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Abstract

In the secondary cooling zone of the continuous casting of non-ferrous metals, the heat

is transferred from the ingots using water sprays or water jets coming out of the mould.

Unknown aspects of the heat transfer have been experimentally researched. Therefore,

discs and sheets of different metals were heated in a furnace, removed and hung on a

track in front of the quenching facility. The discs (140 mm diameter, 2-4 mm thickness)

were cooled with a hydraulic nozzle with a constant impingement density of 3 kg/m2/s.

The sheets (length 140 mm, width 70 mm, thickness 2-4 mm) were cooled with a segment

of a mould consisting of seven orifices with a diameter of 2.4 mm. The water jets of

the mould impinge the sheets at an angle of 30o. The temperature field of the back

side of the samples was measured using an infrared camera. Therefore, the surface was

coated with graphite in order to achieve a high emissivity. Its value was measured with

dependence on temperature by using a specially calibrated device. The emissivity is

about 0.9 and kept constant. The heat transfer was analyzed through two methods. In

the first method, the temperature difference between both sides is neglected, because

the Biot numbers are very small. The local heat transfer can then be calculated from a

simple differential energy balance. In the second method, the temperature on the cooled

side was calculated from the measured temperatures on the back side by using an inverse

solution of the 2D Fourier differential equation. Both methods give similar results. In

the film boiling region, the simple analysis is more suitable and in the nucleate boiling

region, the inverse analysis is more suitable. In every method, the fluctuations of the

originally measured temperatures, depending on time, require proper smoothing.

At first, the influence of the water quality was researched. For this, the deionized

water was used as the reference water. This water was mixed with different typical

additives. The addition of salts shortens the cooling time. The maximum heat flux, the

DNB-temperature in the film boiling region, and especially the Leidenfrost temperature

increase approximately linearly with the concentration. The salt MgSO4 shows the

strongest effect and the salt NaCl shows the weakest effect. The salts influence the

electrical conductivity of the water because they dissociate. Therefore, for the salt

mixture of real water, the electrical conductivity was found as a measurement to evaluate

their cooling effect. Eight different waters which are commonly used in industrial process

were tested. The cooling time of the discs varied within a factor of three. The maximum
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heat flux, the DNB-temperature and the Leidenfrost temperature increase approximately

linearly with the electrical conductivity for the real waters. The Leidenfrost temperature,

for example, differs between the real water by 200 K. The pH value and the hardness

of the water have no influence. The casting lubricant borax dissolves in water and

increases the cooling rate. The casting lubricant graphite and carbon black have no

influence. Neither dissolve in water. The surfactant which is used prolongs the cooling

time. Dissolved CO2 in the water prolong the cooling time and the gases O2 and N2

shorten the cooling time. The influence of the gases is comparably weak.

To research the influence of the kind of metal, discs of AA6082, nicrofer, nickel,

inconel, pure copper (conductivity 385 W/m/K), copper alloy B14 (conductivity 118

W/m/K) and copper alloy L49 (conductivity 348 W/m/K) were cooled with the same

conditions. The higher the heat penetration coefficient and the thermal diffusivity of

metal, the lower the Leidenfrost and DNB- temperature. The copper discs formed an

oxidized layer on the surface which splashed away during the cooling. Therefore, the

heat transfer cannot be compared.

To research the influence of the surface roughness, samples with mean roughness

values of 0.2, 1.7 and 7.7 µm and two samples of real ingot surfaces were used. A small

increase of the roughness of about 2 µm prolongs the cooling. With a higher roughness,

the cooling decreases. Real ingot surfaces with a high roughness have a significantly

shorter cooling time and therewith, a high Leidenfrost temperature and heat transfer

coefficient.

To research the quenching effect of the mould volume flow, the outflow water velocity

was varied. The minimum velocity that the jets could impinge the sample was 0.9 m/s.

The cooling time increased with higher velocities until a value in the range of 1.2 to

1.5 m/s and then the cooling decreased again. As a consequence, there is an optimum

velocity for the highest cooling rate. This is the first time this effect has been researched

and has not been reported in literature until now. The heat flux profile in the nucleate

boiling region was analyzed. The range between the Leidenfrost temperature and the

boiling temperature was defined as the range of the wetting front. This range increases

with the flow distance and therewith, the maximum heat flux decreases. Due to of the

opposite effects, the overall transferred heat in the wetting front range and therewith

keep the wetting front velocity constant.
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Zusammenfassung

In der Sekundärkühlzone beim kontinuierlichen Strangguss von Nichteisen (NE)-Meta-

llen wird die Wärme mittels Wassersprays oder Wasserschleiern abgeführt. Noch nicht

bekannte Einflüsse auf den Wärmeübergang wurden untersucht. Dazu wurden Scheiben

und Platten aus verschiedenen Metallen in einem Ofen erwärmt und an Schienen hängend

vor die Kühleinrichtung gezogen. Die Scheiben (Durchmesser 140 mm) wurden mit einer

hydraulischen Düse mit einer konstanten Wasserbeaufschlagungsdichte von 3 kg/m2/s

gekühlt. Die Platten (140 mm Länge, 70 mm Breite, 2-4 mm Dicke) wurden mit

einem Kokillensegment bestehend aus 7 Öffnungen mit einem Durchmesser von 2,4 mm

gekühlt. Das Temperaturfeld auf der Rückseite wurde mit einer Infrarotthermokam-

era hochaufgelöst gemessen. Dazu wurde die Seite mit Graphit beschichtet, um eine

hohe Abstrahlung zu erhalten. Der Emissionsgrad wurde temperaturabhängig mit einer

kalibrierten Anlage gemessen. Der Wärmeübergang wurde mit zwei Methoden bes-

timmt. Bei der ersten Methode wurde die Temperatur über der Dicke der Probe als kon-

stant angenommen. Der örtliche Wärmeübergang kann dann über eine einfache differen-

zielle Energiebilanz berechnet werden. Bei der zweiten Methode wurde der tatsächliche

Temperaturverlauf auf der gekühlten Seite aus der inversen Lösung der zweidimension-

alen Fourierschen Differenzialgleichung berechnet. Im Bereich der Filmverdampfung ist

die erste Methode und im Bereich der Blasenverdampfung die zweite Methode besser

geeignet.

Zuerst wurde die Qualität des Wassers untersucht. Hierzu wurde jeweils destilliertes

Wasser als Referenz verwendet. Dieses Wasser wurde dann mit mehreren Zusätzen verse-

hen. Die Zugabe von Salzen verkürzt jeweils die Kühlzeit. Die max. Wärmestromdichte,

die DNB-temperatur (kritische Temperatur) und insbesondere die Leidenfrosttemper-

atur steigen linear mit der Konzentration an. Das Salz MgSO4 hat den stärksten und

NaCl den schwächsten Einfluss. Die Salze beeinflussen die elektrische Leitfähigkeit, da

diese dissoziieren. Daher wurde für Salzmischungen die elektrische Leitfähigkeit als bes-

timmender Parameter für die Kühlwirkung ermittelt. Acht Wässer, die in verschiede-

nen Firmen zur Kühlung eingesetzt wurden, sind getestet worden. Die Kühlzeit der

Scheiben variierte um den Faktor drei. Die max. Wärmestromdichte sowie die DNB-

und Leidenfrosttemperatur steigen linear mit der elektrischen Leitfähigkeit an. Die Lei-

denfrosttemperatur z. B. schwankt bei den Wässern um 150 K. Der pH-Wert und die
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Härte haben keinen Einfluss. Das Gieβhilfsmittel Borax verkürzt die Kühlzeit, da es

in Wasser dissoziiert. Die Gieβhilfsmittel Grafit und Ruβ, die nicht dissoziieren, haben

keinen Einfluss. Gelöstes CO2 im Wasser verlängert die Kühlzeit, während O2 und N2

dagegen verkürzend wirken. Der Einfluss gelöster Gase ist vergleichsweise gering.

Um den Einfluss der Art des Metalls zu untersuchen, wurden Scheiben aus AA6082,

Nicrofer, Nickel, Inconel, reinem Kupfer und zwei Kupferlegierungen mit sehr unter-

schiedlicher Wärmeleitfähigkeit unter sonst gleichen Bedingungen gekühlt. Je höher

der Wärmeeindringkoeffizient und der Temperaturleitkoeffizient sind, desto niedriger

sind die DNB- und die Leidenfrosttemperatur. Bei Kupfer bilden sich allerdings Oxid-

schichten auf der Oberfläche, die beim Kühlen abplatzen.

Um den Einfluss der Oberflächenrauigkeit zu untersuchen, wurden Scheiben mit 0,2,

1,7 und 7,7 µm Rauigkeit sowie Platten von realen Stranggussschalen aus Aluminium

- Legierungen gekühlt. Kleine Rauigkeiten bis 2 µm verlängern die Kühlzeit. Erst bei

höheren Rauigkeiten wird die Kühlzeit dann wieder verkürzt. Die realen Oberflächen

weisen dagegen eine signifikant kürzere Kühlzeit und eine wesentlich höhere Leidenfrost-

temperatur auf.

Zur Untersuchung der Kühlwirkung von Kokillen wurde deren Durchfluss und damit

die Austrittsgeschwindigkeit variiert. Es zeigte sich, dass sich bei Geschwindigkeiten um

1,3 m/s ein Maximum in der Kühlwirkung einstellt. Die Profile der Wärmestromdichten

wurden analysiert. Die Benetzungszone (Bereich von Siede-bis Leidenfrosttemperatur)

steigt mit der Strömungslänge an, während die max. Wärmstromdichte abnimmt.

Dadurch bleibt die Geschwindigkeit der Benetzungsfront und der dabei übertragene

Wärmestrom konstant.
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Nomenclature

Symbols

A [m2] Area

Ci [mg/L] Concentration of ionic

Cp [J/kgK] Specific heat

D [m] Diameter of the plate

dt [m] Tube diameter

f [-] Force vector

fi [µS/cm] Conductivity Factor

g [m/s2] Gravitational acceleration

H [m] Width of the metal sheet

i [-] dissociation constant

K [-] Conductance matrix

Kb [-] Boiling point elevation constant
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M [-] Capacitance matrix

ṁ [kg/m2/s ] Impinging density

mml [mol/kg] Salt molality

n [-] Previous time step

Q [m3/s] Water flow rate

q̇ [W/m2] Heat flux

q̃ [W/m2] Heat flux vector

r [m] Radius

Ra [µm] Arithmetical mean roughness

Ry [µm] Maximum peak

Rz [µm] Ten-point mean roughness

s [m] Thickness of the metal sheet
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S [-] Instantaneous error norm

T [oC] Temperature

t [s] Time
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X̃ [-] Sensitivity coefficient matrix

Ỹ [oC] Measured temperature vector
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Abbreviations
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Chapter 1

Introduction

1.1 Problem definition

Most non-ferrous (NF) metals are casted in the form of strands. For solidifying the

strand, it must be cooled intensively using water as the coolant. The cooling methods

depend on the kind of metal. Figure 1.1 shows schematically the cooling of Aluminum

and its alloys. The shape and dimensions of the strand are predetermined by the mould.

The mould is generally made of Aluminum or Aluminum alloy and cooling water flows

through it. For copper casting, the copper moulds are lined with graphite coatings and

for casting copper alloy, the moulds are made of copper or its alloys. The cooling of the

strand within the mould is called the primary cooling. After emerging from the mould,

the strand has a thin outer solidified layer, which must be sufficiently thick enough to

prevent the break out of molten metal. The further cooling of the strand is performed

with the use of water which makes direct contact with the strand. The water from the

primary cooling zone leaves the mould through the slots or holes. The cooling stage

outside the mould is named as secondary cooling. Figure 1.2 shows the cooling water

1
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Water 
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Figure 1.1: Schematic representation of the DC casting of aluminum ingots
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4 Chapter 1. Introduction 4

Figure 1.2: Water exit from the mould

emerging out from the mould. The picture is taken with-out the strand, and the strand

in fully solidified form is shown in Figure 1.3. In general, Aluminum billets are casted in

a semi continuous method and copper and steel can be continuously casted based on the

requirements. The secondary cooling process has a significant influence on the solidifi-

cation microstructure, crack formation and thermal residual stresses. With the help of

optimized secondary cooling, it is possible to minimize the thermal stresses, distortion,

and hot cracks, which can improve the ingot quality. Therefore, it’s highly important

to characterize and study the secondary cooling in depth. In the continuous casting of

copper alloys, the secondary cooling is independent of the mould. Below the mould,

the strand is cooled by water sprays. Figure 1.4 schematically shows the arrangement

of the nozzles. After spraying, the water runs down the strand again. The amount

of water from the individual nozzle can influence the cooling rate. The cooling system

must be optimized in turn so that the surface remains free from cracks. Figure 1.5 shows

a typical example of an edge crack, a cross crack and a center crack. With the introduc-

tion of the mathematical modeling of the continuous casting process in the operational

practice, the exact description of the cooling process in the application of water on hot

surfaces becomes indispensable. The combination of modeling and experimentation has

contributed greatly to understanding the continuous casting processes. Operational ex-

periences and observations deliver some clear information that the specifically adjusted

cooling water flow rates and the arrangements of cooling nozzles will improve the strand

quality and reduce quality fluctuations. Therefore, there is a necessity to inspect the

water quality and its influence on cooling rates. The results also showed that the di-

rect relationship between the different water qualities and is not possible. Here, the

question arises, what is the parameter, in which orders of magnitude at the operational

cooling water treatment must be monitored and adjusted. For environmental reasons,

nowadays, the cooling water is circulated and re-cooled by cooling towers. This leads

to an increase in pollution of the water, e.g. dissolved salts, non-dissolved substance
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Figure 1.3: Aluminum strand after casting (courtesy:NOVELIS INC.)

Figure 1.4: Nozzles register for secondary cooling of continuous cast copper

Figure 1.5: Typical cracks in the continuous casting of Copper alloys
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Figure 1.6: The three different heat transfer regimes commonly encountered in the DC
casting process

and lubricants. In general, the pH, the value of electrical conductivity and hardness

are measured and monitored. The violation of the limits is prevented by replacement of

subsets of the water. This monitoring does not have compliance with the cooling effect,

but the goal is to protect the cooling system from corrosion. The main problem is that

the effect of the various components and the quality of the water on the cooling effect is

not well-known. Thus, there is no possibility to control the cooling effect and hence the

quality of continuously cast metal. Therefore, no measures could be made to influence

the quality of the cooling water. For the purposes of a more economical production by

increasing the casting capacity without reducing the quality, the influence of the cooling

water quality on the cooling rate must be examined.

1.2 Aluminum casting

During the continuous casting process, cracks and distortions in ingots can be found

due to the non-uniform heat extraction rates. The accurate estimation of the heat

transfer coefficients on the surface of the alloy is essential and useful in predicting the

cracks during casting of metals. Generally, the surface of an ingot is divided into three

different regions of heat transfer. The identification of the regions from the top to the

bottom is as follows: the direct contact region with the surface of the mould, the air

gap region between two surfaces, and the falling water film region. Figure 1.6 shows the

three different heat transfer regimes. In the steady-state DC casting operation process,

about 20 pct of the heat is extracted in the primary cooling, and about 80 pct is removed

by secondary cooling water. In the secondary cooling zone, the water hits the hottest
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surface of the ingot and then forms a falling film down its surface. Water flows down

the hot surface. Due to this, steam bubbles are rapidly swept away. A thin water vapor

layer with low thermal conductivity, which prevents the heat flow from the hot surface,

acts like an insulator. The cooling rate in this film boiling is comparatively low.

The moment that the ingot surface temperature falls below the Leidenfrost temper-

ature, the vapor film collapses. When the film collapses, transition, nucleate boiling,

and forced convection are the prevailing heat transfer mechanisms, during which the

surface heat flux changes dramatically. While the cooling water flows along the length

of the ingot, a thin wetting front, which separates the film boiling and nucleate boiling

regions, moves continuously against the water flow direction with a velocity known as

wetting front velocity. Vertically, the regimes of falling water film can be divided into

impingement, wetted, unstable boiling, stable vapor film and disintegrating water film

zone, as shown schematically in figure 1.7. The dimensions in the vertical direction of

these regimes are not proportionally shown in the figure. The limits between different

regions are schematically or qualitatively represented. In the unstable boiling regime,

it is difficult for observing or visualizing the heat transfer phenomena because it is very

narrow.

1.3 Copper casting

A copper strand leaving the mould is quenched directly by water sprays as shown in

figure 1.8. The water droplets continuously impact the hot surface. Therefore, the

secondary cooling contains different heat transfer phenomena in different regimes. The

heat extraction by cooling water is governed by the phenomena of water boiling, which

depends strongly on temperature. As shown in Figure 1.9, four heat mechanisms can
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Figure 1.8: Schematic cooling processes for continuous casting of copper

be characterized when the water touches the a hot metal surface [1]. The heat transfer

mechanisms are classified based on the surface temperature of the strand in the following

way:

1. The film boiling regime, where the temperatures are higher than the Leidenfrost

temperature.

