
Keyword Search across Distributed
Heterogeneous Structured Data Sources

Dissertation

zur Erlangung des akademischen Grades

Doktoringenieur (Dr.-Ing.)

angenommen durch die Fakultät für Informatik
der Otto-von-Guericke-Universität Magdeburg

von: Dipl.-Inf. Ingolf Geist
geb. am 21. Januar 1975 in Wernigerode

Gutachter:
Prof. Dr. rer. nat. habil. Gunter Saake
Prof. Dr.-Ing. habil. Kai-Uwe Sattler
Prof. Dr. rer. nat. habil. Wolfgang May

Ort und Datum des Promotionskolloquiums Magdeburg, 14. September 2012

Geist, Ingolf:
Keyword Search across Distributed Heterogeneous Structured Data Sources
Dissertation, Otto-von-Guericke-Universität Magdeburg, 2012.

Abstract

Many applications and users require integrated data from multiple, distributed, hetero-
geneous (semi-) structured sources. Sources are relational databases, XML databases,
or even structured Web resources. Mediator systems represent one class of solutions
for data integration. They provide a uniform view and uniform way to query the virtu-
ally integrated data. As data resides in the local sources, global queries are translated
into source queries, and the obtained local results are combined to be presented to the
users or global applications. Motivated by Semantic Web ideas, concept-based medi-
ator systems have emerged. This class of systems describes global data in the form of
a domain-specific concept schema, taxonomy, or even an ontology. In this way, they
allow the connection of structurally different data by semantic relationships. The me-
diator systems provide the mapping of the local data to the global concept-schema and
the query planning and processing. Most existing systems provide complex concept-
based query languages as query interface. The systems are hard to use for global users
because of their incomplete knowledge about the concept schema, the data, and the
query language.

At the same time, keyword search has become ubiquitous and successful in Internet
and document search. Simple keyword queries allow the fast retrieval of relevant Web
pages and documents. Dealing with (semi-)structured data causes new challenges for
keyword search. There is a large body of research for keyword search over relational
databases, XML trees and graphs, and general graph data. The main problem is that
information in structured databases is distributed over different connected objects like
tuples, attribute values, or XML elements. The search systems have to find connected
trees, sub-graphs, or networks that answer a keyword query together. There are two
main approaches. Schema graph-based approaches generate candidate queries based
on keyword positions initially, e.g., join queries, and execute the queries to obtain the
actual answers in a second step. Data graph-based systems search directly in the data
graph for connected objects that answer the keyword query. Most systems require
a centralized database or non-restricted query interfaces. In this thesis, we have the
goal to allow keyword search over distributed, multiple, heterogeneous, semi-structured
data sources.

For this task, we combine a concept-based mediator system with a schema graph-
based keyword search approach. We use and extend the concept-based mediator sys-
tem YACOB. The system provides a concept-based schema and allows the uniform
concept-based querying of relational databases, XML databases, and structured Web
sources. It is used to answer queries over single concepts, while the keyword search
systems finds semantically connected objects that answer a keyword query. For this,
the keyword search system uses a global index that contains keywords and informa-
tion in which concepts and properties they occur. The index does not contain object
identifiers avoiding a complete materialization on the global level. In the thesis, we

i

define the semantics of keyword queries in a concept-based data model. We introduce
concept-based query terms that are an instance of labeled keyword queries. In the
following step, concept-based queries as interpretation of keywords and their ranking
are presented. Query expansion exploiting the concept-based schema adds flexibility
to labeled keyword terms.

For the generation of object networks as results, we follow the schema graph-based
approach, because we assume we do not have a materialized data graph. There-
fore, we propose and validate algorithms for efficient query generation in complex
concept-schema graphs. In the second step, we investigate the efficient execution of
the candidate queries. We propose a semi-join and bind-join based approach for join-
ing objects from different sources. The approach reduces the number of materialized
objects that have to be transferred to and stored on the global level. We show that
many queries generated by keyword queries overlap. Hence, we propose and validate
methods for reusing intermediate results in different queries and for the detection of
empty results to improve existing algorithms for centralized databases. Validation ex-
periments showed that both materialization of intermediate results and empty-result
detection are necessary and significantly improve the performance.

ii

Zusammenfassung

Durch die Entwicklung der Computer- und Netzwerktechnologien sowie von
Informations- und Datenbankmanagementsysteme steht heute eine Vielzahl von struk-
turierten Datenquellen zur Verfügung. Diese Datenquellen können relationale oder
XML-basierte Datenbanksysteme oder einfache, strukturierte Web-Datenbanken sein.
Es existieren viele Anwendungen, die zur Erfüllung des Informationsbedürfnisses nicht
nur auf eine Quelle zurückgreifen können, sondern integrierte Daten und Informatio-
nen aus verschiedenen, verteilten, heterogenen strukturierten Datenquellen benötigen.
Mediatoren stellen eine Lösung dar, um Anwendungen eine solche integrierte Sicht
zu ermöglichen. Mediatoren sind eine Middleware-Lösung, die eine einheitliche Sicht
und eine einheitliche Anfragesprache für lokale Quellen bereitstellt, wobei die Daten in
den lokalen Systemen verbleiben. Mit der Entwicklung von Semantic-Web-Techniken
kamen konzeptbasierte Mediatorsysteme auf. Auf globaler Ebene wird die Applika-
tionsdomäne mit Hilfe eines Konzeptschemas, eines Vokabulars, oder einer Ontologie
beschrieben. Die globalen Applikationen und Benutzer nutzen diese Sicht, während
die Mediatorsysteme die Abbildung von lokalen Typen und Daten auf das globale
Konzeptmodell und -schema bereitstellen, sowie die Anfrageplanung und -ausführung
als auch die Integration übernehmen. Die konzeptbasierte Beschreibung und An-
frageverarbeitung hat den Vorteil, dass strukturell unterschiedliche aber semantisch
verwandte Informationen leicht über semantische Beziehungen verbunden werden kön-
nen. Konzeptbasierte Mediatorsysteme stellen eine komplexe Anfragesprache bereit.
Zusammen mit einem unvollständigen Wissen über das Konzeptschema führt das zu
Schwierigkeiten bei der Nutzung der integrierten Daten.

In den letzten Jahren stellt Stichwortsuche im Internet und Dokumentenbeständen
den Benutzern eine einfache und erfolgreiche Schnittstelle bereit. Somit wurde das
natürliche Ziel aufgestellt, Stichwortsuche für (semi-)strukturierte Datenbanken zu
ermöglichen. Durch die Verteilung von Informationen auf unterschiedliche Objekte,
zum Beispiel Tupel und Attributwerte oder XML-Elemente, wurde das Problem der
Stichwortsuche auf das Finden von verbundenen Objekten ausgeweitet, die zusam-
men eine Antwort auf die Stichwortanfrage bilden. Es existieren viele Ansätze für
die Suche über relationale Datenbanken, XML-Bäume und -Graphen als auch über
allgemeine Datengraphen. Diese Ansätze können in zwei Klassen unterteilt werden:
dem schemagraph-basierten und dem datengraph-basierten Ansatz. Der schemagraph-
basierte Ansatz erstellt zunächst strukturierte Anfragen, beispielsweise Verbundan-
fragen, aus den Stichwortpositionen bezüglich des Schemas. Diese Anfragen werden
anschließend ausgeführt, um die Antworten auf die Stichwortanfrage zu erstellen.
Datengraph-basierte Ansätze modellieren die Daten direkt als Graph und arbeiten
direkt auf diesem, um Antworten auf die Stichwortanfrage zu generieren. Die meisten
dieser Systeme erfordern entweder ein zentralisiertes Datenbanksystem oder zumindest
eine uneingeschränkte SQL-Anfrageschnittstelle. In dieser Schrift stellen wir uns das

iii

Ziel, effiziente Stichwortsuche über verteilte, heterogene, (semi-)strukturierte Daten-
quellen zu ermöglichen.

Zur Lösung dieser Aufgabe kombinieren wir das konzeptbasierte Mediatorsys-
tem Yacob mit einem schemagraph-basierten Stichwortsuchansatz. Zunächst wird
die Semantik von Stichwortanfragen definiert. Dabei wird zwischen puren Stich-
worten und konzeptbasierten Anfragetermen, einer Instanz von Stichworten mit La-
bel, unterschieden. Wir beschreiben die Interpretation von Stichwortanfragen als
konzeptbasierte Materialisierungsanfragen mit Hilfe eines Stichwortindexes. Der Index
beschreibt die Position von Stichworten bzgl. Konzept, Property und Datenquellen,
aber nutzt keine globale Objekt-Identifier, um eine komplette Materialisierung der
Daten auf globaler Ebene zu vermeiden. Für top-k Anfragen wird eine monotone
Rankingfunktion erarbeitet, die Materialisierungsanfragen hinsichtlich ihre Relevanz
einordnet. Eine Anfrageerweiterung für konzeptbasierte Anfrageterme ermöglicht die
flexible Nutzung von Konzeptvorschlägen durch den Benutzer.

Für die Beantwortung von Stichwortanfragen nutzen wir den schemagraph-basierten
Ansatz, da kein globaler, materialisierter Graph von Instanzen vorhanden ist oder er-
stellt werden soll. Wir stellen einen effizienten Ansatz vor, um konzeptbasierte An-
fragen zu generieren. Anschließend untersuchen wir die effiziente Ausführung von
konzeptbasierten Anfragen. Dabei schlagen wir einen Ansatz vor, der Semiverbund-
und Abhängigkeitsverbundoperationen (Bind-Join) zur Erstellung von Objektnetz-
werken benutzt. Dieses ermöglicht die Nutzung von Quellen mit limitierten An-
frageschnittstellen und reduziert die Menge der materialisierten Objekte auf globaler
Ebene. Wir zeigen, dass sich die generierten Anfragen für eine Stichwortmenge stark
ähneln, deswegen schlagen wir vor, Zwischenergebnisse zwischen Anfragen zu teilen.
Wir nutzen dabei sowohl Methoden zur Erkennung von leeren Ergebnissen als auch
einen semantischen Zwischenspeicher. Mit Hilfe einer prototypischen Umsetzung vali-
dieren wir unsere Ansätze und zeigen, dass die Kombination des Erkennens von leeren
Anfragen mit dem Cacheansatz die besten Ergebnisse ermöglicht und die Performance
deutlich steigert.

iv

Acknowledgments

It took me a long time to finish this thesis. During this time, I have met great
colleagues and learned many different things, also outside of this topic. I took part
in several projects that provided new challenges. I am truly thankful that I was
allowed to study and work at the University of Magdeburg, at the Department of
Computer Science, and in the research group of Prof. Gunter Saake. Prof. Saake
started my interest in database technologies with his Database II lecture. After I
joined the research group, Prof. Saake gave me always freedom for my research. His
advices were immensely helpful and welcome. I want to thank my third reviewer Prof.
Wolfgang May. He gave me extremely helpful and detailed comments to a preliminary
version of this thesis, which helped me to improve the thesis significantly. My second
reviewer Prof. Kai-Uwe Sattler was responsible for joining me the database research
group. At first, I was his student research assistant, then I wrote my diploma thesis
under his guidance. Later we collaborated in several papers about Information Fusion,
Database Self-tuning, and Concept-based mediator systems. Prof. Sattler created the
concept-based mediator system Yacob, which is the foundation of this thesis. The
students Torsten Declercq, Marcel Karnstedt, and Reiner Habrecht took part in this
development, too. Prof. Sattler read many versions of this thesis and provided helpful
comments to improve this thesis.

I enjoyed my work in the research group very much. I liked the atmosphere and
all the members. In particular, I have to thank my colleague Dr. Eike Schallehn.
We shared an office, talked a lot about the work, music, and life. We collaborated in
papers about similarity joins in virtual data integration environments and database
self-tuning. Eike read all chapter of my thesis, gave many helpful comments. Further-
more, he became a friend. I want to thank my other office mates Hagen Höpfner, Anke
Schneidewind, and Andreas Lübcke. I want to thank all persons who read parts of the
thesis. It helped me a lot and reassured me about my thesis. I want to thank Ateeq
Khan, Andreas Lübcke, Sebastian Bayer, Sebastian Breß, and Angela Brennecke.

Finally, I want to thank the persons in my personal life. My parents always believed
in me and supported me in many directions. Without them, everything would have
be much harder in my life. I want to thank my friends who helped me in many ways
to finish my thesis. I want to thank my great friend Christiane who has been very
important to me during the last 12 years. I do not know what to do without her. I
want to thank my partner Mareike. She gave me motivation and stability in the last
phase of the thesis.

v

Contents

Contents vii

List of Figures xi

List of Tables xv

1. Introduction 1
1.1. Contributions . 3
1.2. Structure . 5

2. Data Integration 7
2.1. Data Integration Systems . 7

2.1.1. Challenges and Classification of Data Integration Systems . . . 7
2.1.2. Mediator Systems . 11

2.2. Concept-based Mediator Systems . 15
2.2.1. Principles . 16
2.2.2. Approaches and Systems . 18
2.2.3. Other approaches . 20

2.3. Summary . 21

3. Yacob 25
3.1. Integration Model . 26

3.1.1. Concept model and Data model 26
3.1.2. Source mappings . 29

3.2. Query Language . 32
3.3. Query Processing . 39
3.4. Summary . 41

4. Keyword Search in Structured Databases 43
4.1. General Considerations . 43

4.1.1. Example . 44
4.1.2. Definitions . 46

4.2. Classification . 48
4.2.1. Query Languages . 48
4.2.2. Query Result Types . 49
4.2.3. Ranking Methods . 53
4.2.4. Query Processing in Keyword Search Systems 60

4.3. Keyword Search Systems . 62
4.3.1. Relational Database Search . 62

vii

Contents

4.3.2. Keyword Search in XML Trees and Graphs 64
4.3.3. Relaxed Structural Queries . 66
4.3.4. XML Query Languages and Keyword Search 69

4.4. Keyword Search and Virtual Integrated Data Sources 72
4.4.1. Metasearch Engines . 73
4.4.2. Structured Hidden-Web Search 75
4.4.3. Virtual Integrated Structured Sources 77

4.5. Summary . 83

5. Concept-based Keyword Queries 85
5.1. Motivation . 86
5.2. Data Model . 89
5.3. Query Model . 93

5.3.1. Keyword Queries . 93
5.3.2. Minimal Object Networks . 94
5.3.3. Materialization Queries . 96
5.3.4. Materialization Query Scoring Function 102

5.4. Query Expansion . 106
5.4.1. Semantic Distance of Classes . 106
5.4.2. Concept Expansion . 108
5.4.3. Category Expansion . 109

5.5. Related Work . 110
5.6. Summary . 112

6. Concept Query Generation 113
6.1. Overview . 114
6.2. Keyword Processor . 116

6.2.1. Keyword Index . 116
6.2.2. Index Lookup Methods . 119

6.3. Query List Generation . 122
6.3.1. Index List Generation . 122
6.3.2. Single Concept Query Generation 123
6.3.3. Concept Schema Graph Annotation 126

6.4. Query List Network Enumeration . 126
6.4.1. Query List Network . 127
6.4.2. Compact Concept Schema Graph 128
6.4.3. Enumeration of Query List Networks 130

6.5. Discussion . 132
6.6. Summary . 133

7. Concept Query Processing 135
7.1. Preliminaries . 136

7.1.1. Query Processing . 136
7.1.2. Non-Reuse Algorithms . 146
7.1.3. Motivation for Query Re-Using Algorithms 148

viii

Contents

7.2. Detection of Empty Results . 149
7.2.1. Concept-based Query Coverage 151
7.2.2. Data Structure . 153
7.2.3. Empty Result Statistics Management 154
7.2.4. Use of Detected Empty Results during Keyword Query Processing155

7.3. Re-Using Intermediate Results . 156
7.3.1. Materialized Results Organization and Access 156
7.3.2. Cache Management . 165
7.3.3. Single Query Cache Use . 166

7.4. Optimizing Query Result Reuse . 168
7.4.1. Query List Network Optimization 168
7.4.2. Query List Network-based Query Reusing 171

7.5. Query List Optimizations . 173
7.5.1. Splitting Query Lists . 174
7.5.2. Merging Single Concept Queries 174

7.6. Discussion . 175
7.7. Summary . 179

8. Implementation and Evaluation 181
8.1. Architecture and Implementation . 181
8.2. Scenarios and Evaluation Measures . 185

8.2.1. Evaluation Goals . 185
8.2.2. Data Sets and Query Sets . 187
8.2.3. Evaluation Environment . 188

8.3. Efficiency Evaluation . 189
8.3.1. Size estimation evaluation . 189
8.3.2. Detailed Evaluation . 191
8.3.3. Top-k evaluation . 196

8.4. Effectiveness Evaluation . 201
8.5. Summary . 203

9. Summary and Future Work 205
9.1. Summary . 206
9.2. Contributions . 207
9.3. Future work . 208

Bibliography 211

A. Data and Query Sets 239
A.1. Data Set . 239

A.1.1. Concept schema IMDB . 239
A.2. Query Sets . 240

A.2.1. Queries Cost Estimation . 240
A.2.2. Enumeration Test Queries . 243
A.2.3. Query execution experiment . 244
A.2.4. Top-k query sets . 245

ix

Contents

A.2.5. Concept-based query experiment 245
A.2.6. Effectivness Experiment Results 248

x

List of Figures

1.1. Initial Situation . 2
1.2. Goal: Keyword search system . 4
1.3. Schematic overview over the contributions and challenges 5

2.1. Classification of systems for Data Integration 11
2.2. Mediator architecture . 13
2.3. Mediator query processing . 14

3.1. Overview: Integration . 25
3.2. Exemplary Yacob concept schema . 27
3.3. Exemplary Yacob mapping . 31
3.4. Listing CQuery query Q1 . 32
3.5. Listing CQuery query Q2 . 34
3.6. Listing CQuery query Q3 . 34
3.7. Listing CQuery query Q4 . 34
3.8. Listing CQuery query Q5 . 39

4.1. Exemplary structured database . 45
4.2. Schema graph example . 47
4.3. Schema graph-based vs. data graph-based keyword search 60
4.4. Structural relaxation . 68
4.5. Combination of precise querying and IR 69
4.6. Example query XIRQL . 70
4.7. Example query XXL . 70
4.8. Example query XQuery Full-Text . 71
4.9. Metasearch engine components . 73
4.10. KITE system architecture . 78
4.11. Querying over virtual XML views . 79
4.12. SINGAPORE data space . 82

5.1. Overview keyword semantics . 85
5.2. Concept Schema Example . 87
5.3. Exemplary objects . 87
5.4. Listing CQuery keyword example . 88
5.5. Virtual document . 90
5.6. Exemplary minimal object networks . 95
5.7. Listing materialization query translation result 101
5.8. Illustration of Semantic Distance . 107
5.9. Category Expansion Example . 110

xi

List of Figures

6.1. Overview: concept query generation . 113
6.2. Keyword query processing steps . 114
6.3. Exemplary annotated concept graph 115
6.4. Exemplary query list networks . 116
6.5. Offline phase of the keyword search system 117
6.6. Dewey numbering . 118
6.7. Index entry structure . 118
6.8. Index example . 120
6.9. Single query term lookup . 120
6.10. Query list generation . 124
6.11. Concept graph annotation . 127
6.12. Example graph and corresponding annotated graph 129
6.13. Annotated compact example graph . 130

7.1. System overview: Concept query processing 135
7.2. Exemplary query networks . 137
7.3. Plan operator . 139
7.4. Execution plans . 144
7.5. Query list network . 147
7.6. Query list network processing . 148
7.7. Query overlapping . 150
7.8. Empty result set detection . 153
7.9. Empty result representation . 154
7.10. Cache structure . 160
7.11. Exemplary distinct cases . 160
7.12. Example plan for cache usage . 166
7.13. Example query processing . 169
7.14. Shared query list networks . 172

8.1. System architecture . 182
8.2. Estimations and actual values for query set 9 190
8.3. Estimated values vs. actual values . 191
8.4. Query list generation times . 192
8.5. Number of generated single concept queries and query lists 193
8.6. Query list enumeration: sizemax vs. time 194
8.7. Query list enumeration: keyword query size ∣Q∣ vs. time 194
8.8. Influence of the keyword occurrence KWOcc on the execution time . . 195
8.9. Execution times with respect to the parameter sizemax for ∣Q∣ = 3 . . . 196
8.10. Optimization vs. execution time . 197
8.11. Optimization strategies vs. execution time 198
8.12. Top-k overall execution times for different sizemax and ∣Q∣ = 2 199
8.13. Top-k overall execution times for different keyword sizes 199
8.14. Top-k query list splitting . 200
8.15. Top-k complete execution times of concept-based keyword queries . . . 201
8.16. Top-k complete execution time vs. concept-based keyword size 201

xii

List of Figures

A.1. IMDB concept schema . 239
A.2. Result of query 1 . 248
A.3. Result of query 2 . 249
A.4. Result of query 3 . 249
A.5. Result of query 4 . 250
A.6. Result of query 5 . 250
A.7. Result of query 6 . 251
A.8. Result of query 7 . 252
A.9. Result of query 8 . 253
A.10.Result of query 9 . 254
A.11.Result of query 10 . 254
A.12.Result of query 11 . 255

xiii

List of Tables

6.1. Index term types . 119

7.1. Statistics values . 139
7.2. Plan operators . 140
7.3. Percentage of overlapping query parts (single concept queries/joins) . . 149
7.4. Match types in the semantic cache . 161

8.1. Keyword index schema . 183
8.2. Main evaluation parameters . 187
8.3. Database structure . 188
8.4. IMDB sources . 188
8.5. Query set characteristics . 189
8.6. Estimation errors . 190
8.7. Compared algorithms . 195
8.8. Query set for the effectiveness experiment 202

xv

1. Introduction

The development of computer and network technologies and information systems has
significantly improved the availability of structured data sources. As every source is
developed and managed with local applications in mind, the sources differ in design,
data model, query capabilities and interface, and data representation. Nevertheless,
many applications of large enterprises, in interdisciplinary research, or in Web search
and commerce do not only require one information source, but need integrated infor-
mation from multiple, distributed, heterogeneous and autonomous structured sources.
Ideally, global applications and users expect a uniform view of and a transparent access
to the data sources. This situation makes data integration a pervasive task [HRO06].
Data integration systems provide a structured or semi-structured interface to data.
That means that they offer a schema and a corresponding query language. For this
task, integration systems provide a global schema. Integration systems use mappings
between the local schemas and the global schema to rewrite global queries and in-
tegrate the results. First generation integration systems use a structural integration
model. That means that the global application domain is modeled using a struc-
tural database model. Subsequently, local schema elements are mapped to the global
schema elements. However, this leads to complicated, global schemas [SGS05]. Fur-
thermore, it is difficult to connect sources that are semantically related but do not
have a structural overlapping [LGM01].

Following the Semantic Web, an alternative is explicit modeling and use of the
application domain in the form of taxonomies, concept hierarchies, or an ontol-
ogy [AK93, WVV+01, LGM01, ABFS02a, SGS05, LWB08]. With the help of ex-
plicit domain modeling, different worlds can be connected, and the concept schema
is simplified [LGM01]. To use semantic modeling in data integration, we still need a
middleware or mediator to map local sources to the global concept-based schema and
rewrite global queries against the concept-based schema to local queries. For example,
Figure 1.1 sketches this approach. The user formulates a query that is expressed in
a concept-based query language. The mediator system processes the query, creates a
query plan and selects sources. Subsequently, the system sends queries to the data
sources via wrappers and retrieves the results. The result objects are transformed into
instances of the global concept model and returned to the user.

While explicit domain knowledge eases querying of the integrated database, the
following problems still exists [JCE+07]:

1. The users are not entirely familiar with the domain specific ontology that repre-
sents the data structure. The users do not know all relationships or properties.
Furthermore, users do not have knowledge about the global vocabulary, but
they know the structure of single sources. They cannot use the global system
efficiently.

1

1. Introduction

Mediator

Source 1 Source i Source n

c1 in concept[name="museum"],
c2 in concept[name="drawing"],
c2 in concept[name="drawer"]
e1 := extension(c1),
e2 := extension(c2).
e3 := extension(c3)
e1/city ~= "prague" and e3/name ~= "Holbein" and
e1/name = e2/institution and e2/artist = e3/name

FOR

LET

WHERE

Concept Schema

Source Mappings

Query Planning/ Translation /

Integration

Wrapper(1) Wrapper(i) Wrapper(n)

User query

Figure 1.1.: Initial Situation

2. The users are not experts in using complex query languages. Concept-based
query languages are based on ontology languages, are RDF languages like
SPARQL, or are derivatives of OQL, XQuery, etc. They are hard to use. Query
forms and browsing mitigate this problem but restrict users to predefined queries.

3. Information is distributed over different global data elements and even sources.
The user cannot know exactly, which relationships she should query. As data
comes from different sources, this problem is even increased.

In summary, we need a way to provide an easy to use interface for querying across
multiple heterogeneous structured data sources using a mediator system.

At the same time, easy-to-use query interfaces like keyword search are suc-
cessful for unstructured data and in Web search. Users provide simply a set
of keywords and the systems return a list of ranked documents. In the recent
decade, the database research community has noticed the necessity of combin-
ing database technology and information retrieval [CRW05]. An important point
in this consideration is the usability of databases [JCE+07]. Keyword search is
one solution. Information is spread across different connected data items (tuples,
XML elements, etc.) in (semi-)structured databases. This leads to the prob-
lem of finding connected data item that satisfy the keyword query [YQC10]. Re-
search prototypes and industrial systems exist for relational databases [HGP03,
ACD02, LYMC06, LLWZ07, WZP+07, LFZ08, QYC09, PgL11, LFZW11], XML
trees and graphs [FKM00, GSBS03, CMKS03, BHK+03, XP08], and general data
graphs [DEGP98b, HN02, HWYY07, LOF+08, LFZ08, LFO+11]. We can distinguish
two main keyword processing approaches: schema graph-based and data graph-based
algorithms. Schema graph-based approaches create candidate queries first, for exam-

2

1.1. Contributions

ple, join queries via foreign-key relationships. In the second step, they execute the
generated queries to obtain the results. In contrast, data graph-based approaches rep-
resent the data items and the keywords as nodes in a graph, where nodes are connected
by edges. Results are trees or sub-graphs that connect the keyword nodes.

While there are meta search systems [MYL02] and deep-web search sys-
tems [CHZ05], there are only few proposals that consider keyword search across mul-
tiple, heterogeneous, and partially autonomous structured sources, e.g., [SLDG07,
SGB+07]. In this thesis, we combine concept-based integration and keyword search to
allow keyword queries over concept-based, virtually integrated data.

We assume that we have an available concept-based mediator system Ya-

cob [SGHS03, SGS05]. Furthermore, we require content descriptions of every source,
i.e., a list of keywords and their positions with respect to the global concept schema.
We develop a schema graph-based keyword search system over the concept-based data
model. Given a keyword query, the system generates concept-based queries creating
connected objects, i.e., object networks, that contain all keywords. The generation and
execution of these materialization queries are expensive operations. In particular, we
assume limited query capabilities of the sources, e.g., Web sources. Thus, we need to
develop efficient generation and execution strategies for sets of materialization queries.
The goal of the thesis is a keyword search system as depicted in Figure 1.2. The user
formulates a keyword query and sends it to the keyword search system. The system
creates concept-based queries, executes them, and returns relevant object networks to
the user. It uses a keyword index to find keyword interpretations. A query gener-
ation component combines interpretations to materialization queries. The execution
component efficiently executes the queries and ranks the results.

1.1. Contributions

To improve keyword search across multiple heterogeneous structured data sources, we
contribute following points:

Concept-based keyword search: The basis of the keyword search is a concept-based
integration model. We define the keyword search semantics of this data model. In
particular, we specify concept-based query terms that use concept and property
names as labels. Thereby, we also consider information from source mappings
to reflect the heterogeneous nature of an integration system. We provide a
ranking function for queries that are generated from keyword queries. We exploit
the concept schema to expand labeled keywords in order to allow inexact label
matchings.

Efficient candidate query generation: Our goal is to develop a concept-based and
schema graph-based keyword search system. In the first step, concept-based
queries are generated from keyword queries. Concept schema graphs are com-
plex. This problem is increased by concept hierarchies that multiply connections
between concepts. Therefore, we reduce the complexity by collapsing concept
hierarchies and edges into complex schema nodes and edges. This significantly re-
duces the graph complexity and allows the efficient generation of concept-based

3

1. Introduction

Q
u

e
ry

 G
e
n

e
ra

ti
o

n
Concept Schema

Source Mappings

Query Planning/ Translation /

Integration

Source 1 Source i Source n

c1 in concept[name="museum"],

c2 in concept[name="drawing"],

c2 in concept[name="drawer"]

e1 := extension(c1),

e2 := extension(c2).

e3 := extension(c3)

e1/city ~= "prague" and e3/name ~= "Holbein" and

e1/name = e2/institution and e2/artist = e3/name

FOR

LET

WHERE

P
ro

c
e
s
s
in

g

K
e
y
w

o
rd

Mediator

Wrapper(i)Wrapper(1) Wrapper(n)

K
e
y
w

o
rd

 I
n

d
e
x

User query holbein prague

Q
u

e
ry

 E
x
e
c
u

ti
o

n

Figure 1.2.: Goal: Keyword search system

queries to materialize results. The compact concept graph approach extends
similar approaches for relational and XML data.

Efficient execution of candidate queries: The schema graph-based approach gen-
erates many queries as interpretations of keywords. We argue that many queries
overlap, i.e., intermediate results can be reused. The execution of source queries
is expensive because of network access and limited query capabilities. There are
two ways of sharing intermediate query results in materialization queries: empty
result detection and materialization of intermediate results. In the first case,
we avoid unnecessary re-computation of empty results. In the second case, we
avoid re-computation of intermediate results. We provide definitions of query
coverage and query containment for concept-based queries. We propose different
data structures that hold descriptions of empty query results and provide a se-
mantic cache. At last, we provide an approach to combine the plans of different
materialization queries and to optimize them together.

For the execution of query sets, we develop a join approach based on semi-joins.
In this approach, we materialize all candidate objects, first, and combine the
results, subsequently. In summary, we optimize concept-based query processing
with respect to keyword queries.

Prototype and evaluation: We develop a prototype to validate the developed con-
cepts. The prototype uses the Yacob mediator system to access sources. Ad-
ditional components comprise the keyword index, the query generator as well

4

1.2. Structure

as the query executor, and the join processor. We validate all presented ap-
proaches with the help of a freely accessible dataset and several representative
queries sets. The prototype provides the validation that the schema graph-based
keyword search approach across heterogeneous and autonomous sources via a
concept-based mediator is possible.

The contributions are summarized in Figure 1.3. The thesis is structured according
these tasks.

Keyword query

Ranking function

Query Network

Source Query Source Objects

Global ObjectsSingle Concept

Query

Ranked Object

Networks

Access/Integration/Query Planning

Object Network Generation

− Query Networks (Joins) Optimization

− Optimization of Sets of Query Networks

− Query Network Execution − Ranking

− Empty Result Detection

− Statistics & Cost Functions

Keyword Query Transformation

− Keyword Index/Statistics − Single Concept Queries Generation

− Query Networks (Joins) Generation

Heterogeneous Sources

− Semi−Structured Data− Limited Query Interface

− Partially Cooperative

− Syntax − Semantics − Ranking

Concept−Based Keyword Queries

Concept−Based

− Integration Model

− Query Planning − Object Transformation

− Query Transformation

Figure 1.3.: Schematic overview over the contributions and challenges

1.2. Structure

The remainder of the thesis is structured as follows:

Chapter 2 discusses the background of data integration systems. We focus on
concept-based mediator systems.

Chapter 3 describes the Yacob mediator system [SGHS03, KSGH03, SGS05]. The
concept-based mediator is the basis of the keyword search system. We provide
the integration model, the concept-based query language, and the description
of the query processing. This chapter shares parts with [SGHS03, KSGH03,
SGS05].

Chapter 4 reviews keyword search in (semi-)structured databases. We describe the
principles of keyword search in (semi-)structured databases and focus in the
second part of the chapter on keyword search across multiple heterogeneous
structured sources.

5

1. Introduction

Chapter 5 defines concept-based keyword queries, the data model for keyword search,
and the ranking function. We define query expansion for labeled keyword
queries. This chapter and the following chapters are partially based on and
extend [GDSS03, Gei04, Dec04].

Chapter 6 describes the complete concept schema-graph based keyword search pro-
cess. The chapter focuses on query generation from concept-based keyword
queries.

Chapter 7 deals with the efficient execution of a set of generated structured queries.
The results of these queries form the result of the keyword search. Thereby, the
system exploits overlapping queries to reduce query costs.

Chapter 8 includes the description of the prototypical implementation and the eval-
uation of the system to validate the approach.

Chapter 9 concludes the thesis, summarizes the results, and provides a list of possible
future steps.

6

2. Data Integration

For several decades, many projects in industry and research have dealt with the prob-
lems of the integration of autonomous, distributed, and heterogeneous data sources.
The sources are available on Web pages, via Web services, or by other protocols. In
particular, the ubiquitous Internet makes many sources to be available for integration.
Thereby, there is still the necessity to integrate data from different sources in many
applications areas. Data integration is a challenging task that requires a solution for
many problems like resolving integration conflicts caused by autonomy and hetero-
geneity of the different sources, overcoming technical problems introduced by hetero-
geneous system architectures, and optimization of query processing in distributed data
integration systems.

In this chapter, we give an overview of data integration systems and we also include
former surveys [DD99, Con97, Hul97, BKLW99, SL90, She99, HRO06]. In Section 2.1),
we describe data integration systems in general. First, we classify the challenges of
data integration as well as data integration systems. Second, we investigate mediator
systems in detail. In Section 2.2, we review Concept-based Mediator systems and their
designs as one kind of data integration systems. We conclude the chapter with a
summary and a discussion of the presentation level of concept-based mediator systems
in Section 2.3.

2.1. Data Integration Systems

We start this section with the description of challenges of data integration systems
caused by multiple autonomous and heterogeneous sources. Following this, we turn to
mediator systems as one exemplary class of data integration systems to deal with the
given challenges.

2.1.1. Challenges and Classification of Data Integration

Systems

Sheth and Larsen [SL90] proposed a classification of information systems along the
dimensions Autonomy, Heterogeneity, and Distribution that is also used in following
surveys [Con97, BKLW99]. The classification also describes the main problems of
information integration systems. Although, these classification dimensions were de-
veloped 20 years ago, they still show the problems of systems today. We now discuss
the influence of the three dimensions on data integration in detail.

7

2. Data Integration

Autonomy

The first classification dimension describes the extent of autonomy of the data sources
to be integrated. We can distinguish design, communication, and execution auton-
omy. Design autonomy comprises independence of design and independence of design
change. Users and applications require the independent design of the local databases.
Furthermore, the local schemata and information representations can change at any
point of time. A source can always decide if it communicates with external programs or
not. That kind of autonomy is called communication autonomy. Execution autonomy
states that the local execution of queries cannot be influenced by a global site. The
execution is only based on local decisions. The integration of Web sources increases
this problem because of the manifold of the sources and the limited access and control
of them.

Heterogeneity

Autonomous development, usage, and design of the local information systems intro-
duce heterogeneity between the systems. The heterogeneity concerns different levels.
Several studies describe different levels of heterogeneity [Wie93, Con97, BKLW99].
The heterogeneity is characterized as follows:

Syntactical or technical heterogeneity: The first class of heterogeneity comprises
technical inconsistency like different operating systems, database systems, and
protocols. Furthermore, there is a variety of access and security methods. Sys-
tems provide own interfaces to their data with different capabilities. The pos-
sibilities range from full-featured database management systems with powerful
query languages as SQL or XQuery to Web information systems that provide an
HTML form or a Web service interface as query interface.

Data model heterogeneity: Local database systems support their own data model.
Exemplary data models are the relational, object-oriented, or semi-structured
XML model. Different semantics of local data models induce heterogeneity on
data model level. A data integration system has to deal with data model hetero-
geneity by translating the local data models into the global data model. It is re-
flected in the 5-layer schema architecture of Federated Database Systems [SL90]
as well as in the wrapper layer in the Mediator-based architecture [Wie92].

Logical heterogeneity: The logical heterogeneity concerns schematic and semantic
conflicts.

Schematic heterogeneity is caused by design autonomy, which leads to differ-
ent schemas for same real world concepts even if a common data model
is used. For example, in the relational model differences are generated by
using different levels of normalization. Even more classes of conflicts can
occur in semantically rich data models [Sch98].

Metadata conflicts are a significant class of conflicts caused by schematic
heterogeneity. For example, one source models information as metadata,
e.g., attribute or relation names, another source represents the same real

8

2.1. Data Integration Systems

world information as data values. The solution of these conflicts requires
query languages of higher order like SchemaSQL [LSS96], MSQL [KLK91],
or FraQL [SCS03].

Several surveys provide comprehensive overviews about integration con-
flicts. For example, Kim and Seo investigate conflicts between rela-
tional databases [KS91]. Schmitt compares different classification ap-
proaches [Sch98], while Conrad proposes a further classification [Con97].

Semantic heterogeneity: Even if a common data structure is used, seman-
tic conflicts can occur. For instance, in the XML data model, different
tags carry implicit semantics of the enclosed data. However, the seman-
tics is only encoded in the name of the tag, and conflicts can be caused
by homonyms and synonyms. Homonym means, the same name stands for
different concepts in different sources. Synonym means, different names
in different sources describe the same concept. Furthermore, a real world
concept can be understood differently in different sources.

On data level, values may have the same semantics but use different rep-
resentations. An example is the use of different units or currencies. The
representation heterogeneity is caused by different conventions as well as
erroneous data [SPD92].

Technical and data model heterogeneity can be solved by appropriate system archi-
tecture and software components. Schematic and partly semantic heterogeneity are
subject of the schema matching and schema integration process. The schema integra-
tion process comprises homogenization of the local sources to provide an integrated,
unified access to the data. Schema matching tries to find correspondences between
different schemata. Schema mapping and integration resolve the integration conflicts
using these correspondences. Overviews of schema integration are for instance given
by Batini et al. [BLN86], Ram and Ramesh [RR99], and Conrad [Con97]. Rahm and
Bernstein give an overview about schema matching principles and approaches [RB01].

Distribution

Information systems are characterized by types of data distribution. Central systems
store data at a single site, whereas distributed information systems store and use data
from different sites. Particularly, information systems for data integration utilize data
from multiple heterogeneous, autonomous, and distributed sources. Hence, integration
systems can be classified according to the data distribution into materialized and
virtual integration.

Materialized integration. In the materialized case, data of the local data sources
is copied to a central site. On the central site, the data is transformed into a global
data model, the data is cleaned, and integration conflicts are removed. User queries
are issued to this central database. Members of this class of data integration systems
are Data Warehouse systems [Inm96] or Dataspace systems [FHM05, HFM06].

On the one hand, the materialization approach has several advantages. First of all,
query processing is straightforward as all information is available about the data, its

9

2. Data Integration

structure, and its location. Furthermore, statistics and costs is used for query opti-
mization and additional overhead introduced by network access is avoided. Another
advantage is the independence of unreliable local sources. Since many local sources,
e.g., stock and news tickers, update their data regularly and remove old data, histori-
cal data analysis is not possible. In contrast, materialization allows storing historical
data as long as needed by the global system. On the other hand, materialized in-
tegration has also disadvantages. Data ages fast, thus, not the most current data is
stored. Therefore, updates have to be made often, which cannot always be afforded.
Furthermore, many data sources, especially in the WWW or Internet, do not allow
the complete materialization of their data, because of data security or because of busi-
ness and technical issues. These thoughts lead to the second class of data integration
systems.

Virtual integration. In this scenario, data is kept in the local sources. Therefore,
the global query system has to distribute queries to the local sources and to combine
the local results to the required integrated result. Hence, the query planning and
optimization is a complex process that is described later on in detail. The problems
of the query optimization are missing statistics information, different query capabil-
ities, and a large number of sources that are unreliable. Consequently, the query
processing and the possibly slower query execution are disadvantages of the virtual
integration approach. Representative kinds of this class of information systems are
Federated database systems [SL90], Mediator systems [Wie93], Mashups [EBG+07],
Meta-search [MYL02], or Deep Web search systems [CHZ05].

The distinction between materialized and virtual systems can be softened using
partial materialization or caches on the global level, as discussed in [LC01, KSGH03,
May05, CM08].

Classification of data integration systems

Based on the discussions above, information systems for data integration have to deal
with autonomous, heterogeneous, and distributed data sources [SL90, Con97]. An-
other classification is proposed by Domenig and Dittrich [DD99]. It is based on the
kind of materialization as well as the supported kind of queries. We complement this
classification. It is illustrated in Figure 2.1. First of all, systems are classified into
materialized and virtual integration. Data Warehouse systems [Inm96] are one ex-
ample for materialized integration. Data Warehouses use a complete integration with
an expensive ETL (Extract-Transformation-Loading) process. In contrast, Dataspace
systems [FHM05, HFM06] use the pay-as-you-go semantic integration [SDK+07]. In
this case, the data is materialized centrally but is not immediately integrated. In the
first place, it coexists. Data integration will be carried out if it is necessary or during
querying using special indexes [DH07]. Possible integration results can be material-
ized for later use. This approach allows a faster integration with less initial starting
overhead than integration first approaches.

Systems using virtual data integration are further classified by the kind of queries
they support [DD99]. If only unstructured queries are provided, we speak of Search
and Meta-Search Engines [MYL02]. In the other case, structured queries over (semi-)

10

2.1. Data Integration Systems

data coexistence

based

systems

systems for

data integration

virtual

integrationintegration

materialized

(Meta−) Search Engine

unstructured queries

structured queries

distributed query processingcopy of the data

Data Warehouse Dataspace

Systems

(semi−)structured

data

Federated

Database

Systems

updates

transactions

read−only

Search
Process

Systems

Deep Web

Oriented Systems

(Mashups)

complete

integration

Mediator−

Figure 2.1.: Classification of systems for Data Integration based on [DD99]

structured data models are supported. Here, the systems are distinguished, whether
they support only read-only queries, or they also support write operations. The latter
systems require a tight “federation” and are mostly referred as Federated Database Sys-
tems as they try to support all DBMS requirements [SL90]. They are often designed
by a bottom-up, (semi)-formal schema and data integration process. We distinguish
read-only systems into Mediator-based information systems [Wie92], Deep Web Search
systems [CHZ05], and process oriented systems (Mashups). Mashups integrate data
from different Deep Web data sources or Web services by chaining inputs and out-
puts of different sources or by combining information from different services into one
dataset. Example systems are Yahoo pipes1 or MashMaker [EBG+07]. We discuss
meta-search engines and Deep web search systems in Chapter 4 in Section 4.4.1 and
4.4.2 in detail.

2.1.2. Mediator Systems

The term mediator in data integration was firstly introduced by Wiederhold [Wie92].
Global users and applications often require only a read-only access to the data and
an integrated view to parts of the local data. Information sources in the Internet
provide mostly limited query interfaces and additionally, one has to pay attention to
the communication autonomy, because Web sources are changing often and can leave
a federation at own will. Mediator-based information systems are designed to support
that scenario. Wiederhold defined a mediator as follows.

1http://pipes.yahoo.com/pipes/ Last accessed: 2012-05-22

11

2. Data Integration

Definition 2.1 Mediator
A Mediator is a software module that exploits encoded knowledge about some set or
subsets of data to create information for a higher layer of applications [Wie92]. □

A mediator is a lightweight software component that mediates between the global
user/application and the local sources. It provides an integrated access to the local
sources for users or other mediators. Thus, the mediator is a service for other software
components. Furthermore, mediator-based systems allow complete communication
autonomy and support various kinds of information sources, i.e., structured, semi-
structured, and unstructured data. Mediators support different integration methods
and sources with limited query capabilities.

Mediator architecture

Supporting all techniques in one mediator would violate the demand on lightweight,
easily manageable software components. Therefore, a mediator-based system usually
consists of several, specialized mediators that are used by global applications and
other mediators, as well. Consequently, the following three-tier architecture was pro-
posed [Wie92].

The architecture of a mediator-based information system is illustrated in Figure 2.2.
The system consists of three layers: presentation layer, mediation layer, and foundation
layer. The main components are a set of mediators and wrappers. In Figure 2.2,
lines denote queries against the global schema and integrated results, respectively;
dashed arrows represent source queries in the global data model and not (or partially)
integrated results. Dotted arrows stand for queries and the respective results in the
local model.

Presentation Layer: Global applications and users utilize virtually integrated data
provided by one or several mediators. The user sends global structured queries
to an integrated schema. The results have to be integrated by the mediators
and are presented following the global schemas. Global users have to know the
mediators as well as knowledge about the global schema is required.

Mediation Layer: The mediation layer consists of several mediators and provides
services for data integration. Each mediator can receive global queries of users
and global applications. The queries are analyzed, and a query plan is created
by the mediator. The query plan consists of the correct sequence of sources that
have to be used to answer the query. Each mediator uses for this task source
descriptions that provide information about the data stored in the sources and
the query capabilities. Next, the plan is optimized and executed, that means,
decomposed queries are sent to the sources. A source is either a wrapper to a
source or another mediator.

The mediator combines and integrates the returned results and presents them
in an integrated way to the global user and application. Integration conflicts
caused by heterogeneity on different levels are reconciled. The mediators are
developed by domain specialists and use metadata about covered sources and

12

2.1. Data Integration Systems

Users / Global Applications

Wrapper Wrapper Wrapper

UserUserUser

Mediator

Mediator

Foundation layer

Mediation layer

Presentation layer

Local Sources

Figure 2.2.: Mediator architecture following [Wie92]

their data as well as their query capabilities. A domain model can be used to
describe the global data.

The mediator stores all necessary metadata to fulfill the tasks: global schema,
source descriptions, view definitions, reconciliation specification, etc.

Wrapper/Foundation Layer: Local sources in the foundation layer are accessed
through wrappers and provide the data. Wrappers are software components
that hide technical and data model heterogeneity. Wrappers provide informa-
tion about the sources, e.g., information about the schema, query capabilities,
cost information. The mediator extracts the information during the registration
of a source at the mediator system and stores it in the global metadata cata-
log. The tasks of wrappers include the translation of source queries in a way,
that local sources can support them, emulation of not supported operations, and
translation of the results into the global data model or mediator internal data
processing data models. The wrapper contains technical metadata that provides
information about data model translations between local source and mediator
data model.

Mediator query processing

An important task of the mediator is to execute global queries that were issued against
the global schema. Figure 2.3 gives an overview about the query processing [BKLW99].

13

2. Data Integration

Mediator

local resultsets

in global model
source queries in global model

Global result Global query

local source query

Reconcilation

Conflict resolution

Union/Join

Result Creation Query Planning

Parsing

Query Decomposition

Optimization

Metadata

Global Schema

Source descriptions

Cost information

Statistics

Local Sources

User / Global application

Wrapper Wrapper Wrapper

result in

local data model

Figure 2.3.: Mediator query processing based on [BKLW99]

A user or a global application sends a global query against the global schema. The
mediator receives the query and parses the query in the first step. The next step has
the goal to create a plan of source queries that are necessary to compute the query
result. The plan is created using source descriptions that describe correspondences
of the content of the local source according the global schema [SPD92]. The source
descriptions are stored in the metadata catalog of the mediator. There are two main
approaches of source descriptions that have influence to the kind of query planning:
Global-as-View (GaV) and Local-as-View (LaV) [Len02].

Global-as-View (GaV): Following the GaV approach, each global concept is defined
as one or more views over the local sources. Hence, each correspondence rule defines
the semantics of a global concept with the help of source queries. For query translation,
it means that the global views are expanded to the corresponding source queries. The
query decomposition step is more or less coded in the view definition. The disadvantage
of the GaV approach is that changes in one local source invalidate view definitions of
all global classes that use the source. The view definitions have to be recreated.

Local-as-View (LaV): The LaV approach tries to mitigate the disadvantage of the
GaV source description in order to support mediation of frequently changing envi-
ronments of Web sources. Local-as-View means, that local classes or concepts are
expressed as views over the global schema. Each local source is understood as a
part or view of the global data space. During query processing, every view may con-
tribute to the answer of a global query. It leads to the problem of answering queries

14

2.2. Concept-based Mediator Systems

using only views [Hal01]. The system has to find a plan that uses only views in-
stead of the global relation. At first, the problem was introduced for the usage of
materialized views [LMSS95]. However, in data integration scenarios the number of
views is large and the goal is to find a maximal-contained query instead of an equiv-
alent query [Ull97, Hal01]. Proposed algorithms are among others the bucket algo-
rithm [LRO96], the inverse-rule algorithm [DG97], and MiniCon algorithm [PH01].

A combination of both LaV and GaV was proposed in Friedman et al. [FLM99] to
support data webs that are typical in Web environments. The authors propose the so
called GLaV (Global-Local-as-View), where on both sides of the correspondence rules
are views.

After finding the correct source query plan, either using LaV or GaV rewriting,
the system tries to find the best execution plan of the rewritten query. Mostly the
optimization tries to find the plan with lowest costs [HKWY97, TRV98, LRO96].
Other approaches generalize that notion and try to find the plans with the best quality,
which is a critical issue in data integration [NLF99].

The optimization step relies on information about query capabilities of the sources
and the corresponding costs provided by the wrapper during source registration. After
the final plan is constructed, the plan is executed. First, the source queries are sent to
the wrappers. The wrappers translate the queries such that, that the local API can
handle the request. If a source cannot support some query operators, these operators
are executed in the mediator or the wrappers.

The returned results, expressed in the local data model, are translated by the wrap-
per into the global data model or the data processing model. Subsequently, the results
are sent to the mediator again. The next task of the mediator is the integration of the
source results. Here, different approaches exist [BKLW99]. Collection expresses, that
the mediator simply collects the objects from different sources. A mediator can try
to use object fusion to fuse semantically equivalent objects of different source into one
object. Semantically equivalent objects refer to the same real world concept [Ken91].
Object fusion has to deal with data level conflicts, i.e., semantically equivalent values
are represented differently. These conflicts have to be solved by specific joins, recon-
ciliation functions, similarity functions, or mapping tables. Further approaches are
abstraction to overcome semantic heterogeneity and supplementation to use unstruc-
tured data with the help of metadata.

Finally, the integrated result is presented to the user. Possibly, information about
quality, sources, and other metadata are presented to the global application and user.
That may be beneficial to increase the understandability of results.

2.2. Concept-based Mediator Systems

Nowadays, the World Wide Web (WWW) and large company intranets provide a
large number of information sources. Because of heterogeneity and a high degree of
autonomy of the sources, solely structural integration is hard to handle. A similar
problem exists in the WWW, where the data is provided in the form of HTML files.
In order to manage this vast amount of data, Berners-Lee proposed the idea of the
Semantic Web [Sem05]. In this vision, the semantics of the data in Web pages is

15

2. Data Integration

described explicitly by using different domain specific ontologies expressed in languages
like RDFS [BG03] or OWL [BvHH+03].

Similar problems arise in the context of mediator systems integrating a large set of
WWW sources. Integration only based on structured integration suffers of increased
autonomy, heterogeneity, and distribution [She99]. In this context, Sheth [She99]
classifies the systems providing interoperability into three generations. The first gen-
eration tried to overcome system-specific and structural heterogeneity. The number of
participating sources is relatively small, and systems are mostly relational or object-
oriented database systems. The second generation deals with the read-only integration
of a large number of sources. The emphasis of these systems is on reconciliation of
syntactical and schematic conflicts. Different kinds of sources are integrated: struc-
tured, semi-structured, and unstructured sources. Top-down integration paradigms
are used to deal with all kinds of autonomy. Finally, the third generation of data
integration systems deals with the semantics of the data and user queries to provide
interoperability. Halevy et al. made a similar observation [HRO06].

2.2.1. Principles

The borders between the generations are not sharp, but the trend is from the system
and syntactical problems to semantic problems. Concept-based mediator systems are
one kind of systems of the third generation. In general, a concept-based mediator
uses an ontology [Gru91] to describe the concepts and properties of the data stored
in various information sources. As a “world” ontology is not possible, the ontology
of a concept-based mediator is domain-specific and is constructed by domain experts.
Users issue concept-based queries to the global concept model to obtain results. The
connection between the Artificial Intelligence and database communities is discussed
by Noy et al. [Noy04] and Doan et al. [DH05]. Wache et al. describe the characteristics
of semantic integration systems in general [WVV+01]. We will focus here on concept-
based mediator systems. The mediator-wrapper-architecture provides in this context
all technical support to mediate between a concept-based (semantic) query and data
that resides in the local sources. Summarizing, concept-based mediator systems solve
two problems:

1. If data is related, but information comes from sources of different worlds, then
concept models allow the definition of connections between the sources in a
homogeneous manner [LGM01].

2. The structural heterogeneity between local sources is high because structured,
semi-structured, unstructured sources, or totally different representation make a
purely structural integration not possible, but the integration of the semantics
is enabled by concept-based mediators.

In the following, we investigate concept-based mediator systems based on the aspects
(i) ontology as global schema, (ii) kinds of source description, (iii) concept-based query
language, and (iv) query processing and optimization.

16

2.2. Concept-based Mediator Systems

Ontology as global schema

The first step of concept-based integration is the top-down definition of the global,
domain specific ontology. The ontology defines the vocabulary and the semantics of
the data in the respective area. The ontology is the way the user uses the integrated
data. The concept schema describes the intentional part of an ontology, while the
sources provide the instances.

Different data models are used to define a concept-based schema. Exemplary data
models are the general concept model (GCM) [LGM01], description logic [LRO96],
contexts [GBMS99], or proprietary models [SH07]. Furthermore, Semantic Web lan-
guages like OWL and RDFS are used [ABFS02a, LF04, SGS05, Lan08, CGL+10].

A further use of the ontology is the validity test of the integrated data, e.g., testing
whether the integrated data objects satisfy the global ontology constraints [GBMS99,
LGM01].

Source descriptions

To answer semantic queries, the mediator uses source descriptions that map the local
data to a certain global concept. That means, the source descriptions explicitly model
the semantics of source queries. In that way, the heterogeneity of the sources is solved
on schema level as well as on data level.

There are two kinds of mapping in semantic integration using ontologies. First,
there are mappings between ontology sources. Second, there exist mappings between
a global ontology and local sources. We focus here on the latter as part of a concept-
based mediator system. We denote the mappings as source descriptions. We classify
source descriptions according to two criteria: what is described and how it is described.

The first criterion describes what is mapped to the global concept-schema. On
the one hand, sources describe their data in a concept-based model. Sources can use
the given global ontology. Here, the data is exported as part of the global ontol-
ogy [Lan08, LWB08]. Another approach assumes, the local data is expressed in a local
ontology. Here, local concepts are added to the global ontology using global concepts
as anchors [LGM01]. On the other hand, global ontology concepts are mapped to local
data types [ABFS02a, SGS05, CGL+10, LF04, BGTC09]. The local data types are
expressed in any data model, for example, as XML or relational data.

The second criterion (how are descriptions described) comprises the kind of source
descriptions which are GaV, LaV, or GLaV. An example of the GaV is the KIND
system [LGM01]. The LaV approach is used in [ABFS02a, SGS05], for example,
while Calvanese et al. [CGL+10] describe a GLaV approach. The mappings can map
to concepts and data properties as well as to derived concepts [ABFS02a], allowing
fine-grained query rewriting. In order to provide global relationships, two approaches
exist: first, creation of global keys from the attribute values [ABFS02a] or second, the
definition of join mappings for object properties [SGS05]. Both are expressed using
the global concept model.

17

2. Data Integration

Concept-based query languages

This classification dimension describes the query language. Used query languages
are classic ontology languages like F-Logic [KLW95] and Description Logic combined
with datalog [LRO96]. Furthermore, systems use restricted semantic web languages
like subsets of SPARQL [Lan08, LWB08] or OWL QL [CGL+10, LF04]. Other sys-
tems use adapted OQL-like languages [ABFS02b] or derivations of XQuery [SGS05] or
XPath [SH07]. The provided operations have to include concept level operations like
traversal of concept hierarchies and other relationships, concept-selection, semantic
reasoning as well as operations on the data level, e.g., selection or projection.

Query processing and optimization

The query planning in different systems depends on the source descriptions. GaV-
based systems resolve the global views and create the union of the source query results,
e.g., [Lan08, LGM01]. LaV-based systems like [ABFS02b] use and adapt known algo-
rithms as the MiniCon approach [PH01]. The Yacob system [SGS05] combines the
extensions of concepts from different sources first and applies global joins afterwards.
Thereby, all connections between concepts are expressed as global joins. Calvanese et
al. showed the GLaV rewriting of OWL-based integration systems [CGL+10].

2.2.2. Approaches and Systems

In this section, we briefly discuss several systems. Well-known systems like Gar-
lic [CHS+95], DISCO [TRV98], TSIMMIS [GMPQ+97], its successor MIX [BGL+99],
Information Manifold [LRO96], and HERMES were often discussed in litera-
ture [She99, BKLW99]. Instead, we focus on concept-based mediators.

Information Manifold (IM) [LRO96] is similar to concept-based mediator systems
as it uses a world view modeled by an extended relational model as global view. Local
sources map their schema elements to the world view using a LaV approach. However,
IM targets mainly to the reconciliation of heterogeneity on the structural level and
does not explicitly model a global ontology or vocabulary.

SIMS [AK93, AKS96, AHK97] The SIMS mediator system is used in a single ap-
plication domain. It uses the concept-based language LOOM to model the application
domain. LOOM allows the modeling of classes, their relationships, and their roles. An
information source is also modeled in terms of the global model. The local concepts
are mapped to the global concepts using the LaV approach, i.e., local concepts and
relations are mapped to the global concepts and relations, respectively. Global queries
are expressed by means of the LOOM model. The SIMS system supports structured
data sources.

SIMS’s successor ARIADNE [AAB+98, KMA+01] extends the mediator system
for semi-structured data provided by Web sources. ARIADNE uses the same LOOM
model for description of the application domain. The system extends SIMS by provid-
ing features of modeling Web page data with LOOM. Furthermore, the query planner

18

2.2. Concept-based Mediator Systems

of SIMS is extended to deal with a large number of sources, especially Web sources
that are characterized by limited query capabilities.

Context Interchange (COIN) [GBMS99] Similar to the other systems, the Con-
text Interchange system uses a domain specific model for description of the application
domain. The COIN model comprises primitive types and primitive objects as well as
semantic types and objects. Primitive types correspond to data types that are native
to the sources. Semantic types are complex types that support the data integration.
The collection of both kinds of types provides the common type system for integration.
Elevation axioms provide the mapping to the global domain model. The crucial part is
the set of context axioms that describe the data in a given context, i.e., one data value
has different meanings in different contexts, e.g., sources. Thus, the source description
follows the LaV approach. The mediator uses all this information to mediate during
runtime attribute domain conflicts, e.g., it can use modification functions or even find
other sources needed for conversion.

InfoSleuth [JBB+97] InfoSleuth is an agent-based semantic integration system. It
extends the system Carnot [SCH+97] to support new challenges induced by WWW
information sources, e.g., increased autonomy in design and communication as well as
their large number. InfoSleuth uses an agent-based architecture, i.e., the tasks of the
three layer mediator architecture are distributed over a number of specialized agents
that communicate using KQML. Besides infrastructure agents as Broker and Monitor
agents, a number of software components implement the mediation services. User
agents present the common interface of the system to the user. That means, they
are the presentation layer. Users issue queries against domain models (ontologies),
which are managed by domain agents. This behavior is similar to concept-based
mediators. In the next step, the query is sent to task planning and execution agents
which use information of resource agents to select a correct execution plan. While the
task planning and execution agents represent the query planning and execution of a
mediator, resource agents provide the source descriptions and wrapper functionality.
Putting all together, InfoSleuth provides an extensible and distributed concept-based
mediator system.

KIND [LGM01] Ludäscher et al. proposed the concept-based mediator system
KIND to deal with the “distinct world” problem. In this case, two sources do not
overlap on the structural level, even do not show structural conflicts, but the data can
be interconnected on semantic level using additional domain knowledge. KIND uses
domain maps as high-level description of the domain. The domain map serves as a
navigational map in the application domain. Local sources and their data are already
lifted to the conceptual level by wrappers, where each source can be expressed in a
local conceptual model. Translators are used to transform the local conceptual model
into the general concept model (GCM) that is used by the mediator. KIND uses F-
Logic [KLW95] as GCM. The wrappers provide specific concepts that describe where
the local source is located in the domain map, i.e., the concepts of the domain map
are semantic anchors of the sources. Integrated views are defined using domain maps

19

2. Data Integration

with added conceptual source data. The view definition follows the GaV approach. In
that way, structurally not connected data is connected and is queried in an integrated
way.

STYX [ABFS02a, FAB+02] Styx is a concept-based mediator that is designed
to integrate XML data sources, i.e., all sources export their data as XML data. A
lightweight concept model is used to describe the application model. The concept
model describes structured objects and relationships. Data values are not considered.
Source descriptions map the local data directly to the global domain model. The
system utilizes the LaV approach to model local paths by means of paths in the
concept model. Since the LaV source descriptions are used, the query processing
is designed following the MiniCon approach [PH01], which creates a query plan by
considering the subgoals of a conjunctive global query as well as the join conditions.

SemWIQ[Lan08, LWB08] The SemWIQ system uses an RDF Schema (RDFS)-
based global ontology. Each source exports its data in RDF using the global types.
Thereby, wrappers provide this functionality for non-RDF sources. Each source sup-
ports a SPARQL subset using this approach. The mediator user expresses its query in
a SPARQL subset. The system transfers the query first in a global algebra represen-
tation. Afterwards, the SemWIQ mediator uses source descriptions to replace global
concepts referenced in the query with union of local queries. The focus of the system
lies in the optimization of the queries and the efficient processing. SemWIQ supports
all sources that provide RDF data and allow SPARQL queries. These functionalities
can be provided through RDF wrappers to many kinds of data sources like relational
databases and text files.

2.2.3. Other approaches

The previous sections showed the usage of an ontology for concept-based mediator
systems. An ontology can also be used to provide interoperability between hetero-
geneous data sources in other ways. Doan and Halevy focus on ontology matching
and mapping of sources to the ontology [DH05]. They provide an overview of chal-
lenges of ontology management for data and schema integration. The work of Noy
is the counterpart paper from the Artificial Intelligence point of view [Noy04]. She
examines the problems of ontology integration (merging) and the usage of ontology
mappings. An ontology can also be used for query expansion of a keyword or XPath
queries over heterogeneous sources [TW02a]. Calvanese et al. studied OWL as inte-
gration language [CGL+10]. They investigated the complexities of OWL queries in
the light of different mappings (LaV, GaV, GLaV). Lehti and Fankhauser used an
ontology, expressed in OWL, to integrate heterogeneous XML data sources [LF04].
They directly map the XML Schema expressions to global concepts and properties.
Hornung and May describe how to query Deep web sources with semantic annotations
and SPARQL [HM09b]. Deep Web sources are modeled as n-ary predicates with in-
put and output variables called signatures [HM09a]. Subsequently, these predicates

20

2.3. Summary

are annotated in three levels: technical, signature, and semantic level. The source
descriptions are modeled local-as-view.

2.3. Summary

In the previous sections, we described the characteristics of information systems pro-
viding interoperability between autonomous, heterogeneous, and distributed informa-
tion systems. Subsequently, the architecture and issues of mediator-based information
system were discussed. Mediator systems are characterized by the mediator-wrapper-
architecture, the typical top-down integration and read-only access to the sources.
Hence, they provide a support for often-changing, highly autonomous sources with
limited query capabilities, e.g., WWW sources or Intranets of large companies.

Dealing with highly autonomous, heterogeneous WWW sources using only struc-
tural integration techniques led to problems. Thus, concept-based mediator systems
have been emerged for the recent years. Concept-based mediators use, as global inte-
gration model, a semantic description of the data in the form of application domain
ontologies. This is similar to the Semantic Web where semantic descriptions are used
to make heterogeneous content manageable and connectable. Concept-based media-
tors use domain models as navigation help for users as well as a solution of the distinct
world problem, i.e., finding relationships of data that is only given on the semantic
level, and not on the structural level. Furthermore, data conflicts can be solved using
semantic descriptions of the context of the data [GBMS99]. In summary, concept-
based mediator systems provide a comprehensive framework for flexible integration of
information sources.

Concept-based mediator systems provide powerful query languages that allow com-
plex queries over the application model. The usage of these queries as presentation
layer is too complex for a normal user, because it requires a deep knowledge of the
query language as well as the application domain. A possible solution is the use of
canned queries. Canned queries are predefined queries for a specified task that can
be parameterized by the user. This kind of queries is presented by a query form.
However, for data integration these queries are not flexible and powerful enough.

Another possibility of a presentation layer is a visual interface that provides two
functionalities: browsing of the stored data like the interface BBQ of the mediator
systems TSIMMIS and Mix [MP00] and graphical query languages like QbE [Zlo75].
In a concept-based mediator system, browsing can be done along concepts and their
relationships. For example, it is possible to go down a specialization hierarchy. Fur-
thermore, the browsing approach can be supplemented by canned queries. That means,
the properties of the current concept are presented to the user, and she/he can fill in
some values for the properties which represents a simple selection. However, that ap-
proach does not allow complex queries to get new relationships. They are not powerful
enough. Visual query languages help to understand the structure of the data as well
as provide support to formulate complex queries, but they tend to be too complex for
normal users.

Because of these problems, Davulcu et al. [DFKR99] proposed the structured univer-
sal relation as the presentation layer in their Web integration approach. The structured

21

2. Data Integration

universal relation is an extension of the universal relation [Ull90]. A universal relation
offers a list of all attributes in the database, and computes automatically the neces-
sary joins in the normalized relation database to answer queries against the universal
relation. The structured universal relation relaxes some requirements and groups the
attributes based on a concept hierarchy. The attribute grouping is already given in a
concept-based mediator.

An extension of this approach is the combination of keyword search and concept-
based search. A keyword query consists only of a set of keywords as well as Boolean
operations between them. Concept-based queries are formulated by means of the
global concept-model and a concept-based query language like CQuery [SGS05].

The keyword search over concept-based mediators has the following advantages:

∙ Simple query interface: the user has to formulate the query simply by some
keywords. This kind of interface is common in the WWW and it is known from
famous search engines, e.g., Google, Bing, etc.

∙ Use of integrated data: the data is integrated by the mediator, i.e., heterogeneity
is removed, and many sources are queried in a uniform fashion. Furthermore,
results are integrated, and data conflicts are removed.

∙ Use of the domain model: the domain model can be used as semantic index of
the data. Furthermore, similar terms are closely connected in the model. Thus,
we can add semantic descriptions for query expansion. For instance, if a user
searches for paintings, the system can also propose instances of graphics, which
is a similar concept.

∙ Integration of structured search: the combination of structured search and key-
word search allows the user to formulate complex queries in a simple way. By
structured queries, the search space is specified, e.g., by selecting concepts. Key-
word search relaxes the problem of complete knowledge of the model.

This kind of keyword search resembles to keyword search over structured and semi-
structured databases [YQC10, PgL11]. The integration of keyword search into a
concept-based mediator system imposes new challenges. These are:

∙ Integration of keyword search into the concept-based data model: In-
formation is spread over different concepts and attribute. We have to define
information units suitable for keyword search, e.g., a network of objects and
concepts.

∙ Mapping of keyword queries to global queries as well as to source
queries: The data is virtually integrated. We have to create global and local
queries to obtain the data. First, we have to map keywords to global single
concept queries. We have to define which information is needed for this task.
Second, we have to combine concept queries to queries that connect different
concepts and their instances.

∙ Efficient execution: Many queries can be generated by keyword queries. We
have to find efficient execution approaches to reduce the number of queries to
the sources and the number of transferred objects.

22

2.3. Summary

These points have to be solved to integrate keyword search successfully into concept-
based mediator systems with the goal of efficient and effective user interfaces. In the
following chapter, we introduce the Yacob mediator system. The system is a concept-
based mediator system and provides the data integration for the proposed keyword
search system.

23

3. Yacob – Yet Another

Concept-Based Mediator System

After giving an overview of principles and systems in Chapter 2, we now describe the
concept-based mediator Yacob. As Figure 3.1 illustrates, Yacob is the integration
component of the proposed keyword search system. The mediator provides concept-
based access, integration, and query planning. The Yacob system was proposed by
Sattler et al. [SGHS03]. This chapter is based on Sattler et al. [SGHS03, SGS05] and
shares material with these studies. The Yacob system uses a concept-based schema
and a local-as-view mapping scheme to integrate XML data sources. In particular,
Yacob supports Web data sources. In the remainder of the chapter, we describe
the integration model (Section 3.1), the used query language CQuery and the cor-
responding algebra (Section 3.2), and the query planning and processing in Yacob

(Section 3.3). We conclude the chapter with a summary (Section 3.4).

Keyword query

Ranking function

Query Network

Ranked Object

Networks

Single Concept

Query

Source ObjectsSource Query

Global Objects

Access/Integration/Query Planning

Object Network Generation

− Query Networks (Joins) Optimization

− Optimization of Sets of Query Networks

− Query Network Execution − Ranking

− Empty Result Detection

− Statistics & Cost Functions

Keyword Query Transformation

− Keyword Index/Statistics − Single Concept Queries Generation

− Query Networks (Joins) Generation

Heterogeneous Sources

− Semi−Structured Data− Limited Query Interface

− Partially Cooperative

− Syntax − Semantics − Ranking

Concept−Based Keyword Queries

Concept−Based

− Integration Model

− Query Planning − Object Transformation

− Query Transformation

Figure 3.1.: Overview: Integration

25

3. Yacob

3.1. Integration Model

The integration model of Yacob consists of a concept model that allows modeling of
the global application domain and a semi-structured data model that represents the
actual data values. The data model is mainly used for query processing and data
exchange. Finally, the source descriptions in the form of LaV mappings are the third
part of the integration model. While the data model is XML-based, the concept model
and the mappings extend RDF Schema (RDFS) [BG03] and are implemented in RDF.

3.1.1. Concept model and Data model

The Yacob concept model is designed to represent the semantics of structured objects
but also the semantics of data values, e.g., of categorical data. Therefore, we extend
the RDFS model by introducing the constructs concept and category. Both constructs
are subclasses of rdfs:Class.

A concept is a class that has an extension consisting of objects. Objects are built of
data from different local sources. Properties are attached to concepts. They describe
the features of objects. A property models either a relationship between two concepts
(denoted as concept property), between a concept and a literal (literal property), or
between a concept and a category (categorical property).

A category is a class that does not have an extension. Instead, categories describe
categorical data values. The set of categories is disjoint from the set of concepts.
Categories allow the definition of vocabularies that provide a uniform representation
of categorical data values, which might be differently encoded in different sources.
Equivalent to concepts, categories are organized in hierarchies but are only allowed as
range of properties.

Figure 3.2 illustrates an exemplary concept schema modeled using concepts, cat-
egories, and properties. Firstly, two concept hierarchies exist in the schema. They
model the semantics of culturalAssets and painter1. The arrows represent the
rdfs:subClassOf property defined in RDFS. Furthermore, there are properties that
describe the relationships between two concepts, e.g., paintedBy. The property
paintedBy explains that a painting (or a sub-concept) is painted by a painter (or
sub-concept), i.e., the domain ranges over the objects of concept painting, and the
range is the class painter. The categorical values of a property are described by
categories as seen for property portrays. The category hierarchy motif describes
explicitly different kinds of subjects that are normally hidden in the sources and rep-
resented as strings using different encoding schemes. Therefore, the user has to know
only the global values. In summary, the Yacob concept model relies on RDFS and
extends it by the constructs concept and category. In the following, we define the
model formally.

Equivalently to RDFS, all schema constructs are identified by a Uniform Resource
Identifier (URI) and a valid name. Values are always of the literal type as defined
in [BG03].

1The concept painter is exemplary for artist concepts.

26

3.1. Integration Model

paintedBy

portrays

concept property

table

etching

name

born

artist

concept

chair

category subClassOf

furniture

culturalAsset

fineArts

drawing graphics

xylographie

painting

painter

fruitsflowers

river/seamountains

coat of arms landscape still life

motif

literal Property
category property

name

Figure 3.2.: Exemplary Yacob concept schema

Definition 3.1 URI, Name, Literals
The set of Uniform Resource Identifiers (URI) is denoted by URI. The set Name
comprises all valid names, and ℒ denotes the set of literals. □

Using the sets URI , Name, and ℒ we define the Yacob concept model as follows.

