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ABSTRACT i

Abstract

Typically polytopes arising from real world problems have alot of facets. In some
cases even no linear descriptions for them are known. On the other hand many of these
polytopes can be described much nicer and with less facets using extended formulations,
i.e. as a projection of simpler higher dimensional polytopes. The presented work studies
extended formulations for polytopes: the possibilities toconstruct extended formulations
and limitations of them.

In the first part, some known techniques for constructions ofextended formulations
are reviewed and the new framework of polyhedral relations (see Kaibel and Pashkovich
[2011]) is presented. We in particular elaborate on the special case of reflection relations.
Reflection relations provide extended formulations for several polytopes that can be con-
structed by iteratively taking convex hulls of polytopes and their refelections at hyper-
planes. Using this framework we are able to derive small extended formulations for the
G-permutahedra of all finite reflection groupsG.

The second part deals with extended formulations which use special structures of
graphs involved in combinatorial problems. Here we presentsome known extended for-
mulations and apply a few changes to the extended formulation of Gerards for the perfect
matching polytope in graphs with small genus in order to reduce its size. Furthermore a
new compact proof of an extended formulation of Rivin for thesubtour elimination poly-
tope is provided.

The third part (partly based on joint work with Volker Kaibel, Samuel Fiorini and Dirk
Oliver Theis, see Fiorini, Kaibel, Pashkovich, and Theis [2011a]) involves general ques-
tions on the extended formulations of polytopes. The primalinterest here are lower bounds
for extended formulations. We study different techniques to obtain these lower bounds, all
of which could be derived from so called non-negative factorizations of the slack matrix
of the initial polytope. The minimal such factorization provides the minimal number of in-
equalities needed in an extended formulation. We compare different techniques, find their
limitations and provide examples of the polytopes for whichthey give tight lower bounds
on the complexity of extensions.

The fourth part studies the impact of symmetry on the sizes ofextended formulations.
In joint work with Volker Kaibel and Dirk Oliver Theis we showed that for certain con-
strained cardinality matching and cycle polytopes there exist no polynomial symmetric
extended formulations, but there are polynomial non-symmetric ones (for further details
see Kaibel, Pashkovich, and Theis [2010]). Beyond these results the thesis also contains
a proof showing that the well known symmetric extended formulation for the permutahe-
dron via the Birkhoff polytope is the best (up to a constant factor) one among symmetric
extended formulations (see Pashkovich [2009]).
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Zusammenfassung

Viele kombinatorische Polytope, die ihre Anwendung in praktischen Problemen fin-
den, haben eine große Anzahl von Facetten. In manchen Beispielen ist nicht einmal ei-
ne lineare Beschreibung dieser Polytope bekannt. Andererseits lassen viele Polytope eine
kompakte und schönere Darstellung mit Hilfe von erweiterten Formulierungen (d.h. als
Projektion einfacherer höher-dimensionaler Polytope) zu. Die vorgelegte Arbeit untersucht
Erweiterungen von Polytopen: Möglichkeiten, eine kompakte Erweiterung zu finden, und
Einschränkungen dieses Ansatzes.

Im ersten Teil, werden einige bekannte Konstruktionen für Erweiterungen dargestellt
und das neue Framework der Polyedrischen Relationen eingeführt, welches Teil einer ge-
meinsamen Arbeit mit Volker Kaibel ist (siehe Kaibel and Pashkovich [2011]). Insbeson-
dere arbeiten wir den Fall von Spiegelungsrelationen aus. Spiegelungsrelationen liefern
erweiterte Formulierungen für Polytope, die durch iterierte Bildung konvexer Hüllen von
Polytopen und ihrer Spiegelungen an Hyperebenen konstruiert werden können. Mit Hil-
fe dieses Frameworks können wir kompakte Erweiterungen vonG-Permutaedern für alle
endliche SpiegelungsgruppenG konstruieren.

Der zweite Teil beschäftigt sich mit Erweiterungen, welchespezielle Eigenschaften
von den Graphen ausnutzen, die in kombinatorischen Problemen auftauchen. Hier präsen-
tieren wir einige bekannte Erweiterungen, und nehmen kleine Änderungen in der erwei-
terten Formulierung von Gerards für Perfekte Matching Polytope in Graphen mit kleinem
Geschlecht vor, um die Grösse der Erweiterung zu reduzieren. Dazu präsentieren wir einen
einfachen Beweis für die Erweiterung von Rivin des Subtour Elimination Polytops.

Der dritte Teil untersucht prinzipielle Grenzen des Konzepts der erweiterten Formulie-
rungen. Das Hauptziel des dritten Teils ist es, untere Schranken für die Größe erweiterter
Formulierung herzustellen. Hier stellen wir einige gemeinsame Ergebnisse mit Volker Kai-
bel, Samuel Fiorini und Dirk Oliver Theis dar (siehe Fiorini, Kaibel, Pashkovich, and Theis
[2011a]). Wir vergleichen verschiedene Methoden, um untere Schranken zu bekommen,
und schauen uns verschiedene Beispiele von Polytopen an (für manche Polytope sind die
Schranken optimal).

Im vierten Teil präsentieren wir eine weitere gemeinsame Arbeit mit Volker Kai-
bel und Dirk Oliver Theis, die sich mit Symmetrien in Erweiterungen beschäftigt (se-
he Kaibel, Pashkovich, and Theis [2010]). Hier haben wir Matching und Cycle Polytope
gefunden, welche keine symmetrischen Erweiterungen haben, aber sich trotzdem mit Hilfe
von Erweiterungen kompakt darstellen lassen. Über gemeinsame Arbeit hinaus, beweisen
wir Ergebnisse bezüglich Erweiterungen von quadratischerGrösse, welche zum Beispiel
zeigen, dass das Birkhoff Polytop eine asymptotisch minimale symmetrische Erweiterung
des Permutaeders ist (sehe Pashkovich [2009]).
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CHAPTER 1

Introduction

Combinatorial optimization problems in many cases can be transformed into linear
optimization problems, where one identifies with every solution of the given combinatorial
problem a point, and where the objective function can be understood as a linear function
over the constructed points. Via such a transformation one obtains access to the complete
machinery of linear programming, since optimization of a linear function over a set of
points is equivalent to optimization of the linear functionover the convex hull of these
points.

However, algorithms for linear programming require a linear description of the prob-
lem, what can cause difficulties, since the polytopes associated with combinatorial prob-
lems usually do not admit acompact linear description, i.e. a linear description of polyno-
mial size with respect to the size of the combinatorial problem.

Even though combinatorial polytopes may not possess a compact linear description,
they may allow acompact extended formulation, i.e. such a polytope may be represented
as a linear projection of a higher-dimensional polytope of polynomial size. And an opti-
mization problem over the initial polytope can be transformed into an optimization problem
over the extension.

Indeed, a lot of combinatorial polytopes do admit compact extended formulations,
where for an extensive overview on extended formulations for combinatorial polytopes
we recommend Conforti et al. [2010]. The power of this phenomenon relies on introduc-
ing additional variables, reflecting characteristics of combinatorial objects, such that these
characteristics were "out of reach" for the linear programming using initial variables only.

Since linear programming is solvable in polynomial time, there were a lot of attempts
to approach the famous complexity theoretical conjecture thatNP is not equalP, provid-
ing an easy to construct compact extended formulation for the travelling salesman polytope.
Inspired by the request to review several of such papers withclaimed compact extended
formulations for the travelling salesman polytope Yannakakis tried to get an understanding
of what can be achieved using extensions. In a seminal paper (see Yannakakis [1991])
he then showed that there is at least no symmetric extended formulation of polynomial
size for the perfect matching polytope, where "symmetric" means that the formulation is
invariant under permuting the nodes of the complete graph. As a corollary in this paper
it was shown that there is no compact symmetric extended formulation for the travelling
salesman polytope. This ruled out a lot of these constructions, since the majority of the
proposed extended formulations for the travelling salesman polytope had been symmetric
or were easy to symmetrise, retaining the polynomial size.

Yannakakis also conjectured that the symmetry requirementwould just be a technical
condition for the proof: "We do not think that asymmetry helps much. Thus, prove that
the matching and TSP polytopes cannot be expressed by polynomial size LP’s without the
asymmetry assumption." Indeed, it turned out recently (seeFiorini et al. [2011b]) that there
is no compact extended formulation for the travelling salesman polytope. However, until
now it is unclear whether there is a compact asymmetric extension for the perfect matching
polytope.

One part of this thesis studies the impact of symmetry requirements on the size of an
extended formulation for matching and cycles polytopes. Wedisprove the conjecture of

1



2 1. INTRODUCTION

Yannakakis in general case in Chapter 5, where we show that for some cardinality restricted
matching and cardinality restricted cycle polytopes thereexist no polynomial symmetric ex-
tended formulations, but there are polynomial non-symmetric ones. The results presented
in that chapter have been published in Kaibel, Pashkovich, and Theis [2010].

Furthermore, we study the role of symmetry requirements forextensions of the cardi-
nality indicating polytope and the permutahedron. For these polytopes we prove in Chap-
ter 5 that the well-known symmetric extensions of them are asymptotically the best exten-
sions, which one can get preserving the symmetry of extensions (see Pashkovich [2009]).

Actually, the interest for symmetric extended formulations of the permutahedron arose,
since Goemans gave an elegant formulation of sizeO(n log n) for the permutahedron,
where the best known symmetric extension was of sizeO(n2) via the Birkhoff polytope.
In his construction, Goemans used a novel approach, which wegeneralize in Chapter 2
to the framework of reflection relations in order to produce extended formulations. Using
this framework we obtain well-known extended formulations. Besides that we give a com-
pact extended formulation for the Huffman polytope, for which no linear description up to
now is known, as well as forG-permutahedron of finite reflection groupsG. The results
presented in that chapter have been published in Kaibel and Pashkovich [2011].

Goemans also showed that the size of his extended formulation is asymptotically min-
imal among all extended formulations for the permutahedron. His way to estimate the
minimum size of an extended formulation for a polytope proves that the extended formula-
tion for the Huffman polytope, which we construct in Chapter2 is asymptotically minimal
as well. This motivated us to systematize methods to estimate the minimum size of general
extended formulations. In Chapter 4 we study the limitations of these approaches and pro-
vide several examples of their usage (see Fiorini, Kaibel, Pashkovich, and Theis [2011a]).

We also found an extended formulation for the spanning tree polytope for planar
graphs, where the size of the extension is linear in the number of edges in the graph. How-
ever, it turned out that the extension was already provided by Williams [2002]. We never-
theless describe the construction in Chapter 3, and presenta modified extension of Gerards
[1991] for the perfect matching polytope, which is compact for graphs with sufficiently
small genus, where our modifications were made in order to reduce the size of the exten-
sion.
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1.1. Preliminaries

Here, we introduce some definitions and notions used in the presented work.

1.1.1. Polytopes.A polytopeP ⊆ Rm is defined as the convex hull of a finite set of
pointsX ⊆ Rm, i.e.

P = conv(X) = {
∑

x∈X

λxx :
∑

x∈X

λx = 1, λ ≥ 0} .

In turn, apolyhedronP ⊆ Rm is the Minkowski sum of the convex hull of a finite set of
pointsX ⊆ Rm and the convex cone of a finite set of vectorsR ⊆ Rm, i.e.

P = conv(X) + cone(R) ,

where the cone
rec(P ) = cone(R) = {

∑

r∈R

λrr : λ ≥ 0}

is called therecession coneof the polyhedronP , and

lineal(P ) = − cone(R) ∩ cone(R)

is called thelineality spaceof the polyhedronP .
A faceF ⊆ Rm of a polyhedronP ⊆ Rm is defined as the intersection

F = H ∩ P ,
whereH is a hyperplane, such that the polyhedronP lies in one of the closed halfspaces,
defined by the hyperplaneH. Additionally, the empty set∅ and the polyhedronP are un-
derstood as faces of the polyhedronP ⊆ Rm as well. Afacetand avertexof a polyhedron
P ⊆ Rm is a face of dimensiondim(P ) − 1 and zero, respectively. The set of all faces
ordered by inclusion forms theface latticeL(P ) of the polyhedronP .

The Weyl-Minkowski Theorem states that every polyhedronP ⊆ Rm can be de-
scribed as the solution set for a linear system, i.e.

P = {x ∈ Rm : A≤ x ≤ b≤, A= x ≤ b=} ,
whereA≤ ∈ Rf×m, b≤ ∈ Rf , A= ∈ Rr×m, b= ∈ Rr. The minimum numberf of
inequalities, such that there exists a corresponding linear system, is equal to the number of
facets of the polyhedronP . A linear description with the minimum number of inequalities
is called aminimal linear descriptionof the polyhedronP . Since every polytope is a
polyhedron, it is easy to see that every polytope is the solution set for a system of linear
inequalities, where the solution set is bounded. In turn, every linear system for which the
set of solutions is bounded defines a polytope.

The Farkas Lemma has diverse equivalent formulations, and here we present the one
below.

Lemma 1.1. For a polyhedronP ⊆ Rm, defined by the linear system

P = {x ∈ Rm : Ax ≤ b} ,
whereA ∈ Rf×m, b ∈ Rf , anda ∈ Rm, β ∈ R, the inequality〈a, x〉 ≤ β is valid forP
if and only ifP is empty or there exists a non-negative vectorc ∈ Rf , such that

cA = a and c b ≤ β .

For all notions and results from polyhedral theory, mentioned in the presented work,
we refer to Ziegler [1995] and Grünbaum [2003].



4 1. INTRODUCTION

1.1.2. Extended Formulations, Extensions.An extensionof a polytopeP ⊆ Rm is
a polyhedronQ ⊆ Rd together with an affine mapp : Rd → Rm satisfying

p(Q) = P .

A description ofQ by linear equations and inequalities (together withp) is called anex-
tended formulationof P 1.

p

Q

P

FIGURE 1. Example of an extension.

Thesizeof an extension is the number of its facets. Thesizeof an extended formula-
tion is its number of inequalities, not including equations. Clearly, the size of an extended
formulation is at least as large as the size of the extension it describes. Conversely, every
extension is described by an extended formulation of at mostthe same size2. In this work,
the notion of size does not involve the encoding length of thecoefficients in extended for-
mulation. Thus, all lower bounds, obtained in Chapters 4 and5 provide lower bounds on
the number of inequalities in extended formulations. Nevertheless, all extended formula-
tions constructed in this work involve coefficients of polynomial size only (except for an
extended formulation for regular polygons).

In this work, we are interested inminimal extended formulationsandextensionsfor
polytopes. In fact, we can assume that a minimal extension ofa non-empty polytopeP is
given by a full-dimensional polytopeQ ⊆ Rd and an affine mapp : Rd → Rm. Indeed,
for every vectorr ∈ Rd from the recession cone of the polyhedronQ and every point
z ∈ Rd, we have

p(z + r) = p(z) ,

becauseQ, p form an extension of the bounded polyhedronP . Thus, if we consider a
polyhedronQ∗ defined asQ− rec(Q), and the affine mapp∗ = p : Rd → Rm, we have

p∗(Q∗) = p(Q− rec(Q)) = p(Q) = P ,

what shows thatQ∗, p∗ form an extension of the polytopeP . The recession cone of the
polyhedronQ∗ is equal torec(Q)− rec(Q), i.e. the recession cone of the polyhedronQ∗

coincides with its lineality space. The size of the extensionQ∗, p∗ is bounded from above
by the size of the extensionQ, p for the polytopeP (Appendix: Lemma 6.3). Now, let us
consider the polyhedronQ∗∗ equal toQ∗ ∩ rec(Q∗)

⊥ and the affine mapp∗∗ = p : Rd →
Rm, which form an extension of the polytopeP

p∗∗(Q∗∗) = p∗(Q∗ ∩ rec(Q∗)
⊥
) = p∗(projrec(Q∗)⊥(Q

∗)) = p(Q) = P ,

1Analogously, an extension and extended formulation for a polyhedron can be defined. Even if this is not an
object of the current work, this may be useful in the case when an extended formulation is constructed via some
polyhedron, which has a compact extended formulation.

2For symmetric extensions and symmetric extended formulations, defined in Chapter 5, the same equiva-
lence is shown, i.e. it is shown that for every symmetric extension there exists a symmetric extended formulation
of the same size, and every symmetric extended formulation defines a symmetric extension of the same size.
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whose size is less than or equal to the size of the extensionQ∗, p∗. The recession cone of
the polyhedronQ∗ is equal toprojrec(Q∗)⊥(rec(Q

∗)), i.e. is equal to the zero vector, and
thus the polyhedronQ∗∗ is a polytope.

Finally, if the polytopeQ∗∗ ⊆ Rd is not full-dimensional, then we consider an ex-
tension given by the full-dimensional polytopeQ′ = q(Q∗∗) ⊆ Rd

′

and an affine map
p′ = p∗∗ ◦ q−1 : Rd

′ → Rm, where the mapq : aff(Q∗∗) → Rd
′

is an affine embedding
of the affine hull ofQ∗∗ into the spaceRd

′

, with d′ = dim(Q∗∗).
For an extensionQ ⊆ Rd, p : Rd → Rm of a polytopeP ⊆ Rm, we define asection

maps : vert(P ) → Q, such that for every vertexx of the polytopeP

p(s(x)) = x ,

wherevert(P ) denotes the vertex set ofP .
Note that if the sections : Rm → Rd is an affine map then the size of the extension

viaQ is at least as big as the size of the trivial extension via the polytopeP itself. Indeed,
the dimension of the polyhedronQ∩aff(s(vert(P ))) is less than or equal to the dimension
of the polytopeP , if s : Rm → Rd is an affine map. On the other hand the polyhedron
Q ∩ aff(s(vert(P ))) with the affine mapp : Rd → Rm is an extension of the polytope
P ⊆ Rm. Thus the polyhedronQ∩aff(s(vert(P ))) is isomorphic to the polytopeP , what
shows that the number of facets of the polytopeP is equal to the number of facets of the
polytopeQ ∩ aff(s(vert(P ))) which is at most the size of the extensionQ, p.

Of course, having an extensionQ ⊆ Rd, p : Rd → Rm of a polytopeP ⊆ Rm, the
polyhedron

Q ∩ {z ∈ Rd : 〈a, p(z)〉 = b}
together withp : Rd → Rm is an extension of the polytope

P ∩ {x ∈ Rm : 〈a, x〉 = b}
of at most the same size. Thus, every extension of a polytope provides an extension of any
of its faces, where the last extension has at most the same size.

1.1.3. Combinatorial Polytopes.Here, we define three combinatorial polytopes with
a central role in the theory of extended formulations.

1.1.3.1. Spanning Tree Polytope.A tree in the graphG = (V,E) is a connected sub-
graph ofG, which does not contain any cycle. The set of trees in a graphG is defined by
T (G), or T (n) if we deal with the complete graphKn.

Thespanning tree polytopePspt(G) for a graphG is defined as follows

Pspt(G) = conv({χ(T ) ∈ RE : T ∈ T (G)}) .
The following linear system describes the spanning tree polytope for a graphG = (V,E)
(see Edmonds [1971])

x(E(S)) ≤ |S| − 1 for ∅ 6= S ( V

x(E) = |V | − 1 and 0 ≤ x .

Here and later, for everyx ∈ Rd andI ⊆ [d] the expressionx(I) denotes the sum
∑

i∈I xi.
1.1.3.2. Matching Polytope.A matchingin a graphG = (V,E) is a set of disjoint

edges in the graphG. The set of all matchings in the graphG is denoted byM(G), and
by M(n), if we deal with the complete graphKn. The set of all matchings withℓ edges
in the graphG is denoted byMℓ(G), and byMℓ(n), if G is the complete graph withn
vertices. A perfect matchingis a matching, which covers all vertices of the graphG.

Theperfect matching polytopeP
n
2

match(G) for a graphG with n vertices (n is even) is
the convex hull of characteristic vectors for all perfect matchings inG, i.e.

P
n
2

match(G) = conv({χ(M) ∈ RE :M ∈ Mn(G)}) .
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Edmonds [1965] gave a linear description of the perfect matching polytope byx ≥ 0 and

x(δ(S)) ≥ 1 for S ⊆ V, 1 ≤ |S| is odd

x(δ(v)) = 1 for v ∈ V .

For the complete graphKn, this system defines a minimal linear description ofP
n
2

match(n).
Thematching polytopePmatch(G) for a graphG is the convex hull of characteristic

vectors for all matchings inG, i.e.

Pmatch(G) = conv({χ(M) ∈ RE :M ∈ M(G)}) .
Edmonds [1965] gave a linear description of the matching polytope byx ≥ 0 and

x(E(S)) ≤ |S| − 1 for S ⊆ V, 1 ≤ |S| is odd

x(δ(v)) ≤ 1 for v ∈ V .

For the complete graphKn, this system defines a minimal linear description ofPmatch(n).
The cardinality constrained matching polytopePℓmatch(G) is the convex hull of all

characteristic vectors forMℓ(G), i.e.

Pℓmatch(G) = conv({χ(M) ∈ RE :M ∈ Mℓ(G)}) .
Hence, for the cardinality equal to the halved number of vertices inG, the cardinality
constrained matching polytope is the perfect matching polytope.

The cardinality constrained matching polytopePℓmatch(G) can be described asx ≥ 0
and

x(E(S)) ≤ |S| − 1 for S ⊆ V, |S| is odd

x(δ(v)) ≤ 1 for v ∈ V

x(E) = ℓ ,

since the cardinalities of matchings, corresponding to anytwo adjacent vertices of the
matching polytope, differ at most by one (see Schrijver [2003a]).

1.1.3.3. Cycle Polytope.Let Cℓ(G) denote the set of cycles in a graphG = (V,E) of
lengthℓ.

Thecardinality constrained cycle polytopePℓcycl(G) is defined as the convex hull of
characteristic vectors of all cyclesCℓ(G), i.e.

Pℓcycl(G) = conv({χ(C) ∈ RE : C ∈ Cℓ(G)}) .
If the cardinality of cycles is equal to the number of vertices of the whole graph and

G = Kn, the cardinality constrained cycle polytope is thetravelling salesman polytope. In
contrast to the preceding two examples, we do not expect thatthere is a "reasonable" linear
description of the travelling salesman polytope, as the associated optimization problem is
NP-hard.

For all notions and results from polyhedral combinatorics,mentioned in the presented
work, we refer to Schrijver [2003a], Schrijver [2003b], Schrijver [2003c].

1.2. Extensions of Combinatorial Polytopes

The three mentioned types of combinatorial polytopes are important for our further
considerations.

For the spanning tree polytope Martin [1991] constructed anextended formulation,
defined byz ≥ 0 and

xv,u − zv,u,w − zu,v,w = 0 for v, u, w ∈ [n]

xv,u +
∑

w∈V \{v,u}

zv,w,u = 1 for v, u ∈ [n] ,
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what shows that the spanning tree polytopePspt(n) admits an extension of sizeO(n3).
The section of the mentioned extension can be defined as follows: zv,u,w is equal to one if
the treeT contains the edge{v, u} and the path fromu tow in the treeT does not involve
the vertexv, andzv,u,w is equal to zero, otherwise.

As mentioned above, the travelling salesman polytope does not admit a compact ex-
tended formulation, what was shown by Fiorini et al. [2011b].

For the perfect matching polytope and the matching polytopeit is not known whether
there exists an extended formulation of polynomial size. But Yannakakis [1991] showed
that there exists no compact symmetric extension of these polytopes of polynomial size.
Thus, it is still an open problem to construct a compact extension for the matching polytope
or to show that no such extension exists.





CHAPTER 2

Balas Extensions, Flow Extensions and Polyhedral
Relations

In this chapter, two central frameworks for the construction of extended formulations
are presented: disjunctive and dynamic programming.

The ideas of disjunctive programming can be implemented in extended formulations
via the Balas techniques (see Balas [1998]).The Balas method constructs an extended for-
mulation for the convex hull of some set of polytopes, havingat hands an extended for-
mulation for each of them. Hence, this approach is effectivefor combinatorial polytopes,
whenever one is able to partition the combinatorial objects, inducing the polytope, into
tractable subclasses, i.e. for which small extended formulations are known.

In turn, the dynamic programming approach encodes mostly the way to optimize over
the combinatorial objects, which induce the polytope. Flowpolytopes play a crucial role
in these extensions, since usually, the possible scenariosof the corresponding dynamic
algorithm are encoded as a path in an acyclic network. Here, we also present some
extended formulations constructed by Fiorini, Kaibel, Pashkovich, and Theis [2011a] and
Kaibel, Pashkovich, and Theis [2010].

In the end of the chapter, we develop the polyhedral relations framework, and in par-
ticular, reflection relations (see Kaibel and Pashkovich [2011]). The reflection relations
construct an extension for the convex hull of a polytope and its image under the reflection
map, with respect to a hyperplane. Note that the Balas approach does not have any re-
strictions concerning the polytopes in the construction. But in comparison with reflection
relations, disjunctive programming produces extensions of a bigger size, what results in the
significant size of extension, constructed iteratively viathe Balas method. With the help
of reflection relations, we reproved a series of results concerning extended formulations of
regular polygons (see Ben-Tal and Nemirovski [2001]), the permutahedron (see Goemans),
the parity polytope (see Carr and Konjevod [2004]). Moreover, we obtained asymptotically
minimal extensions for the cardinality indicating polytope and the Huffman polytope (cur-
rently, no linear description for the Huffman polytope is known).

2.1. Balas Extensions

One of the most important frameworks for the construction ofextended formulations
is disjunctive programming(see Balas [1998]). In this framework, an extended formulation
of a polytopeP ⊆ Rm is constructed, using already known extended formulationsfor a
set of other non-empty polytopesPi ⊆ Rm, i ∈ [k], such that

P = conv(
⋃

i∈[k]

Pi) .

Theorem 2.1(Balas [1998]). If for each of the non-empty polytopesPi ⊆ Rm, i ∈ [k],
there exists an extended formulation, described by the linear system

(2.1.1) Aiz ≤ bi ,

whereAi ∈ Rfi×di , bi ∈ Rfi , together with an affine mappi : Rdi → Rm, such that

pi(z) = gi(z) + γi ,

9
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wheregi : Rdi → Rm is a linear map andγi ∈ Rm, then the linear system

(2.1.2)

Aiyi ≤ biλi for i ∈ [k]

k
∑

i=1

λi = 1 and 0 ≤ λ

x =
k

∑

i=1

gi(yi) +
k

∑

i=1

γiλi ,

together with the projection onx variables, forms an extended formulation of size at most
k +

∑k
i=1 fi for the polytope

(2.1.3) P = conv(
⋃

i∈[k]

Pi) .

PROOF. It is necessary to prove that the polyhedronQ, defined by the linear sys-
tem (2.1.2), together with the projection onx variables, forms an extension of the poly-
topeP .

First, it is necessary to show that for every pointx ∈ Rm from the polytopeP , there
arey andλ variables, which satisfy the linear system (2.1.2). Let thepointx be written as
the convex combination

x =

k
∑

i=1

λix
i

k
∑

i=1

λi = 1 and 0 ≤ λ ,

wherexi ∈ Rm lies in the polytopePi. For every pointxi, definezi ∈ Rdi to be a point,
such that

Aizi ≤ bi and pi(zi) = xi .

To finish the construction, define the vectoryi to be equal toλizi for all i ∈ [k]. Clearly,
the defined valuesx, y andλ satisfy the linear system (2.1.2).

Second, assume that for some pointx ∈ Rdi , there areλ andy variables, satisfying
the constructed extended formulation. In the caseλi = 0, the vectoryi lies in the recession
cone of the corresponding extension for the polytopePi. And thus, lies in the kernel of the
linear mapgi (Pi is a non-empty polytope), i.e. the vectorgi(yi) is equal0m, whenever
λi = 0. In the caseλi > 0, the point

gi(λ−1
i yi) + γi = pi(λ−1

i yi)

belongs to the polytopePi, due toAi(λ−1
i yi) ≤ bi. Consequently, the pointx lies in the

polytopeP , becausex satisfies

x =

k
∑

i=1

gi(yi) +

k
∑

i=1

γiλi =
∑

i∈[k]
λi>0

gi(yi) +
∑

i∈[k]
λi>0

γiλi =
∑

i∈[k]
λi>0

λi(g
i(λ−1

i yi) + γi)

and
k

∑

i=1

λi = 1 and 0 ≤ λ .

�

The vertex extensionof a polytopeP ⊆ Rm can be seen as a construction via the
Balas method, where the set of polytopesPi is the set of vertices of the polytopeP . Thus,
the size of the vertex extension for a polytopeP is equal to the number of vertices of the
polytopeP .
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Lemma 2.1. For every polytopeP ⊆ Rm, there exists an extended formulation of size
equal to the number of vertices of the polytopeP .

2.2. Dynamic Programming Extensions

Another important approach to construct extended formulations isdynamic program-
ming(see Martin et al. [1990]). One of the possibilities to exploit dynamic programming is
to solve an optimization problem as the shortest path problem in an acyclic network. Thus,
the extended formulations, constructed via the dynamic programming method, usually are
the path polytopes in some acyclic network.

Of course, for every polytope one is able to construct a network, such that the shortest
path problem in the network is equivalent to the optimization problem over the polytope.
For this, let the network to consist of the sources and sinkt, and an arc for every vertex of
the polytope with capacity one. However, such way to construct an extension, gives us the
vertex extension of a polytope, what usually is not compact.

In this framework, a flow polyhedron for a networkN plays a crucial role. Recall that
a networkN = (V,A, c) is given by the set of nodesV , containing the sources and sinkt,
and by a set of arcsA ⊆ V × V . Typically, the capacitiesc ∈ RA of the arcs are assumed
to be one if nothing else is stated, in this situation we omit the capacities in the definition
of the networkN = (V,A).

Thes-t flow polyhedronPℓs−t flow(N) ⊆ RA, which is the set of alls-t flows in the
networkN of valueℓ. The flow polyhedronPℓs−t flow(N) is described as (see Schrijver
[2003a])

x(δout(v)) = x(δin(v)) for v ∈ V \ {s, t}
x(δout(s)) = x(δin(s)) + ℓ

0 ≤ x ≤ c .

Clearly, the size of this linear formulation for the flow polyhedronPℓs−t flow(N) is equal
to twice the number of arcs in the networkN .

Moreover, whenever the networkN = (V,A) is acyclic and the flow valueℓ is equal to
one, the flow polytopePℓs−t flow(N) ⊆ RA is equal to the convex hull of the characteristic
vectors of all possibles-t paths in the networkN .

Recently, Kaibel and Loos [2010] developed a powerful generalization of dynamic
programming, so called polyhedral branching systems, which generalize the dynamic pro-
gramming framework of Martin et al. [1990]. One of the most elegant applications of
polyhedral branching systems is a compact extended formulation of full orbitopes, i.e. the
convex hull of zero-one matrices with lexicographically ordered columns.

In this chapter, all dynamic extended formulations can be verified without a formal
proof. Namely, we state an acyclic network and define the projection and section maps. It is
left to show that all source-sink paths in the network are projected inside of the considered
polytope, and that the section map defines a source sink-pathin the provided network.

2.3. Flow Extensions

It is worth to mention that not all extended formulations, constructed via flow poly-
hedra, are considered to be dynamic programming extensions. Particularly, the extended
formulation for the corner polyhedra of the perfect matching polytope, which was pro-
vided by Ventura and Eisenbrand [2003], and the extended formulation for the spanning
tree polytope, constructed by Padberg and Wolsey [1983], Cunningham [1985].

For example, the polyhedronP ⊆ RE for a graphG = (V,E), described by0 ≤ y
and

(2.3.1) y(δ(S)) ≥ ℓ for all S ⊆ V, s ∈ S, t 6∈ S ,
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has an extension via the flow polyhedronPℓs−t flow(N), where the arcs capacitiesc ∈ RA
are treated as variables, and where the networkN = (V,A, c) has the set of arcs

A = {(v, u) ∈ V × V : {v, u} ∈ E} .
and

c(v,u) = yv,u for all v, u ∈ V .

Indeed, due to the Minimum Cut Maximum Flow Theorem, there exists ans-t flow of
valueℓ in the networkN = (V,A, c) if and only if the pointy belongs to the polyhedron
P , what provides us with an extended formulation for the polyhedronP of size less than
or equal to4|E|.

If the polyhedronP ⊆ RE is described by0 ≤ y and

y(δ(S)) ≥ ℓ for ∅ 6= S ( V ,

then the polyhedronP is the intersection of the polyhedra, described by0 ≤ y and (2.3.1),
where the vertexs is fixed and the vertext ranges among the verticesV \ {s}.

For example, consider thesubtour elimination polytopePste(G) ⊆ RE for the graph
G = (V,E), defined as

x(δ(S)) ≥ 2 for ∅ 6= S ( V

x(δ(v)) = 2 for v ∈ V

0 ≤ x .

From the discussion above, the following result can be obtained.

Proposition 2.1(Yannakakis [1991]). There is an extended formulation of sizeO(|V ||E|)
for the subtour elimination polytopePste(G), whereG = (V,E).

2.4. Cardinality Indicating Polytope

The cardinality indicating polytopePncard ⊆ R2n+1 is defined as the convex hull of
the points

{(x, z) ∈ {0, 1}n × {0, 1}n+1 : zk = 1 andzj = 0 if j 6= k , wherek =

n
∑

i=1

xi + 1} .

Obviously, these points define the set of vertices of the cardinality indicating polytope
Pncard. For every vertex ofPncard, the firstn coordinates represent the characteristic vector
of a subset of the set[n], while the lastn + 1 coordinates encode the cardinality of this
subset.

A minimal linear description of the cardinality indicatingpolytopePncard was given
by Köppe et al. [2008] and looks as follows

∑

i∈S

xi ≤
|S|
∑

j=0

jzj+1 + |S|
n
∑

j=|S|+1

zj+1 for ∅ 6= S ( [n]

n
∑

i=1

xi =

n
∑

j=0

jzj+1

n
∑

j=0

zj+1 = 1

0 ≤ x and 0 ≤ z .

Hence, the cardinality indicating polytopePncard has exponentially many facets.
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We construct an extended formulation for the cardinality indicating polytopePncard of
sizeO(n2). Namely, we apply the Balas techniques to the set of polytopesPk, k ∈ [n+ 1],

Pk = {(x, z) ∈ Rn ×Rn+1 :

n
∑

i=1

xi = k − 1 , 0 ≤ x ≤ 1 , zk = 1 andzj = 0 if j 6= k} .

The polytopePk is integral, since the matrix of the linear system, defining the polytope
Pk, is totally unimodular. Consequently, the polytopePk is the convex hull of all(2n+1)-
dimensional zero-one points, where the firstn coordinates involve exactlyk − 1 ones and
the lastn+1 coordinates are zeros except for thek-th coordinate. Hence, the vertices of the
polytopesPk partition the vertices of the cardinality indicating polytopePncard according
to the sum of the firstn coordinates, i.e.

vert(Pncard) =
⋃

k∈[n+1]

vert(Pk) ,

what shows thatP is equal to the convex hullconv(
⋃

k∈[n+1] Pk).
There is also an extended formulation of sizeO(n2), which is constructed using the

dynamic programming approach for the networkN = (V,A), where

V = {s} ∪ {t} ∪ {(i, j) ∈ N×N : 1 ≤ j ≤ i ≤ n}

and

A = {(s, (i, j)) ∈ V × V : i = 1} ∪ {((i, j), t) ∈ V × V : i = n}∪
{((i′, j′), (i′′, j′′)) ∈ V × V : j′ ≤ j′′ ≤ j′ + 1, i′′ = i′ + 1} .

Considering the polytopeP1
s−t flow(N) ⊆ RA, associated withs-t paths in the net-

work N = (V,A), we get an extended formulation of the cardinality indicating polytope
Pncard, where the projection is given by the affine mapp : RA → Rn ×Rn+1

pi(y) =











y(s,(1,1)) if i = 1
∑i
j=1 y((i−1,j−1),(i,j)) if 2 ≤ i ≤ n

y((n,i−n−1),t) if n+ 1 ≤ i ≤ 2n+ 1 .

This network imitates the process of scanning the vector from the first till the last coordi-
nate, saving the number of scanned ones and the current position.

