to be a major
part of the successful software engineering and because of this it is covered by all the ‘bibles’
of software engineering and project management such as (CMMI 2002), (Thayer & Dorfman
2002) (Pressman 2004), (Sommerville 2004), (McConnell 2004), (Abran & Moore 2004),
(PMBOK 2004).

These important milestones in the software risk management give us a solid basis to motivate
our research work. We have seen the lack of methods for evaluation of the human
productivity in the software development process and in the same time we were able to
recognize the major importance of the human factors as a crucial risk element. So for us the
idea to develop a method for evaluation of the human performance was a logical conclusion.

2.2 The Incompleteness of the Risk Assessment Methods

Risk assessment methods are one of the most important elements in the process of risk
management. These methods consider numerous aspects while assessing and estimating the
risks. Since software development is a human intensive activity, diverse factors related to
human behavior also play a key role in this situation. Software risk assessment methods
should take into account all these factors in combination to each other. Because of this here
we will have a short view over the current applied risk assessment methods and their
consideration of human factors.

Observing the principles of risk management given by the International Organization for
Standardization, described in ISO/FDIS 31000 (ISO 2009) it is clear to see the following
statement:

‘Risk management should take into account human factors. The organization’s risk
management should recognize the capabilities, perceptions and intentions of
external and internal people that may facilitate or hinder attainment of the
organization’s objectives’.

This statement gives a strong motivation to our thesis that the human factors are in the center
of the risk management process and that they should be a part of the risk assessment methods.
Other evidences emphasizing the role of human factors in software engineering and software
development process include the People Capability Maturity Model and the pair programming
development technique.

Based on the Boehm’s classification of risk management we will focus on methods for risk
analysis and the lack of consideration of the human factors in them. The methods for risk
assessment are very important in the process of risk management because they give the
possibility to predict the success of a particular project. Realizing their crucial role in the
process of risk management we have to realize also that the main actors in every process are
the humans, and their actions give rise to different issues or problem situations. We can have
a look over a simple example: in the medicine, the safety of different machines is maintained
by people. So it is clear to see how important the people in this case are. Any mistake can lead
to a death of a patient. It is the same in the software development process, any risk brought by
a human can be crucial for the whole system.

The risk assessment since 1995 has been shortly summarized in the following part of this
chapter in order to see the mechanism of work. The risk assessment methods are very

14

different by their nature: they explore different structures in the software development
process, use different techniques, and are applied over different phases in the development
process. So, we are able to see a great variety of techniques. The methods will particularly be
investigated for their consideration of human factors while assessing and estimating risks. Our
goal is to put a stress on the importance of the humans in the development process as the
people stay at the basic level and they should not be underestimated. It is not possible to
achieve a complete risk assessment, or risk management over a system if we do not include in
it also the human factors.

There exist different types of human factors studies: human error analysis, human factors
engineering and human reliability analysis (Baybutt 1996). The errors that people commit can
be seen in different perspectives, for example in the process of work of: people with other
people, people with equipment/with procedures, tasks and others. A basic classification of the
human errors (Baybutt 1996) distinguishes between: slips, mistakes, violations, socio-
technical and coming from the management. We will describe all different types of problems
caused by the employees later on in this chapter.

The following methods for risk assessment are grouped according to the base technique that
they use in the process of assessing the risks. Every method is described shortly and is
analyzed for all types of factors that it considers with a special focus on existence of human
factors among them.

2.2.1 Neural Networks Based Risk Analysis Methods

Artificial Neural Networks (ANN or just Neural Networks (NN)) are modeled after the
biological neurons in brain structures. The individual neuron models may be combined into
various networks made up of many individual nodes, each with its own set of variables. These
networks have an input layer, an output layer, and one or more hidden layers. The hidden
layers provide connectivity between the inputs and outputs. The network may also have
feedback, which will take result variables and use them as input to prior processing nodes.
With the help of NN it is possible to be modeled different possible directions in the process of
software development and in this way to find the potential risks.

Using Influence Diagrams for Software Risk Analysis (Chee, Vij & Ramamoorthy 1995)

Input: software metrics data collected at various stages of software development
Technology: influence diagrams, kinds of NN, used for probabilistic and decision analysis
models
How it works: The method uses the conditional independence implied in the influence
diagrams in order to determine the information needed for solving of a problem. Influence
diagrams are used to provide quantitative advice for software risk management, improving
upon traditional ad-hoc software management techniques.

An Enhanced Neural Network Technique for Software Risk Analysis (Neumann 2002)

Input: software metric data
Technology: principal component analysis and artificial neural networks (PCA-ANN). Uses
pattern recognition, multivariate statistics and NN.

15

How it works: This is a technique for risk categorization in which principal component
analysis is used for normalizing and orthogonalizing the input data. A neural network is used
for risk determination/classification. The special feature in the approach, the so called cross-
normalization is used to discriminate data sets, containing disproportionately large numbers of
high-risk software modules.

A Neural Networks approach for Software Risk analysis (Yong et al. 2006)

Input: software risk factors, obtained through interviews/questionnaires
Technology: combination of principal component analysis, genetic algorithms and neural
networks
How it works: Based on the SEI and interviews with professionals in the field, is created
taxonomy and factors for software risk. This data after processing is used as an input for the
NN analysis. The method is divided in the following steps: 1) predict the risks with standard
NN; 2) predict with the combination of NN and PCA; 3) predict with the combination of GA
and NN; and 4) combine the three steps and make an overall prediction.

Analyzing Software System Quality Risk Using Bayesian Belief Network (Young et al. 2007)

Input: project risk factors selected through a Delphi method based on historical project data
Technology: Bayesian Belief Network, Delphi method
How it works: The method is based on BBN and predicts and analyzes the changing risks of
software development based on facts such as project characteristics and two-side (contractors
and clients) cooperation capability at the beginning of the project. BBN are used for the
analysis of uncertain consequences or risks and Delphi method is used for the network
structure needed for the BBN. The method is used to evaluate the software development risks
in organizations.

In the system for risk assessment, proposed in the method are considered problems connected
with lack of experience among the employees. Anyway we cannot say that the method
considers all different human factors, because of the complex nature of the human being.

2.2.2 Qualitative Based Risk Analysis Methods

Qualitative methods are methods that take into consideration different qualities. They collect
information with the help of different questionnaires. In this way they analyze not numerical
but qualitative data and after this based on it give the possibility for risk analysis.

SRE from the SEI Risk Management Paradigm (Williams, Pandelios & Behrens 1999)

Input: software risk information, obtained through interviews/questionnaires
Technology: questionnaires
How it works: The SRE addresses the identification, analysis, planning, and communication
elements of the SEI Risk Paradigm. The method implies the following:
• trains teams to conduct systematic risk identification, analysis, and mitigation planning
• focuses upon risks that can affect the delivery and quality of software and system products
• provides project manager and personnel with multiple perspectives on identified risks
• creates foundation for continuous and team (customer/supplier) risk management

16

2.2.3 Software Metrics Based Risk Analysis Methods

Software metric is a measure of some software property and it is important to know that the
metrics give quantitative information about different characteristics of the software, which
could be used for risk analysis.

Software Risk Assessment and Estimation Model (Gupta & Sadiq 2008)

Input: Measurement error, Model error, Assumption error in function point estimation
Technology: risk exposure and Mission Critical Requirements Stability Risk Metrics
How it works: The risk is estimated using risk exposure and software metrics of risk
management, which are used when there are changes in requirements. Initially the model
estimates the sources of uncertainty using Measurement error, Model error and Assumption
error.

A Risk Assessment Model for Software Prototyping Projects (Nogueira, Luqi & Bhattacharya
2000)

Input: requirement, personnel and complexity metrics
Technology: different software metrics
How it works: The method introduces metrics and a model that can be integrated with
prototyping development processes. It claims to address to some extent the issue of human
dependency in risk assessment but it is not clear how exactly, because there are no mentioned
metrics for that.

Source-Based Software Risk Assessment (Deursen & Kuipers 2003)

Input: source code information
Technology: code metrics, questionnaires
How it works: The method focuses on “primary and secondary facts’’. Primary facts are
obtained through automatically analyzing the source code of a system with code metrics, and
secondary facts are obtained from people through different questionnaires, who are working
with or on the system. The both type of facts are of different type information, so there is
needed a bridging between them and after this the obtained information is used to advise a
minimizing of the potential risk.

2.2.4 Early Risk Estimation Based Risk Analysis Methods

Analyzes in the early stages of the software development is one of the desired perspectives in
the process of risk estimation and mitigation. It is much cheaper if we can encounter and
overcome the problems in the early stages as if we do this at a late stage of the software
development process.

A Methodology for Architecture-Level Reliability Risk Analysis (Yacoub & Ammar 2002)

Input: severity of complexity and coupling metrics derived from software architecture
Technology: dynamic metrics, architecture elements
How it works: That is a heuristic risk assessment methodology for reliability risk assessment,
based on dynamic complexity and dynamic coupling metrics that are used to define

17

complexity factors for the architecture elements. Severity analysis is executed with Failure
Mode and Effect Analysis, applied over the architectural models. A combination between
severity and complexity factors is used in order to identify the heuristic risk factors for the
architecture components and connectors.

Software Risk in Early Design Method (Vucovich et al. 2007)

Input: software functionality, Historical Function-Failures, Historical Failure Severities
Technology: Function-Failure Design Method
How it works: This method identifies and analyzes the risk presented by potential software
failures. With the Software Function-Failure Design Method it is demonstrated the
corresponding Risk in Early Design method to the software domain, to provide a software risk
assessment based on functionality, which is often the only available information in the early
stages of design. RED allows the early assessment of risk, which can guide more-detailed risk
assessment, provide a test-case development guide, and help in deciding on whether a
software product has been tested enough.

2.3 Summary over the Risk Management and Motivation of our Further
Research

Let us summarize the risk management methods as Gallery of Software Risks:

Crisis management: Nolan (Nolan 1973) (Nolan 1979) and McFarlan (McFarlan 1974)
proposed models and project portfolio for managing the crisis in the information
technology and the risks in the information systems. Alter and Ginzberg (Alter &
Ginzberg 1978) proposed that risk factor analysis can increase the success rate in the
software development. Davis (Davis 1982) creates a new method based on
requirements determination for selecting the most suitable development approach.

Risk management: The pioneer in the software risk management Barry Boehm published his
first and most fundamental approach ‘’A Spiral Model of Software Development and
Enhancement’’ (Boehm 1988) about risk management. Later on his work has been
complemented by Charette and others (Charette 1989), (Boehm & Ross 1989),
(Charette 1990), (Ould 1990), (Boehm 1991).

Risks taxonomies: Several risk categories or taxonomies proposed in the fundamental methods
of Boehm and SEI and few others. In the paper (Georgieva, Farooq & Dumke 2009 a)
was made a summary over existing software development risks and propose new risk
taxonomy for the software testing process. Other quantitative approaches are from
Bowers, Fairley and Berny (Bowers 1994), (Fairley 1994), (Berny & Townsend 1993).

Risk scenarios: Kontio proposes a new method for risk management (Kontio 1997), (Kontio
2001) where he proposes risk scenarios that are built over six elements (risk factor, risk
event, risk outcome, reaction, risk effect set and utility loss).

Risks analysis: In the late 90’s and after that several approaches for software risk analysis
have been developed separately from the famous ones, no matter that they are used for
risk analysis they are very specific and cannot be taken as general big methods for risk
management.

18

Risks experiences: Risk experience as industrial reports have been published from (Boehm
1991), (Chittister, Kirkpatrick & Van Scoy 1992), (Eslinger et al. 1993), (Meyers &
Trbovich 1993), (Morin 1993), (Fairley 1994), (Gemmer & Koch 1994), (Hefner 1994),
(Williamson 1994), (Conrow & Shishido 1997).

Risk frameworks: Many different risk assessment frameworks were proposed such as the
framework of McComb and Smith to identify system failure factors, which includes 15
key risk areas distributed between project planning and execution in one dimension and
technical and human factors in the other one (McComb & Smith 1991).

Risk-based features: Barki et al., based on a literature survey of 120 projects compiled a list of
35 features that are connected with the software development risk (Barki, Rivard &
Talbot 1993).

Risks assessment: Thomsett (Thomsett 1992) develops his risk assessment questionnaire
model, where all the questions are divided into three areas and each question has a
specific value and is later used in forming the final score of risk. He proposes a new
project management paradigm that recognizes people-oriented values as very important
in the traditional organization structure and with this he is one of the first that puts
accent on the people in the process of risk management.

Risks evaluation: SEI risk taxonomy, already mentioned before is an important contribution in
the field of risk management because it gives a very comprehensive questionnaire and
software risk evaluation method (Carr et al. 1993), (Sisti & Joseph 1994).

Performance-oriented risk management: Risk assessment framework developed by Lyytinen
et al. (Lyytinen, Mathiassen & Ropponen 1996) and later on supplemented from Keil
(Keil et al. 1998) presents three-level-structure of management, project and system
environment, that gives a performance based on how actors, structure and technology
are assembled.

Risks degrees and experience: Applegate (Applegate, McFarlan & McKenney 1996)
publishes a book about IS (Information Systems) management, where the project risk
assessment questionnaire is the tool to evaluate the risk-degree in the different IT
applications. Further approaches have been developed by Moynihan, who collected a
list of risks and planned their mitigation after interviewing experienced project
managers (Moynihan 1997), (Moynihan 2002).

Risks assessment questionnaires: Questionnaires-Based frameworks are developed, for
example the One-minute Risk Assessment Tool from Tiwana and Keil (Tiwana & Keil
2004-2005). A comparison of selected risk management approaches can be found in
(Lyytinen, Mathiassen & Ropponen 1998). Questionnaires and risk lists as a form of
risk identification appear from the very beginning and are still the most relevant and
used techniques. The first lists comprised less than 50 issues (McComb & Smith 1991),
(Barki, Rivard & Talbot 1993).

Risks factors: A list of 60 software project risk factors can be found in (Jones 1994), where
each factor is analyzed for its frequency, impact, root causes, mitigation strategies and
others.

Risks management teamwork: The Software Engineering Institute stresses their research on
the importance of the teamwork in risk management as Team Risk Management
method (Higuera et al. 1994). The effectiveness of the group work (including the
brainstorming) has been detailed investigated by Kontio. He developed the Riskit

19

method using communicative and easily distinguishable elements of risk scenarios,
which were visualized in a risk analysis diagram (Kontio 1997), (Kontio 2001).

Quantitative vs. qualitative risks analysis: Distinguishing between qualitative and quantitative
methods, the qualitative techniques estimate the risk in terms of likelihood and impact
and apply ordinal scales and risk matrices as well as some means of weighting and
averaging of the obtained score (Charette 1990) (Sisti & Joseph 1994) and quantitative
risk analysis calculates the risk based on the theories of the probability calculus such as
Monte Carlo analysis or Bayesian Belief Networks (Grey 1995) (Vose 2008) (Schuyler
2001). The well-known in the engineering field Failure Mode and Effect Analysis
method (FMEA) was applied to the analysis of project risk in (Deept & Ramanamurthy
2004).

Generic project risk management: The general process and principles of project risk
management are applicable to all kinds of software projects. Examples of generic
project risk management are described in (Wideman 1998) (Chong & Brown 2000)
(Pritchard 2001), (Chapman & Ward 2002) (Chapman & Ward 2003) (Kendrick 2003)
(Mulcahy 2003) and (Smith & Merritt 2002).

Project risk management: Well-known risk management solutions for software projects are
created from Boehm, Karolak and Hall (Boehm 1991), (Karolak 1996), (Hall 1998). On
later stage Boehm (Boehm et al. 2003) proposes a risk approach of COTS-intensive
projects.

Risks perception: Adams gives very important observations on the everyday risk perception
and management in (Adams 1995). A practitioner’s view on project risk management
can be found in (Conrow 2003). Several works are admitted to be actually used and
accepted in the software development industry (Ropponen & Lyytinen 2000)
(Moynihan 2002).

Business risks: Risk management over safety, environmental or business risks are described in
(Waring & A.I. 1998) and (Cooper et al. 2004) or to addresses the issue of ‘positive
risk’ of a business opportunity (Hillson 2004). Case studies of business risk
management are described in (Schmietendorf 2009).

Risks management strategies: Cockburn has summarized some of the current knowledge on
effective risk management strategies into reusable risk resolution patterns (Cockburn
1997).

Risks management database: Kontio presented a detailed design of a risk management
database (Kontio & Basili 1996) (Kontio 2001) but its scope is limited to capturing the
information on risk in actual projects and lacks the capabilities to develop generalized
knowledge.

Risk management in software engineering: Risk management is a main essential part of the
management of a successful software project and because of this it is covered by all the
‘bibles’ of software engineering and project management such as (Chrissis, Konrad &
Shrum 2003) (Thayer & Dorfman 2002) (Pressman 2004) (Sommerville 2008)
(McConnell 2004) (Abran & Moore 2004) (PMBOK 2004).

Risks management standards: The area of risk management is intensely standardized and the
most widely recognized risk management standard is ISO 14971 (14971 2001)
complemented by IEC 62304 (62304 2004). Although that ISO 14971 covers the risk of
medical devices, it is generally accepted as a mature standard on general-purpose risk
management. Based on ISO 14971, Standards Australia has proposed a new extended

20

standard AS/NZS 4360 (4360 2004), which is expected to replace the ISO 14971. ISO
has also published a risk management standard ISO 16085 dedicated to software
engineering (16085 2006), which is based on the earlier work from IEEE - the IEEE
1540 (1540 2001).

Risks and human factors: There exist different types of human factors studies: human error
analysis, human factors engineering and human reliability analysis (Baybutt 1996).
Because of this a basic classification of the human errors (Baybutt 1996) can look in the
following way: slips, mistakes, violations, socio-technical and coming from the
management.

Observing the described risk assessment methods we can make the following statement: all of
them take as input different type of data, that could be generalised like: architecture, design
and code metrics data as visualized in Figure 2. Only few of these methods - (Young et al.
2007), (Nogueira, Luqi & Bhattacharya 2000) consider some types of human factors.
Although that this attempt does not seem to be comprehensive, it is a good example which
gives as much importance to human factors as to the others in the process of assessing
software risks.

Figure 2 Input for the Risk Assessment Methods

As it can be seen in Figure 3 the risk sources in the software production process are: people P,
development process D, software S and hardware resources H. These four elements give us
the complete software development or software production process SPP and software system
SS (as IT area), which should be analyzed in its full complexity in order to achieve an
adequate risk management process RM including the risk assessment RA and the risk
controlling RC.

21

This can be expressed with the following equations according to (Boehm 1991) and figure 3:

IT = { SPP , SS } (2.1)

SPPriskSources = {Pdev, Ddev, Sdev, Hdev},

SSriskSources = {Psys, Ssys, Hsys}

Furthermore, the risk assessment could be considered for both – software development or
production and software system as

RASPP: personneldev × developmentdev × softwaredev × hardwaredev (2.2)
→ riskAssessmentdev

RASS: personnelsys × softwaresys × hardwaresys → riskAssessmentsys

And finally, the general components of the risk management as risk assessments and risk
controlling as RM = {RA, RC} are

RA = { riskIdentification, riskAnalysis, riskPrioritization }, (2.3)

RC = { riskMgmtPlanning, riskResolution, riskMonitoring }.

Figure 3 Risk in the different stages of the development process

Taking into consideration the information obtained from the analyzed risk assessment
methods, which is that they do not consider the people like a major source of risk and
analyzing the software system in its complete form and knowing how crucial can be the role
of the human being in every activity (Georgieva, 2009 c), we can conclude that there exist an
incompleteness of the existing methods for risk assessment and new methods should be
developed which cover the human factors.

22

2.4 Human Factors in the Software Engineering

The humanity is what makes the world move forward in a technical, experimental and
achieving way. Human skills, ideas and imagination are the inspirations for all surrounding
inventions and technologies, cultural, tradition and intellectual progress. Humans develop the
technology to a newer level, always higher, always faster and hopefully always better. The
trace of human touch and sense is in every emerging technology, theory, business solution
and machine and of course when there is a human act – there might be a human error too.

In order to understand the complexity of the human being we will start with a small example
from our biological nature. Let us observe the human retina (figure 4). This transparent,
paper-thin layer of nerve tissue on which is projected an image of the world, that is less than 1
cm square and a ½ mm thick has about 100 million neurons. The retina processes about ten
one-million-point images per second. If we want to simulate this activity with a computer,
than it will take him 100 MIPS to do a million detections, and 1,000 MIPS to repeat them ten
times per second in order to match the retina. (Moravec 1997)

Figure 4 The human eye, (Human Eye 2011)

Having this information in mind let us see what is happening in our brain (figure 5). The
1,500 cubic centimeter human brain is about 100,000 times larger than the retina; this means
that matching the brain activity will take about 100 million MIPS (million instructions per
second) of computer power. (Moravec 1997)

Figure 5 The human brain, (Human Brain 2011)

23

This small observation shows the complexity of the human brain, that we have to take into
consideration when speaking about human factors. Here we are just observing the technical
parameters of the brain, but when we take also the influencing factors like health, emotions,
motivations, ambitions and qualification the overall picture becomes much more complex.
This is what motivated us to analyze the connection between the personal characteristics and
the human productiveness in the software development process.

2.4.1 Human Errors, Mistakes and Failures

Human errors examples might be found everywhere: small quarrels with relatives affected by
a complicated character; design problems in a usability form; machine construction and
usage; people to people and human to machine interaction. Consequences are also numerous
from small frowns and bad attitude to catastrophic life threatening events.

Human error is the difference that occurs from what a human is supposed to make (planed,
proposed, intended) and what the result (or lack of it) is. In some cases the difference is so
unnoticeable that it stays hidden, sometimes it is discovered and mitigated or remains hidden
bringing along unpredictable results when emerging. The factors affecting the result and
production of an error are also classified of a human kind. In the following part we have
summarized the leading classifications about human factors.

The pioneer in the field of human factors is Rasmussen, he publishes his classification in 1982
and distinguishes between three types of problems that could be divided into: skill-based,
rule-based and knowledge-based level (Rasmussen 1982). Skill-based performance is
explained with automatic, unconscious and parallel actions. Rule-based is associated with
recognizing situations and following associated procedures. Finally, “knowledge-based”
refers to conscious problem solving. Rasmussen also proposes a list of factors that influence
the human behavior and actions: social and management climate, type of the overworked
information, emotional condition, physiological stressors and physical workload. He
pioneered a multi-facet taxonomy for the description and analysis of events involving human
malfunction. In this taxonomy, he defines the causes of human malfunctions as: “external”
(distraction, etc.), “excessive task demand” (force, time, knowledge, etc.), “operator
incapacitated” (sickness, etc.), and “intrinsic human variability”. As we will see in the next
paragraphs his ideas are completely adopted and slightly modified and extended by Reason
and Shappell.

Reason (Reason 1990) has defined the human error as a planned sequence of mental or
physical activities to achieve its intended outcome. He distinguishes between mistakes and
slips and in his view slips are actions that proceed as planned but end with undesired actions
and mistakes are desired actions, which go as they are supposed to, but are not fulfilling the
planned goal, so they are classified as planning failures or latent failures. Latent failures
unlike their active counterparts may remain unnoticed for a long period before emerging in an
unsuspecting situation.

From Reason (Reason 1990) descriptions’ of latent and active failures, Shappell (Shappell
2000) distinguishes four levels of failures: unsafe acts, predictions for unsafe acts, unsafe
supervision and organizational influences. Although that the ‘The “Swiss cheese” model of
accident causation’ of Shappell is meant to be used for the aviation it could be applied in the
field of software engineering with great success. Anyway almost all of the definitions and

research
software
already

Reason
mental
violatio
impose

To deter
as show
two vio

Exampl

h work abo
e industry
developed

separates t
or physical
ns are spec
safety.

rmine more
wn here (Fig

lation form

les of these

Errors
Skill Bas

• F

• O

• O

• P

Decision
• I

• M

• W

• E

• P

Perceptu
• V

• D

out human
has emerge
industries.

two types o
l actions of
cified as de

e correctly a
gure 6) into
s.

Figu

errors and v

Table 1 S

sed Errors
Failed to prio

Omitted step

Omitted chec

Poor techniqu

n Errors
Improper pro

Misdiagnose

Wrong respo

Exceeded abi

Poor decision

ual Errors
Visual illusio

Disorientatio

factors is n
ed in the la

of unsafe a
f an individ
etermination

a specific fa
three types

ure 6 Unsafe A

violations w

Selected exam

oritize attenti

 in procedur

cklist item
ue

ocedure
d emergency

onse to emerg

ility
n

on
on

not originat
ast decades

acts: errors
dual that do
n not to ob

ailure invest
s of errors (

Acts categorie

we can see in

mples of Unsaf

V

ion
e

F

V

N

y
gency

ting from t
s and it wa

s and viola
o not accom
bey the rul

tigation thes
(skill-based,

es (Shappell 2

n the next T

fe Acts (Shap

Violations

Failed to adhe

Violated train

Not currently

the software
as not as po

ations. Error
mplish desir
les and rec

se two categ
, decision, a

2000)

Table 1.

ppell 2000)

ere brief
ning rules
y qualified fo

e field beca
opular as th

rs are desc
red outcom
ommendati

gories are e
and percept

or work

24

ause the
he other

cribed as
mes. And
ions that

xpanded
tual) and

25

We see that all these different errors are based on the individual’s skills, decision or
knowledge in the special moment, so no matter why these errors occur they are based on the
individual perception of the world. This will give us motivation to develop our performance
prediction model based exactly on these individual features that make from people with the
same knowledge and experience absolutely different employees from the point of view of
their performance.

Technical failures (Shappell 2000) also specified as skill based errors are based on the
individual experience and education. Decision errors describe intentional behavior that ends
with inappropriate or inadequate action for the situation. Knowledge based errors (Perceptual
errors) occur when one’s perception of the surrounding is different from the reality.
Rasmussen defines also the so called ruled based mistakes (Rasmussen 1982) or procedural
errors (Orasanu 1993), they occur when a structured task is faced but the wrong procedures
are performed.

Violations - are produced during intentional disregard of laws and orders. We can have
routine and exceptional violations – that occur as a rare withdraws from standard regulations,
not demonstrating an individual typical behavior (Shappell 2000).
Observing all these different unsafe acts it is important to understand why they happen and
Shappell gives the explanation with different preconditions. They can be for example
substandard conditions which represent the different mental and physiological state that the
people can be in and the resulting from that behavior. There is one more level of failures:
unsafe supervision and organizational influences, it is extremely important to understand that
although the people and their mental state and cooperation are very important, it is also
important the way that the company or team is leaded and what kind of atmosphere we have
during the working process, we can see an example in (Georgieva et al, 2010 a) (Georgieva,
2009 d).

2.4.2 Influencing Factors

We cannot describe the human factors in the software process only as errors, mistakes and
failures but we have to describe also the many different factors that influence the people in
their everyday work and that lead them to successful or not fulfillment of their work. The
problems that the people cause are only one facet of the problem that we want to solve. We
look actually for the special human features that lead to a bigger or smaller number of
problems. Because of this now we will have a look over the rest of the human factors. We
have listed some of these factors stated by Shappell, Reason and Rasmussen in the previous
section so now we will continue with the following authors:

Fisher (Fisher 2001) tries to summarize what are the important points when we want to create
a successful user software system. He identified the following necessary human and technical
skills: graphic design, communication, organization of information, illustration, interface
design and usability testing.

Wang (Wang 2005) proposes taxonomy of human factors in software engineering and builds
a behavioral model of human errors, which is expressed in an evaluation of the performed
task. This model concentrates on the conducted by humans actions in the process of
performing a certain task. In 2008 (Wang 2008) Wang broads his taxonomy and categorizes
the personality traits into eight groups. These can be seen in the following Table 2.

26

Table 2 Taxonomy of personal traits and attributes (Wang 2008)

Emotion &
Motivation Attitude Cognitive Ability Interpersonal Ability

Comfort/fear Proud of job Knowledge Pleasant
Joy/sadness Responsible Skills Tolerant
Pleasure/anger Disciplined Experience Tactful
Love/hate Thorough Instructiveness Helpful
Ambition Careful Learning ability Scope of contact
Impulsiveness Assertive Expressiveness Variety of contact

Trying in uncertainity Energetic Knowledge
transferability Consultative

Following rules Enthusiastic Reaction to events Responsible
Self-expectation Tolerant Efficiency Respectful
 Tactful Attention Trustworthy
 Confident Abstraction Sympathetic
 Individual Searching Modest
 Team Oriented Categorization Loyal
 Productive Comprehension Flexible
 Persistent Planning Independent
 Decision making
 Problem solving
 Analysis
 Synthesis
Sociability Rigorousness Creativity Custom
Collaboration capability Contingent error rate Abstraction capability Exterior hobby
Communication
capability Repeatable error rate Imagination Interior hobby

Extroversion Error-correction
capability Analogy capability Quietness

Introversion Pinpoint capability Curiousness Activeness

Culture factor Concentration
capability Design ability Literature

Leadership Logical inference
capability Hands-on capability Vision

Group orientation Reliability Broad mind
Organization capability Precision
Concern of others Perception
Dependability Consistency
Compatibility System
 Talent

27

In their paper, Hillson and Webster (Hillson & Webster 2006) speak about the connection
between emotions and risk behavior and try to show the relation between emotional literacy
and work attitude.

Dhillon (Dhillon 2007) summarizes the important factors affecting the productivity of the
individual work and names them “stressors”. He categorized stressors into four types:

• Occupational change-related stressors

• Occupational frustration-related stressors

• Workload related stressors

• Miscellaneous stressors

He defines also different reasons for the occurrence of human errors: (Dhillon 2007)

‘’Poor training or skill, poor equipment design, complex task, poor work layout,
high temperature or noise level in the work area, distraction in the work area, poor
lighting in the work area, poorly written equipment operating and maintenance
procedure,; improper work tools, poor verbal communication, poor motivation,
crowded work space and poor management’’.

Although the book concerns transportation systems, to our opinion all these factors can be
applied also to the software development process.

Dayer (Dayer 2007) summarizes the factors that influence the human reliability into two
groups: internal and external. The internal is formed by the company working atmosphere and
the external by the individual personal life. Internal factors are, for example, trust and
working climate while external factors refer to family, health and the Maslow’s pyramid of
needs (Maslow 1987).

Islam and Dong (Islam & Dong 2008) summarize the human risk factors as follows:
‘’personal competency, experience and leadership, team performance, availability of skilled
personnel, commitment, personnel loyalty and different specific working skills.’’

Yanyan and Renzuo (Yanyan & Renzuo 2008) explain the psychological background of
human behavior as a mixture of human knowledge, emotion and intention. They try to find
the relationship between software engineering and knowledge and at the same time to include
the human factors that influence this knowledge.

Analogically to Dayer, Flouris and Yilmaz (Flouris & Yilmaz 2010) build a framework for
human resource management where they divide the human characteristics into internal and
external influenced ones. We can see below the list with the internal and external performance
influencing factors.

Internal Performance Influencing Factors (Flouris & Yilmaz 2010)

•Emotional state
• Intelligence
• Motivation/attitude
• Perceptual abilities
• Physical condition
• Sex differences

• Skill level
• Social factors
• Strength / endurance
• Stress level
• Task knowledge
• Training/experience

28

External Performance Influencing Factors (Flouris & Yilmaz 2010)

• Inadequate workspace and layout
• Poor environmental conditions
• Inadequate design
• Inadequate training and job aids
• Poor supervision

Another taxonomy that we will consider is that from Kim and Jung (Kim & Jung 2003). They
performed a study over 18 performance shaping factor taxonomies and summarized the
human factors into the Table 3 that we can see below.

Table 3 Kim and Jung’s Human Factor Taxonomy (Kim & Jung 2003)

Subgroup Detailed items

Cognitive characteristics

Cognitive states
- attention
- intelligence
- skill level
- knowledge
- experience
- training

Temporal cognitive states
- memory of recent actions
- operator diagnosis
- perceived importance
- perceived consequences
- operator expectations
- confidence in diagnosis
- memory of previous actions

Physical and
psychological
characteristics

Physical states
- gender/age
- motor skills
- physical disabilities
- impediment
- clarity in speaking
- fatigue/pain
- discomfort
- hunger, thirst

Psychological States
- emotion/feeling
- confusion
- task burden
- fear of failure/consequences
- high jeopardy risk

Personal and Social
Characteristics

Personal
- attitude
- motivation
- risk taking
- self-esteem
- self-confidence
- sense of responsibility
- sensation seeking
- leadership ability
- sociability
- personality
- anticipation

Social
- status
- role/responsibility
- norms
-attitudes, influenced by other
 people

29

2.5 Summary over the Human Factors

The conducted overview of the scientific work over human factors in the software process as
HFIT has few different perspectives:

- We have slips and mistakes occurring in everyday human work including their base
(e.g. skill, rule or knowledge-based).

- Then we have malfunctions and their relation to the behavioral model of the human
being with regards to performing or not a certain task.

- The connection between emotions and risk behavior is clearly recognized and different
stressors that influence the people are categorized.

- We have different levels of failures and different factors that influence the human
actions.

- We have observed different types of frameworks and taxonomies that list all different
personal characteristics that influence the working process.

Having all this in mind we can say that there exist a lot of scientific attempts to connect the
human behavior with the conducted mistakes in the work process, but nobody has tried so far
to observe the personal traits and their influence over the individual’s work performance. By
personal traits, we understand the individual’s characteristics that are important for every
employee and that influence the working process as well as the occurrence of mistakes or
different problems. Based on this, we will try to find the most important human features that
affect the work quality in the software development process, to evaluate the most critical of
them and to build a prediction model of the human performance.

We can say that all these different types of human factors are actually the human risks in the
software development process which we have to cope up with (Neumann et al, 2010 a)
(Georgieva et al, 2010 b). In order to be able to manage with the different types of slips,
mistakes and errors we have to manage first the factors that cause them. We will visualize this
in the following way.

From our research we can say that the human risk factors HRF can be divided in the following
groups:

• Cognitive human risk factors HRFcog ,

• Physical human risk factors HRFphys ,

• Personal human risk factors HRFpers ,

• Social human risk factors HRFsocial .

When we try to evaluate them in the software development process we have to take them as a
whole but we can say that the different factors are connected with the variety of roles and
their responsibilities or the involvement in the IT process.

30

Because of this we can establish the following relations:

personnelIT = {Pdev , Psys} (2.4)

HFIT: personnelIT × processInvolvement × roleIT → HFIT

 processInvolvement = { f(Pdev) ∪ f(Psys) }

HFIT = {attention, communication, competence, concentration,
cooperation, hardworking, intelligence, self-management,
talkativeness, understanding, creativity, tolerance, positive,
knowledge, motivation}

where f denotes any team and/or business aspects in concrete industrial environments. Note,
that the different roles as so-called roleIT we will consider later. Addressing risk implications,
we can characterize:

 HRFIT: HFIT × processInvolvement × humanRisksIT → personnelRisks (2.5)

humanRisksIT = { errorsIT, violationsIT, failuresIT }

errorsIT = {skillBasedErrors, decisionErrors,
perceptualErrors, knowledgeBasedErrors}

 violationsIT = {trainingRules, qualifications, socialFactors}

 failuresIT = {unsafenessTasks, performanceSlips, organziationalMistakes}

and furthermore

 HRFIT = { HRF cog

IT , HRF phys
IT , HRF pers

IT , HRF social
IT }

HRF cog

IT = { attention, intelligence, skillLevel, knowledge , experience } (2.6)

HRF phys
IT = { gender, age, motorSkills, physicalDisabilities,

fatigue, discomfort, impediment }

HRF pers
IT = { attitude, motivation, selfEsteem, selfConfidence, riskTaking,

 sensationSeeking, leadershipAbility, socialibility, anticipation }

HRF social
IT = { status, role, responsibility, norms, attitudes }

In following we will consider the HFIT in general including their exploration for risk
situations (as HRFIT) or in a positive manner as reasonable characteristics for IT processes.

31

3 Chapter - Software engineering, team and
responsibilities

Our research is enclosed in the world of the software engineering and because of this we will
give a short explanation of its’ main parts in the following chapter. We will have a look over
the software process, product and resources and will try to distinguish the importance of the
human performance inside. Later on we focus on the software team roles and their
responsibilities and describe them in order to understand the importance and the complexity
of the human being in the software engineering process. This part ends with summarizing the
personal characteristics for the different roles, which is the input for the further research in the
next chapter.

3.1 The Software Engineering Background

3.1.1 Software Engineering characterization

Basically, the software engineering can be defined with the following classical IEEE
description (IEEE 1990) that is:

„Software engineering is the application of a systematic, disciplined, quantifiable
approach to the development, operation, and maintenance of software; that is, the
application of engineering to software. “

This definition leads us to the simple visualization of the software engineering components in
the following manner (Dumke 2003) (Marciniak 1994) (Pfleeger 1998) (Dumke et al, 2010)
(Georgieva et al, 2010 c).

Figure 7 Basic characteristics of software engineering

Software Engineering
Definition

disciplined

systematic quantifiable

engineering
area

engineering
tools

(development)
methods

CASE

standards

system of
measures

software

experience

community

engineer

32

Considering this characterization, we can formulate in the following simple structure of the
software engineering SE area as a system in general: (Skyttner 2005)

SE = (MSE, RSE) = ({SE-Methods, CASE, SE-SystemOfMeasures1, SE-Standards,

SE-SoftwareSystems, SE-Experience, SE-Communities}, RSE)
 (3.1)

where RSE represents the set of all relations between the elements of the set MSE where the
elements of MSE mean in detail:

SE-Methods: “Structured approaches to software development, which include system
models, notations, rules, design advice and process guidance.” (Sommerville 2008)

CASE: (Computer-Aided Software Engineering) “Software systems which are intended
to provide automated support for software process activities.” (Sommerville 2008)

SE-SystemOfMeasures: A set of metrics and measures in order to measure and evaluate
all aspects, components and methodologies of the software engineering areas. (Zuse
1998) (Dumke et al, 2009 a) (Georgieva et al, 2009 e) (Dumke et al, 2009 b) (Dumke et
al, 2008)

SE-Standards: The software engineering standards are a set of rules and principles as a
foundation of control and examination of components achieving special defined
characteristics certified by a consortium like IEEE or ISO. (Dumke 2003) (Georgieva et
al, 2008)

SE-SoftwareSystems: A software system respectively a software product “is a
purposeful collection of interrelated components that work together to achieve some
objectives” and requirements. It includes the computer programs and the associated
documentation. (Sommerville 2008)

SE-Experience: The experience summarizes the general aspects of laws, principles,
criterions, methodologies and theories in software engineering in the different forms of
aggregation, correlation, interpretation and conclusion based on a context-depended
interpretation. (derived from (Davis 1995))

SE-Communities: The software engineering community involves people, organisations,
events and initiatives in which interpersonal relationships are an integral part,
considering aspects or paradigms in software engineering. (Figallo 1998)

Based on (3.1) we can formulate the following examples, components and elements of RSE:

• The process of producing new or extended experience in software engineering:

r)ExperienceSE(
SE

− ∈ RSE: SE-Methods × CASE × SE-SoftwareSystems → SE-Experience
 (3.2)

1 We use this kind of notification adapted from the OO area for more mnemonics.

33

• The general activities in order to define new standards in the SE:

r)dardstanSSE(
SE

− ∈ RSE: SE-Methods × SE-SoftwareSystems × SE-Communities → SE-
Standards (3.3)

• The process of extension the set of measures during the software development,

maintenance or application :

r)asuresSystemOfMe(
SE ∈ RSE: SE-Methods × SE-SoftwareSystems × systemOfMeasures →

systemOfMeasures
 (3.4)

• The process of risk management:

r)(mentRiskManage
SE ∈ RSE: SE-RiskAssessment × SE-RiskControl → RiskManagement (3.5)

• The characterization of the software quality personnel:

r)(ityRiskCommun
SE ∈ RSE: SE-Communities × systemOfRiskMeasures × RiskManagement

→ RiskMeasurementStaff (3.6)

3.1.2 The Software Product

The main intention of software engineering is to create/produce software products with a high
quality for the customers. A software systems or software product SP was developed by the
software process/development SD and is based of the supporting resources SR.