Definition 3.2 Concept model
The concept model consists of the parts:

∙ the set of classes is defined as K ⊆ URI×Name, i.e., all classes are of the form
(uri, name),

∙ concepts (C ⊂ K) are defined as classes that have object extensions in the
sources,

∙ categories are classes, i.e., V ⊂ K,V ∩ C = ∅, that represent abstract property
values and do not have object extensions,

∙ properties are assigned to classes, and the set of all properties is defined as
P = Name × C × {K ∪ {ℒ}}, given a property p = (name, c, v) we say either

1. p is a concept property, if v ∈ K,

2. p is a category property, if v ∈ V, or

3. p is a literal property, if v = ℒ,

∙ specialization relationship is_a ⊂ K × K, i.e., if (c1, c2) ∈ is_a, c1 is
a subclass of c2 and c2 is the super-class of c1. In addition, the hierarchies of
concepts and categories are disjoint: if (c1, c2) ∈ is_a then either c1, c2 ∈ C or
c1, c2 ∈ V. Properties are inherited by sub-concepts: it holds for two concepts
c1, c2 ∈ C: if (c2, c1) ∈ is_a (c2 is derived from c1), then ∀(p, c1, v) ∈ P :
(p, c2, v) ∈ P.

□

27

3. Yacob

The concept model allows the construction of a global concept schema that consists of
a set of concepts and categories, which are instances of the types concept and category
and are organized in hierarchies. Furthermore, the schema contains properties defined
to the given concepts and categories. The schema is defined as follows.

Definition 3.3 Concept schema
The concept schema is a 4-tuple S = (C,V, is_a,P) consisting of a set of concepts
C ⊆ C, a set of categories V ⊆ V, a set of properties P ⊆ P assigned to the concepts
in C, and a set of is_a relationships. □

After we have described the concept level, we define the data model as well as the
transition between data and concept level. Yacob uses a semi-structured data model
to represent instances of concepts. These elements of concept extensions are denoted
as objects. The data model is mainly used for query processing, data exchange, and
queries between sources and mediators. The global query formulation is entirely based
on the concept model.

The data model is defined similarly to the OEM model used by the mediator system
TSIMMIS [PGMW95]. Objects are triples that comprise a unique object identifier, an
element name that describes the object as well as an object value. The value can be
either an atomic value, i.e., a literal, an object identifier, i.e., a reference to another
object, or a set of object references. In this way, semi-structured objects like nested
XML elements are supported. The following definitions formalize the data model of
Yacob.

Definition 3.4 Object Identifiers
The set of all object identifiers is denoted as ℐ. The power set of ℐ is ℙℐ. □

Definition 3.5 Data model
The data model is defined as follows: Let O = ℐ × Name × {ℒ ∪ ℐ ∪ ℙℐ}, where
(id, name, val) ∈ O consists of a unique object identifier id, an element name (name),
and a value val. The value val represents either an atomic value (literal, val ∈ ℒ), an
object identifier (representing an object reference val ∈ ℐ), or a set of object identifier
val ∈ ℙℐ. □

The extension of a concept is a set of objects. The element name of each object
equals to the concept name. Such an object is the root of an object tree and has as
value object references. Every referenced object corresponds to a property defined for
the concept. The extension of a concept is defined as follows.

Definition 3.6 Concept extension
The extension ext : C → ℙO of a concept c = (uri, name) comprises a set of instances
with an element name equal to the concept name and a set of identifiers val referring
to the properties defined for the concept:

ext((uri, name)) = {o = (id, elem, val)∣elem = c.name ∧

∀i ∈ val∃c′, val′, pname : (i, pname, val′) ∈ O∧

(pname, c, c′) ∈ P ∧ val′ ∈ c′}.

□

28

3.1. Integration Model

3.1.2. Source mappings

The second part of the integration model is the mapping of local schemata to the global
concept schema. That is, the description how a source supports the global concepts
and how the structure of local objects fits to the properties of the global concepts.
The mapping model of Yacob follows two main principles:

1. the mapping model uses the RDFS paradigm, which means that concepts and
properties are mapped independently, and

2. the mapping model follows the local-as-view approach.

A mapping consists of a local description and a global concept schema element.
The former is denoted as the left-hand side (lℎs) and the latter is denoted as the
right-hand side (rℎs) of the mapping. The mapping is then lℎs → rℎs. RDF classes
implement the structure of local descriptions. The descriptions are, therefore, in-
stances of the classes. The mapping for concept schema elements is implemented
by an RDFS property providedBy. In the Yacob system, we distinguish between
concept, property, and value mappings for global concepts, properties, and categories,
respectively. Furthermore, the Yacob mappings comprise join mappings that describe
concept properties as value joins between global concept extensions.

Concept mappings

An instance of the concept mapping class describes how a source provides objects to
an extension of a concept. Thereby, there are two cases: on the one hand, a source
contains objects that contain information for all global properties, on the other hand,
sources provide only partial objects according to the given global schema. We define
concept mappings as follows.

Definition 3.7 Concept mapping
A concept mapping is defined as

cm → c

with cm a 3-tuple (Source,LName,FilterPredicate), where Source is the name of the
local source, LName the local element name representing instances of the concept, and
FilterPredicate is an XPath expression allowing a further specification of the instance
set. We denote the set of all concept mappings as ℳC. The set of mappings assigned to
one global concept c is denoted as CM(c), i.e., CM(c) = {(cm → c)∣(cm → c) ∈ ℳC}.
□

During query processing, the local source name Source allows the identification of the
source. The local element name denotes the XML elements used in the source to
represent instances of the global concept. The FilterPredicate is an XPath expression.
Filter predicates allow the selection of objects based on distinguishable local properties.
A concept mapping instance is attached to a global concept.

29

3. Yacob

Property mappings

The second part of the mapping model consists of property mappings. A property
mapping describes how a local element LName represents a global property. The
property mapping consists of a source name and an XPath expression and is attached
to a global property.

Definition 3.8 Property mapping
A property mapping is defined as pm → p with

pm = (Source,PathToElement),

where Source is the name of the local source and PathToElement represents an XPath
expression to the local XML element representing the property. The set of all property
mappings is denoted as ℳP . The set PM(p) contains all property mappings assigned
to property p, i.e., PM(p) = {(pm → p)∣(pm → p) ∈ ℳP} □

Join mappings

We map concept properties to join operations between the extensions of the connected
concepts. The join explains the semantics of the connection. We denote this kind of
mapping as join mapping. A join mapping is expressed by means of the global model.
That is, the join is expressed using global concepts and properties.

Definition 3.9 Join mapping
A join mapping is defined as jm → p with

jm = (SrcProp,TgtConcept,TgtProp, JoinOp),

where SrcProp describes the source property, TgtConcept and TgtProp denote the tar-
get’s concept and property, respectively. JoinOp represents the kind of the join opera-
tion, e.g., equi- or similarity join. The set ℳJ comprises all join mappings, and JM(p)
is the set of join mappings to a property p, i.e., JM(p) = {(jm → p)∣(jm → p) ∈ ℳJ }
□

For example, the property paintedBy illustrated in Figure 3.2 is expressed as join be-
tween the concepts painter and painting with the join condition artist=name. That
means, the corresponding join mapping instance is the tuple (artist , painter , name,=).

Value mappings

Categories describe in the concept model local categorical values in a uniform way. It
is assumed that categories are represented as literals in the sources in different ways.
A value mapping instance is a pair of a source name and a literal. It is attached to a
category.

Definition 3.10 Value mapping
A value mapping is of the form vm → v with v ∈ V and

vm = (Source,Literal) ,

30

3.1. Integration Model

where Source denotes the source name and Literal denotes the local value that repre-
sents the category. ℳV describes all value mappings, and VM(v) is the set of all value
mappings assigned to category v, i.e., VM(v) = {(vm → v)∣(vm → v) ∈ ℳV}. □

We illustrate and summarize all kinds of mappings in Figure 3.3. In the figure,
we see mappings from two sources as well as one join mapping. It shows that not
all concepts or properties have to be supported by all sources. Global objects are
combined by using an outer join operation that will be presented in the following
section. If the system cannot find complementary local objects, a global object can be
incomplete with respect to the global concept definition.

flowers

www.lostart.de

Motif

www.webart.com

subject

www.lostart.de

Blumen

www.webart.com

plants

www.webart.com

/artist

type=’Painter’

name

painting

artist

’=’

www.lostart.de

asset/artistartist

provenience

name

painter

cultural asset

fine arts

painting

title

paintedBy portrays

value mappings

concept mappings

FilterPred

Source

Source

ValuejoinOperation

tgtProp

tgtConcept

srcProp

join mapping

Property mappings

PathToElement

Source

LName

/asset

www.lostart.de

/artobject

www.webart.com

www.webart.com

/artobject

type=’Painting’

www.lostart.de

/asset

typ=’Malerei’

www.lostart.de

asset/title

www.lostart.de

asset/provenience

www.webart.com

artobject/title

www.webart.com

artist/name sujet

still life

Figure 3.3.: Exemplary Yacob mapping

In summary, the mapping model uses features of GaV and LaV approaches. Concept
mappings, property, and value mappings follow the LaV approach. That means, it is
straightforward to add and remove new sources to the mediator system. Join mappings
represent global views that implement intersource relationships. For this reason, join
mappings represent the GaV approach in the Yacob integration approach. However,
as join mappings are expressed using the global concept model, the problems of the
GaV approach are mitigated. The system uses the mappings to translate concept
queries into source queries as well as to transform local XML objects into global
objects that conform to the global concept specification. For the second task, the
Yacob system creates XSLT rules from the mappings and applies them to the local
objects [SGS05].

Putting concept model, data model, and mapping model together, we can define
the Yacob integration schema.

31

3. Yacob

Definition 3.11 Integration Schema
The integration schema I = (S,ℳC,ℳP ,ℳJ ,ℳV) consists of the global schema
S = (C,P, is_a,V) and other assigned mappings from the sources. □

Based on the integration model and schema of the Yacob system, we will discus the
query language as well as the query processing in the following sections.

3.2. Query Language

The Yacob system provides a concept-based query language named CQuery. CQuery
supports operations on concept level, on instance or data level, and provides mecha-
nisms allowing the transition between the both levels. We introduce the query lan-
guage by means of representative examples. In the remaining section, we define the
underlying query algebra and the translation of a CQuery statement into an algebra
expression.

CQuery by example

CQuery is a derivative of XQuery [BCF+03], i.e., it follows the FLWOR2 notation, but
the semantics of CQuery differs from XQuery in many parts. The main new features of
CQuery are on semantical level. A query expressed in CQuery consists of the following
components:

1. selection of concepts based on conditions, path traversals, and set operations,

2. obtaining and filtering data as instances of selected concepts, and

3. combining and projecting the results.

Query Q1 represents a typical query in CQuery (see Figure 3.4). Query Q1 returns
an XML document containing picture elements structured into title and artist’s name
representing paintings made by (van) Gogh. Concepts are selected in the FOR clause.

1 FOR $c IN concept [name="Paint ing "]
2 LET $e := extension ($c)
3 WHERE $e/ a r t i s t ~= "gogh"
4 RETURN
5 <picture >
6 <t i t l e >$e/ t i t l e </ t i t l e >
7 <a r t i s t >$e/ a r t i s t </a r t i s t >
8 </picture >

Figure 3.4.: Listing CQuery query Q1

Besides the concept selection used in query Q1 other set operations on concepts are
also supported, i.e., UNION, INTERSECT, and EXCEPT.

2FOR,LET,WHERE,ORDER BY,RETURN clauses in XQuery.

32

3.2. Query Language

As concept schema defines relationships between concepts and categories, respec-
tively, path expressions are supported by CQuery. For example, the expression

concept[name="Fine arts"]/!subClassOf

returns all concepts that are direct subclasses of concept Fine arts. The “!” denotes
the inverse relationship of subClassOf. The suffix “+” specifies the computation of
the transitive closure according to the given relationship. For example, the expression

concept[name="Fine arts"]/!subClassOf+

returns all concepts directly and indirectly derived from concept Fine arts. The
shortcut “*” represents the path expression !subClassOf+. Using the shortcut, we
can rewrite the expression above to concept[name="Fine arts"]/*. As the result of
the FOR clause, an iteration over the selected concept set is bound to a variable.

For every concept bound to $c, the LET clause computes with the help of the function
extension() the extension of the concept. The FOR clause represents an iteration over
the selected concept set. The result set comprises global objects. It is bound to a new
variable, in this case $e. Thereby, the variable $e iterates over the result set. This is
a difference compared to the XQuery semantics.

The WHERE clause filters global objects using selection conditions. There, we can
access properties using path expressions. Besides conventional comparison operators
as =, <, <=, etc. a predicate may also contain a boolean text containment operator
∼=. For example, query Q1 uses the condition $e/artist∼="gogh" to express that
the string value in $e/artist has to contain the term “gogh”. While operations of the
FOR clause only use the concept level of the mediator system, the extension() function
triggers the access to the sources to retrieve actual data objects as elements of the
concept extensions. At last, the RETURN clause allows the projection and restructuring
of the XML instances. CQuery assumes here, that any expression starting with a
variable is a path expression to selected elements of the objects. The RETURN expression
is applied to every object tuple created by the LET or FOR clause.

Besides simple selection, CQuery allows the join of instances. Q2 represents a join
query (Figure 3.5). Query Q2 returns information about drawings and the location of
their exhibition. The WHERE clause contains a join condition between two extensions
of two different concepts. The result is a set of tuples comprising objects from $e1

and $e2

CQuery allows in the LET clause further concept level operations. It is possible to
retrieve properties of a concept and to bind them to a variable. In the WHERE clause,
the variable is used to create a disjunctive query. Consider the exemplary query Q3

in Figure 3.6. Query Q3 retrieves all properties of the concept currently bound to
variable $c. It binds the property set to the variable $p. The variable $p is a higher-
order variable similar to query languages, e.g., SchemaSQL [LSS96]. The approach
is implemented as follows. For example, assume the set $p contains the properties
“title” and “artist”. Then, the system rewrites the condition $e/$p = "flowers" into
the disjunction $e/title = "flowers" or $e/artist = "flowers". In this way,
CQuery supports operations on properties, which are useful for queries with incomplete
knowledge about the concept schema.

33

3. Yacob

1 FOR $c1 IN concept [name="drawing "] ,
2 $c2 IN concept [name="c o l l e c t i o n "]
3 LET $e1 := extension ($c1) ,
4 $e2 := extension ($c2)
5 WHERE $e1/ e xh i b i t i o n = $e2/museum
6 RETURN
7 <drawing>
8 <t i t l e >$e1/name</ t i t l e >
9 <museum>$e2/name</museum>

10 <loca t i on >$e2/ c i ty </lo ca t i on >
11 <drawing>

Figure 3.5.: Listing CQuery query Q2

1 FOR $c IN concept [name="pa in t ing "]
2 LET $e := extension ($c) ,
3 $p := $c/ p r o p e r t i e s
4 WHERE $e/$p = " f l owe r s "
5 RETURN . . .

Figure 3.6.: Listing CQuery query Q3

As last concept of CQuery, we present the use of categories. The user can select
categories using the LET clause. The result is bound to a variable and is used in
selection conditions. Figure 3.7 shows an exemplary query statement. Query Q4

1 FOR $c IN concept [name="graph i c s "]/∗
2 LET $e := extension ($c) ,
3 $k := $c/ po r t rays [name=" s t i l l l i f e "]/∗
4 WHERE $e/ po r t rays = $k

Figure 3.7.: Listing CQuery query Q4

returns all instances of concept graphics that show a “still life” as subject. In line
3, we assign the category hierarchy by using the path $c/portrays. Subsequently,
we select the category “still life” and its sub-categories. The result is bound to the
variable $k. In the WHERE statement, we use the set of categories. The system creates
for every member v in $k a predicate $e/portrays = v and connects the predicates
disjunctively.

Finally, the RETURN clause of CQuery is equivalent to the counterpart in XQuery
and is used to project and restructure the results.

The query language CQuery has following features in comparison to other query
languages in the context of RDF and Semantic Web:

∙ The semantics of concept level elements is retained, i.e., a concept is still a
concept after applying a filter operation. The semantics preserving behavior of

34

3.2. Query Language

CQuery simplifies concept level queries, which are necessary in data integration
scenarios. Furthermore, it allows the interpretation of concepts as classes with
extensions that are provided by remote sources.

∙ CQuery supports the concept level and the instance level as well as the tran-
sition from concept to instance level. On the one hand, the interpretation of
instances as XML elements allows the usage of XML query features like element
construction and transformation. On the other hand, CQuery provides high-level
operations on the semantic level, e.g., transitive closure according to a property.

In summary, CQuery combines ideas of RDF query languages [HBEV04] and
XQuery [BCF+03]. However, the language is closely related to classic multi-
database query languages that support schema level queries as SchemaSQL [LSS96],
FraQL [SCS03], or MSQL [KLK91].

CQuery algebra

The first step of query processing in Yacob comprises the query rewriting into an al-
gebraic expression. We also define the semantics of CQuery with the help of the trans-
formation into the algebra. We distinguish three classes of algebra operations: concept
level operations, instance level operations, and level transition operation. First, we
define the concept level operations.

Definition 3.12 Concept level operations
The concept level operations of CQuery:

Concept selection (Σ : ℙC → ℙC): The concept selection is defined for a set of con-
cepts C and a condition F as

ΣF (C) = {c∣c ∈ C, F (c)is true}.

Path traversal (Φ : ℙC → ℙC): Given a set of concepts C and a relationship p the
path traversal returns the following set of concepts:

Φp(C) = {c∣∃c′ ∈ C : (p, c′, c) ∈ P}.

The operation is also applicable for the inverse property p :

Φp(C) = {c∣∃c′ ∈ C : (p, c, c′) ∈ P}.

Transitive closure (Φ+ : ℙC → ℙC): Given a set C the operation Φ+
p returns the tran-

sitive closure of a concept set regarding the relationship p:

Φ+
p (C) = {c∣∃cs ∈ C : (p, cs, c) ∈ P ∨ ∃ci ∈ Φ+

p ({cs}) : (p, ci, c) ∈ P}.

In case of the inverse property p the result is

Φ+
p (C) = {c∣∃cs ∈ C : (p, c, cs) ∈ P ∨ ∃ci ∈ Φ+

p ({cs}) : (p, c, ci) ∈ P}.

35

3. Yacob

Category selection (ΣV
F : ℙV → ℙV): Let V be a set of categories, the condition F

consists of a path consisting of a concept and a property and a constant selection
predicate, then the category selection is defined as:

ΣV
F (V) = {v∣v ∈ V ∧ F (v) is true}

Property selection (ΣP
F : ℙP → ℙP): The property selection retrieves the literal and

categorical properties for a concept set C and a condition F :

ΣP
F (C) = {p∣p = (n, c, c′) ∈ P ∧ c ∈ C ∧ c′ /∈ C ∧ F (p) is true}

Concept set operations: (∪,∩, ∖): Sets of concepts can be combined by using follow-
ing set operations:

∙ union (∪): C1 ∪ C2 = {c∣c ∈ C1 ∨ c ∈ C2}

∙ intersect (∩): C1 ∩ C2 = {c∣c ∈ C1 ∧ c ∈ C2}

∙ except (∖): C1 ∖ C2 = {c∣c ∈ C1 ∧ c ∕∈ C2}

□

The previous definition gives an overview about the operations on concept level. The
concept level operations are used to represent the constructs of the FOR and LET clause.
We will show the translation from CQuery to the algebra operation later on in the
query processing section 3.3.

Transition operation

The transition from concept level to instance level is carried out by the extension()

function of CQuery. The function is defined using the extension definition ext. How-
ever, most of the operators on instance level work on object tuples. An object tuple is
a map (a1 : obj1, . . . , an : objn) where an alias ai ∈ Name indicates an object obji ∈ O.
The operator exta : C → ℙOT

1 (OT
1 denotes the set of all object tuples of the arity 1)

with result tuples of the form (a : o). The parameter a of exta denotes the alias. The
notation var(t) returns all aliases in t. Given a tuple t = (a1 : obj1, . . . , an : objn) the
notation t(A) with A ⊆ var(t) describes the projection of t using only the entries in
A, i.e., t(A) = (ai1 : obji1, . . . , ain : objin) with aij ∈ A and n = ∣A∣.

On an object o, we have the following operations:

∙ properties(o) returns the set of properties in o and

∙ o(p) returns the object value of property p.

Furthermore, we can merge two objects. We assume, we can merge two objects with
overlapping property sets if the common properties have the same values. Let o and o′

be two objects with overlapping properties, i.e., properties(o)∩properties(o′) ∕= ∅. We
require that for all p ∈ properties(o) ∩ properties(o′) that the objects have the same
value,i.e., o(p) = o′(p). In this case, the operation o′′ = merge(o, o′) creates an object
o′′ with the values: for p ∈ properties(o) : o′′(p) = o(p) and for p ∈ properties(o′) :
o′′(p) = o′(p). The operation merge returns null if the conditions have not been
satisfied.

36

3.2. Query Language

Instance level operations

After the transition to the instance level, the object tuples are filtered, combined, and
restructured using further operations. We restrict the discussion here to the operators
selection (�), projection (�), join (⊳⊲,) and extensional union ⊎. The RETURN clause can
be implemented using element construction and tree projection operators. However,
the focus of this work lies on the integration and creation of global objects and object
tuples without further processing. Following, we define the standard operators in
detail.

Definition 3.13 Instance level operations
The instance level operations are:

Selection (�F : ℙOT
n → ℙOT

n): The instance selection on a set O of object tuples and
a given condition F is defined as

�F (O) = {t∣t ∈ O,F (t) is true}.

Projection (�P : ℙOT
m → ℙOT

n): Let O a set of object tuples and P = {a′1, . . . , a
′
n} a

set of aliases, then the projection �{a′
1
,...,a′n}(O) is defined as

�P (O) = {t(P)∣t ∈ O}

Join (⊳⊲F : ℙO
T
n × ℙOT

m → ℙOT
n+m): The instance join combines two object tuple sets

by concatenating all pairs and returning object tuples that satisfy the condition
F :

O1 ⊳⊲F O2 = {t∣∃t1 ∈ O1∃t2 ∈ O2, t = concat(t1, t2) ∧ F (t) is true }.

Extensional Union (⊎ : ℙOT
1 × ℙOT

1 → ℙOT
1): The extensional union merges two

sets of objects to integrated objects:

O1 ⊎ O2 = {(a : o)∣(a : o1) ∈ O1 ∧ (a : o2) ∈ O2 ∧ (o = merge(o1, o2)) ∕= null}

□

The extensional union merges objects of two sets assigned to the same variable. The
operation belongs to the class of outer joins. For example, objects coming from dif-
ferent sources are combined in this way. It does not handle data level integration
conflicts.

After defining the algebraic operators, we summarize the rules for transformation
of CQuery expressions to the algebraic expressions. Let S = (C,P, is_a,V) be the
global schema. The transformation rules are:

1. The clause FOR $c IN concept[Cond] is translated into

ΣCond(C).

37

3. Yacob

2. The statement FOR $c IN concept[Cond]/* is transformed into the expression

Φ+

is_a
(ΣCond(C)),

where is_a represents the inverse is_a relationship.

3. Path traversal expressions like concept[Cond]/prop1/.../propn are translated
into

Φpropn(. . . (Φprop1(ΣCond(C)))).

4. A clause LET $p := $c/properties[Cond] is transformed into the expression

ΣP
Cond(C)

where C represents the set of concepts bound to variable c.

5. A set of categories is selected using the clause LET $k := $c/p[Cond]. The
clause is translated into the expression:

ΣV
cond′(V)

with cond′ = $c/p ∧ Cond.

6. The previous operations operate on concept level. The clause LET $e :=

extension($c) WHERE Cond is translated as follows. Let CExpr be the con-
cept expression bound to variable $c, then the statement is transformed into

⊎

c∈CExpr

�Cond(exte(c)).

If more than one extension variables have been defined, the Cartesian product
is computed between these sets.

7. A path expression in WHERE or RETURN that contains a concept property is rewrit-
ten into a join operation using join mapping information. For instance: the
selection

�rel/p=A(exte(c))

uses a path expression containing the concept property rel. Assume, there is
a join mapping JM = (psrc, ctgt, ptgt,=) for rel, then the selection is translated
into expression

�(e)

(

�e′/p=A

(

exte(c) ⊳⊲psrc=ptgt exte′(ctgt)
))

.

8. The RETURN clause is translated into a return operator RETURN consisting of
element constructions.

38

3.3. Query Processing

We now describe the transformation rules by means of an example. Assume query
Q5 (Figure 3.8): The query Q5 is translated into the expression

�(e)

(

⊎

c1∈CExpr1

�Cond(exte(c1)) ⊳⊲artist=name

⊎

c2∈CExpr2

�born<1800(exte2(c2))

)

,

with

CExpr1 = Σname=′painting′(C)

CExpr2 = Σname=′painter′(C)

Cond =
⋁

k∈ΣV

name=′still life
′∧

c1/portrays

(V)

portrays = k

by using the following steps. Rule 1 is applied to translate the FOR clause to con-
cept expression CExpr1. Property paintedBy is an inter-concept relationship with at-
tached join mapping JM = (artist, painter, name,=). Therefore, the path expression
paintedBy/born is rewritten into a join between instances of the concept painting

and instances of the concept painter. As categories are referenced in the WHERE

clause, the expression $k := $c/portrays[name=’still life’] is translated into
the expression ΣV

name=′still life
′∧c1/portrays

(V). Subsequently, the condition $e/portrays

= $k is rewritten into the disjunctive condition Cond . The RETURN clause is translated
into the element construction.

1 FOR $c IN concept [name="pa in t ing "]
2 LET $e := extension ($c)
3 $k := $c/ po r t rays [name=" s t i l l l i f e "]
4 WHERE $e/paintedBy/born < 1800 AND $e/ por t rays = $k
5 RETURN
6 <paint ing>
7 <t i t l e >$e/ t i t l e </ t i t l e >
8 <a r t i s t >$e/ a r t i s t </a r t i s t >
9 <motif>$e/ portrays </motif>

10 </pa int ing>

Figure 3.8.: Listing CQuery query Q5

3.3. Query Processing

The translation of a CQuery statement into an algebraic expression is the first step
of the query processing. The result are expressions of the form

⊎

c∈CExpr (IExpr(c)).
If the original query has been a join query, several blocks of such expressions have to
be executed. The next step is the rewriting of these expressions into source queries.
Source queries are simple XPath queries that are supported by local sources, like

39

3. Yacob

Web sources. Algorithm 3.1 shows the corresponding algorithm [SGS05], which uses
a semantic cache [KSGH03, Kar03].

Algorithm 3.1 Steps of query processing [SGS05]
Input:

query expression of the form of
⊎

c∈CExpr IExpr(c)
result R := {}

1: function QueryProc(
⊎

c∈CExpr IExpr(c),R)
2: compute concept set C := CExpr
3: for all c ∈ C do
4: /* translate query into XPath */
5: q := toXpatℎ(IExpr(c))
6: /* look for query q in the cache → result is denoted by Rc, q is returned as

complementary query to q */
7: Rc := CacheLookup(q, q)
8: if Rc ∕= ∅ then
9: /* found cache entry */

10: R := R
⊎

Rc

11: q := q
12: end if
13: if q ∕= empty then
14: /* derive source query */
15: for all CMs associated with c do
16: s := CMs(c).Source
17: /* consider only non-redundant concepts */
18: if c ∈ cmin(C, s) then
19: /* construct a query for each supporting source c: determine all

properties pi(i = 1 . . . n) and categories kj(j = 1 . . .m) referenced in IExpr */
20: qs := TranslateForSource(q, CMs(c), PMs(pi), V Mskj)
21: Rs := ProcessSourceQuery(qs, s)
22: R := R

⊎

Rs

23: end if
24: end for
25: end if
26: end for
27: end function

Initially, concepts are selected by applying the expression CExpr on the concept
schema. Secondly, the system evaluates for each concept c the instance expression
IExpr(c). The instance expression is translated into an XPath query. Thirdly, the
system does a cache-lookup in order to utilize previous results. The semantic cache
returns the (partial) result and if necessary a complementary query q, which retrieves
the complementary data to a partial result. Details of the function CacheLookup

are given in [KSGH03, Kar03].

40

3.4. Summary

If the cache does not deliver an answer or only a partial result, then the system
will translate the global query for each supporting source s and send local queries to
the particular sources. Redundant concepts have to be eliminated, due to possible
overlapping between different concepts in one source. This step is performed using
function Cmin(C, s) that returns the minimal, non-redundant subset of concepts for
given source s and concept set C. The computation is based on the heuristics Elimina-
tion and Merging. Concepts are eliminated from C if they are a sub-concept of another
concept in C and they are mapped to the same local element name in a source. Two
concepts will be merged if they are mapped to the same local element name. During
the merging step, the filter predicates of the respective concept mappings have to be
connected disjunctively.

In the next step, the remaining subqueries are translated into source queries using
the mapping information of concepts, properties, and categories. For example, assume
the query �P=v(ext(c)) and the given concept mapping (cm → c) ∈ CM(c) and the
property mapping (pm → p) ∈ PM(p). The source XPath expression is built in the
following way:

//cm.LName[./pm.PatℎToElement = v and CM.F ilterPred].

If v represents a category, the category mapping (vm → v) ∈ VM(v) is used to
translate the category into local data values. Thereby, it must hold that cm, pm, and
vm are mappings of the same source s.

In summary, Algorithm 3.1 describes single concept query processing in the Yacob

system. It optimizes queries based on concept hierarchies in one source and a single
concept semantic cache. The result consists of simple XPath queries. These queries
are sent to the sources through wrappers. The wrappers allow that the XPath queries
can be executed by Web sources, as well as XML and relational database management
systems. Sattler et al. investigate the performance of the approach [SGS05]. In this
way, the Yacob system provides the selection and integration of objects from hetero-
geneous sources. We will extend the approach with join processing to answer keyword
queries in Chapter 7.

3.4. Summary

We described the Yacob mediator system in this chapter. The system is based on
a concept-based integration schema. Yacob uses a LaV approach for its schema
mappings. Thereby, the schema mappings follow the RDF approach by mapping
properties and concepts separately. The concept model expresses relationships between
concepts with the help of concept properties. The concept properties are mapped to
global join definition. While this is a GaV approach, it is mitigated by using only
global defined concepts and properties. The Yacob integration model maps directly
the local XML elements to the global concepts. Thus, it is similar to Amann et
al. [ABFS02b]. In contrast, the Yacob integration model uses only concept and
property mappings and does not use local relationships. However, Yacob covers also
categorical values. The presented language CQuery is inspired by XQuery as well

41

3. Yacob

as classic multi-database languages. The query evaluation optimizes single concept
queries and allows string containment selection conditions. The mediator Yacob is
suitable to access Web sources, simple XML sources, and relational databases in a
unified manner. We use Yacob as foundation of the keyword search system presented
in the following chapters. It answers single concept queries and is used by global
keyword and join processing algorithms.

42

4. Keyword Search in Structured

Databases

Global integration schemas, concept-schemas, or ontologies allow a flexible integration,
but, also suffer from problems in usability because of complex and evolving data struc-
ture, unknown content, and complex global or local query languages. Similar problems
arise in centralized, (semi-)structured databases, too [JCE+07]. In the current chapter,
we review the research in the area of keyword search in structured databases. This
review complements other surveys [CWLL09, YQC10, WZP+07] by adding a focus
to distributed and heterogeneous systems. After an introduction and general defini-
tion in Section 4.1, a classification of keyword search approaches in (semi-)structured
database is presented in Section 4.2. In Section 4.3, we describe several exemplary
keyword search systems. The problem of keyword search in distributed, heteroge-
neous, structured databases is discussed in Section 4.4. The chapter concludes with a
summary in Section 4.5.

4.1. General Considerations

Nowadays, a huge amount of information is stored in database systems. Normally,
database systems are structured according to a database model. Typical database
models are variants of the relational data model or XML. Database management sys-
tems provide an excellent support for efficient storage, management, and querying of
this data. Structured data allow exact and detailed search over DBMS support com-
plex and powerful query languages as SQL [MS02] and XQuery [BCF+03] in order to
access the data. Because of these facts and the following points, databases tend to be
hard to use (following [JCE+07]):

∙ Databases are complexly structured. Real world objects are split into different
elements due to normalization in order to avoid redundancy, update anoma-
lies, etc. The relationships between single elements may be also manifold: e.g.,
containment relationships, foreign key relationships, or id/idref relationships.
Furthermore, the schema may also evolve, for instance in semi-structured or
object-oriented databases [KS01]. In this case, the user cannot learn the struc-
ture at all.

∙ While complex structures may be a burden for the user, the structure also con-
tains data semantics. Thus, if the user has any (partial) knowledge about the
database structure, the system has to provide query support for it. The problem
is that partial structural information leads to empty or false results in traditional,
structured query languages.

43

4. Keyword Search in Structured Databases

∙ Users have an expectation of structured results, e.g., tuple trees, XML elements
or trees, connection graphs, etc. While traditional search engines need to give
only link lists as an answer, databases have to support detailed, structured an-
swers.

∙ During querying databases, the user has strong assumptions about the content
of the database and wants to have exact and complete results. Thus, the re-
quirements are much stronger compared to web search engines, where users have
only a diffuse knowledge about the content.

∙ Further problems relate to designing and building a database, i.e., a user does not
know exactly in which direction the content of a database and the corresponding
schema will evolve in the future. Another point is the explanation of a result.
The user wants to know why a result is as it is. Furthermore, the user is interested
in which sources are used to construct the result. That point relates to the data
provenance problem.

The first three points concern to the presentation layer of the database system, because
the actual logical data models are not suitable in every case for query construction
and result presentation. Several earlier works dealt with that problem. On the one
hand, visual query languages were developed, for instance, the seminal work of Query
by example by Zloof [Zlo75]. On the other hand, also new textual query languages
were proposed in order to hide complex structural relationships. A classic concept is
the universal relation [Ull90]. The universal relation inspired several keyword search
approaches presented in the remainder of the chapter.

If we take these points into account, it is necessary to combine concepts of informa-
tion retrieval and database retrieval [CRW05].

4.1.1. Example

In order to describe requirements and exemplary use cases, we present an exemplary
database. Figure 4.1 illustrates a data graph of a (semi-)structured database storing in-
formation about cultural assets. Four basic elements exist: cultural_assets contain-
ing different kinds of cultural assets (e.g., paintings, drawings, sculptures), artists,
epochs, and institutions. Besides containment relationships, the database provides
further relationships between cultural assets and artists, representing a “created by” re-
lationship, and between cultural assets and epochs that classifies assets into an epoch.
Based on that data graph, users may issue different kinds of complex queries. Several
typical queries are described in the following example.

Example 4.1 Based on the data graph illustrated in Figure 4.1 following exemplary
queries may be issued by users:

Query 1: Find paintings made by Vincent van Gogh.

Query 2: Find artists and their cultural assets, which belong to the epoch renais-
sance.

44

4
.1

.
G

en
era

l
C

o
n
sid

era
tio

n
s

epochs

epoch

id timename

e2
impressionism

begin 20th

century (1905−1925)

painting

id

p1

material

oil paint

on canvas

artist

location

title

cafe terrace

at night

size

81 x 65.5 cm

1888

dateepoch

epoch

name

renaissancee1

id time

14th −16th century

epoch

timenameid

e3
expressionism

end 19th century

painting

id

material
artist

location

title

size

date

p2

the large

blue horses

1911

oil on

canvas

epoch

105x181cm

country

museum

netherlands
city

otterlo
museum

müller

kröller

nameid

m2

country

usa

museum

city

minneapolis
center

walker art

nameid

m1

material
artist

location

brush drawing on

blue paper

epoch

drawing

date

size

29x19,7cm

1508

praying hands

title

d1

id

born died

birthplace

painter

firstname lastname

place_of_death

id

vincent van gogh 1853 1890

zundert auvers−sur−oise

a3

born died

1880 1916

birthplace

painter

munich

place_of_death

verdun

a2 franz

firstname

marc

lastnameid

born diedid

a1

firstname

albrecht 15281471

place_of_death

lastname

dürer

birthplace

nuremberg
nuremberg

artist

country

museum

austria

city

wien

albertina

nameid

m3

cultural_assets

root

institutions

artists

F
igure

4.1.:
E

xem
plary

structured
database

45

4. Keyword Search in Structured Databases

Query 3: Find artists, which are shown in Minneapolis USA.

Query 4: Find museums exhibiting Gogh paintings.

Query 5: Find everything for Gogh Netherlands.

Query 6: Find the title and year of paintings of painter with name Dürer.

Query 7: Find artists that exhibited in the same institutions as paintings by Vincent
van Gogh.

The queries represent different use cases. Besides simple keyword queries like Query
5, there are different levels of structural information given by the user. For instance,
Query 1 searches for paintings by Vincent van Gogh, while Query 6 specifies exactly
title and year of paintings as well as that the name of the painter is searched.

4.1.2. Definitions

Now, we give several general definitions in order to describe following approaches in a
common way, which are inspired by Yu and Jadagish [YJ06].

Definition 4.1 Terms and Labels
The set of all terms occurring in a document is denoted as T . The set of all labels,
names for nodes, is denoted as Name. □

The set T represents all terms that are found in textual values of nodes of a document.
For example, in Figure 4.1 all values presented in italics are textual values. Labels
are names of nodes or edges. The structure of a database is described by a schema.
In this work, the schema graph is described as a directed graph SG.

Definition 4.2 Schema graph
A schema graph is a directed graph SG = (NS, ES). NS ⊂ Name is the set of nodes,
which represent the labels in a database. The set of directed edges ES ⊆ NS × NS

describe the relationships between two schema nodes. Furthermore, a function �ES
:

ES → NameE assigns labels to an edge with NameE ⊂ Name. □

A schema graph can be constructed from a data graph, e.g., a data guide [GW97],
or be defined manually as relational and XML schema. Figure 4.2 shows one exem-
plary schema graph for the data graph of Figure 4.1. Databases or semi-structured
documents are described as data graph D.

Definition 4.3 Data graph or document
A data graph or document is a labeled, directed graph D = (ND, ED) with N the
set of nodes and ED ⊆ ND × ND the set of edges in the graph. A label function
�N : ND → NameN assigns a label l ∈ NameN ⊂ Name to a node n ∈ ND , and
function �E : ED → NameE labels an edge with an edge label. □

Figure 4.1 illustrates a data graph example for an art database.
Besides labels, nodes and edges may also have types. The following definition spec-

ifies corresponding functions and sets.

46

4.1. General Considerations

root

drawing

material

id

location

title size

artist

date

epoch

id

firstname

lastname place_of_death

birthplace

died

born

painter

id

firstname

lastname place_of_death

birthplace

died

born

artist

institutions

countryid

name city

museum

epochs

id name

painting

time

epoch

cultural_assets

material

epoch

id

location

title size

artist

date

artists

Figure 4.2.: Schema graph example

Definition 4.4 Structural node and edge types.
The set of all node types is denoted as NType, the set of edge types is denoted as EType.
To assign node and edge types the following two functions are defined:

∙ typeN : ND → NType assigns a type to a node in a data graph,

∙ typeE : E ∪ES → EType assigns an edge type to an edge in the schema or data
graph.

□

The nodes in a schema graph are always labels, which describe the semantic type of
the node. Typical structural types of nodes in data graphs are structural nodes, e.g.,
internal XML elements or tuples, relations, and attributes in relational databases.
Content nodes are leaves in the data graph and contain the actual data values.

Edge types are distinguished into two main types: containment edges and link
edges. Containment edges describe containment or nesting hierarchies. For exam-
ple, they represent the nesting of XML elements or the hierarchy relation - tuple -
attribute - attribute value. Link edges stand for a different kind of reference relation-
ships, e.g., id/idref or key/keyref relationships in XML documents, XLinks/XPointer
as inter-document dependencies, or foreign key relationships in relational databases.
Let CNT ,LNK ∈ EType be two edge types, than the set of containment edges is
defined as Ecnt = {e∣e ∈ ED ∧ type(e) = CNT}. The set of link edges is specified as
Elnk = {e∣e ∈ ED ∧ type(e) = LNK }. Furthermore, it holds: Ecnt ∩ Elnk = ∅.

A data graph DG conforms to a schema graph SG if the nodes are labeled according
to the schema graph and the edges conform to corresponding edges in the schema
graph.

47

4. Keyword Search in Structured Databases

Definition 4.5 Schema graph conformance.
A data graph D = (ND, ED) conforms to a schema graph SG = (NS, ES), denoted as
D ∣= SG, if

1. ∀n ∈ ND∃ns ∈ Ns : �N(n) = ns

2. ∀(n, n′) ∈ ED∃(ns, n
′
s) ∈ ES : �N(n) = ns ∧ �N(n

′) = n′
s ∧ �E((n, n

′)) =
�ES

((ns, n
′
s)),

3. ∀(n, n′) ∈ ED∃(ns, n
′
s) ∈ ES : �N(n) = ns ∧ �N(n

′) = n′
s ∧ typeE((n, n

′)) =
typeE((ns, n

′
s)).

□

In the definition, rule 1 ensures that the label of a node is in the schema graph. Rule
2 states that the edges of a data graph are labeled according the edges in the schema
graph. Rule 3 ensures that the structural type of an edge conforms to the specified
type in the schema graph.

4.2. Classification

We now present classification categories for keyword search approaches in structured
databases. In detail, the classification dimensions comprise

∙ the query language,

∙ the result type,

∙ the scoring and ranking approach, and

∙ the query processing approach.

4.2.1. Query Languages

Different user groups have different levels of knowledge about database content and
structure as well as query languages. While experts prefer complex query lan-
guages, less experienced users may want to use plain keyword queries. Besides
different demands, technical reasons lead to different query types, too. Follow-
ing [AYL06, JCE+07], query languages can be classified into the groups:

Keyword-only query: A keyword-only query consists of a set of keywords using
AND or OR semantics, respectively. A query does not contain any structural
constraints. Thus, the query is expressed as Q = {kw1, kw2, . . . , kwn} with
kwi ∈ (Name ∪ T), 1 ≤ i ≤ n.

Label and keyword query: Labeled keyword queries are a set of pairs consisting
of a label and a keyword. The result nodes have to be labeled with re-
spect to the query label and have to contain the keywords. Given the set
of labels Name and the set of terms T , a label-keyword query is a set Q =

48

4.2. Classification

{(l1, kw1), (l2, kw2), . . . , (ln, kwn)} with (li, kwi) ∈ Name × T for 1 ≤ i ≤ n.
Both query types, keyword-only and label-keyword, are structure-free, i.e., a
user cannot specify the structural constraints between the nodes.

Path and keyword query: Elements are selected by structural information using
path queries. Thus, a natural extension is the combination of path and key-
word queries. A path query consists of location steps [xpa07]. Each location
step consists of an axis specification, a node test and an optional predicate. Let
p be such a location path and Qkw = {kw1, kw2, . . . , kwn} with kwi ∈ T be a
keyword query, then the pair (p,Qkw) is a path-keyword query. Here, the key-
word expression is a predicate in a location step. Different path-keyword queries
can be combined to complex queries. Furthermore, node test operations can
be made flexible by using ontology approaches [TW02a, LYJ04]. An example
query in XPath plus fulltext extension is //artists/painter[. ft:contains

"vincent"].

Full query language and keyword query: The complete integration of structured
and unstructured queries is the combination of a full-fledged structured query
language (e.g., SQL or XQuery) and keyword search. Thereby, two problems
have to be considered:

1. How to relax structural query constraints?

2. How to integrate seamlessly keyword queries into the query language?

Relaxed-structured queries allow the user to give structural information with-
out penalizing the user for it, e.g., [KS01, AYLP04, LYJ04]. Schema-free
XQuery [LYJ04] is one language proposal including relaxed structural queries.

The second problem is the integration of a keyword search and structured query
language. For the standard language XQuery, a full text search extension ex-
ists [AYBDS06], which allows the seamless integration. Here, results of keyword
searches can be further manipulated by XQuery statements, and vice versa:
XQuery results can be used in the full text query parts.

Natural language interface: The last kind of textual interfaces considered here is
the natural language interface. In this case, the query consists of natural lan-
guage, e.g., sentences in written English. Subsequently, the system analyzes the
sentence and tries to map the language tokens to a keyword query with structural
information. An example of this paradigm is the Nalix system [LYJ07, LCY+07].

4.2.2. Query Result Types

In structured databases, real-word data is spread over several data items. That means,
data is stored in different tuples of a relational system or in different elements in
an XML database. The problem of keyword search in structured databases is the
definition of meaningful results with respect to a query.

Example 4.2 Consider the document in Figure 4.1. Let Vincent and Munich be a
keyword query. The element artists contains both keywords, but it is not a mean-
ingful result, because it contains all artists only. Secondly, assume the keyword query

49

4. Keyword Search in Structured Databases

{franz,marc,minneapolis}. A meaningful answer would be a graph containing the
painter object a2, the painting p2, and the institution m1, because Franz Marc is the
painter of the painting "The large blue horses" that is exhibited in Minneapolis.

Because of these issues, it is necessary to define what meaningful results to a query are.
First, we describe the result of relational keyword search systems, second, we review
several XML tree-based results, and third, we give result types for general graphs.

Relational model. A relational database schema can be seen as a graph of relation
names and edges between them. The edges represent the foreign key relationships and
are link edges in the proposed terminology. The basic data items are tuples. That
means, a tuple t of a relation r(R) contains a keyword kw, if any attribute value t(A)
contains kw. The result of a keyword query Q = {kw1, kw2, . . . , kwn} is a minimal
total joining network of tuples [HP02]. Two tuples t1 ∈ r(R2) and t2 ∈ r(R2)
are connected, if they can be joined based on an edge between R1 and R2 and the
corresponding foreign key relationship. In a joining network of tuples, all adjacent
tuples are connected. The network is total if all keywords of Q are contained in the
network, i.e., every keyword is contained in at least one tuple. The network is minimal,
if no tuple (or edge) can be removed without breaking the other two properties. That
induces, that leaves1 have to contain keywords.

XML model. In XML documents, we have a tree structure, i.e., data items are
contained by other data items. Our notation uses edges of type CNT to describe
the containment relation. In the abstract description, data graph items are either
labeled, internal element nodes or data content nodes. Different definitions of mean-
ingful results with respect to Q in data trees exist. The basic definition is the low-
est common ancestor lca(N) of a set of nodes. The lca(N) is a common ances-
tor of all nodes in N, and there does not exist a descendant n′ of lca(N) that is
a common ancestor, too. The set lca(N1, N2, . . . , Nn) is the set of lowest common
ancestors of all combinations of nodes from the node sets N1, N2, . . . , Nn [YQC10].
Based on these basic definitions further restrictions have been defined like the set
of smallest lca nodes slca(N1, N2, . . . , Nn) [XP05] or the set of exclusive lca nodes
elca(N1, N2, . . . , Nn) [GSBS03]. A summary of these classes is given in [YQC10, XP08].
Assume the keyword query Q = {kw1, kw2, . . . , kwn} and let N1, N2, . . . , Nn be node
sets with all nodes ni ∈ Ni contain the keyword kwi. Yu et al. define the result of Q
for a given XML tree T the result with respect to Q as follows: The result is a set of
subtrees of T that contain all keywords. A subtree (t,M) is represented by its root
node t and set of nodes M that contain the keywords directly. The nodes in M are
denoted as matching nodes. The node t is lca of the nodes M [YQC10].

Different definitions of meaningful result subtrees exist. Following approaches are
distinguished:

Smallest lowest-common ancestor (slca): Given is a keyword query Q, a result of
the query is a node n ∈ N with ∀kw ∈ Q : contains(n, kw)2, and there is

1A leaf tuple has exactly one adjacent, connected tuple.
2Node n contains the keywords directly or indirectly.

50

4.2. Classification

no node n′ with ∀kw ∈ Q : contains(n′, kw) and n′ is a descendant of n. If
N1, N2, . . . , Nn are node sets whose nodes directly contain the corresponding
keywords kw1, kw2, . . . , kwn, the node n is an element of the set of smallest LCA
slca(N1, N2, . . . , Nn). That means, the result tree or its root node cannot contain
a subtree or a descendant that also contains all keywords. There are systems
that return only the root node of the result trees [FKM00], others return the
complete tree [XP05].

Exclusive lowest common ancestor (elca): The previous definition does not allow
nodes that contain another node, which already satisfies all keywords. The
exclusive lowest common ancestor semantics allows a node to be an answer
that contains all keywords after removing sub-elements that contain all key-
words. For example, if we assume the database in Figure 4.1 and keyword query
{blue, canvas}. A valid result would be the painting p2. But, the node “cul-
tural_assets” is also a result, because after removing p2 from this sub-tree, the
keywords can be found in the painting p1 and in the drawing d1. The smallest
lca semantic would not allow this answer. XRANK [GSBS03] and [XP08] use
the elca semantics.

Interconnected Node Sets: Cohen et al. [CKKS05, CMKS03] introduced the idea
of interconnected nodes sets. The idea is, the matching nodes M of a result tree
(t,M) must be meaningfully related. Below we give an exemplary meaningful
relationship. There are two kinds of results:

1. in the node set M, all nodes are pairwise interconnected, or

2. in the node set M, one node exists that is connected to every other node
in the set M .

An exemplary meaningful relationship between two nodes n1, n2 in M is defined
as follows. Let p(n1, n2) be the combined path from n1 to lca(n1, n2) and from n2

to lca(n1, n2). The nodes n1 and n2 are interconnected, if first, there are no two
distinct nodes with the same label in p(n1, n2), or second, there are exact two
distinct nodes, the nodes n1 and n2, with the same label. For example, search
for {minneapolis, amsterdam} does not result into the node museums because
of the paths are two distinct nodes with the label museum. However, assume a
root node book and there are two author nodes as children that directly contain
the keywords. In this case, the book sub-tree is a valid result.

Meaningful Lowest Common Ancestor Structure: Li et al. introduced the mean-
ingful lowest ancestor sets (MLCAS) as query results in XML data trees [LYJ04,
LYJ08]. For this, Li et al. extended the XQuery language to Schema-free XQuery.
In the discussion, it means the matching nodes sets N1, N2, . . . , Nl have also a
given semantic type, i.e., the nodes ni ∈ Ni have all the type Ai. For example,
the nodes have a common label. Li et al. [LYJ08] define the set mlca(N1, N2) of
meaningful lowest common ancestors as:

1. for all nodes c ∈ mlca(N1, N2) exists at least one pair of nodes (n1, n2) with
n1 ∈ N1 and n2 ∈ N2 and c = lca(n1, n2), and

51

4. Keyword Search in Structured Databases

2. for all pairs (n1, n2), the corresponding node lca(n1, n2) is in mlca(N1, N2)
or there exists a node n′ ∈ mlca(N1, N2) and n′ is descendant of lca(n1, n2).

The idea of Li et al. is the following. Two nodes of distinct types are mean-
ingful connected if they are in ancestor-descendant relationship, or if they have
a common ancestor. The exception to this rule is described in the following
example. Consider the nodes n1 with label “firstname” (of painter a2), n2 with
label “lastname” (of artist a1) in Figure 4.1, and n3 with label “lastname” (of
artist a2). The lca of n1 and n2 is the node “artists”, while the lca node of n1

and n3 is the node “artist” a1. Therefore, n1 and n3 are considered more closely
related as n1 and n2 and their lca is in the set mlca and lca(n1, n2) is not. The
mcla semantics is based on the smallest lca semantics [YQC10] but takes into
account the semantic types of the nodes. Li et al. also extended the definition
to l sets [LYJ04, LYJ08].

Minimum Connecting Trees: Given are a tree document DG = (N,E) and a set of
nodes {n1, n2, . . . , nk}. The minimum connecting tree (MCT) is a subtree of DG
that connects all nodes {n1, n2, . . . , nk}. The root of the tree is the lowest com-
mon ancestor of {n1, n2, . . . , nk} [HKPS06]. Thus, this approach is an extension
to the search of LCAs in such way, that the structure of the connections can be
analyzed and ranked. This approach is similar to minimal joining networks of
tuples.

Schema-based Matching: Yu and Jagadish [YJ06, YJ07] also investigated meaning-
ful related elements in XML documents. The authors extended the tree-based
definitions to XML tree with value relationships, i.e., link edges. In a schema, an
element eA is denoted as general parent of another eD if eA contains the element
eD or eA is referred by eD with a value link. The corresponding definitions are
general ancestor and general descendant. For example, the element “location” of
a drawing is a general descendant of the element “museum” because it refers to
the “id” element of museum. Note, the elements “drawing” and “museum” have
a common descendant “location” (see schema graph in Figure 4.2) now. Yu and
Jagadish consider keywords of the form label : keyword. Therefore, the definition
is based on meaningful schema pattern and meaningful data fragments.

Given a labeled keyword query Q = {l1 : kw1, l2 : kw2 : . . . : ln, kwn} with
L(Q) the label set. A meaningful schema pattern P = (Np, Ep) is a connected
subgraph of the schema graph SG with respect to L(Q) if it satisfies following
characteristics:

(i) every label in L(Q) is contained in a node Np, i.e., the labels are equal,

(ii) all pairs of nodes (n1, n2) with n1, n2 ∈ Np are meaningful connected. Two
nodes are meaningful connected, if

a) n1 (n2) is a general ancestor of n2 (n1), or

b) n1 and n2 have a common, general descendant element

(iii) there does not exist a meaningful schema pattern P ′ = (NP ′, EP ′) with NP ′

being a strict subset of NP , and

52

4.2. Classification

(iv) for each node n ∈ NP and each edge e ∈ EP : if n or e is removed, P does
not satisfy condition (i), or P is no longer a connected graph.

The definition ensures that the schema pattern is total and minimal. The point
(ii) describes meaningful connection between elements. The condition ii(a) is
explained as follows. Assume the labels “museum” and “drawing”. They have
the shared common descendant “location”. That means, a drawing is exhibited
in a museum. Thus, the data items with label museum can be connected to data
items with label drawing. Based on the meaningful schema patterns, Yu and
Jagadish define a subtree of the data graph D as meaningful result with respect
to Q if

(i) the subtree conforms to a meaningful schema pattern with respect to L(Q)
and

(ii) for every labeled keyword l : kw ∈ Q, the subtree contains a node n with n
contains kw and has the label l.

General graph. The previous approaches deal with XML data trees or are schema-
based graphs. There are keyword search systems on a directed data graph GD =
(V,E), too. The idea is now to find subtrees or sub-graphs in this graph that contain
all keywords. For example, a relational database can be modeled as directed graph
of tuples [HN02]. Web page graphs are another example. Finally, one can model
heterogeneous data (relational database, XML, unstructured documents) in one data
graph [LOF+08]. Possible meaningful results are classified into tree-based and sub-
graph semantics [YQC10]. A subtree t of a data graph is a valid answer if all leaves3

contain at least one keyword of the query Q, all keywords are in t, and no node
can be removed without breaking the other conditions. There are two different tree
semantics: Steiner tree semantics and distinct root semantics. Assuming the
edges in the graph have weights, steiner trees are those subtrees with the lowest sum
of edge weights. In contrast, subtrees with distinct root semantics are subtrees where
every path of a root to the keyword containing node is minimal. Thus, for every
node in the graph exists maximal one subtree with distinct root semantics [YQC10].
Further result types are sub-graphs that have a certain size.

The overview shows that the definition of a meaningful result in a structural
database is not a trivial task. The result definitions are simple lowest common ances-
tor nodes without considering structure, trees, trees with special characteristics (label
names), and trees according to a schema summarization. It can be seen, that it is
necessary to include more semantics into the result construction in order to avoid too
many and unnecessary, not meaningful results.

4.2.3. Ranking Methods

An appropriate definition of meaningful results avoids the construction of large
amounts of redundant results. However, approximate queries still produce large sets
of results that have to be ranked according to their relevance to the query. In classical

3All nodes that have only one or zero connections to other nodes.

53

4. Keyword Search in Structured Databases

information retrieval [BYRN99], documents are ranked using statistics about terms
and documents in a document collection. Integrating keyword search into structural
data sources extends the problem. Firstly, it has to be defined, which statistics are
necessary for the search and how are they obtained. Secondly, queries in structural
sources may consist of approximate structural and keyword query parts. That means,
the structure has to be considered in the score, too. In this section, we classify scor-
ing approaches in the areas of content scoring, which describe different approaches of
keyword-based scoring of nodes and structural scoring that determines the relevance
of a result to an approximate structural query. Finally, we discuss methods to combine
both, keyword score and structural score.

Content scoring

Keyword scoring describes the relevance of a result with respect to a keyword query.
Similar to information retrieval on flat documents, different approaches exist:

∙ Boolean retrieval [FKM00]: the relevance of a result element is determined, if the
element contains all conjunctively connected keywords, or any of the disjunctive
keywords.

∙ Vector space model [CMKS03, TW02a, CEL+02]: the vector space model as-
signs weights to terms in queries and result elements [SM83]. Both, queries and
result content, are represented as ∣T ∣-dimensional vectors of term weights. The
similarity between results and query are computed using the cosine measure,
which is defined as

sim(nj , q) =
n⃗j ∙ q⃗

∣n⃗j∣ ∗ ∣q⃗∣

=

∑∣T ∣
i=1wi,j ∗ wi,q

√

∑∣T ∣
i=1w

2
i,j ∗

∑∣T ∣
i=1w

2
i,q

(4.1)

with nj and n⃗j being a node and the corresponding vector representation, q and
q⃗ a query and its vector representation, respectively, and wi,x the term weights
in node nj (x = j) or query q (x = q), for 1 ≤ i ≤ ∣T ∣. Zobel and Moffat classify
related similarity measures [ZM98]. Singhal presents another, highly optimized
variant [Sin01].

∙ Probabilistic information retrieval model [Fuh92]: using the probabilistic infor-
mation retrieval model we aim to estimate the probability that a specific result
element will be judged relevant with respect to a specific query. Using a set of
terms representation of queries and documents, assuming independence of terms
in the document, and removing constant equation terms, elements are ranked
using Equation (4.2)

score(Nn, Q) =
∑

ti∈Q∩Nn

log
pi ∗ (1− qi)

qi ∗ (1− pi)
, (4.2)

54

4.2. Classification

where Q and Nn are two term sets representing the query and the node, pi the
probability P (ti∣Nn) that ti is contained in Nn and qi the probability P (ti∣Nn)
that ti is not contained in Nn. The probabilities may be estimated using term
weight statistics [Sin01]. Approaches using the probabilistic information retrieval
model are the query languages XIRQL [FG04] and XXL [TW01].

Basically, all content scoring models rely on some kind of term statistics. The most
common and relevant statistics are the term frequency within a result r, denoted as
tf(t, r), which describes the number of occurrences of term t ∈ T in result r, the
document frequency rf(t), that describes the number of results containing term t,
and finally, the normalization factor rlen(r), which denotes the length of the text in a
result. In the case of information retrieval in structured databases, the question arises,
how to define the statistics [AYL06].

At first, there are different approaches to compute rf(r). The result frequency may
incorporate all nodes [CMM+03], all nodes of the same type [TW02a], or only leaf
nodes that contain the actual text [CMKS03]. The statistics of the leaf nodes are
translated to internal nodes taking the distance into account. Computing the doc-
ument frequency rf based on the selected search context is a dynamic ranking ap-
proach [BG06, BS05]. The idea is that the importance of a term in a subset of results,
possibly defined by a structural constraint, differs from the importance in the complete
database.

The values tf(t, r) and rlen(r) may be computed by concatenating the texts of the
containing nodes if the result r consists of different textual nodes. Other approaches
obtain statistics and similarity values for each leaf node separately and subsequently,
combine the similarity values [HGP03]. Liu et al. [LYMC06] discuss the effective term
weight computation for information retrieval in relational databases. We discuss their
approach further below in this section.

Using the boolean retrieval model, a ranking of result elements may be based on the
element rank [HN02, GSBS03] inspired by the PageRank algorithm [BP98, PBMW98].
The score of the result element depends on the importance and the distance to the
actual content nodes as well as the size of the result. Here, we find a bridge to
structural scores that are described in the following.

Structural scoring

The structural score represents the closeness of the structural result with respect to
an approximate structural constraint. Furthermore, it complements keyword scores
by taking the structure of results into account, even for structure-free queries.

Size and distance of the result. A result of a pure keyword query is either a
node, which is the lowest common ancestor of content nodes or a set of connected
nodes. The size of the result as well as the distances have to be considered to improve
the ranking. Generally, smaller results, e.g., results comprising fewer nodes, or more
specific results, e.g., the distance to content nodes is smaller, are ranked higher [HP02,
ACD02, GSBS03].

55

4. Keyword Search in Structured Databases

A first basic structural score is the (inverse) size of the result. The size is defined as
the number of all nodes or number of node connections in the result [ACD02, HP02,
CMKS03]. A more detailed approach [HN02] uses edge weights between result nodes
and the closeness of the corresponding schema nodes, e.g., relations. Edge weights may
represent different relationships between nodes. For instance, link edges may have a
smaller value than containment edges.

A second basic structural information is the distance between result node and con-
tent nodes. Proximity search in data graphs selects directly nodes that are as close
as possible to another set of nodes [GSVGM98]. The content score is decreased with
increasing distance between answer nodes and content nodes [GSBS03].

Node name similarity. A first relaxation of structural constraints is the expansion of
node labels [TW02a, LYJ04, FG04]. Using element name expansion the result is higher
ranked if the element names are more similar to the query. Different approaches exist
to describe the similarity between node names. Most often a distance measure is used.
A common approach is the Levenshtein or edit distance [Lev66], which describes the
distance between two strings using the number of edit operations that are necessary
to transform one string into the second.

Approaches using the edit distance cannot handle situations with semantically simi-
lar element names, which are syntactically different. Synonym word lists, vocabularies,
or an ontology have to be used in order to expand query node labels. One approach to
describe the accurateness of a name with respect to a query name is the distance be-
tween the two names in an ontology graph [TW02a], the closer the names, the higher
results are ranked. Furthermore, user-defined functions may be used [FG04].

If several node labels have been expanded, the similarity result are considered as
probabilities and be combined using probabilistic functions [TW02a, FG04].

Scoring of query relaxation. Node name expansions do not allow the relaxation
of structural constraints like edge generalization, subtree promotion, and leaf node
deletion. Each of these relaxations has to be scored according to the following
rules [AYLP04]:

1. relevance scoring: the structural score of a relaxed query is lower than the score
of a less relaxed query,

2. order invariance: the relevance score is independent of the order of applied re-
laxation operators, and

3. efficiency: the score has to be computed efficiently.

Generally, result elements belonging to a result set of a less relaxed query have a higher
score than results of a more relaxed query. The task of scoring query relaxation is to
determine the influence of a relaxation operation to the result.

A first approach uses penalties for each relaxation [AYLP04]. The penalty is pro-
portional to the quotient between the number of the results of the original query and
the relaxed query. Consequently, the score is the sum of all query predicate weights
decreased by the sum of penalties.

56

4.2. Classification

A second approach [AYKM+05] is based on tf.idf values. Here, The idf value
describes the quotient between the result size of the least relaxed query and the result
size of the current relaxation with respect to a given database. According to that,
the idf value of a result element is the maximum idf of a query relaxation (most
specific relaxation) whose result set contains the element. The result nodes are roots
of document fragments that satisfy a structural pattern. The document fragment is
denoted as match. Every result node may be the root of different matches. The tf
value of a result element corresponds to the number of different matching data trees
with one common result node as root. The complete structural score combines idf
value and tf lexicographically. That means, the score of node n′ is smaller than the
score of n if

∙ idf(n′) < idf(n) or

∙ idf(n′) = idf(n) and tf(n′) < tf(n).

Another approach [Sch02] describes the score as the costs that are necessary to
transform a query into a relaxed query. The transformation is defined by a sequence
of basic transformations: insertion of nodes, deletion of inner nodes and leaf nodes as
well as label renaming. Every basic transformation has a cost value, which is assigned
by an administrator. In consequence, the score of a relaxed query is the sum of the
costs of all basic transformations.

JuruXML [CMM+03] uses XML fragments as queries which comprise approximate
XML structure and keywords. The context is given as a path of element names, e.g.,
q1/q2/q3. Results are ranked using an extended vector space model that combines
keyword and structural scores. The structural score is computed by a function cr
which maps the context resemblance to a real value in the interval [0, 1], i.e., the
structural closeness of the answer according to the query. The function cr includes
the following ideas [CEL+02]: cr will return a high value, if

∙ the context of the result satisfies many constraints (element names) of the query
in the right order,

∙ the result context matches the query context at the beginning of a path,

∙ matching path information are close together, i.e., if matching element names
are in the path close together and not spread over long path, and

∙ the path of the answer approximately has the same length as the query path.

Combining structural and content Scoring

Content scores only are not sufficient to generate a meaningful ranking [AYL06], a
combination of evidence is necessary, thus, structural scores and keyword scores have
to be combined. Following basic approaches exist [AYLP04]:

1. structural score first,

2. keyword score first, or

57

4. Keyword Search in Structured Databases

3. a combination of both approaches

Next, we discuss several combination approaches. Keyword search in relational
databases finds tuple trees that satisfy a keyword query. These results are ranked
by a score function which combines the size of the tree and the keyword score. Hris-
tidis et al. [HGP03] generalized different approaches as

Score(T,Q) = Combine(Score(A,Q), size(T)) (4.3)

with T a tuple tree of the size size(T), A a set of attributes in T, and Score(A,Q)
a function which combines the keyword scores in each attribute ai of A. Proximity
search in structural databases utilizes only the distance between two result nodes to
determine the rank [GSVGM98, DEGP98a, DEGP98b].

The study of Liu et al. [LYMC06] focuses on the effectiveness of IR-search in re-
lational databases. As in information the term weights are most relevant to find
good rankings [Sin01], Liu et al. provide effective term weights for tuple tree scor-
ing. The weights are based on four normalizations: (i) tuple tree normalization,(
ii) document length normalization, (iii) document frequency normalization, and (iv)
inter-document weight normalization. Equation (4.4) describes the term weight of
a term t in the document Di; a document corresponds to an attribute value of one
attribute:

w(t, Di) =
ntf ∗ idf g

ndl ∗ Nsize(T)
. (4.4)

The components of the weight w(t, Di) are in particular: the normalized term fre-
quency

ntf = 1 + ln(1 + ln(tf)),

which describes the number of occurrences of a term in the document; the global
inverse document frequency

idf g = ln
Ng

df g + 1

that represents the document frequency normalization with Ng the total number of
documents and df g the global document frequency; the normalized document length

ndl =
(

(1− s) + s ∗
dl

avgdl

)

∗ (1 + ln(avgdl))

with dl the current document length and avgdl the average document length in a one
attribute, s a weighting factor; the normalized tree size of tree T is defined as

Nsize(T) = (1− s) + s ∗
size(T)

avgsize
,

with avgsize the average size of all answer trees. The value w(t, Di) represents the
weight of a term in one document, thus, the particular weights of all documents in a

58

4.2. Classification

result tree T have to be combined. Let Di, 1 ≤ i ≤ m be the documents in a tree T,
then Equation (4.5) defines the combined term weight:

w(t, T) = Combine(w(t, D1), w(t, D2), . . . , w(t, Dm)). (4.5)

Liu et al. [LYMC06] define the function Combine as

Combine(w(t, D1), w(t, D2), . . . , w(t, Dm)) =

maxWgt ∗
(

1 + ln

(

1 + ln
sumWgt
maxWgt

))

with maxWgt = max(w(t, D1), w(t, D2), . . . , w(t, Dm)) and sumWgt =
∑i=m

i=1 w(t, Di).
The function Combine realizes the inter-document weight normalization. However,
the definition of Liu et al. is not a monotonic function and requires specific algorithms
to be used efficiently.

Further ranking approaches

The keyword score in XSEarch [CMKS03] is computed using the vector space model.
The score is modified by division by the result size and multiplication of the weighted
number of ancestor-descendant pairs to include structural information.

XRank [GSBS03] uses the importance of a content node and the distance of the
result node to the content node as ranking of XML nodes. BANKS [HN02] utilizes a
similar ranking for relational databases.

The XXL system assumes that all scores, keyword scores and similar element name
scores are unweighted probabilities and combines the scores using probabilistic formu-
las for AND and OR operators [TW01]. XIRQL interprets all single ranking information
as weighted probabilistic events, and provides operators to combine the values [FG04].

A different approach uses JuruXML [CMM+03]. This system searches for term
context pairs and ranks the results using a vector space model. The weights for term
context pairs are based on the common tf and idf values, but are extended by context
resemblance values between query and result context. In order to avoid high idf values
for rare contexts, several idf merge approaches were proposed. That means, JuruXML
modifies the term weights, but not the final similarity values.

The works [BG06] and [BS05] include the contexts of query and answers into the
final score by computing tf and idf values dynamically depending on the current
context of the XML document and query.

Botev et al. [BAYS06] and Al Khalifa et al. [AKYJ03] present two general languages
for full-text operations on XML data and structural databases. The former approach is
based on relations of the token positions. Using these relations and a scoring function,
operators are defined, which create and modify result scores. The latter approach
is based on scored data and pattern trees. Scored pattern trees represent queries,
which comprise a result structure (node names, parent-child, or ancestor-descendant
relationships) and keyword queries. Furthermore, user specified scoring functions are
used on each pattern tree node. Scored data trees are subtrees of the data graph.
Nodes matching a keyword query are attached with a score. Internal node scores are

59

4. Keyword Search in Structured Databases

computed using user defined score functions and scores of child nodes. The final score
of a scored data tree is the score value of the root node or the highest score value in
the tree.

4.2.4. Query Processing in Keyword Search Systems

There are two basic approaches to search for results in structural databases (see Fig-
ure 4.3). The first approach extracts first candidate networks from a schema graph
and retrieves matching results, subsequently. The second approach works directly on
the data graph or an index representation of the data graph to construct results.

IR Index

Database

User

Database Queries

Keywords

Tuple sets

Candidate networks

Tuple Trees

IR Engine

Candidate Network

Generator

Execution

Engine

Schema

graph

(a) Schema graph-based search

(graph index)

IR Index

User

Keywords

IR Engine

Generator

Tree

Tuple sets

Tuple Trees

Data graph

(b) Data graph-based search

Figure 4.3.: Schema graph-based vs. data graph-based keyword search

Schema graph-based Search

Schema-graph based query processing comprises following steps (Figure 4.3(a)):

1. extracting schema nodes matching the search condition (e.g., labels) or support-
ing search keywords using a master IR (information retrieval) index,

2. creating result candidates from the schema nodes using the schema graph,

3. create query patterns using candidates and keyword containment conditions, and

4. execute queries using the query patterns and obtain the results.

60

4.2. Classification

The first step depends on the kind of query. If the query has been a labeled keyword
query, the schema nodes are selected based on the label set of the query [YJ07]. In
the case of keyword-only queries, a master IR index is used that relates keywords to
containing attributes [ACD02]. Additionally, the algorithm of [LYMC06] tries to find
schema keywords from a keyword query, which relate to an attribute or relation name.
The decision is based on possible scores of results, i.e., term weights. The result of
the first step is a set of schema nodes and corresponding lists of query keywords or
candidate node sets associated to the schema nodes.

In the second step, candidate networks are created using the schema graph and the
result of step one. Candidate networks are subgraphs of the schema graph that contain
at the leaves schema nodes with an associated set of keywords. Inner nodes may have
empty keyword sets. The candidate network has to contain all query keywords (AND
semantics) or at least some keywords (OR semantics). Furthermore, it is required that
a network is minimal.

Based on these candidates, query patterns are constructed. That are either pattern
trees for XML databases [YJ07, AKYJ03] or join trees for relational databases [ACD02,
HPB03, HGP03, LYMC06]. Query patterns include the structure of the schema net-
work and the keyword conditions using the associated keywords. The last step is the
execution of query patterns as well as ranking and merging of the obtained results.

Data graph-based search

Given are a query and a data graph or an index representation of the graph in main
memory. The results are constructed in the following steps (Figure 4.3(b)),

1. nodes containing any keyword of the query are retrieved using a master IR index,

2. the obtained nodes are combined to results using the data graph or specialized
merging operations.

We do a lookup in the IR index in the first step. The master index contains for
each keyword its occurrences, i.e., the containing nodes. The result of the first step
is a node list for each keyword of the query. In the second step, the node lists are
combined to results. Here, the system utilizes the data graph or an index repre-
sentation to create valid sub-trees or subgraphs. Systems use specialized graph al-
gorithms to construct results [HN02, GSVGM98, DEGP98a, LOF+08], for instance
Steiner tree search [Ple81] or shortest path algorithms, e.g., Dijkstra’s algorithm. The
data graph may be held in main memory [HN02] or interconnection indexes, e.g.,
Hub indexes, are utilized [GSVGM98]. In XML trees, stack-based algorithms in com-
bination with corresponding index structures are used to compute lowest-common
ancestors, e.g., [GSBS03, CMKS03, XP08].

Data graph approaches have the disadvantage of using a large graph in main mem-
ory that have to be maintained additionally to disk-resident inverted indexes. Fur-
thermore, schema information is lost by unlabeled edges.

61

4. Keyword Search in Structured Databases

4.3. Keyword Search Systems

After describing the general concepts of keyword search in structured databases, we
present several actual approaches in this research area. First, we discuss systems
for keyword search in relational databases. Second, approaches for relaxed structural
queries are described. Third, plain keyword search in XML as well as query language
extensions for XML are discussed.