Define the corresponding sections : vert(Pncard) → P

sa(x, z) =































x1 = 0 if a = (s, (1, 0))

x1 = 1 if a = (s, (1, 1))

xi+1 = 0 ∧∑i
t=1 xt = j if a = ((i, j), (i+ 1, j))

xi+1 = 1 ∧∑i
t=1 xt = j if a = ((i, j), (i+ 1, j + 1))

∑n
i=1 xi = j if a = ((n, j), t) .

The expressions in the section map are understood as logic formulas, which evaluate to one
if the formula is satisfied, and to zero, otherwise.

Thus, both approaches lead to extended formulations of sizeO(n2) for the cardinality
indicating polytopePncard.

Proposition 2.2. For the cardinality indicating polytopePncard, there exists an extended
formulation of sizeO(n2).
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2.5. Parity Polytope

The parity polytopePneven ⊆ Rn is defined as the convex hull of alln-dimensional
zero-one vectors, which have an even number of coordinates equal to one. Analogously,
the parity polytopePnodd ⊆ Rn is defined, with the vertices involving odd number of ones.
Whenever nothing else is not stated, speaking about the parity polytope, we refer toPneven.

Jeroslow [1975] provided a minimal description of the parity polytopePneven ⊆ Rn,
which is given by0 ≤ x ≤ 1 and

∑

i∈S

xi −
∑

i∈[n]\S

xi ≤ |S| − 1 for S ⊆ [n] , |S| is odd.

Thus, every linear description of the parity polytope in theinitial space involvesΩ(2n)
inequalities.

Obviously, the face of the cardinality indicating polytope

Pncard ∩{(x, z) ∈ Rn ×Rn+1 : zj+1 = 0, j ∈ [n]odd} ,
together with the projection onx variables, provides an extended formulation of the parity
polytopePneven. Hence, there exists an extended formulation for the paritypolytopePneven
of sizeO(n2), due to Proposition 2.2.

In addition, there is an extended formulation for the paritypolytopePneven, constructed
via the Balas techniques and the polytopesPk ⊆ Rn, k ∈ [n+ 1]odd, defined as

Pk = {x ∈ Rn :
∑

i∈[n]

xi = k − 1, 0 ≤ x ≤ 1} .

Because the linear system above is totally unimodular, the polytopePk is the convex hull
of n-dimensional zero-one vectors withk ones. Every polytopePk has a linear descrip-
tion of sizeO(n), what results in an extended formulation of sizeO(n2), constructed
by Yannakakis [1991].

Carr and Konjevod [2004] provided a smaller extended formulation, using the dy-
namic programming approach. Analogously to the cardinality indicating polytope, con-
struct the acyclic networkN = (V,A), where

V = {s} ∪ {t} ∪ {(i, j) ∈ N× Z2 : 1 ≤ i ≤ n}
and

A = {(s, (i, j)) ∈ V × V : i = 1}∪
{((i, j), t) ∈ V × V : i = n, j = 0}∪

{((i′, j′), (i′′, j′′)) ∈ V × V : i′′ = i′ + 1} .
The polytopeP1

s−t flow(N) ⊆ RA, associated withs-t paths in the networkN , together
with the affine mapp : RA → Rn

pi(y) =

{

y(s,(1,1)) if i = 1

y((i−1,0),(i,1)) + y((i−1,1),(i,0)) if 2 ≤ i ≤ n ,

defines an extension of the parity polytopePneven. Moreover, define the section maps :
vert(Pncard) → P as

sa(x, z) =







































x1 = 0 if a = (s, (1, 0))

x1 = 1 if a = (s, (1, 1))

xi+1 = 0 ∧∑i
t=1 xt = j mod (2) if a = ((i, j), (i+ 1, j))

xi+1 = 1 ∧∑i
t=1 xt = j mod (2) if a = ((i, j), (i+ 1, j + 1))

1 if a = ((n, 0), t)

0 if a = ((n, 1), t) .
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This network imitates the scanning process from the first till the last coordinate, storing
the parity of the scanned number of ones and the current position 1.

Proposition 2.3 (Carr and Konjevod [2004]). For the parity polytopePneven, there exists
an extended formulations of sizeO(n).

2.6. Birkhoff Polytope and Perfect Matchings in Bipartite Graphs

Here, the Birkhoff polytope, i.e. the perfect matching polytope in bipartite graphs, is
presented, which is used later as an extension for other polytopes.

Recall that the perfect matching polytope for a graphG = (V,E) with 2n vertices is
defined as the convex hull of the characteristic vectors for perfect matchings inG, i.e.

Pnmatch(G) = conv({χ(M) :M ∈ Mn(G)}) .

WhenG is bipartite, with the bipartitionV∗, V ∗ ⊆ V , such that|V∗| = |V ∗| = n, the per-
fect matching polytopePnmatch(G) has a compact linear description (see Schrijver [2003a]),
given by the non-negativity constraints0 ≤ x and the equations

x(δ(v)) = 1 for all v ∈ V .

Thus, there is a linear description of the perfect matching polytopePnmatch(G) for a bipar-
tite graphG, where the size of the linear description is equal ton2.

Proposition 2.4 (Birkhoff [1946]). For the perfect matching polytopePnmatch(G), G =
Kn,n, there exists a linear description of sizen2.

TheBirkhoff polytopePnbirk ⊆ Rn×n is the convex hull of all zero-onen×nmatrices,
such that every row and every column containsn− 1 zeros and one one. A minimal linear
description (see Schrijver [2003a]) of the Birkhoff polytope consists of the non-negativity
constraints0 ≤ x and

n
∑

t=1

xi,t = 1 for i ∈ [n] and
n
∑

t=1

xt,j = 1 for j ∈ [n] .

Proposition 2.5 (Birkhoff [1946]). For the Birkhoff polytopePnbirk, there exists a linear
description of sizen2.

Clearly, the Birkhoff polytopePnbirk is affinely isomorphic to the perfect matching
polytopePnmatch(G), whereG is the complete bipartite graphKn,n. An affine isomor-
phism can be defined by the mapp : RE(V∗:V

∗) → Rn×n

pi,j(x) = xv∗i,v∗j
for (i, j) ∈ [n]× [n] ,

where the bipartition of the graphG is given as two vertex sets

V∗ = {v∗1, . . . , v∗n} and V ∗ = {v∗1, . . . , v∗n} .

1Of course, similar networks can be designed for the polytopes, which are convex hulls of alln-dimensional
zero-one vectors, where the remainder from the division of the total number of ones in the vector by some number
k belongs to a specified set of remainders. In this case, the dynamic programming approach provides us with an
extended formulation of sizeO(kn). Moreover, these ideas could be generalized to the variations, when the
vertices are not zero-one vectors, but general integer vectors with coordinate values from some given set of
numbers.
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2.7. Permutahedron

ThepermutahedronΠn ⊆ Rn is defined as the convex hull of the points

{(σ(1), . . . , σ(n)) : σ ∈ S(n)} ,
which are the vertices of the permutahedron. A minimal description ofΠn in the spaceRn

looks as follows (see Rado [1952], Conforti et al. [2010])
n
∑

i=1

xi =
n(n+ 1)

2

∑

i∈S

xi ≥
|S|(|S|+ 1)

2
for ∅ 6= S ( [n] .

The Birkhoff polytopePnbirk, together with the affine mapp : Rn×n → Rn

pi(x) =
n
∑

j=1

j xi,j for i ∈ [n] ,

forms an extended formulation of the permutahedronΠn (see Conforti et al. [2010]), where
the section maps : vert(Πn) → Pnbirk looks as follows

si,j(x) =

{

1 if xi = j

0 otherwise.

Proposition 2.6 (see Conforti et al. [2010]). For the permutahedronΠn, there exists an
extended formulation of sizeO(n2).

2.8. Edge Polytope

Theedge polytopePedge(G) ⊆ RV for a graphG = (V,E) is defined as the convex
hull of the points

{χ(e) ∈ RV : e ∈ E} .
Hence, every vertex of the edge polytope corresponds to an edge of the graphG and indi-
cates two vertices, connected by the chosen edge. It is easy to see that the linear system

x(S)− x(N(S)) ≤ 0 for all stable setsS ⊆ V

x(V (G)) = 2 and 0 ≤ x

is valid for the edge polytopePedge(G). Kaibel and Loos [2011], Janssen and Kilakos
[1999] showed that the above linear system describes the edge polytopePedge(G)

1.
Clearly, there exists a vertex extension of the edge polytopePedge(G) of size|E|, what

can be bounded from above byO(|V |2).
Observation 2.1. For the edge polytopePedge(G), G = (V,E), there exists an extended
formulation of sizeO(|E|).

But on the other hand, we are able to construct another extended formulation, using
the following theorem, which is due to Tuza [1984], Erdős and Pyber [1997].

Theorem 2.2(Tuza [1984]). For every graphG = (V,E), |V | = n, there exists a covering
of the edgesE with a total cost at mostn

2

logn by complete bipartite subgraphs, where the
cost of a complete bipartite subgraph is the number of its vertices.

1 Kaibel and Loos [2011] provided conditions, under which theinequalities of the linear system define
facets of the edge polytope.
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Having a complete bipartite subgraph with bipartitionV∗, V ∗, we define the polytope

PV ∗,V∗
= {x ∈ RV : x(V∗) = x(V ∗) = 1, x(V ) = 2, 0 ≤ x} .

Thus, the vertices of the polytopePV ∗,V∗
are the characteristic vectors of the edgesE(V∗ :

V ∗). Applying the Balas technique to the polytopesPV ∗,V∗
, corresponding to the complete

bipartite graphs participating in the edge covering from Theorem 2.2, we show the next
result1.

Proposition 2.7. For the edge polytopePedge(G), G = (V,E), |V | = n, there exists an

extended formulation of sizeO( n2

logn ).

2.9. Cardinality Restricted Matching Polytopes

In this section, we provide extensions for the cardinality restricted matching polytopes.
To construct an extended formulation ofPℓmatch(n), we need the following result on the
existence of small families ofperfect-hash functionsfrom Alon et al. [1995], where results
from Fredman et al. [1984], Schmidt and Siegel [1990] are used.

Theorem 2.3(Alon et al. [1995]). There are mapsφ1, . . . , φq(n,r) : [n] → [r], such that
for everyW ⊆ [n] with |W | = r, there is somei ∈ [q(n, r)], for which the mapφi is
bijective onW and the inequalityq(n, r) ≤ 2O(r) log n holds2.

Let φ1, . . . , φq be maps as guaranteed to exist by Theorem 2.3 withr = 2ℓ andq =

q(n, 2ℓ) ≤ 2O(ℓ) log n, and denote

Mi = {M ∈ Mℓ(n) : φi is bijective onV (M)}
for eachi ∈ [q]. By Theorem 2.3, we have

Mℓ(n) = M1 ∪ · · · ∪Mq .

Consequently, we construct an extended formulation, usingBalas techniques for the
polytopesPi, wherei ∈ [q]

Pi = conv({χ(M) :M ∈ Mi}) .
To finish the construction, we have to provide extended formulations for the polytopes
Pi. From the linear description of the perfect matching polytope (Schrijver [2003a]) and
Lemma 6.2, we obtain

Pi = {x ∈ RE : x
(

E(φ−1
i (s))

)

= 0 for s ∈ [2ℓ] ,

x
(

E(φ−1
i (s) : φ−1

i (t))
)

= ys,t for s, t ∈ [2ℓ], s 6= t ,

0 ≤ x ,

y(δ(S)) ≥ 1 for S ⊆ [2ℓ], |S| is odd} .

As the number of inequalities in the description ofPi is bounded by2O(ℓ) + n2, and
the number of differentPi is bounded by2O(ℓ) log n, we obtain the following theorem.

Theorem 2.4. For all n and ℓ, there is an extended formulation forPℓmatch(n) of size
2O(ℓ)n2 log n.

1Note that the complexity of the construction of the mentioned extension is not clear for us. Erdős and Pyber
[1997] proved a stronger result, namely that there aren/logn bicliques, covering the edges of the graphG. But,
an approximation of a minimum biclique cover (minimum number of bicliques) withinn1/3−ǫ seems to be a
hard problem, unlessP is equal toNP (see Gruber and Holzer [2007]). The proof of Erdős and Pyber [1997] is
constructive, but the ”bottleneck” of the construction is finding a biclique of sizelogn, what seems to be a hard
problem as well (see Chen et al. [2006]).

2Moreover, the functionsφi, i ∈ [q(n, r)] areO(1)-time computable, i.e. having an indexi ∈ [q(n, r)]

andx ∈ [n], the valueφi(x) can be calculated inO(1) running time in the uniform cost model.
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2.10. Cardinality Restricted Cycle Polytope

In this section, we construct an extended formulation of thecardinality restricted cycle
polytopePℓcycl(n), size of which is bounded by2O(ℓ)n3 log n. Starting with the maps
φ1, . . . , φq as guaranteed to exist by Theorem 2.3 withr = ℓ andq = q(n, ℓ) ≤ 2O(ℓ) log n,
we define

Ci = {C ∈ Cℓ(n) : φi is bijective onV (C)}
for eachi ∈ [q]. Thus, we have

Cℓ(n) = C1 ∪ · · · ∪ Cq ,
and denote

Pi = conv({χ(C) : C ∈ Ci})
for all i ∈ [q].

For the Balas method, it suffices to exhibit, for eachi ∈ [q], an extension ofPi of size
bounded byO(2ℓn3). Towards this, let us design the following networkNi = (Wi, Ai),
where

Wi = {s} ∪ {t} ∪ {(v, u, S) ∈ V × V × 2[ℓ] : φi(v) ∈ S, φi(u) = 1}
and

Ai = {(s, (v, u, S)) ∈Wi ×Wi : S = {1}, u = v}∪
{((v, u, S), t) ∈Wi ×Wi : S = [ℓ]}∪

{((v′, u′, S′), (v′′, u′′, S′′)) ∈Wi ×Wi : S
′′ = S′ ∪ {φi(v′′)}, φi(v′′) 6∈ S′, u′ = u′′} .

Consider the polytopeP1
s−t flow(Ni) and define the projection mappi : RA → RE by its

coordinate mapspv′,v′′ : RA → R as
∑

S⊆[ℓ]

y((v′,v′,{1}),(v′′,v′,S)) + y((v′′,v′,[ℓ]),t) ,

whenφi(v′) is equal to one, and
∑

u∈V
S′,S′′∈2[ℓ]

y((v′,u,S′),(v′′,u,S′′)) +
∑

u∈V
S′,S′′∈2[ℓ]

y((v′′,u,S′),(v′,u,S′′))

when norφi(v′) neitherφi(v′′) is equal to one.
The idea, of the network is the scanning process of vertices from the cycle, starting

from the vertex, which is mapped to one byφi, in any direction of the cycle. The stored
information consists of the last scanned vertex, of the start vertex and of the set of images
of the vertices forφi, which are scanned so far. This perspective helps to construct a section
map, in a straight-forward manner.

Theorem 2.5. For all n and ℓ, there is an extended formulation forPℓcycl(n) of size
2O(ℓ)n3 log n.

2.11. Polyhedral Relations

In the rest of the chapter, we deal with the framework of polyhedral relations, devel-
oped by Kaibel and Pashkovich [2011]. This framework heavily exploits the structure of
polyhedra, which are in its scope. Due to this fact, the framework keeps the size of the
constructed extensions small, even when polyhedral relations are applied iteratively.

A polyhedral relationof type(n,m) is a non-empty polyhedronR ⊆ Rn ×Rm. The
imageof a subsetX ⊆ Rn under such a polyhedral relationR is denoted by

R(X) = {y ∈ Rm : (x, y) ∈ R for somex ∈ X} .
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Clearly, the images of polyhedra and convex sets under polyhedral relations are polyhedra
and convex sets, respectively, sinceR(X) is a linear projection ofR ∩ (X ×Rm).

A particularly simple class of polyhedral relations is defined by polyhedraR ⊆ Rn ×
Rm with

R = {(x, y) ∈ Rn ×Rm : y = ̺(x)}
for some affine map̺ : Rn → Rm. For these polyhedral relations, a linear description
of a polyhedronP ⊆ Rn forms an extended formulation of the polyhedronR(P ) via the
projection̺.

Thedomainof a polyhedral relationR ⊆ Rn ×Rm is the polyhedron

dom(R) = {x ∈ Rn : (x, y) ∈ R for somey ∈ Rm} .
Clearly, we have

R(X) =
⋃

x∈X∩dom(R)

R(x)

for all X ⊆ Rn. Note that, in general, for a polytopeP = conv(X) with a finite set
X ⊆ Rn and a polyhedral relationR ⊆ Rn ×Rm, the inclusion

(2.11.1) conv
⋃

x∈X

R(x) ⊆ R(P )

holds without equality, even in case ofP ⊆ dom(R) 1. In Section 2.13, the equality
in (2.11.1) is guaranteed for an important class of polyhedral relations.

2.12. Sequential Polyhedral Relations

A sequence of polyhedral relationsR1, . . . , Rr, such thatRi is a polyhedral rela-
tion of type(di−1, di) for eachi ∈ [r], is called asequential polyhedral relationof type
(d0, . . . , dr) andlengthr. For this sequential polyhedral relation, we denote by

R = Rr ◦ · · · ◦R1

the set of all(z0, zr) ∈ Rd0 ×Rdr for which there is some(z1, . . . , zr−1) with

(zi−1, zi) ∈ Ri for all i ∈ [r] .

SinceR is a linear projection of a polyhedron,R is a polyhedron, and thus, a polyhe-
dral relation of type(d0, dr) with

Rr ◦ . . . ◦R1(X) = Rr(. . . R1(X) . . .)

for all X ⊆ Rd0 . We callR = Rr ◦ · · · ◦R1 the polyhedral relation that isinducedby the
sequential polyhedral relationR1, . . . , Rr.

For a polyhedronP ⊆ Rd0 , the polyhedronQ defined by

z0 ∈ P and (zi−1, zi) ∈ Ri for all i ∈ [r] ,

together with the projection map on to thezr variables, forms an extension ofR(P ). Thus,
there is an extended formulation of the polyhedronR(P ) with d0 + · · ·+ dr variables and
f0 + · · · + fr constraints, whenever we have linear descriptions of the polyhedraP , R1,
. . . ,Rr with f0, f1, . . . ,fr constraints, respectively. Of course, one can reduce the number
of variables in this extended formulation to the dimension of the polyhedronQ.

In order to obtain useful upper bounds on this number by meansof the polyhedral
relationsR1, . . . ,Rr, let us denote, for any polyhedral relationR ⊆ Rn ×Rm, by δ1(R)
andδ2(R) the dimension of the non-empty fibers of the orthogonal projection ofaff(R) to
the first and second factor ofRn ×Rm, respectively. Having

aff(R) = {(x, y) ∈ Rn ×Rm : Ax+By = c} ,

1For example, we may considerP = conv{0, 2} ⊆ R andR = conv{(0, 0), (1, 1), (2, 0)}.
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we getδ1(R) = dim(ker(B)) andδ2(R) = dim(ker(A)). With these parameters, we can
estimate

dim(Q) ≤ min{d0 +
r

∑

i=1

δ1(Ri), dr +
r

∑

i=1

δ2(Ri)} .

Lemma 2.2. LetR1, . . . , Rr be a sequential polyhedral relation of type(d0, . . . , dr) with
the induced polyhedral relationR, and letfi be the number of facets ofRi. If the polyhe-
dronP ⊆ Rd0 has an extended formulation withd′ variables andf ′ inequalities, then we
can construct an extended formulation forR(P ) with

min{d′ +
r

∑

i=1

δ1(Ri), dr +

r
∑

i=1

δ2(Ri)}

variables andf ′ + f1 + · · ·+ fr constraints.

2.13. Affinely Generated Polyhedral Relations

We call a relationR ⊆ Rn × Rm affinely generatedby the family̺j , j ∈ J , if the
setJ is finite and every̺ j : Rn → Rm is an affine map, such that

R(x) = conv
⋃

j∈J

̺j(x)

holds for allx ∈ dom(R).
The maps̺ j , j ∈ J are calledaffine generatorsofR in this case. For such a polyhedral

relationR and a polytopeP ⊆ Rn with

P ∩ dom(R) = conv(X)

for someX ⊆ Rn, we find

R(P ) =
⋃

x∈P∩dom(R)

R(x) =
⋃

x∈P∩dom(R)

conv
⋃

j∈J

̺j(x)

⊆ conv
⋃

x∈P∩dom(R)

⋃

j∈J

̺j(x) = conv
⋃

x∈X

⋃

j∈J

̺j(x) ⊆ conv
⋃

x∈X

R(x) ,

where, due to (2.11.1), all inclusions are equations. In particular, we have established the
following result.

Proposition 2.8. For every polyhedral relationR ⊆ Rn ×Rm that is affinely generated
by a finite family̺ j , j ∈ J , and for every polytopeP ⊆ Rn, we have

(2.13.1) R(P ) = conv
⋃

j∈J

̺j(P ∩ dom(R)) .

As we will often deal with polyhedral relationsR = Rr ◦ · · · ◦ R1 that are induced
by a sequential polyhedral relationR1, . . . , Rr, it is convenient to be able to derive affine
generators forR from affine generators forR1,. . . ,Rr. This, however, seems impossible
in general, where the difficulties arise from the interplay between images and domains in
a sequence of polyhedral relations. However, one still can derive a very useful analogue of
one of the inclusions in (2.13.1).

Lemma 2.3. If we haveR = Rr ◦ · · · ◦R1 and for eachi ∈ [r] the relationRi is affinely
generated by the finite family̺ji , ji ∈ Ji, then the inclusion

R(P ) ⊆ conv
⋃

j∈J

̺j(P ∩ dom(R))

holds for every polyhedronP ⊆ Rn, whereJ = J1 × · · · × Jr and̺j = ̺jr ◦ · · · ◦ ̺j1
for eachj = (j1, . . . , jr) ∈ J .
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PROOF. Trivially, if R(P ) is empty, then the statement holds. Otherwise, for every
xr ∈ R(P ) there is(x0, x1, . . . , xr), such thatx0 ∈ P ∩ dom(R) and(xi−1, xi) ∈ Ri for
all i ∈ [r]. Since every relationRi is generated by the affine maps̺ji , ji ∈ Ji, we conclude
that for everyi ∈ [r], we havexi =

∑

ji∈Ji
µi,ji̺

ji(xi−1) with someµi,ji ≥ 0 for all
ji ∈ Ji, satisfying

∑

ji∈Ji
µi,ji = 1. Applying this iteratively, we are able to representxr

as
xr =

∑

(j1,...,jr)∈J

µ1,j1 · · ·µr,jr̺(j1,...,jr)(x0) ,

where all productsµ1,j1 · · ·µr,jr are non-negative, satisfying
∑

(j1,··· ,jr)∈J

µ1,j1 · · ·µr,jr =
(

∑

j1∈J1

µ1,j1

)

· · ·
(

∑

jr∈Jr

µr,jr
)

= 1.

This shows thatxr belongs toconv
⋃

j∈J ̺
j(x0). �

2.14. Affine Generators and Domains from Polyhedral Relation

In this section, we study, what polyhedral relationsR ⊆ Rn × Rm are affinely gen-
erated1. To do this, we consider the mapp : Rn × Rm → Rn, which is the projection
on the first factor ofRn × Rm. Moreover, we can assume thatp(R) = dom(R) is full-
dimensional.

Let us assume thatR is an affinely generated polyhedral relation with affine generators
̺j , j ∈ J . Clearly, for every faceF ∈ L(R) and for every pointx from p(F ), there exists
an indexj ∈ J , such that(x, ̺j(x)) lies inF , since

conv({(x, ̺j(x)) : j ∈ J}) = R ∩ {z ∈ Rn ×Rm : p(z) = x} .
Consider a faceF ∈ L(R), which is defined by

F = {z ∈ R : 〈a, z〉 = b} ,
such thatp(F ) ⊆ Rn is full-dimensional. If for everyj ∈ J , the affine space

(2.14.1) {x ∈ Rn : 〈a, z〉 = b, z = (x, ̺j(x))} ,
is not full-dimensional, then there existsx ∈ p(F ), such that for everyj ∈ J the point
(x, ̺j(x)) does not lie inF . Thus, there existsj ∈ J for which the affine space (2.14.1)
is full-dimensional, what implies that for everyx ∈ p(R) the equation〈a, (x, ̺j(x))〉 = b
holds. Consequently,p(R) is equal top(F ), since(x, ̺j(x)) belongs toR for all x ∈ p(R).

On the other hand, let us assume thatR(x) is a polytope for everyx from p(R), and
for every faceF ∈ L(R), such thatp(F ) is full-dimensional, we havep(F ) = p(R). For
every faceF ∈ L(F ), we define the setIF

IF = {i ∈ I : 〈ai, z〉 = bi for all z ∈ F} ,
whereR is described by the linear system

〈ai, z〉 ≤ bi for i ∈ I .

Denote byq : Rn ×Rm → Rm the projection on the second factor ofRn ×Rm. Note
that for everyx ∈ Rn the polytopeR(x) is defined by the linear system

〈q(ai), y〉 ≤ bi − 〈p(ai), x〉 for i ∈ I .

Clearly, every vertex of the polytopeR(x) corresponds to the solution of the linear
system

(2.14.2) 〈q(ai), y〉 = bi − 〈p(ai), x〉 for i ∈ IF

1Actually, the results of this section admit an elegant representation via chamber complexes (see Rambau
[1996] for more on such complexes). A polyhedral relationR ⊆ Rn ×Rm is affinely generated if and only if
R ⊆ Rn ×Rm, projRn : Rn ×Rm → Rn induce one maximal chamber and every fiber is bounded.
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for some faceF ∈ L(R), with x ∈ p(F ), where the constraint matrix fory has full column
rank. For a fixed faceF , the solution of such a linear system is the image of an affine map
̺F : Rn → Rm, i.e. y = ̺F (x) (multiplication ofbi−〈p(ai), x〉, i ∈ IF by a matrix with
constant coefficients). And thus for all pointsx from p(R), except for some set of measure
zero (union of the setsp(F ), with F ∈ L(R), wherep(F ) is not full-dimensional), we get

R(x) = conv({̺F (x) : F ∈ F}) ,
whereF denotes the facesF ∈ L(R), wherep(F ) is full-dimensional, and the linear
system (2.14.2) has full column rank. From continuity reasons, the above representation
of R(x) holds for allx ∈ p(R).

Proposition 2.9. A polyhedral relationR ⊆ Rn × Rm is affinely generated if and only
if R(x) is a polytope for everyx ∈ dom(R), and for all facesF ∈ L(R), such that the
dimension ofp(F ) is equal to the dimension ofdom(R), the imagep(F ) is equaldom(R),
wherep : Rn ×Rm → Rn is the projection on the first factor ofRn ×Rm

2.15. Polyhedral Relations from Affine Generators and Domains

A particular task is to analyze, for what affine maps̺j , j ∈ J , there exists a polyhedral
relationR ⊆ Rn×Rm, which is affinely generated by̺j , j ∈ J . A more special question
is, for what affine map̺ , there is a polyhedral relation affinely generated by the identity
map and the map̺. For both these questions, the domain plays a crucial role, since we can
choose arbitrary affine maps̺j , j ∈ J , whenever the domain consists of one point.

For a non-zero vectora ∈ Rn andβ ∈ R, we denote the corresponding hyperplane
by

H=(a, β) = {x ∈ Rn : 〈a, x〉 = β} ,
and by

H≤(a, β) = {x ∈ Rn : 〈a, x〉 ≤ β}
one of the corresponding halfspaces.

Lemma 2.4. If for an affine map̺ : Rn → Rn there exists a polyhedral relationR ⊆
Rn ×Rn, which is affinely generated by̺and the identity map, then̺is equivalent to a
translation map on the domain ofR, or there exists a hyperplaneH=(a, β) ⊆ Rn and a
vectorc ∈ Rn such that1

(1) the domain ofR lies in one of the closed halfspaces, defined by the hyperplane
H=(a, β), i.e.

dom(R) ⊆ H≤(a, β) or dom(R) ⊆ H≤(−a,−β)
(2) for every pointx ∈ dom(R), the vector̺ (x)− x is parallel to the vectorc and

(2.15.1) (〈a, x〉 − β)c = ̺(x)− x .

PROOF. First of all, we show that the vectors̺(x)−x, ̺(y)− y are parallel for every
x, y from dom(R). Indeed, the points(x, x), (x, ̺(x)), (y, y) and(y, ̺(y)) belong to the
polyhedral relationR. Hence, we have

x+ y

2
,
̺(x) + y

2
,
x+ ̺(y)

2
belong to R(

x+ y

2
) ,

The polytopeR(x+y2 ) is one-dimensional, since the polyhedral relationR is generated by
two affine maps. And thus, the vectors̺(x)− x, ̺(y)− y are parallel.

Let us denote byc the non-zero vector̺(x)− x for somex from dom(R). If no such
non-zero vectorc exists, then the map̺ : Rn → Rn is equivalent to the identity map on

1Note that the range of the affine maps described by Lemma 2.4 is bride: translations, reflections with
respect to a hyperplane, shearing transformations etc.
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dom(R), i.e. a translation map. For simplicity of representation,we may assume that the
vectorc is equal toen. Thus, for every pointx from dom(R), we have

̺i(x) =

{

xi if 1 ≤ i ≤ n− 1
∑

i∈[n] αixi − β if i = n
,

for some numbersαi ∈ R, i ∈ [n] andβ ∈ R.
The affine map̺ is equivalent to a translation map, ifαi = 0 for i ∈ [n− 1] and

αn = 1.
Otherwise, denote bya ∈ Rn the vector withai = αi, i ∈ [n− 1] andan = αn − 1,

satisfying the equation (2.15.1). Additionally, if there exist two pointsx, y from dom(R),
such that〈a, x〉 > β and〈a, y〉 < β, then there existsz from dom(R), which is a convex
combination ofx andy and which lies on the hyperplaneH=(a, β), whereR(z) is one-
dimensional. But the hyperplaneH=(a, β) defines the set of the invariant points for̺, and
thus̺(z) is equal toz.

�

In the next section, we can see that Lemma 2.4 provides a characterization of affine
maps̺ , for which there exists an affinely generated polyhedral relation by the identity map
and the affine map̺.

2.16. Reflection Relations

The reflectionat the hyperplaneH = H=(a, β) is the affine map̺ H : Rn → Rn,
where̺H(x) is the point, such that̺H(x)− x lies in the one-dimensional linear subspace

H⊥ = {λa : λ ∈ R}
that is orthogonal toH, and〈a, ̺H(x)〉 = 2β − 〈a, x〉.

Thereflection relation, defined by a vectora ∈ Rn and a numberβ ∈ R, is

Ra,β = {(x, y) ∈ Rn ×Rn : y − x ∈ H=(a, β)
⊥
, 〈a, x〉 ≤ 〈a, y〉 ≤ 2β − 〈a, x〉} .

For the halfspaceH≤ equal toH≤(a, β), we also denoteRa,β byRH≤ . The domain of the
reflection relation is

dom(Ra,β) = H≤ ,

because if(x, y) lies inRa,β , then〈a, x〉 ≤ 2β−〈a, x〉, and thus〈a, x〉 ≤ β. Furthermore,
for eachx fromH≤(a, β), the point(x, x) belongs to the polyhedral relationRa,β 1. From
the fact that the vectory − x lies in H=(a, β)

⊥, it follows δ1(Ra,β) = 1, what together
with Lemma 2.2 leads us to the next result.

Remark 2.1. If R ⊆ Rn ×Rn is induced by a sequential polyhedral relation of lengthr,
consisting of reflection relations only, then for a polyhedronP ⊆ Rn, an extended formu-
lation ofR(P ) withn′+ r variables andf ′+2r inequalities can be constructed, provided
one has at hands an extended formulation forP with n′ variables andf ′ inequalities.

Proposition 2.10. For every non-zero vectora ∈ Rn andβ ∈ R, the reflection relation
Ra,β is affinely generated by the identity map and the reflection̺H , whereH denotes the
hyperplaneH=(a, β).

PROOF. We have to show that for everyx ∈ dom(Ra,β)

Ra,β(x) = conv{x, ̺H(x)} .
Obviously, for everyx from dom(Ra,β), we have that

(x, x), (x, ̺H(x)) belong to Ra,β(x) .

1Note that, although(a, β) and (−a,−β) define the same reflection, the reflection relationsRa,β and
R

−a,−β have different domains.
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On the other hand, lety be an arbitrary point inRa,β(x). Indeed, since bothx and̺H(x)
belong to the liney +H⊥, and since

〈a, x〉 ≤ 〈a, y〉 ≤ 2β − 〈a, x〉 = 〈a, ̺H(x)〉 ,
we conclude thaty is a convex combination ofx and̺H(x). �

Note that for all affine maps, described in Lemma 2.4, there isan extended formula-
tion of the corresponding polyhedral relation, whose construction is similar to the above
extended formulation for the reflection relation. From Proposition 2.8 and Proposition 2.10,
one obtains the following result.

Lemma 2.5. If P ⊆ Rn is a polytope, then for every non-zero vectora ∈ Rn andβ ∈ R,
defining the hyperplaneH = H=(a, β) and the halfspaceH≤ = H≤(a, β), we have

Ra,β(P ) = conv
(

(P ∩H≤) ∪ ̺H(P ∩H≤)
)

.

2.17. Sequential Reflection Relations

Lemma 2.5 describes images under single reflection relations, but for analyses of the
images under sequences of reflection relations we need additional results. For each non-
zero vectora ∈ Rn andβ ∈ R the map̺ ⋆(H≤) : Rn → Rn, which assigns acanonical
preimageto everyy ∈ Rn, is defined

̺⋆(H
≤)(y) =

{

y if y ∈ H≤

̺H(y) otherwise
,

whereH≤ = H≤(a, β), andH = H=(a, β). For ally ∈ Rn, we have

(2.17.1) y ∈ R(̺⋆(H
≤
1 ) ◦ · · · ◦ ̺⋆(H≤

r )(y)) ,

whereR denotes the polyhedral relationR
H

≤
r
◦ . . . ◦ R

H
≤
1

.

Theorem 2.6. For the polyhedral relation

R = R
H

≤
r
◦ . . . ◦ R

H
≤
1
,

with halfspacesH≤
1 , . . . , H

≤
r ⊆ Rn and boundary hyperplanesH1, . . . , Hr, as well as

polytopesP,Q ⊆ Rn whereQ = conv(X),X ⊆ Rn, we haveQ = R(P ), whenever the
following two conditions are satisfied:

(1) P ⊆ Q and̺Hi(Q) ⊆ Q for all i ∈ [r].

(2) ̺⋆(H
≤
1 ) ◦ · · · ◦ ̺⋆(H≤

r )(x) ∈ P for all x ∈ X.

PROOF. From the first condition it follows that the image ofP under every combina-
tion of maps̺ Hi lies inQ. And from Lemma 2.3, this leads to the inclusionR(P ) ⊆ Q. By
the second condition and (2.17.1), we haveX ⊆ R(P ), and henceQ = conv(X) ⊆ R(P ),
due to the convexity ofR(P ). �

2.18. Signing of Polytopes

In order to provide simple examples of extended formulations, obtained from reflec-
tion relations, let us define thesigningof a polyhedronP ⊆ Rn to be

sign(P ) = conv
⋃

ǫ∈{−,+}n

ǫ.P ,

whereǫ.x is the vector, obtained fromx ∈ Rn by changing the signs of all coordinatesi
with ǫi being minus. Forx ∈ Rn, we denote byx(abs) ∈ Rn the vector that is obtained
from x by changing every component to its absolute value.
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For the construction below, we use the reflection relationsR−ek,0, denoted bySk,
wherek ∈ [n]. The corresponding reflectionσk : Rn → Rn is the sign change of thek-th
coordinate, given by

σk(x)i =

{

−xi if i = k

xi otherwise.

The map, which defines the canonical preimage with respect tothe relationSk is given by

σ⋆k(y)i =

{

|yi| if i = k

yi otherwise.

Proposition 2.11. If R is the polyhedral relationSn ◦ . . . ◦ S1, andP ⊆ Rn is a polytope,
such thatv(abs) ∈ P for each vertexv of P , then we have

R(P ) = sign(P ) .