Figure 8 The general software development process

systemRequirements
for software

softwareProcess

methods
lifecycle

management

processIndicators

systemOfMeasures
standards
experience

personnelResources

developmentStaff
users

customers

softwareResources

COTS
ICASE

softwareProduct

programs
documentations

platformResources

systemSoftware
hardwareInfrastructures

applicationDomain

34

At first, we will define the software product as a (software) system as:

SP = (MSP, RSP) = ({programs, documentations, data}, RSP) (3.7)

where the three sets are divided in the following elements or components (without achieving
the completeness)

programs ⊆ {sourceCode, objectCode, template, macro, library, (3.8)
 script, plugIn, setup, demo}

documentations = {userManual, referenceManual, developmentDocumentation}

data = {singleData, eventData, sensorData, dataBases,

dataWarehouses, dataInfrastructures, knowledge}

dataRisks = {missing, incorrect, incomplete, not synchronized, misleading}

and RSP describes the set of the relations over the SP elements.

The given subsets could be described in the following:

developmentDocumentation = {documentationElements} = { productRequirements,
 productSpecification, productDesign, implementationDescription} (3.9)

documentationElements ⊆ {model, chart, architecture, diagram, estimation,

review, audit, verificationScript, testCase, testScript, pseudoCode,
extensionDescription, qualityReport }

productRequirements = systemRequirement ⊆ {functionalRequirements,

qualityRequirements, platformRequirements, processRequirements}

 functionalRequirements ⊆ {execution, mapping, information, construction,

controlling, communication, learning, resolution, cooperation, coordination}2

 qualityRequirements ⊆ {functionality, reliability, efficiency, usability,

 maintainability, portability}3

 platformRequirements ⊆ {systemSoftware, hardwareComponent,
hardwareInfrastructure, peripheralDevice, host}

processRequirements ⊆ {developmentMethod, resources, cost, timeline, milestone,

criticalPath, developmentManagement, lifecycleModel}

A simplified view of the software product aspects during the development and application that
must be defined through the product requirements can be seen on the following figure.

2 The kind of the functional requirements depends on the kind of the software system which we characterize.
3 This set of quality characteristics is related to the ISO 9126 product quality standard.

35

Figure 9 Simplified visualization of the product characteristics and risks involvements

This visualization could help us for further investigations of the detailed component and
aspects of the software product. Here, we can define a software product as a software system
as following (Chung et al. 2000) (Dumke 2003) (Horn & Reinke 2002) (Marciniak 1994)
(Maciaszek 2001) (Mikkelsen & Phirego 1997).

 SE-SoftwareSystems ⊆ {informationSystem, constructionSystem, embeddedSystem,
 communicationSystem, distributedSystem, knowledgeBasedSystem} (3.10)

Some of the examples of the relations in RSP could be derived as following:

• The process of the software testing on some software product components, examples -
(Farooq et al, 2008 a) (Farooq et al, 2008 b):

r)test(
SP ∈ RSP: sourceCode × verificationScript × testScript → testDescription

 (Farooq et al, 2010) (3.11)

• The elements of the product design considering the necessary components:

r)design(
SP ∈ RSP: architecture × review × template × library (3.12)

× pseudoCode → productDesign

36

• A special kind of a programming technique could be defined as following:

r)gTechniqueminprogram(
SP ∈ RSP: template × macro → sourceCode (3.13)

• The process of the software testing on some software product components:

r)tionimplementa(
SP ∈ RSP: coding × unitTest × integrationTest → implementation

 (3.14)

• The process of risk identification:

r)(ficationriskIdenti
SP ∈ RSP: dataRisks × applicationAnalysis → riskIdentification (3.15)

The following figure summarizes the components and elements of the software product
described in the text above.

Figure 10 Components of the software product

37

3.1.3 The Software Development Process

Now, we will define the software development process SD itself (note, that the concrete
software process is known as software project). Some special software enterprise applications
can be seen in (Neumann et al, 2010 b) (Asfoura et al, 2011). At the beginning we will show
the general process aspects in the following Figure 11.

Figure 11 Simplified visualization of the process characteristics and the risks involvements

So, we can define the software process SD as following (including the essential details of
every development component)

 SD = (MSD, RSD) = ({developmentMethods, lifecycle, softwareManagement} (3.16)

∪ MSR, RSD)

 developmentMethods ⊆ {formalMethods, informalMethods} = SE-Methods

 formalMethods ∈ {CSP, LOTOS, SDL, VDM, Z}

We can see a plenty of “classical” informal development methods (Günther et al, 2011) as
structured/procedural methods SAM. Actually, the informal methods are based on the objects
OOSE, the components CBSE, the agents AOSE or the services SOSE (Neumann et al, 2011
a) (Neumann et al, 2011 b). Therefore, we can define:

 informalMethods ∈ {SAM, OOSE, CBSE, AOSE, SOSE} (3.17)

and especially

38

 SAM ∈ {SA/SD, Jackson, Warnier, HIPO}

 OOSE ∈ {UML, OMT, OOD, RDD, Fusion, HOOD, OOSA}

 CBSE ∈ {DCOM, EJB, CURE, B-COTS, SanFrancisco}

 AOSE ∈ {AAII, AUML, DESIRE, IMPACT, MAS, MaSE, MASSIVE, SODA}

SOSE ∈ {SOA, GRID, WebServices, Cloud }

The life-cycle aspects could be explained by the following descriptions:

 lifecycle = {lifecyclePhase, lifecycleModel} (3.18)

lifecyclePhase ∈ {problemDefinition4, requirementAnalysis, specification,
 design, implementation, acceptanceTest, delivering}

lifecycleModel ∈ {waterfallModel, Vmodel, evolutionaryDevelopment,
 prototyping, incrementalDevelopment, spiralModel, …, winWinModel}

requirementsRisks = {incomplete, unrealistic, subjective, dependability,
 dynamic, incompatible, not measurable }

Finally, the software management component of the MSD could be described in the following
manner:
 softwareManagement = developmentManagement ⊆ {projectManagement,
 qualityManagement, configurationManagement, riskManagement}
 (3.19)

Note that the software development process (Dumke et al, 2009 c) could be depended or
addressed to a special kind of a software system. Hence, we can make the following
characterization:

SDinformationSystem ≠ SDembeddedSystem ≠ SDdistributedSystem ≠ SDknowledgeBased System (3.20)

• The process of risk management on a particular product: (Boehm 1991)

r)(mentriskManage
SP ∈ RSP: riskIdentification × riskAnalysis × riskPrioritization (3.21)

× riskMgmtPlanning × riskResolution × riskMonitoring → riskManagement

Further, some of the examples of the relations in RSD could be derived in the following way:

• The process of building an appropriate life-cycle model:

r)lifecycle(
SD ∈ RSD: lifecyclePhase

1i
 × … × lifecyclePhase

ni
 → lifecycleModel

 (3.22)

4 Problem definition is a verbal form of the defined system or product requirements.

• T

• T

The cha

Finally,
followin

The com
are sho
because

The definin

r (wat
SD

impl

The definin

r Vm
SD
(

aracterizatio

r UM(
SD

 the compo
ng figure.

mponents of
wn here.

e as we have

ng of softwa
)iskserfallR ∈ R

lementation

ng of softwa
s)modelRisk ∈ R

riskManag

(design, in

 riskMan

on of the too
)MLdev ∈ RSD

× exper

onents and

Figure 12

f the Risk M
We will go
e already sa

are developm

RSD: problem

n × accepta

are developm

RSD: (proble

gement) × (sp

tegrationTe

nagement) →

ol-based sof

D: UML × d
rienceUML ×

aspects of

Components

Managemen
o into som

aid: the conc

ment based

mDefinition

anceTest ×

ment based

emDefinitio

specification

est, riskMan

→ Vmodel

ftware deve

development
standardUM

the softwa

s of the softwa

nt that are an
me more det

crete softwa

on the wate

 × specifica

riskManag

on the V-m

on, softwareA

n, acceptanc

nagement) ×

lopment ba

tEnvironme
ML → develo

are engineer

are engineeri

n unavoidab
tails about
are process

erfall-model

ation × desi

gement → w

modell:

eApplication

ceTest, riskM

× (coding, u

ased on UML

ntUML × sys
opmentInfra

ring proces

ing process

ble part of th
the project
is known as

l:

ign ×

waterfallMod

n,

kManageme

unitTest,

L:

stemOfMeas
astructureUM

 (3

s are show

he software
t risk mana
s software p

39

del

 (3.23)

nt) ×

 (3.24)

suresUML

ML

3.25)

wn in the

e process
agement,
project.

40

Figure 13 Components of the risk management

The software project risks as a part of the development process can be divided into different
groups of risks, as follows: (Gaulke 2002)

Business Focus Group Risks:

Here are grouped the risks connected with the weak points in the matching between the
project and the business goals and requirements of the company and also the external risks.
The risk in the unsupported from the Business IT-project is the problem that some specific
parts of the project may not have enough resources and then they won’t have the possibility to
be correctly developed.

Stability of the Organization Risks:

Changes in the company organization can be critical for the project. This could mean a
change in the resources or even closure of the project. The restructuring of an organization
because of extern circumstances or intern for example: new business field or efficient control,
means extreme danger for the IT-project. The instability and the changes can have critical
influence on the employees’ motivation and this can be the point that brings a project to the
end or not.

Dynamic of the market-place Risks:

The risk in the dynamic market-place is that in a case of change it could be that the project is
not relevant any more or should be entirely changed. This leads to extreme lost of money and
time and because of this it is very important to start with rich analysis of the market-place in
order to be sure that the IT-project will be successful.

Criticality of the IT-System Risks:

The risk of implementing systems with high-criticality is that the expected security,
performance or some feature could fail. The criticality of a system can be connected with the
special function that should be fulfilled, for ex. bank-transfer or military communication or
also with the business-risk.

41

Special Risks:

These are external and unexpected for the project factors that have negative influence over it.
For example financial risks, even liquidity, crises on the market-place, or reputation loss (loss
of personnel) can lead to extremely heavy problems for a project.

The software project/process risk can be expressed in the following way:

r)(kprocessRis
SD ∈ RSD = businessFocus × organizationStability × (3.26)

marketDynamic × systemCriticality × specialRisk → processRisks

3.1.4 The Software Development Resources

In order to develop a software product we need resources such as developer (software team),
CASE tools and variants of hardware. Therefore, we define the software development
resources SR as following

 SR = (MSR, RSR) = ({personnelResources, softwareResources, (3.27)

platformResources},RSR)

where the software resources play a dual role in the software development: as a part of the
final system (as COTS or software components) and as the support for the development (as
CASE or integrated CASE as ICASE). The following figure shows a possible distribution of
the different characteristics addressed to the main parts of the software development
resources.

Figure 14 Simplified visualization of the resources characteristics and the risks involvements

42

We continue our definition as following:

 softwareResources = {COTS} ∪ {ICASE} (3.28)

ICASE = CASE ∪ CARE ∪ CAME

where CARE stands for computer-aided reengineering and CAME means computer-assisted
measurement and evaluation tools . Considering the WWW aspects and possibilities for
software development infrastructures based on CASE environments, the set of CASE tools
could be divided as following

 CASEinfrastructure = { ({UpperCASE} ∪ {LowerCASE})environment } (3.29)

Further, we can define

 UpperCASE = {modellingTool, searchTool, documentationTool, diagramTool,
 simulationTool, benchmarkingTool, communicationTool}

 LowerCASE = {assetLibrary, programmingEnvironment, programGenerator,

 compiler, debugger, analysisTool, configurationTool}

Especially, we can describe the following types of software development resources as:

 personnelResources = personIT ∪ personcustomer ∪ personapplicatiuon (3.30)

personIT = {analyst, designer, developer, acquisitor, reviewer, programmer,
tester, administrator, qualityEngineer, project leader,
systemProgrammer, chiefProgrammer}

 personcustomer = { stakeholder, manager, acquisitor }

 personapplication = { user, operator, client, consumer }

personnelRisks = HRFIT

softwareResourcesRisks = {notAvailability, highCosts, incomplete, incompatible,
veryComplex, difficultyByChanges}

hardwareResourcesRisks = {lowPerformance, deadlocks, highCosts, incompatibility}

and
 SE-Communities = {personnelResources, ITadministration, (3.31)

softwareUser, computerSociety}

Accordingly, some of the examples of the relations in RSR could be derived in the following
manner:

43

• The process of building an appropriate development environment:

r)devEnv(
SR ∈ RSR: ICASE × platformResources → developmentEnvironment

 (3.32)
• The defining of software developer teams for the agile (for ex.) development:

r)agile(
SR ∈ RSR: programmer × programmer × customer

→ agileDevelopmentTeam (3.33)

• The assessment of potential risks based on the personnel resources (see (2.4)):

r)(iskspersonnelR
SR ∈ RSR: HFIT × processInvolvement × roleIT → personnelRisks

• The assessment of the human performance:

We have adopted the definition for Productivity (in our case synonym of Performance)
‘’Productivity is defined as output over input.’’ (Ebert & Dumke, 2007)

Where ‘’Output can be:

1. delivered source statements, function points, components, documents or
artefacts.

2. with a certain quality or complexity.
3. in a certain environmental setting such as skills, pressure, tool support,

computing platform, frequency of requirements changes,…
4. having created application-domain and technical knowledge.’’ (Ebert &

Dumke, 2007)
And ‘’input is the way you create this output. It relates how well you are working.’’
Examples are:

1. ‘’Productivity = adjusted size/effort. Adjusted size is the estimated effort based
on history and constraints. Productivity is a normalization comparing estimated
to actual effort.

2. Productivity can be measured as a dimensionless indicator generated by an
estimation method and tool, such as QSM SLIM, COCOMO or SPR
Knowledge-Plan.

3. Productivity can also be measured by comparing earned value with actual effort
spent.‘’ (Ebert & Dumke, 2007)

Having these explanations we have decided to use in our Performance Evaluation,
three different components based on the Personal, Supervisor and Colleague
Assessment based over the observed input-output dependence.

humanPerformance = {HFIT, softwareDevelopmentProcess } (3.34)

humanPerformanceEvaluation = {personalAssessment, supervisorAssessment,

 colleagueAssessment}

r)(sessmentpersonalAs
SR ∈ RSR: personIT × assessment × workingProcess

→ personalAssessment

44

r)(Assessmentsupervisor
SR ∈ RSR:personIT × supervisor × assessment × workingProcess

 → supervisorAssessment

r)(ssessmentcolleagueA
SR ∈ RSR: personIT × colleague × assessment × workingProcess

→ colleagueAssessment

Now, we will summarize the different elements and components of the resources as the basics
of the software development and maintenance in the following figure.

Figure 15 Components of the software development resources

3.1.5 The Use of the Software Product

After the software development, the software product goes in two directions: at first (the
original sense of a software product) to the software application SA, second in the software
maintenance SM. We will define here the different aspects:

SA = (MSA, RSA) = ({applicationTasks, applicationResources, (3.35)
applicationDomain} ∪ MSP, RSA)

where
applicationTask ∈ {delivering, operation, migration, conversion, replacement}

applicationResources = {applicationPlatform, applicationPersonnel,

applicationDocuments}

45

 applicationPersonnel ⊆ {customer, user, operator, administrator, consultant, trainer}

 applicationDomain ⊆ {organisationalDocument, law, contract, directive,

 rightDocument}

 applicationDocument ⊆ {userManual, trainingGuideline, acquisitionPlan, setup,
 damageDocument, troubleReport}

The risks connected with the application Personnel in the process of use of the software
product, can be summarized like the following:

risksInUse ⊆ {lackOfExperience, lackOfResources, strongDependencies, (3.36)
lackOfUnderstanding, notFlexibleOrganization, lackOfGoalValidation,

 highSystemComplexity, badInformationStructure, lackOfData}

Based on these definitions, some of the examples of the relations in RSA could be derived in
the following manner:

• The process of the first introduction of the software product as delivery:

r)(delivery
SA ∈ RSA: SP × trainer × applicationPersonnel × applicationPlatform

→ delivery (3.37)

• The defining of software migration based on essential requirements:

r)migration(
SA ∈ RSA: productExtension × SP × migrationPersonnel→ migration

 (3.38)

• The characterization of software operation:

r)operation(
SA ∈ RSA: applicationPersonnel × applicationPlatform × SP × user

→ operation (3.39)

• The defining of the outsourcing of the software operation by extern IT contractors:

r)goutsourcin(
SA ∈ RSA: systemInputs × contractors × systemFeedback

→ outsourcing (3.40)

From all these relations can be summarized the source of risks for the software application
(Georgieva et al, 2009 f) in the following manner:

r)(nRiskapplicatio
SA ∈ RSA: deliveryRisk × migrationRisk × operationRisk ×

 outsourcingRisk → applicationRisk (3.41)

We can see all parts of the software product application in the following figure.

46

3.1.6 The Software Maintenance

The different aspects and characteristics of the software maintenance are summarized by the
following formulas:

 SM = (MSM, RSM) = ({maintenanceTasks, maintenanceResources} ∪ SP) (3.42)

where

maintenanceTasks = {extension, adaptation, correction, improvement,
prevention}

maintenanceResources = ICASE ∪ {maintenancePersonnel,
 maintenancePlatform}

maintenancePersonnel = {maintainer, analyst, developer, customer, user}

Accordingly, some of the examples of the relations in RSM could be derived like follows:

• The process of building the extension activity of the maintenance:

r)extension(
SM ∈ RSM: SP × functionalRequirements → SP(extended) (3.43)

• The defining of software correction:

r)correction(
SM ∈ RSM : SP × qualityRequirements → SP(corrected)

Figure 16 Components of the software product application

47

• The defining of software adaptation:

r)adaptation(
SM ∈ RSM : SP × platformRequirements → SP(adapted)

• The defining of software improvement:

r)perform(
SM ∈ RSM : SP × performanceRequirements → SP(improved)

• The defining of software prevention:

r)prevention(
SM ∈ RSM : SP × preventionRequirements → SP(modified)

• The characterization of a special kind of software maintenance as remote maintenance:

r int)remoteMa(
SM ∈ RSM : ICASEremote × maintenanceTasks × maintenancePersonnel

 → remoteMaintenanc (3.44)

• The risk in the software maintenance can be summarized like:

r)(eRiskmaintenanc
SM ∈ RSM: extensionRisk × correctionRisk × adaptationRisk ×

improvementRisk × preventionRisk × remoteMaintRisk
 → maintenanceRisk (3.45)

We can see the components of the software maintenance on the next figure.

Figure 17 Components of the software maintenance

48

3.2 The Software Team

At the core of every software development process are the people. If the software
development is considered as a project, then the people build the project successful or not.
Independent of the methodology chosen for a particular project, a group of people called the
project team is involved in it. The generalized roles involved in the software development
process are provided in the following table.

Table 4 General Roles in the Software Development (Kurble 2008), (Laporte et al. 2007), (Bogue 2005)

General Roles

Project Manager
Business Analyst

Software Architect
Team Leader

Software Developer
Quality Engineer
Software Tester

In order to achieve the project goals, the project team has to be organized in a specific
manner, called the project team structure. This structure is primarily a function of project
resource ownership and project manager authority. Project manager’s responsibility for
achieving the project performance objectives must be supported by an appropriate level of
authority to control project resource utilization, assign and manage project task performance,
and enforce accountability of the project team members. Otherwise, the designated project
leader is merely serving as a project coordinator or project report administrator and cannot
reasonably be held responsible for project outcomes.

The software development process is executed with in the organizations. Each organization
has its own organizational structure. So the project team structure depends on the
organizational structure of the company in which the software is developed. Availability of
resources, manager's authority, budget control and many more factors depend on the
organization of the company. Therefore, the possible organizational structures are discussed
in detail and the most appropriate organizational structure is specified for the software
development.

3.2.1 Organizational Structures in the IT

An organizational structure is the “formal system of task and reporting relationships that
controls, coordinates, and motivates employees so that they cooperate to achieve an
organization's goals” (Kurble 2008). There are three basic types of organizational structures:
(Heldman 2009) (PMI 2008)

• Functional Organization
• Projectized Organization
• Matrix Organization

49

3.2.1.1 Functional Organization

The functional organization, shown in the Figure 18, is an organization which is structured
according to the functions such as analysis, design, implementation, testing and quality etc.
Here software personnel are grouped by specialty, i.e. people with similar skills are placed in
the same group. Each group has one head called the Functional Manager. Each employee has
one clear superior. (Heldman 2009) Each group is managed independently and has a limited
span of control. (Kerzner 2009)

Figure 18 Functional Organization. Gray boxes represent the people engaged in the same project (PMI
2008)

Whenever a project has to be carried out in a functional organization, personnel from several
functional areas work together. In this type of organization, a project manager is optional.
Even if a project manager is assigned to a project, the project manager has little or no
authority over project resources. Instead, the functional manager has complete authority over
the project resources in a business unit.

The projects are typically undertaken in a divided approach (Heldman 2009) i.e. for a project
in design phase includes the design department, will work on its portion of the project and
then hand it off to the implementation department to complete its part and so on. Here a chain
of command is followed. For example when questions about design arise in implementation
phase then they are passed up the organizational hierarchy to the department head, who
consults with the head of the design department. The design department head then passes the
answer back down the hierarchy to the implementation functional manager. In a real
organization – in a multi-level hierarchy – the path upwards and downwards the
organizational tree can be long and time-consuming.

Even though, the functional organizations have the advantage of being simple to understand
with clear lines of command, it also has some disadvantages. The following are the
advantages and disadvantages of a functional structure.

Architect

Architect

Architect

Developer

Developer

Developer

Business
Analyst

Business
Analyst

Business
Analyst

Quality Head

Quality
Engineer

Quality
Engineer

Quality
engineer

Implementation
Head

Design
Head

Analysis Head Testing
Head

Tester

Tester

Tester

General Manager Functional manager
project coordination

50

Advantages: (Kerzner 2009)
• ‘’Development and maintenance of technical competency in specialized fields
• Synergy among specialists
• Concentration on the objectives of the function
• Pursuing long-term development objectives
• Easy reconciliation of internal objectives
• Horizontal relations are clear
• Clear definitions of roles and responsibilities
• Efficiency improved by standardization
• Stability in interpersonal relations
• Well-defined career paths
• The possibility for organizational learning
• Easier control of quality and performance
• Flexibility and economy in the use of labor’’

Disadvantages: (Kerzner 2009)

• ‘’Filtered perception; lack of an overall view
• Difficulty in integrating several specialties; possible conflicts
• Difficulty in creating motivation for the project
• Risk of neglecting the aspects not related to the specialty
• Difficulty in making effective compromises between the variables quality-time-cost
• Nobody is exclusively responsible for project objectives
• Subordination of the managerial to the technical points
• Difficulty in adapting
• Difficulties in the internal circulation of information
• Lack of visibility for the client
• Limited development of management capabilities among the personnel’’

3.2.1.2 Projectized organization

Projectized organizations (Heldman 2009) are almost the opposite of the functional ones. The
idea behind them is to be loyal to the project manager and to organize the working process in
the form of projects where all people are in project teams headed by a project manager to
whom they report. Organizational resources are dedicated to projects and project-work. Figure
19 depicts a typical projectized organization.

51

Figure 19 Projectized Organization. Gray boxes represent staff engaged in project activities (PMI 2008)

Project managers have the absolute power over the project in this structure and report directly
to the General Manager. They are responsible for making decisions regarding the project
acquiring and assigning resources and have the authority to choose and assign resources from
other areas in the organization or from outside. (Heldman 2009) Project managers in all
organizational structures are limited by triple constraints: project-scope, schedule and cost.

Project teams are formed from various specialists and are often co-located, which assures
good communication. Motivation for project activities is high since the project is the main
focus of the team.

Even though, it is a better organizational structure than the functional structure, it has some
drawbacks. The following are the advantages and disadvantages of a projectized organization:

Advantages: (Kerzner 2009)

• ‘’Project managers have ultimate authority over the project
• Direct work for the project manager
• Strong communication
• Personnel demonstrate loyalty to the project
• Very rapid reaction time is provided
• Interface management becomes easier as unit size is decreased
• Team members are co-located’’

Disadvantages: (Kerzner 2009)

• ‘’Duplication of effort and resources
• A tendency to retain personnel on a project long after they are needed
• Technology suffers because without the functional groups, outlook of the future to

improve company’s capabilities for new programs would be reduced

Project coordination

Testers Testers Testers

General Manager

Project Manager

Business
Analyst(s)

Architect(s)

Testers

Developers

Quality
Engineer(s)

Project Manager

Business
Analyst(s)

Architect(s)

Developers

Quality
Engineer(s)

Project Manager

Business
Analyst(s)

Architect(s)

Developers

Quality
Engineer(s)

Project Manager

Business
Analyst(s)

Architect(s)

Developers

Quality
Engineer(s)

52

• Control of functional specialists requires top-level coordination
• Lack of opportunities for technical interchange between projects
• Lack of career continuity for project personnel’’

3.2.1.3 Matrix Organization

The matrix organizational form is an attempt to combine the advantages of the previous two
structures. Here the project team members continue within their own functional groups,
reporting to their usual managers for the purposes of career development and performance
evaluation. (Heldman 2009) (Dinsmore 2010) By the matrix organizations the project
managers can focus on the project work and the project team can focus on the project
objectives without being distracted by the functional department. The project manager
manages the project and the employees report to one functional manager and to at least one
project manager.

Functional managers are concerned with the administrative duties and assign employees to the
different projects and in the same time they maintain the projects’ quality. (Kerzner 2009) The
functional managers have to assure a unified technical base that allows an exchange of
information in every project and an awareness of the latest technical accomplishments in the
industry. On the other hand, the project manager has total responsibility and accountability for
the project success. The project managers are responsible for executing the project and
assigning the tasks to the team members according to the project activities. The Figure 20
depicts the matrix organizational structure.

Figure 20 Matrix Organizational Structure (PMI 2008)

The gray color indicates the staff associated to a particular project manager.

Although matrix organizational structure is more beneficial than the other two structures, it
has the following pros and cons.

Quality
Engineer

Analysis
Head

Business
Analyst

Business
Analyst

Design
Head

Architect

Architect

Architect

Implementation
Head

Developer

Developer

Developer

Testing
Head

Tester

Tester

Tester

Quality
Head

Quality
Engineer

Quality
engineer

General Manager

Manager of
Project managers

Project manager

Project manager

Project manager

53

Advantages: (Kerzner 2009)

• ‘’The project manager maintains maximum project control over all resources,
including cost and personnel

• The project manager has the authority to commit the company resources mitigating
conflicts with other projects

• Rapid responses are possible to changes, conflict resolution, and project needs
• The functional organization exist only as a support for the project
• Each person has a “home” after project completion.
• Because key people can be shared, the project cost is minimized. People can work on a

variety of projects
• Conflicts are minimal, and those requiring hierarchical referrals are more easily

resolved
• There is a better balance among time, cost and performance
• Authority and responsibility are shared
• A strong technical base can be developed, and much more time can be devoted to

complex problem solving’’

Disadvantages: (Kerzner 2009)

• ‘’Multidimensional work flow
• Multidimensional information flow
• Dual reporting i.e. reporting to the functional and project manager
• Continuously changing priorities
• Management goals different from project goals
• Potential for continuous conflict and conflict resolution
• Each project organization operates independently. Care must be taken that duplication

of efforts does not occur
• More effort and time are needed initially to define policies and procedures, compared

to traditional form
• Functional managers may be biased according to their own set of priorities
• Balance of power between functional and project organizations must be watched
• Employees and managers are more susceptible to role ambiguity than in traditional

form’’

In matrix organizations there exist different possibilities for the range of the organizational
structure: we have weak, balanced and strong matrix.

In a strong matrix organization, the power is by the project managers, who take the most
important decisions. Of course on the other end of the organizational structure spectrum is the
weak matrix, where the functional managers have all the power and the project managers are
just coordinators or expeditors.

In the middle is the so called balanced matrix organizational structure and it differentiates
with the advantage of balancing between project managers and functional managers.’’ Each
manager has responsibility for their parts of the project or organization, and employees get

54

assigned to projects based on the needs of the project, not the strength or weakness of the
manager’s position.’’ (Heldman 2009) Balanced matrix organization is shown in the Figure
21.

Figure 21 Balanced Matrix Organization. Gray boxes represent staff engaged in project activities (PMI
2008)

3.2.1.4 Organizational structure of a software company

Having discussed the possibilities for organizational structures and their pros and cons we will
now observe the most suitable structure for a software company proposed in (Kurble 2008) -
the strong matrix organization.

The functional areas of a software company are analysis, design, coding, testing etc. These
functional areas can be arranged in a hierarchical manner and strong matrix organization is
used in executing the software projects. The Figure 22 shows the typical organizational
structure of a software company. We have the following departments: (Kurble 2008)

– Project management – project manager, assistant project manager and administrative
personnel

– Sales and marketing – not visualized in our case, but usually a part of a software firma
– Analysis – requirements engineers or systems analysts performing requirements

engineering
– Design – software architects developing the architecture of the system; class, database

and GUI designers
– Implementation – java; database and GUI programmers
– Testing – staff performing module, integration and system testing
– Standards – a quality officer or assistant to ensure that software engineering standards

are met.

These roles are the basic ones in the outcome of a software project. They are responsible for
the success or failure of a project. Each role appears in some step of the software development
life cycle and is assigned with particular responsibilities. In the next section, we will discuss
the responsibilities of each role.

Design Head

Architect

Architect

Architect

Developer

Developer

Developer

Implementation Head Analysis Head

Business
Analyst

Project
Manager

Testing
Head

Quality Head

Quality
Engineer

Quality
Engineer

Quality
engineer

Tester

Tester

Tester

General Manager

55

Figure 22 Software Development Organizational Structure. The people in the dotted line indicate staff
engaged for a project, Dev is the developer (PMI 2008)

3.2.2 Software Roles and Responsibilities

3.2.2.1 Project Manager

The purpose of the project manager’s role is to undertake the phases, activities and tasks
within the specified time, cost and quality constraints to deliver the required software project
outcome and achieve total customer satisfaction. ‘’A project manager's task is threefold: to
supervise the team members, understand state of the art techniques, and make the software
project successful.’’ (Sodhi & Sodhi 2001)

The project manager is responsible for the controlling of the software development work from
the initial beginning through to the end. This includes all software phases: planning, product
design and development, implementation, administration, and setting and meeting of
deadlines. (Desmond 2004) The project manager must have the following personal
competencies and meet the following technical responsibilities for the successful outcome of
the software project.

Quality Management head

Quality
Engineer

Quality
Engineer

Software
Tester

Software
Tester

Testing
Manager

Standards
Manager

Software
Tester

Quality
Engineer

Project
Management head

Project
Manager

Project
Manager

Project
Manager

Design head

Architect

Architect

Architect

Architect

Development
head

General Manager

Implementation
head

Dev

Dev

Dev

Dev

Team
leader

Team
leader

Dev

Dev

Dev

Dev

Analysis head

Business
Analyst

Business
Analyst

56

Personal Competencies: (Desmond 2004) (Sodhi & Sodhi 2001)

• ‘’Has good communication and managerial skills
• Able to lead, motivate and delegate proper responsibilities to team members
• Respects team members and has their respect
• Shares success with the team members
• Creates structured discipline
• Recognizes individual differences and takes advantage of them
• Understands the team members and creates effective communication
• Resolves conflicts and interpersonal issues promptly
• Open for new ideas
• Achieves the project goals within the established schedule and budget
• Establishes and meets real priorities and deadlines
• Is constantly in learning mode
• Has a structured roadmap for implementing change initiatives
• Has a habit of seeking improvements in all aspects of one’s work’’

Technical Responsibilities: (Desmond 2004) (Sodhi & Sodhi 2001)

• ‘’Detailed understanding of project planning and control techniques
• Ability to produce a detailed project plan, including a work breakdown structures,

dependencies, resources and costs
• Optimizes the use of people and resources
• Knowledge of effective change management processes and procedures
• Constantly challenges established practices in order to improve them
• Has a complete understanding of the business and creates effective business plans
• Has knowledge of software development life cycle
• Knowledge of quality assurance and control techniques to ensure that quality targets

and standards are met
• Identifies problems at an early stage and takes corrective actions
• Review or establish a hierarchy of objectives and identify higher-level project

objectives
• Review the project documentation and project description that defines the authority,

responsibility and relationships of the project manager, project staff, and functional
departments

• Evaluate the probability of successful implementation and determine if some changes
are needed

• Develop a plan to cope with potential problems caused by actors and factors
especially those characterized by medium or high dependency, risk and control

• Lead the project team in reviewing the project documentation in order to reach a
common understanding of objectives, deliverables, organizational structure etc,

• Review the proposed project implementation plan

57

• Verify resource commitment with the heads of the project related departments
• Prepare a presentation to management (project review) and negotiate it
• Plan inspection and acceptance procedures for the final deliverables
• Conduct final project review or audit
• Close out contracts and settle any outstanding disputes
• Close out all work orders and project accounts’’

3.2.2.2 Team Leader

The team leader acts as a middle-point between the software architect and the developers.
Depending on the project size, the team leader is responsible for extracting out details for a
part of the architecture or the complete architecture and creating program specifications from
which the developers work. Usually the team leaders were developers and have grown up in
the hierarchy in the role of supervisors and guide the rest of the team during the software
development process.

The team leader glues together the programs developed by the developers which forms a part
or the whole architecture created by the software architect. In order to successfully lead a
group of developers, a team leader should possess the following personal competencies and
fulfill the following technical responsibilities.

Personal Competencies: (Humphrey 2005) (Palmer 1998)

• ‘’Helps in clarifying the responsibilities of the team members
• Is able to plan and prioritize work and accomplish planned targets
• Translates requirements into actionable outputs with timelines
• Sets realistic objectives and timeframes
• Reviews team progress against goals
• Ability to be flexible and adaptable in an evolving environment
• Understands human needs, psychology and fears
• Keeps updated on new techniques, theories, methods etc.
• Good communication skills
• Ability to be an effective advocate for the team
• Advocate for needs of internal and external customers
• Ability to lead and to impress the team members’’

Technical Responsibilities: (Humphrey 2005) (Palmer 1998)

• ‘’Plans the team’s work and coordinate it with the Project Manager
• Converts business objectives into actions
• Monitor and motivate the team’s work, builds healthy team climate
• Raise important issues and discuss them with the Project Manager
• Carry out quality control over the team’s work

58

• Ensure that all identified risks are mitigated
• Ensure that the appropriate resources are assigned to the tasks and monitor the

effectiveness of the team
• Assure that all team members have the required knowledge and training
• Supports the team in the phase of finding out the: customer needs, specifications,

design standards, techniques and tools to support the task performance
• Establish meeting times, places and agendas
• Organizes meetings for coordinating the work progress with the project manager and

functional management
• Provide status reports over the team activities against the program schedule’’

3.2.2.3 Business Analyst

Requirements play a vital role in the software development process and improper
requirements gathering may end with a software development process failure. It is the role of
the business analyst that assures that the requirements are captured and fully understood by
the technical team before moving to implementing them into solutions. The business analyst
is the connection between the business part and the technical providers throughout the
software development process. He defines and documents the requirements and this textual
representation of the future system is an intermediate step between the software need and the
solution design. This design process is divided into business need identification, scope
definition and elicitation. (Hass 2005) (Paul, Yeates & Hindle 2006)

The first step is a pre-analysis, which is concerned with detailed research over the business
needs; feasibility studies; solution trade-off analysis and development of high level business
requirements. Then follows the scope definition, where are included all documents about the
description of the initial requirements: the Business Case, Project Charter, or Statement of
work. (Hass 2005) And the last step – the requirements elicitation is expressed in the clear
description of all stakeholders’, customers’ and users’ needs.

In order to capture the complete and accurate list of requirements the Business analyst must
possess a special skill set in the form of the following personal competencies and technical
responsibilities.

