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Zusammenfassung

Die Wirbelschichtsprühgranulation ist ein industriell bedeutendes Verfahren zur Gewin-
nung von festen Granulaten aus einer Suspension oder Lösung. Hierbei wird zunächst eine
Schüttung von Feststoffpartikeln durch einen aufwärtsgerichteten Gasstrom fluidisiert.
Das sich ausbildende Wirbelbett wird anschließend mit der Suspension oder Lösung be-
sprüht, die sich auf dem Einzelpartikel absetzt. Bei geeigneten Prozessbedingungen, d.h.
Gasfeuchte und Gastemperatur, kommt es dann zur Verdunstung der flüssigen Phase
und damit verbunden zur Bildung einer neuen Feststoffschicht auf den Einzelpartikeln.
Diese unterscheiden sich untereinander durch ihre Größe, was auf eine entsprechende Par-
tikelgrößenverteilung führt.
Im großtechnischen Maßstab wird die Wirbelschichtsprühgranulation kontinuierlich be-
trieben. Hierbei können jedoch je nach Prozessbedingungen neben den gewünschten sta-
tionären Zuständen auch Instabilitäten in Form von nichtlinearen Oszillationen auftreten.
Es handelt sich hierbei um ein Phänomen, das auch von anderen partikelbildenen
Prozessen, wie beispielsweise der kontinuierlichen Kristallisation, bekannt ist. In der Regel
führen solche Oszillationen zu periodisch variierenden Produkteigentschaften und sind da-
her unerwünscht. Im Rahmen dieser Arbeit wird untersucht wie sich dieses unerwünschte
Verhalten mittels regelungstechnischer Methoden beherrschen lässt. Es werden hierzu
zwei typische Anlagenschemen, die kontinuierliche Wirbelschichtsprühgranulation mit in-
terner und externer Produktklassierung, betrachtet.
In Kapitel 2 werden die entsprechenden Modelle vorgestellt und deren Stabilitätsverhalten
analysiert. Die Modellierung der Partikelgrößenverteilung mit Hilfe von Populations-
bilanzen führt auf nichtlineare partielle Integrodifferentialgleichungen. Zur Regelung
können prinzipiell Verfahren der endlich (nach einer entsprechenden Diskretisierung) und
unendlich dimensionalen Regelungstheorie verwendet werden.
In Kapitel 3 werden unter Verwendung von Verfahren der linearen endlich dimension-
alen robusten Regelungstheorie Regler entworfen, die ein nominelles Streckenmodell, d.h.
die lineare endlich dimensionale Approximation des Prozesses in der Umgebung um eine
nominelle Ruhelage, stabilisieren. Die Robustheitseigenschaften der so entworfenen Regler
werden benötigt, um die robuste Stabilität bezüglich zweier Fehler zu garantieren. Zum
einen sind dies Fehler, die aus der Abweichung der linearen endlich dimensionalen Approxi-
mationen des Prozesses an Ruhelagen verschieden von der nominellen folgen. Zum anderen
Fehler, die aus der Diskretisierung, d.h. der endlichen dimensionalen Approximation des
verteilten Modells, resultieren. Beide Fehler werden in Kapitel 3 ausführlich analysiert.
Es zeigt sich, dass die entworfenen Regler die Stabilität der Partikelgrößenverteilung in
einer Umgebung um die stationäre Partikelgrößenverteilung garantieren. Wie Simula-
tionen belegen, erlauben die entworfenen Regler in Kombination mit einer geeigneten
Anfahrstrategie einen stabilen Anlagenbetrieb im interessierenden Parameterbereich.
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In Kapitel 4 wird ein neues Regelungskonzept vorgestellt, das den Entwurf eines stabil-
isierenden Reglers direkt am nichtlinearen unendlich dimensionalen Modell ermöglicht.
Die Grundidee ist hierbei, die üblichen Stabilitätsanforderung, d.h. Konvergenz
des Fehlers in der Partikelgrößenverteilung in einer Norm (L1, L2 oder L∞-Norm),
abzuschwächen und lediglich die Konvergenz in einem verallgemeinerten Abstandsmaß,
einer Diskrepanz, zu fordern. Durch die Verwendung der diskrepanzbasierten Sta-
bilitätstheorie kann damit, eine geeignete Wahl der Diskrepanzen vorausgesetzt, ein an-
alytischer Reglerentwurf durchgeführt werden. Für die berechneten Regelgesetze kann
unter gewissen Bedingungen auch die punktweise Konvergenz des Fehlers in der Par-
tikelgrößenverteilung, d.h. Konvergenz im Sinne der L∞-Norm und damit auch in der
L1 und L2-Norm, gezeigt werden. Neben dem einfachen und intuitiven Entwurf belegen
Simulationsergebnisse auch ein deutlich verbessertes Übergangsverhalten im Vergleich zu
den zuvor betrachteten endlich dimensionalen Ansätzen.



Abstract

Fluidized bed spray granulation is an important industrial process for solid granule pro-
duction from suspensions or solutions. First of all, a packed bed of solid particles is
fluidized by an upwards directed gas flow. Then the fluidized bed is sprayed with the
suspension or solution, which settles on the particles. Under appropriate conditions, i.e.
gas humidity and temperature, the liquid phase evaporates and a new solid layer forms
on the particles. As the particles differ in size this results in a particle size distribution.
For large-scale production fluidized bed spray granulations are operated continuously.
Here, beside the desired steady state operation instabilities as nonlinear oscillations may
occur depending on the specific process conditions. This phenomenon is also known from
other particulate processes like continuous crystallization. In general, these oscillations
result in periodical variations of product properties and are therefore undesired. In this
Thesis, control oriented approaches are investigated to overcome this problem. Therefore,
two typical production schemes, i.e. the fluidized bed spray granulation with internal and
external product classification, are studied.
In Chapter 2 the associated models are presented and their stability behavior is analyzed.
The modelling of the particle size distribution by population balances results in nonlinear
partial integro-differential equations. For control design methods of finite dimensional,
after an appropriate discretization step, and infinite dimensional control theory can be
applied.
In chapter 3 controllers are derived applying linear finite dimensional robust control the-
ory. They allow for stablization of a nominal plant model, i.e. a linear finite dimensional
approximation of the plant in the neighborhood of a nominal steady state. The robustness
margin of the designed controllers is used to guarantee robust stability with respect to
two errors. On the one hand, errors resulting from deviations of linear finite dimensional
approximations of the plant at steady states different from the nominal steady state. On
the other hand, errors resulting from the discretization, i.e. the finite dimensional ap-
proximation of the distributed parameter system. Both errors are investigated in detail
in chapter 3. It will be shown, that the proposed controllers guarantee stability of the
particle size distribution in a neighborhood of the steady state particle size distribution.
As will be demonstrated by means of simulations the designed controllers, in combination
with an appropriate start-up strategy, permit a stable plant operation in the parameter
range of interest.
In chapter 4 a new control concept is presented, which allows a direct stabilizing con-
trol design using the nonlinear infinite dimensional plant model. The basic idea is to
weaken the standard stability requirements, i.e. convergence of the error particle size
distribution in a norm (L1, L2 or L∞-norm), and to require convergence in a generalized
distance measure, called discrepancy. Applying discrepancy based stability theory and se-
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lecting appropriate discrepancies this approach allows an analytical control design. Under
some additional conditions the proposed controller can be shown to guarantee pointwise
convergence, i.e. convergence in the sense of the L∞-norm and hence in the L1 and L2-
norm. Besides the simple and intuitive design, in comparison to linear finite dimensional
approaches the discrepancy based controllers show an improved transition behavior in
simulations.



Notation

µi i-th moment, i.e.
∫∞

0
LindL

ṅ∗ particle flux
n number density distribution
L diameter
A overall surface
V overall volume
δ(L) Dirac delta function
σ(L) Heaviside step function

V̇e volume based suspension in-
jection rate

ṁe mass based suspension in-
jection rate

G growth rate
B birth rate
b nucleation parameter
h bed height
K drain
µM mill grade
T∗ separation function
Subscripts
out removed particles
product product particles
noz nozzle
fines fine particles
oversize oversized particles
product product particles
mill milled particles

Table 1: Continuous fluidized bed spray granulation with internal and external product
classification
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W1(s) precompensator
W2(s) postcompensator
G(s) transfer function
δg gap metric
A,B,C,D system matrices of a state

space model
M,N denominator and numerator

of a transfer function
L Laplace transform
L(X ) bounded linear operator

from X to X
L(X ,Y) bounded linear operator

from X to Y
T (.) Semigroup
D(A) domain of A
ρ(A) resolvent set of A
R(s;A) resolvent of A
Pn projection operator
Wc controllability gramian
Wo observability gramian
σi Hankel singular value
V (x) Lyapunov function
ρ(ϕ, t) discrepancy of ϕ
Lfh(x) Lie derivative of h(x) along

f(x)
Subscripts
s steady state
r reduced model
n n-dimensional approxima-

tion
o observable state
uo unobservable state
c controllable state
uc uncontrollable state
∆ uncertain model set

Table 2: Linear and nonlinear control design
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Chapter 1

Introduction

1.1 Process description

Granulation is an important class of production processes in food, chemical and pharma-
ceutical industries. It is used to produce granules from liquid products, e.g. solutions or
suspensions. More and more frequently, granulation is combined with fluidized bed tech-
nology. Here, a fluidized bed is formed from solid particles under appropriate conditions,
e.g. by passing a gas or liquid through the solid material. Important properties of the
fluidized bed are the fluid like behavior, an enlarged active surface caused by increased
bed porosity and good particle mixing. In addition, fluidization technology allows a com-
bination of different processes like drying, coating, mixing, granulation, agglomeration,
heating or pneumatic transport [4, 8, 7].
For research purposes a pilot plant shown in Fig. 1.1 has been installed at the chemical
engineering department of the Otto-von-Guericke University, which allows for different
process configurations. One typical fluidized bed spray granulation scheme is depicted in
Fig. 1.2.

Figure 1.1: NaWiTec fluidized bed spray granulator (left) and process chamber (right)
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Figure 1.2: Typical granulation process

Here, the solid particles are fluidized by an air stream with predefined pressure, temper-
ature and humidity. Then a liquid, e.g. solution or suspension, is injected, which settles
on the particles. Due to the low humidity and increased temperature the liquid fraction,
i.e. the solvent or the external phase, is evaporated. The remaining solid forms a new
layer on the particle surface as shown in Fig. 1.3.

Figure 1.3: Particle growth

Besides the described layered growth in fluidized bed spray granulation operation addi-
tional mechanisms may occur:

1. Nucleation, i.e. particle formation based on liquid evaporation. Meaning the cre-
ation of new particles from droplets sprayed into the process chamber due to the
evaporation of the liquid in the droplet as depicted in Fig. 1.4.

Figure 1.4: Nucleation

2. Particle breakage or attrition due to particle-particle contact or particle wall contact
as shown in Fig. 1.5.

3. Particle agglomeration due to the formation of liquid particle-particle bonds as
depicted in Fig. 1.6.
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Figure 1.5: Particle breakage

Figure 1.6: Agglomeration

From a modeling point of view, fluidized bed spray granulation processes and particulate
processes in general can be described by population balances. Here, an individual particle
property as for example characteristic size is introduced as an internal coordinate. This
property may change from particle to particle, giving rise to a property distribution, like
the particle size distribution. The distribution dynamics of the particle ensemble can be
described by a population balance equation [10]

∂n

∂t
=
∂G(ξ)n

∂ξ
+ F (n, ξ), (1.1)

where ξ is an internal coordinate like for example particle size, n(t, ξ) is the number density
of the particle size distribution, G(ξ) is the associated growth and F (n, ξ) accounts for
sinks and sources in the domain of ξ.

1.2 Motivation

It is well known that continuous fluidized bed spray granulation depending on the process
configuration exhibit nonlinear limit cycles as depicted in Fig. 1.7 and reported in [1, 4,
12]. These are connected to a loss of stability of the steady state for a certain range of
parameters.

In most cases these instabilities do have a negative effect on product quality and plant
productivity and are therefore undesired. This is no specific behavior for fluidized bed
spray granulation as similar patterns of behavior have been observed for other particulate
processes like crystallization processes [40, 26]. Fig. 1.8 shows an example with nonlinear
oscillations occurring in an industrial KCl crystallizer.
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Figure 1.7: Limit cycles occurring in fluidized bed spray granulation operation according
to Schütte et. al. [11]

Figure 1.8: Limit cycles occurring in industrial KCl crystallizer operation according to
Randolph [39]

Typically, these instabilities give undesired time behavior of the particle size distribution
in the granulator and the associated product quality. Possible solutions are redesign, e.g.
avoiding parameter combinations in the region of instability, or constructive measures
like for example buffer tanks augmentation, or stabilization via feedback control. The
latter approach should be preferred as it gives the possibility to operate the process over
the full range of parameters and needs no reconstruction. In addition, feedback control
improves process dynamics even in the stable region. It allows a direct adjustment of the
desired product properties and permits the rejection of unforeseen disturbances.

However, from a control theory point of view, stabilizing control design is a very chal-
lenging task as population balance models for continuously operated particle processes
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represent nonlinear distributed parameter systems. So far, main emphasis in this field
was on crystallization processes. Here, several approaches for stabilizing control design
have been proposed, using linear (e.g. [31]) and nonlinear (e.g. [27, 28, 29, 30]) lumped
models or linear (e.g. [36, 37, 38]) and nonlinear infinite dimensional models, i.e. applying
the control approach presented in chapter 4 [35]. The lumping can be achieved by

1. Numerical discretization of the process model [31]. Here, the model can be dis-
cretized in time and the internal coordinate or only in the internal coordinate lead-
ing to finite dimensional discrete time or continuous time control problems. As will
be shown in Appendix A applying an appropriate discretization scheme convergence
to the original process model can be proven. Using this result one can show that
the finite dimensional controller derived guarantees stability for the original system
under additional conditions.

2. The method of moments can be used to derive a lumped model with the moments
of the particle size distribution being the system states [27, 28, 29, 30]. In special
cases the moments are closing and this approach gives a finite dimensional system of
small order describing the dynamics of the moments of the original system. If this is
not the case, several methods have been proposed in order to force a closing model,
e.g. quadrature method of moments [5], direct quadrature method of moments [2].
However, convergence of the approximate moment models to the moments of the
original model is still an issue. In addition, a controller stabilizing the moment
model generally does not imply stabilization of the particle size distribution of the
original model [3].

When dealing with the infinite dimensional model a controller can be derived by

1. Linearization leading to an infinite dimensional state space model or transfer func-
tion [54, 57]. Using infinite dimensional extensions of

• H∞-control theory [58],

• optimal control theory [82, 93, 60, 55],

• pole placement [86, 85],

• root locus theory [95, 81]

• internal model control [89],

a controller can be derived being again infinite dimensional. Therefore, for a practi-
cal implementation, an additional reduction step has to be taken, which may result
in a loss of stability and performance.

2. Applying generalized Lyapunov stability theory, i.e. stability with respect to two
discrepancies. This new approach proposed in this Thesis admits direct control
design without any additional model reduction or simplification step. In addition,
stability in the traditional sense, i.e. convergence in a Lp or L∞-norm can be
guaranteed under some conditions. Beyond, the scope of the present Thesis it was
also successfully applied to crystallization processes in [35].
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Compared to crystallization processes, only little work has been reported on the control
of granulation processes. Main emphasis was on drum granulation (e.g. [13, 14]), for
which no open loop instabilities have been reported in the open literature. Therefore, the
results presented in this Thesis are the first in the field of control design for fluidized bed
spray granulation processes. Parts of them have been published in advance [32, 33, 34].

1.3 Thesis overview

In chapter 2 the investigated continuous fluidized bed spray granulation processes are
described introducing the associated population balances models. Chapter 3 is devoted
to linear finite dimensional control design using discrete approximations of the underlying
population balance models. In order to derive a linear controller with guaranteed stability
for the distributed parameter system at different steady states of interest several aspects
have to be carefully investigated:

1. The set of steady state solutions and linear finite dimensional approximations have
to be calculated.

2. The set of linear finite dimensional models for different set points has to be embedded
into the set of a nominal model and an appropriate uncertainty model.

3. Convergence of the applied numerical discretization scheme has to be guaranteed in
order to derive an estimate for the discretization error.

4. Applying linear robust control theory, a controller has to be derived such that its
robustness margin covers the family of all infinite dimensional linear approximations
of the original plant in order to guarantee stability in a certain neighborhood of the
path of set points.

5. In order to allow for changes in the set point and automatic process start-up an
appropriate feedforward control has to be designed.

In chapter 4 a new nonlinear control approach for particulate processes, called discrepancy
based control, is developed and applied to continuous fluidized bed spray granulation.
After calculating the steady state solutions analytically and briefly reviewing stability and
control theory for distributed parameter systems, the concept of a generalized distance
measure, called discrepancy, and the associated stability theory are introduced. On the
basis of the stability with respect to two discrepancies nonlinear control laws for continuous
fluidized bed spray granulation are derived and tested by means of numerical simulations.
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Chapter 2

Continuous fluidized bed spray
granulation

Two typical continuous fluidized bed spray granulation processes applied in industry are
continuous fluidized bed spray granulation with internal [12] and external [4] product
classification. Interestingly, both are reported to exhibit the aforementioned qualitative
change in stability. Thus both will be studied in this Thesis.
In this chapter the associated population balance models of both configurations are pre-
sented. Afterwards the qualitative process behavior is studied by numerical bifurcation
analysis. Here, the numerical parameter continuation results in a set of steady state so-
lutions and the associated set of linear models. The steady state solutions will be used to
derive a start-up strategy for the linear control design. Whereas, the set of linear models
will serve in chapter 3 to derive a nominal model and an associated uncertainty model for
robust control design.

2.1 Continuous fluidized bed spray granulation with

internal product classification

The process scheme of continuous fluidized bed spray granulation with internal product
classification is depicted in Fig. 2.1. The granulator consists of a granulation chamber,
where the particle population is fluidized through an air stream and coated by injecting
a suspension V̇e.
The associated particle growth has been described in [6] under the assumption that the
suspension evenly distributes on the particle surfaces A. Hence, the growth rate G is
inverse proportional to the second moment µ2. In Vreman et. al. [12] the growth rate has
been slightly modified to account for internal nucleation. In this extended approach only
a certain part of the injected suspension ((1− b)V̇e) contributes to the particle growth

G =
2(1− b)V̇e
π
∫∞

0
L2ndL

=
2(1− b)V̇e

πµ2

, (2.1)

with b ∈ [0, 1]. The rest of the suspension (bV̇e) results in new nuclei due to drying spray
droplets, which completely dry before hitting existing particles in the bed. Here, it is
assumed that the size distribution of the formed nuclei is a normal distribution with a
mean diameter L0 as depicted in Fig. 2.2.
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Figure 2.1: Process scheme

Figure 2.2: Normal distribution of formed nuclei nB(L)

B =
bV̇e
1
6
%π

e−
(L−L0)

2

a2∫∞
0
L3e−

(L−L0)
2

a2 dL
=

bV̇e
1
6
%π
nB(L) (2.2)

The nucleation parameter b, which determines how much of the injected suspension results
in new particles, is assumed to depend only on the bed height h, which can be obtained
from

h =
V

(1− ε)A
, (2.3)

where ε is the bed porosity. In the following the bed porosity ε is assumed to be constant.
With increasing bed height h the free distance for the spray droplets decreases resulting in
a decreasing nuclei formation. The minimum of the nucleation parameter b∞ is reached,
when the bed reaches the height of the nozzle. For further increasing bed height the
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Figure 2.3: Dependence of the nucleation parameter b on the bed height h according to
Vreman et al. [12] with hnoz = 440mm

nucleation parameter b is assumed to remain constant at b∞. For a minimum bed height
of 0 it is assumed that 100 % of the injected suspension forms new particles giving a
nucleation parameter of b = 1. As can be seen in Fig. 2.3 the nucleation parameter b is
interpolated linearly between the two limiting situations h = 0 and h = hnoz resulting in
the following expression

b = b∞ +max

(
0, (1− b∞)

hnoz − h
hnoz

)
. (2.4)

Product particles are continuously removed through an air sifter with counter current flow,
which separates small from large particles. The large particles pass the air sifter while
the small particles are reblown into the granulation chamber. The associated non-ideal
separation function T shown in Fig. 2.4

T (L) =

∫ L
0
e−

(L′−L1)
2

a2 dL′∫∞
0
L3e−

(L−L1)
2

a2 dL
(2.5)

results with the drain K in the following outlet flow

ṅprod = KT (L)n. (2.6)

To describe the process, a population balance model for the particle size distribution has
been proposed recently in [12] consisting of the following particle fluxes

• ṅprod particle flux due to product removal,

• B particle flux due nuclei formation,

and particle growth associated with the size independent growth rate G

∂n

∂t
= −G∂n

∂L
− ṅprod +B. (2.7)
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Figure 2.4: Non-ideal separation function T due to classifying product removal

For numerical simulation the model equations are semi-discretized with the finite volume
method (1st order upwind flux discretization) with 150 grid points. Time integration is
performed using ode15s from the Matlab ODE suite and the third order strong stability
preserving Runge-Kutta [51] given in Appendix A. Details regarding the numerical method
are presented in Appendix A. The model parameters used are given in table 2.1.