PROOF. With Q = sign(P ), the first condition of Theorem 2.6 is satisfied. Fur-
thermore, we haveQ = conv(X) with X = {ǫ.v : ǫ ∈ {−,+}n, v vertex ofP}. As,
for every x ∈ X with x = ǫ.v for some vertexx of P and ǫ ∈ {−,+}n we have
σ⋆1 ◦ · · · ◦ σ⋆n(x) = x(abs) = v(abs) ∈ P , also the second condition of Theorem 2.6 is
satisfied. Hence, the claim follows. �

The next result follows from Proposition 2.11 and Remark 2.1.

Theorem 2.7. For every polytopeP ⊆ Rn, such thatv(abs) ∈ P for each vertexv of P ,
there is an extended formulation ofsign(P ) with n′ + n variables andf ′ + 2n inequal-
ities, whenever the polytopeP admits an extended formulation withn′ variables andf ′

inequalities.

2.19. Reflection Groups

A finite reflection groupis a groupG of finite cardinality that is generated by a finite
family ̺Hi : Rn → Rn, i ∈ I of reflections at hyperplanesHi ⊆ Rn, containing
the origin. We refer to Humphreys [1990], Fomin and Reading [2007] for all results on
reflection groups that will be mentioned below. The set ofreflection hyperplanesH ⊆ Rn,
where̺H ∈ G, is called theCoxeter arrangementof G. Every Coxeter arrangement
cutsRn into open connected components, which are called theregionscorresponding toG.
The groupG is in bijection with the set of its regions, and it acts transitively on these
regions. We distinguish the topological closure of one of them as thefundamental domain
ΦG of G. Additionally, for every pointx ∈ Rn, there is a unique pointx(ΦG) ∈ ΦG that
belongs to the orbit ofx under the action of the groupG onRn.

A finite reflection groupG is calledirreducible, if the set of reflection hyperplanes
cannot be partitioned into two setsH1 andH2, such that the normal vectors of all hyper-
planes inH1 are orthogonal to the normal vectors of all hyperplanes fromH2. According
to a central classification result, up to linear transformations, the family of irreducible finite
reflection groups consists of the four infinite subfamiliesI2(m) onR2,An−1,Bn, andDn

onRn, as well as six special groups.
For a finite reflection groupG onRn and a polytopeP ⊆ Rn, theG-permutahedron

ΠG(P ) of P is the convex hull of the union of the orbit ofP under the action ofG, i.e.

ΠG(P ) = conv
⋃

̺∈G

̺(P ) .

In the next sections, we construct an extended formulation for ΠG(P ) from an extended
formulation forP , if G is one ofI2(m), An−1, Bn, orDn. The number of inequalities in
the constructed extended formulations will be bounded byf ′ + O(logm), in the case of
G = I2(m), and byf ′ +O(n log n) in the other cases, provided that we have at hands an
extended formulation ofP with f ′ inequalities.
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By the decomposition into irreducible finite reflection groups, one can extend these
constructions to arbitrary finite reflection groupsG onRn, where the resulting extended
formulations havef ′+O(n logm)+O(n log n) inequalities, wherem is the largest number
such thatI2(m) appears in the decomposition ofG into irreducible finite reflection groups.

To see this, let us assume that the set of reflection hyperplanesH can be partitioned
into two setsH1 andH2, such that the normal vectors of all hyperplanes inH1 are orthog-
onal to the normal vectors of all hyperplanes fromH2. Let H1, H2 induce two reflection
groupsG1,G2. Then, we can represent theG-permutahedron as

ΠG(P ) = ΠG1
(ΠG2

(P )) .

Moreover, for every reflection map̺H2 , H2 ∈ H2, and fora ∈ Rn, b ∈ R, such that
H1 = H=(a, b), H1 ∈ H1, we have〈a, x〉 = 〈a, ̺H2(x)〉 for all x ∈ Rn. Hence, we can
apply Theorem 2.6 for the polytopeΠG2

(P ) and the groupG1, whenever the conditions
of Theorem 2.6 hold for the polytopeP and for both groupsG1 andG2.

2.20. Reflection groupI2(m)

Let us denote byHϕ, ϕ ∈ R the hyperplaneH=((− sinϕ, cosϕ), 0) and byH≤
ϕ the

halfspaceH≤((− sinϕ, cosϕ), 0). The groupI2(m) is generated by the reflections atH0

andHπ/m, what is the symmetry group of the regularm-gon. The groupI2(m) consists
of the finite set of all reflections̺Hkπ/m , k ∈ Z, and the finite set of all rotations around
the origin by angles2kπ/m, k ∈ Z. Here, we choose the fundamental region

ΦI2(m) = {x ∈ R2 : x2 ≥ 0, x ∈ H≤
π/m} .

Proposition 2.12. If R is the polyhedral relation

R
H

≤
2rπ/m

◦ · · · ◦ R
H

≤
2π/m

◦R
H

≤
π/m

with r = ⌈logm⌉ andP ⊆ R2 is a polytope, such thatv(ΦI2(m)) ∈ P for each vertexv
of P , then we have

R(P ) = ΠI2(m)(P ) .

PROOF. The first condition of Theorem 2.6 is satisfied forQ = ΠI2(m)(P ). Further-
more, we haveQ = conv(X) with X = {γ.v : γ ∈ I2(m), v vertex ofP}. Let x ∈ X be
some point withx = γ.v for a vertexv of P andγ ∈ I2(m). Observing that

̺
⋆(H

≤
π/m

) ◦ ̺⋆(H
≤
2π/m

) ◦ · · · ◦ ̺⋆(H
≤
2rπ/m

)
(x)

is contained inΦI2(m), we conclude that it equalsx(ΦI2(m)) = v(ΦI2(m)) ∈ P . Therefore,
also the second condition of Theorem 2.6 is satisfied. �

From Proposition 2.12 and Remark 2.1, we can conclude the following theorem.

Theorem 2.8. For each polytopeP ⊆ R2, such thatv(ΦI2(m)) ∈ P for every vertexv
of P , there is an extended formulation ofΠI2(m)(P ) with n′ + ⌈logm⌉ + 1 variables
andf ′ + 2⌈logm⌉ + 2 inequalities, wheneverP admits an extended formulation withn′

variables andf ′ inequalities.

In particular, we obtain an extended formulation of a regular m-gon with⌈logm⌉+ 1
variables and2⌈logm⌉ + 2 inequalities, by choosingP = {(1, 0)} in Theorem 2.8, what
reproves the following result Ben-Tal and Nemirovski [2001].

Proposition 2.13(Ben-Tal and Nemirovski [2001]). For every regularm-gon, there exists
an extended formulation of size⌈logm⌉+ 1.
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2.21. Reflection groupAn−1

The groupAn−1 is generated by the reflections inRn at H=(ek − eℓ, 0) for all pair-
wise distinctk, ℓ ∈ [n]. It is the symmetry group of the(n − 1)-dimensional simplex1

conv{e1, . . . , en} ⊆ Rn. We choose

ΦAn−1
= {x ∈ Rn : x1 ≤ · · · ≤ xn}

as the fundamental domain. The orbit of a pointx ∈ Rn under the action ofAn−1 consists
of all points, which can be obtained fromx by permuting coordinates. Thus, theAn−1-
permutahedron of a polytopeP ⊆ Rn is

ΠAn−1
(P ) = conv

⋃

γ∈S(n)

γ.P ,

whereγ.x is the vector, obtained fromx ∈ Rn by permuting the coordinates according
to γ.

Let us consider more closely the reflection relationTk,ℓ ⊆ Rn × Rn, given as
Rek−eℓ,0. The corresponding reflectionτk,ℓ = ̺Hk,ℓ : Rn → Rn, whereHk,ℓ is the
hyperplaneH=(ek − eℓ, 0) is the transposition of coordinatesk andℓ, i.e.

τk,ℓ(x)i =











xℓ if i = k

xk if i = ℓ

xi otherwise

.

The mapτ⋆k,ℓ = ̺⋆(Hk,ℓ) : Rn → Rn, assigning canonical preimages, is given by

τ⋆k,ℓ(y) =

{

τk,ℓ(y) if yk > yℓ

y otherwise
.

A sequence(k1, ℓ1), . . . , (kr, ℓr) from [n] × [n], where numbers in every pair are
distinct, is called asorting networkif

τ⋆k1,ℓ1 ◦ · · · ◦ τ⋆kr,ℓr (y) = y(sort)

holds for ally ∈ Rn, where we denote byy(sort) ∈ Rn the vector that is obtained fromy
by sorting the components in non-decreasing order. Note that for everyy ∈ Rn we have

y(ΦAn−1
) = y(sort) .

Proposition 2.14. If R is the polyhedral relation

Tkr,ℓr ◦ . . . ◦ Tk1,ℓ1 ,
where the sequence(k1, ℓ1), . . . , (kr, ℓr) is a sorting network, andP ⊆ Rn is a polytope,
such thatv(sort) ∈ P for every vertexv of P , then we have

R(P ) = ΠAn−1
(P ) .

PROOF. WithQ = ΠAn−1
(P ), the first condition of Theorem 2.6 is satisfied. Further-

more, we haveQ = conv(X) with X = {γ.v : γ ∈ S(n), v ∈ vert(P )}. As, for every
x ∈ X with x = γ.v for some vertexv of P andγ ∈ S(n), we have

τ⋆k1,ℓ1 ◦ · · · ◦ τ⋆kr,ℓr (x) = x(sort) = v(sort) ∈ P ,

also the second condition of Theorem 2.6 is satisfied. Hence the claim follows. �

Since due to Ajtai et al. [1983], there are sorting networks of size r = O(n log n),
from Proposition 2.14 and Remark 2.1 we can conclude the following theorem.

1This explains the index in the notationAn−1.
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Theorem 2.9. For each polytopeP ⊆ Rn, with v(sort) ∈ P for each vertexv ofP , there is
an extended formulation ofΠAn−1

(P ) withn′+O(n log n) variables andf ′+O(n log n)
inequalities, wheneverP admits an extended formulation withn′ variables andf ′ inequal-
ities.

Note that the sorting networks described in Ajtai et al. [1983] can be constructed in
time that is bounded polynomially inn.

For the polytopeP = {(1, 2, . . . , n)} ⊆ Rn, Theorem 2.9 yields the same extended
formulation of the permutahedron

Πn = ΠAn−1
(P ) ,

that has been constructed in Goemans, where the extended formulation involvesO(n log n)
variables and inequalities.

Proposition 2.15(Goemans). For the permutahedronΠn ⊆ Rn, there exists an extended
formulation of sizeO(n log n).

If we take the vertex extension for the polytopeP ⊆ Rn×Rn+1, which is the convex
hull of n + 1 points(0n−i+1,1i−1, ei) ∈ Rn × Rn+1, wherei ∈ [n+ 1]. Theorem 2.9
yields an extended formulation withO(n log n) variables and inequalities of the cardinality
indicating polytope

ΠAn−1
(P ) .

Proposition 2.16. For the cardinality indicating polytopePncard ⊆ Rn × Rn+1, there
exists an extended formulation of sizeO(n log n).

2.22. Reflection groupBn

The groupBn is generated by the reflections inRn at the hyperplanesH=(ek + eℓ, 0),
H=(ek − eℓ, 0) andH=(ek, 0) for all pairwise distinctk, ℓ ∈ [n]. It is the symmetry group
of both then-dimensional cubeconv{−1,+1}n and then-dimensional cross-polytope
conv{±e1, . . . ,±en}. We choose

ΦBn
= {x ∈ Rn : 0 ≤ x1 ≤ · · · ≤ xn}

as the fundamental domain. The orbit of a pointx ∈ Rn under the action ofBn consists
of all points, which can be obtained fromx by permuting its coordinates and changing the
signs of some subset of coordinates. Note that we havey(ΦBn ) = y(sort-abs) for all y ∈ Rn,
wherey(sort-abs) = v(sort), wherev = y(abs).

Proposition 2.17. If R is a polyhedral relation

Sn ◦ . . . ◦ S1 ◦ Tkr,ℓr ◦ . . . ◦ Tk1,ℓ1 ,
where(k1, ℓ1), . . . , (kr, ℓr) is a sorting network, andSi are defined as at the end of Sec-
tion 2.18, andP ⊆ Rn is a polytope, such thatv(sort-abs) ∈ P for each vertexv of P , then
we have

R(P ) = ΠBn
(P ) .

PROOF. With Q = ΠBn
(P ), the first condition of Theorem 2.6 is satisfied. Further-

more, we haveQ = conv(X) with X = {γ.ǫ.v : γ ∈ S(n), ǫ ∈ {−,+}n, v ∈ vert(P )}.
As, for everyx ∈ X with x = γ.ǫ.v for some vertexv of P andγ ∈ S(n), ǫ ∈ {−,+}n,
we have

τ⋆k1,ℓ1 ◦ · · · ◦ τ⋆kr,ℓr ◦ σ⋆1 ◦ · · · ◦ σ⋆n(x) = x(sort-abs) = v(sort-abs) ∈ P ,

also the second condition of Theorem 2.6 is satisfied. Hence,the claim follows. �

As for An−1, we thus can conclude the following from Proposition 2.17 and Re-
mark 2.1.
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Theorem 2.10. For every polytopeP ⊆ Rn, such thatv(sort-abs) ∈ P for every vertexv
of P , there is an extended formulation ofΠBn

(P ) with n′ + O(n log n) variables and
f ′+O(n log n) inequalities, wheneverP admits an extended formulation withn′ variables
andf ′ inequalities.

2.23. Reflection groupDn

The groupDn is generated by the reflections inRn at the hyperplanesH=(ek + eℓ, 0)
andH=(ek − eℓ, 0) for all pairwise distinctk, ℓ ∈ [n]. Thus,Dn is a proper subgroup
of Bn, but it is not the symmetry group of a polytope. We choose

ΦDn
= {x ∈ Rn : |x1| ≤ x2 ≤ · · · ≤ xn}

as the fundamental domain. The orbit of a pointx ∈ Rn under the action ofDn con-
sists of all points, which can be obtained fromx by permuting its coordinates and chang-
ing the signs of an even number of its coordinates. For everyx, the pointx(ΦDn ) arises
from x(sort-abs) by changing the sign of the first component, ifx has an odd number of
negative components. For distinctk, ℓ ∈ [n], we denote byEk,ℓ the polyhedral relation
R−ek−eℓ,0 ◦Rek−eℓ,0.

Proposition 2.18. If R is the polyhedral relation

En−1,n ◦ · · · ◦ E1,2 ◦ Tkr,ℓr ◦ . . . ◦ Tk1,ℓ1 ,
where(k1, ℓ1), . . . , (kr, ℓr) is a sorting network, andP ⊆ Rn is a polytope, such that
x(ΦDn ) ∈ P for each vertexv of P , then we have

R(P ) = ΠDn
(P ) .

PROOF. With Q = ΠDn
(P ), the first condition of Theorem 2.6 is satisfied. Let us

denote by{−,+}neven the set of allǫ ∈ {−,+}n with an even number of components equal
to minus. Then, we haveQ = conv(X) with

X = {γ.ǫ.v : γ ∈ S(n), ǫ ∈ {−,+}neven, v ∈ vert(P )} .
For distinctk, ℓ ∈ [n], we define

η⋆k,ℓ = ̺⋆(H
≤(ek−eℓ,0)) ◦ ̺⋆(H≤(−ek−eℓ,0)) .

For everyy ∈ Rn, the vectorη⋆k,ℓ(y) is the vectory′ ∈ {y, τk,ℓ(y), ρk,ℓ(y), ρk,ℓ(τk,ℓ(y))}
with |y′k| ≤ y′ℓ, whereρk,ℓ(y) arises fromy by changing the sign of both componentsk
and ℓ. As, for everyx ∈ X with x = γ.ǫ.v for some vertexv of P andγ ∈ S(n),
ǫ ∈ {−,+}neven, we have

τ⋆k1,ℓ1 ◦ · · · ◦ τ⋆kr,ℓr ◦ η⋆1,2 ◦ · · · ◦ η⋆n−1,n(x) = x(ΦDn ) = v(ΦDn ) ∈ P ,

also the second condition of Theorem 2.6 is satisfied. Hence,the claim follows. �

And again, similarly to the casesAn−1 andBn, we derive the following result from
Proposition 2.18 and Remark 2.1.

Theorem 2.11. For every polytopeP ⊆ Rn, such thatv(ΦDn )(v) ∈ P for every vertexv
of P , there is an extended formulation ofΠDn

(P ) with n′ + O(n log n) variables and
f ′+O(n log n) inequalities, wheneverP admits an extended formulation withn′ variables
andf ′ inequalities.

Restricting our attention to the polytopes

P = {(−1, 1, . . . , 1)} ⊆ Rn or P = {(1, 1, . . . , 1)} ⊆ Rn ,
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we can remove the reflection relationsTi1,j1 , . . . , Tir,jr from the construction in Proposi-
tion 2.18. Thus, we obtain extended formulations with2(n− 1) variables and4(n− 1) in-
equalities of the convex hulls of all vectors in{−1,+1}n with odd, respectively even num-
ber of minus ones. Thus, applying the affine transformation of Rn given byq : Rn → Rn

q(y) =
1

2
(1n − y) ,

we derive extended formulations with2(n− 1) variables and4(n− 1) inequalities for the
parity polytopes, what reproves Proposition 2.3.

2.24. Huffman Polytopes

A Huffman-vectoris a vectorv ∈ Rn, such that there is a rooted binary tree withn
leaves, which are labeled by the numbers from[n], and for everyi ∈ [n], the number of
arcs on the path from the root to thei-th leaf equalsvi. We denote byVnhuff the set of all
Huffman-vectors inRn, and by

Pnhuff = conv(Vnhuff)

theHuffman polytope. Note that currently no linear description of the Huffman polytope
Pnhuff inRn is known1.

Nevertheless, the properties of Huffman vectors and Huffman polytopes listed below
can be easily verified. Moreover, these properties appear tobe useful for our further dis-
cussion.

Observation 2.2.
(1) For everyγ ∈ S(n)

γ.Vnhuff = Vnhuff .

(2) For everyv ∈ Vnhuff , there are at least two components ofv equal to

max
k∈[n]

vk .

(3) For everyv ∈ Vnhuff and

vi = vj = max
k∈[n]

vk

for some pair of distincti, j, the point

(v1, . . . , vi−1, vi − 1, vi+1, . . . , vj−1, vj+1, . . . , vn)

lies inVn−1
huff .

(4) For everyx ∈ Vn−1
huff , the point

(x1, . . . , xn−2, xn−1 + 1, xn−1 + 1)

lies inVnhuff .

To construct an extended formulation of the Huffman polytope, we need to define the
embedding

Pn−1 = {(x1, . . . , xn−2, xn−1 + 1, xn−1 + 1) : (x1, . . . , xn−1) ∈ Pn−1
huff }

of Pn−1
huff intoRn.

Proposition 2.19. If R ⊆ Rn ×Rn, where3 ≤ n, is the polyhedral relation

(2.24.1) T1,2 ◦T2,3 ◦ · · · ◦ Tn−2,n−1 ◦Tn−1,n ◦
T1,2 ◦T2,3 ◦ · · · ◦ Tn−3,n−2 ◦Tn−2,n−1 ,

then we haveR(Pn−1) = Pnhuff .

1In fact, it seems that such descriptions are extremely complicated. For instance, it was proved thatPn
huff

hasΩ(n!) facets Nguyen et al. [2010].
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PROOF. With P = Pn−1 andQ = Pnhuff , the first condition of Theorem 2.6 is obvi-
ously satisfied, what is due to parts (1) and (4) of Observation 2.2. We haveQ = conv(X)
with X = Vnhuff . Furthermore, for everyx ∈ X andy = τ⋆(x) with

(2.24.2) τ⋆ = τ⋆n−2,n−1 ◦τ⋆n−3,n−2 ◦ · · ·◦τ⋆2,3 ◦τ⋆1,2 ◦τ⋆n−1,n ◦τ⋆n−2,n−1 ◦ · · ·◦τ⋆2,3 ◦τ⋆1,2 ,
we have

yn = yn−1 = max
i∈[n]

xi ,

the part (3) of Observation 2.2 impliesτ⋆(x) ∈ Pn−1. Therefore, the claim follows by
Theorem 2.6. �

Thus, from Remark 2.1, we obtain an extended formulation forPnhuff with n′+2n−3
variables andf ′+4n−6 inequalities, provided we have an extended formulation forPn−1

huff

with n′ variables andf ′ inequalities. Since the Huffman polytopeP2
huff is a single point,

inductive application of this approach leads to the following result.

Proposition 2.20. For the Huffman polytopePnhuff , there is an extended formulation of
sizeO(n2).

Actually, the Huffman polytopePnhuff has an extended formulation of sizeO(n log n),
but this demands another sorting approach. In order to indicate the necessary modifications,
let us denote byΘk the sequence

(k − 2, k − 1), (k − 3, k − 2), . . . , (1, 2), (k − 1, k), (k − 2, k − 1), . . . , (1, 2)

of index pairs, which are used in (2.24.1) and (2.24.2). For every sequence

Θ = ((i1, j1), . . . , (ir, jr))

of pairs of distinct indices, we define

τ⋆Θ = τ⋆i1,j1 ◦ · · · ◦ τ⋆ir,jr ,
thusτ⋆Θn

is denoted byτ⋆ in (2.24.2). Furthermore, letπk : Rk → Rk−1 to be the linear
map defined via

πk(y) = (y1, . . . , yk−2, yk−1 − 1)

for all y ∈ Rk. For the above construction, we need that for everyv ∈ Vnhuff and every
k ≥ 3 the vector

(2.24.3) xk = τ⋆Θk
◦ πk+1 ◦ τ⋆Θk+1

◦ · · · ◦ πn ◦ τ⋆Θn
(v)

satisfies
xkk−1 = xkk = max

i∈[k]
xki .

It turns out that this property is preserved, when replacingthe sequenceΘn by an arbitrary
sorting network, and for everyk ≥ 3, the sequenceΘk by the sequence

(ik2 , i
k
1), (i

k
3 , i

k
2), . . . , (i

k
rk
, ikrk−1), (i

k
rk−1, i

k
rk−2), . . . , (i

k
3 , i

k
2), (i

k
2 , i

k
1)

with

ikt =











k if t = 1

k − 1 if t = 2

ikt−1 − 2t−3 otherwise

,

and whererk is the maximalt, such thatikt is greater than zero. Denote byJk the set of
indices, involved in this sorting transformationΘk, i.e.

Jk = {ikt : t ∈ [rk]} .
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FIGURE 1. The sorting procedure: first the comparators on the path
above are applied, and then the comparators on the path below(the small-
est of two elements moves always into the left side).

Proposition 2.21. For every2 ≤ k ≤ n, the Huffman vectorxk, defined by(2.24.3), is
sorted or it has the following form

xkk = · · · = xkk−pk+1 = max
i∈[k]

xki

xkk−pk = · · · = xkk−pk−qk+1 = max
i∈[k]

xki − 1

xkk−pk−qk = · · · = xkk−pk−qk−ℓk+1 = max
i∈[k]

xki

xk1 ≤ · · · ≤ xkk−pk−qk−ℓk ≤ max
i∈[k]

xki − 1 ,

where the indexk − pk − qk + 1 belongs toJk andpk is strictly greater thanℓk.

PROOF. The proof is by induction on the numbern, i.e. we assume that if a vector
xk ∈ Rk satisfies

xk = τ⋆Θk
◦ πk+1 ◦ τ⋆Θk+1

◦ · · · ◦ πm(x)

for a sorted Huffman vectorx ∈ Rm, wherem < n, then the vectorxk satisfies the claim
above.

If the Huffman vector
yn−1 = πn ◦ τ⋆Θn

(v)

is sorted, then we can apply the induction assumption form = n − 1 and the Huffman
vector

x = τ⋆Θn−1
◦ πn ◦ τ⋆Θn

(v) .

Otherwise, for the Huffman vectoryn−1, we have

yn−1
n−1 = u− 1 and yn−1

1 ≤ · · · ≤ yn−1
n−2 = u ,

whereu is the maximum value among the coordinates of the Huffman vector xn. After
application of the sorting transformationΘn−1 to yn−1, we get the Huffman vectorxn−1

with

xn−1
n−1 = · · · = xn−1

(n−1)−pn−1+1 = u

xn−1
(n−1)−pn−1

= u− 1

xn−1
(n−1)−pn−1−1 = · · · = xn−1

(n−1)−pn−1−ℓn−1
= u

xn−1
1 ≤ · · · ≤ xn−1

(n−1)−pn−1−ℓn−1−1 ≤ u− 1 ,

wherepn−1 = 2i−1 andℓn−1 < 2i−1. If the Huffman vector

xn−1 = τ⋆Θn−1
◦ πn ◦ τ⋆Θn

(v)

is sorted, i.e.ln−1 = 0, then the induction assumption form = n − 1 andx = xn−1 fin-
ishes the proof. Otherwise, the index(n−1)−pn−1 belongs toJn−1, thus the assumption
of the proposition holds fork = n− 1.

Let us assume that for the Huffman vector

xk = τ⋆Θk
◦ · · · ◦ πn ◦ τ⋆Θn

(v)
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the claim holds. Then, the Huffman vector

yk−1 = πk ◦ τ⋆Θk
◦ · · · ◦ πn ◦ τ⋆Θn

(v)

reads

yk−1
k−1 = u− 1

yk−1
k−2 = · · · = yk−1

k−pk+1 = u

yk−1
k−pk

= · · · = yk−1
k−pk−qk+1 = u− 1

yk−1
k−pk−qk

= · · · = yk−1
k−pk−qk−ℓk+1 = u

xk1 ≤ · · · ≤ xkk−pk−qk−ℓk ≤ u− 1 ,

Obviously, the set of indicesJk−1 is obtained from the set of indicesJk, decreasing every
element by one and excluding the index zero. Hence, the index(k − 1) − (pk − 1) − qk
belongs to the index setJk−1.

Let us consider the coordinates ofyk−1 with indices inJk−1, i.e. the coordinates
participating inΘk−1. Note that there exists just oneu in this sequence before theu − 1
block, since(k − 1)− (pk − 1)− qk belongs to the indices setJk−1 andpk > lk. Clearly,
the action ofτ⋆Θk−1

is equivalent to swapping of the firstu-value with the last(u−1)-value
in this sequence of coordinates. Thus after the sorting transformationτ⋆Θk−1

the Huffman
vector

xk−1 = τ⋆Θk−1
◦ πk ◦ τ⋆Θk

◦ · · · ◦ πn ◦ τ⋆Θn
(v)

has the desired form. Additionally, we havelk−1 < pk−1 and(k − 1) − pk−1 − qk−1 ∈
Jk−1.

�

To finish the construction, we have to verify that

xkk−1 = xkk = max
i∈[k]

xki .

for the Huffman vectorxk, k ≥ 3. Obviously, this follows from Proposition 2.21, because
the inequalitypk > ℓk impliespk ≥ 2, since every Huffman vector has even number of
maximal elements, i.e.pk + ℓk has to be even. We obtain the following theorem, since the
numberrk is bounded byO(log k) and since there are sorting networks of sizeO(n log n),
as in Section 2.21.

Theorem 2.12. For the Huffman polytopePnhuff , there is an extended formulation of size
O(n log n).





CHAPTER 3

Planar Graphs

In this chapter, we consider extended formulations for polytopes, associated with com-
binatorial objects in planar graphs. Indeed, for a lot of polytopes, for which no compact
extended formulation is known in the general case, there arecompact extended formula-
tions, whenever we restrict our attention to planar graphs.

For the perfect matching polytope, which is one of the central polytopes for the theory
of extended formulations, there exist compact extensions in the case of planar graphs (see
Barahona [1993], Gerards [1991]). Moreover, the cut polytope for planar graphs has a
compact extension (see Barahona [1993]). This is an illustrative example, since for the cut
polytope of the complete graph no linear description in the initial space is known, and no
compact extended formulation exists (see Fiorini et al. [2011b]).

In Section 3.2, we construct a compact extended formulationfor the perfect matching
polytope in graphs, with the genus not greater than the logarithm of the number of vertices
in the graph. This construction is based on the extension given by Gerards [1991], which
is produced via theT -join polyhedron. The modifications we undertake in the extended
formulation lead to a size reduction.

In Section 3.3, compact extended formulations for the cut polytope andT -join poly-
tope of Barahona [1993] are presented, what gives a compact extended formulation of the
perfect matching polytopes of planar graphs.

In Sections 3.4 and 3.5, extended formulations for the spanning tree polytope, which is
due to Williams [2002], and the subtour elimination polytope, due to Rivin [1996], Rivin
[2003], Cheung [2003], are presented. The initial extendedformulation for the subtour
elimination polytope is constructed for planar graphs, where every face involves three ver-
tices, i.e. for graphs, defining triangulations. In this work, we provide another extension
and a simple proof for the validity of the extended formulation without the restriction to
triangulations. On the other hand, for the graphs, defining triangulations, the presented
extension and the extension in Rivin [1996], Rivin [2003], Cheung [2003] coincide.

3.1. Graph Embeddings

Thegenusγ(G) of a graphG = (V,E) is the minimum genus of a closed orientable
surfaceS, such that the graphG can be embedded on the surfaceS without crossing edges.
A graphG is calledplanar if it is embeddable on the plane, i.e. on the closed orientable
surface with genus zero. We refer to White [1973], Schrijver [2003c] for all relevant facts
about graphs and embeddings of graphs on surfaces.

Having an embedding of a graphG on a surfaceS without crossings, define thedual
graphG = (V ∗, E∗), whereV ∗ is the set of faces, induced by the graphG on the surface
S, and the edgesE∗ correspond to the edgesE, where each edge fromE∗ connects two
neighbor faces. TheEuler characteristicχ(G) of a graphG = (V,E) is equal2− 2γ(G).
Moreover, if a connected graphG is embedded into a surfaceS, whereχ(G) = χ(S), the
Euler Formula states

|V | − |E|+ |F | = χ(G) ,

whereF denotes the set of faces induced by the embedding of the graphG on the surface
S.

35
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Note that an embedding of a graphG = (V,E) on a surfaceS can be obtained in
O(|V |O(γ(S))

) running time (see Filotti et al. [1979]) In fact, we should not expect an
algorithm with a running time, which is polynomial in both|V | andγ(S), since Thomassen
[1989] showed that it is anNP-hard problem to determine the genus of a graphG =
(V,E).

3.2. Extended Formulation ofT -join Polyhedron

Given a graphG = (V,E), define theT -join polytopePTjoin(G) ⊆ RE for some even
subset of verticesT ⊆ V , as

PTjoin(G) = conv({χ(T ) ∈ RE : T ∈ J T (G)}) ,
whereJ T (G) denotes the set of allT -joins in the graphG, i.e. the set of allR ⊆ E, such
that

T = {v ∈ V : |δ(v) ∩R| is odd} .
TheT -join polytopePTjoin(G) can be described by0 ≤ x ≤ 1 and the following linear
inequalities (see Edmonds and Johnson [1973], Schrijver [2003a])

x(δ(S) \ F )− x(F ) ≥ 1− |F | for S ⊆ V, F ⊆ δ(S), |S ∩ T |+ |F | is odd.

Note that the perfect matching polytope for the graphG = (V,E) is a face of theV -join
polytopePVjoin(G), where the face is defined by the equations

x(δ(v)) = 1 for v ∈ V .

TheT -join polyhedronis the polyhedron

PTjoin(G) +R
E
+ .

Moreover, the linear inequalities

(3.2.1) x(δ(S)) ≥ 1 for S ⊆ V, |S ∩ T | is odd,

together with the non-negativity constraintsx ≥ 0, describe theT -join polyhedron (see
Edmonds and Johnson [1973]).

Similarly, the perfect matching polytope is the face of theV -join polyhedron defined
by

x(δ(v)) = 1 for v ∈ V .

Thus, every extensionQ ⊆ Rd, p : Rd → RE of theV -join polyhedron (or theV -join
polytope) provides an extension of the perfect matching polytope via the polyhedron

Q ∩ {z ∈ Rd : x = p(z) , x(δ(v)) = 1 for v ∈ V }
and the affine mapp : Rd → RE . Thus, in order to construct an extended formulation
for the perfect matching polytope, one can focus on extendedformulations for theT -join
polyhedron orT -join polytope.

3.2.1. Vector Spaces.Consider an embedding of a connected graphG = (V,E) on
a surfaceS, such that1

χ(G) = χ(S) ,
and the corresponding dual graphG∗ = (V ∗, E∗), whereG∗ may have loops and parallel
edges. Here and later, identify the edges of the graphG with the edges of the graphG∗.

Consider two vector spaces, defined over the Galois fieldGF(2) as

V = {y ∈ GF(2)E
∗

: y = χ(C), C ⊆ E∗, |C ∩ δ(v)| is even for allv ∈ V ∗}
and

W = {y ∈ GF(2)E : y = χ(δ(S)), S ⊆ V } .
1In this chapter,χ(G) stands for the Euler characteristic of a graphG, what applies also to a surfaceS. In

other cases,χ(S) denotes the characteristic vector ofS, as it was in the previous chapters.



3.2. EXTENDED FORMULATION OFT -JOIN POLYHEDRON 37

Here adding a loop{v, v} ∈ E∗ to C ⊆ E∗ does not affect the parity of|C ∩ δ(v)| for
everyv ∈ V ∗.

Indeed, it is not hard to see thatV forms a vector space overGF(2). On the other hand,
W is a vector space overGF(2), since the sum of every two vectors fromW belongs to
W, what is a fundamental property of cuts in a graph.

Clearly, the vector spaceW is a subspace of the vector spaceV, because the cardinality
of the intersection of every cycle with a cut is even. And, thedimensions of the vector
spacesV andW overGF(2) satisfy

dim(V) = |E∗| − |V ∗|+ 1 = |E| − |F |+ 1

and
dim(W) = |V | − 1 ,

since the graphG is connected. To verify this, one can construct basis vectors for V and
W. For the vector spaceW, takeχ(δ(v)) as basis vectors, where the vertexv ranges over
V except a fixed vertexvinf . For the vector spaceV, takeχ(Ce), where the edgee ranges
overE∗ except the edges of a fixed spanning treeT for the graphG∗, andCe is the cycle
in G∗, defined by the edgee and the treeT (loops are considered to be cycles).

From the Euler Formula, for the dimensions of the vector spacesW andV, one has

(3.2.2) dim(V)− dim(W) = 2− (|F | − |E|+ |V |) = 2− χ(S) ,
what, for simplicity, is denoted as

k = 2− χ(S) = 2γ(S) .
Consequently, there exists a linear functionφ : GF(2)E → GF(2)k, such that

(3.2.3) W = {y ∈ V : φ(y) = 0k} .
Moreover, there exists another linear functionψ : GF(2)E → GF(2), such that

(3.2.4) {y ∈ GF(2)E : y = χ(δ(S)), S ⊆ V, |S ∩ T | is odd} =

{y ∈ V : φ(y) = 0k, ψ(y) = 1} .
For example, the linear functionψ : GF(2)E → GF(2), defined as

ψ(y) = y(R) ,

whereR ⊆ E is aT -join in the graphG, satisfies (3.2.4). Indeed, for a vectory ∈ GF(2)E ,
given as

y = χ(δ(S)) ,

whereS ⊆ V , overGF(2) the following holds

y(R) =
∑

v∈S

|δ(v) ∩R| =
∑

v∈T∩S

|δ(v) ∩R| = |T ∩ S| ,

becauseR is aT -join in the graphG.

3.2.2. Extended Formulation ofT -join Polyhedron. Now, the modified extended
formulation of Gerards [1991] for theT -join polyhedron is presented1. The variables in
the extended formulation of theT -join polyhedron are indexed by triples

{(∅, f, g) : f ∈ GF(2)k, g ∈ GF(2)}
and

{({v, u}, f, g) : v, u ∈ V ∗, f ∈ GF(2)k, g ∈ GF(2)} .

1In Gerards [1991] , the extended formulation is divided into aset of linear systems, what results in a

formulation of sizeO(2k
2
+2k|V ∗||E|), in comparison to the sizeO(2k|V ∗||E|) of the presented formulation.