Personal Competencies: (Hass 2005)

• ‘’Proper communication of technical concepts to non-technical audiences (customers)
• Ability to conceptualize and think creatively
• Time management and personal organization
• Is able to diagnose problems effectively
• Asks appropriate questions to resolve issues and elicit requirements
• Strategic and business thinking
• Effective communication of business concepts to technical audiences
• Understands information quickly and accurately

59

• Demonstrates clarity in written and verbal communication
• Creates effective presentations to get one’s ideas across
• Problem solving, negotiation and decision making
• Customer relationship management

• Encourages fellow team members to make innovative contributions and embrace new
ideas‘’

Technical Responsibilities: (Hass 2005) (Hass 2007)

• ‘’Knowledge of system engineering concepts and principles
• Knowledge and efficient application of complex modeling techniques
• Technical domain knowledge
• Fundamentals of project management
• Techniques to plan and document requirements

• Requirements risk assessment and management

• Cost / benefit analysis

• Documents analysis in agreed artifacts and models using standard notation and
language understood by business users and other stakeholders

• Business improvement and Reengineering

• Business writing; Business case development and Business domain knowledge

• Proactively tries to understand customers needs and displays commitment towards
meeting them

• Elicits and documents business, organizational and operational requirements

• Evaluate customer business needs, thus contributing to the strategic planning of
information systems and technology directions

• Identify and understand the business problem and the impact of the proposed solution
on the organizational operations

• Document the complex areas of project scope, objectives, added value or benefit
expectations, using an integrated set of analysis and modeling techniques

• Liaise with major customers during preliminary installation and testing of new
products and services

• Analyze and manage requirements risks

• Conduct root-cause analysis of the problems

• Performs specified data analyses and studies as directed (including research, surveys
and feasibility) supporting potential projects

• Measure the value of new business solutions and compare to the estimated benefit‘’

60

3.2.2.4 Software Architect

The software architect builds the software architecture. He transforms the requirements for the
software into an architecture that describes the top-level structure and identifies the software
components. His responsibilities are emerging from the conceptualization and experimenting
with alternative architectural approaches through developing models and documents to
validating everything against the software requirements. (Laporte et al. 2007)

Software Architect should possess the following personal competencies and technical
responsibilities:

Personal Competencies: (Rozanski & Woods 2005)

• ‘’Makes quick and effective decisions
• Makes decisions from a basis of a holistic understanding
• Identifies problems at an early stage and takes corrective action
• Empowers team members
• Resolves conflicts and interpersonal issues swiftly
• Values continuous development of people
• Leads own team effectively
• Is able to guide or resolve performance related issues
• Negotiates and asserts oneself
• Is able to persuade others to one’s point of view
• Makes effective presentations
• Can synthesize technical and other information to add clarity for others
• Maintains and develops relationships with potential as well as existing customers
• Sets clear checkpoints and targets
• Involves team members when planning and scheduling
• Knows human strengths and limitations and uses this knowledge in planning
• Sets the right priorities when conflicts arise
• Optimizes the use of people and resources
• Is constantly in learning mode
• Facilitates change across own function or team
• Has a habit of seeking improvements in all aspects of one’s work
• Has good listening skills
• Can turn a hostile interaction into a positive outcome’’

Technical Responsibilities: (SEI 2011) (Laporte et al. 2007)

• ‘’Is able to analyze the consequences of action
• Represents internally and externally the best interests of the organization
• Produces a very high level of written communication suitable for organization-wide or

external consumption
• Has a wide knowledge of industry

61

• Sees all actions from a dual view-point – of both the organization and the customer
• Continuously reviews status of plans
• Constantly benchmarks own area of operations
• Has a complete understanding of the business domain
• Has knowledge of software life cycle
• Assesses potential projects in relation to current strengths and weaknesses’’ (SEI

2011)
• ‘’Defining the architecture of the software
• Derive the requirements for the software architecture
• Identify the key design issues that must be resolved to support successful

development of the software
• Generate one or more alternatives and constraints for the architecture
• Allocate the software and derived requirements to the chosen architecture components

and interfaces
• Maintain requirements traceability
• Describe the software architecture by capturing the design results
• Identify appropriate derived requirements that address the effectiveness and cost of the

life-cycle phases
• Document, approve, and track the technological changes
• Preparing risk mitigation strategies’’ (Laporte et al. 2007)

3.2.2.5 Software Developer

From a technical point of view the developer is at the most basic level in the software
hierarchy expected to be able to translate algorithms and technical specifications into
functioning software code. He has to have good programming language skills and logical way
of thinking in order to transform the specification into particular functions. Of course this
knowledge is only the basis for the rest competencies that a good programmer must possess.

Personal Competencies: (Klipp 2009)

• ‘’Brings in fresh perspective (an unbiased point of view)
• Generates new and imaginative ideas/ approaches
• Is flexible in aligning personal objectives with team objectives
• Is a good team player - Is able to work harmoniously as a part of a team
• Tolerates dissent and different viewpoints
• Shares information and data
• Shares opinions and expresses himself confidently
• Asks and answers questions effectively
• Gives his best to understand and meet the customer requirements
• Able of effective time management
• Able to prioritize activities

62

• Uses failures as a stepping stone to growth
• Is able to articulate own thoughts as well as on behalf of others
• Is open-minded and willing to learn
• Appreciates suggestions and new ideas
• Take full responsibility for own work
• Continuously upgrades to the new technologies, tools and business training
• Display structured thinking and objectivity in analyzing complex tasks’’

Technical Responsibilities: (Klipp 2009) (Humphrey 2000)

• ‘’Knowledge and usage of relevant engineering processes
• Knowledge and usage of relevant Standards, Templates, Checklists, Defect Prevention
• In-depth knowledge of relevant software environment and related tools (programming

languages, operating systems, databases, debugging & testing tools)
• Configuration Management
• Adequacy of Test Planning - Unit Testing
• Able to understand design specifications
• Approve software only when it works correct, safe, has been tested enough and cannot

cause harm to the people or the environment
• Identify, document, and report to the client or the employer possible problems with the

software (functionality, cost and so on)
• Fully understand the software specifications
• Good documentation of the software and matching periodically to the users'

requirements
• Ensure adequate testing, debugging, and review of software and related documents
• Maintain the integrity of data
• Disclose to all concerned parties the unavoidable conflicts of interest
• Take responsibility for detecting, correcting, and reporting errors in software and the

influenced documents
• Integrating software units into the system
• Providing support in the testing of software elements’’

3.2.2.6 Software Tester

The job of the Software tester is to perform testing of the application. “Software Testing is a
process of verifying and validating that a software application or program meets the business
and technical requirements and works as expected”. (Bentley, Bank & NC 2004) The software
tester works with the Business analyst, the Software Architect and the Developer to convert
the requirements and design documents into a set of testing cases and scripts and then to
report the occurred problems. These testing cases and scripts can be used to verify that the
system meets the client needs.

63

The software tester is mainly responsible for creating test cases and scripts, executing them
and facilitating or performing random testing of all components to ensure that there's not a
random bug affecting the system. Here follow his competencies and responsibilities so that he
can fulfill his job with the expected accuracy.

Personal Competencies: (Perry 2006) (Watkins 2004)

• ‘‘Brings creativity and is open for others’ ideas
• Shows flexibility in approach to task
• Communicates clear and open in order to support the team
• Responds quickly to customer problems
• Is open-minded and willing to learn
• Appreciates new suggestions
• Discusses issues with relevant colleagues to resolve ambiguity’’

Technical Responsibilities: (Dustin 2002) (Watkins 2004)

• ‘’Good understanding of GUI design
• Proficient in software testing techniques
• Proficient in the business area of application under test
• Understands various testing phases
• Proficient in working with testing tools’’ (Dustin 2002)
• ‘’Working together with the Quality Assurance part of the team in order to build the

test strategy and the test plans
• Defining the test requirements
• Performing the functional analysis of the application under test
• Designing and implementing the test scripts and test cases
• Design, specification and implementation of the test environment and the test data-sets
• Backup and archive-maintenance of the test environment and the test data
• Executing test scripts and observing the test results
• Documenting the test results and maintaining the records
• Identification and recording of any observed faults
• Performing retesting after fixed faults
• Assuring backup and archive of all testing documentation and materials’’ (Watkins

2004)

3.2.2.7 Quality Engineer

According to (Kasse 2004), the Quality Engineer should be able to assure visibility into the
projects’ processes for the understanding of the management team and to determine if they are
efficient and effective. Also this role is concerned with the necessary product quality, which
has to satisfy customer, competitor and organization or project quality goals. The Quality
Engineer has to validate the developer’s tests, to ensure that the work of several developers

64

fits together and to follow different standardization methodologies. The main goal of this role
is to assure the awaited performance of a software solution.

The following competencies and responsibilities have to be fulfilled for a successful Quality
Engineer.

Personal Competencies: (Daughtrey 2001) (Kasse 2004)

• ‘’New ideas, flexible personality
• Contributes to the team objectives
• Remains positive at all times and focused on opportunities
• Systematic and organized personality
• Tolerates others opinions and defends his own
• Able of effective time management, resource estimation and allocation of decisions
• Appreciates suggestions, new ideas and others’ opinion
• Seeking for knowledge
• Gains co-operation from others
• Ability to understand customer business
• Ability to convince the customer
• Ability to conceptualize and provide right solution
• Ability to present data in an effective manner for decision making
• Ability to interact with senior managers, especially for developing the quality goals
• Ability to track progress according to plan and deviations from it
• Ability to interact with external consultants and vendors’’

Technical Responsibilities: (Kasse 2004)

• ‘’Setting & monitoring Quality goals and metrics.
• Review of milestone analysis, closure reports.
• Knowledge of methodologies and software engineering concepts.
• Ability to conduct project reviews and audits.
• Has a good understanding of SWOT (Strengths, Weaknesses, Opportunities,

and Threats) analysis in terms of own business area
• Strong understanding of S/W Engineering processes and selecting an adequate set of

standards, practices, and procedures
• Basic knowledge & usage of S/W Metrics
• Knowledge & Usage of software life cycle tools software project management tools

and its applicability
• Knowledge & Usage of statistical techniques
• Ability to identify problems, data gathering, generating alternatives, root-cause

identification, objective analysis of data, generating solutions
• Resource planning
• Ability to track utilization of budgets
• Ability to plan large/cross functional initiatives

65

• Negotiating criticality levels for the product components and subsystems
• Performing ad-hoc process compliance evaluations
• Co-working with the appropriate customer representatives on process and/or quality

problems
• Approving the supplier’s quality plan and resulting implementation
• Assess the projects and organization’s Configuration Management activities to ensure

the integrity and consistency of the work products
• Assuring adequate testing of the software components that fits the development

process’’

3.3 Summary over the Software Engineering and the Software Roles

In the first part of the chapter were explained the basics of the software engineering, which
could be shortly summarized in the already mentioned formula:

 SE = (MSE, RSE) = ({SE-Methods, CASE, SE-SystemOfMeasures, SE-Standards,

SE-SoftwareSystems, SE-Experience, SE-Communities}, RSE)

The overview about the high quality software product, as the main point of the software
engineering is expressed in the following: a software system/product SP is developed by the
software process/development SD and is based on the supporting resources SR. As we have
already seen one of the major resources is the software personnel.

 SR = (MSR, RSR) = ({personnelResources, softwareResources, platformResources},RSR)

Explanations about the Software Development Process, the Use of the Software Product and
the Software Maintenance make the overview of the software engineering complete and
comprehensive. One of the major points is the Software Project Risks as part of the software
development, where we could clearly see the big number of risks connected with the
personnel. For example:

• Lack of experience and specific knowledge

• A lot of outsourcing

• Lack of understanding of the business-processes

• Not flexible organization structure

• Lack of goal validation

The different involvements of human risks in the software engineering area are summarized
as following.

66

Considering software risk-based processes

r)(mentRiskManage
SE ∈ RSE: SE-RiskAssessment × SE-RiskControl → RiskManagement (3.46)

r)(ityRiskCommun
SE ∈ RSE: SE-Communities × systemOfRiskMeasures × RiskManagement

→ RiskMeasurementStaff

r)(ficationriskIdenti
SP ∈ RSP: dataRisks × applicationAnalysis → riskIdentification

r)(mentriskManage
SP ∈ RSP: riskIdentification × riskAnalysis × riskPrioritization

× riskMgmtPlanning × riskResolution × riskMonitoring → riskManagement

r)(iskswaterfallR
SD ∈ RSD: problemDefinition × specification × design ×

implementation × acceptanceTest × riskManagement → waterfallModelRisk

r)(sVmodelRisk
SD ∈ RSD: (problemDefinition, softwareApplication, riskManagement) ×

(specification, acceptanceTest, riskManagement) × (design, integrationTest,
 riskManagement) × (coding, unitTest, riskManagement) → VmodelRisk

r)(kprocessRis
SD ∈ RSD = businessFocus × organizationStability ×

marketDynamic × systemCriticality × specialRisk → processRisks

r)(iskspersonnelR
SR ∈ RSR: HFIT × processInvolvement × roleIT → personnelRisks

r)(sessmentpersonalAs
SR ∈ RSR: personIT × assessment × workingProcess

→ personalAssessment

r)(Assessmentsupervisor
SR ∈ RSR: personIT × supervisor × assessment × workingProcess

 → supervisorAssessment

r)(ssessmentcolleagueA
SR ∈ RSR: personIT × colleague × assessment × workingProcess

→ colleagueAssessment

r)(nRiskapplicatio
SA ∈ RSA: deliveryRisk × migrationRisk × operationRisk ×

 outsourcingRisk → applicationRisk

r)(eRiskmaintenanc
SM ∈ RSM: extensionRisk × correctionRisk × adaptationRisk ×

improvementRisk × preventionRisk × remoteMaintRisk
 → maintenanceRisk

67

and considering software process risks aspects

dataRisks = {missing, incorrect, incomplete, not synchronized, misleading} (3.47)

requirementsRisks = {incomplete, unrealistic, subjective, dependability,
 dynamic, incompatible, not measurable }

personnelRisks = HRFIT

softwareResourcesRisks = {notAvailability, highCosts, incomplete, incompatible,
veryComplex, difficultyByChanges}

hardwareResourceslRisks = {lowPerformance, deadlocks, highCosts, incompatibility}

humanPerformance = {HFIT, softwareDevelopmentProcess }

humanPerformanceEvaluation = {personalAssessment, supervisorAssessment,
 colleagueAssessment}

risksInUse ⊆ {lackOfExperience, lackOfResources, strongDependencies,
lackOfUnderstanding, notFlexibleOrganization, lackOfGoalValidation,

 highSystemComplexity, badInformationStructure, lackOfData}

Having explained the basics of the software engineering we have moved forward to the
software team and we have observed the seven basic roles that are met in every kind of
software company.

First we have made a research about the possibilities for organizational structure in order to
find the most common one – the matrix organization and then we have observed in detail the
roles and their responsibilities inside.

The general characterization of the considered personnel resources is defined as following

personnelResources = personIT ∪ personcustomer ∪ personapplicatiuon (3.48)

personIT = {analyst, designer, developer, acquisitor, reviewer, programmer,
tester, administrator, qualityEngineer, projectLeader,
systemProgrammer, chiefProgrammer}

 personcustomer = { stakeholder, manager, acquisitor }

 personapplication = { user, operator, client, consumer }

Therefore, we will summarize the chosen personnel – as seven basic roles of personIT - and
their competencies like the following:

68

HFProjectManager = {communicative, managerial skills, disciplined, (3.49)
respects the others, resolves conflicts, open minded,
willing to develop himself, well-organized, goal-oriented,
seeks improvement}

HFTeamLeader = {plan and prioritize the work, reviews team progress,
flexible and adaptable, communicative, an effective advocate for the team,
ability to lead and to impress}

HFBusinessAnalyst = {communicative, conceptual thinking, creativity,
strategic and business thinking, problem solving,
negotiation and decision making, customer oriented, team player}

HFSoftwareArchitect = {good decision maker, team player,
performance oriented, technical understanding that supports the team,
optimizing abilities, seeks new knowledge}

HFSoftwareDeveloper = {creativity, team player, tolerant,
always in a learning mode, able to articulate own thoughts,
respects others’ ideas, structured thinking}

HFSoftwareTester = {creativity, flexibility, communicative, open-minded,
respects the others}

HFQualityEngineer = {flexible, team oriented, positive attitude,
systematic and organized, respects the others,
seeking for knowledge, convincing ability,
ability to interact with managers and customers}

These competencies will be used in the following FMEA analysis in the next chapter in order
to discover the human factors that influence at most the software engineering process and the
corresponding failure modes.

69

4 Chapter – Discovery of the IT Human Factors

Based on the specific personal competencies discovered in the previous chapter, here the goal
is to analyze the responsibilities of each IT roles in order to find where the weak places could
be. We are using a well-accepted method for failure analysis – the FMEA as it gives the
possibility to analyze each process, to find the weak points and the influencing factors behind.
These influencing factors are actually the IT human characteristics which we will evaluate in
the next chapter 5 in order to find the personal productivity in the software development
process.

4.1Classical Failure Mode and Effect Analysis

Progress - this is the heart of the Failure Mode and Effect Analysis (FMEA). The constant
need of change and improvement is the engine, keeping the FMEA process running. This idea
may not be new, but is done in systematic way to address problems and failures and to search
solutions for progress.

FMEA is defined as a specific methodology for estimation of system, design, process or
service for possibilities of occurring of failures like errors, risks and different concerns
(Stamatis 1995). When a failure is found, it is evaluated with occurrence, severity and
detection characteristic. So depending on the values of these marks, an action is taken, planed
or ignored. The idea is to decrease the likelihood of a problem or its consequences.

The main goal of FMEA is to predict the problems before they occur, to make the product
safer or optimize the process and to lead the company during the production process in order
to satisfy the customers’ needs. Usually, there are two main kinds of FMEA – over an existing
product – Product FMEA and over process development stages – Process FMEA. When
product and process FMEA are conducted together they significantly reduce the costs of
manufacturing and developing. It is considered that process FMEA is more important because
of the early stages where the failures can be detected and prevented which gives a result of
more robust process and no need of post-the-fact corrective actions.

Nowadays, FMEA is part of every quality system, which means that collecting the right
information and making conclusion is not the only part. In order to get the maximum, the
company needs to implement the proposed improvements that are the results of the FMEA.
The reasons of conducting an FMEA and the benefits are proven and more than clear:
(Stamatis 1995)

 ‘’Improved quality, reliability, safety of the products or services.
 Improves the company’s image and competitiveness.
 Increased customer satisfaction.
 Reduced product development time and costs.
 Helps determine the redundancy of the system.
 Helps define the corrective actions.
 Helps in identifying errors and their prevention.
 Helps decide the priority of the failures and associates the right preventive

operations.

70

 Helps reduce the customers complains.
 Increases the productivity.
 Develops early criteria for development.’’

4.1.1 Concept of the Failure Mode and Effect Analysis

After all FMEA is an engineering method used for the first time in aircraft building and car
manufacturing so it is described as part of some industries, like a quality standard. When a
particular organization succeeds in implementing these standards it is capable to control the
processes and determine acceptability of its products or services.

Every FMEA method performed in the right way provides the company with useful
information which can be used efficiently – to reduce the work, optimize the processes or
prevent serious loss. Due to the consecutive and constructive method the task can be
performed more effectively. The early study of possible problems is with significant
importance and every failure is evaluated for its effects on the whole system, product or
process.

If the method is used in a corrective way it shows the actions to prevent failures, reaching the
customer and raises the reliability and quality of the process or product. The process of
conducting FMEA looks like shown on the next figure, where we can see four main steps,
which we will discuss later on. (Stamatis 1995)

Figure 23 The FMEA Process (Stamatis 1995)

In another aspect FMEA is a method to bring satisfaction of the customers. In modern world
we know that the most important thing in order to stay on the market is having qualitative
products. The main key here is to achieve detection of quality concerns before the product
reaches the hands of the users. That is why FMEA should start as soon as some information is
provided, because the team conducting the FMEA will practically never have all the data. At
the beginning, the technique should be executed over the design stage or concept, but for
better results it can be used throughout the development process and the whole product life
cycle to identify failures. Every product is expected to do something specific and to be in use
for long time. A product failure is when it does not function the way it is expected to. Even
the simplest products can malfunction in some way.

Process or Product

 FMEA
Discover known and unknown
potential failure modes

Recognize the causes and effects of
each failure mode

Assign a Risk Priority Number
(RPN) to identified failure modes

Find different ways for solving the
problems

71

FMEA includes everything that can be done in order to make the product work closer to 100
percent – this means even the problems that occur during the exploitation of the product.
In the cases when the product malfunctions or fails to work we talk about failure modes. Each
failure mode should be described – with what frequency it occurs and what damages it’s
leading to, how the system is affected.

4.1.1.1 Types of FMEA

System FMEA (Stamatis 1995):

It is applied over systems and their interaction. Its focus is the function failures in the system.
The benefits that it brings are:

1. Identification of system alternatives

2. Discover redundancy

3. Potential for managing future problems

4. Recognition of failures in the systems’ interaction

Design FMEA (Stamatis 1995):

Used for analysis of products ready for manufacturing.
The profit from the design FMEA:

1. Prioritizing the design improvement actions

2. Information for product design validation and testing

3. Defines alternatives for design requirements

4. Mitigation of safety issues

Process FMEA (Stamatis 1995):

This is performed when manufacturing and assembly process is being analyzed.
The advantages from this FMEA are:

1. Recognition of the process deficiencies

2. Proposing and prioritizing the corrective actions

3. Exposure of the manufacturing or assembly process

4. Track down the meaningful changes

Service FMEA (Stamatis 1995):

This FMEA is analyzing services, before they come to the customer.
The gain from the performed service FMEA can be observed in the facts:

72

1. Helps to evaluate the job flow

2. Exposure of the system and process

3. Implementation of a control plan

4. Prioritizing improvement actions

4.1.2 The methodological steps in the FMEA

In order to achieve problem solving results, FMEA needs to be conducted strictly,
consecutively and constructively, following 8 main steps: (McDermott, Mikulak &
Beauregard 2009), (Stamatis 1995)

Step 1. Gather a team and review the process or product.

Step 2. Brainstorm unknown risks.

Step 3. Assign different effects caused by the failures.

Step 4. Prioritize – assign severity, occurrence and detection rankings for each failure mode.

Step 5. Calculate the RPN number.

Step 6. Collect data, analyze and measure the failure modes for action.

Step 7. Apply methods to reduce high-priority/high-risk failures.

Step 8. After performing actions evaluate the performance of the system again.

The Bottom-up approach of FMEA looks like shown on the figure:

Figure 24 The bottom-up approach of FMEA

1. Gather the team, review the process

2. Brainstorm unknown risks

3. Assign different effects caused by each failure mode

4. Prioritize – assign [S], [O], [V] rankings

5. Calculate RPN number

6. Analyze the failure modes for action

7. Take action to reduce high- risk failures

8. Evaluate the system/process performance

73

Step 1: Gather the team, review the process

When gathering the team we must know that the proper people are going to take part.
Everyone should know the field of the work and prior to the start of the FMEA the team
leader has to make available for everybody a detailed flowchart of the development process if
they are conducting a process FMEA or engineering drawing of the product in case of product
FMEA. Sometimes it is recommended to have an expert in the group available for answering
questions and giving useful hints.

Step 2: Brainstorm unknown risks

Having a good overview over the process or product, the team is ready for brainstorming. The
members try to brainstorm any kind of ideas and various suggestions about what could affect
and impact the process or the product quality and stability.
Because of the big variety of topics it is recommended to be conducted several brainstorming
series and every one of them should focus on different elements of the Process FMEA –
people, resources, equipment, methods. This, of course, helps for deeper understanding and
finding of failure modes.

Step 3: Assign different effects caused by each failure mode

In the computer programming – we can explain this step as: if {} then {} construction. The
team should think: If a problem occurs, then what the consequences are. In some cases
failures can cause several effects, but in other – only one. This step is very important because
of the further assigning of Severity and Occurrence.

Step 4: Prioritize – assign Severity, Occurrence and Detection rankings

After examining every risk carefully the team puts every effect in a table, describes the
influence and assigns a rank from 1 to 10 for every of the three (severity, occurrence and
detection) components. Every member should be able to understand the rankings – the more
descriptive explanations for every ranking scale – the better the FMEA process is.

Step 5: Calculate RPN number

This number most of the times serves as a guide and is not taken under serious importance
because of the different effects of every failure mode.
However, it can be used as an instrument for measuring – if it’s under defined value the team
does not take any action. Calculation:

 Risk Priority Number = Severity × Occurrence × Detection (4.1)

74

Step 6: Analyze the failure mode for action

In this step every of the failure modes is analyzed by ranking and the effects and is given a
priority for action. The team decides which the highest risks are and where to put work on.

Step 7: Take action to reduce high-risk failures

Probably this is one of the most important steps where the team decides what actions to
implement in order to reduce as much as possible the severe problems. The ideal case is when
no future failure modes are observed but it is not always achievable. At least the team must
aim in increasing the detection and mitigation of the failure.

Step 8: Evaluate the system/process performance

After implementation of the methods for reducing failures the team continues to measure the
performance of the process/system, confirms the results and performs another FMEA.
Recommendations should be made after answering the questions:

 Is the process better than before?

 Are the improvements enough to have good RPNs?

 Is it urgent to conduct another FMEA?

Every organization, according to its resources and budget takes own decision how many
FMEA analyses should conduct. Nevertheless, the long-time goal is always to eliminate every
risk and the short-time goal is to reduce the impact as much as possible.
After all, we have to remember – FMEA is a continual method of improvement.

4.1.2.1 The FMEA Parameters

The project team analyzes every element of the process, working through the entire output
which has to be delivered to the customer. In every step the team tries to brainstorm and find
unknown and potential problems and offer solutions to already known risks. Every problem is
estimated and has different priority. It is very important to have a scale of measuring so the
team knows which risks are critical for the system.

There are tree indicators the team uses to define the priority of the failures:

• Severity - [S]

• Occurrence - [O]

• Detection - [D]

Severity - shows what the impact of the failure is over the system or over processes, how
serious the consequences are. After all, the main goal of FMEA team is to take actions and
reduce the most important failures. The team uses a scale from 1 to 10 to express how serious
one problem can be – as 1 stands for ‘no danger’ and 10 for ‘critical’. These numbers help to
prioritize the risk and help in focusing on the serious risks. Examples of failures are:

75

malfunction in UPS system which leads to data loss, or improper use of variable in accounting
software, which results in loss of accuracy. Another important reason why we use this rank is
that – we may face a failure which leads to another failure or component disability. (Stamatis
1995)

Occurrence - this measure shows us how often a failure occurs. The team has to have in mind
also the severity number at this step. Examples: how often we come into program failures
because of an erroneous algorithm or how often hardware experiences excessive voltage.
With essential importance here is that the team must find the cause of the failure. Again we
use a ranking – occurrence ranking [O], from 1 to 10. If the rank is high (above 7), precocious
mechanisms should be determined. But sometimes in a situation where occurrence is not high
but the severity for the failure is with rank above 8 the team must also react. On this step it is
always necessary to look for the severity rank with combination of occurrence. (Stamatis
1995)

Detection - the chance or the capability of the team to detect the failure before it reaches the
customer. The last two steps work in combination and every combination of them is marked
with a detection number which shows what the possibility that the failure will not be detected
is. A high number of Detections means a higher chance that the failure will escape detection.
(Stamatis 1995)

RPN Number - when the last three steps are completed, an RPN (Risk Priority Number) has
to be calculated. It shows us which of the process steps and parts are under high risk and have
to be taken under control measures. The number is calculated by multiplying the Severity,
Occurrence and Detection numbers:

RPN = S × O × D (4.2)

RPN numbers are calculated for every system/process and every sub-system/sub-process in
order to find where the critical parts are. The sub-process with highest RPN number needs a
corrective method to be applied and it is not always the severity numbers the ones which
define this, for instance, it could be failure which is hardly detectable and occurs quite often,
but does not have serious effect. (Stamatis 1995)

All the steps and entire FMEA process should be documented using a worksheet. There are
different kinds of worksheets according to the types of FMEA. The form captures all the
information in a clear and well-organized way. Everything is included – recommended
measures and methods, implementations and all the numbers for Occurrence, Severity,
Detection and RPN. Once the team has all the information they have to face with four main
objectives:

 Reduce the impact of the failure mode.

 Minimize the severe effect as much as possible.

 Try to eliminate the occurrence or put the levels as low as it can.

 Improve the occurrence detection.

76

4.1.3 Software FMEA

Technical systems are used in a big variety of areas in the worldwide industries. Considerable
amount of software specialists and software code is used to move forward these industries. As
a consequence, fairly large attention is focused on the identification and avoidance of
technical risks and failures. A very powerful tool for analysis, preventing and predicting
errors is the systematic and constructive method – FMEA, which is approved and accepted in
many different fields of manufacturing – cars, airplanes, computers… In most of the cases a
bottom-up technique is used to identify failures and malfunctions in every component of the
system or process. (Mäckel 2006)

First the method has been used in the military, but the concept and the ideas put there are not
compatible and do not apply in the modern technologies and therefore, the companies
nowadays have developed new sets of priorities, guidelines, rules and standards of their own
use. FMEA based on hardware and system levels is well understood, applicable and working
in a good way because of the known risks and failures of the hardware behavior. But in
present times the accent is on the software level – more systems and functionalities are based
on the software process, which explains the need of software based FMEA.

“Software modules do not fail, they only display incorrect behavior” (Pentti & Atte 2002)

Anyway our goal is not to focus over the SFMEA but only to show that it has its application
in the software industry and in this way to motivate our modification of the method over the
human actions during the software engineering process.

SFMEA is also a step by step systematic method for analyzing the software architecture,
software design or process with taking care for the technical risks – reliability, safety,
stability, availability and so on. Big advantage of the method is to use the information and
documentation from every department which is taking part in the process of development –
system, software, test and service, so the FMEA team is able to have a clear and a deeper
insight of the problems.

The figure below shows which the critical moments in the software life cycle are and where
the FMEA should take part: (Mäckel 2006)

There is relatively little information published on the use of FMEA for software systems but
we will provide a short overview of the papers discussing the benefits introduced by the
SFMEA. Banerjee has applied the method in the practice and observed an ‘’improvement of
the reliability of the software production process, resulting in higher product quality as well as
in higher productivity’’. (Banerjee 1995)

The statement that detailed SFMEA validates that the software has been planned and
constructed to reach the right and safe requirements from the beginning is being defended also
in the following scientific work: (Pentti & Atte 2002), (Lauritsen & Stalhane 2005), (Hartkopf
2004), (Ozarin & Siracusa 2003), (Bowles & Hanczaryk 2008), (Nguyen 2001) and (Goddard,
Raytheon & Troy 2000). The authors point out that the use of the FMEA in the software
process brings early identification of potential software failure modes and is an excellent
practice that supports the whole life-cycle, in the same time each of them has demonstrated a
concrete application of the FMEA method in the software development process.

77

Figure 25 Application of the Software FMEA, (Mäckel 2006)

Motivated from this wide use of the FMEA method, due to its universal manner we have
decided to apply it over the software development phases but pointed to the human roles and
the actions that they perform.

4.2 Adopted FMEA for the Software Personnel

We have already introduced the FMEA methodology. Its evaluation and failure detection
were broadly explained. Considering the FMEA strong points in analysis and corrective
recommendations, the decision of applying it first over the software development process
(Georgieva, 2010 d) and then over the software development roles and their responsibilities
was logical and consecutive (Georgieva et al, 2011 a).

The price of the human errors that we all pay in the everyday life, facing the software
applications can be very high. Therefore detecting and decreasing their effect is a vital
development step in each production process or system. With a Software Human Factor
FMEA could be made an evaluation over the human failure modes severity and occurrence
and in this way these errors can be ranked according to their criticality. The other analysis that
can be done adopting the FMEA technique is to discover the human features that stay behind
these errors, problems or failures. Nevertheless our goal is not only to find the possible risks
but to find out why do they occur and to try to resolve them. On this step the chosen method
gives us a special benefit, as it delivers the information why a particular failure mode appears

System Design

System requirements
analyses

SW/HW Analysis

SW Design

SW Stable Release

Software Implementation

SW

Integ-
ration

System
Integration

Further
maintenance

SFMEA

In the conceptual
step of the system

During the software
design for identification
of critical modules

During the software
coding process for
identification of bad
functions

78

and what is the employee’s fault, what could be his personal characteristics that led to this
problem.
We will observe in the application of the adopted method the discovery of the human factors,
or the specific human features that stay behind the different failure modes in a particular
software team.

4.2.1 Performing the Software Human Factor FMEA
The form in which the FMEA analysis is performed could be changed in every company and
could be adapted to the particular goals and expected problems. We will show first the
possible entries in such analysis and then will concentrate on the chosen fields that are
important in our case. We will focus on Process FMEA as the activities that we want to
analyze are actually the different software phases and the human actions inside, which is
nothing else but a number of processes.

In the form, presented in Table 5, are listed the generally expected entries that should be
managed when conducting a process FMEA. For our research we have adopted the method
and added the column Human Factors that will give us the essential information for the
further research over the criticality of the personal features in the software process.

The first part between 1 and 9 is the introduction data. These are not mandatory fields,
however, they bring information that may be important in future examination. The main part
are numbers 10 to 23 – these are mandatory items and are the essential part of the FMEA
conduction. Additional to the form there are signatures, which may not be mandatory, but
bring an authority look to it and can be a sign that the analysis is ready. Here are presented the
23 items according to Stamatis. (Stamatis 1995)

1. Process Identification: Here is stated the name of the process or a reference number,

adding identity to the process that is manipulated.

2. Manufacturing or design responsibility: The prime responsibility is stated here: this
may be the name of the activity, machine or material.

3. Involvement of other areas: Mention if other people or systems are connected to this
part.

4. Involvement of suppliers or other: When additional persons are taking part in the
design, manufacturing or assembly of the part.

5. Model or Product: This is the place to be specified the name of the model or product
using the process.

6. Engineering Release Date: The planned date for release.

7. Prepared By: The FMEA analyst is stated here as well as some additional
information as address, telephone or email.

8. FMEA Date – Original: The starting date of the process.

9. FMEA Dare – Revision: The date of the last revision.

10. Process Function: ‘’This is the process intent, purpose, goal or objective.’’

79

11. Potential Failure Mode: This is the possible problem, failure or defect. This is where
the person can go wrong. Each action provides the possibility for misunderstanding,
omitting, incompletion or falsely interpreting. Therefore, each Process Function may
have several failure modes. Each one must be recorded for the future analysis. The
potential error should be stated short but clear, this way facilitating the evaluation of
the consequences.

12. Potential Effect of the Failure: This field is for the result of the wrongly fulfilled
responsibilities. Potential problems must be foreseen and tracked down so their
effect can be estimated and their occurrence removed. Here again can be written
more than one entry. The impact can be observed from several sides, including the
influence over the next part of the process and over other related parts of the
development.

13. Severity: This is a value, assigned for the importance of the effect of the failure. The
values are in the area from 1 to 10, where 1 indicates that there is no effect on the
process and 10 points catastrophic influence. The exact effect of the failure should be
indicated, so that appropriate ranking can be performed.

14. Potential Mechanism, Causes of Failure: These are the reasons that cause the already
described failure. Here the root cause of the failure must be identified. This is a key
item in the analysis, because it directly exposes the human factors that stay behind the
potential problem.

15. Human Factors: Here are listed the human factors that have most significant impact
over the failure, when a team member performs his responsibilities. There are cases,
where more than one factor affects the situation.

Table 5 Software Human Factor FMEA template form

(1)Process
name:

 (4)Supplier Involvement: (7)Prepared by:

(2)Part name: (5)Model/Product: (8)FMEA date:
(3)Involvement
of others:

 (6)Engineering release date: (9)FMEA rev. Date:

Process
Function
(10)

Potential
Failure Mode
(11)

Potential Effect(s) of
Failure
(12)

Severity
(13)

Potential Cause(s) /
Mechanism(s) of failure
(14)

Human
Factors
(15)

Occurrence
(16)

Detection
method
(17)

Detection
(18)

R P
N
(19)

Recommended
Action(s)
(20)

Responsibility
&Target
Completion
Date
(21)

Action Results
(23)
 Action(s)
taken and
Completion
Date (22)

Severity Occurrence Detection RPN

80

16. Occurrence: This is a numeric value, indicating the frequency with which a failure
happens. Again the scale is from 1 to 10, where 10 is constant occurrence. This
element is important because it affects the entire priority value of the problem, when
calculating the RPN.

17. Detection Methods: These are the tools, used to recognize the failure. For the human
errors this could be brainstorming, sample filling, daily reports, team meeting or
manager’s observation.

18. Detection: This value shows the rate of the detection of the particular failure. This
rating is in the range from 1 to 10 and 10 means every time observing the problem. It
must be noticed that this detection is for the likelihood of the error happening to be
noticed and not for the particular Human Error.

19. RPN (Risk Priority Number): This is the product of the severity, occurrence and
detection. It is mostly used to priorities the failures. The RPN has no other meaning
apart from the ranking.

20. Recommended Actions: Here are listed the activities, that should be taken, so that the
failure is mitigated. In the HF FMEA the main object of observation is the Human
Factor. So these prescribed actions are mainly intended to correct the reasons of the
failure behavior.

21. Responsible Area or Person and Target Completion Date: Here must be entered the
person, responsible for the recommended actions, and the planned date, on which
they should be finished.

22. Action Taken and Completion Date: This is one of the actions, filled in the
recommended actions list. It is desirable this to be a top activity in the list,
guaranteeing maximum increasing of the human performance.

23. Action Results: After the recommenced corrective action is done, again a severity,
occurrence and detection value is calculated, determining a RPN grade. The new
RPN should be better, indicating progress in the person’s performance and recovery
from the failure.

These 23 steps represent the adopted Software Human Factor FMEA method, used for
investigating the human factors behind the employees’ performance. For our further
investigation are important only the human factors that stay behind the different failures or
potential problems and because of this we have taken only a part of the FMEA form, which
you will see on the following tables.

We have conducted the FMEA in strictly analytical way over the responsibilities of the
software development team members, stated in the previous part. A logical consecutive
analysis is conducted in order to define the human features responsible for the variety of
mistakes. We have left the RPN and its components out of the analysis as our goal is to find
all human factors and not to evaluate them at this step.

81

4.2.1.1 Software Human Factors FMEA over the Project Manager role

We have analyzed the responsibilities of the Project Manager, which were already listed
above. They are just slightly combined so that we have optimized the FMEA table. After
having the FMEA result we have built a table with all human factors that influence the
performance of the Project Manager.