4.3.1. Relational Database Search

Relational keyword search systems use either the schema graph-based or data graph-
based approaches. The results of the search systems are minimal joining tuple trees or
sub-trees in data graphs. The results are ordered by different scoring functions. First,
we describe for each approach an exemplary set of works. Second, we mention further
works that improved these approaches or provided new approaches.

DISCOVER system [HP02, HGP03]

Hristidis et al. developed the DISCOVER system allowing plain keyword queries with
AND semantics [HP02]. The system is a representative of the schema graph-based
approach. It proposes a query optimizer in order to avoid redundant execution of query
patterns or parts of query patterns, respectively. An Oracle text index implements
the master index. The system ranks the results according to the inverse tree size. A
similar approach is the DBXplorer system proposed by Agrawal et al. [ACD02]. The
authors concentrated on an efficient master index structure for which different variants
were proposed. Furthermore, DBXplorer uses a window function [Ull90] as network
generation module.

The DISCOVER system was extended in order to allow OR semantics for queries
and to use IR-scores in the ranking function [HGP03]. The ranking function combines
scores of the query in every text attribute score(ai, Q) with ai a text attribute and
the size of the tuple tree in the following way:

score(T,Q) =

∑

ai∈A
score(ai, Q)

size(T)
.

The function satisfies the monotonicity condition. While the work of Hristidis et al.
focuses on efficiency of the keyword search system, Liu et al. deal with effectiveness
of tuple tree retrieval [LYMC06]. The authors extend the approach of [HGP03] by
improved term weight normalizations for tuple trees. The resulting weights have been
shown in Equation (4.4) and Equation (4.5). Furthermore, Liu et al. evolve the work
in that way, that also schema elements are considered as possible keyword occurrence
positions.

BANKS system [HBN+01, HN02, ACD+03]

The BANKS database search and browsing system was developed by Hulgeri et
al. [HBN+01, HN02, ACD+03] and is a representative of data graph based query

62

4.3. Keyword Search Systems

evaluation. Results in BANKS are constructed as follows. A data graph DG = (N,E)
is constructed in main memory. Nodes are tuple identifiers and edges represent foreign
key relationships between tuples. Nodes and edges are decorated with corresponding
weights. Given a keyword query Q = {kw1, kw2, . . . , kwm}, in the first step a tuple
set Si for each keyword kwi, i = 1, 2, . . . , m is retrieved using a disk resident, inverted
index. The second step generates the tuple trees using the main memory data graph
and the candidate tuples sets Si in the following way. The BANKS system creates for
every node n ∈

∪

1≤i≤m Si an iterator that implements Dijkstra’s single source shortest
path algorithm with n as source. If a node n′ ∈ N has been visited by at least one
iterator of each keyword set Si, it is the root (called information node) of a tuple tree.
In that way, the system can find Steiner trees [Ple81] in a data graph. The tuple tree
is ranked by a function including tuple weights and edge weights in the tree:

score(T,Q) =

{

! ⋅ Nscore(T) + (1− !) ⋅ Escore(T) T contains all keywords
0 otherwise

Furthermore, the BANKS system allows the browsing of the results using a graphical
interface [ACD+03]. Other data graph-based approaches are the database proximity
search [GSVGM98] and the DTL Dataspot system [DEGP98a, DEGP98b].

The BANKS system requires the data graph to be held in main memory. Goldman
et al. [GSVGM98] described how graph distances can be pre-computed and stored in
secondary memory using hub-indexes. However, their approach only supports a less
general kind of keyword query of the form FIND x NEAR y.

Further approaches

Both sets of works have been extended and improved by many other researchers
and works. For example, the SPARK system uses a non-monotonic scoring func-
tion [LLWZ07, Luo09]. Therefore, the approach of Hristidis et al. cannot directly be
used. A skyline processing of candidate networks is the solution. Other works im-
proved the generation of candidate networks [MYP09, QYC11] by ordering relation
names or using templates, respectively. Since during the schema graph-based process-
ing many join queries are generated, large, intermediate result sets may be generated.
Qin et al. proposed a two step approach to avoid these intermediate results by using
semi-joins [QYC09]. In a first step, only join partners are selected from relations using
a semi-join. In the second step, the actual joins are performed. Xu et al. ranked can-
didate networks first and modified the score of tuples [XIG09]. A candidate network
has a high score if the relations are more typical for the keyword query. A relation is
more typical with respect to a keyword, if it contains many tuples that contain the
keyword and only few other relations contain the keyword, too. This definition follows
the tf.idf paradigm (see Section 4.2.3).

Kacholia et al. extended the BANKS approach by a bidirectional search [KPC+05].
BANKS searches backward from the keyword nodes to find a tree. Kacholia et al.
also allow the forward search to connect keyword nodes if a keyword node is con-
tained by many tuples. Li et al. extended the data graph approach to heteroge-
neous data sources comprising relational databases, semi-structured, and unstructured

63

4. Keyword Search in Structured Databases

sources [LOF+08]. The authors also provide sub-graphs as answers instead of sub-trees
and their efficient computation. Additional answer types for data graph approaches
are discussed [LFZW11].

Besides schema and data graph approaches, other ideas were proposed. Masermann
and Vossen [MV00] proposed the keyword search in databases using reflective SQL.
Here, queries are treated as data and can be modified and executed subsequently. If
a Boolean keyword is given, queries are modified in that way, that relevant tuples can
be retrieved from one relation. That means, the approach supports keyword search
for tuples of one relation.

Su and Widom [SW03, SW05] proposed the EKSO system that uses pre-computed
tuple trees. In the pre-processing phase, the system retrieves all tuple trees from the
database. First, a set of root relations were defined containing root tuples. Text objects
are created following primary key to foreign key links. A text object corresponding
to root tuple t consists of all tuples that join to t directly or indirectly. In a second
step, a Virtual Document is created from each text object. Virtual documents are the
concatenation of all text attributes of the text object and serve as input of a classic
IR indexer. Keyword search is supported by an IR engine using the inverted index
over the virtual documents. The result is a list of root tuple identifiers ranked by
the relevance of the corresponding virtual documents to the query. The advantage is
a time-saving pre-computation and reuse of existing IR engines. The disadvantages
are a large index overhead and less flexibility in the answers according to size and
structure of answer tuple trees. A second materialization approach is the RETUNE
system [LFZ08]. The materialization element in RETUNE is a tuple unit. A tuple unit
is a set of tuples that is created if we join a tuple of relation r(Ri) with all connected
relations r(Rj). Now, for every tuple in the database the tuple units are created. The
result of a keyword search is a tuple unit that contains all keywords of a keyword
query.

Markovetz et al. [MYP09] and Qin et al. [QYC11] investigated keyword search over
relational data streams. There are two challenges: efficient generation of candidate
networks for a complete database schema in schema graph approach and the sharing
of computations of many join operations during processing of many streams.

The last group of systems uses keywords to generate queries or forms instead of tuple
trees [TL08, DZN10, CBC+09, BRL+10, BRDN10]. The user gives a keyword query,
and the system generates possible queries of forms. Using them, the user executes the
query.

4.3.2. Keyword Search in XML Trees and Graphs

At first, we want to discuss structure-free keyword search approaches. An early work is
the boolean keyword search integration that is discussed by Florescu et al. [FKM00]. In
particular, the authors discussed an inverted index, which uses a relational database
system. In the following, we discuss keyword search approach over XML trees and
graphs, query relaxation, and keyword search integration into XML query languages.

64

4.3. Keyword Search Systems

XRank [GSBS03]

The system XRank [GSBS03] accepts keyword queries of the form Q =
{kw1, kw2, . . . , kwn} and returns XML elements using exclusive lowest common an-
cestor (elca) semantics (Section 4.2.2 and [XP08]). The system ranks the results using
a scoring function that includes the concepts: result specificity, keyword proximity,
and hyperlink awareness. The result ranking formula is specified as

score(n,Q) =

(

∑

1≤i≤n

r̂(n, kwi)

)

⋅ p(n, kw1, kw2, . . . , kwn).

The value r̂(n, kwi) represents the element rank of n, denoted as ElemRank(n), which
is decreased with increasing distance between the node n and the node n′ that contains
the keyword kwi. If the keyword kwi occurs more than once in n, then the minimum
distance will be used. The function p(n, kw1, kw2, . . . , kwn) models the keyword prox-
imity, e.g., it computes the minimum window in which all keywords occur.

While the values r̂(n, kwi) and p(n, kw1, kw2, . . . , kwn) meet the result specificity
and keyword proximity requirements, the element rank ElemRank(n) includes the
third demand: hyperlink awareness. The element rank of a node n is computed using
a PageRank [PBMW98] inspired algorithm. Here, the rank is specified by references
via containment edges, inverse containment edges as well as link edges, and the rank
of the referencing elements. The XRank system uses an inverted indexes where nodes
are identified by Dewey numbers [Dew04] and containing elements are produced by
stack-based algorithms.

XSEarch [CMKS03]

The XSEarch system looks for interconnected node sets (Section 4.2.2) that satisfy
the query. The system accepts labeled keyword queries, i.e., queries of the form Q =
{t1, t2, . . . , tm} with ti = (li, kwi) a pair of label li ∈ Name and kwi ∈ T a keyword.
Given a query Q, a sequence of nodes and null values RQ = n1, n2, . . . , nm is an answer
if the nodes are meaningfully related.

XSEarch ranks node sets using a modified vector-space approach. The keyword
weights are computed using a tf ⋅ idf function, labels have a user-defined or system
generated weight. Every non-leaf node has an assigned vector that has a dimensionality
of ∣Name × T ∣. The answer RQ is scored according to the following function:

score(Q,RQ) =
sim(Q,RQ)

�

tsize(RQ)�
⋅ (1 +
 ⋅ anc-des(RQ))

with sim(Q,RQ) the sum of the cosine measures between query and node vectors,
tsize(RQ) the size of the result, that means the number of distinct nodes, and
anc-des(RQ) the number of node pairs that are in ancestor-descendant relationship,
which is assumed to be a close connection. The values �, �,
 are weighting factors.
For fast result computation, the XSEarch system uses a specialized interconnection
index.

65

4. Keyword Search in Structured Databases

XKeyword [HPB03, BHK+03, HKPS06]

Hristidis et al. extended the DISCOVER approach (see Section 4.3.1) for proximity
search in semi-structured databases. This approach belongs also to the set of schema
graph-based search approaches. In detail, the proposed system accepts plain keyword
queries of the form Q = {kw1, kw2, . . . , kwn} and the result consists of minimal con-
necting trees of target objects that contain all keywords of Q and are ranked by their
size. That means, the query has AND semantics and smaller trees are ranked higher.
The work mainly addresses two problems: the definition of meaningful results and
presentation of a possibly large set of results. The proposed solution to the first prob-
lem is the introduction of target objects which are XML fragments. XML fragments
are described by schema graph splits. These schema graph splits are denoted as tar-
get schema segments and describe minimal self-contained information pieces (see also
Section 4.2.2). They are defined by the administrator.

The second problem, huge sets of results, is addressed by the approach of presenta-
tion graphs. A presentation graph hides structurally similar results, i.e., multi-valued
dependencies between nodes. The XKeyword implements this approach [BHK+03].

Xu and Papakonstantinou [XP05, XP08]

Xu and Papakonstantinou propose several algorithms for smallest (slca) [XP05] and
exclusive lca (elca) [XP08] results of keyword queries in XML trees. Given k sorted
lists S1, S2, . . . , Sk of nodes for a keyword query kw1, kw2, . . . , kwk they propose several
algorithms for computing scla(S1, . . . , Sk). The algorithms are based Dewey identifier
operations and ordering of nodes. Given a node v and a list S2, the authors show that
they need only the largest smaller node4 of v in S2 and the smallest larger node of v
in S2. The smaller of those matches is an slca result. Thereby only the smallest list S1

needs to be entirely scanned . This computation is efficient because of the use of an
index. This approach was adapted to elca semantics [XP08]. The main contribution is
the efficient computation of results in XML trees and not to provide the best ranking
function.

4.3.3. Relaxed Structural Queries

Relaxed structural queries are a second part of flexible queries on semi-structured
databases. The problem here is that a system has to use the structural constraints
given by a user, but must not penalize the user for giving them.

Kanza et al. [CKS01, KS01, KNS02]

Kanza et al. deal with flexible queries over semi-structured data, e.g., XML data. The
data is modeled as a rooted data graph. Queries are rooted graphs with labeled edges
and nodes represent variables. The goal is to find matches that map the query graph
to the data graph. A mapping will be valid if it satisfies one or more of the following
constraints:

4Based on a pre-order numbering using Dewey identifiers.

66

4.3. Keyword Search Systems

∙ root constraint: the root variable of the query matches the root node of the data
graph,

∙ edge constraint: an edge in the query has to be mapped to an edge in the data
graph,

∙ weak edge constraint: the label of the incoming edge in a query matches the
incoming edge label of the corresponding data node,

∙ quasi edge constraint: an edge in the query graph is matched by a path in the
data graph.

Furthermore, the filter constraint is applied, if selections occur in the query graph.
A rigid matching satisfies the root constraint as well as all edge constraints. That is
the usual non-flexible query semantics. Semi-flexible matching is a matching between
a query graph and a data graph which satisfies (i) the root constraint, and (ii) for
each directed path in the query, there is a path in the data graph that contains the
same labels. The labels do not have to be in the same order and do not have to be
contiguous. Furthermore, (iii) a strongly connected component5 in the query graph
has to be mapped to a strongly connected component in the data graph to cope with
cycles in the query and the data graph. A flexible matching of the query to a data
graph satisfies (i) the root constraint as well as (ii) all weak and quasi edge constraints.

Amer-Yahia et al. [AYCS02, AYLP04, AYKM+05]

Amer-Yahia et al. investigate the relaxation of tree pattern queries or twig queries.
A tree pattern query is a pair (T, F) where T is a rooted tree and F is a Boolean
combination of value-based predicates [AYLP04]. Every node in T = (N,E) represents
a variable and the edges are labeled as pc for parent-child relationships or ad for
ancestor-descendant relationship. The Boolean condition F contains for each variable a
condition $i.tag = name which describes the label. The root node is the distinguished
answer node. The result of a tree pattern query is defined as follows. All matchings
to the query are obtained, i.e., sub-trees of the data graph that satisfy the structural
conditions of the query. Given the matches, the final result set is the set of the root
nodes of the matches. Note, that one root node may belong to different matches.

The following query relaxations are assumed in this context: edge generalization,
subtree promotions, and leaf node deletion. Additionally, the operations node gener-
alization [AYCS02] and contains-predicate promotion [AYLP04] have been discussed.

Example 4.3 Figure 4.4 shows several tree pattern queries. (1) represents the orig-
inal query. (2) represents a single query relaxation by generalizing the edge between
artist and name to an ancestor-descendant relationship. Query (3) can be constructed
by successive subtree promotions and leaf node deletions. Finally, query (4) represents
a query which searches for a painting that contains the keywords “gogh” and “paris”.

5For each pair of nodes exists a directed path in a strongly connected component of a directed graph.

67

4. Keyword Search in Structured Databases

ancestor−descendant

artist

painting

name city

institution

gogh paris

painting

institutionname

gogh paris

painting

gogh paris

artist

painting

name city

institution

gogh paris

(1) (2) (3) (4)

parent−child

Figure 4.4.: Structural relaxation

The following contributions were made: given weighted query trees, an efficient
top-k evaluation algorithm was proposed by encoding the relaxations into one query
evaluation plan. Second, efficient algorithms for the combination of relaxed queries
with keyword search have been shown using a structural answer score based on penal-
ties for relaxations. At last, Amer-Yahia et al. introduce a similarity measure following
the tf.idf approach (see also Section 4.2.3). As twig scoring is expensive, approximate
scoring mechanisms using path scoring have been developed.

Further approaches

Delobel et al. use tree query pattern relaxation within the semantic integration system
Xyleme [DRR+03]. The system exhibits map translation tables that comprise the
possible queries for a global tree query. As local data sources are mapped against
a given global schema, some query parts may be empty. The following relaxation
operations were introduced to overcome this limitation: unfolding tree nodes, deletion
of conditions, and promotion of conditions. Unfolding tree nodes denotes the operation
of duplicating a node in order to single out a query branch. In that way, join operations
are moved to more general nodes.

Likewise, Schlieder [Sch02] investigates the relaxation of tree query pattern using
tree edit operations. That means, a tree query pattern is modified using edit oper-
ations, and matching data trees are retrieved from the data ranked by the cost of
the edit operations. The following tree edit operations, each assigned with separate
costs, are considered: insertion of a node, deletion of inner nodes and leaves as well as
renaming of node labels. A schema-based algorithm was proposed in order to retrieve
the top-k results, i.e., root nodes of data trees that match to modified query trees with
smallest edit operation costs. The algorithm is based on the ideas: encoding all edit
operations except node insertion into the query tree, matching the query against a
schema tree (replacing parent-child edges with ancestor-descendant edges for allowing
node insertions), and retrieving matching sub-trees, which are used as queries to the
actual data graph. An incremental top-k algorithm is used that retrieves first the best
n modified queries and tries to find the required k results. As not all queries return a
result, n has to be increased during query evaluation.

Several approximate XML languages [FG04, TW02a, CMM+03] also support struc-
tural relaxed queries. They are covered in the next section.

68

4.3. Keyword Search Systems

4.3.4. XML Query Languages and Keyword Search

In the recent years, many language proposals have been made for integration of key-
word search into XML query languages [AYL06]. Mostly, new languages are based on
existing structural XML query languages. The main principle of language integration
is given in Figure 4.5 [BG02, AYBS04], which describes the interconnection of precise
subqueries expressed in the host language and imprecise IR subqueries. First, precise

evaluation
ranking

query

precise

query

transformation

into IR model

transformation

into precise query model

evaluation

Figure 4.5.: Combination of precise querying and IR

subqueries are executed within the model of the host query language, e.g., XQuery.
The results on the XML structure are expressed in the data model of the XML query
language, e.g., sequences of items (elements and values). The results are transformed
into the model of the IR subqueries, e.g., tokens and their positions in an XML graph.
Based on this model, full text search operations can be expressed. Finally, the re-
sults are transformed into the XML query language model and the host language can
post-process the results.

XIRQL [FG01, FG04]

The query language XIRQL is an extension of XQL and XPath, respectively, and has
following features:

∙ index term weighting for query and document term and producing ranked results,

∙ retrieving most relevant document parts, i.e., a specificity-oriented search,

∙ datatypes with vague predicates, and

∙ structural vagueness to find close matches for structural query parts.

The query language introduces the operator cw for keyword search in an element.
Search keywords are combined using different operators (AND, OR) and query weights
can be assigned. The scores are combined using a probabilistic model. In order to
support specificity-oriented search, index nodes with specific weights are introduced as
result elements. Their weights are also embedded using probabilistic functions. XIRQL
supports structural vagueness by generalizing attributes and elements, datatypes, and
parent/child edges to ancestor-descendant edges (operator ∖∖) as well as using similar
element names that are specified in a vocabulary in the XML schema.

69

4. Keyword Search in Structured Databases

Example 4.4 Assuming the query: Find paintings or similar which contain the phrase
blue horses and oil, the resulting XIRQL query is illustrated in Figure 4.6.

1 // cu l t u r a l_a s s e t s \\~ pa in t ing [
2 . cw " blue ho r se s " and . cw " o i l "]

Figure 4.6.: Example query XIRQL

XXL [TW01, STW01, TW02a, TW02b]

XXL is a flexible XML search language that extends a part of the language XML-
QL with the text similarity operator "∼". The operator can be used in unary form
for element similarity operation and in binary form for attribute and element content
comparisons. Similar element names are obtained from an ontology. The relevance of
an element name is determined by the semantic distance in the ontology between query
element name and answer element name. The relevance of content search keywords
is computed using standard IR techniques as the cosine measure. The particular
relevance scores are all in the range of [0, 1] and are combined using probabilistic
formulas. Specialized indexes for paths, ontology, and keyword positions are utilized
for fast query evaluation [STW01]. Different query evaluation approaches have been
investigated [TW02a].

Example 4.5 For the query of the previous example: Figure 4.7 shows the resulting
XXL query with "#" denoting an arbitrary path.

1 SELECT P
2 FROM doc (" a r t ")
3 WHERE Cultural_Asset .#.(~ pa in t ing) AS P
4 AND P ~ "blue ho r se s " AND P ~ " o i l "

Figure 4.7.: Example query XXL

TeXQuery [BSAY04, AYBS04] and XQuery Full-Text [AYBDS06]

XQuery is one of the most influential XML query languages [BCF+03]. TeXQuery
and its successor, the W3C Query Full-Text, provide full-text search predicates for
XQuery. The language extension consists of the new expression FTContainsExpr

as well as score variables that are specified by the keyword score. The expression
FTContainsExpr is defined as FTContainsExpr := Expr ftcontains FTSelection

where Expr represents an XQuery expression, which defines the search context for
the full-text selection predicate. XQuery Full-Text defines a set of fully composable
full-text predicates comprising simple keyword selection, conjunctive and disjunctive

70

4.3. Keyword Search Systems

keyword connections, and phrase search as well as proximity predicates. The seman-
tics of the expression and predicates are defined by the AllMatches data structure
and operations on it which are defined as XML data types and XQuery functions,
respectively.

The expression FTContainsExpr returns a Boolean value that indicates whether the
full-text predicate is satisfied or not. Score variables are used to extract the score of
a full-text expression. Score variables are indicated by the keyword score and are
defined as float values in the range [0, 1] where higher values denote higher relevance.
Subsequently, the score variable can be used in an order by clause to sort the results
by their score.

Example 4.6 Using the exemplary query, the resulting XQuery Full-Text query is
illustrated in Figure 4.8.

1 f o r $p sco r e $ sco r e in // pa in t ing [. f t c o n t a i n s
2 "blue ho r se s " && " o i l "]
3 order by $ sco r e descending
4 return $p

Figure 4.8.: Example query XQuery Full-Text

Schema-free XQuery [LYJ04, LYJ08]

Schema-free XQuery is an extension to XQuery [BCF+03] supporting queries with only
partial knowledge about the database schema. The language extension allows queries
ranging from fully specified XQuery expressions to simple keyword queries. The results
are specified as meaningful lowest common ancestor structures (MLCAS) as described
in Section 4.2.2. At first, an XQuery function mlcas is introduced, which returns the
root of an MLCAS for a given list of nodes. That means, the function mlcas finds
meaningful relationships between the given nodes without requiring the user input.
As mlcas returns an XML node, the results can be reused in other XQuery clauses. A
further simplification is the introduction of the mlcas keyword6. The statements are
rewritten into statements using the mlcas function. The following example shows the
usage of the query extension.

Example 4.7 Assume a query: Find artists and their works which belong to the epoch
renaissance. The corresponding Schema-free XQuery expression is

1 f o r $a in doc (" a r t ")// a r t i s t s
2 $b in doc (" a r t ")// c u l t u r a l_ a s s e t s
3 $c in doc (" a r t ")// epoch
4 where $c/ t e x t () = " r ena i s s an c e" and mlcas ($a , $b , $c)
5 r e turn <r e s u l t > {$a , $b} </r e s u l t >

The MLCAS are computed using a stack-based algorithm.
6In [LYJ08] the function is denoted as mqf, meaningful query focus, the new introduced keyword is

denoted as related

71

4. Keyword Search in Structured Databases

Further approaches

Besides the previously mentioned systems several other approaches have been pro-
posed, e.g., XIRCUS [MBHW02], ELIXIR [CK02], JuruXML [CEL+02, CMM+03],
NEXI Content-And-Structure (CAS) [TS05], and XQuery/IR [BG02, BG06].
XQuery/IR extends XQuery by a rank by operator and provides mechanisms for
context-based ranking. JuruXML uses as query language XML fragments, encodes
query structure relaxation into term weights, and ranks the results based on the vec-
tor space model. The system DaNalix [LYJ07, LCY+07] provides a natural language
interface to the user. The query expressed in natural language is analyzed and sub-
sequently translated into Schema-free XML query statements. The work of Yu et
al. [YJ06] summarizes the schema graph to important parts that the user can eas-
ily understand. Schema summarization is used to implement an XQuery extension
which accepts labeled keyword queries and combines results without requiring struc-
tural knowledge by the user [YJ07]. The approach is denoted as Meaningful Summary
Query.

Several researches deal with the semantics of structural keyword query lan-
guages [AKYJ03, Feg04, BAYS06, AYCD06]. Al-Khalifa et al. [AKYJ03] proposed
query semantics based on a bulk-algebra TIX, which uses scored pattern trees with
keyword conditions as queries and scored data trees as results. Botev et al. [BAYS06]
and Amer-Yahia et al. [AYCD06] present languages and algebras for structural key-
word search that are based on term position relations. A term position describes
the location of occurrence of a term. Operations over term position relation allow
the combination of different keyword relations. These approaches are similar to the
AllMatches semantics of XQuery Full-Text [AYBDS06].

4.4. Keyword Search and Virtual Integrated Data

Sources

In this section, we discuss keyword search over virtual integrated data sources. Here,
we can distinguish the following classes of systems and approaches:

1. meta-search engines and distributed information retrieval over unstructured
databases [Cal00],

2. structured Deep or Hidden Web [Ber01] searches, and

3. keyword search and approximate queries over structured sources in Intranets or
relatively small closed domains.

Furthermore, the cases can be subdivided according to the behavior of the source:
cooperative and uncooperative sources. The first two kinds of systems deal with
relatively large numbers of sources which have to be selected according to a given
query and the results have to be merged. The information is stored in different sources.
In contrast, the last kind of systems deals with the problem of finding information
spanning over different sources using keyword queries.

72

4.4. Keyword Search and Virtual Integrated Data Sources

4.4.1. Metasearch Engines

Metasearch engines [MYL02] or distributed information retrieval systems [Cal00] are
systems that provide a unified access to a number of local search engines and return
merged top-k results to the user. The system deal with keyword search queries and
work on unstructured results. Generally, query processing in metasearch engines com-
prises the following steps: after receiving the user query, e.g., a list of keywords, the
database selector chooses the best databases with respect to a query, i.e., search en-
gines with corresponding document collection. In the second step, for each selected
database the document selector decides which documents have to be received. Here,
the number of documents or the local similarity thresholds are specified. In the next
step, the queries are translated into the format of the local search engines and are
sent to them by the query dispatcher. The results obtained from the local sources are
merged by the result merger. The result merger ranks the local results according to
the global query and a similarity function and returns the best k result documents to
the user. Figure 4.9 illustrates these components and steps. In summary, the main
tasks of a metasearch engine on unstructured data are: database selection, document
selection, and result merging.

User

Query Dispatcher

Result Merger
Document Selector

Database Selector

User Interface

Search

Engine

Search

Engine

Figure 4.9.: Metasearch engine components [MYL02]

Database selection

The database selection problem considers two critical points: how are local database
contents described? How to select the potentially most useful databases according to
database descriptions and global user queries?

On the one hand, database descriptions have to represent heterogeneous content
sufficiently to allow an effective database selection. On the other hand, descriptions

73

4. Keyword Search in Structured Databases

have to be easily maintainable to allow the scalability to large numbers of databases.
Furthermore, creation of descriptions has to support cooperative and uncooperative
sources [Cal00]. Three main approaches exist [MYL02]: rough manual descriptions,
statistical content descriptions, and description learning by analyzing user feedbacks.

Rough manual descriptions contain high level information about a database, e.g.,
a short description of the database’s subjects. While the descriptions are compact,
they are inexact for heterogeneous sources and do not scale to high numbers of sources
because of the manual creation.

Statistical representations contain summarized frequency statistics of a document
collection. Analogously to single source statistics, database statistics consist of term
statistics, denoted as unigram language model [Cal00]. The descriptions contain for
each term different values, e.g., document frequency, aggregated term weights in one
source. Additionally, the database size may be stored. In case of cooperative sources,
the representative statistics are easily exchanged using standard protocols, for example,
STARTS [GCGMP97] and SDARTS [GIG01, IBG02]. Query-based sampling [CCD99,
CC01] is used to obtain statistics from uncooperative sources.

Query-based sampling is based on the hypothesis, that the language model ob-
tained from a small sample of documents is similar to a complete resource description.
As the sources do not allow a complete scan, traditional techniques as reservoir sam-
pling [Vit85] cannot be used. Query-based sampling uses a number of random keyword
queries to retrieve a sufficiently large set of documents, from which the resource de-
scription is created. Different studies showed the effectiveness of query-based sampling
in distributed IR [CC01, SC03] as well as in database classification [IG02].

Finally, database description can be constructed using learning methods that an-
alyze the user feedbacks about the quality of query results. Three kinds of learning
methods are used [MYL02]: static learning using training queries, dynamic learning by
analyzing user behavior after actual queries as well as combined approaches. Statisti-
cal descriptions are considered as the best and most flexible methods for the database
selection problem [MYL02, Cal00].

Now, the database selection problem can be defined as choosing most potentially
useful databases for a given information need and given resource descriptions. Most
database selection approaches adapt document ranking techniques for this purpose in
the following way. Every database is seen as one document. The term frequency is
the number of documents in the database that contain the term. The set of all local
databases is seen as collections of documents. Hence, the document frequency of a
term is the number of databases that contain the term. In consequence, one can use the
document ranking functions as database ranking functions. Popular approaches are the
CORI approach [CLC95], which uses a Bayesian Inference Network, GlOSS [GGMT94]
and g/GlOSS [GGM95] using the vector space model as well as approaches using
additional semantic descriptions, e.g., [IG02].

Document selection

Document selection deals with the problem of how many documents have to be ac-
quired from the local sources. It uses the local similarity function in order to max-
imize the effectiveness with respect to the global similarity measure and minimizing

74

4.4. Keyword Search and Virtual Integrated Data Sources

the amount of retrieved documents. Meng et al. [MYL02] summarize the following ap-
proaches: (i) user-defined number of documents, i.e., the user specifies for each source
a number of required documents; (ii) weighted allocation, i.e., the number of docu-
ments to retrieve depends on the rank of the selected database — a higher database
rank implies more documents to select; (iii) a learning-based approach in which the
number of documents is determined by past user experiences; (iv) guaranteed retrieval
is a formal method to ensure that all potential documents are retrieved for any given
query.

Result merging

Each searched database returns a sequence of ranked results, which have to be merged
by the distributed IR system into one result list. Heterogeneous document ranking
and score values cause the main problem of merging. That is caused by different
corpus statistics, different algorithms, and different ranking and score representations.
Solutions are [Cal00]:

∙ computation of normalized scores based on global statistics,

∙ recomputation of the relevance score on the global search client,

∙ estimation of normalized scores, or

∙ merging result lists using unnormalized scores.

The different methods require different levels of cooperation of the local sources, be-
ginning with full access to the data ranging to different levels of ranking algorithms
descriptions to uncooperative sources. Hence, the merging algorithm has to be chosen
based on the given databases.

4.4.2. Structured Hidden-Web Search

The Deep Web consists of large numbers of unstructured and structured sources. The
majority of these sources are structured databases [CHL+04], i.e., the databases have
a query form consisting of different predicates and corresponding connections and
deliver also structured results, e.g., lists of attribute-value-pairs. The following steps
are required to meet the challenges of querying Deep Web sources [CHZ05, HMYW03]:

Find deep Web sources: First, the Deep Web sources have to be found, i.e., the
start pages to or search form of the local databases. Specialized crawlers have
to be developed, because manual indexing is not scalable.

Query interface extraction: Second, the query interfaces have to be extracted and
to be described. The system has to find query interfaces, e.g., HTML forms, and
has to interpret the possible predicates and their possible connections.

Schema Matching: Predicates consist of attribute names, comparison operator, and
allowed values, i.e., the data type. It is necessary to translate queries from one
source (or global layer) to other source queries. Hence, we need schema matching,

75

4. Keyword Search in Structured Databases

which relates an attribute to other attributes. As the number of sources is high
and often changing, automatic schema matching techniques have to be used.

Source Clustering: Source clustering groups sources into categories that are orga-
nized hierarchically. Furthermore, a unified query interface is constructed for
each category, e.g., a standard interface for book search. The interfaces are
presented to the user.

Query Transformation: Query transformation is needed in order to translate queries
against standard query interfaces to local query forms. The following types of
heterogeneity have to be considered [ZHC05]: attribute level, predicate level, and
query level. Attribute level heterogeneity denotes that two sources represent
the same concept with different attribute names. If two sources use different
predicates for the same concept, we speak of predicate level heterogeneity. For
example, consider the search for items using a predefined price range. In different
sources, the pre-defined ranges are often different. Query level heterogeneity
comprises the differences in combinability of predicates in different sources.

Source Selection: Given a user query, relevant sources have to be selected. The
sources can be selected based on query capabilities (e.g., supported attributes)
or data quality.

Result Compilation: Result compilation consists of the extraction of results from
Web pages, transformation into the global format as well as the combination of
results across different systems.

As in the Hidden Web, similar to the flat Web, the sources are constantly changing,
all sub-problems have to be solved automatically. Algorithms have to be general,
but have to use domain-specific information like domain-specific ontologies or tax-
onomies [ZHC05].

The MetaQuerier system [CHZ05] integrates all these points as single subsystems.
However, the integration does not only allow complete coverage of the Deep Web
search, but also helps to improve the single systems by result feedbacks and ensemble
techniques.

A second project for integration of Deep Web sources is the E-Metabase
project [HMYW03, HMYW05]. A central part of that system is the WISE-Integrator
that integrates search interfaces from different sites. Here, all information is used
that can be extracted from HTML forms: attribute label, data types, value ranges,
positions in the forms, domains (infinite, finite, range, hybrid), default values as well
as positions in forms. Based on this information and semantic relationships (e.g.,
synonyms, hypernym, meronym) the schemas, i.e., the forms, are integrated. Further-
more, using clustering algorithms, representative attribute names are automatically
constructed. Global interfaces are built automatically for each domain containing the
most important attributes found in the local schemas.

The integrated global schemas introduce a new problem: the user has to work with
complex, domain-dependent search interfaces. Initially, the right domain has to be
chosen, secondly, the user has to get an overview over the offered query interfaces

76

4.4. Keyword Search and Virtual Integrated Data Sources

and, thirdly, some query capabilities like disjunctive queries are hard to implement
with normal query forms. Therefore, simplified keyword-based search interfaces were
proposed.

Li et al. [LMM07] proposed a keyword-based search interface on top of the WISE-
Integrator [HMYW03, HMYW05]. The system, denoted as EasyQuerier, provides
a keyword-based search interface and maps the keywords to domains, e.g., book or
job databases, and subsequently, to attributes and predicates. Mapping and query
translation utilize metadata information from global and local interfaces as well as
semantic dictionaries.

Calado et al. [CdSV+02, VCdS+02] proposed a system that structures keyword-
based queries for structured Web databases in the Deep Web. In this case, the keyword
queries are mapped directly to local query interfaces, i.e., attributes, instead of map-
ping to integrated query interfaces. In the first step, structured queries are created.
The structured queries are ranked using a Bayesian network model and executed, i.e.,
sent to the sources. Necessary information are terms that occur in the database and
the structure of the query interface. Uncooperative sources can be supported using
query-based sampling techniques [CC01]. After execution of the queries, the result
objects are ranked against the structured query and presented to the user. In both
cases, EasyQuerier and the system of Calado et al., results that span different sources
or domains are not supported. In the next section, we discuss this problem.

4.4.3. Virtual Integrated Structured Sources

Now we assume the scenario that information is spanning over virtually integrated,
heterogeneous, structured data sources. That means, a result, e.g., a tuple tree or an
XML node tree, contains parts from different sources. The described scenario emerges
especially in cooperative Intranets of large companies or agencies or small closed do-
mains of Web sources, e.g., Lost Art databases, which is exactly the working field
of mediator systems (see Section 2.1.2). Thus, it is obvious to use existing mediator
systems or existing integration techniques to extend single database keyword search
solutions (see Section 4.3) to virtual integrated data sources.

Keyword Search across heterogeneous relational databases

In Section 4.3.1, we described the problem of keyword search in relational databases
and corresponding solutions. Sayyadian et al. [SLDG07] extended that problem to the
search across heterogeneous relational databases. The problem is defined as follows.
Given a pure keyword query Q, the top-k minimal joining tuple tress (as defined
in Section 4.2.2) in the integrated database are the result of Q. Following settings
are considered in the given scenario: the local database systems are cooperative, but
heterogeneous on schema and data level; the information need of the user is changing
and on a short-term basis; foreign key relationships are exact within one database,
but approximate across several sources. The system consists of two phases: the offline
and the online phase (see Figure 4.10).

The offline preprocessing has two tasks: in the first task, the DBMS integrated IR
indexers of the local database systems are used to build IR indexes for each database.

77

4. Keyword Search in Structured Databases

Index Builder

D1 Dn

CN Generator

Condensed

Top−k

Searcher

D1 Dn

Distributed

SQL−queries

Refinement

Rules

Data instance

matcher

IR index 1 IR index n

Foreign key joins

Q

offline preprocessing online query processing

Data−based

Join Finder

Schema

Matcher

Foreign−Key Join Finder

Figure 4.10.: KITE system architecture [SLDG07]

The indexes include keywords and their occurrences in tuples and attribute values. In
the second task, foreign keys across different databases have to be discovered. The
second task is implemented using the following steps. Firstly, approximate keys are
searched for each table because given keys based on id attributes cannot help with
inter-database joins. Secondly, the system tries to find matching join attributes to the
constructed approximate key attributes. Thirdly, the foreign key joins are enumerated,
i.e., for each pair of tables may exist several foreign key joins that comprise several
key attributes and corresponding referencing attributes. The first three steps use
techniques on the data level. The last step removes semantically incorrect joins by
applying an automatic schema matching algorithm. That means, if attributes in a
foreign key relationship do not match, the foreign key join candidate is not valid and
will be discarded by the system. The surviving inter-database foreign key joins are
added to the schema graphs of the local databases, and an approximate global schema
graph is built.

Online query processing follows schema graph-based single database keyword search
but extends it in the following ways to improve the scalability. Initially, every table
R in the integrated database is searched for tuples that contain some of the keywords
in Q. The retrieved tuple sets and the integrated schema graph are used to create a
tuple set graph, which describes every way tuples may be joined within and across
databases. Based on the tuple set graph, candidate networks, i.e., trees satisfying a
given size threshold, are generated, and materialized subsequently using distributed
SQL queries. In order to improve the scalability, the tuple set graph is condensed in
that way, that different joins between the same two nodes are collapsed into one join.
Now, the system generates condensed candidate networks. The candidate networks
are evaluated using iterative refinement, i.e., only for the top-k necessary parts of
the network are materialized. Condensed candidate networks and iterative refinement
allow better scalability for search across different sources.

78

4.4. Keyword Search and Virtual Integrated Data Sources

Answering keyword queries over virtual views

The KITE system [SLDG07] automatically extracts connections between different
databases. Such connections can be constructed manually using views. Shao et
al. [SGB+07] presented a system that implements efficient keyword search over Vir-
tual XML Views. The problem of keyword queries over virtual views imposes two
main challenges. A view combines different sources with join connections. Therefore,
the query keywords may be distributed over different sources and only the combined
sources contain the result. The views have to be materialized to obtain the connections
which is inefficient. The first problem is the selective extraction of elements that pro-
vide information about the connection without materializing the complete view. The
second task is the efficient generation of scoring statistics from the base data, so that
the ranking is the same as in the materialized view. Shao et al. proposed the following
system architecture (see Figure 4.11) and a corresponding three-phase algorithm.

Evaluator

Optimizer

Parser

Keyword queries

over virtual views

QPT

Generation

Module

Scoring & Materialization

Module

Inverted List

Indexes

Structure (Path/Tag)

Indexes

Document

Storage

PDT Generation

Module

Results

Ranked

Figure 4.11.: Querying over virtual XML views [SGB+07]

Initially, a keyword query over virtual views is parsed. Using the keyword query and
the view definitions, one query pattern tree (QPT) for each source is created by the
QPT generation module. A QPT comprises all structural and content predicates that
are necessary for query evaluation, i.e., join connections, and result materialization.
A QPT is a tree in which the nodes contain search predicates, e.g., tag names, view
predicates, or keyword predicates. Edges represent either parent-child or ancestor-
descendant relationships. Furthermore, nodes and edges are annotated describing
whether they are necessary for query evaluation and/or result materialization. The
QPT is sent to the PDT (pruned document tree) generation module. Furthermore,
the original query is modified and sent to the standard query evaluator.

The PDT generation module creates pruned document trees that contain only ele-
ments that satisfy the QPT, i.e., that are necessary for query evaluation. The gener-
ation module uses only indexes on the base data for PDT construction. Furthermore,

79

4. Keyword Search in Structured Databases

the PDT contains all statistic information about the terms, which are required for
score computation.

The standard query evaluator uses the constructed PDTs as well as the modified
queries of QPT generation module to execute the view queries and to combine the
PDTs. Finally, the Scoring and Materialization module retrieves the actual data from
the base data and returns the ranked results.

In summary, the approach of Shao et al. [SGB+07] allows the efficient keyword
search over virtual XML joins. In that way, it supports distributed, cooperative,
virtual integrated data sources. Limited heterogeneity can be resolved using view
definitions.

Natural Language Search over Mediator Systems

Analogously to natural language queries (NLQ) over single structured databases,
NLQ can also be applied to mediator systems integrating heterogeneous structured
databases. Liu et al. [LLY+05] proposed an NLQ system on top of a mediator
system [SBJ+01]. In the proposed system, databases are represented as 3-tuple
DG = (V,E, P). The set of nodes V contains relation nodes, attribute nodes as well as
value nodes that represent a set of corresponding attribute values. The set E is a set of
edges between nodes comprising containment edges as well as foreign key relationship
edges. Every edge has an assigned weight describing the semantic distance between
two nodes. Finally, P is a set of labeled paths. A path is a set of nodes that are
connected by edges. The label describes the semantic relationship between start and
end node, e.g., Be, Of , or Related. Given a set of databases represented as described
above and an NLQ, the result is computed using the following steps:

1. A NLQ query q is analyzed and transformed into a directed, labeled query graph
QG = (V, S, E) where V is a set of nodes representing the terms of q, the set
S ⊂ V represents target nodes, i.e., the desired output of the query, and E is a
set of labeled edges between the nodes. The edge label indicates the semantic
relationship between two query nodes. In detail, the labels are be, ℎave, of,
possessive, and attacℎed.

2. The second step is the database ranking, i.e., the selection of sources that fit best
to the query. For this purpose, the query graph QG is mapped to a database
graph DG. Firstly, every node of QG is mapped to a node of DG using a lexicon.
The lexicon stores triples, which relate possible terms to database schema nodes
and the corresponding semantic distance. An ontology of words is used to extend
the query and to improve the mapping. Secondly, every edge in QG is mapped
to a database path in DG using a mapping table. Finally, the mapped sub-graph
of DG is an answer graph. The best result of a mapping is the answer graph
with the least sum of edge weights. In summary, the databases are ranked by
increasing semantic distance.

3. In the third step, the answer graphs are translated into queries that are sent to
the sources. The results are retrieved, ranked and presented to the user.

80

4.4. Keyword Search and Virtual Integrated Data Sources

In summary, the approach of Liu et al. implements natural language queries on het-
erogeneous structured databases by reusing the functionality of a mediator system.
The system is capable to select best databases. Results do not span across different
sources in contrast to the previous two discussed systems.

Integration by querying

Typical mediator systems distinguish between integration and query phase. During
the integration phase, local schemas are integrated, i.e., correspondences are discov-
ered, integration conflicts are resolved, and a global schema is created. That clas-
sical approach conflicts with fast-changing information needs and user-specific point
of views to the data. Therefore, Domenig and Dittrich proposed the system SINGA-
PORE [DD01b] and query-based integration of heterogeneous data sources [DD00].
On the one hand, query-based integration presupposes a query-language that allows
fuzzy as well as exact queries. On the other hand, a user and the system need as much
as possible meta information about the sources to decide which data is expected and
to translate global queries into local source queries. Domenig and Dittrich address
these issues in the SINGAPORE system, which follows the three-layer architecture of
mediator systems but provides a global query language and a union of local schemas
instead of a global, integrated schema.

Data model. The local data is regarded as class extension and is considered as a
set that can be queried. Furthermore, in several levels more general data sets are
constructed which combine data sets from one or several sources. In fact, the data
space forms a tree where parent nodes represent the union of the data sets that are
assigned to the descendant nodes. There is one exception, nodes that describe the
structure of the content in the data sources are considered as composition nodes, e.g.,
a relational table is composed of its attributes. In the data space, every internal node
represents a set and can be queried. Figure 4.12 illustrates the data space that is
structured into four levels. Level 1 contains the structure of the local sources. Level
2 comprises the source names. The type of the source (structured, semi-structured,
unstructured) is described in level 3. Level 4 contains a classification hierarchy in
which the sources are classified.

Query language. OQL is extended to express fuzzy queries over the data space by
following concepts:

∙ the contains operator allowing keyword alike queries in the WHERE clause,

∙ regular path expressions as in semi-structured query languages [Abi97],

∙ operator LIKE allows the keyword search in the data space, i.e., in the metadata,
so that fuzzy structural queries are possible.

In that way, the user is enabled to express queries without complete knowledge about
the data space.

81

4. Keyword Search in Structured Databases

Level 4

Level 3

(Data or Content Type)

(Classification Roots)

Level 1

(source schema)

Level 2

(Source Location)

firstname lastname diedborn name typeartist title material city

artist institutioncultural_asset

artists_db cultural_asset_db institution_db general_search

keyword

structured semi_structured unstructured

HTML

data2 data1

data space

Figure 4.12.: SINGAPORE data space [DD01b]

Example 4.8 Given the data space in Fig. 4.12, the user can formulate a query
SELECT * FROM LIKE(painter.name) WHERE CONTAINS("Gogh"), in order to get all
information about painter whose name contain the word “Gogh” in any sub-node.

Metadata repository. The collected metadata is used to support the source selection
by the user and to enable the system to rewrite the fuzzy queries. The metadata in
the data space includes

∙ information about the structure, query capabilities, and result types of the
sources,

∙ soft metadata, i.e., descriptive information about sources in text form as well
as textual information about correspondences between sources and integration
conflicts,

∙ ontological knowledge, i.e., a thesaurus that provides information about syn-
onyms of search keywords.

The content of the metadata repository is indexed using an inverted index. The index
consists of normalized keywords and posting lists that contain all paths that start with
the keyword and all paths that end with the keyword and start with a data source
name. The former case is used for keywords that occur in level three or higher of the
data space, and the second if the keyword appears in level 1. Given this metadata
repository structure, SINGAPORE processes global, fuzzy queries as follows.

Global query preprocessing. The system has to translate fuzzy global queries to
a set of exact queries in the first step [DD01a]. First, the fuzzy paths in the LIKE

operator are processed. Given an input path, for each component of the path, it is
considered as keyword and all paths containing the keyword are obtained from the
metadata repository. Subsequently, the obtained path sets are intersected to create

82

4.5. Summary

a set of exact candidate query paths. In the next step, the contains operator is
rewritten taking into account the source query capabilities. Finally, the query parts
are combined and tested for consistency. Consistent queries are translated into source
queries and executed. In that way, SINGAPORE uses keyword search in the metadata
repository to rewrite fuzzy path queries into exact queries.

Further approaches

We now review exemplary further studies that cover other problems querying hetero-
geneous sources for keywords. Marian et al. investigate top-k queries according to a
monotonic ranking function over sources with different query capabilities [MBG04].
The authors assume two kinds of Web sources. The first kind returns a sorted list of
results according to a query. The second kind uses a random access to retrieve the
score of an object for an attribute. Now, the scores of different sources have to be com-
bined to the final score. The authors adapt Fagin’s TA algorithm [FLN01] and provide
an alternative based on upper bound scores and fast reduction of scores to decide if
a result is in the top-k result. Marian et al. study thereby vertically split relations,
i.e., every source provides ranking one attribute of the object. In contrast, Hristidis
and Papakonstantiou investigate the problem of horizontally split relations [HP04].
Different sources provide ranked results and we have to union the result for top-k pro-
cessing. These works use also monotonic ranking function and follow the basic idea
like keyword search on relation databases. Other works of joining results from different
Deep Web sources and top-k query evaluation are [HML09] and [WAJ08, WA10].

4.5. Summary

There is a large body of research for keyword search on structured and semi-structured
databases. This shows that the problem is recognized by the database community and
it is important for making databases more usable. There are many different problems
to be solved that are caused by the distribution of information across different data
elements. We classified the systems according to the dimensions query language, result
type, scoring and ranking methods, and processing method.

In the second part, we reviewed research of keyword search over distributed, hetero-
geneous data sources. Except few studies, most approaches deal with the selection of
sources and merging of results, but not with the problem of combining data across dif-
ferent sources. The KITE system allows the search across different relational databases
but assumes unrestricted query interfaces, i.e., all database operations are allowed. It
does provide connections between sources but does not provide data and schema inte-
gration. We argue in this work that we require an integrated view to the data. In order
to provide the integrated view, we use a concept-based mediator system. Furthermore,
we require only limited querying capabilities of sources.

From the results of this chapter, we conclude following points for the keyword search
approach:

∙ We require keyword-only and labeled keyword queries as query language, because
they are simple to use and allow a restriction of results in the concept graph.

83

4. Keyword Search in Structured Databases

However, because of a complex schema, we must provide a kind of relaxation of
the labels to allow effective search and to avoid too restrictive queries.

∙ A concept-based mediator approach distributes information across different con-
cept instances that are connected by relationships. Hence, the result type of
keyword search should be a tree of concept instances that answer together a
keyword query.

∙ A ranking function should include a content score, a schema score, and should
score the structure. For schema score, we must consider the local schema infor-
mation, because users might only familiar with local schemata.

∙ As we require virtual integration, we do not assume a materialized data graph
of global instances. Instead, we materialize the data during querying. Hence,
we argue that the schema graph-based approach is the choice for combining a
mediator system and keyword search. That means, we need keyword statistics
on the global level that describes the keyword membership to concepts and
properties, but not in global instances. This requires limited cooperation of the
sources.

In the following chapter, we define keyword search over a concept-based integra-
tion model. Subsequently, we present the keyword processing approach following the
schema graph-based approach.

84

5. Concept-based Keyword Queries

We showed in Chapter 2 that the integration of heterogeneous, semi-structured data
sources is a necessity nowadays. There are many tasks to fulfill this integration task.
We emphasized that concept-based mediator systems allow the integration of semi-
structured, structured, and web-based data sources. We presented the concept-based
mediator system Yacob in Chapter 3. Concept-based mediator systems are especially
useful for few but complexly structured sources. The systems provide access to virtu-
ally integrated sources. However, concept-based mediator systems also provide com-
plex, domain-specific concept schemata and powerful, complicated query languages.
Simpler query interfaces like keyword-based queries are required.

Chapter 4 described keyword-based query systems over structured and semi-
structured databases that also have the goal of easy access to structured and semi-
structured databases. However, most approaches are defined for relational and XML
data as well as for centralized databases. This chapter defines keyword queries over a
concept-based global schema and virtually integrated sources. In that way, the chap-
ter provides the basis for the subsequently presented keyword processing. Figure 5.1
shows the contribution of the present chapter in reference to the complete work.

Global ObjectsSingle Concept

Query

Ranked Object

Networks

Query Network

Source Query Source Objects

Keyword query

Ranking function

− Syntax

Concept−Based Keyword Queries

− Query Networks (Joins) Optimization

− Optimization of Sets of Query Networks

− Query Network Execution − Ranking

− Empty Result Detection

− Statistics & Cost Functions

Concept−Based

Keyword Query Transformation

− Keyword Index/Statistics − Single Concept Queries Generation

− Query Networks (Joins) Generation

− Integration Model

Heterogeneous Sources

− Semi−Structured Data− Limited Query Interface

− Partially Cooperative

− Query Planning − Object Transformation

− Query Transformation

− Ranking

Object Network Generation

Access/Integration/Query Planning

− Semantics

Figure 5.1.: Overview keyword semantics

85

5. Concept-based Keyword Queries

The present chapter defines concept-based keyword queries and object networks as
their results. Concept-based keyword queries are labeled keyword queries over a con-
cept schema graph. Object networks are connected objects from different concept
extensions that answer a concept-based keyword query, i.e., contain all or some query
terms. The corresponding concept schema defines the connections between the objects
with concept properties. We rely in the discussion on the Yacob system, presented
in Chapter 3. However, the definitions can be adapted to other systems. We address
the following points in this chapter:

Data model: The data model uses the Yacob model as the basis. We describe con-
nected instances of concepts, denoted as object networks, as results of keyword
queries.

Keyword query syntax and semantics: After specifying the syntax of plain and
concept-based keyword queries, we describe the semantics of keyword queries
as lists of object networks that satisfy the queries and are ordered by query
score. Thereby, we discuss different semantics based on the structure of the
result.

Ranked materialization queries: The mediator virtually integrates data and objects
are integrated during querying. That means that we define materialization
queries that create valid result object networks for given keyword queries. We
also provide a scoring function that ranks materialization queries according to
a keyword query and virtual database. Thereby, we exploit limited statistics
about keywords and sources.

The chapter starts with a motivation of keyword queries and describes the challenges
arising from the keyword search processing.

5.1. Motivation

This section gives four introducing examples showing the necessity of general keyword
and concept-based keyword queries in the environment of a concept-based integration
system. We consider the Yacob system and the following scenario. There is a set
of databases, e.g., Web databases, relational databases, XML systems, etc., that pro-
vide information about cultural assets lost in the World War II because of looting or
vicissitudes of war. Furthermore, there are sources that provide information about
artists and institutions like archives and museums, respectively. The mediator system
integrates these sources. The system provides a concept-based schema for integra-
tion as well as usage. Figure 5.2 shows an exemplary part of the schema consisting
of three concept hierarchies: cultural assets, institutions, and persons. The concepts
have different properties and are connected by concept properties. Furthermore, the
figure illustrates parts of several concept extensions. Figure 5.3 shows the details of
exemplary objects.

The following examples show typical queries that can be easily expressed as keyword
queries, but are difficult to express in CQuery or other concept-based query languages.
The queries also require deep knowledge about the structure of the data.

86

5.1. Motivation

exhibited In

lost by

paintedBy

written by

concept level

data levelp1b1 inst1a1

a2

concept extensions

pa1

pa2

pr1d1

school

Person

Artist

Creator

Painter Drawer Sculptor Author

location

Archive

Institution

Library

Museum

PrintDrawingPainting

Sculpture

Book

CulturalAsset

FineArts Furniture

Graphics

Etching Engraving

name

born in

title

name

artist

Figure 5.2.: A concept schema example consisting of three concept hierarchies. Con-
cepts are illustrated as boxes and properties as ovals. Concept properties
are named lines.

in12,location,Prague

pr1,print

pr11,title,"Apocalyptic scene"

pr12,institution,"National Museum Prague"

pr13,artist,"Hans Holbein the Younger"

p1,painting

p11,title,"Portrait of Erasmus"

p12,artist,"Holbein"

d1,drawing

d11,title,"Hero and Leander"

d12,artist,"Peter Paul Rubens"

pa1,painter

pa11,name,"Peter Paul Rubens"

pa12,bornIn,"Siegen"

pa13,school,Flemish

pa2,painter

pa21,name,"Hans Holbein the Younger"

pa22,bornIn,"Augsburg"

in1,museum

in11,name,"National Museum Prague"

Figure 5.3.: Exemplary objects

Example 1. The user wants to retrieve all paintings made by Peter Paul Rubens.
She knows the corresponding concept (paintings) but not the exact property, hence,
the user can issue the CQuery statement illustrated in Figure 5.4. However, the
system cannot optimize this kind of WHERE condition and searches all properties of
concept painting for the keyword. If we add more keywords to the WHERE condition,
the system will generate all combinations of properties and keywords. The same query
could be expressed using a labeled keyword query [HN02, CMKS03]. In this case, we
have two labels: the first corresponds to the concept and the second to the property.
Assuming the concept is known to the user, we can formulate the keyword query
“painting::rubens” with empty property label.

87

5. Concept-based Keyword Queries

1 FOR $c IN concept [name="Paint ing "]
2 LET $e := extension ($c) ,
3 $p := $c/ p r o p e r t i e s ()
4 WHERE $e/$p ~= " rubens "
5 RETURN $e

Figure 5.4.: Listing CQuery keyword example

Example 2. The user looks for objects that contain the keywords “artist rubens” and
does not give any further structural information. The system has to decide where to
search: in schema elements or data values or both. Possible results are paintings, where
the keyword “rubens” occurs in the property “artist” or instances of the concept “artist”
that contain the keyword “rubens” in the “name” property. We cannot efficiently
express such queries in CQuery. Therefore, we have to find a way to translate the
keyword query into CQuery or similar statements. These statements retrieve instances
from one concept without combining different objects. This kind of keyword queries
is supported by the Yacob system. It was introduced by Declercq [Dec04] and also
described by Sattler et al. [SGS05].

Example 3. In the third example, the user knows approximately the concepts
where required objects occur. Unfortunately, she cannot specify the connection
between them. For example, consider the query “painter:name:holbein institu-
tion:location:prague”. The user would like to get information about the painter Holbein
and his works presented in or lost by institutions in Prague. In this case, two problems
occur. Firstly, the system has to find instances of the concepts “painter” and “institu-
tion”. Thereby, the system has to consider also sub-concepts and semantically related
concepts. That means that we need query expansion or relaxation. For example, an
artist Holbein may also be classified as an illustrator or sculptor. Secondly, the system
has to find the connection between these instances. That task is denoted as proximity
search [GSVGM98, HKPS06, LYJ08]. The instances are connected either directly or
indirectly through instances of other concepts. For example, an artist instance “Hans
Holbein the younger” is connected to the print instance “Apocalyptic scene”, because
it was made by him (see Figure 5.3). Furthermore, an institution “National Gallery”
in Prague exhibits the print “Apocalyptic scene” that was stolen in WW II. Thus, the
system combines the three instances to an answer with respect to the original query.
We denote these answers as object networks.

Example 4. The last example illustrates the most general case. The user issues a
plain keyword query and does not or cannot provide any further information. For
example, the query “rubens cultural assets Flemish” might retrieve a set of object
networks that contain information about an artist “Rubens”, cultural assets lost in a
“Flemish institution”, but also information about art made by a Flemish artist named
Rubens.

The keyword query processing has to combine all basic approaches above: location
of the keywords, query expansion as well as automatic connection between objects

88

5.2. Data Model

using joins. Similar approaches are keyword search in relational and semi-structured
databases (see Sections 4.3.1 and 4.3.2), but these systems mainly support central
databases and provide only limited schema search support. We reviewed in Sec-
tion 4.4.3 keyword search over heterogeneous data sources. However, these approaches
do not provide concept-based integration and schema element searches.

Based on the discussion of the examples, we will propose a new approach that
combines concept-based integration and keyword search as techniques to enable users
to search heterogeneous, semi-structured data sources. First, we define the data model
for keyword search as well as the syntax of the queries and the query semantics on
the basis of object networks. Second, a proposed scoring function ranks result object
networks according to their relevance. Third, we define query expansion mechanisms
that exploit the semantic relationships of the concept-based integration model.

5.2. Data Model

For keyword search, we generalize the Yacob integration schema and represent all
textual information in sources and schema as bags of terms. While we use the Yacob

system as foundation, other concept-based mediator systems with similar properties
can be used, too. We model the global database as a Virtual Document. A virtual
document is a directed graph. Every node represents a concept and its related infor-
mation. The nodes are connected by two kinds of edges: the first set of edges models
the is_a relationship between concepts; the second set of edges represents the set
of concept properties. We illustrate three connected nodes of a virtual document in
Figure 5.5. The terms of the nodes and the properties are extracted from the global la-
bels as well as from the source descriptions. Furthermore, the figure illustrates partial
source content terms for three exemplary properties.

In detail, every node n in the virtual document has a label n.label, a bag of associated
terms n.terms, and a set of properties n.properties. The label n.label identifies the
node. If we consider Yacob as the underlying model, the label will be the URI of the
concept. For example, the label painter identifies a node that represents the concept
“painter” (see Figure 5.5). The bag of terms n.terms contains all terms that describe
the node, i.e., the concept. The terms are extracted from the label name, the URI,
and the source mappings, for example. In the given example, the terms stem from the
global label (“painter”) and mappings (“artist”, “painter”, etc.). The set of properties
n.properties contains information about literal and categorical properties.

A property p consists of a label p.label, a bag of terms p.terms, and a set of source
terms p.sources. The label p.label is the URI of a property, and p.terms contains all
terms of the concept level assigned to the property (label, URI, source descriptions).
For example, the concept “painter” has the property “name”. Thus, the properties set
of the node contains a property representation with label = ”name” with the bag of
terms {name, name} because the global property is mapped to a local property that
is also denoted as “name”.

The set of source terms p.sources contains pairs (s, T (s, p)) where s is a source
and T (s, p) a bag of terms. T (s, p) consists of terms found in the property value
of p in objects of the extension of the corresponding concept of n. The terms in

89

5. Concept-based Keyword Queries

T (s, p) represent the extension of the concepts, i.e., the set of all instances. In case
of a categorical property, the corresponding source terms are categories, expressed by
global categories. In the example, the property “name” of concept “painter” represents
two sources, “webart” and “lostart”. Figure 5.5 illustrates the respective bag of terms
T (webart, name) and T (lostart, name).

The edges of the virtual document indicate subclassOf relationships Eis_a and con-
cept properties Elnk. A concept property edge e has a label e.label that is the URI of
the underlying concept property. The source node e.src represents the domain of the
property, and the target node e.tgt the range. Furthermore, the edge has an assigned
bag of terms e.terms containing all schema terms assigned to e. At last, the edge has
cardinalities e.srcCard and e.tgtCard. The cardinalities indicate the type of the edge:
one to one, one to many, many to one, or many to many. A subclassOf edge does not
have any attributes.

T(s,p)

webart

younger

hans

holbein

rubens

peter

paul

rubens

....

lostart

vincent

van

gogh

peter

paul

rubens

hans

holbein

...

label: FineArts

terms: {fine, arts, artobject, asset, kunstwerk}

properties: {

(...) }

(label: title, terms: {titel, title, title,name}, S_{title}),

(label: artist, terms: {artist, kuenstlername, artist}, S_{artist}),

lostart

apocalyptic

scene

flowers

sun

hero

leander

way

tarascon

webart

flowers

mona

lisa

sun

scene

....

S_{artist}S_{title}

properties: {

(...) }

label: Paintings

terms: {painting, malerei, artobject, asset, painting}

(label: artist, terms: {artist, kuenstlername, artist}, S_{artist}),

(label: title, terms: {titel, title, title,name}, S_{title}),

S_{name}

label: Painter

terms: {painter,artist,painter,künstler,maler}

properties: {

(...) }

(label: name, terms: {name,name}, S_{name}),

s

concept property artist.sources

subclassOf

node

lostart

van

gogh

peter

paul

rubens

....

vincent

label: PaintedBy

terms: {paintedBy, painted}

srcCard: N

tgtCard: 1

Figure 5.5.: Virtual document

The following definition summarizes the virtual document. Let T be the set of all
terms and MS(T) the set of all bags of terms.

Definition 5.1 Virtual Document
A virtual document is a directed, labeled graph D = (ND, ED) with

∙ ND is a set of nodes with ∀n ∈ ND :

– n.label ∈ URI the identifying label of the node,

– n.terms ∈ MS(T) a bag of terms,

– n.properties a set of property information.

90

5.2. Data Model

∙ A property p ∈ n.properties consists of

– p.label ∈ URI the identifying label of the property,

– p.terms ∈ MS(T) a bag of terms,

– p.source a set of source content terms of the form (s, T (s, p)) with s ∈ Name
the name of the source and T (s, p) ∈ MS(T).

∙ ED = Eis_a ∪ Elnk is the set of edges with ∀e ∈ ED e.src ∈ ND the source node
and e.tgt ∈ ND the target node. For each edge e ∈ Elnk the edge has following
properties

– e.srcCard ∈ {1, N} and e.tgtCard ∈ {1, N} the cardinalities of the con-
cepts,

– e.label ∈ URI the URI of the concept property,

– e.terms ∈ MS(T) a bag of terms.

□

For each virtual document, a concept graph exists. The concept graph is the graph
of all node labels, connected by labeled edges and subConceptOf relationships. The
concept graph acts as schema of the virtual document describing the concepts only.
We define the concept graph as follows.

Definition 5.2 Concept Graph
A concept graph of a virtual document D = (ND, ED) with ED = Eis_a ∪ Elnk is a
directed graph CG(D) = (CCG, ECG) with:

CCG ={n.uri∣n ∈ ND} and

ECG ={(n1.uri, n2.uri, e.label)∣e = (n1, n2) ∈ Elnk, }

∪ {(n1.uri, n2.uri, is_a)∣(n1, n2) ∈ Eis_a}.

□

The concept graph represents the concept schema of the virtual documents without
literal and categorical properties.

Handling categorical values

Categorical values are homogeneously modeled as category hierarchies on the global
level in Yacob. Every category is represented by different values in the sources and a
global name. We now extend the virtual document by separate category hierarchies.
The categories create a directed, acyclic graph V = (KV , EV). This graph is a set
of not connected trees. The nodes represent categories. The directed edges model
the subCategoryOf relationship between categories. Every node n ∈ KV has an
identifying label n.label ∈ URI and a bag of terms n.terms ∈ MS(T). The bag of
terms consists of the global name of a category as well as all local category notations.

91

5. Concept-based Keyword Queries

We extend the Definition 5.1 here and add the graph V to the virtual document. That
means that a virtual document is defined as

D = (ND, ED, V).

Concept and object network

We denote a view on a concept graph as a concept network. A node in the concept net-
work consists of an alias and the label of the concept node. The edges are labeled with
the label of the edge between the concept nodes in the concept graph. Furthermore,
the concept network does not contain subConceptOf relationships.

Definition 5.3 Concept Network
A concept network is a directed, acyclic, labeled graph CN = (ACN , ECN) with nodes
ACN ⊂ Name × URI and ECN ⊂ A × A. A node (alias, uri) ∈ ACN consists of a
unique alias and concept node label uri. An edge e ∈ ECN has a label e.label ∈ URI. A
concept network CN = (ACN , ECN) is a view to a concept graph CG = (CCG, ECG) if

∙ ∀(alias, uri) ∈ ACN : uri ∈ CCG, and

∙ ∀e = (a1, a2) ∈ ECN∃e
′ = (uri1, uri2) ∈ E(CG) : uri1 = a1.uri ∧ uri2 =

a2.uri ∧ e.label = e′.label.

□

At last, we define an object network ON. An object network is a set of objects that
are connected via concept properties, i.e., they belong to the join of the corresponding
concept extensions. While objects are instances of a concept extension, object net-
works are instances of a concept network. Thus, an object network is a graph where
nodes are objects and edges conform to concept properties that connect the objects.
Every concept property is mapped to a join. Therefore, two connected objects form a
tuple that belongs to the join. Assume a mapping function map : O → Name × URI
with map(o) = (a, uri) if o ∈ ext(uri).

Definition 5.4 Object network
An object network is a directed, acyclic, labeled graph ON = (OON , EON) with OON ⊆
O and EON ⊂ OON ×OON . Every edge e ∈ EON has a label e.label ∈ URI. The object
network ON conforms to a concept network CN = (ACN , ECN) if

∙ ∀o ∈ OON∃a ∈ ACN : map(o) = a and for all pairs of distinct objects o, o′ with
o ∈ OON and o′ ∈ OON and o ∕= o′, it holds map(o) ∕= map(o′), and

∙ ∀e = (o, o′) ∈ EON : (o, o′) ⇔ e′ = (map(o), map(o′)) ∈ ECN with (o, o′) is an
instance of the join ext(a.uri) ⊳⊲JM(e′) ext(a.uri).

The size of the object network is defined as the number of objects size(ON) = ∣NON ∣.
□

92

5.3. Query Model

Example 5.1 Consider the figures 5.2 and 5.3. A possible object network is

d1[(paintedBy, pa1), (exℎibitedIn, in1)]

saying the work “Hero Leander” (object d1) was painted by “Rubens” (pa1) and is
exhibited in the museum “National Museum Prague” (in1). The corresponding concept
network would be

CN = (a1, drawing)[(paintedBy, (a2, painter)), (exℎibitedIn, (a3, museum))].

A second object network

pr1[(paintedBy, pa2), (exℎibitedIn, in1)]

describes that the print “Apocalyptic scene” (pr1) was made by “Holbein” (pa2) and is
exhibited in the war by the museum “National Museum Prague”(in1).

In keyword search, we find object networks that satisfy a concept-based keyword
query. In the following section, we define the keyword queries and their semantics
based on materialization queries.

5.3. Query Model

Based on the data model, we now define the query model of the keyword search system.
First, we introduce the keyword query syntax. Second, we define minimal object
networks as results of keyword queries. Third, we define materialization queries that
are used to create valid results. Fourth, we give three semantics of keyword queries
based on materialization queries and a ranking function.

5.3.1. Keyword Queries

In this work, we define a keyword query as a set of query terms Q = {t1, t2, . . . , t∣Q∣}.
We distinguish two classes of query terms and keyword queries: plain keyword queries
and concept-based keyword queries.

A plain keyword query only contains plain keywords as query terms. That means
that every term ti ∈ Q is an element of the set of terms T . Plain keyword queries do
not restrict the position where the keywords can occur. In particular, all query terms
may match concept level and data level elements.

We denote the second class of keyword queries as concept-based keyword queries. A
concept-based keyword query belongs to the class of labeled keyword query [CMKS03,
YJ07]. The search terms consist of a label and a value keyword. The label determines
in which types of objects the system has to search for value keywords. Concept-based
query terms consist of two label keywords and one value keyword. The first label
keyword refers to the concept, and the second label describes the property. Both label
keywords are evaluated over the concept level, i.e., the concept schema and the source
descriptions. The value keyword matches data level object values. In summary, we

93

5. Concept-based Keyword Queries

define a concept-based query term t as a triple of keywords t = (kwc : kwp : kwv).
Note, that every part of a concept-based query term may also be empty, i.e., it can
have the value null .

Definition 5.5 Keyword Query
A set of query terms Q = {t1, t2, . . . , t∣Q∣} is either a

1. plain keyword query if ti ∈ T , for 1 ≤ i ≤ ∣Q∣, or

2. concept-based keyword query if ti = (kwc
i : kwp

i : kwv
i) with kwc

i , kw
p
i , kw

v
i ∈

T ∗ for 1 ≤ i ≤ ∣Q∣ with T ∗ = T ∪ {null}. Given the set of role ROLE =
{concept, property, value}, we say that for all ti ∈ Q, keyword kwc

i has the role
“concept”, keyword kwp

i the role “property”, and keyword kwv
i the role “value”,

respectively.

□

Example 5.2 The following keyword queries are typical examples. The query

Q1 = {(painting : title : sunflower), (painting : artist : Gogℎ)}

searches for paintings where the title contains “sunflower” and the artist name contains
the keyword “Gogh”. The second query

Q2 = {(painting : null : sunflower), (artist : null : Netℎerlands)}

does not specify property keywords in the concept-based query terms. It searches for
paintings that contain the value keyword “sunflower” and are connected to artists from
the “Netherlands”. The last exemplary query

Q3 = {painting, sunflower, artist, Gogℎ}

is a plain keyword query containing the same keywords but does not specify the role of
the keywords.

5.3.2. Minimal Object Networks

In Section 5.1, we showed that keywords of a query are spread over different connected
objects. This makes the result of keyword queries to be a list of object networks. At
this point, we assume there is an operator contains that decides if an object o or an
edge e contains a query term t. Thereby, t is either a plain query term or a concept-
based query term. We define the contains operator and materialization queries in the
following Section 5.3.3.

With the help of this operator, we can define a minimal object network according
to a keyword query. As shown in Hristidis et al. [HGP03], result networks have to
satisfy the minimality condition to avoid spurious results.

Definition 5.6 Minimal Object Network
A minimal object network ON = (OON , EON) is a result according to a plain or
concept-based keyword query Q = {kw1, kw2, . . . , k∣Q∣} and a number sizemax if

94

5.3. Query Model

∙ all (AND) or some (OR) keywords are contained in the object network,

∙ all leaf nodes (objects) of the network contain at least one search keyword or are
connected to the network by an edge that contains at least one keyword,

∙ the network size size(ON) is not bigger than sizemax, and

∙ the network is minimal, i.e.,

AND case: no object or edge can be removed without breaking the previous rules
or disconnect the network.

OR case: no object or edge can be removed without removing a keyword match,
breaking the previous rules, or disconnect the network.

□

The definition states the following points. Firstly, the object network has to contain
all (or some) query terms using the operator contains. Secondly, the leaves of the
network have to contain a keyword. Without this requirement, the networks can be
extended arbitrarily without matching a keyword query better. This leads to spurious
results. We extend previous definitions [HGP03] in that way, that we allow keyword
containment in edges. If a leaf object is connected to the rest of the network with an
edge that contains a query term, the leaf satisfies the minimal requirement. Thirdly,
we require a maximum value of the object network size, denoted as sizemax, to restrict
the result set. We assume all networks with a bigger size are not relevant. In summary,
all object networks satisfying the defined characteristics are valid results according to
a concept-based keyword query, a maximum size, and the containment operator.