Nevertheless, the fundamental ideas of both formulations aresimilar.
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Consider the following system of linear inequalities1

z{v,u},f+φ({v,u}),g+ψ({v,u}) − z∅,f,g ≤ x{v,u}(3.2.5)

z{v,w},f+φ({v,u}),g+ψ({v,u}) − z{u,w},f,g ≤ x{v,u}(3.2.6)

z∅,f+φ({v,u}),g+ψ({v,u}) − z{u,v},f,g ≤ x{v,u} ,(3.2.7)

for all f ∈ GF(2)k, g ∈ GF(2) and for all distinct verticesv, w, u ∈ V ∗, such that
{v, u} ∈ E∗, and

z∅,f+φ({v,v}),g+ψ({v,v}) − z∅,f,g ≤ x{v,v}(3.2.8)

z{v,u},f+φ({v,v}),g+ψ({v,v}) − z{v,u},f,g ≤ x{v,v} ,(3.2.9)

for all f ∈ GF(2)k, g ∈ GF(2) and for all distinct verticesv, u ∈ V ∗, such that{v, v} ∈
E∗, and

z∅,0k,0 = 0 and z∅,0k,1 ≥ 1(3.2.10)

0 ≤ x .(3.2.11)

In the linear system above, the expressionsφ({v, u}) andψ({v, u}) are used as shortcuts
for φ(χ({v, u})) andψ(χ({v, u}), respectively.

Theorem 3.1. For every connected graphG = (V,E), the linear system, described
by (3.2.5)– (3.2.11), together with the projection on thex variables, forms an extended
formulation of theT -join polyhedron.

PROOF. First, prove that for every pointx ∈ RE from theT -join polyhedron in the
graphG, there arez variables to satisfy (3.2.5) – (3.2.11). For this, definez variables as
follows

z∅,f,g = min
R⊆E
χ(R)∈V

φ(χ(R))=f,ψ(χ(R))=g

x(R) ,

for all f ∈ GF(2)k, g ∈ GF(2), and

z{v,u},f,g = min
R∈J {u,v}(G∗)

φ(χ(R))=f,ψ(χ(R))=g

x(R) ,

for all distinct u, v ∈ V ∗ and for allf ∈ GF(2)k, g ∈ GF(2), where adding a loop
{w,w} ∈ E∗ to R ⊆ E∗ does not affect the parity of|R ∩ δ(w)| for everyw ∈ V ∗

(the value is zero, if the set over which the minimum is definedis empty). Obviously,
the constraints (3.2.5)– (3.2.9) are satisfied for the defined z values. And the constraint
(3.2.10)

z∅,0k,1 ≥ 1

holds, since

z∅,0k,1 = min
R⊆E
χ(R)∈V

φ(χ(R))=0k,ψ(χ(R))=1

x(R) = min
S⊆V
R=δ(S)

|S∩T | is odd

x(R) ≥ 1 ,

due to (3.2.1) and (3.2.4). Moreover, the variablez∅,0k,0 is equal to zero, due to the non-
negativity of the vectorx.

On the other hand, for everyx ∈ RE , such that there arez values, satisfying the linear
system (3.2.5) – (3.2.11), the inequalities (3.2.1) hold, i.e.

x(δ(S)) ≥ 1

1 This linear system imitates a network, with the vertex set equal to the index set of the additional variables
in the extended formulation, where the sources and sinkt in the network are defined as

s = (∅,0k, 0) and t = (∅,0k, 1) .

The extended formulation, describes upper bounds on the lengths of a subset of arcs in the network, and demands
that the shortest path between the sources and the sinkt is not less than one.
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for everyS ⊆ V , such that|S ∩ T | is odd. Indeed, the characteristic vector

y = χ(δ(S))

belongs to
{r ∈ V : φ(r) = 0k, ψ(r) = 1} .

The vectory defines a set of walks in the graphG∗, since this is true for all vectors from
V. Ordering these edge disjoint walks(e11, . . . , e

1
ℓ1
), . . . , (et1, . . . , e

t
ℓt
), let us write these

edges in one sequence

(e1, . . . , eℓ) = (e11, . . . , e
1
ℓ1 , e

2
1, . . . , e

t−1
ℓt−1

, et1, . . . , e
t
ℓt)

in the same order as they appear in the walk. Summing the inequalities (3.2.5) – (3.2.10),
depending on the values

f = φ
(

χ(∪i≤jei)
)

and g = ψ
(

χ(∪i≤jei)
)

and at most two verticesu, v ∈ V ∗, with odd degrees in∪i≤jei, the desired inequality

1 ≤ z∅,0k,1 − z∅,0k,0 ≤ x(δ(S))

is obtained. �

The constructed extension of theT -join polyhedron has sizeO(2k|E∗||V ∗|). This,
due to (3.2.2), leads us to the next generalization of the theorem of Gerards.

Theorem 3.2. For every graphG = (V,E), |V | = n, andT ⊆ V , there exists a compact
extended formulation for theT -join polyhedron, whenever the genusγ(G) is equal to
O(log n).

Here, one can get rid of the connectivity condition, since anextended formulation can
be constructed for every connected component of the graphG, separately.

Recall that the perfect matching polytope for a graphG = (V,E) is a face of the
V -join polyhedron, what implies the next result.

Proposition 3.1. For every graphG = (V,E), |V | = n, there exists a compact ex-
tended formulation for the perfect matching polytope, whenever the genusγ(G) is equal
toO(log n).

Moreover, since the inequality|E| ≤ 3 |V | − 6 holds for every planar graphG =
(V,E), |V | ≥ 3, the next proposition follows from the Euler Formula.

Proposition 3.2 (Gerards [1991]). For every planar graphG = (V,E), |V | = n, there
exists an extended formulation for the perfect matching polytope of sizeO(n3).

3.2.3. Construction of Extended Formulation. In the presented construction, it is
necessary to obtain the dual graphG∗ from an embedding of the graphG on a surface
S, where the genusγ(S) is equal toγ(G), what can be done inO(|V |O(γ(G))

) time, due
to Filotti et al. [1979]. The mapφ : GF(2)E → GF(2)k can be obtained in polynomial
running time, using the basis vectors forV, W, and the mapψ : GF(2)E → GF(2) can
be obtained in polynomial running time, since it is enough tofind aT -join in the graphG,
what can be done inO(|V |3) running time (see Schrijver [2003a]).

3.3. Extended Formulation of Cut Polytope in Planar Graphs

The next extended formulation of the perfect matching polytope in planar graphs, is
due to Barahona [1993], and is obtained via an extended formulation for thecut polytope
Pcut(G),G = (V,E), which is defined as

Pcut(G) = conv({χ(δ(S)) ∈ RE : S ⊆ V })
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Clearly, the inequalities

x(F )− x(C \ F ) ≤ |F | − 1 for C ∈ C(G), F ⊆ C, |F | is odd(3.3.1)

0 ≤ x ≤ 1(3.3.2)

are valid for every pointx from the cut polytopePcut(G), since the cardinality of the
intersection of a cut and a cycle is even. But, the linear system (3.3.1), (3.3.2) defines the
cut polytopePcut(G) if and only ifG is not contractible toK5 (see Barahona and Mahjoub
[1986]).

For further discussion, defineQ(G) ⊆ RE to be the polytope, described by the linear
system (3.3.1), (3.3.2).

3.3.1. Projecting Linear System.The relation between the linear systems (3.3.1),
(3.3.2) for a graph and its subgraph is studied here.

Lemma 3.1. For every graphG = (V,E), the polytopeQ(G′) ⊆ RE , whereG′ =
(V,E′), E′ = E \ {e} for some edgee ∈ E, is obtained from the polytopeQ(G), by the
projection to the variablesE′.

PROOF. The projection of the polytopeQ(G) to the variablesE′ satisfies the linear
system (3.3.1), (3.3.2) for the graphG′, since the set of cyclesC(G′) is a subset of the set of
cyclesC(G). To finish the proof of the lemma, it is necessary to show that all inequalities,
which are valid for the projection ofQ(G) to the variablesE′, follow from the linear
system (3.3.1), (3.3.2) for the graphG′. For this, use the Fourier-Motzkin elimination
method, what leads to three possible cases.

Forxe ≤ 1 andx(F ) − x(C \ F ) ≤ |F | − 1, wheree ∈ C \ F , C ∈ C(G), F ⊆ C,
|F | is odd, one gets

x(F )− x(C \ (F ∪ {e})) ≤ |F | ,
what follows from (3.3.2) forG′.

For−xe ≤ 0 andx(F )− x(C \ F ) ≤ |F | − 1, wheree ∈ F , C ∈ C(G), F ⊆ C, |F |
is odd, one gets

x(F \ {e})− x(C \ F ) ≤ |F | − 1 ,

what follows from (3.3.2) forG′.
Consideringx(F1) − x(C1 \ F1) ≤ |F1| − 1 andx(F2) − x(C2 \ F2) ≤ |F2| − 1,

wheree ∈ F1, e ∈ C2 \ F2, C1, C2 ∈ C(G), F1 ⊆ C1, F2 ⊆ C2, |F1| and|F2| are odd,
one gets

x(F1)− x(C1 \ F1) + x(F2)− x(C2 \ F2) ≤ |F1|+ |F2| − 2 ,

which can be transformed into the inequality

x(F1 \ {e}) + x(F2)− x(C1 \ F1)− x(C2 \ (F2 ∪ {e})) ≤ |F1 \ {e}|+ |F2| − 1 ,

what follows from (3.3.1), (3.3.2) forG′. Indeed, in the case of

F1 ∩ (C2 \ F2) 6= {e} or F2 ∩ (C1 \ F1) 6= ∅ ,

the above inequality follows from (3.3.2) forG′. Otherwise,

(F1 \ {e})△ F2 ⊆ C1 △ C2 ,

and the desired inequality follows from (3.3.2) and (3.3.1), taken for a cycleC fromC1 △
C2, such that the cardinality ofF = C ∩ ((F1 \ {e})△ F2) is odd. Note thatC1 △ C2 is
a union of edge disjoint cycles, and the cardinality of(F1 \ {e})△ F2 is odd. �
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3.3.2. Redundant Inequalities.

Lemma 3.2. For every cycleC ∈ C(G), which has a chorde ∈ E, the inequalities(3.3.1)
for the cycleC

x(F )− x(C \ F ) ≤ |F | − 1 for F ⊆ C, |F | is odd

are implied by(3.3.1)for two cyclesC1, C2 ∈ C(G) such that

C1 ∪ C2 = C ∪ {e} and C1 ∩ C2 = {e} .

PROOF. ConsiderF ⊆ C, such that the cardinality ofF is odd. Assume that the
cardinality ofF1 = C1 ∩ F is odd. DefineF2 = (F ∩C2) ∪ {e}, the cardinality of which
is odd, too. Adding two inequalities

x(F1)− x(C1 \ F1) ≤ |F1| − 1 and x(F2)− x(C2 \ F2) ≤ |F2| − 1 ,

the inequality (3.3.1) for the cycleC and the setF is obtained. �

Lemma 3.3. For every cycleC ∈ C(G), |C| = 3, the inequalities

0 ≤ xe ≤ 1 for e ∈ C

are implied by the inequalities(3.3.1)for the cycleC.

PROOF. Let the cycleC be given as{v, u, w}, v, u, w ∈ V , then there are four in-
equalities (3.3.1), associated with the cycleC

xv,u + xv,w + xu,w ≤ 2(3.3.3)

xv,u − xv,w − xu,w ≤ 0(3.3.4)

xv,w − xv,u − xu,w ≤ 0(3.3.5)

xu,w − xv,u − xv,w ≤ 0 .(3.3.6)

From (3.3.3), (3.3.4), getxv,u ≤ 1. On the other hand, the inequalityxv,u ≥ 0 follows
from (3.3.5), (3.3.6). �

3.3.3. Extended Formulation of Cut Polytope.Due to Lemma 3.1, for every graph
G = (V,E), |V | = n, the polytopeQ(G) is obtained from the polytopeQ(Kn) by the
projection on the variablesE.

From Lemmas 3.2 and 3.3, the polytopeQ(Kn) is described by

xv,u + xv,w + xu,w ≤ 2 for v, u, w ∈ V

xv,u − xv,w − xu,w ≤ 0 for v, u, w ∈ V ,

since in the complete graphKn every cycle with more than three edges has a chord. Thus,
the above linear system, together with the projection on thevariablesE, forms an extended
formulation of the polytopeQ(G), what for graphs not contractible toK5 is equal to the
cut polytope (see Barahona and Mahjoub [1986]).

Theorem 3.3(Barahona [1993]). For every graphG = (V,E), |V | = n, which is not
contractible toK5, there exists an extended formulation of the cut polytopePcut(G) of
sizeO(n3).

And since every planar graph is not contractible toK5, an extended formulation of the
cut polytope for planar graphs is obtained.

Proposition 3.3(Barahona [1993]). For every planar graphG = (V,E), |V | = n, there
exists an extended formulation of the cut polytopePcut(G) of sizeO(n3).
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3.3.4. Extended Formulation forT -join Polytope and Perfect Matching Polytope.
Let us consider a planar graphG = (V,E) and its dualG∗ = (V ∗, E∗), which may have
loops and parallel edges.

EveryT -join in G can be obtained from any otherT -join as the symmetric difference
with a union of edge disjoint cycles. On the other hand, the symmetric difference of a
T -join and a union of edge disjoint cycles is again aT -join. Additionally, notice that the
set of unions of edge disjoint cycles inG corresponds to the set of cuts in the dual graph
G∗.

Thus, having an extended formulationQ ⊆ Rd, p : Rd → RE
∗

of the cut polytope
Pcut(G

∗), the polyhedronQ ⊆ Rd and the affine mapp′ : Rd → RE

p′e(z) =

{

1− pe(z) if e ∈ R

pe(z) otherwise

form an extended formulation of theT -join polytopePTjoin(G), whereR is a T -join in
the graphG. Due to Proposition 3.3, an extended formulation of theT -join polytope is
obtained1.

Proposition 3.4 (Barahona [1993]). For every planar graphG = (V,E), |V | = n, and
T ⊆ V , there exists an extended formulation for theT -join polytopePTjoin(G) of size
O(n3).

And since the perfect matching polytope for a graphG is a face ofPVjoin(G), Proposi-
tion 3.2 is reproved.

3.3.5. Construction of Extended Formulation. Note that for the construction of the
extended formulation for the cut polytope in planar graphs it is not necessary to consider
a dual graph ofG. On, the other hand in the case of theT -join polytope and the perfect
matching polytope, a dual graph of a planar graph is needed, which can be constructed in
polynomial time (see Filotti et al. [1979]). Additionally,for theT -join polytope and the
perfect matching polytope, it is necessary to find aT -join in the graphG, what can be done
in polynomial running time as well (see Schrijver [2003a]).

3.4. Spanning Tree Polytope

In this section, an extended formulation of the spanning tree polytope for planar graphs
is presented, which was proved by Williams [2002] and independently reproved by us.

Consider a planar graphG = (V,E) and its dual graphG∗ = (V ∗, E∗). Fix a
facev∗inf ∈ V ∗ and a vertexvinf ∈ V , which belongs to the facev∗inf , and define the
following linear system2

xe + ze,v + ze,u = 1 for v, u ∈ V ∗, e = {v, u} ∈ E∗(3.4.1)

(1− xe) + ye,v + ye,u = 1 for v, u ∈ V, e = {v, u} ∈ E(3.4.2)

1Note that in Proposition 3.3 the graphG is a simple graph, i.e.G does not have loops and parallel edges.
On the other hand, ifG has loops or parallel edges, the cut polytopePcut(G) arises from the cut polytope for
the simple graph, obtained fromG by deleting all loops and leaving one edge for every set of parallel edges.
Indeed, the variables corresponding to loops are equal to zero for all points fromPcut(G), and the variables,
corresponding to a set of parallel edges are equal for every point fromPcut(G).

2For constraints (3.4.3), (3.4.5), every loop appears once in the sum overδ(v), v ∈ V ∗. The same is true for
the constraints (3.4.1). Actually, it is not critical, since the system gives an extended formulation for the spanning
tree polytope, even if every loop is written twice, but in this case, we can not use the totally unimodularity of
the constraint matrix. Moreover, for every loop the variablez is equal to zero in the provided extension of the
spanning tree polytope, since every loop corresponds to somebridge, which participates in every spanning tree.
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∑

e∈δ(v)

ze,v = 1 for v ∈ V ∗ \ {v∗inf}(3.4.3)

∑

e∈δ(v)

ye,v = 1 for v ∈ V \ {vinf}(3.4.4)

∑

e∈δ(v)

ze,v = 0 for v = v∗inf(3.4.5)

∑

e∈δ(v)

ye,v = 0 for v = vinf(3.4.6)

and the non-negativity constraints

(3.4.7) z ≥ 0 and y ≥ 0 .

In this section it is shown that the linear system (3.4.1) – (3.4.7) and the projection onx
variables define an extended formulation of the spanning tree polytopePspt(G).

To prove this, use the fact that for every planar graphG and its dualG∗ spanning trees
in G are associated with spanning trees inG∗ in the following manner

T (G) = {E \ T : T ∈ T (G∗)} .
Lemma 3.4. For every planar graphG = (V,E) and its dualG∗ = (V ∗, E∗), the linear
system(3.4.1)– (3.4.7), together with the projection map onx variables, forms an extended
formulation of the spanning tree polytopePspt(G).

PROOF. First, show that for every vertexx of the spanning tree polytopePspt(G),
wherex = χ(T ), T ∈ T (G), there arez, y variables, satisfying the above linear system.
To define these variables, consider arborescencesN , N∗ ⊆ E, defined by the treeT in G
and the treeE \ T in G∗, rooted at the verticesvinf andv∗inf , respectively. The variable
ye,v, wherev ∈ V ande = {v, u}, is defined to be equal one, if the arc(u, v) belongs to
the arborescenceN . Analogously, definez variables for the arborescenceN∗.

On the other hand, it is necessary to show that for every vertex (x, y, z) of the polytope,
defined by the linear system (3.4.1) – (3.4.7), the pointx belongs to the spanning tree
polytopePspt(G). For this, note that the linear system is totally unimodular, due to the
Ghouila-Houri characterization of totally unimodular matrices (z, y variables participate
once in (3.4.1), (3.4.2), and once in (3.4.3) – (3.4.6), andx variables participate once
in (3.4.1) and once in (3.4.2), but with opposite coefficients). And thus, the vertices of the
polytope, defined by the system (3.4.1) – (3.4.7), have zero-one components, i.e.x = χ(T )
for someT ⊆ E.

Thus, it is necessary to show thatT is a tree in the graphG. For this, defineN ,
N∗ ⊆ E as follows

N = {(u, v) ∈ V × V : ye,v = 1, e = {u, v}, e ∈ E}
and

N∗ = {(u, v) ∈ V ∗ × V ∗ : ze,v = 1, e = {u, v}, e ∈ E} .
Due to (3.4.3), (3.4.4), for every vertex fromV \ {vinf}, V ∗ \ {v∗inf} there is exactly one
ingoing arc inN , N∗, respectively. And due to (3.4.5), (3.4.6), inN , N∗ there exists no
ingoing arc forvinf , v∗inf , respectively.

Hence, it is enough to prove thatN does not contain a directed cycle (every cycle in
N orN∗ is a directed). For this, define theinterior for a cyclein G,G∗, as that one of the
two regions, defined by the cycle, which does not containv∗inf , vinf , respectively. To make
the definition consistent, fix an embedding of the graphG on a surfaceS, what induces the
dual graphG∗.

WheneverN contains a directed cycleC1, then due to (3.4.1), (3.4.2), all variables
z, involving the edges of the cycleC1 are equal to zero. Hence, there exists no arcs in
N∗, between the faces from the interior of the cycleC1 in the graphG and the faces from
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the exterior of the cycleC1. And sincev∗inf does not lie in the interior of the cycleC1,
there exists a directed cycleC∗

1 in N∗, lying in the interior of the cycleC1 in G, because
for every vertexv ∈ V ∗ from the interior ofC1 there is an ingoing arc. Due to (3.4.1),
(3.4.2), all variablesy, involving the edges of the cycleC∗

1 are equal to zero. Analogously,
there exists a cycleC2 in N , which lies in the interior of the cycleC∗

1 . Iterating this, one
obtains a set of distinct cyclesCi ∈ C(G), i ∈ N, since every cycle from the sequence lies
strictly inside the preceding cycles (no two cycles have a common edge). But, the number
of different cycles in the graphG is finite. �

Theorem 3.4 (Williams [2002]). For every planar graphG = (V,E), there exists an
extended formulation for the spanning tree polytopePspt(G) of size4|E|.

3.5. Subtour Elimination Polytope

In this section, the subtour elimination polytopePste(G) ⊆ RE ,G = (V,E), |V | ≥ 3,
is considered. Recall the linear description of the subtourelimination polytope

x(E(S)) ≤ |S| − 1 for all ∅ 6= S ( V(3.5.1)

x(δ(v)) = 2 for all v ∈ V(3.5.2)

0 ≤ x .(3.5.3)

As we saw in Section 2.3, there exists an extended formulation for the subtour elim-
ination polytopePste(G) of sizeO(|V ||E|) (see Yannakakis [1991]). Here, a more com-
pact extended formulation is constructed, exploiting the planarity. For this, fix a vertex
vinf ∈ V and a facev∗inf , such that the facev∗inf contains the vertexvinf ∈ V . Note that in
Sections 3.5.1, 3.5.2, graphs are not restricted to be planar.

3.5.1. Redundant Inequalities.

Lemma 3.5. For every graphG = (V,E), the inequalities(3.5.2), (3.5.3), and the inequal-
ities (3.5.1)for vertex setsS ⊆ V , such that the induced subgraphsG(S), G(V \ S) are
connected and the vertex setS does not contain the vertexvinf , form a linear description
of the subtour elimination polytopePste(G).

PROOF. In the above system, every inequality (3.5.1), indexed by asetS is equivalent
to the inequalityx(δ(S)) ≥ 2, since

x(δ(S)) =
∑

v∈S

x(δ(v))− 2x(E(S)) = 2|S| − 2x(E(S)) .

Thus, these constraints can be excluded, where the setS contains the vertexvinf , because
the constraints (3.5.1) for the setS and the setV \ S are equivalent.

Now, if G(S) is not connected, there are two sets of verticesS1, S2 ⊆ V

S = S1 ∪ S2 where S1, S2 6= ∅, S1 ∩ S2 = ∅, δ(S1) ∩ δ(S2) = ∅ ,

then the inequalities (3.5.1) forS1, S2 imply the inequality (3.5.1) for the setS, since

x(E(S)) = x(E(S1)) + x(E(S2)) ≤ |S1| − 1 + |S2| − 1 = |S| − 2 < |S| − 1 .

Thus, the inequality (3.5.1) for the setS is not tight for the subtour elimination poly-
topePste(G). Analogously, one treats the case, whenG(V \ S) is not connected. �

3.5.2. Extended Formulation via Spanning Tree Polytope.Here, an extended for-
mulation of the subtour elimination polytope via the spanning tree polytope is presented.
From Lemma 3.5 and from the linear description of Edmonds [1971] for the spanning tree
polytopePspt(G)

x(E(S)) ≤ |S| − 1 for all ∅ 6= S ⊆ V

0 ≤ x and x(E) = V − 1 ,
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the next result follows1.

Lemma 3.6(Schrijver [2003b]). For every graphG = (V,E), the following linear system

projE′ x ∈ Pspt(G
′) and 0 ≤ x

x(δ(v)) = 2 for v ∈ V ,

whereG′ = (V ′, E′), V ′ = V \ {vinf}, E′ = E \ δ(vinf), defines the subtour elimination
polytopePste(G).

For planar graphs, Lemmas 3.4 and 3.6 provide us with an extended formulation
for the polytopePste(G) of size at most4|E|. But there is a more compact extended
formulation of the polytopePste(G), which is constructed in the next section.

Lemma 3.7. For every planar graphG = (V,E), there exists an extended formulation for
the subtour elimination polytopePste(G) of size4|E|.

3.5.3. Extended Formulation for Subtour Elimination Polytope. Now, we con-
struct an extended formulation of the subtour elimination polytopePste(G), using addi-
tional variablesze,v for every edgee ∈ E, vinf 6∈ e, and facev ∈ V ∗, such thatv ∈ e.
Consider the following linear system

xe + ze,v + ze,u = 1 for vinf 6∈ e = {v, u}, v, u ∈ V ∗(3.5.4)
∑

e∈δ(v)

ze,v = 1 for v ∈ V ∗, vinf 6∈ v(3.5.5)

and

(3.5.6) x(δ(v)) = 2 for all v ∈ V and z ≥ 0 , x ≥ 0

together with the projection map onx variables2.
The presented extended formulation generalizes the extended formulation of Rivin

[1996] (see also Rivin [2003], Cheung [2003]). But wheneverthe graph defines a triangu-
lation, our extension is identical to the extension of Rivin[1996].

Lemma 3.8. For every planar graphG = (V,E), the linear system(3.5.4) – (3.5.6),
together with the projection map onx variables, defines an extended formulation of the
subtour elimination polytopePste(G).

PROOF. We want, to show that every pointx ∈ RE , for which there arez variables,
satisfying (3.5.4) – (3.5.6), belongs to the subtour elimination polytope, i.e. to show thatx
satisfies (3.5.1) – (3.5.3). Fix the embedding of the graphG on the plane.

Due to Lemma 3.5, the vertexvinf is assumed to be not in the vertex setS for the
inequalities (3.5.1) and the induced graphsG(S), G(V \ S) are connected. We sum the
equations (3.5.4), indexed by the edgesE(S)

|E(S)| =
∑

e∈E(S)

(xe +
∑

v∈V ∗, v∈e

ze,v) = x(E(S)) +
∑

e∈E(S)

∑

v∈V ∗, v∈e

ze,v ,

and consider the induced subgraphG(S) = (S,E(S)) with the embedding, inherited from
the graphG. Let the setF ′ denote the faces, defined by the embedding ofG(S) into the

1This may be be also proved using the notion ofvinf -tree (see Schrijver [2003b]).
2For constraints (3.5.5), every loop appears once in the sum over δ(v), v ∈ V ∗. The same is true for the

constraints (3.5.4). Note that if the dual graph has loops then the subtour elimination polytope is empty. The
same holds, if there exists only one face in the graphG, i.e.G is a forest.
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plane, which are also faces for the graphG. Thus,
∑

e∈E(S)

∑

v∈V ∗, v∈e

ze,v =
∑

e∈E(S)

∑

v∈F ′, v∈e

ze,v +
∑

e∈E(S)

∑

v∈V ∗\F ′, v∈e

ze,v ≥

∑

e∈E(S)

∑

v∈F ′, v∈e

ze,v =
∑

v∈F ′

∑

e∈δ(v)

ze,v ,

sinceδ(v) ⊆ E(S) for every facev ∈ F ′. From (3.5.5), we get the equation
∑

v∈F ′

∑

e∈δ(v)

ze,v = |F ′| ,

because the vertexvinf does not belong toS. But note that there can be at most one face
among the facesF (S) of the graphG(S), which is not a face of the graphG, otherwise
the graphG(V \ S) is not connected. Thus,

|E(S)| ≥ x(E(S)) + |F ′| ≥ x(E(S)) + |F (S)| − 1 ,

and since the graphG(S) is connected, apply the Euler Formula to get the desired inequal-
ity |S| − 1 ≥ x(E(S)).

On the other hand, it is necessary to prove that for everyx fromPste(G), there existz
variables, satisfying (3.5.4) – (3.5.6). Fix the embeddingof the graphG on the plane.

Due to Lemma 3.4 and Lemma 3.6, we can usez′e,v variables from the extended for-
mulation for the subtour elimination polytope, constructed via the extended formulation
for the spanning tree polytope. Recall that in this case, we consider the spanning tree
polytopePspt(G

′), G′ = G(V \ {vinf}). In the extension of the spanning tree poly-
topePspt(G

′), choosev∗
′

inf to be the face ofG′, defining the region with the vertexvinf
inside. Now, set the variablesze,v to the variablez′

e,v∗
′

inf

from the extension for the span-

ning tree polytopePspt(G
′), whenever the vertexvinf belongs to the facev, otherwise set

the variableze,v to the variablez′e,v. �

Thus, the linear system (3.5.4) – (3.5.6) provides an extended formulation of the sub-
tour elimination polytopePste(G) of size3|E|.
Theorem 3.5. For every planar graphG = (V,E), there exists an extended formulation
for the subtour elimination polytopePste(G) of size3|E|.



CHAPTER 4

Bounds on General Extended Formulations for Polytopes

In this chapter, we describe lower bounds for sizes of extended formulations of poly-
topes. In 1991, Yannakakis showed that the size of a minimal extended formulation for a
polytope is essentially equal to the non-negative rank of a slack matrix for this polytope
(see Yannakakis [1991]), what we tighten to the statement that the extension complexity
of a polytope is equal to the non-negative rank of a slack matrix (the one-point polytope
is an exception). This result allows to establish a lower bound on the size of an extended
formulation for a polytope as the minimum number of monochromatic non-zero combina-
torial rectangles of the entries in the slack matrix, which are needed to cover all non-zero
entries of a slack matrix. The lower bounds presented in thissection are coming from this
rectangle covering problem and provide lower bounds on the rectangle covering number
of the slack matrix. The results presented in this chapter are partly based on the joint work
with Fiorini et al. [2011a].

The rectangle covering problem is well known as the non-deterministic communica-
tion complexity problem. Not so many techniques are known toestablish a lower bound on
the rectangle covering number. In Section 4.14, we give an overview of the most used ones.
And in later sections, we give examples of their use in order to establish lower bounds for
extended formulations.

But we have to mention that the rectangle covering lower bound for extensions is,
in a certain sense, weak, since it takes into consideration only the combinatorial struc-
ture of a polytope. In his paper, Yannakakis showed that the rectangle covering bound is
equal toO(n4) for the perfect matching polytope of a complete graph withn vertices, for
which up to now no extended formulation of polynomial size isknown. Moreover, there
are polygons withn vertices, which do not admit any extension with size less than

√
2n

(see Fiorini et al. [2011c]), but with the covering numberO(log n) for their slack matrix.
Thus, there is a size gap between extended formulations for polytopes with the same com-
binatorial structure already in dimension two, since for regularn-gons there is an extension
of sizeO(log n) (see Proposition 2.13 due to Ben-Tal and Nemirovski [2001]).

Another question, which stays outside of our consideration, is the coefficients in the
extended formulation for a polytope. From counting reasons, one can conclude that there
aren-dimensional zero-one polytopes, which do not admit a compact extended formula-
tion, when the coefficients in the extended formulation havepolynomial size. Recently,
it was shown that there are matroid polytopes, which do not admit a compact extended
formulation, even if no restrictions on the coefficients areposed (see Rothvoß [2011]).

Results concerning the non-negative factorization can be generalized for extended for-
mulations, which are defined by other cones, not necessary a polyhedral cone (for further
details see Gouveia et al. [2011], Fiorini et al. [2011b]). Here, we generalized the notion
of extended formulation to the notion of extended relaxation, making properties and ideas,
used in the proofs, more evident. Moreover, even these notions can be generalized to ex-
tended relaxations of a convex set up to a convex set, using work of Gouveia et al. [2011].

4.1. Minimal Extended Relaxation

In the beginning of this chapter, we consider a generalization of extended formula-
tions, so called extended relaxations. Indeed, a lot of results proved in this chapter can be

47
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generalized, using this notion. Moreover, the notion of extended relaxations reveals the
nature of the used argumentation.

A polyhedronQ ⊆ Rd and an affine mapp : Rd → Rm form anextended relaxation
of a polyhedronP∗ ⊆ Rm up to a polyhedronP ∗ ⊆ Rm, whereP∗ ⊆ P ∗ ⊆ Rm, if the
inclusion

P∗ ⊆ p(Q) ⊆ P ∗

holds.

p

Q

P∗

FIGURE 1. Example of an extended relaxation for polyhedraP∗, P ∗.

We call a relaxation via a polyhedronQ ⊆ Rd and an affine mapp : Rd → Rm a
minimal extended relaxationof a polyhedronP∗ ⊆ Rm up to a polyhedronP ∗ ⊆ Rm, if
the size of the extended relaxationQ ⊆ Rd, p : Rd → Rm, i.e. the number of facets of
the polyhedronQ ⊆ Rd, is equal to the minimum size among all extended relaxationsof
the polyhedronP∗ ⊆ Rm up to the polyhedronP ∗ ⊆ Rm.

Apparently, when a polyhedronP∗ ⊆ Rm is equal to a polyhedronP ∗ ⊆ Rm, an
extended relaxation of the polyhedronP∗ ⊆ Rm up to the polyhedronP ∗ ⊆ Rm defines
an extension of the polyhedronP ⊆ Rm, where

P = P ∗ = P∗ .

4.2. Slack Matrices of Polyhedra

Here, we define a central notion of this chapter. For a polyhedron

P ∗ = {x : 〈ai, x〉 ≤ bi , i ∈ I∗} ,
given by a linear system with finite number of inequalities, and a polyhedron

P∗ = conv(X∗) ,

given as the convex hull of pointsX∗ ⊆ P ∗ ⊆ Rm, which is allowed to be infinite, aslack
matrixMslack(P

∗, P∗) ⊆ RI
∗×X∗

+ is defined as follows

Mslack(P
∗, P∗)i,x = bi − 〈ai, x〉

for x ∈ X∗ andi ∈ I∗. Clearly, the entries of the slack matrixMslack(P
∗, P∗) are non-

negative, since each inequality〈ai, x〉 ≤ bi, i ∈ I is valid for all pointsx in X∗. Despite
our notation, the slack matrixMslack(P

∗, P∗) depends on the choice of the linear system
〈ai, x〉 ≤ bi, i ∈ I∗ and the setX∗, rather than on polyhedraP ∗ andP∗.
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Obviously, the rank of the slack matrixMslack(P
∗, P∗) is at mostm + 1, for every

choice of the linear system for a polyhedronP ∗ ⊆ Rm and the set of points for a polyhe-
dronP∗ ⊆ Rm, since the matrixMslack(P

∗, P∗) is the product

Mslack(P
∗, P∗) =

(

−A , b
)

(

X∗

1X∗

)

of matrices with dimensions|I∗| × (m + 1) and(m + 1) × |X∗|, where the linear sys-
temAx ≤ b denotes the linear system, consisting of the inequalities〈ai, x〉 ≤ bi, i ∈ I∗.

Whenever polyhedraP∗, P ∗ ⊆ Rm, m ≥ 1, are full-dimensional polytopes, the rank
of every slack matrixMslack(P

∗, P∗) is equal tom + 1, for every choice of the linear
system for the polyhedronP ∗ ⊆ Rm and the set of points for the polyhedronP∗ ⊆ Rm.
Indeed, in this case, there arem + 1 affinely independent pointsx1,. . . ,xm+1 in X∗. And
hence, the matrix

(

x1 . . . xm+1

1 . . . 1

)

is non-singular. Additionally, there arem + 1 linearly independent vectors(ait , bit), it ∈
I∗, t ∈ [m+ 1], and thus, the matrix





−ai1 bi1
. . . . . .

−aim+1 bim+1





is non-singular. Finally, the product of these two matricesis a submatrix of the slack
Mslack(P

∗, P∗), what shows that the rank of the slack matrix is at leastm+ 1.
As previously mentioned, a slack matrixMslack(P

∗, P∗) for polyhedraP∗, P ∗ ⊆ Rm

is not unique, due to possible reorderings ofI∗ andX∗, and due to possible introduc-
ing in I∗ some redundant inequalities for the polyhedronP ∗, and intoX∗ some addi-
tional points from the polyhedronP∗. Nevertheless, later it is shown that every slack ma-
trix Mslack(P

∗, P∗) can be used to determine the minimum size of an extended relaxation
for the polyhedronP∗ ⊆ Rm up to the polyhedronP ∗ ⊆ Rm.

4.3. Non-Negative Factorization, Non-Negative Rank

A non-negative factorizationof a matrixM ∈ RI×X+ is a representation of the matrix
M as the product

M = TS

of two matricesT ∈ RI×r+ , S ∈ Rr×X+ , where the numberr is called thesize of the
non-negative factorization.

The non-negative rankrank+(M) of a matrixM ∈ RI×X+ is the minimumr, such
that there is a non-negative factorization for the matrixM of sizer.

Clearly, dropping the restrictions on the matricesT ∈ RI×r+ , S ∈ Rr×X+ to have
non-negative entries, the definition of the non-negative rank transforms into the definition
of the rank for the matrixM . Thus, the obvious lower bound

rank(M) ≤ rank+(M)

for the non-negative rank of a matrixM ∈ RI×X is obtained.
Later, we establish a direct connection between non-negative factorization of a matrix

and finding extended relaxations for a pair of polyhedra.