Table 6 Human Factors for the PM, extracted from the SHF-FMEA table on the next page

 Human Factors for the Project Manager
Coordination
Self-management
Overload=Stress
Competence
Knowledge
Effectiveness
Concentration
Communication
Self-Development
Liberalism
Control delegation
Selfish=Egoism
Over self-confident
Self-organization

We can express all needed personal characteristics for the Project Manager in the following
manner:

HF FMEA
agerProjectMan = {Coordination, Self-management, Stress, Competence, (4.3)

Knowledge, Effectiveness, Concentration, Communication,

Self-development, Liberalism, Control, Egoism, Confidence,

Organization}

82

Table 7 SHF-FMEA over the Project Manager Role

Process Function Potential Failure
Mode

Potential Effect(s)
of Failure

Potential Cause(s) /
Mechanism(s) of failure Human Factors Detection Method(s) Recommended Action(s)

Ensures that the
software development
process works as
intended

PM is not monitoring
the development
process closely
enough

the development
process may be
running with hidden
problems

developers may issue
problems that they do not
report to PM and cope with
them on their own,
providing not so good
solutions

coordination,
management

Reports, meetings and
cooperation between the
employees

PM meets regularly the team
members and discuss the
progress with all
accompanying problems

Responsible for leading
the work process until
the completion of the
project

PM is not taking the
responsibility for the
project pointing
finger to Developers
and team leader (TL)

Developers and TL
are being distracted
by new
responsibilities or
changes in the
project

PM is not managing the
project in the right manner;
PM is not aware of his
particular duties;

overload,
competence,
knowledge,
effectiveness

Developers not spending all
their time coding but rather
organizing meetings;
scheduling phases and
planning events

PM being aware of his duties,
so Developers can focus on
developing code

Coordination btw the
development team and
the business
stakeholders to ensure
matching of goals and
products in the expected
time

PM is not
communicating
enough with the
development team
and clients and not
monitoring the
development process

team may run over
the deadline, due to
too little control and
motivation

PM is looking in future
deals and neglects the
current ones; PM has left
all obligations to
development team and
believes they will manage
alone

competence,
concentration,
coordination,
management

a deadline is crossed; project
is not fitting all clients
expectations

PM should be constantly
tracking the development
process asking questions and
making himself sure
everything is as it should be

Working with the
business stakeholders,
who work closely with
the functional analyst
during the first stages

PM is omitting
meetings with the
business stakeholders
and FA in the
begging

PM is losing time at
a later phase for not
being clear what is
the project about
and what has to be
done

PM is busy performing
other duties; PM believes
that early talks do not
concern him

overload,
competence,
coordination

PM is not familiar with
solutions specifications and
time is needed so he can
embrace them and direct
them to TL

PM should be more
disciplined, always attend pre
development meetings

Responsible for status
reports, that show
urgency and demand
concrete answers

PM is not insisting on
getting constant
status report

PM is not pointing
urgency and action
and is leaving the
team to mange
alone

PM believes these are TL
responsibilities; PM is
busy with other tasks

coordination,
overload,
communication

development team is not
hardworking; this may lead
to not finished project on
time and not fulfilled
requirements

PM should be more skilled by
team motivation; PM should
monitor and report the status
in order to use this info on a
later stage

PM coordinates several
projects

PM is working on too
many projects

PM mixes the
people in different
teams, the tasks and
the schedules

Too many projects confuse
the PM; he is not
examining the record with
the team and their
responsibilities

overload,
competence,
coordination

PM may come unprepared to
a meeting due to a mistake
about the team and project

PM should prepare well the
documents over the
development assigned to the
employees

83

Organizing the team
responsibilities

PM is pushing the
people to their limit

team is always
being pushed
without sense of
relief or
acknowledgement

PM is demanding quick
decisions and in this way
pushing the team to work
on their limit

development,
communication,
liberalism

team is stressed, always
being pushed on

PM should understand the
team effort for solving
problems; PM should build a
good theme atmosphere

Executing and
controlling the work

PM is not regularly
keeping an eye over
specific issues

PM may lose track
of a problem

PM has a lot of details to
keep constant attention to;
PM is not responsible for
the small issues

competence,
control
delegation,
coordination

In case of well-known
problem the PM cannot
profit from previous
decisions and knowledge

PM should be more focused
on the big problems that arise
and not on each issue

Look at the big picture
to evaluate risk, time
and costs

PM is not keeping an
eye over the
development
progress

PM cannot evaluate
whether the project
will be completed
on time

PM is delegating this
responsibility to TL; PM is
having too many projects

coordination,
overload

Comparing the current
progress with other projects

PM should take care of the
project; estimating its
properties and details

Communicating with
the team, to ensure that
all problems are
correctly understood

at meetings PM is
always speaking
over a topic, without
listening to make
sure the members
have understood it

PM is overtaking
meetings without
letting anyone else
to say a word and
not ensuring that the
team has understood
him

PM is feeling like a centre
figure and does not want to
give the word to someone
else; PM thinks everyone
understands him

selfish, over-self
confident,
communication

problems may remain
unclear; further meetings
may be needed; PM may be
not understood

PM should listen to his team
members and assure himself
that everything is clear

Makes sure that the
process
is going according to
the requirements

PM is not tracking
closely the project

PM is not
controlling the
project and it can
slip away

PM is having too many
obligations and is
delegating obligations to
the TL, who is not fulfilling
them

overload,
coordination

predicted results may not
match the actual results

PM, even if delegating some
task to TL must keep an eye
on it

Document, obtain
approval, and track all
changes in project
parameters

PM is gathering all
project details but not
documenting them
for current projects
reference

there is no concrete
record for the
current project

PM is gathering documents
but not organizing them in
useful matter

organization,
skills,
competence

if someone is looking for
details over a completed
project

PM should be well organized
working with tools supporting
the good documentation

Finalizing the project

PM is not fulfilling
the guidelines and
cannot finish the
project as expected

other team members
are considered
responsible

PM is believing it is not his
task to determine all rules
and to give clear ‘orders’

coordination,
competence

TL coping with too many
issues; rather than
concentrating on their major
specific ones

PM should be aware what are
his duties and should strictly
perform them

84

4.2.1.2 Software Human Factors FMEA over the Team Leader role

Analogically to the Project Manager we have analyzed the responsibilities of the Team
Leader, already listed above. They are just slightly combined for optimization of the FMEA
table. After having the FMEA result we have built a table with all human factors that
influence the performance of the Team Leader, shown below.

Table 8 Human Factors for the TL, extracted from the SHM-FMEA table on the next page

Human Factors for the Team Leader
 Hardworking
 Knowledge
 Communication
 Attention
 Conscientiousness
 Leader skills
 Mental overload
 Stress
 Competence
 Experience
 Technical understanding
 Planning skills
 Monitoring
 Appreciation
 Cooperation
 Fear
 Management

We can show all needed personal characteristics for the Team Leader in the following
manner:

HF FMEA
TeamLeader= {Hardworking, Knowledge, Communication, Attention, (4.4)

Conscientiousness, Leader skills, Mental overload, Competence,

Experience, Technical understanding, Planning skills, Monitoring,

Appreciation, Cooperation, Fear, Management}

85

Table 9 SHF-FMEA over the Team Leader Role

Process Function
Potential Failure

Mode

Potential
Effect(s) of

Failure Potential Cause(s) / Mechanism(s) of failure Human Factors Detection Method(s)
Recommended

Action(s)

Mediates between the
Solution Architect and
the developers

The work of the
developers does
not entirely match
what the SA has
chosen as an
architecture

The architecture
created from the
developers cannot
be matched to the
one from the SA
due to differences

TL is not familiar with the architecture of the
SA; He has not observed the work of the
developers and they have slipped from the
requirements and design, selected by the SA;
TL does not approve the architecture selected
by SA and has a better solution; TL has
decided to change a small design pattern in
one place, but has no global view and that
causes inconsistence

hardworking,
knowledge,
communication,
attention,
conscientiousness

When the
implemented parts
have to be connected;
during SA, TL
observation over the
process;

TL being familiar with
the SA's selected
architecture; TL not
taking alone decisions;
better communication
btw developers, TL and
SA;

Lead and mentor the
developers when they
have problems, which
cannot be mitigated by
themselves alone

TL is not
providing the

needed help to the
developers

Developers lose
time and effort in
solving issues,
which are TL
obligations

TL has too much work and obligation to fulfil;
developers are not informing TL on time; TL
is stubborn and tries to make the work in his

own way; TL is not a good leader
communication,
knowledge, leader skills

Developers take own
decisions without
communicating with
the TL; They turn to
SA for guidance and
he is not adequately
prepared for that;
Implementations
which experience lack
in performance and
design

TL asking constantly for
questions or foggy
issues; TL being more
open for developers
requests; TL having
more time to observe
personally the
developers’ work

Discussing all the
details in the
architecture that the
SA didn't explain and
in this way supporting
the program
specification

TL had not
understood
completely the
proposed software
architecture

TL cannot
support a correct
specification for
the developers

TL does not have the qualities to understand
the software architecture and specification knowledge, skills

The lack of accurate
specification; The lack

of competent
leadership from the TL

TL participating more
when the architecture is
being laid down by the
SA; asking questions and
paying attentions

Refines the SA's
vision and makes the
practical concepts
clear

TL has not
understood the SA
vision in depth

TL is not able to
refine the
concepts

TL had no time to perform an in depth analysis
of the SA’s design and architecture; SA design
is too complex

mental overload
capacity, stress

The analysis is poor
and the TL design
innovations don’t
bring better
performance

TL having more practice
in designing solutions
and applying patterns;
TL communicating more
with the SA

86

The TL chooses the
methodologies and
techniques that will be
used in a particular
project

TL does not
possess good
technical
knowledge

Developers have
to manage
problems on their
own or turn to
the SA

TL does not have enough practice; TL cannot
solve problems due to lack of time; TL cannot
choose proper methodology due to misleading
factors or lack experience

overload, competence,
experience

Developers are asking
questions, which
cannot be answered

TL spending more time
in problem solving and
communication with
colleagues

Continuous evaluation
of the solution
decisions

TL is not keeping a
constant track over
the project

The constant
evaluation is not

performed

TL does not perform evaluations over the
developers work due to lack of time; TL is not
able to see pattern problems due to lack of
knowledge; TL is not well aware of the SA
architecture

conscientiousness,
competence, knowledge

The proposed patterns
are not correct and do
not fulfill the specific

project needs

TL keeps constant track
of the project, observing
his developers; asking
questions; being curious

Mastery of developer
skills but with
conceptual vision

TL does not
possess the
conceptual vision
to transform
concepts into
solutions

The concepts are
not fully
transformed, or
are transformed
improperly

TL is thinking still like a developer; his view
is not wide enough; he has not mastered all
skills needed to be good TL

technical understanding,
competence

Visible in the design
decisions he is making
as well as the patterns
he is choosing for the
solution

TL enriching his
knowledge; TL trusting
on guidance by SA and
colleagues

Direct, motivate and
plan the team’s work;
Create an open,
creative and friendly
work environment

TL does not have
qualities to
motivate his team

Team members
are working in a
stressful
atmosphere and
are unsatisfied

TL is not skilled at leading the team; TL has
not enough time to monitor team's work; TL
does not appreciate team effort and creative
thinking

planning skills,
attention, monitoring,
appreciation

Easily seen that team
is not felling good and
members are not well
motivated

TL attending team
management courses; TL
paying more attention to
his developers; TL
having more practice in
project planning

Take responsibility for
the progress of the
team’s work

TL is not aware of
the problems in the
team

TL is not taking
responsibility for
progress and team

TL is not constantly speaking with the team
members; TL is not keeping track over the
project progress; TL is not making a proper
use of all team resources

communication,
cooperation,
competence

Seen at meetings; Easy
to notice when big
problems arise

TL having time for his
team members; TL
making a proper
planning of the
resources; TL able to
motivate his team

Manage, train and help
to the development
team; Conflict solving

TL is not helping
the team members

Team members
are having
problems and this
is observed in
their work

TL does not have leader qualities; does not
provide proper help and training due to lack of
time or ideas and knowledge how to perform
that; TL is not aware of all the problems

management,
leader skills

Can be seen that the
employees are not
satisfied with their
work

TL paying more attention
to developers; TL having
better management
qualities; TL being there
to protect and mentor his
developers

Provide status reports
of the team activities
against the program
plan; Keep the project
manager informed of
task accomplishment

TL is not
providing
periodically
reports

PM is not
informed for the
project progress;
project issues and
success

TL has too many obligations; TL is afraid of
saying bad news; TL has omitted his duties of
reporting; TL is not reporting status due to
lack of progress

fear, overload,
competence

PM is not satisfied
with TL's work; TL is
not present at meetings
or has no report

TL paying more attention
to all his duties; TL not
being late at telling bad
news; TL always talking
to PM; TL keeping track
of project progress; plan
and schedule

87

4.2.1.3 Software Human Factors FMEA over the Business Analyst role

Analogically to the previous role here is the analysis of the Business Analyst role and of
course the table with the human factors.

Table 10 Human Factors for the BA, extracted from the SHF-FMEA table on the next page

Human Factors for the Business Analyst
 Intelligence
 Knowledge
 Work overload
 Concentration
 Analysis skills
 Competence
 Communication
 Planning
 Openness

We can summarize the needed personal characteristics for the Team Leader in the following
manner:

HF FMEA
alystBusinessAn = {Intelligence, Knowledge, Work overload, Concentration, (4.5)

Analysis skills, Competence, Communication, Planning, Openness}

88

Process
Function

Potential Failure
Mode

Potential Effect(s) of
Failure

Potential Cause(s) /
Mechanism(s) of

failure
Human Factors Detection Method(s) Recommended

Action(s)

Provide technical
expertise(Typically
in information
technology
applications) BA is not providing

technical expertise
Absence of expert judgment
over client requirements

BA is not skilled enough
to perform the needed
expertise; BA has no
knowledge in the
researched area; BA has
too much other obligations

intelligence, knowledge,
work overload

Poor or no technical
report; not helping the
TL and PM, searching
for skilled and
experienced colleagues

BA being supported by
other skilled colleges in case
of need; BA increasing his
knowledge when coming
across new topic of
development; attending
refreshing courses

Understand user
and other
stakeholder needs
and conduct
requirements
analysis

Not correctly understood
the clients needs;
unsuccessful
requirements analysis

An analysis that does not
satisfy clients requests; Not
complete or partly useful
analysis

The client is not explaining
his desires directly; BA is
distracted and not
following the stakeholders
idea; not all requirements
are gathered and the
analysis is not complete;
BA has not the skills to
perform good analysis

concentration, knowledge,
analysis skills

Analysis being
examined by
stakeholder, other BA,
manager

BA attending courses for
additional technical
knowledge; BA paying more
attention to stakeholders
requirements; having more
time for a proper analysis to
be created; client/BA being
well prepared for the
meeting

Identify
application’
solution
alternatives

Associate wrong
alternative; not correct
identification of a
solution as an alternative;

Colleagues being mislead
when reading/examining the
proposed alternative
solutions.

Not enough knowledge to
recognize the correct
alternative; not familiar
with the project details knowledge, intelligence

During further work
from the Architect,
colleagues, manager;

BA becoming more
experienced in the
researched area; BA
becoming familiar with the
requirements; better
understanding of the
proposed strategies and
analysis

Analyze existing
logic with the idea
to redesign and/or
automate

Wrong identification of
an existing system

Confusion in future work;
mislead of colleagues

Not familiar with project
details knowledge, competence

Analysis being
examined other
employees

BA being familiar with the
requirements and good
understanding of the
existing system

Recommend
implementation
strategies Not correct strategies

being recommended

Wasting time for re-
factoring; mislead in the
following choice of
frameworks and
architectures

Not familiar with the
strategy as well as with the
project knowledge, competence

Problems in the future
work, when the
incompatibilities come
on the surface

Better knowledge of the
strategies, the requirements
and the impact of the
proposed solution

Table 11 SHF-FMEA over the Business Analyst Role

89

Document
recommendations
to enable
estimation of
project scope,
quality, time, cost
and risks

Not all requirements are
documented

Requirements analysis is not
complete, further
calculations of budget and
time are not correctly
performed

BA is not familiar with all
requirements knowledge, competence

Noticed during
requirements discussion
by colleagues; or
manager inspection

BA being aware of
requirements and details;
having experience in budget
and time scheduling

Conduct root-
cause analysis of
the problems Not understanding of the

potential problems

Project cost and budget are
badly calculated, time is not
correctly scheduled;
problems are overseen or
ignored

BA has no full and entire
overview of the project
and its properties

knowledge, competence,
communication

Noticed during later
planning, management,
checks, budget and
schedule examinations

Practice at project analysis
and scheduling; attending
courses; presentations

Develop, maintain
and monitor
related policies,
procedures,
instructions Policies and procedures

are not developed
Omitted procedures/
policies

BA has no time to perform
all his duties; BA has no
experience in producing
policies or procedures; BA
is not well familiar with
the project and cannot
propose new initiatives

planning, knowledge,
competence

Discovered during
managers check

BA having more time for his
obligations; BA gathering
knowledge about new
practices; BA being familiar
with all parts of the project

Reports about
research findings
or new business
solutions

Missing such reports,
which means no
innovativeness

Missing of new ideas, new
trends and solutions

BA has no time to do this
research; BA is not
innovative enough and not
open for new ideas knowledge, openness

Noticed when being
inspected from the PM,
or in discussions

BA having more time;
attending conferences and
workshops; BA observing
other perspectives

90

4.2.1.4 Software Human Factors FMEA over the Software Architect role

Analogically to the previous roles here is the analysis of the Software Architect role and the
table with the human factors.

Table 12 Human Factors for the SA, extracted from the SHF-FMEA table on the next page

Human Factors for the Software Architect
 Knowledge
 Hardworking
 Intelligence
 Communication
 Competence
 Creativity
 Cooperation
 Emotional stability
 Mental overload
 Attention
 Judgment
 Experience
 Problem solving
 Leader thinking
 Perception
 Professionalism

We can summarize the needed personal characteristics for the Software Architect in the
following manner:

HF FMEA
chitectSoftwareAr = {Knowledge, Hardworking, Intelligence, (4.6)

Communication, Competence, Creativity, Cooperation,

Emotional stability, Mental overload, Attention, Judgment,

Experience, Problem solving, Leader thinking, Perception,

Professionalism}

91

Table 13 SHF-FMEA over the Software Architect Role

Process Function Potential Failure
Mode

Potential
Effect(s) of

Failure

Potential Cause(s) /
Mechanism(s) of failure Human Factors Detection Method(s) Recommended Action(s)

Defining the
software
architecture

Problems/Failures in
the architecture

The project is
not developed
as planed

SA is not completely aware
of all project requirements;
SA is not well familiar with
the architecture; SA is not an
expert in the field (does not
have enough experience,
knowledge)

knowledge,
hardworking,
intelligence,
communication,
competence,
creativity,
cooperation;
emotionally stable

Detached during
implementation;
observation by TL or
colleague SA; noticed
when the selected
architecture is not
correctly fitted during
implementation

SA being familiar with
department policies,
guidelines, instructions
related to software
development; being
familiar with the
organization's software
architectural style

Derive the
requirements for the
software
architecture

Wrong requirements
or not full and
comprehensive list of
them

Improper
architecture is
designed

SA is not familiar with the
requirements; SA is not
aware of the architecture
details

knowledge,
competence,
communication

Detected during
examination by the TL,
colleagues SA; during
discussions

Training in principles and
techniques for software
development; Ensure all
the project's technological
requirements are correctly
gathered, understood and
properly translated for
production

Match the software
and derived
requirements to the
chosen architecture
components and
interfaces

Not correct matching;
Impossibility to match
the components

Requirements
are not satisfied

SA is not familiar with all
requirements; SA chooses an
architecture that cannot
correspond to the
requirements

knowledge,
competence,
communication

Discovered during
implementation; during
further design and
scheduling by SA or TL

SA having more time to
perform the selection; SA
being helped by the BA;
SA spending more time
with the documentation

Identify the key
design issues for a
successful
development

Improper issue is
selected(identified) as
a key design issue

The most
important issue
is not resolved

SA cannot spot correctly the
main issue

knowledge,
competence,
overload

SA is not entirely familiar
with the project; SA has
too many projects to
manage

SA spending more time
for the particular project

Generate
alternatives and
constraints for the
architecture

Alternative,
constraints are not
generated

Wrong
architecture, or
no possibility
for variability

SA cannot find alternatives
because he is not
experienced with the
software technologies,
standards and regulations

knowledge,
competence,
attention,
judgment,
experience

When alternative is
nodded; In case the
selected architecture turns
out to be not effective

SA having experience
with more architectures so
he can propose a solutions

92

Identify the
requirements that
are connected with
the effectiveness
and cost

Effectiveness and cost
are not correctly
calculated

Wrong
selection of the
architecture;
The project
runs out of
budget; Not
good
performance

SA is not experienced in cost
and time calculations; SA
cannot manage and
coordinate the technological
services and staff

problem solving,
leader thinking,
intelligence,
knowledge

Noticed when project is
being examined by
manager or the selected
architecture is being
checked by other SA or
TL

SA having more practice
in budget planning, as well
as in other parts of the
software development
such as testing and
training

Document, approve,
and track all
technological
changes

Documenting is
omitted

Not all changes
are recorded

SA has no time to track
every single detail; Not all
changes have been reported;
Changes happen without SA
approval

overload,
communication,
perception,
communication

Noticed later in the
development process;
When certain changes, are
missing from the
documentation

SA or colleagues keeping
track of the changes; No
changing without SA
approval and
documentation

Preparing risk
mitigation strategies

SA has left the risk
strategies to his
colleagues

Risk evaluation
and mitigation
is not
performed

SA has not enough time; SA
decides to delegate issue to
TL, who is not properly
informed/prepared for that

overload, problem
solving,
communication

Records about the risk
evaluation and mitigation

SA should be performing
his obligations himself; in
a case of delegation should
be made a special plan
how to act

Be familiar with the
organization's
software
architectural style

SA is not familiar
with the organization
style

SA is implying
decisions that
are not
following the
architectural
style

SA has not taken enough
time to make himself
familiar with the
organizations’ style and
rules; SA is neglecting rules
and proposing new ones

knowledge,
hardworking,
professionalism

SA's work style can be
observed by the TL and
Manager

SA should be working as a
part of the team and the
organizations and not
taking alone decisions

93

4.2.1.5 Software Human Factors FMEA over the Software Developer role

Here the analysis of the Software Developer and the table with the human factors.

Table 14 Human Factors for the SD, extracted from the FMEA on the next page

Human Factors for the Software Developer
 Hardworking
 Knowledge
 Persistence
 Concentration
 Intelligence
 Attention
 Competence
 Personal overload
 Dutifulness
 Communication
 Cooperation
 Motivation
 Achievement
 Responsibility
 Talkativeness
 Coordination
 Personal organization

The summarized personal characteristics for the Software Developer look like the following:

HF FMEA
veloperSoftwareDe = {Hardworking, Knowledge, Persistence, Concentration, (4.7)

Intelligence, Attention, Competence, Personal overload, Dutifulness,

 Communication, Cooperation, Motivation, Achievement, Responsibility,

 Talkativeness, Coordination, Personal organization}

94

Table 15 SHF-FMEA over the Software Developer Role

Process Function Potential Failure
Mode

Potential Effect(s) of
Failure

Potential Cause(s) / Mechanism(s)
of failure

Human
Factors Detection Method(s) Recommended Action(s)

Designs different
software
components

The designed
elements are not
correct or do not
follow the
requirements

The produced code is
not fully operational

SD is not familiar with all
requirements; SD has not tested; SD
is not asking questions in case of
problems; SD is not skilled in
programming language and logic

hardworking,
knowledge,
persistence

Can be seen in the code – bugs
or other problems; lack of
fulfilled requirements will
show at later phase - testing;
quality control

SD having good
programming skills; SD
sharing problems with
colleagues; SD being
familiar with the
requirements and paying
attention to debugging

Approve software
only if sure that it is
safe, meets the
specifications, has
passed appropriate
tests, and is not a
threat for the life or
the environment

Neglect obligations
like inspecting the
code or checking if
all requirements are
met

Software is stated as
approved and
according to the
specification though
it isn’t

SD is distracted by something; SD
omits debugging; SD is having too
much work or too little time; SD is
not being concentrated; SD is not
good skilled in programming and
testing

concentration,
knowledge,
intelligence

Bugs and problems can be seen
in the code; problems are
spotted by testers, QA

SD paying more attentions
to his work and
requirements; SD having
more time to look things up

Strive to fully
understand the
specifications for
software on which
they work

Not attempting to
understand all
requirements

Requirements are not
all understood and
specification is not
familiar to SD

SD is not paying attentions to
requirements and specification with
the idea that TL will tell them what
to do; SD is omitting readying and
understanding the specification; SD
has no time to read the specification

attention,
concentration,
competence,

overload

Obvious in meetings with TL;
obvious in case SD has to think
of a decision to a question

SD paying more attention
to his obligations; SD
having time to perform an
in-depth analysis

Ensure adequate
testing, debugging,
and review of
software and related
documents

Proper testing and
debugging is missing;
paper work is
skipped

Documents are not
created and the
proper testing and
review of software is
not performed

SD is having to many obligations
and have no time to perform this
one; SD is bored to perform paper
work

overload
Obvious that the documents are
not written; code is not good
tested

SD having more time for all
tasks; SD being motivated
to make his paper work and
review of code

Maintain the
integrity of data,
being sensitive to
outdated or flawed
occurrences

Not paying great
attention to data
management

Integrity of data may
be lost

SD is not skilled at data
management; SD omits duties to
manage data; SD is careless about
outdated or flawed occurrences

skills,
knowledge

Lost integrity of data is hard to
spot but when found difficult to
fix

SD being careful and
experienced at data
management

Take responsibility
for detecting,
correcting, and
reporting errors in
software and
associated
documents

Neglecting
obligations as bug
detecting and
tracking

Errors and bugs are
not corrected and not
documented

SD is bored and not motivated to
search for errors; SD has no time to
document each error; SD is pointing
finger at the tester for looking and
documenting the errors

concentration,
overload,

dutifulness

Not taking responsibility in
front of TL; lack of errors
report

SD having more time for
his responsibilities; SD
being motivated in bug
searching, fixing and
documenting

95

Integrating software
modules into
software
components and
units

Not correctly
integrating all parts

Components are put
together correctly but
are not fully
operational

SD is not skilled at the specific
programming language; SD has not
made sure his code will work with
those of his colleagues

competence,
knowledge,

communication

Visible when trying to put all
parts together

SD talking more to
colleagues; SD paying
attentions to others’ code

Assigned full or part
time to participate in
project team
activities

Not participating in
team activities

SD is left outside of
the team and is not
sharing the team
spirit

SD is not social; SD has too much
work; SD is not interested in
communicating with others

communication,
cooperation,

SD is not attending team
meetings; team-building

SD trying to be more
social; SD attending team
activities

Responsible for
contributing to
overall project
objectives and
specific team
deliverables

Not contributing to
project activities

Specific deliverables
are not performed

SD is careless in his work; does not
perform his duties; SD is not
motivated

motivation,
concentration

Easy to spot that SD's is not
effective and motivated in his
work

SD being more careful in
his work; TL can find
different ways to stimulate
the SD to give his best

Participates with TL
in application
documentation

Does not cooperate
with the TL

TL is left alone to do
all the documentation

SD has no time for this
responsibility; SD is not willing to
do paper work; SD has no good
style at making such documents

overload,
achievement,
competence

TL is making all the work
himself; TL is not receiving
help from SD

SD cooperating with the
TL; SD being motivated to
work together with the TL

Designs, codes, and
builds the
application

Designing and coding
are not performed on
high level

The code is full of
errors; bad
performance; not
following the
requirements

SD is not a skilled developer; SD is
not familiar with the requirements;
SD does not consult with his
colleagues or TL and works alone

knowledge,
competence,
intelligence,

communication

Bad code can be easily
discovered by inspection; Not
meeting the requirements is
also obvious in later checks

SD being more
experienced; SD working
better with colleagues; SD
paying more attention to his
work

Participates in code
reviews and testing

Not performing his
duties by testing and
reviewing

QA is left out to test
by himself and with
no help from SD

SD is not having time for helping
colleagues; SD is not willing to
help; SD has too much other
obligations

cooperation,
communication

Lack of desire to help is easy to
spot and difficult to tolerate

SD working better with
colleagues and being eager
to help

Fixes bugs, defects,
and shortcomings

Omits testing and
bug fixing

Code is left without
fixing

SD is not having time; throwing
responsibility to QA; SD is not good
at bugs detecting and fixing

cooperation,
responsibility,

knowledge,
competence

Bugs in the code are found
during QA testing

SD being more precise in
his work; SD paying more
attentions to bug fixing

Work with
colleagues within
the designated
project guidelines

Not being friendly
and cooperative

SD is not easy to
work with and is not
a good team player

SD is not friendly; prefer working
alone; does not socialize with
colleagues

social contact,
communication,

talkativeness

It is obvious in his lack of
communication and
cooperation

SD trying to socialize;
perform better in team work
in order to fulfill project
needs

Notify the TL of any
expected difficulties
or issues arising

Trying to resolve
problems on his own

TL is left not notified
of the problems that
have occurred; SD is
making decisions that
may not be of his
competence

SD is believing it is in his authority
to answer such questions; SD does
not want to bother TL; SD is feeling
proud and independent to manage
with issues on his own, neglecting
teams procedure of informing

competence,
coordination,
organization

Difficult to spot, may be seen
later, when the problem
becomes really big and
eventually SD has to inform his
TL

SD should know his place
in the team and always
inform TL in case of a
major issue

96

4.2.1.6 Software Human Factors FMEA over the Software Tester role

Here the analysis of the Software Tester and the table with the human factors.

Table 16 Human Factors for the ST, extracted from the SHF-FMEA on the next page

Human Factors for the Software Tester
 Competence
 Knowledge
 Communication
 Personal attitude
 Motivation
 Overload
 Concentration
 Understanding
 Coordination
 Too high self-confidence
 Creativity
 Imagination
 Open minded
 Self-organization

The summarized personal characteristics for the Software Tester look like the following:

HF FMEA
sterSoftwareTe = {Competence, Knowledge, Communication, (4.8)

Personal attitude, Motivation, Overload, Concentration,

Understanding, Coordination, Self-confidence, Creativity,
Imagination, Open minded, Self-organization}

97

Process Function Potential Failure
Mode

Potential Effect(s) of
Failure

Potential Cause(s) / Mechanism(s)
of failure

Human
Factors

Detection
Method(s) Recommended Action(s)

Work with the QA to
build a test strategy
and test plans

Missing tests and
wrong test strategy

Undiscovered problems,
which on later step will
cost very expensive to be
mitigated

Lack of communication btw the
Tester and the QA; Not able to agree
on the needed strategy; lack of
knowledge about the needed testing

competence,
knowledge,

communication,
personal attitude

In meetings where
the testing strategy
is discussed

More communication btw the
team members that have this
obligation; Teaching seminars in
order to get new knowledge in
the area

Designing and
implementing the test
scripts and test cases

False test scripts and
test cases

Inefficient testing which
ends with undiscovered
problems

Lack of knowledge which leads to
incomplete and inefficient testing;
Lack of time for full testing; Lack of
motivation

competence,
knowledge,

personal
attitude,

motivation

Discussions about
the test scripts and
cases; Inspections
from the TL; Later
when the
application is not
working as expected

Discussions with the TL;
Enough time for testing;
Seminars and motivation from
the TL

Functional analysis of
the software
application in the
actual environment

Some steps in this
functional analysis are
not identified correctly
or omitted during
testing

There are steps in the
functional analysis left
untested and this may
lead to some wrong
functionality or errors

The Tester has not time to test
everything; He has not prepared a
functional testing strategy

overload,
competence,
concentration

Detected when the
software is not
working as expected
in the real
environment

Being careful and performing
test on each functional part in
the concrete environment; The
ST expanding his view to
predict what may go wrong and
perform the necessary testing
steps

Design, specification
and implementation of
the test environment
and the test-data

Wrong specified test
environment and test-
data

The software cannot be
correctly tested; not all
problems are discovered
and mitigated

Not enough knowledge and
experience with the needed
techniques; Wrong identified test-
data; Little time

overload,
competence,
knowledge

Detected later on
when problems
occur; it is possible
that some errors
stay undiscovered

Paying more attention and more
time for designing the
environment and the data-sets;
Additional learning

Understanding of the
software development
process, of the
operating system and
the network
infrastructure that are
used for deployment of
the software

The T does not
understand in depth the
development process or
the complete
architecture of the used
network

In the ready for
installation program may
not be considered some
limitations implied by
the network or by some
specifics of the software
design

The ST does not have a good
understanding of software
development; May be : not attending
team meetings; be unfamiliar with
network architecture; be unfamiliar
with the architecture on which the
software is build

knowledge,
understanding,
coordination

Observed when the
software is not
proceeding properly
and cannot be
deployed

Paying great attention to
development details as well as to
the network infrastructure

Table 17 SHF-FMEA over the Software Tester Role

98

Execute the tests,
document the results
and maintain the
records

Wrong tests, wrong
results and lack of
documentation of the
whole process

Undiscovered failures in
the software; lack of
documentation that could
be used in the next
testing process

Not enough knowledge how to build
the tests; Lack of time and desire to
write a documentation

knowledge,
overload,

motivation

Detected on
meetings when
discussing the
testing progress and
the documentation;
Detected later on
when evaluating the
results.

The ST have to pay more
attention in the testing and
documenting process; Has to put
more effort in achieving the
software goals

Be familiar with
similar type of
software, its
complexity and typical
functionality

ST is not well familiar
with other software
products of the type

ST cannot use experience
from similar projects and
it is possible that he
oversees some problems

ST has no time to search for other
similar solutions with ready testing
process and prefers to build it on his
own, but conducts failures

overload, too
high self-

confidence

Difficult to
discover, but the
problems come on
later step when
evaluating the
testing process

Analysis of common systems in
the field that can be used as
basis for the current testing
process

Being familiar with the
latest standards, tools
and methods that can
be used in the testing
process

ST is not constantly
enriching his
knowledge in the area

New standards or
methods may be new for
him

ST is not learning new techniques
due to being old fashioned or
unmotivated; T is missing new items
and tools that will make his work
easier

creative,
imagination,
open minded

Can be discovered
only other
colleagues criticize
his work

ST should be constantly looking
for new information and new
ideas in order to use the most
trendy solutions

Perform defect
tracking, status
reporting and auditing

ST is not continuously
tracking the current
software system

Threats, defects may
remain undetected or
untraced in the
documentation reporting

ST is not having time to perform
new defects search; T is postponing
tasks for tracking and reporting due
to not being motivated

overload,
organization,
motivation

Lack of written
reports, defect
tracking and
auditing is obvious

More control over the ST’s
obligations so that he performs
defect tracking and status
reporting

Retesting after fixing
problems

ST is not performing
retesting, or only a part New failures

ST is not having time to perform the
retesting or he does not have the
desire to do that

overload,
motivation

Observed with the
occurrence of new
problems in the
software

Control and motivation over the
testing team

99

4.2.1.7 Software Human Factors FMEA over the Software Quality Engineer role

Here the analysis of the Software Quality Engineer and the table with the human factors.

Table 18 Human Factors for the SQE, extracted from the SHF-FMEA on the next page

Human Factors for the Software Quality Engineer
 Overload
 Coordination
 Communication
 Competence
 Knowledge
 Over self-confidence
 Planning
 Attention
 Intelligence
 Understanding
 Patience
 Friendliness
 Concentration
 Professionalism
 Cooperation

The summarized personal characteristics for the Software Quality Engineer look like the
following:

HF FMEA
eeralityEnginSoftwareQu = {Overload, Coordination, Communication, (4.9)

Competence, Knowledge, Self-confidence, Planning,

Attention, Intelligence, Understanding, Patience,

Friendliness, Concentration, Professionalism, Cooperation}

100

Process Function Potential Failure
Mode

Potential Effect(s) of
Failure

Potential Cause(s) /
Mechanism(s) of failure

Human
Factors Detection Method(s) Recommended Action(s)

Planning and
implementing a
product testing
regime during the
development and
construction process

Planning and
implementation of the
testing scenarios are not
performed

The test regime is being
developed after the code
has been written and this
affects the whole
development process

QE is having too much obligations;
QE is not being helped by ST and
Architect for the project
requirements; QE does not have
enough experience

overload,
coordination,

communication,
competence,
knowledge

Lack of performed test
cases is obvious in the
number of bugs

QE having more time for
his duties; QE being helped
and monitored by SA or TL;
QE being skilled in
planning and implementing
of testing regimes

Responsible for
guaranteeing a
quality level for the
end client

Not taking
responsibility and
pointing finger at the
development team

Bad atmosphere in the
team due to QE’s desire
not to take responsibility

QE not admitting his mistakes; QE
not familiar with all his
obligations; QE not able to plan all
needed actions

self-confidence,
competence,

planning

Can be seen at team
meetings

QE being able to admit
being wrong and taking
responsibility for his work

Understand the
requirements of the
project's
technological scope,
its required
functionality and
quality grade

Not all requirements
(functionality and
quality) are met

Not all requirements are
checked, tested and
inspected, resulting in
product being not fully
operational like specified

QE is not familiar with
requirements due to not attending
team meetings; not reading
specification; not checking what is
written and interpreting it on his
own; not getting proper
explanations

coordination,
attention,

intelligence,
knowledge,

understanding

Can be seen at a later
phase by testers; or
even users

QE making effort to be
familiar with requirements;
paying attention when being
explained about details,
value of project

Assuring the needed
level of quality in
the completed
objectives

Time is pressing the
team so some tests are
omitted

Parts of the development
are left not inspected in
depth, hidden bugs may
have remained

QE is really pressed by the time;
QE is not being patient to perform
each test again and again; The code
is not well introduced by SDs

overloaded,
patience,

coordination

Lack of proper quality
level is visible in
testing as well as on a
later phase by the
user/client

Better schedule of all
properties; all team
members working according
it; Better control by the TL

Works with the
Business Analyst
and the Software
Architect to convert
the requirements and
design documents
into a set of testing
cases and scripts

Not good
communication with
BA and SA;
Requirements are not
good transformed into
test cases and scripts

The produced tests are not
useful and do not meet
project level and details;
The project is not
correctly tested and not all
client needs are satisfied

QE is not social and is not
communicating with colleagues;
QE is pretending to know all and
makes tests and analyses on his
own; QE not being familiar with
the requirements

friendliness,
coordination,

communication,
competence

Can be seen when the
project is not meeting
the client requirements;
The communication
level in the team is not
good and the
atmosphere is not
productive

QE being more social and
providing better work
atmosphere in team; QE
carefully reading and
examining requirements
when transforming them to
test cases

Table 19 SHF-FMEA over the Software Quality Engineer Role

101

Performs random
testing of all
components to check
again for errors in
the system

Not performing random
testing and relying only
on the testers

A random bug may not be
found

QE does not have time for this
testing; QE does not know how to
perform this random testing

overload,
knowledge,
competence

Can be discovered or
not, depending on how
random the bug is

QE making all diversity of
tests so he can spot the bug
or at least the situation in
which it may show up

Measurement and
quantification of the
completed solution
performance

Not making
performance tests

The performance of the
solution is not measured
and could be quite low

QE has no time to measure quality
due to bad schedule; QE may not
be familiar with the tests for
performance

overload,
knowledge,
competence

Bad performance can
be seen later, when the
solution is brought to
the clients

QE having time and skills
for performance testing

Be familiar with the
organization's
software
architectural style,
departmental testing
policies, criteria,
strategy and
procedures

QE is not familiar with
organization testing
policies and software
strategies

QE's way of testing and
documenting does not
meet the organization’s
expectation

QE is not introduced to the specific
working style; QE has problems to
work according to the
organization’s politics

coordination,
knowledge,
competence

Can be seen if he is not
keeping the
organization’s rules or
practices and is making
decisions on his own

QE should be given time to
become familiar with the
organization’s testing
practices and development
style

Being familiar with
the latest standards

Not familiar with the
needed standards and
testing technologies

The work of QE is not
compliant with standards
and technologies; does not
follow organization’s
politics

QE is not paying attention to the
latest standards and technologies
due to the fact that he is not
familiar with them or he does not
agree with them and has other
point of view

concentration,
professionalism

Obvious in his work;
can be observed his
way of making things
and taking decisions

QE should follow project
and organization’s politics
for making decisions,
should be familiar with new
designs and standards,
associated to the project

Provide advice and
guidance on quality-
issues when and
where needed

QE is not providing
proper help when asked

Those looking for QE’s
help are left with
questions

QE does not have time for such
questions; QE is not a helpful
person and is avoiding
communicating with colleagues

overload,
character,

communication,
cooperation

Can be observed in the
everyday
communication and
cooperation process

QE should be ready to
discuss and help his
colleagues; Team building

102

4.3 Summary over the Software Human Factors FMEA

We have conducted the innovative adoption of the FMEA as Software Human Factor FMEA
in a strictly analytical way over the responsibilities of the software development team
members, explained in Chapter 3, and were able to find out all different human features that
stay behind the different failures or potential problems in the software development process.
Here we will show once again all the factors for the different roles and after this we will put
them together in order to gain the full list of human factors critical for the software
engineering process.