For example, Figure 5.6 illustrates two minimal object networks. The first is an
answer to the query {prague, augsburg}. The second network is an answer to the
query {F lemisℎ, Leander, lost}. It is minimal, because the object in1 is connected
with the edge lostBy that contains the keyword lost.

createdBy

createdBy lostBy

in12,location,Praguepa22,bornIn,"Augsburg"

pa13,school,Flemish

d12,artist,"Peter Paul Rubens" in12,location,Prague

d11,title,"Hero and Leander"

exhibitedIn
pr1,print

pr11,title,"Apocalyptic scene"

pr12,institution,"National Museum Prague"

pr13,artist,"Hans Holbein the Younger"

in1,museum

in11,name,"National Museum Prague"

pa2,painter

pa21,name,"Hans Holbein the Younger"

pa1,painter

pa11,name,"Peter Paul Rubens"

pa12,bornIn,"Siegen"

d1,drawing in1,museum

in11,name,"National Museum Prague"

Figure 5.6.: Exemplary minimal object networks

95

5. Concept-based Keyword Queries

5.3.3. Materialization Queries

Objects and object networks are not materialized but have to be created in order to
be an answer of a keyword query. Therefore, we use the virtual document as the basis
to create materialization queries according to a keyword query. A materialization
query is used to obtain and combine global objects. A materialization query is a
structured, concept-based query and an interpretation of the keyword query over the
virtual document. It guarantees that its results are valid object networks according
to the keyword query. However, a materialization query cannot guarantee that its
result set is not empty. Thus, a materialization query corresponds to keyword query
interpretations as described in the systems SQAK [TL08] or IQp [DZN10].

Given is a virtual document D = (ND, ED, (KV , EV)) that provides the information
of positions of keywords but not object identifiers. Based on the position, a keyword
kw ∈ T is interpreted in the following way.

Definition 5.7 Keyword Interpretation
The keyword interpretation (kw, uri, pred) of kw ∈ T with respect to D has a predicate
pred of the form

Case 1: pred := true if

Case 1a: ∃n ∈ ND : n.label = uri ∧ kw ∈ n.terms

Case 1b: ∃e ∈ ED : e.label = uri ∧ kw ∈ e.terms

Case 2: pred := exists(prop) if n ∈ ND ∃p ∈ n.properties : n.label = uri∧p.label =
prop ∧ kw ∈ p.terms,

Case 3: pred := prop ∼= kw if n ∈ ND ∃p ∈ n.properties ∃(s, T (s, p)) ∈ p.sources :
n.label = uri ∧ p.label = prop ∧ kw ∈ T (s, p),

Case 4: pred := prop = v.uri if n ∈ ND ∃p ∈ n.properties ∃(s, T (s, p)) ∈ p.sources :
n.label = uri∧p.label = prop∧v.label ∈ T (s, p) with v ∈ KV and kw ∈ v.terms.

□

The keyword interpretations are classified into two groups: schema level and data
level interpretation. The schema level interpretations refer to schema level elements
and do not filter the extensions (case 1) or test only for existence (case 2), respectively.
The second group will select objects from an extension (cases 3 and 4). Case 1 assumes
that a keyword is found in a concept (1a) or concept edge (1b). Thus, the interpreta-
tion does not induce a filter predicate. For example, the keyword "painter" is found
in the terms of the node with the label "Painter" (see Figure 5.5). The corresponding
interpretation is (painter, Painter, true). Thus, we select a concept or concept edge
with the keyword. In case 2, the keyword is found in a data property. It is also in
the schema role, but also states, that retrieved objects must include a value for the
property. For example, the keyword "title" is found as property term for data prop-
erty "title" of node "paintings". The interpretation is (title, paintings, exists(title)).
Case 3 expresses that the keyword kw occurs in a data value in a source. For ex-
ample, assume the keyword "Vincent". This term occurs in the lostart database for

96

5.3. Query Model

the concept "painter" and the property "name". Therefore, we interpret the key-
word as (vincent, painter, name ∼= V incent). The interpretation states that objects
of the concept "painter" contain the keyword “vincent”. Case 4 handles categorical
values. We assume a category v ∈ KV . The keyword contains the term kw, i.e.,
kw ∈ v.terms. If the label v.label occurs in any source of concept/property pair, we
can interpret the keyword kw as category selection. For example, the keyword "veg-
etable" occurs in the category "Fruits/Vegetables". If now the category "Fruits/Veg-
etables" occurs in a source for “paintings/motif” then the keyword will be interpreted
as (vegetable, paintings,motif = ”Fruits/V egetables”).

We denote the set of all interpretations of keyword kw with respect to D as
interpretation*(kwc, D, role). The parameter role has the values c, p, v that restrict
the valid interpretation of the keyword. A concept keyword must occur in a concept
node term set (c, case 1a), a property keyword must occur in a data property or con-
cept property term set (p, case 1b) or case 2). Finally, a value keyword must occur
in a data value (v, cases 3 or 4). The parameter role can be empty for considering
all interpretations. After the interpretation of one keyword based on the virtual doc-
ument information, we deal now with the interpretation of plain and concept-based
query terms. A plain query term is one keyword, i.e., t = kw. The interpretation of a
plain query term t is than

interpretation(t, D) =
{

{i}∣i ∈ interpretation*(t, D)
}

.

In general, we create singleton sets from the interpretations. That is necessary to
support concept-based query terms in the same way. We define the interpretation of
a concept-based query term t = (kwc : kwp : kwv) as the set

interpretation(t, D) = {{ic, ip, iv}∣ic ∈ interpretation*(kwc, D, c),

ip ∈ interpretation*(kwp, D, p),

iv ∈ interpretation*(kwv, D, v)∧

ic.uri = ip.uri ∧ ip.uri = iv.uri ∧ ic.uri = iv.uri∧

ip.prop = iv.prop}.

In every interpretation set for t, all interpretation of the concept keywords must refer
to the same concept. The property and value keywords have to refer to the same
property. That leads to following points. First, if a component keyword has the null
value, we will ignore the correspondent terms in the computation. Second, an edge
can only be referred by a concept-based query term, if the value and concept keywords
are null.

For example, consider the concept-based query term t = (artist : name : gogℎ) and
the exemplary virtual document in Figure 5.5 on page 90. One interpretation of t is
{(artist, artist, true), (name, artist, exists(name)), (gogℎ, artist, name ∼= gogℎ)}.
Taken together, the term t is interpreted as all objects of concept artist that con-
tain the keyword “gogh” in the property “name”.

97

5. Concept-based Keyword Queries

Materialization query

Now we can define a materialization query as an interpretation of a keyword Q =
{t1, t2, . . . , tn}. For a given virtual document D, we get a set of interpretation sets Iti
for every query term ti. The structure of a materialization query is described by a
concept network. The complete materialization query consists of a concept network
and a valid combination I of term interpretations from Iti .

Definition 5.8 Valid Materialization Query
Given are a keyword query Q = {t1, t2, . . . , tn} and its interpretations It1 , It2 , . . . , Itn
with respect to a virtual document D. A materialization query for Q is a pair
mq = (CN, I) with CN = (ACN , ECN) a concept network and I a set of interpretations.
For every node n = (label, uri) ∈ ACN or edge e ∈ ECN , we define the assigned
interpretations as assign(n) = {i∣i ∈ I∧∃(kw, n.uri, pred) ∈ i} and assign(e) = {i∣i ∈
I ∧ ∃(kw, e.label, pred) ∈ i}. Assuming AND semantics, the materialization query mq
is valid with respect to Q if:

1. ∣I∣ = ∣Q∣ and ∀t ∈ Q∃i ∈ I : i ∈ It,

2. for each leaf node n of CN it holds assign(n) ∕= ∅ or it exists an edge e =
(n, n′) ∈ ECN with assign(e) ∕= ∅,

3. it exists at least on leaf node (label, uri) with a keyword interpretation of the
form (kw, uri, prop ∼= kw) or (kw, uri, prop = v),

4. ∣ACN ∣ ≤ Sizemax, and

5. no interpretation, alias, or edge can be removed without breaking the previous
properties.

□

The first point of the definition expresses that the set of term interpretations I con-
tains exactly one interpretation for each query term. Given the exemplary query Q =
{ℎans, f lowers} the set I must have one interpretation from each Iℎans and Iflowers.
Let I be the set {{(ℎans, artist, name ∼= ℎans)}, {(flowers, paintings, title ∼=
flowers)}}, for example. The second point requires that the leaf nodes must be spec-
ified, i.e., a keyword interpretation has to be attached to them. The materialization
query selects objects and combines them to object networks. Object networks must
have keywords in every leaf. Thus, the keywords must be in every leaf of the mate-
rialization query, too. This ensures selection of valid objects and the construction of
valid object networks. The third point requires that at least one data source selection
must be in the materialization query. Since we cannot get all values from a source or
concept extension, we must provide at least one data selection condition. The fourth
point limits the size of materialization queries. The fifth point ensures the minimality.

Example 5.3 Assume the keyword query

painter : name : rubens,museum :: prague.

98

5.3. Query Model

A valid materialization query mq = (CN, I) is

(a1, Paintings)[(paintedBy, (a2, Painter)), (exℎibitedIn, (a3,Museum))]

with interpretation assignments

assign(a2) ={{(artist, Painter, true), (name, Painter, exists(name)),

(rubens, Painter, name ∼= ”rubens”)}

assign(a3) ={{(museum,Museum, true), (prague,Museum, city ∼= ”prague”)}}.

Translation of materialization queries

We show the translation of a materialization query into a CQuery statement of the
Yacob system for illustration of materialization queries and as an example. Every
concept property and, therefore, every edge in a materialization query is mapped to a
join condition. We denote the join condition of an edge e as cond(e). Algorithm 5.1
sketches the transformation. Assume as exemplary materialization query mq above.
In step one, we create all node-related clauses in the CQuery statement. For each alias
a ∈ AMQ, we create the concept selection (line 4), e.g., $a2 IN concept[uri = "Painter"],
and the extension function (line 5), e.g., $a2_ext := extension($a2). Additionally, we
create the selection clause based on the assignments (lines 7-17). If the assignment
is of the form (term, uri, true), we will omit it. For example, the assignments for a2
are translated to $a2_ext/Name is not null and $a2_ext/Name ∼= "rubens". In
the following, the algorithm adds the join conditions (lines 20-22). For every edge, we
obtain the condition cond(e) and replace the concepts with the corresponding variable
names, and add the condition to the WHERE clause. For instance, the edge paintedBy
is represented by the condition $a1_ext/artist = $a2_ext/name. In line 23 of the
algorithm, we detect unnecessary predicates in the WHERE clause and remove them. For
example, the algorithm removes the predicate $a2_ext/Name is not null because it
is implied by $a2_ext/Name ∼= "rubens". Furthermore, the algorithm ensures that
all objects of the result are disjoint (line 24). Finally, we add all extension variables
to the RETURN clause and combine all clauses to the final statement. Figure 5.7 shows
the final CQuery statement of the example.

Keyword query semantics

Keyword query semantics describes the result of a keyword query Q for a virtual
document D. We use a scoring function score(mq,Q) that assigns a score value to a
materialization query mq according to the keyword query Q. The function is used to
rank the results, i.e., materialization queries as well as their result object networks are
ranked by the score of the materialization query. The details of one possible function
are described in the following Section 5.3.4. In the following, we will discuss three
semantics: All-sizemax semantics, Top-k semantics, and Top-k concept networks.

99

5. Concept-based Keyword Queries

Algorithm 5.1 Translation: Materialization query to CQuery
Input: MQ = (AMQ, EMQ, I, assign())
Output: CQuery statement cquery

1: function TranslateMQToCQuery(MQ)
2: FOR = ””,LET = ””,WHERE = ””,RETURN = ””
3: for all a = (alias, uri) ∈ AMQ do
4: append to FOR statement "$alias IN concept[uri = "uri"]"
5: set extension variable var = alias + ”_ext”
6: append to LET statement "$var := extension($alias)"
7: for all (term, uri, pred) in assign(a) do
8: if pred == exists(p) then
9: add to WHERE "$var/p is not null"

10: else if pred == p ∼= t then
11: add to WHERE "$var/p ∼= "t""
12: else if pred == p = v then
13: /* assume a category index idx that is incremented */
14: add to LET "$k_idx := $var/p[uri = "v"]"
15: add to WHERE “$var/p = $k"
16: end if
17: end for
18: end for
19: /* handle joins */
20: for all e = (a, a′) in EMQ do
21: add to WHERE the predicate "cond(e)" with corresponding variables
22: end for
23: optimize WHERE condition
24: add to WHERE for each pair a, a′ ∈ AMQ a predicate "$a.alias + "_ext" !=

$a’.alias + "_ext""
25: combine FOR, LET , WHERE, RETURN to cquery and return
26: end function

All-sizemax Semantics

In the first case, we want to explore the complete data. Thus, we do only restrict the
maximum size of valid object networks, and in consequence, the maximum size of ma-
terialization queries. The user wants to get all information. This kind of queries allows
the possible detection of new relationships or information during a post processing.
We denote this type of queries as All-sizemax keyword queries. For example, using a
maximum size of sizemax = 1 would return single objects as results without additional
information. The corresponding problem definition is formally stated as follows.

Definition 5.9 All-sizemax query results.
Given are a keyword query Q, a virtual document D, and a maximum size sizemax.
The All-sizemax result with respect to Q and D is a list of valid result object networks
that are the result of valid materialization queries according to Q, D, and sizemax. □

100

5.3. Query Model

1 FOR $a1 IN concept [name="Paint ing "] ,
2 $a2 IN concept [name="Painter "] ,
3 $a3 IN concept [name="Museum"]
4 LET $a1_ext := extension ($a1) ,
5 $a2_ext := extension ($a2) ,
6 $a3_ext := extension ($a3)
7 WHERE $a2_ext/Name ~= "rubens " and $a2_ext/City ~= "prague "
8 and $a2_ext/Name = $a1_ext/ Ar t i s t and
9 $a1_ext/ I n s t i t u t i o n=$a3_ext/Name and $a1_ext!=$a2_ext

10 and $a1_ext!=$a3_ext and $a3_ext!=$a2_ext
11 RETURN <re su l t >$a1_ext , $a2_ext , $a3_ext</r e su l t >

Figure 5.7.: Listing materialization query translation result

Top-k Semantics

All-sizemax queries may create a large set of data that is hard to explore and expensive
to create. Top-k queries are another approach. Top-k queries retrieve the k best
scoring materialization queries according to a keyword query Q that have a non-empty
result set. That means that the result can have more than k object networks because
a materialization query can return more than one object network. This type of queries
is helpful in situations where the user wants to have the best results, but she does not
have expectations about the structure or size of the results. For example, consider the
query “fine arts Flemish Prague”. Results can include only cultural assets, but also
networks containing institutions and artists as well as FineArts objects. The problem
is stated as follows.

Definition 5.10 Top-k query results.
Given a keyword query Q, return valid result object networks that are the result of the
k highest scoring valid, non-empty materialization queries mq according to a virtual
document D and scoring function score(mq,Q). The answer list has to be sorted in
descending score order. □

Concept Network Semantics

Another application of keyword queries is the further exploration of the integrated
data. In this case, the user formulates a keyword query and wants to discover the
different types of connections between the keywords in the form of object networks.
Materialization queries and object networks conform to concept networks. Many differ-
ent materialization queries and object networks might have the same concept network.
We say, the type of a connection between keywords is defined by the concept network.
For example, the user formulates a query “Holbein book paintings.” The result may
comprise object networks containing only book objects, networks between painter and
paintings or authors and books, etc. The user can inspect the instances of all types.

101

5. Concept-based Keyword Queries

Definition 5.11 All concept network query result
A list of object networks ON will be an all concept network query result with respect
to query Q, a scoring function score and a virtual document D, if

∙ all object networks in the list ON are valid answers with respect to Q and sizemax,

∙ the list contains all distinct types (concept networks) of answer object networks
with maximum size sizemax, and

∙ for each distinct concept network in the answer list, the list contains the top-k
object networks according to function score

□

Another variant of concept network semantics is to obtain the best n concept networks
and their corresponding k best instances.

5.3.4. Materialization Query Scoring Function

The ranking function of the query model is based on the score of materialization
queries. That means that we score queries but not object networks. The advantage
of this approach is that we can score a query based on the information in the virtual
document. In addition, the ranking function is independent of different, local scoring
functions. The disadvantage of the approach is that the result sets of object networks
have the same score and many object networks cannot be distinguished by score.
However, we assume that the result sets of many queries are small, which mitigates
the disadvantage.

The scoring function of materialization queries is based on the structure of the query
as well as on term weights in the bags of words of the virtual document. We describe
the content score with the help of the weight of term assignments based on the term
weight in the corresponding bags. The term weights are based on the tf ⋅ idf scoring
schema [BYRN99]. Here, we distinguish between concept and data level scores. At
last, we will show that the scoring function is monotonic according to scores of single
nodes. In the discussion below, we assume a virtual document D = (ND, ED, V).

Concept level term weights

Terms on concept level occur either in the terms of concept nodes or in the term bag
of properties. They represent the description of concepts and properties. In order
to compute the term weight, we use the term frequency (tf) and inverse document
frequency (idf). The term frequency describes the importance of a term in one term
bag. Global term bags contain terms from global labels as well as from mapping
information, e.g., local element names or filter values. We say a term is more important
if it covers more sources. That means, a term from a global label that covers all sources
is more important than a term originating from one source mapping representing only
one source. Let S(i) be the set of sources mapped to a concept i or property i. Let

102

5.3. Query Model

S(i, t) be the sources covered by a term t ∈ i.terms for a concept i or a property i.
Then, we formalize the term frequency tf(t, i.terms) as

tf(t, i) =

{

∣S(i,t)∣
∣S(i)∣

if S(i) ∕= ∅

1 if S(i) = ∅.
(5.1)

The second case is used for concept properties, i.e., edges in the virtual document.
Edges are not provided by sources, therefore, all terms are global terms.

The second component of the term weights is the inverse document frequency idf.
We distinguish between idf values for each type of elements. We have on concept level
the values idfC(t) and idfP (t) for a term t. The first describes the inverse document
frequency for concept nodes and the second is the inverse document frequency for
properties. Let dC the number of concept nodes, and dP the number of properties,
i.e., dC = ∣ND∣ and dP =

∑

n∈ND
∣n.properties∣. The inverse document frequencies are

defined as

idfC(t) = ln
dC + 1

dC(t)
(5.2)

idfP (t) = ln
dP + 1

dP (t)
(5.3)

with dC(t) the number of concept nodes (dP the number of properties) containing the
term t following the approach in [Sin01]. Combining the tf and idf values of terms,
we obtain the weight of a term in a concept node term bag or in a property term bag
as

wC(t, n) = tf(t, n) ⋅ idfC(t) (5.4)

wP (t, p) = tf(t, p) ⋅ idfP (t) (5.5)

with n ∈ ND a concept node of a virtual document and p ∈ n.properties a property
of a concept node n ∈ ND.

Data level term weights

The virtual document represents the extension of concepts as bags of terms. For every
concept node, it contains one bag of terms for every pair of source and property. We
compute for each bag the term weight for the contained terms. Subsequently, the term
weight combines the single weights to a term weight for every property of one concept.
In the first step, we consider categories as simple terms.

Assume a concept node n and the property p ∈ n.properties. The property p has a
set p.sources of pairs (s, T (s, p)). The term frequency of a term i in term bag T (s, p)
is the number of occurrences occ(t, T (s, p)). We assume this number is the number of
objects in the extension concept n that contain the term t for the given property p

103

5. Concept-based Keyword Queries

and come from the given source s. We normalize the term frequency according by the
relative bag size. That means, the term frequency is

tf(t, T (s, p)) =
1 + ln(occ(t, T (s, p)))

∣T (s,p)∣
avgSize

(5.6)

with avgSize the average size of all source bags in the virtual document. This is a
simplified computation from [Sin01].

The inverse document frequency of a term t is again the number of properties that
contain the term in at least one of the source term bags. We denote the number of
such properties as dS(t). Thus, we define the idfS value as

idfS(t) = ln
dP + 1

dS(t)
. (5.7)

Combining the tf values and the idf value, the following Equation (5.8) computes the
weight of a term t for the extension of a property p :

wS(t, p) =

⎛

⎝

∑

(s,T (s,p))∈p.sources

tf(t, T (s, p))

⎞

⎠ ⋅ idfs(t). (5.8)

Scoring function

The scoring function score(mq,Q) consists of the score of the content and the score of
the structure. Assume mq = (Amq, Emq, I) is a valid materialization query according
to keyword query Q. We assume, the weight of a term in the query is denoted as
wQ(t, Q). In general, the query weight is 1, but we show the use of the query weight
for query expansion in Section 5.4. First, we consider the term weights and get the
content score

contentscore(mq,Q) = w1 ⋅ schemascore(mq,Q)

+ w2 ⋅ datascore(mq,Q)
(5.9)

with w1 and w2 be two weights with w1 + w2 = 1. The schema score is the sum of all
assignments to concepts and properties. We define the schema score as

schemascore(mq,Q) =
∑

n∈Amq ,(t,uri,true)∈assign(n),
t∈Q

wC(t, n) ⋅ wQ(t, Q)

+
∑

n∈Amq,(t,uri,exists(p))∈assign(n),
t∈Q

wP (t, p) ⋅ wQ(t, Q)

+
∑

e∈Emq,(t,uri,true)∈assign(e),
t∈Q

wP (t, e.label) ⋅ wQ(t, Q)

(5.10)

104

5.3. Query Model

The equation summarizes the weights of terms in the query that are interpreted
as schema level terms. The first term summarizes the concept assignments, i.e., the
respective term weights in the concept term bags, the second term computes the sum
of all property assignments to concept and literal properties, and the third term builds
the sum of all assignments to concept properties. We assume that all terms t occur
in Q either as plain query terms or concept or property labels in concept-based query
terms.

The data score is computed as the sum of weights of terms that occur in the query
Q and in data level assignments of the materialization query. First, we provide a
preliminary datascore(mq,Q) function:

datascore(mq,Q) =
∑

n∈Amq,(t,uri,pred)∈assign(n),
t∈Q

wS(t, p) ⋅ wQ(t, Q)

with pred be either p = t or p ∼= t. A data level term t may occur in different sources
denoted as S(t). Two data level terms assigned to one concept node might occur in
different source sets. Thus, the objects have to be combined from different sources
to obtain valid results. We argue, in this case the score has to be lower. Thus, we
introduce the compactness of data term assignments assign(n) to a node n ∈ Amq. It
is defined as

compact(n) =
∣
∩

(t,uri,pred)∈assign(n) St∣+ 1

∣
∪

(t,uri,pred)∈assign(n) St∣+ 1
. (5.11)

The compactness describes the ratio between common sources and supported sources.
Without common sources, the score will be minimal. We modify the datascore(mq,Q)
as follows to obtain the final definition:

datascore(mq,Q) =
∑

n∈Amq

⎛

⎜

⎜

⎝

compact(n) ⋅
∑

(t,uri,pred)∈assign(n),
t∈Q

wS(t, p) ⋅ wQ(t, Q)

⎞

⎟

⎟

⎠

(5.12)
The final component of the scoring function is the size of the materialization query.

We use as size the number of concept aliases in the query, i.e., size(mq) = ∣Amq∣.
Furthermore, a more compact query is a more relevant result. Thus, we combine all
components of the scoring function to the final function presented in Equation (5.13).

score(mq,Q) =
contentscore(mq,Q)

size(mq)
(5.13)

The scoring function comprises the importance of term assignments as well as the
structure of the query. It is used as proof of concepts and demonstrates all relevant
parts but it is not optimized for effectiveness. However, it has the important property
of monotonicity [HGP03] allowing the efficient computation of results. The mono-
tonicity is according the partial scores of the concept aliases of the query. Assume two
materialization queries mq1 and mq2 of the same size. Furthermore, all but one node
have the same set of assignments, thus, the same score. For the remaining node n1j

105

5. Concept-based Keyword Queries

and n2j , we assume that n1j has assignments with a higher score than n2j . From that,
it follows that score(mq1, Q) > score(mq2, Q). The function has this feature, because
the schemascore(mq,Q) and datascore(mq,Q) are summarizations of the scores of the
aliases and edges. Thus, we have a monotonic ranking function and can use similar
techniques as proposed by Hristidis et al. [HGP03].

5.4. Query Expansion

Concept-based query terms help to restrict the result sets to relevant object networks,
because the user can give hints in which extensions the system should search for value
keywords. However, the user can overspecify the query in that way. We propose two
ways of query expansion to combine the exactness of a concept-based keyword query
with the flexibility of a general keyword query. The first query expansion is the usage
of semantically related concepts. A second query expansion reuses category hierarchies
to rewrite value keywords.

5.4.1. Semantic Distance of Classes

The global concept schema describes the relationships between concepts and cate-
gories. We now define what semantically related classes are and how close they are
related.

Semantically related classes

Classes are organized by subClassOf relationships (as in Yacob, we will denote it as
is_a) and create hierarchies of classes in that way. A class hierarchy has one distinct
class, the root class. A root class is either a concept or a category that does not have a
super-concept or a super-category, respectively. The hierarchy contains all classes that
are directly or indirectly connected to the root class by the inverse is_a relationship.

Definition 5.12 Class hierarchy and Semantic Relationship
A class hierarchy is a tuple H = (C, root, is_a) with C a set of classes and root ∈ C
the root node. For every class c ∈ C, c ∕= root exists exactly one class c′ ∈ C with
is_a(c, c′). We say two classes are semantically related if they belong to the same
hierarchy H, denoted as semRelated(c, c′). □

Example 5.4 Figure 5.2 on page 87 contains three concept hierarchies: a hierarchy
of person related concepts with concept “person” as root, the cultural asset hierarchy,
and the institution hierarchy. For example, the concepts “print” and “sculpture” are
semantically related because they belong to one hierarchy.

Semantic distance

The semantic distance between two classes describes how closely related two classes
are. For computation of the distance, we use the structure of the class hierarchies.
The distance definition is based on the following assumptions:

106

5.4. Query Expansion

1. A concept has a shallow extension and a deep extension. The deep extension
also comprises the extensions of descendants. A category comprises also terms
of sub-categories. We assume, a user wants to have all objects or all categories
that belong to the deep extension. Hence, we assume that the descendants of a
class should have the same score as the class.

2. Siblings are closely related but less than descendants.

3. The distance depends on the degree of specialization. The siblings of a more
specialized class are closer than those of a more general class. For example, the
concepts etching and engraving in Figure 5.2 are more closely related than the
concepts sculpture and graphics.

We now develop a distance measure that reflects these intuitive assumptions. First,
we define the degree of specialization of a class. The level of a class c in a hierarchy H
is denoted as level(c,H). The level is defined as the number of nodes in the path from
the root class root to class c. Hence, the root has the level 1. The height height(H)
of a hierarchy H is defined as the maximum level of any class in the hierarchy, i.e.,
height(H) = maxc∈H level(c,H). Now the degree of specification of a class c in the
hierarchy H can be computed as the ratio between level and height: level(c,H)

height(H)
. We

illustrate the values in Figure 5.8. The hierarchy has a height 4, the root node has
the level 1 and class e (black node) has the level 3, for example. The lowest common
ancestor lca(c, c′) of two classes c and c′ is that node, that is an ancestor of c and
of c′, and it does not exist another node x, which is an ancestor of c and of c′ and a
sub-class of lca(c, c′). For example in Figure 5.8, node b is the lowest common ancestor
of class d and ℎ.

...

h
e
ig

h
t
=

 4

root

a b c

d f

g h i

...e

......

3/4

Edge weight

level

1

2

3

4

4
4

4

2
22

4/3

4/3

4/3

1/4

Specification degree

Figure 5.8.: Illustration of Semantic Distance

We assign to every subClassOf edge in the hierarchy a weight. The weight of the
edge equals to the inverse specialization degree of the parent, i.e.,

∀(c, c′) ∈ is_a(H) : wcp((c, c
′)) =

height(H)

level(c′, H)
. (5.14)

That means that the edges from a parent to its children have all the same weight and
the edges closer to the root have a higher weight. For example, in Figure 5.8 the edges

107

5. Concept-based Keyword Queries

from root to its children have the weight of 4 = 4/1 = height(H)
level(root,H)

. The weight of the
edges of e to its children is 4

3
. Let c be a descendant of a class c′. The weight of the

path along the subClassOf axis between c and c′ is defined as

wda((c, c
′)) = height(H) ⋅

⎛

⎝

∑

level(c′,H)≤i<level(c,H)

1

i

⎞

⎠ . (5.15)

The equation is deduced from the sum of the weights wcp in the path between both
classes. For example, the path between the descendant-ancestor pair (e, root) has
the weight wda(e, root) = wcp(e, b) + wcp(b, root) = 4

2
+ 4

1
= 4 ⋅ (1

2
+ 1

1
) = 6 with

height(H) = 4 and level(e,H) = 3 and level(root,H) = 1.
In order to meet the assumptions of the beginning of this section, we define the

semantic distance between two classes c, c′ ∈ H in a hierarchy H as

semDist(c, c′) = wda(c, lca(c, c
′)) (5.16)

with lca(c, c′) the lowest common ancestor of c and c′. The semantic distance definition
of Equation (5.16) has the following implications:

1. It holds semDist(c, c′) = semDist(c′, c) = 0 if c = c′.

2. It is not a metric because semDist(c, c′) is not the same as semDist(c′, c) in
every case. For example, in Figure 5.8 the distance between node e to node c
is semDist(e, c) = 6 but between c and e is semDist(c, e) = 4. This is intuitive
in our scenario, because e is a specialized class, any extension to higher classes
will add many new results. On the other hand, if we search for a class, we will
expect also results of the sub-classes.

3. If class c is a descendant of class c′, the semantic distance between c′ and c is
zero, because the lca(c′, c) = c′ and wda(c

′, c′) = 0. That follows the intuition
that descendants should be included.

4. The inequality semDist(c, c′) ≤ semDist(c, c′′) + semDist(c′′, c′) holds. The dis-
tance is expressed as the distance to the least common ancestor wda(c, lca(c, c

′)).
If c′ is a descendant of c′′, then it is semDist(c, c′) = semDist(c, c′′) +
semDist(c′′, c′) because, in this case, the lca(c, c′′) = lca(c, c′) and the distance
semDist(c′′, c′) is zero. If c′′ is not a subclass of c′, the lca(c, c′) is always a
super-class or equal to the lca(c′, c′′). In consequence, the inequality holds.

Now we describe how to use the semantic distance for classes in a hierarchy for
query expansion of concept and categories, respectively.

5.4.2. Concept Expansion

The expansion of concepts is used in concept-based keyword queries. A concept-
based query term is a triple t = (painting : title : scene). Now we assume
that we find a valid keyword assignment (painting, painting, true) for the concept

108

5.4. Query Expansion

painting. Furthermore, we assign the property keyword (title, drawing, exists(p)) and
(scene, drawing, title ∼= ”scene”) to a concept drawing. An assignment of t to a
concept is only valid, if all three terms are assigned the same concept, which is not
the case. That means that a user has disadvantages because of her query hint using
concept-based query terms and does not get any results.

To solve that problem, we expand the concept to semantically related concepts.
The concepts “painting” and “drawing” are semantically related. We modify the in-
terpretation (painting, painting, true) to (painting, drawing, true). In order to reflect
the semantic distance, we calculate the corresponding weight wC(painting, drawing)
using the semantic distance. Assume to semantically related concepts c and c′ and
term t, the score modification is

wC(t, c
′) =

1

1 + semDist(c, c′)
⋅ wC(t, c). (5.17)

Example 5.5 Consider the concept schema in Figure 5.2 on page 87 and a concept-
based keyword query Q = (engraving : artist : ℎolbein). Given the exemplary exten-
sions in Figure 5.3 on page 87, the query would return an empty set. However, we
can extend the query using concept expansion and use a new query (print : artist :
ℎolbein). “Print” is the parent concept of engraving, and their distance is 5

4
. In conse-

quence, the query term weight of print is 1
1+ 5

4

. The modified query retrieves the object

pr1 in Figure 5.3.

5.4.3. Category Expansion

Searching for categories using keyword queries is a two step process. Given are a virtual
document D = (ND, ED, V) with V = (KV , EV) a number of category hierarchies
and the original keyword query Qorig. Let t ∈ Qorig refer to a category. In the first
step, we find all categories that contain t, i.e., Vt = {v∣v ∈ KV : t ∈ v.terms}.
From the category set Vt, we create a set of keyword queries Q(V (t)). In every query
Q ∈ Q(V (t)), we replace t by a category v ∈ Vt. Now we search for valid materialization
queries for every query Q ∈ Q(V (t)).

However, in order to exploit the subClassOf relationships as well as the semantical
relationship between categories, we can expand Q(V (t)) further to Q∗(V (t)) using
semantically related categories with respect to elements of Vt. For every query Q ∈
Q(V (t)), we create a query Q′ by replacing the category v ∈ Vt by a semantically
related category v′ and set the corresponding query weight to

wQ(v
′, Q′) =

1

semDist(v, v′)
⋅ wQ(v,Q)

=
1

semDist(v, v′)
⋅ wQ(t, Qorig).

(5.18)

Valid materialization queries to Q∗(V (t)) create results to expanded queries of Qorig

with the corresponding lower ranking.

Example 5.6 We illustrate a hierarchy of picture subjects in Figure 5.9. For exam-
ple, consider the concept-based keyword query Q = {painting,motif, landscape}. The

109

5. Concept-based Keyword Queries

value term landscape can be found in the category “landscape”. Now the system ex-
tends the query Q using category extensions. For example, a query Q′ ∈ Q∗ can be
Q′ = {painting,motif, ”seascape”}. The category “seascape” has the same score as the
original term. A further query can be Q′′ = {painting,motif, ”StillLife”}. The query
term weight of category “Still Life” is wQ(”StillLife”, Q

′′) = 1
1+ 1

3

∗wQ(landscape,Q).

Coat of Arms

Seascape

Landscape

Mountains

Motif

Still Life

Fruits Flowers Woman Man

Portrait

Children

Figure 5.9.: Category Expansion Example

5.5. Related Work

We compare the proposed approach by using the categories defined in Section 4.2:
query language, data model and result types, ranking methods, and evaluation type.

Query language

The query language is labeled keyword queries. A label consists of two parts: concept
and property label. Thus, the proposed approach belongs to the group of labeled
keyword queries [CMKS03, HN02]. However, we utilize the semantic model for query
expansion similar to XXL [TW02a]. The difference is that we exploit the Yacob

model directly without using auxiliary data sources, and we support categorical data
values, too.

Data model and result type

The data model is based on the concept-based model of Yacob. It is based on two
concepts: object networks and materialization queries. Object networks are connected
global objects. They are equivalent to minimal total joining tuple trees as defined in
Hristidis and Papakonstantinou [HP02]. Materialization queries are used to create ob-
ject networks. Materialization queries are similar to candidate networks in relational
databases. The difference is that materialization queries specify in which property
a term occurs and allows edge keywords. The queries are adapted to the concept-
based data model. Materialization queries also relate to the concepts of Demidova et
al. [DZN10] and SQAK [TL08]. In both works also queries are constructed as interpre-
tations from keyword queries. Demidova et al. use the relational data model without
concept hierarchies. In the SQAK system, a subset of SQL is created including group-
ing and aggregation. Calado et al. [CdSV+02] and the EasyQuerier system [LMM07]
map keyword queries to query forms for Deep Web search. In this case, populated
forms are materialization queries and the results are objects or HTML pages. How-
ever, both works do not discuss information units consisting of different objects. Liu

110

5.5. Related Work

et al. [LLY+05] describe how natural language queries select structured databases by
computing the semantic distance between a query graph and a schema graph. That
means that only the schema keywords are addressed in the approach.

We proposed three meaningful query semantics: all results, top-k results, and top-k
concept networks. The systems Discovery [HP02] and DBExplorer [ACD02] proposed
all results, too. Most keyword search systems consider a top-k approach. The top-k
concept network semantics groups materialization queries and their results. It orders
the results by the highest ranked non-empty materialization query. Similar grouping
was proposed by Hristidis et al. [BHK+03] or in the form-based search [CBC+09]. The
first approach does not consider ranking, and the second allows SQL as form language
and not a concept-based join query.

Ranking function

We use a monotonic ranking function based on the tf ⋅ idf framework to rank mate-
rialization queries with respect to keyword queries. We distinguish schema and data
scores. Query expansion manipulates the query and schema term weights to rank
query expanded queries. The term weight manipulation for query expansion is similar
to the XXL [TW02a] approach but follows a different intuition. XXL uses the seman-
tic distance based on the Word Net ontology. In contrast, we try to rank the user’s
assumption that objects of sub-concepts are included in the result.

Ranking of queries instead of object networks is related to the database selection
of unstructured [CLC95, GGMT94] and structured sources [YLST07, VOPT08]. The
ranking function of materialization queries is similar to the candidate network ranking
in Xu et al. [XIG09]. Xu et al. use the CN ranking for improving the ranking of
joining tuple trees. Demidova et al. [DZN10] used a probabilistic formula to rank
queries constructed from a keyword query. The formula combines document frequency
of terms in an attribute and the probability of a query template (equivalent to a
concept network). The authors also consider schema and value keyword occurrences
but assume given query templates from a query log. They assume the relational model
and do not consider query expansion.

The proposed ranking function is monotonic. That means that it is possible to adapt
tuple set algorithms [HGP03, SLDG07]. Sayyadian et al. propose different weights
for foreign key relationships [SLDG07]. These weights are based on the quality of
approximate foreign key relationships and not on matching named concept relation-
ships. In contrast, Liu et al. [LYMC06] and the SPARK system [LLWZ07, Luo09]
propose non-monotonic ranking functions, which require specific evaluation methods.
Further approaches are inspired by the PageRank method like XRank [GSBS03] or
BANKS [HN02]. Because of the integration setting, we consider global and local
schema information for ranking. Similar approaches are EasyQuerier [LMM07] and
SINGAPORE [DD01b]. EasyQuerier maps keyword queries to an integrated Web
database interface. The mapping comprises two steps: first domain mappings and
second attribute mappings. The domain mapping tries to find the right domain for
the given keyword; the second step finds matching attributes of an integrated query
form. The ranking is based on a weighted function which combines the similarity
of the query to a domain and the attributes. The system SINGAPORE is in some

111

5. Concept-based Keyword Queries

points similar to our approach, because local and global schema information are rep-
resented in a global data tree. However, the SINGAPORE system does not try to
define integrated extension sets and semantic connection between extensions.

Evaluation method

The evaluation method is not discussed in this chapter. The data is not materialized
on the global level, and we do not build a data graph of global objects. Instead, we
interpret keyword queries as concept-based join queries. The join queries are executed
to obtain the actual object networks as results. Thus, the approach is schema graph-
based.

5.6. Summary

We defined concept-based keyword queries on a concept-based data model provided
by the Yacob system. Inherently, we considered that the data is not materialized but
virtually integrated from different sites. We defined the virtual document as the foun-
dation of the keyword search. A key point is that all information is used to describe
concepts and properties. That includes source descriptions and mappings. We pre-
sented concept-based keyword queries and their semantics. The query answers are lists
of object networks. We argued that object networks are generated by materialization
queries. These queries are interpretations of the keywords. We proposed a ranking
function that includes the schema scoring and data scoring parts as well as considers
the structure. It is a monotonic ranking function. The query expansion using class
hierarchies can make concept-based keyword queries more usable. For this, we defined
semantically relatedness and a distance function. The function is not a metric but fol-
lows the intuition for concept-based materialization functions. The chapter extended
previous results [GDSS03, Dec04, Gei04, SGS05] in the following points:

∙ Object networks are supported as results instead of objects of single concepts.

∙ Labeled keyword queries are supported additionally to plain keyword queries,

∙ A ranking function of object networks and materialization queries has been de-
fined.

∙ Query expansion mechanisms extend the previous approaches that included only
subclasses and not semantically related classes.

In the following two chapters, we discuss how to process concept-based keyword queries
using the schema graph-based method.

112

6. Concept Query Generation

We defined concept-based keyword queries and their semantics over virtually inte-
grated databases in the previous Chapter 5. This chapter deals with the efficient exe-
cution of keyword queries using a schema graph-based approach. The keyword query
processing consists of two main steps: concept query generation and their execution.
The first step translates keyword queries into materialization queries, also denoted as
concept queries. These queries are used to create object networks in the second step.
This chapter deals with the efficient concept query generation (see Figure 6.1), while
Chapter 7 investigates efficient concept query processing. This chapter extends the
keyword search of the Yacob system [Dec04, GDSS03, Gei04] in the following points.
The keyword index is extended by using Dewey identifiers [Dew04] for hierarchy in-
formation and single concept queries are created for keyword query subsets instead
of only for complete keyword queries. Finally, object networks instead of objects are
supported as results with respect to a keyword query.

Single Concept

Query

Ranked Object

NetworksRanking function

Source Query Source Objects

Global Objects

Query List Networks

Keyword query

Concept Query Generation

Access/Integration/Query Planning

− Semi−Structured Data− Limited Query Interface

− Partially Cooperative

− Syntax − Semantics − Ranking

Concept−Based Keyword Queries

Concept−Based

− Integration Model

− Query Planning − Object Transformation

− Query Transformation

− Keyword Index/Statistics − Single Concept Queries Generation

− Query Networks (Joins) Generation

Heterogeneous Sources

− Query Networks (Joins) Optimization

− Optimization of Sets of Query Networks

− Query Network Execution − Ranking

− Empty Result Detection

− Statistics & Cost Functions

Concept Query Execution

Figure 6.1.: Overview: concept query generation

We outline the complete keyword search process in Section 6.1 including concept
query generation and concept query processing steps. We describe the keyword index
and the generation of single concept queries in Section 6.2 and 6.3, respectively. Based
on lists of single concept query, we develop an efficient enumeration of query list

113

6. Concept Query Generation

networks in Section 6.4. Query list networks represent a set of concept queries and are
the input of the concept query processing described in the following Chapter 7. We
conclude the chapter with the discussion of related work in Section 6.5 and a summary
in Section 6.6.

6.1. Overview

Figure 6.2 illustrates the complete keyword query process. The approach belongs to
the class of schema graph-based keyword search systems reviewed in Chapter 4. At the

Concept Graph

Concept−Based Queries Objects

Query List Networks

with Query Lists

Annotated Concept Graph

Single Concept Queries

Keyword Query "holbein prague"

new concepts containing query lists of a subset of keywords

O
b
je

c
t

n
e
tw

o
rk

s σ σ

{holbein}

lastname~="holbein"
(ext(painter))

city~="prague"
(ext(museum))

painter − createdBy − drawing − lostBy − museum
{prague}

Processor

Query List Network

Enumerator

Query List Network

Generator

Query List

Keyword Processor

User

source 1

Webservice

source i

Webservice

source n

Webservice

Mediator

Keyword Index

Figure 6.2.: Keyword query processing steps

beginning, the user formulates a keyword query. An exemplary plain keyword query
is “holbein prague”. The query is sent to the Keyword Processor. The processor parses
the query and sends the query terms to the keyword index. From the returned index
entries, the processor creates concept queries. A single concept query is a concept-
based, structured query over one concept extension. This is one difference to the
related systems because we deal with query lists instead of tuple sets. A single concept
query is an interpretation of the complete keyword query or a subset of it. In a later
step, the single concept queries are combined to complete materialization queries that
contain all keywords. Hence, we assume AND semantics in this thesis.

114

6.1. Overview

The Query List Generator component uses the single concept queries and creates
query lists. A query list is a list of single concept queries that refer to the same concept
or edge and contain the same subset of keywords. The support of named edges is a
further extension to related schema graph-based keyword search systems. The query
list generator creates all possible query lists from its input. For every query list, we
create a new concept graph node (or edge) representing the corresponding list. During
that process, the query list generator extends the concept graph and finally creates
the annotated concept graph. The annotated concept graph comprises the original
concepts and edges as well as query list concepts and query list edges. Figure 6.3
shows an exemplary concept graph containing three concept list concepts and one
query list edge.

{Holbein}
{Prague}

Drawing

concept
edge

{Keyword Set}{Keyword Set}

query list concept
query list edge

query list concept

query list edge

createdBy

Painter Painter

Artist CulturalAsset

FineArts

Drawing

Museum Museum

Institution

lostBy

lostBy {lost}

{Holbein}

Figure 6.3.: Exemplary annotated concept graph

The annotated concept graph is the input of the Query List Network Enumerator.
The enumerator creates networks, denoted as query list networks, of query list concepts
connected via free concepts and concept properties. Assuming AND semantics, every
query list network contains all keywords. A query list network (QLN) represents a
set of materialization queries that are used for retrieval of objects and to construct
object networks. Figure 6.4 illustrates two query list networks for the exemplary
query {prague, ℎolbein}. QLN_1 represents queries containing drawings and museums,
and QLN_2 represents artists connected to museums through created and lost cultural
assets.

The output of the query list enumerator is the input of the Query List Network
Processor. The QLN processor creates the actual materialization queries and exe-
cutes them. The component sends single concept queries to the Yacob mediator.
The mediator component executes the queries and returns sets of objects. The object
sets are combined to sets of object networks by the QLN processor. The combi-
nation of object sets might induce new mediator queries by using bind join opera-
tions [GMPQ+97, GW00]. In that way, the QLN Processor creates step by step object
networks. The system returns the object networks to the user.

In the remaining chapter, we discuss the steps including the generation of query
list networks. We start with the description of the keyword index and process in the
following section.

115

6. Concept Query Generation

QLN_1

QLN_2

Painter

name~="Prague"

0.8

0.7

query score

city~="Prague"

name~="Prague"

0.8

0.7

query score

name~="Holbein" 0.9

{Holbein} {Prague}

Drawing

{Prague}{Holbein}

query listCulturalAsset Museum

Museum
lostBy

createdBy lostBy

query

artist~="Holbein"

score

0.7

query score

city~="Prague"

Figure 6.4.: Exemplary query list networks

6.2. Keyword Processor

The keyword processor has the task to find interpretations of a given query terms,
i.e., a concept or property name, or a category selection or a keyword containment
selection. The result of the keyword processing step is a list of tuples consisting of
keyword index entries. A keyword index entry comprises all information to determine
the position of a keyword occurrence and with that, the interpretation of the keyword.
Based on the result of the keyword processor, the next step creates single concept
queries. The results of this section are partially based on [Dec04, GDSS03, SGS05].

6.2.1. Keyword Index

The keyword index stores all information about keyword occurrences in a virtual doc-
ument D = (ND, ED, V). The index comprises the concept level terms as well as the
terms on data level. We start the discussion of the keyword index with the description
of the indexing process. Figure 6.5 illustrates the indexing process that is the offline
phase of the keyword search system. In order to represent the data level, we extract
from each source keyword statistics. For example, the statistics comprise how often
(in how many objects) a keyword occurs in the extension provided by a source. The
statistics are either extracted using a crawler through the mediator system, or the
sources provide the statistics directly via a protocol, e.g., [GCGMP97, IBG02]. These
statistics are denoted as source content descriptions and form the first input of the
indexer. The second input is the concept schema and the mapping information. Terms
of the concept schema as well as local element names from the mappings are extracted
and added as schema level terms to the keyword index. The indexer combines the
schema level terms with source content descriptions to the final keyword index.

116

6.2. Keyword Processor

Index

Keyword

queries objectsst
at

is
ti

cs

queries objects

Crawler

source i

Webservice

source n

Webservice

source 1

Mediator

Webservice

Source Content

Description

Integration Schema

Indexer

Figure 6.5.: Offline phase of the keyword search system

Source content description

Source content descriptions provide statistics of keywords in the concept extensions. In
order to compute the term weights as described in Chapter 5, the content description
of a source s ∈ Sources comprises the following information. First, it contains the size
(number of objects) provided of the source s for a concept c, i.e., the value size(c, s).
Second, the content descriptions contain the document frequency of a keyword t for a
concept c and property p in the source s. For this, we retrieve for every term t ∈ T in
a source s a list of document frequencies. The document frequency df(t, c, p, s) is the
number of objects of concept c ∈ C containing the term t in a data property p ∈ P.
Alternatively, the descriptions are delivered using the local element names with the
advantage of independence from the global level. As we do not need the complete
source content in the regular case, we use the concept schema as structure.

In summary, the source content description SCD(s) = (Sizes(s), DF (s)) of a source
s consists of two relations Sizes(s) and DF (s). The relation Sizes(s) contains the
concept extension size information and is defined as Sizes(s) ⊂ C × {s} × ℕ. The
relation DF contains all document frequencies of the terms in the source s, i.e.,
DF (s) ⊂ T × C × P × ℕ × {s}. Thereby, C is the set of all concepts, P the set
of all properties as well as T the set of all terms, and ℕ the natural numbers.

Hierarchy representation

For query expansion and other query operations, we need to represent concept and
category hierarchies in the index. Here, we use the Dewey Identifiers [Dew04] ap-

117

6. Concept Query Generation

proach [OOP+04, HHMW07, AYCD06, BG06, XP05]. Figure 6.6 illustrates the Dewey
approach. We add two new nodes to the concept schema, “concept” and category with
the identifiers 1 and 2, respectively. All root concepts are direct children of node
“concept” and all root categories are direct children node “category”. According to
the Dewey numbering scheme, a node has an identifier of the form prefix .suffix . The
prefix is the identifier of the parent node. The suffix of the identifier is the sibling
number by numbering the siblings from left to right. For example, the concept “Cul-
turalAsset” has the identifier 1.2 because the parent is the concept root (id = 1), and
the ‘CulturalAsset” is the second child (“Person” is the first). All concepts start with
1 and all category identifiers with a 2 by using this scheme.

category

Motif

PortrayStill Life

FruitsPainting

FineArts

Person

BooksCreator

PainterAuthor

1 2

1.21.1

1.1.1

1.1.1.1 1.1.1.2

1.2.1 1.2.2

1.2.2.1

2.1

2.1.1. 2.1.2

2.1.1.1

subclassOf

shows

x.x − DeweyIdconcept category concept property

concept

CulturalAssets

inserted new roots

Figure 6.6.: Dewey numbering

Keyword index structure

The keyword index comprises term positions occurring in the data sources as well as
in the global concept schema and mapping information. Thereby, the index follows
the inverted list paradigm storing for each term a list of occurrences [ZMR98]. The
basic structure of a keyword index entry is illustrated in Figure 6.7.

...

List of Source Information

Keyword Information List of Position Information

keyword,type,id concept, conceptId,property,weight,nrObjs

name,DFname,DF

...

Figure 6.7.: Index entry structure

118

6.2. Keyword Processor

A keyword index entry consists of three parts: (i) the term information, (ii) the list
of position information, and (iii) a list of source information for each position. The
term information is a triple (t, type, id) with t ∈ T a term, type a flag describing the
role of the term, and id a Dewey identifier or null. We define five different possible
types of a term according to its position: concept (c), category (v), data property (dp),
concept property (cp), and data d. Table 6.1 summarizes the meanings of the types.
The identifier id is the Dewey identifier of the corresponding category, if the term is of
type category (v). Otherwise, the identifier is omitted. Each term information entry

Type Description

concept c occurrence on concept level; term in concept name or
source description for a concept

data property dp occurrence on concept level; term in a data property
name or source description of a data property

concept property cp occurrence on concept level; term in concept property
name

data d term occurs in a data source
category v term occurs in a data source but represents a category

on concept level or a local instantiation of it

Table 6.1.: Index term types

refers to a list of position information. The position information of a term consists
of the concept, the corresponding concept identifier (conceptId), and the property
as well as the weigℎt of the term in this position as well as the number of objects
(nrObjs) containing the term. The position information contains a list of source
information describing the term occurrences in every source. The source information
list is empty for concept and property keywords. The concept information is null
for concept property keywords, because these keywords describe connections between
concepts, i.e., relationships. The information nrObjs is only valid for category and
data terms. The source information is a pair (s, df), the name of the source s and the
document frequency df(t, c, p, s) of the term in that source for the given position. It
is obtained from the source content descriptions.

Figure 6.8 shows an exemplary index part. The example contains different terms
like painter, holbein, fruits, etc. For example, the keyword “fruits” occurs in two roles,
as category term or value term, respectively. Furthermore, the example illustrates
that concept level terms (type ∈ {c, cp, dp}) do not have a source list, while other
terms occur in different places and different sources. In Section 8.1, we describe the
implementation of the keyword index as one relation in a relational database.

6.2.2. Index Lookup Methods

The method indexLookup provides access to the index. The input to the method
is either a concept-based or a plain keyword query. The output is a list of index
entry tuples. An index entry consists of the keyword information and one position

119

6. Concept Query Generation

...paintedBy,cp,_ _,_,paintedBy,0.5

...name,dp,_ artist,1.1.1,name,0.4 painter,1.1.1.2,name,0.4

czech,20czech,2webartist,3

...painter,c,_ painter,1.1.1.2,_,1

Position lists

Keyword

Information

...holbein,d,_ drawing,1.2.2.2,artist,0.6painter,1.1.1.2,name,0.8

...

......

fruits,v,2.1.1.1 painting,1.2.2.1,motif,0.4 drawing,1.2.2.2,motif,0.35

...

...fruits,d,_ drawing,1.2.2.2,title,0.3

Figure 6.8.: Index example

information. Every position in a tuple refers to the same concept or the concept
property. That means that we merge the position lists of the keywords. In a following
step, every tuple is translated into a single concept query, and the score of this query
is computed.

Figure 6.9 outlines the processing of a single query term. In this process, we distin-
guish two cases: plain and concept-based query terms.

getEntries(pKw,(dp,cp)) getCategories(kw) getEntries(kw,all)

expandCategories

mergeEntries mergeEntriesjoin

sort

getEntries(cKw,c)

plain query termconcept−based query term

cKw:pKw:kw kwcategory search

sort by score in descending order

getEntries(cat,v)

getEntries(kw,d)

Figure 6.9.: Single query term lookup

Plain query term. For a plain query term, the system obtains all index lists that con-
tain the keyword for all roles except the role category using the function getEntries.
The keyword search system supports categories in the following way. At first, all
categories are obtained for the keyword using function getCategories. After that,

120

6.2. Keyword Processor

the system constructs semantically related categories and their respective scores (see
Section 5.4.3) using function expandCategories. For this, we get all ancestors of a
selected category v, which are identified by the prefixes of the Dewey identifier of v.
We extract all categories that have a common ancestor with v, i.e., they have com-
mon Dewey prefixes. We compute the score according the semantic distance and the
equation (5.18). Thereby, we remove duplicates in the lists, keeping the better score.
Finally, we retrieve all value entries for the category, i.e., index entries of the type v.
In the following step, we merge all lists and sort the result by concept, property, and
descending score.

Concept-based query term. A concept-based query term is a triple t = (kwc : kwp :
kwv). For each non-null component, the system executes the getEntries function. For
the concept-label kwc, getEntries is executed with the condition c indicating only
concept position must be returned, for the property keyword kwp, entries for property
(dp) and concept properties (cp) are returned. The value keyword is handled in two
steps. On the one hand, the value keyword kwv is used with option d to retrieve
its position as a literal value. On the other hand, we use the category approach as
described above to find categorical values. We merge the lists to one value index entry
list. Now, we have entry lists for every non-null component. We join these lists to get
entry tuples representing the index lookup result for concept-based query terms. The
entries of one tuple must have the same concept as well as the property and the value
entry have to refer to the same property.

Concept label expansion. In the case of concept expansion, we use the following
idea. Let us assume the query term drawing : title : flowers with the index entries
for L[drawing ::] = [(drawing, 1.2.2.2)], L[: title :] = [(painting, 1.2.2.3, title)], and
L[:: flowers] = [(painting, 1.2.2.3, title)]. Using query expansion, we combine the
results. First, we combine property and value keywords. For example, we join L[title]
and L[flowers] to L[(: title : flowers)]. Now, we join L[drawing ::] and L[(: title :
flowers)] in the following way. For every entry tuple in L[(: title : flowers)], we find
the best match in L[drawing ::] that has the following characteristics:

∙ the concepts have a common ancestor in the same concept hierarchy, and

∙ it has the highest score of all possible matches.

For example, the common ancestor is 1.2.2 that is the concept “fine arts”. The cor-
responding score of the joined tuple is adapted according to the semantic distance
between drawing and painting. The distance is computable using Dewey identifiers
and the hierarchy height. The result of the example is L[(drawing : title : flowers)] =
[((drawing, 1.2.2.2), (painting, 1.2.2.3, title), (painting, 1.2.2.3, title))].

The result of this join is a list of index entry tuples that are valid for the concept-
based query term. The list is sorted by concept, property, and descending score.

121

6. Concept Query Generation

6.3. Query List Generation

A query list comprises single concept queries ordered by descending score. All queries
in one list refer to the same concept (or concept property) and contain the same set
of keywords. The query list generator component takes an index entry list for every
keyword as input. It processes and combines the lists into single concept query lists
for all combinations of concepts (concept properties) and keyword query subsets. For
every query list, the query list generator adds representing concept nodes and edges
into the schema graph of the virtual document. The query lists and the annotated
concept schema graph are the result of query list generator and are the input of the
following step, the query list network generation. The query list generator creates the
result in three steps:

1. It creates index entry tuples lists for every concept/keyword set combination or
concept property/keyword set combination, respectively.

2. It creates single concept queries and their score from index entry tuples.

3. It creates an annotated concept schema graph.

6.3.1. Index List Generation

The index list generation generates for every supported concept and every possible
keyword query subset an index list. The input for this task is the concept schema
graph and ∣Q∣ index entry tuple lists L[kw1] . . . , L[kwn]. The output is a data structure
G containing triples t = (c, Q′, l) with c a concept or edge in the concept graph, Q′ a
subset of the keyword query Q, and l a list of index entry tuples t. Every component
t[kw] in these tuples refers to one keyword in Q′. Algorithm 6.1 outlines the approach.

In the first step, we group every input list L[kwi] into different parts. Every group,
denoted as G[c, {kwi}], contains index entries assigned to the same concept (concept
property)1 c (lines 3-6). In the following, we combine these lists separately for every
concept c (lines 8-20). For every concept that has more than one keyword, we com-
pute all Cartesian products of the corresponding query lists. The Cartesian products
describe all possible combinations of keyword interpretations for the concept. The
computation is stepwise. First, we compute all lists for two keywords. Subsequently,
the algorithm adds a list to the previous computed results, avoiding double compu-
tations (lines 11-18). At the end, the algorithm has computed all combinations and
returns the data structure G.

Example 6.1 For the plain keyword query “holbein prague” we illustrate the index
entry list generation in Figure 6.10. Initially, there are two index entry tuple
lists, L[ℎolbein] and L[prague]. The lists are separately grouped by concept, and
the results are stored in the data structure G. For the concepts “drawing” and
“painting”, we combine the lists G[drawing, {ℎolbein}] and G[drawing, {prague}]
to G[drawing, {ℎolbein, prague}] as well a G[painting, {ℎolbein}] and

1The following discussion describes only query lists for concepts. Concept property lists have always
one entry but the computation is equivalent.

122

6.3. Query List Generation

Algorithm 6.1 Query list generation
Input: L[kw1], . . . , L[kwn] – index entry tuple lists with n = ∣Q∣ the number of
query terms

(C,E) – the concept graph
Output: G – all query lists

1: function QueryListGeneration(L[kw1], . . . , L[kwn])
2: G := ∅
3: /* group every list by concept/property into G */
4: for 1 ≤ i ≤ n do
5: group L[kwi] into G[, {kwi}] /* one list for each concept and keyword */
6: end for
7: /* Combine all groups concept-wise */
8: for c ∈ (C ∪ E) do
9: if ∣G[c]∣ > 1 then /* more than one keyword */

10: let Qc be the supported keywords in G[c]
11: for 1 ≤ i < ∣Qc∣ do
12: for all pairs (kw,Q′′); kw ∈ Q,Q′′ ⊂ (Qc ∖ {kw}), ∣Q

′′∣ = i do
13: Q′′′ = {kw} ∪Q′′

14: if G[c, Q′′′] = ∅ then
15: G[c, Q′′′] = G[c, {kw}]× G[c, Q′′]
16: end if
17: end for
18: end for
19: end if
20: end for
21: end function

G[painting, {prague}] to G[painting, {ℎolbein, prague}], respectively. The union
of the lists of the first and second step forms the final set of index entry lists in G.

6.3.2. Single Concept Query Generation

We now describe the translation of an index entry tuple t to a single concept query
q and the computation of the score value score(q, Q). The input of the algorithm is
the tuple t, the represented query subset Q′ ⊆ Q, and the query Q. The output is a
single concept query q of the form �cond(ext(c)). The condition cond is a conjunction
of predicates. The form of a predicate is either exists(p), p ∼= kw, or p = k with p
a property, kw a term, and k a category. The algorithm is applied to all index entry
lists. Algorithm 6.2 sketches the approach.

An index entry tuple consists of ∣t∣ entries. For every plain query term, there is
one index entry in the tuple as seen in Figure 6.10. In the case of a concept-based
query term (concept : property : value), the tuple has three entry components, one
for each component. We continuously number every tuple component. A component
is accessed by t(i) with 1 ≤ i ≤ ∣t∣. The algorithm scans over all tuple components. It

123

6. Concept Query Generation

]

e11

e12

e13

e14

holbein,d,_,painter,1.1.1.2,name,0.8

holbein,d,_,drawing,1.2.2.2,artist,0.6

holbein,d,_,painting,1.2.2.3,artist,0.5

Index entry tupleId

holbein,d,_,illustrator,1.1.1.3,name,0.7

L[holbein]

e21

e22

e23

e25

e24

prague,d,_,museum,1.3.1,city,0.6

prague,d,_,museum,1.3.1,name,0.5

prague,d,_,library,1.3.2,city,0.5

prague,d,_,painting,1.2.2.3,institution,0.5

Index entry tupleId

prague,d,_,drawing,1.2.2.2,institution,0.4

L[prague]

G[drawing,{holbein,prague}] = [(e13,e24)]

G[painting,{holbein,prague}] = [(e14,e25)]

G[painter,{holbein}] = [e11]

G[illustrator,{holbein}] = [e12]

G[drawing,{holbein}] = [e13]

G[painting,{holbein}] = [e14]

G[museum,{prague}] = [e21,e22]

G[library,{prague}] = [e23]

G[drawing,{prague}] = [e24]

G[painting,{prague}] = [e25]

Input index entry tuple lists

index entry lists after initial grouping

joining lists by

concept

additional lists added to G after joining

grouping by concept

[

[

[

G[painter,{holbein}] =

G[illustrator,{holbein}] =

G[drawing,{holbein}] =

name~="holbein" (ext(Painter))σ

name~="holbein"σ

σ

(ext(Illustrator))

(ext(Drawing))artist~="holbein"

[

[

σ

σ

[σG[museum,{prague}] =

[σG[museum,{prague}] = city~="prague"

name~="prague"

G[drawing,{holbein,prague}] = artist~="holbein" and institution~="prague"

name~="holbein" and institution~="prague"G[painting,{holbein,prague}] =

...
...

single concept query

generation

final query lists

(ext(Museum))

(ext(Museum))

(ext(Drawing))

(ext(Painting))]

]

]

]

]

]

Figure 6.10.: Query list generation

creates the query condition and summarizes the schema and data score of the query.
For every entry t(i) for 1 ≤ i ≤ ∣t∣, the algorithm tests the type of the keyword.
Algorithm 6.2 shows the actions for every type. The first three cases (c,dp,cp) (lines
5-14) do not change the dataScore because they deal with schema level keywords. The
special case of a concept property (cp) sets the query to empty, which is a marker for
a selected concept property. In the case of a data property (dp), the algorithm adds
a predicate exists(t(i).property) to the select condition, i.e., the results have to have
a value for this property. If the keyword is either a category (v) or data (d) term
(lines 15-23), the algorithm will add the corresponding predicate to the condition and
update the data score. Finally, the algorithm uses the function computeScore to
obtain the score of the generated query including the compactness of the query. Note,
that the weight t(i).weigℎt of every entry already includes the query term weights.

Using the function SingleConceptQueryGen the system replaces all index entry
lists in G by lists of pairs (q, score(q, Q)). The single concept query lists in G are the
input of the concept graph annotation described in the following section.

Example 6.2 We continue the example in Figure 6.10. Given the index entry tu-
ple lists G, the in tuples are translated into single concept queries. Assume the
list G[drawing, {ℎolbein, prague}] = [(e13, e24)] as an example. The tuple (e13, e24)
contains two data entries and relates to the concept drawing. The first entry is

124

6.3. Query List Generation

Algorithm 6.2 Single Concept Query Generation
Input: t – index entry tuple

Q – the complete keyword query
Output: q – single concept query

score(q, Q) – the score of q according to Q
1: function SingleConceptQueryGen(t,Q)
2: cond := true, c := null
3: scℎemaScore := 0, dataScore := 0
4: for 1 ≤ i ≤ ∣t∣ do
5: if t(i).type = c then /* concept */
6: c := t(i).concept
7: scℎemaScore := scℎemaScore + t(i).weigℎt
8: else if t(i).type = dp then /* data property */
9: scℎemaScore(t) := scℎemaScore + t(i).weigℎt

10: c := t(i).concept
11: cond := cond ∧ exists(t(i).property)
12: else if t(i).type = cp then /* concept property, only marker query */
13: q := empty /* special query as marker */
14: scℎemaScore(t) := scℎemaScore + t(i).weigℎt
15: dataScore(t) := 0
16: else if t(i).type = d then /* data */
17: c := t(i).concept
18: cond := cond ∧ t(i).property ∼= t(i).keyword
19: dataScore := dataScore+ t(i).weigℎt
20: else if t(i).type = v then /* category */
21: c := t(i).concept
22: cond := cond ∧ t(i).property = getCategory(t(i).id)
23: dataScore := dataScore+ t(i).weigℎt
24: end if
25: end for
26: if q ∕= empty then
27: q := �cond(ext(c))
28: score(q, Q) := computeScore(scℎemaScore, dataScore, t)
29: else/* concept property case */
30: score(q, Q) := scℎemaScore
31: end if
32: return q,score(q, Q)
33: end function

125

6. Concept Query Generation

translated to the predicate artist ∼= ”ℎolbein” and the second to the predicate
institution ∼= ”prague”. Together, the tuple is translated into the single concept
query

�artist∼=”ℎolbein”∧institution∼=”prague”(ext(Drawing)).

This query retrieves all drawings from sources that have an artist value containing
“holbein” and an institution value containing “prague”. We omitted the score values in
the example.

6.3.3. Concept Schema Graph Annotation

The concept schema graph, i.e., the schema of the virtual document, contains all
concepts and their connections. Every concept represents a set of global objects called
extension. We now describe the annotated concept schema graph that adds annotated
nodes and edges to the graph that represent query lists. In turn, a query list of a
concept represents a subset of the concept extension.

A concept graph is denoted as CG(D) = (CCG, ECG) for a virtual document
D = (ND, ED) (see Section 5.2). The annotated concept schema graph extends this
definition to SGA = (CA, EA, ann) with ann : CA ∪ EA → ℙQ assigns keywords of a
given query Q to the nodes and edges of the graph. We denote the annotation of a
node c as cann(c). The original nodes of the input concept graph are annotated with
the empty set, i.e., c∅. The schema graph and the query lists in G are the input of the
concept schema graph annotation algorithm.

For every query list G[c, Q′] with c a concept and Q′ ⊆ Q a keyword set, we create
a new concept node cQ

′

in SGA. The new node cQ
′

is a copy of the original concept
c∅. That means that it is a sibling of c∅ in the concept hierarchy and all concept
properties from and to c∅ are also concept properties from and to cQ

′

. The new node
cQ

′

represents the query list G[c, Q′] and a subset of the concept c.
For every query list G[e, Q′] of a concept edge e ∈ E, we create a copy eQ

′

of the
edge e∅ and add it to the edge set EA. The graph indicates where keywords have been
found and allows the construction of query list networks that are concept networks
with annotated nodes and edges.

Example 6.3 We continue the example illustrated in Figure 6.10. Given the query
lists in G, the system generates an annotated concept graph (see Figure 6.11). Thereby,
the concepts painter, illustrator, drawing, painting as well as museum and library
are copied and annotated with the respective keyword sets. For example, the node
drawing{ℎolbein,prague} represents the query list G[drawing, {ℎolbein, prague}]. In this
example, we omitted the duplicate concept properties “created by” and “lost by” for
better readability and show only the connection for the top concepts.

6.4. Query List Network Enumeration

In the following step, the enumeration of query list networks is a preparation step
to create queries to materialize object networks. A query list network is a concept

126

6.4. Query List Network Enumeration

Artist

Creator

Person

annotated concept

createdBy

{Holbein}
{Prague}

{Holbein}

{Holbein, Prague} {Holbein, Prague}

{Prague}

{Holbein}

{Prague} {Prague}

{Holbein}

lostBy

Illustrator

Illustrator

CulturalAsset

FineArts

Institution

Drawing

Drawing

Drawing

Drawing

Painting

Painting

Painting

Painting

Museum Library

LibraryMuseum

Painter

Painter

Figure 6.11.: Concept graph annotation

network that consists of query list concepts and edges as well as free concepts and
edges.

Furthermore, we motivate the enumeration algorithm. We show the challenges and
introduce the compact annotated concept schema graph. The compact schema graph
condenses concept hierarchies in order to decrease the graph complexity. Based on the
condensed graph, the enumeration algorithm is outlined.

6.4.1. Query List Network

In Section 5.2, we defined object networks and concept networks as results of keyword
queries. A query list network is a concept network (see Section 5.2) over an annotated
concept schema graph. The query list network comprises query list concepts and free
concepts. Free concepts represent complete concept extensions and have an empty
keyword set. In turn, query list concepts represent a certain subset of the keywords
and single concept query list. Furthermore, edges can be either free (with empty
keyword annotation) or specified (with non-empty keyword annotation). A query
list network represents a set of materialization queries. A materialization query is
constructed by combining single concept queries and the structure of the query list
network. Given are an annotated schema graph SGA = (CA, EA, ann) and a query Q.
A query list network qln = (Aqln, Eqln) can create valid materialization queries, if it
has the following properties:

1. qln contains all query terms of Q, i.e.,
⎛

⎝

∪

(a,c)∈Aqln

ann(c)

⎞

⎠ ∪

⎛

⎝

∪

e∈Eqln

ann(e)

⎞

⎠ = Q,

127

6. Concept Query Generation

2. every query term is included exactly once, that means that ∀t, t′ ∈ (Aqln ∪ Eqln) :
ann(t) ∩ ann(t′) = ∅ with t ∕= t′, 2

3. all leaves in qln have to be specified. A leaf t = (a, n) ∈ Aqln is specified, if

∙ the annotation is non-empty ann(t) ∕= ∅, or

∙ there is an edge e = (a, t) ∈ Eqln or e = (t, a) ∈ Eqln with ann(e) ∕= ∅.

4. two edges e = ((a1, c1), (a2, c2)) and e′ = ((a3, c1), (a2, c2)) must not occur in Eqln

if the edge (c1, c2) in EA is an N:1 or 1:1 edge [HGP03].

The first requirement ensures the AND semantics of the keyword query. The sec-
ond point minimizes the overlap between query list networks. For example, con-
sider the query list network drawingPrague,Holbein − lostBy − institutionPrague,Gallery

with overlapping keywords. The results of this set of queries are also contained
in the query list networks of drawingHolbein − lostBy − institutionPrague,Gallery or
drawingPrague,Holbein − lostBy − institutionGallery , respectively. That means that we
map every keyword to exactly one concept or edge in a query list network. The third
point ensures the creation of minimal materialization queries, with that minimal object
networks.

Object networks have to comprise distinct objects. In order to ensure this require-
ment, we exploit the structural information about the edges [HGP03]. Assume an
edge createdBy between the concept painter and paintings with the cardinalities
1:N. That means, every painter might have painted N paintings, but every paint-
ing is created by only one painter. Let us assume we created a query list network
(a1, painter) − createdBy − (a2, paintings) − createdBy − (a3, painter). Then, this
query list network would only create invalid object networks, because a painting is
always connected to only one painter. Thus, point four allows discarding such kind of
query list networks.

Nevertheless, a query list network still can create invalid queries. This is the case,
if all single concept queries are schema queries. These invalid queries are filtered out
during the execution phase.

6.4.2. Compact Concept Schema Graph

Given the definition of a query list network, we describe the efficient enumeration of
them using an annotated schema graph consisting of query lists and free concepts. Be-
cause of many different concepts and inherited concept properties, the schema graph
is extremely complex. For example, Figure 6.12(a) shows a graph with all connec-
tions. Annotation introduces new nodes and edges into the graph and increases the
complexity further (see Figure 6.12(b)).