2. Transition boiling, where the water bubbles start collapsing. In this regime, the

heat transfer increases rapidly with decreasing surface temperature. When the

metal surface is fully uncovered by vapor film, the heat transfer value reaches a

maximum, which is referred to as the burnout temperature.

3. Nucleate boiling regime, which is located between 100 oC and CHF point. As

the surface temperature goes down, the intensity of air bubbles continues to de-

crease. The nucleate boiling decreases until the surface temperature drops below

the boiling point of water.

4. Convective heat at temperatures below 100 oC.

Experiments have been conducted to evaluate the heat transfer to the cooling water

and to obtain the so-called boiling curves. Most of the empirical relationships are de-

veloped by the application of inverse analysis to the experimental measurements. The

measured temperature data is recorded by thermocouples fixed in the metal surfaces.
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Opstelten and Rabenberg [2] presented an empirical correlation for the heat flux as

q = 27.3× 103 θ − 1.27× 106 if θ < 120oC

q = 94.3× 103 θ − 9.24× 106 if 120oC ≤ θ < 150oC (1.1)

q = 12.3× 103 θ + 3.06× 106 if θ ≥ 150oC

In 1982, Weckman and Niessen [3] proposed the following correlation for estimating the

nucleate boiling HTC in the free falling region as,

h(θ) =
(
−1.67× 105 + 704 θ̄

) ( Q

πD

)1/3

+
20.8

θ − θref
(θ − 373.15)3 (1.2)

where θ represents the billet surface temperature in Kelvin, θref is the bulk cooling water

temperature in Kelvin, θ̄ (= 0.5(θ + θref )) is the mean temperature in Kelvin, Q is the

water flow rate in m3/s, and D is the billet diameter in meter. The first term in Eq. 1.2

accounts for convective heat transfer due to the one-phase free falling turbulent film of

water. The second term, which is taken into account only when θ > 373.15 K, models

the subcooled nucleate boiling. Sengupta et al. [4] extensively studied the secondary

regime in the Aluminum DC casting process and compared it with the continuous casting

of steel. Mortensen [5] presented a model for the time dependent heat and fluid flows

during aluminum DC casting, where the aluminum alloy AA1050 was used. They used

a constant heat transfer coefficient of 30000 W/m2K in the model. Wiskel [6] studied

the secondary cooling of AA5182 alloy to estimate HTC. An empirical co-relation is

presented for HTC as a function of surface temperature. The boiling curves for the

value of Maximum Heat Flux (MaxHF) and Leidenfrost points will differ due to the
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differences in thermophysical properties of the metals, as well as surface effects such as

surface roughness and oxide layers [7].

1.4 Literature review

1.4.1 Wetting phenomenon

Wetting front phenomenon can be located in many manufacturing processes which in-

volves quenching, continuous castings and extrusions [8], [9], [10]. The wetting phe-

nomenon occurs when the hot metal surface, that is initially covered with vapour film,

becomes wetted with liquid film. So, the wetting is related to nucleate boiling, which

considers direct cooling water contact with the portion of the metal surface. Hence, the

knowledge of the wetting front and wetting velocity are important for the design and

control of quench-based industrial processes. Ueda et al. [11] identified the wetting front

position as the location at which the heat flux begins increasing sharply with decreasing

surface temperature. Three different regimes exist on the hot surface undergoing a wet-

ting process: (1) the film boiling regime, where water and the hot surface are separated

by a vapor film, (2) the transition regime, and (3) the wetted regime [12]. The rewet-

ting temperature can be defined as the temperature at which a transition occurs from

the film boiling regime to the wetted regime. The rewetting temperature is essential to

characterize the boiling regions in quenching processes. Carbajo [13] summarized the

parameters that affect the rewetting temperature.

In order to clarify some further terms for discussing the quenching phenomena, the

Figure 1.10 has been constructed. It shows the surface temperature and heat flux dis-

tribution during atomized spray quenching. The image was obtained from a high speed

camera. From Figure 1.10, it is clear that the spray water covers up to 30 mm from

the center of the disc. This 30 mm area of radius is usually named the wet zone. The

visible area which lies to the outer of the wet zone is termed as the wetting front. The

temperature gradient in this regime is very high and the position of the MaxHF also

belongs to this regime. The influential parameters are cooling water velocity, material

of the surface, and surface conditions. Both the material of the surface and its thickness

affect the film boiling temperature [14]. A material, which has a high thermal conduc-

tivity, is able to supply high heat rate and delay the vapor film collapse to lower surface

temperatures. Correspondingly, the lower heat fluxes have been measured for thinner

materials. The combination, λρc, of thermophysical properties has been designated as

a heat penetration coefficient [15]. The heat penetration factor,
√
λρCp, can be used to

verify the heat transfer to the water/metal interface.

Although the term Leidenfrost is used, it should be noted that the Leidenfrost tem-

perature has special implications. Delhay et al [16] defined the Leidenfrost temperature
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Figure 1.10: Surface temperature and heat flux distribution during atomized spray
quenching

as the maximum temperature at which a water droplet floating on a vapor cushion even-

tually collapses and contacts the hot surface. Elias and Yadigaroglu [17] reported that

the Leidenfrost rewetting temperature or the rewetting temperature is usually defined

as the temperature at which a droplet eventually wets a hot surface. A large number

of experimental and analytical studies on rewetting phenomena in various modes have

been carried out during the last three decades and the important studies are tabulated

in Table 1.1 [18]. From these studies, the fundamental concept of the main character-

istics of rewetting phenomena (rewetting temperature, rewetting velocity and MaxHF)

are mentioned here briefly along with a historical review which can provide necessary

information to understand the rewetting phenomena.

Many investigations about the Leidenfrost point have been qualitative and used

various correlations for predicting the Leidenfrost temperature. Baumeister and Simon

[35] developed a semi-empirical expression in terms of the thermophysical properties of

the heated surface. The semi-empirical expression is

TLeid = Tf +

0.844Tc

1− exp

−0.016

[(
ρs
At

)1.33

σf

]0.5
− Tf

exp (3.066× 106β) erfc
(
1758
√
β
) (1.3)

where,

β =
1

λsρscp,s
(1.4)
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Generally, the measured LFP temperature corresponds to the solid surface. To be more

precise, it is better to calculate the LFP corresponding to the interface temperature

(temperature of the liquid-solid). The LFP temperature is often lower than that mea-

sured by solid surface temperature within several degrees. During the droplet-surface

contact, the interface temperature is dictated by the thermophysical properties of the

liquid and solid. Eckert and Drake [36] used this interface temperature to solve the

one-dimensional energy equation.

Ti =
(λρcp)

0.5
s Ts + (λρcp)

0.5
f Tf

(λρcp)
0.5
s + (λρcp)

0.5
f

(1.5)

The discrepancies in these reported values arise from differences in the size of the liquid

mass, the method of liquid deposition, the amount of liquid sub-cooling, solid thermal

properties, surface material and finishing, pressure, and the presence of impurities. These

parameters and their observed effects on the LFP are summarized in Table 1.2, along

with the corresponding references [37].

1.4.2 Spray cooling

Most of the industrial spray applications involve complex phenomena and many operat-

ing parameters. The analytical modelling of spray cooling is not sufficient to understand

interactions between the spray cooling and surface. Experimental studies are often cho-

sen as the method used to estimate the thermal behaviour of a spray cooling effect on

a heated surfaces [60] and [61]. Spray cooling is characterized by factors such as spray

nozzle types, uniformity of heat removal, small droplet impact velocity (impingement

density) and temperature limits. The mechanism of heat transfer during spray cooling

is a highly complicated one, due to the interdependence of various parameters. Spray

cooling dynamics have been experimented and investigated by many researchers. Ped-

ersen and McGinnis [62] reported that the heat transfer from the hot surfaces directly

depends on the droplet diameter and its velocity. The effect of the Weber number on

heat transfer has been studied by Choi and Yao [63]. Sozbir et al. [64] pointed out that as

the droplets quench the surface with high momentum, the increase in the impingement

density of the spray increases the Leidenfrost temperature.

Müller et al. [65] presented the variation of the Heat Transfer Coefficient HTC with

surface temperature for nickel. They investigated different values of the impingement

density. In Figure 1.11, the parameter is the impingement density, which indicates

how much liquid reaches the hot solid per unit of time and area. They found that a

higher impingement density led to a higher HTC at a similar surface temperature point,

either in the film boiling or the transition region. However, in the film boiling region,

for the same impingement density they found that HTC is independent from surface

temperature. Therefore, in this region, it can only be influenced by the impingement

density. Other parameters, such as drop velocity, distance from nozzle to surface, and
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Table 1.2: Summary of the influential LFP parameters [37]

Parameters Observations/References

Droplet size
*LFP independent of droplet size [38], [39]
*LPF increased with droplet volume [40]

Liquid deposition
*LFP differed between steady state drop size technique using a
pipet and the transient sessile drop technique [41]
*LFP increased with droplet velocity [39], [42], [43], [44]
* LFP did not differ between sessile and impinging drops [45], [40]

Liquid subcooling
*Liquid subcooling had little effect on LFP for water on polished
aluminum, brass, and stainless steel, but did cause an increased
LFP on Pyrex [46]
*Subcooling increased drop lifetime but did not influence the LFP
[47]
*Subcooling raised the LFP for water and other fluids at high
pressures where both sensible and latent heat exchange are sig-
nificant [48]

Thermal properties
*LFP increases as solid heat capacity decreases [39], [46], [40]
*Baumeister et al. [46] developed a LFP correlation accounts for
solid thermal properties
*LFP independent of solid thermal diffusivity [48]

Surface conditions

* Gottfried et al. [38] estimated that the vapor layer beneath a film
boiling sessile water drop was on the order of 10 microm, which
is on the same length scale as surface. Thus, rough surfaces in
comparison to polished surfaces would be expected to require a
higher LFP to support a thicker vapor layer.
*LFP increased as surface roughness and fouling increased [46]
*LFP increased with increasing surface porosity [49]
*LFP decreased with increased advancing contact angle in pool
boiling [50], [51], [44], and [52]

Pressure

*LFP increased with pressure for various fluids [53], [47], and [54]
(Tleid - Tsat) found to remain constant for various pressures [47],
[40], and [55]
* [56] et al. reported similar findings for four inorganic fluids
* Rhodes et al. [57] observed (Tleid - Tsat) for Freon-114 to be
constant over a reduced pressure range of 0.125 to 0.350 and found
it to decrease with increasing pressure above this range

Water quality
* C. K. Huang et al. [58] found that the dissolved salt increases the
Leidenfrost
* Higher concentration of salt increases the Leidenfrost temperature
[59],
* [33] et al. reported that, the dissolved salts increased the Leiden-
frost temperature in spray cooling by preventing bubble coalescence
and producing particles which increase surface roughness
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Figure 1.11: Heat transfer coefficient for spray quenching as a function of surface
temperature and impingement density [65]

nozzle type, are not required to be considered separately, as they are contained in the

impingement density [66], [67].

Müller et al. [65] also showed the characteristics of HTC over surface temperature

for different types of materials, as shown in Figure 1.12. They compared four types of

samples from Copper, Aluminum, Brass, and Nickel and used ṁ = 120 (kg/m2.min) as

the impingement density in this case to make the comparison. They found that Copper

has the highest value, while Nickel has the lowest value. From two material types of

interest, Aluminum and Nickel, they showed that Aluminum has a higher HTC than

Nickel. However, for the Leidenfrost temperature, Nickel has the higher value compared

to Aluminum.

As the impingement density is the only variable controlling the heat flow in the range

of stable film boiling, the local distribution of the impingement density is of particular

importance. In industrial practice, two fluid nozzles, i.e. water-air nozzles, are used.

The addition of air as a second quenching medium serves mainly to influence the nozzle

characteristics. The cooling effect of these nozzles is, however, determined only by the

magnitude of the impingement density as shown in Figure 1.13 [68], [69].

Müller et al. [65] also presented the correlation between Leidenfrost temperature

and impingement density. In this case, they used Nickel, Brass, Copper and Aluminum

samples for the study. They concluded that the heat flow in the range of partial film

boiling depends not only on the impingement density, but also on the type of metal.

This influence can be described by the coefficient of heat penetration (
√
λρCp). Figure

1.14 shows the dependence of the Leidenfrost temperature for two metals. Their result
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Figure 1.14: Leidenfrost temperature as a function of the impingement density for
aluminum and nickel [65]

showed that both materials have a similar trend, the higher impingement density, the

higher Leidenfrost temperature. From the same figure, we can easily conclude that at

the same impingement density, Nickel has a higher Leidenfrost temperature compared

to aluminum. To calculate the coefficient of the heat penetration, it must be taken into

account that the material values at the surface are decisive. For Copper in particular, an

oxide layer always forms at the surface in which
√
λρCp contains considerably smaller

values than in the metal itself.

The cooling of different metals and alloys were tested and investigated experimentally

by many researchers. Shimada and Mitsutsuka [70] presented an experimental relation

to describe and predict the heat transfer coefficient during spray cooling. They used

similar nozzles to those which are used in the secondary cooling of the casting process.

The experiments of the two different metals, such as steel and Aluminium, were tested

by Sengupta et al. [4]. The results show that the maximum and minimum heat flux

values for aluminum (380 oC and 200 oC) are at much lower temperatures than for steel

(1000 oC and 600 oC), as shown in Figure 1.15.

The quenching experiments of 7055 alloy plate samples were made by Yu [71] at two
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Figure 1.15: Typical boiling curves and operating temperature ranges in the secondary
cooling regime for continuous casting of Steel and DC casting of Aluminium [4]

different operating conditions (cooling water with an oxidization inhibitor and cooling

water without an oxidization inhibitor). The measured heat flux values show that the

heat flux of the quenched sample by water with an oxidization inhibitor is higher than

that of water without an oxidization inhibitor. Recently, a multi nozzle arrangement

was investigated to calculate the heat transfer coefficient. Horizontal spray nozzle per-

formance was studied to estimate the heat flux by Choi and Yao [72]. The maximum

value of heat fluxes up to 2 MW/m2 were calculated for a hot surface of 150 oC, and

the Leidenfrost point was 250 oC.

Mizikar [73] studied the stainless steel plate samples cooled by three full-cone nozzles

with an impingement density of up to 19 kg/m2/s. The calculated heat transfer coeffi-

cients were found to be very linear with impingement density, as shown in Figure 1.16.

In Mizikar’s study, the angle of spray was mentioned and concluded that the influence

of spray angle on heat transfer rate can be neglected. However, Ciofalo [29] reported

much higher values of heat transfer rate at the same impingement density. More re-

cently, Al-Ahamdi and Yao [74] used a cylindrical stainless steel plate. They observed

the dependence of heat flux on impingement density. Many of researchers conducted

experiments on spray cooling in metal casting and metal rolling. Most of these stud-

ies concentrated on operating parameters and atomized spray effects. Tseng et al. [75]

tested a Steel roll cooling system and examined its roll life by combined methods (ex-

perimental and numerical methods). The values of heat transfer coefficients during that

test were measured experimentally and then compared with a numerical simulation of

the rolling processes. Horsky et al. [76] evaluated the heat fluxes on Steel plate samples.

The plate is heated up to 620 oC and cooled by water spray nozzles.
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Figure 1.16: Heat flux of stainless steel versus local spray density [73]

The water pressure of the nozzles is considered to be another important operating

parameter during the experiment. Bariani et al. [77], [78] presented an experimental and

finite element simulation for estimating the heat flux during the cooling and deformation

phases in the hot metal process. In Bariani’s study, an inverse method is used to calculate

the effect of impingement density and supply pressure to nozzles on the heat transfer

coefficient. The results also have been compared between two different sprays: upward

spray and downward spray. From the metallurgical point of view, the influence of cooling

water quality during quenching processes has an important role. Water spray cooling can

be found in various fields, such as air- conditioning and ventilation, protecting buildings

from fire, painting walls and surfaces, combustion engines, and quenching hot surfaces,

etc. Perhaps the most important application is the last one (metal quenching), which is

discussed in this research. Most of the aluminum, steel, and other metal manufacturing

industries apply spray cooling in the secondary cooling region.