A 5 · 106mm2

hnoz 440mm
ε 0.5

V̇e 1.67 · 105mm3

s

b∞ 0.028
L0 0.3mm
L1 0.7mm
K 1.92 · 10−4 1

s

Table 2.1: Plant parameters

Starting with an initial particle size distribution as depicted in Fig. 2.5, which is the
steady state particle size distribution for V̇e,0 = 16800mm

3

s
, the model shows interesting

dynamic behavior. For sufficiently high suspension injection rates and an associated bed
height higher than the nozzle height, transition processes decay and the particle size
distribution and its moments µ0, . . . , µ3 reach a stable steady state (Fig. 2.6). Decreasing
the suspension injection rate below a critical value gives rise to nonlinear oscillations in
the particle size distribution and its moments µ0, . . . , µ3 (Fig. 2.7).



Continuous fluidized bed spray granulation 13

Figure 2.5: Initial condition



Continuous fluidized bed spray granulation 14

Figure 2.6: Open-loop simulation in the stable region V̇e = 1.1 · V̇e,0
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Figure 2.7: Open-loop simulation in the unstable region V̇e = 0.9 · V̇e,0
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Here, the associated mechanism is as follows:

• For a bed height smaller than the nozzle height an increased production of nuclei
with mean diameter L0 takes place due to spray drying (Fig. 2.8 a ).

• This results in a high number of small particles and a reduced growth rate.

• After a certain time the bed height reaches the nozzle height, resulting in a small
and constant production of nuclei and a higher growth rate (Fig. 2.8 b and c).

• When the peak of the particle size distribution reaches the critical particle radius
L1 the associated particles are removed from the granulator (Fig. 2.8 d ). This is
connected with a decrease of the bed height below the nozzle height and hence the
process repeats.

In contrast, a high suspension rate results in a permanent high production of nuclei,
a higher growth rate and therefore a bed height being bigger than the nozzle height.
Hence, after a transition time the steady state particle size distribution is reached and no
oscillations occur.

a b

c d

Figure 2.8: Mechanism of oszillations
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2.2 Continuous fluidized bed spray granulation with

external product classification

In contrast to the continuous fluidized bed spray granulation with internal product clas-
sification in the continuous fluidized bed spray granulation with external production new
nuclei are generated from a oversize fraction by a mill. Typically, nucleation due to spray
drying is negligible in this configuration. The process scheme is depicted in Fig. 2.9. The
granulator consists of a granulation chamber, where the particle population is fluidized
through an air stream and coated by injecting a suspension ṁe. The associated particle
growth has been described in [6]

G =
2ṁe

%A
=

2ṁe

%πµ2

. (2.8)

Figure 2.9: Process scheme

In the continuous configuration of the fluidized bed spray granulation particles are con-
tinuously removed in order to achieve a constant bed mass, which correlates to a constant
third moment of the particle number distribution µ3 =

∫∞
0
L3ndL.

The particle flux being removed from the granulator is

ṅout = Kn. (2.9)

where K is the drain which follows from the assumption of a constant bed mass and which
is derived later. The removed particles are then sieved in two sieves and separated into
three classes:



Continuous fluidized bed spray granulation 18

Figure 2.10: Non-ideal separation functions T1 and T2 due to sieving

1. Fine particles, which are fed directly back to the granulator

ṅfines = (1− T2) (1− T1) ṅout, (2.10)

2. Product particles, which are removed from the whole process

ṅprod = T2 (1− T1) ṅout, (2.11)

3. Oversized particles, which are grinded in a mill and fed back to the ganulator

ṅoversize = T1ṅout. (2.12)

The separation functions T1 and T2 for the two screens are depicted in Fig. 2.10.

T1/2 =

∫ L
0
e
−

(L′−µ1/2)
2

2σ2
1/2 dL′

∫∞
0
e
−

(L′−µ1/2)
2

2σ2
1/2 dL′

. (2.13)

To describe the process, a population balance model for the particle size distribution has
been derived in [4]. In this Thesis a simplified model is used neglecting external seeding,
attrition and overspray. Nevertheless, open-loop simulations give comparable results.
In the model fine particles are fed directly back to the granulator, which results in a
cancellation of the associated sink and source. Hence the simplified population balance
equation consists of the following particle fluxes:

• ṅprod particle flux due to product removal,

• ṅoversize particle flux due to oversize removal,

• ṅmill particle flux due to particles fed back from the mill,
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Figure 2.11: Particle size distribution of milled particles nmill

and particle growth associated with the size independent growth rate G

∂n

∂t
= −G∂n

∂L
− ṅprod − ṅoversize + ṅmill. (2.14)

The particle distribution fed back from the mill is assumed to be a normal distribution as
shown in Fig. 2.11, where the mean diameter µM represents the mill grade. The particle
flux from the mill is given by

ṅmill = 6
e
−

(L−µM )2

2σ2
M

√
2ππ%σM

∫ ∞
0

L3ṅoversizedL. (2.15)

Assuming ideal mass control the drain K is calculated such that the time derivative of µ3

becomes zero implying a constant bed mass

µ̇3 =

∫ ∞
0

L3∂n

∂t
dL = 0 (2.16)

=

∫ ∞
0

L3

[
−G∂n

∂L
− ṅoversize − ṅprod + ṅmill

]
dL. (2.17)

Because the mill is assumed to be mass conserving the third moments of the oversize flux
and mill flux are equal resulting in

0 =

∫ ∞
0

L3

[
−G∂n

∂L
− ṅprod

]
dL (2.18)

= 3G

∫ ∞
0

L2ndL−K
∫ ∞

0

L3T2(1− T1)ndL. (2.19)

Here the fact that the particle size distribution vanishes at the boundary
(n(0, t) = lim

L→∞
n(L, t) = 0) has been used for integration by parts. Solving equation

(2.19) for the drain K yields
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K =
3G
∫∞

0
L2ndL∫∞

0
L3T2(1− T1)ndL

. (2.20)

For numerical simulation the model equations are semi-discretized with the finite volume
method (1st order upwind flux discretization) with 160 grid points. Time integration is
performed using ode15s from the Matlab ODE suite and the third order strong stability
preserving Runge-Kutta [51] given in Appendix A. Details regarding the numerical method
are presented in Appendix A. The model parameters used are given in table 2.2.

Hold-up
% 1.6 · 10−3 g

mm3

minit 100kg
ṁe

100
3.6

g
s

Screens
µ1 1.4mm
σ1 0.055mm
µ2 1mm
σ2 0.065mm

Mill
µM 0.9mm
σM 0.1mm

Table 2.2: Simulation parameters

The qualitative dynamical behavior of the fluidized bed spray granulation with external
product classification strongly depends on the process parameters [4, 9]. For sufficiently
high mill grade, transition processes decay and the particle size distribution reaches a
stable steady state (Fig. 2.12). Decreasing the mill grade below a critical value gives rise
to nonlinear oscillations (Fig. 2.13).
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Figure 2.12: Open-loop simulation in the stable region µM = 0.8mm
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Figure 2.13: Open-loop simulation in the unstable region µM = 0.7mm
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a b

c d

Figure 2.14: Mechanism of oscillations

The associated mechanism leading to nonlinear oscillations is as follows:

• For fine grinding the population surface excessively increases due to the smaller
particles fed back from the mill. This results in a very small growth rate (Fig. 2.14
a ).

• Hence, the particle flux from the oversize fraction and therefore the mill reflux are
vanishing, which gives a slowly growing particle size distribution of small particles
(Fig. 2.14 b ).

• When the peak of this particle size distribution reaches the oversize fraction the
number of small particles again increases excessively and the whole process thus
repeats (Fig. 2.14 c and d ).

In contrast, for a large mill grade increase in the overall particle surface is smaller prevent-
ing an excessive decrease in the growth rate. Hence, the particle flux from the oversize
fraction does not vanish resulting in a constant production of nuclei.
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2.3 Numerical parameter continuation and steady

state calculation

It is well known, that qualitative properties as stability of equilibrium, existence of limit
cycles etc., can change for a nonlinear dynamic system under parameter variations [102,
26, 9]. In particular, this phenomenon has been observed for the fluidized bed spray
granulation in both configurations [9, 12]. In order to derive a complete picture of the
qualitative process behavior in a certain parameter range a bifurcation analysis is useful.
Here, the same semi-discretized versions of the population balance models as for the
dynamic simulation are used, i.e.

ṅ = f(n, p) (2.21)

where p is the bifurcation parameter. For the continuous fluidized bed spray granulation
with external product classification the mill grade µM has been chosen as the bifurcation
parameter [9]. For the continuous fluidized bed spray granulation with internal product
classification stability has been shown to depend on the injection rate V̇e [12], which is
therefore chosen as the bifurcation parameter.
First, steady states np,s are calculated in dependence of the bifurcation parameter p =
{µM , V̇e} by continuation methods.

0 = f(np,s, p) (2.22)

For this purpose an initial steady state particle size distribution ns,0 is generated by time

integration for a nominal value p0 = {µM,0 = 0.9mm, V̇e,0 = 1.67 · 105mm3

s
}, for which

a stable steady state is found. Then, using this initial steady state solution np0,s as a
prediction for a new steady state solution np1,pred for a different bifurcation parameter
p1 = {µM,1, V̇e,1},

np1,pred = np0,s (2.23)

a steady state solution np1,s is obtained by a corrector step involving numerical mini-
mization of the L1-norm of the residuals of dni/dt. This is repeated for a successively
decreasing p = {µM , V̇e} from µM,0 = 0.9mm to 0.5mm and V̇e,0 to 0.8V̇e,0, respectively.
Along the branch the local stability of the computed steady states is determined by
solving the eigenvalue problem for the linearized system. Here, special care has to be
taken as the condition of constant hold up mass for the continuous fluidized bed spray
granulation with external classification, i.e. µ̇3 = 0, has to be taken explicitly into
account as an additional equality constraint giving a constrained optimization problem.
Whereas the steady state problem for the fluidized bed spray granulation with internal
classification is an unconstrained optimization problem.

2.3.1 Bifurcation analysis - internal product classification

At a certain point V̇e,BP two conjugate complex eigenvalues occur in the right-half plane.
Beyond this point the steady states solutions are unstable. Further investigation of the
time behavior in this region shows, that a stable limit cycle occurs. The described behavior
is depicted in Fig. 2.15, where thick continuous lines represent stable stationary solutions,
dashed lines unstable stationary solutions and dots the maximal and minimal amplitudes
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Figure 2.15: One-parameter bifurcation diagrams depending on V̇e

of the observed oscillations, i.e. limit cycles.
As can be seen from the bifurcation diagram in Fig. 2.15 the moments µ0, µ1 and

µ2 are non-monotone functions of V̇e, which would result in uniqueness problems when
choosing V̇e as a control input and one of these moments as the controlled variable. This
phenomenon, i.e. the abrupt change in the slope of the bifurcation curves and the loss of
monotonicity, is connected to the nozzle height hnoz and occurs when the bed reaches the
height of the nozzle as can be seen in Fig. 2.15.
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Figure 2.16: One-parameter bifurcation diagrams depending on µM

2.3.2 Bifurcation analysis - external product classification

At a certain point µM,BP two conjugate complex eigenvalues cross the imaginary axis and
occur in the right-half plane. Beyond this point the steady states solutions are hence
unstable and a stable limit cycle occurs. The described behavior is depicted in Fig. 2.16,
where thick continuous lines represent stable stationary solutions, dashed lines unstable
stationary solutions and dots the maximal and minimal amplitudes of the observed oscil-
lations, i.e. limit cycles.
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2.4 Analytical steady state calculation

An alternative approach to a numerical calculation of the steady state particle size dis-
tribution ns as presented in the previous section is of course an analytical derivation. In
order to derive easy to handle steady state population balances preceding model simpli-
fications are convenient. This can be achieved by some minor changes affecting only the
shape functions of the population balance equations, i.e. the full structure of the model
is maintained.

2.4.1 Simplification and analytical steady state calculation - in-
ternal product classification

In order to derive a steady state solution for the particle size distribution of the fluidized
bed spray granulation with internal product classification the model is to complicated
and should hence be simplified. The original smooth classification function is therefore
replaced by its discontinuous counterpart as shown in Fig. 2.17.

T =

∫ L
0
e−

(L′−L1)
2

a2 dL′∫∞
0
L3e−

(L−L1)
2

a2 dL
≈ σ (L− L1) (2.24)

Figure 2.17: Original (dotted black) and simplified (solid gray) classification function T

The same is done for the original smooth normal distribution of nuclei particles, which is
replaced by the normalized delta distribution as depicted in Fig. 2.18.

nB =
e−

(L−L0)
2

a2∫∞
0
L3e−

(L−L0)
2

a2 dL
≈ 1

L3
0

δ(L− L0) (2.25)

It should be mentioned that this simplified model formulation corresponds with the model
presented in Vreman et. al. [12].
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Figure 2.18: Original (dotted black) and simplified (solid gray) distribution of nuclei
particles nB

In steady state the particle size distribution is constant, i.e. ∂n/∂t = 0. Therefore,
the simplified population balance equation being a nonlinear partial integro-differential
equation becomes a nonlinear integro-differential equation.

dns
dL

=
1

G

(
bV̇e

1
6
πL3

0

δ(L− L0)−Kσ(L− L1)ns

)
(2.26)

The solution of the nonlinear integro-differential equation is derived according to e.g. [128]
by integration over the length L. Details are presented in Appendix B. The steady state
particle size distribution ns(L)

ns(L) =
bV̇e

1
6
πGsL3

0

[
(σ(L− L0)− σ(L− L1)) + σ(L− L1) exp

(
−K
Gs

(L− L1)

)]
, (2.27)

depends on the steady state growth rate Gs, which can be determined by the following
nonlinear equation

6b

L3
0

(
1

3

(
L3

1 − L3
0

)
+
L2

1Gs

K
+ 2

L1G
2

K2
+ 2

G3
s

K3

)
= 2(1− b). (2.28)

Thus, solving the nonlinear equation for Gs for a given suspension injection rate V̇e yields
the associate steady state particle size distribution. As can been seen in Fig. 2.19 the
steady state particle size distribution for the original and simplified model match well.
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Figure 2.19: Original (dotted black) and simplified (solid gray) steady state particle size
distribution ns for V̇e = 1.67 · 105mm3

s

2.4.2 Simplification and analytical steady state calculation - ex-
ternal product classification

In accordance with the fluidized bed spray granulation with internal product classification
the model with external product classification has to be simplified. This is achieved
by replacing the separation functions and the milled particle size distribution by there
discontinuous counterparts.
The sieving functions T1 and T2 are replaced by the heaviside step functions as shown in
Fig. 2.20.

T1/2 =

∫ L
0
e
−

(L′−µ1/2)
2

2σ2
1/2 dL′

∫∞
0
e
−

(L−µ1/2)
2

2σ2
1/2 dL

≈ σ
(
L− µ1/2

)
(2.29)

The original smooth milled particle size distribution nM is replaced by the normed rect-
angular function as shown in Fig. 2.4.2.

nM ≈ σ (L− (µM − σM))− σ (L− (µM + σM))∫∞
0
L3 [σ (L− (µM − σM))− σ (L− (µM + σM))]

(2.30)

= 4
σ (L− (µM − σM))− σ (L− (µM + σM))

(µM + σM)4 − (µM − σM)4
(2.31)

=
σ (L− (µM − σM))− σ (L− (µM + σM))

2µMσM(µ2
M + σ2

M)
(2.32)

In steady state the particle size distribution is constant, i.e. ∂ns/∂t = 0. Hence, the
steady state particle size distribution is the solution of the following integro-differential
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Figure 2.20: Original (solid black) and simplified (dotted gray) distribution of milled
particles nM for µM = 0.9

Figure 2.21: Original (solid black) and simplified (dotted gray) separation functions T1

and T2

equation.

∂ns
∂t

= 0 = −G(µ2,s)
∂ns
∂L
− ṅprod − ṅoversize − ṅmill (2.33)

= −G(µ2,s)
dns
dL
− T2(1− T1)Ksns − T1Ksn+ nM(µM,s)

∫ ∞
0

L3T1KsnsdL(2.34)

Due to the ideal separation functions T1 and T2 the product T2T1 is equal to T1. Hence,
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the simplified steady state population balance equation becomes

dns
dL

=
Ks

G(µ2,s)

(
−T2ns + nM(µM,s)

∫ ∞
0

L3T1nsdL

)
, (2.35)

= a (−T2ns + nM(µM,s)b) , (2.36)

where a = Ks
G(µ2,s)

and b =
∫∞

0
L3T1nsdL. The solution of the nonlinear integro-differential

equation is derived by integration over the length L. Details are presented in Appendix
C. The steady state particle size distribution ns(L)

ns(L) = abkM [(L− µM + σM)σ(L− µM + σM)− (L− µM − σM)σ(L− µM − σM)

+2σM(1− exp(−a(L− L2)))σ(L− L2)] , (2.37)

still depends on the two parameters a and b, where a can be determined by the following
nonlinear equation

1

2kMσM
=

(
L3

1 +
3L2

1

a
+

6L1

a2
+

6

a3

)
ea(L2−L1) (2.38)

and b is calculated from the total mass m0.

b =
m0

ρπ
6

∫∞
0
L3n̄s(L)dL

(2.39)

Figure 2.22: Original (dotted black) and simplified (solid gray) steady state particle size
distribution ns for µM = 0.9mm
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Chapter 3

Linear control based on
discretization

This chapter deals with linear finite dimensional controller design for continuous fluidized
bed spray granulation with internal and external product classification. Due to the linear
control approach stability can hence be guaranteed only in a neighborhood around the
steady state of the design model. Applying robust control methods this stability result
can be extended to all steady states, which have been investigated by numerical parameter
continuation in section 2.3. In addition, a sufficient robust stability margin allows the
controller to cope with errors due to numerical discretization (Appendix A). Therefore,
the linear robust controller will be able to stabilize the process, i.e. the original infinite
dimensional system, in a neighborhood of its steady state particle size distribution.
For a practical implementation the proposed controllers have to be augmented by an
appropriate start-up strategy. Here, the main idea is to start the process in the region
of stability in open loop operation. As soon as the steady state is reached the control
loop is closed. In order to achieve an open loop unstable desired steady state particle size
distribution the set-point is shifted. The resulting control structure depicted in Fig. 3.1
thus consists of a feeback and feedforward component.

Figure 3.1: Control structure

The structure of this chapter is as follows. In section 3.1 appropriate control handles
u and y are identified. In addition, reduced order design models and their associated
uncertainties are derived. The error associated to the applied discretization methods is
quantified in section 3.2. The linear high order design models are then reduced applying
model reduction techniques. The total error and hence the required robustness margin
therefore consists of three parts

1. Error due to discretization,
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2. Error due to linearization at different steady states,

3. Error due to finite dimensional model reduction.

Finally, finite dimensional robust controllers are designed and tested by means of simula-
tion on the nonlinear plants.

3.1 Finite dimensional control system analysis

3.1.1 Controllability and observability analysis

Before deriving a control law, which is capable to stabilize the steady state solution in
the unstable region, the appropriate control in- and outputs have to be chosen. As a
candidate for a control input one could choose the bifurcation parameter p, i.e. the
mill grade µM for the continuous fluidized bed spray granulation with external product
classification and the suspension injection rate V̇e for the continuous fluidized bed spray
granulation with internal product classification, which both have a direct influence on
the nucleus production. A criterion to check, whether this choice is appropriate for these
configurations, is to check for controllability of the state n by the input u = {µM , V̇e}.
Here, we use the family of linear systems derived along the steady state continuation path.