In order to limit the enumeration time, we have to reduce the complexity of the
annotated schema graph. Therefore, we introduce the compact concept schema graph
of an annotated schema graph. The compact schema graph is denoted as CSG(SGA) =
(Ccsg, Ecsg) where SGA is the original, annotated graph. The compact schema graph

2We assume the annotation of an alias in the query list network equals the keyword annotation of
the underlying node, i.e., ann((a, c)) = ann(c).

128

6.4. Query List Network Enumeration

c42

c311

c21

c4

c22

p23

c12 c3

c1

p24

c2

c31

c41

p12

c11

(a) Example graph

{k1}

{k3}

{k2}

{k2}

0

c21

0

c22c12

0

c1 c2

0

c41 c42

0

c4

c3

0

c31

c311

0

c31

p24

c311

p12

c4

p23

c11

0

0

0 0

0

c11

(b) Annotated example graph

Figure 6.12.: Example graph and corresponding annotated graph

contains complex nodes and complex edges. A complex node is a schema graph node
representing the concept and its direct and indirect sub-concepts. All sub-concepts
must have the same keyword annotation, too. Edges with the same label and keyword
annotation are collapsed into one complex edge. The edges connect only complex
nodes. That leads to the following problem. Consider the Figure 6.12(b) and the edge
p23 between concept c22 and c3. This edge is only valid for the concept c22 and its
sub-concepts. Hence, we add a rule to the complex node p23 → c22. This rule says,
if the incoming or outgoing edge is the concept property p23, than only concept c22
and its sub-concept are allowed in the resulting materialization queries. These rules
are stored for every complex node n in the set er(n). For a complex node n ∈ Ccsg,
we add for all incoming and outgoing edges of the concept and its sub-concepts to the
rule set to er(n). For example, the complex node c2 in Figure 6.13 contains the edge
rule p23 → c22 in the rule set er(c2).

Given an annotated concept schema graph SGA = (CA, EA), the compact schema
graph CSG(SGA) = (Ccsg, Ecsg) is created in the following steps:

1. Add all unconnected nodes of CA to Ccsg and remove them from CA.

2. Add the most general nodes from CA to Ccsg as complex nodes. A most general
node is a node that does not have a super-concept with the same keyword set.
This can be easily decided by using Dewey identifiers.

3. All other nodes are represented by the corresponding complex node. If a query
list node is represented by a complex node, its corresponding single concept
query list is merged into the complex node.

4. Let c1, c2 ∈ CA be concepts in the schema graph and c′1, c
′
2 ∈ Ccsg the corre-

sponding complex nodes. Then, add the edge e = (name, c′1, c
′
2) to Ecsg for the

edge (name, c1, c2) ∈ EA. Duplicate edges are removed. If c1 is a sub-concept of
c′1 and there is no edge (name, c′′1, c2) with c′′1 a super-concept of c1, then add a
rule name → c1 to er(c′1).

Figure 6.13 illustrates the resulting compact graph for the example graph in Fig-
ure 6.12(b). The most general nodes are c∅1, c

∅
2, c

∅
3, and c∅4. Additionally, we have to

add the nodes c
{k1}
11 , c

{k3}
4 , and c

{k2}
31 as most general annotated nodes. These nodes

129

6. Concept Query Generation

represent all of their sub-concepts with the same annotation. For example, the query
lists of c{k2}31 and c

{k2}
311 are merged into one list represented by c

{k2}
31 . The complex node

c2 contains the rule p23 → c22 induced by the edge p23.

{k1}

{k3}

{k2}

0

0

0

0

p23

p23

c1

p12

c2

c11 c3

p24

c31

p24
c4

p12

c4

er(c2) = {p23 −−> c22}

Figure 6.13.: Annotated compact example graph

6.4.3. Enumeration of Query List Networks

The goal of the next step is the enumeration of query list networks using a compact, an-
notated concept graph CSG(SGA). The graph contains free nodes and query list nodes
as well as free edges and specified edges. We use a breadth-first search (BFS) algorithm
following the related schema graph-based approaches [HP02, SLDG07, LYMC06]. Fur-
thermore, we use several rules to create valid query list networks that eventually gen-
erate valid object networks. Algorithm 6.3 outlines the approach.

The inputs of the algorithms are the compact schema graph CSG(SGA) =
(Ccsg, Ecsg), the maximum size of query list networks sizemax, and the keyword query
Q. The algorithm starts with the initialization of the queue. It selects all nodes that
contain the first keyword of the query kw1 ∈ Q (line 5). For each of these nodes, it
creates a query list network with one node (”c1”, n) with ”c1” the alias. If the net-
work is already a result (line 7), then we will add the network to the output QLN.
Otherwise, we add the network to the queue. Subsequently, the extension steps are
executed until no networks can be extended anymore, i.e., the queue is empty (lines
14 to 28). The extension of a network using the breadth first approach works as fol-
lows. We retrieve the first query list network qln = (Aqln, Eqln) from the queue and
remove it. For every node in Aqln, we look for all adjacent nodes n′ to node n in the
compact concept graph. Using the function extend we extend the qln with the edge
(n, n′) ∈ Ecsg and the new node n′ ∈ Ncsg. The function extend adds a new node
(”cx”, n

′) with x = size(qln) + 1 and a new edge between (a, n) and (”cx”, n
′) to a

copy of qln. Finally, it returns the new network newQln. In the next step, we will add
newQln to the result set, if it is a valid result, otherwise it is added to the queue, if it
can form a valid result in future steps.

We now explain the help functions appendTo, isResult, and isValid . The function
appendTo adds a network to the enumeration queue or to the result. The function

130

6.4. Query List Network Enumeration

Algorithm 6.3 Query List Enumeration
Input: CSG(SGA) = (Ccsg, Ecsg) – compact graph

sizemax – maximal size of the query list networks
Q – keyword query

Output: QLN – list of query list networks
1: function AND_QLN_Enumerate(CSG(SGA),sizemax,Q)
2: /* initialize */
3: queue := [] /* empty queue for breadth first search */
4: QLN := ∅
5: for all n ∈ Ccsg with kw1 ∈ ann(n) do
6: create qln with one node (”c1”, n)
7: if isResult(qln,Q) then
8: appendTo(QLN, qln) /* qln is an output */
9: else

10: appendTo(queue, qln) /* add to queue to extend */
11: end if
12: end for
13: /* Enumerate */
14: while queue.isNotEmpty do
15: qln := queue.poll /* remove first network from queue */
16: for all (a, n) ∈ Nqln do /* For all nodes in qln = (Nqln, Eqln) */
17: for all adjacent n′ ∈ Ccsg to n do
18: newQln := extend((a, n), (n, n′), n′) /* Extend qln */
19: if isValid(newQln, qln) then
20: if isResult(qln,Q) then
21: appendTo(QLN, newQln) /* is an output */
22: else if size(newQln) < sizemax then
23: appendTo(queue, newQln) /* add to queue to extend */
24: end if
25: end if
26: end for
27: end for
28: end while
29: return QLN
30: end function

131

6. Concept Query Generation

ensures a duplicate-free queue or result. For this, we use an index in which we hold a
canonical form of the query list networks. If the index does not contain the canonical
string, the function will add the network to the queue or to the output and the string
to the index. Otherwise, the network is ignored. Possible optimization are proposed
in [MYP09, QYC11, Luo09], which improves performance further. We will discuss
the optimization in the following section. The second function isResult will return
true for a query list network qln, if the network contains all keywords of the query,
i.e., keywords(qln) = Q and the network contains at least one annotated concept
node. The last function isValid checks if a query list network is valid according to
the rules in Section 6.4.1. That means that there are no overlapping keyword sets, no
violation of the 1:n rule, no violation of the free leaves rules, and the network does
not violate the rules in the compact schema nodes. We explain the latter two points
in the following.

Assume a query list network qln has k free leaves. The network is valid if the
algorithm can extend it in that way that only specified leaves exist. That is only the
case if k ≤ min(maxSize − size(qln), ∣Q∣ − ∣keywords(qln)∣). The condition states
that the network must be expandable by at least k nodes. This is the case, when the
maximum size is not violated if we add k nodes and there must not be overlapping
keyword sets. Hence, at least k keywords of Q are not in the set.

The last point investigates compact nodes. A compact node does not support all
combinations of edges. Therefore, a node has a set of rules edge → concept describing
the most general concept that supports the edge. Now assume a node (a, n) in a
query list network and let edges((a, n)) be the incoming and outgoing edges from
this node. We use all rules for n and replace the edges by their mapped concepts,
i.e., concepts((a, n)). The node supports the set of edges if for all pairs (c, c′) with
c, c′ ∈ concepts((a, n)) is true that c and c′ are in an ancestor-descendant relationship
or are equal.

6.5. Discussion

The approach follows the schema-graph-based keyword processing in structured
databases [ACD02, HP02, HGP03, SLDG07]. However, we use query lists instead
of tuple lists that represent the selected objects. The data graph approach is not
suitable because it requires the complete materialization of all global objects. Instead,
the proposed approach uses only keyword statistics that can be obtained using ex-
tended protocols like STARTS [GCGMP97] and its extensions [GIG01, IBG02], or
query based sampling approaches [CC01]. The statistics contain only information of
single keywords but not information about the connection of terms. For example, Yu
et al. [YLST07] describe connection statistics to be used in the selection of relational
databases for a keyword query. However, we treat sources as a virtually integrated
database. Thus, we try to select the global queries instead of directly selecting local
relational databases.

The keyword index models concept and category hierarchies with the help of Dewey
identifiers. Different works in XML [OOP+04, HHMW07] and XML keyword process-
ing [AYCD06, BG06, XP05] successfully use Dewey identifiers to model the ancestor-

132

6.6. Summary

descendant relationship in XML hierarchies. We use the numbering to create complex
nodes and for keyword processing with query expansions.

The keyword processing creates an interpretation of a keyword. For that, we support
schema and data terms as well as faceted or labeled keywords. Many keyword search
systems in relational databases support only data terms [HP02, ACD02, SLDG07].
Yu et al. [YLST07] also support schema terms during query processing. Other related
systems are form search systems [CBC+09, DZZN09]. Here, pre-computed forms or
query templates are associated with keyword interpretation. Tata et al. [TL08] also
create queries from keywords, but go a step further. The authors create a subset of
SQL queries from a keyword list and allow also aggregations. A similar idea is the
form search of Chu et al. [CBC+09].

In the second step, our approach enumerates query list networks. Query list net-
works are equivalent to candidate networks [HP02, ACD02, SLDG07]. We use an
online breadth first approach and do not precompute query templates [DZZN09] or
forms [CBC+09]. In order to reduce the enumeration complexity, we condense the
annotated schema graph. A similar approach is used in the KITE system [SLDG07].
However, we compact a concept graph by using hierarchies of concepts as well as
their inter-concept edges, while the KITE system works with heterogeneous relational
databases and compacts foreign key relationships. Furthermore, the compact networks
allow to reuse the mediator query optimization of Yacob [SGS05] (see Section 3.3).
Markowetz et al. [MYP09] and Qin et al. [QYC11] focus on keyword search on large
data streams. The problem is the efficient generation of all possible candidate net-
works, i.e., all keyword combination can occur in every relation. Therefore, one needs
more efficient candidate network enumeration algorithms. Markowetz et al. proposed
an algorithm that sorts all relations and adds only relations that have larger identifier
to existing intermediate candidate networks. Qin et al. improve this approach by using
a template-based approach. A template represents a set of candidate networks. Thus,
first all templates are generated, and second, the candidate networks are extracted.
This approach resembles our compact concept graph model because compact query
list networks contain all query list networks of all sub-concept combinations.

6.6. Summary

In this chapter, we described the schema graph-based processing of concept-based
keyword queries. First, we outlined the overall keyword search process and described
all steps and components. Our approach follows the schema graph-based approaches
for relational and XML databases. Second, we presented the structure of the keyword
index. In particular, we model the concept-hierarchies using Dewey identifiers, which
allows the efficient testing of subclassOf relationships. The result of the keyword
processor is a list of index entry tuples. In the following, we showed how index entries
are translated into single concept queries. A single concept query allows retrieving
objects from one concept extension. As keywords are spread over different objects,
we have to generate join materialization queries. For this, we annotated the global
concept schema, i.e., inserted concepts and edges that represent lists of single concept
queries. From this, we used the common breadth-first algorithm, to create concept

133

6. Concept Query Generation

networks that contain all keywords. Together with the query lists, these are query
list networks. Because of the complexity of the concept schema graph, we presented
an algorithm to compact the annotated schema by collapsing concept hierarchies into
complex nodes and merge the corresponding query lists. The overall result of concept
query generation is a set of query list networks. A query list network is a compact
representation of a list of materialization queries. We expect that index access and
query list network enumeration are efficient by using the proposed approaches. We
report of the validation experiment results in Chapter 8. In particular, Section 8.3.2
contains experimental results of index access and query list network enumeration. In
the following Chapter 7, we present different approaches how to process and execute
query list networks to obtain valid object networks as results.

134

7. Concept Query Processing

In Chapter 6, we presented the efficient generation of materialization queries. The
result of the approach is a set of query list networks. A query list network represents
a lists of materialization queries. In this chapter, we focus on the efficient execution of
query list networks. The execution of materialization queries is the most expensive step
during keyword query processing because source queries have to be sent via network
to local sources, be executed, and results must be retrieved and integrated. In this
chapter, we present approaches to minimize the number of executed source queries
and transferred objects (see Figure 7.1). This chapter focuses on join optimization,
efficient execution of query list networks as well as techniques to exploit the structure
of generated structural queries to avoid unnecessary re-computations.

Single Concept

Query

Ranked Object

Networks

Keyword query

Ranking function

Source Query Source Objects

Global Objects

Query List Network

− Single Concept Queries Generation

Concept Query Processing

− Semi−Structured Data− Limited Query Interface

− Partially Cooperative

− Syntax − Semantics − Ranking

Concept−Based Keyword Queries

Concept−Based

− Integration Model

− Query Planning − Object Transformation

Heterogeneous Sources

− Query Transformation

Concept Query Generation

− Query Networks (Joins) Optimization

− Optimization of Sets of Query Networks

− Query Network Execution − Ranking

− Empty Result Detection

− Statistics & Cost Functions

Access/Integration/Query Planning (Yacob)

− Keyword Index/Statistics

− Query Networks (Joins) Generation

Figure 7.1.: System overview: Concept query processing

In Section 7.1, we discuss the query processing model. In order to optimize queries,
we provide a cost model and its usage in a dynamic programming algorithm. Fur-
thermore, we present the adaptation of existing keyword processing algorithms to
concept-based keyword processing using materialization queries.

One problem of keyword query processing is the re-computation of queries. Sec-
tion 7.2 describes how to avoid the re-computation of empty results. Section 7.3
discusses a semantic cache to materialize intermediate results for reuse of previously

135

7. Concept Query Processing

computed results. Both approaches have the potential of reducing the cost, but are
applied only to individual queries. Therefore, we present techniques to optimize a set
of similar materialization queries in order to minimize the source accesses and queries
in Section 7.4. For long query lists, we propose two optimizations: query merging and
query splitting in Section 7.5. The chapter concludes with a discussion of related work
in Section 7.6 and a summary in Section 7.7.

7.1. Preliminaries

This section is divided into three parts. First, we describe the join query process-
ing. The processing uses the Yacob system to execute single concept queries. The
results are taken over by the join processor that uses a semi-join approach. Queries
are optimized by using a simple cost model and a dynamic programming algorithm.
Second, we adapt two basic algorithms to process query list networks, i.e., lists of
materialization queries created by the query transformation step. The first algorithm
is the generation of all queries and sorting by score in descending order as proposed by
Zhou et al. [ZZDN08]. The second algorithm is the step-by-step execution of query list
networks defined by Hristidis et al. [HGP03]. Third, we motivate the following section
by showing the degree of query overlapping and the problem of query re-computation.

7.1.1. Query Processing

In Section 5.3.3, we introduced materialization queries to obtain valid object networks
as results of keyword queries. We also described how to translate them into concept-
based join queries using the Yacob system. In the previous Chapter 6, we described
approaches to generate such queries based on single concept queries. Now, we decom-
pose a concept-based query into single concept queries and join conditions specified
by concept properties. Thus, a materialization query is a query network

qn = (Q,E)

with Q a set of queries and E ⊂ Q×Q×P are edges between single concept queries
representing concept properties. Every single concept query q ∈ Q is of the form (see
Section 3.2)

�cond(
⊎

c∈Cq

ext(c))

with

Cq =

{

�+
is_a

(c) if sub-concepts are used

{c} otherwise.

That means that the query uses either the shallow concept extension or the union of
the concept and all sub-concept extensions. If the condition cond is true or contains
only concept level predicates like exists(p), we will denote the single concept query as
free. Otherwise, we will say the query is specified. A specified query contains at least
a predicate of the form p ∼= kw or p = v with kw a keyword and v a category. The

136

7.1. Preliminaries

edges describe the connections between the query results. Using the join mappings
the edges represent join conditions making a query network a conjunctive SPJ1 query.

We show two query networks in Figure 7.2. Figure 7.2(a) illustrates a query network
created from a non-compact query list network. In contrast, the query network in
Figure 7.2(b) uses a compact node (FineArts/∗). Every rounded box represents a
single concept query. The upper text describes the set of concepts and the lower text
is the condition. The middle nodes in both figures are free queries, the others are
specified. The edges are mapped to the conditions name = artist for “createdBy”

createdBy lostBy

name~="holbein"

painter

city~="Prague"

museumdrawing

true

concept

condition

(a) Normal query network

lostBypainter

name~="holbein"

FineArts/*

city~="Prague"

museumcreatedBy

(b) Compact query network

Figure 7.2.: Exemplary query networks

and institution = name for “lostBy”. Using this information, the query network of
Figure 7.2(a) represents the join query

(�name∼=′Holbein′(ext(painter))) ⊳⊲name=artist ext(drawing)

⊳⊲institution=name (�city∼=′prague′(ext(museum))) .

The second network (Figure 7.2(b)) translates to the join expression

(�name∼=′Holbein′(ext(painter))) ⊳⊲name=artist

⎛

⎝

⊎

c∈Cq

ext(c)

⎞

⎠

⊳⊲institution=name (�city∼=′prague′(ext(museum)))

with Cq = Φ+
is_a

(FineArts), i.e., all direct and indirect sub-concepts of the concept
Fine Arts.

The result of query network execution is a set of object tuples. The tuple components
are denoted by the alias of the query. The component values are the corresponding
objects.

Semi-join processing

To compute the result of a materialization query, we propose a two-phase approach.
In the first phase, the join processor materializes all objects for every single concept

1Select-Project-Join query

137

7. Concept Query Processing

query that are necessary for the result computation. In the second phase, we join
these objects to the result using common join algorithms on the global level.

In the materialization phase, we distinguish between free and specified single concept
queries. Specified queries are sent to the Yacob mediator and are executed. In
contrast, free queries cannot be directly processed. The solution is a semi-join. We
use the result of a specified query and compute the semi-join with the free query.
For example, the query network in Figure 7.2(a) can be translated into the query
steps p′ = �name∼=′Holbein′(ext(painter)), m′ = �city∼=′prague′(ext(museum)), and d′ =
�name∼=′Holbein′(ext(painter)) ⋊name=artist ext(drawing). In the second step, we join
p′, d′, and m′.

The approach allows the parallel materialization of different filter queries and the
usage of efficient joins on the global level. However, an early join of materialized sub-
plans might reduce the costs because of early stopping if the system encounters empty
results.

Plan operators and statistics

The system translates materialization queries into a plan of operators that represent
the underlying physical operations. An optimizer creates a plan that minimizes the
query execution costs. As we consider sources with restricted query capabilities, we
assume that we have to provide a selection condition to a source to obtain results. That
means that the objects of the free queries cannot be retrieved directly but depend on
the input of the specified join partners. We use a bind-join approach [HKWY97]2 to
implement the semi-join. In the following, we explain the plan operators and the costs
of the underlying query processing.

A plan operator represents an underlying physical operation and processing algo-
rithm. The plan operators follow the idea of the Garlic operators [HKWY97].The
following properties are common to all plan operators types(Figure 7.3). A plan op-
erator has a list of children operators, i.e., 0 to n inputs. Every plan operator has a
list of parents. Every plan operator p has an output schema, i.e., the structure of the
output object tuples (scℎema(p)). A plan operator has an alias(p). An alias repre-
sents a single concept query. An alias refers to the corresponding query node in the
query network and to the alias in the corresponding concept network. Finally, a plan
operator p has three cost values: the estimated number of source queries (estSrcQ(p)),
the estimated number of transferred objects (estSrcObj(p)), and the estimated out-
put size of the operator (estSize(p)). The values refer only to the cost caused by the
operator p.

To compute the estimated costs, we use the statistics obtained from the keyword
index. We restrict the statistics to allow the fast inclusion of new sources. Table 7.1
summarizes and describes the used statistics values.

We outline every plan operator in the following. We distinguish two kinds of opera-
tors, source accessing operators and global operators. Table 7.2 summarizes the used
operators and the cost functions. First, we discuss the three source accessing plan
operators.

2Also known as dependent join [GW00]

138

7.1. Preliminaries

parent plan operators

schema

children

<POP_NAME>

list of plan operator children

output schema of the result (object types + properties)

list of all used concepts and their selection conditions

parents

alias

estSize

estSrcQ

estSrcObj

estimated output size of this operator

estimated number of source queries of the operat subtree

estimated number of source objects of the operator subtree

Figure 7.3.: Plan operator

Value Description

DF (t, c, p, s, deep) number of objects of concept c in source s containing
term t in property p (if deep = true including sub-
concepts)

DF (v, c, p, s, deep) number of objects of concept c in source s containing
category v in property p (if deep = true including sub-
concepts)

size(c, s, deep) number of objects of concept c in source s (if deep = true
including sub-concepts)

dom(c, p, s, deep) number of distinct values in p of objects of concept c in
source s (if deep = true including sub-concepts)

∣ ext(c)∣
∑

s∈Sc
size(c, s, false)

Table 7.1.: Statistics values

Base concept plan operator. The ConceptPOP plan operator indicates an access to
local sources through the extension of a concept or the extension of a set of concepts.
The parameters of the operator are the concept to be accessed and a flag, if the
sub-concepts should be used. The output schema consists of all data properties of
the represented concepts. The operator alone does not induce source queries and
transferred objects, but is used by filter and bind join operators. The estimated size
is the size of the extension of the concept

estSize(p) = ∣ ext(c)∣ (7.1)

or of the deep extension

estSize(p) =
∑

c′∈Φ+

is_a
(c)

∣ ext(c′)∣. (7.2)

Filter Operator. The FilterPOP represents the selection of the output of its only
child operator. The FilterPOP always has one child that is a ConceptPOP. The Filter-
POP inherits the output schema as well as the alias of the ConceptPOP. Additionally,
the FilterPOP has a non-empty condition cond. Combined with the ConceptPOP

139

7
.

C
o
n
cep

t
Q

u
ery

P
ro

cessin
g

Name Type OutputSchema Estimated Est. Src. Est. Src.
Size Queries Objects

ConceptPOP (c, inclSub) source props(c) Eq. (7.1) or Eq. (7.2) 0 0

FilterPOP (Cond) source scℎema(firstCℎild) Eq. (7.3) ∣sources(C)∣ Eq. (7.3)

BindSemiJoinPOP(edge) source scℎema(secondCℎild) Eq. (7.5) Eq. (7.4) Eq. (7.5)

MaterializePOP global scℎema(firstCℎild) estSize(leftPOP) 0 0

CachePOP(CE) global scℎema(firstCℎild) Eq. (7.7) 0 0

MultiWayJoinPOP global
∪

p∈cℎildren scℎema(p) global join estimation 0 0

T
able

7.2.:
P

lan
operators

140

7.1. Preliminaries

child, the FilterPOP represents a single concept query. If the condition cond does
not contain a specified condition, the represented query will not be specified and can-
not be executed directly. The following cost estimation holds for specified queries.
The number of source queries induced by the operator is the number of sources that
provide data to the concept. The number of source objects equals the size of the
estimated output of the operator. We estimate the number of source objects using
the document frequency DF of the query terms. For example, assume a condition
cond := artist ∼= ”Holbein” ∧ title ∼= ”Scence”. Then for every source s and
concept c, we estimate the number of objects containing ℎolbein and scene as

DF (ℎolbein, c, artist, s) ⋅DF (scene, c, title, s)

size(c, s)

with size(c, s) the number of objects in the extension of c for the source s and DF is
the document frequency of a term. The formula is based on the assumption keywords
are independent. Summarizing all sources Sc and generalizing the condition to k
predicates, we obtain the estimated number of objects as in Equation (7.3):

estSrcObj(p) =
∑

s∈Sc

⎛

⎝

⎛

⎝

∏

(c/pj∼=kwj)∈cond

DF (kwj, c, pj, s, deep)

size(c, s, deep)

⎞

⎠ ⋅ size(c, s, deep)

⎞

⎠

(7.3)
with 1 ≤ j ≤ k. The estimated size of the output equals to the estimated number of
retrieved objects. The same formula is also used for category selections. The parameter
deep is true, if the sub-concepts are included, too. Otherwise, the parameter is false,
and we use a shallow extension.

Bind Semi-Join Operator. In order to retrieve the output of free queries, we use
the bind join operation represented by the BindSemiJoinPOP plan operator. A Bind-
SemiJoinPOP has two inputs. The left input is a specified input, i.e., a specified
FilterPOP, another BindSemiJoinPOP, or a CachePOP, which retrieves objects from
the cache. The BindSemiJoinPOP has one parameter that is the join condition ob-
tained from the concept property. The output schema of the plan operator is inherited
from the right child operator. The BindSemiJoinPOP represents the value semi-join
between the left filtered input and the extension represented by the right concept plan
operator or free filter operator. It is implemented as follows. Let Oleft be the result of
the left input. The bind semi-join computes the output as described in Algorithm 7.1.
For each object tuple of the left input, we create a selection query against the right
input. The condition is created by the right hand side of the join condition and the
respective value of the current object. The output is the union of all query values.

The estimated number of source queries depends on the estimated output size of
the left operator and the number of sources that provide objects for the right input.
In detail, we estimate that we create estSize(leftCℎild) selection conditions. Every

141

7. Concept Query Processing

Algorithm 7.1 Concept bind-semi-join
Input: Oleft – left result, set of object tuples

cond := (cleft/pleft = crigℎt/prigℎt) – value join condition
qrigℎt = �condr

⊎

c∈Crigℎt
(ext(c)) – right query

Output: Output – set of objects of the right concepts that can join Oleft

1: function BindJoin(Oleft,cond,q)
2: Output := ∅, T := ∅
3: V = �cleft/pleft(Oleft) /* Projection and duplicate removal */
4: for all v ∈ V do
5: condt = prigℎt = v ∧ condr

6: Output := Output ∪ �condt

(

⊎

c∈Crigℎt
ext(c)

)

7: end for
8: return Output
9: end function

selection is sent to every concept of the right child and to every source. That means
that we estimate the number queries caused by a bind join semi-join as

estSrcQ(leftCℎild) ⋅

⎛

⎝

∑

c∈Crigℎt

∣Sc∣

⎞

⎠ (7.4)

with Crigℎt the concepts of the right child and Sc the number of sources mapped
to c ∈ Crigℎt. This estimation is conservative and most possibly an overestimation
because of duplication elimination by the projection in the bind-join algorithm and
optimizations of the mediator (see Section 3.3).

The number of retrieved objects is the sum of the query sizes. We estimate this
number using the following heuristics. Assume an edge e between a concept c1 and
c2. The join mapping of the edge leads to the condition c1/p11 = c2/p21. The edge
has the cardinalities e.srcCard = 1 and e.tgtCard = N. In our definition, this means
that all values in c1/p21 are also in c1/p11 but not vice versa. For example, all artists
values in paintings/artist are also in artist/name. This assumption does not hold
in the integrated case, but we use this assumption for estimation. Because of this,
we can estimate the domain size dom(c1, p11) = ∣ ext(c1)∣. Because of the inclusion
assumption, it holds dom(c1, p11) = dom(c2, p21). In consequence, we compute the
domain size of c1/p11 and c2/p21 as the extension size of the “1” side of the edge. We
denote this as dom(cdom, pdom). Using the join formula of Ullman [Ull90] on page 650,
we estimate the output size as

estSize(p) = estSize(leftCℎild) ⋅
∑

c∈Crigℎt

∑

s∈Sc

size(c, s)

dom(cdom, pdom)
. (7.5)

Furthermore, we assume that the output size equals to the number of transferred
objects, i.e.,

estSrcObj(p) = estSize(p). (7.6)

142

7.1. Preliminaries

We evaluate these basic estimators in Chapter 8.

Materialization Operator. The first global plan operator is the materialization op-
erator MaterializePOP. This plan operator has one child plan operator as input that
is either a filter or bind semi-join operator. The MaterializePOP inherits the output
schema of its child plan operator. The materialize operator represents the materializa-
tion of the objects created by the sub-plan rooted by the child. As it does not induce
new source queries and changes the output, it inherits all cost values of the child node.

The data is either temporarily materialized for the query, or it is added to the cache.

Cache operator. The cache plan operator CachePOP is the counterpart of the Ma-
terializePOP. A MaterializePOP materializes the result of source queries on the global
level. A CachePOP retrieves data from the cache. It combines several cache entries
E and a filter filtercond to the final result. We will describe the approach in Sec-
tion 7.3. A CachePOP has one child representing the plan operator tree that created
the materialized data set. The plan operator does not induce any source queries. The
output schema is inherited from the child operator. The output size of the operator
is the size of the cached data set. The cached data is the intersection of cache entries
∩

e∈E e.data and a possible filter filtercond. Hence, the output size of a CachePOP is

estSize(p) =

∣

∣

∣

∣

∣

�filtercond

(

∩

e∈E

e.data

)∣

∣

∣

∣

∣

. (7.7)

The size estSize(p) is estimated by using general size estimators [SAC+79, Ull90].

Multi-Way-Join Operator. The last plan operator is the MultiWayJoinPOP. The
inputs of the MultiWayJoinPOP are only MaterializePOP or CachePOP operators.
The multi-way join is executed by a global database system on the materialized data.
The output schema is the union of all input schemas. The output size is estimated
by common join size estimations [SAC+79, Ull90]. The optimal plan is created by the
global system and is not considered in the plan optimization in this section.

Plan structure

An execution plan of a materialization query created by a keyword query always has
the same structure. The root node is a MultiWayJoinPOP combining all materialized
sub-plans. A MaterializePOP is the root of every sub-plan. It materializes the data of
exactly one concept in the plan. It uses either a FilterPOP or BindSemiJoinPOP for
obtaining the data. A BindSemiJoinPOP has a MaterializePOP and a ConceptPOP
(FilterPOP with a free query, respectively) as children. One or more operators can
use the materialized result of a MaterializePOP.

Figure 7.4 illustrates two possible plans of the queries in Figure 7.2(a) and 7.2(b).

143

7. Concept Query Processing

concept: drawing

edge: createdBy

BindJoinPOP

MaterializePOP MaterializePOP

edge: createdBy,lostBy

concept: museum

ConceptPOP

MultiWayJoinPOP

city~="Prague"

FilterPOP

name~="holbein"

FilterPOP

concept: painter

ConceptPOP

MaterializePOP

ConceptPOP

(a) Execution plan of Figure 7.2(a)

FilterPOP

MaterializePOP

MultiWayJoinPOP

ConceptPOP

concept: FineArts/*

BindJoinPOP

edge: lostBy

edge: createdBy,lostBy

name~="holbein"

FilterPOP

concept: painter

ConceptPOP

MaterializePOP

MaterializePOP

concept: museum

ConceptPOP

city~="Prague"

(b) Execution plan of Figure 7.2(b)

Figure 7.4.: Execution plans

Basic plan optimization

For the creation of optimal plans regarding the cost functions, we use a dynamic
programming algorithm [Kos00, KS00]. Alternative solutions could be iterative dy-
namic programming or a greedy algorithm [KS00]. However, the number of possible
plans is small because of the constraints of the plan structure. The plan structure
is constrained, because at first, we always use left-deep bind-semi-join trees with an
operator pair consisting of filter and concept operator as left-most leaf, and second
we have only one join operator as root that optimizes the join order3. Algorithm 7.2
illustrates the approach. Input is a query network (Q,E), and the output is the best
plan and its costs. We use a map data structure that consists of a set of pairs (Q′, P)
with Q′ a subset of Q describing the used single concept queries in the set of plans in
P . Initially, the algorithm creates the plan operators for single nodes (createPOP)
resulting in ConceptPOPs or sub-plans consisting of a FilterPOP with one Concept-
POP as child. Specified queries have an additional MaterializePOP as root. Using
the dynamic programming approach, for every subset of nodes a plan is created by
combining already created sub-plans. During combination, either BindSemiJoinPOP
or MultiWayJoinPOP plan operators are created. After every step, the algorithm
prunes the plans using the function prunePlans. Thereby, only the best plans for
every subset are retained. Finally, we find the final set of plans and select the plan
with the lowest cost.

In order to decide the best plan, i.e., the plan with the lowest cost, we use the
following cost function. We summarize all source queries and transferred source objects
in the plan, denoted as estSrcQ(p) and estSrcObj(p) with p the root of the plan. The
final costs of the plan are the combination of both values:

costs(p) = combine(estSrcQ(p), estSrcQbj(p)). (7.8)

For example, a combination function is the weighted sum of both values. In the
experiments, we weight both values equally.

3We will use a main memory database system as implementation. See Section 8.1

144

7.1. Preliminaries

Algorithm 7.2 Dynamic Programming optimization
Input: query network (Q,E)
Output: best plan p

1: function Optimize((Q,E))
2: plans := ∅ a set of pairs: (Q′, P) with Q′ ⊆ Q and P a list of plan operators
3: /* initialize */
4: for all q ∈ Q do
5: add ({q}, createPOP(q)) to plans
6: end for
7: /* dynamic programming */
8: for 1 ≤ i < ∣Q∣ do
9: for all Q′ ⊂ Q with ∣Q′∣ = i do

10: for all (Q′′, P) ∈ plans : Q′′ ∩Q′ = ∅ do
11: P ′ := createPlans(plans(Q′), P)
12: plans(Q′ ∪Q′′) := plans(Q′ ∪Q′′) ∪ P ′

13: end for
14: end for
15: prunePlans(plans,Q, i+ 1)
16: end for
17: let p ∈ plans(Q) the plan with minimal cost
18: finalize(p)
19: end function

Plan execution

The result of a query is a set of object tuples that form object networks as an answer to
a query network, i.e., valid answers of materialization queries and the keyword query.
The plan execution consists of two phases. At first, the system materializes the results
of every materialize plan operator and its sub-plan. At second, the materialized tuple
sets are joined globally in the second phase. The second phase is simply executed by
the global system using common join algorithms like nested-loop, merge, or hash joins.
The first phase uses the Yacob mediator for accessing local sources. The material-
ization sub-plans consist of plan operators of the type ConceptPOP, FilterPOP, and
BindSemiJoinPOP. A FilterPOP and its child, a ConceptPOP, are translated into a
CQuery statement of the form �cond(

⊎

c∈C ext(c)). The systems sends the statement
to the Yacob mediator and the mediator returns the set of objects as the result.

Consider the plan in Figure 7.4(a). The system translates the FilterPOP name ∼=
”ℎolbein” into the statement

�name∼=”ℎolbein”(ext(painter)).

The result is materialized. Furthermore, the bind join operation (see Alg. 7.1) uses
the result to create queries to the mediator. Initially, the operation projects the input
objects to the data property name and removes all duplicates. For every value v in this
set, the system creates a query �artist=v(ext(drawing)) and stores the result objects
without duplicates. Subsequently, the third materialization operator is processed, and

145

7. Concept Query Processing

the result is materialized, too. Finally, all three materialized object tuple sets are
joined using the join operation implemented by a main memory database system.

In this way, we efficiently execute queries over different concept extensions and
sources. The approach reuses the Yacob mediator system’s capabilities and adds the
join functionality. The approach allows the parallel materialization of different filter
queries and the usage of efficient joins on the global level. In contrast, an early join of
materialized sub-plans might reduce the costs because of early stopping if the system
encounters empty results.

7.1.2. Non-Reuse Algorithms

After the discussion of the execution and optimization of separate materialization
queries in the previous subsection and the creation of query list networks in Chapter 6,
we return to the execution of sets of queries during keyword query processing. The
input is a set of query list networks as described in the previous Chapter 6. We require
three types of the output (see Chapter 5):

1. the complete results,

2. the k best object networks (i.e., k best non-empty materialization queries), or

3. the best non-empty concept networks with corresponding object networks.

In this section, we shortly summarize two approaches we will adapt to use in our
context. The first is the baseline algorithm that creates all query networks and executes
them. The second approach uses the query list networks and executes them step-by-
step as proposed by Hristidis et al. [HGP03] and Sayyadian et al. [SLDG07]. Both
approaches do not reuse intermediate results.

Baseline Algorithm

The baseline algorithm is straightforward and is based on the algorithm presented by
Demidova et al. [DZZN09]. First, we take all query list networks. From every query list
network, the algorithm builds all valid materialization queries. Every materialization
query has a score. Depending on the required answer set, we propose the following
three algorithm alternatives:

Top-k materialization queries: the top-k version of the algorithm sorts the queries
by descending score order. After this first step, the algorithm executes query by
query until k queries were successfully executed.

All object networks: in the first step, the algorithm removes all query network du-
plicates. Duplicates can occur if a keyword acts as schema keyword. After the
first preprocessing step, all queries are executed.

Top-k concept networks: in this case, we group all queries by the corresponding
concept network and sort the queries in the groups by descending score. Fur-
thermore, we sort all groups by the best query score in the group. Now, we

146

7.1. Preliminaries

execute the queries step by step and use always the best global query. If a
concept network group contains a successful query, we will output this network
with all queries and the successful query result. The algorithm continues until
k results are found or all queries are executed.

Query List Network based Algorithms

In this section, we describe the second class of algorithms that directly execute query
list networks. These algorithms are adapted from the algorithms proposed by Hristidis
et al. [HGP03] and Sayyadian et al. [SLDG07]. The basic idea is the exploitation of
the monotonicity of the ranking function. The monotonicity expresses itself as follows.
Considering two query networks QN1 and QN2 corresponding to the same concept
network. For all but one (q1i ∈ QN1(Q) and q2j ∈ QN2(Q)) single concept queries,
the queries have the same score. The ranking function is monotone, if

score(QN1) > score(QN2) ⇔ score(q1i) > score(q2j).

Given these characteristics, we execute query list networks as follows.
The algorithm always selects the query list network with the highest possible score.

The highest possible score is the highest score of a query network, which was not
yet constructed from the query list network. The highest scoring query list network
is executed as follows. Consider the query list network illustrated in Figure 7.5 as
example.

0.8

0.9

Score

name ~= "Prague"

city ~= "Prague"

Query

0.8

0.9

0.7

birthplace ~= "Augsburg"

place_of_death~="Augsburg"

name ~= "Augsburg"

Query Score

{Prague}{Augsburg}

createdBy lostBy

Query Lists

Painter FineArts/* Museum

Figure 7.5.: Query list network

Initially, the algorithm selects the first two entries of the query lists and creates a
query network. The network is executed. If the query has been successful, we add the
query and its result set to output. In the case of top-k concept network semantics, we
add the complete network and all related networks to the output. Otherwise, we mark
the top queries as used (Figure 7.6(a)). The algorithm recomputes the new maximal
possible score of the network using the top query network that contains at least one
non-used single concept query. In the following, we select the best network again. If
we assume, the next best network is the same network, the algorithm selects the most
promising single concept query, marks it as used, and enumerates all query networks
together with the used single concept queries of the second list (see Figure 7.6(b)). The
algorithm executes the queries if they have a higher score than the k-th result in the

147

7. Concept Query Processing

output. We execute the queries separately because we assume that only conjunctive
conditions are allowed as source queries. The algorithm stops if the k-th result has a
higher or equal score to the best existing query list network or all queries are exhausted.

0.8

0.9

Score

name ~= "Prague"

city ~= "Prague"

Query

0.8

0.9

0.7

birthplace ~= "Augsburg"

place_of_death~="Augsburg"

name ~= "Augsburg"

Query Score

{Prague}{Augsburg}

createdBy lostBy
Painter FineArts/* Museum

(a) First Step

Step 4

Step 2 Step 3

Score

name ~= "Prague"

city ~= "Prague"

Query

0.8

0.9

0.7

birthplace ~= "Augsburg"

place_of_death~="Augsburg"

name ~= "Augsburg"

Score

{Prague}{Augsburg}

createdBy lostBy
Painter FineArts/* Museum

Query

0.8

0.9

(b) Following Steps

Figure 7.6.: Query list network processing

This approach is especially successfully used for top-k queries [HGP03, SLDG07],
either for object networks or concept networks. Generating all results the approach
is extremely expensive. In our setting of restricted query capabilities and external
sources, the approach must be adapted to reuse information of intermediate and pre-
vious results during query processing.

7.1.3. Motivation for Query Re-Using Algorithms

As we have seen in the previous sections, the processing of concept-based queries uses
expensive operators like the bind-join operation. The system generates many source
queries and transfers many objects During processing. Analyzing the queries, we can
make the observation that many queries overlap. Furthermore, many intermediate
queries are empty. Thus, there is a significant potential of re-using intermediate or
previous results during processing to reduce the query costs.

For example, we tested keyword queries for the IMDB test database (see Sec-
tion 8.2.2). We created and analyzed for keyword queries of the size 2 to 5 as well as
for a maximum query network size of 3 and 4 the materialization queries. The results
are presented in the Figures 7.7. The figures show that the number of materialization
queries and query networks grows with increasing parameter values. Also, the number
of average and maximum re-usage of single concept queries increases. We define a join
in this motivation as one join with a single concept query. We do not consider longer
join paths here. Also, the reuse of joins increases. In Table 7.3, we show the percentage

148

7.2. Detection of Empty Results

of single concept queries and simple joins that occur in more than one materialization
query. We present the data with respect to the keyword query size and the maximum
network size sizemax. The results show a high percentage of reuse in the queries.

Number of keywords

sizemax 2 3 4 5

3 72.7%/61.1% 92.8%/83.2% 93.8%/76.2% 98.6%/79.1%
4 80.9%/92.6% 94.6%/95.9% 95.3%/99.3% 98.8%/99.5%

Table 7.3.: Percentage of overlapping query parts (single concept queries/joins)

In order to minimize the costs, we investigate the following points. First, we try to
detect empty results using some statistics. A similar approach is also used in Demidova
et al. [DZZN09] and Chai et al. [CBC+09]. We will discuss the differences in the end
of the chapter in Section 7.7.

In the second case, we reuse actual intermediate results. That is necessary to mini-
mize the access to the local sources. We distinguish two approaches. First, it is possible
to cache results of separately executed queries and second to optimize multiple queries
together to find an optimal global plan. For example, Agrawal et al. [ACD02] pro-
posed to use multi-query optimization in keyword search in relational databases but
did not provide a solution. Hristidis et al. [HP02] proposed a greedy algorithm to find
a globally near-optimal plan for getting all results. We will discuss how to optimize
query list networks and a complete keyword query, i.e., a set of similar materialization
queries. Markowetz et al. [MYP09] and Li et al. [QYC11] proposed multi-query data
structures for processing keyword search over data streams. Our approach also sup-
ports top-k queries as well as materialization queries instead of tuples. In the following
section, we provide solutions to avoid re-computation of empty results and reuse of
successful intermediate queries, respectively.

7.2. Detection of Empty Results

The first step of optimization during query execution is to avoid re-computation of
empty results. Empty results emerge because of missing join partners or combination
of keywords in single concept queries that cannot be satisfied. For example, the index
finds the keywords “holbein” and “gogh” in the artist concept. One corresponding,
empty query is artist/name ∼= ”ℎolbein” ∧ artist/name ∼= ”gogℎ”. As parts of
concept-based queries are often shared during execution of keyword queries, we argue
that we can significantly improve the query performance by storing empty results and
avoid their re-computation.

Generated concept-based queries consist of selection and join operations, which
propagate empty results [Luo06]. That means that these operators will have an empty
result if one input of these operators is empty. Therefore, the execution of the complete
plan can stop if at least one sub-query has had an empty result.

The problem of detecting empty-result queries consists of the following sub-
problems:

149

7. Concept Query Processing

 1

 10

 100

 1000

 10000

 100000

 1 2 3 4 5 6

N
u

m
b

e
r

#Keywords

Number of Queries and Re-use

#query networks
#materialization queries

#max re-use single concept queries
#max re-use single concept joins

#avg re-use single concept queries
#avg re-use single concept joins

#re-use single concept queries
#re-use single concept joins

(a) Number of networks and queries for sizemax = 3

 10

 100

 1000

 10000

 100000

 1e+006

 1e+007

 1 2 3 4 5 6

N
u
m

b
e
r

#Keywords

Number of Queries and Re-use

#query networks
#materialization queries

#max re-use single concept queries
#max re-use single concept joins

#avg re-use single concept queries
#avg re-use single concept joins

#re-use single concept queries
#re-use single concept joins

(b) Number of networks and queries for sizemax = 4

Figure 7.7.: Query overlapping

150

7.2. Detection of Empty Results

Concept-based Query coverage: A query q covers a second query q′ if q′ query
always has an empty result if query q has been empty. To maximize the usage
of empty result description, we have to exploit query coverage in concept-based
queries, e.g., sub-concept relationships.

Data structure for empty-result descriptions: The system has to store queries that
had an empty result. We have to encode the queries in a way, that the re-usage
is maximized and efficient. Furthermore, the data structure has to consider
constraints like limited storage size.

Statistics management: As the storage space is limited and statistics can be out-
dated by changes in the data sources, we have to implement replacement strate-
gies as well as a statistics aging approach.

Use in keyword query processing: Using the detected empty results, the system has
to decide to execute or not to execute a query or a query set.

7.2.1. Concept-based Query Coverage

In this section, we describe how to use of empty-result information by introducing the
empty query coverage for concept-based queries in the context of the Yacob system.
Let S be a concept schema and D(S) a global, virtually integrated database instance
of S. Then, we define empty query coverage in this context as follows.

Definition 7.1 Query Coverage For Empty Results
Given two concept-based queries q and q′ over S. For any instance D(S), a query q
covers q′ if q has an empty result in D(S), i.e., R(q,D(S)) = ∅, then q′ is also empty
in D(S). We denote query coverage as q′ ⊑ q. We say q′ is covered by q, i.e., q′ ⊑ q.
□

The query coverage is thereby different to query containment as described in the
following Section 7.3, in which we compare query coverage and query containment.
To decide coverage for generated concept-based conjunctive queries, we define the
following set of coverage rules. The discussion starts with single concept queries.
Subsequently, we extend these rules to query networks.

A single concept query has the form �cond(ext(c)) or is extended to
�cond(

⊎

c∈C ext(c)). That means, the queries consist of a conjunctive selection cond
over a union of concept extensions. The selection condition cond is a conjunction of
single predicates of the form p ∼= kw (keyword containment), p = k (category selec-
tion), or exists(p) (test for existence of an attribute value). We define the following
rules for single concept queries.

In rule 1, we compare the two types of predicates, keyword containment and exis-
tence test. If the existence test is false, i.e., the value is null, the keyword containment
predicate will be false, too. Thus, rule 1 states

�p∼=kw(ext(c)) ⊑ �exists(p)(ext(c)).

151

7. Concept Query Processing

We also say, the predicate exists(p) covers p ∼= kw. Equivalently, the predicate
exists(p) also covers p = k with k a category.

The second rule deals with a complete conjunctive condition. There are two obser-
vations. First, additional predicates in a conjunctive condition will restrict the result
further. Second, if we exchange an exists predicate by a keyword containment predi-
cate on the same property, the result set will also be restricted further. As an empty
result of a less restricted query induces an empty result of a more restricted query, we
can define rule 2 as follows: if all predicates in condition cond cover a predicate in
cond′.

�cond′(ext(c)) ⊑ �cond(ext(c)).

That means, all predicates of cond also occur in cond′ or the predicates have a covered
counterpart in cond′. The condition cond′ is allowed to contain further predicates. In
this case, we also say, the condition cond covers cond′.

A single concept query is also allowed to use a set of concepts in one concept
hierarchy. The following rule 3 deals with such kind of queries. Assuming the condition
cond covers cond′, the rule states

�cond′

(

⊎

c∈C′

ext(c)

)

⊑ �cond

(

⊎

c∈C

ext(c)

)

if C ′ ⊆ C.

That means that we have a covering query for every concept c ∈ C ′ following the rules
1 and 2. A special case of rule 3 is

�cond′

⎛

⎜

⎝

⊎

c∈Φ+

is_a
(c′′)

ext(c)

⎞

⎟

⎠
⊑ �cond

⎛

⎜

⎝

⊎

c∈Φ+

is_a
(c′)

ext(c)

⎞

⎟

⎠
if c′ is super-concept of c′′.

The expression Φ+

is_a
(c′) computes all direct and indirect subconcepts of c′. Thus, we

can apply the rule 3 for this case.
Rules 1-3 deal with single concept query coverage. Now, we extend empty result

coverage for query networks. A query network (Q,E) consists of single concept queries
and edges between them. Edges are inter-concept properties and describe the join
conditions between the results of the single concept queries. That means, a network
(Q,E) corresponds to a conjunctive SPJ query.

Assume two query networks (Q,E) and (Q′, E ′). We define rule 4 as

(Q′, E ′) ⊑ (Q,E),

i.e., (Q′, E ′) is covered by (Q,E), if

1. for each query q ∈ Q exists at least one query q′ ∈ Q′ and q′ is covered by q′,
i.e., q′ ⊑ q, and

2. for each edge (qi, qj , p) ∈ E exists one edge (q′i, q
′
j, p) ∈ E ′ with q′i ⊑ qi and

q′j ⊑ qj .

152

7.2. Detection of Empty Results

We can proof this rule as follows. In the initial step, we assume two query networks
with only one query, i.e., q = ({q1}, ∅) and q′ = ({q′1}, ∅). We use rules 1 to 3 for
deciding if q1 covers q′1 by testing the covering relationship between q1 and q′1. We
now extend it to query networks. Let q′1 = (Q1 ∖ {q1n}, E1 ∖ {(q1i, q1n, p)}) and q′2 =
(Q2 ∖ {q2m}, E ∖ {(q2j , q2m, p)}) be two query networks with q′1 ⊒ q′2. Then, it holds
q1 ⊒ q2 if q1n ⊒ q2m and qli ⊒ q2j . This condition leads to the rule 4.

7.2.2. Data Structure

As we will show below, the system checks query coverage during optimization. This
data coverage check requires an efficient data structure to decide if a query is covered
by another query that is known to have an empty result. For that, we describe the
data structure for holding information about empty query results. The structure has
to efficiently store the queries as well as it has to allow to efficiently test for empty
query coverage during optimization. We represent concept-based queries using query
networks and not physical operator trees. The data structure comprises three levels
(see Figure 7.8). At first level, the system checks the size of the query (number of
single concept queries). Thereby, only a query of the same size or smaller size can
cover another query. The second level contains the set of concepts in the query. Only
if the concepts cover a query to be tested, the following level has to be checked. There
are different queries for every concept set. Therefore, the third level is a list of query
representations for every concept set. The data structure follows the idea of Luo for
relational databases [Luo06], and extends it by the size level.

...

{painting} painting[material~="aquarel" and title~="sunflower"]

{institution,painting}

painting[institution~="augsburg" and artist~="Holbein"]

{drawing}

Size

1

Concept Set Query Representation

...

2 {artist,drawing}

...

{(artist[name~="gogh"],drawing[title~="scene"],createdBy)}

...

...

Figure 7.8.: Empty result set detection

A query representation consists of a list of aliases and a list of edges. An alias consists
of the concept name, an indicator whether sub-concepts are included, and a possible
selection condition. The aliases are ordered by their coverage of their conditions, i.e.,
covered aliases are at the beginning of the list. The order ensures that we will find
covered results as we will describe below. That also means that a concept can occur

153

7. Concept Query Processing

several times in the alias representation, if a free query to a concept is used more than
once in the query. An edge consists of two aliases and the edge name. The edges are
ordered by the position of the aliases. Furthermore, every query representation has
an identifier.

Assume the query plan in Figure 7.9(a). The plan consists of two specified and two
free queries connected by three joins. We illustrate the corresponding query represen-
tation in Figure 7.9(b). It has four aliases, the queries, ordered by covering and the
list of edges as a representation of the join tree. A query representation can be seen
as a normalized notation of a query tree. In order to test query coverage efficiently,
we exchange the concept name by the corresponding Dewey identifier of the concept.
The system checks fast sub-concept relationships by comparing prefixes of the Dewey
identifiers.

Materialize

c1[p11~=kw1]

BindSJ(p2)

Materialize

BindSJ(p1)

c2[true]

Materialize

c3/*[true]

Materialize

MWJ(p2)

c2[p21~=kw2]

(a) Query plan

{(a1,a3,p1),(a2,a4,p2),(a3,a4,p2)}edges:

aliases: {a1=c1[p11~=kw1],a2=c2[p21~=kw2]

a3=c2[true],a4=c3/*[true]}

1id:

(b) Corresponding query representation

Figure 7.9.: Empty result representation

7.2.3. Empty Result Statistics Management

We now discuss the management of the empty result statistics. The management
comprises the questions: how and when to add empty results, how many entries to
store, and when to remove entries.

The system discovers empty results during query processing. After every FilterPOP
or BindJoinPOP execution, the query processor tests if the result is empty. If it is
empty, the system adds the corresponding query representation to the empty result
statistics. The query representation was created during optimization and is used to
insert it into the statistics. In the case of the MultiWayJoinPOP operation, we first test
all possible join combinations for empty results and then compute the complete join.
This approach was proposed by Demidova et al. [ZZDN08, DZZN09] and complements
our checks. This additional check is acceptable, because queries to materialized data
are not expensive.

We have to consider three points in statistics management: first, the statistics has
a limited size, second, underlying sources might change over the time, thus, empty
results can be non-empty after a certain time, and third: a newly inserted empty
result might cover other entries in the statistics.

154

7.2. Detection of Empty Results

We limit the number of entries to a pre-configured maxSizeempty . If this number
of entries is exceeded, the system will remove an old entry. Our system implements
the least recently used (LRU) strategy [SSH05]. For this task, we use an LRU stack
implementation. Other replacement algorithms can be used, too. For example, Luo
used the DCLOCK approach [Luo06].

As sources can change, the system limits the time of an entry in the cache. Every
entry has a creation time stamp createtime. Furthermore, we configure a maximal
keep time keeptime. If the difference between the current time and the creation time
is larger than the keeptime, the system will remove the entry from the statistics. The
system checks the time during accessing an entry. The system will recognize the result
only as empty, if the entry is not older than the keep time. Otherwise, the system will
remove the entry. Unused old entries are eventually removed by the LRU approach.
In this way, the statistics are kept up-to-date.

In some cases, a new entry might cover existing results. As this situation is seldom,
we do not check for covered entries. The check for covered entries is expensive, because
it involves all empty result descriptions with a size bigger and equal to the size of the
new query. Covered results will eventually be removed by one of the former two checks
because they will not be used anymore.

7.2.4. Use of Detected Empty Results during Keyword Query

Processing

The set of generated queries is processed step by step. Thereby, later queries reuse
portions of queries executed before. The system uses the proposed data structure for
checking empty results during optimization. For the check, we modify the dynamic
programming Algorithm 7.2 on page 145 as follows.

In every step of the algorithm, we test if the sub-plans created in this step occur in
the empty result statistics. If any sub-plan would create an empty result, the optimiza-
tion stops and returns an empty plan with the information the result is empty. This is
possible because all operations propagate empty results. During the optimization, we
will create the query representation for every sub-plan by merging the representation
of the combined plans.

The check for emptiness is executed as follows. Given is a sub-plan of a given size
(number of aliases). In the first step, we check whether there empty result entries in
the statistics with this size. The algorithm has to check only query representations
of the same size, because smaller sub-queries have been checked in a previous step of
the optimization and larger queries cannot cover the query. The second step uses the
selected list of used concepts. If the used concept set covers the queries concept set,
the algorithm will proceed to check the complete query representations containing the
selected concept set. In this case, all conditions and join conditions are checked for
coverage. If a covering representation has been found, we know the sub-plan creates
an empty result, and the optimization, and subsequently, the query processing stops.

Using the information about empty intermediate results improves the query exe-
cution because many empty results are common in materialization queries created

155

7. Concept Query Processing

by a keyword query. In order to validate this, we evaluated the performance. The
evaluation results are presented in Section 8.3.

7.3. Re-Using Intermediate Results

After detection of empty results, we now present an approach to reuse materialized
intermediate query results. The basic idea is to materialize intermediate results in
a cache, execute every materialization query separately but reuse the stored, shared
results. That kind of cache is related to the semantic cache approach [DFJ+96, Sel88b,
SSV96, WA10, AKS99, IKNG10, Kar03]. In particular, the reuse of shared results is
vital in heterogeneous, distributed systems because of high object transfer time, high
query execution costs, or billing costs [ACPS96, AKS99]. Furthermore, limited query
capabilities of sources even increase this problem because they require operations like
the bind join operation.

In this section, we describe our semantic cache-based approach that is used to reduce
the number of source queries during keyword query processing. Initially, we describe
how we organize materialized intermediate results. The results are represented as con-
junctive queries. The selection conditions consist of constant selections (p ∼= kw and
p = k) and existences tests exists(p). Furthermore, we represent an intermediate result
as a subset of a concept. We denote this as derived concept. We define the access
to the cache, the query containment in the concept-based case, and the retrieval of
cache entries based on different query match types. The third part of this section
describes the basic use of cached intermediate results during optimization of materi-
alization queries. The algorithm determines when to materialize results. We conclude
the section with the description of cache eviction strategies. Updates of the cache are
not discussed, rather cache entries are invalidated after a maximum keeping time. We
start with the presentation of the cache structure.

7.3.1. Materialized Results Organization and Access

Given the previous discussion, we discuss the structure of the cache in the following
dimensions.

Caching level: In the mediator system architecture, two caching levels exist: on
wrapper level and mediator level [LC99]. Translated to the concept-based
mediator scenario the possible caching strategies are either by source or con-
cept [KSGH03, Kar03]. In the first approach, the cache stores objects by source
and allows a fine granular storage of local XML objects on wrapper level. The
second approach stores global objects per concept. Thus, every query to a con-
cept can create a cache entry for a concept [KSGH03, Kar03]. In the case of
keyword queries, the user expects globally connected concepts as results. As
the connections are defined globally, the concept level approach is the feasible
solution.

Cache content: The second decision focuses on the content of the cache. There
are two possibilities, either the results of joins, i.e., object tuples, or only the

156

7.3. Re-Using Intermediate Results

necessary objects to compute globally the join. In the first case, we always store
the join results, i.e., object tuples. However, if we do this for a join sequence,
the system stores redundant data. In the second case, we try to replace source
accessing operations by global operations. Therefore, we store derived concepts
following the idea of derived horizontal relational fragmentation [ÖV11] and the
idea of derived concepts [ABFS02b]. This approach avoids redundant storage
of results and complements the semi-join query processing strategy presented
in Section 7.1.1. Thus, we store results of FilterPOP and BindSemiJoinPOP
executions. In consequence, global join operations have to be re-computed.

Query containment: In order to use the materialized results, we have to define query
containment and supported match types. As we use the materialized results
only for keyword search, we can reduce the cache to basic constant comparison
predicates. Furthermore, the queries are conjunctive and use sets of concepts
or single concepts. The query containment check will be complementary to the
empty result covering described in Section 7.2. Different matching types exist
between a query and a cache entry. We have to evaluate, which we will support
and how compensating queries are constructed.

Eviction strategy: The last point comprises the management of the cache. In order
to keep the cache up-to-date, we will evict entries after a given timespan. In the
case of a limited cache pool, we describe a cache entry eviction strategy.

Derived concepts and derived object sets

In order to explain the cache structure and the cached queries, we describe derived
concepts that represent results of selection and semi-join queries.

The definition of derived concepts is based on the idea of Amann et al. [ABFS02b].
Let p = cp1/cp2/ . . . /cpn be a sequence of concept properties denoted as concept
property path. For all 1 ≤ i < n, it holds cpi.dest = cpi+1.src. Given a concept c ∈ C,
a derived concept is c/p with cp1.src = c.4 This means, the derived concept contains
all objects of concept cpn.dest that can be reached from any object in c through p. As
the concept property path p is allowed to be empty, the concept c is also a derived
concept. We now extend the derived concept definition to derived object sets.

Let lp = name1[cond1]/name2[cond2]/ . . . /namen[condn] be a sequence of labels
namei that correspond to concept properties denoted as label path. A condition condi
represents a selection of concepts from a concept schema. In particular, the condition
is either name = "conceptname" or name = "conceptname"/* . The former selects a
concept with the given name, and the latter also selects all sub-concepts. The set of
concepts created by condi is denoted as Ci. A label path lp represents a set of concept
property paths. A concept path p = cp1/cp2/ . . . /cpn conforms to lp if

1. cpi.name = namei, for 1 ≤ i ≤ n and

2. cpi.dest ∈ Ci and cpi+1.src ∈ Ci for 1 ≤ i < n.

4A concept property cpi can occur as original property or as inverse property in the path.

157

7. Concept Query Processing

Let C0 ⊂ C be a set of concepts then C0/lp denotes a derived concept set. The concept
set C0/lp represents all derived concepts c/p with c ∈ C0 and p conforms to lp.

Example 7.1 For example, let C0 = institution/∗ represent the concept “institu-
tion” and all of its sub-concepts. Then, the derived concept set C0/lostBy[name =
”Drawing”]/createdBy would represent all persons who created a drawing that was
lost by an institution because

1. lostBy[name = ”Drawing”] selects all concept properties between an institution
and the concept “drawing”,

2. createdBy selects all persons that are reached from a drawing instance.

The extension of a derived concept set is denoted as derived object set. It is the
union of the extensions of all represented derived concepts. Using the join rewriting
of concept properties, a derived object set for C0/lp is defined as

ext(C0/lp) = ext(C0)⋊JM(name1) ext(C1)⋊JM(name2) . . .⋊JM(namen) ext(Cn) (7.9)

with ext(Ci) =
⊎

c∈Ci
(ext(c)) for 1 ≤ i ≤ n. The use of the semi-join ⋊ directly

computes the extensions of the derived concept. In consequence, together with filter
conditions, a derived object set directly describes the materialized intermediate results
in the query processing.

Example 7.2 Consider the example in Figure 7.4(a) (see page 144) containing the
sub-plan: p′ = �name∼=”ℎolbein”(ext(painter)) and d′ = p′ ⋊JM(createdBy) ext(drawing)
to compute all drawings that were created by “Holbein”. The derived object set d′

is described by derived concept set painter/createdBy[name = ”drawing”] and the
selection condition on the “painter” concept.

Cache structure

The cache stores materialized semi-join results and provides the results to further
queries. The structure follows the idea of the Yacob internal cache [Kar03, KSGH03].
While the Yacob cache organizes the entries first by concepts and then by selection
conditions, the keyword query cache is organized by derived concept sets.

Initially, the cache is partitioned by concepts of the concept schema. For every
concept, we store a list of derived concept sets that represent a subset of the concept
extension or the deep concept extension. That means that the final concept of the
label path is either the concept with all sub-concepts or the concept alone. Every entry
in the derived concept list is of the form startConcept[/*]/labelpath. The label
startConcept represents the starting concept or with all sub-concepts [/*]. The
label path is used as defined. The derived concept sets contain a list of cache entries.
The data of a cache entry is a subset of the extension of the derived concept set,
i.e., the derived object set. If the labelpath is empty, the derived concept set entry
represents the concept extension of startConcept or its deep extension, respectively.

Every cache entry represents a semi-join result. A cache entry e =
(id, cond,metadata, data) comprises a unique identifier id, a condition e.cond, meta

158

7.3. Re-Using Intermediate Results

data e.metadata, and a pointer to the actual data e.data. As every semi-join result is
derived from a specified query, i.e., a selection on the starting concept, every cache
entry is specified by a conjunctive cond of keyword containment or category selection
predicates. These predicates refer all to the starting concept. Furthermore, the condi-
tion cond also contains exists(p) predicates that can refer to any of the concepts sets in
the label path, because they can be part of a free query. The condition is represented
by a set of the contained predicates.

The meta data of a cache entry is used for cache management
and during optimizations of queries. The meta data e.metadata =
(createtime, lastAccess, size, costs, ℎits) consists of the creation time createT ime,
the time of the last access lastAccess, the size of the represented data set size, the
costs to create the data costs, and the number of usages ℎits. We access these values
by the notion e.metadata.x.

Example 7.3 We illustrate the cache structure in Figure 7.10. Firstly, the cache
is partitioned by concepts, e.g., book, graphics, and painter. They are derived
concepts without label path. Secondly, the derived concept sets “Painter/creat-
edBy[/*]” and “Museum/lostBy[name="paintings"]/createdBy” are added as sub-
entries of “graphics” and “painter”, respectively. Note, in the case of Painter/cre-
atedBy[/*], the concept property “createdBy” is used inversely. Furthermore,
the destination concept is determined by the parent concept and is modi-
fied by [/*] to include sub-concepts. Every derived concept set entry con-
tains a list of cache entries. For example, cache entry 3 represents the data
�name∼=”ℎolbein” ext(Painter) ⋊JM(createdBy)

⊎

c∈�+

is_a
(Grapℎics) ext(c). Cache entry 5

holds the data �city∼=”prague” ext(Museum) ⋊JM(lostBy) ext(Paintings) ⋊JM(createdBy)

ext(Painter).

In the following, we describe two distinct cases of query networks. In keyword
queries, we often have a partial query tree as depicted in Figure 7.11(a). Using semi-
joins, we get the plan b′ = �title∼=”flowers” ext(book), a′ = b′⋊writtenByext(autℎor), and
i′ = b′⋊lostByext(institution). The results b′, a′, and i′ would be materialized. A second
example is illustrated in Figure 7.11(b). Here, the partial network contains a central
node connected to two concept nodes of the same kind. The corresponding query plan
would include b′ = �title∼=”flowers” ext(book) and a′ = b′ ⋊writtenBy ext(autℎor). The
result a′ is used twice in the join plan with different aliases.

In contrast to the work of Karnstedt et al. [Kar03, KSGH03], this data structure
does not ensure the disjointedness between cache entries. Therefore, we have to find
the best matching entries. We will describe the corresponding lookup algorithms after
the query containment definition.

Query containment

For a given query, the system tries to answer it using previously materialized query
results. In order to select and use data in the semantic cache, a query containment
check is necessary [Sel88a, DFJ+96, KB96]. Every cache entry represents the result
of a query. The cache entry would provide objects to the given query, if the cache

159

7. Concept Query Processing

Condition

birthplace~="Augsburg"

Cache Entry 6

Metadata: ...

Data:

Data:

Condition

Painter

Graphics

name~=’"holbein"

Metadata: ...

Cache Entry 4

data4

concepts

Book

data5

Condition

Data:

city~="prague"

Condition

Data:

Condition

Data:

title~=’"apocalypse" name~="holbein"

data3

Metadata: ... Metadata: ... Metadata: ...

Condition

Data:

...

...

...

Metadata: ...

Cache Entry 1 Cache Entry 2 Cache Entry 3 Cache Entry 5

data6

Museum/lostBy[name="paintings"]/

createdByPainter/createdBy[/*]

data2

Figure 7.10.: Cache structure

author

[true]

book

[title~=’flowers’]

institution

[true]

writtenBy lostBy

(a) Partial Query Network 1

author

[true]

[title~=’flowers’]

[true]

writtenBy

book

author

writtenBy

(b) Partial Query Network 2

Figure 7.11.: Exemplary distinct cases

entry overlapped the result set at least. Query containment is based on query satisfi-
ability [GSW96]. Let S be a concept schema and D(S) a global instance of S. Query
containment is defined as follows [Ull90]:

Definition 7.2 Query containment
Let q and q′ be two queries over S with the result sets R(q,D(S)) and R(q′, D(S)) for
a database instance D(S). A query q is contained by q′, q ⊆ q′, if for all databases
instances D(S) R(q,D(S)) ⊆ R(q′, D(S)). In the case q ⊆ q′ and q′ ⊆ q, q and q′ are
equal denoted as q ≡ q′. □

The relationship between query coverage (see Section 7.2.1) and query containment is
expressed as follows. Assume two queries in query containment relationship q ⊆ q′.
Assume a database instance D(S) where R(q′, D(S)) = ∅. It follows R(q,D(S)) = ∅
because R(q,D(S)) ⊆ R(q′, D(S)) for all D(S). Therefore, it holds, q ⊆ q′ → q ⊑ q′.
The opposite direction, q ⊑ q′ → q ⊆ q′, is not true. For example, assume the query q′

and q = q′ ⊳⊲ C. Assume a database instance D(S), where R(q′, D(S)) = ∅. It follows

160

7.3. Re-Using Intermediate Results

that R(q,D(S)) = ∅ because ∅ ⊳⊲ C = ∅. Thus, q ⊑ q′. On the other hand, assume a
database instance D′(S) with R(q′, D′(S)) ∕= ∅. In this case, the result R(q′, D′(S)) is
not a subset of R(q′, D′(S)).

Different matching types exist between two queries. Table 7.4 describes the possible
matching types [LC01, KSGH03]. Let q be a query and q(e) be a query represented by
a cache entry e. We can distinguish five match types. In the first case, the query of the
cache entry q(e) equals to the query q. The query processor can directly use the cache
entry data. An additional filter and a complementary query are not necessary. The
second case states that q(e) contains the query q, i.e., the cache data set is a super-set of
the query result. In this case, we do not need a compensating query, but have to filter
the cache entry set. The third case is q(e) ⊆ q, which means that the cache provides
only a part of the result set of q. Therefore, the system computes a compensating
query that only retrieves the additionally needed objects. The compensating query is
q ∧ ¬q(e). The cache content can also overlap the query result set. That means that
we need to filter the cache content to get the part used in q as well as the system
has to create a complementary query to retrieve the remaining part of the result set.
Finally, the disjointedness between cache entry and query means that the cache cannot
contribute to the query result at all.

Match type Description Cache part Complemen-
(q, q(e)) of result data tary query

Exact data in q and q(e) identical e.data none
Containing q(e) contains q q of e.data none
Contained q(e) contained by q e.data q ∧ ¬q(e)
Overlapping q and q(e) overlap q of e.data q ∧ ¬q(e)
Disjoint q(e) not part of q none q

Table 7.4.: Match types in the semantic cache [KSGH03, LC01]

In this thesis, we focus on the match types “Exact” and “Containing”. The tested
queries are semi-join left-deep trees. A query q is represented by a derived concept set
Cq/labelpatℎq and a conjunctive condition condq. A cache entry e is determined by
its derived concept set Ce/labelpatℎe and the cache entry condition conde. The match
type between query and cache entry is computed in two steps: (i) containment of the
derived concept sets and (ii) containment of the conjunctive conditions.

The a derived concept set Ce/labelpatℎe contains(⊇) Cq/labelpatℎq if

1. Ce ⊇ Cq,

2. nameei = nameqi with nameei ∈ labelpatℎe and nameqi ∈ labelpatℎq , and

3. Cei ⊇ Cqi with Cei (Cqi) the target concept sets of the concept property nameei
(nameqi), for 1 ≤ i ≤ n.

The concept sets Ce/labelpatℎe and Cq/labelpatℎq are equal, iff Ce/labelpatℎe ⊇
Cq/labelpatℎq and Cq/labelpatℎq ⊇ Ce/labelpatℎe. If Cen is a superset of Cqn, we

161

7. Concept Query Processing

create a filter condition conddc = {concept ∈ Cqn}, which ensures that only objects of
the concepts Cqn are returned.

Example 7.4 Consider the concept sets dce = (Artist/∗)/createdBy[name =
"paintings"/*] and dcq = Painter/createdBy[name = "paintings"]. It holds dce ⊇ dcq
because firstly, (Artist/∗) denotes the concept Artist and all sub-concepts, which in-
clude the concept Painter (rule 1). Secondly, both label paths are equal (same concept
property labels and target concept sets). The concept sets are not equal. The filter
condition is concept ∈ {paintings} (rules 2 and 3).

If the concept sets have a containment relationship, we will compare condq and conde.
The containment test does not have to consider range queries because the condition
contains only comparisons with constants. A predicate prede contains a predicate
predq if

1. they refer to the same concept in the derived concept set,

2. prede = predq, or

3. prede covers predq, that means, prede = exists(p) and predq is either p ∼= kw
or p = k.

A condition conde contains a second condition condq if we have found for every pred-
icate prede ∈ conde at least one predicate predq ∈ condq that is contained by prede.
If condition condq also contains conde both queries are equal. The filter condition is
condfilter = condq ∖ conde.