1.4.3 Water qualities in casting process

In the three-phase system (water, solid surface, vapour), the interfacial tension force

plays a significant role on the boiling phenomena, which is associated with the secondary

cooling. Particularly, the propagation of the triple contact position (where the three

phases meet) identifies the duration and the size of the wet contact region on the hot

surface. The propagation of the wet zone strongly affects the heat flux in the transition

boiling regime [79]. The surface tension and wetting front propagation of the cooling

water can be varied with the addition of dissolved solids or oil, which can affect the

water quality on the secondary cooling [80]. The influence of water quality is especially

important when recirculation systems of the cooling water include lubricants, dissolved

salts, water treatment chemicals, and solid particulates. These contents can accumulate

in the cooling water cycle [81].
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Castor oil is used in the DC casting process as a lubricant for the mould to prevent

the ingot surface from tearing. The lubricant mixes with the cooling water and forms

emulsion (water and oil mixture) [81]. Bergstrom found that the oil in the cooling

water decreases the Leidenfrost point and thus the film boiling regime expands [82].

The concentration of lubrication oil in the coolant strongly affects the heat extraction

rate [83]. The higher concentration of oil decreases the heat extraction rate and the

bubble formation becomes the determining factor in the heat transfer mechanism [84].

They used a hot Aluminum block (slug) to examine the effect of water quality by placing

the slug in front of a water spray in the mould. They found that the increase of solids

concentration in the water reduces the cooling rate. Further, the oil concentration

reduces the cooling rate significantly when it is above 10 ppm. Hamilton and Chen [85]

immersed an Aluminium block into water. The block sample has dimensions of 200 mm

long and 75 mm square cross-section, and it is heated to 460 oC. The results are

consistent with Langlais et al work [83].

A surface tension lowering surfactant is often used to disperse the oil from the cool-

ing water cycle. The surfactant promotes the bubble formation, thus the Leidenfrost

temperature decreases dramatically and the heat transfer decreases also in the transition

boiling region [81]. The cooling rate is higher when the water contains dissolved solids

when compared to the deionized water. Grandfield et al. [86] studied the effect of various

combinations of additives on the boiling curves. Grandfield found that some dissolved

solids, such as NaCl and CaCO3, increase the Leidenfrost temperature and promote the

nucleate boiling over film boiling. The results showed that the water quality affects the

critical heat flux, convection region, and nucleate region. The results also concluded

that the difference in heat flux in the convection and nucleate regions is very small, but

the difference in critical heat flux is large.

Ions can also be meaningfully introduced in the cooling water system during the

quenching process. The cations (positively charged ions) such as Fe+3, Al+3 and organic

cationic polyectrolytes, reduce bubble adhesion and slightly increase the critical heat

flux. The anions (negatively charged ions) promote the adhesion of bubbles, causing the

Leidenfrost temperature to significantly lower. The critical heat flux also decreases [81].

The effect of the low concentrations, e.g. below 100 ppm, can be neglected [83]. The

suspended solids, which are not dissolved in the cooling water and remain in the form

of particulates, can promote the film boiling and increase the heat flux in the nucleate

boiling regime [85].

The chemical treatment of the cooling water maintains the cleanliness and the quality

of the water. As a result, the water quality becomes an important influencing factor on

the heat transfer during the DC casting process. Ho Yu [87] quenched a hot aluminium

block sample to show the effect of various additives on the heat transfer rate. Ho Yu

found that the surfactant and the dissolved castor oil reduces the boiling heat transfer.
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The results also indicate that the heat transfer rate can be increased by the addition

of inorganic cations, whereas the heat transfer rate can be reduced by the presence of

suspended solids.

1.4.4 Previous studies about surface morphology

Many experimental and industrial measurements have been investigated to quantify the

heat transfer in the secondary cooling region during casting. Weckman and Niessen [3]

quantified the heat transfer to model the heat transfer in DC casting. Watanabe and

Hayashi [88] added further improvements to understand the heat transfer that occurs

in the secondary cooling zone. They differentiated between the heat transfer magnitude

that occurs at the water impingement point and the falling zone.

Some researchers have mentioned the importance of surface morphology on the heat

transfer. However, no literature correlates the properties of the surface with the heat

transfer during the DC casting process. However, some studies have been done to

investigate the effect of the roughness during spray cooling. Berenson [89] measured the

heat flux of two different copper alloys with different roughness. Berenson found that

the increase of surface roughness shifts the nucleate boiling curve to the left.

Bui and Dhir [90] showed the effect of the roughness on Copper surfaces to the heat

transfer during the nucleate and transition regions, as shown in Figure 1.17. The results

are consistent with Berenson’s work. However, in the transient region, the smooth

surface produced a higher heat flux than the rough surface. Rammilison and Lienhard

[52] conducted the experiments by using acetone on a Copper surface to show the effect of

roughness on the heat transfer coefficient. They found that the heat transfer coefficient

is significantly increased with the increase of the roughness in the nucleate boiling.

It should be noted that the rough surfaces used in the experiments are only a few

micrometers in difference, whereas the surface roughness of cast aluminium alloys can

vary by many millimetres.

Wiskel [91] found that the heat flow varies significantly during the start-up phase

of the DC casting process and related this variation to the difference in ingot surface

morphology. The surface morphology observed near the ingot bottom is lapped and

the surface morphology near the top is liquated. Based on the literature review, the

influence of casting parameters (e.g., withdrawal rate and pour temperature), water

properties (e.g., flow rate, temperature and quality) and ingot parameters (e.g., surface

morphology) on the heat transfer to the ingot in the secondary cooling regime is ex-

tremely complex and difficult to rationalize experimentally. The water cooling rate and

the temperature of the hot metal surface at the water contact point can change the ingot

surface morphology, thus influence the heat extracted during the secondary cooling.



22 Chapter 1. Introduction 22

∆T (k)

q 
[ W

 / 
m

2
×

10
 4 ]

.

Smooth

Rough

Surfaces are clean 

and no oxide

Steady state

Transient  cooling

Steady state

Transient  cooling

Figure 1.17: Effect of surface roughness on nucleate and transition boiling [90].

All of these studies show that the change in the surface morphology can have a

significant effect on the heat transfer at a given surface temperature and also changes

the shape of the boiling curve. These studies motivate the need to understand the heat

transfer during the spray cooling for microelectronics and other material processes.



Chapter 2

Experimental Works

2.1 Experimental setup

Experimental set up is shown schematically in Figure 2.1. The experimental setup

was constructed to analyze the influence of significant parameters on the heat transfer

during the cooling of flat metal samples. It consists of a furnace, a cooling component

e.g. a pneumatic atomizing nozzle (Lechler-156.35.13) or a hydraulic full cone nozzle

or a mould with 7 or 8 orifices, an infrared camera FLIR SC3000, and metallic sheet

samples of 2 or 3 mm thickness. At first, the metal sample is heated up by an electrically

heated furnace to a temperature of 600 oC. This temperature can be adjusted according

to the requirement. For example, if the sample is nickel, it can be heated to 800 oC,

while in the case of Aluminum and its alloys, the set temperature is not more than 520
oC. Next, the sample is shifted to the cooling unit, where it is sprayed by an atomized

spray, a hydraulic spray or an array of jets, depending on the method of quenching.

The water flow rate, pressure and air pressure are also adjusted according to the

current objective of the experiments. The front side of the sheet is polished while the

rear side is painted with black graphite paint in order to achieve an emissivity of 0.9.

The surface temperature of the rear side is measured by an InfraRed(IR) camera. This

IR camera has the capability of measuring the temperature with a frequency of 150 Hz

within a window of 240 × 80 pixels. The temperature at every pixel can be measured.

The distance between the two consecutive pixels is around 0.9 mm. The experiments are

repeated with different concentrations of salts solutions, surfactant solution, deionized

water, impingement densities and jet velocities.

From the infrared camera, the recorded data is saved in the computer. The parame-

ters which influence the IR thermography are the emissivity of the surface, the ambient

temperature, the relative humidity and the distance between the lens and measured

surface. For the cooling by an array of jets, a metal sample with a rectangular shape is

used and for the spray nozzle, a circular shape is used. However, in these two cases, the

23
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Figure 2.1: The experimental setup

Figure 2.2: ThermaCAM SC 3000 Researcher

water flow with respect to the plate significantly differs. When an array of jets is used,

water flows parallel to the surface of the plate. When a spray nozzle is used, water flows

perpendicular to the surface.

2.2 Infrared system

Hot metal samples emit thermal radiation from their surface. The lens of on the infrared

camera senses this thermal radiation. The lens focuses the infrared (IR) energy by using

a detector, which converts the energy into an electrical signal that can be displayed to

have a certain frequency. This method facilitates the temperature measurement from

a distance without contacting the object to be measured. The temperatures on the

measuring side of the sample are recorded by using the ThermoCAM SC 3000 of the

company FLIR, which is shown in Figure 2.2.
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Table 2.1: Technical specifications and characteristics of ThermaCAM SC 3000.

Image frequency 50 up to 750 Hz

Detector type Quantum Well Infrared Photodetector (QWIP)
320 × 240 pixels

Temperature range −20 oC to 150 oC
100 oC to 500 oC
350 oC to 700 oC

Accuracy 1 oC(up to 150 oC)
2 oC(above 150 oC)

Voltage 12V DC
Power consumption 22 watts
AC Adapter Included
Weight 3.2 kg
Size 220 × 135 × 130 mm

Charge–Coupled–Device (CCD) chip of the camera converts electromagnetic radia-

tion into electric current and process it into electronic signals. All of the pixels can be

devoted to light capturing and its output is uniformly (a key factor in image quality)

high. The camera also includes amplifiers, noise-correction, and digitization circuits, so

that the chip gives the outputs as digital bits. All objects which radiate infrared energy

can be converted into a visual representation of the thermal differences in the scene.

ThermaCAM feeds real-time data directly to the PC desktop for both recording and

analyzing. During the measurements, the camera is installed on a stand and directed

towards the measuring surface of the hot plate. ThermaCAM Researcher software an-

alyzes the recorded thermal data of both static and dynamic images. To measure the

transient temperatures of the experimental plate, the emissivity ε of this area (plate) is

required as the setting parameter to the software. Therefore, the emissivity of the plate

must be known. Table 2.1 shows the technical specifications of ThermaCAM SC 3000.

Data obtained from the IR-camera in thermal images format can be captured and

stored at the extremely high frame rate of 150 Hz. The IR-camera software can transfer

the thermal image data at a number of specific points to temperature-time data. The

number of selected points on the surface could be sufficient in order to allow monitoring

changes that occur in this region. In the case of mould quenching the selected points

are placed vertically on the plate surface from top to bottom and in the direction which

is parallel to the water flow. The distance between each point is equal to two pixels

(one pixel distance 0.91 mm). Figure 2.3 a and b shows the thermal images obtained

from the IR-cam during the mould and spray quenching respectively. The selected data

points are also shown in the figure. This measured data from the IR-cam shows valuable
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(a)

(b)

Figure 2.3: Selected points in thermal image of IR-cam

data for temperature with time at these points. The temperature gradient with time

has been obtained for each selected point. The experimental measured data is supplied

as input to the MATLAB program codes to estimate the heat flux of the metal surface.

2.3 Emissivity

The determination of the surface temperature by using the infrared camera requires a

uniform and high surface emissivity on the measured side of the plate. The measured

side of the metal sample is coated with a black paint. The initial temperature of the

metal sample is approximately 550 oC. The measurement setup used to determine the

temperature dependent emissivity of the coated surface ε is illustrated in Figure 2.4. Two

similar kinds of metal samples are connected together and a thermocouple element is

fixed between them. The exact temperature can be measured by a data logger connected

to the thermocouple element. The metal sample is cooled by natural convection from

the initial temperature to 150 oC. The measuring of temperature by infrared camera

and data logger starts at the same moment. The recorded temperatures from the

data logger are used to calibrate the measured temperatures from the infrared camera.

The emissivity of the camera could be regulated until the shown temperature matches

with that of the thermocouple. Figure 2.5 shows the measured emissivity of the black

surface. The average emissivity for the black surface between 550 oC and 150 oC is

0.898. The same procedure has been applied to a higher temperature interval, 850 oC

and 350 oC. Figure 2.6 shows the measured emissivity of the black surface at high range
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Figure 2.5: The emissivity variation of coated surface: At lower temperatures interval
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Figure 2.6: The emissivity variation of coated surface: At lower temperatures interval

temperature. Similarly, the average emissivity for the black surface between 850 oC and

350 oC is 0.884. The measured values of emissivity are slightly lower than the value of

0.95. This is caused by the extremely thin layer which is to avoid resistance for the heat

conduction through it.

2.4 High speed camera

Two methodologies were followed to calculate or to measure the wetting front velocity

i.e.

• by calculating the propagation of MaxHF using two dimensional analysis of solving

inverse heat conduction problem

• by measuring the wetting front velocity using images at different times with accu-

rate scaling using a high speed camera

A high speed camera is a device used for recording fast moving objects as a photographic

image(s) onto storage media. After recording, the images stored on the media can be

played back in slow motion. A normal motion picture camera is filmed and played

back at 24 frames per second, while television uses 25 frames/s. High speed cameras

can film up to a quarter of a million frames per second by running the film over a

rotating prism or mirror instead of using a shutter, thus reducing the need for stopping

and starting the film behind a shutter, which would tear at such speeds. The fastest

cameras are generally used in scientific research, military testing and evaluation, and

industries. An example of an industrial application is that of crash testing in order

to understand the crash and what happens to the automobile and passengers during
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Figure 2.7: High-speed camera

a crash. The problem of high speed cameras is that the need for stronger exposure.

Therefore, one needs very bright light to be able to film at forty thousand frames per

second, sometimes leading to the subject of examination being destroyed due to the

heat of the lighting. The camera which was used for the visualization of wetting front

phenomena was the High-SpeedStar 6 made by La Vision, as shown in Figure 2.7. Nickel,

inconel 600 and AA2024 sheets and discs were quenched by atomized spray and water

jets with different flow parameters and were visualized by high speed camera. This

camera has different options, such as the size of the screen and frequency. Images can

be captured at a maximum frequency of 5400 frames/sec when the screen resolution is

selected as 1024 × 1024 pixels. Similarly, for the screen size of 512 × 512 pixels, the

maximum frequency is 16000 frames/sec. However, the maximum frequency for this

camera is 150 kHz. As the frequency of measurement increases, more intense lighting

is required for illuminating the subject properly. Minimum inter-frame time is 4.8 µs

and pixel size is 20 µm × 20 µm. A software called DaVis 7 is used for data acquisition

and visualization of captured images. This arrangement is equipped with scaling the

subject being analyzed to the real dimensional coordinates. Using this provision, first

the disc or rectangular sheet is scaled on the screen to the actual dimensions and then

the high speed movie is made with a selected frequency of frames/sec, exposure time

and exposure time in the presence of high intensity lights. Once the images are saved,

the position of the wetting front is related to real dimensions and its change is noted

with respect to time, which is wetting front velocity. The results from these experiments

are shown in Chapter 6.

2.5 Samples

Front and back sides of circular and rectangular sheets are shown in Figure 2.8. In

this research Nickel, Aluminium alloy, Copper alloys and Nickel Inconel 600 were used.

The thickness of sheets varied from 4 to 2 mm. Thermal conductivity, specific heat
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Figure 2.8: The rectangular and circular metal samples used in the experiments

capacity and density are the thermophysical properties of the material which must be

known in order to calculate the heat transfer coefficient. The metals are cut into two

shapes depending upon the method of quenching, i.e. rectangular shapes are machined

for quenching by an array of jets, while circular disc shapes are formed for quenching by

water spray or atomized spray. The width of the rectangular sheets depends on the size

of the mould. 110 mm and 70 mm wide sheets were used for the small and big mould

respectively. The sheets should have such a width that it stops the water flow and it

should not wet the rear side of the sheet, which would disturb the measurements by the

camera. The metal samples are cut by laser cutting. In the case of copper, they are cut

by water jet cutting because laser cutting does not work precisely when the conductivity

of the material is too high. After cutting, the sheets are painted with black graphite

paint (the commercial name: SENOTHERM), heated to 250 oC and kept for 30 minutes

for the proper fixation of the paint.

2.6 Nozzles

In this study, two different types of nozzles were used. The first type is a single-fluid

nozzle or hydraulic nozzle, which has one input for liquid. For this nozzle type, as

the fluid pressure increases, the flow through the nozzle increases and the droplet size

decreases. While the second type is a two fluid nozzle or atomized spray nozzle (Lechler-

156.35.13), which has two inputs for liquid and gas. The cooling water is connected with

liquid input and compressed air is used as the atomizing gas. A homogeneous spray of

fine droplets of about 20 µm is produced. The produced spray from the nozzle is full

conical. The spray cone angle of the hydraulic nozzle is 45 o and distance between the
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Figure 2.9: The two nozzle types used

nozzle and plate surface is 6.4 cm. The spray cone angle of an atomized nozzle is 20 o

and the distance between the nozzle and plate surface is 15 cm. The two nozzle types

described above are shown in Figure 2.9.