 (4.10)
HF FMEA

agerProjectMan = {Coordination, Self-management, Stress, Competence, Knowledge,
Effectiveness, Concentration, Communication, Self-development,
Liberalism, Control, Egoism, Confidence, Organization}

HF FMEA

TeamLeader = {Hardworking, Knowledge, Communication, Attention, Conscientiousness,
Leader skills, Mental overload, Competence, Experience, Technical
understanding, Planning skills, Monitoring, Appreciation, Cooperation,
Fear, Management}

HF FMEA

alystBusinessAn = {Intelligence, Knowledge, Work overload, Concentration, Analysis
skills, Competence, Communication, Planning, Openness}

HF FMEA

chitectSoftwareAr = {Knowledge, Hardworking, Intelligence, Communication, Competence,
Creativity, Cooperation, Emotional stability, Mental overload, Attention,
Judgment, Experience, Problem solving, Leader thinking, Perception,
Professionalism}

HF FMEA

veloperSoftwareDe = {Hardworking, Knowledge, Persistence, Concentration, Intelligence,
Attention, Competence, Personal overload, Dutifulness, Communication,
Cooperation, Motivation, Achievement, Responsibility, Talkativeness,
Coordination, Personal organization}

HF FMEA

sterSoftwareTe = {Competence, Knowledge, Communication, Personal attitude,
Motivation, Overload, Concentration, Understanding, Coordination, Self-
confidence, Creativity, Imagination, Open minded, Self-organization}

HF FMEA

eeralityEnginSoftwareQu = {Overload, Coordination, Communication, Competence, Knowledge,
Self-confidence, Planning, Attention, Intelligence, Understanding,
Patience, Friendliness, Concentration, Professionalism, Cooperation}

Summarizing these factors into one with the help of the following formula:

HF FMEA
ocessSoftwarePr = {HF FMEA

agerProjectMan , HF FMEA
TeamLeader, HF FMEA

alystBusinessAn , (4.11)

HF FMEA
chitectSoftwareAr , HF FMEA

veloperSoftwareDe , HF FMEA
sterSoftwareTe , HF FMEA

eeralityEnginSoftwareQu }

103

and after merging them and taking out the repeated ones we have ended with the following
list of human factors or characteristics that influence the software development performance.

1. Coordination

2. Self-management

3. Mental Overload=Stress

4. Competence

5. Knowledge

6. Effectiveness

7. Concentration

8. Communication

9. Self-Development

10. Liberalism

11. Control delegation

12. Selfish=Egoism

13. Over self-confident

14. Self-organization

15. Hardworking

16. Attention

17. Conscientiousness

18. Leader skills

19. Experience

20. Personal grow

21. Understanding ability

22. Planning skills

23. Observing ability

24. Appreciation

25. Cooperation

26. Fear

27. Management skills

28. Intelligence

29. Analysis skills

30. Openness

31. Creativity

32. Emotional stability

33. Judgment

34. Problem solving ability

35. Perception

36. Professionalism

37. Persistence

38. Dutifulness

39. Motivation

40. Achievement

41. Responsibility

42. Talkativeness

43. Personal attitude

44. Technical understanding

45. Imagination

46. Patience

47. Friendliness

Having all the critical human factors for the software process we were faced with a new
problem. How can we measure these traits and how can we examine a person in order to be
able to understand which features does he posses and into which extent so that we can find out
how they influence his work performance.

We will manage with this challenge in the next two chapters. First we will adopt a well-
known psychological method in order to measure the personal features and then a special
statistical method in order to find out how they influence the individuals’ performance.

104

105

5 Chapter – Definition and Evaluation of the IT Human
Factors

In the previous chapter was introduced the big number of human factors for the software
development team members gathered by the adopted FMEA analytical approach. Here we had
the challenge to find out how we can measure these human factors in a way that we can find
the connection between the factors and the individual performance. After long research we
have decided to adopt the ‘’Big Five’’ theory, very widely used in the recruitment and
personnel selection process, in order to be able to evaluate all these factors and to find the
connection with the individual’ performance. Adopting this method for our need we were able
to measure the specific personal traits and the personal productivity and we are using this
information in the next chapter in order to discover the dependence between the human
characteristics and the productivity.

5.1 The five personal features

The Big Five model is a comprehensive, data-driven approach that evaluates five different
compound personal traits in order to build a complete psychological profile. The five factors
were discovered and formulated by several independent researchers and had a long maturing
process, summarized by Digman (Digman 1990).

The first idea about analyzing the human personality came in the beginning of the 20-th
century from McDougall (McDougall 1932) but the first version of the model was proposed
by Ernest Tupes and Raymond Cristal in 1961 (Tupes & Cristal 1961). Anyway this proposal
reaches the academic audience twenty years later and in this time there were already other
scientific papers proposing similar ideas. In 1990 Digman emerges the five factor model and
few years later Goldberg refines it to the highest level (Goldberg 1993). The interesting point
in the history of the Big Five is that the personal features were discovered from the different
scientists to be the same, and although that there are some differences all come to the decision
that particularly these five features with their facets (John, Robins & Pervin 2008) describe
the human behavior in the best way. The Big Five traits are also referred to as the "Five
Factor Model" or FFM (Costa & McCrae 1992) and as the Global Factors of personality
(Russell & Karol 1994). The Big Five factors are Openness, Conscientiousness, Extroversion,
Agreeableness and Neuroticism (OCEAN). Sometimes the neuroticism element is called
Emotional Stability as well the openness factor is named Intellect. Here we give short
explanation of these traits.

Openness to experience / Intelligence
(inventive / curious vs. cautious / conservative)

Openness, in some places named also Intelligence is the ability of the people to accept and to
search for new ideas, knowledge, experience and so on. It describes the originality and
complexity of an individual and distinguishes the imaginative from the down-to-earth people.
(John, Robins & Pervin 2008) Such persons are ready for new experience, intellectually
searching and impressed by art. People with low levels of openness are traditional and have
conventional understandings.

106

Conscientiousness
(efficient / organized vs. easy-going / careless)

This is a feature that expresses self-discipline and determination and desire for achievement.
It expresses an intention to behave in a planned matter, goal-directed and thinking before
acting. Such people follow norms and rules, they are always on time, study hard and give
their best in the job. They are not impulsive and show high values of thoughtfulness. (John,
Robins & Pervin 2008) Low levels of conscientiousness mean unorganized people, that don’t
really care how they are performing in their job and don’t feel responsible for their actions.

Extroversion
(outgoing / energetic vs. shy / withdrawn)

Extroversion can be described by positive emotions, desire to seek for stimulations and
company of others. It is an energetic and positive attitude to the world and is described with
features like: sociability, activity, assertiveness, and positive emotionality. For these people it
is easy to approach strangers, to introduce themselves, to be the leader and the centre of a
company. (John, Robins & Pervin 2008) When being around people they like to talk, put
themselves forward and keep the attention. Introverts lack the social cheerfulness and activity
levels of the extroverts. They tend to be quiet and less interested in the social world.

Agreeableness
(friendly / compassionate vs. competitive / outspoken)

This feature is expressed in compassionate and cooperative behavior. It shows a pro-social
and communal orientation toward others and can be described with traits like: altruism,
tender-mindedness, trust and modesty. (John, Robins & Pervin 2008) This characteristic is
very important for the social harmony and understanding. Such people are generous, kind,
friendly, caring, cooperative and ready to compromise their own interests. People with low
level of agreeableness put first their own-interest and show features like: suspicion,
unfriendliness and uncooperativeness.

Neuroticism
(sensitive / nervous vs. control / confident)

Neuroticism is characterized with the propensity to negative emotions like anger, nervousness
and depression. It contrasts emotional stability and is expressed with emotions like: feeling
anxious, nervous, sad, and tense. (John, Robins & Pervin 2008) People with high score of
neuroticism tend to accept ordinary situations as threading and small obstacles as hopelessly
difficult. They are in negative emotional states for long time and this influences their working
process. Persons with low neuroticism are not so easily disturbed and emotionally stable.

We are introducing here a table with three different approaches for the Big Five and their
facets, summarized by Oliver John and his colleagues in their book: (John, Robins & Pervin
2008). These facets bring additional understanding for the big five traits and will help us on
the next step when matching the discovered software human factors to the Big Five.

107

Table 20 Defining Facets for the Big Five Trait Domains (John, Robins & Pervin 2008)

Lexical facets (Saucier &
Ostendorf 1999)

NEO-PI-R facets (Costa &
McCrae 1992)

CPI-Big Five facets (Soto &
John 2008)

Extraversion (E) facets
E Sociability
E Assertiveness

E Activity/Adventurousness
E Unrestrained
[A Warmth/Affection]

E Gregariousness
E Assertiveness
E Activity
E Excitement-Seeking
E Positive emotions
E Warmth

E Gregariousness
E Assertiveness/Leadership

[O Adventurousness]
E Social Confidence vs. Anxiety

Agreeableness (A) facets
A Warmth/Affection
A Modesty/Humility

A Generosity
A Gentleness

[E Warmth]
A Modesty
A Trust
A Tender-Mindedness

A Compliance
A Straightforwardness

A Modesty vs. Narcissism
A Trust vs. Suspicion
A Empathy/Sympathy
A Altruism

Conscientiousness (C) facets
C Orderliness
C Industriousness
C Reliability
C Decisiveness

[O Perceptiveness]

C Order
C Achievement Striving
C Dutifulness

C Self-Discipline
C Competence
C Deliberation

C Orderliness

C Industriousness

C Self-Discipline

Neuroticism (N) facets
N Insecurity
N Emotionality
N Irritability

N Anxiety

N Angry Hostility
N Depression

N Self-Consciousness
N Vulnerability
N Impulsiveness

N Anxiety

N Irritability
N Depression
N Rumination–Compulsiveness
[E Social Confidence vs.
Anxiety]

Openness (O) facets
O Intellect

O Imagination/Creativity

O Perceptiveness

O Ideas
O Aesthetics
O Fantasy

O Actions
O Feelings
O Values

O Intellectualism
O Idealism

O Adventurousness

‘’Some facets (e.g., CPI Adventurousness) are listed once under their primary Big Five
domain (e.g., Openness) and again in brackets under another Big Five domain if their best-
matching facet appears there (e.g., next to NEO Excitement-Seeking, which is an
Extraversion facet on the NEO-PI-R but also has a substantial secondary correlation with
Openness).’’ (John, Robins & Pervin 2008) In (John, Robins & Pervin 2008) - table 4.4 can
be observed another detailed list with the Central Trait Adjectives for the Five Factors.

108

5.2. Matching between the Big Five traits and the IT Human Factors

The Big Five Trait Domain that we are adopting in our method is the NEO-PI-R, as with its
30 facets is the most comprehensive one. Based on the analysis from chapters 2, 3 and 4 we
have found the personal competencies and the special human factors that influence the
individuals’ performance. Having these critical human factors for the software process we
were faced with the problem: how can we measure them? For this purpose we have used the
following matching between the critical human factors and the Big-Five psychological traits.
This matching helps us to evaluate the human traits and in this way to observe the dependence
between them and the performance.

In the following part we will show the matching between the human factors that we have
found and the Big Five traits.

Table 21 Matching between the Big Five traits and the Software Human Factors

NEO-PI-R facets (Costa & McCrae
1992)

Human Factors important for the
software development process

Extraversion (E) facets
E Gregariousness
E Assertiveness
E Activity
E Excitement-Seeking
E Positive emotions
E Warmth

Communication
Selfish=Egoism
Over self-confident
Leader skills
Management skills
Talkativeness
Judgement

Agreeableness (A) facets
A Modesty
A Trust
A Tender-Mindedness
A Compliance
A Straightforwardness

Liberalism
Appreciation
Cooperation
Problem solving
Perception
Persistence (by low A)
Friendliness

Conscientiousness (C) facets
C Order
C Achievement Striving
C Dutifulness
C Self-Discipline
C Competence
C Deliberation

Coordination
Self-management/ organization
Control delegation
Effectiveness
Hardworking
Attention
Planning skills
Professionalism
Dutifulness
Achievement
Responsibility

Neuroticism (N) facets
N Anxiety
N Angry Hostility
N Depression
N Self-Consciousness
N Vulnerability
N Impulsiveness

Mental Overload; Stress
Concentration
Fear
Emotional stability
Personal attitude
Patience

Openness (O) facets
O Ideas
O Aesthetics
O Fantasy
O Actions
O Feelings
O Values

Self-development
Personal growth
Understanding ability
Observing ability
Intelligence
Analysis skills
Creativity
Imagination

109

After the matching process was over we have found few additional features that don’t pass
into the Big Five traits and we have decided to include them as additional factors. These are
the Experience and the Motivation.

Under Experience we have the following sub-traits: - competence; - knowledge and -
technical understanding.

As the values for the Big Five are in percentage, we have decided also to use percentage for
the additional factors. In order to estimate the value of the Motivation we have used special
questions, shown in table 24 and have evaluated them in the same manner like the Big Five
test. For evaluation of the Experience we have taken a 20 years basis for 100% and we have
calculated the values based on that.

The last and the most important factor that we have evaluated and that is for us the end goal
was the Performance. In order to evaluate it we have used again several sources: first the own
evaluation, then this of the supervising personnel/manager and last but not least the evaluation
of the colleagues. In this manner we were able to calculate the value of the
Performance/Productiveness also in percentage of the managed work per month. So we can
summarize the seven factors that we decided to investigate in connection with the individual
performance, and they are:

1. Openness

2. Conscientiousness

3. Extroversion

4. Agreeableness

5. Neuroticism

6. Experience

7. Motivation

5.3 The evaluation test

In order to measure the listed above seven personal characteristics we have adopted the Big
Five questions and have added additional ones in order to evaluate the other two factors and
also the approximate performance.

First we will have a look over the standard questions, shown in the following Table 22 and
then we will take a look over the additional ones.

The table shows all positive and negative questions for the Big Five traits. The questions are
taken from an on-line pool for scientific collaboration ‘’International Personality Item Pool‘‘
(International Personality Item Pool 1997).

110

Table 22 Big Five Questions (International Personality Item Pool 1997)

Positive Questions Negative Questions
Extraversion
I am the life of the party. Don't talk a lot.
Feel comfortable around people. Keep in the background.
Start conversations. Have little to say.
Talk to a lot of different people at parties. Don't like to draw attention to myself.
Don't mind being the center of attention. I am quiet around strangers.
Agreeableness
I am interested in people. I am not really interested in others.
Sympathize with others' feelings. Insult people.
Have a soft heart. I am not interested in other people's problems.
Take time out for others. Feel little concern for others.
Feel others' emotions.
Make people feel at ease.
Conscientiousness
I am always prepared. Leave my belongings around.
Pay attention to details. Make a mess of things.
Get chores done right away. Often forget to put things back in their proper

place.
Like order. Shirk my duties.
Follow a schedule.
I am exacting in my work.
Emotional Stability
Am relaxed most of the time. Get stressed out easily.
Seldom feel blue. Worry about things.
 I am easily disturbed.
 Get upset easily.
 Change my mood a lot.
 Have frequent mood swings.
 Get irritated easily.
 Often feel blue.
Openness/Intelligence
Have a rich vocabulary. Have difficulty understanding abstract ideas.
Have a vivid imagination. I am not interested in abstract ideas.
Have excellent ideas. Do not have a good imagination.
I am quick to understand things.
Use difficult words.
Spend time reflecting on things.
I am full of ideas.

We can see that we have 10 questions pro Factor and they can be categorized into positive or
negative one. Every question has 5 possibilities for an answer: Very Inaccurate, Moderately
Inaccurate, Neither Inaccurate nor Accurate, Moderately Accurate, Very Accurate. Depending

111

on the question type – positive or negative - from 1 to 5 points are given. The table for the
evaluation looks like this:

Table 23 Points for the different answers

Answer Points for
statement

 Positive Negative
Very Inaccurate 1 5
Moderately Inaccurate 2 4
Neither Inaccurate nor Accurate 3 3
Moderately Accurate 4 2
Very Accurate 5 1

Having the standard Big Five questions, let us take a look now over the additional ones. They
are listed in the table below and are taken from a position paper about the Behavior-based
Assessment (Smolders et al. 2009) and help us to evaluate the Motivation and Experience
factors.

Table 24 Additional questions for ‚Experience and Motivation‘ (Smolders et al. 2009)

Questions for the factors Experience and Motivation
Motivation Experience
You feel the goals you are supposed to achieve are
realistic and attainable?

What is your current working position?

Feedback from your manager/supervisor is clear
and directed at improving your performance?

What is your age?

Your job is both interesting and challenging? How many years have you worked at your
current position?

You feel that your current salary motivates you to
perform?

The advancement and growth opportunity within
the organization motivates you to perform better?

You receive recognition for your achievements
from your manager/supervisor?

You receive ongoing training to improve your
ability and skills?

Your manager/supervisor lets you take
responsibility for the tasks you perform?

Your current performance appraisal system
motivates you to achieve your goals and improve
your performance?

The additional questions about Motivation are answered like the previous ones, like shown in
table 23 and the questions about Experience are being answered with plain explanation text.
The questions in their actual form in the test were randomized and this is due to the fact that if
answered one after the other from a particular type, they tend to seem the same and a person
can simply copy the previous statement without thinking on the current one.

There is one more very important question that was included in the test and this is: With what
percentage would you estimate your everyday performance? As already said in order to
measure this, we have used the personal evaluation and this from the supervising head and

112

from the colleagues for each examined person. In addition to the self-estimation we have
asked separately the supervisors/managers and the colleagues how they will evaluate the work
of the examined person in succeeded amount of work per month. Having all these questions
we were able to build our test and to distribute it around different software companies. We
have used an online platform (Zoho Challenge 2010), so that it was easy to access, fill and
evaluate.

We have distributed the questionnaire in five companies and from 200 participants we have
gained 73 usefully filled tests. Then we have summarized the data (as there were a lot of tests
that had identical results) and we have presented it in the following Table 25.
The people that fulfilled the test were between 26 and 55 years old with different experience
on the current position (20 years=100%). The number of the people according to the positions
that they have looks like follows:

Project Manager - 6
Business Analyst - 10
Software Architect - 10
Team Leader - 10
Software Developer - 15
Quality Engineer - 10
Software Tester – 12

Table 25 Summarized data from the test-results

Perform
ance
[%]

Motivati
on [%]

Conscien
tiousness
[%]

Opennes
s [%]

Agreea
bleness

[%]
Experien
ce [%]

Extravers
ion [%]

Emotional
stability

[%]
46 30 36 58 40 20 46 78
47 34 36 60 42 7.5 50 64
49 40 38 66 44 15 44 68
53 50 40 68 100 5 60 88
58 46 46 68 46 35 60 66
61 56 42 98 48 100 86 66
62 58 48 70 98 10 90 94
64 52 44 72 50 10 58 66
64 54 90 96 96 5 54 76
66 55 44 72 52 25 58 84
69 60 50 96 54 50 60 88
70 60 50 94 94 5 74 64
72 61 52 74 56 12.5 78 60
73 62 88 74 92 10 54 72
76 66 54 94 58 10 56 68
78 64 56 78 60 5 58 78
79 68 86 78 62 15 28 52
80 78 84 92 64 40 42 82
81 75 58 80 90 15 50 70
83 70 60 82 66 25 56 66
84 80 62 82 88 7.5 60 68

113

85 72 82 92 68 50 64 78
87 82 64 88 86 35 72 84
89 85 66 82 70 10 76 86
90 90 68 90 84 20 84 60
91 95 70 86 72 40 88 66
92 88 72 86 74 12.5 52 82
93 93 74 84 76 35 72 68
93 98 76 90 82 50 56 86
94 99 78 88 80 50 60 80
95 100 80 84 78 65 60 98

Having the full data we were able to commit correlation analysis with the main goal finding
the connection between Performance and the 7 personal traits (Georgieva et al, 2010 e). This
analysis can be seen below.

Table 26 Correlation Analysis

 Motivation Conscient. Openness Agreeab. Experience Extravers. Emot.stab.
Performance 0.968941 0.721512 0.598376 0.416717 0.251489 0.194627 0.128402

We will use these results in order to choose the factors for building our predictive
mathematical model in the next chapter.

5.4 Summary over the definition & evaluation of the IT Human Factors

We have introduced the well-known Big Five theory in order to match the already discovered
Software/IT Human Factors to the five factors and to measure them in this way. Adding two
new traits to the basic ones gave us the possibility to cover the complexity of the critical
human factors for the software process and to evaluate them. The factors that we have
examined are listed below:

1. Openness

2. Conscientiousness

3. Extroversion

4. Agreeableness

5. Neuroticism

6. Experience

7. Motivation

and we can summarize

 BigFiveHF FMEA
ocessSoftwarePr : BigFive (HF FMEA

ocessSoftwarePr)

 = {Openness, Conscientiousness, Extroversion, Agreeableness,

 Neuroticism, Experience, Motivation}

114

This transformation of role-based human factor to a list of seven characteristics is visualized
in the following figure.

Having the test ready we have used an on-line platform to distribute it between different
software companies and after this to evaluate the results. Analyzing them we have found the
correlation between the Performance and the other seven factors and we were able to observe
that the biggest correlation values are for the traits: Motivation; Conscientiousness;
Openness and Agreeableness.

Figure 26 Mapping of role-based human factors to Big-Five and their industrial evaluation

That could be summarized as

 eval(BigFive)HF FMEA

ocessSoftwarePr = { Motivation, Conscientiousness, Openness, Agreeableness }

These four personal characteristics are playing the main role in the process of model
development for the IT human resources performance prediction.

115

6 Chapter – Development of the model for IT human
performance prediction

The objective of the thesis is to develop a model that is able to evaluate, model and
prognosticate the employees’ performance. In order to achieve this we needed first to look for
eventually existing solutions (Chapter 2) and to analyze the software process itself and its
organization in the form of software teams (Chapter 3) with special roles. We had to analyze
these roles (Chapter 4) in order to find the most important human features that influence the
software process and to find a method that can describe the relationship between the already
discovered software human factors and the way that they influence the employees’
productiveness (Chapter 5).

As consequence we needed a method that with a defined number of trials and using the gained
data from the previous chapters will give us maximum information about the mathematical
dependence that we are looking for. A method that can prove that this dependence is correct
and can describe it with a mathematical model. In the present chapter we will describe the
development of the model for IT human performance prediction and we will end with the
desired mathematical model that describes the connection between the special psychological
traits and the performance. In the next chapter 7 we will experimentally prove its
effectiveness and correctness.

6.1. Experimental design for the need of the IT human performance
prediction

Looking for a method that can be applied for the development of the desired mathematical
model we had to meet some restrictions:

• We had limited amount of gained data from the IT personnel.

• We had to develop the model with a minimum of experiments (because of the limited
data).

• We had to find the connection between the selected personal features and the software
productivity.

Having this in mind we have chosen to adopt the Design of Experiment because of the
following advantages (Shivhare & McCreath 2010):

• ‘’gain maximum information from a specified number of experiments;

• study effects individually by varying all operating parameters simultaneously;

• take account of variability in experiments or processes themselves;

• characterize acceptable ranges of key and critical process parameters contributing to
identification of a design space, which helps to provide an “assurance of quality.”

116

We are focusing on experimentation run in the laboratory or on a piece of paper aimed at
quantifying the effect of one or more variables over a certain end effect or end parameter.
Thus we apply the techniques of Experimental Design and Analysis (founded over 80 years
ago by Sir Ronald Fisher). The experiments supported by this technique aim to quantify the
effect of qualitative variables over one particular end variable/product/effect that can be
separately quantitatively measured.
We can visualize the process as a combination of different factors (controllable or not) that
transform the input into some output with special characteristics.

Here is a short explanation of the steps in the chosen method (Montgomery 2008):

I. Recognition of and statement of the problem

First we have to formulate the problem that we want to resolve, we have to understand its
nature and to find all different factors that influence it. A clear statement of the problem often
contributes substantially to better understanding of the phenomenon being studied and the
final solution.

II. Pre-planning of the Experiment

1. Choice of factors, levels and range.
We have to choose the input factors that we are going to analyze later, that are
important for our experiment. There are different types of factors: potential design
factors, held-constant factors, allowed-to-vary factors and so on but we will not
discuss them because they are not concerning our particular experiment. When we are
ready with the selection of the input factors, we have to decide how this factors will
change, in what range and the specific levels at which runs will be made.

2. Selection of the response variable. In selecting the response variable, we should be

certain that this variable really provides useful information about the process under
study. In our case we do not have any doubts which is the response variable as we
have a special type of passive experiments, which we will later explain and because of
this we know which is our response variable and what exactly we want to observe
about it.

3. Choice of experimental design.

When we have the pre-experimental planning and we are ready with our factors and
response variable we have to make the next decision about the particular design. We
have to consider the number of replicates, the selection of a suitable run order for the
experimental trials, and the determination of whether or not blocking or other
randomization restrictions are involved. Also we have to decide what type of design
we are going to use for our modeling process. In our work we have chosen the central
composite rotatable design, introduced by Box and Hunter (Box & Hunter 1957) (Box,
Hunter & Hunter 1978) because it is the best design to build an invariant response
surface. We will discuss it later.

III. Performing the experiment and analysis of the gained results

4. While conducting the experiment, it is vital to monitor the process carefully and to
ensure that everything is being done according to the plan. Errors in experimental
procedure will destroy the experimental validity.

117

5. Statistical analysis of the data. Statistical methods are used to analyze the data so that
the results will be clear mathematical conclusions and not observations or judgments.
Hypothesis testing and model adequacy checking are important analysis techniques.
We will discuss the whole process of validity check later over our designed
experiment.

6.2. Algorithm for conducting Experimental Design

6.2.1 Recognition of and statement of the problem

In the present research the task is - to obtain a predictive mathematical model for the
effectiveness of the software personnel, based on the individual psychometric qualities.

Obtaining such a model is based on experimental studies, conducted according the
methodology of the planned experiment and statistical analysis for its adequacy.
The experiment is a set of targeted actions, which reveal the principle of operation of the
studied object (Montgomery 2008). Depending on the nature of organization and methods for
obtaining the results, the experimental studies are active and passive.

The active experiment is applicable only for controllable objects of experimentation. The
investigator himself sets the levels of factors and maintains their values in a certain stage of
the experiment (Fang, Li & Sudjianto 2006).

The passive experiment is represented by a passive registration of output parameter values,
obtained at a given combination of input parameters (factors). In this case the investigated
object is observed, without interfering with the researcher in its operation (Fang, Li &
Sudjianto 2006).

In our case - when investigating the effectiveness of the software personnel, depending on the
individual psychometric qualities, we are using this special type of passive experiment. Types
and evaluation of the psychometric qualities (characteristics) of personnel and the related
efficiency of the company are determined through the collection and processing of
questionnaire data. There we are observing the current state of the firma based on a fixed set
of not controlled factors.

This method is used for research work over manufacturing productions and other types of
companies and for processing of the experimental results is used regression analysis (Mason,
Gunst & Hess 2003). The mathematical model, gained as result from the experiment is
presented by a geometrical response-surface and can have the following form, for ex. for two-
factor experiment (Fig.27) (Myers, Montgomery & Cook 2009) (Box & Draper 2007).

Figure 27 Response surface for two-factor model

118

If we have k factors, then the factorial space has dimension of (k +1). When we have limited
information about the objects that we are investigating, the analytical type of the response
surface is unknown. Then we can assume that the surface can be represented as a part of order
of Taylor in the field of experimental points of the factorial space (Atkinson & Donev 1992)
and it looks like following:

...... 2

11 1 1
0 ++++++= ∑∑ ∑ ∑

==
<
=

<<
=

i

k

i
iigji

k

i

k

ji
i

k

gji
i

ijgjiijii xbxxxbxxbxbby

 (6.1)
Where y - is evaluation of the parameter of optimization and kji xxx ,...,, - are coded
values of the factors. iiijgiji bbbb ,...,,, - are estimates of the regression coefficients.

Usually in the industrial practice the most commonly used models are from second degree in
polynomial form, as the practice shows that in almost 100% of the cases they are adequate.
(Montgomery 2008) Because of this we can reason our choice for the mathematical model of
second order of Taylor and we can continue with the pre-planning of the experiment.

6.2.2 Pre-planning of the Experiment

The pre-planning of experiment includes all actions of preparation for conducting the planned
experiment. They are as follows:

• Collection, compilation and analysis of the a priori information and conducting of
preliminary single-factor experiments;

• Analysis and selection of the parameter/s of optimization. Choosing the one that most
fully and accurately characterizes the object of study;

• Analysis and selection of the factors affecting the optimization parameter;

• Analysis of the factorial space; choice of domain of a function and local domain of
change of the factors; determining the zero point (beginning) of the matrix of the
planned experiment, the intervals of variation of the factors and the coordinates of all
matrix points of the planned experiment.

6.2.2.1 Parameters of optimization and requirements to them

Optimization parameters are quantitative characteristics of the objective of study, which allow
establishing of the existing relations between input and output parameters of the system. From
mathematical point of view, the searching of such relations is possible only in the presence of
single parameter of optimization.

The optimization parameters can vary depending on the type of the object and the purpose of
the work. Conditionally we can divide them into: economical, techno-economical,
technological and statistical. They must meet the following requirements (Montgomery 2008):

• The parameter of optimization must clearly, effectively and with sufficient
completeness characterize the object of study;

119

• It must be quantitative and be assigned with a certain value;

• The requirement of uniqueness in the statistical sense is that for a set of factor values
corresponds a single value of the optimization parameter;

• Under universality of the criterion of optimization must be understood its ability to
comprehensively characterize the object;

• The parameter of optimization should have a clear physical sense, should be
understandable for the researcher and easy to measure.

6.2.2.2 Input factors and requirements to them

The number of factors in industrial research is very large. The researcher seeks to include in
the study all the relevant factors that determine the functioning of the object. To the input
factors there are a number of requirements (Montgomery 2008):

• Be manageable - to accept values which are kept constant throughout the experiment, or
change in some predictable way;

• Be unique - not to be a function of other factors;

• Be consistent - all combinations are feasible and safe;

• Be independent - there is no correlation between the factors. This is particularly
important in the passive experiments because one factor is difficult to manage if it is a
function of another;

• Have a quantitative assessment and to have a high degree of correlation with the
parameter of optimization.

Each factor has its own domain of a function. The boundaries of this domain are usually set
with rigid restrictions that no one can corrupt in the process of experimentation. The domain
boundaries give the factor space in which to obtain an adequate mathematical model.

Figure 28 Domain of a function for two-factor experiment

120

After selecting the domain of a function we should find the local area for conducting the
experiment. In that local area the factors change their values in the process of implementation
of the planned experiment. The local area is smaller than the whole domain of the function. In
general, the factors are size variables, their dimensionality can be different and also their
numerical values can be of a different type. Because of this usually the experiment is not done
in the original dimensions but in coded one, which is a linear translational conversion of the
factorial space.

Coding is preceded by selecting the position of the center of the new coordinate system ("0"
or X0) and choice of the variation interval determining the location of the upper and lower
limits of each factor during the experiment maxXi and minXi (Fig. 28). Coding is performed
by mathematical translation of the coordinate system in the new one with zero point with
coordinates 02010 ,...,, kXXX (point "0" in Figure 28).

The "0" point is called the center of the planned experiment in coded values.
In the new coded space the maximum (upper) level of the factor corresponds to 1 and the
minimum (lowest) to -1. The formulas for the transition (Brownlee 1965) (Cox 1957) (Davies
1967) from natural in coded values and vice versa are given below.

Xi
XiXixi Δ

−
= 0

 (6.2)

ixXiXiXi .0 Δ+=

where 2
minmax XiXi

Xi
−

=Δ

is called interval of variation (sometimes semi-interval) and Xi is the coded value of the i-th
factor.

Having the zero point determined from the min and max values of a factor, we should choose
the variance intervals (+/-1) in a way that the values of the star points (in our case +/-1.682)
are inside the factor space, otherwise our experiment will be not correct as we won’t be able
to cover all needed points. The particular calculations of these values are shown in 6.3.3 on
Figure 38.

6.2.2.3 Select the type of the planned experiment

We are choosing to use the central composite rotatable plan from the type 2k because of its
advantages, explained on the next page. Then we have to choose the domain of a function and
the local domain for each of the factors, and we have to pay special attention when choosing
the center of the experiment as it is the starting point in the planning process. For zero point is
taken this point of the factorial space in which previously have been held single-factor
experiments, which give information that there is expected to be localized region closest to
the response optimum. The domain area must cover all points of the planned experiment,
including the "star" points (explained later).

The determination of the size of the domain area is done by conducting preliminary single-
factor experiments with each of the factors. The single-factor experiments indicate the type of

121

interaction of each factor with the parameter of optimization (linear or second degree). They
also show the correlation degree between each factor and the optimization parameter. The
correlation degree is taken as an indicator showing which of the factors has greater (or less)
influence on the optimization parameter. This is used to sort out the factors according to their
influence degree, which reflects the choice of the type of the planned experiment (how many
factors and how they will be included in the matrix of the experiment). The conduction of the
preliminary single-factor experiments provides information about the size and range of
variation for each factor and consequently about the zero-point of the plan and the value of
the variance interval. It describes the size of the hypercube side (when working with coded
values) in the planned experiment.

The next stage of the experimental research is to decide which of the factors will be included
in the plan of the experiment. Factors by which the optimization parameter has extreme values
and the correlation coefficient is high are included with priority in the matrix of the planned
experiment.

6.2.3 Performing the experiment and analysis of the results

6.2.3.1 Planning of the experiment

In planning of the experiment is included: determining the plan of the experiment;
determining the necessary and sufficient number of experiments and observations with the
already chosen model of design; establishing the matrix of the experiments and randomization
of the trials.

The plan of this experiment is a set of data - specifying the number, the conditions and the
sequence of implementation of necessary and sufficient trials in order to solve the task with
the needed accuracy. It is presented in the form of a design matrix (rectangular table), the
rows of which satisfy the tests and their position in the factor space, and the columns - the
coded values of the factors and the parameter of optimization (Table 28).

The analysis of the gained results includes the calculation and statistical estimation of the
coefficients of the model; writing the gained mathematical model in coded and natural values
and examining its adequacy.

The type of the mathematical model, whose coefficients we will determine (calculate) is as
already explained chosen to be from second degree and it determines the structure of the
planned experiment. It will also be of second degree, this means that it will consist from
experimental points at the end-points of the cube (hypercube); it can have two, three or more
changeable factors; it will have duplicated experimental points in the center of the plan and
two "star" points (explained later) for each axis of the factorial space.

There are a lot of possibilities to realize the matrix of the planned experiment (central
composite orthogonal design; central composite rotatable design; "D"-optimal plans, plans of
Hartly, etc..) but we choose to work with the central composite rotatable design for its
advantages. This method is proposed by Box and Hunter (Box & Hunter 1957) and (Cohran
& Cox 1957) and later examined by Myers (Myers 1971).

122

It offers the following advantages (Khuri & Cornell 1996) (Myers, Montgomery & Cook
2009):

• Ensures the invariance of the plan and of the parameter of optimization by rotating the
coordinate system around its center;

• The model obtained by the rotatable plan describes the response surface with equal
accuracy (equal variance) in all directions of the coordinate axes;

• Surface lines of the same value of variance are concentric circles or hyper-spheres with
a center coinciding with the beginning of the coordinate system;

• The variances of the mathematical model are the same for all points that are equidistant
from the design center and have the minimum values;

Central composite rotatable plan is built (Montgomery 2008) using the following common
construction rules:
• Build a full factorial experiment with a number of experiments kN 21 = ;
• To the experimental points of the full factorial experiment are added experiments in 2k

"star points" located at a distance of ± α (star arm) from the center of the plan; the
values of α are calculated according to formula (6.3).

• To all these experimental points are added 0N observations in the center of the plan

)0(=ix ;
• "k" is the number of the changing factors.

The difference between central composite rotatable and central composite orthogonal plans
lies in the manner of selecting the size values of the star arm α and the number of
observations in the center of the plan. The size of the star arm by central composite rotatable
plan is calculated based on the condition of invariance of the plan. This calculation is done by
the formula:

44
1 2

k

N ==α (6.3)
The number of the duplicate observations 0N in the center of the plan is chosen so as to
achieve uniformity. This means that we should obtain almost identical values of dispersion
(variance) of the optimization parameter in the factor space and the number of observations
should also be sufficient for statistical analysis of the results.

The planning, where through suitable choice of the number of observations in the center of
the plan can be achieved almost equal distribution of the variance in the whole area and the
variance has the same value for all equidistant from the center points is called rotatable-
uniform planning.

• To provide uniformity of the plan, 0N is determined by the relationship (Dean & Voss
1999)

kNNNN 2)44(1110 −−++= λ (6.4)

Where λ = 0,7844 ; 0,8385 ; 0,8705 ; 0,8918 ; 0,907 ; 0,9185 and k = 2,3,4,5,6,7.
(Dean & Voss 1999)

123

• To assure an orthogonal rotatable plan, N0 is determined by the relationship (Dean &
Voss 1999)

424 10 +−= kNN (6.5)

The necessary data to build a central composite rotatable plan can be seen from table 27 and
table 28 shows the data for central composite rotatable plan with k = 3.

Table 27 Number of experimental points and size of the star arm by rotatable plans with different
numbers of factors (Dean & Voss 1999)

k
1N αN 0N N α

2 22 4 5 13 1,414
3 32 6 6 20 1,682
4 42 8 7 31 2,000
5 52 10 10 52 2,378
6 62 12 15 91 2,828
7 72 14 21 163 3,333

Table 28 Matrix for rotatable plan of second level - type 23 (factors are in coded form)

 Nr of the

experiment
X1 X2 X3 y

Full
factorial
experiment
23

1
2
3
4
5
6
7
8

-1
+1
-1
+1
-1
+1
-1
+1

-1
-1
+1
+1
-1
-1
+1
+1

-1
-1
-1
-1
+1
+1
+1
+1

y1
y2
y3
y4
y5
y6
y7
y8

‘’Star’’
points

9
10
11
12
13
14

-1,682
+1,682
0
0
0
0

0
0
-1,682
+1,682
0
0

0
0
0
0
-1,682
+1,682

y9
y10
y11
y12
y13
y14

Experiments
in the center
of the plan

15
16
17
18
19
20

0
0
0
0
0
0

0
0
0
0
0
0

0
0
0
0
0
0

y15
y16
y17
y18
y19
y20

124

By equal number of observations in the experimental points, the estimates of the coefficients
in the regression equation are determined by the dependencies: (Dean & Voss 1999)

l

k

i

N

l
il

N

l
l yxayab ∑∑∑

= ==

−=
1 1

2

1
210

∑
=

=
N

l
lili yxab

1
3

ljl

N

l
ilij yxxab ∑

=

=
1

4

∑∑∑∑
== ==

−+=
N

l
l

k

i

N

l
lill

N

l
ilii yayxayxab

1
2

1 1

2
6

1

2
5

 (6.6)

Where 654321 ,,,,, aaaaaa are defined from the following table 29 depending on the
number of factors and the type of the plan. Values of the coefficients a are used to calculate
the estimates of the coefficients b in the regression equations obtained with central
composite orthogonal plan or central composite rotatable plan.