4.4. Extended Relaxations from Non-Negative Factorizations

Now, we transform a non-negative factorization of a slack matrix for a pair of poly-
hedra into an extended relaxation for these polyhedra of thesame size, using the notation
from Sections 4.2 and 4.3.
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Lemma 4.1. For a non-negative factorization of sizer for Mslack(P
∗, P∗) for a pair of

polyhedraP∗ ⊆ P ∗ ⊆ Rm, there is an extended relaxation of the polyhedronP∗ ⊆ Rm

up to the polyhedronP ∗ ⊆ Rm of sizer.

PROOF. Having a non-negative factorization

Mslack(P
∗, P∗) = TS

of a slack matrixMslack(P
∗, P∗), whereT ∈ RI∗×r+ , S ∈ Rr×X∗

+ , define the polyhedron
Q ⊆ Rm+r by the following linear system

(4.4.1) bi − 〈ai, x〉 = 〈Ti,∗, z〉 for i ∈ I∗ and z ≥ 0 .

The polyhedronQ, together with the orthogonal projection onx variables, forms an ex-
tended relaxation of the polyhedronP∗ ⊆ Rm up to the polyhedronP ∗ ⊆ Rm.

Indeed, the inclusionp(Q) ⊆ P ∗ holds, i.e. for every pointx from projx(Q) all
inequalities〈ai, x〉 ≤ bi, i ∈ I∗ are satisfied, because the vectorsTi,∗ and z are non-
negative. On the other hand, for everyx ∈ X∗, definez to be equal toS∗,x, what satisfies
the linear system (4.4.1), sinceS∗,x is non-negative and

bi − 〈ai, x〉 = Mslack(P )i,x = 〈Ti,∗, S∗,x〉
holds for everyi ∈ I∗. �

The next observation strengthens Lemma 4.1 for extensions of polytopes, and follows
from the fact that minimal extensions for polytopes are given by polytopes.

Observation 4.1. For a non-negative factorization of a slack matrixMslack(P ) of sizer
for a polytopeP ⊆ Rm, there is an extension of the polytopeP ⊆ Rm of size at mostr
via a polyhedronQ ⊆ Rd that is bounded, i.e. that is a polytope itself1.

4.5. Non-Negative Factorizations from Extended Relaxations

For every extended relaxationQ ⊆ Rd, p : Rd → Rm of a polyhedronP∗ ⊆ Rm,
whereP∗ = conv(X∗), X∗ ⊆ Rm, up to a polyhedronP ∗ ⊆ Rm, asections : X∗ → Q
is a map satisfying

p(s(x)) = x ,

for everyx ∈ X∗. Moreover, if the polyhedronQ is given as

(4.5.1) Q = {z : 〈cj , z〉 ≤ kj , j ∈ [r]} ,
wherecj ∈ Rd, kj ∈ R, the correspondingslack covectorsare the vectorsv1 ,. . . , vr ∈
RX∗ , such that

(4.5.2) vjx = kj − 〈cj , s(x)〉 ,
for all j ∈ [r] andx ∈ X∗.

Lemma 4.2. For an extended relaxation of sizer of a polyhedronP∗ ⊆ Rm up to a
polyhedronP ∗ ⊆ Rm, there is a non-negative factorization of sizer + 1 for every slack
matrixMslack(P

∗, P∗).

PROOF. Having an extended relaxationQ ⊆ Rd, p : Rd → Rm, we fix a minimal
linear description ofQ

(4.5.3) Q = {z : 〈cj , z〉 ≤ kj , j ∈ [r]} .
For the polyhedronP ∗ ⊆ Rm, we fix its linear description〈ai, x〉 ≤ bi, i ∈ I∗, and for
the polyhedronP∗ ⊆ Rm a set of pointsX∗, P = conv(X∗) .

From the Farkas Lemma, every linear inequality, which is valid for the polyhedronQ,
is a non-negative combination of the inequalities from the linear description (4.5.3) and the

1Observation 4.1 holds also for extended relaxations, when the polyhedronP ∗ is bounded, i.e. a polytope.
In this case, Observation 4.1 can be shown via the proof of Lemma4.1.
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trivial inequality0 ≤ 1. Hence, for everyi ∈ I∗, there exists a vectorti ∈ Rr+1
+ , such that

for all z ∈ Rd the equation

bi − 〈ai, p(z)〉 = tir+1 +
∑

j∈[r]

tij(kj − 〈cj , z〉) ,

holds, sincep(Q) ⊆ P ∗.
Let s : X∗ → Q be a section for the extended relaxationQ, p. We obtain a non-

negative factorization of the slack matrixMslack(P
∗, P∗), defined by two matricesT ∈

R
I∗×(r+1)
+ , S ∈ R(r+1)×X∗

+ , where

Ti,j = tij for i ∈ I∗

Sj,x = kj − 〈cj , s(x)〉 for x ∈ X∗

in the casej ∈ [r], and

Ti,j = tij for i ∈ I∗

Sj,x = 1 , for x ∈ X∗,

in the casej = r + 1, which corresponds to the slack of the inequality0 ≤ 1. �

Observation 4.2. For every extensionQ ⊆ Rd, p : Rd → Rm with sizer of a non-trivial
polytopeP , there is a non-negative factorization of sizer for every slack matrixMslack(P ).

Moreover, rows of the right matrix in the non-negative factorization can be chosen as
the slack covectors, corresponding to any linear description of the polyhedronQ.

PROOF. Here, the proof of Lemma 4.2 can be modified, exploiting the observation
that the inequality0 ≤ 1 is a non-negative combination of the inequalities from the linear
system (4.5.3) (see Appendix: Lemma 6.1). �

4.6. Non-Negative Factorizations, Extensions of Polytopes

Observations 4.1 and 4.2, lead to the next result.

Theorem 4.1(Yannakakis [1991]). For a polytopeP ⊆ Rm, |vert(P )| ≥ 2, the size of a
minimal extension forP is equal to the non-negative rank of any slack matrixMslack(P ).

Theorem 4.1 gives us the equivalence between finding the minimal extension of a
polytope and determining the non-negative rank of its slackmatrix. For example, the next
observation, which does not appear to be trivial, initially, can be derived from Theorem 4.1.

Observation 4.3. For every full-dimensional polytopeP ⊆ Rm, containing the origin in
its interior, the minimum size of an extension of the polytope P is equal to the minimum
size of an extension of the polytope that is polar to the polytopeP .

PROOF. The proof follows from the fact that a slack matrixMslack(P ) of the polytope
P ⊆ Rm is also a transposed slack matrix of the polar polytope. �

Nevertheless, even if the non-negative rank of a slack matrix provides a minimal num-
ber of facets that an extension of a polytope can have, this characterization of the extension
complexity of a polytope is hard to use, since even to determine, whether the non-negative
rank of a matrix is equal to its rank (the trivial lower bound)is NP-hard (see Vavasis
[2009]).



52 4. BOUNDS ON GENERAL EXTENDED FORMULATIONS FOR POLYTOPES

4.7. Extended Relaxation Problem from Non-Negative Rank Problem

In this section, we will see that not only the problems of minimal extended relaxation
and minimal extended formulation can be reduced to the non-negative factorization prob-
lem, but the non-negative factorization problem can be transformed into the problem of
finding a minimal extended relaxation. Due to Lemma 4.2 to do this, it is enough to show
that every matrix with non-negative entries is a slack matrix for some pair of polyhedra1.

Theorem 4.2. Every non-zero matrixM ∈ RI×X+ can be transformed, via deleting zero
columns and scaling columns by non-negative constants, into a slack matrixM ′ for a pair
of polyhedra fromRm, wherem = rank(M)− 1, such that

rank+(M) = rank+(M
′) .

PROOF. Delete zero columns from the matrixM ∈ RI×X+ , what changes neither its
rank nor its non-negative rank. Analogously, scaling columns, such that the columnwise
sums of elements are equal, changes neither its rank nor its non-negative rank. Denote the
resulting matrix byM ′ ∈ RI′×X′

+ .
There exists a factorization (not necessary non-negative)for M ′ of the form

M ′ =
(

−A , b
)

(

S
1X

)

,

whereA ∈ RI
′×m, b ∈ RI

′

andm = rank(M) + 1, since the columnwise sums of
elements are equal.

Define the set of pointsX∗ ⊆ Rm

X∗ = {S∗,x ∈ Rm : x ∈ X ′} ,
and the corresponding polyhedronP∗ = conv(X∗) ⊆ Rm, and define the polyhedron
P ∗ ⊆ Rm by the linear systemAx ≤ b. Hence, the matrixM ′ is a slack matrix for the
polyhedraP∗ ⊆ P ∗ ⊆ Rm. �

4.8. Lattice Embedding

Recall that theface latticeL(Q) of a polyhedronQ ⊆ Rd is the set of all faces of the
polyhedronQ ⊆ Rd, including∅ andQ, ordered by inclusion.

Speaking about theface posetL(P ∗, P∗) of polyhedraP ∗ ⊆ Rm andP∗ ⊆ Rm,
P∗ ⊆ P ∗, we refer to all setsF ∗ ∩ P∗, ordered by inclusion, whereF ∗ is a face of the
polyhedronP ∗ ⊆ Rm. Note that the face posetL(P ∗, P∗) is a subposet of the face lattice
L(P∗).

Lemma 4.3. For every extended relaxation of a polyhedronP∗ ⊆ Rm up to a polyhedron
P ∗ ⊆ Rm, given by a polyhedronQ ⊆ Rd and an affine mapp : Rd → Rm, there is an
embedding, i.e. injective and order preserving map, of the face posetL(P ∗, P∗) into the
face latticeL(Q) of the polyhedronQ.

PROOF. Let us denote byP ⊆ Rm the polyhedronp(Q). We define the desired em-
bedding as a combination of two embeddings: an embedding of the face posetL(P ∗, P∗)
into the face latticeL(P ), and an embedding of the face latticeL(P ) into the face lattice
L(Q).

For every faceF ∗
∗ from L(P ∗, P∗), define a mapj∗ : L(P ∗, P∗) → L(P ). For

every faceF ∗
∗ ∈ L(P ∗, P∗), choose the inclusion minimal faceF ∗ from L(P ∗), such that

F ∗
∗ ⊆ F ∗, i.e. the inclusion minimal face ofP ∗, such thatF ∗

∗ = F ∗ ∩ P∗, and set

j∗(F ∗
∗ ) = P ∩ F ∗ ,

what is a face of the polyhedronP , becauseF ∗ ∈ L(P ∗) andP ⊆ P ∗.

1A similar construction was used in Gillis and Glineur [2010],where so called restricted non-negative rank
was studied.
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The mapj∗ is inclusion preserving, what follows from its definition. Moreover, the
mapj∗ is injective, since for everyF ∗

∗ ∈ L(P ∗, P∗)

j∗(F ∗
∗ ) ∩ P∗ = (F ∗ ∩ P ) ∩ P∗ = F ∗ ∩ P∗ = F ∗

∗ ,

whereF ∗ is the inclusion minimal face ofP ∗, such thatF ∗
∗ = F ∗ ∩ P∗.

Define the mapj : L(P ) → L(Q), such that

j(F ) = p−1(F ) ∩Q ,
for each faceF of the polyhedronP . The mapj defines an embedding from the face lattice
L(P ) into the face latticeL(Q). Indeed, for the faceF ∈ L(P ), defined by an inequality
〈a, x〉 ≤ b, the imagej(F ) is the face of the polyhedronQ, defined by the inequality

〈a, p(z)〉 ≤ b .

Obviously, the mapj is inclusion preserving. Moreover, for every faceF of the poly-
hedronP , we havep(j(F )) = F , what implies that the mapj(F ), F ∈ L(P ) is injec-
tive. �

Corollary 4.1. For every pair of polyhedraP∗, P ∗, P∗ ⊆ P ∗ ⊆ Rm, the minimum
number of facets of a polyhedronQ, such that there exists an embedding of the face poset
L(P ∗, P∗) into the face latticeL(Q), defines a lower bound on the size of an extended
relaxation of the polyhedronP∗ up to the polyhedronP ∗.

Corollary 4.2. For every polytopeP ⊆ Rm, the minimum number of facets of a polytope
Q, such that there exists an embedding of the face latticeL(P ) into the face latticeL(Q),
defines a lower bound on the size of an extension for the polytopeP .

4.9. Relaxations of Lattice Embeddings

Thus, the embedding of the posetL(P ∗, P∗) provides a lower bound on the size of
extended relaxations for a polyhedronP∗ ⊆ Rm up to a polyhedronP ∗ ⊆ Rm. But the
restriction that the face posetL(P ∗, P∗) has to be embedded into the face lattice of some
other polyhedron is hard to handle. Because of that, one considers different relaxations of
the conditions on the lattice, into whichL(P ∗, P∗) has to be embedded.

For every latticeΛ, let us denoteΛ0 to be the poset, obtained from the latticeΛ by
deleting the maximum and minimum of the latticeΛ. In this setting, consider the following
embedding of the face posetL(P ∗, P∗) into a latticeΛ, where

(4.9.1) for all G1, G2 ∈ Λ0 with G1 6≤ G2 there is a maximal element
G ∈ Λ0 such thatG1 6≤ G andG2 ≤ G.

The face latticeL(Q) of every polyhedronQ ⊆ Rd satisfies the condition (4.9.1).
Thus, the minimum number of maximal elements in the posetΛ0, corresponding to the
latticeΛ that satisfies (4.9.1), and in which the face posetL(P ∗, P∗) can be embedded,
is a lower bound on the size of an extended relaxation for the polyhedronP∗ up to the
polyhedronP ∗.

In fact, we will show that the condition (4.9.1) is a reformulation of the lattice embed-
ding bound. Nevertheless, this reformulation reveals the properties of the latticeΛ, that we
use later, to prove the rectangle covering bound in the next section.

Observation 4.4. Every latticeΛ, satisfying the condition(4.9.1), can be embedded into
the face lattice of a simplex with the number of facets equal to the number of maximal
elements in the posetΛ0 plus one, if the posetΛ0 contains the minimum element, and
equal to the number of maximal elements inΛ0, otherwise1.

1Note thatΛ0 can have the maximum element, even ifΛ is the face lattice of some polyhedronQ. For
example, if the polyhedronQ is given as a polyhedral cone, the posetΛ0 possesses the minimum element. But
it is not hard to see thatΛ0 has the minimum element just in case, whenQ is a polyhedral cone. Since we are
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PROOF. Due to to the property (4.9.1), every element in the posetΛ0 can be uniquely
identified with the set of maximal elements bigger than it. Moreover, for two elementsG1,
G2 ∈ Λ0, we haveG1 ≤ G2 if and only if the set of maximal elements inΛ0, which are
bigger thanG2, is a subset of the corresponding set forG1.

Thus, the latticeΛ can be embedded into the face lattice of the simplex with the num-
ber of facets equal to the number of maximal elements inΛ0, or to the number of maximal
elements inΛ0 plus one, depending on the existence of the minimum element inΛ0.

Indeed, whenever the posetΛ0 has the maximum or minimum element, there may
no be an element in the simplex face lattice (the simplex withthe number of facets equal
to the number of maximal elements inΛ0) for the maximum or minimum elements of the
latticeΛ, respectively. In the case, when the posetΛ0 has the maximum element, then from
(4.9.1) it consists from one element only, and thus, the maximum is equal to the minimum
in Λ0. In the case, when the posetΛ0 contains the minimum element, the dimension of the
simplex is increased, to embed the minimum element ofΛ. �

4.10. Rectangle Coverings from Lattice Embeddings

The set ofnon-zero rectanglesR(M) for a matrixM ∈ RI×X is defined as follows

R(M) = {I ′ ×X ′ ⊆ supp(M) : I ′ ⊆ I, X ′ ⊆ X} .
A rectangle coveringof the matrixM ∈ RI×X is a setR ⊆ R(M), such that for ev-
ery (i, x) ∈ supp(M), i ∈ I, x ∈ X there is a rectangleR ∈ R, such that the rectangleR
contains(i, x), i.e.

supp(M) =
⋃

R∈R

R .

Therectangle covering numberfor a matrixM is the minimum number of rectangles in a
rectangle covering for the matrixM .

Lemma 4.4. Having an embedding of the face posetL(P ∗, P∗) of a polyhedronP∗ ⊆ Rm

and a polyhedronP ∗ ⊆ Rm, P∗ ⊆ P ∗, into a latticeΛ, which satisfies the condi-
tion (4.9.1), there is a rectangle cover for every slack matrix for the polyhedraP∗, P ∗,
with the size equal to the number of maximal elements in the posetΛ0 plus one.1.

PROOF. Here, we use the notation from Section 4.2. There are the three following
cases, for every pointx∗ ∈ X∗ and every inequality〈ai, x〉 ≤ bi, i ∈ I∗, such that the
faceF ∗ of the polyhedronP ∗, induced by the inequality〈ai, x〉 ≤ bi, does not contain the
pointx∗.

First, the polytopeP∗ is the minimal face inL(P ∗, P∗), containing the pointx∗. Sec-
ond, the intersectionF ∗ ∩ P∗ is empty.

Third, we can assume

∅ 6= F ∗
∗ 6= P∗ and ∅ 6= F ∗ ∩ P∗ 6= P∗ ,

interested in extended formulations of polytopes, we have tonote that only one-point polytopes admit extensions
given by polyhedral cones.

1The size of the rectangle covering, given in Lemma 4.4, is tight. Note that an additional rectangle
must be taken in some cases, even ifP∗ andP ∗ are polytopes. For example, the face posetL(P ∗, P∗) for
P∗ = conv({(0, 0), (0, 1), (1, 0)}) andP ∗ = {x ∈ R2 : 0 ≤ x1 ≤ 2, 0 ≤ x2 ≤ 2} can be embedded into a
latticeΛ, satisfying (4.9.1), and whereΛ0 has two maximal elements. But, the slack matrixMslack(P

∗, P∗)








0 0 1
2 2 1
0 1 0
2 1 2









needs at least three monochromatic rectangles to be covered.
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where the faceF ∗
∗ ∈ L(P ∗, P∗) is the minimal face inL(P ∗, P∗), containing the pointx∗.

Due to the condition (4.9.1), there have to exist a maximal elementG ∈ Λ0, such that

G ≥ j(F ∗ ∩ P∗) and G 6≥ j(F ∗
∗ ) .

In turn, for a faceF ∗ ∈ L(P ∗) and a pointx∗ ∈ X∗, whenever there exists a maximal
elementG in the latticeΛ0, such thatG ≥ j(F ∗ ∩ P∗) andG 6≥ j(F ∗

∗ ), where the face
F ∗
∗ ∈ L(P ∗, P∗) is the minimal face inL(P ∗, P∗), containing the pointx∗, the pointx∗

does not belong to the faceF ∗.
It is not hard to verify that the rectangles

{i ∈ I∗ : j(F ∗ ∩ P∗) ≤ G and P∗ ( F ∗ whereF ∗ = {y ∈ P ∗ : 〈ai, y〉 = bi}}×
{x ∈ X∗ : F ∗

∗ = P∗ or j(F ∗
∗ ) 6≤ G whereF ∗

∗ = ∩F∈L(P∗,P∗)
x∈F

F} ,

indexed by maximal elementsG in Λ0, together with one additional rectangle to cover the
entries consisting of the columns withF ∗ ∩ P∗ = ∅, form a rectangle covering for the
slack matrix ofP∗, P ∗. �

Observation 4.5. For every embedding of the face latticeL(P ) of a polytopeP ⊆ Rm,
|vert(P )| ≥ 2, into a latticeΛ, satisfying the condition(4.9.1), there is a rectangle cover
for every slack matrix of the polytopeP , whose size is equal to the number of maximal
elements in the posetΛ0.

PROOF. The proof of Lemma 4.4 can be modified for the claim of the above observa-
tion, using Lemma 6.1. �

4.11. Lattice Embeddings from Rectangle Coverings

Lemma 4.5. For a rectangle coverR, |R| ≥ 1, of a slack matrix for polyhedraP∗ ⊆
P ∗ ⊆ Rm, there is an embedding of the face posetL(P ∗, P∗) into the face latticeL(Q) of
a simplexQ with |R|+ 1 facets1.

PROOF. Associate the facets of ad− 1-dimensional simplexQ ⊆ Rd with the rectan-
gles from the rectangle coverR. Thus, the face latticeL(Q) is associated with all possible
subsets of the rectangles from the coverR.

Define an embeddingj : L(P ∗, P∗) → L(Q), taking for every faceF ∗
∗ ∈ L(P ∗, P∗)

an element from the latticeL(Q), corresponding to the set

RF∗
∗
= {I ′ ×X ′ ∈ R : F ∗

∗ ⊆ Fi for somei ∈ I ′}
of rectangles fromR, whereFi ∈ L(P ∗) denotes the face, induced by the inequality
〈ai, x〉 ≤ bi.

Obviously, the mapj : L(P ∗, P∗) → L(Q) is inclusion preserving. To prove that the
mapj : L(P ∗, P∗) → L(Q) is injective, consider a non-empty faceF ∈ L(P ∗, P∗), and
thus,

F = P∗ ∩ (
⋂

i∈I∗

F⊆Fi

Fi)

1The number of the facets of the simplex, given in Lemma 4.5, is tight. Note that an additional facet must
be taken in some cases. For example, the face posetL(P ∗, P∗) for P∗ = conv({(0, 0), (0, 1), (1, 0)}) and
P ∗ = {x ∈ R2 : 0 ≤ x1, 0 ≤ x2} can not be embedded into the face lattice of the one-dimensional simplex.
But, the slack matrixMslack(P

∗, P∗)
(

0 0 1
0 1 0

)

can be covered by two non-zero rectangles. But, an additional rectangle is not needed, wheneverP∗ andP ∗ are
not trivial polytopes.
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and

F ∩X∗ = X∗ ∩ (
⋂

i∈I∗

F⊆Fi

Fi) =
⋂

i∈I∗

F⊆Fi

(X∗ ∩ Fi) =
⋂

R=I′×X′

R∈RF

(X∗ \X ′) .

And since every faceF ∈ L(P ∗, P∗) can be uniquely determined from the setX∗ ∩F , the
mapj is injective onL(P ∗, P∗) \ ({∅} ∩ {P∗}).

The face∅ ∈ L(P ∗, P∗), can be embedded in the simplex face latticeL(Q), unless

P∗ ∩ (
⋂

i∈I∗

Fi) 6= ∅ ,

and the faceP∗ ∈ L(P ∗, P∗) can be embedded in the simplex face latticeL(Q), unless
|R| = 1. In both these cases, the increasement of the number of facets of the simplex
allows to define the desired embedding. �

Observation 4.6. For a rectangle coverR of a slack matrix for a non-trivial polytope
P ⊆ Rm, there is an embedding of the face latticeL(P ) into the face latticeL(Q) of a
simplexQ with |R| facets.

PROOF. The proof of Lemma 4.5 can be modified, since for a non-trivial polytope
there is no point, which belongs to every facet of the polytope. And for every slack matrix,
there is no a rectangle cover with less than two rectangles. �

The lower bound on sizes of extensions for a polytopeP ⊆ Rm, which arises from the
minimum size of a rectangle cover for a slack matrix, is called rectangle covering bound
and is denoted byrc(P ). From Observations 4.5 and 4.6, the rectangle covering lower
bound does not depend on the choice of the slack matrix, whenever the polytopeP is not
a one-point polytope.

4.12. Communication Complexity

To determine the rectangle covering number of the support for some matrix is a non-
trivial task. This is an object of study in communication complexity theory, known as
non-deterministic communication complexity(see Kushilevitz and Nisan [1997]).

For example, the proof of the fact that the cut polytopePcut(n) does not have an
extended formulation of size less than2Ω(n), due to Fiorini et al. [2011b], is conducted,
by determining a submatrix of a slack matrix, for which the non-deterministic complexity
states the lower bound2Ω(n) on the rectangle covering number, due to de Wolf [2003].

On the other hand, thedeterministic communication complexity, which produces a par-
titioning of the support of a matrix via non-zero rectangles1, can produce extended formula-
tions (in the case, when the corresponding slack matrix has zero-one entries). In Yannakakis
[1991], for perfect graphs withn vertices, an extended formulation of the stable set poly-
tope with sizenO(logn) was constructed, using a deterministic protocol. Additionally
in Faenza et al. [2011], for claw-free perfect graphs withn vertices, an extended formu-
lation with sizeO(n3) was constructed from a deterministic communication protocol2.

Moreover, there is a reformulation of the non-negative factorization problem for a
matrix as a communication complexity protocol, which calculates matrix elements in ex-
pectation Faenza et al. [2011].

1In this case, not every partitioning of the support via rectangles defines a deterministic communication
protocol, as it is with rectangle coverings and non-deterministic protocols. Nevertheless, since the constructed
extensions do not use the fact that they are obtained from a deterministic protocol, but rather, the fact that we deal
with partitionings, one can construct an extension from every partitioning of the same size.

2Actually, this deterministic communication protocol produces an extended formulation of sizeO(nk) for
the stable set polytope of perfect graphs withn vertices, where no vertex hask pairwise non-adjacent neighbors.
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4.13. Upper Bounds on Rectangle Covering Number

Here, coverings of slack matrices for certain polytopes areprovided, what shows that
the lower bounds, obtained via rectangle coverings, can notbe better than the sizes of
the given coverings. Due to Observations 4.5 and 4.6, every linear description and inner
description of a polytope can be taken, to provide an upper bound on the rectangle covering
bound.

4.13.1. Matching Polytope.Yannakakis [1991] showed that the rectangle covering
bound can not give a superpolynomial lower bound on the size of a minimal extension for
the perfect matching polytope. Namely, in the case of the perfect matching polytope for
the complete graphKn, there exists a rectangle covering of a slack matrix of sizeO(n4),
due to Yannakakis [1991]. Nevertheless, there is no proof that for the perfect matching
polytope the covering bound can not be asymptotically better than the trivial bound, as the
rank of a slack matrix.

Now, a rectangle cover for the slack matrix, given for the vertices of the perfect match-
ing polytope and for the linear descriptionx ≥ 0 and

x(δ(S)) ≥ 1 for S ⊆ [n], |S| is odd

x(δ(v)) = 1 for v ∈ [n] ,

is constructed.
The non-zero entries in the slack matrix involving the non-negativity constraintsx ≥ 0

are easy to cover by
(

n
2

)

rectangles, i.e. one rectangle for every of the corresponding rows.
For the non-zero entries involving odd cut inequalitiesx(δ(S)) ≥ 1, S ⊆ [n], |S| ∈

[n]odd, consider

Re1,e2 = {S ⊆ [n] : |S| ∈ [n]odd, e1, e2 ∈ δ(S)}×
{M ∈ Mn

2 (n) : e1, e2 ∈M} ,

wheree1, e2 ∈
(

n
2

)

is a pair of disjoint edges. Obviously, the rectanglesRe1,e2 , e1, e2 ∈
(

n
2

)

, e1 ∩ e2 = ∅, form a rectangle covering for the rest of the slack matrix, since an entry
(S,M), whereM ∈ Mn

2 (n) andS ⊆ [n], |S| ∈ [n]odd, is non-zero if and only if there
are at least two edges in the setδ(S) ∩M .

Proposition 4.1 (Yannakakis [1991]). The rectangle covering boundrc(P
n
2

match(n)) is

bounded from above byO(n4) for every perfect matching polytopeP
n
2

match(n).

4.13.2. Polytopes with Few Vertices on Every Facet.For a polytopeP ⊆ Rm with
few vertices on every facet, Lemma 6.4 provides an upper bound on the rectangle covering
number by associating with every facet the set of vertices belonging to it. In the setting
of Lemma 6.4, definek1 to be the maximal number of vertices of the polytopeP ⊆ Rm,
belonging to the same facet, andk2 to be equal one.

Observation 4.7. The rectangle covering boundrc(P ) is bounded byO(k2 log n), for
every polytopeP ⊆ Rm, with |vert(P )| = n, such that the maximal number of vertices of
the polytopeP , lying on the same facet, does not exceedk.

The most natural application of the above observation are simplicial polytopes, what
leads to the following observation.

Observation 4.8. The rectangle covering boundrc(P ) is equalO(m2 log n), for every
simplicial polytopeP ⊆ Rm, with |vert(P )| = n.
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4.13.3. Edge Polytopes.Proposition 2.7 states that there exists an extended formula-
tion of sizeO( n2

logn ) for every edge polytopePedge(G),G = (V,E), V = [n].

Corollary 4.3. The rectangle covering boundrc(Pedge(G)) is bounded from above by

O( n2

logn ) for every edge polytopePedge(G) ⊆ Rn,G = (V,E), |V | = n.

Recall that the edge polytopePedge(G) ⊆ Rn (see Kaibel and Loos [2011]) is de-
scribed byx ≥ 0 and

x(S)− x(N(S)) ≤ 0 for all stable sets S ⊆ V .

The slack entries, associated with the non-negativity constraints, can be covered by
n rectangles. Thus, the entries are left, which correspond tothe inequalitiesx(S) −
x(N(S)) ≤ 0, indexed by stable setsS ⊆ [n] of the graphG.

Consider the matrixM , indexed by pairs of stable setsS and edges of the graphe ∈ E,
where an entryMS,e is non-zero if and only ifS ande are disjoint, butN(S) ande are not.

Thus, it is left to construct a rectangle covering for the matrix M . For this, define two
matricesM ′,M ′′, indexed by pairs of a stable setS ⊆ [n] and an edgee ∈ E, where

M ′
S,e =

{

1 if S ∩ e = ∅

0 otherwise
and M ′′

S,e =

{

0 if N(S) ∩ e = ∅

1 otherwise
.

Due to Lemma 6.4, forM ′ there exists a rectangle coverR′ of sizeO(α3 log n), where
α denotes the maximal size of a stable set in the graphG. For the matrixM ′′, there exists
a trivial rectangle coverR′′ by n rectangles, indexed by the vertices of the graphG

R′′
v = {S ⊆ [n] : v ∈ N(S)} × {e ∈ E : v ∈ e} .

Since the entryMS,e is non-zero if and only if both entriesM ′
S,e, M

′′
S,e are non-zero,

the rectangle coversR′, R′′ of the matricesM ′,M ′′ induce a rectangle cover of the matrix
M of sizeO(α3n log n) using the rectanglesR′ ∩R′′, whereR′ ∈ R′,R′′ ∈ R′′.

Proposition 4.2. The rectangle covering boundrc(Pedge(G)) equalsO(α3n log n) for
every edge polytopePedge(G) ⊆ Rn, whereG = (V,E), |V | = n andα is the maximal
size of a stable set in the graphG.

From the Turan’s Theorem, which states

|E| ≥ |V |2
2α(G)

,

and the above proposition, a non-trivial class of edge polytopes is obtained, for which the
vertex extension could not be proved to be optimal via rectangle covering techniques.

Proposition 4.3. The rectangle covering boundrc(Pedge(G)) is equalo(|E|) for every
edge polytopePedge(G) ⊆ Rn,G = (V,E), |V | = n, such that

α = o
(

(
n

log n
)

1
4

)

,

whereα is the maximal size of a stable set in the graphG.

4.14. Lower Bound on Rectangle Covering

In this section different sorts of lower bounds on the size ofrectangle covering are
presented.
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4.14.1. Fooling Sets.A fooling setfor a matrix is a set of entries from the matrix
support, such that there is no non-zero rectangle, which covers more than one element
from this set. Clearly, this implies that for every matrix, the cardinality of a fooling set is a
lower bound on the rectangle covering number.

But, the fooling set technique is quite limited. For every matrix M ∈ RI×X , the
cardinality of a fooling set does not exceedrank(M)2. Thus, in the case of extensions for
a polytopeP ⊆ Rm, the fooling set bound is at most(m + 1)2 (see Dietzfelbinger et al.
[1996], Fiorini et al. [2011a]).

Nevertheless, there are examples of zero-one matrices withrank3n, for which there
are fooling sets of cardinality at least4n Dietzfelbinger et al. [1996]1. For combinatorial
polytopes, one of the most successful applications of the fooling set technique is the stable
set polytope, due to Huang and Sudakov [2010]. There a familyof graphs were given, such
that a slack matrix for the corresponding stable set polytope has a fooling set of cardinality
n

6
5 , wheren denotes the number of vertices.

A notion of afooling set of orderk was proposed in Dietzfelbinger et al. [1996], what
is defined as a set of entries from the matrix support, such that everyk+1 elements of this
set span a rectangle, containing at least one element with zero value. Thus, having a fooling
set of orderk and cardinalityr, the valuerk is a lower bound on the rectangle covering
number, since no non-zero rectangle contains more thank elements from the fooling set
of orderk. Moreover, it was shown Dietzfelbinger et al. [1996] that for every matrixM ∈
RI×X the rectangle covering numberrc(M) is equal toO(maxk(

rk
k ) log(|supp(M)|)),

whererk is the maximum cardinality of a fooling set of orderk for the matrixM 2.

4.14.2. Linear Relaxation. The next approach to bound the rectangle covering num-
ber for a matrixM ∈ RI×X is a linear relaxation of the corresponding set cover problem

γ = min
∑

R∈R(M)

tR

∑

R:(i,x)∈R

tR ≥ 1 for (i, x) ∈ supp(M)

tR ≥ 0 for R ∈ R(M) ,

(see Karchmer et al. [1995]). Obviously, the optimal valueγ for this problem is a lower
bound on the rectangle covering numberrc(M). Moreover, for every matrixM , the rectan-
gle covering numberrc(M) does not exceed(1 + log(|supp(M)|))γ (see Lovász [1975]).

It is not hard to see that every fooling set of cardinalityr and orderk provides a lower
bound rk on the optimal valueγ. For this, sum the inequalities, indexed by the elements of
a fooling set of orderk, and obtain

∑

R∈R(M)

γRtR ≥ r ,

whereγR denotes the number of elements from the fooling set covered by R, what gives
us the lower bound

γ =
∑

R∈R(M)

tR ≥ r

k
,

since for allR ∈ R(M), γR is at mostk.

1In Dietzfelbinger et al. [1996] a matrix, having the rankr and a fooling set of cardinalityt, is transformed
into another matrix, having the rankrn and a fooling set of cardinalitytn, n ≥ 0. Thus, to prove that the upper
boundrank(M)2 for the cardinality of a maximal fooling in matrixM is asymptotically tight, it is enough to
construct a matrix with a fooling set of cardinality equal to the squared rank.

2 In the original paper of Dietzfelbinger et al. [1996], the boundO(maxk(
rk
k
) log(|I ×X|)) was stated,

but the proof of this bound implies also the boundO(maxk(
rk
k
) log(|supp(M)|)).
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4.14.3. Measure of Rectangles.The next bound comes from the dual problem, cor-
responding to the fractional relaxation of the set cover problem, i.e.

γ = max
∑

(i,x)∈supp(M)

yi,x

∑

(i,x):(i,x)∈R

yi,x ≤ 1 for R ∈ R(M)

yi,x ≥ 0 for (i, x) ∈ supp(M) .

This provides a well known lower bound, described in terms ofmeasures. Introducing an
atomic measureµ : I × X → R, such thatµ(i, x) = 0, for all i ∈ I, x ∈ X, where the
element, corresponding to(i, x) is equal zero, gives a lower boundµ(M) on the rectangle
covering number, whenever the measure of every non-zero rectangleR ∈ R(M) does not
exceed one.

Note that in the original definition of the fooling set of order k it is not allowed to use
any of the entries from the support more than once. Without this constraint, the linear relax-
ation bound is achieved by some generalized fooling set withmultiple usage of elements.
Considering an optimal dual solution

yi,x =
y′i,x
Y

,

where bothy′i,x andY are integer, construct a fooling set of orderY , takingy′i,x copies of
every element(i, x).

4.14.4. Number of Different Sign Patterns in Columns.Whenever a matrixM
with non-negative entries, hasn different sign patterns of its rows, the rectangle cover-
ing number is at least⌈log2 n⌉. Otherwise, fixing a rectangle cover with less than⌈log2 n⌉
rectangles and associating with each row the set of rectangles from the cover, which in-
volve this row, there are two rows among thesen rows with the same set of rectangles, and
thus, with the same sign pattern.