ẋ = A(p)x+B(p)u (3.1)

y = C(p)x+D(p)u (3.2)

Then, for each state space model the controllability matrix Rc has to have rank N , where
N is the dimension of the A matrix.

rank(Rc) = rank
([

B AB A2B . . . AN−1B
])

= N (3.3)

As the numerical rank evaluation is sensitive, the staircase algorithm has been used to
transform the system into its controllability staircase form [73]

˙̄x =

[
Ac A12

0 Auc

] [
x̄c
x̄uc

]
+

[
Bc

0

]
u (3.4)

y =
[
Cc Cuc

] [ x̄c
x̄uc

]
+Du. (3.5)

Here, the rank of Auc is equal to the number of uncontrollable states. Checking this
criterion for the family of linear systems derived along the steady state continuation path
yields, that the state n is linear controllable by µM and V̇e, respectively.
As the intention is to design a controller, which uses only moment measurements, one
has to check for observability of the state n with respect to the candidate measurement
µ0, . . . , µ2 for the continuous fluidized bed spray granulation with external product clas-
sification and µ0, . . . , µ3 for the continuous fluidized bed spray granulation with internal
product classification. This is done again for the family of linear models using the dual
criterion for observability, i.e. the observability matrix Ro has to have rank N , where N
is the dimension of the A matrix.
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rank(Ro) = rank




C
CA
CA2

...
CAN−1



 = N (3.6)

Again, the staircase algorithm has been used to transform the system into its observability
staircase form [73], due to sensitivity of the numerical rank evaluation.

˙̃x =

[
Ao 0
A21 Auo

] [
x̃o
x̃uo

]
+

[
Bo

Buo

]
u (3.7)

y =
[
Co 0

] [ x̃o
x̃uo

]
+Du. (3.8)

Here, the rank of Auo is equal to the number of unobservable states. Checking this
criterion for the family of linear systems derived along the steady state continuation
yields, that the state n is linear observable using an arbitrary moment measurement
µ0, . . . , µ2 for the fluidized bed spray granulation with external product classification and
µ0, . . . , µ3 for the fluidized bed spray granulation with internal product classification,
respectively.

3.1.2 Uncertainty models

From a control perspective, it would be desirable if the family of linear infinite dimensional
systems derived along the steady state continuation could be embedded into a set of
perturbed plants, where the set of perturbed plants can be described by a nominal system
G0 and a set of bounded, stable uncertainties [70, 71, 73, 74, 72]. In the following,
three different types of model uncertainties (additive, multiplicative and coprime factor
uncertainty) are studied using two simple uncertain system. For a successful control
design the model uncertainty should be stable and possess a finite H∞-norm.

Example 1 [72]

The first example is an uncertain second order system with varying natural frequency.
Here, the crucial point is the lack of damping. Hence, the natural frequency varies with
the uncertain parameter α1 as depicted in Fig. 3.2 (left).

G1(s) =
1

s2 + 1 + α1

(3.9)

The system G(s) for α1 = 0 is called the nominal system G0(s).

G0,1(s) =
1

s2 + 1
(3.10)
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Example 2

The second example is again an uncertain second order system with two conjugate complex
poles. Here, the real part of the poles is uncertain resulting in a change of stability as
shown in Fig. 3.2 (right). This type of uncertainty is of great importance for the processes
studied in this Thesis as it reflects the situation occurring at the Hopf bifurcation.

G2(s) =
1

s2 − 2(α2 − 0.01)s+ (α2 − 0.01)2 + 1
(3.11)

The nominal system is obtained for α2 = 0.

G0,2(s) =
1

s2 + 0.02s+ 1.0001
(3.12)

Figure 3.2: G1(s) and G0,1(s) - for α1 = 0.3 (left) and G2(s) and G0,2(s) for α2 = 0.02
(right)

Additive uncertainty

At first the uncertain system G1(s) and G2(s) are embedded into the set of the nominal
system G0,1(s) and G0,2(s) and an appropriate additive uncertainty, i.e.

G(s) = G0(s) + ∆a(s) (3.13)

the appropriate additive uncertainty can be calculated as

∆a(s) = G(s)−G0(s). (3.14)

The additive uncertainties for the first and second example are

∆a,1(s) =
−α1

(s2 + 1 + α1)(s2 + 1)
, (3.15)

∆a,2(s) =
−2α2s+ α2

2 − 0.02α2

(s2 − 2(α2 − 0.01)s+ (α2 − 0.01)2 + 1)(s2 + 0.02s+ 1.0001)
. (3.16)

Obviously, as can be seen from Fig. 3.3 (left) the additive uncertainty ∆a,1(s) does not
have a finite H∞-norm and hence is not an appropriate uncertainty model. For the second
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Figure 3.3: Additive uncertainty - ∆a,1(s) for α = 0.3 (left) and ∆a,2(s) for α = 0.02
(right)

example depending on the value of α2 the stability condition for the additive uncertainty
∆a,2(s) is clearly not satisfied (Fig. 3.3 (right)).
Therefore, the class of additive model uncertainties is not a feasible choice for these
examples and hence for the fluidized bed spray granulation processes studied in this
Thesis.

Multiplicative uncertainty

The same result holds in the case when the uncertain systems G1(s) and G2(s) are em-
bedded into the set of the nominal systems G0,1(s) and G0,2(s) and an appropriate mul-
tiplicative uncertainty, i.e.

G(s) = (1 + ∆m(s))G0(s). (3.17)

The multiplicative uncertainty can be calculated as

∆m(s) =
G(s)

G0(s)
− 1. (3.18)

For the first and second example the multiplicative uncertainties are

∆m,1(s) =
−α

(s2 + 1 + α)
, (3.19)

∆m,2(s) =
2αs− α2 + 0.02α

(s2 − 2(α− 0.01)s+ (α− 0.01)2 + 1)
. (3.20)

As can be seen from Fig. 3.4 (left) ∆m,1(s) does not have a finite H∞-norm and hence
is not an appropriate uncertainty model for the first example. For the second example
depending on the value of α2 the stability condition for ∆m,2(s) is clearly not satisfied
(Fig. 3.4 (right)).

Coprime factor uncertainty

Using a coprime factorization of the nominal system G0(s), i.e. G0(s) = M0(s)−1N0(s)
where N0(s) and M0(s) are stable coprime transfer functions, the uncertain system G(s)
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Figure 3.4: Multiplicative uncertainty - ∆m,1(s) for α = 0.3 (left) and ∆m,2(s) for α = 0.02
(right)

can be embedded into the set of the nominal systemG0(s) and coprime factor uncertainties
∆M(s) and ∆N(s) as depicted in Fig. 3.5.

G(s) = (M0(s) + ∆M(s))−1(N0(s) + ∆N(s)) (3.21)

One possibility to calculate appropriate coprime factor uncertainties for a given coprime

Figure 3.5: Coprime factor uncertainty

factorization of G(s), i.e. G(s) = M(s)−1N(s) is the following

∆N(s) = N(s)−N0(s), (3.22)

∆M(s) = M(s)−M0(s). (3.23)

In the following, it is assumed that the coprime factors N(s) and M(s) are normalized,
i.e. the Bezout identity

M(s)MT (−s) +N(s)NT (−s) = I (3.24)

is fulfilled. The normalized left coprime factorization can be calculated using the state
space realization of the transfer function G(s) by solving the following algebraic Riccati
equation in Z(

A−BS−1DTC
)
Z + Z

(
A−BS−1DTCT

)T − ZCTR−1CZ +BS−1BT = 0 (3.25)

where
S = I +DTD. (3.26)
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Using the following abbreviations

H = −
(
BDT + ZCT

)
R−1 R = I +DDT (3.27)

the normalized left coprime factorization can be obtained by Laplace Transformation of
the following state space model[

N(s) M(s)
]
�

[
A+HC B +HD H

R−
1
2C R−

1
2D R−

1
2

]
. (3.28)

For the nominal systems G0,1(s) and G0,2(s) and the transfer functions G1(s) and G2(s)
with α1 = 0.3 and α2 = 0.02 of example 1 and 2 the normalized left coprime factorizations
are

G0,1(s) =

(
s2 + 1

s2 + 0.9102s+ 0.5858

)−1(
1

s2 + 0.9102s+ 0.5858

)
, (3.29)

G1(s) =

(
s2 + 1.3

s2 + 1.038s+ 0.8858

)−1(
1

s2 + 1.038s+ 0.8858

)
, (3.30)

G0,2(s) =

(
s2 + 0.02s+ 1

s2 + 0.9104s+ 0.6215

)−1(
1

s2 + 0.9104s+ 0.6215

)
, (3.31)

G2(s) =

(
s2 − 0.02s+ 1

s2 + 0.9104s+ 0.5487

)−1(
1

s2 + 0.9104s+ 0.5487

)
. (3.32)

The associated coprime factor uncertainties ∆M(s) and ∆N(s) are

∆N,1(s) =
−0.12758(s+ 2.351)

(s2 + 0.9102s+ 0.5858)(s2 + 1.038s+ 0.8858)
, (3.33)

∆M,1(s) =
−0.12758(s+ 1.362)(s2 − 1.362s+ 0.7151)

(s2 + 0.9102s+ 0.5858)(s2 + 1.038s+ 0.8858)
, (3.34)

∆N,2(s) =
0.072832

(s2 + 0.9104s+ 0.5487)(s2 + 0.9104s+ 0.6215)
, (3.35)

∆M,1(s) =
−0.04(s− 1.411)(s2 + 0.5s+ 1.29)

(s2 + 0.91s+ 0.5487)(s2 + 0.9104s+ 0.6215)
. (3.36)

As depicted in Fig. 3.6, the coprime factor uncertainties ∆N,1(s), ∆M,1(s), ∆N,2and ∆M,2

are all stable and have a finite H∞-norm and are hence appropriate uncertainty models.

‖∆N,1(s)‖∞ = 0.66 (3.37)

‖∆M,1(s)‖∞ = 0.359 (3.38)

‖∆N,2(s)‖∞ = 0.23 (3.39)

‖∆M,2(s)‖∞ = 0.217 (3.40)

In contrast to multiplicative or additive model uncertainties, coprime factor uncertainties
do not give a unique realization for ∆M(s) and ∆N(s) for a given plant G(s) and nominal
model G0(s). Hence, the choice of ∆M(s) and ∆N(s) is an additional degree of freedom.
As for robust control design the H∞-norm of a given uncertainty is crucial, a realization
∆N(s) and ∆M(s) with a minimal H∞-norm should be used. This minimization problem
motivates the introduction of the gap metric.
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Figure 3.6: Coprime factor uncertainty ∆M(s) and ∆N(s) - example 1 for α = 0.3 (left)
and example 2 for α = 0.02 (right)

3.1.3 Gap metric

For two systems G0(s) and G(s) the directed gap ~δg(G0(s), G(s)) is defined as the minimal
H∞-norm of a feasible realization of ∆M(s) and ∆N(s), i.e. a realization

G(s) = (M(s) + ∆M(s))−1 (N(s) + ∆N(s)) (3.41)

where N(s) and M(s) are the normalized left coprime factors of G0(s).

~δg(G0, G) := inf
[∆N ∆M ]∈H∞

{
‖[∆N ∆M ]‖∞ : G = (M + ∆M)−1 (N + ∆N)

}
. (3.42)

The directed gap ~δg is however not a metric as it is not symmetric in its arguments,

i.e. ~δg(G0(s), G(s)) 6= ~δg(G(s), G0(s)). Hence, the gap metric δg is introduced as the

maximum of both directed gaps ~δg(G0(s), G(s)) and ~δg(G(s), G0(s)) [69].

δg(G0, G) = max
{
~δg(G0, G), ~δg(G,G0)

}
(3.43)

Using this gap metric two systems G1(s) and G2(s) are close if the associated value of
the gap metric δg(G1(s), G2(s)) is close to zero, implying that both can be embedded in a
family of linear models using a nominal model and a, with respect to the H∞-norm, small
coprime factor uncertainty. The maximum value of the gap metric is one. It is important
to note that the gap metric as any other metric satisfies the triangular inequality.

δg(G1, G2) ≤ δg(G1, G3) + δg(G3, G2) (3.44)

Calculating the gap metric of example 1 and 2 gives the following

δg(G0,1, G1) = 0.29, (3.45)

δg(G0,2, G2) = 0.043, (3.46)

which shows, that the realizations of ∆N(s) and ∆M(s) chosen in the preceeding section
were not optimal. This overestimation would have led to an unnecessary conservative
control design.
In the following, the gap metric for the family of linear models derived along the steady
state continuation with respect to a design model will be investigated for both fluidized
bed spray granulation processes.
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3.1.4 Analysis of the gap metric

As has been mentioned before in the case of the fluidized bed spray granulation with
internal classification the third moment µ3 is the most appropriate candidate for the
controlled variable due to uniqueness problems of the moments µ0, . . . , µ2 when selecting
V̇e as control input. Therefore, in the following a family of linear models is generated
using a measurement y = µ3. Then the gap metric of each member of the family with
respect to the nominal design models G0(s) associated to a suspension injection rate in
the unstable region V̇e = 14709mm

3

s
is calculated. As can be seen in Fig. 3.7 (left) the

family of the associated linear systems can be embedded into a set of plants consisting
of a nominal system G0(s) and a coprime factor uncertainty. The maximum gap metric
δg,lin = max

V̇e

(δg) will be used for the calculation of the required robustness margin.

δg,lin = max
V̇e

(δg) = 0.0033 (3.47)

In the case of the fluidized bed spray granulation with external classification a family of
linear models is generated using a measurement of the second moment µ2 and the mill
grade µM as control input. Then the gap metric of each member of the family of linear
transfer functions with respect to the nominal design model G0(s) associated to the mill
grade µM = 0.5 is studied. As can be seen in Fig. 3.7 (right) the family of the associated
linear systems can be embedded into a set of plants consisting of a nominal system G0(s)
and a coprime factor uncertainty. Here, the maximum gap metric gives

δg,lin = 0.25. (3.48)

Figure 3.7: Gap metric with respect to G0(s)
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3.2 Quantification of the discretization error

In Appendix A convergence of the approximate solution of the particle size distribution
has been studied. However, for control design this type of convergence is not sufficient.
For a successful finite dimensional control design convergence should be stated in terms of
certain error bounds, which can be identified with appropriate model uncertainties. The
motivation is that deriving a controller with an appropriate robust stability margin closed
loop stability can be guaranteed embedding the linearized population balance model into
a set consisting of a nominal system G0(s) and a set of bounded, stable uncertainties.
Therefore, in the following it is assumed that the population balance model has been
linearized resulting in a linear distributed parameter system on a Hilbert space X . The
necessary concepts from linear infinite dimensional systems theory [81, 59, 64, 94, 96] will
be shortly restated in analogy to the finite dimensional case.

3.2.1 Semigroup theory for linear distributed parameter sys-
tems

A finite dimensional linear time-invariant system in state-space representation has the
following systems equation

ẋ = Ax. (3.49)

Here, A is the system matrix. For a given initial condition x0 at time t = 0 all future
solutions x(t) can be calculated by

x(t) = eAtx0 (3.50)

where eAt is the matrix exponential function mapping the initial state x0 to x(t). Calcu-
lating the solution in the s-domain, i.e. applying Laplace transformation, gives

X(s) = (sI − A)−1x0. (3.51)

or in time-domain
x(t) = L−1

{
(sI − A)−1

}
x0. (3.52)

For infinite dimensional linear time-invariant systems the situation is far more complex
as the state vector x becomes infinite dimensional and the system matrix A generalizes
to an operator. However, similar concepts hold. The matrix exponential function eAt

becomes an operator T (t) which is called semigroup and which maps initial states x0 to
x(t). Here, we will focus only on the important class of strongly continuous semigroups,
i.e. C0-semigroups [126, 127].

Definition 1. A strongly continuous semigroup (a C0-semigroup) is a map T : R+ →
L(X ) with the following properties

T (0) = I (3.53)

T (t+ τ) = T (t)T (τ) for all t, τ ≥ 0 (3.54)

lim
t→0
‖T (t)x− x‖ → 0 for all x ∈ X . (3.55)

The operator A, i.e. the generalization of the system matrix, is called the infinitesimal
generator of the semigroup T (t).
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Definition 2. The infinitesimal generator A of a strongly continuous semigroup T (t) is
defined by

Ax = lim
t→0

1

t
(T (t)− I)x (3.56)

whenever the limit exists. The set of elements x ∈ X for which the limit exists is called
the domain of A, D(A).

The Laplace transform of the semigroup T (t), i.e. (sI−A)−1, is called the resolvent. The
subset of the domain of the infinitesimal generator A, D(A), for which the resolvent exists
and is bounded is called resolvent set and its complement is the spectrum of A.

Definition 3. For an infinitesimal generator A and its associated domain D(A) the re-
solvent set ρ(A) is defined as follows

ρ(A) :=
{
s ∈ C : (sI − A)−1 exists and is bounded

}
. (3.57)

Its complement σ(A) := C \ ρ(A) is called the spectrum of A. The inverse R(s;A) :=
(sI − A)−1 for s ∈ ρ(A) is called the resolvent.

For a given infinite dimensional dynamical system

ẋ = Ax, (3.58)

stability is defined by stability of the associated semigroup T (t).

Definition 4. A strongly continuous semigroup T (t) is stable if there exist M,α > 0 such
that ‖T (t)‖ ≤ Me−αt for all t ≥ 0. If there exists a constant σ such that α > σ the
C0-semigroup T (t) is σ-stable.

In the following, focus will be on bounded control systems, i.e. systems with finite dimen-
sional input and output spaces.

ẋ = Ax+Bu (3.59)

y = Cx (3.60)

Here, the operator B ∈ L(Rp,X ) maps the finite dimensional input u ∈ Rp to the state
space X and the operator C ∈ L(X ,Rq) maps the state space X to the finite dimensional
output y ∈ Rq. Stability for a bounded control system can then be defined by stability of
the associated semigroup T (t).

Definition 5. A bounded control system (A,B,C) is called internally stable if the semi-
group generated by A is stable.

The important properties of stabilizability and detectability, well known from the finite
dimensional case, can also be extended to the infinite dimensional case.

Definition 6. A bounded control system (A,B,C) is called stabilizable if there exists a
bounded linear operator K : X → Rp such that A − BK is the generator of a stable
semigroup. If there exists a bounded linear operator F : Rq → X such that A−FC is the
generator of a stable semigroup the system is called detectable.
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If in addition the semigroups generated by A−BK or A−FC are σ-stable the bounded
control system (A,B,C) is called σ-stabilizable or σ-detectable.

Definition 7. A bounded control system (A,B,C) is called σ-stabilizable if there exists
a bounded linear operator K : X → Rm such that A− BK is the generator of a σ-stable
semigroup. If there exists a bounded linear operator F : Rn → X such that A−FC is the
generator of a σ-stable semigroup the system is called σ-detectable.

It can be shown [61, 62] that every infinite dimensional bounded control system can be
stabilized by a finite dimensional controller.

Theorem 1. [61, 62] Every stabilizable and detectable bounded control system is stabiliz-
able by a finite dimensional controller.

This gives the theoretical justification for three control design procedures as depicted in
Fig. 4.1:

1. Direct finite dimensional control design. Based on the infinite dimensional system
a finite dimensional and thus implementable controller is derived.

2. Late lumping control design. Based on the infinite dimensional system a infinite
dimensional controller is derived, which has to be discretized or lumped for an
implementation.

3. Early lumping control design. The infinite dimensional model is discretized or
lumped. Then a finite dimensional controller is derived being based on the finite
dimensional system.

Figure 3.8: Control approaches for finite dimensional controller design

The direct control design would be the most attractive from a practical and theoretical
point of view. However, in general it lacks applicability. The late lumping approach
uses an approximation of the original controller for implementation, which may result in
problems regarding stability and performance. In the following, the focus will be on the
early lumping approach. The reason is twofold:
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1. For control design a great variety of standard finite dimensional control methods
can be used.

2. Assuming a converging sequence of finite dimensional approximations the discretiza-
tion error can be estimated by an appropriate error bound. This error bound can
be used in a finite dimensional control design approach in order to derive robust
control laws.

In the following, focus will hence be on the derivation of an appropriate error bound of
the discretization error.