Impingement Density (ID)

The patternator shown in Figure 2.10 was used to measure spray distribution for both

the single fluid nozzles and atomized spray nozzles. Water is sprayed for a specified

period of time ∆t and collected in vertical tubes with a diameter of dt = 10 mm, each

aligned perpendicular to the spray nozzle. Under these operating conditions, the vertical

tubes carry the spray liquid into bottles. The mass of the collected liquid Mwater into a

particular bottle is measured separately. The mean impingement density was calculated

from the following equation 2.1, where the impingement density unit is kg/m2/s.

ṁ =
4×Mwater

Π× d2
t ×∆t

(2.1)

Impingement density for the hydraulic full cone nozzle and pneumatic atomizing nozzle

is measured using a patternator along the axis, perpendicular to the axis of the spray

cone at a distance of 64 and 150 mm respectively. The value of impingement density

distribution (IDD) is proportional to the amount of water flow at the inlet under constant

air pressure . The Figure 2.11 shows the impingement density distribution for the single

fluid nozzle. The average of three experimental data is taken as the nominal mass

velocity of water. The spray distribution has been measured at three different water
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Figure 2.10: The patternator
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Figure 2.11: Distribution of ID of single fluid nozzle in radial direction
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Figure 2.12: Distribution of ID of single fluid nozzle in radial direction at 20 liter/hr
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Figure 2.13: Distribution of ID of atomized spray nozzle in radial direction
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Figure 2.14: Mould used in experimental tests

flow rates of 20, 25, 30 l/h. The throughput of 20 l/h is distributed more uniformly and

is separately shown in Figure 2.12. Due to this reason, the experiments for analyzing

the effect of water quality on heat transfer during spray quenching have been performed

at this flow rate with the hydraulic full cone nozzle. The Figure 2.13 shows the results

for the impingement density of the atomized spray nozzle. In this case, the distributions

are balanced and symmetrical at all flow rates. The heat transferred due to the single

fluid nozzle spray is lower than the heat transferred due to the atomized nozzle. The

cooling time of the single fluid nozzle is about five times longer. Therefore, the single

fluid nozzle is used in the studies to investigate the heat transfer of different real waters,

which are explained in detail in the next chapters.

2.7 Mould (Array of jets)

The designed mould has the dimensions of 120 × 90 × 65 mm, as shown in Figure

2.14. The cooling water is supplied through an array of small diameter holes. The

water leaving from the holes produces water jets. These jets impinge on the rear side

(quenched side) of the metal sample. The mould has eight holes of 2.4 mm diameter.

The position of the water supply hole is designed to be on the top of the mould in order

to make the flow from the jets more uniforml. A hydraulic pump with a flow regulating

device delivers the cooling water to the mould.

2.8 Mould movement mechanism

Figure 2.15 shows the mould in fixed position. The mould weight is 2070 grams and the

weight is increased slightly during the quenching process because water fills the inside

of mould. The distance of stroke from the start position to the end position is about

120 mm. The required speed for the movement of the mould ranges from 10 mm/s to 50
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Mould
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Figure 2.15: The mould positions (a)fixed position and (b)movement positions

mm/s. The regulating speed depends on operating conditions, which is completed by the

stepper motor controller. The mould movement mechanism and mould itself are located

in the quenching side and are installed as part of the experimental setup frame as the

following Figure 2.16 shows the installation diagram of the mould movement mechanism.

At the normal operating conditions, during the cooling tests, the heated plate is moved

manually from inside the electrical furnace to the cooling zone. The optical sensor is

fixed in a way not to hinder the camera function and does not affect the measurements.

Therefore, the optical sensor sends a signal to the computer and the computer resends

a signal to the controller and activates the stepper motor. Figure 2.17 shows the new

installation of the experimental set up. The stepper motor speed is proportional to

the applied voltage. The speed of the stepper motor is the same as the mould speed.

Therefore, the controller is designed to vary the input voltage of the stepper motor in

order to change its speed.

Optical device

An optical device known as Optris CT LT infrared sensor was also used for detecting

the starting temperature of the metal sheet. As soon as the surface temperature of

the hot metallic sheet reaches the desired starting temperature, the main IR camera is

commanded to start the data acquisition. This starting temperature is communicated

by the Optris CT by changing the color from yellow to blue. The working principle of

Optris is the same as that of the infrared camera; however, the measurement is more

tentative instead of very accurate, like the IR camera. It can measure the temperature

from -50 oC to 975 oC. The spectral IR range for this device is 8 - 14 µm. Figure 2.18

shows the optical device used for the Optris CT infrared thermometry. The sensor is

fixed in the face of the hot metal plate, as show in Figure 2.19(a). The sensor head is

made of stainless steel (Figure 2.19(b)) and the sensor electronics are placed in a separate

box (Digital Converter) made of casting zinc (Figure 2.19(c)). Figure 2.20 shows the

position of the optical sensor in the experimental set up. The Optris CT can measure the
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Figure 2.16: Installation diagram of mould movement mechanism

Table 2.2: Technical data of controller IT116 flash.

Dimensions (W × H × D) (105 × 111 × 320)mm
Weight 2380 g
Power supply 115/230VAC

50/60 Hz (switchable)
Signal voltage 24V DC
Power consumption 250 W
Peak current 4.2 A
Ambient temperature 0 oC to 50 oC
Integrated chip 32 bit, RISC processor
Program memory 128 KByte

surface temperature based on the emitted infrared energy of objects. The sensor head

collects a small amount of energy (usually 0.0001 watt) radiated from the hot plate and

generates an electrical signal. The generated electrical signal is amplified and converted

into analog signal. The Digital Converter digitizes the signal into digital signal. Infrared

thermometers of the optoelectronic sensor will send a signal to the controller when the

hot metal is ready for testing. At this moment, the mould starts moving and thus begins

the process of hot metal cooling.

Controller IT116 flash

The controller (IT116 flash), as shown in Figure 2.21, is a powerful one axis-controller

for numerically controlled motion of a linear or rotary axis with a two phase-stepper
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Figure 2.17: The new installation of the controller and optical sensor

motor. Table 2.2 shows the technical data of the controller IT116 flash. The controller

has four binary inputs/outputs. For communication between a PC/Notebook (under

Windows operation system) and the controller, a serial interface (RS232) is used. The

microprocessor based controller includes an internal flash memory with a size of 128

KBytes for storing the firmware and the application program. The controller is prepared

for loading application programs through the external memory. The controller (IT116

flash) has 128 micro steps for one full step. This feature allows very smooth motion

of the connected two phase-stepper motor. The automatic current draw down reduces

power dissipation as in the amplifier and the stepper motor. The peak current is 4.2 A.

Figure 2.18: Optical device for measuring starting surface temperature
[Courtesy:optris]
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Figure 2.20: Optical device fixation

Figure 2.21: The controller IT116 flash
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Figure 2.22: Cooling curves for three characteristic locations

It can be reduced to conform to parameters of different stepper motors.

2.9 Representative test

The principle temperature profiles are shown in Figure 2.22. An Aluminum sheet of

alloy 6082 of 3 mm thickness is cooled with the single fluid nozzle (flow rate–20 kg/h).

The temperature profiles at three different locations are shown: the center point (first

point), the radial distance 17 mm (second point) and the radial distance 35 mm (third

point). The spray cone has a radius of 40 mm. From this example, it can be seen that

the temperature profiles are symmetrical in angular direction and thus independent of

angular direction.
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Chapter 3

Analysis Methods

3.1 Determination of Leidenfrost temperature

Figure 3.1 shows schematically the temperature-time curve during a cooling process.

The cooling in the section of the film boiling is slow. The Leidenfrost point is defined

as the temperature, at which the vapor film collapses. In the next transition boiling

regime the heat dissipated increases by many times and reaches a maximum when the

vapor layer is completely collapsed. In cooling processes it is of particular interest the

region of stable film boiling and the location of the Leidenfrost temperature. The second

derivative of the temperature profile can be used to detect the position of the Leidenfrost

point. The second derivative is calculated by using discrete temperature measurements

according to following equation(
d2T

dt2

)
i

=
Ti+1 − 2Ti + Ti−1

∆t2
. (3.1)

Figure 3.2 shows an example for the calculated second derivative and the belonging

temperature profile. It can be seen that the second derivation is constant along the time

with one exception. Here a significant minimum value occurs. This peak correlates with

the LFT. As a consequence, the LFT is determined in all test from the minimum peak

of the second derivation of the temperature-time profile.

3.2 Simple analysis of heat transfer

For a simple analysis method, the temperature distribution is assumed to be stationary

through the thickness of the metal sample. Therewith, the heat transfer of an annular

ring of the disk with the width ∂r as shown in Figure 3.3 can be calculated from the

energy balance

dh

dt
= −q̇sp − q̇λ − q̇α − q̇R. (3.2)

41
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Figure 3.3: Heat losses during spray quenching

The decrease of the stored enthalpy with time is equal to the transferred heat fluxes by

the spray q̇sp, by the radial conduction q̇λ, by natural convection q̇α and by radiation q̇R.

The change of the enthalpy in the volume element is calculated by

dh

dt
= ρcss

dT

dt
. (3.3)

The heat transfer coefficient of the water spray αsp is defined with the water spray

temperature Tsp by the equation

q̇sp = αsp · (Ts − Tsp) . (3.4)

where Ts is the surface temperature. The conductive heat flux is calculated using the

Fourier approach

q̇λ = −s · λ1

r

∂

∂r

(
r · ∂T

∂r

)
. (3.5)

The natural convective heat loss is calculated by:

q̇α = α · (Ts − T∞). (3.6)

The HTC is assumed to be 5 W/m2/K. Convection is only considered on the side

where surface temperature is measured. Radiation is considered on both sides of the

metal sheet surface

q̇R = (ε1+ ε2) · σ ·
(
T 4
s − T 4

∞). (3.7)

where ε1 and ε2 are the emissivities of the front and rear side of the sheets and σ is the

Stefan Boltzmann Constant (5.67× 10−8W/m2/K4). Since the front side is polished, its
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Figure 3.4: Flow diagram algorithm for the conduction factor calculation

emissivity is 0.3 and the rear side is painted black therefore its emissivity is increased to

0.9 approximately. Here T∞ is the ambient temperature. The radiative and convective

heat flows are only 5 % of the total heat loss as compared to conductive heat flow and

heat transfer due to spray. In order to calculate the factor 1
r
∂
∂r

(
r · ∂T

∂r

)
, we have to follow

a step wise calculation procedure using the software Therma Cam 2001 Researchers.

Seven spot measurements of temperature are carried out at the center of the spray jet

on metal sheet in such a way that spot 4 is at the center and spot 1 and spot 7 are

at the corners. Distance between two consecutive spots is equal to 2.3 mm, which is

regarded as pixel size. In this example the pixel size equal to 3× 156mm
204totalpixels

, where 156

mm is the measured diameter of the metal disc and 204 are the total pixels which are

accommodated into this width. Therefore the distance between two consecutive spots is

2.3 mm.

The steps which are to be followed to calculate the conduction factor are explained by

the following block diagram as shown in figure 3.4. The final value of factor 1
r
∂
∂r

(
r · ∂T

∂r

)
is calculated by averaging two middle values in step (9) which is then used to calculated

the heat transfer due to conduction.
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3.3 Inverse analysis

In the region of nucleat boiling the heat transfer is so high that there is a temperature

difference between the cooled front surface and the measured back surface. Therefore,

alternatively a 2D inverse analysis of the heat transfer is used. The governing heat

equation in 2D can be solved by a numerical analysis. The numerical analysis calculates

the time dependent heat transfer coefficient for the position regarded at the metal plate

surface from measured temperature at this position. In case of Direct Heat Conduc-

tion Problem (DHCP), the boundary conditions are well known and one has to solve

the Governing Differential Equation (GDE) for finding the interior domain solution. In

Inverse Heat Conduction Problem (IHCP), the boundary conditions are unknown and

some part of the domain solution is known through experiments. Experimental temper-

ature data are required to solve the GDE for the estimation of the boundary conditions.

Nallathambi and Specht [92] used the Finite Element Method (FEM) to solve the IHCP

using experimental data and DHCP temperature solution. The mathematical aspects

of DHCP and IHCP are formulated separately in the following section.

Direct Heat Conduction Problem (DHCP)

Let an open bounded domain Ω ⊂ Rn (1 ≤ n ≥ 3) be the reference configuration of a

non-linear thermo-plastic body B with particles defined by ~X ∈ Ω̃, Γ = ∂Ω its smooth

boundary and Υ ⊂ R+ be the time interval of analysis (t ∈ Υ). As usual, Ω̃ = Ω∪Γ and

Γ = Γθ ∪ Γq. The metal quenching problem consists in finding an absolute temperature

field θ : Ω̃ x Υ→ R+ such that [93].

ρ cp θ̇ = −∇ · ~q in Ω̃ × Υ (3.8)

subject to the boundary conditions

θ = θ̄ in Γθ × Υ (3.9)

~q · ~n = −q̄ in Γq × Υ (3.10)

and the initial condition

θ( ~X, t)|t=0 = θ0( ~X) in Ω (3.11)

Eq. 3.8 represents the energy balance obtained from the First Law of Thermodynamics

where the superposed dot denotes time derivative,∇ is the gradient operator with respect

to Cartesian reference system, ρ is the density at reference configuration and cp is the

specific heat capacity, both are functions of temperature. ~q is the heat flux vector. In

Eq. 3.9, θ̄ is the prescribed temperature on temperature boundary Γθ. In the heat flux

boundary Γq, qs is the normal heat flux due to convection-radiation phenomena. Using

temperature-dependent overall Heat Transfer Coefficient (HTC) α, qs can be stated

according to Newton’s constitutive law as,

qs = −α(θ)(θ − θ∞) (3.12)
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where θ∞ is the ambient temperature. From Fourier’s law of heat conduction, heat flux

vector ~q can be defined as,

~q = −K̄(θ) · ∇θ (3.13)

where K̄ is the temperature dependent second-oder thermal conductivity tensor. If the

material considered is of isotropic nature, it can be reduced as a scalar k which is only

a function of temperature and independent of direction.

Finite element form of the general governing differential equation with natural bound-

ary conditions and also using Backward-Euler time difference scheme can be given as [94],

(M + ∆t K) Θn+1 = MΘn + ∆t Fn+1 (3.14)

where ∆t = tn+1− tn, M is the global capacitance matrix , K is the global conductance

matrix and F is global force vector and given as,

M =
n∑
i=1

∫
Ωe

ρ c NNT dΩ

K =
n∑
i=1

∫
Ωe

k ∇N (∇N)T dΩ

F =
n∑
i=1

∫
Γe

N q dΓ

where n is the total number of elements and N is the element shape function. M,K

and F has the dimensions of N × N and N × 1 respectively. N is the total number of

nodes.

Inverse Heat Conduction Problem (IHCP)

Inverse Heat Conduction Problem (IHCP) is the determination of the surface heat flux

(or temperature) from measured transient temperatures inside a heat conducting body.

In this definition, the initial temperature distribution is considered to be known. Another

definition estimates the surface heat flux from transient measured interior temperatures

and simultaneously the initial temperature distribution.

Most of IHCP studies are devoted to the determination of transient and/or spatially

distributed heat flux on the boundary of the body [95, 96] and the heat transfer coef-

ficient at the boundary must be accurately determined as a function of temperature,

before solving the IHCP when experimental data are used as additional information.

Important applications of these methods have been studied in various branches of ther-

mal engineering area: quenching, casting and phase change process, hot rolling and
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welding [97]. Few of these works consider experimental situations involving unknown

heat sources. Silva Neto and Ozisik [98] used the conjugate gradient algorithm (CGA)

to estimate the time-varying strength of a line source placed in a rectangular region

with insulated boundaries, but the location of the source was specified. Le Niliot [99]

studied linear inverse problems with two-point heat sources, and experimental results

were presented. Ohmichi and Noda [100] developed a method for the determination of

rectangular heat sources for two-dimensional steady state problems.