Choosing for polyhedraP∗ ⊆ Rm, P ∗ ⊆ Rm a slack matrixMslack(P
∗, P∗) ∈

RI
∗×X∗ , such that the setI∗ contains an inequality for every face ofL(P ∗, P∗), Goemans

obtained the lower bound
⌈log2(|L(P ∗, P∗)|)⌉

on the rectangle covering numberrc(M), since every face inL(P ∗, P∗) is uniquely de-
termined by the set of incident points fromX∗, and thus, rows corresponding to different
faces have different sign patterns.

Note that for a zero-one polytopeP ⊆ Rm the face counting bound isO(m logm),
since the number of faces of the polytopeP is equal2O(m logm) (see Fleiner et al. [1999]).
If the coordinates of the vertices of a polytopeP ⊆ Rm are from the set[k], then the
face counting bound is equalO(m log km) (see Fleiner et al. [1999]). Actually, both these
bounds can be tight for the extension complexity of a polytope (see Section 4.18).

4.15. Rectangle Covering: Graph Point of View

Consider a graphG(M) = (V,E), V = supp(M), and for every two vertices(i1, x1),
(i2, x

2) there exists an edge between them if and only if at least one ofthe entries(i1, x2),
(i2, x

1) does not belong to the support of the matrixM .

Lemma 4.6. For every matrixM ∈ RI×X , the coloring numberχ(G(M)) is equal to the
rectangle covering number of the matrixM ∈ RI×X .

Moreover, every maximal stable set in the graphG(M) defines a rectangle from
R(M), which is spanned by the corresponding entries in the matrixM . In turn, every
rectangle fromR(M) defines a stable set in the graphG(M), vertices of which corre-
spond to the elements from the rectangle.
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PROOF. Clearly, every rectangleR ∈ R(M) is a stable set in the graphG(M). Thus,
having a rectangle covering, we color every vertex ofG(M) by a color, corresponding to
some rectangle from the cover, which contains the vertex, what establishes the inequality
χ(G(M)) ≤ rc(M).

On the other hand, for some coloring of the graphG(M), consider the rectangles,
spanned in the matrixM by coloring classes. These rectangles are non-zero, since every
coloring class defines a stable set in the graphG(M). Finally, this set of rectangles forms
a rectangle covering of the entriessupp(M), and thus, the inequalityχ(G(M)) ≥ rc(M)
holds. �

Additionally, fooling sets for a matrixM ∈ RI×X correspond to cliques in the graph
G(M). Thus, the lower bound, given by the clique numberω(G(M)), i.e.

ω(G(M)) ≤ χ(G(M)) ,

is the fooling set bound.
For every matrixM ,G(M) = (V,E) andW ⊆ V defined as , we have

|W |
α(G(M)W )

≤ χ(G(M)) ,

where the graphG(M)W is the subgraph ofG(M), induced byW . But, every set of
verticesW ⊆ V induces a fooling set of cardinality|W | and of orderα(G(M)W ). On the
other hand, every fooling setW ⊆ supp(M) of orderk defines a set of verticesW ⊆ V ,
whereα(G(M)W ) ≤ k. And thus, the lower bound |W |

α(G(M)W ) , whereW ⊆ V , is the
generalized fooling set bound. It is well known (see Lovász [1975]) that the coloring
numberχ(G) is bounded by

O(max
W⊆V

|W |
α(G(M)W )

log |V |) ,

what was reproved by Dietzfelbinger et al. [1996], for the caseG = G(M).
The linear relaxation bounds can be obtained in this settingas well, since the coloring

numberχ(G(M)) is equal to the covering number of the vertices of the graphG(M) by
stable sets (inclusion maximal stable sets in the graphG(M) induce non-zero rectangles
in the matrixM ).

4.16. Lower Bounds on Rectangle Covering Number: RectangleMeasures

Proposition 4.4. The rectangle covering numberrc(P ) is equal to2m for the cubeP =
[0, 1]m.

PROOF. Let us fix the index setI ′ and letR be a non-zero rectangle of the form
I ′ × X ′, with the maximum number of elements, in the slack matrixMslack(P ), defined
by

X = {0, 1}m and P = {x ∈ Rm : 0 ≤ xi ≤ 1} .
Thus, the rectangleR is empty, if the index setI ′ contains both inequalities0 ≤ xi and
xi ≤ 1 for somei ∈ [m]. Otherwise,|X ′| = 2m−k, since every inequality inI ′ fixes one
of the coordinates. Consequently, the rectangleR involves2m−kk entries, where|I ′| = k.

It is easy to verify that the functionk2m−k achieves maximum2m−1 at k = 1 or
k = 2. Moreover, the slack matrixMslack(P ) has2m2m−1 non-zero entries, what proves
the statement of the proposition. �

Observation 4.9. Them-dimensional cubeP = [0, 1]m forms a minimal extension of
itself.
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From Observations 4.9 and 4.3, the vertex extension of them-dimensionalcross-
polytope, which is defined as

conv(

m
⋃

i=1

ei ∪
m
⋃

i=1

−ei) ,

states a minimal extension of the cross-polytope.

4.17. Lower Bounds on Rectangle Covering Number: Fooling Set

In this section, applications of the fooling set technique are presented. For all examples
here, the fooling set technique gives a tight estimation of the rectangle covering bound.
Moreover, it is shown that the listed polytopes are minimal extensions of themself.

4.17.1. Combinatorial Cube. Here, Proposition 4.4 is reproved, providing a fooling
set of the proper cardinality.

Proposition 4.5. The rectangle covering bound is equal2m for them-dimensional cube
P = [0, 1]m.

PROOF. Associate to every inequality0 ≤ xi, xi ≤ 1, i ∈ [m] a vertex of the cubeP ,
such that the resulting pairs form a fooling set. The vertexx0,i ∈ Rm, corresponding to
the inequality0 ≤ xi, i ∈ [m], is defined by its coordinates

x0,ij =

{

1 if 1 ≤ j ≤ i
0 if i < j ≤ m.

And for the inequalityxi ≤ 1, i ∈ [m], we define the vertexx1,i ∈ Rm

x1,ij =

{

0 if 1 ≤ j ≤ i
1 if i < j ≤ m.

Clearly, the defined set of vertex-facet pairs forms a fooling set of cardinality2m. �

4.17.2. Birkhoff Polytope.

Proposition 4.6. The rectangle covering boundrc(Pnbirk) equalsn2 for the Birkhoff poly-
topePnbirk ⊆ Rn

2

, n ≥ 5.

PROOF. Recall that the Birkhoff polytoperc(Pnbirk) is described as0 ≤ x and

n
∑

t=1

xi,t = 1 for all i ∈ [n] and
n
∑

t=1

xt,j = 1 for all j ∈ [n] .

For every inequalityxi,j ≥ 0, i ∈ [n], j ∈ [n], define a vertexxi,j ∈ Rn2

, giving a
permutationπ ∈ S(n), i.e. xi,jk,t is equal one if and only ifπ(k) is equalt. Let π(i) = j

andπ(i+1) = j+1 (indices are understood modulon). Moreover, setπ(t) = i+j+1−t
for all t not equal toi or i+ 1.

Let us assume that for two different inequalities0 ≤ xi′,j′ , 0 ≤ xi′′,j′′ (the pair
(i′, j′) is not equal(i′′, j′′)), whereπ′, π′′ ∈ S(n) are the corresponding permutations, the
equationsπ′(i′′) = j′′ andπ′′(i′) = j′ hold. Thus,i′′+j′′− i′−j′ is equal1 or 2 (modulo
n), due toπ′(i′′) = j′′. Similarly, i′ + j′ − i′′ − j′′ is equal1 or 2 (modulon). But this
is impossible becausen ≥ 5, what shows that the constructed vertex-facet set is a fooling
set. �

Observation 4.10. The Birkhoff polytopePnbirk ⊆ Rn
2

, n ≥ 5, is a minimal extension of
itself.
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4.17.3. Matching Polytope in Full Bipartite Graph. From Section 4.17.2 and linear
isomorphism of the Birkhoff polytopePnbirk and the perfect matching polytopePnmatch(G),
whereG is the complete bipartite graphKn,n, one obtains the following result.

Proposition 4.7. The rectangle covering boundrc(Pnmatch(G)), G = Kn,n, is equaln2

for the perfect matching polytopePnmatch(G) ⊆ Rn
2

, n ≥ 5.

Actually, the fooling set constructed in the proof of Proposition 4.6 can be extended,
to show the next result.

Proposition 4.8. The rectangle covering boundrc(Pmatch(G)), G = K(n, n), is equal
n2 + 2n for the matching polytopePmatch(G) ⊆ Rn

2

, n ≥ 5.

PROOF. Considering general matchings, there are2n additional inequalities

n
∑

t=1

xi,t ≤ 1 for all i ∈ [n] and
n
∑

t=1

xt,j ≤ 1 for all j ∈ [n] ,

indexed by verticesV ∗ = [n], V∗ = [n], whereV ∗, V∗ define the bipartition ofG.
For the non-negativity constraintsxv∗,v∗ ≥ 0, v∗ ∈ V ∗ = [n], v∗ ∈ V∗ = [n], take the

matchings, associated with the corresponding permutations from Proposition 4.6.
Additionally, for the inequalities

∑n
v∗=1 xv∗,v∗ ≤ 1, v∗ ∈ V∗, take the matching

{(w∗, w∗) : w
∗ = j + 1, w∗ ∈ V ∗ andw∗ = j, w∗ ∈ V∗ , j 6= v∗}

of cardinalityn− 1. In the same way, define the matching

{(w∗, w∗) : w
∗ = j , w∗ ∈ V ∗ andw∗ = j + 1, w∗ ∈ V∗ , j 6= v∗}

for the inequality
∑n
v∗=1 xv∗,v∗ ≤ 1, v∗ ∈ V ∗, to finish the construction of the fooling

set. �

Observation 4.11. The matching polytopePmatch(G) ⊆ Rn
2

, G = Kn,n, n ≥ 5, is a
minimal extension of itself.

4.18. Lower Bounds on Rectangle Covering Number: Face Counting

4.18.1. Permutahedron.

Proposition 4.9(Goemans). The rectangle covering boundrc(Πn) for the permutahedron
Πn ⊆ Rn is equalΩ(n log n).

PROOF. The number of vertices of the permutahedronΠn is equaln!, what gives us
the lower boundlog(n!) = Ω(n log n). �

Observation 4.12.The extended formulation in Section 2.21 is an asymptotically minimal
extension for the permutahedronΠn ⊆ Rn.

4.18.2. Huffman Polytope.

Proposition 4.10. The rectangle covering boundrc(Pnhuff) is equalΩ(n log n) for the
Huffman polytopePnhuff ⊆ Rn.

PROOF. Nguyen et al. [2010] showed that the number of facets of the Huffman poly-
topePnhuff is equalΩ(n!), what gives us the lower boundΩ(n log n). �

Observation 4.13.The extended formulation in Section 2.24 is an asymptotically minimal
extension for the Huffman polytopePnhuff ⊆ Rn.



64 4. BOUNDS ON GENERAL EXTENDED FORMULATIONS FOR POLYTOPES

4.18.3. Cardinality Indicating Polytope.

Proposition 4.11. The rectangle covering boundrc(Pncard) is equalΩ(n log n) for the
cardinality indicatingPncard ⊆ R2n+1.

PROOF. The cardinality indicating polytopePncard hasn! different faces, what proves
the rectangle covering lower boundΩ(n log n).

Indeed, define a non-trivial face of the cardinality indicating polytopePncard, which is
indexed by a permutationsµ ∈ S(n), as the intersection ofn− 1 facets

q
∑

v=1

xµ−1(v) −
q

∑

k=0

kzk+1 − q
n
∑

k=q+1

zk+1 = 0 for 1 ≤ q ≤ n− 1.

Two such faces are different, whenever they correspond to different permutationsµ′,
µ′′ ∈ S(n). Namely, there isq, 1 ≤ q ≤ n−1, such thatµ′−1([q]) is not equal toµ′′−1([q]),
and thus, the vertex of the cardinality indicating polytopePncard, defined as

xi = 1 if µ′(i) ∈ [q]

xi = 0 otherwise

zj = 1 if j = q + 1

zj = 0 otherwise,

belongs to the face, indexed by the permutationµ′, but does not belong to the face, indexed
by the permutationµ′′. �

Observation 4.14.The extended formulation in Section 2.21 is an asymptotically minimal
extension for the cardinality indicating polytopePncard ⊆ R2n+1.

4.19. Lower Bounds on Rectangle Covering Number: Direct Application

Sometimes, one has to study the possible rectangle coverings directly, what, for ex-
ample, is done in Lemma 6.5. This lemma provides us a lower bound for k-neighborly
polytopes withn vertices.

Proposition 4.12. The rectangle covering boundrc(P ) is equal to

min(n− k,
(k + 1)(k + 2)

2
− 1)

for everyk-neighborly polytopeP ⊆ Rm, vert(P ) = n.

Thus, the above proposition provides an asymptotically tight bound on the extension
complexity whenn = Θ(

√
k). In this case, the vertex extension provides an asymptotically

minimal extension for everyk-neighborly polytopeP ⊆ Rm, |vert(P )| = n = Θ(
√
k).



CHAPTER 5

Bounds on Symmetric Extended Formulations of
Polytopes

A special type of extended formulations are extended formulations which preserve
symmetries of the initial polytope. Combinatorial polytopes are a natural field to study
symmetric extended formulations, since many objects whichinduce combinatorial poly-
topes are highly symmetric, what is inherited by the polytopes themself. In some sense
it could appear natural to regard extended formulations, which respect the symmetries of
the initial polytope, and indeed, a lot of extended formulations are symmetric. But such a
restriction to symmetric extended formulations, as we willshow, could be quite expensive
in terms of the size of the obtained formulations.

For many combinatorial polytopes we can provide strong lower bounds on the sizes
of symmetric extended formulations in contrast to general lower bounds. The first result
in this area was given by Yannakakis [1991] in his pathbreaking paper, where he showed
that for the perfect matching polytope for the complete graph Kn a compact symmetric
extended formulation does not exist. As a corollary the non-existence of a compact sym-
metric extended formulation for the travelling salesman polytope in the complete graph
Kn was obtained.

In his paper Yannakakis also conjectured that the symmetry requirement is not more
than a technical condition for the proof: "We do not think that asymmetry helps much.
Thus, prove that the matching and TSP polytopes cannot be expressed by polynomial size
LP’s without the asymmetry assumption". Indeed, the travelling salesman polytope does
not admit a compact extension, what was shown by Fiorini et al. [2011b].

Even though there is no known compact extended formulation for the perfect match-
ing polytope, we will show examples of other related polytopes where no compact sym-
metric extended formulation exists, but nevertheless we will provide a compact extended
formulation, what establishes a significant size gap between symmetric and non-symmetric
extended formulations in general (see Kaibel, Pashkovich,and Theis [2010]).

Moreover, we will use the techniques, which were invented byYannakakis, to handle
such subtle cases as the permutahedron and the cardinality indicating polytope, where the
symmetric extended formulations have sizeΩ(n2), but one can provide an extended for-
mulation of sizeΘ(n log n). These examples are interesting, since the bounds established
for the symmetric and non-symmetric extensions are tight. For the parity polytope we will
prove that the symmetric extended formulations are of sizeΩ(n log n), but the minimal
known symmetric extended formulation has sizeΘ(n2).

5.1. Symmetric Extensions

Consider a polytopeP ⊆ Rm with an extension, given by a polyhedronQ ⊆ Rd and
an affine mapp : Rd → Rm. The size of this extension, as in the previous chapters, is
defined as the number of facets of the polyhedronQ. Moreover, we assume that a finite
group of affine mapsG acts on the polytopeP . The extensionQ, p is calledsymmetric
with respect to the symmetry groupG, if for everyπ ∈ G, there exists an affine mapκπ :
Rd → Rd, such that

(5.1.1) κπ.Q = Q

65
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and the mapκπ is compatible with the affine mapp : Rd → Rm in the following way

(5.1.2) p(κπ.y) = π.p(y) for every y ∈ Rd .
From (5.1.1), it follows that for eachπ ∈ G the affine mapκπ maps the affine

hull aff(Q) to itself. Moreover, the linear mapµπ, associated withκπ, maps the reces-
sion conerec(Q) and the lineality spacelineal(Q) of Q to themselves.

As in the case of general extended formulations, we can show that symmetric extended
formulations of polytopes can be assumed to be realized by polytopes without any loss in
terms of size.

Lemma 5.1. For every symmetric extensionQ ⊆ Rd, p : Rd → Rm of a polytopeP ⊆
Rm with respect to a symmetry groupG, there exists a symmetric extension of smaller or
the same size, defined via a full-dimensional polytopeQ′ ⊆ Rd

′

and an affine mapp′ :
Rd

′ → Rm.

PROOF. The polyhedronQ ⊆ Rd can be assumed to be full-dimensional. Otherwise,
consider an extensionQ∗ = q(Q) ⊆ Rd

∗

, p∗ = p◦q−1 : Rd
∗ → Rm of the polytopeP ⊆

Rm, whered∗ is the dimension of the affine spaceaff(Q), and the mapq : aff(Q) → Rd
∗

defines an affine isomorphism betweenaff(Q) andRd
∗

. To show that the constructed
extension is symmetric, define the affine mapκ∗π = q ◦κπ ◦ q−1 : Rd

∗ → Rd
∗

. Obviously,
the conditions (5.1.1) and (5.1.2) are satisfied for the extensionQ∗ ⊆ Rd

∗

, p∗ : Rd
∗ →

Rm and the symmetry groupG.
Moreover, it can be assumed that the lineality spacelineal(Q) coincides with the re-

cession conerec(Q) of the full-dimensional polyhedronQ. Otherwise, we can transform
the extensionQ ⊆ Rd, p : Rd → Rm into another extensionQ∗ ⊆ Rd, p∗ : Rd → Rm of
the same or smaller size, such that the recession conerec(Q∗) coincides with the lineality
spacelineal(Q∗). Indeed, sinceP is a polytope, i.e. the recession conerec(P ) is the zero
vector, the recession conerec(Q) is contained in the kernel of the linear map, associated
with p. Namely, for every vectorr ∈ Rd from the recession conerec(Q) of Q andy ∈ Rd

(5.1.3) p(y + r) = p(y)

holds, and thus the polyhedronQ∗ = Q−rec(Q) ⊆ Rd, together with the affine mapp∗ =
p : Rd → Rm, forms a symmetric extension of the polytopeP , where the mapsκ∗π = κπ,
π ∈ G, are defined as for the extensionQ, p. Due to the equation (5.1.3)

p∗(Q∗) = p(Q− rec(Q)) = p(Q) = P

and since the linear mapµπ associated toκπ, π ∈ G, mapsrec(Q) on itself, it follows that

κ∗π(Q
∗) = κπ.(Q− rec(Q)) = κπ(Q)− µπ(rec(Q)) = Q− rec(Q) = Q∗

holds for everyπ ∈ G. Finally, the number of facets of the polyhedronQ∗ = Q− rec(Q)
is less or equal to the number of facets of the initial polyhedronQ (Appendix: Lemma 6.3).

If the symmetric extensionQ ⊆ Rd, p : Rd → Rm is, such that the polyhe-
dronQ ⊆ Rd is full-dimensional and the recession conerec(Q) coincides with the lin-
eality spacelineal(Q), we can construct another symmetric extension via the polytope
Q∗ = Q ∩ lineal(Q)⊥ ⊆ Rd and the affine mapp∗ = p : Rd → Rm.

Indeed, from (5.1.3) for the polyhedronQ∗, the equation

p∗(Q∗) = p(Q ∩ lineal(Q)⊥) = p(Q) = P

holds, since the intersectionQ∩ lineal(Q)⊥ is the orthogonal projectionprojlineal(Q)⊥(Q)

of the polyhedronQ on the affine spacelineal(Q)⊥. The recession cone of the polyhe-
dronQ∗ ⊆ Rd is equal tolineal(Q) ∩ lineal(Q)⊥ = {0d}, what implies thatQ∗ is a
polytope. The size of the extensionQ∗, p∗ is less or equal to the size of the extensionQ,
p, since the number of facets of the polytopeQ∗ = Q∩ lineal(Q)⊥ is equal to the number
of facets of the polyhedronQ.
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To show that the obtained extensionQ∗, p∗ is symmetric, define the affine mapsκ∗π,
π ∈ G to be equalprojlineal(Q)⊥ ◦κπ. Due to (5.1.3), we have

p∗(κ∗π.y) = p(projlineal(Q)⊥(κπ.y)) = p(κπ.y) = π.p(y) = π.p∗(y) ,

and since the mapsκπ are non-degenerate (due to (5.1.1) and since the polyhedronQ is
full-dimensional)

κ∗π.Q
∗ =projlineal(Q)⊥(κπ.(Q ∩ lineal(Q)⊥)) =

projlineal(Q)⊥(κπ.Q ∩ κπ. lineal(Q)⊥) =

projlineal(Q)⊥(Q ∩ κπ. lineal(Q)⊥) =

projlineal(Q)⊥(Q) ∩ projlineal(Q)⊥(κπ. lineal(Q)⊥) =

Q∗ ∩ lineal(Q)⊥ = Q∗ .

For the fourth equation, we used the equationQ = Q+ lineal(Q), and thus

projlineal(Q)⊥(Q ∩ U) = projlineal(Q)⊥(Q) ∩ projlineal(Q)⊥(U)

holds for every setU ⊆ Rd. The fifth equation is based on the fact that the non-degenerate
linear mapµπ, associated with the affine mapκπ, mapslineal(Q) on itself. And thus,
projlineal(Q)⊥(µπ. lineal(Q)⊥) is equal tolineal(Q)⊥, what implies that the affine space
projlineal(Q)⊥(κπ. lineal(Q)⊥) is equal to the affine spacelineal(Q)⊥.

As in the beginning of the proof, we transform the extensionQ∗ = Q∩ lineal(Q)⊥ ⊆
Rd, p∗ = p : Rd → Rm into a symmetric extension of the polytopeP via a full-
dimensional polytopeQ′ ⊆ Rd

′

and an affine mapp′ : Rd
′ → Rm. �

Lemma 5.2. For every symmetric extensionQ ⊆ Rd, p : Rd → Rm of a polytopeP ⊆
Rm with respect to the symmetry groupG, there exists a symmetric extension of smaller
or the same size, defined via a full-dimensional polytopeQ′ ⊆ Rd

′

and an affine map
p′ : Rd

′ → Rm, such that for eachπ ∈ G the affine mapsκ′π : Rd
′ → Rd

′

, π ∈ G are
isometries.

PROOF. Due to Lemma 5.1, there is an extensionQ∗ ⊆ Rd
∗

, p∗ : Rd
∗ → Rm of the

polytopeP ⊆ Rm, whereQ∗ is a full-dimensional polytope. The size of the extensionQ∗,
p∗ is less or equal to the size of the extensionQ, p.

The groupG∗, generated by the affine mapsκ∗π, π ∈ G is finite, since every element
of this group can be uniquely identified with some permutation of the verticesvert(Q∗) of
the polytopeQ∗. Thus, the groupH∗, which consists of the linear maps, corresponding to
the affine maps inG∗, is also finite (in particular we have|H∗| = |G∗|). Thus, we are able
to define a new scalar product onRd

∗

〈x, y〉∗ =
∑

µ∗∈H∗

〈µ∗.x, µ∗.y〉
|H∗| .

With respect to this new scalar product, every affine mapκ∗∗ ∈ G∗ acts as an isometry,
since for everyµ∗∗ ∈ H∗

〈µ∗∗.x, µ∗∗.y〉∗ =
∑

µ∗∈H∗

〈µ∗µ∗∗.x, µ∗µ∗∗.y〉
|H∗| =

∑

µ∗∗∗∈H∗

〈µ∗∗∗.x, µ∗∗∗.y〉
|H∗| = 〈x, y〉∗ .

To preserve the standard form of the scalar product as the sum
∑d∗

i=1 xiyi, consider an-
other symmetric extension of the polytopeP ⊆ Rm, given by the polytopeQ′ = q(Q∗) ⊆
Rd

∗

and the affine mapp′ = p∗ ◦ q−1 : Rd
∗ → Rm, where the affine mapq : Rd

∗ → Rd
∗

is defined as a transformation from the standard orthonormalbasis for the scalar product
〈x, y〉 to an orthonormal basis for the scalar product〈x, y〉∗. The resulting extension is
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symmetric, where the affine mapsκ′π, π ∈ G are defined asq ◦ κ∗π ◦ q−1. Additionally, we
have

〈µ′
π.x, µ

′
π.y〉 =〈qµ∗

πq
−1.x, qµ∗

πq
−1.y〉 =

〈µ∗
πq

−1.x, µ∗
πq

−1.y〉∗ = 〈q−1.x, q−1.y〉∗ = 〈x, y〉
for all x, y ∈ Rd∗ . �

5.2. Symmetric Extended Formulations

An extended formulation of a polytopeP ⊆ Rm, given by the linear system

(5.2.1) A≤ y ≤ b≤ and A= y = b= ,

whereA≤ ∈ Rf×d, b≤ ∈ Rf , A= ∈ Rr×d, b= ∈ Rr and an affine mapp : Rd →
Rm, is calledsymmetricwith respect to the action of a groupG on the polytopeP , if for
everyπ ∈ G there exists an affine mapζπ : Rd → Rd, such that it satisfies (5.1.2), i.e.
p(ζπ.y) = π.p(y) for everyy ∈ Rd, and the linear system

(5.2.2) A≤ ζπ.y ≤ b≤ and A= ζπ.y = b= ,

is the linear system (5.2.1) with reordered constraints (after collecting the coefficients).
The size of the extended formulation is defined as the number of inequalities in the linear
system (5.2.1).

The following lemma is a trivial observation from the definition of symmetric extended
formulation.

Lemma 5.3. For every symmetric extended formulation of a polytopeP ⊆ Rm, there
exists a symmetric extension of a smaller or the same size.

We call an extensionQ ⊆ Rd, p : Rd → Rm of a polytopeP ⊆ Rm a subspace
extension, if the polyhedronQ is an intersection of the first orthantRd+ with some affine
subspace. Analogously, an extended formulation, given by asystemA=y = b=, y ∈ Rd+
and an affine mapp : Rd → Rm, is called asubspace extended formulation. Obviously,
the size of a subspace extension is less or equal to the dimension d of the ambient space
Rd, the same holds for subspace extended formulations.

The next lemma shows that every symmetric extension inducesa symmetric subspace
extended formulation of a smaller or the same size. Additionally the group action ofG on
the ambient space of the extended formulation, could be restricted to coordinate permuta-
tions.

Lemma 5.4. For every symmetric extensionQ ⊆ Rd, p : Rd → Rm of a polytopeP ⊆
Rm with respect to a groupG, there exists a symmetric subspace extended formulation of
a smaller or the same size, such that for everyπ ∈ G the affine mapζπ is a coordinate
permutation.

PROOF. Due to Lemma 5.2, the symmetric extension can be assumed to be given by
a full-dimensional polytopeQ ⊆ Rd with f facets and an affine mapp : Rd → Rm, such
that the affine mapsκπ, π ∈ G are isometries.

The polytopeQ is defined uniquely (up to reordering of constraints) by a minimal
system of linear inequalities

(5.2.3) 0 ≤ b≤ −A≤ y ,

such thatA≤ ∈ Rf×d, ‖A≤
i,∗‖ = 1 for all i ∈ [f ]. Collecting coefficients in the system

A≤ κπ.y ≤ b≤, we obtain another system of linear inequalities

(5.2.4) 0 ≤ b≤ −A≤ κπ.y = b≤
∗ −A≤∗

y ,

such that‖A≤∗
i,∗‖ = 1, because for everyπ ∈ G the affine mapκπ is an isometry. The

linear systemA≤∗
y ≤ b≤

∗
describes the polytopeκ−1

π .Q = Q (affine mapsκπ, π ∈ G
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are non-degenerate). Thus, since the system (5.2.3) for thepolytopeQ ⊆ Rd is unique
(up to reordering of constraints), the linear systemA≤∗

y ≤ b≤
∗

is obtained from the
systemA≤ y ≤ b≤ by a constraint permutationσπ ∈ S(f).

Consider the following extended formulation of the polytopeP ⊆ Rm given by the
linear system

(5.2.5) A≤ y + z = b≤, z ≥ 0

and the affine mapp∗ defined asp ◦ projy.
The system (5.2.5), together with the mapp∗, defines an extended formulation of

the polytopeP , since the projectionprojy(Q
∗) of the polyhedronQ∗ (actually,Q∗ is a

polytope), defined by the system (5.2.5), is equal to the polytopeQ.
Moreover, this extended formulation is symmetric with the following affine mapsζ∗π

for everyπ ∈ G

ζ∗π.(y, z) = (κπ.y, σπ.z) ,

since the condition (5.1.2) follows from

p∗(ζ∗π.(y , z)) = p(projy(ζ
∗
π.(y , z))) = p(κπ.y) = π.p(y) = π.p∗(y, z) ,

and (5.2.1) is satisfied from the construction of the extended formulation (5.2.5).
Moreover, since the matrixA≤ ∈ Rf×d has full column rank (Q is a polytope), there

exists an affine mapq : Rf → Rd, such thaty = q(z) for all (y, z), satisfying the linear
system (5.2.5). This shows,that the projectionQ′ = projz(Q

∗) of the polyhedronQ∗ on
z variables, together with the affine mapp′ = p ◦ q : Rf → Rm defines a symmetric
extension of the polytopeP , where the affine mapsκ′π, π ∈ G are defined as coordinate
permutationsσπ. Indeed,

κ′π.Q
′ = σπ.Q

′ = σπ. projz(Q
∗) = projz(ζπ.Q

∗) = projz(Q
∗) = Q′

and
p′(κ′π.z) = p(q(σπ.z)) = p(κπ.q(z)) = π.p(q(z)) = π.p′(z) ,

sincey = q(z) for all points(y, z) fromQ∗ andζ∗π.Q
∗ = Q∗.

The projectionQ′ = projz(Q
∗) ⊆ Rf is defined by a linear system of the form

A′z = b′, z ≥ 0, whereA′ ∈ Rr′×q and no two rows ofA′ are equal. We can assume that
containing an equation〈ai, z〉 = bi, the linear equationsA′z = b′ contain also the equation
〈σπ.ai, z〉 = bi for every coordinate permutationσπ, π ∈ G, since the group generated by
σπ, π ∈ G is finite (σπ, π ∈ G are coordinate permutations). �

Further, we can assume that the affine transformations in theambient space of symmet-
ric extensions, corresponding to elements of the symmetry groupG, are given as coordinate
permutations.

Observation 5.1. Every symmetric extension of a polytope induces a symmetricsubspace
extension of smaller or the same size. Moreover, for everyπ ∈ G the affine mapκπ :
Rd → Rd for the induced symmetric extension is a coordinate permutation.

5.3. Symmetric Section

Through the proofs of lower bounds, we do not use the symmetryof extensions di-
rectly, but the existence of so called symmetric section, which is a weaker condition.

A maps : vert(P ) → Q is called asectionfor an extensionQ ⊆ Rd, p : Rd → Rm

of a polytopeP ⊆ Rm, if for everyx ∈ vert(P )

(5.3.1) p(s(x)) = x .

Thus sections assigns to every vertexx ∈ vert(P ) a points(x) ∈ Q from the fiber

p−1(x) = {y ∈ Rd : p(y) = x} .
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The sections induces a bijection betweenvert(P ) and the sets(vert(P )) ⊆ Q, whose
inverse map is defined byp.

A section is calledsymmetricwith respect to the action of a groupG on a polytopeP ,
if for everyπ ∈ G, there exists an affine mapηπ : Rd → Rd, such that

(5.3.2) s(π.x) = ηπ.s(x)

for everyx ∈ vert(P ).
Note that the mapsηπ, π ∈ G do not have to satisfy the conditions (5.1.1) from the

definition for symmetric extensions, i.e.ηπ.Q does not have to coincide with the polyhe-
dronQ. However, the equationp(ηπ.y) = π.p(y) is satisfied automatically for the maps
ηπ, π ∈ G and points from

aff({s(x) : x ∈ vert(P )}) .
Due to Observation 5.1, we can restrict our attention to symmetric subspace extensions

Q ⊆ Rd, p : Rd → Rm, where affine mapsκπ, π ∈ G are coordinate permutationsS(d).
Thus, for further considerations we can assume that the conditions of the following lemma
are satisfied.

Lemma 5.5. For every symmetric extension via a polyhedronQ ⊆ Rd and an affine map
p : Rd → Rm of a polytopeP with respect to a groupG, such that the affine mapκπ for
everyπ ∈ G is a coordinate permutation, there exists a symmetric section, and the affine
mapsηπ, π ∈ G can be chosen as the mapsκπ.

PROOF. First, observe that a symmetric extension satisfies

(5.3.3) κπ.p
−1(x) = p−1(π.x)

for all π ∈ G. The inclusionκπ.p−1(x) ⊆ p−1(π.x) follows already from (5.1.2), what
leads to the equality since both affine subspacesκπ.p

−1(x), p−1(π.x) have the same di-
mension.

We assume that the groupG acts transitively on the set of verticesvert(P ), otherwise
consider each orbit under the action ofG onvert(P ) separately. Fix a vertexx∗ ∈ vert(P )
with a pointy∗ ∈ Q, such thatp(y∗) = x∗, and define

(5.3.4) s(x∗) =

∑

κ∈S∗ κ.y∗

|S∗| ,

whereS∗ is a subroup of the finite groupG∗, generated byκπ, π ∈ G, such that

(5.3.5) S∗ = {κ ∈ G∗ : κ.p−1(x∗) = p−1(x∗)} .
The points(x∗) lies in the polyhedronQ and its projectionp(s(x∗)) is equal tox∗,

sinces(x∗) is a convex combination of points with these properties.
For everyx ∈ vert(P ), we chooseπx ∈ G, such thatπx.x∗ = x, using the transitivity

of the action ofG onvert(P ), and define

(5.3.6) s(x) = κπx
.s(x∗) ,

and thus, the points(x) lies inQ ∩ p−1(x) due to (5.1.1) and (5.1.2).
To finish the proof, it suffices to showκσ.s(x) = s(σ.x) for everyσ ∈ G andx ∈

vert(P ). Let us show that the mapκ−1
πσ.x

κσκπx
belongs toS∗, i.e.

κ−1
πσ.x

κσκπx
.p−1(x∗) = κ−1

πσ.x
κσ.p

−1(x) = κ−1
πσ.x

.p−1(σ.x) = p−1(x∗) .

Therefore,

(5.3.7) κ−1
πσ.x

κσκπx
.s(x∗) =

∑

κ∈S∗ κ−1
πσ.x

κσκπx
κ.y∗

|S∗| = s(x∗) ,

what implies the equation

κσ.s(x) = κσκπx
.s(x∗) = κπσ.x

.s(x∗) = s(σ.x) .
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�

5.4. Examples: Symmetric Extension, Symmetric Section

The spanning tree polytopePspt(n) ⊆ RE in the complete graphKn on n vertices,
possesses a certain symmetry groupG ⊆ S(n). Namely, for everyπ ∈ S(n)

(π.x)v,w = xπ−1(v),π−1(w) for v, w ∈ [n]

maps the spanning tree polytopePspt(n) on itself. Indeed, the action of the groupS(n)
on the vertices of the spanning tree polytope is induced by permutations of the vertices in
the graphKn. And every vertex permutation for the graphKn maps the set of all spanning
treesT (n) on itself.

The extended formulation of the spanning tree polytopePspt(n) (see Martin [1991]),
defined byz ≥ 0 and

xv,u +
∑

w∈V \{v,u}

zv,w,u = 1 for distinctv, u ∈ [n]

xv,u − zv,u,w − zu,v,w = 0 for distinct v, u, w ∈ [n] ,

where the affine mapp, associated with the linear system, is the orthogonal projection on
x variables. The polytopeQspt(n), described by the linear system, together with the affine
mapp, defines an extension of the spanning tree polytopePspt(n).

This extended formulation of the spanning tree polytope is symmetric, since for every
π ∈ S(n) and for all vectorsx, z, there exists an affine mapζπ.(x, z), which can be
defined as(π.x, π.z), where

(5.4.1) (π.z)v,w,u = zπ−1(v),π−1(w),π−1(u) for distinct v, w, u ∈ [n] .