3.2.2 Convergence in the gap metric

Consider the following system on a Hilbert space X , where A is the generator of a strongly
continuous semigroup T (t) and the input/output spaces are finite dimensional, i.e. B ∈
L(Rp,X ) and C ∈ L(X ,Rq).

ẋ = Ax+Bu (3.61)

y = Cx (3.62)

A discretization scheme gives a finite dimensional approximation.

ẋ = Anx+Bnu (3.63)

y = Cnx (3.64)

In the following Pn will be the projection operator, which restricts C to Cn and gives
Bn = PnB.

Theorem 2. [61, 62] Let (An, Bn, Cn) be a sequence of approximations of a σ-
stabilizable/detectable bounded control system (A,B,C), satisfying the following assump-
tions.

A1 For all x ∈ X , limn→∞ ‖Pnx− x‖ = 0

A2 For some s ∈ ρ(A) and for all x ∈ X

lim
n→∞

‖PnR(s;A)X(s)−R(s;An)PnX(s)‖ = 0 (3.65)

A3 The semigroups Tn(t) generated by An are uniformly bounded. That is, there exist
M,k such that

‖Tn(t)‖ ≤Mekt for all n ≥ N (3.66)

A4 The approximations are uniformly σ-stabilizable if the original system is σ-
stabilizable, i.e.

lim
n→∞

KnPnx = Kx (3.67)

and for sufficiently large N the semigroups generated by An − BnKn are uniformly
bounded by Me−αt for some M > 0, α > σ and all n > N .

Then the approximating systems Gn converge to the original system G in the gap metric,
i.e.

lim
n→∞

δg(Gn, G) = 0 (3.68)
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3.2.3 Estimation of the gap metric

For a finite dimensional control design the distance between the finite dimensional ap-
proximation Gn(s) and the original system G(s) in the sense of the gap metric δg(Gn, G)
is needed [63]. This is in general a very hard task, therefore in this section the estimation
procedure proposed in [66] is used.
This estimation procedure is based on the fact that the gap metric satisfies the triangular
inequality

δg(G1, G2) ≤ δg(G1, G3) + δg(G3, G2) (3.69)

or more specifically for G1 being a finite dimensional approximation of order k of G, G2

being the original system G and G3 being a finite dimensional approximation of order
k + 1 of G

δg(Gk, G) ≤ δg(Gk, Gk+1) + δg(Gk+1, G). (3.70)

Using the triangular inequality and the result that the numerical approximation Gn con-
verges to G, i.e. limn→∞Gn = G, yields

δg(Gn, G) ≤
∞∑
k=n

δg(Gk, Gk+1). (3.71)

This gives an estimate of the distance between the finite dimensional approximation Gn(s)
and the original system G(s) in the sense of the gap metric δg(Gn, G) provided that the
infinite series converges and the limit can be calculated, which in general will not be
the case. Therefore, in order to derive an applicable estimation procedure, it is assumed
that the gap metric δg(Gk, Gk+1) can be overestimated by a sequence δ̄g(k) for which
the associated series converges, then for the gap metric between the finite dimensional
approximation Gn(s) and the original system G(s) the following holds

δg(Gn, G) ≤
∞∑
k=n

δg(Gk, Gk+1) <
∞∑
k=n

δ̄g(k). (3.72)

Here, the estimate δ̄g(k) should be chosen such that the limit of the series can be easily
calculated.

3.2.4 Discretization error - internal product classification

As can be seen from Fig. 3.9 the sequence of gap metrics δg(Gk, Gk+10) with k =
150, 160, . . ., i.e. k = k(i) = 150 + 10(i − 1) with i = 1, 2, . . . , can be bounded from
above by a sequence δ̄g(i) = 0.8/(i + 20)2 with i = k−150

10
+ 1 for which the associated

series converges.

δg(G150, G) ≤
∞∑
i=1

δg(Gk(i), Gk(i)+10) <
∞∑
i=1

0.8

(i+ 20)2
≤ 0.04 (3.73)
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Figure 3.9: Sequence of gap metrics δg(Gk, Gk+10) (black x) and δ̄g (gray o) - internal
product classification

3.2.5 Discretization error - external product classification

As can be seen from Fig. 3.10 the sequence of gap metrics δg(Gk, Gk+1) with k = 160, . . .,
i.e. k = k(i) = 150+10(i−1) with i = 1, 2, . . . , can be bounded from above by a sequence
δ̄g(i) = 1/(i+ 20)2 with i = k−160

10
+ 1 for which the associated series converges.

δg(G160, G) ≤
∞∑
i=1

δg(Gk(i), Gk(i)+10) <
∞∑
i=1

1

(i+ 20)2
≤ 0.05 (3.74)

Figure 3.10: Sequence of gap metrics δg(Gk, Gk+10) (black x) and δ̄g (gray o) - external
product classification
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3.3 Linear control design

3.3.1 Finite dimensional model reduction

So far, high order models have been used. In order to derive low order design models
for control design finite dimensional model reduction techniques [65] are applied. The
associated reduction error will be calculated in the gap metric.
Given a stable high order model G(s) with the following state space minimal realization

ẋ = Ax+Bu, (3.75)

y = Cx+Du. (3.76)

Then the state vector x ∈ Rn can be separated into two parts x =

(
x1

x2

)
with x1 ∈ Rr,

x2 ∈ Rk and n = r + k.

ẋ1 = A11x1 + A12x2 +B1u (3.77)

ẋ2 = A21x1 + A22x2 +B2u (3.78)

y = C1x1 + C2x2 +Du (3.79)

In order to derive a reduced order model from this representation two possibilities are via
truncation and singular perturbations. Applying order reduction by truncation the states
x2 are simply left out resulting in the following reduced model

ẋ1 = A11x1 +B1u, (3.80)

y = C1x1 +Du. (3.81)

Investigation of the approximation error between Gr(s) and G(s) gives

G(s)−Gr(s) = C(sI − A)−1B − C1(sI − A11)−1B1. (3.82)

Here, investigating the limits for ω → ∞ and ω → 0 gives that good approximation is
achieved for high frequencies whereas for low frequencies the approximation error becomes
high.

lim
ω→∞

G(jω)−Gr(jω) = 0 (3.83)

lim
ω→0

G(jω)−Gr(jω) = −CA−1B + C1A
−1
11 B1 (3.84)

i.g.

6= 0 (3.85)

Applying order reduction by singular perturbation it is assumed that the differential
equations for the states x2 are parametrized by a small parameter µ.

ẋ1 = A11x1 + A12x2 +B1u (3.86)

µẋ2 = A21x1 + A22x2 +B2u (3.87)

y = C1x1 + C2x2 +Du (3.88)

For a vanishing parameter µ the differential equations for the states x2 become algebraic
equations

0 = A21x1 + A22x2 +B2u (3.89)
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or as an equation for x2

x2 = A−1
22 (−A21x1 −B2u). (3.90)

This can be used to eliminate the states x2 from the original model giving a reduced
model Gr(s).

ẋ1 = (A11 − A12A
−1
22 A21)x1 + (B1 − A12A

−1
22 B2)u, (3.91)

y = (C1 − C2A
−1
22 A21)x1 + (D − C2A

−1
22 B2)u. (3.92)

Here, it can be shown that the approximation error vanishes for small frequencies, i.e.
limω→0G(jω)−Gr(jω) = 0.
Both methods strongly depend on the state-space realization used. A realization which
has to be proven advantageous in this context is the balanced realization. A state-space
realization of a stable system G(s) is called balanced if its controllability and observability
Gramians (Wc and Wo) are diagonal and equal, i.e.

WS =

∫ te

0

eAtBBT eA
T tdt =

∫ te

0

eA
T tCTCeAtdt = WB = Σ (3.93)

where Σ is a diagonal matrix and the solution of the two Lyapunov equations

AΣ + ΣAT +BBT = 0, (3.94)

ΣA+ ATΣ + CTC = 0. (3.95)

The elements of Σ are the so called Hankel singular values σi

Σ =

 σ1

. . .

σn

 with σ1 > σ2 > . . . > σn > 0. (3.96)

From a model reduction point of view this realization is of great importance as dynamics
associated with a high Hankel singular value are equally well controllable and observable,
i.e. they have great influence on the input-output behavior, and should therefore be pre-
served.
Applying a reduction method (truncation or singular perturbation) to a balanced state-
space model allows in addition the calculation of an explicit upper bound on the approx-
imation error in the sense of an H∞-norm

‖G(s)−Gr(s)‖∞ 6 2
n∑

i=r+1

σi, (3.97)

where σi with i = r+ 1, . . . , n are the Hankel singular values associated with the reduced
states xi with i = r + 1, . . . , n.
So far, stability of the original system has been assumed. In order to reduce an unstable
transfer function model G(s) two different approaches are possible

1. separation of the unstable system dynamics from the stable, i.e. decomposition into

G(s) = Gun(s) +Gst(s), (3.98)

where Gst(s) is the stable and Gun(s) is the unstable part of the transfer function
G(s). Model reduction can then be applied to the stable part Gst(s) only. This
procedure has the disadvantage that the full unstable system dynamics are preserved
in the reduced model, which may not be necessary for a control design.
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2. an elegant alternative is the use of a normalized left (or right) coprime factorization
of the original system G(s), i.e.

G(s) = M−1(s)N(s), with M(s)MT (−s) +N(s)NT (−s) = I (3.99)

as here the transfer functions M(s) and N(s) are stable by definition irrespective
on the stability behavior of the original system G(s). Therefore, model reduction
can be applied on each normalized coprime factors M(s) and N(s) separately.

M(s) → Mr(s) (3.100)

N(s) → Nr(s) (3.101)

The reduced system Gr(s) is then formed from the reduced normalized coprime
factors Mr(s) and Nr(s).

Gr(s) = M−1
r (s)Nr(s) (3.102)

In this Thesis only the second approach has been used applying truncation of the balanced
realization of each normalized left coprime factor M(s) and N(s) of the original plant.

Model reduction - internal product classification

As can be seen from the diagram of the Hankel singular values σi in Fig. 3.11 a truncation
up to order 5 is reasonable. The additive approximation error |G−Gr| is small over the
whole frequency range of interest as shown in the Bode diagram in Fig. 3.12. The
associated error in the gap metric is

δg(G,Gr) = 1 · 10−3. (3.103)

Model reduction - external product classification

As can be seen from the diagram of the Hankel singular values σi in Fig. 3.13 a truncation
up to order 5 is reasonable. The additive approximation error |G−Gr| is small over the
whole frequency range of interest as shown in the Bode diagram in Fig. 3.14. The
associated error in the gap metric is

δg(G,Gr) = 8 · 10−3. (3.104)
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Figure 3.11: Hankel singular values of G(s) - internal product classification

Figure 3.12: High order transfer function G(s) (solid black) and reduced model Gr(s)
(dotted gray) - internal product classification
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Figure 3.13: Hankel singular values of G(s) - external product classification

Figure 3.14: High order transfer function G(s) (solid black) and reduced model Gr(s)
(dotted gray) - external product classification
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3.3.2 Finite dimensional robust control design

In order to stabilize the particle size distribution in the whole range of {V̇e, µM}, i.e. the
family of linear models derived by linearization along the steady state continuation, in the
following a control law is derived using H∞-loopshaping methodology [67, 68]. Here the
plant is represented by its normalized left coprime factorization with additive uncertainties
∆M(s),∆N(s) in each factor as depicted in Fig. 3.15.

G∆(s) = (M(s) + ∆M(s))−1 (N(s) + ∆N(s)) (3.105)

Figure 3.15: Coprime factor uncertainty

The normalized left coprime factor uncertainty is assumed to be stable with∥∥[ ∆N ∆M

]∥∥
∞ < ε. It is well known that a controller K robustly stabilizes the per-

turbed feedback system (Fig. 3.3.2) if and only if it stabilizes the nominal system

G(s) = M(s)−1N(s) (3.106)

and ∥∥∥∥[ KI
]

(I +GK)−1M−1

∥∥∥∥
∞
≤ 1

ε
. (3.107)

Figure 3.16: Perturbed feedback system

A coprime factor uncertainty representation is in general superior over others, e.g. addi-
tive or multiplicative uncertainties, as it is not restricted to perturbations which preserve
the number of right half-plane poles of the plant. This fact is crucial for the control of



Linear control based on discretization 54

continuous fluidized bed spray granulation with internal and external product classifi-
cation as stability behavior changes depending on the specific operating conditions, i.e.
suspension injection rate V̇e or mill grade µM .
For a given plant the maximal achievable stability margin εmax is given by

εmax = (1 + ρ(XZ))−
1
2 (3.108)

where X and Z are the solutions of two algebraic Riccati equations

(
A−BS−1DTC

)
Z + Z

(
A−BS−1DTCT

)T − ZCTR−1CZ +BS−1BT = 0 (3.109)(
A−BS−1DTC

)T
X +X

(
A−BS−1DTCT

)
−XBTS−1BX + CR−1CT = 0 (3.110)

with
R = I +DDT S = I +DTD. (3.111)

Moreover given an ε < εmax a controller K achieving a stability margin of ε can be
calculated by

K∞ =

[
A+BF + ε−2(LT )−1ZCT (C +DF ) ε−2(LT )−1ZCT

BTX −DT

]
(3.112)

where
F = −S−1(DTC +BTX) L =

(
1− ε−2

)
I +XZ. (3.113)

As the controller K∞ gives only robust stability usually pre- and post-compensator W1(s)
and W2(s) are used in order to shape the open loop singular values of the plant (Fig.
3.3.2) before calculating a robustly stabilizing controller K∞.

Figure 3.17: Shaped open loop

The overall controller K using the pre- and post-compensator W1(s) and W2(s) (Fig.
3.3.2) therefore reads

K = W1K∞W2. (3.114)

The application of H∞-loopshaping design procedure for a shaped plant Gs, i.e. calcu-
lating a controller K for Gs(s) = W2(s)G(s)W1(s) with given ε, results in a controller
stabilizing all plants G with δg(Gs, G) < ε, where δg is the gap metric [69]. In the single-
input single-output case the post-compensator W2 can be set to one designing only the
pre-compensator W1. For the pre-compensator the design requirement of zero steady state
error requires integral action.
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Figure 3.18: Robustly stabilizing controller

3.4 H∞-loopshaping - internal product classification

For the fluidized bed spray granulation with internal classification the requirement of zero
steady state error in the third moment µ3 is reflected by the integral action in the pre-
compensator W1(s), whereas additional poles and zeros are chosen such that a favorable
shape near crossover is achieved. The pre- and post-compensator realizing the desired
loop shape are therefore chosen as follows

W1 = 8 · 10−6 (500s+ 1)2

s(200s+ 1)
, (3.115)

W2 = 1. (3.116)

The open loop Bode diagram of the original and shaped plant can be seen in Fig. 3.19.

Figure 3.19: Open loop shape (dotted gray) and desired loop shape (solid black)

The required robustness margin δRM can be calculated using the triangular inequality and
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the three error bounds (linearization at different set points (3.47), discretization (3.73)
and finite dimensional model reduction (3.103)).

δRM ≤ δlin + δg(G150, G) + δg(G150, Gr) ≤ 0.045 (3.117)

For the shaped plant Gs = W2GW1 a robustly stabilizing controller K∞ of order 9 is
derived with ε = 0.5. Hence, as ε > δRM the derived controller guarantees robust stability.
The Bode diagram of the calculated H∞-loopshaping controller is depicted in Fig. 3.20.

Figure 3.20: Bode plot of H∞-loopshaping controller

As can be seen in Fig. 3.21 the difference between achieved and desired loop shape is
small.
As the controller is designed for a special set point in the region of instability the remaining
task is how to bring the process sufficiently near to the set point. One possibility might
be to start the process with an initial particle size distribution near to the desired set
point, which is obviously not favorable for a practical implementation. An alternative is
to start open loop in the region of stability (for example the third moment associated to
steady state distribution for V̇e,0 = 1.67 · 105mm3

s
). As soon as the steady state is reached

the control loop is closed and the set point is shifted slowly to the desired open loop
unstable operating region (here 0.8V̇e,0). The second approach has been implemented
for the system without additional feedback control resulting in increasing oscillations,
which would end in the associated limit cycle and for the system with the proposed H∞-
Loopshaping controller. As can be seen in Fig. 3.22 oscillations occurring during the
shifting are damped in closed loop operation. The particle size distribution and all its
moments µ0, µ1, µ2, µ3 are stabilized with reasonable control effort.
For an implementation the proposed control scheme should be robust with respect to
variations in plant parameters and external disturbances. In the case of the fluidized bed
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Figure 3.21: Desired (solid black) and achieved loop shape (dotted gray)

spray granulation with internal product classification a typical disturbance is a change
in the drain K. Here, an increase by 10% of the product removal has been applied at
t = 2h. As can be seen in Fig. 3.23 the controller is able to stabilize the system. Due to
the integral action in the proposed H∞-controller the error e converges to zero.
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Figure 3.22: Start up with (dotted gray) and without control (solid black)
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Figure 3.23: Disturbance resposense - increase of K by 10%
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3.5 H∞-loopshaping - external product classification

For the fluidized bed spray granulation with external classification again integral action
is included in the pre-compensator W1(s) in order to achieve zero steady state error in
the second moment µ2. The existence of two right half plane poles and zeros suggests the
use of zeros near the imaginary axis. In addition, fast left half plane poles are introduced,
so that W1(s) is proper. The desired loop shape is therefore realized by choosing the
following pre- and post-compensator

W1 = 5 · 10−3 (3.7 · 103s+ 1)4

s(200s+ 1)4
(3.118)

W2 = 1. (3.119)

The required robustness margin δRM can be calculated using the triangular inequality and
the three error bounds (linearization at different set points (3.48), discretization (3.74)
and finite dimensional model reduction (3.104)).

δRM ≤ δlin + δg(G160, G) + δg(G160, Gr) ≤ 0.31 (3.120)

The open loop Bode diagram of the original and shaped plant can be seen in Fig. 3.24.

Figure 3.24: Open loop shape (dotted gray) and desired loop shape (solid black)

For the shaped plant Gs = W2GW1 a robustly stabilizing controller K∞ of order 10 is
derived with ε = 0.4. Hence, as ε > δRM the derived controller guarantees robust stability.
The Bode diagram of the calculated H∞-loopshaping controller is depicted in Fig. 3.25.
As can be seen in Fig. 3.26 the difference between achieved and desired loop shape is
small.
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Figure 3.25: Bode plot of H∞-loopshaping controller

Figure 3.26: Desired (solid black) and achieved loop shape (dotted gray)
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As for the fluidized bed spray granulation with internal classification the controller for
the fluidized bed spray granulation with external classification has to be applied with
an appropriate start-up strategy. Therefore, the processes is started open loop in the
region of stability (for example µM = 0.9mm). Reaching the steady state the control loop
is closed and the set point is shifted slowly to the desired open loop unstable operating
region (here the second moment associated to steady state distribution for µM = 0.5mm).
As can be seen in Fig. 3.27 oscillations occurring during the shifting are damped in closed
loop operation. The particle size distribution and all its moments µ0, µ1, µ2 are stabilized
with reasonable control effort.
For an implementation the proposed control scheme should be robust with respect to
variations in plant parameters and external disturbances. In the case of the fluidized bed
spray granulation with external product classification a typical disturbance is a change in
mean diameter of the sieving function T1 and T2 due to clogging. Here, an increase by 5%
in the mean diameter L1 and L2 has been applied at t = 0h. As can be seen in Fig. 3.28
the controller is able to stabilize the system. Due to the integral action in the proposed
H∞-controller the error e converges to zero.
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Figure 3.27: Start up with (dotted black) and without control (solid gray)
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Figure 3.28: Disturbance resposense - increase of L1 and L2 by 5%
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Chapter 4

Nonlinear analytical control design

This chapter deals with nonlinear control design for continuous fluidized bed spray granu-
lation with internal and external product classification. The aim will be the development
of an analytical control approach, i.e. without model or controller lumping. The pro-
posed control approach is hence a direct controller design procedure with respect to the
classification in Fig. 4.1.