Example 7.5 Assume conde = {0/name ∼= ”ℎolbein”, exists(0/birtℎplace)} and
condq = {0/name ∼= ”ℎolbein”, 0/birtℎplace ∼= ”Augsburg”, 1/title ∼= ”scene”}.
In this case, conde contains condq because all predicates in conde contain another
predicate in condq. The numbers in the predicates (0,1) refer to the position of a con-
cept set in the corresponding derived concept sets. For example, exists(0/birtℎplace)
means the birthplace value has to be existent for an artist object. This means that if
0/birtℎplace ∼= ”Augsburg” is true, i.e., a painter from Augsburg, the exists predi-
cate will be true, too. The filter condition is {0/birtℎplace ∼= ”Augsburg”, 1/title ∼=
”scene”}.

In summary, a cache entry e contains a query q, i.e., e ⊇ q if dce ⊇ dcq and conde ⊇
condq. The cache part of the result is constrained by the condition cond = conddc ∧
condfilter. The cache entry matches the query, i.e., e ≡ q, if dce ≡ dcq and conde ≡
condq. The filter condition is empty in this case.

Cache Lookup Method

The lookup method returns a set of cache entries and a filter query to answer the
actual query. Thereby, the filter query must not contain a keyword predicate. This
constraint exists because keyword queries require specific keyword indexes, which the
cache does not provide. However, concept and property existence selections are pos-
sible. The cache lookup handles two problems. For a filter operation, the lookup

162

7.3. Re-Using Intermediate Results

method provides a set of cache entries that contain the query result and support
together the complete keyword query. In the case of a semi-join result, the lookup
method provides the best containing entry. The system filters the result by computing
the join with the left input of the semi-join. Finally, the lookup method provides a
filter in both cases using the definitions above. Algorithm 7.3 outlines the lookup
method. In the remaining section, we will discuss the used method in detail. As
the running example, we use the cache content depicted in Figure 7.10 on page 160
and the partial query plan a′ = �name∼=”ℎolbein” and birtℎplace∼=”augsburg” ext(Painter)
and g′ = a′ ⋊JM(createdBy) ext(Grapℎics). Both expressions are translated into the
corresponding plan operators.

Algorithm 7.3 Cache Lookup
Input: plan operator p
Output: Eq cache entries satisfying q and filter query condfilter

1: function CacheLookUp(p)
2: /* dcp is derived concept set, condp selection condition */
3: (dcp, condp) := createQueryRep(p)
4: condfilter := ∅
5: if type(p) = FilterPOP then
6: Ecand := getAllCandidateEntries(dcp, condp)
7: Ep := getBestSubset(Ecand, condp)
8: condfilter := condp ∖

∪

e∈Ep
e.cond

9: condfilter := condfilter ∪ getConceptSelections(Ep)
10: else if type(p) = SemiJoin then /* Semi-join POP */
11: ebest := getBestEntry(dcp, condp)
12: condfilter := getConceptSelections(Ep)
13: if ebest ∕= null then
14: Ep := {ebest}
15: end if
16: end if
17: if Ep = ∅ then
18: return (∅, ∅) /* No Cache Entry found */
19: end if
20: return (Ep, condfilter)
21: end function

The input of Algorithm 7.3 is a plan operator p. The plan operator p is trans-
lated into a query representation. The query representation consists of the derived
concept set dcp and the complete condition condp using function createQueryRep
(line 3). For example, for a′ the values are dca′ = Painter and conda′ = {name ∼=
”ℎolbein” and birtℎplace ∼= ”augsburg”}. For the semi-join q′, the derived concept
set is Painter/createdBy[name = ”Grapℎics”] and condq′ = conda′ .

Now, we distinguish between query filter operation (lines 5-9) and semi-join opera-
tion (line 10-15). In the first case, the algorithm receives all cache entries Ecand that
contain the query result. Ecand contains candidates for the best cache entry set Eq.
The function getAllCandidateEntries uses two steps:

163

7. Concept Query Processing

1. search for matching cache entry lists using dcp, and subsequently,

2. search for cache entries using condition condp.

We test all concepts in the cache if they are equal to the final concept or super-concept
of dcp. For example, for dca′ the system looks into the concept Painter but also Artist
or Person. All derived concept sets dce are selected that contain dca′ . In this case,
the set C0 must include the concept Painter. For each of the selected concept sets, we
add cache entries e to Ecand with q(e) ⊇ q(p). This means, e.cond contains condp. For
example, cache entries e4 and e6 are selected for a′.

The function getBestSubset uses the candidate set to compute the best cache en-
try set containing the query result and comprising all keyword selection predicates of
condp. We define the best set as the set with the smallest size, i.e., min

∑

e∈Eq
e.size.

To find this set, we sort all entries in Ecand in increasing size order. The algorithm
takes the first entry from Ecand and adds it to Eq. If all keyword containment predi-
cates are satisfied, the algorithm will return Eq. Otherwise, the function takes the next
entry in Ecand and adds it to Eq if it provides at least one further keyword contain-
ment predicate. In that way, function getBestSubset creates the set Eq. If Eq does
not cover all keyword containment predicates after using all candidates, the function
returns an empty set. In the running example, the set Eq consists of the cache entries
e4 and e6 because the union of their conditions equals conda′. The filter condition is
empty. Also, we do not have to add any concept selections because the intersection of
e4 and e6 will deliver the result for a′.

For a semi-join, e.g., the computation of g′, we use the following approach. We as-
sume g′ will be joined with a′ in a later stage to a′ ⊳⊲ g′ = a′ ⊳⊲ (a′ ⋊JM(createdBy)

ext(Grapℎics)). Given an object set a∗ ⊇ a′, it holds a′ ⊳⊲ (a′ ⋊JM(createdBy)

ext(Grapℎics)) = a′ ⊳⊲ (a∗ ⋊JM(createdBy) ext(Grapℎics)). a∗ filters all necessary ob-
jects from the extension of graphics, but leaves additional objects in the result. These
additional objects are removed by the join with a′. Therefore, we try to find a cache
entry that contains dcg′ and condg′ using the function getBestEntry . The function
returns the smallest of these cache entries. In the example, it is cache entry e3. How-
ever, cache entry e3 contains also objects of the sub-concepts that are not necessary
for answering the query. Therefore, we add the predicate concept ∈ {Grapℎics} to
the condition condfilter to select only graphics objects.

Algorithm 7.3 returns an empty result, if Ep has been empty (line 15). Otherwise,
it returns the cache entry set Eq and the filter condition condfilter. In the running
example, the algorithm returns Ea′ = {e4, e6} and conda′ = ∅ for the filter query a′

and Eg′ = {e3} and condg′ = {concept ∈ {Grapℎics}} for the semi-join between a′

and “graphics”. In summary, the query a′ ⊳⊲ g′ is rewritten using the cache into
⎛

⎝

∩

e∈Ea′

e.data

⎞

⎠ ⊳⊲
(

�concept∈{Grapℎics}e3.data
)

.

164

7.3. Re-Using Intermediate Results

7.3.2. Cache Management

During query processing, the system adds intermediate results to the cache using the
cache method addEntry . The function addEntry uses as inputs the derived concept
set dc, the selection condition cond as well as the data set data. It searches for the
derived concept dc in the first step. If dc has not been found, the cache creates a
new derived concept set entry dc and a corresponding empty cache entry list. After
having found or created a cache entry list, the system adds a new entry to the list.
The cache entry contains all necessary meta data like the size of the data set, creation
timestamp, and type of the data.

In this version, the system does not use semantic regions as proposed by Dar et
al. [DFJ+96] and Karnstedt [Kar03]. Semantic regions are especially a tool for adding
the results of complementary queries, which we do not use. However, we can support
semantic regions in the following way. As described above, the cache allows as filter
predicates category and concept selection as well as value existence test. Keyword
containment queries are not considered. Thus, we define regions by combinations of
keyword containment predicates. That means that we add all objects of a derived
concept and a keyword containment condition to one set. Entries in a region have all
the same keyword containment predicates and possibly additional category, concept,
and exists predicates.

If adding a new entry exceeds the maximum cache size, the system will have to
evict a set of entries. There are different strategies possible. Every entry has a certain
benefit. The benefit depends on classical cache information like number of accesses
or last access as used in LRU or LFU approaches [SSH05]. However, in distributed,
heterogeneous systems the costs of creation of a result are variable. It is necessary
to cache and materialize results that are expensive [AKS99]. In particular, bind join
results are hard to compute in our scenario. Therefore, we combine the classical cache
decision criteria with the cost criterion to a benefit value. A possible benefit calculation
is presented in Equation (7.10):

benefit(e) = e.cost ⋅ e.ℎits. (7.10)

Here, the benefit of a cache entry e depends on its costs and the number of hits. To
evict entries for storing a new entry, we sort all current entries in ascending benefit
order. Now, the eviction algorithm removes entries from the top of this list until the
new entry fits into the cache.

The benefit of a cache entry decreases over time if the access patterns change. One
solution is the “aging” of statistics [SSV96]. We implement the aging in the following
way. Every time when the cache reaches the maximum, we reduce all benefit values
of cache entries by a certain factor. For example, we reduce the number of hits. That
means that the benefit of older entries will be reduced over time.

We do not monitor changes in the local data. That means that we do not up-
date cache entries. Instead, we invalidate cache entries after a specified timespan
maxKeepT ime. The old cache entries are evicted to reflect possible changes in the
underlying sources.

165

7. Concept Query Processing

7.3.3. Single Query Cache Use

We discuss the use of the cache for single queries. During optimization of a material-
ization, we use the cache to replace filter and semi-join queries with cache accesses. In
this way, we implicitly reuse the results of previously executed queries during keyword
processing. For this task, we modify the optimization algorithm 7.2 to use semi-joins
and the cache. In every step, in which the algorithm creates a filter or semi-join plan
operator, the optimizer tests whether cache entries exists to provide the answer. In
this case, a cache retrieval operator is added to the plan. The adapted optimization
approach is sketched in Algorithm 7.4. In the initialization phase, every sub-plan con-
sisting of ConceptPOP, FilterPOP, and MaterializePOP is tested, if the result can be
obtained from the cache. If this is the case, it is replaced by a CachePOP.

In the second phase, sub-plans are connected to joins step by step. If the new oper-
ator is a semi-join, the algorithm checks the cache, if the data is already materialized.
In this case, the semi-join is replaced by a CachePOP.

The optimization ends with the selection of the best plan p from the plan set
plans(Q). The function finalize(Q) adds additional conditions and makes the plan
ready for execution.

Example 7.6 For illustration, consider the cache in Figure 7.10 and the query out-
lined in Figure 7.12(a). In the first phase, all three queries are added as a single plan
operators. Thereby, q1 is replaced by the cache entries e4 and e6. During the second
phase, it is found q1 ⋊ q2 is in the cache (cache entry e3.) The corresponding filter
condition is condE = {concept ∈ {Grapℎics}}. The best final plan is as depicted in
Figure 7.12(b).

name~="holbein" createdBy lostBy

and

birthplace = "Augsburg"
city~="Berlin"

Museum

q1

q2 q3

Painter

Graphics

(a) Query

FilterPOP

ConceptPOP

city~="Berlin"CachePOP

MultiWayJoinPOP

createdBy,lostBy

cond = {concept in {Graphics}}

CachePOP

cond = {}

E_q = {e4,e5}

E_q = {e3}

MaterializePOP

Museum

(b) Plan using the cache

Figure 7.12.: Example plan for cache usage

166

7.3. Re-Using Intermediate Results

Algorithm 7.4 Adapted Dynamic Programming Optimization
Input: query network (Q,E)

cacℎe – semantic cache
Output: best plan p

1: function Optimize((Q,E), cacℎe)
2: /* a set of pairs: (Q′, P) with Q′ ⊆ Q and P a list of plan operators */
3: plans := ∅
4: /* initialize */
5: for all q ∈ Q do
6: p = createPlan(q) /* Root is either a MaterializePOP or ConceptPOP or

an unspecified FilterPOP */
7: if q is specified then
8: (Eq, condE) := cacℎe. lookup(p)
9: if Eq ∕= ∅ then /* Found an entry set */

10: p = createCachePOP(Eq, condE) /* override original plan */
11: end if
12: add ({q}, p) to plans
13: end if
14: end for
15: /* start dynamic programming */
16: for 1 ≤ i < ∣Q∣ do
17: for all Q′ ⊂ Q with ∣Q′∣ = i do
18: /* Q′ is valid, if it contains a specified query */
19: if plans(Q′) ∕= ∅ and Q′ is valid then
20: for all (Q′′, P) ∈ plans : Q′′ ∩Q′ = ∅ and Q′′ and Q′ connect do
21: P ′ := createPlans(plans(Q′), P)
22: for all p ∈ P ′ do
23: if newOperation(p) is of type “SemiBindJoinPOP” then
24: (Eq, condE) := cacℎe. lookup(newOperation(p))
25: if Eq ∕= ∅ then /* Found an entry set */
26: replaceSemiJoin(Eq, condE, p,newOperation(p))
27: end if
28: end if
29: end for
30: plans(Q′ ∪Q′′) := plans(Q′ ∪Q′′) ∪ P ′

31: end for
32: end if
33: end for
34: prunePlans(plans,Q, i+ 1)
35: end for
36: let p ∈ plans(Q) the plan with minimal cost
37: finalize(p)
38: end function

167

7. Concept Query Processing

7.4. Optimizing Query Result Reuse

The single materialized query approach separately optimizes queries and also decides
locally, which intermediate results to cache or to use. However, keyword queries gen-
erate large sets of materialization queries, which have a large overlap. It is possible to
reduce query costs further by using statistics from the generated query set. We use
the statistics to “manipulate” the optimization in order to improve the materialized
data use.

We will discuss three approaches in our query processing model:

1. the multi-query optimization of a query list network. A query list network rep-
resents a set of similar queries. In particular, if the system processes a complete
query list network, then it will have to execute many overlapping queries. Thus,
a multi-query optimization of the query list network promises a better query
performance by smaller caches, fewer source queries, and fewer transported ob-
jects.

2. the second approach combines multiple query list networks. The optimization of
a query list network considers already optimized and executed query list networks
and tries to minimize the costs based on that information. Now, we also consider
the optimizations of previously executed query list networks and build a shared
query plan.

3. in order to use the cache more efficiently, we use query set statistics to estimate
the benefit of materialized results within a keyword query. In that way, we
calculate the benefit of a cache entry for a complete keyword query.

7.4.1. Query List Network Optimization

In a query list network, all queries of a query list network have the same structure
but different conditions. We create one plan for all queries in order to minimize the
average costs and to maximize the reuse of materialized results within one query list
network. First, we discuss the complete processing of a query list network. Second,
we present a motivation for top-k processing.

Complete processing

We motivate the approach using the example illustrated in Figure 7.13. Figure 7.13(a)
shows a query list network consisting of two query lists and one free concept. The query
list network represents four join queries. Assuming the semi-join approach as defined
above, Figures 7.13(b) illustrates two possible query execution plans. Thereby, the
results of materialization queries are materialized in cache entries cei. The join queries
combine the intermediate result to finale object tuples.

Plan 1 assumes the use of the semantic cache and optimizes every query separately.
This plan is not optimal with respect to the complete query list network. Plan 2 shows
a better performance. It causes fewer cache entries and less source queries (40 instead
of 50). In contrast to the first plan, the first query mq1 is not locally optimal. Thus, it

168

7.4. Optimizing Query Result Reuse

is possible to improve the reuse of intermediate results within one query list network
that includes a set of structurally similar queries.

35

Query SrcObjScore SrcQ

0.9

3

q21

q22 0.8

3 20

20

C3C2C1
p1 p2

Query List 2Query List 1

Query SrcObjScore SrcQ

q11

q12

0.9

0.7

3

3

10

(a) Query List Network

Plan 1 Plan 2
ce1 = �q11(ext(c1)) ce1 = �q11(ext(c1))
ce2 = ce1 ⋊JM(p1) c2 ce2 = �q21(ext(c3))
ce3 = �q21(ext(c3)) ce3 = ce2 ⋊JM(p2) c2
mq1 = ce1 ⊳⊲JM(p1) ce2 ⊳⊲JM(p2) ce3 mq1 = ce1 ⊳⊲JM(p1) ce3 ⊳⊲JM(p2) ce2
ce4 = �q22(ext(c3)) ce4 = �q22(ext(c3))
mq2 = ce1 ⊳⊲JM(p1) ce2 ⊳⊲JM(p2) ce4 ce5 = ce4 ⋊JM(p2) c2
ce5 = �q12(ext(c1)) mq2 = ce1 ⊳⊲JM(p1) ce5 ⊳⊲JM(p2) ce4
ce6 = ce3 ⋊JM(p2) c2 ce6 = �q12(ext(c1))
mq3 = ce5 ⊳⊲JM(p1) ce6 ⊳⊲JM(p2) ce3 mq3 = ce6 ⊳⊲JM(p1) ce3 ⊳⊲JM(p2) ce2
ce7 = ce4 ⋊JM(p2) c2 mq4 = ce5 ⊳⊲JM(p1) ce7 ⊳⊲JM(p2) ce4
mq4 = ce5 ⊳⊲JM(p1) ce7 ⊳⊲JM(p2) ce4

(b) Exemplary execution plans

Figure 7.13.: Example query processing

The example shows, the reuse can be maximized if firstly, the query plans have the
same structure, i.e., always use the same query list for a semi-join. Secondly, the best
of these structures has been selected. For this, the used approach summarizes the
costs of every query list. The best structure is found by using summarized costs and
the optimization algorithm 7.2. The result is a query plan template that is used for
every query generated by the query list network.

The cost values are estimated as follows. The query list statistics consists of the num-
ber of source queries (estSrcQ) and the number of transferred objects (estSrcQbj).
The latter is also the estimated size of all queries (estSize) in the query list. Let
QLi = [qi1, qi2, . . . , qin] be the query list with n queries, the costs are computed as the
sum of the single query costs:

estSrcQ(QLi) =
∑

1≤j≤n

estSrcQ(qij) (7.11)

estSrcObj(QLi) =
∑

1≤j≤n

estSrcObj(qij) (7.12)

estSize(QLi) = estSrcObj(QLi) (7.13)

169

7. Concept Query Processing

For optimization, we create one summary query network from the query list network.
The specified queries represent the corresponding query lists. For example, the query
q∗i =

∪

1≤j≤n qij represents the query list QLi. The costs of the query q∗i are estimated
by using defined cost functions. The optimizer uses this summary query network as
input and produces the template plan. The template is used for every query in the
query list network.

The cache and the empty result detection are used in the following way for every
query. First, the plan is parameterized. Before executing the parametrized plan,
the system tests if intermediate results can be retrieved from the cache. If this is
possible, the bind-joins are rewritten to joins. Otherwise, the system adds materialize
operations to the plan in order to cache the intermediate results.

Example 7.7 Given is the query list network in Figure 7.13(a). If the optimizer used
summarized costs, the optimization produces the plan template:

1. c′1 = �cond(ext(c1))

2. c′2 = c′1 ⋊JM(p1) c2

3. c′3 = �cond(ext(c3)).

4. c′1 ⊳⊲JM(p1) c
′
2 ⊳⊲JM(p2) c

′
3.

During execution, we replace the template for c′1 and c′2 by the corresponding queries
q1i and q2j . In that way, we create plan 2.

Top-k processing

The described approach is appropriate for processing a complete query list network.
During top-k processing, there is the possibility that the system does not to process the
complete query list network, i.e., all queries in it. Therefore, we modify the approach.
Every step induces a set of queries. We optimize this set at once taking previous
results into account.

Example 7.8 Consider the example illustrated in Figure 7.13(a). In the first step,
the query mq1 is executed. In the second step, the algorithm creates and executes
query mq2. The third step, query q12, induces two queries mq3 and mq4 that have to
be optimized together to enable the best performance.

For every step, we know that all previous steps have been executed. It follows that
we have to consider only the connection between the currently selected query and the
already executed queries. For example, if we select query q12, queries q21 and q22 were
already executed. Furthermore, the joins are processed. It follows that we have only to
consider the connection between q12 and the query list of c3. In particular, the system
has to decide, which bind joins have to be executed.

Let ck be the currently selected concept and qkj the selected query of the query list
QLk. The concepts cki are the concepts that are adjacent to ck, either directly or via
free concepts. The query list QLm

ki
contains all already executed queries of QLki . We

170

7.4. Optimizing Query Result Reuse

optimize this part of the query list network. All other joins are not necessary in this
phase, because their results are already materialized.

Consider the join between the selected query qkj and the query list network QLm
i

and a free concept c. We have to create a query plan template for all queries created in
this step. The approach is equivalent to the complete computation. We summarize all
queries in QLm

i to one query template. Then, we create a query network and optimize
using the presented dynamic programming algorithm. For this, we adapt the costs
as follows. Equations (7.14) and (7.15) summarize the cost of a bind join between a
query list QLm

i and the free concept c. The cost function tests for each query, if the
result resides in the cache. The query list of the selected concept consists only of query
qkj.

srcQ(QLm
i ⊳⊲ c) =

∑

1≤j≤n

{

srcQ(qij ⊳⊲ c) if qij ⊳⊲ c not in cache

0 otherwise
(7.14)

srcObj(QLm
k ⊳⊲ c) =

∑

1≤j≤n

{

srcObj(qkj ⊳⊲ c) if qij ⊳⊲ c not in cache

0 otherwise
(7.15)

We use this cost estimations as input for the dynamic programming algorithm and
create a first plan.

Example 7.9 Continuing the previous example, we select the query q12 that is con-
nected to query list 2 via concept c2. QLm

2 contains both query q21 and q22. As both
queries of QLm

2 and their representing joins have been executed and cached by the sys-
tem, the join between QLm

2 and c2 does not induce source queries. Hence, the optimizer
returns the query plan q12 ⊳⊲JM(p1) (QLm

2 ⋊JM(p2) c2) ⊳⊲JM(p2) QLm
2 as template.

7.4.2. Query List Network-based Query Reusing

The previous section described the optimization of a query list network. Thereby, the
optimization handles every QLN separately. In this section, we share intermediate
results between query list networks to improve the reuse.

Figure 7.14 illustrates the proposed approach. Figure 7.14(a) shows three query list
networks that are processed in descending order of their maximum possible score. In
the first step, the query list network QLN1 is optimized using the approach in the
previous section. It uses the plan for QLN1 in Figure 7.14(b). In the next step, the
query list network QLN2 is selected. During the optimization of QLN2,, the optimizer
checks, if it shares parts with previously used query list networks. Therefore, two
semi-joins of QLN1 are reused. Finally, QLN3 reuses one semi-join. In this way, a
common plan is built step-wise in top-k order.

We now describe the approach in detail. We define the data structure to hold the
shared plan. Based on this, we describe the optimized construction of the shared plan.

171

7. Concept Query Processing

QLN3:

c1[kw1] c2 c3[kw2]

c1[kw1] c2 c4[kw2]

c3[kw2] c5 c6[kw1]

QLN1:

QLN2:

(a) Query List Networks

QLN3

c1[kw1] c1[kw1] sj c2 c3[kw2] c4[kw2] c6[kw1] sj c5 c6[kw1]

QLN1 QLN2

(b) Shared plan

Figure 7.14.: Shared query list networks

Data structure

The shared plan consists at the first level of a set of filter and semi-join query tem-
plates. We denote the templates materialization nodes. Every materialization node
represents a list of single concept queries or bind semi-join queries. In consequence, a
materialization node represents either a query list or a bind-join between a material-
ization node and free concept. Thus, we use a similar description as for cache entries.
Every materialization node is identified by a derived concept set dcs and the keyword
set KW. The former identifies the derived concepts that are used in the materialization
node. Every node represents a set of queries. Every query uses a selection predicates.
The keyword set KW contains the keywords that are used in the selection predicates.

At the second level, we have a set of join nodes. Every join node represents one
query list network. Every join node uses a subset of materialization nodes, to complete
the query plan template.

Construction of a shared plan

The shared template plan is constructed during the processing of query list networks.
We assume that we use the spares algorithm proposed by Hristidis et al. [HGP03] in
the execution. That means that the query list networks are handled in descending
score order. We add new materialization nodes as they occur.

If the system encounters a query list network that has not been used before, it will
optimize it using the approach in Section 7.4.1. During optimization, the algorithm
checks if a materialization plan operator is already in the shared plan. If this is the

172

7.5. Query List Optimizations

case, we will modify the costs of computing the results by setting the number of source
queries and source objects to zero. That means:

srcObjects′(p) =

{

0 if p ∈ plan

srcObjects(p) otherwise
(7.16)

srcQueries′(p) =

{

0 if p ∈ plan

srcQueries(p) otherwise
(7.17)

with p a materialization plan operator and plan the current shared plan. The system
optimizes the query list network by using the modified costs. The result is a plan
consisting of materialization plan operators and one join operator as root. All new
materialization plan operators are added to the shared plan at first level. The join
operator as join node of the query list network is added to the second level. The
modified cost model ensures that the biggest overlapping is found and selected during
construction.

Adapted cost model

The cost model is only a binary model, i.e., if a materialization node is in the plan, the
cost values are zero. In some cases, different plans are used with different costs and
different benefits for the complete keyword query. In this case, we use the following
approach.

The benefit of the materialization depends on the cost of the materialization and
the number of usages in the keyword query. We count the number of possible usages
of a semi-join or filter operation during the query list network enumeration. Having
this number and the cost estimations for the plans of a query list network, we create
a cost model for the benefit of an operator benefit(op). The benefit is high, if the
computation costs is low and the number usages are high. We select than the plan
of the query list network with the highest benefits. The benefit of an operator is
computed as

benefit(op) =
nrUsages(op)

cost(op)
. (7.18)

The term nrUsages(op) denotes the number of usages of the result of op and cost(op)
the costs of computing the result. Note, the operator op is a template for the materi-
alization queries.

We use the previously defined optimization algorithm. Every query list network is
optimized when it is used the first time. By using the benefit cost model, we can
find the globally most beneficial plan for this query list network with respect to the
previously executed query list networks.

7.5. Query List Optimizations

Compact concept graphs significantly improve the performance of the query list net-
work enumeration. However, the single concept query lists are larger than in the

173

7. Concept Query Processing

original concept graph because of the combination of the lists of the sub-concepts into
one list. A keyword query with many keywords, which occur in many properties of
one concept, also creates a large query list. In this section, we propose two optimiza-
tions for these cases. First, we split query lists, i.e., we execute sub-queries if they are
used in other query list networks. Second, single concept queries in a compact query
list node that have the same condition are merged into one query that includes all
concepts and the condition.

7.5.1. Splitting Query Lists

Assume a long keyword query and a concept with a high number of properties. If
the keywords occur in many properties, the algorithm will create a large number of
single concept queries. However, it is highly possible that many of these queries are
empty. The given empty result detection algorithm in Section 7.2 cannot efficiently
handle this case because covering queries are not previously executed. One solution
is to generate and execute all covering queries and combine their results to the final
results.

Assume a query list cKW for the concept c. Every query q ∈ cKW has a condition
condq with ∣KW ∣ predicates. We denote q as q = c[condq]. Furthermore, we assume
that query lists cKW ′

with KW ′ ⊂ KW are also used in query list networks. Based
on these assumptions, we execute every query q ∈ c{KW} as follows. First, we
execute every predicate pair of condq, i.e., execute the queries c[predi ∧ predj] for all
predi, predj ∈ condq with i ∕= j. Subsequently, we create query results with three
predicates by using the already materialized results. In the following steps, we create
the results of all conditions sizes up to ∣KW ∣. If any of the query c[cond′] is empty,
we add the query to the empty statistics and return an empty result. In that way,
the execution is more expensive in the first place, but stores intermediate results for
future queries and allows more efficient empty result detection. Thus, it helps for large
query lists and a higher number of k in top-k queries.

7.5.2. Merging Single Concept Queries

The second type of optimization of long query lists is the merging of single con-
cept queries of compact concept nodes. In a compact query list, queries use dif-
ferent concepts of one concept hierarchy. For example, we have a compact node
culture assets/* containing all concepts that describe cultural assets and a compact
query list culture assets/*{flowery, gogh}. The compact query list may contain
the single concept queries fine art[title∼="flowers" and artist∼="gogh"]
and paintings[title∼="flowers" and artist∼="gogh"]. Both queries have the
same selection condition. Thus, it is possible to combine the queries to (fine art

union paintings)[title∼="flowers" and artist∼="gogh"]. That means that
the mediator executes both queries at once. This approach enables the application of
the optimization of Yacob [SGS05]. For every source, the optimizer checks if a con-
cept contains sub-concepts, and only the super-concepts are executed by the mediator.

We merge queries as follows. Initially, we add two numbers to every single concept
query. The groupid identifies the group of the query, and second, the groupsize the

174

7.6. Discussion

number of queries in the group. We assume the predicates in the conditions are ordered
by the keyword. We scan the query list twice. In the first scan, we add a groupid
to the queries and collect the counts in a hash table. In the second scan, we add the
query sizes to the single concept queries. Single concept queries belong to the same
group, i.e., they have the same groupid if they have the selection condition.

During the execution of a query list, we use the following approach. When we
execute a query that is not in the cache, we collect all queries with the same query
group groupid. We use the parameter groupsize to stop the search of queries of the
group. We will stop the scan, if the number of found queries equals groupsize. Now, we
union the concepts and execute the merged query. The results are added to the cache
for each concept separately. The results are reused in later materialization queries.

The advantage of the approach is the possibility of optimization and reduction of
mediator calls. However, the approach also induces an overhead for query group-
ing. Furthermore, for the first queries of every query group, the costs are higher
than without merging because we execute later queries in the same moment. This is
disadvantageous in top-k queries.

7.6. Discussion

The contributions of this chapter are in the fields of empty result detection, semantic
caches, and plan optimizations for keyword queries.

Empty result detection

The first part deals with empty result detection. Empty result detection is used in
relational databases, e.g., [Luo06]. Here, empty sub-plans are efficiently detected after
optimization. Thereby, the physical plans are transformed back into logical plans.
An efficient data structure based on first, relation name sets and second, predicate
checking is used to detect empty sub-plans. In contrast, we execute the empty re-
sult detection during optimization. We extend the data structure for concept-based
queries. The approach of Demidova et al. [DZN10, DZZN09, ZZDN08] directly use
information of empty partial queries for keyword queries. The authors test every par-
tial materialization query if they are empty. However, this approach is expensive in
a distributed environment with limited access patterns. Thus, empty result detection
must be combined with the execution of the queries. We utilize this approach only for
completely materialized queries.

Semantic cache

The semantic cache is the second optimization to reuse intermediate results. There is
a large body of research about semantic caches and in particular, semantic caches for
mediator systems or other integrating systems, e.g., [Sel88a, DFJ+96, KB96, ACPS96,
LC99, LC01, CRS99, AKS99, Kar03, KSGH03, WAJ08, WA10]. Semantic caches and
materializations are crucial in mediator systems to mitigate the disadvantage of virtual
integration. All studies show that using a semantic cache or selective materializations

175

7. Concept Query Processing

improve the performance compared to tuple or page level caches known from central-
ized database systems.

Dar et al. [DFJ+96] introduce a semantic cache based on semantic regions. A
semantic region represents a set of tuples that is described by constraint queries.
Regions are merged based on heuristics that balance between supporting efficient cache
eviction and supporting large query results. Dar et al. also describe fundamental query
processing with a semantic cache that we use in this thesis. Keller and Basu [KB96]
present a cache schema based on predicates. Their main focus is the update of the
client caches. Höpfner describes the efficient notification and update of a large number
of client caches using a Trie-based data structure [Höp05]. Another optimization of
containment checking for many cache entries is based on templates [APTP03]. The
authors propose the removal of common predicates from query statements to reduce
the checking cost for large sets of queries. In our work, we do not consider updates
on the client because the local sources are not cooperative and do not notify about
changes. Instead, the cache content is invalidated either after one keyword query or a
pre-configured time.

Lee and Chu describe a semantic cache system for Web sources [LC99, LC01]. They
classify different levels where a cache can be used: in the mediator or the wrapper level.
They use the wrapper level caches that describe queries using the local query model.
The cache is a key-value table. The key is a conjunctive predicate and assumes that
every source consists of one relation. The approach uses overlapping cache entries.
The authors use a reference counter for data tuples to reduce the storage overhead.
Because of overlapping cache entries, Lee and Chu argue that the best containing or
contained match has to be found. They show a lattice structure that optimizes this
task. Using additional information and constraints, more cache hits are generated.
The approach in this work also uses overlapping cache entries, but finds the best set
of entries to support keyword queries using a greedy algorithm. Cache hit rates are
increases by using the relationships between concepts in the concept schema. We use
the concept schema as external information. Adali et al. provide a semantic cache for
the HERMES mediator system [ACPS96]. They also propose external knowledge to
improve the cache hit rate. They use rules (called invariants) to replace parts of the
query. The rewritten query is used as probe query in the cache.

Chidlovskii et al. propose a semantic cache for querying heterogeneous Web sources
used by a meta-search engine [CRS99]. The meta-search engine uses conjunctive key-
word queries with terms of the form attribute op value, where attribute describes
an attribute like “title” or “body”, op is either contains or equal, and value is a phrase.
The approach also assumes that sources allow negation. Based on this query language,
semantic regions (cache entries) are identified by conjunctive keyword queries. The
cache is on mediator level, but the cache is organized by sources. The results are semi-
structured. Besides traditional operational cases (equal, contained, and containing
matches) between a probe query and a cached query, the approach also supports the
one-term difference case. Here, all regions that have all but one keyword in their key
are selected, and the query’s part of the union of the entries and remainder query result
are returned as results. In order to support heterogeneity, the approach modifies the
cache results with respect to the completeness and checkability of the source. The cache
replacement strategy is based on a weighted most-recently used value. Chidlovskii et

176

7.6. Discussion

al. developed an approach for meta-searcher over documents and do not support struc-
tured data and join results. The one-term difference case is similar to our approach of
using a set of cache entries to answer a query comprising keyword containment queries.

Ashish et al. describe the selective materialization data in a concept-based mediator
system [AKS99]. It is based on the concept-based mediator SIMS(ARIADNE) (see
Section 2.2.2). The selective materialization of data on mediator level follows the
following three criteria: (i) user query distribution, (ii) cost of result generation with
respect to limited query capabilities of Web sources, and (iii) update frequency of the
sources. The materialized data is treated as one separate source. The materialized
data is described by sub-classes of the domain model. The user queries are classified
by their used concepts, predicates, and the required attributes for selection of the
data. The number of classes is reduced by query class merging. The query classes are
merged when they are siblings and have similar output attribute sets. Similar to our
approach, the data is described by the concept model. However, the authors support
single concept selections and not derived concepts. Derived concepts are necessary to
support joins for keyword queries. Similar is the concept of avoiding expensive source
queries. We replace bind-join operations by joins between two specified sources.

Karnstedt et al. propose a semantic cache as an extension of the Yacob mediator
query processing system [Kar03, KSGH03]. The cache is located on mediator level.
The cache is structured by the concept schema. For every concept, there is one list of
cache entries. A semantic region describes a cache entry. A region is defined by a con-
junctively connected set of predicates of the form property op value. The entries are
disjoint. The approach supports all operational matches. Keyword containment pred-
icates prop ∼= ”value” are supported using string inclusion. The approach proposed
here uses parts of this concept, but extends it by using derived concepts.

Wang et al. proposed a query planning system for interdependent deep-web
sources [WAJ08]. In order to improve the performance, Wang and Agrawal propose
a mechanism to reuse previous results [WA10]. The system takes as input a set of
selection predicates and output attributes. The system creates a query graph with
goal to return all specified output attributes. It starts with the specified sources. The
query plan is a directed graph of interdependent sources. Previous query results are
cached and stored together with their query plans. The system finds subgraphs that
can be answered by the cache. The operations resemble the bind-join in our system.
Instead of graphs we use semi-join operation trees. Furthermore, we consider simpler
query plans.

Lou and Naughton developed a cache for form-based keyword queries [LN01]. Form-
based queries mean that the results of a query come from one relation and are ordered
lists. The user queries are conjunctive keyword queries. Thus, the cache entries
are ordered lists that are described by sets of keywords. They describe the match-
ing classes of conjunctive keyword queries, ordered conjunctive keyword queries, and
top-k ordered conjunctive keyword queries. The authors implement the system for
conjunctive keyword queries. The study proposes one cache for each form. The cache
consists of a number of conjunctive keyword queries that point to tuples in a common
tuple set. Furthermore, the cache comprises a dictionary of keywords in the search
attribute. That means, in contrast to our approach, it supports keyword containment
filter queries. The difference to our work is that joins are not supported in this work.

177

7. Concept Query Processing

Seltzsam et al. developed a semantic cache definition for Web services [SHK05].
The authors annotate WSDL definitions with cache relevant information like the order,
which attributes are cache relevant, etc. The cache entries are described by web service
requests. While we use a specific, optimized cache for keyword queries, Seltzsam et
al. propose a general implementation for proxies for Web Services.

Materializations are also beneficial in centralized databases [Sel88a] in the form
of materialized views [SSV96] or materializations during multi-query optimiza-
tion [Sel88b]. An intriguing approach is proposed by Ivanova et al. [IKNG09, IKNG10].
In a column-oriented, main-memory database, intermediate results of query plans are
materialized and reused in later queries. The intermediate results are identified by the
plans that created them. Thus, by comparing new plans with cached results, one can
rewrite the plan for re-using the cache content. This is similar to re-using semi-join
results in the keyword search, but it has another application context and is used in a
centralized database system.

Schema graph-based keyword search

The keyword search system in this thesis is a member of schema graph-based systems.
Related are systems over relational databases and streams. In this thesis, we adapted
the algorithms of Hristidis et al. [HGP03] and Sayyadian et al. [SLDG07] for the
execution of query list networks. The algorithm exploits the monotonicity of the
ranking function to evaluate candidate join queries. However, Hristidis et al. and
Sayyadian et al. deal with tuple sets and not with query lists. While they focuses
on reducing the number of joins in a top-k query, we focus on re-using as much
intermediate query results as possible. Hristidis et al. and Sayyadian et al. execute
every join separately without caching or combine a number of joins to a disjunctive
query. We assume that only conjunctive queries are allowed by the source systems.

Hristidis et al. [HP02] propose an optimization algorithm for the evaluation of all
candidate networks. It focuses on the evaluation of all results. It creates an order
of joins in that way, that intermediate results are reused. The work is based tuple
sets instead of query lists. Furthermore, it does not support top-k evaluation like the
algorithms before.

Qin et al. [QYC09] also use semi-joins to filter free relations and reduce them to
tuple sets that are joined. The reduced relations are joined in a second phase. In this
way, they reduce the number and size of intermediate results if the candidate networks
are entirely executed. We also exploit the concept schema and semantic cache ideas
to allow better reuse of intermediate results. Furthermore, we allow optimization over
different query list networks.

Related is also research about keyword search over relational tuple streams [MYP09,
QYC11]. The problem is defined as follows: given are a conjunctive m-keyword query
and a relational schema. Now, we require all minimal joining tuple networks that
contain all keywords and that come from relational streams.

Markowetz et al. [MYP09] introduced the problem of keyword search over relational
tuple streams. Their solution consists of candidate network generation and efficient
network evaluation using an operator mesh. Every candidate network is translated into
a left-deep operator tree consisting of joins and selections. Now, the operator trees are

178

7.7. Summary

merged into one mesh. The merging allows the sharing of join computations between
candidate networks. This is similar to our shared plan. However, our plan is based on
semi-join trees. The optimizer creates the operator trees to find the cheapest operator
order. Qin et al. also use semi-joins instead of joins in the first phase [QYC11]. They
improve the approach of Markowetz et al. by introducing the ℒ-lattice. The lattice is
similar to merged operator trees, but the construction is based on candidate networks.
A new network is merged in that way, that the overlap is biggest with the lattice. In
the first phase, the tuples in every relation or stream window are reduced to those
tuples that join to every adjacent relation. That means that it uses the semi-join
approach. The reduction starts with the selection nodes. The work concentrates on
obtaining all results. We also support top-k answers. Furthermore, our approach tries
to find the most cost efficient overlapping.

Further schema-based keyword systems, e.g., [BRDN10, CBC+09, LLWZ07,
LYMC06], deal with different optimization and ranking aspects. However, the op-
timizations do not deal with reuse of intermediate results. Data graph-based keyword
search systems (see Section 4.2.4) do not apply here. The virtual integration requires
the execution of queries created from a schema graph-based approach, because the
global data graph is not materialized.

7.7. Summary

This chapter has the following main contributions. Initially, we described the query
processing based on bind-joins and semi-joins. Using semi-joins, we can reduce the size
of the cached and materialized intermediate results. We presented two basic execution
algorithms for query list networks from the literature. They were optimized during
the remainder of the chapter. The first optimization is the detection of empty results.
The detection is based on query coverage. We defined query coverage for concepts
and concept-based queries. The detection of empty results allows the skipping of
empty result generating materialization queries. The second concept is intermediate
query result reuse. Here, we defined query containment for concept-based queries.
The first approach is a semantic cache structured by derived concepts. In order to
improve the reuse rate, we optimized a query list network to one query plan template.
Every materialization query had to use this template. Further improvement promises
the generation of a shared plan. At last, query splitting and query merging were
presented as further optimizations.

In summary, the main contribution is the description of the query list network evalu-
ation based on empty result detection, semi-joins, and aggressive reuse of intermediate
results to reduce the number of source queries and transferred objects. We argue that
the presented optimizations allow the efficient schema graph-based execution of key-
word queries over distributed, heterogeneous data sources. We validate the algorithms
in the following Chapter 8 using a prototype.

179

8. Implementation and Evaluation

In this chapter, we present the developed prototypical implementation and experiments
to validate the key aspects of the presented approaches. We describe the architecture
and the implementation of the keyword search prototype in Section 8.1. In Section 8.2,
we specify the evaluation goals and the used data and query sets. Section 8.3 inves-
tigates the efficiency of the keyword query processing. In Section 8.4, we evaluate
keyword effectiveness. We conclude the chapter with a summary in Section 8.5.

8.1. Architecture and Implementation

The developed keyword search system is based on the Yacob mediator system de-
scribed by Sattler et al. [SGHS03, SGS05]. The Yacob system is used for concept-
based, integrated access to heterogeneous sources. We extend it by the keyword search
component, which also comprises the join processing. The complete system is imple-
mented using the Oracle Java SE 61. The components use additional libraries and
software products that we will describe in detail in this section. Figure 8.1 outlines
the system architecture and the developed components. The keyword search compo-
nents are highlighted and are the focus in this thesis. In the remaining section, we
will describe the purpose and the implementation of every component.

Yacob mediator components

We sketch the function and the implementation of every Yacob mediator component.
Details of the components are presented in [SGHS03, SGS05, KSGH03].

Concept management component. The concept management component man-
ages the concept, categories, properties and the inter-concept properties as well as
the mapping information. The complete integration schema is expressed in RDF. In
order to manage the RDF data, the concept management component utilizes the Jena
Semantics Web Framework2. The component realizes the concept schema access op-
erations on a main memory RDF graph. The graph is loaded during startup from
different RDF files.

Query planning component. The query planning component takes a CQuery state-
ment as input and creates a query plan. In the first step, the planning component
parses a CQuery statement and creates a tree of algebra operators. It rewrites the
statement according to the rules presented in Sattler et al. [SGS05], which are also

1http://www.oracle.com/technetwork/java/index.html Last accessed: 2012-05-16
2http://jena.apache.org/ Last accessed: 2012-05-16

181

8. Implementation and Evaluation

XSLT

Processor

Query Execution

Data AccessXinidice

SOAP/HTTP

Cache−DB

User Interface

Keyword Index

Keyword

Processor

Query List Network

Enumerator

Query List Network

Executor

CQuery

Generator

Join

Processor

Cache Empty Results

Access component

Transformation component

Query Planning component

Query execution component

Crawler component

Keyword component

Web Service Web Service Web Service

RDQL

Jena API

RDF−DB

Concept management component

Web Service Client

Parser

Rewriter

Crawler

Figure 8.1.: System architecture

summarized in Section 3.3. The resulting query processing plan is sent to the query
execution component.

Query execution component. The query execution component processes the query
plan. It implements all necessary query operators for single concept query processing.
In particular, the component integrates results using the extensional union operator.
The source queries are executed in parallel threads. In summary, the query planning
and the execution components implement the execution of single concept queries, but
they do not support join processing.

Transformation component. The transformation component transforms local XML
objects into global objects with respect to global concept schema. It consists of an
XSLT processor, which applies created or provided XSLT transformation rules to
local objects. Thereby element names are adapted. The component uses the standard
XSLT processor provided by the Java development kit. The XSLT rules implement
the mapping rules [SGS05] (see also Section 3.1.2).

Data access component. The data access component provides the communication
to the sources. It receives an XPath query from the query execution component and

182

8.1. Architecture and Implementation

answers it from the included cache [Kar03, KSGH03] or sends the query to the local
sources. The component invokes sources by Web service calls and assumes every
source can answer a basic, conjunctive XPath query. The cache is not controlled by
the keyword search component but is part of the mediator Yacob system. During
the experiments, the cache is not used because we want to evaluate the join cache
approach.

Crawler component. The crawler component obtains information from the sources
in order to build source content descriptions and finally the keyword index. The
crawler belongs to the keyword search components but is not in the focus of this work.
Solutions are: (i) sources send descriptions during offline phases; (ii) the crawler
samples the sources [Dec04]. The component stores the source content descriptions
in a PostgreSQL3 managed database. The keywords and their statistics are extracted
using the full-text capabilities of PostgreSQL, which includes normalization of the
terms.

Keyword search components

The Yacob components execute single concept queries. We now describe the keyword
search and join processing components and their implementation.

Keyword index. The keyword index is implemented as one relation using Post-
greSQL. Table 8.1 outlines the schema. It omits the category support. A full text
index is used on the keyword column. Further indexes exist on the Dewey identifier,
concept, and property columns. Dewey identifiers are implemented as bit strings. The
index allows searching for Dewey identifier prefixes. The index is created from the
source content descriptions and the integration schema index.

Field Description

keyword the keyword
keywordtype the type of the keyword
dewey the Dewey identifier of the concept
concept the concept
property the property
source_data the sources with corresponding document frequencies
weight the term weight value
sum_tf the sum of all source term frequencies

Table 8.1.: Keyword index schema

Keyword processor. The keyword processor parses concept-based keyword queries
and combines lists of index entries to single concept query lists. It is implemented in

3http://www.postgresql.org/ Last accessed: 2012-05-22

183

8. Implementation and Evaluation

Java. For a plain query term, the processor creates one SQL query. For concept-based
query terms, it executes three SQL queries and combines the index entries in main
memory. We implemented concept-label query expansion with the help of Dewey
identifier comparisons. The creation of single concept queries is executed in main
memory for a set of keywords and index entry lists, respectively.

Query list network enumerator. The query list network enumerator uses the single
concept query lists from the keyword processor as well as the concept schema graph
from the concept management system. Initially, it creates the annotated concept graph
in main memory. The single concept query lists are held in a Java implemented data
structure. All compacting and enumeration algorithms are implemented in Java on
the concept graph data structure.

Query list network executor. We implemented the different approaches of the query
list network executor in Java. The executor creates join query plans. It uses the
optimizer, the statistics, and the cache metadata to produce query plans. The query
plan is sent to the join processor. The executor retrieves the answer from the join
processor, adds metadata to it, and adds it into the result set. If the result is complete
with respect to the keyword semantics, the executor will return the result to the user.

Join processor. The join processor implements the plan operators described in Sec-
tion 7.1.1. The filter plan operator is implemented using the CQuery generator. The
bind join operator uses the results of the mediator system to create new mediator
queries and join the results. The materialize operator stores the input data set in a
main memory database managed by the system H2 database4. The result is stored
into a table containing the XML objects as well as separate columns with the join
property values. A hash index is added to every join column to support fast global
join processing. The multi-way join is implemented as join over all materialized tables.
The CachePOP is implemented as follows. Given a set of cache entries a SQL view is
created over the cache tables. The view implements the intersection of the best cache
entries. The view is used by the global join and in bind join operations. The system
retrieves relevant values from a join property column during a bind join. After all
necessary data is materialized in H2 tables, the global join is executed as SQL query.

CQuery generator. The CQuery generator is based on the work of Declercq [Dec04]
as well as on the works of Geist et al. [GDSS03, Gei04, SGS05]. It takes an index entry
tuple and creates single concept query plans. However, we modified the generator in
this study. Now, the CQuery generator creates actual query plans for the mediator
system instead of CQuery statements. In that way, no parsing is necessary, but the
mediator still applies query optimization rules.

Cache. The cache metadata is kept in main memory using a Java hash table. The
data is stored in a H2 main memory database. We add join relevant attributes into
separate columns and add indexes to it.

4http://www.h2database.com/ Last accessed: 2012-05-20

184

8.2. Scenarios and Evaluation Measures

Statistics. The statistics are also held in main memory. Statistics comprise the sizes
of the concept extensions for every source. Document frequencies of terms are stored
in the index entries of the keyword index. Using these both statistics, we estimate
the costs during join optimization. Finally, the statistics comprise the empty result
statistics, too. Empty result statistics are held in the main memory to allow fast access
during optimization.

8.2. Scenarios and Evaluation Measures

In this section, we describe the evaluation goals and the evaluation scenario. In the
literature, there are two related approaches: keyword search systems over databases
and mediator systems. Schema graph-based keyword search systems are compara-
ble to the proposed approach. However, these systems require either a centralized
database or complete query access to distributed databases, i.e., general joins. We
assume that we only have limited access patterns. Hence, the approaches are hard
to compare quantitatively. Because of bind join operations, many source queries are
generated causing long query execution times. In contrast, Mediator systems do not
support finding of connected objects that contain keywords. Several approaches sup-
port multi-media queries and merge ranked results, but they do not provide a keyword
search over different objects. Hence, we investigate only the efficiency of the proposed
optimizations.

The second problem is the effectiveness of keyword queries. We use a standard
ranking function, which might not provide the best effectiveness. However, we want
to validate if concept-based keyword queries allow better and faster query processing.
Faster means that the user-provided labels allow the restriction of the number of
possible candidate queries, and the query expansion allows retrieving relevant results.
In summary, we validate the efficiency and the effectiveness of the system.

In the remainder of this section, first we discuss the evaluation goals and hypotheses
of the results. Second, we describe the used data set. Third, we present the evaluation
environment.

8.2.1. Evaluation Goals

We presented approaches for all parts of a concept schema graph-based keyword search
system. We focused on the efficiency. In the following, we describe the goals of the
validation experiments.

Size estimators: In Section 7.1.1, we presented the query optimization and processing
in the proposed system. The costs estimators are based on limited statistics. In
the first set of experiments, we validate these size estimators. Since we do not use
histograms or sampling techniques, we expect that the estimation is sufficient in
the average case, but the cost estimation of skewed data distributions is poor.
We will validate whether the average case is sufficient for the keyword search
application area.

185

8. Implementation and Evaluation

Detailed Evaluation: In a second set of experiments, we separately investigate the
single steps of the keyword search processing.

Index access and query list generation: We test the time for index access and
query list generation for varying keyword query sizes of plain and concept-
based keyword queries. We expect this step is less expensive than to the
other processing steps. Therefore, we measure the execution times as well
as the query list sizes.

Materialization query generation: Query list network enumeration is the fol-
lowing step. We expect that the original concept schema graphs are too
complex for enumeration. We propose a compact concept schema graph
approach. Every concept hierarchy is represented by one complex node.
Corresponding edges are compacted into one complex edge. We validate
the approach by measuring the complete enumeration time of query list
networks. We vary the number of plain keywords (∣Q∣) and the maximum
size of query list networks sizemax. Since we use the same algorithm for
compact and normal concept schema graphs, the performance has to be
better in the compact case. However, if we increase the complexity (more
keywords, greater sizemax), the compact approach shows also increasing
costs, too.

Materialization query execution: The most expensive part of keyword query
processing is the execution of the materialization queries. Initially, we
test the all-sizemax semantics, which means the system tries to retrieve
all matching object networks. We validate the empty result detection (see
Section 7.2), the caching approach (see Section 7.3), and the shared plan
with query list network optimization approach (see Section 7.4). We vary
the number of plain keywords ∣Q∣ and the maximum object network size
sizemax. We expect that every optimization improves the performance com-
pared to the non-cache, non-empty result detection approach. The empty
result detection will reduce the number of queries. This approach cannot
reduce the number of transferred objects of successful queries. In contrast,
caching will store every successful intermediate result. The problem is that
the approach will re-compute empty results. Depending on the query struc-
ture, one or the other approach can be better. We expect the combination
of both shows the best results. To validate these ideas, we measure the exe-
cution times, the number of executed queries, and the number of transferred
local objects.

General top-k evaluation: In the general evaluation experiments, we compare the
complete performance for different parameter value sets and top-k query se-
mantics. We investigate different values for k for top-k semantics. We use the
compact schema graph approach and the combination of caching and empty re-
sult detection. We argue that the top-k approach allows small query execution
times. In the following, we investigate the performance of concept-based keyword
queries. We measure the execution time. We expect, without query expansion,

186

8.2. Scenarios and Evaluation Measures

the performance is better, if k results exist. However, we will have many empty
results. Query expansion avoids this problem with a minimum overhead.

Query list optimization: For long query lists, we propose two optimizations: query
splitting and query merging (see Section 7.5). Query splitting divides long con-
dition into sub-condition and executes all combinations. This helps to detect
empty results earlier. Query merging condenses queries with the same condition
in one concept hierarchy into one query. It allows the efficient execution of the
mediator. We expect that both optimizations improve the execution times by
faster query execution and early empty result detection. In this evaluation, we
implemented and tested only query splitting.

The evaluation experiments determine the execution times (time) as well as the
main factors: number of source queries (srcQueries) and number of returned objects
(srcObjects). We compare the approaches for different query parameters. The main
parameters are the number of returned results k, the size of the keyword query ∣Q∣, and
the maximum size of results sizemax as well as the keyword parameters KWOcc and
DF . KWOcc describes the number of occurrences of a keyword in different positions
in the virtual document. DF denotes the number of objects containing a keyword in
a given position. Table 8.2 summarizes the parameters.

Parameter Description

k the number of non-empty queries (top-k)
∣Q∣ the keyword query size
sizemax the maximum object network size
KWOcc the number of occurrences of a keyword
DF the document frequency of a keyword

Table 8.2.: Main evaluation parameters

8.2.2. Data Sets and Query Sets

Data sets

The Internet Movie Data Base (IMDB)5 is a data collection about movie productions
and actors. It contains information about many aspects of movies. We downloaded
the data and divided the data into six databases. Figure A.1 in Appendix A.1.1 shows
the concept schema of the IMDB database. Table 8.3 summarizes the statistics of the
concept schema. It describes the number of concepts, data properties, and concept
properties as well as the number of source databases. The number of relationships is
high because we consider all combination of sub-concepts, too. These relationships
are not illustrated in Figure A.1. The IMDB is a homogeneous database, and it is well
usable for synthetic tests.

5http://www.imdb.com/interfaces, Last accessed: 2012-05-16

187

8. Implementation and Evaluation

Data Set Concepts Properties Relationships Databases

IMDB 39 20 1024 6

Table 8.3.: Database structure

The IMDB dataset consists of six databases. Table 8.4 shows the sizes of the
databases. The database imdbperson contains all information about persons related
to movies, e.g., actors, directors, editors, and other concepts. The movie databases
(imdbmovie1,imdbmovie2,imdbmovie3) contain the movie information and informa-
tion about the positions in the movies (roles, director positions, etc.). We split the
original data by using a modulo function. The database imdbref contains references
between movies, e.g., follow ups, remakes. Finally, the database imdbplot contains
plots of movies. Every database resides in a PostgreSQL database.

Source Objects Terms Concepts

imdbperson 1,951,739 1,235,941 1
imdbmovie1 4,104,903 781,465 23
imdbmovie2 5,324,238 1,025,917 25
imdbmovie3 3,208,629 692,291 22
imdbrefs 431,844 26 7
imdbplot 110,439 204,155 1

Table 8.4.: IMDB sources

Query sets

We create different keyword query sets from the database for the different evaluation
goals. As parameters of keyword selection, we use KWOcc(kw) and the maximal
document frequency DF (kw) of a keyword. The first parameter describes in how
many different positions in the virtual document a keyword occurs. It controls the
number of different interpretations of a keyword. The second parameter controls the
selectivity of a keyword. For example, a keyword with a high DF retrieves many
objects from a source. We will describe the generated query sets in the corresponding
experiments.

8.2.3. Evaluation Environment

The Yacob mediator and the keyword search component accesses the data via a Web
service interface. On the server side, we use an Apache Tomcat6 server with a Metro7

web service stack. Client and server run on one machine that uses an AMD Phenom
XII 804 with 3.2 GB RAM and Microsoft Windows XP (SP3). The Web service
interface allows only conjunctive selection conditions to simulate Web data interfaces.

6http://tomcat.apache.org/, Last accessed 2012-03-28
7http://metro.java.net/, Last accessed 2012-03-28

188

8.3. Efficiency Evaluation

8.3. Efficiency Evaluation

In the efficiency evaluation, we start with detailed validation of each separate step of
keyword processing.

8.3.1. Size estimation evaluation

The estimation of the number of result objects and source queries is crucial to select
the best plans and the best caching strategies. In the Yacob system, we use limited
statistics and adapt standard cost functions. We validate the cost functions in this
section with the help of the IMDB dataset and a number of exemplary queries. We
expect that the estimations are reasonable and usable to the keyword search task.

For evaluation, we created nine query sets of each ten queries. Table 8.5 summarizes
the statistics of the query sets. The actual query sets are presented in Appendix A.2.1.
The parameters minDF and maxDF specify the document frequency interval of the
selected keywords. The parameter #bindJoins shows the number of bind joins that
every query in the set has. We want to investigate the sensitivity of the estimations
with respect to the result size, the number of keywords, and the number of joins.

Query set #Keywords #bindJoins minDF maxDF

1 1 0 10 50
2 1 0 50 200
3 1 0 200 500
4 2 0 50 200
5 2 0 200 500
6 1 1 50 200
7 1 1 200 500
8 1 2 50 200
9 1 2 200 500

Table 8.5.: Query set characteristics

We executed every query set and compared the estimations of the number of queries
and the number of objects with the actual values. Let W be the query set and for
q ∈ W the estimated value est(q) and the actual value act(q). As quality measures,
we used the average absolute error

avgAbsErr(W) =
1

∣W ∣

∑

q∈W

(est(q)− act(q)) (8.1)

and the average relative error

avgRelErr(W) =
1

∣W ∣

∑

q∈W

(est(q)− act(q))

act(q)
⋅ 100%. (8.2)

189

8. Implementation and Evaluation

Queries Objects

Query set avgNr avgAbsErr avgRelErr avgNr avgAbsErr avgRelErr

4 1.0 0 0 1.5 -0.5 -21.7%
5 1.0 0 0 5.3 -4.3 -48.2%
6 364.6 0 0 605.5 26.1 19.8%
7 933.4 0 0 3101.6 -1481.8 -23.8%
8 1479.1 38.5 43.4% 1681.2 -767.2 -7.1%
9 5656.0 -232.9 51.1% 6400.2 -3132.3 1.0%

Table 8.6.: Estimation errors

Table 8.6 summarizes the results. We omitted the datasets 1 to 3 because the errors
were zero, because the DF values are directly the result sizes and the number of sources
was also given. For two keywords (query sets 4 and 5), the estimation underestimates
the number of returned of objects because the DF values are small compared to the
complete dataset size. For one or two joins, the cost functions mostly underestimate
the transferred data objects. If we investigate the data in detail, in most queries
the number of queries is overestimated. This can be caused by optimizations of the
bind join operator that submits only distinct values. Figure 8.3 illustrates this. If
the points are below the line, the values are overestimated, otherwise the numbers of
objects and queries are underestimated by the system. The outliers are clearly shown.
Furthermore, a detailed evaluation shows that most queries are reasonably estimated
(low error values). However, some queries are outliers with high absolute errors, e.g.,
30000 objects (20000 queries) (see Figure 8.2). The outliers are caused by skewed data
distributions and limited statistics. For example, the result size of an actor with many
roles would be underestimated. However, in average we obtain reliable estimations for
keyword queries that are usable in the restricted keyword search scenario.

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 0 2 4 6 8 10 12

N
u
m

b
e
r

Query Nr.

Estimated vs. actual number of objects and queries

estimated Queries
actual Queries

estimated Objects
actual Objects

Figure 8.2.: Estimations and actual values for query set 9

190

8.3. Efficiency Evaluation

 0

 5000

 10000

 15000

 20000

 25000

 0 1000 2000 3000 4000 5000 6000 7000 8000

A
c
tu

a
l
N

u
m

b
e

r
o

f
Q

u
e

ri
e

s

Estimated Number of Queries

Estimated vs. actual queries

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 0 500 1000 1500 2000 2500 3000 3500 4000 4500

A
c
tu

a
l
N

u
m

b
e

r
o

f
O

b
je

c
ts

Estimated Number of Objects

Estimated vs. actual objects

Figure 8.3.: Estimated values vs. actual values

8.3.2. Detailed Evaluation

We investigate different details of the execution of keyword queries in this section.
First, we provide information about index access costs and query list generation. The
result of this step is an annotated concept graph. Second, we investigate the query
list network enumeration. We compare the normal and compact graph enumeration.
Third, we evaluate the materialization query processing algorithms.

Costs of index access and query list generation

Index access and query list generation form the first step in keyword query execution.
For this, we created two plain keyword query sets A and B. Both sets consist of
randomly sampled keywords that are combined to queries of different sizes. We used
two different sets to determine if the sampling has an influence to the result. Both
query sets vary the keyword query size ∣Q∣ from 2 to 5. We outline the execution times
in Figures 8.4(a) and 8.4(b). Both query sets show similar results. The index access
and the query list generation times are similar and go as equal parts into the complete
time. The times overall are small compared to the following steps as we will show in
the remaining section.

In order to explain the execution times, we report the sizes and structures of the
results. The results are single concept queries and query lists. The numbers of gener-
ated single concept queries and query lists are illustrated in Figures 8.5(a) and 8.5(b).
The results show a higher number of queries and query lists for larger keyword queries
because more combinations are possible. Query set B has a slightly larger result set
explaining the slightly higher execution times.

The sizes of the query lists are reported in Figures 8.5(c) and 8.5(d). The average
size of query lists is slowly increasing with higher keyword query sizes. However,
the maximum size of a query list can be large. That happens if all keywords are
supported by many different properties in one concept. In this case, the number of all
combinations is high. Long query lists motivate the use of query list optimizations as
described in Section 7.5.

191

8. Implementation and Evaluation

 0

 5

 10

 15

 20

 25

 0 1 2 3 4 5 6

A
v
g

.
e

x
e

c
u

ti
o

n
 t

im
e

 [
m

s
]

Nr Keywords

Query List Generation Time Query Set A

complete execution
index access
ql generation

(a) Query Set A

 0

 5

 10

 15

 20

 25

 0 1 2 3 4 5 6

A
v
g

.
e

x
e

c
u

ti
o

n
 t

im
e

 [
m

s
]

Nr Keywords

Query List Generation Time Query Set B

complete execution
index access
ql generation

(b) Query Set B

Figure 8.4.: Query list generation times

Costs of query list network enumeration

After the generation of query lists, we now compare the performances of query list
network enumeration algorithms. We distinguish between the normal algorithm and
the compact graph algorithm. The algorithms have the parameter maximum size of
query list networks sizemax. In the first experiment, we vary the parameter between
2 and 6. We compare the algorithms in Figure 8.6. The keyword query size is set to
∣Q∣ = 2. Because of many concepts and connections in concept graphs, the performance
of the normal algorithm degrades fast in the breadth first search algorithm. The
compact query graph consists of significantly fewer nodes and edges. Thus, it allows
a much faster computation of query list networks. In particular, the execution times
increase less with increasing sizemax in the compact case, too. This leads to much
better scalability.

In the second experiment, we vary the keyword query size ∣Q∣ between 2 and 5.
For every keyword query size, we generated ten queries (see Appendix A.2.2). The
Figures 8.7(a) and 8.7(b) show the average times for a sizemax = 3 and sizemax = 4.
For both cases and for all query sizes, the compact graph algorithm outperforms the
normal algorithm. The differences are bigger for higher values of sizemax and keyword
query size ∣Q∣.

In summary, the compact graph allows the efficient use of the basic breadth first
search algorithm for enumerating the query list networks. Additionally to this re-
duction of nodes and edges, it is possible to use optimizations as described in
[MYP09, Luo09, QYC11]. These algorithms avoid the checking of duplicates of query
list networks. The combination with the compact graph approach can improve the
performance further.

Costs of query execution

In the following experiments, we investigate the query execution performance for all-
sizemax semantics. That means that we require all results for a plain keyword query.
The input is a list of query list networks. For generation of materialization queries from

192

8.3. Efficiency Evaluation

 1

 10

 100

 1000

 0 1 2 3 4 5 6

A
v
g

.
n

u
m

b
e

r
q

u
e

ri
e

s

Nr Keywords

Average Number of Queries

query set A
query set B

(a) Generated single concept queries

 0

 10

 20

 30

 40

 50

 60

 70

 80

 0 1 2 3 4 5 6

N
u

m
b

e
r

o
f

Q
u

e
ry

 L
is

ts

Nr Keywords

Number of Query Lists

query set A
query set B

(b) Number of query lists

 0

 1

 2

 3

 4

 5

 0 1 2 3 4 5 6

A
v
g

 Q
u

e
ry

 L
is

t
S

iz
e

Nr Keywords

Average Query List Sizes

query set A
query set B

(c) Avg Size of query lists

 0

 1000

 2000

 3000

 4000

 5000

 6000

 0 1 2 3 4 5 6

Q
u

e
ry

 L
is

t
S

iz
e

Nr Keywords

Maximum Query List Sizes

query set A
query set B

(d) Max. size of query lists

Figure 8.5.: Number of generated single concept queries and query lists

the query list networks, we use the algorithms presented in Section 7.1.2: complete
query generation and the step-by-step algorithm by Hristidis et al. [HGP03]. Both
are similar in performance, but the second is more memory efficient as it creates
materialization queries on the fly. As compact concept graphs are shown to be more
efficient, we assume the query list networks are generated using the compact graph
algorithm.

We investigate different plain keyword query sets in the experiments. We distinguish
the keywords by the number of occurrences in the global virtual document, i.e., in
how many concepts and properties a keyword is found. We denote this parameter
as KWOcc. We created three sets of keywords with 1 to 4, 5 to 10, and 10 to 15
occurrences. We created from each of these sets plain keyword queries that are not
empty. Furthermore, we varied the number of keywords ∣Q∣ from 2 to 4. The query set
is analyzed in Appendix A.2.3. The number of maximum object network sizes sizemax

ranges between 3 and 5. The goal of the experiment is to validate every optimization
method proposed in Chapter 7.

We report the execution times for every optimization method. Table 8.7 summarizes
the studied algorithms.

193

8. Implementation and Evaluation

 1

 10

 100

 1000

 10000

 100000

 1 2 3 4 5 6 7

T
im

e
 (

m
s
)

Sizemax

Enumeration Time vs. sizemax

normal
compact

Figure 8.6.: Query list enumeration: sizemax vs. time

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 200

 220

 1 2 3 4 5 6

T
im

e
 (

m
s
)

Keyword Query Size

Enumeration Time vs. Keyword Query Size

normal
compact

(a) With sizemax = 3

 10

 100

 1000

 10000

 100000

 1 2 3 4 5 6

T
im

e
 (

m
s
)

Keyword Query Size

Enumeration Time vs. Keyword Query Size

normal
compact

(b) With sizemax = 4

Figure 8.7.: Query list enumeration: keyword query size ∣Q∣ vs. time

Unoptimized results. Initially, we show the influence of the parameters KWOcc,
the number of keywords ∣Q∣, and the maximum network size sizemax. We report the
results for 2 ≤ ∣Q∣ ≤ 4 and sizemax = 3 in Figure 8.8. Figure 8.8(a) shows the
number of materialization queries for every keyword query size. Generally, the number
increases with keyword query size and KWOcc. However, the keyword query with
two keywords with KWOcc = 1..4 has a higher number of occurrence than the queries
with more keywords (see Appendix A.2.3). Therefore, the query has higher costs.
Figure 8.8(b) shows the resulting execution times. The time values increase with the
number of materialization queries, because the document frequencies of the keywords
are similar. We omitted the execution time of the last query (m = 4, KWOcc =
10 . . . 20) because of excessive runtime. The data shows that the query execution
time increases exponentially. In Figure 8.9, we show the influence of the sizemax

parameter. With increasing sizemax, the number of generated materialization queries
and the execution time are increasing exponentially. After showing the influence of

194

8.3. Efficiency Evaluation

Optimization Description

er empty result detection
cacℎe semantic cache approach
er + cacℎe empty result detection + semantic cache
cacℎe_adv shared plan
er + cacℎe_adv empty result detection + shared plan

Table 8.7.: Compared algorithms

 10

 100

 1000

 10000

 100000

2 3 4

N
u

m
b

e
r

Q
u

e
ri
e

s

Keywords

Keywords vs. materialization queries

KWOcc=1..4
KWOcc=5..10

KWOcc=10..20

(a) Materialization queries

 1000

 10000

 100000

 1e+006

 1e+007

2 3 4

E
x
e

c
u

ti
o

n
 t

im
e

 [
m

s
]

Keywords

Keywords vs. Execution time

KWOcc=1..4
KWOcc=5..10

KWOcc=10..20

(b) Execution times

Figure 8.8.: Influence of the keyword occurrence KWOcc on the execution time for
sizemax = 3

the parameters, we now test the optimization approaches. Figure 8.10 compares the
execution times of the different approaches.

Figure 8.10(a) illustrates the influence of the keyword query size. The results show
that optimizations reduce the execution times. It also shows that empty result detec-
tion and caching are necessary. Shared plans improve the performance but not in every
case. The results indicate the combination of empty result detection and caching leads
to the best results. Figure 8.10(b) shows the results for varying sizemax and ∣Q∣ = 3. It
shows that the fully optimized execution times increase slower than the unoptimized.
Finally, the last test shows that the costs are increasing with increasing KWOcc be-
cause more materialization queries are constructed and executed. The optimizations
showed a higher benefit for expensive queries.

To explain the result, we present the number of executed source queries and of trans-
ferred objects in Figure 8.11. Figures 8.11(a), 8.11(c), and 8.11(e) show the number
of source queries. The numbers are reduced by empty result detection and caching
approaches. On the one hand, the caching approaches cannot avoid empty queries.
Thus, they execute a large number of not necessary source queries. On the other
hand, the empty result detection only algorithm has to execute repeatedly successful
queries. This leads to a higher number of transferred objects as illustrated in the Fig-
ures 8.11(b), 8.11(d), and 8.11(f). The caching approaches cause the re-computation
of empty results. This leads to many queries without results. In consequence, we need

195

8. Implementation and Evaluation

 10

 100

 1000

 10000

3 4 5

M
a

te
ri
a

liz
a

ti
o

n
 q

u
e

ri
e

s

sizemax

sizemax vs. materialization queries

KWOcc=1..4

(a) Materialization queries

 100

 1000

 10000

 100000

 1e+006

3 4 5

E
x
e

c
u

ti
o

n
 t

im
e

 [
m

s
]

sizemax

sizemax vs. Execution Time

KWOcc=1..4

(b) Execution times

Figure 8.9.: Execution times with respect to the parameter sizemax for ∣Q∣ = 3

both cache and empty result detection to reduce the number of source queries and of
source objects, but also to reduce the load and space used on the global level.

The results also show that the number of source queries and source objects can be
reduced to reasonable numbers. However, the execution times are still high which
makes the all-sizemax semantics to an exploratory approach of possible results. The
semantics is not well suited for ad-hoc queries. However, with application of further
optimizations on the global level as proposed in the related systems [QYC09, BRL+10],
the execution times are further reduced.

8.3.3. Top-k evaluation

We now evaluate top-k query semantics for plain and concept-based keyword queries.
We investigate the influences of the parameters k, ∣Q∣, and sizemax. We use the IMDB
dataset and generate various query sets. During the evaluation, we use the empty
result detection and shared plan algorithm, because it showed the best performance
in the previous experiments for all-sizemax semantics. We start with plain keyword
queries.

Plain keyword queries

We create three sets of plain keyword queries with 2, 3, and 4 keywords. The query sets
are described in Appendix A.2.4. We selected the queries, such that, they have at least
ten results. We report the results for varying k in the Figures 8.12 and 8.13. First,
we use queries with two keywords and vary sizemax between 2 and 6. The average
execution time increases with sizemax and k. However, for top-1 queries the execution
time is constant, because similar top-1 results are found for each sizemax. For sizemax

values of 5 and 6, the same top 5 and 10 values have been found. Therefore, we report
similar execution times. As we used queries, which have at least ten results, the result
has a bias. In particular, if a query has less than k non-empty queries, the system
will execute all materialization queries. In this case, the performance significantly
degrades.