Table 29 Values of the coefficients (Dean & Voss 1999)

k
1N Central Composite Rotatable Plan

1a 2a 3a 4a 5a 6a 7a
2 22 0,2000 0,1000 0,1250 0,2500 0,1250 0,0187 0,1000
3 32 0,1663 0,0568 0,0732 0,1250 0,0625 0,0069 0,0568
4 42 0,1429 0,0357 0,0417 0,0625 0,0312 0,0037 0,0357

The estimates of the variances of all the regression coefficients are calculated by the formulas:
(Dean & Voss 1999)

[] []ysabs 2

10
2 = ;
[] []ysabs i

2
3

2 = ;

[] []ysabs ij
2

4
2 =

;
[] []ysabs ii

2
7

2 = . (6.7)

Where [] ∑
=

−
−

=
0

1

2
00

0

2)(
1

1 N

u
meanurepro yy

N
ys is dispersion of reproducibility. (6.8)

N0 is the number of experiments in the ‘0’-point. y0u are the real values of y in the ‘0’-point
and y0mean is their mean value.

a

6.2.3.2

If iib ,,0

(Dean &
coeffici
checked

The val
Fisher:

calculaF

Where t

2s
adequa

N is the
is the nu

If calcuF
but if F
describe
1999).

6.2.3.3 I

The pla
equation

0= by

The obt
examine
this surf

This an
canonic
facilitat
determi

Statistical a

[iiij bs 0, >
& Voss 199
ent is impo

d the conditi

lidation for

repro

ade
ated s

s
2

2

=

the dispersi

(
20

1=
∑
=

=

N

y
N

l
acy

e number of
umber of sig

ulated tabF≤

calculatedF >
e the experi

Interpretatio

anning of ex
n (mathema

1
++∑

=

k

i
ii xb

tained mode
ed area. The
face and if s

nalysis begin
cal transform
tes the geo
ning the ce

analysis

] Studeniiiji t,,,

99), then th
ortant for the
ions of imp

r adequacy

ilityoducib

equacy

on (varianc

('−−

−

NkN

yymeasured

f the experi
gnificant co

ble the mod

tableF the m
iment in a u

on of the re

xperiment f
atical model

1
+∑

<
=

k

ji
i

iij xxb

el must be a
ere should a
so, then the

ns with the
mation is pr
ometric ana
enter of th

nt , where tS

he correspon
e regression

portance for

of the who

(Fisher & Y

e) of adequ

)

)10

2

−N

ycalculated

ments, N0 i
oefficients in

el is adequa

model is not
useful mann

sults

from secon
l) of the form

1
+ ∑

<<
=

k

gji
i

ijgj b

analyzed in
also be chec
coordinates

transforma
esented by
alysis of th

he response

Student is th

nding coeff
n equation a
all regressi

ole mathem

Yates 1973)

uacy is deter

 (Dean &

is the numb
n the gained

ate, this me

t adequate a
er. The valu

nd order fin
m (Dean &

..+gji xxx

order to fin
cked if ther
s of this poi

ation of the
the choice o
he equatio

e surface (i

he ‘coefficie

ficient is si
and will tak
ion coefficie

matical mod

) (Dean & V

rmined by th

& Voss 1999

ber of exper
d mathemat

eans that it

and we can
ues of Ftable

nishes with
Voss 1999

..
1

+∑
=

i

k

i
ii xb

nd the nature
re exists a m
int have to b

above equa
of a new co
n. This tra
if it exists)

ent of Stude

gnificant. T
ke part in it
ents.

del is done

Voss 1999)

he dependen

9)

riments in th
tical model.

is true and

nnot use it b

e are taken

finding an
):

...2 +i

e of the resp
maximum po
be found.

ation into c
oordinate sy
ansformatio
), then relo

ent’ - a tab

This means
. In this ma

by the crit

nce:

he ‘0’-point

d gives exac

because it d
from (Dean

adequate q

ponse surfa
oint (extrem

canonical fo
stem, which

on is expre
ocating the

125

ble value

that the
anner are

terion of

 (6.9)

 (6.10)

t and

ct results

does not
n & Voss

quadratic

 (6.11)

ce in the
mum) for

orm. The
h greatly
essed in
original

126

coordinate center into the found new one (by this relocation the linear members ii xb are
dropped out) and after this rotating the coordinate axes (by this rotation the members jii xxb
are dropped out too). Having all these changes, the quadratic equation of the response surface
in canonical form looks like this:

22
222

2
111 ... mmms zzzyy θθθ ++++= (Dean & Voss 1999) (6.12)

Where sy is the value of the response surface in the center of the new coordinate system; iz -
are the new coordinate axes rotated in the factor space with a special angle to the old ones Xi;

iiθ - are the canonical coefficients.

The procedure for the canonical transformation of the model contains the following steps:
(Myers, Montgomery & Cook 2009)

1. Determine the coordinates of the center of the response surface (msisss xxxx ...,..., 21)

by solving the system of linear equations, obtained after aligning to zero the first

derivative of y for each ix ;

0=
∂
∂

ix
y

, ki ,...,1= (6.13)

If the determinant of system (6.13) is not equal to zero, the response surface has a center, but
if it is equal to zero then the surface does not have a center within the factorial space. In this
case the center is accepted to be either in the beginning of the old coordinate system or in a
point that holds the "best" response value.

2. Calculating the surface response value in the new center - sy (or finding the free

member of the canonical equation). This is done as the already calculated coordinates

isx from (6.13) are substituted in equation (6.11).

3. Determination of the canonical coefficients iiθ . For this purpose we build the

characteristic equation:

0

...5,0...5,05,0
..................
5,0......5,05,0
..................
5,0...5,0...5,0
5,0...5,0...5,0

)(

21

21

222221

111211

=

−

−

−

=

−

θ

θ

θ

θ

θ

mmmimm

imiiii

mi

mi

bbbb

bbbb

bbbb
bbbb

f
 (6.14)

where jiij bb = .

127

The canonical coefficients are roots of equation (6.14). The check up for correctness of
the calculations is done by the formula:

 ∑∑
==

=
m

i
ii

m

i
iib

11

θ (6.15)

4. Writing down equation (6.11) in canonical form

22
222

2
111 ... mmms zzzyy θθθ ++++=

 (6.16)
and determining the type (as geometrical figure) of the response surface.

5. Obtaining a system of equations that links the new coordinate axes with the old ones:

)(cos...)(cos...)(cos)(cos
...

)(cos...)(cos...)(cos)(cos

2211

112211111

msmmisimsmsmm

msmisiss

xxxxxxxxz

xxxxxxxxz

−++−++−+−=

−++−++−+−=

ωνβα

ωνβα

(6.17)

Using special formulas that we are not further examining here (Dean & Voss 1999) we can
find the connection between the old and the new coordinate systems.

According to the obtained iiθ values there exist different possibilities for the response surface
(Myers, Montgomery & Cook 2009). This is automatically done later in the used software.
Because of this here are not given any more details about the response surfaces. In the next
part follows the explanation of our particular design of experiment and of the obtained results.

6.3 The development of the model for IT human performance prediction

6.3.1 Recognition and statement of the problem

The question that we have to answer, as already explained in the beginning of this chapter is
how and which human factors influence the individual performance in a software company
during the software development process.

In our case - when investigating the effectiveness of a software company, depending on
individual psychometric qualities of the personnel, we are using this special type of passive
experiment (that we have already explained above). Types and evaluation of the psychometric
qualities (characteristics) of personnel and the related efficiency of the company are
determined through the collection and processing of questionnaire data. There we are
observing the current state of the firma based on a fixed set of not controlled factors.
As already explained in the previous chapters 3, 4 and 5 we have conducted a full
examination of the software development process with all stages and with the corresponding
different roles and their responsibilities. We have adopted the FMEA method to make this

128

analysis in order to find the most important human characteristics and then adopting the Big
Five theory we were able to conduct an evaluation of the data.

After summarizing the data we have analyzed how each of the factors influences the
productivity and we have calculated the needed correlation values. These correlation values
are actually our analysis, which of the factors are the most important for the productiveness.
From the data shown on the figures below we can also see the min and max for each of the
factors, which is very important when we want to find the factor space of our experiment.

This information is shown here once again for better understanding.

Table 30 Correlation Analysis between the personal features and the performance

 Motivation Conscient. Openness Agreeab. Experience Extravers. Emot.stab.
Performance 0.968941 0.721512 0.598376 0.416717 0.251489 0.194627 0.128402

We can see the correlation values for the factors:

Correlation (Motivation, Performance) = 0.96
Correlation (Conscientiousness, Performance) = 0.72
Correlation (Openness, Performance) = 0.59
Correlation (Agreeableness, Performance) = 0.41
Correlation (Experience, Performance) = 0.25
Correlation (Extraversion, Performance) = 0.19
Correlation (Emotional Stability, Performance) = 0.128

Led by these results and the knowledge that correlation values between 0.3 and 0.5 have
medium importance and bigger than 0.5 have big importance (Cohen 1988), it was easy to
decide that we will consider the first four factors.

In order to obtain a clear idea how exactly these features influence the performance here
follow the figures showing these dependencies. In all figures Series 1 are the real points and
Poly. (Series 1) are the polynomial functions that are maximal near to the real values.

Fi

Figure 29 C

igure 30 Corr

Correlation b

relation betw

between Moti

ween Conscien

ivation and P

ntiousness an

Performance

nd Performannce

129

Figure 31 C

Figure 32 Co

Correlation b

orrelation bet

between Intell

tween Agreea

ligence and P

ableness and

Performance

Performancee

130

Observi
perform
observe
factors a

We can
line and
reductio
depende
to give
decreasi
difficult
is a kind

In orde
experim
motivat
experim
motivat

Process
three fa
Figures
they ha
human
factors w

ing the fig
mance value
ed into more
and the prod

n see that th
d until 85%
on in the v
ence: the gr
the best po
ing. This is
t to see per
d of de-mot

er to make
ments for thr
tion we can

ments we c
tion and mak

ing the gat
actors (Exp

33 to 35. W
ave signific
productivit
will not be

gures 30 to
es for some
e details in t
ductiveness

he graphic in
% (where th
values. Thi
rowing of th
ssible produ
s explained
spective for
tivation and

our exper
ree crucial v
see a signif

can show h
ke a compa

hered data
perience, E
We have ca
antly low v
ty because
of our inter

Figure 33 C

o 32 we
e mean to
the next par
s are actuall

n figure 29
he maximu
s can be e

he motivatio
uctiveness a
with the fa

r developm
d results in lo

riment mor
values of th
ficant chang
how does
arison betwe

we have al
xtraversion
alculated al
values. Thi
the connec
est any mor

Correlation b

see parabo
high value

rt of the exp
ly our goal.

 is differen
um is) it is
explained w
on up to 85%
at work and

fact that the
ment as they

ower perfor

re compreh
he motivatio
ge in the pe
the produc

een them.

lso build th
n and Emot
lso the corr
is shows th
ction is not
re.

between Expe

ola-like gra
es of the f
periment as

nt from the o
growing a

with a com
% is connec
d by higher
e people wi

have alread
rmance leve

ensive we
on: 55%; 70
erformance
ctiveness ch

he correlatio
tional Stab
relation valu
hat we cann

clear enou

erience and P

aphics and
factors. Thi
these conne

other ones.
and after th
mplex subje
cted with gr
values than

ith 100% of
dy reached
els.

have decid
% and 85%
values. Con
hange by d

on graphics
bility) and
ues and as
not use the
ugh and be

Performance

maximum
is analysis
ections betw

It is very n
his we have
ective-psych
rowing of th
n 85% this
f motivation
the maxim

ded to mak
%. By these l
nducting the
different va

s between t
the perform
shown in t

em as predi
cause of th

131

m of the
will be

ween the

near to a
e a slow
hological
he desire
desire is
n find it

mum; this

ke three
levels of
ese three
alues of

the other
mance –
table 30,
ictors of
his these

Fig

Figure 34 C

gure 35 Corr

orrelation be

relation betwe

etween Extra

een Emotiona

version and P

al Stability an

Performance

nd Performa

e

nce

132

133

This means that we have found the four most important human traits (Motivation,
Conscientiousness, Openness and Agreeableness) that influence the performance and we will
continue our research-work with them. From the figures we see the min and max values,
which are important for determination of the factor space, and they are:

Conscientiousness from 38 % to 90%.
Intelligence from 58% to 98%.
Agreeableness from 40% to 100%.

6.3.2 Pre-planning of the Experiment

6.3.2.1 Choice of factors, levels and range

Having the analysis from the previous point and the theoretical background that explains how
we select our input factors we can say that we have already found the factors that we will
analyze and they are as follows: Motivation; Conscientiousness; Intelligence and
Agreeableness.

In the industrial practice the most commonly used models are of second degree in a
polynomial form. Because of this we can reason our choice for the mathematical model of
second order of Taylor.

The range or the factor space in our case is determined of the values of the factors, measured
during the test. And they vary in the following manner:

Conscientiousness from 38 % to 90%.
Intelligence from 58% to 98%.
Agreeableness from 40% to 100%.

As we have already explained we will conduct three experiments by motivation of 85%, 70%
and 55% and this means that we have three factors which we will observe in connection with
the performance. We will design an experiment for three factors at two levels, from the type

32 in the already mentioned ranges but we will design three different experiments for every
special value of the motivation factor.

6.3.2.2 Selection of the response variable

In our research the examined response variable is the human performance in the software
development in connection with the special personal traits (Motivation, Conscientiousness,
Intelligence and Agreeableness). In order to measure this performance we have decided to use
the mean value between three different evaluations; the first one is the employee’s personal
work-evaluation; the second one is the evaluation from their colleagues and the third one is
the supervisors’ evaluation. In this way we have received a comprehensive value that we can
use in our further experiment.

The formulas for these evaluations can be seen in chapter 3, but we will show them here once
again (see (3.47) and (3.48)).

134

humanPerformance = {HFIT × softwareDevelopmentProcess } (6.18)

humanPerformanceEvaluation = {personalAssessment, supervisorAssessment,

 colleagueAssessment}

r)(sessmentpersonalAs

SR ∈ RSR: personIT × assessment × workingProcess

→ personalAssessment

r)(sup essmentervisorAss
SR ∈ RSR: personIT × supervisor × assessment × workingProcess

→ supervisorAssessment

r)(ssessmentcolleagueA
SR ∈ RSR: personIT × colleague × assessment × workingProcess

→ colleagueAssessment

personIT = {analyst, designer, developer, acquisitor, reviewer, programmer,
tester, administrator, qualityEngineer, project leader,
systemProgrammer, chiefProgrammer}

Furthermore, our experiment leeds to

HFIT → ve)eval(BigFi
DoE HF FMEA

ocessSoftwarePr (6.19)

where DoE stands for the applied statistical method as so-called Design of Experiment.

6.3.2.3 Choice of experimental design

There are a lot of possibilities to realize the matrix of the planned experiment (central
composite orthogonal design; central composite rotatable design; "D"-optimal plans, plans of
Hartly, etc..) but we have chosen to work with the central composite rotatable design for its
advantages. This method is proposed by Box and Hunter (Box & Hunter 1957) and (Cohran
& Cox 1957) and later examined by Myers (Myers 1971).

It offers the following advantages (Khuri & Cornell 1996) (Myers, Montgomery & Cook
2009):

• Guarantees the invariance of the plan and of the parameter of optimization;

• The model obtained by the rotatable plan describes the response surface with equal
accuracy (equal variance) in all directions of the coordinate axes;

• In the whole factors space, the parameter of optimization has the same variance. This
assures that the calculation accuracy of the optimization parameter is independent from
the place where we are going to build the experiment;

• The variance of the optimization parameter does not change by rotation and translation
of it coordination system. This allows us to conduct the canonical experiment (rotation

135

and translation of the coordination system) with the goal to find the geometrical figure
of the designed experiment;

• The fact that by rotatable experiments the variance does not change assures the
correctness of the statistical analysis of the gained mathematical model.

6.3.3 Realizing and Analysis of the Experiment

For conducting our experiments we have worked in cooperation with the Technical University
of Varna, Bulgaria and have used the kindly provided from them software-tool to conduct all
calculations needed for our design. In the following part we will explain in detail the used
software and the results that it provides on every step. The software is in Bulgarian language
developed and because of this the text in the windows is in Bulgarian, but an explanation in
English assures the understanding. The summarized results of all experiments can be found in
the following paper (Georgieva et al, 2011 b).

Of course it is possible to use also other software but we have two very fundamental reasons
to choose exactly this one:

1. Choosing to model our experiment with the central composite rotatable design it was
impossible for us to find well known software that supports us exactly with the desired
steps for conducting the experiment.

2. Because of our cooperative work with the Technical University of Varna we did not
have to pay for the software (whereas all other software needed to be paid for) and
gained exactly the appropriate tool for our goal.

Here we are explaining the steps in conducting the experiment and we have visualized the
whole process in the following screenshots. The software tool is specially developed for
central composite rotatable plans and all calculations and statistical verifications are
included. This makes the planning of our experiment much easier and supplies us at the
end with the desired mathematical model and the response surface graphics.

The first step is to choose the number of factors (Fig.36) that we are going to include in
our experiment and as already explained we have decided that we will explore three
factors, so we are choosing here the second option which is ‘three factors experiment’.

Figure 36 Choosing the number of the factors

136

On the next step (Fig.37) we have to choose names for the factors. For convenience in the
software product we have decided to use the following abbreviations: co=conscientiousness;
int=intelligence; agr=agreeableness and pr=performance. The dimensions for the factors
according to our methodology (test data) are in percentage.

Figure 37 Selecting names and dimensions for the factors

On the next Figure 38 are visualized the different values of a factor that are important for the
correct design of the experiment.

The first important point from the realizing of the experiment is the determination of the zero
point of the coordinate system. Symmetrically around it will be build the plan of the
experiment. The zero point determination is made using the values of the other factors, which
can be seen on the Figure 30 to Figure 32, where are shown the correlations between the
factors and the performance. Usually for zero point is chosen this one, that is in the middle of
the factor space, determined by the values of the input factors.

We are going to explain here how we determine the zero-levels and the variance intervals for
every factor. For the first factor conscientiousness the factor space is between 38% and 90%,
this means that the middle is 64% and this will be the zero point for cons. The variance
intervals (+/-1) should be chosen in a way that the values of the star points are inside the
factor space, otherwise our experiment will be not correct as we won’t be able to cover all
needed points. The star points are usually chosen to be on a distance from the end of the factor
space not bigger than 15% of the distance between the two star-points. This is made with few
experiments on the trial-error principle until the best values are found. For the
conscientiousness we have the following values (see the figure), we are choosing the values of
the star points so that we will be sure that they stay in the factors space after designing the
experiment and these are 44% for -1.682 and 84% for +1.682 and based on them we are
calculating the values of +1 and -1 (52%, 76%). This means that for the conscientiousness the
variance interval will be +/- 12.

137

Figure 38 Determining the input information for the conscientiousness

Analogically we are making the same calculations for the other two factors and we gain the
values:

Intelligence from 58% to 98%, this means that the zero point will be 78%; the star
points will be approximately -1.682 = 62% and +1.682 = 94%. Then we can calculate
the variance interval which will be: +/-10 and the -1 = 68% and +1 = 88%.

Agreeableness from 40% to 100%, this means that the zero point will be 70%, the star
points will be approximately -1.682 = 45% and +1.682 = 95%. Then we can calculate
the variance interval which will be: +/-15 and the -1 = 55% and +1 = 85%.

From the explanations above follows that we can now write in our program (see the Figure
below) the input values for the experiment.

Figure 39 Input values for the factors

138

I. The first experiment that we conduct is by motivation of 55%

The next screen (Figure 40) shows us the entire table of the experiment (already explained in
the previous part of this chapter). We have alltoghether 20 experiments (all of them displaied
with their coded and natural values): 8 of them are in the 8 possible combinations of the three
factors; 6 are in the star points and the rest 6 are in the zero-point. We see the factors X1 , X2
and X3 first in their coded view and after this with their real experiment values and in the last
column we add the value for the observed/resultant factor – the performance. We insert the
measured performance values and on the next step we will see if they match with the
calculated from the programm.

Figure 40 Plan and Results of the Experiment (Motivation=55%)

The software is carrying out all the needed calculations and delivers the information
visualized on the next screen (Figure 41). We first see all coefficients b in the regression
equation, calculated according formulas (6.6) and after this we see []bs 2 or Δ b - the
estimates of the variances of the regression coefficients according to formulas (6.7). Having
this data we can find out which of the coefficients are significant and which not. We see that
we have only the b23 that is not statistically significant and because of this the X value
connected with it will not be included in the end equation. The next part of the screen is
occupied with the data for the output factor – the performance: we have our estimated values,
after this follow the calculated values from the program and after this the difference between

139

the two in percentage. This difference shows how near the calculated values compared to the
experimental ones are. If the proposed data is very near to the experimental one this means
that the possibility to obtain an adequate model is very high. And vice versa if the difference
is high, then the possibility for adequate model is low. On the bottom of the screenshot, is
shown the mathematical equation in coded form only with significant coefficients:

Y(X1,X2,X3)= 69.498523 + 3.249996*X1 + 3.212947*X2 + 3.659933*X3 –
0.321250*X1*X2 + 0.301250*X1*X3 – 3.123905*X1*X1 – 4.679923* X2*X2 –
7.052851* X3*X3

 (6.19)

Figure 41 Coefficients and the regression equation in coded form

On the next screenshot – Figure 42 there is a lot of information, so let us start with the first
rows: there we see the Variance of adequacy – according to formulas 6.8 and 6.10 and the

Fisher Criterion
 ilityreproducib

adequacy

s
sF 2

2

= . The Fisher Criterion is F=0.98972 < Ftable= 6.09 (Dean

& Voss 1999) and this means that the resultant mathematical model is adequate and
statistically correct.

Subsequent comes the regression equation in natural form that describes the searched from us
model. Having this equation we can predict the performance of every employee based only
on his psychological features (motivation, conscientiousness, intelligence and
agreeableness).

140

The model looks like:

Performance [%] by Motivation of 55% = pr(co, int, agr) = -523.021607 + 3.139297*co
+ 7.793311*int + 4.525325*agr – 0.002677*co*int + 0.001674*co*agr –
0.021694*co*co – 0.046799*int*int – 0.031346*agr*agr (6.20)

Figure 42 Regression equation in natural form and statistical analysis of the model

After having the mathematical model now we have to find the figure of the response surface
and it central point. For this we are using D= -822.5758 (D is the matrix discriminant of the
coefficients of the model) which gives us the information that the response surface has a
center and after this the program gives us the calculated coded and natural values for this
central point. Later on comes the canonical form of the regression equation and the check if it
is correct and this canonization gives us the information that the response surface has the form
of rotational ellipsoid and that the center is its maximum. At the end come the equations that
give us the connection between coded and natural coordinate systems and vice versa and a
check that proves that the canonical transformation is correct.

On Figure 43 we see the two-dimensional intersections for all the possibilities (-1, 0, 1) for
each of the input factors (X1, X2, X3). For every cut we have a 3D graphic in MATLAB on
which we can see how exactly the response surface looks like and where exactly the
maximum is.

141

Figure 43 Two-dimensional intersections

For example on the following figures we see the intersection for agreeableness and
openness/intelligence where the other two factors (motivation=55% and
conscientiousness=52%) are fixed because otherwise we cannot display the graphic on a 3D
figure. We will explain now the first three graphics for the 2-dimensional cut for
agreeableness and intelligence, which we gain from the yellow equations from figure 42. X1
is the conscientiousness and the values of -1, 0 and +1 are actually the natural values of 52%,
64% and 76%.

On Figure-44 a) we can see the response surface of the performance as function of
agreeableness and intelligence, where agreeableness changes btw 40% and 100% and
intelligence btw 60% and 100%. The maximum point of the surface is by approximately 75%
of agreeableness and 80% of intelligence and is exactly 64%.

By 60% of intelligence, the connection btw agreeableness and performance is an ellipse. The
minimum values of performance of 7% are by agreeableness of 40%, when agreeableness
grows until 75% we gain the maximum values of performance of 42%, by agreeableness of
80% the performance is 40.7%. The further growing of agreeableness until 100% leads to
decreasing of the performance values up to 20%. This can be explained with the specific
influence of this psychometric characteristic over the personal performance: the growing
values of agreeableness up to 75% characterize with growing of the performance because the
employee is able to communicate and cooperate with his colleagues, he is able to accept
others’ ideas and to follow instructions; after these values the person loses his own judgment
and cannot resolve any problem alone. The software engineer agrees with everyone and is not
able to take decisions anymore and this leads to low values of performance. When the values

142

are around 40% means that he is not able to cooperate and works very difficult with other
people and this of course means also low productivity.

The next observations that we will explain are about the influence of the intelligence over the
performance. On Figure-44 a) by fixed agreeableness of 40% we can see that by intelligence
of 60% the performance is only 7% and with growing of the intelligence values up to 80% we
reach performance of around 29%. The further growing of the intelligence leads to decreasing
of the performance values up to 13.3%. The observations have shown that with the increasing
of the intelligence after a specific point (around 80%), the observed software team members
start to take very complex decisions and don’t choose the optimal algorithm for resolving a
problem. This leads to complications and more mistakes in the work process, the employees
need more time and the solutions are not optimal, because of this it is logical to observe the
decreasing of the performance (productiveness). By low values, even by 60% openness we
have very low productiveness which shows that we need employees with intelligence over the
average in order to manage the software engineering process.

Figure 44 a) Response surface by (motivation=55% and conscientiousness=52%)

143

Figure 44 b) Response surface by (motivation=55% and conscientiousness=64%)

Figure 44 c) Response surface by (motivation=55% and conscientiousness=76%)

144

On the Figures 44 –b) and 44 –c) can be observed the same experimental dependencies, which
can be analogically explained. Because of this we are going to give only the specific points
from the response surface.

For example in 44 –c) which is by conscientiousness of 76% we have that by intelligence of
60% and agreeableness of 40% the performance is only 13%. The maximum of performance
is by agreeableness of 80% and is 49%. The further growing of agreeableness until 100%
leads to reduction in the productiveness value to 29%. When observing the intelligence values
we can see that by 60% the performance is only 13% and by increasing the values up to 83%
we gain the maximum point of around 34% productiveness. The next increasing of the
intelligence up to 100% results with 17% performance.

Moving in intersection by the values of conscientiousness of 76%, agreeableness of 75% and
of intelligence 83% we can find the maximum performance value showed on Figure 44 –c)
and it is 70%.

Having these explanations we have observed the influence of intelligence and agreeableness
over the performance, when the values for conscientiousness and motivation are fixed.
Actually we have observed the one-dimensional intersections of the corresponding
dependencies for better understanding of the changing values.

In order to describe also the influence of the conscientiousness over the productiveness we are
using the next figures (origin are the second green group of formulas on figure 43) where the
intelligence takes values of 68%, 78% and 88% and the motivation is fixed on 55%.

On the next figures 45 a) to 45 c) is shown the influence of agreeableness and
conscientiousness over the performance, where agreeableness changes btw 40% and 100%
and conscientiousness btw 40% and 90%. The maximum point of the surface is by
approximately 75% of agreeableness and 70% of conscientiousness and is exactly 63%. The
motivation is fixed to 55% and the intelligence takes three particular values.

We are explaining only the connection btw conscientiousness and performance and as we
see it is again an ellipse with the following important points (Fig. 45a): by agreeableness of
40% we have values for conscientiousness btw 40% and 90%. By conscientiousness btw 40%
to 55% we have very low performance of about 8% to 22%. When the conscientiousness
values are growing up to 70% we have the maximum values of performance of 27% and after
this by conscientiousness of 80% we have 24.4% performance and by conscientiousness of
90% we have 18% performance. This can be explained with the specific of this psychological
characteristic and it is that by growing until 70% it means that the software specialist is trying
to do his best and to manage his work as good as possible. From other side this characteristic
hinders the process of ignoring the unimportant details in the everyday work, and exactly this
leads to decreasing of the performance, when the conscientiousness is higher than 70%. The
employee loses too much time in checking details and spending time for not so important
problems which needs more time and results into lower productivity. When the values are
low, until 55% we have very low performance and this is to be explained with the fact that
such employees are not doing their job with the needed respect and cautious.

145

Figure 45 a) Response surface by (motivation=55% and intelligence=68%)

Figure 45 b) Response surface by (motivation=55% and intelligence=78%)

146

Figure 45 c) Response surface by (motivation=55% and intelligence=88%)

On the Figures 45 –b) and 45 –c) can be observed the same experimental dependences and
because of this we will give only some values. For example in 45 –c) which is by intelligence
of 88% we have that by conscientiousness of 40% and agreeableness of 40% the performance
is only 15.3%. The maximum of performance is by conscientiousness of 68% and is 33%. The
further growing of conscientiousness until 90% leads to reduction in the productiveness value
to 29%.

Moving in intersection by the values of intelligence of 88%, conscientiousness 68% and of
agreeableness 75% we can find the maximum performance value showed on Figure 45–c) and
it is 69%.

The rest three figures (46 a, b, c), originating from the turquoise equations (Figure 43) are
absolutely analogical to the previous ones, the only difference is that here is visualized the
dependence btw intelligence, conscientiousness and performance where the other factors
motivation=55% and agreeableness=55%, 70%, 85% are fixed. We will not explain the
dependencies once again as we have already said they are the same as in the other figures. We
are giving the figures just for better understanding.

147

Figure 46 a) Response surface by (motivation=55% and agreeableness=55%)

Figure 46 b) Response surface by (motivation=55% and agreeableness=70%)

148

Figure 46 c) Response surface by (motivation=55% and agreeableness=85%)

II. The second experiment is by motivation of 70%.

We will not explain once again the first three screen-shots from the program that are about the
input data because they are every time the same. We will continue with Figure 47, where we
can see the plan of the experiment with the 20 experiments (as already explained 8 of them
are in the 8 possible combinations of the three factors; 6 are in the star points and the rest 6
are in the zero-point). We see the factors X1 , X2 and X3 with their coded and with their real
values and in the last column we add the value for the observed/resultant factor – the
performance, but this time by motivation of 70%.

149

Figure 47 Plan and Results of the Experiment (Motivation=70%)

If we compare the performance values we will see a significant difference, here we have
performance values of 82,8% and in the previous experiment we had 69,9%. So we can make
the first observation that by enhancing the motivation the performance also grows
significantly.

On the next figure 48 we see all coefficients b in the regression equation and the Δ b - the
estimates of the variances of the regression coefficients. Having this data we can observe
which of the coefficients are significant and which not. We see that again only one coefficient
b23 is not significant. The next part of the screen is occupied with the data for the output factor
– the performance: we have our estimated values, after this follow the calculated values from
the program and after this the difference between them in percentage. We can see that again
as in the first experiment the difference is very small and we can end with the following
regression equation in coded form with significant coefficients:

Y(X1,X2,X3)= 82.384068 + 3.932305*X1 + 3.748234*X2 + 4.439234*X3 –
0.237500*X1*X2 + 0.237500*X1*X3 – 3.633999*X1*X1 – 5.490612* X2*X2 –
8.319736* X3*X3

 (6.21)

150

Figure 48 Coefficients and the regression equation in coded form

On the next screenshot – Figure 49 we see the Variance of adequacy, then the Fisher
Criterion.

Figure 49 Regression equation in natural form and statistical analysis of the model

151

This statistical analysis shows that the gained model is correct and adequate and we have the
regression equation in natural form that describes the performance of employees based only
on their psychological features.

Performance [%] by Motivation of 70% = pr(co, int, agr) = -611.111026 +
3.619927*co + 9.066844*int + 5.388229*agr – 0.001979*co*int + 0.001319*co*agr –
0.025236*co*co – 0.054906*int*int – 0.036977*agr*agr

 (6.22)

On the next part of the screenshot follows the analysis for the response surface: if it has
center, and if so, then what are the coordinates. They are displayed in coded and natural form.
Later on are shown the canonical equations and the proof that the translation between the
different coordinate systems is correct. This canonization gives us the information that the
response surface has the form of rotational ellipsoid and that the center point is its maximum.

On Figure 50 we see the two-dimensional intersections for all the possibilities (-1, 0, 1) for
each of the input factors (X1, X2, X3). For every cut we have a 3D graphic in MATLAB on
which we can see how exactly the response surface looks like and where exactly the
maximum is. As we have explained in detail these 9 graphics for the previous experiment,
here we will show only a table (table 31) with the corresponding values for the current case.
Any further explanations would be just repetition of everything said before. For the interested
reader we have shown all the graphics by Motivation of 70% and 85% and also the one-
dimensional intersections in the Appendix.

Figure 50 Two-dimensional intersections

152

Table 31. Comparison between the performance values by motivation of 55% and of 70%, measured on
the out lines of the factor space

Conscientiousness
[%]

Intelligence
[%]

Agreeableness
[%]

By Motivation 55% By Motivation 70%
Performance Performance

52 60 40 7 8,2
75 42 50,3
80 40,7 49
100 20 25

52 60 40 7 8,2

80 29 33,7
100 13,3 15,3

76 60 40 13 16

80 49 58
100 29 34,6

76 60 40 13 16

83 34 40,4
100 17 21,2

40 68 40 8 9
55 22 26
70 27 32
80 24,4 29,4
90 18 22

40 88 40 15,3 17,5
68 33 39
90 23 28,4

The comparison between the performance values by motivation of 55% and of 70%, made on
the out limits of the factor space takes values that can be seen from the figures 44, 45 and 46
and also from the rest figures in the Appendix.

We can clearly see in the table that we have significant increase in the performance values by
motivation of 70%, but the dependencies of the different characteristics and the productivity
stay the same as already explained for the previous experiment.

III. The third experiment is by motivation of 85%

We will start here directly with the explanation of the plan of the experiment shown on the
figure 51 below as the other steps are the same as for the other two experiments. On the
figure 51, we can see the plan of the experiment with the 20 experiments (as already
explained 8 of them are in the 8 possible combinations of the three factors; 6 are in the star
points and the rest 6 are in the zero-point). We see the factors X1 , X2 and X3 with their coded
and with their real values and in the last column we add the value for the observed/resultant
factor – the performance, but this time by motivation of 85%.

153

Figure 51 Plan and Results of the Experiment (Motivation=85%)

If we compare the performance values with the other two experiments we will see the
difference: in the first case we had performance of 69,9%; in the second 82,8% and here we
have values of 92.3%. This confirms our previous observation that by enhancing the
motivation the performance also grows significantly.

On the next figure 52 we see the coefficients b of the regression equation and their estimation
of variance - Δ b. Having this data we can observe which of the coefficients are significant
and which not. We see that here all coefficient are significant. The next part of the screen is
occupied with the data for the performance: we have the estimated values, the calculated ones
and after this the difference between them. We can see that again as in the other two
experiments the difference is very small and we can end with the following regression
equation in coded form with significant coefficients:

Y(X1,X2,X3) = 92.183152 + 3.993549*X1 + 3.748571*X2 + 4.400294*X3 –
0.375000*X1*X2 + 0.125000*X1*X3 +0.125000*X2*X3 – 3.536538*X1*X1 –
5.304741* X2*X2 – 8.346049* X3*X3

 (6.23)

154

Figure 52 Coefficients and the regression equation in coded form

On the next screenshot – Figure 53 we see the Variance of adequacy and the Fisher Criterion.
This statistical analysis shows that the gained model is correct and adequate and we have the
regression equation in natural form that describes the employees’ performance by motivation
of 85%.

Performance [%] by Motivation of 85% = pr(co, int, agr) = -591.921937 + 3.671524*co
+ 8.791920*int + 5.377006*agr – 0.003125*co*int + 0.000694*co*agr+0.000833*int –
0.024559*co*co – 0.053047*int*int – 0.037094*agr*agr
 (6.24)

On the next part of the screenshot follows the analysis for the response surface: if it has
center, and if so, then what are the coordinates. They are displayed in coded and natural form.
Later on are shown the canonical equations and the proof that the translation between the
different coordinate systems is correct. This canonization gives us the information that the
response surface has the form of rotational ellipsoid and that the center point is its maximum.
Exactly like in the previous two experiments.

155

Figure 53 Regression equation in natural form and statistical analysis of the model

On the next Figure 54 we see the two-dimensional intersections for all the possibilities (-1, 0,
1) for each of the input factors (X1, X2, X3). For every cut we have a 3D graphic in MATLAB
on which we can see how exactly the response surface looks like and where exactly the
maximum is.

Figure 54 Two-dimensional intersections

156

As for the previous experiment by motivation of 75% we will not explain here the resultant
graphics but we will show them in the Appendix. The explanations and the gained data are
analogically to the first experiment by motivation of 55%, only the gained results are with
higher values because of the higher motivation. For better understanding we are showing a
comparison between the resultant data from the three experiments in the following table 32.

Table 32 Comparison between the performance values by motivation of 55%, 70% and 85%, measured on
the out lines of the factor space

Conscientious-
ness [%]

Intelligence
[%]

Agreeableness
[%]

By
Motivation
55%

By
Motivation
70%

By
Motivation
85%

Performance Performance Performance
52 60 40 7 8,2 16,6

75 42 50,3 57
80 40,7 49 55
100 20 25 30

52 60 40 7 8,2 16,6

80 29 33,7 40,7
100 13,3 15,3 22,3

76 60 40 13 16 25,4

80 49 58 65
100 29 34,6 39,6

76 60 40 13 16 25,4

83 34 40,4 47,7
100 17 21,2 28,2

40 68 40 8 9 16,6
55 22 26 34
70 27 32 40
80 24,4 29,4 38,2
90 18 22 31,3

40 88 40 15,3 17,5 24,5
68 33 39 46
90 23 28,4 36

The comparison between the performance values by motivation of 55%, 70% and 85% made
on the out limits/lines of the factor space represents values from the figures 44, 45 and 46 and
also from the rest figures in the Appendix for the other two experiments.

We can clearly see in the table that we have a significant increase in the performance values
by motivation of 85% in comparison with the other two experiments. Anyway the
dependencies btw the different characteristics and the productivity stay the same as already
explained.

Because of this we won’t give them once again but we will show only the differences between
the maximum performance values, taken from the maximum point of the response surface
(figures 42, 49 and 53) for every of the experiments. This can be seen below:

157

By motivation of 55% (figure 42):

By motivation of 70% (figure 49):

By motivation of 85% (figure 53):

It is clear to see that the differences between the values of the psychological characteristics
are imperceptible but we see significant difference in the Performance values. This can be
explained with the enormous influence of the motivation over the working process. As we
have seen in the very beginning the correlation value between motivation and performance is
0.968941, which is proved once again from the values above.

6.4 The developed model for IT human performance prediction

We will give a short summary over the achievements of the developed method:

• We were able to choose the most important human factors: Motivation;
Conscientiousness; Intelligence and Agreeableness, on which to build our model.

• We have conducted three experiments by three special values of the motivation factor,
because of the complex subjective-psychological dependence btw motivation and
performance.

The growing of the motivation up to 85% is connected with growing of the desire to
give the best possible productiveness at work and by higher values than 85% this
desire is decreasing. This can be explained with the fact that the people with 100% of
motivation find it difficult to see perspective for development as they have already
reached the maximum; this is a kind of de-motivation and results in lower
performance levels. By 55%; 70% and 85% motivation can be observed a significant
change in the performance values (figure 29) values and because of this we are
designing our experiments by these special values.