Figure 4.1: Control approaches for finite dimensional controller design

The structure of this chapter is as follows. Section 4.1 and 4.2 give a short and example
based overview of standard stability theory for distributed parameter systems and its
application to control design. Unfortunately, the presented theory cannot be directly
applied to the class of problems studied in this Thesis. In order to overcome this problem
the use of a generalized stability theory, called stability with respect to two discrepancies
[76, 77, 78, 79], is motivated in section 4.3. Using this generalized stability theory two
nonlinear control laws guaranteeing exponential convergence in a generalized distance
measure are derived in section 4.4 and 4.5. It has to be mentioned, that the discrepancy
based control approach presented in this Thesis guarantees stability of the particle size
distribution in a Lp or L∞-norm if and only if the zero dynamics associated with the
chosen discrepancy, i.e. the generalized distance measure, are stable. Unfortunately,
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fluidized bed spray granulations with external product classification possess in some region
of operating conditions unstable zero dynamics. A solution approach, making use of an
additional parallel compensator [120], is studied at the end of section 4.5.

4.1 Stability for distributed parameter systems

Before starting the analysis of distributed parameter systems, which are infinite dimen-
sional, we take a look at finite dimensional systems [75], i.e. ordinary differential equa-
tions.

ẋ = f(t, x) (4.1)

In the following we assume that (4.1) has an equilibrium x0 at x0 = 0, i.e. f(t, x0) =
0. This is without loss of generality as we can transform any equilibrium z0 6= 0 by
introducing the new state variable x = z − z0 into an equilibrium x0 = 0. The system
(4.1) is called stable in the sense of Lyapunov if for any ε > 0 there exists a δ > 0 such
that for |x(0)| < δ follows |x(t)| < ε for t > 0. If in addition the following inequality holds

‖x(t)‖ ≤ a‖x(0)‖e−bt (4.2)

for t ≥ 0 and a, b > 0, then the system (4.1) is exponentially stable.
In order to determine stability for a given system there exist two distinct approaches

• using the solution x(t) of the system,

• using Lyapunov stability theory.

In the case of a linear system
ẋ = Ax (4.3)

the solution can be calculated up to a constant C, which is determined by the initial
condition x(t = 0).

x(t) = CeAt (4.4)

It is well known, that if the eigenvalues of A have all negative real part the system (4.3) is
exponentially stable. Therefore, in the case of linear systems the solution can be used to
detecte stability by solving an eigenvalue problem. In the nonlinear case the calculation of
an analytical solution is in general infeasible and therefore Lyapunov stability theory has
to be used. Here, the existence of a Lyapunov function V (x) with the following properties

• V (x) is positive definite, i.e. V (x 6= 0) > 0 and V (0) = 0,

• V̇ (x) is negative definite, i.e. V̇ (x 6= 0) < 0 and V̇ (0) = 0,

gives stability. In the linear case an appropriate V (if exists) can be calculated by solving
the following Lyapunov equation for P

ATP + PA+Q = 0 (4.5)

with an arbitrary positive definite Q. Using the solution P the associated Lyapunov
function is V (x) = xTPx with V̇ (x) = −xTQx.
Both approaches have been extended to distributed parameter systems. In the solution
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based approach semigroup theory is applied to interpret the linear infinite dimensional
system as an abstract operator equation (4.6),

dx

dt
= Ax(t) (4.6)

where A is the infinitesimal generator of a semigroup T (t). Stability can be tested
by investigating the resolvent R(λ,A). When applying Lyapunov stability theory to
distributed parameter systems Lyapunov functionals have to be used.
One problem, when investigating stability for distributed parameter systems is that in
contrast to finite dimensional systems, where all vector norms ‖·‖ are equivalent in the
sense that they define the same topology, in the case of infinite dimensional systems
convergence in one function norm does not imply convergence in another.
As the field of stability theory for distributed parameter systems is very broad and
diverse we concentrate in the following on important case studies.

4.1.1 Parabolic partial differential equation

In the following, the stability of a parabolic partial differential equation with Dirichlet
boundary conditions (4.10)-(4.12) is investigated [91]. In a first step, stability with respect
to the L2-norm,

‖w‖2 =

(∫ 1

0

w2(x)dx

)1/2

, (4.7)

is shown, then using stability with respect to the H1-norm,

‖w‖H1 =

(∫ 1

0

w2(x) +

(
∂w

∂x

)2

dx

)1/2

, (4.8)

as an intermediate step pointwise convergence, i.e. stability in the L∞-norm,

‖w‖∞ = max
x∈[0,1]

|w(x)|2 (4.9)

is proven.

∂w

∂t
=

∂2w

∂x2
(4.10)

w(0, t) = 0 (4.11)

w(1, t) = 0 (4.12)

Stability with respect to the L2-norm

Using the following Lyapunov functional

V =
1

2

∫ 1

0

w2(x, t)dx (4.13)

and calculating the time derivative gives
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V̇ = −
∫ 1

0

(
∂w

∂x

)2

dx. (4.14)

Hence, V is clearly bounded by its initial value V (0). However, since it depends on ∂w
∂x

convergence of V towards zero is not obvious. Therefore we use the Poincare inequality
(Appendix D) and the boundary conditions to get an estimate for V̇ .

V̇ = −
∫ 1

0

(
∂w

∂x

)2

dx ≤ −1

4

∫ 1

0

w2dx ≤ −1

2
V (4.15)

This implies
V (t) ≤ e−

t
2V (0) (4.16)

and taking the square root exponential stability with respect to the L2-norm follows

‖x(t)‖2 ≤ e−
t
4‖x(0)‖2. (4.17)

Stability with respect to the H1-norm

Using the following augmented Lyapunov functional

V =
1

2

∫ 1

0

w2(x, t)dx+
1

2

∫ 1

0

(
∂w

∂x

)2

dx (4.18)

and calculating the time derivative gives

V̇ = −
∫ 1

0

(
∂w

∂x

)2

dx+

∫ 1

0

∂w

∂x

∂

∂x

(
∂w

∂t

)
, (4.19)

P.I.
= −

∫ 1

0

(
∂w

∂x

)2

dx+
∂w

∂x

∂2w

∂x2

∣∣∣∣1
0

−
∫ 1

0

(
∂2w

∂x2

)2

dx. (4.20)

Due to the fact that ∂2w
∂x2

is equal to ∂x
∂t

and w is constant at the boundary, i.e. w(0) =
w(1) = 0, the second term is equal to zero.

V̇ = −
∫ 1

0

(
∂w

∂x

)2

dx−
∫ 1

0

(
∂w

∂x

)2

dx (4.21)

≤ −
∫ 1

0

(
∂w

∂x

)2

dx (4.22)

Again V is bounded by its initial value V (0). In order to show exponential stability the
Poincare inequality (Appendix D) is used to derive the following estimate of V̇ .

V̇ ≤ −
∫ 1

0

(
∂w

∂x

)2

dx ≤ −1

2

∫ 1

0

(
∂w

∂x

)2

dx− 1

2

∫ 1

0

(
∂w

∂x

)2

dx (4.23)

≤ −1

8

∫ 1

0

w2dx− 1

2

∫ 1

0

(
∂w

∂x

)2

dx (4.24)

≤ −1

8

∫ 1

0

w2dx− 1

8

∫ 1

0

(
∂w

∂x

)2

dx (4.25)

≤ −1

4
V (4.26)
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This implies

V (t) ≤ e−
t
4V (0) (4.27)

and therefore exponential stability with respect to the H1-norm immediately follows

‖x(t)‖H1 ≤ e−
t
4‖x(0)‖H1 . (4.28)

Stability with respect to the L∞-norm - pointwise convergence

In order to show stability with respect to the L∞-norm the boundary condition and
Young’s and Agmon’s inequalities (Appendix D) are used.

‖w‖∞ = max
x∈[0,1]

|w(x, t)|2 ≤ 2‖w(t)‖2

∥∥∥∥∂w∂x
∥∥∥∥

2

(4.29)

≤ ‖w‖2 +

∥∥∥∥∂w∂x
∥∥∥∥

2

(4.30)

≤ e−
t
2

(
‖w(0, t)‖2

2 +

∥∥∥∥∂w(0, t)

∂x

∥∥∥∥2

2

)
(4.31)

Therefore w(x, t)→ 0 as t→∞.

4.1.2 Hyperbolic partial differential equation

Consider the following first order hyperbolic partial differential equation.

∂w

∂t
=

∂w

∂x
(4.32)

w(1) = 0 (4.33)

Stability can be shown by using the following Lyapunov-Krasovskii functional

V =
1

2

∫ 1

0

(1 + x)w(x, t)2dx (4.34)

Evaluating the time derivate and applying integration by parts gives
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V̇ =

∫ 1

0

(1 + x)wwtdx (4.35)

=

∫ 1

0

(1 + x)wwxdx =

∫ 1

0

(1 + x)
1

2

∂w2

∂x
dx (4.36)

P.I.
=

1 + x

2
w2

∣∣∣∣1
0

− 1

2

∫ 1

0

w2dx (4.37)

= w(1, t)2 − 1

2
w(0, t)2 − 1

2

∫ 1

0

w2dx (4.38)

≤ −1

2

∫ 1

0

w2dx = −1

4

∫ 1

0

w2dx− 1

4

∫ 1

0

w2dx (4.39)

≤ −1

4

∫ 1

0

xw2dx− 1

4

∫ 1

0

w2dx ≤ −1

4

∫ 1

0

(x+ 1)w2dx (4.40)

≤ −1

2
V (4.41)

Therefore, the system is exponentially stable in the sense of the norm

(
1

2

∫ 1

0

(1 + x)w(x, t)2dx

) 1
2

. (4.42)

4.1.3 Stability of a general PBE

In the following, the stability of the equilibrium nd = 0 of a general population balance
equation (4.43) with length independent growth rate G is investigated.

∂n

∂t
= G

∂n

∂L
+ F (n, L) (4.43)

Choosing the candidate Lyapunov functional as follows

V =
1

2

∫ ∞
0

(1 + L)n2dL (4.44)

and taking the time derivative of V along equation (4.43) yields

V̇ =

∫ ∞
0

(1 + L)n
∂n

∂t
dL, (4.45)

=

∫ ∞
0

(1 + L)n

[
G
∂n

∂L
+ F (n, L)

]
dL, (4.46)

=

∫ ∞
0

[
G(1 + L)n

∂n

∂L
+ (1 + L)nF (n, L)

]
dL. (4.47)

As the growth rate G is length independent, i.e. G 6= f(L), the time derivative of the
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candidate Lyapunov functional V̇ can be written as follows

V̇ = G

∫ ∞
0

(1 + L)n
∂n

∂L
dL+

∫ ∞
0

(1 + L)nF (n, L)dL, (4.48)

= G

∫ ∞
0

(1 + L)

2

∂n2

∂L
dL+

∫ ∞
0

(1 + L)nF (n, L)dL, (4.49)

P.I.
=

G

2

[
lim
L→∞

(1 + L)n(L, t)2 − n(0, t)2
]
− G

2

∫ ∞
0

n2dx

+

∫ ∞
0

(1 + L)nF (n, L)dL. (4.50)

However, in this general setting stability strongly depends on the present source term
F (n, L), growth rate G and the boundary conditions n(0, t) and limL→∞ n(L, t). There-
fore, stability analysis, irrespective of the norm underlying the chosen Lyapunov func-
tional, is at least very difficult, if not infeasible, for the fluidized bed spray granulation
with external and internal product classification.

4.2 Stabilization of distributed parameter systems

Over the last decades different methods for stabilization of systems with distributed pa-
rameters have been developed. Most of them are based on the solution of the system
itself or at least the desired error system, i.e. the system in closed loop operation. In the
backstepping approach [80, 91, 92, 100] for example the control input is designed such
that it maps the original system onto a desired stable error system. In the works of Bastin
et. al. [87, 88, 84, 97] stability is proven using the solution derived by the method of
characteristics. For infinite dimensional electromechanical systems a stabilizing control
law can be derived using the associated Hamiltonian [98, 101, 99].
In order to clarify the problems of control design for fluidized bed spray granulation with
external and internal product classification, stabilization of a general population balance
equation in a L2-norm is investigated. Further, a reformulation of the stabilization prob-
lem is motivated being crucial for solvability.

4.2.1 Stabilization of a general PBE in L2-norm

In the following, the stabilitzation of the equilibrium nd of a general population balance
equation (4.51) by a control u will be investigated. In view of generalization a length
dependent growth rate is considered.

∂n

∂t
=
∂G(L)n

∂L
+ F (n, L)u (4.51)

Choosing the candidate Lyapunov functional as follows

V =
1

2

∫ ∞
0

(n− nd)2dL (4.52)

and taking the time derivate of V along equation (4.51) yields
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V̇ =

∫ ∞
0

(n− nd)
∂n

∂t
dL (4.53)

=

∫ ∞
0

(n− nd)
[
∂G(L)n

∂L
+ F (n, L)u

]
dL. (4.54)

A typical Lyapunov design procedure would choose the control u such that

V̇ = −2cV. (4.55)

However, in this case the control u would read

u = F (n, L)−1

(
−c(n− nd)−

∂G(L)n

∂L

)
(4.56)

which is clearly infeasible unless we are dealing with a distributed control action. As the
control input u is in most cases a concentrated input this approach is impossible. In order
to overcome this problem the deviation ne of a particle size distribution n to a desired
particle size distribution nd, i.e. ne = n − nd, will not be measured in a Lp-norm but in
the sense of a moment of ne for example the second moment. The associated candidate
Lyapunov functional is hence defined as follows

V =
1

2

(∫ ∞
0

L2(nd − n)dL

)2

. (4.57)

Calculating the time derivate V̇ gives

V̇ = −
∫ ∞

0

L2(nd − n)dL

∫ ∞
0

L2

(
∂G(L)n

∂L
+ F (n, L)u

)
dL (4.58)

or equivalently for a concentrate control input u

V̇ = −
∫ ∞

0

L2(nd − n)dL

[∫ ∞
0

L2

(
∂G(L)n

∂L

)
dL+

∫ ∞
0

L2F (n, L)dLu

]
. (4.59)

In this case the design requirement of an exponentially converging Lyapunov functional,
i.e.

V̇ = −2cV (4.60)

can be realized by choosing the following control law

u =
c
∫∞

0
L2(nd − n)dL−

∫∞
0
L2 ∂G(L)n

∂L
dL∫∞

0
L2F (n, L)dL

. (4.61)

This motivates the use of moments for control design. Before deriving control laws for the
fluidized bed spray granulation with internal and external classifications, the connection
between the moment ∆µi of a particle size distribution n and the particle size distribution
n itself have to be investigated. It will be shown, that a moment ∆µi or a norm of ∆µi is
not a norm for the particle size distribution n. Therefore, stabilizing an arbitrary moment
∆µi of a particle size distribution n does not automatically yield stabilization of n in any
norm.
A norm is a real-valued function mapping an element of a space (here the particle size
distribution n) onto the set of positive real number. It has to fulfill the following three
conditions:
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1. ‖n‖ = 0⇒ n = 0, i.e. the norm vanishes only for the zero element,

2. ‖αn‖ = |α|‖n‖ for an arbitrary α ∈ K (homogeneity),

3. ‖n1 + n2‖ ≤ ‖n1‖+ ‖n2‖ (triangle inequality).

The moment ∆µi of a particle size distribution n is a real-valued function mapping n
onto the set of real numbers. As long as n is positive ∆µi even maps n onto the set of
positive real numbers. However, as we are interested in the deviation ne of a particle size
distribution n to a desired particle size distribution nd, i.e. ne = n − nd, the moment
∆µi =

∫∞
0
Li(n−nd)dL can also be negative. Thus, norms of the moment ∆µi are studied.

As we are dealing with a one-dimensional quantity for which all p-norms are equivalent
we restrict ourselves to the 1-norm, i.e.

‖∆µi‖1 = |∆µi| =
∣∣∣∣∫ ∞

0

LindL

∣∣∣∣ . (4.62)

If ‖∆µi‖1 would be a norm for the deviation ne of the particle size distribution n from a
desired particle size distribution nd it should satisfy the three norm conditions:

1. ‖ne‖ = 0⇒ ne = 0, taking a look at the following counter example depicted in Fig.
4.2 with ‖ne‖ = 0 and ne 6= 0 shows that the first condition is clearly not satisfied.

ne = (σ(L−L0)−σ(L− (L1 +L0)))
1

Li
− (σ(L− (L1 +L0))−σ(L− (2L1 +L0)))

1

Li
(4.63)

Here, σ(L) is the Heaviside step function.

2. the second condition is satisfied, i.e.∣∣∣∣∫ ∞
0

LiαnedL

∣∣∣∣ = |α|
∣∣∣∣∫ ∞

0

LinedL

∣∣∣∣ (4.64)

3. the third condition is satisfied, i.e.∣∣∣∣∫ ∞
0

Li(ne,1 + ne,2)dL

∣∣∣∣ =

∣∣∣∣∫ ∞
0

Line,1dL+

∫ ∞
0

Line,2dL

∣∣∣∣ (4.65)

≤
∣∣∣∣∫ ∞

0

Line,1dL

∣∣∣∣+

∣∣∣∣∫ ∞
0

Line,2dL

∣∣∣∣ . (4.66)

Therefore, the norm of any moment ∆µi of nd−n is not a norm of nd−n. Consequently,
convergence of the moment ∆µi does not automatically imply convergence of the deviation
in the particle size distribution nd − n. Hence, from a stability theory point of view,
stability has to be interpreted in a generalized setting. This will be achieved by identifying
norms of moments with discrepancies, generalized distance measures, and applying the
concept of stability with respect to two discrepancies.
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Figure 4.2: Counter example ne(L) for L0 = 0.8mm and L1 = 1mm with i = 0 (solid
black) and i = 2 (dotted gray)

4.3 Stability with respect to two discrepancies

In the following, the most important properties and facts on stability with respect to two
discrepancies are stated in accordance to [76, 77, 78, 79]. Here, the process ϕ(., t) is a
solution of the distributed parameter system and ϕ0 = 0 an equilibrium of the system.

Definition 8. Discrepancy
A discrepancy is a real valued functional ρ = ρ[ϕ (., t) , t] with the following properties

1. ρ(ϕ, t) ≥ 0

2. ρ(0, t) = 0

3. for an arbitrary process ϕ = ϕ(., t) the real valued functional ρ(ϕ(., t), t) is continu-
ous with respect to t.

The discrepancy ρ(ϕ(., t), t) is a measure of the distance between the process ϕ(., t) and
the equilibrium ϕ0. Any measure of distance with the above described properties can be
used. Of great importance is the fact that a discrepancy has not all properties of a metric,
e.g. symmetry d(x, y) = d(y, x) or triangular inequality d(x, y) ≤ d(x, z) + d(z, y) are not
satisfied. In addition, it has not to satisfy the important property of definiteness, i.e. a
vanishing discrepancy ρ(ϕ, t) = 0 does not automatically imply ϕ = 0. Therefore, the
discrepancy is an extension of the distance measures normally used in stability theory for
distributed parameter systems like Lp and L∞- norms.
In the context of stability with respect to two discrepancies besides the discrepancy
ρ(ϕ(., t, t)) measuring the distance between ϕ(., t) and the equilibrium ϕ0, a second time
independent discrepancy ρ0 is used describing the distance between the initial state ϕ(., 0)
and the equilibrium ϕ0. The two discrepancies ρ and ρ0 have to satisfy, that the discrep-
ancy ρ(ϕ(., t), t) is continuous at time t = t0 with respect to ρ0 at ρ0 = 0, i.e. for every
ε > 0 and t0 > 0 there exists a δ(ε, t0) > 0, such that from ρ0 6 δ(ε, t0) it follows that
ρ < ε.
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Definition 9. Stability with respect to two discrepancies ρ and ρ0

The equilibrium ϕ0 = 0 is stable in the sense of Lyapunov with respect to the two discrep-
ancies ρ and ρ0 for all t ≥ t0 if for every ε > 0 and t0 ≥ 0 there exists a δ = δ(ε, t0) > 0
such that for every process ϕ(., t) with ρ0 < δ(ε, t0) it follows that ρ < ε for all t ≥ t0.
If in addition limt→∞ ρ = 0, than the equilibrium ϕ0 is called asymptotically stable in the
sense of Lyapunov with respect to the two discrepancies ρ and ρ0.

The basis of many nonlinear control methods is the stability theory of Lyapunov
[106, 107, 111, 113, 114, 115]. The knowledge of a control Lyapunov function for ex-
ample immediately allows the design of a stabilizing control [115, 116, 117]. In order
to achieve a comparable situation for the stability with respect to two discrepancies a
relationship between the existence of a Lyapunov functional V and stability with respect
of two discrepancies has to be established. For this purpose the notions of positivity and
positive definiteness of a functional with respect to a discrepancy are introduced.