Obviously, every affine mapζπ leads to a permutation of the constraints in the linear system
above. Moreover, affine mapsζπ, π ∈ S(n) are compatible with the projectionp, since
for all π ∈ S(n)

p(ζπ.(x, z)) = p(π.x, π.z) = π.x .

The corresponding polytope, together with the affine mapp, forms a symmetric extension
of the spanning tree polytopePspt(n), where the affine mapsκπ, π ∈ S(n) are the affine
mapsζπ, π ∈ S(n).

Note that the obtained extension (extended formulation) isa symmetric subspace ex-
tension (symmetric subspace extended formulation), wherethe affine mapsκπ, π ∈ G
(ζπ, π ∈ G) are coordinate permutations, i.e. it satisfies the statement of Observation 5.1
(Lemma 5.4, respectively).

A section maps is defined uniquely, and thus due to Lemma 5.5 is symmetric. The
images(x) is equal to(x, z) for each vertexx = χ(T ), T ∈ T (n), wherezv,u,w is equal
to one if the treeT contains the edge{v, u} and the path fromu tow in the treeT does not
involve the vertexv, andzv,u,w is equal to zero, otherwise. It is straightforward to check
that the defined sections is symmetric with the affine mapsηπ, π ∈ S(n), defined as the
affine mapsζπ, π ∈ S(n).

5.5. Faces of a Symmetric Extensions

Lemma 5.6. Let Q ⊆ Rd be an extension of a polytopeP ⊆ Rm with projectionp :
Rd → Rm, and let a faceP ′ of P be an extension of a polytopeR ⊆ Rk with projection
q : Rm → Rk. Then the faceQ′ = p−1(P ′) ∩Q ⊆ Rd ofQ is an extension ofR via the
composed projectionq ◦ p : Rd → Rk.

If the extensionQ of P is symmetric with respect to the action of a groupG onRm

(with π.P = P for all π ∈ G), and a groupH acts onRk such that, for everyτ ∈ H, we
haveτ.R = R, and there is someπτ ∈ G with πτ .P ′ = P ′ andq(πτ .x) = τ.q(x) for all
x ∈ Rm, then the extensionQ′ ofR is symmetric with respect to the action of the groupH.
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PROOF. Due toq(p(Q′)) = q(P ′) = R, the polyhedronQ′, together with the projec-
tion q ◦ p is an extension ofR.

In order to prove the statement on the symmetry of this extension, let τ ∈ H be an
arbitrary element ofH with πτ ∈ G as guaranteed to exist forτ in the statement of the
lemma, and letκπτ

∈ S(d) be a permutation, as guaranteed to exist by the symmetry of
the extensionQ of P . Since we have

q(p(κπτ
.y)) = q(πτ .p(y)) = τ.(q(p(y))) ,

it suffices to showκπτ
.Q′ = Q′. As y 7→ κπτ

.y defines an automorphism ofQ (mapping
faces ofQ to faces of the same dimension), it suffices to showκπτ

.Q′ ⊆ Q′. Due to
κπτ

.Q = Q, this relation is implied byκπτ
.p−1(P ′) ⊆ p−1(P ′), which follows from

p(κπτ
.p−1(P ′)) = πτ .p(p

−1(P ′)) = πτ .P
′ = P ′ .

�

Thus, from every lower bound on size of symmetric extensionsfor the polytopeR ⊆
Rk with respect to the action of the groupH, we automatically obtain the same lower
bound on size of symmetric extensions for the polytopeP ⊆ Rm with respect to the
action of the groupG. This is due to the fact that the polyhedronQ′ = p−1(P ′)∩Q ⊆ Rd,
together with the mapq ◦ p : Rd → Rk, providing a symmetric extension of the polytope
R ⊆ Rk with respect to the action of the groupH, is a face ofQ, and thus has not more
facets than the polyhedronQ.

5.6. Yannakakis’ Method

This section describes the modified method, where the original method was used to
prove a lower bound on size of symmetric extensions for the perfect matching polytope
by Yannakakis [1991].

5.6.1. Action of GroupG. Due to Observation 5.1 and Lemma 5.5, we can assume
that a symmetric extension for a polytopeP ⊆ Rm with the minimum size is a subspace
extension, given by a polyhedronQ ⊆ Rd and an affine mapp : Rd → Rm, with a
symmetric sections : vert(P ) → Q. Moreover, the affine mapsκπ, π ∈ G are defined as
coordinate permutations.

In this setting, we define an action of the groupG on the component functions of the
sections

S = {s1, . . . , sd} ,
where the component functions do not have to be pairwise distinct functions, via

π.sj = sκ−1

π−1 (j)
.

The action of the symmetry groupG on the component function is well-defined and yields
a group action. To show this, consider the following equation

(5.6.1) (π.sj)(x) = sκ−1

π−1 (j)
(x) = (κπ−1 .s(x))j = sj(π

−1.x)

for everyπ ∈ G, j ∈ [d] andx ∈ vert(P ), what implies that1G.sj = sj andπσ.sj =
π.(σ.sj) for everyπ, σ ∈ G.

The isotropygroup ofsj ∈ S under the action ofG is defined as

isoG(sj) = {π ∈ G : π.sj = sj} .
The component functionsj : vert(P ) → R has the same value on every orbit of the action
isoG(sj) on vert(P ), since due to (5.6.1), the equationsj(π.x) = sj(x) holds for every
x ∈ vert(P ) and everyπ ∈ isoG(sj).

Obviously, in general settings it is not possible to identify the isotropy groupisoG(sj),
but we are able to estimate the index of the isotropy groupisoG(sj) in the groupG. The
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indexG : isoG(sj) is equal to the cardinality of the orbit for the component function sj
under the action ofG onS, and thus

(5.6.2) G : isoG(sj) ≤ |S| ≤ d ,

since the cardinality of the orbit can not exceed the cardinality of S.

5.6.2. Action of GroupG = S(n). For many combinatorial polytopes the symme-
try groupG is given as the symmetric groupS(n) for somen. In this case, to study
the structure of subgroups of the groupG with small indices, we apply the theorem be-
low Yannakakis [1991] (Appendix: Theorem 6.1)

Theorem 5.1. For each subgroupU ofS(n) with (S(n) : U) ≤
(

n
k

)

, 1 ≤ k < n
4 , there is

someW ⊆ [n], |W | ≤ k, such that

{π ∈ A(n) : π(v) = v for all v ∈W} ⊆ U

holds.

Thus, whenever we haved ≤
(

n
k

)

, 1 ≤ k < n
4 , there exists a setVj ⊆ [n] with

|Vj | ≤ k for everysj ∈ S, such that

(5.6.3) {π ∈ A(n) : π(v) = v for all v ∈ Vj} ⊆ isoG(sj) .

Moreover, if for everyx ∈ vert(P ) and everyV ⊆ [n], |V | ≤ k, there exists an odd
permutationσ ∈ S(n), such that

σ.x = x and σ.v = v , for v ∈ V ,

then the following inclusion holds

(5.6.4) {π ∈ S(n) : π(v) = v for all v ∈ Vj} ⊆ isoG(sj) .

Indeed, for every vertexx ∈ vert(P ) and an odd permutationπ ∈ S(n), such that
π.v = v, v ∈ Vj , we letσ ∈ S(n) to be an odd permutation, such thatσ.x = x and
σ.v = v, v ∈ Vj . Then the permutationπσ is an even permutation, such thatπσ.v = v,
v ∈ Vj , and thus, the permutationπσ lies in the isotropy groupisoG(sj). And thus, the
equation

sj(x) = πσ.sj(x) = π.sj(σ
−1.x) = π.sj(x) .

holds for every vertexx ∈ vert(P ), what shows thatπ ∈ isoG(sj), and thus finishes the
proof.

An information about some subgroupH of the isotropy groupisoG(sj), sj ∈ S
enables us to consider orbits under the action of this subgroup H on the set of vertices
vert(P ). The component functionsj has the same value on such orbits, since these orbits
are subsets of the orbits under the action ofisoG(sj) onvert(P ).

5.6.3. Section Slack Covectors.The extensionQ ⊆ Rd, p : Rd → Rm is a sub-
space extension and thus all facet defining inequalities forthe polyhedronQ are non-
negativity constraints. Here, we assume that the polytopeP is not trivial, i.e. not a one-
point polytope.

We obtain a contradiction to the fact thatQ, p is a subspace extension of the polytope
P , if there exist numbersλx, x ∈ vert(P ) and an inequality〈a, x〉 ≤ b, which is valid for
P , such that

∑

x∈vert(P )

sj(x)λx ≥ 0 for all j ∈ [d](5.6.5)

∑

x∈vert(P )

(b− 〈a, x〉)λx < 0 .(5.6.6)
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Indeed, if the sum
∑

x∈vert(P ) λx is equal zero, the vector

r =
∑

x∈vert(P )

λxs(x) ,

belongs to the recession conerec(Q), sinceQ, p is a subspace extension. And the vector

µ(r) =
∑

x∈vert(P )

λxµ(s(x)) + β
∑

x∈vert(P )

λx =

∑

x∈vert(P )

λxp(s(x)) =
∑

x∈vert(P )

λxx

is not equal to zero, since
∑

x∈vert(P )

(b− 〈a, x〉)λx =
∑

x∈vert(P )

〈a, λxx〉 = 〈a,
∑

x∈vert(P )

λxx〉 < 0 ,

here the projectionp(y) is represented asµ(y) + β, whereµ : Rd → Rm is a linear map
andβ ∈ R. This contradicts the fact thatP is a polytope.

If the sum
∑

x∈vert(P ) λx is not equal zero, the point

1
∑

x∈vert(P ) λx

∑

x∈vert(P )

λxs(x) ,

belongs to the polyhedronQ, sinceQ, p is a subspace extension, but the projection of
this point does not satisfy the constraint〈a, x〉 ≤ b. Note that

∑

x∈vert(P ) λx ≥ 0, since
from the Farkas Lemma, for every extensionQ, whose recession cone does not have the
dimension equal to the dimension ofQ (in this caseQ can be an extension of trivial poly-
topes only), the functionφ : vert(P ) → R, whereφ(x) = 1 for all x ∈ vert(P ), can be
obtained as a non-negative combination of the section component functionssj , j ∈ [d].

5.7. Matching Polytope

In this section, we prove the following theorem, which givesus a lower bound on
size of symmetric extended formulations for the cardinality restricted matching polytope
Pℓmatch(n) ⊆ RE .

Theorem 5.2. For every odd0 ≤ ℓ ≤ n
2 , 6 ≤ n, there is no symmetric extended formula-

tion for the matching polytopePlmatch(n) ⊆ RE of size less than
(

n
ℓ−1
2

)

.

This theorem gives also a lower bound on the size of symmetricextensions for the
polytopePℓmatch(n), when the numberℓ is not restricted to be odd. Because the face

Pℓmatch(n) ∩ {x ∈ R(n2) : xn−1,n = 1}
of the polytopePℓmatch(n) provides a symmetric extension of the polytopePℓ−1

match(n− 2)
with respect to the action of the groupS(n− 2). From Lemma 5.6, we obtain the lower
bound

(

n− 2
ℓ−2
2

)

≥ 1

4

(

n

⌊ ℓ−1
2 ⌋

)

,

when0 ≤ ℓ ≤ n
2 is even andn ≥ 6.

Theorem 5.3. For every0 ≤ ℓ ≤ n
2 , 6 ≤ n, there is no symmetric extended formulation

for the matching polytopePℓmatch(n) ⊆ RE of size less than14
(

n
⌊ ℓ−1

2 ⌋

)

.

And from Theorems 2.4 and 5.3, we can conclude that forℓ = Θ(log n) there ex-
ists a compact extended formulation for the matching polytope Pℓmatch(n), but there is
no compact symmetric extended formulation for the matchingpolytopePℓmatch(n), what
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establishes a gap between symmetric and non-symmetric extensions for the cardinality re-
stricted matching polytopes.

Corollary 5.1. For Ω(log n) ≤ ℓ ≤ n, there is no compact extended formulation for
Pℓmatch(n), that is symmetric with respect to the groupS(n).

5.7.1. Action of GroupG = S(n). Due to Observation 5.1, there exists a symmetric
subset extensionQ ⊆ Rd, p : Rd → RE with d ≤

(

n
k

)

, n2 ≥ ℓ = 2k + 1, such that the
affine mapsκπ : Rd → Rd, π ∈ S(n) are coordinate permutations.

The results of Section 5.6.2 imply that under the assumptiond <
(

n
k

)

there is a sub-
setVj ⊆ V of nodes with|Vj | ≤ k for eachj ∈ [d], such that

Hj = {π ∈ S(n) : π(v) = v for all v ∈ Vj} ⊆ isoS(n)(sj) .

Indeed, for every vertexx = χ(M), M ∈ M2k+1(n) ,and every setW ⊆ V , |W | ≤
k, there exists an edgee = {w, u}, w, u 6∈ W , in the matchingM , which defines the
transposition(w, u) as an odd permutationσ ∈ S(n), such thatσ(v) = v, v ∈ W and
σ.x = x.

Hence, two verticesχ(M1) andχ(M2), M1,M2 ∈ M2k+1(n), are in the same orbit
under the action of the groupHj if and only if we have

(5.7.1) M1 ∩ E(Vj) =M2 ∩ E(Vj) and Vj \M1 = Vj \M2 .

This implies that if

M1 ∩
(

E(Vj) ∪ δ(Vj)
)

=M2 ∩
(

E(Vj) ∪ δ(Vj)
)

for two verticesχ(M1), χ(M2), then

sj(χ(M1)) = sj(χ(M2)) ,

due to (5.7.1).

5.7.2. Section Slack Covectors.Choose two disjoint setsV⋆, V ⋆ ⊆ V , such that
|V⋆| = |V ⋆| = 2k + 1, recall the inequality2k + 1 ≤ n

2 . And define an extension of the
polytopeP2k+1

match(4k + 2) by the polyhedron

Q′ = Q ∩ {y ∈ Rd : x = p(y), xe = 0 for e ∈ E \ E(V ⋆ ∪ V⋆)}
and the affine mapp′ = projE(V ∗∪V∗) ◦ p.

A sections′ : vert(P2k+1
match(4k + 2)) → Rd is the restriction of the sections to the

characteristic vectors of matchingsM2k+1(n), which cover the nodes ofV⋆ ∪ V ⋆.
From (5.7.1), we haves′j(χ(M1)) = s′j(χ(M2)) for M1,M2 ∈ M2k+1(4k + 2),

whenever

M1 ∩
(

E(V ′
j ) ∪ δ(V ′

j )
)

=M2 ∩
(

E(V ′
j ) ∪ δ(V ′

j )
)

,

whereV ′
j is the set of nodesVj ∩ (V⋆ ∪ V ⋆).

Denote byAj the set of all matching onV⋆ ∪ V ⋆, such thatA ⊆ E(V ′
j ) ∪ δ(V ′

j ),
hence|A| ≤ |Vj | = k. And denote bys′j(A), A ∈ Aj , the valuesj(χ(M)), where
M ∈ M2k+1(4k + 2), such thatA =M ∩ (E(V ′

j ) ∪ δ(V ′
j )).

Now, we findλx, x ∈ vert(P2k+1
match(4k + 2)) as described in Section 5.6.3. For this,

define

M⋆
i = {M ∈ M2k+1(4k + 2) : |M ∩ E(V⋆ : V

⋆)| = i} .
Thus,M⋆

i is the set of perfect matchings onK(V⋆ ∪V ⋆), with exactlyi edges betweenV⋆
andV ⋆. Note that the setsM⋆

i , i ∈ [2k + 1]odd form a partition of the setM2k+1(4k + 2),
since the cardinalities of the setsV⋆, V ⋆ are odd.
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Choose the numbersλx, x ∈ M⋆
i to be equal λ

∗
i

|M⋆
i |

for all i ∈ [2k + 1]odd. In turn,

the numbersλ∗i , i ∈ [2k + 1]odd are chosen as a solution to the following linear system
∑

i∈[2k+1]odd

λ∗i = 1

∑

i∈[2k+1]odd

itλ∗i = 0 for all t ∈ [k] .

The matrix, defining the linear system, is a Vandermonde matrix, and thus non-singular.
Hence, there exist such numbersλ∗i , i ∈ [2k + 1]odd. Note that this definition ofλ∗i ,
i ∈ [2k + 1]odd implies the equation

(5.7.2)
∑

i∈[2k+1]odd

q(i)λ∗i = q0
∑

i∈[2k+1]odd

λ∗i +
∑

t∈[k]

qt
∑

i∈[2k+1]odd

itλ∗i = q0 = q(0)

for every polynomq = q0 +
∑

j∈[k] qjx
j , i.e. for every polynom with degree at mostk.

First, we show that the inequality (5.6.5) holds for everyj ∈ [d], i.e.

0 ≤
∑

x∈vert(P2k+1
match(4k+2))

λxs
′
j(x)

for everyj ∈ [d]. For this, let us rewrite the left size of the inequality above
∑

M∈M2k+1(4k+2)

λχ(M)s
′
j(χ(M)) =

∑

A∈Aj

∑

A⊆M∈M2k+1(4k+2)

λχ(M)s
′
j(A) =

∑

A∈Aj

∑

i∈[2k+1]odd

λ∗i
|M⋆

i |
|{M ∈ M⋆

i : A ⊆M}|s′j(A) =

∑

A∈Aj

s′j(A)
∑

i∈[2k+1]odd

λ∗i
|M⋆

i |
|{M ∈ M⋆

i : A ⊆M}| .

From the symmetry in definition ofλ∗i , i ∈ [2k + 1]odd, it follows that the value
∑

i∈[2k+1]odd

λ∗i
|M⋆

i |
|{M ∈ M⋆

i : A ⊆M}| ,

corresponding to a matchingA, is equal for all matchingsA from the setAa⋆,a⋆,a⋆⋆ , con-
sisting of all matchingsA′ ⊆ E(V ⋆ ∩V⋆), wherea⋆ = |A′ ∩ E(V ⋆)|, a⋆ = |A′ ∩ E(V⋆)|,
a⋆⋆ = |A′ ∩ E(V ⋆ : V⋆)|. And, sincesj(χ(M)) is non-negative for all matchingsM ∈
M2k+1(4k + 2) andj ∈ [d], it is enough to show that the inequality

∑

A∈Aa⋆,a⋆,a⋆
⋆

∑

i∈[2k+1]odd

λ∗i
|M⋆

i |
|{M ∈ M⋆

i : A ⊆M}| ≥ 0

holds, what can be seen from the following chain of equations

∑

i∈[2k+1]odd

∑

A∈Aa⋆,a⋆,a⋆
⋆

λ∗i
|M⋆

i |
|{M ∈ M⋆

i : A ⊆M}| =

∑

i∈[2k+1]odd

∑

M∈M⋆
i

λ∗i
|M⋆

i |
|{A ∈ Aa⋆,a⋆,a⋆⋆

: A ⊆M}| =

∑

i∈[2k+1]odd

∑

M∈M⋆
i

λ∗i
|M⋆

i |

( 2k+1−i
2

a⋆

)(

i

a⋆⋆

)( 2k+1−i
2

a⋆

)

=

∑

i∈[2k+1]odd

λ∗i

( 2k+1−i
2

a⋆

)(

i

a⋆⋆

)( 2k+1−i
2

a⋆

)

,
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where the last expression can be considered as a polynom of degree|a⋆|+ |a⋆⋆|+ |a⋆| ≤ k,
which evaluated at the point0 gives a non-negative value.

On the other hand, the inequalityx
(

E(V⋆ : V
⋆)
)

≥ 1, which is valid for the polytope
P2k+1
match(4k + 2), can be used in the constraint (5.6.6)

∑

M∈M2k+1(4k+2)

λχ(M)(|M ∩ E(V⋆ : V
⋆)| − 1) =

∑

i∈[2k+1]odd

∑

M∈M⋆
i

λχ(M)(i− 1) =

∑

i∈[2k+1]odd

|M⋆
i |

λ∗i
|M⋆

i |
(i− 1) =

∑

i∈[2k+1]odd

λ∗i (i− 1) = −1 ,

sincei − 1 is a polynom of degree smaller thank (in the casek = 0, the lower bound is
trivial).

5.8. Cycle Polytope

Theorem 5.4. For 6 ≤ ℓ ≤ n, the size of every symmetric extension forPℓcycl(n), with
respect to the groupS(n), is bounded from below by

1

16

( ⌊n3 ⌋
⌊(⌊ ℓ6⌋ − 1)/2⌋

)

.

PROOF. Let us define

ℓ̄ = ℓ mod6 , n′ = ⌊n− ℓ̄

3
⌋ and k = ⌊ ℓ

6
⌋ = ℓ− ℓ̄

6
.

Choose three pairwise disjoint subsetsV ⋆, V⋆, V ⋆⋆ ⊆ V of nodes with the cardinality
n′ each. And denote the elements of these three sets as follows

V ⋆ = {v⋆1 , . . . , v⋆n′} V⋆ = {v⋆1, . . . , v⋆n′} V ⋆⋆ = {v⋆⋆1, . . . , v⋆⋆n′} .
Define the set of edges

E0 = {{v⋆, v} ∈ E : v⋆ ∈ V ⋆, v ∈ V \ (V ⋆ ∪ V ⋆⋆ )}∪
{{v⋆⋆i, v} ∈ E : i ∈ [n′], v ∈ V \ {v⋆i, v⋆i} ,

and letF be the following face ofPℓcycl(n)

F = Pℓcycl(n) ∩ {x ∈ RE : xe = 0 for all e ∈ E0} .
Every cycleC ∈ Cℓ(n), such thatC ∩ E0 = ∅, satisfies the inequality

|V (C) ∩ V ⋆⋆ | ≤ 2⌊ℓ/6⌋ ,
because the cycleC goes through at least three edges between any two visits toV ⋆⋆ , and
there has to be an even number of these visits, since after coming inV ⋆⋆ fromV ⋆, the cycle
goes intoV⋆, and vice versa. Therefore, denoting

C′ = {C ∈ Cℓ(n) : C ∩ E0 = ∅, |V (C) ∩ V ⋆⋆ | = 2⌊ℓ/6⌋} ,
we define the following face ofPℓcycl(n)

F ′ = conv({χ(C) : C ∈ C′}) = {x ∈ F : x(δ(V ⋆⋆ )) = 4⌊ℓ/6⌋} .
Moreover, for everyC ∈ C′, we have

|C ∩ E(V ⋆)| ≥ ⌊ℓ/6⌋ .
Thus, if we denote

C′′ = {C ∈ C′ : |C ∩ E(V ⋆)| = ⌊ℓ/6⌋} ,
we find that

F ′′ = conv({χ(C) : C ∈ C′′} = {x ∈ F ′ : x(E(V ⋆)) = ⌊ℓ/6⌋})
is a face ofPℓcycl(n).
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A cycleC ∈ Cℓ(n) is contained inC′′ only if C ∩ E(V ⋆) is a matching of sizeℓ′ =
⌊ℓ/6⌋. And every matchingM in E(V ⋆) of sizeℓ′ = ⌊ℓ/6⌋, can be extended to some
cycleC ∈ Cℓ(n). Thus, for the orthogonal projectionq : RE → RE(V ⋆), the following
equation holds

q(F ′′) = Pℓ
′

match(n
′) ,

after an identification ofV ⋆ with the node set of the complete graphKn′ .
Moreover, for everyτ ∈ S(n′) the permutationπτ ∈ S(n) with

πτ (v
⋆
i) = v⋆τ−1(i), πτ (v⋆i) = v⋆τ−1(i), πτ (v

⋆
⋆i) = v⋆⋆τ−1(i)

for all i ∈ [n′], andπτ (v) = v for all v /∈ V ⋆, V⋆, V
⋆
⋆ , satisfiesπτ .F ′′ = F ′′, and

q(πτ .x) = τ.q(x) for all x ∈ RE .

Due to Lemma 5.6, a symmetric extension of the restricted cycle polytopePℓcycl(n)

yields a symmetric extension of the restricted matching polytopePℓ
′

match(n
′) of at most the

same size. From Theorem 5.3, we obtain the lower bound

1

4

( ⌊n−ℓ̄3 ⌋
⌊(⌊ ℓ6⌋ − 1)/2⌋

)

≥ 1

16

( ⌊n3 ⌋
⌊(⌊ ℓ6⌋ − 1)/2⌋

)

on size of symmetric extensions for the polytopePℓcycl(n).
�

Corollary 5.2. For Ω(log n) ≤ ℓ ≤ n, there is no compact extended formulation for
Pℓcycl(n), that is symmetric with respect to the groupS(n).

From Theorems 2.5 and 5.2, we can conclude that forℓ = Θ(log n), there exists a
compact extended formulation for the cycle polytopePℓcycl(n), but there is no compact

symmetric extended formulation for the cycle polytopePℓcycl(n).

5.9. Symmetric Subspace Extensions of Quadratic Size

In this section, we study symmetric subspace extensions of an arbitrary polytopeP ⊆
Rn+m, n ≥ 6. The groupS(n) acts on the vertex setvert(P ) by permuting the first
n coordinates.

Due to Observation 5.1, we assume that a polyhedronQ ⊆ Rd, 2d < n(n − 1)
andp : Rd → Rm+n, which forms a minimal extension of the polytopeP , is a symmetric
subspace extension of the polytopeP with respect to the action ofG = S(n), where affine
mapsκπ, π ∈ G, are coordinate permutations. A symmetric sections : vert(P ) → Q is,
such that the corresponding affine mapsηπ : Rd → Rd, π ∈ G, are given as the coordinate
permutationsκπ : Rd → Rd, π ∈ G.

The main result of this section is the following theorem, which describes the action of
the groupA(n) on the component functionssj .

Theorem 5.5. There exists a partition of the set[d] into setsAi andBj , such that each
setBj contains exactly one elementbj , and each setAi consists ofn elementsai1, ai2,. . . ,
ain with

(5.9.1) sait(π.x) = sai
π−1(t)

(x) sbj (π.x) = sbj (x)

for every vertexx ∈ vert(P ) and allπ ∈ A(n).

Before proving Theorem 5.5, we would like to show the following result, which can
be extremely useful in case of zero-one polytopes.
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Theorem 5.6. In the case, when the vertex setvert(P ) belongs to{0, 1}n × Rm, there
exists a partition of the set[d] into setsAi andBj , such that each setBj contains exactly
one elementbj , and each setAi consists ofn elementsai1, ai2,. . . ,ain with

saiv (x) = saiw(x) if xv = xw(5.9.2)

sbj (x) = sbj (y) if x = π.y for someπ ∈ S(n)(5.9.3)

for all vertices x, y ∈ vert(P ).

PROOF. Consider a partitionAi,Bj , which is guaranteed to exist by Theorem 5.5. We
prove that this partition satisfies the statement of the current theorem.

Let us assume thatxv andxw are equal, butsaiv (x) andsaiw(x) are not. We can choose
two distinct elementsv′, w′ different fromv,w such thatxv′ is equal toxw′ (sincen ≥ 6).
For the even permutationπ = (v, w)(v′, w′) from Theorem 5.5, the values(x) is not equal
to s(π.x). But this contradicts the definition of a section, sincex andπ.x represent the
same vertex.

By Theorem 5.5, the equationsbj (π.x) = sbj (x) holds for all permutationsπ ∈
A(n) and verticesx ∈ vert(P ). Assume that this equation is not satisfied for some odd
permutationπ and vertexx. We can choose two elementsv′, w′ such thatxv′ is equal to
xw′ (sincen ≥ 6). Consider the transpositionτ = (v′, w′) and the corresponding even
permutationπ′ = πτ . For this even permutationπ′, the equation

π′.x = πτ.x = π.x

holds. From Theorem 5.5, we can conclude

sbj (x) = sbj (π
′.x) = sbj (π.x) ,

what contradicts our assumption thatsbj (x) 6= sbj (π.x). �

The proof of Theorem 5.5, presented below, consists of a series of small lemmas1.

5.9.1. Action of Group A(n) on Component Functions.As in Section 5.6.2, for
all j ∈ [d], we are able to establish

{π ∈ A(n) : π(v) = v for all v ∈ Vj} ⊆ isoG(sj)

for some setVj ⊂ [n], |Vj | ≤ 2, due to Lemma 5.1 and the assumptiond <
(

n
2

)

. In the
next lemma, we prove that the setVj can be chosen to contain not more than one element.

Lemma 5.7. For eachj ∈ [d], there is somevj ∈ [n], such that

{π ∈ A(n) : π(vj) = vj} ⊆ isoG(sj) .

This elementvj is uniquely determined, unlessA(n) ⊆ isoG(sj)

PROOF. Let us assume the setVj to contain two elementsv andw. If Vj is a fixed
block for the groupisoG(sj), then the following inequality

d <
n(n− 1)

2
≤ (S(n) : isoG(sj))

holds, but(S(n) : isoG(sj)) is equal to the cardinality of the orbit forsj under the action
of the groupS(n). Thus, there is a permutationτ ∈ isoG(sj), such that without loss of
generalityτ(v) 6= v andτ(v) 6= w.

For convenience, we prove that the permutationτ can be chosen, such thatτ(w) = w
andτ ∈ A(n). Wheneverτ(w) 6= w or τ 6∈ A(n), consider the permutationτ ′ = τ−1βτ ∈
A(n), whereβ ∈ A(n), such that

β(v) = v, β(w) = w, βτ(w) = τ(w) and βτ(v) 6= τ(v) .

1Actually, the proof of Theorem 5.5 can be significantly reduced (see Braun and Pokutta [2011]), due to
Lemma 5.7 and the fact that the isotropy groups forvj andsj , considering the action ofA(n), are equal.
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Such a permutationβ exists sinceτ(v) is not equal to any of the three elementsv, w,τ(w)
(noten ≥ 6). The construction ofτ ′ guarantees that

τ ′(w) = w, τ ′(v) 6= v and τ ′ ∈ isoG(sj) .

Hence, we assume thatτ(w) = w andτ ∈ A(n).
To prove that the elementvj described in the lemma exists, we show that the elementw

has the desired properties, i.e.

(5.9.4) {π ∈ A(n) : π(w) = w} ⊆ isoG(sj) .

Every permutationπ ∈ A(n), π(w) = w, π(v) 6= v can be represented as

π = (π(τα)−1)τα

for anyα ∈ S(n). Choose a permutationα ∈ A(n), such that

α(v) = v, α(w) = w and απ−1(v) = τ−1(v) .

The existence of thisα can be trivially proved, sincen ≥ 6. Thus, the permutationπ
belongs toisoG(sj), because all three permutationsτ , α andπ(τα)−1 belong toisoG(sj)
(note thatπ(τα)−1 andα are even permutations, which fix elementsv, w). Thus, every
permutationπ ∈ A(n), π(w) = w, belongs toisoG(sj), wheneverπ(v) = v. Therefore,
the inclusion (5.9.4) holds.

Having another elementu ∈ [n], u 6= w, such that

(5.9.5) {π ∈ A(n) : π(u) = u} ⊆ isoG(sj) ,

one can prove thatA(n) ⊆ isoG(sj), since every permutationπ ∈ A(n) is a composition
of not more than four permutations, described by (5.9.4) and(5.9.5). �

5.9.2. Action of Cycles on Component Functions.To prove Theorem 5.5, define
permutationsρv, v ∈ [n− 2], consisting of the cycle(v, v+1, v+2), respectively. Initially,
we find a partitionAi, {bj}, such that Theorem 5.5 is satisfied for the permutationsρv,
v ∈ [n− 2]. Finally, since every permutationπ ∈ A(n) is a product of permutationsρv,
the proof of Theorem 5.5 follows.

Note that two permutationκ′ andκ from S(d) are equivalent in our discussion, if
the equationsκ′−1(j)(x) = sκ−1(j)(x) holds for allx from vert(P ) and for allj from [d].
For example, we can take the identity permutation instead ofκ, if sκ−1(j)(x) = sj(x) for
all x ∈ vert(P ) and allj ∈ [d].

Lemma 5.8. For eachπ = (w1, w2, w3) ∈ A(n), there exists a permutationκ in S(d),
which is equivalent toκπ, such that all cycles inκ are of the form(j1, j2, j3), withvjt = wt
andA(n) 6⊆ isoG(sjt) for all t ∈ [3].

PROOF. The permutationκ3π is equivalent to the identity permutation, since the per-
mutationπ3 is the identity permutation.

Thus, every cycleC of the permutationκπ of length not divisible by three, permutes
indices of the identical component functions ofs. Hence, we can assume that the length of
every cycleC in κπ is divisible by three.

The same augmentation allows us to transform every cycle(j1, j2, · · · j3l) of the per-
mutationκπ into the following cycles(j1, j2, j3), . . . ,(j3l−2, j3l−1, j3l), offering an equiv-
alent permutation toκπ. Thus, we may assume thatκπ contains cycles of length three only.

Now, we consider one of the cycles(j1, j2, j3) in the permutationκπ. If the el-
ementvj1 does not belong to{w1, w2, w3} or A(n) ⊆ isoG(sj1), then we haveπ ∈
isoG(sj1), and thusπ, π2 ∈ isoG(sj1), what yields

sj1(x) = sj1(π.x) = sκπ
−1(j1)(x) = sj3(x)

sj1(x) = sj1(π
2.x) = sκπ

−2(j1)(x) = sj2(x) .

This shows that the component functionssj1 , sj2 , sj3 are identical, and thus, the cy-
cle (j1, j2, j3) can be omitted.
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Hence, we may assumevj1 = w1. For every permutationτ ′ ∈ A(n), τ ′(w3) = w3,
and the permutationτ = πτ ′π−1 ∈ A(n), we have

τ(w1) = πτ ′π−1(w1) = πτ ′(w3) = π(w3) = w1 ,

and thus,τ ∈ isoG(sj1), sinceτ ∈ A(n) andτ(w1) = w1.Therefore, the equation

sj3(π
−1τπ.x) = sκπ

−1(j1)(π
−1τπ.x) = sj1(ππ

−1τπ.x)

= sj1(τπ.x) = sj1(τ.(π.x)) = sj1(π.x) = sκπ
−1(j1)(x) = sj3(x)

holds for allx ∈ vert(P ), and thus,τ ′ ∈ isoG(sj3). Hence, the elementvj3 is equal the
elementw3, unlessA(n) ⊆ isoG(sj3) (whereA(n) ⊆ isoG(sj1) would allow us to remove
the cycle(j1, j2, j3)). Similarly, one can obtain that the elementsvj2 , w2 are equal. �

5.9.3. Interaction of Two Cycles.

Lemma 5.9. For every two permutationsπ = (w1, w2, w3) andσ = (w2, w3, w4), w1 6=
w4, and the corresponding permutationsκπ andκσ satisfying the conditions in Lemma 5.8
the following holds: if the permutationκπ contains a cycle(j1, j2, j3) with vjt = wt for
all t ∈ [3], then one of these statements is true:

(1) The permutationκσ contains a cycle(j2, j3, j4) with vj4 = w4.
(2) The permutationκσ contains two cycles(j2, j′3, j

′
4) and(j′′2 , j3, j

′′
4 ) with vj′′2 =

w2, vj′3 = w3 andvj′4 = vj′′4 = w4. Additionally, the component functionsj′′2 is
identical tosj2 and the component functionsj′3 is identical tosj3 .

PROOF. Assume that the permutationκσ does not contain any cycle involving the in-
dexj2. Every permutationµ ∈ A(n) can be represented as a combinationτ ′στ , whereτ ′, τ
are even permutations withτ ′(w2) = τ(w2) = w2. Thus, for every permutationµ ∈ A(n),
we have

sj2(µ.x) = sj2(τ
′στ.x) = sj2(στ.x) = sκσ

−1(j2)(τ.x) = sj2(τ.x) = sj2(x) .

This contradicts the conditions onκπ in Lemma 5.8. Similarly, we treat the case, when no
cycle inκσ involves the indexj3.

Let us assume that there are two different cycles(j2, j
′
3, j

′
4) and (j′′2 , j3, j

′′
4 ) in the

permutationκσ. And let us consider the permutationπσ which could be written as a
combination of two disjoint cycles(w1, w2)(w3, w4). From this, conclude that(πσ)2 is the
identity permutation, what implies that(κπκσ)2 is equivalent to the identity permutation.