Conscientiousness = 70,19 %
Intelligence = 81,25 %
Agreeableness = 74,05 %

Performance = 71,35 %

Conscientiousness = 70,47 %
Intelligence = 81,29 %
Agreeableness = 74,11 %

Performance = 84,67 %

Conscientiousness = 70,6 %
Intelligence = 81,4 %
Agreeableness = 74,05 %

Performance = 94,5 %

158

• For the three experiments we have gained three statistically correct mathematical
models as follows:

 (6.25)
Motivation of 55%

Performance[%] = pr(co, int, agr) = -523.021607 + 3.139297*co +
7.793311*int + 4.525325*agr – 0.002677*co*int + 0.001674*co*agr –
0.021694*co*co – 0.046799*int*int – 0.031346*agr*agr

Motivation of 70%

Performance[%] = pr(co, int, agr) = -611.111026 + 3.619927*co +
9.066844*int + 5.388229*agr – 0.001979*co*int + 0.001319*co*agr –
0.025236*co*co – 0.054906*int*int – 0.036977*agr*agr

Motivation of 85%

Performance[%] = pr(co, int, agr) = -591.921937 + 3.671524*co +
8.791920*int + 5.377006*agr – 0.003125*co*int + 0.000694*co*agr +
0.000833*int – 0.024559*co*co – 0.053047*int*int – 0.037094*agr*agr

• The connection btw agreeableness and performance: the growing values of

agreeableness up to 75% characterize with growing of the performance because the
employee is able to communicate and cooperate with his colleagues, he is able to
accept others’ ideas and to follow instructions; after these values the person loses his
own judgment and cannot resolve any problem alone. The software engineer agrees
with everyone and is not able to take decisions anymore and this leads to low values of
performance. When the values are low around 40%, he is not able to cooperate and
works very difficult with other people and this of course means also low productivity.

• The connection btw intelligence and performance: with the increasing of the
intelligence after a specific point (around 80%), the observed software team members
start to take very complex decisions and don’t choose the optimal algorithm for
resolving a problem. This leads to complications and more mistakes in the work
process, the employees need more time and the solutions are not optimal, because of
this it is logical to observe the decreasing of the performance. By low values, even by
60% we have very low productiveness which shows that we need employees with
intelligence over the average in order to manage the software engineering process.

• The connection btw conscientiousness and performance: by growing until 70% it
shows that the software specialist is trying to do his best and to manage his work as
good as possible. From other side this characteristic hinders the process of ignoring
the unimportant details in the everyday work, and exactly this leads to decreasing of
the performance, when the conscientiousness is higher than 70%. The employee loses
too much time in checking details and spending time for not so important problems
which needs more time and results into lower productivity. When the values are low,
until 55% we have very low performance and this is to be explained with the fact that
such employees are not doing their job with the needed respect and cautious.

159

• The results of the whole development process of the predictive model can be
characterized in the following manner:

 ve)eval(BigFi
DoE HF FMEA

ocessSoftwarePr = ℱ (Motivation, Conscientiousness, Openness, Agreeableness)
 (6.26)

The following figure summarizes the characteristics qualification of the IT human factors for
their high performance in software development teams and structures.

Figure 55 Quantified IT human factors for high performance

The developed mathematical model gives the possibility to predict the productiveness of the
examined person based on his/her special psychological traits. This supports the process of IT
personnel recruitment and also the whole process of IT personnel development with a
powerful tool for achieving of better software quality.

6.5 Summary over the development of the predictive model

1) Based on the statistical analysis with which Chapter 5 ends, we have found out the

connection (correlation) btw the following complex psychological characteristics and the
performance.

1. Openness

2. Conscientiousness

3. Extroversion

4. Agreeableness

5. Neuroticism

6. Experience

7. Motivation

160

Having the correlation analysis we were able to decide that the Motivation;
Conscientiousness; Intelligence and Agreeableness are the most influencing factors that
we are going to investigate.

2) We have decided to use the Design of Experiment method for the modelling and to build a

rotatable experiment because of the following advantages (Khuri & Cornell 1996) (Myers,
Montgomery & Cook 2009):

• Gain maximum information from a specified number of experiments;

• Study effects individually by varying all operating parameters simultaneously;

• Take account of variability in experiments or processes themselves;

• Characterize acceptable ranges of key and critical process parameters contributing to
identification of a design space, which helps to provide an “assurance of quality;

• Guarantees the invariance of the plan and of the parameter of optimization;

• The model obtained by the rotatable plan describes the response surface with equal
accuracy (equal variance) in all directions of the coordinate axes;

• In the whole factors space, the parameter of optimization has the same variance. This
assures that the calculation accuracy of the optimization parameter is independent
from the place where we are going to build the experiment;

• The variance of the optimization parameter does not change by rotation and translation
of it coordination system. This allows us to conduct the canonical experiment (rotation
and translation of the coordination system) with the goal to find the geometrical figure
of the designed experiment;

• The fact that by rotatable experiments the variance does not change assures the
correctness of the statistical analysis of the gained mathematical model.

3) The factorial space according to the values of the input factors has been determined. The
input data for the experiment have been prepared. On figures 38 and 39 can be seen the
input, where the factor space is determined from the values of: Conscientiousness from
38% to 90%; Intelligence from 58% to 98%; Agreeableness from 40% to 100%.

4) The full matrix of the planned experiment by motivation of 55% (figure 40) is build and
the concrete performance values have been measured. The same have also been done by
motivation of 70% and 85% (figures 47 and 51). On the figures (41, 48 and 52) can be
seen the calculation of the coefficients of the mathematical model and after this (figures
42, 49 and 53) the statistical evaluation for correctness of the models and the regression
equations as end result.

 5) When having the mathematical models with all important coefficients, there have been
made statistical checks (figures 42, 49, 53) if they are adequate. They show that all the
models are adequate and this means that we can proceed with the next step, the analysis of

161

the two-dimensional intersections (figures 43, 50 and 54) of the response surface.

 6) It has been done a canonical analysis of all the models (figures 42, 49 and 53) in order to
determine the geometrical kind of the response surfaces. It is in all three cases a rotational
ellipsoid and the center is its maximum or we have in the center maximum performance.

 7) We have build three experiments by three special values of the motivation factor, because
of the complex subjective-psychological dependence btw motivation and performance.
The growing of the motivation up to 85% is connected with growing of the desire to give
the best possible productiveness at work and by higher values than 85% this desire is
decreasing. This can be explained with the fact that the people with 100% of motivation
find it difficult to see perspective for development as they have already reached the
maximum; this is a kind of de-motivation and results in lower performance levels. By
55%; 70% and 85% motivation can be observed a significant change in the performance
values (figure 29) values and because of this we are designing our experiments by these
special values.

8) For the three experiments we have gained three statistically correct mathematical models
as follows:
 (6.25)

Motivation of 55%
Performance[%] = pr(co, int, agr) = -523.021607 + 3.139297*co + 7.793311*int +
4.525325*agr – 0.002677*co*int + 0.001674*co*agr – 0.021694*co*co –
0.046799*int*int – 0.031346*agr*agr

Motivation of 70%
Performance[%] = pr(co, int, agr) = -611.111026 + 3.619927*co + 9.066844*int +
5.388229*agr – 0.001979*co*int + 0.001319*co*agr – 0.025236*co*co –
0.054906*int*int – 0.036977*agr*agr

Motivation of 85%
Performance[%] = pr(co, int, agr) = -591.921937 + 3.671524*co + 8.791920*int +
5.377006*agr – 0.003125*co*int + 0.000694*co*agr+0.000833*int –
0.024559*co*co – 0.053047*int*int – 0.037094*agr*agr

9) Comparing the three prognostic models we see that the response surfaces (rotatable
ellipsoids) and the mathematical equations are identical. The differences are only in the
concrete values and we are going to show the maximum values for each ellipsoid:

By motivation of 55% we have maximum performance of 71,35% (figure 42).

By motivation of 70% we have maximum performance of 84,67% (figure 49).

By motivation of 85% we have maximum performance of 94,51% (figure 53).

It is clear that with higher motivation we have also higher productiveness.

10) The connection btw the other three input factors and the performance are explained in the
following manner:

162

• The connection btw agreeableness and performance is an ellipse (figure 44), the
growing values of agreeableness up to 75% characterize with growing of the performance
because the employee is able to communicate and cooperate with his colleagues, he is able
to accept others’ ideas and to follow instructions; after these values the person loses his
own judgment and cannot resolve any problem alone. The software engineer agrees with
everyone and is not able to take decisions anymore and this leads to low values of
performance. When the values are low around 40%, he is not able to cooperate and works
very difficult with other people and this of course means also low productivity.

• The connection btw intelligence and performance is also an ellipse (figure 44). The
observations have shown that with the increasing of the intelligence after a specific point
(around 80%), the observed software team members start to take very complex decisions
and don’t choose the optimal algorithm for resolving a problem. This leads to
complications and more mistakes in the work process, the employees need more time and
the solutions are not optimal, because of this it is logical to observe the decreasing of the
performance. By low values, even by 60% we have very low productiveness which shows
that we need employees with intelligence over the average in order to manage the
software engineering process.

• The connection btw conscientiousness and performance is also an ellipse (figure 45).
This can be explained with the specific of this psychological characteristic and it is that by
growing until 70% it means that the software specialist is trying to do his best and to
manage his work as good as possible. From other side this characteristic hinders the
process of ignoring the unimportant details in the everyday work, and exactly this leads to
decreasing of the performance, when the conscientiousness is higher than 70%. The
employee loses too much time in checking details and spending time for not so important
problems which needs more time and results into lower productivity. When the values are
low, until 55% we have very low performance and this is to be explained with the fact that
such employees are not doing their job with the needed respect and cautious.

11) Figures 43, 50 and 54 show the two-dimensional intersections which are used for the
visualization of the response surface of the performance. We have shown there figures for
performance by motivation of 55% - figures 44, 45 and 46. In this way we are able to give
geometrical interpretation of the gained models and to find the dependencies btw the
performance and the three specific psychological features. The additional figures for the
other two experiments are shown in the Appendix.

12) For better understanding we have also additional one-dimensional intersections, on which
can be seen concrete values by different factors combinations, but as this is additional
information, it is shown in the Appendix.

13) The results of our experiment based on the DoE method could be characterized in the
following short manner as:

 ve)eval(BigFi

DoE HF FMEA
ocessSoftwarePr = ℱ (Motivation, Conscientiousness, Openness, Agreeableness)

 (6.26)

163

7 Chapter – Experimental validation of the predictive model for IT human

performance

In the last chapter are shown real examples of the effectiveness of the developed
mathematical model. We have developed also a special web-application which realizes the
test and after this transforms the gained information into input data for our model and ends
with the predicted productiveness for the examined person. The gained statistical information
shows the accurateness of the method and proves its positive use for improving the software
development process in the way that we can choose more reliable and productive personnel.

7.1 The actual application of the model

Here we are going to prove the adequacy and the effectiveness of the gained prognostic
mathematical models (Georgieva et al, 2011 c). This has been done with the conduction of
many surveys in German and Bulgarian software companies.

As we have seen until the moment we have designed a complex mathematical model that
describes the human productivity in the software development field based on the individual
personal characteristics. We will show once again the three equations according to the
measured motivation and after this we will give concrete real examples that show the
correctness of the model.

Motivation of 55%

Performance[%] = pr(co, int, agr) = -523.021607 + 3.139297*co + 7.793311*int +
4.525325*agr – 0.002677*co*int + 0.001674*co*agr – 0.021694*co*co –
0.046799*int*int – 0.031346*agr*agr

 (7.1)
Motivation of 70%

Performance[%] = pr(co, int, agr) = -611.111026 + 3.619927*co + 9.066844*int +
5.388229*agr – 0.001979*co*int + 0.001319*co*agr – 0.025236*co*co –
0.054906*int*int – 0.036977*agr*agr

 (7.2)
Motivation of 85%

Performance[%] = pr(co, int, agr) = -591.921937 + 3.671524*co + 8.791920*int +
5.377006*agr – 0.003125*co*int + 0.000694*co*agr+0.000833*int – 0.024559*co*co –
0.053047*int*int – 0.037094*agr*agr
 (7.3)

7.1.1 Examples

The following examples are a mean representative of the gained questionnaire data. We have
showed the data in the form of 12 examples (case studies), but actually they are summarizing
the data from 50 questioned software employees from different companies.

164

Real case 1:
84% agreeableness;
92% conscientiousness;
76% intellect;
Motivation 75%;
Estimated productivity 70%.

Productivity (calculated from the model) = -611.111026 + 333.033284 + 689.080144 +
452.611236 – 13.837168 + 10.193232 – 213.597504 – 317.137056 – 260.909712 =
68.32543%
Difference = 1.68%

Real case 2:

92% agreeableness;
84% conscientiousness;
70% intellect;
Motivation 85%;
Estimated productivity 70%.

Productivity (calculated from the model) = -591.921937 + 308.408016 + 615.4344 +
494.684552 – 18.375 + 5.363232 + 0.05831 – 173.288304 – 259.9303 – 313.963616 =
66.469353%
Difference = 3.53%

Real case 3:

82% agreeableness;
90% conscientiousness;
86% intellect;
Motivation 85%;
Estimated productivity 80%.

Productivity (calculated from the model) = -591.921937 + 330.43716 + 756.10512 +
440.914492 – 24.1875 + 5.12172 + 0.071638 – 198.9279 – 392.335612 – 249.420056 =
75.857125%
Difference = 4.14%

Real case 4:

90% agreeableness;
58% conscientiousness;
92% intellect;
Motivation 55%;
Estimated productivity 58%.

Productivity (calculated from the model) = -523.021607 + 182.079226 + 716.984612 +
407.27925 – 14.284472 + 8.73828 -72.978616 – 396.106736 – 253.9026 = 54.787337
Difference = 3.22%

Real case 5:

82% agreeableness;
68% conscientiousness;
94% intellect;

165

Motivation 75%;
Estimated productivity 75%.

Productivity (calculated from the model) = -611.111026 + 246.155036 + 852.28336 +
441.834778 – 12.649768 + 7.354744 – 116.691264 – 485.149416 – 248.633348 =
73.393096%
Difference = 1.61%

Real case 6:
82% agreeableness;
74% conscientiousness;
82% intellect;
Motivation 75%;
Estimated productivity 85%.

Productivity (calculated from the model) = -611.111026 + 267.874598 + 743.481208 +
441.834778 – 12.008572 + 8.003692 – 138.192336 – 369.187944 – 248.633348 =
82.06105%
Difference = 2.94%

Real case 7:

94% agreeableness;
90% conscientiousness;
96% intellect;
Motivation 85%;
Estimated productivity 55%.

Productivity (calculated from the model) = -591.921937 + 330.43716 + 844.02432+
505.438564 – 27 + 5.87124 + 0.079968 – 198.9279 – 488.881152 – 327.762584 =
51.357679%
Difference = 3.65%

Real case 8:

72% agreeableness;
72% conscientiousness;
78% intellect;
Motivation 85%;
Estimated productivity 90%.

Productivity (calculated from the model) = -591.921937 + 264.349728 + 685.76976 +
387.144432 – 17.55 + 3.597696 + 0.064974 – 127.313856 – 322.737948 – 192.295296 =
89.107553%
Difference = 0.9%

Real case 9:

82% agreeableness;
66% conscientiousness;
96% intellect;
Motivation 85%;
Estimated productivity 75%.

166

Productivity (calculated from the model) = -591.921937 + 242.320584 + 844.02432 +
440.914492 - 19.8 + 3.755982 + 0.079968 - 106.979004 - 488.881152 - 249.420056 =
74.093197%
Difference = 0.91%

Real case 10:
96% agreeableness;
90% conscientiousness;
88% intellect;
Motivation 55%;
Estimated productivity 50%.

Productivity (calculated from the model) = - 523.021607 + 282.53673 + 685.811368 +
434.4312 - 21.20184 + 14.46336 - 175.214 - 362.411456 - 288.884736 = 46.508915%
Difference = 3.5%

Real case 11:

90% agreeableness;
62% conscientiousness;
66% intellect;
Motivation 85%;
Estimated productivity 70%.

Productivity (calculated from the model) = - 591.921937 + 227.634488 + 580.26672 +
483.93054 - 12.7875 + 3.87252 + 0.054978 - 94.404796 - 231.072732 - 300.4614 =
65.110881%
Difference = 4.89%

Real case 12:

94% agreeableness;
62% conscientiousness;
94% intellect;
Motivation 70%;
Estimated productivity 60%.

Productivity (calculated from the model) = - 611.111026 + 224.435474 + 852.28336 +
506.493526 - 11.533612 + 7.687132 - 97.007184 - 485.149416 - 326.728772 =
59.369482%
Difference = 0.64%

We can summarize that the difference between Estimated and Calculated Productivity is not
bigger than 5%, which is a very important proof for the correctness of the developed model.
We will observe in the next point a statistical analysis of 100 additional real examples, which
shows once again the adequacy and efficiency of our prognostic mathematical model.

167

7.2 The Software Human Factors Test web application

In order to automate the questioning process and the processing of the gained data into actual
results about a concrete person and also to show once again the effectiveness and correctness
of the developed method we have developed a web application that conducts the explained
actions and supports us with the final results.

Here we will describe the test tool and we will present screenshots with different results. This
application is for us from great help because it enables the test-quiz and after this the
evaluation of the results and their use in the already explained formulas (the mathematical
model) that describe the personal productivity. In this way we end with the concrete
performance for every tested person and we can also observe the whole statistic of the people
that have already done the test.

Let us now start with the first screenshot (Figure 56) of the tool: when loading the home page
the user is presented with the option to start a new test, to resume an unfinished one or to view
the results of the own completed test and also to view the whole statistics for all the
completed tests.

Figure 56 Home page of the web-application

If the user decides to start a new test he/she is brought to a page with the test questions in a
shuffled order, which looks like the following.

168

Figure 57 Web-application quiz page

Most of the questions have 5 possible answers – very accurate, accurate, inaccurate, very
inaccurate and other. When the last is selected a textbox is displayed where the user can enter
a custom textual answer. Some of the questions are answered only by true or false and some
need to be answered by some text. We can see these different types of questions on the next
Figure 58. More detailed explanation about the different types of questions and answers have
been given in Chapter 5.

Figure 58 Web-application's question types

169

At the end of the test page, the user can click Submit which will save the answers. This can be
done even if the quiz is not completed.

Figure 59 The end of the quiz page

The user is then redirected to a page showing the ID of the taken test. From there, if the test is
not completed it can be resumed, and if it is completed – the results can be viewed. The user
can also go back to the home page.

Figure 60 The web - application's Quiz Finished Page

From the home page the user can again resume an unfinished test or view the results of a
finished one by clicking the button “Show results/Resume test”, using the ID of his personal
test.

170

Figure 61 Screenshot of the application's popup when "Show results/Resume Test" button is clicked

Clicking that button pops up a field where the user is required to enter the ID of the test he/she
wants to resume or view the results of.

If a test with the entered ID does not exist, the user is redirected to a page with a message that
tells this. From there he/she can go back to the home page. This could be seen on the next
Figure 62.

Figure 62 Window shown, when the test does not exist

Resuming an unfinished test loads the quiz page with the questions in the order they were
when the test was created. Also the answers are recreated so if the user wants he/she can
change them before finishing the test.
Viewing results brings the user to the following page (Figure 63) showing his/her score for
the five measured factors, the self estimated performance and motivation and the calculated
performance by the developed mathematical model. There is also a table with statistics for all
completed tests. The columns in the table represent each factor and the rows – a range of
scores. The cells in the table show how much people have scored a value in the respective
range for the corresponding factor. The text in red shows between which values the current
test-result is.

171

Figure 63 The Test Results Page for a concrete person

On the result page can be also observed the values for Extraversion and Emotional Stability.
Although that they don’t take part in the calculation of the performance values, they are
displayed for additional information of the test-taker and for completeness of the
questionnaire.

172

Figure 64 The Software Human Factors Test Statistics Page

Going back to the home page, the user can see the entire statistics (figure 64) of all already
taken tests. They are shown in a separate page in a shuffled manner and without the test IDs,
so that no one can connect a particular ID with the shown statistics. We can see also a table
similar to the one in the results page, but since the statistics is global, it is not matched to any
specific test. We can see the percentage range of each psychological feature and the number
of the people that belong to it.

173

7.2.1 Analysis of the gained information

The developed web-application ‘Software Human Factors Test’ was given to a number of
software companies in order to gain real results and to observe the correctness of the
developed prognostic method. We have gained exactly 100 useful test results, a part of which
can be seen on Figure 64 and on the following Table 33. The complete list can be seen in the
Appendix.

The data that we have collected shows that the developed mathematical model really predicts
the human performance very accurate, the differences between the estimated and the
calculated performance are not bigger than 5%, which is the confidence interval and this
means that the method works very accurate and can be applied in the praxis without any
doubts.

Table 33 Part of the received employee information

Agreeableness Conscientious
ness

Intellect
(Openness) Motivation Estimated

performance
Calculated

Performance Difference

88% 82% 70% High
(~85%) 78% 73% 5%

68% 74% 86% High
(~85%) 86% 87% 1%

82% 86% 66% High
(~85%) 72% 70% 2%

82% 62% 92% High
(~85%) 75% 78% 3%

92% 88% 76% High
(~85%) 65% 68% 3%

92% 64% 80% High
(~85%) 78% 75% 3%

72% 94% 68% High
(~85%) 64% 68% 4%

80% 60% 68% Low
(~55%) 60% 59% 1%

76% 86% 72% Low
(~55%) 60% 62% 2%

70% 60% 78% Medium
(~70%) 85% 81% 4%

90% 64% 74% Medium
(~70%) 70% 71% 1%

92% 62% 92% Medium
(~70%) 62% 65% 3%

88% 70% 74% Low
(~55%) 65% 63% 2%

86% 74% 60% Medium
(~70%) 56% 54% 2%

82% 84% 94% Low
(~55%) 60% 57% 3%

74% 94% 74% Low
(~55%) 60% 57% 3%

76% 82% 76% Medium
(~70%) 82% 80% 2%

174

The analysis of the information from Table 33 shows that the developed prognostic model
about the influence of Motivation, Agreeableness, Conscientiousness and Intelligence over
the Performance is adequate. The experimental testing of the method in real environment
shows minimal mistake or difference of 5%, which allows us to claim that it works correct
and can be used in the real process of employee’ evaluation.

‘Software Human Factors Test’ is a reliable tool for productivity assessment in the software
engineering field, which can be used by individuals and companies. Our research showed that
it is an adequate source for performance assessment and in the same time provides the users
with a good insight on the factors affecting their performance so that they know what they
need to work on. The test can be used in addition to an interview for a job or as an addition to
a set of some proven methods for improving productivity like Personal and Team Software
Process and Capability Maturity Model Integration.

7.3 Summary over the experimental model validation

1) There have been conducted real case studies in different companies in order to build first

ideas about the validation and effectiveness of the developed method for performance
evaluation. These real examples showed that the difference between Estimated and
Calculated Productivity is not bigger than 5%, which is a very important proof for the
correctness of the developed model.

2) In order to automate the questioning process and the processing of the gained data into

actual results about a concrete person and also to show once again the effectiveness and
correctness of the developed method we have developed a web application that conducts
the explained actions and supports us with the final results.

3) The developed web-application ‘Software Human Factors Test’ was given to a number of

software companies in order to gain real results and to observe the correctness of the
developed prognostic method. We have 100 useful test results, a part of which can be seen
on Figure 64, in Table 33 and the complete list can be seen in the Appendix.

4) The observation of the collected data shows that the mathematical model really predicts

the human performance very accurate, the differences btw the estimated and the calculated
performance are not bigger than 5%, which means that the method works very accurate
and can be applied in the praxis without any doubts.

5) ‘Software Human Factors Test’ is a reliable tool for productivity assessment in the

software engineering field, which can be used by individuals and companies. Our research
showed that it is an adequate source for performance assessment and in the same time
provides the users with information about their personal factors affecting the performance.
In this way they can use the tool also for self-evaluation and for further own development.
The test can be used in addition to an interview for a job or as an addition to a set of some
proven methods for improving productivity like PSP, TSP and CMMI.

6) The validated results of high performance IT human factors could be characterized as

 ve)eval(BigFi

eval(DoE) HF FMEA
ocessSoftwarePr = PERF (Motivation, Conscientiousness,

 Openness, Agreeableness) (7.4)

175

Conclusion and Future Work

The PhD thesis starts with a big analysis of the existing methods for Risk Assessment with
special focus over the Human Factors in them. The conducted literature review showed that
the existing methods don’t consider the human being as a factor responsible for different risks
in the software engineering process and in this way influencing the end performance.

The second point in the research was to look from the other side. We have looked for
psychological methods that measure and evaluate the influence of the personality over the
software engineering process. We have discovered that such methods, at least in the software
development do not exist but the conducted overview over the human factors in the software
process has showed different perspectives:

- Slips and mistakes occurring in everyday human work including their base.

- Malfunctions and their relation to the behavioral model of the human being with
regards to performing or not a certain task.

- Clearly recognized connection between emotions and risk behavior and different
stressors influencing the people.

- Different levels of failures and factors that influence the human actions.

- Frameworks and taxonomies listing all different personal characteristics that influence
the working process.

This observation was the major motivation for us to decide that there is an urgent need to
develop such a method that will be able based on the specific psychological characteristics to
prognosticate/evaluate the IT productivity for a special person.

The following analysis over the basic IT roles delivered us with the following description of
the roles’ most important competencies, which we have used in the further research.

HFProjectManager = {communicative, managerial skills, disciplined,

respects the others, resolves conflicts, open minded,
willing to develop himself, well-organized, goal-oriented,
seeks improvement}

HFTeamLeader = {plan and prioritize the work, reviews team progress,
flexible and adaptable, communicative, an effective advocate for the team,
ability to lead and to impress}

HFBusinessAnalyst = {communicative, conceptual thinking, creativity,
strategic and business thinking, problem solving,
negotiation and decision making, customer oriented, team player}

176

HFSoftwareArchitect = {good decision maker, team player,
performance oriented, technical understanding that supports the team,
optimizing abilities, seeks new knowledge}

HFSoftwareDeveloper = {creativity, team player, tolerant,
always in a learning mode, able to articulate own thoughts,
respects others’ ideas, structured thinking}

HFSoftwareTester = {creativity, flexibility, communicative, open-minded,
respects the others}

HFQualityEngineer = {flexible, team oriented, positive attitude,
systematic and organized, respects the others,
seeking for knowledge, convincing ability,
ability to interact with managers and customers}

Having the personal competencies we had to make an effective analysis over the
corresponding responsibilities and in this way to find the factors that influence at most the
individuals. We have adopted the FMEA method for this goal as it gives the possibility to
break each process into its small peaces and to look inside for possible failure modes and their
causes. The analysis of the software team roles involved in the typical software engineering
process ended with the discovery of the human factors that influence the different potential
failure modes, which can be seen in the following list:

1. Coordination 2. Fear
3. Self-management 4. Management skills
5. Mental Overload=Stress 6. Intelligence
7. Competence 8. Analysis skills
9. Knowledge 10. Openness
11. Effectiveness 12. Creativity
13. Concentration 14. Emotional stability
15. Communication 16. Judgment
17. Self-Development 18. Problem solving ability
19. Liberalism 20. Perception
21. Control delegation 22. Professionalism
23. Selfish=Egoism 24. Persistence
25. Over self-confident 26. Dutifulness
27. Self-organization 28. Motivation
29. Hardworking 30. Achievement
31. Attention 32. Responsibility
33. Conscientiousness 34. Talkativeness
35. Leader skills 36. Personal attitude
37. Experience 38. Technical understanding
39. Personal grow 40. Imagination

177

41. Understanding ability 42. Patience
43. Planning skills 44. Friendliness
45. Observing ability 46. Cooperation
47. Appreciation

Having all the critical human factors for the software process we were faced with a new
problem. How can we measure these traits and how can we examine a person in order to be
able to understand which features does he posses and into which extent so that we can find out
how they influence his work performance.

For this purpose we have adopted a well-accepted method in the Personality Evaluation – the
Big Five theory. Of course we had to change it so that it could be applied in the software
engineering field and after that we were able to define seven psychological characteristics that
are complex enough to be matched with the discovered human factors and be used for the
description of the personality features and the software productiveness. They are as follows:

1. Openness (Intelligence)
2. Conscientiousness

3. Extroversion

4. Agreeableness

5. Neuroticism (Emotional Stability)

6. Experience

7. Motivation

Analyzing the characteristics and the type of connection between them and the human
performance in the IT, we have decided to design the whole process as an Experiment and to
analyze it in order to model the desired dependence.

We have conducted three experiments by three special values of the motivation factor,
because of the complex subjective-psychological dependence between motivation and
performance. For these three experiments we have gained three statistically correct
mathematical models, which describe the connection between the psychological
characteristics (Motivation, Conscientiousness; Openness and Agreeableness) and the
performance in the software engineering.

They are as follows:

Performance by Motivation of 55% = pr(co, int, agr) = -523.021607 + 3.139297*co +

7.793311*int + 4.525325*agr – 0.002677*co*int + 0.001674*co*agr –
0.021694*co*co – 0.046799*int*int – 0.031346*agr*agr

Performance by Motivation of 70% = pr(co, int, agr) = -611.111026 + 3.619927*co +

9.066844*int + 5.388229*agr – 0.001979*co*int + 0.001319*co*agr –
0.025236*co*co – 0.054906*int*int – 0.036977*agr*agr

178

Performance by Motivation of 85% = pr(co, int, agr) = -591.921937 + 3.671524*co +
8.791920*int + 5.377006*agr – 0.003125*co*int + 0.000694*co*agr+0.000833*int –
0.024559*co*co – 0.053047*int*int – 0.037094*agr*agr

The decision to make three experiments came from the observation that: by 55%; 70% and
85% of motivation can be seen a significant change in the performance values. The growing
of the motivation up to 85% is connected with growing of the desire to give the best possible
productiveness at work and by higher values than 85% this desire is decreasing. This can be
explained with the fact that the people with 100% of motivation find it difficult to see
perspective for development as they have already reached the maximum; this is a kind of de-
motivation and results in lower performance levels.

The most important result from the models are the dependencies between the three examined
features and the human performance:

• The connection btw agreeableness and performance: the growing values of
agreeableness up to 75% characterize with growing of the performance because the
employee is able to communicate and cooperate with his colleagues, he is able to
accept others’ ideas and to follow instructions; after these values the person loses his
own judgment and cannot resolve any problem alone. The software engineer agrees
with everyone and is not able to take decisions anymore and this leads to low values of
performance. When the values are low around 40%, he is not able to cooperate and
works very difficult with other people and this of course means also low productivity.

• The connection btw intelligence and performance: with the increasing of the
intelligence after a specific point (around 80%), the observed software team members
start to take very complex decisions and don’t choose the optimal algorithm for
resolving a problem. This leads to complications and more mistakes in the work
process, the employees need more time and the solutions are not optimal, because of
this it is logical to observe the decreasing of the performance. By low values, even by
60% we have very low productiveness which shows that we need employees with
intelligence over the average in order to manage the software engineering process.

• The connection btw conscientiousness and performance: by growing until 70% it
shows that the software specialist is trying to do his best and to manage his work as
good as possible. From other side this characteristic hinders the process of ignoring
the unimportant details in the everyday work, and exactly this leads to decreasing of
the performance, when the conscientiousness is higher than 70%. The employee loses
too much time in checking details and spending time for not so important problems
which needs more time and results into lower productivity. When the values are low,
until 55% we have very low performance and this is to be explained with the fact that
such employees are not doing their job with the needed respect and cautious.

The results of the whole development process of the predictive model can be characterized in
the following manner:

 ve)eval(BigFi

DoE HF FMEA
ocessSoftwarePr = ℱ (Motivation, Conscientiousness, Openness, Agreeableness)

179

This IT human factors evaluation approach could be summarized in a simplified manner given
in the following figure 65.

The developed models were shown to be correct and adequate using special statistical
formulas and further on with the development of special software. The web-application aims
to show once again the models’ correctness and effectiveness. The developed web-site

Figure 65 The IT human factors approach keeping high performance

180

represents a test with the special questions needed for the personnel evaluation and after this
uses this data as an input for the developed model. In this way the model can be very easily
used in the process of recruitment for selecting the best employees for a specific company.

Everything that we have said until the moment shows that:

 The problem described in the beginning of the PhD work: the connection between the
personality and the individuals’ performance in the software engineering is found!

 A method that models the human performance in the IT based on the specific
psychological traits has been developed.

 We have gained three different models by the special values of Motivation that
calculate the expected Performance.

 The developed model was tested and validated in real conditions and proved its
correctness and usefulness for the software development.

 The model is an absolutely new scientific contribution that is extremely important for
the process of improving the IT recruitment process.

 The developed method can be used also for prognosis of the productiveness of the
whole software company based on the performance of the individuals.

 A modelling of the critical psychological features, which take part in the model, is
another idea that can be applied and in this way can be increased the expected
performance.

The scientific work in this PhD thesis makes the following main contributions to research
within the field of software engineering:

1. An up-to-date review over the software risk assessment methods with special focus
over their incompleteness.

2. An up-to-date review over the methods for employee evaluation and research over
their existence and application in the software engineering.

3. Detailed research over the concepts in the software field and over the software team
members with their specific capabilities and responsibilities.

4. Development of new scientific method ‘Software Human Factor FMEA’ for the
extraction of the critical human factors.

5. Development of new scientific method for the evaluation of the human psychological
features in the IT (with the adoption of the Big Five theory in the software
engineering).

6. Development of unique mathematical model for the prediction of the individuals’
performance in the IT based on his/her personal characteristics.

7. Development of web-based application realizing the mathematical model and
supporting the software engineering research with concrete tool for the employee
evaluation and personnel selection.

181

Future work considering our approach in order to improve human factor involvements in the
IT area will be:

• Further application areas: the specification of the method for each role in the software
development process for different software process approaches (like agile
development, V&V teams, PSP and collaborative software evolution).

• Methodology improvements: the actual application of this new approach considers a
special kind of systems and software processes and should be extended by experience
repositories like SLIM, ISBSG and QSM.

• Team-oriented model extensions: the current new approach supports the evaluation
process of the IT personal and should be extended by further involvements of team
characteristics (like pair programming, test teams and egoless approaches).

• Human characteristics modelling: the development model can be extended with
additional methods for influencing the individuals’ psychological traits. In this way
the productiveness will be increased with stimulating the Motivation for example.

• Whole evaluation: a whole assessment of the software company can be build, based on
the performance of each individual.

We can summarize once again with the following:

The developed mathematical model gives the possibility to predict the productiveness of the
examined person based on his/her special psychological traits. This supports the process of IT
personnel recruitment and also the whole process of IT personnel development with a
powerful tool for achieving of better software quality. The right people chosen in the right
manner and also their motivation are the most important software resources, crucial for the
achievement of better results in the IT field.

182

183

Appendix:

One-dimensional intersections by Motivation of 55%

By Motivation of 55% we can observe the following one-dimensional intersections of the
two-dimensional ones.

We can see here three one-dimensional intersections by all possible combinations with
Х1 = -1; Х1 = 0 and Х1 = +1.

184

We can see here three one-dimensional intersections by all possible combinations with
Х2 = -1; Х2 = 0 and Х2 = +1.

185

186

We can see here three one-dimensional intersections by all possible combinations with
Х3 = -1; Х3 = 0 and Х3 = +1.

187

One-dimensional intersections by Motivation of 70%

By Motivation of 70% we can observe the following one-dimensional intersections of the
two-dimensional ones.

We can see here three one-dimensional intersections by all possible combinations with
Х1 = -1; Х1 = 0 and Х1 = +1.

188

189

We can see here three one-dimensional intersections by all possible combinations with
Х2 = -1; Х2 = 0 and Х2 = +1.

190

191

We can see here three one-dimensional intersections by all possible combinations with
Х3 = -1; Х3 = 0 and Х3 = +1.

192

One-dimensional intersections by Motivation of 85%

By Motivation of 85% we can observe the following one-dimensional intersections of the
two-dimensional ones.

We can see here three one-dimensional intersections by all possible combinations with
Х1 = -1; Х1 = 0 and Х1 = +1.

193

194

We can see here three one-dimensional intersections by all possible combinations with
Х2 = -1; Х2 = 0 and Х2 = +1.

195

We can see here three one-dimensional intersections by all possible combinations with
Х3 = -1; Х3 = 0 and Х3 = +1.

196

197

The response surface graphics by Motivation of 70%

198

The response surface graphics by Motivation of 85%

199

200

Complete list of the validation results

The complete list with the 100 validation results from the ‘Software Human Factors Test’ can
be seen on the following figures:

201

202

203

204

205

List of Acronyms:

Chapter 2

SEI – Software Engineering Institute
NN – Neural Networks
PCA – Principal Component Analysis
GA – Genetic Algorithm
BBN – Bayesian Belief Network
SRE – Software Risk Evaluation
RED – Risk in Early Design
IS – Information Systems
FMEA – Failure Mode and Effect Analysis
COTS – Commercial On The Shelf
SPP – Software Production Process
SS – Software System
RM – Risk Management
RA – Risk Assessment
RC – Risk Controlling
MIPS – Million Instructions Per Second
HF – Human Factors
HRF – Human Risk Factors

Chapter 3

SE – Software Engineering
CASE – Computer Aided Software Engineering
iCASE – integrated Computer Aided Software Engineering
SP – Software Product
SD – Software Development
SR – Supporting Resources
SAM – Structured Analysis Methods
OOSA – Object-Oriented Software Analysis
CBSE - Component-Based Software Engineering
AOSE - Agent-Oriented Software Engineering
SOSE – Service-Oriented System Engineering
SA/SD – Structured Analysis/Structured Design
HIPO – Hierarchical Input Process Output
UML – Unified Modeling Language
OMT – Object Modeling Technique
OOD – Object-Oriented Design
RDD – Responsibility-Driven Design
HOOD – Hierarchical Object-Oriented Design
OOSA – Object-Oriented Software Analysis
DCOM - Distributed Component Object Model
EJB - Enterprise Java Beans
CURE - COTS Usage Risks Evaluation
B-COTS – Building COTS Software Systems
AAII – Australien AI Institute agent development
AUML – Agent-oriented UML
IMPACT – Imperative Maryland Platform for Agents Collaborating Together

206

COCOMO – Constructive Cost Model
ISBSG – International Software Benchmark Standards Group
MAS - Multi Agent System
MaSE – Multiagent Systems Engineering
MASSIVE – Multiagent Systems Interactive View Engineering
SODA – Societies in Open and Distributed Agent spaces
SOA – Service Oriented Architecture

(GRID, DESIRE, SPR Knowledge-Plan and QSM SLIM are self-names)

SR – Software Resources
CARE – Computer Aided Re-Engineering
CAME – Computer Assisted Measurement Evaluation
SA – Software Application
SM – Software Measurement
GUI – Graphic User Interface
SWOT – Strengths, Weaknesses, Opportunities and Threats
S/W – Software

Chapter 4

RPN – Risk Priority Number
S – Severity
O – Occurrence
D – Detection
UPS – Uninterruptible Power Supply
SFMEA – Software Failure Mode and Effect Analysis
SHF–FMEA – Software Human Factor FMEA
PM – Project Manager
TL – Team Leader
SA – Software Architect
BA – Business Analyst
SD – Software Developer
ST – Software Tester
QE – Quality Engineer

Chapter 5

FFM – Five Factor Model
OCEAN – Openness, Conscientiousness, Extroversion, Agreeableness, Neuroticism

Chapter 6

DoE – Design of Experiment
co = conscientiousness
int = intelligence
agr = agreeableness
pr = performance

207

References:

14971, I 2001, ISO/FDIS 14971:2001 International Standard: Medical Devices - Application

of risk management to medical devices, International Organization for Standartization.