Definition 10. Positivity with respect to a discrepancy ρ
The functional V = V [ϕ, t] is called positive with respect to the discrepancy ρ, if V ≥ 0
and V [0, t] = 0 for all ϕ with ρ(ϕ, t) <∞.

Definition 11. Positive definiteness with respect to a discrepancy ρ
The functional V = V [ϕ, t] is positive definite with respect to a discrepancy ρ, if V ≥ 0
and V [0, t] = 0 for all ϕ with ρ(ϕ, t) <∞ und for every ε > 0 there exists a δ = δ(ε) > 0,
such that V ≥ δ(ε) for all ϕ with ρ [ϕ, t] ≥ ε.

The following two theorems state the conditions for a function V guaranteeing (asymp-
totic) stability with respect to two discrepancies. For convenience (the reference is in
russian) the proofs of both theorems are stated.

Theorem 3. [78] The process ϕ with the equilibrium ϕ0 = 0 is stable with respect to the
two discrepancies ρ and ρ0 if and only if there exists a functional V = V [ϕ, t] positive
definite with respect to the discrepancy ρ, continuous at time t = t0 with respect to ρ0 at
ρ0 = 0 and not increasing along the process ϕ, i.e. V̇ ≤ 0.

Proof. [78] For a process ϕ the following functional is defined:

V [ϕ, t] = sup
t̃∈[t,∞)

ρ
[
ϕ(., t̃), t̃

]
with t ≥ t0. (4.67)

From (4.67) directly follows:

• V (0, t) = 0, V ≥ 0, V ≥ ρ implies that for every ε from ρ ≥ ε it follows that
V ≥ ε =: δ(ε), i.e. functional V is positive definite with respect to the discrepancy
ρ,

• V [ϕ(., t1), t1] ≥ V [ϕ(., t2), t2] for t1 6 t2, i.e. V is nonincreasing along the perturbed
process ϕ.

Let the equilibrium ϕ0 = 0 be stable with respect to the two discrepancies ρ and ρ0, i.e.
ρ < ε ∀t > t0 if ρ0 < δ(ε, t0) for a given ε. Then V [ϕ, t] = supt̃∈[t,∞) ρ < ε if ρ0 < δ(ε, t0) for
a given ε. Therefore the discrepancy ρ and the functional V = supt̃∈[t,∞) ρ are continuous
at the moment t = t0 with respect to ρ0 at ρ0 = 0.
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Given a functional V = V [ϕ, t] positive definite with respect to the discrepancy ρ and
ε > 0, there exists ε1(ε) > 0 such that V ≥ ε1(ε) > 0 if ρ ≥ ε > 0 at t = t0. With
V = V [ϕ, t] being continuous at the moment t = t0 with respect to ρ0 at ρ0 = 0 for every
ε1 > 0 there exists a δ1 = δ1(ε1) > 0 such that V < ε1 for ρ0 < δ1(ε1).
(As ρ is continuous in ρ0 at ρ0 = 0, t = t0 for a given ε > 0 there exists a δ2 = δ2(ε) such
that ρ < ε at t = t0 if ρ0 < δ2(ε).)
Assuming that at T ∈ [t,∞) ρ ≥ ε. Then, as V is a functional positive definite with
respect to the discrepancy ρ, V ≥ ε1(ε). Which is in contradiction with V < ε1(ε) for
arbitrary t ≥ t0. Therefore ρ < ε.

Theorem 4. [78] The process ϕ with the equilibrium ϕ0 = 0 is asymptotically stable with
respect to the two discrepancies ρ and ρ0 if and only if there exists a functional V = V [ϕ, t]
positive definite with respect to the discrepancy ρ, continuous at time t = t0 with respect
to ρ0 at ρ0 = 0 and not increasing along the process ϕ, i.e. V̇ ≤ 0, with lim

t→∞
V = 0.

Proof. [78] As the process ϕ = 0 is asymptotically stable limt→∞ ρ = 0, i.e. for an
arbitrary ε > 0 there exists a T such that for t ≥ T ρ < ε. Therefore with V =
supt̃∈[t,∞) ρ < ε for t ≥ T follows that limt→∞ V = 0.

4.3.1 Relative degree and zero dynamics - finite dimensional
case

In order to state conditions, when convergence in two discrepancies yields convergence of
the deviation ne of the particle size distribution n to a desired particle size distribution
nd, the following well known results from finite dimensional systems theory [103, 104, 105,
109, 110] are restated and than generalized to the infinite dimensional case.
Given an affine nonlinear single-input single-output system of order n.

ẋ = f(x) + g(x)u (4.68)

y = h(x) (4.69)

Time derivative of the output y yields

ẏ = Lfh(x) + Lgh(x)u, (4.70)

with the Lie derivatives

Lfh(x) =
∂h

∂x
f(x), (4.71)

Lgh(x) =
∂h

∂x
g(x). (4.72)

Higher order Lie derivatives are defined recursively, e.g.

L2
fh(x) =

∂

∂x
(Lfh) f(x) (4.73)

LgLfh(x) =
∂

∂x
(Lfh) g(x). (4.74)
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If the Lie derivatives LgL
k
fh(x) are equal to zero for k = 0, 1, . . . , r− 2 and LgL

r−1
f h(x) is

nonzero, then the r-th time derivative of the output y is obtained as

y(r) = Lrfh(x) + LgL
r−1
f h(x)u. (4.75)

The first index r for which at a point x0 the Lie derivative LgL
r−1
f h(x0) does not vanish,

i.e. LgL
r−1
f h(x0) 6= 0, is called the relative degree r of the system. For all indexes k

smaller than the relative degree r the Lie derivative LgL
k−1
f h(x) vanishes at a point x0

and its neighborhood, i.e. LgL
k
fh(x) = 0. If the relative degree r is equal to the system

order n, i.e. r = n, then the system is said to have full relative degree.
For a system of relative degree r < n a coordinate transformation z = Φ(x) can be
constructed such that the new states z1, . . . , zr are equal to the associated time derivatives
of the output y, i.e. y, ẏ, . . . , y(r−1).

z =


z1

z2
...
zr

 =


y
ẏ
...

y(r−1)

 =


h(x)
Lfh(x)

...
Lr−1
f h(x)

 (4.76)

In these new coordinates the system can be represented as:

ż1

ż2
...
żr
żr+1

...
żn


=



z2

z3
...
0

lr+1(z)
...

ln(z)


+



0
0
...

Lrfh(x) + LgL
r−1
f h(x)u

mr+1(z)u
...

mn(z)u


(4.77)

where lr+1(z), . . . , ln(z) and mr+1(z), . . . ,mn(z) are associated nonlinear functions. Sepa-

rating the state variable z into two parts ξ =
(
z1, . . . , zr

)T
and η =

(
zr+1, . . . , zn

)T
the system can be represented as:

ξ̇ =


0 1 0 . . . 0
0 0 1 . . . 0
...

...
...

. . .
...

0 0 0 . . . 1
0 0 0 . . . 0

 ξ +


0
0
...
1

 (Lrfh(x) + LgL
r−1
f h(x)u), (4.78)

η̇ = l(ξ, η) +m(ξ, η)u. (4.79)

For this system representation choosing the control input u as follows

u = −(LgL
r−1
f h(x))−1(Lrfh(x) + v(ξ) (4.80)

results in a linear system for ξ

ξ̇ =


0 1 0 . . . 0
0 0 1 . . . 0
...

...
...

. . .
...

0 0 0 . . . 1
0 0 0 . . . 0

 ξ + v(ξ) (4.81)
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where stability can be guaranteed for an appropriate choice of v(ξ). Therefore, applying
the above control law the output y is stabilized. The remaining internal dynamics
associated with the states η, called zero dynamics, are rendered unobservable from
the output y by the control law. It is important to mention, that stability of the
zero dynamics is not guaranteed a priori and has to be checked. Hence, applying the
linearizing control law yields stability of the whole system if and only if the zero dynamics
are stable. For a system with full relative degree, no zero dynamics exist and stabilizing
the output implies stability for the whole system.

For a linear single-input single-output system of order n:

ẋ = Ax+Bu, (4.82)

y = Cx, (4.83)

the relative degree is also well defined and equal to the difference on the number of poles
n and zeros m, i.e. r = n−m, of the associated transfer function G(s). In the linear case
the Lie derivatives are simply:

Lkfh(x) = CAkx, (4.84)

LgL
k
fh(x) = CAkB. (4.85)

Thus, the relative degree r is given by the following conditions:

CAkB = 0 for all k < r − 1, (4.86)

CAr−1B 6= 0. (4.87)

For a linear system having a relative degree r smaller than its order n a flat output z, i.e.
a new output resulting in a full relative degree [119, 124, 125], can be constructed using
the following ansatz for a general output equation:

z = Cfx, (4.88)

where Cf is an output vector to be derived. The conditions for a full relative degree are:

CfA
iB = 0 for i = 0, . . . , n− 2, (4.89)

CfA
n−1B 6= 0, (4.90)

or equivalently
Cf [B,AB, . . . , A

n−1B] = [0, 0, . . . , k], (4.91)

with k 6= 0 and [B,AB, . . . , An−1B] is the controllability matrix. If the system is control-
lable, i.e. the controllability matrix [B,AB, . . . , An−1B] has full rank n, choosing k = 1
the output vector Cf can be calculated.

Cf = [0, . . . , 1][B,AB, . . . , An−1]−1 (4.92)

In the case of a linear system the order of the zero dynamics corresponds to the number
of zeros of the associated transfer function. In addition, instability of the zero dynamics
is directly connected to the presence of right-half plane zeros [122].
The calculation of the zero dynamics for a given finite dimensional nonlinear system is
not an easy task and often demands for the use of computational algebra systems.
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4.3.2 Relative degree and zero dynamics - infinite dimensional
case

The notions of relative degree and zero dynamics can be easily extended to distributed
parameter systems (e.g. [83]). Consider for example the following first-order partial
differential equation.

∂w

∂t
= A(z)

∂w

∂z
+B(z)u (4.93)

y = C(z)w (4.94)

Taking successively time derivatives of the output y yields:

y = C(z)w, (4.95)

ẏ = C(z)A(z)
∂w

∂z
+ C(z)B(z)︸ ︷︷ ︸

=0

u, (4.96)

y(2) = C(z)

(
A(z)

∂

∂z

)2

w + C(z)A(z)
∂

∂z
B(z)︸ ︷︷ ︸

=0

u, (4.97)

...

y(j) = C(z)

(
A(z)

∂

∂z

)j
w + C(z)

(
A(z)

∂

∂z

)j−1

B(z)u. (4.98)

In analogy with the definition of the relative degree for finite dimensional systems the

relative degree is defined as the first index j for which C(z)
(
A(z) ∂

∂z

)j−1
B(z) does not

vanish, i.e. C(z)
(
A(z) ∂

∂z

)j−1
B(z) 6= 0. As a separation of the state variables is inconve-

nient for a distributed parameter system, the zero dynamics are defined by constraining
the output to zero by applying the appropriate control law, e.g. the discrepancy based
control law. Therefore, applying the discrepancy based control law guarantees stability of
the whole system if and only if the zero dynamics associated with the discrepancy ρ are
stable. Unfortunately, this condition is very hard to check. For the fluidized bed spray
granulation with internal and external product classification only the conditions related
to the finite dimensional linear case, i.e. the presence of right-half plane zeros, will be
checked. This will at least give a local result, guaranteeing stability in a neighborhood of
a steady state.
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4.4 Discrepancy based control - internal product

classification

In the following a stabilizing control is derived for the fluidized bed spray granulation with
internal classification (2.7). As has been shown earlier in section 3.4 the third moment
of the particle size distribution µ3 as the controlled variable and the suspension injection
rate V̇e as the control variable are appropriate handles in order to stabilize the process.
The error therefore is

e =

∫ ∞
0

L3 (nd − n) dL. (4.99)

In order to derive a stabilizing controller the above presented stability concept is applied.
Here, we choose the discrepancy ρ as follows

ρ =
1

2

(∫ ∞
0

L3 (nd − n) dL

)2

. (4.100)

Obviously, the above requirements on a discrepancy are met. It is important to note that
using the third moment µ3 important norm properties as homogeneity, definiteness and
the triangular inequality are not satisfied. In order to guarantee continuity at time t = t0
at ρ0 = 0 the second discrepancy ρ0 is chosen as follows

ρ0 = ρ(t = 0). (4.101)

According to Theorem 4, existence of an appropriate functional V is sufficient to guarantee
asymptotic stability with respect to the two discrepancies ρ and ρ0. For this purpose the
following candidate Lyapunov functional is introduced

V =
1

2

(∫ ∞
0

L3 (nd − n) dL

)2

. (4.102)

In order to achieve stability in the sense described above the control variable has to be
chosen such that the time derivative of V along the system trajectories (2.7) is negative
definite for all times and vanishes only for V = 0.

V̇ =


< 0 for V 6= 0

= 0 for V = 0.
(4.103)

Calculating the time derivative V̇ yields

V̇ = eė = −e
∫ ∞

0

L3∂n

∂t
dL, (4.104)

= −e
[∫ ∞

0

L3

(
−G∂n

∂L
− ṅprod +B

)
dL

]
(4.105)

= −e

[∫ ∞
0

L3

(
−2(1− b)V̇e

πµ2

∂n

∂L
− ṅprod +

bV̇e
1
6
πL3

0

δ(L− L0)

)
dL

]
(4.106)

= −e
[∫ ∞

0

L3

[(
−2(1− b)

πµ2

∂n

∂L
+

b
1
6
πL3

0

δ(L− L0)

)
V̇e − ṅprod

]
dL

]
. (4.107)
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Figure 4.3: Control scheme

Using (4.113) the negative definiteness of the time derivative of the candidate Lyapunov
functional V can be guaranteed choosing the following control law.

V̇e =
1∫∞

0
L3
(
−2(1−b)

πµ2
∂n
∂L

+ b
1
6
πL3

0
δ(L− L0)

)
dL

[
ce+

∫ ∞
0

L3ṅproddL

]
(4.108)

In addition to stability the control law (4.108) even guarantees exponential convergence
of V .

V̇ = −ce2 = −2cV (4.109)

The proposed control scheme (Fig. 4.4) is tested for a shift of the desired third moment
µ3,d from a value in the region of stability (µ3,d = 2.3 · 109) to a third moment associated
with the open-loop unstable operating region (µ3,d = 2.07 · 109). It should be noted that
this simulation scenario spans the whole region studied in the bifurcation analysis. As
can be seen in Fig. 4.4 the proposed control scheme is able to stabilize the particle size
distribution n and all its moments µ0, . . . , µ3 with reasonable control effort.
Because of the nonlinear control approach the proposed discrepancy based control law
can be applied without any start up strategy, i.e. starting directly from the stable limit
cycle. As depicted in Fig. 4.5 closing the feedback loop at t = 38h the discrepancy based
controller is able to stabilize the system with reasonable control effort. In order to test
the disturbance behavior the product removal, i.e. the drain K, is increased by 10% at
t = 2h. As can be seen in Fig. 4.6 the controller is able to stabilize the system. However,
due to the missing integral action the error e does not converge to zero.
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Figure 4.4: Start up with (solid gray) and without control (dotted gray)
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Figure 4.5: Starting from the limit cycle for V̇e = 1.336 · 105mm3

s
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Figure 4.6: Disturbance resposense - increase of K by 10%
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4.5 Discrepancy based control - external product

classification

In the following a stabilizing control is derived for the fluidized bed spray granulation
with external classification (2.14). As has been shown earlier in section 3.5 the second
moment of the particle size distribution µ2 as the controlled variable and the mill grade
µM as the control variable are appropriate handles in order to stabilize the process. The
error therefore is In order to design a control law the error e is defined as:

e =

∫ ∞
0

L2 (nd − n) dL. (4.110)

It should be mentioned, that the error is an integral quantity of the difference between
desired particle size distribution nd and the process particle size distribution. The choice
is motivated by the fact, that the particle growth depends on the surface area of the
particle size distribution, which is strongly connected to its second moment. To derive a
controller the following candidate Lyapunov functional is introduced

V =
1

2
e2. (4.111)

The time derivative of V along the system trajectories (2.14) is

V̇ = eė = −e
∫ ∞

0

L2∂n

∂t
dL, (4.112)

= −e
[∫ ∞

0

2LGn− L2 (T1Kn+ T2(1− T1)Kn) dL

+

∫ ∞
0

L3T1KndL

∫ ∞
0

L2nmilldL

]
. (4.113)

Here, nmill is the shape of the particle size distribution generated by the mill depending
on the mill grade µM .

nmill = 6
e
−

(L−µM )2

2σ2
M

√
2ππ%σM

(4.114)

As the second moment of nmill cannot be directly solved for the mill grade µM the char-
acteristic curve µM →

∫∞
0
nmill(µM)dL (Fig. 4.7 (left)) has been inverted pointwise (Fig.

4.7 (right)).
In the following, the second moment of nmill will thus be used as a virtual control uvirt.

uvirt =

∫ ∞
0

L2nmill(µM)dL (4.115)

Using (4.113) the negative definiteness of the time derivative of the candidate Lyapunov
functional V can be guaranteed choosing the following virtual control law.

uvirt =
1∫∞

0
L3T1KndL

[
ce−

∫ ∞
0

2LGn

−L2 (T1Kn+ T2(1− T1)Kn) dL
]

(4.116)
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Figure 4.7: Characteristic curve µM →
∫∞

0
nmill(µM)dL (left) and

∫∞
0
nmill(µM)dL→ µM

(right)

In addition to stability the control law (4.116) even guarantees exponential convergence
of V .

V̇ = −ce2 = −2cV (4.117)

The resulting control scheme (Fig. 4.5) therefore consists of the control law (4.116)
using the virtual control uvirt and an inversion of the characteristic curve from∫∞

0
L2nmill(µM)dL to µM .

Figure 4.8: Control scheme

The proposed control scheme is tested for a shift of the desired second moment µ2,d from
a value in the region of stability (µ2,d = 5.1 · 107) to a second moment associated with
the open-loop unstable operating region (µ2,d = 6.05 · 107). It should be noted that
this simulation scenario spans only the first half of the region studied in the bifurcation
analysis. As can be seen in Fig. 4.10 the proposed control scheme is able to stabilize the
particle size distribution n and all its moments µ0, . . . , µ2 with reasonable control effort.
In addition, even in the region of stability, where the desired steady state distribution
could be derived by shifting the mill grade µM , the transition behavior is significantly
improved comparing to the open-loop system as depicted in Fig. 4.11 for shift from
µM = 0.9mm to µM = 0.8mm or µ2 = 5.1 · 107 to µ2 = 5.58 · 107 respectively. Because of
the nonlinear control approach the proposed discrepancy based control law can be applied
without any start up strategy, i.e. starting directly from the stable limit cycle. As depicted
in Fig. 4.12 closing the feedback loop at t = 6h the discrepancy based controller is able
to stabilize the system with reasonable control effort.
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However, shifting the desired second moment µ2,d further into the region of instability
the proposed control scheme does not stabilize the particle size distribution n and its
moments µ0 and µ1 but only µ2 as depicted in Fig. 4.13. This interesting behavior is
strongly connected to aforementioned zero dynamics. In the first scenario, i.e. in the
first half of the region studied by the bifurcation analysis, the zero dynamics have been
stable resulting in a stable closed loop. Whereas, for the second half the zero dynamics
are unstable.
For a rigorous analysis the stability behavior of the zero dynamics with respect to µ2,d

has to be studied, i.e. the stability of the following distributed parameter system.

∂n

∂t
= −G∂n

∂L
− T1Kn− T2(1− T1)Kn+ nmill(µM)

∫ ∞
0

L3T1KndL (4.118)

uvirt =

∫ ∞
0

L2nmill(µM)dL (4.119)

uvirt =
1∫∞

0
L3T1KndL

[
c(µ2,d − µ2)−

∫ ∞
0

2LGn

−L2 (T1Kn+ T2(1− T1)Kn) dL
]

(4.120)

This is, as has been motivated earlier, an infeasible task. However, studying the linear
discretized approximation of the process gives at least a local information. As can be seen
in Fig. 4.9 decreasing the mill grade below 0.7mm two zeros cross the imaginary axis and
enter the right half plane resulting in unstable zero dynamics and the associated loss of
stability.