Let an interior of the domain Ω bounded by the curve Γ = Γθ ∪ Γq, where Γθ is the

temperature described boundary and Γq is the unknown heat flux boundary due to the

water cooling. Using the standard finite element discretization technique, convective

heat flux vector q̃n+1 at current time step on the boundary Γq is represented as

q̃n+1 =
[
q̃n+1

1 , q̃n+1
2 , · · · , q̃n+1

J

]T
(3.15)

where J is the total number of nodes on Γq. In order to determine the vector q̃n+1, we

assume that instantaneous time-varying temperature measurements, Ỹ n+1, are available

at I measurement site nodes

Ỹ n+1 =
[
Ỹ n+1

1 , Ỹ n+1
2 , · · · , Ỹ n+1

I

]T
(3.16)

where I is the total number of nodes on the measurement site. The objective of the

IHCP is to estimate the surface heat flux at the quenched site using the measurement

site temperature data. Assume that Θ̃n+1 is the calculated temperature vector using

inverse FEM at the I measurement site nodes. Therefore, the instantaneous error norm

is defined as in [101]

S = (Ỹ n+1 − Θ̃n+1)T (Ỹ n+1 − Θ̃n+1) (3.17)

Using a non-iterative technique proposed by [101] while minimizing the error norm with

respect to the surface heat flux ( ∂ S/∂ q̃ = 0, called as matrix normal equation ),

yields the sensitivity coefficient matrix X̃ as in [101]

X̃ij =
∂θ̃n+1

i

∂q̃n+1
j

(3.18)

where superscript on X̃ij is suppressed. Exploiting the advantage of FEM, the force

vector as mentioned in Eq. (3.14) modified as in [101]

F n+1 = D̃ q̃n+1 + c (3.19)

where c is determined by the known temperature distribution on Γθ and D̃Pj =

∂ F n+1
P /∂ q̃n+1

j , is a constant matrix of dimension N × J . N is the total number of
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nodes on Ω̄, and P is the global node number. From the DHCP (Eq. 3.14), the temper-

ature vector is rewritten as in [101]

Θn+1 = ψn + ∆t U F n+1 (3.20)

ψn and U in Eq. 3.20 is given as in [101]

U = (C + ∆t K)−1

ψn = U C Θn (3.21)

Substituting Eq. 3.19 in Eq. 3.20, the measurement site calculated temperature vector

Θ̃n+1 is given as in [101]

Θ̃n+1 = ψ̃n + ∆t Ũ [D̃ q̃n+1 + c ] (3.22)

where ŨiP = UGP and ψ̃ni = ψnG are mapped from the global nodes to the nodes

on the quenched boundary Γq. The sensitivity coefficient matrix is explicitly rewritten

from Eq. (3.18), and Eq. (3.22)

X̃
n+1

= ∆t Ũ D̃ (3.23)

Finally, from the minimization of the error norm, the unknown surface heat flux is given

as

q̃n+1 =
(
X̃
T
X̃
)−1

X̃
T

( Ỹ n+1 − ψ̃n − ∆t Ũ c ) (3.24)

The inverse solution algorithm is summarized as follows: (i) Θn, C, K and c are known

from the previous time step. Ỹ n+1 is the known current experimental temperature

vector. Using these quantities, q̃n+1 can be determined from Eq. (3.24). (ii) Force

vector F n+1 has to be determined using the current q̃n+1 according to the relation given

in Eq. (3.19). (iii) Global temperature vector Θn+1 can be determined by substituting

F n+1 in Eq. (3.20). The computation of conductance and capacitance matrices and

force vector are as similar as the solidification problem. The only unknown matrix to

be addressed in the inverse problem is the D matrix. It can be defined as the derivative

of force vector with respect to the nodal heat flux vector. Assuming c = 0, the force

vector can be written as

F n+1 = D qn+1 = D̃ q̃n+1 (3.25)

from D and q, D̃ and q̃ can be computed from the global to local mappings as explained

before. In Eq. (3.14), the element force vector can be modified by substituting the

unknown heat flux q as q = NT qe and becomes

F e =

∫
Γeq

N NT qe dΓeq (3.26)
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where qe is the element unknown nodal heat flux vector. Now, the element form of D

matrix can be given as

De =
∂F e

∂qe
=

∫
Γeq

N NT dΓeq (3.27)

This matrix is a constant one because there is no material properties inside the integral.

This can be easily computed without much difficulty.

3.4 Measured data revision

3.4.1 Methodology

Experimental and numerical analysis techniques for the heat transfer from the hot sur-

faces in the cooling experiments have been explained. A developed technique has applied

to find the solutions. The developed technique uses MATLAB program which consists

of steps to dispose non-logical data and purify such data. This technique depends on

the revision of the measured data from the surface, which is supplied as the input to the

numerical methods in calculating the heat flux. In the way of the solution, a developed

technique is applied to the measurement data collected from experiments. Many re-

searchers suggested some processings to the measurement data. Sengupta [4] suggested

that the mathematical models based on thermo fundamentals should include the opti-

mization practices. Bakken [102] interested to reduce the measurement error by using a

special jag used to ensure that the thermocouples were placed near the surface and axi-

ally aligned each other. Also, the data smoothing techniques are used to eliminate noise

and extract real trends and patterns. Schneider [103] applied a smoothing technique to

all measured temperature values in order to remove any random noise. This technique

was found applicable to achieve the stable inverse solution of heat transfer. In this re-

search, the heat flux of aluminum samples has been estimated by using experimental

results on inverse mathematical model.

A circular plate made of Aluminium alloy AA6082 is used during these experiments.

The plate has been heated to an initial temperature of 560 oC. Then, it is cooled with

water by spraying from a hydraulic nozzle. The measurement data of twenty selected

points have been used. The distance between two points is 2 pixels, which is equal to

1.82 mm. First, the unrevised data is used as inputs to the numerical method. Further,

one more time the data is revised and used as inputs to the numerical method. The heat

fluxes were estimated and compared for the two different data (revised and unrevised

data). The temperature profiles of the twenty points for deionized water are plotted

as shown in figure 3.5. Especially in the film boiling region, a small fluctuation of the

temperature can be seen. This fluctuation is caused by the fluctuation of the droplets

cooling the surface. A closer view of the region marked with the square in figure 3.5 is

shown in figure 3.6. A revised data technique is required in order to increase the accuracy
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Figure 3.5: Real temperature profiles for twenty selected points
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Figure 3.7: Revised temperature profiles for twenty selected points
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Figure 3.9: Three different points of measured data before and after using a revision

of the results. The revised temperatures are used as input data, which facilitates the

use of numerical solutions. Figure 3.7 shows the same twenty points plotted after using

MATLAB program where the temperature profiles appear without any fluctuations. The

closer view is also shown in figure 3.8.

3.4.2 Calculated error of cooling rate

To confirm these results the errors of cooling rate were calculated in two cases (revised

data and not revised data) at three different positions (three different points). The unit

of the cooling rate is temperature/time (oC/sec), it can be estimated by dividing each

temperature data point by its corresponding time. The calculation for percentage error

is used to evaluate the degree of error in measured data. The assessing percentage of

the cooling rate error was formulated as.

RealV alues−RevisedV alues
RealV alues

× 100% (3.28)

Figure 3.9 shows the temperature profiles at three different points 1,10 and 20. Each

point is represented by two curves. One curve for the revised data, while the other for

non revised data (original data). Figure 3.10 shows the temperature curves (same as in

figure 3.9) for the first 18 seconds of the cooling (film boiling regime for this example).

The calculated error percentage of the cooling rates in this regime is equal to zero because

there is no difference between the revised and original data. The percentage of cooling

rate error was evaluated at the position of Leidenfrost point. The absolute values of

calculated errors at the Leidenfrost position for the three points 1,10 and 20 are equal

to 2.79%, 1.85%, and 0.0% respectively. Figure 3.11 in enlarged scale of axes shows the

error of the three different points at the Leidenfrost positions.
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during film boiling
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Figure 3.12: Heat transfer coefficients in film boiling region by using non revised data
(simple analysis)

Table 3.1: LFT, MaxHF, and DNB-temperatures values

parameter Di-water BF-water

LFT oC 255 264
MaxHF MW/m2 1.7 2.2
DNB-temperature oC 180 186

3.4.3 Result analysis using revised data

Figure 3.12 shows the heat transfer coefficients in film region for deionized and BF-water

at the position 5.43 mm from center point of the plate. The original data has been

used as an input data for the numerical method. It can be seen that the range of the

fluctuation is about 25 W/m2/K. Figure 3.13 has been drawn with revised input data.

The values represent the mean values of the HTC from Figure 3.13. Also, the inverse

method (IHCP) has been applied to calculate the heat fluxes by using the experimentally

revised and not revised data Figure 3.14 shows the estimated heat fluxes for these two

coolants when a non-revised data is applied to the inverse method. The fluctuations are

so high that the HTC can not be determined. Further, the inverse method is used again

to estimate and plot the two heat fluxes by using revised measured data as input as

shown in figure 3.15. Now the boiling heat transfer profiles are clearly seen. However,

the fluctuations in the film boiling region are larger than using the simple analysis in

Figure 3.12. The values of LFT, Max. Heat Flux (MaxHF), and DNB-temperature

from figure 3.15 are estimated and compared as shown in Table 3.1. Also, the Table 3.1

shows the values of LFT temperatures and HTC which inferred from figure 3.12. From

the results it can be concluded that, some improvements could be made to the measured
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Figure 3.15: Heat fluxes results by using revised data (IHCP method)

data in order to make the results more useful and clear.

3.4.4 Effect of thermophysical property variations

The figure 3.16 shows the effect of the thermophysical properties variation on the cal-

culated heat flux of the metal sample (AA6082) during cooling process. The figure is

plotted based on the simple analysis (as explained in equation 3.2). In this equation, the

numerator includes the conductive part and the storage energy part. These parts are

all over the denominator of temperature difference. The conductive part includes the

thermal conductivity λ while the second part includes the specific heat Cpof the metal

sample. In this experiment, combination of some factors in the simple analysis is tested

with the following illustration that can be noticed from the figure:

• The black solid line (1) shows the heat flux characteristic over temperature

when the factor of conductive heat transfer is neglected and all the thermo-

physical properties are fixed (combination 1)

• The black dashed line (2) shows the heat flux characteristic over temperature

when the factor of conductive heat transfer is neglected and Cp to be the only

variable (combination 2)

• The blue solid line (3) shows the heat flux characteristic over temperature

when the factor of conductive heat transfer is considered and all the thermo-

physical properties are fixed (combination 3)

• The blue dashed line (4) shows the heat flux characteristic over temperature

when the factor of conductive heat transfer is considered and Cp to be the

only variable (combination 4)
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Figure 3.16: Effect of thermophysical property variations

• The red dashed line (5) shows the heat flux characteristic over temperature

when the factor of conductive heat transfer is considered and λ dan Cp to be

the only variable (combination 5)

From the figure, it is noticed that the DNB-temperature of the heat flux of any

combination is of 180 oC. In the first and the second combinations, the calculated

heat transfer is merely due to the total heat loss which depends on the specific heat

(Cp) of the metal sample. However, from the heat flux calculation, the combination

(1) shows the heat flux of about 1.17 W/m2 while the combination (2) is of about 1

W/m2. It means that by taking cp into consideration will decrease the calculated

heat flux by 14.5 % when the factor of conductive heat transfer is not taken into

consideration.

The other three combinations, the calculated heat transfer is taking conductive

heat transfer into consideration. In the combination (3), the calculated heat flux

value is of 1.9 W/m2. In the combination (4), the calculated heat flux is of about

1.77 W/m2 and the (5) is of about 1.8 W/m2. It means that by taking Cp as

variable (combination 4), it decrease 6.8 % of calculated heat flux. But when

thermal conductivity (λ) is considered as well as variable (combination 5), it will

increase the value of calculated heat flux by 1.7 % compared to the combination (4)

and decrease of about 5.2 % to the combination (3). It means that the significant

different of the 3, 4, and 5 combination is much more due to the Cp variation.

Other comparison can be done by taking at the same condition with and without

conductive heat transfer factor is taken into consideration during calculation. By

comparing the combination (1) to the combination (3), the calculated heat flux
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difference is about of 38.4 % while the combination (2) compared to combination

(4) resulting the difference is of about 43.5 %. It means that the conductive

heat transfer contribute about 38.4 - 43.5 % to the calculated heat transfer of the

experiment.



Chapter 4

Water Quality

4.1 Influence of single salts

4.1.1 Magnesium sulfate (MgSO4)

At first, the influence of the salt MgSO4 will be discussed. All previous studies

showed that this salt has the strongest effect. As reference water deionized water

was used. This water was mixed with different amount of MgSO4. Figures 4.1,

A.1 and A.2 depicts the cooling profiles at the three characteristic points (center

point, 17 mm within spray cone and 34 mm outside spray cone) of the disc for

all used salt concentrations. It can be seen that the Leidenfrost temperature is

strongly shifted to higher values with increasing salt concentration. This results

in a much faster cooling time. Figure 4.2, A.3 and A.4 shows the analysed heat

flux with dependence on the surface temperature at these points. The parameter

is again the salt concentration. From this figure, it can be seen that not only the

Leidenfrost temperature is shifted to higher values with the salt concentration,

but also the MaxHF, the belonging DNB-temperature and the heat flux at the

Leidenfrost temperature.

Figure 4.3 shows the heat transfer coefficient at the center point as an example.

Also, the HTC is influenced by the salt concentration in the same way. In the fol-

lowing, the two characteristic temperatures and the MaxHF will be discussed with

dependence on the electrical conductivity for the composition of the salt mixture.

All dissolved salts in water disintegrate into positively charged ions (cations) and

negatively charged ions (anions). The electrical conductivity is a measure of the

solution for the amount of the ions. The different cations and anions have an indi-

vidual effect on the conductivity [104]. These conductivity factors are summarized

in Table 4.1. The electrical conductivity is the sum of the factors fi multiplied

with the concentration Ci in mg/l.

59
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Table 4.1: Conductivity factors for major ions [104]

Ion Conductivity Factor

µS/cm

Calcium (Ca+2) 2.6
Magnesium (Mg+2) 3.82
Potassium (K+1) 1.84
Sodium (Na+1) 2.13
Bicarbonate (HCO3

−1) 0.715
Chloride (Cl−1) 2.14
Sulfate (SO4

−2) 1.54
Nitrates (NO3

−2) 1.15

EC =
∑

(Ci × fi) (4.1)

As an example for MgSO4, the electrical conductivity is

EC =

[(
103 × 24

120
Ci × 3.82

)
+

(
103 × 96

120
Ci × 1.54

)]
(4.2)

where 24, 96 and 120 are the molecular weights of Mg, SO4 and MgSO4 respectively.

Figure 4.4 shows the calculated values as explained before with dependence on the

concentration and the measured conductivity. It can be seen that the conductivity

is proportional to the concentration until a value of 6 g/l. The calculated and

measured values match well in this range.

Figure 4.5 shows the three characteristic parameters, Leidenfrost temperature,

MaxHF and DNB-temperature, with dependence on the electrical conductivity for

the three locations on the disc. The selected range is chosen until a value of 12000

µS/cm, in which the conductivity is proportional to the concentration. It can be

seen that all three parameters seem to increase linearly with the conductivity and

the concentration, respectively. Qiang et al. [105] measured also the heat transfer

with spray cooling of deionized water and dissolved MgSO4. They used the same

impingement density of 3 kg/m2/s, as in this study. Their values for the MaxHF of

the deionized water and the increase with the salt concentration match perfectly

with the results of this study. Their DNB-temperature also increased with salt

concentration, but the values cannot be compared because they used copper as
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the metal sample. The Leidenfrost temperature could not be measured because

the initial temperature was only 240 oC.

4.1.2 NaCl, NaHCO3, Na2SO4 and Na2CO3

Real waters include different kinds of salts. The Figures 4.6 to 4.9 show the cooling

profiles for the salts NaCl, NaHCO3, Na2SO4 and Na2CO3, respectively at center

point. The cooling profiles at 17 mm and 34 mm from center have been shown

in A.5 to A.12. In these cases, a pneumatic nozzle and Nickel as the metal type

was used. Therefore, the cooling times cannot be compared with those of MgSO4.

Also for these salts, the cooling time is shortened with increasing concentrations.

In Figure 4.10, the cooling profiles of the used salts are compared for the same

concentration of 0.5 mol/l. All salts increase the cooling rate. The salt MgSO4

has the strongest effect, while the salt NaCl has the weakest effect. This principal

fact matches with the results reported from Qiang et al. [105], Huang [58] and

Jeschar et al. [106]. These authers also report that the salts MgCl2, KCl and

CaCl2 increase the Leidenfrost temperature and MaxHF.

4.1.3 CaCO3

In Figures 4.11, A.13 and A.14 the cooling profiles are shown for three concentra-

tions of dissolved CaCO3. Here the hydraulic nozzle and AA6082 as a metal were

used again. Also in this case, the cooling times are shortened with the concentra-

tion. Figures 4.12 and Figure 4.13 show the corresponding heat flux and the HTC,

respectively, with dependence on the surface temperature. Figure 4.14 shows the
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Figure 4.5: LFT, MaxHF and DNB-temperature of MgSO4 solutions at the three
different positions

LFT, MaxHF and DNB-temperature with dependence on the concentration. All

properties seem to increase linearly with the concentration, as it was already the

case with the salt MgSO4.