1540, I 2001, IEEE Standard for Software Life Cycle Processes - Risk Management, IEEE.

16085, BI 2006, Systems and software engineering - Life cycle processes - Risk management,
British Standard.

4360, A 2004, AS/NZS 4360:2004 Australian Standard: Risk Management, Standards
Australia.

62304, I 2004, IEC 62304 International Standard: Medical device software - Software life-
cycle processes, International Electronical Commission.

Abran, A & Moore, J 2004, Guide to the Software Engineering Body of Knowledge -
SWEBOK, IEEE Computer Society, Los Alamitos, California.

Adams, J 1995, Risk, London: University College Press.

Alter, S & Ginzberg, M 1978, 'Managing Uncertainty in MIS Implementation', Sloan
Management Review, vol 20, no. 1, pp. 23-31.

Applegate, L, McFarlan, F & McKenney, J 1996, Corporate Information Systems
Management, Text and Causes, Irwin.

Asfoura, E., Kassem, G., Georgieva, K. & Dumke, R., 2011. Developing Approach for
Conception of Appropriate Business Model for Federated ERP Systems, International
Conference on E-Learning, E-Business, Enterprise Information Systems, & E-
Government, WORLDCOMP (EEE). Las Vegas Nevada, USA CSREA Press.

Atkinson, A & Donev, A 1992, Optimum Experimental Designs, Oxford University Press.

Banerjee, N 1995, 'Utilization of FMEA concept in software lifecycle management',
Transactions on Information and Communications Technologies, vol 11, no. ISSN
1743-3517.

Barki, H, Rivard, S & Talbot, J 1993, 'Toward an Assessment of Software Development Risk',
Journal of Management Information Systems, vol 10, no. 2, pp. 203-225.

Baybutt, P 1996, 'Human factors in process safety and risk management: needs for models,
tools and techniques', International Workshop on Human Factors in Offshore
Operations, US Mineral Mangement Service, New Orleans.

Bentley, JE, Bank, W & NC, C 2004, Software Testing Fundamentals - Concepts, Roles, and
Terminology, viewed 3 February 2011,
"http://www2.sas.com/proceedings/sugi30/141-30.pdf"

208

Berny, J & Townsend, P 1993, 'Macrosimulation of project risks - a practical way forward',
International Journal of Project Management, vol 11, no. 4, pp. 201-208.

Boehm, B 1988, 'A Spiral Model of Software Development and Enhancement', IEEE
Computer.

Boehm, B 1991, 'Software Risk Management: Principles and Practices', IEEE Software.

Boehm, B, Port, D, Yang, Y & Bhuta, J 2003, Not All CBS Are Created Equally: COTS-
Intensive Project Types, In LNCS 2580. Springer.

Boehm, B & Ross, R 1989, 'Theory W Software Project Management: Principles and
Examples', IEEE Transactions on Software Engineering.

Bogue, R 2005, Breaking Down Software Development Roles, viewed 19 January 2011,
"http://www.developer.com/mgmt/article.php/3515426/Anatomy-of-a-Software-
Development-Role-Quality-Assurance.htm"

Bowers, J 1994, 'Data for project risk analyses', International Journal of Project
Management, vol 12, no. 1, pp. 9-16.

Bowles, J & Hanczaryk, W 2008, 'Threat effects analysis: Applying FMEA to model
computer system threats', Annual Reliability and Maintainability Symposium, Las
Vegas, NV, USA.

Box, G & Draper, N 2007, Response Surfaces, Mixtures and Ridge Analysis, Wiley and Sons.

Box, G & Hunter, J 1957, ' Multifactor experimental design for exploring response surfaces',
Annals Math. Stat., vol 28, pp. 195-242.

Brownlee, K 1965, Statistical Theory and Methodology in Science and Engineering, 2nd ed.,
New York, Wiley.

Carr, M, Konda, S, Monarch, I, Ulrich, F & Walker, C 1993, 'Taxonomy-Based Risk
Identification', Carnegie Mellon University, Pittsburg PA.

Chapman, C & Ward, S 2002, Managing Project Risk and Uncertainty: A Constructively
Simple Approach to Decision Making, John Wiley & Sons.

Chapman, C & Ward, S 2003, Project Risk Management: Processes, Techniques and Insights,
2nd edition , John Wiley & Sons.

Charette, R 1989, Software Engineering Risk Analysis and Management, McGraw-Hill, New
York.

Charette, R 1990, Applications Strategies for Risk Analysis, McGraw-Hill, New York.

Chee, CL, Vij, V & Ramamoorthy, C 1995, 'Using Influence Diagrams for Software Risk
Analysis', TAI '95: Proceedings of the Seventh International Conference on Tools with
Artificial Intelligence, IEEE Computer Society.

209

Chittister, C, Kirkpatrick, R & Van Scoy, R 1992, 'Risk Management in Practice', American
Programmer, vol 5, pp. 30-35.

Chong, Y & Brown, E 2000, Managing Project Risk: Business Risk Management for Project
Leaders, Prentice Hall.

Chrissis, M, Konrad, M & Shrum, S 2003, CMMI: guidelines for process integration and
product improvement, Addison-Wesley Professional.

Chung, L, Nixon, BA, Yu, E & Mylopoulos, J 2000, Non-Functional Requirements in
Software Engineering, Kluwer Academic Publ.

CMMI 2002, 'CMMI for Systems Engineering/Software Engineering/Integrated Product and
Process Development', CMU/SEI-2002-TR-004, Software Engineering Institute,
Carnegie Mellon University, Pittsburg PA.

Cockburn, A 1997, Surviving Object-Oriented Projects, Addison-Wesley.

Cohen, J 1988, Statistical power analysis for the behavioral sciences - 2-nd edition,
Routledge Academic.

Cohran, W & Cox, G 1957, Experimental Designs 2nd ed., Wiley, New York.

Conrow, E 2003, Effective Risk Management: Some Keys to Success, Second Edition, AIAA
(American Institute of Aeronautics & Ast).

Conrow, E & Shishido, P 1997, 'Implementing Risk Management on Software Intensive
Projects', IEEE Software, vol 14, no. 3, pp. 83-89.

Cooper, D, Grey, S, Raymond, G & Walker, P 2004, Project Risk Management Guidelines:
Managing Risk in Large Projects and Complex Procurements, John Wiley & Sons.

Costa, P. T.& McCrae, R.R. 1992, 'Revised NEO Personality Inventory (NEO-PI-R) and
NEO Five-Factor Inventory (NEO-FFI). Professional manual', Odessa, FL.:
Psychological Assessment Resources.

Cox, D 1957, Planning of Experiments, New York, Wiley.

Daughtrey, T 2001, Fundamental Concepts for the Software Quality Engineer , ASQ Quality
Press.

Davies, O 1967, Statistical Methods in Research and Production, 2nd ed. , London, Griffin;
New York, Hafner.

Davis, G 1982, 'Strategies for Information Requirements Determination', IBM Systems
Journal, vol 21, no. 1.

Davis, AM 1995, 201 Principles of Software Development, McGraw Hill Publ.

Dayer 2007, 'Consideration of Human Errors in Risk Management', 2007.

210

Dean, A & Voss, D 1999, Design and Analysis of Experiments, Springer.

Deept, I & Ramanamurthy, NU 2004, 'Effective Risk Management: Risk Analysis Using an
Enhanced FMEA Technique', In Annual Project Management Leadership Conference,
India.

Desmond, CL 2004, Project Management for Telecommunications Managers, 1st edn,
Kluwer Academic Publishers.

Deursen, T & Kuipers, AV 2003, 'Source-Based Software Risk Assessment', ICSM '03:
Proceedings of the International Conference on Software Maintenance, IEEE
Computer Society.

Dhillon, B 2007, 'Basic Human Reliability and Error Concepts', in Human Reliability and
Error in Transportation Systems, Springer London.

Digman, J 1990, 'Personality structure: Emergence of the five-factor model', Annual Review
of Psychology 41, 1990, pp. 417-440.

Dinsmore, PC 2010, The AMA Handbook of Project Management, 3rd edn, AMACOM.

Dorofee, A, Walker, J, Alberts, C, Higuera, R, Murray, T & Williams, R 1996, 'Continuous
Risk Management Guidebook', Software Engineering Institute, Pittsburg PA.

Dumke, R 2003, Software Engineering – Eine Einführung für Informatiker und Ingenieure,
(4th edn) Vieweg Publ.

Dumke, R., Schmietendorf, A., Georgieva, K. & Yazbek, H., 2008. Software Measurement
for Agile Software Development in Computer Science and Technologies., Volume
VI/2 (IEEE Press), pp.42-47.

Dumke, R., Schmietendorf, A., Kunz, M. & Georgieva, K., 2009 a. Software-Metriken für die
agile Software-Entwicklung. In Proceedings of the SQS. Düsseldorf.

Dumke, R., Yazbek, H., Asfoura, E. & Georgieva, K., 2009 b. A General Model for
Measurement Improvement. In Proceedings of Software Process and Product
Measurement, International Conferences IWSM and Mensura. Amsterdam, The
Netherlands Springer-Verlag Berlin Heidelberg.

Dumke, R., Richter, K., Asfoura, E. & Georgieva, K., 2009 c. Process Improvement Using
Causal Networks. In International Conference on Software Engineering Research &
Practice (SERP) WORLDCOMP. Las Vegas Nevada, USA.

Dumke, R., Richter, K., Georgieva, K. & Asfoura, E., 2010. Process Improvement Based on
Causal Networks. Eighth ACIS International Conference on Software Engineering
Research, Management and Applications (SERA 2010). Montréal, Canada IEEE
Computer Society Los Alamitos, California.

211

Dustin, E 2002, Effective Software Testing: 50 Specific Ways to Improve Your Testing,
Addison-Wesley Professional,
"http://www.informit.com/articles/article.aspx?p=31196"

Ebert, C, Dumke, R, 2007, Software Measurement, Springer Verlag

Eslinger, S, Ellis, C, Hoting, S & Walden, G 1993, 'PACE System Risk Analysis: An

Application', Second SEI COnference on Software Risk Management, Pittsburg PA.

Fairley, R 1994, 'Risk Management for Software Projects', IEEE Software.

Fang, K-T, Li, R & Sudjianto, A 2006, Design and Modeling for Computer Experiments,
Chapman & Hall/CRC, Taylor & Francis Group.

Farooq, A., Georgieva, K. & Dumke, R., 2008 a. Challenges in Evaluating SOA Test
Processes. Proceedings of Software Process and Product Measurement. International
Conferences IWSM, MetriKon, and Mensura. Munich, Germany Springer-Verlag
Berlin Heidelberg.

Farooq, A., Georgieva, K. & Dumke, R., 2008 b. A Meta-Measurement Approach for
Software Test Processes. In 12th IEEE - International Multitopic Conference (IEEE
INMIC). Karachi, Pakistan

Farooq, A., Georgieva, K., Schmietendorf, A. & Dumke, R., 2010. A Systematic Method for
Identifying Testing Project Risks. In Proceedings of the International Conference on
Quality Engineering in Software Technology (CONQUEST 2010). Dresden, Germany.

Figallo, C 1998, Hosting Web Communities, John Wiley & Sons, Inc..

Fisher, J 2001, 'USER SATISFACTION AND SYSTEM SUCCESS: CONSIDERING THE
DEVELOPMENT TEAM', Australasian Journal of Information Systems, vol 9, no. 1.

Fisher, R & Yates, F 1973, 'Statistical Tables for Biological, Agricultural and Medical
Research', Oliver and Boyd, Edinburg.

Flouris, T & Yilmaz, AK 2010, 'The Risk Management Framework to Strategic Human
Resource Management', International Research Journal of Finance and Economics,
vol 36.

Galagher, B 1999, Software Acquisition Risk Management Key Process Area - A Guidebook
Version 1.02, CMU/SEI-99-HB-001. Carnegie Mellon University.

Gaulke, M 2002, Risikomanagement in IT-Projekten, Oldenbourg Wissenschaftsverlag.

Gemmer, A & Koch, P 1994, 'Rockwell Case Studies in Risk Management', Third SEI
Conference on Software Risk Management , Pittsburg PA.

Georgieva, K., Neumann, R. & Dumke, R., 2008. Ontological description of software quality
standards in Computer Science and Technologies., Volume VI(Number 2, IEEE
Press), pp.48-52.

212

Georgieva, K.; Farooq, A.; Dumke R.R., 2009 a. A Risk Taxonomy for the Software Testing
Process. In: G. Büren, R.R. Dumke: Praxis der Software-Messung - Tagungsband des
DASMA Software Metrik Kongresses (MetriKon 2009), Kaiserslautern, Shaker
Verlag Aachen, S. 247-260

Georgieva, K.; Farooq, A.; Dumke, R.R., 2009 b. Analysis of the Risk Assessment Methods -
A Survey. In: Software Process and Product Measurement. International Conferences
IWSM 2009 and Mensura 2009, Amsterdam, The Netherlands, Springer-Verlag Berlin
Heidelberg, S. 76-86

Georgieva, K., 2009 c. The Incompleteness of the Risk Assessment Methods, in
Softwaretechnik-Trends., Volume 2(29), pp.42-47.

Georgieva, K., 2009 d. Human Factors and Software Development Process. In International
Workshop on Empirical Software Engineering in Practice (IWESEP). Osaka, Japan.

Georgieva, K., Dumke, R., Neumann, R. & Farooq, A., 2009 e. Software Measurement
Modelling and Improvement. In Proceedings of the International Conference on
Software Engineering Research & Practice (SERP), WORLDCOMP'09. Las Vegas
Nevada, USA.

Georgieva, K., Farooq, A. & Dumke, R., 2009 f. Design Quality of Aspect-Oriented and
Object-Oriented Programs - An Empirical Comparison. In 4th International
Conference on Software and Data Technologies (ICSOFT). Sofia, Bulgaria.

Georgieva, K., Neumann, R. & Dumke, R., 2010 a. Applying Human Error Assessment and
Reduction Technique (HEART) in the software development process. Proceedings of
the joined International Conferences on Software Measurement
(IWSM/MetriKon/Mensura 2010). Stuttgart Shaker Verlag Aachen.

Georgieva, K., Neumann, R. & Dumke, R., 2010 b. The Influence of Personal Features on the
Project Success. In 5. Hochschul-Roundtable der CECMG/DASMA, Industrielle und
gesellschaftliche Herausforderungen beim flexiblen Sourcing von IT-Projekten/-
Dienstleistungen. Darmstadt Shaker Verlag Aachen.

Georgieva, K., Neumann, R. & Dumke, R., 2010 c. Software Quality Standards and
Approaches from Ontological Point of View. Proceedings of the 7th Software
Measurement European Forum (SMEF 2010). Rome, Italy Libreria CLUP Soc. Coop.
Milano, Italy.

Georgieva, K., 2010 d. Conducting FMEA over the Software Development Process, in
Software Engineering Notes., Volume 35 (3, ACM New York), p.35.

Georgieva, K., Neumann, R. & Dumke, R., 2010 e. Psychological-based Measurement of
Personnel Performance. Proceedings of the 2010 International Conference on
Software Engineering Research & Practice, WORLDCOMP 2010 (SERP 2010). Las
Vegas Nevada, USA CSREA Press.

213

Georgieva, K., Neumann, R. & Dumke, R., 2011 a. Failure Mode and Effect Analysis for the
software team capabilities. In MetriKon 2011 - Praxis der Software-Messung.
Tagungsband des DASMA Software Merik Kongresses. Kaiserslautern Shaker Verlag
Aachen.

Georgieva, K., Dumke, R. & Fiegler, A., 2011 b. A mathematical model for prediction of the
human performance based on the personal features. Proceedings of the 2011
International Conference on Software Engineering Research & Practice,
WORLDCOMP 2011 (SERP 2011), Las Vegas Nevada, USA CSREA Press.

Georgieva, K., Neumann, R., Fiegler, A. & Dumke, R., 2011 c. Validation of the model for
prediction of the human performance. In Proceedings of the Joint Conference of the
21st International Workshop on Software Measurement and the 6th International
Conference on Software Process and Product Measurement (IWSM-MENSURA 2011).
Nara, Japan, IEEE Computer Society Los Alamitos, California, Washington, Tokyo.

Goddard, P, Raytheon, SC & Troy, M 2000, 'Software FMEA techniques', Reliability and
Maintainability Symposium, Los Angeles, CA , USA.

Goldberg, LR 1993, 'The structure of phenotypic personality traits', American Psychologist ,
vol 1, no. 48, p. 26–34.

Grey, S 1995, Practical Risk Assessment for Project Management , 1st edn, John Wiley &
Sons.

Gupta, D & Sadiq, M 2008, 'Software Risk Assessment and Estimation Model', International
Conference on Computer Science and Information Technology.

Günther, D., Neumann, R., Georgieva, K. & Dumke, R., 2011. Causal Networks Based
Process Improvement. In Proceedings of the 23rd International Conference on
Software Engineering & Knowledge Engineering (SEKE 2011). Miami Beach,
Florida, USA Printed by Knowledge Systems Institute Illinois.

Hall, E 1998, Managing Risk: Methods for Software Systems Development, Addison Wesley,
Reading MA.

Hartkopf, S 2004, 'From a Single Discipline Risk Management Approach to an
Interdisciplinary One: Adaptation of FMEA to Software Needs', Eleventh Annual
International Workshop on Software Technology and Engineering Practice
(STEP’04), IEEE.

Hass, KB 2005, Management Concepts, viewed 20 January 2011,
"http://www.managementconcepts.com/portal/server.pt?in_hi_space=SearchResult&in
_hi_control=bannerstart&in_tx_query=the%20business%20analyst"

Hass, KB 2007, Professioinalizing Business Analysis: Breaking the Cycle of Challenged
Projects, Management Concepts, Inc.

214

Hefner, R 1994, 'Experience with Applying SEI's Risk Taxonomy', Third SEI Conference on
Software Risk Management SEI, Pittsburg.

Heldman, K 2009, Project Management Professional Exam Study Guide, 5th edn, Willey
Publishing.

Higuera, R, Gluch, D, Dorofee, A, Murphy, R, Walker, J & Williams, R 1994, 'An
Intoduction to Team Risk Management', Carnegie Mellon University, Pittsburg PA.

Higuera, R & Haimes, Y 1996, 'Software Risk Management', Carnegie Mellon University,
Pittsburg PA.

Hillson, D 2004, Effective Opportunity Management for Projects: Exploiting Positive Risk,
Marcel Dekker.

Hillson, D & Webster, R 2006, 'Managing Risk Attitude using Emotional Literacy', PMI
Global Congress EMEA Proceedings, Madrid, Spain.

Horn, E & Reinke, T 2002, Softwarearchitektur und Softwarebauelemente, Hanser Publ.

Human Brain 2011, viewed 19 August 2011, "http://www.drugdevelopment-
technology.com/projects/antegren/antegren1.html"

Human Eye 2011, viewed 19 August 2011,
"http://www.familyconnect.org/images/parentsite/HumanEyeDiagram.jpg"

Humphrey, W 2000, Introduction to the Team Software Process, Addison-Wesley.

Humphrey, W 2005, TSP – Leading a development team, Addison-Wesley Longman,
Amsterdam.

IEEE 1990, 'IEEE Standard Glossary', IEEE Computer Society Press.

International Personality Item Pool 1997, viewed 7 March 2011,
"http://ipip.ori.org/New_IPIP-50-item-scale.htm"

Islam, S & Dong, W 2008, 'Human factors in software security risk management', LMSA '08:
Proceedings of the first international workshop on Leadership and management in
software architecture, ACM, Leipzig.

ISO 2009, 'ISO/FDIS 31000 Risk management -- Principles and guidelines'.

John, OP, Robins, RW & Pervin, LA 2008, Handbook of personality: theory and research,
Guilford Press.

Jones, C 1994, Assessment and Control of Software Risks, Yourdon Press.

Jones, C 2001, 'Software measurement programs and industry leadership', STSC CrossTalk 14
(2): 4-7.

Karolak, D 1996, 'Software Engineering Risk Management', IEEE, 1996.

215

Kasse, T 2004, Practical Insight into CMMI, 1st edn, Artech House.

Keil, M, Cule, P, Lyytinen, K & Schmidt, R 1998, 'A Framework for Identifying Software
Project Risks', Communications of the ACM.

Kendrick, T 2003, Identifying and Managing Project Risk: Essential Tools for Failure-
Proofing Your Project, American Management Association.

Kerzner, H 2009, Project Management A Systems Approach to Planning, Scheduling, and
Controlling, 10th edn, John Wiley & Sons, New Jersey.

Khuri, A & Cornell, J 1996, Response Surfaces:designs and analysis, Marcel Dekker.

Kim, JW & Jung, W 2003, 'A taxonomy of performance influencing factors for human
reliability analysis of emergency tasks', Journal of Loss Prevention in the Process
Industries, vol 16, no. 6, pp. 479-495.

Klipp, A 2009, The Software Engineer Job Description Handbook and Career Guide, Emereo
Pty Ltd.

Kontio, J 1997, 'The Riskit Method for Software Risk Management, version 1', CS-TR-3782,
Departament of Computer Science, University of Maryland.

Kontio, J 2001, Software Engineering Risk Management: A Method, Improvement Framework
and Empirical Evaluation, PhD Thesis, Helsinki University of Technology, Helsinki.

Kontio, J & Basili, V 1996, Risk Knowledge Capture in the Riskit Method, In SEL Software
Engineering Workshop.

Kurble, KE 2008, The Making of Information Systems Software Engineering and
Management in a Globalized World, 1st edn, Springer.

Laporte, CY, Doucet, M, Bourque, P & Belkébir, Y 2007, 'Utilization of a Set of Software
Engineering Roles for a Multinational Organization', Product-Focused Software
Process Improvement 8th International conference PROFES 2007, Springer-Verlag
Berlin Heidelberg, Riga, Latvia.

Lauritsen, T & Stalhane, T 2005, 'Safety Methods in Software Process Improvement',
Software Process Improvement 12th European Conference, EuroSPI 2005, Springer
Berlin / Heidelberg, Budapest, Hungary.

Lyytinen, K 2000, 'A Source Based Questionnaire of Main Software Risks', Technical Report
Daimler Chrysler, Ulm, Germany.

Lyytinen, K, Mathiassen, L & Ropponen, J 1996, 'A Framework for Software Risk
Management', Journal of Information Systems, vol 11, no. 4, pp. 275-285.

Lyytinen, K, Mathiassen, L & Ropponen, J 1998, 'Attention Shaping and Software Risk - A
Categorical Analysis of Four Classical Risk Management Approaches', Information
Systems Research, vol 9, no. 3, pp. 233-255.

216

Maciaszek, LA 2001, Requirements Analysis and System Design – Development Informatik
Systems with UML, Addison Wesley Publ.

Mäckel, O 2006, Software FMEA, Opportunities and benefits of FMEA in the development
process of software-intensive technical systems, viewed 15 February 2011,
"http://www.fmeainfocentre.com/papers/"

Marciniak, JJ 1994, Encyclopedia of Software Engineering, Vol. I and II edn, John Wiley &
Sons Inc.,.

Maslow, A 1987, Motivation and personality, Harper Collins, NY, USA.

Mason, RL, Gunst, RF & Hess, JL 2003, Statistical Design and Analysis of Experiments with
Applications to Engineering and Science, John Wiley & Sons.

McComb, D & Smith, J 1991, 'System Project Failure: The Heuristics of Risk', Journal of
Information Systems Management, vol 8, no. 1.

McConnell, S 1993, Code Complete, Microsoft Press.

McConnell, S 1996, Rapid Development: Taming Wild Software Schedules, Microsoft Press.

McConnell, S 2004, Professional Software Development, Addison-Wesley.

McDermott, R, Mikulak, R & Beauregard, M 2009, The Basics of FMEA, CRC Press Taylor
& Francis Group.

McDougall, W 1932, 'Of the words character and personality', Character Personality, vol I,
pp. 3-16.

McFarlan, F 1974, 'Portfolio approach to information systems', Harvard Bussiness Review,
pp. 142-150.

Meyers, DJ & Trbovich, D 1993, 'One Project's Approach to Software Risk Management',
Second SEI Conference on Software Risk Management, Pittsburg PA.

Michaels, J 1996, 'Technical Risk Management', 1996.

Mikkelsen, T & Phirego, S 1997, Practical Software Configuration Management, Prentice
Hall Publ.

Montgomery, DC 2008, Design and Analysis of Experiments, John Wiley & Sons Inc.

Moravec, H 1997, 'When will computer hardware match the human brain?', Journal of
Evolution and Technology, vol 1.

Morin, JM 1993, 'Risk Driven Project Management: A Practical Approach', Second SEI
Conference on Software Risk Management, Pittsburg PA.

Moynihan, T 1997, 'How Experienced Project Managers Assess Risk', IEEE Software, vol 14,
no. 3, pp. 35-41.

217

Moynihan, T 2002, Coping with IS/IT Risk Management: The Recipes of Experienced Project
Managers, Springer.

MSF 2002, 'MSF Risk Management Discipline v.1.1, Microsoft Solutions White Paper',
Microsoft Corp.

Mulcahy, R 2003, Risk Management, Tricks of the Trade for Project Managers, Rmc
Publications.

Myers, RH 1971, Response Surface Methodology, Boston: Allyn and Bacon, Inc.

Myers, RH, Montgomery, DC & Cook, C 2009, Response Surface Methodology Process and
Product Optimization Using Designed Experiments, Wiley, New York.

Neumann, P 1985, The Risks Digest, viewed 1 September 2011,
"http://catless.ncl.ac.uk/Risks/26.54.html" \l "subj1.1"

Neumann, DE 2002, 'An Enhanced Neural Network Technique for Software Risk Analysis',
IEEE Trans. Softw. Eng., vol 28, pp. 904--912.

Neumann, R., Georgieva, K. & Dumke, R., 2010 a. Recruiting Excellence for Global Players -
How the Most Successful Software Company on Earth Sources Talent. In
CECMG/DASMA, Industrielle und gesellschaftliche Herausforderungen beim
flexiblen Sourcing von IT-Projekten/-Dienstleistungen. Darmstadt Shaker Verlag
Aachen.

Neumann, R., Georgieva, K. & Dumke, R., 2010 b. Down-top Enterprise Application
Development. In 5. Workshop Bewertungsaspekte serviceorientierter Architekturen
(BSOA). Karlsruhe Shaker Verlag Aachen.

Neumann, R., Georgieva, K., Dumke, R. & Schmietendorf, A., 2011 a. Reverse Commerce -
Adding Information System Support for Customer-centric Market Coordination. In
Proceedings of the Fifth International Conference on Digital Society (ICDS 2011).
Gosier, Guadeloupe IARIA.

Neumann, R., Georieva, K., Dumke, R. & Schmietendorf, A., 2011 b. Moving E-Commerce
Towards E-Commodity - A Consequence of Cloud Computing. In Proceedings of the
Fifth International Conference on Digital Society (ICDS 2011). Gosier, Guadeloupe,
France IARIA.

Nguyen, D 2001, 'Failure modes and effects analysis for software reliability', Reliability and
Maintainability Symposium, Philadelphia, PA , USA.

Nogueira, J, Luqi & Bhattacharya, S 2000, 'A Risk Assessment Model for Software
Prototyping Projects', RSP '00: Proceedings of the 11th IEEE International Workshop
on Rapid System Prototyping (RSP 2000), IEEE Computer Society.

Nolan, R 1973, 'Managing the Computer Resource: A Stage Hypothesis', Communications of
the ACM.

218

Nolan, R 1979, 'Managing the Crises in data processing', Harvard Bussiness Review.

Orasanu 1993, Decision-making in the cockpit, CA: Academic Press, San Diego.

Ould, M 1990, Strategies for Software Engineering, The management of risk and quality,
John Wiley & Sons.

Ozarin, N & Siracusa, M 2003, 'A process for failure modes and effects analysis of computer
software', Reliability and Maintainability Symposium.

Palmer, S 1998, People and Self MANAGEMENT, Team Leader Development Series,
Butterworth-Heinemann.

Pandelios, G, Rumsey, T & Dorofee, A 1996, 'Using Risk Management for Software Process
Improvement', SEPG Conference, Software Engineering Institute, Pittsburg.

Paul, D, Yeates, D & Hindle, K 2006, Business Analysis, British Computer Society.

Pentti, H & Atte, H 2002, ' FAILURE MODE AND EFFECTS ANALYSIS OF
SOFTWARE-BASED AUTOMATION SYSTEMS', ISBN951-712-584-4, VTT
Industrial Systems.

Perry, WE 2006, Effective Methods for Software Testing, Third Edition, John Wiley & Sons.

Pfleeger, SL 1998, Software Engineering – Theory and Practice, Prentice-Hall Publ.

PMBOK 2004, A Guide to the Project Management Body of Knowledge, Third Edition,
Project Management Institute.

PMI 2008, A guide to the project management body of knowledge, 4th edn, Project
Management Inst.

Pressman, R 2004, Software Engineering: A Practitioner's Approach , McGraw-Hill, 6-th
edition.

Pritchard, C 2001, Risk Management: Concepts & Guidance - 2nd edition, ESI Intl.

Rasmussen 1982, 'Human errors: A taxonomy for describing human malfunction in industrial
installations', Journal of Occupational Accidents.

Reason 1990, Human Error, New York: Cambridge, New York.

Ropponen, J & Lyytinen, K 1997, 'Can software risk management improve system
development: an exploratory study', European Journal of Information Systems, vol 6,
pp. 41-50.

Ropponen, J & Lyytinen, K 2000, 'Components of Software Development Risk: How to
Address them? A Project Manager Survey', IEEE Transactions on Software
Engineering.

219

Rozanski, N & Woods, E 2005, Software Systems Architecture: Working with Stakeholders
Using Viewpoints and Perspectives, Addison-Wesley Longman, Amsterdam.

Russell, M & Karol, D 1994, '16PF Fifth Edition administrator’s manual.’’ Champaign, IL''',
Institute for Personality & Ability Testing.

Saucier, G & Ostendorf, F 1999, 'Hierarchical subcomponents of the Big Five personality
factors: A cross-language replication', Journal of Personality and Social Psychology,
no. 76, p. 613–627.

Schmietendorf, A 2009, Compliance and Risk Management in the Context of Complex and
High-Integrated Business Architectures (German), Shaker Publ, Aachen, Germany,.

Schoitsch, E & Redmill, F 2006, ' EWICS TC7 Guidelines for the Project Management of the
Development of Critical Computer Systems, Standards. ISA ', The Instrumentation,
Systems and Automation Society USA.

Schuyler, J 2001, Risk and Decision Analysis in Projects, 2nd edn, Project Management
Institute.

SEI 2011, SEI, viewed 1 July 2011,
"http://www.sei.cmu.edu/architecture/research/previousresearch/duties.cfm"

Shappell, SA 2000, 'The Human Factors Analysis and Classification System – HFACS'.

Shivhare, M & McCreath, G 2010, 'Practical Considerations for DoE Implementation in
Quality By Design', BioProcess International, vol 8, no. 6, p. 22–30.

Sisti, F & Joseph, S 1994, 'Software Risk Evaluation Method', Carnegie Mellon University,
Pittsburg PA.

Skyttner, L 2005, 'General Systems Theory - Problems, Perspectives, Practice', World
Scientific Publication, New Jersey.

Smith, P & Merritt, G 2002, Proactive Risk Management: Controlling Uncertainty in Product
Development, Productivity Press Inc.

Smolders, KCHJ, de Kort, YAW, Kaiser, FG & Tenner, AD 2009, 'Need for Recovery in
Offices: Behavior-based Assessment', Unpublished manuscript, in preparation.

Sodhi, J & Sodhi, P 2001, IT Project Management Handbook, Management Concepts.

Sommerville, I 2004, Software Engineering , Addison-Wesley, 7th edition.

Sommerville, I 2008, Software Engineering, 8th edn, Addison Wesley.

Soto, CJ & John, OP 2008, 'Measuring Big Five domains and 16 facets using the California
Psychological Inventory. Manuscript submitted for publication.'.

Stamatis, D 1995, Failure Mode and Effect Analysis, ASQC Quality Press, Wisconsin.

220

Thayer, R & Dorfman, M 2002, Software Engineering Volume 1: The Development Process,
IEEE Computer Society/Wiley/Jossey Bass.

Thomsett, R 1992, Third Wave Project Management, Prentice Hall.

Tiwana, R & Keil, M 2004-2005, ' The One-Minute Risk Assessment Tool', Programming
Languages, vol 2, no. 9.

Tupes, E & Cristal, R 1961, 'Recurrent Personality Factors Based on Trait Ratings', Technical
Report ASD-TR-61-97, Lackland Air Force Base, TX: Personnel Laboratory, Air
Force Systems Command.

Van Scoy, R 1992, 'Software Development Risk:Opportunity, Not Problem', Carnegie Mellon
University, PittsburgPA.

Vose, D 2008, Risk Analysis: A Quantitative Guide, 3rd edn, John Wiley & Sons.

Vucovich, JP, Stone, RB, Liu, X & Tumer, IY 2007, 'Risk Assessment in Early Software
Design Based on the Software Function-Failure Design Method', COMPSAC '07:
Proceedings of the 31st Annual International Computer Software and Applications
Conference, IEEE Computer Society.

Wang, Y 2005, 'On Cognitive Properties of Human Factors in Engineering', Theoretical and
Empirical Software Engineering Research Centre, Calgary.

Wang, Y 2008, 'On Cognitive Properties of Human Factors and Error Models in Engineering
and Socialization', Journal of Cognitive Informatics and Natural Intelligence, vol 2,
no. 4, pp. 70-84.

Waring, A & A.I., G 1998, Managing Risk: Critical issue for survival and success into the
21st century, International Bussines Press.

Watkins, J 2004, Testing IT: An Off-The-Shelf Software Testing Process, Cambridge
University Press.

Wideman, R 1998, Project and Program Risk Management: A Guide to Managing Project
Risks and Opportunities, Project Management Institute.

Williamson, J 1994, 'Experiences with an Independent Risk Assessment Team', Third SEI
Conference on Software Risk Management, Pittsburg PA.

Williams, RC, Pandelios, GJ & Behrens, SG 1999, 'Software Risk Evaluation Method
Description (version 2)', CMU/SEI-99-TR-029, ESC-TR-99-029, Software
Engineering Institute.

Yacoub, SM & Ammar, HH 2002, 'A Methodology for Architecture-Level Reliability Risk
Analysis', IEEE Trans. Softw. Eng., vol 28, pp. 529--547.

221

Yanyan, Z & Renzuo, X 2008, 'The Basic Research of Human Factor Analysis Based on
Knowledge in Software Engineering', International Conference on Computer Science
and Software Engineering, IEEE.

Yong, H, Juhua, C, Zhenbang, R, Liu, M & Kang, X 2006, 'A Neural Networks Approach for
Software Risk Analysis', ICDMW '06: Proceedings of the Sixth IEEE International
Conference on Data Mining - Workshops, IEEE Computer Society.

Young, H, Juhua, C, Huang, J, Liu, M & Xie, K 2007, 'Analyzing Software System Quality
Risk Using Bayesian Belief Network', GRC '07: Proceedings of the 2007 IEEE
International Conference on Granular Computing, IEEE Computer Society.

Zoho Challenge 2010, viewed 6 July 2011, "https://challenge.zoho.com/dellly"

Zuse, H 1998, A Framework of Software Measurement, de Gruyter Publ.

	Contents
	List of Figures
	List of Tables
	1 Chapter - Introduction
	1.1 Motivation
	1.2 Structure of the Thesis
	2 Chapter - Software Risk Management and Human Factors
	2.1 Overview over the Development of the Risk Management
	2.2 The Incompleteness of the Risk Assessment Methods
	2.2.1 Neural Networks Based Risk Analysis Methods
	2.2.2 Qualitative Based Risk Analysis Methods
	2.2.3 Software Metrics Based Risk Analysis Methods
	2.2.4 Early Risk Estimation Based Risk Analysis Methods
	2.3 Summary over the Risk Management and Motivation of our Further Research
	2.4 Human Factors in the Software Engineering
	2.4.1 Human Errors, Mistakes and Failures
	2.4.2 Influencing Factors
	2.5 Summary over the Human Factors
	3 Chapter - Software engineering, team and responsibilities
	3.1 The Software Engineering Background
	3.1.1 Software Engineering characterization
	3.1.2 The Software Product
	3.1.3 The Software Development Process
	3.1.4 The Software Development Resources
	3.1.5 The Use of the Software Product
	3.1.6 The Software Maintenance
	3.2 The Software Team
	3.2.1 Organizational Structures in the IT
	3.2.2 Software Roles and Responsibilities
	3.3 Summary over the Software Engineering and the Software Roles
	4 Chapter - Discovery of the IT Human Factors
	4.1 Classical Failure Mode and Effect Analysis
	4.1.1 Concept of the Failure Mode and Effect Analysis
	4.1.2 The methodological steps in the FMEA
	4.1.3 Software FMEA
	4.2 Adopted FMEA for the Software Personnel
	4.2.1 Performing the Software Human Factors FMEA
	4.3 Summary over the Software HUman Factors FMEA
	5 Chapter - Definition and Evaluation of the IT Human Factors
	5.1 The five personal features
	5.2 Matching between the Big FIve traits and the IT Human Factors
	5.3 The evaluation test
	5.4 Summary over the definition & evaluation of the IT Human Factors
	6 Chapter - Development of the model for IT human performance prediction
	6.1 Experimental design for the need of the IT human performance prediction
	6.2 Algorithm for conducting Experimental Design
	6.2.1 Recognition of and statement of the problem
	6.2.2 Pre-planning of the Experiment
	6.2.3 Performing the experiment and analysis of the results
	6.3 The development of the model for IT human performance prediction
	6.3.1 Recognition and statement of the problem
	6.3.2 Pre-planning of the Experiment
	6.3.3 Realizing and Analysis of the Experiment
	6.4 The developed model for IT human performance prediction
	6.5 Summary over the development of the predictive model
	7 Chapter - Experimental validation of the predictive model for IT human performance
	7.1 The actual application of the model
	7.1.1 Examples
	7.2 The Software Human Factors Test web application
	7.2.1 Analysis of the gained information
	7.3 Summary over the experimental model validation
	Conclusion and Future Work
	Appendix
	List of Acronyms
	References