Figure 4.9: Evolution of plant roots (x) and zeros (o) with decreasing mill grade µM
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Figure 4.10: Start up with control (dotted black) and without control (solid gray)



Nonlinear analytical control design 89

Figure 4.11: Step response with control (dotted black) and without control (solid gray)
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Figure 4.12: Starting from the limit cycle for µM = 0.75mm
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Figure 4.13: Start up with control
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In order to overcome the problem of unstable zero dynamics for the continuous fluidized
bed spray granulation with external product classification at least four approaches can be
applied:

1. Choice of a new control input, which gives stable zero dynamics or completely elimi-
nates the zero dynamics [123]. This approach is of course limited in its applicability
for the continuous fluidized bed spray granulation with external product classifica-
tion.

2. Choice of a different discrepancy and therefore different control variable with stable
zero dynamics. However, as has been investigated, for the given continuous fluidized
bed spray granulation with external classification the use of a different moment µ0

or µ1 or a mean diameter, i.e. µ1/µ0, µ2/µ0 or µ1/µ2, does not change the stability
behavior of the zero dynamics.

3. Construction of a flat output. As has been discussed earlier in the case of a lin-
ear finite dimensional system a discrepancy resulting in a full relative degree and
therefore no zero dynamics can be directly calculated. Whether this new discrep-
ancy yields a favorable behavior of the zero dynamics for the original system at
least in a neighborhood of the steady state solutions has to be checked afterwards.
However, for the continuous fluidized bed spray granulation with external classifica-
tion the controllability matrix [B,AB, . . . , An−1B] is bad conditioned and therefore
numerically not invertible.

4. Design of a parallel compensator. The stability behavior of the zero dynamics can
also be influenced by designing an appropriate parallel compensator [120, 121] as
depicted in Fig. 4.14. This approach seems to be the most promising as here robust
control methods can be applied in order to design a parallel compensator, which
gives stable zero dynamics for all linear discretized approximation.

Figure 4.14: Parallel compensator for changing the zero dynamics

In the following, the fourth approach, i.e. stabilization of the zero dynamics by parallel
compensator design, is investigated. It will be shown, that applying robust linear con-
trol methods allows the design of an appropriate parallel compensator, which solves the
aforementioned problem.
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4.5.1 Compensator design for zero dynamics stabilization - sim-
ple example

In order to introduce the basic concept a simple example is investigated first. Given the
following nonlinear state space model of second order with an equilibrium at us = x1,s =
x2,s = 0. (

ẋ1

ẋ2

)
=

(
x2

9 sin(x1)

)
+

(
0
1

)
u (4.121)

y = x2 − x1 (4.122)

As can be easily seen the nonlinear system has a relative degree of one and therefore zero
dynamics of order one. Taking the first time derivative of the controlled variable y

ẏ = ẋ2 − ẋ1 (4.123)

= 9 sin(x1) + u− x2 (4.124)

a linearizing control law can be constructed.

u = −9 sin(x1) + x2 − c(x2 − x1) (4.125)

This control would result in the following error equation for the controlled variable y and
hence exponentially stabilize the output.

ẏ = −cy (4.126)

However, in order to guarantee stability of the whole system, i.e. all internal states x1

and x2, stability of the zero dynamics has to be guaranteed. Here, the stability analysis
will be provided using only the linearized system equations although this simple example
can be handled by nonlinear analysis methods, too. This is due to the fact that for the
stability analysis of the fluidized bed spray granulation with external classification only
linear finite dimensional methods are applicable.
Linearizing the nonlinear state space model yields the following linear state space model.(

∆ẋ1

∆ẋ2

)
=

(
0 1
9 0

)(
∆x1

∆x2

)
+

(
0
1

)
u (4.127)

y =
(
−1 1

)(∆x1

∆x2

)
(4.128)

For convenience the linear state space model is thus transformed to its zero-pole transfer
function representation.

G(s) =
s− 1

(s+ 3)(s− 3)
(4.129)

Here, the zero s = 1 in the right half plane suggests that the zero dynamics of the system
are unstable. This can also be seen from closed loop simulation results depicted in Fig.
4.15 for the initial condition x1 = 0.2, x2 = 0.1 and the control gain c = 10. Although,
the controlled variable y shows the desired exponential convergence, the states x1 and x2

are not stabilized applying the proposed control law.
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Figure 4.15: Output stabilization with unstable zero dynamics

It should be stressed that the zero dynamics and therefore the instability of the states
x1 and x2 are invariant with respect to any feedback law. This is in contrast to the
eigendynamics, which can be altered by feedback. Hence, in order to derive a system with
stable zero dynamics a system augmentation with an parallel compensator as depicted in
Fig. 4.14 has been suggested in [118]. This approach has been later extended to nonlinear
systems [120] yielding stable zero dynamics at least in a neighborhood of the equilibrium.
In order to design an appropriate parallel compensator for a single-input single-output
system the associated transfer function G(s) is separated into four fractions

G(s) =
N+(s)N−(s)

D+(s)D−(s)
(4.130)

where the superscript + represents the fractions with zeros in the left half plane and −

the fractions with zeros in the right half plane. The parallel compensator is constructed
in a similar way and contains the fraction N+(s) and D+(s) from the original plant plus
two additional fractions Nc(s) and Dc(s).

Gc(s) =
N+(s)Nc(s)

D+(s)Dc(s)
(4.131)

The parallel connection of the plant G(s) and the parallel compensator Gc(s) yields

Gs(s) = G(s) +Gc(s) =
N+(s) [N−(s)Dc(s) +Nc(s)D

−(s)]

D+(s)D−(s)Dc(s)
. (4.132)
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For an unstable plant, i.e. D−(s) not empty, the new system Gs(s) still has to be sta-
bilized by feedback irrespective of the chosen parallel compensator. However, designing
an appropriate parallel compensator the zero dynamics of the new system Gs(s) can be
altered. Because of N+(s) having only zeros in the left half plane, stability of the zero
dynamics of the augmented system Gs(s) can be achieved if and only if the fraction[

N−(s)Dc(s) +Nc(s)D
−(s)

]
(4.133)

has no zeros in the right half plane. From a design point of view this condition is not
very convenient and should therefore be restated. As can be easily seen an equivalent
condition would be that

1 +
Nc(s)D

−(s)

N−(s)Dc(s)
= 0 (4.134)

has no zeros in the right half plane. This condition resembles the closed loop stability
requirement for the inverse virtual plant

G−(s) =
N−(s)

D−(s)
(4.135)

and

G̃c(s) =
Nc(s)

Dc(s)
(4.136)

being the controller to be designed, i.e. derive a controller G̃c(s) such that

1 + G̃c(s)
1

G−(s)
(4.137)

has no zeros in the right half plane. Using this equivalent condition the compensator can
be designed by any control design method.
The example system can be separated into the following fractions

N−(s) = s− 1 (4.138)

D−(s) = s− 3 (4.139)

D+(s) = s+ 3 (4.140)

with N+(s) being empty. The condition for stable zero dynamics of the augmented system
therefore is that

(s− 1)Dc(s) +Nc(s)(s− 3) (4.141)

or equivalently

1 + G̃c(s)
(s− 3)

s− 1
(4.142)

has no zeros in the right half plane. An appropriate compensator G̃c(s) can be designed,
e.g. by root locus methods as depicted in Fig. 4.16.

G̃c(s) =
−0.5

0.1s+ 1
(4.143)

The parallel compensator hence reads

Gc(s) =
N+(s)Nc(s)

D+(s)Dc(s)
=

−0.5

(0.1s+ 1)(s+ 3)
. (4.144)
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Figure 4.16: Compensator design G̃c(s) by root locus methods

Using the designed parallel compensator in the proposed structure therefore yields a new
system with at least locally stable zero dynamics. In order to derive a feedback linearizing
control law the first time derivative of the new output ỹ = y + yc is calculated.

˙̃y = ẏ + ẏc (4.145)

= 9 sin(x1)− x2 + u+ ẏc (4.146)

The linearizing control law is

u = −9 sin(x1) + x2 − ẏc − cỹ (4.147)

and guarantees exponential convergence for the new output ỹ. The derivative of the
compensator output ẏc can be derived by numerical differentiation or by including an
additional zero in the transfer function of Gc(s). From a simulation point of view the
inclusion of additional zeros may cause problems due to algebraic loops, which may be
counter acted by introducing sufficiently fast stable poles.
Testing the controller consisting of a nonlinear control law and a parallel compensator
(Fig. 4.17) closed loop operation gives the simulation results depicted in Fig. 4.18. As
can be seen the controlled variable ys shows the desired exponential convergence and the
states x1 (black) and x2 (gray dotted) are now stabilized.
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Figure 4.17: Extended control structure
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Figure 4.18: Output stabilization with parallel compensator
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4.5.2 Compensator design for zero dynamics stabilization - con-
tinuous fluidized bed spray granulation with external clas-
sification

In order to stabilize the fluidized bed spray granulation with external classification by
applying discrepancy based control theory the zero dynamics have to be stabilized in
the full region of interest, i.e. in the neighborhood of steady state solutions for µM ∈
[0.9mm, 0.5mm]. Therefore, in the following a linear parallel compensator is derived
applying the proposed design procedure. After that a discrepancy based control law is
derived for the augmented system, i.e. the population balance model of the fluidized bed
spray granulation with external classification and the parallel compensator. The final
controller thus consists of the nonlinear feedback law and the linear parallel compensator.
The parallel compensator will be designed for the linear finite dimensional approximation
of the continuous fluidized bed spray granulation with external classification at the steady
state for µM = 0.5mm. At this set point the fractions N−1(s) and D−(s) are as follows

N−(s) = s2 − 0.0004301s+ 2.627 · 10−6, (4.148)

D−(s) = s2 − 0.0005115s+ 1.032 · 10−6. (4.149)

The condition for stable zero dynamics of the augmented system therefore is that

1 + G̃c(s)
s2 − 0.0005115s+ 1.032 · 10−6

s2 − 0.0004301s+ 2.627 · 10−6
(4.150)

has no zeros in the right half plane. In order to guarantee robust stability of the zero
dynamics the compensator G̃c(s) is calculated by solving the following H∞-problem for
G(s) = D−(s)/N−(s), where M is the nominator of the normalized left coprime factor-
ization of G(s). ∥∥∥∥[ G̃c

I

]
(I +GG̃c)

−1M−1

∥∥∥∥
∞
≤ 1

εmax
. (4.151)

This control problem resembles the H∞-Loopshaping design for W1(s) = W2(s) = 1
and gives therefore a maximal robust stabilizing control with respect to coprime plant
uncertainties. The calculated compensator G̃c(s) and the resulting parallel compensator
Gc(s) are depicted in Fig. 4.19 and Fig. 4.20. As can be seen in Fig. 4.21 the
compensator G̃c(s) alters the location of the systems zeros and therefore stabilizes the
zero dynamics. In addition, as the compensator has been designed by robust control
methods this property is preserved for different set points (Fig. 4.22). It should be
mentioned that in order to avoid problem with numerical simulations the compensator
G̃c(s) has been augmented by a fast pole at −10. This guarantees that the derivative
being used in the discrepancy based control law, i.e ėc � sGc(s)∆MuM(s), does not
cause an algebraic loop.
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Figure 4.19: Bode diagram G̃c(s)

Figure 4.20: Bode diagram of the parallel compensator Gc(s)
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Figure 4.21: Pole/zero map of N−(s)Dc(s) +Nc(s)D
−(s)

Figure 4.22: Pole/zero map of N−µM (s)Dc(s) +Nc(s)D
−
µM

(s) for varying mill grade
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For the augmented plant, i.e. the continuous fluidized bed spray granulation with external
classification plus the designed parallel compensator, a redesign of the discrepancy based
control law has to be done. Therefore, the proposed control Lyapunov functional is
extended including the augmented error ẽ = e+ ec.

Ṽ =
1

2
ẽ2 (4.152)

The time derivative of Ṽ along the system trajectories is

˙̃V = ẽ(−µ̇2 + ėc) (4.153)

= ẽėc + ẽ

[∫ ∞
0

2LGn− L2 (T1Kn+ T2(1− T1)Kn) dL

+

∫ ∞
0

L3T1KndL

∫ ∞
0

L2nmilldL

]
(4.154)

= ẽėc + ẽ

[∫ ∞
0

2LGn− L2 (T1Kn+ T2(1− T1)Kn) dL

+

∫ ∞
0

L3T1KndL

]
uvirt (4.155)

Here, the second moment of nmill has been used as a virtual control uvirt. The negative
definiteness of the time derivative of the candidate Lyapunov function Ṽ can be guaranteed
choosing the following virtual control law.

uvirt =
1∫∞

0
L3T1KndL

[
cẽ+ ėc −

∫ ∞
0

2LGn

−L2 (T1Kn+ T2(1− T1)Kn) dL
]

(4.156)

In addition to stability the control law (4.156) guarantees exponential convergence of Ṽ .

˙̃V = −cẽ2 = −2cṼ (4.157)

The resulting augmented control scheme (Fig. 4.5.2) therefore consists of the control law
(4.156) using the virtual control uvirt and an inversion of the characteristic curve from∫∞

0
L2nmill(µM)dL to µM and the designed parallel compensator.

The proposed control scheme is tested for a shift of the desired second moment µ2,d from
a value in the region of stability (µ2,d = 5.1 · 107) to a second moment associated with
the open-loop unstable operating region (µ2,d = 6.95 · 107). It should be noted that
this simulation scenario spans now the full region studied in the bifurcation analysis and
therefore includes the region of unstable zero dynamics. As can be seen in Fig. 4.24 the
proposed control scheme is able to stabilize the particle size distribution n and all its
moments µ0, . . . , µ2 with reasonable control effort.
In order to test the disturbance behavior the the mean diameter L1 and L2 are increased
by 5% at t = 0h. As can be seen in Fig. 4.25 the controller is able to stabilize the system.
However, due to the missing integral action the error e does not converge to zero.
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Figure 4.23: Control scheme
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Figure 4.24: Start up discrepancy based control with parallel compensator
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Figure 4.25: Disturbance resposense - increase of L1 and L2 by 5%
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Chapter 5

Summary

5.1 Conclusion and future perspectives

Fluidized bed spray granulation is an important particulate process. For a continuous
operation two typical configurations are fluidized bed spray granulation with internal and
external product classification. Both operation schemes possess interesting dynamical
behavior strongly depending on process parameters, e.g. changes in suspension injection
rate or mill grade may render the desired steady state particle size distribution unstable
and lead to the occurrence of limit cycles. In order to operate the process on a wide
range of process parameters, which is desirable from a particle production point of view,
feedback stabilization is the main issue. In addition, feedback control greatly improves
transient behavior.
Although research in control of particulate processes has recently gained increasing atten-
tion control of continuous fluidized bed spray granulation has not been studied, yet. In
this Thesis two control approaches have been proposed. The first control approach applies
linear infinite dimensional systems theory in order to design a robust finite dimensional
control law by H∞-loopshaping methods. Here, controller robust stability margin in the
sense of the gap metric is used to cope with discretization errors and errors due to lin-
earization at different set points. Combining this controller with an appropriate start-up
strategy results in a linear control law guaranteeing stability in a certain neighborhood of
the steady state trajectory with reasonable control performance. Although control design
is straightforward, derivation of an appropriate design model and the associated error
bounds is quite laborious.
The second control approach uses a generalized distance measure, called discrepancy, and
the associated stability theory in order to design a stabilizing control law for the nonlinear
infinite dimensional plant. The choice of the appropriate discrepancy is motivated by the
preceding linear control approach and physical insight. As the proposed design guarantees
only stability in the sense of Lyapunov with respect to the two chosen discrepancies, i.e.
norms of the second and third moment of the particle size error distribution, conditions
for pointwise convergences of the particle size distribution, i.e. convergence in a L∞-norm,
have to be studied. It has been shown, that pointwise convergence can be achieved if and
only if the zero dynamics associated with the chosen discrepancies are stable. This is again
a very difficult problem for this class of distributed parameter systems. However, it has
been shown that studying the zero dynamics of the discrete and linearized approximations
of the population balance equations for the particle size distribution gives at least a result
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Figure 5.1: Production process with coupled fluidized bed spray granulators

being valid in a neighborhood of the steady state particle size distribution. In order to
overcome the problem of unstable zero dynamics for the continuous fluidized bed spray
granulation with external product classification an appropriate parallel compensator has
been designed, being able to shift the open loop zeros into the left half plane.
From a practical and industrial point of view future work should concern the experimental
validation of the proposed control laws. Here, the online measurement of the particle size
distribution will be a main issue. A short overview on measurement methods is given in
Appendix E.
In addition, application to more complex configurations, e.g. schemes involving several
fluidized bed spray granulators [1] as shown in Fig. 5.1, and different processes described
by population balance models, e.g. crystallization, drum granulation [13, 14] and bioreac-
tors [41], should be an issue. Especially, the proposed discrepancy based control approach
is a promising alternative to other control approaches. From a theoretical point of view
the proposed control approaches should be augmented by adaptation algorithms and ro-
bustified in order to cope for model uncertainties and parameter variations. In addition,
combined models, e.g. including several population balance equations, or particulate
systems in flow fields provide an interesting field for future research.



Appendix A

Numerical solution of population
balance equations

For simulation, analysis and discretization based control design numerical discretization
methods have to be applied to the presented models of continuous fluidized bed spray
granulation with internal and external product classification. As will be shown the pop-
ulation balance equations can be represented as conservation laws. Thus, application of
finite volume discretization is preferable. Typically, convergence results are stated for the
full-discrete case, i.e. discretization in space and time, for simulation and control design
the semi-discrete case, i.e. applying the method of lines first discretizing in space and
then using a possibly different method for time discretization, is more appropriate. The
reasons are twofold:

1. applying a discretization in two steps allows the use of high-order accurate time
integration methods, e.g. Runge-Kutta methods, and variable time step methods.

2. a discretization in space results in a high-order continuous-time state-space model,
which can be investigated by finite dimensional continuous-time analysis and control
methods, whereas a discretization in space and time results in a high-order discrete-
time state-space model.

In the following, important convergence results for the full-discrete case are stated (see
[44, 45, 46] for a more detailed presentation) and then extended to the semi-discrete case
demanding for specialized time integration algorithms called strong stability preserving
or total variation diminishing methods (for further details see [47, 48, 49, 50, 51, 52, 53].

A.1 Conservation laws

The presented population balance models can be represented as scalar hyperbolic systems

∂n

∂t
+

∂

∂L

[
Gn+

∫ L

0

(ṅprod +B) dL′
]

= 0 (A.1)

∂n

∂t
+

∂

∂L

[
Gn+

∫ L

0

(ṅprod + ṅoversize − ṅmill) dL′
]

= 0 (A.2)
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or more general
∂u

∂t
+
∂f(u)

∂x
= 0. (A.3)

Here, u is the solution of the conservation law. Integrating this equation over a time
interval [t1, t2] and a space interval [x1, x2] gives rise to the integral form of the conservation
law. ∫ x2

x1

u(t2)dx =

∫ x2

x1

u(t1)dx+

∫ t2

t1

f(u(x1, t))dt−
∫ t2

t1

f(u(x2, t))dt (A.4)

A solution u of the integral form (A.4) of the conservation law is called a weak solution
of (A.3).

A.2 Convergence - full-discrete case

In order to derive a numerical approximation scheme for (A.3) or (A.4) the inner grid
points xj−1/2 and xj+1/2 are introduced at the time points tk and tk+1.

xj+1/2∫
xj−1/2

u(tk+1)dx =

xj+1/2∫
xj−1/2

u(tk)dx+

tk+1∫
tk

f(u(xj−1/2, t))dt−
tk+1∫
tk

f(u(xj+1/2, t))dt. (A.5)

Using the following approximation for the cell average

ūkj =
1

∆x

∫ xj+1/2

xj−1/2

u(x, tk)dx (A.6)

one gets

ūk+1
j = ūkj +

1

∆x

[∫ tk+1

tk

f(u(xj−1/2, t))dt−
∫ tk+1

tk

f(u(xj+1/2, t))dt

]
. (A.7)

The approximation of the average flux through xj+1/2 can be interpreted as a numerical
flux Fj leading to a discretized version of the conservation law.