4.2 Casting lubricants

In the continuous casting process lubricants are often used. Typical lubricants are

Borax (Na2B4O7.10H2O), graphite powder and carbon black. Borax dissolves in

water, as is the case for salts. Graphite powder and carbon black don’t dissolve.
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4.2.1 Borax

Figures 4.15, A.15 and A.16 shows the cooling profiles for different borax concen-

trations in the same method as before of the three characteristic positions. As the

concentration of Borax increases the cooling times are shortened again. Figure

4.16 shows the heat flux with dependence on the surface temperature. The LFT

and the MaxHF are shifted to higher values with the concentration. Their values

can be seen in Figure 4.17 with dependence on the borax concentration. All three

parameters increase linearly with the concentration.

4.2.2 Graphite powder and carbon black

In Figure 4.18, photographs depict the water with graphite powder. The left photo

shows the water after it was well stirred. The following two photographs show the

water after 5 and 10 minutes. It can be seen that the graphite powder sinks to
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the bottom. Therefore, it doesn’t dissolve. Figure 4.19, A.17 and A.18 shows the

cooling profiles for graphite powder with the two concentrations and for carbon

black. A significant influence cannot be seen. Typical concentrations are much

lower than those used in the experiments. Therefore, these non-dissolved solids

have no influence on the heat transfer.

4.3 Surfactant

In casting processes of aluminium alloys and also in hardening processes of steel

alloys surfactants are deposited into the water to prolong the cooling rate. Figures

4.20 A.19 and A.20 shows the cooling profiles for different concentrations of a

typical surfactant used in industry. It can be seen that with the addition of the

surfactant in the range of ppm, the cooling time is prolonged. In Figure 4.21 and

Figure 4.22, the HF and the HTC, respectively, are shown with dependence on the

surface temperature. The HTC in the region of the film boiling is dependent on the

concentration. However, the LFT and the MaxHF decrease with the concentration.

This decrease is shown in Figure 4.23 for the characteristic positions. The LFT,

MaxHF and DNB-temperature appear to decrease linearly with the concentration.

4.4 Mixtures of surfactant and dissolved matter

As seen in the chapters before, surfactants prolong the cooling time, while dis-

solved matter, such as Borax and MgSO4, decrease the cooling time. Therefore, in

this chapter, it will be considered what the impact is of mixtures between lubri-

cants and dissolved matter. Figures 4.24, A.21 and A.22 show the cooling profiles
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of deionized water and deionized water with 2.5 g/l dissolved borax, which was

mixed with different concentrations of the surfactant. The lowest concentration

of the surfactant with 50 ppm has an unexpected effect. This concentration pro-

duces the shortest cooling time. In comparison to the deionized water with only

dissolved Borax, the cooling time is dramatically shortened, approximately by a

factor of two. The surfactant concentrations above 50 ppm continuously prolong

the cooling time. However, the mixture with 100 ppm surfactant has an even a

shorter cooling time compared to the 2.5 g/l borax water without surfactant. All

mixtures up to the very high concentration of 500 ppm surfactant have a signif-

icantly shorter cooling time than the deionized water. The borax has a stronger

effect for shortening the cooling time than the surfactant for prolonging the cooling

time. However, the levels of the concentrations are in a different range.

Figures 4.25, A.23 and A.24 show the cooling profiles for deionized water, deionized

water with 3 g/l MgSO4 and again four different concentrations of the surfactant.

At the center point and the distance 17 mm, the surfactant shortens the cooling

time. The highest concentration of 500 ppm has the shortest cooling time. The

principal effect is similar to borax. At high concentrations of dissolved matter, the

surfactant seems to decrease the cooling time instead of prolonging the time. As a

consequence, if surfactants are used to prolong the cooling time, the water should

be free of dissolved matter, especially salts.

4.5 Dissolved gases

Water can also dissolve different amounts of gases. The gas components with the

highest concentration are oxygen, nitrogen and carbon dioxide. The ratio of N2
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Figure 4.25: Temperature profiles for MgSO4/surfactant [107]

to O2 in water is approximately 2:1, instead of 4:1 in the atmosphere. Dissolved

carbon dioxide dissociates into HCO3 and H, which is designed as carbon acid. To

measure the impact of these gases, deionized water was dispersed with a flow of

O2, N2, CO2 and air for a time period of 15 minutes. Therefore, it is assumed that

the water has the equilibrium concentration which is the maximum value. Also for

comparison, drinking mineral water (sparkling water) was used which has a high

concentration of CO2 and includes salts.

Figures 4.26, A.25 and A.26 show the cooling profiles for the water with the dif-

ferent dissolved gases. It can be seen that CO2 significantly prolongs the cooling

time. The water with the dissolved air has the shortest cooling time. The oxygen

seems to have no effect. The nitrogen shortens the cooling time. As a consequence,

the water with the dissolved air should have the same cooling time as the water

with dissolved nitrogen. However, the air shows a stronger influence than the pure

nitrogen. This effect cannot be explained. Therefore in the future, further experi-

ments with dissolved gases should be done. Figure 4.27 and Figure 4.28 show the

HF and HTC, respectively. The dissolved air and nitrogen shift the MaxHF and

the LFT to higher values. Also, the HTC in the film boiling region has higher

values. These effects are also reported from Jeschar et al. [106] for the cooling of

a nickel sphere immersed in a bath of water. In the figures concerning the dis-

solved gases, the profiles for carbonated mineral water (sparkling water) are also

included. Its profiles lie between the deionized water and the deionized water with

dissolved pure carbon dioxide. This can be explained by the two opposite effects

of this mineral water. The carbon dioxide prolongs the cooling time, while the

salts decrease.



4.5. Dissolved gases 75

0 5 10 15 20 25 30
0

100

200

300

400

500

600

 

 

X: 25.3

Y: 235.7

Time[Sec]

T
em

pe
ra

tu
re

 [o C
]

Di-water

Di-water + O
2

Di-water + CO
2

Di-water + Air

Di-water + N
2

Drinking carbonated water

AA6082,  20 l/hr
Hydraulic nozzle
At: center point
Pressures= 0 gauge

K53

Time  [s]

3 kg/m2/s

Figure 4.26: Temperature profiles for dissolved gases at center point

0 50 100 150 200 250 300 350 400 450 500
0

0.5

1

1.5

2

2.5
x 10

6

TEMP[
o
C]

H
e

a
t 

F
lu

x
 [

w
/m

2
]

 

 

Di-water

Di-water + O
2

Di-water + CO
2

Di-water + Air

Di-water + N
2

Drinking carbonated water

AA6082,  20 l/hr
Hydraulic nozzle
At: center point
Pressures= 0 gauge

AA6082  - 3  kg/m2/s

Hydraulic nozzle

At: Center  point 

Pressure: 0 gauge

H
e

at
 F

lu
x 

 [
M

W
/m

2
]

TEMP [oC]

TEMP [oC]

Figure 4.27: Heat flux vs. surface temperature for dissolved gases at center point
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Figure 4.28: Heat transfer coeffcient of dissolved gases at center point
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Figure 4.29: Temperature profiles for spray water temperature at center point

4.6 Water temperature

As it is known from literature, the temperature of the water also influences the

cooling rate. Therefore, Figure 4.29, A.27 and A.28 shows the cooling profiles for

different temperatures of the water. With increasing temperature, the cooling rate

is decreased. Figure 4.30 and Figure 4.31 show the HF and the HTC, respectively,

again with independence on the surface temperature. The decrease of the LFT,

MaxHF and DNB-temperature are shown in Figure 4.32. The values decrease

approximately linearly with the temperature in the range of 0 oC to 60 oC. Figure

4.33 shows the HTC in the film boiling region. From these last figures it can

be seen that the temperature of the water has a strong impact on the cooling

rate. Therefore, all experiments in this study were conducted with a constant

temperature of 15 oC.

4.7 Real waters

In real waters, various salts are dissolved. Therefore, the cooling rate was measured

for eight different waters which were used in some plants for the continuous casting

of Aluminium and Copper alloys. In Table 4.2, the analysis of these waters are

summarized. The analysis of the deionized water used is also included. All waters

are ranked by the measured electrical conductivity, which is named as E.C. LAB.

The conductivity was also calculated from the concentrations using Eq.(4.1) and

the factors given in Table 4.1 and named as E.C. CAL. It can be seen that these

values differ in some cases from the measured values. The differences are in the

range of 0 to 20 % related to the measured values. The table also includes the pH

value and the hardness. The pH value varies in a range of 7.1 to 9.1. A relation
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to the conductivity is not recognizable. The same fact is valid for the hardness.

Figure 4.34 compares the cooling profiles of real waters at the center point posi-

tion as an example. All other positions show the same effects. The waters with a

high electrical conductivity have a significantly higher cooling rate than the other

waters. In Figure 4.35, the calculated heat flux is shown with dependence on the

surface temperature. It can be seen that all characteristic parameters, Leidenfrost

temperature, MaxHF, DNB-temperature and film boiling heat flux, differ consid-

erably between all waters. The higher the conductivity is, the higher are their

values.
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Figure 4.35: Heat flux vs surface temperature of the real waters at center point

Therefore, in Figure 4.36, the Leidenfrost temperature, the MaxHF and the DNB-

temperature are plotted versus the electrical conductivity. All three parameters

seem to increase linearly with the electrical conductivity. In particular, the Lei-

denfrost temperature differs considerably by 150 K between the real waters. The

MaxHF increases approximately by a factor of two and the DNB-temperature by

approximately by 50 K. Therewith, the electrical conductivity seems to be the

relevant parameter which characterizes the cooling effect and heat transfer of real

waters. An influence of the pH value and the hardness of the waters cannot be

detected.

It is remarkable that the impact of the electrical conductivity is different between

the single salt and the salt mixtures. It can be seen from the Figure 4.36, that the

salt mixture causes the Leidenfrost temperature value to increase in the range of the

electrical conductivity (0 - 2500 µS/cm). For the distance 34 mm as an example,

the temperature increases from 300 oC to 450 oC. For the single salt MgSO4, it

can be seen from Figure 4.5, that within this range the Leidenfrost temperature

only increases from 300 oC to 350 oC. Also the MaxHF and the DNB-temperature

for the single salt MgSO4 increase with a significant lower gradient than for the

salt mixture. An explanation cannot be given. Further tests with defined mixtures

of salts are planned.

After the center point has reached the LFT, a wetting front occurs and moves in

radial direction. With the following two figures it will be researched if the wetting

front velocity is a measure for the quenching effect of the water. Figure 4.37 shows

the position of the wetting front for the nine different waters. It can be seen that

the wetting occurs at the center point after 8 seconds for the water C1 and after
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Figure 4.37: Position of the wetting front for the nine different waters

20 seconds for the DI-water. All the other waters are between these values. The

higher the LFT, is the shorter is, of course, the time after which the wetting occurs.

At the position 34 mm, the wetting occurs after 17 seconds for the water C1 and

after 23 seconds for the DI-water. Here the difference between the two times is

much smaller than at the center point.

The movement of the wetting front for one water with the time is the wetting front

velocity. Its values are depicted in Figure 4.38. It is remarkable that the Di-water

with the weakest quenching effect has the highest wetting front velocity. This can

also be seen from figure 4.37. The wetting position moves for the Di-water after

20 seconds beginning from the center and only within 3 seconds to the position 34

mm. For this distance, the moving time for the water C1 needs about 9 seconds

and therewith, three times more. During the movement of the wetting front, heat

has to be transferred to cool the metal from the LFT to the boiling temperature.

The higher the LFT is, the more heat has to be transferred. The water C1 has

a much higher LFT than the Di-water. Therefore, the wetting front of the water

C1 has to transfer more heat than that of the Di-water, which results in slower

moving velocity. Therefore, the wetting front velocity is not a useful measurement

for the quenching effect. The most important parameter is the LFT.

From Figure 4.38 is can be concluded that most waters have a similar wetting

front velocity. At the beginning, the value decreases rapidly and after a length

of approximately 15 mm, the value seems to keep constant. The rapid decrease

at the center region can be explained with the profile of the impingement density,

as shown in Figure 2.12. The impingement density has the maximum value at

a distance of 10 mm and not in the center. The HTC is proportional to the
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Figure 4.38: Wetting front velocity for the nine different waters

impingement density. Therefore, the vapor films collapse nearly at the same time

in the range of ± 10 mm, which results in a high value of the velocity. Behind the

wetting front, which has the LFT, follows a wetting range in which the temperature

falls to the boiling temperature. In this range, the heat is transferred by nucleate

boiling according to the boiling profile with the DNB-temperature and the MaxHF.

The transferred heat also depends on the width of the range. This range can be

principally analyzed from the radial temperature profiles by searching the LFT

and boiling temperature. However, the width of this range was not of interest in

this study.



Chapter 5

Surface properties of metal

5.1 Thermal material properties

5.1.1 Temperature profiles

Seven different kinds of metals were used to research the influence of the thermal

material properties: the density, the specific heat capacity and the conductivity.

The values are summarized in Table 5.1. The two materials Nicrofer and Inconel

are steel alloys with a high contents of nickel and chromium. Therefore, their

conductivities are very low. Nickel has a mean value of the conductivities, while

the Aluminum alloy 6082 has a relatively high conductivity. The three copper

alloys significantly differ in the conductivity. The copper K14 is a very pure metal

with the highest conductivity of the sample metals. The Copper alloy L49 has

an eight times lower conductivity. The table also includes the values for the heat

penetration coefficient and the thermal diffusivity. The thickness of the used plates

differed between 2, 3 and 4 mm. For this study it was not possible to obtain plates

of the same thickness for all materials.

For all cooling tests with the different plates, the hydraulic nozzle with the impinge-

ment density of 3 kg/m2/s was used again. The initial temperature was stayed

constant 560 oC. This is the highest possible temperature for the aluminum alloy.

In the Figures 5.1, 5.2, 5.3, A.29, and A.30 the temperature profiles along the

radial distance are shown. The parameter is the time in full seconds. Between

the profile is therewith a time interval of one second. It can be seen that Nickel

has much more even profiles than Nicrofer. The reason is the 4.5 higher thermal

conductivity. It is remarkable that Nicrofer has a much faster cooling rate in the

core. After six seconds, the core has a temperature below 100 oC. After this time,

the nickel plate core has still a temperature of about 350 oC.
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Figure 5.4: Temperature profiles of metals with the thickness of 2 mm at center

From the theory of transient heat transfer, the cooling time is proportional to

the thermal diffusity according to the Fourier number. However, in this case,

the Nicrofer with the lower thermal diffusity has the higher cooling rate. The

material with the lower conductivity, here Inconel, has again the higher gradients.

Figure 5.3 shows the radial profiles for copper K14, which is the material with

the highest conductivity. As a consequent, these profiles are most often compared

with all other profiles. The Figures 5.4, 5.5 and 5.6 and Figures A.31 to A.36 show

the temperature profiles with dependence on time for the 2, 3 and 4 mm plates,

respectively, again at the three characteristic positions: the center point, 17 mm

and 34 mm distance from the center.

From Figure 5.4, it can be seen that the two materials nickel and Nicrofer have the

same cooling rate at the beginning (except center point). However Nicrofer has

a significantly higher Leidenfrost temperature. Therefore, the region of nucleate

boiling starts earlier for Nicrofer, which results in the much shorter cooling time.

From Figure 5.5, it can be seen that at the beginning of the film boiling region,

the Aluminum has a higher cooling rate than the Inconel. The reason is the much

lower density. Therewith, less stored heat has been transferred. However, the

Inconel material, with the much lower conductivity, has again a higher Leidenfrost

temperature. Figure 5.6 compares the cooling profiles of the copper alloys with

the 4 mm plate thickness. Here, the alloy B14 with the mean conductivity of

118 W/m.K has the shortest time. The alloy K14 with the highest conductivity

(385 W/m.K) and the alloy L49 with the lowest conductivity (48 W/m.K) have

a similar cooling time. During the heating of the copper discs, oxide layers are

formed on the surface. These layers splash away during the spray cooling. The

surface behavior will be discussed in the next chapter.
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5.1.2 Heat transfer

In the following, the heat transfer from the different discs will be compared. The

heat transfer coefficient in the film boiling region is in the range of 400 to 800

W/m2/K. Therewith, the Biot numer (Bi = α × s / λ) is in the range of 0.006

and 0.08. For these small values, it can be assumed that the temperature on both

sides of the disc are similar. Therefore, the transfer heat flux can be calculated at

radial position from the energy balance

q̇ = −ρcss
dT

dt
− s · λ1

r

∂

∂r

(
r · ∂T

∂r

)
(5.1)

as already explained in Chapter 3. The transferred heat flux is the decrease of the

local enthalpy plus the heat conduced to this radial position. Figures 5.7, A.37

and A.38 shows this heat flux with dependence on the surface temperature for

the material AA6082 as an example for the three characteristic positions. Two

profiles are shown. The dotted line is for the heat flux because of the change of

enthalpy. The continuous line stands for the heat flux from the change of enthalpy

and the radial conduction. It can be concluded that the transferred heat flux from

the radial conductivity is in the magnitude of 50 % of the change of enthalpy.