196

8.3. Efficiency Evaluation

 1000

 10000

 100000

2 3 4

E
x
e
c
u
ti
o
n
 t
im

e
 [
m

s
]

Keyword

Keyword query size vs. Execution Time

unoptimized
er

cache
cache_adv

er+cache
er+cache_adv

(a) Optimization vs. keyword query size, sizemax = 3 and
KWOcc = 1..4

 1000

 10000

 100000

 1e+006

3 4 5

E
x
e
c
u
ti
o
n
 t
im

e
 [
m

s
]

sizemax

sizemax vs. Execution Time

unoptimized
er

cache
cache_adv

er+cache
er+cache_adv

(b) Optimization vs. sizemax, ∣Q∣ = 3 and KWOcc = 1..4

 1000

 10000

 100000

 1e+006

 1e+007

KWOcc1..4 KWOcc5..10 KWOcc10..20

E
x
e

c
u

ti
o

n
 t

im
e

 [
m

s
]

Keyword occurrences

KWOcc vs. Execution Time

unoptimized
er

cache

cache_adv
er+cache

er+cache_adv

(c) Optimization vs. KWOcc, ∣Q∣ = 3 and
sizemax = 3

Figure 8.10.: Optimization vs. execution time

197

8. Implementation and Evaluation

 0

 50

 100

 150

 200

 250

 300

 350

 400

2 3 4

S
o

u
rc

e
 Q

u
e

ri
e

s

Keyword

Keyword query size vs. Source Queries

unoptimized
er

cache
cache_adv

er+cache
er+cache_adv

(a) Optimization vs. Keyword query size,
sizemax = 3 and KWOcc = 1..4

 0

 100

 200

 300

 400

 500

 600

 700

 800

2 3 4

S
o

u
rc

e
 O

b
je

c
ts

Keyword

Keyword query size vs. Source Objects

unoptimized
er

cache
cache_adv

er+cache
er+cache_adv

(b) Optimization vs. Keyword query size,
sizemax = 3 and KWOcc = 1..4

 0

 1000

 2000

 3000

 4000

 5000

 6000

3 4 5

S
o

u
rc

e
 Q

u
e

ri
e

s

sizemax

sizemax vs. Source Queries

unoptimized
er

cache
cache_adv

er+cache
er+cache_adv

(c) Optimization vs. sizemax, ∣Q∣ = 3 and
KWOcc = 1..4

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

3 4 5

S
o

u
rc

e
 O

b
je

c
ts

sizemax

sizemax vs. Source Objects

unoptimized
er

cache
cache_adv

er+cache
er+cache_adv

(d) Optimization vs. sizemax, ∣Q∣ = 3 and
KWOcc = 1..4

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

KWOcc1..4 KWOcc5..10 KWOcc10..20

S
o

u
rc

e
 q

u
e

ri
e

s

Keyword occurrences

KWOcc vs. Source queries

unoptimized
er

cache
cache_adv

er+cache
er+cache_adv

(e) Optimization vs. KWOcc, ∣Q∣ = 3 and
sizemax = 3

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

 18000

 20000

KWOcc1..4 KWOcc5..10 KWOcc10..20

S
o

u
rc

e
 o

b
je

c
ts

Keyword occurrences

KWOcc vs. Source Objects

unoptimized
er

cache
cache_adv

er+cache
er+cache_adv

(f) Optimization vs. KWOcc, ∣Q∣ = 3 and
sizemax = 3

Figure 8.11.: Optimization strategies vs. execution time

198

8.3. Efficiency Evaluation

 0

 10000

 20000

 30000

 40000

 50000

 60000

 70000

 80000

 90000

 100000

3 4 5 6

T
im

e
 [
m

s
]

sizemax

sizemax vs. Complete Time

k=1
k=5

k=10

Figure 8.12.: Top-k overall execution times for different sizemax and ∣Q∣ = 2

Figure 8.13 shows the results for varying keyword query sizes. It shows that the
performance is quite similar for ∣Q∣ = 2 and ∣Q∣ = 3. The performance starts to worsen
for more keywords and higher k values.

 0

 10000

 20000

 30000

 40000

 50000

 60000

 70000

 80000

 90000

2 3 4

T
im

e
 [

m
s
]

Keywords

Keywords vs. Complete Time

k=1
k=5

k=10

(a) sizemax = 3

 1000

 10000

 100000

 1e+006

2 3 4

T
im

e
 [

m
s
]

Keywords

Keywords vs. Complete time

k=1
k=5

k=10

(b) sizemax = 4

Figure 8.13.: Top-k overall execution times for different keyword sizes

In summary, the queries are executed in 10 to 100 seconds. For top-1 queries, we have
reasonable times. Higher keyword counts and sizemax values increase the execution
times, which are significantly lower than queries in the all-sizemax semantics.

Query splitting optimization

If keyword query contains many terms, the system can create long query lists for single
concepts. In particular, many combinations of keywords will not create results. Thus,
the query list optimizations can reduce the number of queries sent to the sources.
Therefore, we developed the query list splitting optimization. That means that a
conjunctive condition is split into sub-conditions. Queries with the sub-conditions are

199

8. Implementation and Evaluation

executed. The results are combined in further steps. In this way, intermediate empty
results are easily discovered. We assume keyword queries with more keywords and
smaller sizemax benefit more from query list splitting. Figures 8.14(a) and 8.14(b)
illustrate results. The results validate the assumptions. In detail inspection of the
results, one can see that query splitting allows the detection of more empty results.
However, the approach is better with lower k values. During the evaluation, the
proposed scoring function favors small results with many keywords in few concepts.
That situation creates long query lists.

 20000

 30000

 40000

 50000

 60000

 70000

 80000

 90000

2 3 4

T
im

e
 [

m
s
]

Keywords

Query List Splitting, k=10

er+cache_adv
qlsplit

(a) sizemax = 3

 30000

 40000

 50000

 60000

 70000

 80000

 90000

 100000

 110000

 120000

2 3 4

T
im

e
 [

m
s
]

Keywords

Query List Splitting, k=10

er+cache_adv
qlsplit

(b) sizemax = 4

Figure 8.14.: Top-k query list splitting

Concept-based keyword queries

Plain keyword queries do not give any constraints for the positions of the keywords.
However, if the user has limited knowledge about the position of a keyword, concept-
based queries are advantageous. In the case of wrong concept-labels, query expansion
helps to mitigate the problem. We sample three query sets with two, three, and
four concept-based query terms (see Appendix A.2.5). In this section, we report the
execution times for these queries. Figure 8.15 shows the execution times for concept-
based keyword queries and expanded concept-based keyword queries of the size ∣Q∣ = 2
and varying sizemax and k. The execution times are lower than for plain keyword
queries because of a lower number of generated queries. However, a number of non-
expanded keyword queries could not generate results. They could not generate valid
query list networks. With the help of query expansion, we could create results. The
performance of query times of 1 second to 9 seconds is low compared to plain keyword
queries.

In a second experiment, we try to evaluate the influence of the size of keyword
queries. The results are reported in Figure 8.16(a) for concept-based keyword queries
and in Figure 8.16(b) for expanded concept-based keyword queries. Bigger queries
seem to have a better performance. However, they also have more often empty results,
because we cannot build many combinations using concept-based keyword queries.

200

8.4. Effectiveness Evaluation

 0

 1000

 2000

 3000

 4000

 5000

 6000

3 4 5

T
im

e
 [

m
s
]

sizemax

sizemax vs. Complete Time

k=1
k=3
k=5

(a) Normal

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 9000

 10000

3 4 5

T
im

e
 [

m
s
]

sizemax

sizemax vs. Complete Time

k=1
k=3
k=5

(b) Concept expanded

Figure 8.15.: Top-k complete execution times for different sizemax and ∣Q∣ = 2 of
concept-based keyword queries

The positions of keywords are specified. This leads to a better performance. However,
possible unexpected and relevant results might be missed.

 0

 500

 1000

 1500

 2000

 2500

 3000

2 3 4

T
im

e
 [

m
s
]

Keywords

Keyword Query Size vs. Complete Time

k=1
k=3
k=5

(a) Normal

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

2 3 4

T
im

e
 [

m
s
]

Keywords

Keyword Query Size vs. Complete Time

k=1
k=3
k=5

(b) Concept expanded

Figure 8.16.: Top-k complete execution time vs. concept-based keyword size,
sizemax = 3

8.4. Effectiveness Evaluation

Effectiveness of a search system describes how good the results are in relevance to the
query. Here, we want to compare plain and concept-based keyword queries. For this,
we created sets of keyword queries and added concept and property labels. After that,
we compare the best 15 results. Table 8.8 outlines the queries. The first set searches
for connections between persons of the name “ledger” and “gyllenhaal”. Expected are

201

8. Implementation and Evaluation

Set No. Query

1 1 ledger, gyllenhaal
2 person::ledger, person::gyllenhaal
3 :name:ledger, :name:gyllenhaal
4 person:name:ledger, person:name:gyllenhaal

2 5 sci-fi:title:trek,person:name:stewart
6 drama:title:trek,person:name:stewart
7 trek,stewart
8 sci-fi:title:star,sci-fi:title:trek,person:name:stewart

3 9 person:name:kubrick,movie:title:strangelove,person:name:sellers
10 :name:kubrick,:title:strangelove,:name:sellers
11 kubrick,strangelove,sellers

Table 8.8.: Query set for the effectiveness experiment

the connections between Heath Ledger and Jake8 or Maggie Gyllenhaal9, respectively.
The maximum result size was set to sizemax = 5. The inspection of the results (see
Appendix A.2.6) reveals, the best results are obtained with query 4 that exactly speci-
fies the position of the keywords. The results of the queries show exactly the expected
connections. Queries 1 and 2 show mostly queries to the concept person because both
keywords “ledger” and “gyllenhall” occur in different properties of concept “person”. In
this case, the property label is more powerful than the concept label. This shows that
both labels are justified.

The second set of queries tests the query expansion of labels. We search for a
connection between the keywords “trek” and “stewart”. The results show that concept
label expansion can effectively improve the results because the wrong label “drama”
did not influence the results. Furthermore, the query set 2 confirms that the proposed
ranking function favors small results. One solution is the concept network query
semantics. Here, we would get all possible connections mitigating this problem. A
second conclusion of query set 2 is that the developed solution must be extended to
phrase search. It is hard to express the expression “Star Trek” as query 8 illustrates.
Even if the expected results are returned, phrase search will improve the performance,
too.

Query set 3 is used to confirm the previous results. Query 9 showed the best
effectiveness. The result set of Query 10 reveals that the property label alone is not
sufficient, if the properties occur in different concepts. For example, “name” applies
to the concepts “Person” and “CharacterInMovie”.

In this study, we focused mainly on efficiency. This effectiveness study uses only
exemplary queries and analyzes the result sets. In order to assess the quality of
effectiveness, we have to provide a user study and measurements like precision and
recall. We will do this in future work. However, the small study confirmed that

8Played together in the movie “Brokeback Mountain”
9Played together in the movie “Dark Knight”

202

8.5. Summary

∙ concept-based keyword queries help to improve effectiveness and efficiency,

∙ the proposed ranking function shows promising results but must be optimized
to avoid large numbers of single concept results, and

∙ concept-network query semantics helps to improve effectiveness by avoiding
many single concept results.

8.5. Summary

In this chapter, we presented the prototypical implementation and a set of experiments
based on the IMDB dataset. The implementation uses the Yacob mediator prototype
and extends it by keyword search components. We focus in this chapter on the on-
line phase of the keyword search system. The main focus lied on efficiency studies.
Initially, we validated the proposed basic cost estimation function. As the functions
and statistics are limited, the experiments showed that extreme cases and skewed data
cannot be estimated, but, in average, the estimation is appropriate. This is in line
with related studies.

In general, the evaluation confirmed that the execution phase dominates the over-
all costs. Experiments of the keyword index showed query times of 10 milliseconds.
Optimization can improve the performance. The materialization query enumeration
experiments confirmed that compact concept graphs significantly improve the perfor-
mance.

The execution experiments provided further insights in the most expensive part of
keyword query processing. They confirmed that both, empty result detection and
caching, are necessary to improve the performance. Furthermore, they showed that
query expansion of concept-based keyword queries does not impose higher costs, but
improves the results.

The effectiveness study was limited, but confirmed the assumption that concept-
based keyword queries improve the query result quality. Furthermore, it revealed that
phrase search should be supported.

In summary, the studies showed that keyword search across heterogeneous struc-
tured databases using a concept-based mediator are possible but expensive. Further
optimizations are:

∙ a phrase search that avoids many keywords,

∙ application of optimizations on global level after most of the data is materialized,

∙ better cost functions and statistics to improve the estimations, and

∙ use of the concept-network query semantics.

203

9. Summary and Future Work

Nowadays, large numbers of semi-structured and structured data sources are available
in the Internet and Intranets. Many information needs of users and applications
can only be satisfied by integrating several, heterogeneous sources. As structural
heterogeneity is high, concept-based or semantic integration systems have emerged
in the last decades. They annotate local data with concepts of a concept schema to
enable the connection of information from different sources. Concept-based integration
systems offer a uniform, but complex access to the data, like concept-based query
languages or browsing.

Centralized (semi-)structured database systems also have complex schemata and
query languages. Thus, in the last decade keyword search systems over XML, rela-
tional, and graph databases have been developed [YQC10]. In contrast to document
collections, keyword search over structured sources has additional challenges because
keywords and information are distributed over different data elements like XML data
items, tuples, relations, or objects. Therefore, keyword search systems have to find
connections between these elements. While many approaches exist that support cen-
tralized approaches, virtually integrated, structured data sources are less supported.
Notable exceptions are the selection of relational databases [YLST07, VOPT08] and
keyword queries across heterogeneous relational databases [SLDG07].

This thesis develops and evaluates concepts for the combination of concept-based
mediator systems and keyword search over the concept-based data model. The re-
sult is a keyword search system that supports the search across heterogeneous, semi-
structured data sources. The underlying mediator system Yacob provides a uniform
access to sources and ensures the integration of local objects to global objects. Fur-
thermore, it allows the efficient execution of single concept queries. The developed
keyword search system uses the mediator system and a global keyword index to pro-
vide the keyword search and join functionality. The system follows the schema-graph
approach and generates concept-based query statements, denoted as materialization
queries. The join processor optimizes and executes materialization queries. We use
query coverage and query containment to avoid re-computation of empty results and
to allow re-use of intermediate results, respectively. Both optimizations provide a
performance gain as the evaluation validates.

The thesis shows that it is possible to create the combination of mediator and
keyword search to simplify the search across heterogeneous structured data sources.
The results also show that keyword queries are expensive to process, making the search
mostly an explorative task. However, optimizations mitigated the high costs. The use
of labeled keyword queries, denoted as concept-based keyword queries, combined with
query expansion, improves performance in efficiency and effectiveness because the
system can rely on users query hints.

205

9. Summary and Future Work

9.1. Summary

Chapter 2 and Chapter 4 provide the background of concept-based mediator sys-
tems and keyword search over structured data sources, respectively. Furthermore, both
chapters classify and compare the respective related work. Both chapters complement
existing surveys on the respective systems [HRO06, WVV+01, YQC10, PgL11] by
focusing on the topics of this thesis: concept-based integration and keyword search
across of distributed sources. In particular, Chapter 4 discussed keyword search over
heterogeneous, virtually integrated sources.

Chapter 3 describes the concept-based mediator system Yacob. The Yacob system
was introduced by Sattler et al. [SGHS03]. Subsequent works extend the system
by keyword search in single concepts [Dec04, Gei04] and a semantic cache [Kar03,
KSGH03]. Sattler et al. provide the complete system overview [SGS05]. Chapter 3
improves and extends the definitions and specifications of Yacob. The Yacob system
provides the integration service, the domain modeling, and the query planning for
single concept queries. It is the basis of keyword search described in the remainder of
the thesis.

Chapter 5 defines concept-based keyword queries. We assume a concept-based
schema graph and a description of the actual data in the form of a keyword index. The
keyword search definitions abstract from the Yacob model but use its main features:
concepts and properties, concept hierarchies, category hierarchies for conceptual data
values, and mapping information. This information is also featured by many other
integration systems. Based on this information, we define the Virtual Document and
concept-based keyword queries. As results of keyword queries, we consider two steps.
First, we see materialization queries as interpretations of keyword queries. Second,
object networks are the results of materialization queries and the final results of the
keyword queries. Results are ranked by the score of materialization queries. Concept-
based keyword queries are labeled keywords. In order to mitigate wrong concept labels,
we introduce query expansion for keyword queries. Concept label expansion exploits
the concept hierarchies and category keyword expansion exploits category hierarchies.
Finally, we propose three query semantics: all results, top-k non-empty queries, and
top-k concept networks. For top-k semantics, a ranking function is defined. The func-
tion combines schema level and data level scores as well as the compactness of results
and the size of the object networks. The ranking function also includes concept label
expansion. However, the function focuses on showing the applicability and efficiency.
The function is not optimized and validated for effectiveness. As the ranking function
is monotonic, it allows straightforward but efficient top-k algorithms.

Chapter 6 outlines our keyword search solution. We propose a schema graph-based
evaluation approach [HP02]. We use the concept schema as schema graph. Because
of concept hierarchies and many concept-properties, the schema graph is highly com-
plex. It is necessary to compact the graph to reduce its complexity. The chapter
includes all steps to build materialization queries: the keyword index structure, index

206

9.2. Contributions

lookup methods, the single concept query generation, and the generation of query list
networks. The keyword index and single concept generation algorithms are adapted
from [Dec04, GDSS03] and improved. Query list networks are compact representa-
tions of a set of materialization queries. They are the input of the next step: result
creation.

Chapter 7 is concerned with the efficient processing of materialization query sets.
It adapts existing approaches of tuple and query sets processing [HGP03, ZZDN08]
to query processing. It emphasizes the importance of avoiding unnecessary source
queries. In particular, bind join operations are expensive operations. Thus, we discuss
three approaches to reduce query costs: empty result detection, a semantic cache, and
materialization of intermediate results. One result is the definition of query coverage
and query containment for concept-based queries. Furthermore, we show how to op-
timize a query list network at whole. At last, we provide ideas for query merging and
query list splitting.

Chapter 8 describes the system architecture and implementation. Different exper-
iments validate the algorithms defined in the previous chapters. The experiments
comprise the general execution of keyword queries, but also detailed investigations of
the different parts of the keyword query process. We use different query sets and vary
fundamental parameters for the evaluation tests.

9.2. Contributions

The contributions of the thesis are grouped into three areas of topic: concept-based
integration, concept-based keyword query definitions, and execution of keyword queries
over concept-based models.

Concept-based integration and query processing. The Yacob system is a mem-
ber of the group of concept-based mediator systems. It allows the integration of Web
sources and other kinds of semi-structured sources. The Yacob system allows the
Local-as-View source mapping of XML sources to a concept-based model. Addition-
ally to the published work of Sattler et al. [SGHS03, KSGH03, GDSS03, Kar03, Dec04,
Gei04, SGS05], this thesis improved the description of the Yacob system. In order
to support efficient keyword queries, we provided join processing based on semi-joins
and bind-joins. The use of semi-joins and subsequent global joins reduces the number
of materialized tuples and allows a seamless integration of a concept-based semantic
cache. The materialized semi-join results is better reused by similar queries.

Concept-based keyword query definitions. We defined concept-based keywords
as an instance of labeled keywords. We provide a possibility to search heterogeneous
sources using all information: schema terms, information from source descriptions,
and elementary content descriptions. We support thereby also concept-based query
expansion. We adapt the semantic relationship in that way that the expanded terms

207

9. Summary and Future Work

are intuitive according to concept-schema, i.e., concept subClassOf relationship. This
allows effortless query formulation. The inclusion of mapping information allows users
to utilize their knowledge about local sources. Providing concept labels and query
expansion allow the efficient and effective usage of partial knowledge of the concept
schema.

Schema graph-based evaluation of keyword queries Schema graph-based evalu-
ation of keyword queries creates many overlapping materialization queries. As we can
control the join processing in our system, we contribute the following points to exploit
the overlapping:

∙ detection of empty results for concept-based queries with keyword containment
predicates to avoid unnecessary re-computations,

∙ semi-join results as cache and intermediate results to avoid re-computations of
expensive bind-join queries and to reduce the overhead of stored tuples, semi-
joins are also exploited in relational databases [QYC09] and relational data
streams [QYC11],

∙ query list optimization to synchronize queries in order to maximize the re-use of
the cache, and

∙ a shared plan of materialization queries by step-wise addition of query plans.

Another point is the definition of concept-based keyword queries with query expansion.
User hints allow the reduction of query costs. The proposed optimization approaches
can be translated to every keyword search system over structured data.

9.3. Future work

Based on the results of this work, we propose several extensions and possible research
directions.

Query language. The evaluation of the system showed that phrase search has to be
supported. For example, the query painter:name:holbein,painter:name:younger

causes an execution overhead and even returns unnecessary results. A solution is
phrase search. The corresponding query is painter:name:"holbein the younger".
This query indicates the keywords have to occur always in a common property value.
Phrase search can be supported by modifying the index lookup. Index entries for the
value keywords have to have common concept and property values and all keywords
of the phrase have to be in exactly one value.

Ranking function effectiveness. This work focuses on the efficiency of keyword
queries. It uses the proposed ranking function to illustrate the top-k functionality
and to include query expansion distances. The ranking function is not optimized for
effectiveness. Thus, one has to optimize the ranking function by considering different

208

9.3. Future work

approaches. First, it is possible to improve the term weight definition following [Sin01].
Second, different ranking functions, also non-monotonic, have to be tested, for exam-
ple, page-rank inspired functions. Third, one can include more information like average
object value lengths. Fourth, the ranking model should be taken to a consistent model
based on the vector space or probabilistic model.

Ranking of objects and object networks. This work does not compute the rank of
objects and object networks. Instead, we rank results only by query scores. However,
queries might have more than one result and instance scores can be different to the
query scores. This is equivalent to the ranking of documents in distributed information
retrieval [Cal00]. The problems are manifold. One has to merge the local scores to a
global score. It is necessary to combine materialization query score and object network
score. For example, Xu et al. ranked candidate networks, first, and then tuple trees for
improving the effectiveness of keyword search in relational databases [XIG09]. From
this follows further research directions, like ranked cache results and ranked joins. One
can adapt ideas like [MBG04] as a starting point for object networks to optimize the
results and reduce the number of retrieved objects. Ranking object networks has a
significant potential to improve top-k queries, because we do not have to retrieve all
objects but only the necessary objects for a top-k result.

Query optimization. We proposed in this work a basic cost model. It has the ad-
vantage of using only a limited set of statistics. The statistics are generated directly
from the keyword indexes. The disadvantage is the problem of skewed data distribu-
tions in the join computation (see Section 8.3.1). Furthermore, the number of queries
and objects are only two parameters. Thus, it is advantageous to consider more so-
phisticated statistics like histograms, on the one hand. On the other hand, one has to
include further optimization parameters like response time of sources for a query and
the global load. Ideally, the necessary statistics structures should be self-learning and
self-maintaining.

Keyword search support. The keyword indexes in this work are single term in-
dexes. That means that we do not store information whether keywords are connected
assuming a certain distance. If we would have these connection information between
keywords, we could reject keyword queries directly. A possible solution is based on
keyword relationship matrices [YLST07] or keyword relationship graphs [VOPT08].
Both solutions are used to select the best relational databases for multi-database key-
word search, i.e., results across different sources are not supported. Thus, the problem
arises that connections across different sources have to be created without material-
ization of the complete integrated dataset. A solution could be a self-learning method.
We can also add non-connected keywords for a certain distance. In the first step, the
empty result statistics is a source. In a second, we compress the statistics to keyword
non-connections. Equivalently, we can add results of keyword queries to a connection
index. These self-tuning indexes can complement source descriptions with keyword
connections.

209

9. Summary and Future Work

Interactive keyword queries. Chu et al. [CBC+09] and Demidova et al. [DZN10]
proposed the combination of form based search and keyword search as well as the
interactive generation of queries, respectively. Particularly, it is attractive to adopt
these approaches to our keyword search system because expensive source queries cause
high running times. We already create materialization queries as an intermediate
step. As many similar materialization queries are generated, one has to find grouping
approaches, for example, based on common concept networks. From that starting
point, the user can select a group of materialization queries, create labeled keyword
queries, or combine both methods.

Similarity joins and learned mappings. Another future extension is the inclusion of
inexact mappings and join conditions. On the one hand, it is possible to add similarity
joins as concept property mappings [Sch04, SGS04]. In the KITE system [SLDG07],
similarity joins are used. However, the system supports only relational database sys-
tems and cooperative systems. On the other hand, we could use learned mappings
from sources to the global concept schema. The mappings are not exact but have a
given quality. The mapping quality must be included in the ranking function of the
keyword queries.

Virtually integrated graph databases. In this work, we focus on the schema
graph-based keyword search approach. However, instances of a concept schema
form a data graph. Thus, it is worthwhile to investigate how to deal with a dis-
tributed, heterogeneous data graph and keyword search. Existing data graph-based
approaches [HN02, KPC+05, LFO+11] have to be adapted to cope with overlapping
graphs that are connected across different, heterogeneous sources. One possible appli-
cation of this extension is distributed open-link data.

210

Bibliography

[AAB+98] José Luis Ambite, Naveen Ashish, Greg Barish, Craig A. Knoblock,
Steven Minton, Pragnesh Jay Modi, Ion Muslea, Andrew Philpot, and
Sheila Tejada. ARIADNE: A System for Constructing Mediators for
Internet Sources. In Laura M. Haas and Ashutosh Tiwary, editors, SIG-
MOD 1998, Proceedings ACM SIGMOD International Conference on
Management of Data, June 2-4, 1998, Seattle, Washington, USA., pages
561–563. ACM Press, 1998.

[ABFS02a] Bernd Amann, Catriel Beeri, Irini Fundulaki, and Michel Scholl.
Ontology-Based Integration of XML Web Resources. In Ian Horrocks and
James A. Hendler, editors, The Semantic Web - ISWC 2002, First In-
ternational Semantic Web Conference, Sardinia, Italy, June 9-12, 2002,
Proceedings, volume 2342 of Lecture Notes in Computer Science, pages
117–131. Springer, 2002.

[ABFS02b] Bernd Amann, Catriel Beeri, Irini Fundulaki, and Michel Scholl. Query-
ing XML Sources Using an Ontology-Based Mediator. In Robert Meers-
man and Zahir Tari, editors, On the Move to Meaningful Internet Sys-
tems 2002: CoopIS, DOA, and ODBASE, volume 2519 of Lecture Notes
in Computer Science, pages 429–448. Springer Berlin / Heidelberg, 2002.

[Abi97] Serge Abiteboul. Querying Semi-Structured Data. In Foto N. Afrati
and Phokion G. Kolaitis, editors, Database Theory - ICDT ’97, 6th In-
ternational Conference, Delphi, Greece, January 8-10, 1997, Proceedings,
volume 1186 of Lecture Notes in Computer Science, pages 1–18. Springer,
1997.

[ACD02] Sanjay Agrawal, Surajit Chaudhuri, and Gautam Das. DBXplorer: A
System for Keyword-Based Search over Relational Databases. In Pro-
ceedings of the 18th International Conference on Data Engineering, 26
February - 1 March 2002, San Jose, CA, pages 5–16. IEEE Computer
Society, 2002.

[ACD+03] B. Aditya, Soumen Chakrabarti, Rushi Desai, Arvind Hulgeri, Hrishikesh
Karambelkar, Rupesh Nasre, Parag, and S. Sudarshan. User Interaction
in the BANKS System. In Umeshwar Dayal, Krithi Ramamritham, and
T. M. Vijayaraman, editors, Proceedings of the 19th International Con-
ference on Data Engineering, March 5-8, 2003, Bangalore, India, pages
786–788. IEEE Computer Society, 2003.

211

Bibliography

[ACPS96] Sibel Adali, K. Selçuk Candan, Yannis Papakonstantinou, and V. S. Sub-
rahmanian. Query Caching and Optimization in Distributed Mediator
Systems. In H. V. Jagadish and Inderpal Singh Mumick, editors, Proceed-
ings of the 1996 ACM SIGMOD International Conference on Manage-
ment of Data, Montreal, Quebec, Canada, June 4-6, 1996, pages 137–148.
ACM Press, 1996.

[AHK97] Yigal Arens, Chun-Nan Hsu, and Craig A. Knoblock. Query Processing
in the SIMS Information Mediator. In Michael N. Huhns and Munindar P.
Singh, editors, Readings in Agents, pages 82–90. Morgan Kaufmann, San
Francisco, CA, USA, 1997.

[AK93] Yigal Arens and Craig A. Knoblock. SIMS: Retrieving and Integrating
Information From Multiple Sources. In Peter Buneman and Sushil Jajo-
dia, editors, Proceedings of the 1993 ACM SIGMOD International Con-
ference on Management of Data, Washington, D.C., May 26-28, 1993.,
pages 562–563. ACM Press, 1993.

[AKS96] Yigal Arens, Craig A. Knoblock, and Wei-Min Shen. Query Reformula-
tion for Dynamic Information Integration. Journal of Intelligent Infor-
mation Systems (JIIS), 6(2/3):99–130, 1996.

[AKS99] Naveen Ashish, Craig A. Knoblock, and Cyrus Shahabi. Selectively Ma-
terializing Data in Mediators by Analyzing User Queries. In Proceedings
of the Fourth IFCIS International Conference on Cooperative Informa-
tion Systems, Edinburgh, Scotland, September 2-4, 1999, pages 256–266.
IEEE Computer Society, 1999.

[AKYJ03] Shurug Al-Khalifa, Cong Yu, and H. V. Jagadish. Querying Structured
Text in an XML Database. In Alon Y. Halevy, Zachary G. Ives, and An-
Hai Doan, editors, Proceedings of the 2003 ACM SIGMOD International
Conference on Management of Data, San Diego, California, USA, June
9-12, 2003, pages 4–15. ACM, 2003.

[APTP03] Khalil Amiri, Sanghyun Park, Renu Tewari, and Sriram Padmanabhan.
Scalable template-based query containment checking for web semantic
caches. In Umeshwar Dayal, Krithi Ramamritham, and T. M. Vijayara-
man, editors, Proceedings of the 19th International Conference on Data
Engineering, March 5-8, 2003, Bangalore, India, pages 493–504. IEEE
Computer Society, 2003.

[AYBDS06] Sihem Amer-Yahia, Chavdar Botev, Jochen Dörre, and Jayavel Shan-
mugasundaram. XQuery Full-Text extensions explained. IBM Systems
Journal, 45(2):335–352, 2006.

[AYBS04] Sihem Amer-Yahia, Chavdar Botev, and Jayavel Shanmugasundaram.
Texquery: a full-text search extension to xquery. In Stuart I. Feldman,
Mike Uretsky, Marc Najork, and Craig E. Wills, editors, Proceedings of

212

Bibliography

the 13th international conference on World Wide Web, WWW 2004, New
York, NY, USA, May 17-20, 2004, pages 583–594. ACM, 2004.

[AYCD06] Sihem Amer-Yahia, Emiran Curtmola, and Alin Deutsch. Flexible and
efficient XML search with complex full-text predicates. In Surajit Chaud-
huri, Vagelis Hristidis, and Neoklis Polyzotis, editors, Proceedings of
the ACM SIGMOD International Conference on Management of Data,
Chicago, Illinois, USA, June 27-29, 2006, pages 575–586. ACM, 2006.

[AYCS02] Sihem Amer-Yahia, SungRan Cho, and Divesh Srivastava. Tree Pattern
Relaxation. In Christian S. Jensen, Keith G. Jeffery, Jaroslav Pokorný,
Simonas Saltenis, Elisa Bertino, Klemens Böhm, and Matthias Jarke, ed-
itors, Advances in Database Technology - EDBT 2002, 8th International
Conference on Extending Database Technology, Prague, Czech Republic,
March 25-27, Proceedings, volume 2287 of Lecture Notes in Computer
Science, pages 496–513. Springer, 2002.

[AYKM+05] Sihem Amer-Yahia, Nick Koudas, Amélie Marian, Divesh Srivastava, and
David Toman. Structure and Content Scoring for XML. In Klemens
Böhm, Christian S. Jensen, Laura M. Haas, Martin L. Kersten, Per-Åke
Larson, and Beng Chin Ooi, editors, Proceedings of the 31st International
Conference on Very Large Data Bases, Trondheim, Norway, August 30 -
September 2, 2005, pages 361–372. ACM, 2005.

[AYL06] Sihem Amer-Yahia and Mounia Lalmas. XML search: languages, INEX
and scoring. SIGMOD Record, 35(4):16–23, 2006.

[AYLP04] Sihem Amer-Yahia, Laks V. S. Lakshmanan, and Shashank Pandit. FleX-
Path: Flexible Structure and Full-Text Querying for XML. In Gerhard
Weikum, Arnd Christian König, and Stefan Deßloch, editors, Proceed-
ings of the ACM SIGMOD International Conference on Management of
Data, Paris, France, June 13-18, 2004, pages 83–94. ACM, 2004.

[BAYS06] Chavdar Botev, Sihem Amer-Yahia, and Jayavel Shanmugasundaram.
Expressiveness and Performance of Full-Text Search Languages. In Yan-
nis E. Ioannidis, Marc H. Scholl, Joachim W. Schmidt, Florian Matthes,
Michael Hatzopoulos, Klemens Böhm, Alfons Kemper, Torsten Grust,
and Christian Böhm, editors, Advances in Database Technology - EDBT
2006, 10th International Conference on Extending Database Technology,
Munich, Germany, March 26-31, 2006, Proceedings, volume 3896 of Lec-
ture Notes in Computer Science, pages 349–367. Springer, 2006.

[BCF+03] Scott Boag, Don Chamberlin, Mary F. Fernández, Daniela Florescu,
Jonathan Robie, and Jérôme Siméon. Xquery 1.0: An xml query lan-
guage. http://www.w3.org/TR/xquery/, November 2003.

[Ber01] Michael K. Bergman. The Deep Web: Surfacing Hidden Value. Journal
of Electronic Publishing, 7, aug 2001.

213

Bibliography

[BG02] Jan-Marco Bremer and Michael Gertz. XQuery/IR: Integrating XML
Document and Data Retrieval. In Mary F. Fernandez and Yannis Pa-
pakonstantinou, editors, Proceedings of the Fifth International Workshop
on the Web and Databases, WebDB 2002, Madison, Wisconsin, USA,
June 6-7, 2002, in conjunction with ACM PODS/SIGMOD 2002. Infor-
mal proceedings, pages 1–6, 2002.

[BG03] Dan Brickley and R.V. Guha. RDF Vocabulary Description Language
1.0: RDF Schema. http://www.w3.org/TR/rdf-schema/, dec 2003.

[BG06] Jan-Marco Bremer and Michael Gertz. Integrating document and data
retrieval based on XML. VLDB Journal, 15(1):53–83, 2006.

[BGL+99] Chaitanya K. Baru, Amarnath Gupta, Bertram Ludäscher, Richard
Marciano, Yannis Papakonstantinou, Pavel Velikhov, and Vincent Chu.
XML-Based Information Mediation with MIX. In Alex Delis, Chris-
tos Faloutsos, and Shahram Ghandeharizadeh, editors, SIGMOD 1999,
Proceedings ACM SIGMOD International Conference on Management of
Data, June 1-3, 1999, Philadelphia, Pennsylvania, USA., pages 597–599.
ACM Press, 1999.

[BGTC09] Nikos Bikakis, Nektarios Gioldasis, Chrisa Tsinaraki, and Stavros
Christodoulakis. Semantic Based Access over XML Data. In Proceedings
of the 2nd World Summit on the Knowledge Society: Visioning and En-
gineering the Knowledge Society. A Web Science Perspective, WSKS ’09,
Chania, Crete, Greece, pages 259–267, Berlin, Heidelberg, 2009. Springer-
Verlag.

[BHK+03] Andrey Balmin, Vagelis Hristidis, Nick Koudas, Yannis Papakonstanti-
nou, Divesh Srivastava, and Tianqiu Wang. A System for Keyword Prox-
imity Search on XML Databases. In Johann Christoph Freytag, Peter C.
Lockemann, Serge Abiteboul, Michael J. Carey, Patricia G. Selinger, and
Andreas Heuer, editors, VLDB 2003, Proceedings of 29th International
Conference on Very Large Data Bases, September 9-12, 2003, Berlin,
Germany, pages 1069–1072. Morgan Kaufmann, 2003.

[BKLW99] Susanne Busse, Ralf-Detlef Kutsche, Ulf Leser, and Herbert Weber. Fed-
erated Information Systems: Concepts, Terminology and Architectures.
Technical Report 99-9, Technische Universität Berlin, Fachbereich 13 In-
formatik, 1999.

[BLN86] Carlo Batini, Maurizio Lenzerini, and Shamkant B. Navathe. A Compar-
ative Analysis of Methodologies for Database Schema Integration. ACM
Computer Surveys, 18(4):323–364, 1986.

[BP98] Sergey Brin and Lawrence Page. The anatomy of a large-scale hypertex-
tual Web search engine. Computer Networks / Proceedings of WWW7,
30(1-7):107–117, April 1998.

214

Bibliography

[BRDN10] Akanksha Baid, Ian Rae, AnHai Doan, and Jeffrey F. Naughton. Toward
industrial-strength keyword search systems over relational data. In Feifei
Li, Mirella M. Moro, Shahram Ghandeharizadeh, Jayant R. Haritsa, Ger-
hard Weikum, Michael J. Carey, Fabio Casati, Edward Y. Chang, Ioana
Manolescu, Sharad Mehrotra, Umeshwar Dayal, and Vassilis J. Tsotras,
editors, Proceedings of the 26th International Conference on Data En-
gineering, ICDE 2010, March 1-6, 2010, Long Beach, California, USA,
pages 717–720. IEEE, 2010.

[BRL+10] Akanksha Baid, Ian Rae, Jiexing Li, AnHai Doan, and Jeffrey F.
Naughton. Toward Scalable Keyword Search over Relational Data.
PVLDB, 3(1):140–149, 2010.

[BS05] Chavdar Botev and Jayavel Shanmugasundaram. Context-Sensitive Key-
word Search and Ranking for XML. In AnHai Doan, Frank Neven, Robert
McCann, and Geert Jan Bex, editors, Proceedings of the Eight Interna-
tional Workshop on the Web & Databases (WebDB 2005), Baltimore,
Maryland, USA, Collocated mith ACM SIGMOD/PODS 2005, June 16-
17, 2005, pages 115–120, 2005.

[BSAY04] Chavdar Botev, Jayavel Shanmugasundaram, and Sihem Amer-Yahia. A
TeXQuery-Based XML Full-Text Search Engine. In Gerhard Weikum,
Arnd Christian König, and Stefan Deßloch, editors, Proceedings of
the ACM SIGMOD International Conference on Management of Data,
Paris, France, June 13-18, 2004, pages 943–944. ACM, 2004.

[BvHH+03] Sean Bechhofer, Frank van Harmelen, Jim Hendler, Ian Horrocks, Deb-
orah L. McGuinness, Peter F. Patel-Schneider, and Lynn Andrea Stein.
OWL Web Ontology Language Reference. http://www.w3.org/TR/owl-
ref/, dec 2003.

[BYRN99] Ricardo Baeza-Yates and Berthier Ribeiro-Neto. Modern Information
Retrieval. Addison-Wesley, 1999.

[Cal00] James P. Callan. Distributed Information Retrieval. In W.B. Croft, edi-
tor, Advances in Information Retrieval, chapter 5, pages 127–150. luwer
Academic Publishers, 2000.

[CBC+09] Eric Chu, Akanksha Baid, Xiaoyong Chai, AnHai Doan, and Jeffrey F.
Naughton. Combining keyword search and forms for ad hoc querying of
databases. In Ugur Çetintemel, Stanley B. Zdonik, Donald Kossmann,
and Nesime Tatbul, editors, SIGMOD Conference, pages 349–360. ACM,
2009.

[CC01] James P. Callan and M. Connell. Query-based sampling of text
databases. ACM Trans. Inf. Syst., 19(2):97–130, 2001.

215

Bibliography

[CCD99] James P. Callan, Margaret E. Connell, and Aiqun Du. Automatic Dis-
covery of Language Models for Text Databases. In Alex Delis, Chris-
tos Faloutsos, and Shahram Ghandeharizadeh, editors, SIGMOD 1999,
Proceedings ACM SIGMOD International Conference on Management of
Data, June 1-3, 1999, Philadelphia, Pennsylvania, USA, pages 479–490.
ACM Press, 1999.

[CdSV+02] Pável Calado, Altigran Soares da Silva, Rodrigo C. Vieira, Alberto H. F.
Laender, and Berthier A. Ribeiro-Neto. Searching web databases by
structuring keyword-based queries. In Proceedings of the 2002 ACM
CIKM International Conference on Information and Knowledge Man-
agement, McLean, VA, USA, November 4-9, 2002, pages 26–33. ACM,
2002.

[CEL+02] David Carmel, Nadav Efraty, Gad M. Landau, Yoëlle S. Maarek, and
Yosi Mass. An Extension of the Vector Space Model for Querying XML
Documents via XML Fragements. In ACM SIGIR’2002 Workshop on
XML and IR, Tampere, Finland, 2002.

[CGL+10] Diego Calvanese, Giuseppe De Giacomo, Domenico Lembo, Maurizio
Lenzerini, Riccardo Rosati, and Marco Ruzzi. Using OWL in Data
Integration. In Roberto De Virgilio, Fausto Giunchiglia, and Letizia
Tanca, editors, Semantic Web Information Management, pages 397–424.
Springer, 2010.

[CHL+04] Kevin Chen-Chuan Chang, Bin He, Chengkai Li, Mitesh Patel, and Zhen
Zhang. Structured Databases on the Web: Observations and Implica-
tions. SIGMOD Record, 33(3):61–70, 2004.

[CHS+95] Michael J. Carey, Laura M. Haas, Peter M. Schwarz, Manish Arya,
William F. Cody, Ronald Fagin, Myron Flickner, Allen Luniewski, Wayne
Niblack, Dragutin Petkovic, Joachim Thomas II, John H. Williams, and
Edward L. Wimmers. Towards Heterogeneous Multimedia Information
Systems: The Garlic Approach. In RIDE-DOM, pages 124–131, 1995.

[CHZ05] Kevin Chen-Chuan Chang, Bin He, and Zhen Zhang. Toward Large
Scale Integration: Building a MetaQuerier over Databases on the Web.
In CIDR, pages 44–55, 2005.

[CK02] Taurai Tapiwa Chinenyanga and Nicholas Kushmerick. An expressive
and efficient language for XML information retrieval. JASIST, 53(6):438–
453, 2002.

[CKKS05] Sara Cohen, Yaron Kanza, Benny Kimelfeld, and Yehoshua Sagiv. In-
terconnection semantics for keyword search in XML. In Otthein Herzog,
Hans-Jörg Schek, Norbert Fuhr, Abdur Chowdhury, and Wilfried Teiken,
editors, Proceedings of the 2005 ACM CIKM International Conference on
Information and Knowledge Management, Bremen, Germany, October
31 - November 5, 2005, pages 389–396. ACM, 2005.

216

Bibliography

[CKS01] Sara Cohen, Yaron Kanza, and Yehoshua Sagiv. SQL4X: A Flexible
Query Language for XML and Relational Databases. In Giorgio Ghelli
and Gösta Grahne, editors, Database Programming Languages, 8th Inter-
national Workshop, DBPL 2001, Frascati, Italy, September 8-10, 2001,
Revised Papers, volume 2397 of Lecture Notes in Computer Science, pages
263–280. Springer, 2001.

[CLC95] James P. Callan, Zhihong Lu, and W. Bruce Croft. Searching Distributed
Collections with Inference Networks. In Edward A. Fox, Peter Ingwersen,
and Raya Fidel, editors, SIGIR’95, Proceedings of the 18th Annual In-
ternational ACM SIGIR Conference on Research and Development in
Information Retrieval. Seattle, Washington, USA, July 9-13, 1995 (Spe-
cial Issue of the SIGIR Forum), pages 21–28. ACM Press, 1995.

[CM08] Andrea Calì and Davide Martinenghi. Querying Data under Access Lim-
itations. In Proceedings of the 24th International Conference on Data
Engineering, ICDE 2008, April 7-12, 2008, Cancún, México, pages 50–
59. IEEE, 2008.

[CMKS03] Sara Cohen, Jonathan Mamou, Yaron Kanza, and Yehoshua Sagiv.
XSEarch: A Semantic Search Engine for XML. In Johann Christoph
Freytag, Peter C. Lockemann, Serge Abiteboul, Michael J. Carey, Pa-
tricia G. Selinger, and Andreas Heuer, editors, VLDB 2003, Proceedings
of 29th International Conference on Very Large Data Bases, September
9-12, 2003, Berlin, Germany, pages 45–56. Morgan Kaufmann, 2003.

[CMM+03] David Carmel, Yoëlle S. Maarek, Matan Mandelbrod, Yosi Mass, and Aya
Soffer. Searching XML documents via XML fragments. In SIGIR 2003:
Proceedings of the 26th Annual International ACM SIGIR Conference on
Research and Development in Information Retrieval, July 28 - August 1,
2003, Toronto, Canada, pages 151–158. ACM, 2003.

[Con97] Stefan Conrad. Föderierte Datenbanksysteme: Konzepte der Dateninte-
gration. Springer-Verlag, Berlin/Heidelberg, 1997.

[COZ07] Chee Yong Chan, Beng Chin Ooi, and Aoying Zhou, editors. Proceedings
of the ACM SIGMOD International Conference on Management of Data,
Beijing, China, June 12-14, 2007. ACM, 2007.

[CRS99] Boris Chidlovskii, Claudia Roncancio, and Marie-Luise Schneider. Se-
mantic Cache Mechanism for Heterogeneous Web Querying. Computer
Networks, 31(11-16):1347–1360, 1999.

[CRW05] Surajit Chaudhuri, Raghu Ramakrishnan, and Gerhard Weikum. In-
tegrating DB and IR Technologies: What is the Sound of One Hand
Clapping? In CIDR, pages 1–12, 2005.

[CWLL09] Yi Chen, Wei Wang, Ziyang Liu, and Xuemin Lin. Keyword search on
structured and semi-structured data. In Ugur Çetintemel, Stanley B.

217

Bibliography

Zdonik, Donald Kossmann, and Nesime Tatbul, editors, SIGMOD Con-
ference, pages 1005–1010. ACM, 2009.

[DD99] Ruxandra Domenig and Klaus R. Dittrich. An Overview and Classifica-
tion of Mediated Query Systems. SIGMOD Record, 28(3):63–72, 1999.

[DD00] Ruxandra Domenig and Klaus R. Dittrich. A Query based Approach
for Integrating Heterogeneous Data Sources. In Proceedings of the 2000
ACM CIKM International Conference on Information and Knowledge
Management, McLean, VA, USA, November 6-11, 2000, pages 453–460.
ACM, 2000.

[DD01a] Ruxandra Domenig and Klaus R. Dittrich. Query preprocessing for in-
tegrated search in heterogeneous data sources. In Andreas Heuer, Frank
Leymann, and Denny Priebe, editors, Datenbanksysteme in Büro, Tech-
nik und Wissenschaft (BTW), 9. GI-Fachtagung, Oldenburg, 7.-9. März
2001, Proceedings, Informatik Aktuell, pages 154–163. Springer, 2001.

[DD01b] Ruxandra Domenig and Klaus R. Dittrich. SINGAPORE: A system
for querying heterogeneous data sources. In ICDE 2001, Demo Session
Abstracts (Informal Proceedings), pages 10–11, 2001.

[Dec04] Torsten Declercq. Stichwortsuche in heterogenen, semi-strukturierten
Datenbeständen (in german). Master’s thesis, Otto-von-Guericke-
Universität Magdeburg, January 2004.

[DEGP98a] Shaul Dar, Gadi Entin, Shai Geva, and Eran Palmon. DTL’s DataSpot:
database exploration as easy as browsing the Web. In Proceedings of the
1998 ACM SIGMOD international conference on Management of data,
pages 590–592. ACM Press, 1998.

[DEGP98b] Shaul Dar, Gadi Entin, Shai Geva, and Eran Palmon. DTL’s DataSpot:
Database Exploration Using Plain Language. In Proceedings of the 24rd
International Conference on Very Large Data Bases, pages 645–649. Mor-
gan Kaufmann Publishers Inc., 1998.

[Dew04] Melvil Dewey. Dewey Decimal Classification. Internet, etext„ jun 2004.
http://www.gutenberg.org/etext/12513 (retrieved 2008-07-11).

[DFJ+96] Shaul Dar, Michael J. Franklin, Björn Þór Jónsson, Divesh Srivastava,
and Michael Tan. Semantic Data Caching and Replacement. In T. M.
Vijayaraman, Alejandro P. Buchmann, C. Mohan, and Nandlal L. Sarda,
editors, VLDB’96, Proceedings of 22th International Conference on Very
Large Data Bases, September 3-6, 1996, Mumbai (Bombay), India, pages
330–341. Morgan Kaufmann, 1996.

[DFKR99] Hasan Davulcu, Juliana Freire, Michael Kifer, and I. V. Ramakrishnan. A
Layered Architecture for Querying Dynamic Web Content. In Alex Delis,
Christos Faloutsos, and Shahram Ghandeharizadeh, editors, SIGMOD

218

Bibliography

1999, Proceedings ACM SIGMOD International Conference on Manage-
ment of Data, June 1-3, 1999, Philadelphia, Pennsylvania, USA., pages
491–502. ACM Press, 1999.

[DG97] Oliver M. Duschka and Michael R. Genesereth. Query Planning in Info-
master. In SAC, pages 109–111, 1997.

[DH05] AnHai Doan and Alon Y. Halevy. Semantic integration research in the
database community: A brief survey. AI Magazine, 26(1):83–94, 2005.

[DH07] Xin Dong and Alon Y. Halevy. Indexing dataspaces. In Chee Yong
Chan, Beng Chin Ooi, and Aoying Zhou, editors, Proceedings of the ACM
SIGMOD International Conference on Management of Data, Beijing,
China, June 12-14, 2007, pages 43–54. ACM, 2007.

[DRR+03] Claude Delobel, Chantal Reynaud, Marie-Christine Rousset, Jean-Pierre
Sirot, and Dan Vodislav. Semantic integration in Xyleme: a uniform tree-
based approach. Data & Knowledge Engineering, 44(3):267–298, 2003.

[DZN10] Elena Demidova, Xua Zhou, and Wolfgang Nejdl. IQp: Incremental
Query Construction, a Probabilistic Approach. In Feifei Li, Mirella M.
Moro, Shahram Ghandeharizadeh, Jayant R. Haritsa, Gerhard Weikum,
Michael J. Carey, Fabio Casati, Edward Y. Chang, Ioana Manolescu,
Sharad Mehrotra, Umeshwar Dayal, and Vassilis J. Tsotras, editors,
Proceedings of the 26th International Conference on Data Engineering,
ICDE 2010, March 1-6, 2010, Long Beach, California, USA, pages 349–
352. IEEE, 2010.

[DZZN09] Elena Demidova, Xuan Zhou, Gideon Zenz, and Wolfgang Nejdl. SUITS:
Faceted User Interface for Constructing Structured Queries from Key-
words. In Xiaofang Zhou, Haruo Yokota, Ke Deng, and Qing Liu, edi-
tors, DASFAA, volume 5463 of Lecture Notes in Computer Science, pages
772–775. Springer, 2009.

[EBG+07] Robert Ennals, Eric A. Brewer, Minos N. Garofalakis, Michael Shadle,
and Prashant Gandhi. Intel mash maker: join the web. SIGMOD Record,
36(4):27–33, 2007.

[FAB+02] Irini Fundulaki, Bernd Amann, Catriel Beeri, Michel Scholl, and Anne-
Marie Vercoustre. STYX: Connecting the XML Web to the World of
Semantics. In Christian S. Jensen, Keith G. Jeffery, Jaroslav Pokorný,
Simonas Saltenis, Elisa Bertino, Klemens Böhm, and Matthias Jarke, ed-
itors, Advances in Database Technology - EDBT 2002, 8th International
Conference on Extending Database Technology, Prague, Czech Republic,
March 25-27, Proceedings, volume 2287 of Lecture Notes in Computer
Science, pages 759–761. Springer, 2002.

219

Bibliography

[Feg04] Leonidas Fegaras. XQuery Processing with Relevance Ranking. In
Zohra Bellahsene, Tova Milo, Michael Rys, Dan Suciu, and Rainer Un-
land, editors, Database and XML Technologies, Second International
XML Database Symposium, XSym 2004, Toronto, Canada, August 29-
30, 2004, Proceedings, volume 3186 of Lecture Notes in Computer Sci-
ence, pages 51–65. Springer, 2004.

[FG01] Norbert Fuhr and Kai Großjohann. XIRQL: A Query Language for In-
formation Retrieval in XML Documents. In W. Bruce Croft, David J.
Harper, Donald H. Kraft, and Justin Zobel, editors, SIGIR 2001: Pro-
ceedings of the 24th Annual International ACM SIGIR Conference on Re-
search and Development in Information Retrieval, September 9-13, 2001,
New Orleans, Louisiana, USA, pages 172–180. ACM, 2001.

[FG04] Norbert Fuhr and Kai Großjohann. XIRQL: An XML Query Lan-
guage based on Information Retrieval Concepts. ACM Trans. Inf. Syst.,
22(2):313–356, 2004.

[FHM05] Michael Franklin, Alon Halevy, and David Maier. From Databases to
Dataspaces: A New Abstraction for Information Management. SIGMOD
Record, 34(4):27–33, December 2005.

[FKM00] Daniela Florescu, Donald Kossmann, and Ioana Manolescu. Integrating
Keyword Search into XML Query Processing. In Proceedings of the 9th
international World Wide Web conference on Computer networks : the
international journal of computer and telecommunications netowrking,
Computer Networks, pages 119–135, June 2000.

[FLM99] Marc Friedman, Alon Y. Levy, and Todd D. Millstein. Navigational Plans
for Data Integration. In Proceedings of the IJCAI-99 Workshop on In-
telligent Information Integration, Held on July 31, 1999 in conjunction
with the Sixteenth International Joint Conference on Artificial Intelli-
gence City Conference Center, Stockholm, Sweden, volume 23 of CEUR
Workshop Proceedings, 1999.

[FLN01] Ronald Fagin, Amnon Lotem, and Moni Naor. Optimal Aggregation Al-
gorithms for Middleware. In Proceedings of the Twentieth ACM SIGACT-
SIGMOD-SIGART Symposium on Principles of Database Systems, May
21-23, 2001, Santa Barbara, California, USA, pages 102–113. ACM,
2001.

[Fuh92] Norbert Fuhr. Probabilistic Models in Information Retrieval. Computer
Journal, 35(3):243–255, 1992.

[GBMS99] Cheng Hian Goh, Stéphane Bressan, Stuart E. Madnick, and Michael
Siegel. Context Interchange: New Features and Formalisms for the In-
telligent Integration of Information. ACM Transactions on Information
Systems (TOIS), 17(3):270–293, 1999.

220

Bibliography

[GCGMP97] Luis Gravano, Chen-Chuan K. Chang, Héctor García-Molina, and An-
dreas Paepcke. STARTS: Stanford Proposal for Internet Meta-Searching
(Experience Paper). In J. Peckham, editor, SIGMOD 1997, Proceedings
ACM SIGMOD International Conference on Management of Data, May
13-15, 1997, Tucson, Arizona, USA, pages 207–218. ACM Press, 1997.

[GDSS03] Ingolf Geist, Torsten Declercq, Kai-Uwe Sattler, and Eike Schallehn.
Query Reformulation for Keyword Searching in Mediator Systems. Tech-
nical Report 8, Fakultät für Informatik, Universität Magdeburg, 2003.

[Gei04] Ingolf Geist. Index-based keyword search in mediator systems. In Wolf-
gang Lindner, Marco Mesiti, Can Türker, Yannis Tzitzikas, and Athena
Vakali, editors, Current Trends in Database Technology - EDBT 2004
Workshops, EDBT 2004 Workshops PhD, DataX, PIM, P2P&DB, and
ClustWeb, Heraklion, Crete, Greece, March 14-18, 2004, Revised Selected
Papers, volume 3268 of Lecture Notes in Computer Science, pages 24–33.
Springer, 2004.

[GGM95] Luis Gravano and Hector Garcia-Molina. Generalizing GlOSS to Vector-
Space Databases and Broker Hierarchies. In Umeshwar Dayal, Peter
M. D. Gray, and Shojiro Nishio, editors, VLDB’95, Proceedings of 21th
International Conference on Very Large Data Bases, September 11-15,
1995, Zurich, Switzerland, pages 78–89. Morgan Kaufmann, 1995.

[GGMT94] Luis Gravano, Hector Garcia-Molina, and Anthony Tomasic. The Ef-
fectiveness of GlOSS for the Text Database Discovery Problem. In
Richard T. Snodgrass and Marianne Winslett, editors, Proceedings of
the 1994 ACM SIGMOD International Conference on Management of
Data, Minneapolis, Minnesota, May 24-27, 1994, pages 126–137. ACM
Press, 1994.

[GIG01] Noah Green, Panagiotis G. Ipeirotis, and Luis Gravano. SDLIP +
STARTS = SDARTS a protocol and toolkit for metasearching. In Pro-
ceedings of the first ACM/IEEE-CS joint conference on Digital libraries,
pages 207–214. ACM Press, 2001.

[GMPQ+97] Hector Garcia-Molina, Yannis Papakonstantinou, Dallan Quass, Anand
Rajaraman, Yehoshua Sagiv, Jeffrey D. Ullman, Vasilis Vassalos, and
Jennifer Widom. The TSIMMIS Approach to Mediation: Data Mod-
els and Languages. Journal of Intelligent Information Systems (JIIS),
8(2):117–132, 1997.

[Gru91] Thomas R. Gruber. The Role of Common Ontology in Achieving
Sharable, Reusable Knowledge Bases. In KR, pages 601–602, 1991.

[GSBS03] Lin Guo, Feng Shao, Chavdar Botev, and Jayavel Shanmugasundaram.
XRANK: Ranked Keyword Search over XML Documents. In Alon Y.
Halevy, Zachary G. Ives, and AnHai Doan, editors, Proceedings of the

221

Bibliography

2003 ACM SIGMOD International Conference on Management of Data,
San Diego, California, USA, June 9-12, 2003, pages 16–27. ACM, 2003.

[GSVGM98] Roy Goldman, Narayanan Shivakumar, Suresh Venkatasubramanian,
and Hector Garcia-Molina. Proximity Search in Databases. In Pro-
ceedings of the 24rd International Conference on Very Large Data Bases,
pages 26–37. Morgan Kaufmann Publishers Inc., 1998.

[GSW96] Sha Guo, Wei Sun, and Mark Allen Weiss. On Satisfiability, Equivalence,
and Impication Problems Involving Conjunctive Queries in Database Sys-
tems. IEEE Trans. Knowl. Data Eng., 8(4):604–616, 1996.

[GW97] Roy Goldman and Jennifer Widom. DataGuides: Enabling Query For-
mulation and Optimization in Semistructured Databases. In Matthias
Jarke, Michael J. Carey, Klaus R. Dittrich, Frederick H. Lochovsky, Per-
icles Loucopoulos, and Manfred A. Jeusfeld, editors, VLDB’97, Proceed-
ings of 23rd International Conference on Very Large Data Bases, August
25-29, 1997, Athens, Greece, pages 436–445. Morgan Kaufmann, 1997.

[GW00] Roy Goldman and Jennifer Widom. WSQ/DSQ: A Practical Approach
for Combined Querying of Databases and the Web. In Weidong Chen,
Jeffrey F. Naughton, and Philip A. Bernstein, editors, Proceedings of the
2000 ACM SIGMOD International Conference on Management of Data,
May 16-18, 2000, Dallas, Texas, USA, pages 285–296. ACM, 2000.

[Hal01] Alon Y. Halevy. Answering queries using views: A survey. VLDB Jour-
nal, 10(4):270–294, 2001.

[HBEV04] Peter Haase, Jeen Broekstra, Andreas Eberhart, and Raphael Volz. A
Comparison of RDF Query Languages. In Sheila A. McIlraith, Dim-
itris Plexousakis, and Frank van Harmelen, editors, The Semantic Web -
ISWC 2004: Third International Semantic Web Conference,Hiroshima,
Japan, November 7-11, 2004. Proceedings, volume 3298 of Lecture Notes
in Computer Science, pages 502–517. Springer, 2004.

[HBN+01] Arvind Hulgeri, Gaurav Bhalotia, Charuta Nakhe, Soumen Chakrabarti,
and S. Sudarsha. Keyword Search in Databases. IEEE Data Eng. Bull.,
24(3):22–32, 2001.

[HFM06] Alon Halevy, Michael Franklin, and David Maier. Principles of Dataspace
Systems. In PODS 2006, pages 1–9. ACM, 2006.

[HGP03] Vagelis Hristidis, Luis Gravano, and Yannis Papakonstantinou. Ef-
ficient IR-Style Keyword Search over Relational Databases. In
Johann Christoph Freytag, Peter C. Lockemann, Serge Abiteboul,
Michael J. Carey, Patricia G. Selinger, and Andreas Heuer, editors,
VLDB 2003, Proceedings of 29th International Conference on Very Large
Data Bases, September 9-12, 2003, Berlin, Germany, pages 850–861.
Morgan Kaufmann, 2003.

222

Bibliography

[HHMW07] Theo Härder, Michael Peter Haustein, Christian Mathis, and Markus
Wagner. Node labeling schemes for dynamic XML documents reconsid-
ered. Data & Knowledge Engineering, 60(1):126–149, 2007.

[HKPS06] Vagelis Hristidis, Nick Koudas, Yannis Papakonstantinou, and Divesh
Srivastava. Keyword Proximity Search in XML Trees. IEEE Trans.
Knowl. Data Eng., 18(4):525–539, 2006.

[HKWY97] Laura M. Haas, Donald Kossmann, Edward L. Wimmers, and Jun Yang.
Optimizing Queries Across Diverse Data Sources. In Matthias Jarke,
Michael J. Carey, Klaus R. Dittrich, Frederick H. Lochovsky, Pericles
Loucopoulos, and Manfred A. Jeusfeld, editors, VLDB’97, Proceedings
of 23rd International Conference on Very Large Data Bases, August 25-
29, 1997, Athens, Greece, pages 276–285. Morgan Kaufmann, 1997.

[HM09a] Thomas Hornung and Wolfgang May. Deep Web Queries in a Semantic
Web Environment. In Business Information Systems Workshops, BIS
2009 International Workshops, Pozan, Poland, April 27-29, 2009, Re-
vised Papers, volume 37 of Lecture Notes in Business Information Pro-
cessing, pages 39–50. Springer, 2009.

[HM09b] Thomas Hornung and Wolfgang May. Semantic Annotations and Query-
ing of Web Data Sources. In OTM Conferences (1), volume 5870 of
Lecture Notes in Computer Science, pages 112–129. Springer, 2009.

[HML09] Thomas Hornung, Wolfgang May, and Georg Laussen. Process Algebra-
Based Query Workflows. In Advanced Information Systems Engineering,
21st International Conference, CAiSE 2009, Amsterdam, The Nether-
lands, June, 8-12, 2009, Proceedings, volume 5565 of Lecture Notes in
Computer Science, pages 440–454. Springer, 2009.

[HMYW03] Hai He, Weiyi Meng, Clement T. Yu, and Zonghuan Wu. WISE-
Integrator: An Automatic Integrator of Web Search Interfaces for E-
Commerce. In Johann Christoph Freytag, Peter C. Lockemann, Serge
Abiteboul, Michael J. Carey, Patricia G. Selinger, and Andreas Heuer,
editors, VLDB 2003, Proceedings of 29th International Conference on
Very Large Data Bases, September 9-12, 2003, Berlin, Germany, pages
357–368. Morgan Kaufmann, 2003.

[HMYW05] Hai He, Weiyi Meng, Clement T. Yu, and Zonghuan Wu. WISE-
Integrator: A System for Extracting and Integrating Complex Web
Search Interfaces of the Deep Web. In Klemens Böhm, Christian S.
Jensen, Laura M. Haas, Martin L. Kersten, Per-Åke Larson, and
Beng Chin Ooi, editors, Proceedings of the 31st International Conference
on Very Large Data Bases, Trondheim, Norway, August 30 - September
2, 2005, pages 1314–1317. ACM, 2005.

[HN02] Arvind Hulgeri and Charuta Nakhe. Keyword Searching and Browsing
in Databases using BANKS. In Proceedings of the 18th International

223

Bibliography

Conference on Data Engineering (ICDE’02), page 431. IEEE Computer
Society, 2002.

[Höp05] Hagen Höpfner. Relevanz von Änderungen für Datenbestände mobiler
Clients. PhD thesis, Otto-von-Guericke-Universität Magdeburg, Magde-
burg, 2005.

[HP02] Vagelis Hristidis and Yannis Papakonstantinou. Discover: Keyword
Search in Relational Databases. In VLDB’2002, pages 670–681. VLDB
Endowment, 2002.

[HP04] Vagelis Hristidis and Yannis Papakonstantinou. Algorithms and applica-
tions for answering ranked queries using ranked views. VLDB Journal,
13(1):49–70, 2004.

[HPB03] Vagelis Hristidis, Yannis Papakonstantinou, and Andrey Balmin. Key-
word Proximity Search on XML Graphs. In 19th International Confer-
ence on Data Engineering,March 05 - 08, 2003, Bangalore, India, pages
367–378. IEEE Computer Society, 2003.

[HRO06] Alon Halevy, Anand Rajaraman, and Joann Ordille. Data integration:
the teenage years. In VLDB ’06: Proceedings of the 32nd international
conference on Very large data bases, pages 9–16. VLDB Endowment,
2006.

[Hul97] Richard Hull. Managing Semantic Heterogeneity in Databases: A The-
oretical Perspective. In Proceedings of the Sixteenth ACM SIGACT-
SIGMOD-SIGART Symposium on Principles of Database Systems, May
12-14, 1997, Tucson, Arizona, pages 51–61. ACM Press, 1997.

[HWYY07] Hao He, Haixun Wang, Jun Yang, and Philip S. Yu. BLINKS: Ranked
Keyword Searches on Graphs. In Chan et al. [COZ07], pages 305–316.

[IBG02] Panagiotis G. Ipeirotis, Tom Barry, and Luis Gravano. Extending
SDARTS: extracting metadata from web databases and interfacing with
the open archives initiative. In Proceedings of the second ACM/IEEE-CS
joint conference on Digital libraries, pages 162–170. ACM Press, 2002.

[IG02] P.G. Ipeirotis and L. Gravano. Distributed Search over the Hidden Web:
Hierarchical Database Sampling and Selection. In VLDB 2002, pages
394–405, 2002.

[IKNG09] Milena Ivanova, Martin L. Kersten, Niels J. Nes, and Romulo Goncalves.
An Architecture for Recycling Intermediates in a Column-Store. In Ugur
Çetintemel, Stanley B. Zdonik, Donald Kossmann, and Nesime Tatbul,
editors, Proceedings of the ACM SIGMOD International Conference on
Management of Data, SIGMOD 2009, Providence, Rhode Island, USA,
June 29 - July 2, 2009, pages 309–320. ACM, 2009.

224

Bibliography

[IKNG10] Milena Ivanova, Martin L. Kersten, Niels J. Nes, and Romulo Goncalves.
An Architecture for Recycling Intermediates in a Column-Store. ACM
Trans. Database Syst., 35(4):24, 2010.

[Inm96] W. H. Inmon. The Data Warehouse and Data Mining. Communications
of the ACM (CACM), 39(11):49–50, 1996.

[JBB+97] Roberto J. Bayardo Jr., William Bohrer, Richard S. Brice, Andrzej Ci-
chocki, Jerry Fowler, Abdelsalam Helal, Vipul Kashyap, Tomasz Ksiezyk,
Gale Martin, Marian H. Nodine, Mosfeq Rashid, Marek Rusinkiewicz,
Ray Shea, C. Unnikrishnan, Amy Unruh, and Darrell Woelk. InfoSleuth:
Semantic Integration of Information in Open and Dynamic Environments
(Experience Paper). In Joan Peckham, editor, SIGMOD 1997, Proceed-
ings ACM SIGMOD International Conference on Management of Data,
May 13-15, 1997, Tucson, Arizona, USA., pages 195–206. ACM Press,
1997.

[JCE+07] H. V. Jagadish, Adriane Chapman, Aaron Elkiss, Magesh Jayapandian,
Yunyao Li, Arnab Nandi, and Cong Yu. Making database systems usable.
In Chan et al. [COZ07], pages 13–24.

[Kar03] Marcel Karnstedt. Semantisches Caching in ontologiebasierten Medi-
atoren. Master’s thesis, Martin-Luther-Universität Halle-Wittenberg,
Fachbereich Mathematik und Informatik,Institut für Informatik,
D–06120 HALLE (Saale), October 2003.

[KB96] Arthur M. Keller and Julie Basu. A Predicate-based Caching Scheme for
Client-Server Database Architectures. VLDB J., 5(1):35–47, 1996.

[Ken91] William Kent. Solving Domain Mismatch and Schema Mismatch Prob-
lems with an Object-Oriented Database Programming Language. In
Guy M. Lohman, Amílcar Sernadas, and Rafael Camps, editors, 17th In-
ternational Conference on Very Large Data Bases, September 3-6, 1991,
Barcelona, Catalonia, Spain, Proceedings., pages 147–160. Morgan Kauf-
mann, 1991.

[KLK91] Ravi Krishnamurthy, Witold Litwin, and William Kent. Language Fea-
tures for Interoperability of Databases with Schematic Discrepancies. In
James Clifford and Roger King, editors, Proceedings of the 1991 ACM
SIGMOD International Conference on Management of Data, Denver,
Colorado, May 29-31, 1991., pages 40–49. ACM Press, 1991.

[KLW95] Michael Kifer, Georg Lausen, and James Wu. Logical Foundations of
Object-Oriented and Frame-Based Languages. Journal of the ACM,
42(4):741–843, 1995.

[KMA+01] Craig A. Knoblock, Steven Minton, José Luis Ambite, Naveen Ashish,
Ion Muslea, Andrew Philpot, and Sheila Tejada. The Ariadne Approach

225

Bibliography

to Web-Based Information Integration. Int. J. Cooperative Inf. Syst.,
10(1-2):145–169, 2001.

[KNS02] Yaron Kanza, Werner Nutt, and Yehoshua Sagiv. Querying Incomplete
Information in Semistructured Data. J. Comput. Syst. Sci., 64(3):655–
693, 2002.

[Kos00] Donald Kossmann. The state of the art in distributed query processing.
ACM Comput. Surv., 32(4):422–469, 2000.

[KPC+05] Varun Kacholia, Shashank Pandit, Soumen Chakrabarti, S. Sudarshan,
Rushi Desai, and Hrishikesh Karambelkar. Bidirectional Expansion
For Keyword Search on Graph Databases. In Klemens Böhm, Chris-
tian S. Jensen, Laura M. Haas, Martin L. Kersten, Per-Åke Larson, and
Beng Chin Ooi, editors, VLDB, pages 505–516. ACM, 2005.

[KS91] Won Kim and Jungyun Seo. Classifying Schematic and Data Hetero-
geneity in Multidatabase Systems. IEEE Computer, 24(12):12–18, 1991.

[KS00] Donald Kossmann and Konrad Stocker. Iterative dynamic programming:
a new class of query optimization algorithms. ACM Trans. Database
Syst., 25(1):43–82, 2000.

[KS01] Yaron Kanza and Yehoshua Sagiv. Flexible Queries Over Semistructured
Data. In Proceedings of the Twentieth ACM SIGACT-SIGMOD-SIGART
Symposium on Principles of Database Systems, May 21-23, 2001, Santa
Barbara, California, USA. ACM, 2001.

[KSGH03] Marcel Karnstedt, Kai-Uwe Sattler, Ingolf Geist, and Hagen Höpfner. Se-
mantic Caching in Ontology-based Mediator Systems. In Robert Tolks-
dorf and Rainer Eckstein, editors, Berliner XML Tage 2003, 13.-15. Ok-
tober 2003 in Berlin, pages 155–169. XML-Clearinghouse, 2003.

[Lan08] Andreas Langegger. Virtual data integration on the web: novel methods
for accessing heterogeneous and distributed data with rich semantics. In
Proceedings of the 10th International Conference on Information Integra-
tion and Web-based Applications & Services, iiWAS ’08, pages 559–562,
New York, NY, USA, 2008. ACM.

[LC99] Dongwon Lee and Wesley W. Chu. Semantic Caching via Query Matching
for Web Sources. In Proceedings of the 1999 ACM CIKM International
Conference on Information and Knowledge Management, Kansas City,
Missouri, USA, November 2-6, 1999, pages 77–85. ACM, 1999.

[LC01] Dongwon Lee and Wesley W. Chu. Towards Intelligent Semantic Caching
for Web Sources. J. Intell. Inf. Syst., 17(1):23–45, 2001.