Fj ≈
1

∆t

∫ tk+1

tk

f(u(xj+1/2, t))dt (A.8)

A discrete conservation law is said to be in conservation form if it has the following form

Uk+1
j = Uk

j −
∆t

∆x
[Fj − Fj−1] . (A.9)

Here Fj is the numerical flux function, which may depend on the numerical solution Uk
p

at time step k at different grid points p. In the following, only a dependence of two
arguments, i.e. F (Uj−1, Uj), will be used. Generalizations to more arguments are straight
forward.
Courant, Friedrichs and Lewy showed that a numerical method for a conservation law
can only be convergent if its numerical domain of dependence contains the true domain of
dependence at least in the limit for ∆x and ∆t going to zero [42]. This is due to the fact,
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that for conservation laws the information propagation speed is finite and therefore the
solution u(x, t) at a point (x, t) depends only on the initial solution u0 at the point x−f ′t,
where f ′ is the characteristic propagation speed. Therefore, the time step ∆t can not be
chosen independently from the spatial grid ∆x. For an unidirectional flow, e.g. f ′ > 0,
information propagates at each time step ∆tf ′. For an one-side method with a domain of
dependence as [Qj, Qj−1] with Qj −Qj−1 = ∆x no information should propagate further
than ∆x per time step ∆t. In this case the CFL (Courant, Friedrichs, Lewy) condition
reads

∆tf ′ ≤ ∆x (A.10)

or
∆tf ′

∆x
≤ 1. (A.11)

In order to show convergence of the numerical solution U of (A.9) to a weak solution u,
i.e. u is a solution of (A.4), the following preliminary definitions are needed.

Definition 12 (Consistency). The numerical method is called consistent with the original
conservation law if the numerical flux F is equal to the flux f for u being constant (u = ū),
i.e.

F (ū, ū) = f(ū). (A.12)

Definition 13 (Lipschitz continuity). F is Lipschitz continuous in its arguments if there
exists a constant K ≥ 0 such that

∣∣F (Uk
j−p, . . . , U

k
j+q)− F (Uk

j−1−p, . . . , U
k
j−1+q)

∣∣ ≤ K max
−p≤i≤q

(
|Uk

j+i − Uk
j−1+i|

)
. (A.13)

Definition 14 (Total variation). The total variation TV is defined as

TV (v) = lim sup
ε→0

1

ε

∫ ∞
−∞
|v(x)− v(x− ε)|dx. (A.14)

A conservative method with a Lipschitz continuous numerical flux F is total variation
stable (TV-stable) if there exists ∆t0, R > 0 such that the total variation TV (Uk) is
bounded by R, i.e.

TV (Uk) ≤ R, (A.15)

for all ∆t < ∆t0.

The fact that the numerical approximation scheme, i.e. the discrete conservation law
(A.9), has been derived directly from the integral conservation law (A.4) suggests that
the discrete solution U gives a feasible approximation of a weak solution u of (A.4). This
has been proven by Lax and Wendroff [43].

Theorem 5. [43] Let Ul be a sequence of numerical approximations for a sequence of
grids ∆tl, ∆xl, with ∆tl, ∆xl →∞ for l→∞, generated by a conservative and consistent
method. If Ul converges to a function u, i.e. ‖Ul − u‖1 → 0 for l → ∞ and there is an
R > 0 for each time T such that the total variation TV (Ul) is smaller than R for all t
with 0 ≤ t ≤ T , then u is a weak solution of the conservation law.
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Here, convergence of the numerical approximations Ul is assumed. In order to guaran-
tee convergence of a sequence of numerical approximations the method should be total
variation stable.

Theorem 6. [44, p. 164] A numerical method in conservation form is convergent, i.e.
Ul converges to a weak solution for l → ∞ in the L1-norm, if it is consistent with the
conservation law, the numerical flux F is Lipschitz continuous and if the method is TV-
stable.

For a given numerical scheme TV-stability is probably the most difficult part to show.
Therefore, the notions of total variation diminishing and l1-contracting have been intro-
duced. In the following, it will be shown that a l1-contracting numerical method is total
variation diminishing and thus TV-stable.

Definition 15 (Total variation diminishing). A numerical method is called total variation
diminishing if

TV (Uk+1) ≤ TV (Uk) (A.16)

for an arbitrary grid function Uk.

Obviously, for a total variation diminishing method the total variation of the initial so-
lution TV (U0) can be used as a bound for the total variations at arbitrary time steps
TV (Uk).

TV (Uk) ≤ TV (U0) (A.17)

Therefore, total variation diminishing methods are total variation stable for a finite total
variation of the initial solution.

Definition 16 (l1-contracting). Suppose Uk and V k are two solutions generated by a
numerical method on different grids with Uk − V k having compact support, i.e. Uk − V k

vanishes for sufficiently small or large indexes. Then the numerical method is called l1-
contracting if

‖Uk+1 − V k+1‖1 ≤ ‖Uk − V k‖1. (A.18)

Thus, a l1-contracting numerical method is total variation diminishing. This is important
as for a given numerical approximation scheme the property of l1-contraction can be easier
verified than total variation stability.

A.3 Convergence of the upwind scheme

As has been shown in the previous chapter, the main ingredients to prove convergence of
a numerical method in conservation form to a weak solution are total variation stability,
which guarantees convergence, and consistency together with Lipschitz continuity, which
gives that the limit is a weak solution.
As the main task is design of stabilizing control, we limit ourselves to a simple upwind
scheme, which gives only first order accurate results. The upwind scheme can be derived
from the general discrete conservation law in conservation form (A.9)

Uk+1
j = Uk

j −
∆t

∆x

[
F (Uk

j−p, . . . , U
k
j+q)− F (Uk

j−1−p, . . . , U
k
j−1+q)

]
(A.19)
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for a reduced stencil, i.e. setting p = 0 and q = 1,

Uk+1
j = Uk

j −
∆t

∆x

[
F (Uk

j , U
k
j+1)− F (Uk

j−1, U
k
j )
]

(A.20)

and using the following discrete flux

F (v, w) = f(v). (A.21)

The upwind scheme therefore reads

Uk+1
j = Uk

j −
∆t

∆x

[
f(Uk

j )− f(Uk
j−1)

]
. (A.22)

The upwind scheme is consistent as the numerical flux (A.21) satisfies the consistency
condition (A.12). In addition, Lipschitz continuity of the numerical flux F directly follows
from Lipschitz continuity of the continuous flux f .
In order to prove convergence of the upwind scheme it is sufficient to show that the
method is l1-contracting, which gives that it is total variation diminishing and therefore
total variation stable for initial conditions with bounded total variation.

Theorem 7. [44, p. 168] For a positive characteristic propagation speed, i.e. f ′ > 0, a
fulfilled CFL condition, i.e.

0 ≤ ∆t

∆x
f ′ ≤ 1. (A.23)

and two grid functions Uk and V k with Uk − V k having compact support, the upwind
scheme is l1-contracting.

A.4 Convergence - semi-discrete case

So far, fully-discrete methods have been discussed, i.e. numerical methods discrete in time
and space. From a practical point of view it is sometimes preferable if the discretization is
done in two stages, first discretizing in space. This approach is called the method of lines.
It reduces the distributed parameter system to a high dimensional system of ordinary
differential equations.

du

dt
= L(u) (A.24)

Here, u is the space discretized approximation of the solution and L(u) represents the
discrete flux approximation of the true flux. Obviously, the semi-discrete representation
(A.24) is equivalent to the fully-discrete method (A.9), when applying the forward Euler
method for time discretization.

uk+1 = uk + ∆tL(uk) (A.25)

The main advantage using the method of lines approach is, that applying standard high
order ODE solvers (e.g. Runge-Kutta methods) high temporal accuracy is achievable.
The open question here is, whether applying a high order ODE method still guarantees
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convergence, i.e. total variation stability. In the following, a general Runge-Kutta scheme
is studied.

u(0) = uk (A.26)

u(i) =
i−1∑
j=0

(
αi,ju

(j) + ∆tβi,jL(u(j))
)

i = 1, . . . ,m (A.27)

uk+1 = u(m) (A.28)

Here, the coefficients αi,j and βi,j are assumed to be nonnegative, i.e. αi,j ≥ 0 and βi,j ≥ 0.
In addition by consistency the coefficients αi,j fulfill the following equality

i−1∑
j=0

αi,j = 1 i = 1, . . . ,m. (A.29)

The main advantage using this representation is that for αi,j ≥ 0 and βi,j ≥ 0 the Runge-
Kutta schemes are just a combination of Euler forward steps. The following theorem
shows that if the semi-discrete scheme is TV-stable for the Euler forward step, i.e. if the
equivalent fully-discrete scheme is TV-stable, then the semi-discrete scheme is TV-stable
applying an appropriate high order Runge-Kutta scheme.

Theorem 8. [53, p. 12] If the forward Euler method is total variation stable and fulfills
the CFL condition with a time step ∆t, then the Runge-Kutta method with αi,j ≥ 0 and
βi,j ≥ 0 is total variation stable if it fulfills the following CFL condition

∆t

∆x
max
i,j

(
βi,j
αi,j

)
f ′ ≤ 1. (A.30)

Due to the fact that the presented Runge-Kutta schemes guarantee TV-stability they are
called total variation dimishing (TVD) or strong stability preserving (SSP) Runge-Kutta
schemes. For numerical time integration the following third order Runge-Kutta scheme
(Table A.4) can be used

u(0) = uk (A.31)

u(1) = u(0) + ∆tL
(
u(0)
)

(A.32)

u(2) =
3

4
u(0) +

1

4
u(1) +

1

4
∆tL

(
u(1)
)

(A.33)

u(3) =
1

3
u(0) +

2

3
u(2) +

2

3
∆tL

(
u(2)
)

(A.34)

uk+1 = u(3). (A.35)

The coefficients αi,j and βi,j clearly satisfy the aforementioned assumptions.
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α1,0 = 1 β1,0 = 1
α2,0 = 3/4 α2,1 = 1/4 β2,0 = 0 β2,1 = 1/4
α3,0 = 1/3 α3,1 = 0 α3,2 = 2/3 β3,0 = 0 β3,1 = 0 β3,2 = 2/3

Table A.1: Coefficients αi,j and βi,j for a strong stability preserving Runge-Kutta scheme



Numerical solution of population balance equations 116



Appendix B

Steady state calculation - internal
product classification

The steady state particle size distribution ns(L) is the solution of the following integro-
differential equation

dns
dL

=
1

G

(
bV̇e

1
6
πL3

0

δ(L− L0)−Kσ(L− L1)ns

)
. (B.1)

As the right hand side consists of piecewise constant functions integration is done piece-
wise.
L ∈ [0, L0)

dns
dL

= 0 (B.2)

ns(L) = ns(0) = 0. (B.3)

L ∈ [L0, L1)

dns
dL

=
1

G

bV̇e
1
6
πL3

0

δ(L− L0) (B.4)

ns(L) =
1

G

∫ L

L0

bV̇e
1
6
πL3

0

δ(L′ − L0)dL′ (B.5)

=
bV̇e

1
6
πGL3

0

(B.6)
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L ∈ [L1,∞)

dns
dL

= − 1

G
Kns (B.7)

ns(L) = ns(L1)− 1

G

∫ L

L1

KnsdL
′ (B.8)∫ ns(L)

ns(L1)

1

ns
dns = −K

G

∫ L

L1

1dL′ (B.9)

ln(ns(L))− ln(ns(L1)) = −K
G

(L− L1) (B.10)

ns(L) = ns(L1) exp

(
−K
G

(L− L1)

)
(B.11)

ns(L) =
bV̇e

1
6
πGL3

0

exp

(
−K
G

(L− L1)

)
(B.12)

The steady state solution ns(L) (eq. B.13) can hence be written as follows

ns(L) =
bV̇e

1
6
πGL3

0

[
(σ(L− L0)− σ(L− L1)) + σ(L− L1) exp

(
−K
G

(L− L1)

)]
. (B.13)

It has to be mentioned that the solution ns still depends on G. In order to resolve this
dependence the steady state solution ns is inserted into the equation for G.

G =
2(1− b)V̇e
π
∫∞

0
L2nsdL

(B.14)

=
2(1− b)V̇e

π
∫∞

0
L2 bV̇e

1
6
πGL3

0

[
(σ(L− L0)− σ(L− L1)) + σ(L− L1)e(−

K
G

(L−L1))
]
dL

(B.15)

=
2(1− b)

b
1
6
GL3

0

[∫ L1

L0
L2dL+

∫∞
L1
L2e(−

K
G

(L−L1))dL
] (B.16)
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Solving the integrals

∫ L1

L0

L2dL =
1

3

(
L3

1 − L3
0

)
(B.17)∫ ∞

L1

L2e−
K
G

(L−L1)dL
P.I.
= −L

2G

K
e−

K
G

(L−L1)

∣∣∣∣∞
L1

+ 2

∫ ∞
L1

LG

K
e−

K
G

(L−L1)dL (B.18)

=
L2

1G

K
+ 2

∫ ∞
L1

LG

K
e−

K
G

(L−L1)dL (B.19)

P.I.
=

L2
1G

K
− 2

LG2

K2
e−

K
G

(L−L1)

∣∣∣∣∞
L1

+ 2

∫ ∞
L1

G2

K2
e−

K
G

(L−L1)dL (B.20)

= 2
L2

1G

K
+ 2

L1G2

K2
+ 2

G2

K2
e
L1K
G

[
−G
K
e−

KL
G

]∞
L1

(B.21)

=
L2

1G

K
+ 2

L1G
2

K2
+ 2

G3

K3
(B.22)

yields

G =
2(1− b)

6b
GL3

0

[
1
3

(L3
1 − L3

0) +
L2
1G

K
+ 2L1G2

K2 + 2G
3

K3

] . (B.23)

After some rearrangement this gives a nonlinear equation for the growth rate G.

6b

L3
0

(
1

3

(
L3

1 − L3
0

)
+
L2

1G

K
+ 2

L1G
2

K2
+ 2

G3

K3

)
= 2(1− b) (B.24)
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Appendix C

Steady state calculation - external
product classification

The steady state particle size distribution ns(L) is the solution of the following integro-
differential equation

dns
dL

=
Ks

G(µ2,s)

(
−T2ns + nM(µM,s)

∫ ∞
0

L3T1nsdL

)
, (C.1)

= a (−T2ns + nM(µM,s)b) , (C.2)

where a = Ks
G(µ2,s)

and b =
∫∞

0
L3T1nsdL. As the right hand side consists of piecewise

defined functions integration is done piecewise. Here, we assume that milled particles are
smaller than product particles, i.e. µM + σM < L2.

L ∈ [0, µM − σM)

dns
dL

= 0 (C.3)

ns(L) = ns(0) = 0 (C.4)

L ∈ [µM − σM , µM + σM)

dns
dL

= abnM(µM,s) (C.5)

ns(L)− ns(µM − σM) = ab

∫ L

µM−σM
nM(µM,s)dL

′ (C.6)

ns(L) = abkM

∫ L

µM−σM
1dL′ (C.7)

ns(L) = abkM(L− (µM − σM)) (C.8)

L ∈ [µM + σM , L2)

dns
dL

= 0 (C.9)

ns(L) = ns(µM + σM) = 2abkMσM (C.10)
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L ∈ [L2,∞)

dns
dL

= −aT2ns (C.11)∫ n(L)

n(L2)

1

n
dn = −a

∫ L

L2

1dL (C.12)

n(L) = n(L2)exp(−a(L− L2)) (C.13)

n(L) = 2abkMσMexp(−a(L− L2)) (C.14)

Using equations (C.4),(C.8),(C.10) and (C.14) the steady state particle size distribution
ns can be represented as follows

ns(L) = abkM [(L− (µM − σM))(σ(L− (µM − σM))− σ(L− (µM + σM)))

+2σM(σ(L− (µM + σM))− σ(L− L2))

+2σM exp(−a(L− L2))σ(L− L2)] (C.15)

= abkM [(L− µM + σM)σ(L− µM + σM)− (L− µM − σM)σ(L− µM − σM)

+2σM(1− exp(−a(L− L2)))σ(L− L2)] (C.16)

ns(L) = bn̄s(L) (C.17)

It has to be mentioned that the solution ns still depends on a and b, i.e. K, G and
the third moment of the oversize fraction b =

∫∞
L1
L3nsdL. At first, the dependence on

a = Ks
G(µ2,s)

is removed.

b =

∫ ∞
L1

L3nsdL (C.18)

=

∫ ∞
L1

L3 exp(−a(L− L2))dL (C.19)

= 2abkMσM

∫ ∞
L1

L3 exp(−a(L− L2))dL (C.20)

1 = 2akMσM exp(aL2)

∫ ∞
L1

L3 exp(−aL)dL (C.21)

The integral
∫∞
L1
L3 exp(−aL)dL can be solved by successive partial integration.∫ ∞

L1

L3eaLdL
P.I.
=

L2eaL

a

∣∣∣∣∞
L1

− 3

a

∫ ∞
L1

L2eaLdL (C.22)

P.I.
=

L3eaL

a

∣∣∣∣∞
L1

− 3L2eaL

a2

∣∣∣∣∞
L1

+
6

a2

∫ ∞
L1

LeaLdL (C.23)

P.I.
=

[(
L3

a
− 3L2

a2
+

6L

a3

)
eaL
]∞
L1

− 6

a3

∫ ∞
L1

eaLdL (C.24)

=

[(
L3

a
− 3L2

a2
+

6L

a3
− 6

a4

)
eaL
]∞
L1

(C.25)

=

(
−L

3
1

a
+

3L2
1

a2
− 6L1

a3
+

6

a4

)
eaL1 (C.26)
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This gives with eq. (C.21) a nonlinear equation for a.

1

2kMσM
=

(
L3

1 +
3L2

1

a
+

6L1

a2
+

6

a3

)
ea(L2−L1) (C.27)

For a given initial mass, i.e. m0 = ρπ
6
µ3,0, the third moment of the steady state solution

ns(L) = bn̄s(L) gives an additional equation for b.

m0 =
ρπ

6

∫ ∞
0

L3ns(L)dL (C.28)

= b
ρπ

6

∫ ∞
0

L3n̄s(L)dL (C.29)

b =
m0

ρπ
6

∫∞
0
L3n̄s(L)dL

(C.30)
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Appendix D

Important inequalities

• Cauchy-Schwarz inequality∫ 1

0

uwdx ≤
(∫ 1

0

u2dx

)1/2(∫ 1

0

w2dx

)1/2

(D.1)

• Young’s inequality

ab ≤ γ

2
a2 +

1

2γ
b2 (D.2)

• Poincare’s inequality ∫ 1

0

w2dx ≤ 2w2(1) + 4

∫ 1

0

(
∂w

∂x

)2

dx (D.3)∫ 1

0

w2dx ≤ 2w2(0) + 4

∫ 1

0

(
∂w

∂x

)2

dx (D.4)

• Agmon’s inequality

max
x∈[0,1]

|w(x, t)|2 ≤ w(0)2 + 2‖w(t)‖2

∥∥∥∥∂w∂x
∥∥∥∥

2

(D.5)

max
x∈[0,1]

|w(x, t)|2 ≤ w(1)2 + 2‖w(t)‖2

∥∥∥∥∂w∂x
∥∥∥∥

2

(D.6)
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Appendix E

Measurement of particle size
distribution and its moments

The proposed models involve the particle size distribution as the system state, therefore
any control law involving state feedback will require a state measurement or at least a
state estimation (e.g. [15]). Here, we will focus only on a direct measurement of the
particle size distribution. It is well known that this may cause problems when dealing
with non-spherical particles and chord-length based measurement methods. However, in
pure granulation processes, i.e. no agglomeration, breakage and attrition, the particles
are typically spherically shaped.
Typical measurement principles being applied for particle size distribution measurement
are

• Laser diffraction methods. Here, the diffraction pattern of a particle ensemble is
analyzed applying Fraunhofer or Mie diffraction theory, depending on the size range.

• Single particle optical sizing. Here, a single particle passes an optical sensor with
a known velocity. The measured signal may be either the shadow on the sensor
element or the reflected laser beam. In both cases the pulse length gives with the
known velocity the length of the respective particle chord. Reconstruction of the
particle size distribution from the chord-length distribution is still an area of active
research [16, 17, 18, 20, 23, 24].

• Video imaging. Here, particles are captured while passing through a detection zone.
Applying image processing algorithms, the 2D and 3D particle size distribution can
be calculated from the acquired images [19, 20, 22, 21, 25].
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