The profiles for the center point were calculated using the temperature dependent

material properties and using mean values of the temperature range from 100 to

600 oC. The differences are negligibly small, especially for the heat transfer in the

film boiling region and for the Leidenfrosttemperature. The Figures 5.8, 5.9 and

5.10 and Figures A.39 to A.44 compare the heat flux profiles of the different metals

for the 2 mm, 3 mm and 4 mm discs, respectively. All profiles differ, especially

the Leidenfrost and DNB temperatures, such as the value of the MaxHF. Figures

5.11, A.45 and A.46 show the corresponding profiles of the heat transfer coefficient
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at the center point as an example. In Figures 5.12, A.47 and A.48 the HTCs

in the film boiling region are compared for the metals at the three characteristic

positions. At the center point, Nicrofer has the highest value and the Aluminum

the lowest. At the distance 34 mm, it is quite opposite. Here, the Aluminum has

the highest value and Nicrofer has nearly the lowest value. Nickel always has one

of the lowest values.

Figure 5.13 compares the LFT for all metals at the center point. For the Nickel,

Aluminum, Inconel and Nicrofer, it seems that the LFT decreases with the heat

penetration coefficient. For the Copper alloys, the LFT is influenced by the heat

penetration coefficient of the oxide layer. This value is unknown, but the value

must be much lower than that of the non-oxidized metal. Figure 5.14 compares the

LFT of the metal at all three positions. The higher the distance from the center

is, the higher are the values for the LFT. At all positions, the LFT decreases again

with the heat penetration coefficient, except for the copper alloys. The Figures

5.15, 5.16 and 5.17 compare the influence of the kind of metal on the MaxHF, the

DNB-temperature and the mean value of the heat flux in the film boiling region at

the center point, as an example. A significant influence of the MaxHF cannot be

detected. The DNB-temperature seems to decrease such as the LFT. The heat flux

in the film boiling region seems to decrease with the heat penetration coefficient,

except for the Copper alloys.

Figure 5.18 and 5.19 show the LFT and the heat flux in the film boiling region

dependent on the thermal diffusivity of the metals. Here, the same trend can

be seen as in the figures before. The values seem to decrease with the thermal

diffusivity in a similar way as with the heat penetration coefficient. Therefore, it
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Figure 5.9: Heat flux of AA6082 and Inconel plates at center point
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Figure 5.19: Heat flux of the metals dependent on the thermal diffusivity

is not clear which material property is decisive for the influence on the LFT. In

all experiments, the Biotnumber was so small that the temperature difference in

the thickness can be neglected. In this case, the thermal diffusivity is the proper

material value. The authors in literature, who used thick samples and measured the

temperatures using thermocouples, conclude the surface near effects are important,

which are described by the heat penetration coefficient. As a consequence, a

theory of the Leidenfrost problem is required to predict the correct influence of

the material properties. As conclusion of these experiments, a clear influence of

the kind of metal cannot be given. More experiments are necessary, especially

tests with the same thickness of all discs. Additionally, tests with higher initial

temperatures should be done to obtain better information about the heat flux and

the HTC in the film boiling region. However, in these experiments, non Aluminum

alloys can be used.

5.1.3 Comparison with literature

The results will be compared with those from literature in the following. Müller et

al. [65] measured the LFT and the DNB-temperature in spray cooling for Copper,

Nickel, Aluminum and Brass. He showed that both temperatures increase with

the impingement density. For the value 3 kg/m2/s, he measured a LFT of 300 oC

for Aluminum and 400 oC for nickel. From Figure 5.14, it can be seen that the

LFT for Aluminum increases from 230 oC at the center to 300 oC at the distance

of 34 mm. The LFT for nickel increases from 260 oC to 420 oC. In both studies,

Nickel has a higher LFT than Aluminum. The values for both metals are in the

similar range. Müller et al. measured a DNB-temperature of 180 oC for Nickel

and 160 oC for Aluminum, which are similar values as in Figure 5.16.
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Al-Ahamdi and Yao [74] measured the LFT and the DNB-temperature for stainless

steel. Both temperatures increase again with the impingement density. For the

value 3 kg/m2/s, they measured LFT in the range of 500 to 650 oC and DNB-

temperatures of 270 to 370 oC. Nicrofer has similar material properties as stainless

steel. From Figure 5.14, it can be seen that Nicrofer has a LFT of 350 oC at the

center and 470 oC at the position of 34 mm. From Figure 5.16, it can be seen that

the DNB-temperature is 290 oC for Nicrofer.

All three studies agree that the LFT and the DNB-temperature are higher, the

lower the heat penetration coefficient is. The LFT in this study is lower than the

values given by the other authors. The difference for the center point is about

140 K for Nickel, 70 K for Aluminum and 200 K for Nicrofer. One reason is that

in this study Di-water was used, while in the other studies real water was used

with an unknown quality. As it was explained in the previous Chapter, Di-water

has the lowest quenching effect. Another reason is that the sizes of the samples

were different and that the initial temperature in the other studies was higher. In

the next Chapter, it will be shown that the higher the initial temperature is, the

higher is the LFT temperature.

As mentioned before, Müller et al. [65] and Al-Ahamdi and Yao [74] report that

the LFT increases with the impingement density. As a consequence, the LFT

at the position of 34 mm should be lower than at the center position, because

the impingement density of the nozzle used is much higher at the center than at

the position of 34 mm. However, the values presented in the literature are only

valid for the center point. Here, small samples were used and were arranged at

the center line of the nozzle. The impingement density was varied by changing

the distance between the nozzle and the sample. Therefore, the flow conditions

represents the stagnation point. However, for large flat samples and therewith real

work pieces, the flow conditions depend on the radial distance if the LFT is reached

at the center. Next, a wetting front occurs, which moves in radial direction. The

position 34 mm is still in the film boiling region, while the wetting front already

moves. As a consequence, a radial flow supposes the spray. Due to the splashing

effect at the wetting front droplets flow with a high velocity over the plate in radial

direction. From other cooling methods, such as immersion quenching, it is known

that the LFT is higher when the flow velocity is higher.
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Figure 5.20: Typical ways for obtaining surface roughness

5.2 Surface Roughness

5.2.1 Definition of roughness

To determine the roughness of a surface, the height variations along the distance

are measured. Figure 5.20 shows the principle profile of the height along the

distance of a surface. Three different methods are used to define the roughness of

the surface, which will be explained with this figure.

A) Arithmetical mean roughness Ra: In this method, the fluctuations (zigzag line)

in relation to the basic line are summarized according to

Ra =
1

l

∫ l

0

|f(x)| dx (5.2)

The area
∫ l

0
|f(x)| dx represents the area of the peaks below and above the

basic line.

B) Maximum peak height Ry: In this method, the heights of the maximum peaks

of the surface above and below the basic line are searched and added

Ry = Rp +RV (5.3)

C) Ten-point mean roughness Rz: In this method, the sum of five peak heights

and five peak depths is calculated and divided by the factor five

Rz =
|Yp1 + Yp2 + Yp3 + Yp4 + Yp5|+ |YV 1 + YV 2 + YV 3 + YV 4 + YV 5|

5
(5.4)

The relation of these three different roughness values are Ry > Rz > Ra
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Figure 5.21: Real fluctuations on AA6082 surface

5.2.2 Roughness of disc samples

To study the effect of small roughness values, discs of the Aluminum alloy AA6082

with a thickness of 3 mm were used. They were heated to 560 oC and cooled with

the hydraulic nozzle. Deionized water was used with an impingement density of 3

kg/m2/s. These are the standard conditions.

Figure 5.21 shows the measured roughness profile of the standard disc of AA6082,

which was used for all experiments explained before. The arithmetical mean rough-

ness is 0.24 µm. Some of these discs are polished with sand paper and some are

scratched with saws. Figure 5.22 shows photos of the three surfaces. The rough-

ness of the surface using the sand paper was measured as Ra = 1.7 µm and using

the saw as Ra = 7.7 µm. Figures 5.23, A.49 and A.50 show the cooling profiles of

the Aluminum disc at the three characteristic positions. It is surprising that the

smooth surface (Ra = 1.7 µm) has the shortest cooling time. The surface with the

low roughness of 1.7 µm has a significantly longer cooling time than the smooth

surface. With the higher roughness of 7.7 µm, the cooling time decreases in com-

parison with the mean roughness of 1.7 µm. The plates were heated and cooled

using two methods. During the first method, water was sprayed on the smooth

surface and during the second method, the water was sprayed on the original ingot

surface. The non-sprayed surface of the plates were coated with graphite and their

surface temperature was measured with the IR-camera.



5.2. Surface Roughness 101

AA6082 

Roughness=7.7 μm
AA6082 

Roughness=1.7 μm

1 cm 1 cm

AA6082 

Roughness=0.24 μm

1 cm

Figure 5.22: Arithmetical mean roughness of three AA6082 surfaces
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Figure 5.24: Real surfaces of Aluminum ingots used

5.2.3 Roughness of ingot samples

The surface of ingots after the casting process is creats an unsmooth structure.

Figure 5.24 shows a photo of the structure of two ingots from different casting

processes. From these two ingot plates with a thickness of 10 mm and 6.5 mm

respectively, were cut. The cut side was polished. With this method, one side of

the prepared plates had the surface shown in Figure 5.24, while the other side had

a relatively smooth surface.

Figure 5.25 shows the cooling profiles at the three characteristic positions for the

10 mm plate. It is obvious that the spray on the ingot surface has a much higher

cooling effect than the spray on the smooth surface. The surface temperature of

100 oC, as an example, is reached after approximately 60 seconds, instead of 120

seconds for the cooling of the smooth surface. However, not only the LFT is shifted

to a higher value, the heat transfer in the film boiling region is also increased. It

is remarkable that for this thick plate the cooling profile is similar for all three

distances.

Figure 5.26 shows the cooling profiles at the three characteristic positions for the

plate with the thickness of 6.5 mm. Also in this case, the spray on the ingot

surface gives a much faster cooling rate than the spray on the smooth surface.

The temperature of 100 oC is reached after approximately 30 seconds instead of 60

seconds, which is within half of the time. Again, the cooling profiles for all three

positions are similar. In the Figures 5.27 and 5.28, the heat transfer coefficient is

shown with dependence of the surface temperature for the plate with the thickness

of 10 mm and 6.5 mm, respectively. It can be seen, that especially in the film
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Figure 5.25: Temperature profile of Aluminum ingot (thickness: 10 mm)

boiling region, the heat transfer of the ingot surface is more times higher than of

the smooth surface. One reason is that the ingot surface has a higher area than

the smooth surface. Another reason is the higher roughness of the ingot surface.

5.2.4 Salt deposition

Dissolved salts reduces the cooling time, as shown in Chapter 4. It is still unknown

what may be the cause. The salts influence the material properties of the water

only such low that this can be excluded as a reason. The question remains to

be answered if salts influence the surface structure through particle deposition

during the cooling process. Figure 5.29 shows photos of the Aluminum disc after

quenching with the water in which 60 g/l MgSO4 was dissolved. From the upper

photo it can be seen, that a white annular ring is formed with a diameter of

approximately 60 mm. Outside the ring, the disc has the color and the structure

as it was prior to the quenching. However within the ring, the color of the surface

has changed. Both lower photographs show the surface in the range of the white

ring in greater detail. It can be seen that there are salt deposits in the magnitude

0.1 to 1 mm.

Figure 5.30 shows photographs of the Aluminum disc after quenching with the

water in which 1 g/l CaCO3 was dissolved. Also, in this case, it can be seen that

there are small white deposits on the surface. The number of these deposits are

much smaller than for the MgSO4 before the concentration was much lower. It is

unknown if this change in the surface structure and the salt deposits influence the

cooling time. More research in this behavior is necessary.
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Figure 5.26: Temperature profile of Aluminum ingot (thickness: 6.5 mm)
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Figure 5.27: Heat transfer coefficient of Aluminum ingot (thickness: 10 mm)
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Figure 5.29: Salt deposition on AA6082 surface of MgSO4 solution of 60 g/l
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Figure 5.30: Salt deposition on AA6082 surface of CaCO3 solution of 1 g/l
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Abbildung 9: Einfluss der Oberflächentemperatur auf den Gesamtwärmeübergangs-

koeffizienten mit der mittleren Oberflächenrauhtiefe als Scharr-Parameter [1] 
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Figure 5.31: Influence of surface temperature on the overall heat transfer coefficients
with the average surface roughness [67]

5.2.5 Comparison with literature

Reiners et al. [67] measured the cooling of a Nickel cylinder with an impingement

density of 2 kg/m2/s for three values of surface roughness: 2 µm, 10 µm and 30

µm. The profile of the HTC with dependence on the surface temperature is shown

in Figure 5.31. The LFT increases from 290 oC to 360 oC, the DNB-temperature

from 160 oC to 175 oC and the max. HTC increases from 8000 to 9500 W/m2/K.

The HTC in the film boiling region was independent on this roughness. Parabhu et

al. [108] measured the effect of the surface roughness with steel plates, which had

a roughness of 1 µm and 3 µm and a grooved surface. They immersed the plates

in a different baths of liquids. The range of nucleate boiling immediately occurred

so that a LFT could not be detected. The heat flux profiles with dependence

on surface temperature were similar for the 1 µm and 3 µm roughness. For the

grooved surface, the value of the MaxHF was about 10 % higher.

Bernardin et al. [110] sprayed water on plates made of Al-1100 with a particle

blasted and a milled finished surface. This Aluminum alloy is relatively high

oxidation-resistant. The roughness of the particle blasted surface increased after

the cooling process from 0.9 µm to 1.6 µm. The roughness of the milled surface

kept constant at 1.4 µm approximately. The LFT was independent on the surface

temperature with 220 oC. However, the HTC in the film boiling region was for the

particle blasted surface slightly larger than for that of the milled surface. Values

for the HTC and the impingement density were not reported.

Dianfeng Li [111] researched the heat flux of plates which were cut out of real
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Figure 5.32: Influence of surface roughness for single water droplets on horizontal
copper discs [109]

ingots, which were casted of three different Aluminum alloys. The plates with the

dimension of 13 cm by 30 cm, had a thickness of 5 cm. The roughness was 470

µm for AA5182 , 120 µm for AA3004 and 25 µm for AA1005. The plates were

quenched with water jets from a mould. The region of nucleate boiling immediately

occurred. They compared the heat flux profiles of the sample with the real surface

with a sample with a polished surface of about 5 µm roughness and which was

made of the same alloy. For the alloy AA5182, the value of the MaxHF was 5.1

MW/m2 for the high roughness of 470 µm and 3.8 MW/m2 for the polished surface.

For the alloy AA1050, the MaxHF was 6.9 MW/m2 for the real surface, with 25

µm and 6.2 MW/m2 for the polished surface. The results principally match with

the results from Figure 5.28, in which the MaxHF is much higher for the real ingot

surface as for the polished surface.

Bernardin et al. [109] researched the effect of surface roughness for single water

droplets on horizontal copper discs. Polished discs with a roughness of 0.1 µm,

particle blasted discs with 1 µm and rough sanded discs with 3 µm were used.

The measured cooling profiles are shown in Figure 5.32. The cooling time of the

droplets was shortest for the polished (0.1 µm) disc and longest for the particle

blasted (1 µm) disc. The LFT was similar for all three surfaces. The differences

in the cooling time were caused by the different HTC in the film boiling region.

These results matched principally with those seen in Figure ??. The values of

the roughness are in the same magnitude. Also in this case, the LFT is nearly

constant and only the HTC in the film boiling region changes with the roughness.

The small increase of the roughness from 0.2 to 1.7 µm prolongs the cooling time

considerably. The increase of the roughness to 7.7 µm shortens is the cooling time.



108 Chapter 5. Surface properties of metal 108

However this time is still longer than that for the smooth surface.