[LCY+07] Yunyao Li, Ishan Chaudhuri, Huahai Yang, Satinder Singh, and H. V.
Jagadish. DaNaLIX: a domain-adaptive natural language interface for

226

Bibliography

querying XML. In Chee Yong Chan, Beng Chin Ooi, and Aoying Zhou,
editors, Proceedings of the ACM SIGMOD International Conference on
Management of Data, Beijing, China, June 12-14, 2007, pages 1165–
1168. ACM, 2007.

[Len02] Maurizio Lenzerini. Data Integration: A Theoretical Perspective. In
Lucian Popa, editor, Proceedings of the Twenty-first ACM SIGACT-
SIGMOD-SIGART Symposium on Principles of Database Systems, June
3-5, Madison, Wisconsin, USA, pages 233–246. ACM, 2002.

[Lev66] Vladimir Levenshtein. Binary codes of correcting deletions, insertions,
and reversals. Soviet Physics - Doklady 10, 10:707 – 710, 1966.

[LF04] Patrick Lehti and Peter Fankhauser. XML Data Integration with OWL:
Experiences and Challenges. In 2004 Symposium on Applications and
the Internet (SAINT 2004), 26-30 January 2004, Tokyo, Japan, pages
160–170. IEEE Computer Society, 2004.

[LFO+11] Guoliang Li, Jianhua Feng, Beng Chin Ooi, Jianyong Wang, and Lizhu
Zhou. An effective 3-in-1 keyword search method over heterogeneous
data sources. Inf. Syst., 36(2):248–266, 2011.

[LFZ08] Guoliang Li, Jianhua Feng, and Lizhu Zhou. Retune: Retrieving and
Materializing Tuple Units for Effective Keyword Search over Relational
Databases. In Qing Li, Stefano Spaccapietra, Eric S. K. Yu, and Antoni
Olivé, editors, ER, volume 5231 of Lecture Notes in Computer Science,
pages 469–483. Springer, 2008.

[LFZW11] Guoliang Li, Jianhua Feng, Xiaofang Zhou, and Jianyong Wang. Provid-
ing built-in keyword search capabilities in RDBMS. VLDB J., 20(1):1–19,
2011.

[LGM01] Bertram Ludäscher, Amarnath Gupta, and Maryann E. Martone. Model-
Based Mediation with Domain Maps. In Proceedings of the 17th Inter-
national Conference on Data Engineering, April 2-6, 2001, Heidelberg,
Germany, pages 81–90. IEEE Computer Society, 2001.

[LLWZ07] Yi Luo, Xuemin Lin, Wei Wang, and Xiaofang Zhou. Spark: top-k
keyword query in relational databases. In Chan et al. [COZ07], pages
115–126.

[LLY+05] Fang Liu, Shuang Liu, Clement T. Yu, Weiyi Meng, Ophir Frieder, and
David A. Grossman. Database selection in intranet mediators for natural
language queries. In Otthein Herzog, Hans-Jörg Schek, Norbert Fuhr,
Abdur Chowdhury, and Wilfried Teiken, editors, Proceedings of the 2005
ACM CIKM International Conference on Information and Knowledge
Management, Bremen, Germany, October 31 - November 5, 2005, pages
229–230. ACM, 2005.

227

Bibliography

[LMM07] Xian Li, Weiyi Meng, and Xiaofeng Meng. EasyQuerier: A Keyword
Based Interface for Web Database Integration System. In Kotagiri Ra-
mamohanarao, P. Radha Krishna, Mukesh K. Mohania, and Ekawit Nan-
tajeewarawat, editors, Advances in Databases: Concepts, Systems and
Applications, 12th International Conference on Database Systems for
Advanced Applications, DASFAA 2007, Bangkok, Thailand, April 9-12,
2007, Proceedings, volume 4443 of Lecture Notes in Computer Science,
pages 936–942. Springer, 2007.

[LMSS95] Alon Y. Levy, Alberto O. Mendelzon, Yehoshua Sagiv, and Divesh Srivas-
tava. Answering Queries Using Views. In Proceedings of the Fourteenth
ACM SIGACT-SIGMOD-SIGART Symposium on Principles of Database
Systems, May 22-25, 1995, San Jose, California, pages 95–104. ACM
Press, 1995.

[LN01] Qiong Luo and Jeffrey F. Naughton. Form-Based Proxy Caching for
Database-Backed Web Sites. In Peter M. G. Apers, Paolo Atzeni, Ste-
fano Ceri, Stefano Paraboschi, Kotagiri Ramamohanarao, and Richard T.
Snodgrass, editors, VLDB 2001, Proceedings of 27th International Con-
ference on Very Large Data Bases, September 11-14, 2001, Roma, Italy,
pages 191–200. Morgan Kaufmann, 2001.

[LOF+08] Guoliang Li, Beng Chin Ooi, Jianhua Feng, Jianyong Wang, and Lizhu
Zhou. EASE: an effective 3-in-1 keyword search method for unstructured,
semi-structured and structured data. In Wang [Wan08], pages 903–914.

[LRO96] Alon Y. Levy, Anand Rajaraman, and Joann J. Ordille. Querying Het-
erogeneous Information Sources Using Source Descriptions. In T. M. Vi-
jayaraman, Alejandro P. Buchmann, C. Mohan, and Nandlal L. Sarda,
editors, VLDB’96, Proceedings of 22th International Conference on Very
Large Data Bases, September 3-6, 1996, Mumbai (Bombay), India, pages
251–262. Morgan Kaufmann, 1996.

[LSS96] Laks V. S. Lakshmanan, Fereidoon Sadri, and Iyer N. Subramanian.
SchemaSQL - A Language for Interoperability in Relational Multi-
Database Systems. In T. M. Vijayaraman, Alejandro P. Buchmann,
C. Mohan, and Nandlal L. Sarda, editors, VLDB’96, Proceedings of
22th International Conference on Very Large Data Bases, September 3-
6, 1996, Mumbai (Bombay), India, pages 239–250. Morgan Kaufmann,
1996.

[Luo06] Gang Luo. Efficient Detection of Empty-Result Queries. In Umeshwar
Dayal, Kyu-Young Whang, David B. Lomet, Gustavo Alonso, Guy M.
Lohman, Martin L. Kersten, Sang Kyun Cha, and Young-Kuk Kim, ed-
itors, Proceedings of the 32nd International Conference on Very Large
Data Bases, Seoul, Korea, September 12-15, 2006, pages 1015–1025.
ACM, 2006.

228

Bibliography

[Luo09] Yi Luo. SPARK: A Keyword Search System on Relational Databases.
PhD thesis, The School of Computer Science and Engineering, The Uni-
versity of New South Wales., 2009.

[LWB08] Andreas Langegger, Wolfram Wöß, and Martin Blöchl. A Semantic Web
Middleware for Virtual Data Integration on the Web. In Sean Bechhofer,
Manfred Hauswirth, Jörg Hoffmann, and Manolis Koubarakis, editors,
The Semantic Web: Research and Applications, volume 5021 of Lecture
Notes in Computer Science, pages 493–507. Springer Berlin / Heidelberg,
2008.

[LYJ04] Yunyao Li, Cong Yu, and H. V. Jagadish. Schema-Free XQuery.
In Mario A. Nascimento, M. Tamer Özsu, Donald Kossmann,
Renée J. Miller, José A. Blakeley, and K. Bernhard Schiefer, editors,
(e)Proceedings of the Thirtieth International Conference on Very Large
Data Bases, Toronto, Canada, August 31 - September 3 2004, pages 72–
83. Morgan Kaufmann, 2004.

[LYJ07] Yunyao Li, Huahai Yang, and H. V. Jagadish. NaLIX: A generic natural
language search environment for XML data. ACM Trans. Database Syst.,
32(4), 2007.

[LYJ08] Yunyao Li, Cong Yu, and H. V. Jagadish. Enabling Schema-Free XQuery
with meaningful query focus. VLDB J., accepted for publication:355–377,
2008.

[LYMC06] Fang Liu, Clement T. Yu, Weiyi Meng, and Abdur Chowdhury. Ef-
fective keyword search in relational databases. In Surajit Chaudhuri,
Vagelis Hristidis, and Neoklis Polyzotis, editors, Proceedings of the ACM
SIGMOD International Conference on Management of Data, Chicago,
Illinois, USA, June 27-29, 2006, pages 563–574. ACM, 2006.

[May05] Wolfgang May. Logic-based XML data integration: a semi-materialized
approach. Jornal of Applied Logic, 3(1):271–307, 2005.

[MBG04] Amélie Marian, Nicolas Bruno, and Luis Gravano. Evaluating top-
k queries over web-accessible databases. ACM Trans. Database Syst.,
29(2):319–362, 2004.

[MBHW02] Holger Meyer, Ilvio Bruder, Andreas Heuer, and Gunnar Weber. The
Xircus Search Engine. In Norbert Fuhr, Norbert Gövert, Gabriella Kazai,
and Mounia Lalmas, editors, Proceedings of the First Workshop of the
INitiative for the Evaluation of XML Retrieval (INEX), Schloss Dagstuhl,
Germany, December 9-11, 2002, pages 119–124, 2002.

[MP00] Kevin D. Munroe and Yannis Papakonstantinou. BBQ: A Visual Inter-
face for Integrated Browsing and Querying of XML. In Hiroshi Arisawa
and Tiziana Catarci, editors, Advances in Visual Information Manage-
ment, proceedings of the Fifth Working Conference on Visual Database

229

Bibliography

Systems (VDB5), Fukuoka, Japan, May 10-12, 2000, volume 168 of IFIP
Conference Proceedings, pages 277–296. Kluwer, 2000.

[MS02] Jim Melton and Alan R. Simon. SQL 1999. Morgan Kaufmann Publish-
ers, 2002.

[MV00] Ute Masermann and Gottfried Vossen. Design and Implementation of
a Novel Approach to Keyword Searching in Relational Databases. In
Julius Stuller, Jaroslav Pokorný, Bernhard Thalheim, and Yoshifumi Ma-
sunaga, editors, Current Issues in Databases and Information Systems,
East-European Conference on Advances in Databases and Information
Systems Held Jointly with International Conference on Database Sys-
tems for Advanced Applications, ADBIS-DASFAA 2000, Prague, Czech
Republic, September 5-8, 2000, Proceedings, volume 1884 of Lecture Notes
in Computer Science, pages 171–184. Springer, 2000.

[MYL02] Weiyi Meng, Clement T. Yu, and King-Lup Liu. Building efficient and ef-
fective metasearch engines. ACM Computing Surveys, 34(1):48–89, 2002.

[MYP09] Alexander Markowetz, Yin Yang, and Dimitris Papadias. Keyword
Search over Relational Tables and Streams. ACM Trans. Database Syst.,
34(3):17:1–17:51, 2009.

[NLF99] Felix Naumann, Ulf Leser, and Johann Christoph Freytag. Quality-
driven Integration of Heterogenous Information Systems. In Malcolm P.
Atkinson, Maria E. Orlowska, Patrick Valduriez, Stanley B. Zdonik, and
Michael L. Brodie, editors, VLDB’99, Proceedings of 25th International
Conference on Very Large Data Bases, September 7-10, 1999, Edinburgh,
Scotland, UK, pages 447–458. Morgan Kaufmann, 1999.

[Noy04] Natasha F. Noy. Semantic integration: a survey of ontology-based ap-
proaches. ACM Sigmod Record, 33(4):65–70, 2004.

[OOP+04] Patrick E. O’Neil, Elizabeth J. O’Neil, Shankar Pal, Istvan Cseri, Gideon
Schaller, and Nigel Westbury. ORDPATHs: Insert-Friendly XML Node
Labels. In Gerhard Weikum, Arnd Christian König, and Stefan Deßloch,
editors, Proceedings of the ACM SIGMOD International Conference on
Management of Data, Paris, France, June 13-18, 2004, pages 903–908.
ACM, 2004.

[ÖV11] M. Tamer Özsu and Patrick Valduriez. Principles of Distributed Database
Systems. Springer, New York Dordrecht Heidelberg London, 3rd edition,
2011.

[PBMW98] Lawrence Page, Sergey Brin, Rajeev Motwani, and Terry Winograd. The
PageRank Citation Ranking: Bringing Order to the Web. Technical re-
port, Computer Science Department, Stanford University, January 1998.

230

Bibliography

[PgL11] Jaehui Park and Sang goo Lee. Keyword search in relational databases.
Knowl. Inf. Syst., 26(2):175–193, 2011.

[PGMW95] Yannis Papakonstantinou, Hector Garcia-Molina, and Jennifer Widom.
Object Exchange Across Heterogeneous Information Sources. In Philip S.
Yu and Arbee L. P. Chen, editors, Proceedings of the Eleventh Interna-
tional Conference on Data Engineering, March 6-10, 1995, Taipei, Tai-
wan, pages 251–260. IEEE Computer Society, 1995.

[PH01] Rachel Pottinger and Alon Y. Halevy. MiniCon: A scalable algorithm for
answering queries using views. VLDB Journal, 10(2-3):182–198, 2001.

[Ple81] Jan Plesnik. A bound for the Steiner tree problem in graphs. Math.
Slovaca, (31):155–163, 1981.

[QYC09] Lu Qin, Jeffrey Xu Yu, and Lijun Chang. Keyword search in databases:
the power of RDBMS. In Ugur Çetintemel, Stanley B. Zdonik, Donald
Kossmann, and Nesime Tatbul, editors, Proceedings of the ACM SIG-
MOD International Conference on Management of Data, SIGMOD 2009,
Providence, Rhode Island, USA, June 29 - July 2, 2009, pages 681–694.
ACM, 2009.

[QYC11] Lu Qin, Jeffrey Xu Yu, and Lijun Chang. Scalable keyword search on
large data streams. VLDB J., 20(1):35–57, 2011.

[RB01] Erhard Rahm and Philip A. Bernstein. A survey of approaches to auto-
matic schema matching. The VLDB Journal The International Journal
on Very Large Data Bases, 10(4):334 – 350, dec 2001.

[RR99] Sudha Ram and V. Ramesh. Schema Integration: Past, Present, and
Future. In A. K. Elmagarmid, A. Sheth, and M. Rusinkiewicz, editors,
Management of Heterogeneous and Autonomous Database Systems, pages
119 – 155. Morgan Kaufmann Publishers, San Francisco, CA, 1999.

[SAC+79] P. Griffiths Selinger, M. M. Astrahan, D. D. Chamberlin, R. A. Lorie, and
T. G. Price. Access path selection in a relational database management
system. In Proceedings of the 1979 ACM SIGMOD international con-
ference on Management of data, SIGMOD ’79, pages 23–34, New York,
NY, USA, 1979. ACM.

[SBJ+01] M. Saelee, Steven M. Beitzel, Eric C. Jensen, David A. Grossman, and
Ophir Frieder. Intranet Mediators: A Prototype. In 2001 International
Symposium on Information Technology (ITCC 2001), 2-4 April 2001,
Las Vegas, NV, USA, pages 389–394. IEEE Computer Society, 2001.

[SC03] Luo Si and Jamie Callan. Relevant document distribution estimation
method for resource selection. In Proceedings of the 26th annual inter-
national ACM SIGIR conference on Research and development in infor-
maion retrieval, pages 298–305. ACM Press, 2003.

231

Bibliography

[SCH+97] Munindar P. Singh, Philip Cannata, Michael N. Huhns, Nigel Jacobs,
Tomasz Ksiezyk, KayLiang Ong, Amit P. Sheth, Christine Tomlinson,
and Darrell Woelk. The Carnot Heterogeneous Database Project: Imple-
mented Applications. Distributed and Parallel Databases, 5(2):207–225,
1997.

[Sch98] Ingo Schmitt. Schemaintegration für den Entwurf Föderierter Daten-
banken, volume 43 of Dissertationen zu Datenbanken und Information-
ssystemen. infix-Verlag, Sankt Augustin, 1998.

[Sch02] Torsten Schlieder. Schema-Driven Evaluation of Approximate Tree-
Pattern Queries. In Christian S. Jensen, Keith G. Jeffery, Jaroslav
Pokorný, Simonas Saltenis, Elisa Bertino, Klemens Böhm, and Matthias
Jarke, editors, Advances in Database Technology - EDBT 2002, 8th Inter-
national Conference on Extending Database Technology, Prague, Czech
Republic, March 25-27, Proceedings, volume 2287 of Lecture Notes in
Computer Science, pages 514–532. Springer, 2002.

[Sch04] Eike Schallehn. Efficient Similarity-based Operations for Data Integra-
tion. PhD thesis, Fakultät für Informatik, Universität Magdeburg, mar
2004.

[SCS03] Kai-Uwe Sattler, Stefan Conrad, and Gunter Saake. Interactive example-
driven integration and reconciliation for accessing database federations.
Inf. Syst., 28(5):393–414, 2003.

[SDK+07] Marcos Antonio Vaz Salles, Jens-Peter Dittrich, Shant Kirakos
Karakashian, Olivier René Girard, and Lukas Blunschi. iTrails: Pay-
as-you-go Information Integration in Dataspaces. In Christoph Koch,
Johannes Gehrke, Minos N. Garofalakis, Divesh Srivastava, Karl Aberer,
Anand Deshpande, Daniela Florescu, Chee Yong Chan, Venkatesh Ganti,
Carl-Christian Kanne, Wolfgang Klas, and Erich J. Neuhold, editors,
Proceedings of the 33rd International Conference on Very Large Data
Bases, University of Vienna, Austria, September 23-27, 2007, pages 663–
674. ACM, 2007.

[Sel88a] Timos K. Sellis. Intelligent caching and indexing techniques for relational
database systems. Inf. Syst., 13(2):175–185, 1988.

[Sel88b] Timos K. Sellis. Multiple-query optimization. ACM Trans. Database
Syst., 13:23–52, March 1988.

[Sem05] Semantic web. http://www.w3.org/2001/sw/, jul 2005.

[SGB+07] Feng Shao, Lin Guo, Chavdar Botev, Anand Bhaskar, Muthiah
M. Muthiah Chettiar, Fan Yang, and Jayavel Shanmugasundaram. Ef-
ficient Keyword Search over Virtual XML Views. In Christoph Koch,
Johannes Gehrke, Minos N. Garofalakis, Divesh Srivastava, Karl Aberer,
Anand Deshpande, Daniela Florescu, Chee Yong Chan, Venkatesh Ganti,

232

Bibliography

Carl-Christian Kanne, Wolfgang Klas, and Erich J. Neuhold, editors,
Proceedings of the 33rd International Conference on Very Large Data
Bases, University of Vienna, Austria, September 23-27, 2007, pages
1057–1068. ACM, 2007.

[SGHS03] Kai-Uwe Sattler, Ingolf Geist, Rainer Habrecht, and Eike Schallehn.
Konzeptbasierte Anfrageverarbeitung in Mediatorsystemen. In Gerhard
Weikum, Harald Schöning, and Erhard Rahm, editors, BTW 2003,
Datenbanksysteme für Business, Technologie und Web, Tagungsband der
10. BTW-Konferenz, 26.-28. Februar 2003, Leipzig, volume 26 of LNI,
pages 78–97. GI, 2003.

[SGS04] Eike Schallehn, Ingolf Geist, and Kai-Uwe Sattler. Supporting Simi-
larity Operations Based on Approximate String Matching on the Web.
In Robert Meersman and Zahir Tari, editors, CoopIS/DOA/ODBASE
(1), volume 3290 of Lecture Notes in Computer Science, pages 227–244.
Springer, 2004.

[SGS05] Kai-Uwe Sattler, Ingolf Geist, and Eike Schallehn. Concept-based query-
ing in mediator systems. The VLDB Journal, 14(1):97–111, 2005.

[SH07] Felipe Victolla Silveira and Carlos A. Heuser. A Two Layered Approach
for Querying Integrated XML Sources. In Proceedings of the 11th Inter-
national Database Engineering and Applications Symposium, pages 3–11,
Washington, DC, USA, 2007. IEEE Computer Society.

[She99] Amit Sheth. Changing Focus on Interoperability in Information Systems:
From System, Syntax, Structure to Semantics. In M. F. Goodchild, M. J.
Egenhofer, R. Fegeas, and C. A. Kottman, editors, Interoperating Geo-
graphic Information Systems, pages 5 – 30. Academic Publishers, 1999.

[SHK05] Stefan Seltzsam, Roland Holzhauser, and Alfons Kemper. Semantic
Caching for Web Services. In Boualem Benatallah, Fabio Casati, and
Paolo Traverso, editors, Service-Oriented Computing - ICSOC 2005,
Third International Conference, Amsterdam, The Netherlands, Decem-
ber 12-15, 2005, Proceedings, volume 3826 of Lecture Notes in Computer
Science, pages 324–340. Springer, 2005.

[Sin01] Amit Singhal. Modern Information Retrieval: A Brief Overview. IEEE
Data Eng. Bull., 24(4):35–43, 2001.

[SL90] Amit P. Sheth and James A. Larson. Federated Database Systems
for Managing Distributed, Heterogeneous, and Autonomous Databases.
ACM Computing Surveys, 22(3):183–236, 1990.

[SLDG07] Mayssam Sayyadian, Hieu LeKhac, AnHai Doan, and Luis Gravano. Ef-
ficient Keyword Search Across Heterogeneous Relational Databases. In
Proceedings of the 23rd International Conference on Data Engineering,

233

Bibliography

ICDE 2007, April 15-20, 2007, The Marmara Hotel, Istanbul, Turkey,
pages 346–355. IEEE, 2007.

[SM83] G. Salton and M.J. McGill. An Introduction to Modern Information
Retrieval. McGraw-Hill, 1983.

[SPD92] Stefano Spaccapietra, Christine Parent, and Yann Dupont. Model In-
dependent Assertions for Integration of Heterogeneous Schemas. The
VLDB Journal, 1(1):81–126, 1992.

[SSH05] Gunter Saake, Kai-Uwe Sattler, and Andreas Heuer. Datenbanken: Im-
plementierungstechniken. mitp-Verlag, Bonn, 2nd edition, 2005.

[SSV96] Peter Scheuermann, Junho Shim, and Radek Vingralek. WATCHMAN
: A Data Warehouse Intelligent Cache Manager. In T. M. Vijayara-
man, Alejandro P. Buchmann, C. Mohan, and Nandlal L. Sarda, editors,
VLDB’96, Proceedings of 22th International Conference on Very Large
Data Bases, September 3-6, 1996, Mumbai (Bombay), India, pages 51–
62. Morgan Kaufmann, 1996.

[STW01] Sergej Sizov, Anja Theobald, and Gerhard Weikum. Ähnlichkeitssuche
auf XML-Daten. Datenbank-Spektrum, 1:59–67, 2001.

[SW03] Qi Su and Jennifer Widom. Indexing Relational Database
Content Offline for Efficient Keyword-Based Search. Techni-
cal report, Stanford University, Database Group, February 2003.
http://dbpubs.stanford.edu/pub/2003-13.

[SW05] Qi Su and Jennifer Widom. Indexing Relational Database Content Offline
for Efficient Keyword-Based Search. In Proceedings of the Ninth Interna-
tional Database Engineering and Applications Symposium (IDEAS ’05),
jul 2005.

[TL08] Sandeep Tata and Guy M. Lohman. SQAK: doing more with keywords.
In Wang [Wan08], pages 889–902.

[TRV98] Anthony Tomasic, Louiqa Raschid, and Patrick Valduriez. Scaling Access
to Heterogeneous Data Sources with DISCO. IEEE Transactions on
Knowledge and Data Engineering, 10(5):808–823, 1998.

[TS05] Andrew Trotman and Börkur Sigurbjörnsson. NEXI, Now and Next.
In Norbert Fuhr, Mounia Lalmas, Saadia Malik, and Zoltán Szlávik,
editors, Advances in XML Information Retrieval, Third International
Workshop of the Initiative for the Evaluation of XML Retrieval, INEX
2004, Dagstuhl Castle, Germany, December 6-8, 2004, Revised Selected
Papers, volume 3493 of Lecture Notes in Computer Science, pages 41–53.
Springer, 2005.

234

Bibliography

[TW01] Anja Theobald and Gerhard Weikum. Adding Relevance to XML. In
Dan Suciu and Gottfried Vossen, editors, The World Wide Web and
Databases, Third International Workshop WebDB 2000, Dallas, Texas,
USA, Maaay 18-19, 2000, Selected Papers, volume 1997 of Lecture Notes
in Computer Science, pages 105–124. Springer, 2001.

[TW02a] Anja Theobald and Gerhard Weikum. The Index-Based XXL Search
Engine for Querying XML Data with Relevance Ranking. In Chris-
tian S. Jensen, Keith G. Jeffery, Jaroslav Pokorný, Simonas Saltenis,
Elisa Bertino, Klemens Böhm, and Matthias Jarke, editors, Advances
in Database Technology - EDBT 2002, 8th International Conference on
Extending Database Technology, Prague, Czech Republic, March 25-27,
Proceedings, volume 2287 of Lecture Notes in Computer Science, pages
477–495. Springer, 2002.

[TW02b] Anja Theobald and Gerhard Weikum. The XXL search engine: ranked
retrieval of XML data using indexes and ontologies. In Michael J.
Franklin, Bongki Moon, and Anastassia Ailamaki, editors, Proceedings
of the 2002 ACM SIGMOD International Conference on Management of
Data, Madison, Wisconsin, June 3-6, 2002, page 615. ACM, 2002.

[Ull90] Jeffrey D. Ullman. Principles of Database and Knowledge-Base Systems:
Volume II: The New Technologies. W. H. Freeman & Co., 1990.

[Ull97] Jeffrey D. Ullman. Information Integration Using Logical Views. In
Foto N. Afrati and Phokion G. Kolaitis, editors, Database Theory - ICDT
’97, 6th International Conference, Delphi, Greece, January 8-10, 1997,
Proceedings, volume 1186 of Lecture Notes in Computer Science, pages
19–40. Springer, 1997.

[VCdS+02] Rodrigo C. Vieira, Pável Calado, Altigran Soares da Silva, Alberto
H. F. Laender, and Berthier A. Ribeiro-Neto. Structuring keyword-based
queries for web databases. In ACM/IEEE Joint Conference on Digital
Libraries, JCDL 2002, Portland, Oregon, USA, June 14-18, 2002, Pro-
ceedings, pages 94–95. ACM, 2002.

[Vit85] Jeffrey S. Vitter. Random sampling with a reservoir. ACM Trans. Math.
Softw., 11(1):37–57, 1985.

[VOPT08] Quang Hieu Vu, Beng Chin Ooi, Dimitris Papadias, and Anthony
K. H. Tung. A graph method for keyword-based selection of the top-
K databases. In Jason Tsong-Li Wang, editor, Proceedings of the ACM
SIGMOD International Conference on Management of Data, SIGMOD
2008, Vancouver, BC, Canada, June 10-12, 2008, pages 915–926. ACM,
2008.

[WA10] Fan Wang and Gagan Agrawal. Query Reuse Based Query Planning
for Searches over the Deep Web. In Pablo Garcia Bringas, Abdelkader

235

Bibliography

Hameurlain, and Gerald Quirchmayr, editors, Database and Expert Sys-
tems Applications, 21th International Conference, DEXA 2010, Bilbao,
Spain, August 30 - September 3, 2010, Proceedings, Part II, volume 6262
of Lecture Notes in Computer Science, pages 64–79. Springer, 2010.

[WAJ08] Fan Wang, Gagan Agrawal, and Ruoming Jin. Query Planning for
Searching Inter-dependent Deep-Web Databases. In Bertram Ludäscher
and Nikos Mamoulis, editors, Scientific and Statistical Database Manage-
ment, 20th International Conference, SSDBM 2008, Hong Kong, China,
July 9-11, 2008, Proceedings, volume 5069 of Lecture Notes in Computer
Science, pages 24–41. Springer, 2008.

[Wan08] Jason Tsong-Li Wang, editor. Proceedings of the ACM SIGMOD Interna-
tional Conference on Management of Data, SIGMOD 2008, Vancouver,
BC, Canada, June 10-12, 2008. ACM, 2008.

[Wie92] Gio Wiederhold. Mediators in the Architecture of Future Information
Systems. IEEE Computer, 25(3):38–49, 1992.

[Wie93] Gio Wiederhold. Intelligent Integration of Information. In Peter Bune-
man and Sushil Jajodia, editors, Proceedings of the 1993 ACM SIGMOD
International Conference on Management of Data, Washington, D.C.,
May 26-28, 1993., pages 434–437. ACM Press, 1993.

[WVV+01] H. Wache, T. Vögele, U. Visser, H. Stuckenschmidt, G. Schuster, H. Neu-
mann, and S. Hübner. Ontology-Based Integration of Information – A
Survey of Existing Approaches. In Proceedings of the IJCAI-01 Workshop
on Ontologies and Information Sharing, Seattle, USA, 2001.

[WZP+07] Shan Wang, Jun Zhang, Zhaohui Peng, Jiang Zhan, and Qiuyue Wang.
Study on Efficiency and Effectiveness of KSORD. In Guozhu Dong,
Xuemin Lin, Wei Wang, Yun Yang, and Jeffrey Xu Yu, editors, AP-
Web/WAIM, volume 4505 of Lecture Notes in Computer Science, pages
6–17. Springer, 2007.

[XIG09] Yanwei Xu, Yoshiharu Ishikawa, and Jihong Guan. Effective Top-k Key-
word Search in Relational Databases Considering Query Semantics. In
Lei Chen, Chengfei Liu, Xiao Zhang, Shan Wang, Darijus Strasunskas,
Stein L. Tomassen, Jinghai Rao, Wen-Syan Li, K. Selçuk Candan, Dick-
son K. W. Chiu, Yi Zhuang, Clarence A. Ellis, and Kwang-Hoon Kim, ed-
itors, APWeb/WAIM Workshops, volume 5731 of Lecture Notes in Com-
puter Science, pages 172–184. Springer, 2009.

[XP05] Yu Xu and Yannis Papakonstantinou. Efficient Keyword Search for
Smallest LCAs in XML Databases. In Fatma Özcan, editor, Proceed-
ings of the ACM SIGMOD International Conference on Management
of Data, Baltimore, Maryland, USA, June 14-16, 2005, pages 537–538.
ACM, 2005.

236

Bibliography

[XP08] Yu Xu and Yannis Papakonstantinou. Efficient LCA based keyword
search in XML data. In Alfons Kemper, Patrick Valduriez, Noureddine
Mouaddib, Jens Teubner, Mokrane Bouzeghoub, Volker Markl, Laurent
Amsaleg, and Ioana Manolescu, editors, EDBT 2008, 11th International
Conference on Extending Database Technology, Nantes, France, March
25-29, 2008, Proceedings, volume 261 of ACM International Conference
Proceeding Series, pages 535–546. ACM, 2008.

[xpa07] XML Path Language (XPath) 2.0. http://www.w3.org/TR/xpath20/,
January 2007. W3C Recommendation.

[YJ06] Cong Yu and H. V. Jagadish. Schema Summarization. In Umeshwar
Dayal, Kyu-Young Whang, David B. Lomet, Gustavo Alonso, Guy M.
Lohman, Martin L. Kersten, Sang Kyun Cha, and Young-Kuk Kim, ed-
itors, Proceedings of the 32nd International Conference on Very Large
Data Bases, Seoul, Korea, September 12-15, 2006, pages 319–330. ACM,
2006.

[YJ07] Cong Yu and H. V. Jagadish. Querying Complex Structured Databases.
In Christoph Koch, Johannes Gehrke, Minos N. Garofalakis, Divesh Sri-
vastava, Karl Aberer, Anand Deshpande, Daniela Florescu, Chee Yong
Chan, Venkatesh Ganti, Carl-Christian Kanne, Wolfgang Klas, and
Erich J. Neuhold, editors, Proceedings of the 33rd International Confer-
ence on Very Large Data Bases, University of Vienna, Austria, Septem-
ber 23-27, 2007, pages 1010–1021. ACM, 2007.

[YLST07] Bei Yu, Guoliang Li, Karen R. Sollins, and Anthony K. H. Tung. Effective
keyword-based selection of relational databases. In Chan et al. [COZ07],
pages 139–150.

[YQC10] Jeffrey Xu Yu, Lu Qin, and Lijun Chang. Keyword Search in Databases.
Number Lecture 1 in Synthesis Lectures on Data Management. Morgan
and Claypool Publishers, 2010. ISBN: 160845195X.

[ZHC05] Zhen Zhang, Bin He, and Kevin Chen-Chuan Chang. Light-weight
Domain-based Form Assistant: Querying Web Databases On the Fly.
In Klemens Böhm, Christian S. Jensen, Laura M. Haas, Martin L. Ker-
sten, Per-Åke Larson, and Beng Chin Ooi, editors, Proceedings of the
31st International Conference on Very Large Data Bases, Trondheim,
Norway, August 30 - September 2, 2005, pages 97–108. ACM, 2005.

[Zlo75] Moshé M. Zloof. Query-by-Example: the Invocation and Definition of
Tables and Forms. In Douglas S. Kerr, editor, Proceedings of the Inter-
national Conference on Very Large Data Bases, September 22-24, 1975,
Framingham, Massachusetts, USA, pages 1–24. ACM, 1975.

[ZM98] Justin Zobel and Alistair Moffat. Exploring the Similarity Space. SIGIR
Forum, 32(1):18–34, 1998.

237

Bibliography

[ZMR98] Justin Zobel, Alistair Moffat, and Kotagiri Ramamohanarao. Inverted
files versus signature files for text indexing. ACM Trans. Database Syst.,
23(4):453–490, 1998.

[ZZDN08] Xuan Zhou, Gideon Zenz, Elena Demidova, and Wolfgang Nejdl. SUITS:
Constructing Structured Queries from Keywords. Technical report,
Forschungszentrum L3S, Universität Hannover, March 2008.

238

A. Data and Query Sets

A.1. Data Set

A.1.1. Concept schema IMDB

Shoots

Movie

Action

Adventure

Adult

Animation

Comedy

Crime

Documentary

Drama

Fantasy

Family

Film−Noir

Horror

Musical

Mystery

Romance

Sci−Fi

Short

Thriller

War

Western

MoviePlot

MovieReference

Follow

Remake

Feature

Spoof

Reference

VersionOf

ReferencedMovieId

ReferencingMovieId

Id Year

Title

Information

Type

MovieId

Plot
MovieId PersonId

PositionInMovie

Character

FemaleCharacter

MaleCharacter

Director

Producer

Cinematographer

Writer

Editor

CharacterName

Person

Type

Type

NameId

Biography

DateOfBirth

DateOfDeath

Otherworks

RealName

Trivia

concept

property

category

property

isA

R
e
fe

re
n
ce

d
B

y

R
e
fe

re
n
ce

s

HasPlot

Provides

Writes

Produces

Edits

Directs

Plays

Figure A.1.: IMDB concept schema

239

A. Data and Query Sets

A.2. Query Sets

A.2.1. Queries Cost Estimation

Query Set 1
No. Query

0 Person[Dateofbirth∼="posen"]
1 Person[Name∼="maida"]
2 Person[Name∼="melonie"]
3 Person[Name∼="essen"]
4 Person[Name∼="kadri"]
5 Person[Name∼="tirado"]
6 Person[Name∼="istvánné"]
7 Person[Name∼="reimann"]
8 Person[Name∼="bonneau"]
9 Person[Name∼="sobrino"]

Query set 2
No. Query

0 Person[Dateofbirth∼="paraná"]
1 Person[Name∼="harmon"]
2 Person[Name∼="izumi"]
3 Person[Dateofbirth∼="malmö"]
4 Person[Name∼="jenni"]
5 Person[Name∼="platt"]
6 Person[Name∼="draper"]
7 Person[Name∼="matej"]
8 Person[Name∼="barnaby"]
9 Person[Name∼="staley"]

Query set 3
No. Query

0 Person[Realname∼="wayne"]
1 Person[Otherworks∼="sony"]
2 Person[Otherworks∼="mamet"]
3 Person[Dateofbirth∼="norfolk"]
4 Person[Name∼="gonzalo"]
5 Person[Otherworks∼="beautiful"]
6 Person[Name∼="french"]
7 Person[Name∼="gemma"]
8 Person[Name∼="griffiths"]
9 Person[Otherworks∼="jake"]

240

A.2. Query Sets

Query set 4
No. Query

0 Person[Name∼="cornell" ∧ Name∼="dupree"]
1 Person[Otherworks∼="flying" ∧ Otherworks∼="market"]
2 Person[Otherworks∼="delight" ∧ Otherworks∼="visual"]
3 Person[Biography∼="belonged" ∧ Biography∼="bite"]
4 Person[Biography∼="elaine" ∧ Biography∼="logo"]
5 Person[Name∼="farias" ∧ Name∼="henrique"]
6 Person[Dateofbirth∼="salvador" ∧ Realname∼="milton"]
7 Person[Name∼="galindo" ∧ Name∼="ofelia"]
8 Person[Dateofbirth∼="boulder" ∧ Dateofdeath∼="seattle"]
9 Person[Dateofbirth∼="arlington" ∧ Biography∼="paint"]

Query set 5
No. Query

0 Person[Dateofbirth∼="manila" ∧ Biography∼="parade"]
1 Person[Realname∼="jacob" ∧ Realname∼="samuel"]
2 Person[Biography∼="exotic" ∧ Biography∼="remarkable"]
3 Person[Name∼="engel" ∧ Name∼="lilly"]
4 Person[Name∼="ginger" ∧ Name∼="mickey"]
5 Person[Otherworks∼="burger" ∧ Otherworks∼="joel"]
6 Person[Otherworks∼="development" ∧ Otherworks∼="devil"]
7 Person[Biography∼="employment" ∧ Biography∼="landmark"]
8 Person[Name∼="katrina" ∧ Otherworks∼="round"]
9 Person[Otherworks∼="edinburgh" ∧ Otherworks∼="private"]

Query set 6
No. Query

0 Person[Name∼="ervin"] ⊳⊲ CharacterInMovie
1 Person[Dateofbirth∼="asturias"] ⊳⊲ CharacterInMovie
2 Person[Name∼="ivanova"] ⊳⊲ CharacterInMovie
3 Person[Name∼="ramiro"] ⊳⊲ CharacterInMovie
4 Person[Name∼="maas"] ⊳⊲ CharacterInMovie
5 Person[Name∼="marla"] ⊳⊲ CharacterInMovie
6 Person[Name∼="suzette"] ⊳⊲ CharacterInMovie
7 Person[Name∼="mckinley"] ⊳⊲ CharacterInMovie
8 Person[Name∼="matías"] ⊳⊲ CharacterInMovie
9 Person[Name∼="solange"] ⊳⊲ CharacterInMovie

241

A. Data and Query Sets

Query set 7
No. Query

0 Person[Otherworks∼="forum] ⊳⊲ CharacterInMovie
1 Person[Name∼="moran] ⊳⊲ CharacterInMovie
2 Person[Name∼="kemp] ⊳⊲ CharacterInMovie
3 Person[Name∼="bauer] ⊳⊲ CharacterInMovie
4 Person[Name∼="edna] ⊳⊲ CharacterInMovie
5 Person[Name∼="maxine] ⊳⊲ CharacterInMovie
6 Person[Name∼="kaufman] ⊳⊲ CharacterInMovie
7 Person[Name∼="myriam] ⊳⊲ CharacterInMovie
8 Person[Name∼="hines] ⊳⊲ CharacterInMovie
9 Person[Name∼="artur] ⊳⊲ CharacterInMovie

Query set 8
No. Query

0 Person[Name∼="barbro"] ⊳⊲ CharacterInMovie ⊳⊲ Movie
1 Person[Name∼="bradshaw"] ⊳⊲ CharacterInMovie ⊳⊲ Movie
2 Person[Name∼="mckee"] ⊳⊲ CharacterInMovie ⊳⊲ Movie
3 Person[Name∼="silas"] ⊳⊲ CharacterInMovie ⊳⊲ Movie
4 Person[Name∼="rachelle"] ⊳⊲ CharacterInMovie ⊳⊲ Movie
5 Person[Otherworks∼="breath"] ⊳⊲ CharacterInMovie ⊳⊲ Movie
6 Person[Name∼="hilliard"] ⊳⊲ CharacterInMovie ⊳⊲ Movie
7 Person[Name∼="redd"] ⊳⊲ CharacterInMovie ⊳⊲ Movie
8 Person[Name∼="jeannine"] ⊳⊲ CharacterInMovie ⊳⊲ Movie
9 Person[Name∼="millard"] ⊳⊲ CharacterInMovie ⊳⊲ Movie

Query set 9
No. Query

0 Person[Name∼="irena"] ⊳⊲ CharacterInMovie ⊳⊲ Movie
1 Person[Name∼="mohammed] ⊳⊲ CharacterInMovie ⊳⊲ Movie
2 Person[Name∼="davenport"] ⊳⊲ CharacterInMovie ⊳⊲ Movie
3 Person[Name∼="susana"] ⊳⊲ CharacterInMovie ⊳⊲ Movie
4 Person[Biography∼="dangerous"] ⊳⊲ CharacterInMovie ⊳⊲ Movie
5 Person[Name∼="celeste"] ⊳⊲ CharacterInMovie ⊳⊲ Movie
6 Person[Name∼="paco"] ⊳⊲ CharacterInMovie ⊳⊲ Movie
7 Person[Name∼="fabrizio"] ⊳⊲ CharacterInMovie ⊳⊲ Movie
8 Person[Name∼="cliff"] ⊳⊲ CharacterInMovie ⊳⊲ Movie
9 Person[Name∼="orlando"] ⊳⊲ CharacterInMovie ⊳⊲ Movie

242

A.2. Query Sets

A.2.2. Enumeration Test Queries

No. Query set 2

1 joão,chef/catering
2 prossimo,burgemeester/verteller
3 targout,peiia
4 liberal-left-anarchist,s.burroughs
5 corke,agawa
6 aragon,filmmakers
7 jayenge,burgemeester/verteller
8 captain,borisa
9 five-million,telos
10 gradsko,zaoua

No. Query set 3

1 exodos,vierikko,couch
2 gradsko,liberal-left-anarchist,domnu
3 verbis,long-forgotten,pig/barnyard
4 saivanidou,moretto,gurralaite
5 testimonios,apogo,matron
6 coppala,deusto,five-million
7 tillbaka,couch,dualitat
8 castalar,sparcy,appartement
9 sanjiro,liberia,giordano
10 jelizawieta,joão,burbank

No. Query set 4

1 preminchu,disturbassero,exodos,prossimo
2 five-million,cooksen,agawa,seducive
3 aragon,apogo,lepotica,power
4 sparcy,onwura,zlotowas,vezére
5 juanico,misa,effet,liberal-left-anarchist
6 s.burroughs,cooksen,deusto,ancica
7 domnu,grédy,exodos,joão
8 targout,ancica,telos,long-forgotten
9 heat,verbis,long-forgotten,telos
10 s.burroughs,evacuated,castalar,gurralaite

243

A. Data and Query Sets

No. Query set 5

1 castalar,stazione,cnnmoney.com,pushkin,apogo
2 cnnmoney.com,tillbaka,s.burroughs,lepotica,preminchu
3 matron,aragon,modeler,domnu,degan/christian
4 domnu,vierikko,zaoua,telos,joão
5 s.burroughs,liberal-left-anarchist,testimonios,vierikko,tregaye
6 giordano,coppala,seducive,effet,control
7 heat,verbis,long-forgotten,deony,juanico
8 s.burroughs,exodos,souiken,telos,modeler
9 moretto,burbank,control,jelizawieta,twardowska
10 peiia,cutthroat,rivière,sambayanan,apogo

A.2.3. Query execution experiment

Following table shows the queries for the execution experiments. The column “Query”
contains the queries. The Column KWOcc illustrates the keyword occurrences,
maxTF represents the maximum DF value, avgDF is the average DF value for every
keyword in the corresponding query.

Query KWOcc maxTF avgDF

coogee, willfull 3, 3 3, 2 2, 1.3
gobbi, galets 8, 5 22, 4 4.1, 1.6
basha, plaid 10, 17 22, 35 6.2, 8.2

nazarieh, atre, booye 1, 3, 2 1, 3, 1 1, 1.7, 1
iben, blinkende, lygter 8, 5, 5 23, 5, 5 6.9, 2.2, 2.2
rennt, suitcases, tulse 11, 13, 12 7, 30, 41 2.1, 7.6, 10.5

authorize, belosnezhka, nayavu,
polyoty 3,4,2,2 7,4,1,1 3.3,3,1,1
gorham, tavis, victrola,
norval 12,8,6,9 32,16,3,37 11,8.8,2.2,12.6
aloud, ashanti, longoria,
waterford 13,16,12,11 35,19,29,27 8.7,5.3,8.7,12.1

244

A.2. Query Sets

A.2.4. Top-k query sets

No. Query set 2

0 büttner, unternehmen
1 naroda, georgije
2 vaara, yrjö
3 ejército, morelia
4 insectos, cobo
5 doraemon, daibôken
6 olsenbanden, banden
7 nakedness, advertised
8 rybka, wolski
9 vendicatori, bitto

No. Query set 3

0 flyday, freleng, friz
1 bocho, monteverde, tamaulipas
2 arrieta, joffe, besito
3 koulussa, finne, jalmari
4 nannies, callison, barcroft
5 conditioned, selzer, bullfighting
6 rikos, kaurismäki, favour
7 kogyaru, hippu, momojiri
8 copia, gervasio, traverso
9 titu, miodrag, kragujevac

No. Query set 4

0 sizemore, hyams, idolizing, flyboys
1 kamikakushi, hayao, additions, ghibli
2 stuey, advancement, copywriter, strategies
3 hoboes, beaudine, canoga, 215
4 dangan, wakayama, auteurs, dangan
5 perfekt, balk, dials, fairuza
6 família, britto, muniz, brandão
8 streghe, bolognini, pistoia, alphonsine

A.2.5. Concept-based query experiment

Query Set 2

(person:Name:kochan), (person:Realname:kochan)
(person:Name:diler), (position:character:neslisah)
(person:Name:ioannidou), (Drama:title:hristougenna)
(position:character:bõrkabátos), (position:character:görög)
(Drama:title:radovi), (person:Name:zelimir)
(Drama:title:khyana), (person:Name:khalil)
(Short:title:korridorerna), (person:Dateofbirth:västerås)
(Comedy:title:abbuzze), (person:Name:willaert)
(Short:title:owana), (person:Name:horsley)
(Drama:title:fukushû), (Drama:title:chûshingura)
(person:Dateofbirth:ceará), (person:Dateofbirth:iguatu)
(person:Name:pilpani), (position:character:jamlet)
(person:Name:lemken), (Short:title:pokalfieber)
(Adult:title:buraco), (person:Dateofbirth:poá)
(Romance:title:transo), (person:Name:noya)

245

A. Data and Query Sets

Query Set 3

(person:Name:relangi), (person:Name:venkatramaiah),
(person:Dateofbirth:andhra)

(person:Name:gamlet), (person:Name:khani),
(position:character:afandi)
(person:Name:irjala), (person:Name:pentti),
(Romance:title:järjestää)

(Romance:title:hanawa), (person:Name:junzo),
(person:Name:sone)

(Short:title:giorti), (person:Name:spyropoulou),
(person:Name:yanna)

(Drama:title:heiya), (person:Name:yasushi),
(person:Dateofbirth:asahikawa)

(Comedy:title:ekhay), (person:Name:dyomin),
(person:Realname:dyomin)

(Documentary:title:légendes), (person:Name:helmich),
(person:Name:naaijkens)

(Drama:title:studer), (Crime:title:kriminalassistent),
(Drama:title:wachtmeister)

(person:Name:nováková), (person:Dateofbirth:slavicín),
(person:Biography:famu)

(person:Name:lizzi), (person:Otherworks:agoura),
(position:character:newsroom)

(person:Name:resino), (person:Dateofbirth:velada),
(Short:title:diván)

(Drama:title:absurdistan), (person:Name:allahyari),
(person:Name:houchang)

(Short:title:présentation), (person:Name:guillemot),
(person:Realname:perche)

(Short:title:sintonía), (person:Name:goenaga),
(person:Dateofbirth:donostia)

246

A.2. Query Sets

Query Set 4

(person:Name:ighodaro), (person:Name:osas),
(person:Otherworks:collard), (person:Otherworks:platanos)

(person:Name:vrienten), (person:Dateofbirth:hilvarenbeek),
(person:Biography:diminishing), (position:character:bioscoop)

(person:Dateofbirth:duluth), (person:Biography:baez),
(person:Biography:blowin), (Thriller:title:catchfire)

(Drama:title:variola), (person:Name:goran),
(person:Biography:financially), (person:Biography:followup)

(Documentary:title:katei), (person:Name:tichenor),
(person:Otherworks:blankets), (person:Otherworks:cinetel)

(Drama:title:rosada), (person:Biography:courtly),
(person:Biography:eyesight), (person:Biography:kodama)

(Comedy:title:vami), (person:Name:yekelchik),
(person:Realname:izrailevich), (person:Realname:yekelchik)

(Short:title:nukes), (person:Biography:downers),
(person:Otherworks:deadender), (person:Otherworks:excessive)

(Drama:title:aigles), (History:title:agonie),
(History:title:aigles), (Drama:title:agonie)

(person:Otherworks:blakely), (person:Otherworks:cusack),
(person:Otherworks:filumena), (person:Otherworks:gurnett)

(person:Biography:74th), (person:Biography:750),
(person:Biography:admired), (position:character:mosby)

(person:Name:shulman), (person:Otherworks:newsletter),
(person:Otherworks:publishes), (Short:title:overcoming)

(Short:title:lechu), (person:Name:khrzhanovskiy),
(person:Realname:khrzhanovskiy), (person:Realname:yurevich)

(Drama:title:takhti), (person:Name:hassandoost),
(person:Biography:hassandoost), (person:Biography:hatami)

(Comedy:title:guardiamarinas), (person:Name:masó),
(person:Realname:masó), (person:Realname:paulet)

247

A. Data and Query Sets

A.2.6. Effectivness Experiment Results

Person[Trivia ∼= "gyllenhaal", Trivia ∼= "ledger"]

Person[Trivia ∼= "gyllenhaal", Biography ∼= "ledger"]

Person[Biography ∼= "gyllenhaal", Trivia ∼= "ledger"]

Person[Biography ∼= "gyllenhaal", Biography ∼= "ledger"]

Person[Trivia ∼= "gyllenhaal", Name ∼= "ledger"]

Person[Name ∼= "gyllenhaal", Trivia ∼= "ledger"]

Person[Name ∼= "gyllenhaal", Biography ∼= "ledger"]

Person[Realname ∼= "gyllenhaal", Trivia ∼= "ledger"]

Person[Realname ∼= "gyllenhaal", Biography ∼= "ledger"]

Person[Trivia ∼= "gyllenhaal", Realname ∼= "ledger"]

Movie[Title ∼= "ledger"] ⊳⊲ CharacterInMovie ⊳⊲ Person[Trivia ∼= "gyllenhaal"]

MoviePlot[Plot ∼= "ledger"] ⊳⊲ Movie ⊳⊲ CharacterInMovie ⊳⊲

Person[Trivia ∼= "gyllenhaal"]

Person[Trivia ∼= "ledger"] ⊳⊲ CharacterInMovie ⊳⊲ Movie[Title ∼= "gyllenhaal"]

Person[Trivia ∼= "ledger"] ⊳⊲ CharacterInMovie⊳⊲ Movie⊳⊲ WriterInMovie ⊳⊲

Person[Trivia ∼= "gyllenhaal"]

Person[Trivia ∼= "ledger"]⊳⊲ WriterInMovie ⊳⊲ Movie⊳⊲ CharacterInMovie ⊳⊲

Person[Trivia ∼= "gyllenhaal"]

Figure A.2.: Result of query “gyllenhall ledger”

248

A.2. Query Sets

Person[Trivia ∼= "gyllenhaal", Trivia ∼= "ledger"]

Person[Trivia ∼= "gyllenhaal", Biography ∼= "ledger"]

Person[Biography ∼= "gyllenhaal", Trivia ∼= "ledger"]

Person[Biography ∼= "gyllenhaal", Biography ∼= "ledger"]

Person[Trivia ∼= "gyllenhaal", Name ∼= "ledger"]

Person[Name ∼= "gyllenhaal", Trivia ∼= "ledger"]

Person[Name ∼= "gyllenhaal", Biography ∼= "ledger"]

Person[Realname ∼= "gyllenhaal", Trivia ∼= "ledger"]

Person[Trivia ∼= "gyllenhaal", Realname ∼= "ledger"]

Person[Realname ∼= "gyllenhaal", Biography ∼= "ledger"]

Person[Trivia ∼= "ledger"] ⊳⊲ WriterInMovie ⊳⊲ Movie ⊳⊲

CharacterInMovie⊳⊲ Person[Trivia ∼= "gyllenhaal"]

Person[Trivia ∼= "ledger"] ⊳⊲ CharacterInMovie ⊳⊲ Movie ⊳⊲

WriterInMovie ⊳⊲ Person[Trivia ∼= "gyllenhaal"]

Person[Trivia ∼= "ledger"] ⊳⊲ CharacterInMovie ⊳⊲ Movie ⊳⊲

CharacterInMovie ⊳⊲ Person[Trivia ∼= "gyllenhaal"]

Person[Trivia ∼= "ledger"] ⊳⊲ CharacterInMovie ⊳⊲ Movie ⊳⊲

ProducerInMovie ⊳⊲ Person[Trivia ∼= "gyllenhaal"]

Person[Trivia ∼= "ledger"] ⊳⊲ CharacterInMovie ⊳⊲ Movie ⊳⊲

DirectorInMovie ⊳⊲ Person[Trivia ∼= "gyllenhaal"]

Figure A.3.: Result of query “(person::ledger), (person::gyllenhaal)”

Person[Name ∼= "ledger"] ⊳⊲ CharacterInMovie ⊳⊲Movie ⊳⊲

CharacterInMovie ⊳⊲ Person[Name ∼= "gyllenhaal"]

Person[Name ∼= "ledger"] ⊳⊲ CharacterInMovie ⊳⊲Movie ⊳⊲

CharacterInMovie ⊳⊲ Person[Realname ∼= "gyllenhaal"]

Person[Realname ∼= "ledger"] ⊳⊲ CharacterInMovie ⊳⊲ Movie ⊳⊲

CharacterInMovie ⊳⊲ Person[Name ∼= "gyllenhaal"]

Person[Realname ∼= "ledger"] ⊳⊲ CharacterInMovie ⊳⊲ Movie ⊳⊲

CharacterInMovie⊳⊲ Person[Realname ∼= "gyllenhaal"]

Figure A.4.: Result of query “(:name:ledger),(:name:gyllenhaal)”

249

A. Data and Query Sets

Person[Name ∼= "ledger"] ⊳⊲ CharacterInMovie ⊳⊲Movie ⊳⊲

CharacterInMovie ⊳⊲ Person[Name ∼= "gyllenhaal"]

Person[Name ∼= "ledger"] ⊳⊲ CharacterInMovie ⊳⊲Movie ⊳⊲

CharacterInMovie ⊳⊲ Person[Realname ∼= "gyllenhaal"]

Person[Realname ∼= "ledger"] ⊳⊲ CharacterInMovie ⊳⊲ Movie ⊳⊲

CharacterInMovie ⊳⊲ Person[Name ∼= "gyllenhaal"]

Person[Realname ∼= "ledger"] ⊳⊲ CharacterInMovie ⊳⊲ Movie ⊳⊲

CharacterInMovie⊳⊲ Person[Realname ∼= "gyllenhaal"]

Figure A.5.: Result of query “(person:name:ledger), (person:name:gyllenhaal)”

Movie[Title ∼= "trek"] ⊳⊲ ProducerInMovie ⊳⊲ Person[Name ∼= "stewart"]

Movie[Title ∼= "trek"] ⊳⊲ CharacterInMovie ⊳⊲ Person[Name ∼= "stewart"]

Movie[Title ∼= "trek"] ⊳⊲ ProducerInMovie ⊳⊲ Person[Realname ∼= "stewart"]

Movie[Title ∼= "trek"] ⊳⊲ CharacterInMovie ⊳⊲ Person[Realname ∼= "stewart"]

Movie[Title ∼= "trek"] ⊳⊲ MovieReference ⊳⊲ Movie ⊳⊲

CharacterInMovie ⊳⊲ Person[Name ∼= "stewart"]

Movie[Title ∼= "trek"] ⊳⊲ MovieReference ⊳⊲ Movie ⊳⊲

CharacterInMovie ⊳⊲ Person[Name ∼= "stewart"]

Movie[Title ∼= "trek"] ⊳⊲ MovieReference ⊳⊲ Movie ⊳⊲

ProducerInMovie ⊳⊲ Person[Name ∼= "stewart"]

Movie[Title ∼= "trek"] ⊳⊲ MovieReference ⊳⊲ Movie ⊳⊲

ProducerInMovie ⊳⊲ Person[Name ∼= "stewart"]

Movie[Title ∼= "trek"] ⊳⊲ MovieReference ⊳⊲ Movie ⊳⊲

ProducerInMovie ⊳⊲ Person[Realname ∼= "stewart"]

Movie[Title ∼= "trek"] ⊳⊲ MovieReference ⊳⊲ Movie ⊳⊲

ProducerInMovie ⊳⊲ Person[Realname ∼= "stewart"]

Movie[Title ∼= "trek"] ⊳⊲ MovieReference ⊳⊲ Movie ⊳⊲

CharacterInMovie ⊳⊲ Person[Realname ∼= "stewart"]

Movie[Title ∼= "trek"] ⊳⊲ MovieReference ⊳⊲ Movie ⊳⊲

WriterInMovie ⊳⊲ Person[Realname ∼= "stewart"]

Movie[Title ∼= "trek"] ⊳⊲ MovieReference ⊳⊲ Movie ⊳⊲

CharacterInMovie ⊳⊲ Person[Realname ∼= "stewart"]

Figure A.6.: Result of query “(sci-fi:title:trek), (person:name:stewart)”

250

A.2. Query Sets

Movie[Title ∼= "trek"] ⊳⊲ ProducerInMovie ⊳⊲ Person[Name ∼= "stewart"]

Movie[Title ∼= "trek"] ⊳⊲ CharacterInMovie ⊳⊲ Person[Name ∼= "stewart"]

Movie[Title ∼= "trek"] ⊳⊲ ProducerInMovie ⊳⊲ Person[Realname ∼= "stewart"]

Movie[Title ∼= "trek"] ⊳⊲ CharacterInMovie ⊳⊲ Person[Realname ∼= "stewart"]

Movie[Title ∼= "trek"] ⊳⊲ MovieReference ⊳⊲ Movie ⊳⊲

CharacterInMovie ⊳⊲ Person[Name ∼= "stewart"]

Movie[Title ∼= "trek"] ⊳⊲ MovieReference ⊳⊲ Movie ⊳⊲

CharacterInMovie ⊳⊲ Person[Name ∼= "stewart"]

Movie[Title ∼= "trek"] ⊳⊲ MovieReference ⊳⊲ Movie ⊳⊲

ProducerInMovie ⊳⊲ Person[Name ∼= "stewart"]

Movie[Title ∼= "trek"] ⊳⊲ MovieReference ⊳⊲ Movie ⊳⊲

ProducerInMovie ⊳⊲ Person[Name ∼= "stewart"]

Movie[Title ∼= "trek"] ⊳⊲ MovieReference ⊳⊲ Movie ⊳⊲

ProducerInMovie ⊳⊲ Person[Realname ∼= "stewart"]

Movie[Title ∼= "trek"] ⊳⊲ MovieReference ⊳⊲ Movie ⊳⊲

ProducerInMovie ⊳⊲ Person[Realname ∼= "stewart"]

Movie[Title ∼= "trek"] ⊳⊲ MovieReference ⊳⊲ Movie ⊳⊲

CharacterInMovie ⊳⊲ Person[Realname ∼= "stewart"]

Movie[Title ∼= "trek"] ⊳⊲ MovieReference ⊳⊲ Movie ⊳⊲

WriterInMovie ⊳⊲ Person[Realname ∼= "stewart"]

Movie[Title ∼= "trek"] ⊳⊲ MovieReference ⊳⊲ Movie ⊳⊲

CharacterInMovie ⊳⊲ Person[Realname ∼= "stewart"]

Figure A.7.: Result of query “(drama:title:trek), (person:name:stewart)”

251

A. Data and Query Sets

Person[Name ∼= "stewart", Trivia ∼= "trek"]

Person[Name ∼= "stewart", Biography ∼= "trek"]

Person[Otherworks ∼= "stewart", Trivia ∼= "trek"]

Person[Otherworks ∼= "stewart", Biography ∼= "trek"]

MoviePlot[Plot ∼= "stewart", Plot ∼= "trek"]

Person[Name ∼= "stewart", Otherworks ∼= "trek"]

Person[Trivia ∼= "stewart", Trivia ∼= "trek"]

Person[Biography ∼= "stewart", Trivia ∼= "trek"]

Person[Trivia ∼= "stewart", Biography ∼= "trek"]

Person[Biography ∼= "stewart", Biography ∼= "trek"]

Person[Otherworks ∼= "stewart", Otherworks ∼= "trek"]

Person[Realname ∼= "stewart", Trivia ∼= "trek"]

Person[Realname ∼= "stewart", Biography ∼= "trek"]

Person[Trivia ∼= "stewart", Otherworks ∼= "trek"]

Person[Biography ∼= "stewart", Otherworks ∼= "trek"]

Figure A.8.: Result of query “trek, stewart”

252

A.2. Query Sets

Movie[Title ∼= "star", Title ∼= "trek"] ⊳⊲ CharacterInMovie ⊳⊲

Person[Name ∼= "stewart"]

Movie[Title ∼= "star", Title ∼= "trek"] ⊳⊲ ProducerInMovie ⊳⊲

Person[Name ∼= "stewart"]

Movie[Title ∼= "star", Title ∼= "trek"] ⊳⊲ ProducerInMovie ⊳⊲

Person[Realname ∼= "stewart"]

Movie[Title ∼= "star", Title ∼= "trek"] ⊳⊲ CharacterInMovie ⊳⊲

Person[Realname ∼= "stewart"]

Movie[Title ∼= "trek"] ⊳⊲ ProducerInMovie ⊳⊲ MovieReference ⊳⊲

Movie[Title ∼= "star"] ⊳⊲ Person[Name ∼= "stewart"]

Movie[Title ∼= "trek"] ⊳⊲ CharacterInMovie ⊳⊲ Person[Name ∼= "stewart"] ⊳⊲
MovieReference ⊳⊲ Movie[Title ∼= "star"]

Movie[Title ∼= "trek"] ⊳⊲ CharacterInMovie ⊳⊲ Person[Name ∼= "stewart"] ⊳⊲
MovieReference ⊳⊲ Movie[Title ∼= "star"]

Movie[Title ∼= "trek"] ⊳⊲ CharacterInMovie ⊳⊲ MovieReference ⊳⊲

Movie[Title ∼= "star"] ⊳⊲ Person[Name ∼= "stewart"]

Movie[Title ∼= "trek"] ⊳⊲ ProducerInMovie ⊳⊲ MovieReference ⊳⊲

Person[Name ∼= "stewart"] ⊳⊲ Movie[Title ∼= "star"]

Movie[Title ∼= "trek"] ⊳⊲ ProducerInMovie ⊳⊲ MovieReference ⊳⊲

Person[Name ∼= "stewart"] ⊳⊲ Movie[Title ∼= "star"]

Movie[Title ∼= "trek"] ⊳⊲ CharacterInMovie ⊳⊲ MovieReference ⊳⊲

Movie[Title ∼= "star"] ⊳⊲ Person[Name ∼= "stewart"]

Movie[Title ∼= "trek"] ⊳⊲ ProducerInMovie ⊳⊲ MovieReference ⊳⊲

Movie[Title ∼= "star"] ⊳⊲ Person[Name ∼= "stewart"]

Movie[Title ∼= "trek"] ⊳⊲ CharacterInMovie ⊳⊲ MovieReference ⊳⊲

Person[Name ∼= "stewart"] ⊳⊲ Movie[Title ∼= "star"]

Movie[Title ∼= "trek"] ⊳⊲ CharacterInMovie ⊳⊲ MovieReference ⊳⊲

Person[Name ∼= "stewart"] ⊳⊲ Movie[Title ∼= "star"]

Movie[Title ∼= "trek"] ⊳⊲ CharacterInMovie ⊳⊲ Person[Name ∼= "stewart"] ⊳⊲
CharacterInMovie ⊳⊲ Movie[Title ∼= "star"]

Figure A.9.: Result of query “(sci-fi:title:star), (sci-fi:title:trek), (person:name:
stewart)”

253

A. Data and Query Sets

Person[Name ∼= "kubrick"] ⊳⊲ DirectorInMovie ⊳⊲ Movie[Title ∼= "strangelove"] ⊳⊲
CharacterInMovie ⊳⊲ Person[Name ∼= "sellers"]

Person[Name ∼= "kubrick"] ⊳⊲ WriterInMovie ⊳⊲ Movie[Title ∼= "strangelove"] ⊳⊲
CharacterInMovie ⊳⊲ Person[Name ∼= "sellers"]

Person[Name ∼= "kubrick"] ⊳⊲ ProducerInMovie ⊳⊲ Movie[Title ∼= "strangelove"] ⊳⊲
CharacterInMovie ⊳⊲ Person[Name ∼= "sellers"]

Person[Name ∼= "kubrick"] ⊳⊲ ProducerInMovie ⊳⊲ Movie[Title ∼= "strangelove"] ⊳⊲
CharacterInMovie ⊳⊲ Person[Realname ∼= "sellers"]

Person[Name ∼= "kubrick"] ⊳⊲ DirectorInMovie ⊳⊲ Movie[Title ∼= "strangelove"] ⊳⊲
CharacterInMovie ⊳⊲ Person[Realname ∼= "sellers"]

Person[Name ∼= "kubrick"] ⊳⊲ WriterInMovie ⊳⊲ Movie[Title ∼= "strangelove"] ⊳⊲
CharacterInMovie ⊳⊲ Person[Realname ∼= "sellers"]

Figure A.10.: Result of query “(person:name:kubrick), (movie:title:strangelove),
(person:name:sellers)”

CharacterInMovie[CharacterName ∼= "kubrick"] ⊳⊲ Movie[Title ∼= "strangelove"] ⊳⊲
CharacterInMovie[CharacterName ∼= "sellers"]

CharacterInMovie[CharacterName ∼= "kubrick"] ⊳⊲ Movie[Title ∼= "strangelove"] ⊳⊲
CharacterInMovie ⊳⊲ Person[Name ∼= "sellers"]

Person[Name ∼= "kubrick"] ⊳⊲ ProducerInMovie ⊳⊲ Movie[Title ∼= "strangelove"] ⊳⊲
CharacterInMovie ⊳⊲ Person[Name ∼= "sellers"]

Person[Name ∼= "kubrick"] ⊳⊲ WriterInMovie ⊳⊲ Movie[Title ∼= "strangelove"] ⊳⊲
CharacterInMovie ⊳⊲ Person[Name ∼= "sellers"]

Person[Name ∼= "kubrick"] ⊳⊲ DirectorInMovie ⊳⊲ Movie[Title ∼= "strangelove"] ⊳⊲
CharacterInMovie ⊳⊲ Person[Name ∼= "sellers"]

CharacterInMovi[CharacterName ∼= "kubrick"] ⊳⊲ Person ⊳⊲

CharacterInMovie Movie[Title ∼= "strangelove"] ⊳⊲
CharacterInMovie [CharacterName ∼= "sellers"]

Person[Name ∼= "kubrick"] ⊳⊲ DirectorInMovie ⊳⊲ Movie[Title ∼= "strangelove"] ⊳⊲
CharacterInMovie ⊳⊲ Person[Realname ∼= "sellers"]

Person[Name ∼= "kubrick"] ⊳⊲ ProducerInMovie ⊳⊲ Movie[Title ∼= "strangelove"] ⊳⊲
CharacterInMovie ⊳⊲ Person[Realname ∼= "sellers"]

Person[Name ∼= "kubrick"] ⊳⊲ WriterInMovie ⊳⊲ Movie[Title ∼= "strangelove"] ⊳⊲
CharacterInMovie ⊳⊲ Person[Realname ∼= "sellers"]

Figure A.11.: Result of query “(:name:kubrick), (:title:strangelove), (:name:sellers)”

254

A.2. Query Sets

Person[Biography ∼= "sellers", Trivia ∼= "strangelove", Trivia ∼= "kubrick"]

Person[Trivia ∼= "sellers", Trivia ∼= "strangelove", Trivia ∼= "kubrick"]

Person[Biography ∼= "sellers", Trivia ∼= "strangelove", Biography ∼= "kubrick"]

Person[Trivia ∼= "sellers", Trivia ∼= "strangelove", Biography ∼= "kubrick"]

Person[Name ∼= "sellers", Trivia ∼= "strangelove", Biography ∼= "kubrick"]

Person[Trivia ∼= "sellers", Biography ∼= "strangelove", Trivia ∼= "kubrick"]

Person[Biography ∼= "sellers", Biography ∼= "strangelove", Biography ∼= "kubrick"]

Person[Trivia ∼= "sellers", Biography ∼= "strangelove", Biography ∼= "kubrick"]

Person[Name ∼= "sellers", Biography ∼= "strangelove", Biography ∼= "kubrick"]

Person[Otherworks ∼= "sellers", Trivia ∼= "strangelove", Biography ∼= "kubrick"]

MoviePlot[Plot ∼= "sellers", Plot ∼= "strangelove", Plot ∼= "kubrick"]

Person[Otherworks ∼= "sellers", Biography ∼= "strangelove", Biography ∼= "kubrick"]

Person[Realname ∼= "sellers", Trivia ∼= "strangelove", Biography ∼= "kubrick"]

Person[Trivia ∼= "sellers", Trivia ∼= "strangelove", Name ∼= "kubrick"]

Person[Realname ∼= "sellers", Biography ∼= "strangelove", Biography ∼= "kubrick"]

Figure A.12.: Result of query “kubrick, strangelove, sellers”

255

	Abstract
	Zusammenfassung
	Acknowledgments
	Contents
	List of Figures
	List of Tables
	Introduction
	Contributions
	Structure

	Data Integration
	Data Integration Systems
	Challenges and Classification of Data Integration Systems
	Mediator Systems

	Concept-based Mediator Systems
	Principles
	Approaches and Systems
	Other approaches

	Summary

	Yacob
	Integration Model
	Concept model and Data model
	Source mappings

	Query Language
	Query Processing
	Summary

	Keyword Search in Structured Databases
	General Considerations
	Example
	Definitions

	Classification
	Query Languages
	Query Result Types
	Ranking Methods
	Query Processing in Keyword Search Systems

	Keyword Search Systems
	Relational Database Search
	Keyword Search in XML Trees and Graphs
	Relaxed Structural Queries
	XML Query Languages and Keyword Search

	Keyword Search and Virtual Integrated Data Sources
	Metasearch Engines
	Structured Hidden-Web Search
	Virtual Integrated Structured Sources

	Summary

	Concept-based Keyword Queries
	Motivation
	Data Model
	Query Model
	Keyword Queries
	Minimal Object Networks
	Materialization Queries
	Materialization Query Scoring Function

	Query Expansion
	Semantic Distance of Classes
	Concept Expansion
	Category Expansion

	Related Work
	Summary

	Concept Query Generation
	Overview
	Keyword Processor
	Keyword Index
	Index Lookup Methods

	Query List Generation
	Index List Generation
	Single Concept Query Generation
	Concept Schema Graph Annotation

	Query List Network Enumeration
	Query List Network
	Compact Concept Schema Graph
	Enumeration of Query List Networks

	Discussion
	Summary

	Concept Query Processing
	Preliminaries
	Query Processing
	Non-Reuse Algorithms
	Motivation for Query Re-Using Algorithms

	Detection of Empty Results
	Concept-based Query Coverage
	Data Structure
	Empty Result Statistics Management
	Use of Detected Empty Results during Keyword Query Processing

	Re-Using Intermediate Results
	Materialized Results Organization and Access
	Cache Management
	Single Query Cache Use

	Optimizing Query Result Reuse
	Query List Network Optimization
	Query List Network-based Query Reusing

	Query List Optimizations
	Splitting Query Lists
	Merging Single Concept Queries

	Discussion
	Summary

	Implementation and Evaluation
	Architecture and Implementation
	Scenarios and Evaluation Measures
	Evaluation Goals
	Data Sets and Query Sets
	Evaluation Environment

	Efficiency Evaluation
	Size estimation evaluation
	Detailed Evaluation
	Top-k evaluation

	Effectiveness Evaluation
	Summary

	Summary and Future Work
	Summary
	Contributions
	Future work

	Bibliography
	Data and Query Sets
	Data Set
	Concept schema IMDB

	Query Sets
	Queries Cost Estimation
	Enumeration Test Queries
	Query execution experiment
	Top-k query sets
	Concept-based query experiment
	Effectivness Experiment Results