For every vertexx ∈ vert(P ), we have

sj3(x) = sj3((πσ)
2.x) = sκπ

−1(j3)(σπσ.x) = sj2(σπσ.x) =

sκσ
−1(j2)(πσ.x) = sj′4(πσ.x) = sj′4(σ.x) = sκσ

−1(j′4)
(x) = sj′3(x) .

Thus, the component functionssj3 andsj′3 are identical. Consideringsj2((πσ)
2.x), we get

that the component functionssj2 andsj′′2 are identical as well.
�

5.9.4. Construction of PartitionAi, Bj .

Lemma 5.10. For every cycle(j1, j2, j3) in the permutationκρ1 , satisfying the conditions
in Lemma 5.8, there is a set

S(j1,j2,j3) = {j1, j2, · · · , jn} ,

such that, for everyρv there is a permutation equivalent toκρ1 , which contains the cy-
cle (jv, jv+1, jv+2) and has the properties, required in Lemma 5.8.
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PROOF. Let us construct the setS(j1,j2,j3) iteratively. We start with

(5.9.6) S(j1,j2,j3) = {j1, j2, j3} ,
which satisfies the claim of the lemma forv equal to one.

From Lemma 5.9 forπ = ρ1, σ = ρ2, there are two possible cases, concerning
the cycle(j1, j2, j3). In the case (1) of Lemma 5.9, extend the setS(j1,j2,j3) to the set
{j1, j2, j3, j4}, and thus,S(j1,j2,j3) satisfies the claim of the lemma forv equal one and
two. In the case (2) of Lemma 5.9, updateκρ2 by changing cycles(j2, j′3, j

′
4), (j′′2 , j3, j

′′
4 )

to (j2, j3, j
′
4), (j′′2 , j

′
3, j

′′
4 ), what produces a permutation equivalent toκρ2 , and choose the

setS(j1,j2,j3) to be equal to{j1, j2, j3, j′4}.
Going fromv equal to three tilln− 2, and settingπ to beρv−1 andσ to beρv, extend

the setS(j1,j2,j3), and, if necessary, update the permutationκρv . �

Due to Lemma 5.10, construct disjoint setsS(j1,j2,j3) indexed by cycles ofκρ1 . More-
over, there is no cycles inκρ2 , · · · , κρn−2

, which does not contain any index from the
constructed setsS(j1,j2,j3), due to Lemma 5.9.

Now, we can choose the setsAi to be the setsS(j1,j2,j3), where the singletones{bj}
involve the rest of component functions. Lemma 5.10 guarantees equation (5.9.1), and
thus, we finish the proof of Theorem 5.5.

5.10. Permutahedron

Here, we establish a lower bound on sizes of symmetric extensions for the permutahe-
dron.

Theorem 5.7. For everyn ≥ 6, there exists no symmetric extension of the permutahe-
dronP = Πn of size less thann(n−1)

2 , with respect to the groupG = S(n).

Define the functionΛ : S(n) → Rn as

Λ(ζ) = (ζ−1(1), ζ−1(2), · · · , ζ−1(n)) .

Thus, we have
vert(Πn) = {Λ(ζ) : ζ ∈ S(n)} ,

and the action ofS(n) on the vertex setvert(Πn) is defined as

(π.Λ(ζ))v = Λ(ζ)π−1(v)

holds for allπ ∈ S(n), ζ ∈ S(n).
Theorem 5.5 provides an information about the action ofA(n) on the component

functionssj , j ∈ [d], and we fix the provided partitionAi, bj of the component functions.

Lemma 5.11. There exists an elementw, 1 ≤ w ≤ n− 1, such that the statements

if saiw(Λ(1S(n))) > 0 then
∑

v>w

saiv (Λ(1S(n))) > 0(5.10.1)

if saiw+1
(Λ(1S(n))) > 0 then

∑

v≤w

saiv (Λ(1S(n))) > 0(5.10.2)

hold for all setsAi.

PROOF. Each setAi consists ofn components, what implies that the number of dif-
ferentAi is less thann−1

2 , sinced < n(n−1)
2 .

For every setAi, there is at most one elementw from [n− 1], which violates the
statement (5.10.1), since it should be the maximal element from [n− 1] for which the value
saiw(Λ(1S(n))) is positive. Analogously, for every setAi, there is at most one elementw
from [n− 1], which violates the statement (5.10.2).

Thus, for at least one elementw ∈ [n− 1] both (5.10.1) and (5.10.2) are satisfied for
all setsAi. �
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Choose an elementw, satisfying Lemma 5.11, and define the following subgroup
of A(n)

H = {π ∈ A(n) : π([w]) = [w]} .
Now, to disprove the possibility of such a symmetric extension, we apply the results

of Section 5.6.3. For this, chooseλx, x ∈ vert(P ), wherex = Λ(ζ), as follows

λx =











1 if ζ ∈ H

− ǫ if ζ ∈ Hτ

0 otherwise,

whereτ ∈ A(n) is given as the cycle(1, w, w+1) or (n,w+1, w), depending on whether
w is equal to one, andHτ denotes the right coset forH and the elementτ ∈ A(n).

We have to guarantee that the inequalities (5.6.5) hold for someǫ > 0, i.e.
∑

x∈vert(P )

λxsbj (x) ≥ 0 for every bj ∈ B(5.10.3)

∑

x∈vert(P )

λxsait(x) ≥ 0 for every ait ∈ Ai .(5.10.4)

The left side of (5.10.3) can be rewritten as follows
∑

x∈vert(P )

λxsbj (x) =
∑

π∈S(n)

λΛ(π)sbj (Λ(π)) =
∑

π∈S(n)

λΛ(π)sbj (π.Λ(1S(n))) =

∑

π∈H

sbj (π.Λ(1S(n)))−
∑

π∈Hτ

ǫsbj (π.Λ(1S(n))) = |H|(1− ǫ)sbj (Λ(1S(n))) ,

what is non-negative for allǫ, ǫ ≤ 1.
The left side of (5.10.4) can be rewritten as follows
∑

x∈vert(P )

λxsait(x) =
∑

π∈H

sait(Λ(π))−
∑

π∈Hτ

ǫsait(Λ(π)) =

∑

π∈H

sait(π.Λ(1S(n)))− ǫ
∑

π∈Hτ

sait(π.Λ(1S(n))) .

For t ≤ w this expression is equal
∑

π∈H

sait(π.Λ(1S(n)))− ǫ
∑

π∈Hτ

sait(π.Λ(1S(n))) =
∑

v≤w

∑

π−1(t)=v
π∈H

saiv (Λ(1S(n)))−

∑

v<w

∑

π−1(t)=v
π∈Hτ

ǫsaiv (Λ(1S(n)))−
∑

π−1(t)=w+1
π∈Hτ

ǫsaiv (Λ(1S(n))) =

|H|
w

(

∑

v≤w

saiv (Λ(1S(n)))− ǫ
∑

v≤w−1

saiv (Λ(1S(n)))− ǫsaiw+1
(Λ(1S(n)))

)

.

For t > w this expression is equal
∑

π∈H

sait(π.Λ(1S(n)))− ǫ
∑

π∈Hτ

sait(π.Λ(1S(n))) =
∑

v≥w+1

∑

π−1(t)=v
π∈H

saiv (Λ(1S(n)))−

∑

v>w+1

∑

π−1(t)=v
π∈Hτ

ǫsaiv (Λ(1S(n)))−
∑

π−1(t)=w
π∈Hτ

ǫsaiv (Λ(1S(n))) =

|H|
n− w

(

∑

v≥w+1

saiv (Λ(1S(n)))− ǫ
∑

v≥w+2

saiv (Λ(1S(n)))− ǫsaiw(Λ(1S(n)))
)

.
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Since for the elementw the conditions (5.10.1), (5.10.2) are satisfied, the above ex-
pressions are non-negative for some choice ofǫ > 0.

But on the other hand, considering the inequality

∑

v∈[w]

xv ≥
w(w + 1)

2
,

which is valid for the permutahedron, the condition (5.6.6)looks as

∑

x∈vert(P )

λx
(

∑

v∈[w]

xv −
w(w + 1)

2

)

=

∑

π∈H

∑

v∈[w]

(

(Λ(π))v −
w(w + 1)

2

)

− ǫ
∑

π∈Hτ

∑

v∈[w]

(

(Λ(π))v −
w(w + 1)

2

)

=

−
∑

π∈Hτ

ǫ < 0 ,

what finishes the proof of Theorem 5.7.
In Section 2.7, a symmetric extended formulation for the permutahedronΠn of size

O(n2) was presented, and thus, Lemma 5.10 provides an asymptotically tight bound on
the size of symmetric extensions forΠn.

In turn, there is an extended formulation of sizeO(n log n) constructed by Goemans
(Section 2.21), what is an asymptotically minimal extension for the permutahedronΠn
(Section 4.18.1). Hence, we established a gap between symmetric and non-symmetric
extensions of the permutahedron.

5.11. Cardinality Indicating Polytope

Theorem 5.8. For everyn ≥ 6, there exists no symmetric extension of the cardinality
indicating polytopeP = Pncard of size less thann(n−1)

2 , with respect to the groupG =
S(n).

The operatorΛ(W ) maps every setW ⊆ [n] to the vector(χ(W ), e|W |+1). Thus, we
have

vert(P ) = {Λ(W ) :W ⊆ [n]} ,
and for every permutationπ ∈ S(n) and setW ⊆ [n]

(π.Λ(W ))v = Λ(W )π−1(v) for 1 ≤ v ≤ n

(π.Λ(W ))k = Λ(W )k for n+ 1 ≤ k ≤ 2n+ 1 .

Note that for the cardinality indicating polytope the groupS(n) does not act transitively
on the vertex setvert(P ), i.e. all vertices are divided into orbits, corresponding to possible
cardinalities.

From Theorem 5.6, we get that for every setW ⊆ [n] the valuesaiv (Λ(W )) depends
only on the cardinality of the setW , and whetherv belongs to the setW . In the same way,
the valuesbj depends on the cardinality of the setW only. Introduce shortcuts for these
values

c0i (k) = saiv (Λ(W )) for v /∈W and|W | = k

c1i (k) = saiv (Λ(W )) for v ∈W and|W | = k

cj(k) = sbj (Λ(W )) for |W | = k
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Lemma 5.12. There exists, a cardinalityk∗, 1 ≤ k∗ ≤ n− 1, such that the statement

(5.11.1) if c0i (k
∗) > 0 or c1i (k

∗) > 0 then
∑

0≤k<k∗

c0i (k) +
∑

k∗<k≤n

c1i (k) > 0

holds for all setsAi.

PROOF. Each setAi consists ofn components, and thus the number of setsAi is less
thann−1

2 , sinced < n(n−1)
2 .

For every setAi, there are at most two cardinalities, such that the condition (5.11.1) is
not satisfied. To prove this, assign toAi the minimum cardinalitykmin and the maximum
cardinalitykmax for which the statement (5.11.1) is violated. From (5.11.1), both values
c0i (k) and c1i (k) are equal to0 for all cardinalitiesk, kmin < k < kmax. Thus, the
statement (5.11.1) holds for the setAi and for all cardinalitiesk, kmin < k < kmax.

Hence, there exists at least one cardinality from1 till n− 1, which satisfies the condi-
tion (5.11.1) for allAi. �

Applying the results of Section 5.6.3, we chooseλx, x ∈ vert(P ), for x = Λ(W ),
W ⊆ [n], as follows

λx =



















1 if W = [t], 0 ≤ t ≤ n, t 6= k∗

1 + ǫ if W = [k∗]

−ǫ if W = [k∗ − 1] ∪ {k∗ + 1}
0 otherwise,

wherek∗, 1 ≤ k∗ ≤ n− 1 is a cardinality, satisfying Lemma 5.12.
We have to guarantee that the inequality (5.6.5) hold for some ǫ > 0, i.e.

∑

x∈vert(P )

λxsbj (x) ≥ 0 for every bj ∈ B(5.11.2)

∑

x∈vert(P )

λxsait(x) ≥ 0 for every ait ∈ Ai .(5.11.3)

The left side of (5.11.2) can be rewritten as follows
∑

x∈vert(P )

λxsbj (x) =
∑

0≤k≤n

cj(k) + ǫcj(k
∗)− ǫcj(k

∗) =
∑

0≤k≤n

cj(k) ,

what is non-negative for allǫ.
The left side of (5.11.3) fort /∈ {k∗, k∗ + 1} is equal

∑

x∈vert(P )

λxsait(x) =
∑

0≤k≤t−1

c0i (k) +
∑

t≤k≤n

c1i (k) ,

what is non-negative.
And for t = k∗ is equal

∑

x∈vert(P )

λxsait(x) =
∑

0≤k≤k∗−1

c0i (k) +
∑

k∗≤k≤n

c1i (k)− ǫc0i (k
∗) + ǫc1i (k

∗) =

∑

0≤k<k∗

c0i (k) +
∑

k∗<k≤n

c1i (k)− ǫc0i (k
∗) + (1 + ǫ)c1i (k

∗) ,

and fort = k∗ + 1 is equal
∑

x∈vert(P )

λxsait(x) =
∑

0≤k≤k∗

c0i (k) +
∑

k∗+1≤k≤n

c1i (k)− ǫc1i (k
∗) + ǫc0i (k

∗) =

∑

0≤k<k∗

c0i (k) +
∑

k∗<k≤n

c1i (k)− ǫc1i (k
∗) + (1 + ǫ)c0i (k

∗) .



86 5. BOUNDS ON SYMMETRIC EXTENDED FORMULATIONS OF POLYTOPES

Due to the condition (5.11.1), there existsǫ > 0, such that all above expressions are non-
negative.

Use the inequality

(5.11.4)
∑

1≤v≤k∗

xv −
∑

1≤k≤k∗

kzk −
∑

k∗<k≤n

k∗zk ≤ 0 ,

which is valid forPncard, to guarantee the condition (5.6.6)

∑

x∈vert(P )

λx(−xv +
∑

1≤k≤k∗

kzk +
∑

k∗<k≤n

k∗zk) =

λΛ([k∗−1]∩{k∗+1}) = −ǫ < 0 ,

since for all verticesx ∈ vert(P ), except the vertexΛ([k∗ − 1]∩{k∗+1}), the coefficient
λx or the inequality (5.11.4) is satisfied at equality.

Since in Section 2.4, a symmetric extended formulation for the cardinality indicating
polytope of sizeO(n2) was presented, Lemma 5.8 provides an asymptotically tight bound
on size of symmetric extensions forPncard.

In turn, we constructed an extended formulation of sizeO(n log n) in Section 2.21,
which is an asymptotically minimal extension for the cardinality indicating polytope (Sec-
tion 4.18.3). And thus, we established a gap between symmetric and non-symmetric exten-
sions for the cardinality indicating polytope.

5.12. Parity Polytope

Theorem 5.9. For everyn ≥ 6, there exists no symmetric extension of the parity poly-
topeP = Pneven of size less thann log(n4 ), with respect to the groupG = S(n).

Due to Jeroslow [1975], the parity polytopePneven can be described as0 ≤ x ≤ 1 and

(5.12.1)
∑

v∈S

xv −
∑

v∈[n]\S

xv ≤ |S| − 1 for S ⊆ [n], |S| is odd .

5.12.1. Symmetric Non-Negative Factorization of Slack Matrix. Consider a sym-
metric subspace extensionQ ⊆ Rd, p : Rd → Rm of the parity polytope, whered is less
thann log(n4 ), with a symmetric sections : vert(P ) → Q.

From Observation 4.2, there exist vectorst(S) ∈ Rd+, S ⊆ [n], |S| ∈ [n]odd, such
that the equation

(5.12.2) 〈t(S), s(x)〉 = |S| − 1−
∑

v∈S

xv +
∑

v∈[n]\S

xv ,

holds for everyx ∈ vert(P ).
Theorem 5.6 describes the structure of the sections(x). But, we want to study also

the structure of the vectorst(S), whereS ⊆ [n], |S| ∈ [n]odd.
To do this, consider a permutationπ ∈ S(n), such thatπ.S is equalS. Due to (5.12.2),

the slack variable, corresponding to a vertexx and the inequality, indexed by the setS, is
equal to

∑

v∈[n]

∑

Ai

taiv (S)saiv (x) +
∑

bj

tbj (S)sbj (x) .
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Since the slack variables, corresponding to the verticesx, π.x and the inequality (5.12.1)
for the setS, are equal, we have

∑

v∈[n]

∑

Ai

taiv (S)saiv (x) +
∑

bj

tbj (S)sbj (x) =

∑

v∈[n]

∑

Ai

taiv (π.S)saiv (π.x) +
∑

bj

tbj (π.S)sbj (π.x) =

∑

v∈[n]

∑

Ai

taiv (S)saiv (π.x) +
∑

bj

tbj (S)sbj (π.x) =

∑

v∈[n]

∑

Ai

taiv (S)saiπ−1(v)
(x) +

∑

bj

tbj (S)sbj (x) =

∑

v∈[n]

∑

Ai

tai
π(v)

(S)saiv (x) +
∑

bj

tbj (S)sbj (x) .

Thus, we have
∑

v∈[n]

∑

Ai

taiv (π.S)saiv (π.x) +
∑

bj

tbj (π.S)sbj (π.x) =

1

|GS |
∑

π∈GS

∑

v∈[n]

∑

Ai

tai
π(v)

(S)saiv (x) +
∑

bj

tbj (S)sbj (x) =

∑

Ai

∑

v∈S

saiv (x)

∑

w∈S taiπ(w)
(S)

|GS |
+
∑

Ai

∑

v/∈S

saiv (x)

∑

w/∈S taiπ(w)
(S)

|GS |
+
∑

bj

tbj (S)sbj (x) ,

where the groupGS is defined as follows

GS = {π ∈ S(n) : π.S = S} .
This allows us to assume that the condition

t(S)aiv = t(S)aiw if v, w ∈ S or v, w /∈ S

holds.
Similarly, we can assume that for two setsS1, S2 ⊆ [n], cardinalities of which are

equal and odd, we can assume

t(S1)aiv = t(S2)ai
π(v)

and t(S1)bj = t(S2)bj

for every permutationπ ∈ S(n), where the imageπ.S1 is equalS2.
Due to the structure of the vectorss(x), x ∈ vert(P ), and vectorst(S), S ⊆ [n],

|S| ∈ [n]odd, we may introduce the following notation

c0,ki = saiv (χ(R)) for R ⊆ [n], |R| = k ∈ [n]even and v /∈ R

c1,ki = saiv (χ(R)) for R ⊆ [n], |R| = k ∈ [n]even and v ∈ R

ckj = sbj (χ(R)) for R ⊆ [n], |R| = k ∈ [n]even

and

t0,ℓi = taiv (S) for S ⊆ [n], |S| = ℓ ∈ [n]odd and v /∈ S

t1,ℓi = taiv (S) for S ⊆ [n], |S| = ℓ ∈ [n]odd and v ∈ S

tℓj = tbj (S) for S ⊆ [n], |S| = ℓ ∈ [n]odd .

Additionally, letc0,k, c1,k, k ∈ [n]even andt0,ℓ, t1,ℓ, ℓ ∈ [n]odd denote the vectors, indexed
by the setsAi, which have the corresponding coordinates. In the same manner, define the
vectorsck, k ∈ [n]even andrℓ, ℓ ∈ [n]odd, that are indexed by elements from the setsBj
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Due to (5.12.2), the slack variable corresponding to the inequality, indexed by a setS,
S ⊆ [n], |S| = ℓ ∈ [n]odd and vertexx = χ(R),R ⊆ [n], |R| = k ∈ [n]even, is equal

(5.12.3) |S ∩R| 〈t1,ℓ, c1,k〉+ |S \R| 〈t1,ℓ, c0,k〉+ |R \ S| 〈t0,ℓ, c1,k〉+
(n− |(S ∪R)|) 〈t0,ℓ, c0,k〉+ 〈tℓ, ck〉 .

5.12.2. Lower Bound on Symmetric Non-negative Factorizations. Now, consider
a setS ⊆ [n], |S| = ℓ ∈ [n− 1]odd and two setsR1 andR2, |R1| = |R2| = k ∈
[n− 1]even, such that the equation

|S ∩R1| = |S ∩R2| − 1

holds.
From (5.12.3), we get

|S ∩R1|〈t1,ℓ, c1,k〉+ |S \R1|〈t1,ℓ, c0,k〉+ |R1 \ S|〈t0,ℓ, c1,k〉+
(n− |(S ∪R1)|)〈t0,ℓ, c0,k〉+ 〈tℓ, ck〉 =

(|S ∩R2| − 1)〈t1,ℓ, c1,k〉+ (|S \R2|+ 1)〈t1,ℓ, c0,k〉+ (|R2 \ S|+ 1)〈t0,ℓ, c1,k〉+
(n− |(S ∪R1)| − 1)〈t0,ℓ, c0,k〉+ 〈tℓ, ck〉 =

|S ∩R2|〈t1,ℓ, c1,k〉+ |S \R2|〈t1,ℓ, c0,k〉+ |R2 \ S|〈t0,ℓ, c1,k〉+
(n− |(S ∪R2)|)〈t0,ℓ, c0,k〉+ 〈tℓ, ck〉+ 〈t1,ℓ − t0,ℓ, c0,k − c1,k〉 ,

and calculating the relation between the corresponding slack variables

|S| − 1− |R1 ∩ S|+ |R1 \ S| = |S| − 1− |R2 ∩ S|+ |R2 \ S|+ 2 ,

we get that the equation

(5.12.4) 2 + 〈t1,ℓ − t0,ℓ, c1,k − c0,k〉 = 0

holds for allk ∈ [n− 1]even andℓ ∈ [n− 1]odd. From the non-negativity of the vectors
c0,k, c1,k, t0,ℓ, t1,ℓ, we get

(5.12.5) 〈t1,ℓ, c0,k〉+ 〈t0,ℓ, c1,k〉 ≥ 2 .

Let us assume that there arek2 < k1 ≤ ⌊n2 ⌋, k1, k2 are even, such that the vectors
c1,k1 , c1,k2 have the same support1.

First, consider the case, when a setS ⊆ [n], |S| = ℓ = k1 − 1 is disjoint to a
setR ⊆ [n], |R| = k1. From (5.12.3), we have

(n− ℓ− k1)〈t0,ℓ, c0,k1〉+ k1〈t0,ℓ, c1,k1〉+ ℓ〈t1,ℓ, c0,k1〉+ 〈tℓ, ck〉 = k1 + ℓ− 1 ,

what leads to

(ℓ+ 1)〈t0,ℓ, c1,k1〉+ ℓ〈t1,ℓ, c0,k1〉 ≤ 2ℓ ,

and thus, from the inequality (5.12.5)

(5.12.6) 〈t0,ℓ, c1,k1〉 = 0 .

On the other hand, consider the case, when a setS ⊆ [n], |S| = ℓ = k1 − 1 is disjoint
to a setR ⊆ [n], |R| = k2. From (5.12.3), we get

(n− ℓ− k2)〈t0,ℓ, c0,k2〉+ k2〈t0,ℓ, c1,k2〉+ ℓ〈t1,ℓ, c0,k2〉+ 〈tℓ, ck2〉 = k2 + ℓ− 1 ,

and thus
k2〈t0,ℓ, c1,k2〉+ ℓ〈t1,ℓ, c0,k2〉 ≤ k2 + ℓ− 1 ,

but due to (5.12.4), the inequality

(k2 − ℓ)〈t0,ℓ, c1,k2〉+ 2ℓ ≤ k2 + ℓ− 1 ,

1Here, we apply an argumentation similar to the argumentation inSection 4.14.4.
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holds, what leads to (notek2 < ℓ = k1 − 1)

(5.12.7) 〈t0,ℓ, c1,k2〉 ≥ k2 − ℓ− 1

k2 − ℓ
=

k1 − k2
k1 − k2 − 1

> 0 .

Due to the equation (5.12.6) and inequality (5.12.7), the vectorsc1,k1 , c1,k2 cannot
have the same support. The vectorsc1(k1), c1(k2) are indexed by the setsAi, and thus the
number of setsAi is at leastlog(n4 ), what states the lower boundn log(n4 ) on the number
of variables in symmetric extensions of the parity polytope, since every setAi containsn
elements. This finishes the proof of Theorem 5.9.

And since in Section 2.5, an extended formulation of the parity polytope with size
O(n) was presented Carr and Konjevod [2004], we established a size gap between sym-
metric and non-symmetric extensions for the parity polytope.

But it is unknown, whether Theorem 5.9 provides an asymptotically tight bound on
size of symmetric extensions for the parity polytope, sincethe best known symmetric ex-
tension Yannakakis [1991] has sizeO(n2) (Section 2.5, Balas approach).





CHAPTER 6

Appendix

In Appendix, we collected results, which were used in the chapters below, but were left
out of the consideration, in order to focus the attention on the content of the corresponding
chapter.

6.1. Polytopes, Extended Formulations, Extensions

Lemma 6.1. For a polyhedronP ⊆ Rd, the trivial inequality0 ≤ 1 can be obtained as
a non-negative combination of the inequalities in a linear system, defining the polyhedron
P , unless the dimension of the recession conerec(P ) is equal to the dimension of the
polyhedronP .

PROOF. Let us assume that the linear system

cA = 0d , 〈c, b〉 = 1 and c ≥ 0

does not have a solution, for a matrixA ∈ Rf×d andb ∈ Rf , such that

P = {x ∈ Rd : Ax ≤ b} .
From the Farkas Lemma, the system

Ay ≤ −b
has a solutiony′ ∈ Rd. Takingdim(P )+1 affinely independent pointsx1, . . . ,xdim(P )+1,
obtaindim(P )+1 affinely independent pointsy′+x1, . . . ,y′+xdim(P )+1 in the recession
conerec(P ). �

Lemma 6.2. Whenever the linear system

(6.1.1) Ax ≤ b and 0 ≤ x ,

whereA ∈ Rf×d, b ∈ Rd, defines an integral polyhedron, the linear system

(6.1.2)

Ax ≤ b and 0 ≤ y

xi =
∑

t∈di

yit for i ∈ [d]

defines an integral polyhedron as well.

PROOF. It is enough, to show that for all integer vectorsc ∈ Zd andci ∈ Zdi , i ∈
[d], the maximum of the linear function〈c, x〉 + ∑

i∈[d]〈ci, yi〉, with respect to the linear
system (6.1.2), is integer or is infinite (see Schrijver [1986]). Consider the optimization
problem

max
(t1,...,td)∈[d1]×...×[dd]

max
x

(c1 + c1t1)x1 + . . .+ (cd + cdtd)xd

over the system of linear inequalities (6.1.2). It is not hard to see that the optimal values
for both problems coincide, what finishes the proof. �

Lemma 6.3. For every polyhedronQ ⊆ Rd, described by

(6.1.3) 〈ai, y〉 ≤ bi for all i ∈ I ,

91
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the polyhedronQ− rec(Q) ⊆ Rd is described by the linear system

(6.1.4) 〈ai, y〉 ≤ bi for all i ∈ I ′ ,

whereI ′ consists of all indicesi ∈ I, such that〈ai, r〉 = 0 is satisfied for allr ∈ rec(Q).

PROOF. LetQ′ be the polyhedron, described by the liner system (6.1.4). The inclu-
sionQ − rec(Q) ⊆ Q′ is trivial, sinceQ satisfies the linear system (6.1.4) and− rec(Q)
belongs to the recession conerec(Q′).

Note that for each inequality〈ai, y〉 ≤ bi, i ∈ I \ I ′, there exists a vectorri ∈
rec(Q), such that〈ai, ri〉 < 0. Thus, for every pointy′ ∈ Q′, there exist non-negative
numbersλj ∈ R, j ∈ I \ I ′, such that

〈ai, y′ +
∑

j∈I\I′

λjr
j〉 ≤ bi

for i ∈ I \ I ′, and obviously

〈ai, y′ +
∑

j∈I\I′

λjr
j〉 = 〈ai, y′〉+

∑

j∈I\I′

λj〈ai, rj〉 ≤ 〈ai, y′〉 ≤ bi

for i ∈ I ′, i.e. the pointy′+
∑

j∈I\I′ λjr
j satisfies the linear system (6.1.3), and thus,y′ ∈

Q− rec(Q). �

6.2. Rectangle Covering

Lemma 6.4. For a matrixM ∈ RI×J , where

I = {S1 ⊆ [n] : |S1| ≤ k1} and J = {S2 ⊆ [n] : |S2| ≤ k2} ,
wherek2 ≤ k1 ≤ n, such that the entryMS1,S2

is non-zero if and only if the setsS1, S2

are disjoint, there exists a rectangle cover for the matrixM ∈ RI×J of size

O((k1 + k2)
(k1 + k2

k2

)k2
log n) .

PROOF. Consider the rectanglesRU , U ⊆ [n], defined in the following way

{S1 ⊆ [n] : S1 ⊆ U} × {S2 ⊆ [n] : S2 ∩ U = ∅} .
Obviously, if a pair(S1, S2) lies in the rectangleRU , U ⊆ [n], then the setsS1, S2 are
disjoint, hence, every rectangleRU is a non-zero rectangle.

Choose a setU ⊆ [n], taking elements of[n] independently with probability

p =
k1

k1 + k2
.

Thus, for a fixed pair(S1, S2) of disjoint setsS1, S2 ⊆ [n], the probability to be covered
is at least

(1− p)k2pk1 =
(

1− k1
k1 + k2

)k2( k1
k1 + k2

)k1 ≥
( k2
k1 + k2

)k2
e

k1k2
k1+k2 ≥

( k2
k1 + k2

)k2
e

1
2 .

Let us bound the logarithm of the expected number of entries from supp(M), which
are not covered, if we choose independentlyr such rectangles

log
(

(

n+ k1
k1

)(

n+ k2
k2

)

(1− q)r
)

< log
(

(2n)k1(2n)k2
)

+ r log(1− q) =

(k1 + k2) log(2n)− r
( k2
k1 + k2

)k2
e

1
2 .

Whenever the above upper bound for the logarithm of the expected number of uncovered
entries fromsupp(M) is negative, we can conclude that there exists a rectangle cover for
the matrixM ∈ RI×J of sizer. Thus, there exists a rectangle cover of sizeO((k1 +
k2)

(

k1+k2
k2

)k2 log n
)

.
�
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Lemma 6.5. For a matrixM ∈ RI×X , whereI = {S ⊆ [n] : |S| ≤ k}, X = [n] for
k ≤ n, such that the entryMS,x is non-zero if and only ifx 6∈ S, the rectangle covering

number of the support of the matrixM ∈ RI×J is at leastmin(n− k, (k+1)(k+2)
2 − 1).

PROOF. For every rectangle coverR for the matrixM ∈ RI×X , we can assume that
every rectangleR ∈ R is induced by some setV ⊆ X in the following way

R = {S ⊆ [n] : S ∩ V = ∅} × V ,

since the maximal non-zero rectangles have the above form. Thus, we are able to consider
the setV, consisting of these setsV ⊆ [n], which induce the rectangle coveringR. Addi-
tionally, for eachx ∈ X denote byVx the set of all setsV ∈ V, such thatx ∈ V . Moreover,
assume thatVx = {{x}}, whenever{x} ∈ Vx, what can be achieved by excludingx ∈ X
from all other sets inV.

DefineX ′ as follows

X ′ = {x ∈ X : Vx = {{x}}} .
Choosek distinct elementsx1,. . . ,xk from the setX \X ′, which is possible, since other-
wise|R| ≥ n− k. For i ∈ [k] consider the set

V ′
i = Vxi

\ (
⋃

j∈[i−1]

Vxj
) ,

i.e. all sets inV, which containxi but do not contain anyxj , j ∈ [i− 1].
Assume that the cardinality of the setV ′

i is smaller thank + 2 − i for somei ∈ [k].
Construct a setV ′ by choosing an element from each set inV ′

i. Thus, we get that|V ′| ≤
k + 1− i from the assumption on the cardinalityV ′

i. Define the setS ⊆ [n], |S| ≤ k as

S = V ′ ∪ {v1, . . . , vi−1} ,
such thatxi does not belongS, but every set inVxi

is not disjoint to the setS. Thus, there
exists no rectangle inR, which covers the entry(S, xi).

So the cardinality of every setV ′
i, i ∈ [k], is at leastk + 2 − i, and since the setsV ′

i,
i ∈ [k] are disjoint

|R| ≥ (k + 2)(k + 1)

2
− 1 .

�

6.3. Groups

The next theorem is the central theorem in Chapter 5, and is due to Yannakakis [1991].

Theorem 6.1(Yannakakis [1991]). For every subgroupU of the groupS(n), whereS(n) :
U is at most

(

n
k

)

, k < n
4 , there existsW ⊆ [n], such that

{π ∈ A(n) : π.w = w for all w ∈W} .
PROOF. Let us assume that the groupU is not transitive. Consider an orbitB of

U with maximal cardinality. The cardinality ofB is at leastn − k, since otherwise the
cardinality of the groupU is less than(n − k)!k!, what contradicts the condition on the
index ofU in S(n). If the action of the groupU onB is not primitive, witht ≥ 2 blocks
of imprimitivity and ℓ elements in each, then the cardinality ofU is at most

t!(ℓ!)t(n− tℓ)! ,

wheretℓ is at leastn − k. It is not hard to see that under these conditionst!(ℓ!)t(n − tℓ)!
is smaller thank!(n− k)!, and thus, the action of the groupU onB is primitive.

Let us denote byU1, U2 the permutation groups defining the action of the groupU on
the setsB,W , respectively, whereW denotes the set[n] \B. And letU∗

1 be the subgroup
of U1, which is defined by the action of the group

{π ∈ U : π.w = w for all w ∈W} ,
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on the setB. Obviously, |U | is equal to|U∗
1 ||U2| andU∗

1 is a normal subgroup ofU1.
Thus,U∗

1 acts transitively onB, sinceU∗
1 is a non-trivial normal subgroup of the primitive

permutation groupU1. The groupU∗
1 acts primitively onB, due to the cardinality reasons

above. Thus, the groupU∗
1 containsA(B), because the index of every primitive subgroup

of S(B) is at least⌊ |B|+1
2 ⌋!, unless it isS(B) orA(B) (see Wielandt [1964]), and because

the inequality

(n− k)! >
|B|!

⌊ |B|+1
2 ⌋!

holds. �
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6.4. Notation List

G = (V,E) graph with verticesV and edgesE
Kn complete graph withn vertices
Kn,m complete bipartite graph withn andm vertices in bipartition
E(V : U) edges, having one vertex inV and one vertex inU
α(G) stable set number ofG
γ(G) genus ofG
ω(G) clique number ofG
χ(G) coloring number ofG
δin(V ) incoming edges for vertex setV
δout(V ) outgoing edges for vertex setV
Cℓ(G) cycles of sizeℓ in G
J T (G) T -joins inG
Mℓ(G) matchings of sizeℓ in G
T (G) spanning trees inG
Vnhuff n-dimensional Huffman vectors
Mslack(P

∗, P∗) slack matrix for polyhedraP∗ andP ∗

Mslack(P ) slack matrix for polyhedronP
supp(M) support ofM
R(M) non-zero rectangles ofM
L(P ∗, P∗) face poset for polyhedraP∗ andP ∗

L(P ) face lattice for polyhedronP
rank+M non-negative rank ofM
rc(P ) rectangle covering bound forP
χ(S) characteristic vector ofS with respect to the corresponding superset
〈a, b〉 ∑d

i=1 aibi for a, b ∈ Rd
S(n) symmetric group onn elements
A(n) alternating group onn elements
isoG(s) isotropy group ofs with respect to the action ofG
GF(2) Galois field
[n] set of numbers from one tilln
[n]odd set of odd numbers from one tilln
[n]even set of even numbers from one tilln
0d d-dimensional vector(0, . . . , 0)
1d d-dimensional vector(1, . . . , 1)
Pℓmatch(G) cardinality restricted matching polytope
Pℓcycl(G) cardinality restricted cycle polytope
Pncard cardinality indicating polytope
Pedge(G) edge polytope
Pnbirk Birkhoff polytope
PTjoin(G) T -joins polytope
Pcut(G) cut polytope
Pneven parity polytope
Pnodd parity polytope
Pnhuff Huffman polytope
Pℓs−t flow(N) flow polyhedron
Pste(G) spanning tree polytope
lineal(P ) lineality space ofP
rec(P ) recession cone ofP
vert(P ) vertices ofP
aff(X) affine hull ofX
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conv(X) convex hull ofX
cone(X) convex cone ofX
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