Chapter 6

Heat transfer of mould jets

6.1 Heat transfer mechanism

In continuous casting processes of copper alloys, the strand leaving the mould

is cooled by sprays. The heat transfer of impinging sprays has been extensively

researched because this cooling method is also applied in the continuous casting

of steel. However, in continuous casting processes of aluminum alloys, the strand

leaving the mould is cooled by jets which are coming out of the mould. The

influencing parameters for this cooling method are still unknown, as explained

already in the introduction. The mechanism of the measuring method and the

heat transfer is explained in Figure 6.1. The jets leave the mould with an angle

of approximately 30o and impinge the test plates as described in Chapter 2. The

impinging position is about 53 mm away from the top of the plate. The water

pours down, touching the surface. In these tests, the plates are cooled first at

the top. Therefore, the upper part of the plate has a lower temperature, while

the lower part has still the initial temperature of the heating. When the water
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Figure 6.1: Mechanism of mould quenching
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Figure 6.2: Temperature profiles with respect to initial surface temperature
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film reaches the position where the plate has the LFT, the water is splashed away

from the surface. For discussing the heat transfer, the temperature profiles at

the positions 53 mm (impingement point) and 96 mm away from the top of the

plate will be considered. In reality of the casting process, the temperature of the

strand is hot at the top and cold at the bottom. This is the opposite profile as in

the test of this study, because a continuous moving of the plate was not possible.

Therewith, the jet hits the hot surface which is above the LFT. The falling water

film cannot splash away because the temperatures down the strand are below the

LFT. In spite of this lack of the testing plant principal, effects of the heat transfer

can be researched.
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6.2 Influence of initial temperature

The middle of Figure 6.1 shows a top view of the plate with the width W = 70

mm. The water flows from seven holes to the plate with a diameter 2.4 mm. It

is assumed that the temperature profiles down the center line are representative

for a mould with many more holes. The plates had a thickness of s = 2 mm for

Nickel and s = 3 mm for Aluminum alloy 2024 and Inconel. The temperatures of

the quenched and measured sides are assumed to be similar as before.

At first, tests have been conducted with a plate of Nickel, which had initial tem-

peratures between 400 oC and 700 oC. Figure 6.2 shows the temperature profiles

at the impinging position. All profiles show the film boiling region at the begin-

ning and then a transfer to the nucleate boiling region. However, in all four cases

the LFT is different. This LFT is shown separately in Figure 6.3 for all initial

temperatures at three positions below the impingement point. It can be seen that

the higher the initial temperature is, the higher is the LFT. Therefore, for all tests

described in the following, a constant initial temperature of 520 oC was always

used.

6.3 Influence of jet velocity

For a given mould with fixed orifices, the only parameter which can be influenced

is the volume flow of the water and therewith, the velocity of the jets. Figures 6.4

and 6.5 show the temperature profiles with dependence on time for two distances,

53 mm and 96 mm from the impingement point, as an example. The parameter

is the jet velocity. The minimum value is 0.9 m/s. For lower values, the jets do

not hit the plate. It can be seen that this velocity has the longest cooling time.

An increase of the velocity to 1.2 m/s shortens the cooling time considerably.

However, a further increase of the velocity prolongs the cooling time. Therewith,

an optimum velocity exists which will be discussed later in more detail.

In Figures 6.6 and 6.7 the LFT is shown with dependence on the length for the four

velocities. It is remarkable that the LFT is independent from the length. However,

it is dependent on the velocity. For the optimum velocity with the shortest cooling

time, the LFT has the lowest value. Figures 6.8, 6.9, 6.10 and 6.11 show the cooling

profiles for inconel and nickel, respectively. Again the minimum velocity of 0.9 m/s

has the longest cooling time. The velocities 1.2 m/s and 1.5 m/s have the shortest

times. With increasing velocities, the cooling prolongs again. Figures 6.12 and 6.13

show the profiles of the heat flux for the Aluminum sheet at the two previously

defined distances with the velocity as the parameter. The profiles rapidly increase
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Figure 6.4: Temperature profiles of the AA2024 plate at 53 mm from the top

0 1 2 3 4 5 6 7 8 9
0

100

200

300

400

500

600

Time [Sec]

T
e

m
p

e
ra

tu
re

 [
 o
C

]

 

 

v
1
 = 0.9 m/s

v
2
 = 1.2 m/s

v
3
 = 1.5 m/s

v
4
 = 1.8 m/s

96 mm from top

V1V2 V3 V4

AA2024
Thickness: 3 mm

Time [s]   

Figure 6.5: Temperature profiles of the AA2024 plate at 96 mm from the top
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Figure 6.8: Temperature profiles of the Inconel plate at 53 mm from the top
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Figure 6.9: Temperature profiles of the Inconel plate at 96 mm from the top



114 Chapter 6. Heat transfer of mould jets 114

0 1 2 3 4 5 6 7 8 9
0

100

200

300

400

500

600

700

Time[Sec]

T
e

m
p

e
ra

tu
re

 [
 o
C

]

 

 

v
1
 = 0.9 m/s

v
2
 = 1.2 m/s

v
3
 = 1.5 m/s

v
4
 = 1.8 m/s

53 mm from top

V1

V2
V3

V4

Nickel
Thickness: 2 mm

Time  [Sec]

Te
m

pe
ra

tu
re

  [
o C

]

Time [s]   

Figure 6.10: Temperature profiles of the Nickel plate at 53 mm from the top
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Figure 6.11: Temperature profiles of the Nickel plate at 96 mm from the top
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Figure 6.12: Heat flux distribution of AA2024 at 53 mm from the top

approximately linear to the max. value, decreases again approximately linear at

the beginning and then the gradient becomes lower.

From the comparison of Figure 6.4, it can be seen, using the velocity of 1.2 m/s

as an example and, at the position 53 mm after 1.2 sec. the LFT is reached. At

that time, the heat flux increases rapidly. From Figure 6.4, it can be seen that the

temperature 100 oC , the end of the boiling region, occurs after 2.3 sec. This is the

time where the heat flux turns from the linear and decreases into the horizontal

direction. Therewith, the time for passing the wetting front at the distance 53 mm

is 1.1 seconds. The corresponding range will be discussed later. At the distance 96

mm, the LFT is reached after 3.0 sec. At this time, the heat flux increases again

rapidly. The temperature 100 oC is reached after 5.0 sec. The time interval for

passing of the wetting front is therewith 2.0 seconds. It seems that the value of

the MaxHF is slightly lower at the position 96 mm in comparison to 53 mm. As

an example, for the velocity 1.2 m/s, the value decreases from approximately, 4.4

to 3.4 MW/m2 and for the 1.5 and 1.8 m/s form 4.4 to 4.0 MW/m2.

Figures 6.14 and 6.15 show the heat flux for the Inconel in the same form as before.

From Figures 6.8 and 6.9, it can be seen that at the position 53 mm, the LFT is

reached after approximately 0.8 sec. for the velocities 1.2 and 1.5 m/s. At this

time, the heat flux increases again rapidly. The temperature 100 oC is reached

after 4.5 sec. This time does not have a special mark in the heat flux profile.

The time interval for passing of the wetting front is 3.7 sec. and therewith, much

longer than for the metal AA2024. However, the value of the MaxHF is about 2.3

MW/m2 considerably lower. For the distance 96 mm, the LFT is reached after

approximately 3.0 sec. and the boiling temperature after 7.0 sec. The time interval

again increases slightly with the distance from 3.7 to 4.0 seconds and the MaxHF
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Figure 6.13: Heat flux distribution of AA2024 at 96 mm from the top
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Figure 6.14: Heat flux distribution of the Inconel at 53 mm from the top
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Figure 6.15: Heat flux distribution of the Inconel at 96 mm from the top
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Figure 6.16: Heat flux distribution of the Nickel plate at 53 mm from the top
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Figure 6.17: Heat flux distribution of the Nickel plate at 96 mm from the top

decreases again from 2.3 to 1.7 MW/m2. The value of the MaxHF for Inconel

is lower than for AA2024. This matches with Figure 5.15 for the spray cooling.

Figure 6.16 and 6.17 shows the heat flux profiles for nickel. From Figure 6.8, it

can be seen that for the velocity 1.2 m/s and 1.5 m/s, the LFT and the boiling

temperature are reached after 1.0 sec. and 2.1 sec., respectively, and at 53 mm and

96 mm, after 2.5 sec and 4.0 sec. If in Figures 6.16 and 6.17 both linear lines for

the heat flux are prolonged from the max. value to the value zero, then this time

matches with the time of the LFT. The time interval for the passing of the wetting

increases again with the distance from 1.1 sec. to 1.5 sec. The HF decreases again

from about 6.6 to 4 MW/m2.

The movement of the MaxHF with time is shown is Figures 6.18, 6.19 and 6.20

for all three metals with the jet velocity as the parameter. It can be seen that

for all cases the position of the MaxHF increases linearly with time. Therewith,

the wetting front velocity stays constant. The gradient gives the velocity of the
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Figure 6.18: MaxHF propagation of AA2024 for four cooling water velocities
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Figure 6.19: MaxHF propagation of Inconel for four cooling water velocities

wetting front. This velocity is depicted in Figure 6.21. Its value increases with

the water jet velocity to a maximal value and then decreases. This is similar to

the cooling times. Inconel has slightly higher wetting velocity than AA2024. The

wetting front velocity of the nickel cannot be compared because the plate has a

lower thickness which results in a higher value.

Figure 6.22 shows photographs of the wetting front at four different times. The

photographs were taken from the film of the high speed camera. The movement

at the center line is again used for the analysis. Figures 6.23, 6.24 and 6.25

shows the position of the wetting front with dependence on the frequence which is

proportional to time. It can be seen that the position moves again approximately

linear with time. The values of the wetting front velocity were calculated again

from the gradient and shown in Figure 6.26. The tendency is similar, as before.

Therefore, the values analyzed with this high speed camera and with the Infrared-

Images are compared in Figure 6.27. Both methods of analyzing match.
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Figure 6.20: MaxHF propagation of Nickel for four cooling water velocities
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Figure 6.23: Wetting front propagation of AA2024 by using high speed cam
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Figure 6.24: Wetting front propagation of Inconel by using high speed cam
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Figure 6.25: Wetting front propagation of Nickel by using high speed cam
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Figure 6.26: Wetting front velocity of three different metals using high speed cam
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Figure 6.28: Wetting front range of the three metals at water jet velocity 1.2 m/s

From the cooling profiles, the time interval can be determined, in which the tem-

perature falls from LFT to boiling temperature. Using the wetting front velocity

now the range of the wetting front can be calculated. This range is shown in Figure

6.28 with dependence on the length of the plate with the jet velocity 1.2 m/s as an

example. For AA2024, the range is 20 mm and seems to be constant. For Inconel

and Nickel, the range increases with the length. Nickel has a much larger range

than the other two metals. From the Figures ??, ?? and ??, it can be concluded

that the MaxHF is in the middle of the period between the times at which LFT

and boiling temperatures are reached. Therefore, the heat flux profile can be ap-

proximated by a triangle. The area within this triangle is the heat flow, which is

transferred by the wetting front. This heat flow is half of the value of the MaxHF

multiplied by the area of the wetting front, which is the range multiplied with the

width of the plate. In Table 6.1, the heat flow per meter of width is summarized

for the three metals and the two positions. It seems that this heat flow is depen-

dent on the position and therewith, on the length of the plate. A lower MaxHF

is compensated by a larger range. It is remarkable that the heat flow depends on

the kind of metal. The very high value of Nickel can not be explained by the lower

plate thickness of 2 mm instead of 3 mm. The reason cannot be explained. More

tests with plates of the same thickness must be conducted.

6.4 Comparison with literature

Heat transfer measurements for moulds are unknown. Therefore, a comparison

will be done for the heat transfer of one jet which impinges vertically a plate.

Such experiments are conducted from the research group M. Monde [112]. In this



Table 6.1: Heat flow per meter of width of metals at water jet velocity 1.2 m/s

Metal Position MaxHF Range Heat flow

mm from the top MW/m2 MW/m2 kW/m

AA2024 At 53 4.4 0.02 88
At 96 4.0 0.02 80

Inconel At 53 2.5 0.02 50
At 96 1.8 0.04 68

Nickel At 53 6.5 0.036 234
At 96 3.5 0.06 210

quenching case, in the stagnation point immediately wetting occurs. Then the

wetting front moves in radial direction. The sample was a block with a 94 mm

diameter and 59 mm thickness. The metal was copper, steel and brass. The initial

temperature varied from 250 oC to 600 oC. The wetting front was researched using

a high speed camera. In Woodfield [112] et al., the MaxHF and the range of the

wetting front are described. For a jet velocity of 3 m/s, the range is 16 mm at

the radius 8 mm and increases with the radius to 30 mm at a radius of 15 mm.

The MaxHF decreases with the radius from 4.5 MW/m2 at the radius 8 mm to 1.5

MW/m2 at the radius 15 mm. These results principally match with the mould.

The MaxHF decreases with the distance to the jet and therefore, the range of the

wetting front increases. The values of the MaxHF and the range of the wetting

front are in the same magnitude.
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Figure A.7: Temperature profiles for NaHCO3 solutions at 17 mm from the center
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Figure A.9: Temperature profiles for Na2SO4 solutions at 17 mm from the center
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Figure A.10: Temperature profiles for Na2SO4 solutions at 34 mm from the center
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Figure A.11: Temperature profiles for Na2CO3 solutions at 17 mm from the center
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Figure A.12: Temperature profiles for Na2CO3 solutions at 34 mm from the center
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Figure A.13: Temperature profiles for CaCO3 solutions at 17 mm from the center
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Figure A.14: Temperature profiles for CaCO3 solutions at 34 mm from the center
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Figure A.16: Temperature profiles for Borax solutions at 34 mm from the centerK35
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Figure A.18: Temperature profiles for graphite powder and carbon black solutions at
34 mm from the center
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Figure A.19: Temperature profiles for surfactant at 17 mm from the center
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Figure A.20: Temperature profiles for surfactant at 34 mm from the center
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Figure A.21: Temperature profiles for Borax/surfactant mixture at 17 mm from the
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Figure A.23: Temperature profiles for MgSO4/surfactant at 17 mm from the
center [107]
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Figure A.24: Temperature profiles for MgSO4/surfactant at 34 mm from the
center [107]
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Figure A.25: Temperature profiles for dissolved gases at 17 mm from the center point
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Figure A.26: Temperature profiles for dissolved gases at 34 mm from the center point
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Figure A.27: Temperature profiles for spray water temperature at 17 mm from the
center point
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Figure A.28: Temperature profiles for spray water temperature at 34 mm from the
center point

-40 -30 -20 -10 0 10 20 30 40
0

100

200

300

400

500

600
Nicrofer 6025 - Haydraulic Nozzle- 20 l/hr

Radial distance [mm]

T
E

M
P

 [
 o

C
]

0 sec

cooling time

1
2

Nicrofer - Hydraulic nozzle - 3 kg/m2/s - Thickness: 3 mm 

Figure A.29: Temperature distribution along the radial distance for the Nicrofer plate
with 2 mm thickness



145

-40 -30 -20 -10 0 10 20 30 40
0

100

200

300

400

500

600
Inconel 600 - Haydraulic Nozzle- 20 l/hr

Radial distance [mm]

T
E

M
P

 [
 o

C
]

Inconel - Hydraulic nozzle - 3 kg/m2/s - Thickness: 3 mm 

0 sec
1

2

Cooling time

Figure A.30: Temperature distribution along the radial distance for the Inconel plate
with 4 mm thickness



146 Appendix A. Appendix 146

Thickness : 2 mm

0 5 10 15
0

100

200

300

400

500

600

Time[Sec]

Te
m

pe
ra

tu
re

 [ o C
]

 

 

Nickel

Nicrofer6025

3 kg/m
2
/s

17 mm from center point

Time  [s]

Thickness : 2 mm

Figure A.31: Temperature profiles of metals with the thickness of 2 mm at 17 mm
from center point
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Figure A.32: Temperature profiles of metals with the thickness of 2 mm at 34 mm
from center point
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Figure A.33: Temperature profiles of metals with the thickness of 3 mm at 17 mm
from center point
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Figure A.34: Temperature profiles of metals with the thickness of 3 mm at 34 mm
from center point
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Figure A.35: Temperature profiles of metals with the thickness of 4 mm at 17 mm
from center point
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Figure A.36: Temperature profiles of metals with the thickness of 4 mm at 34 mm
from center point
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Figure A.37: Heat flux with dependence on the surface temperature for AA6082 at 17
mm from center point
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Figure A.38: Heat flux with dependence on the surface temperature for AA6082 at 34
mm from center point
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Figure A.39: Heat flux of Nickel and Nicrofer plates with the thickness of 2 mm at 17
mm from center point
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Figure A.40: Heat flux of Nickel and Nicrofer plates with the thickness of 2 mm at 34
mm from center point
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Figure A.41: Heat flux of AA6082 and Inconel plates with the thickness of 3 mm at 17
mm from center point
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Figure A.42: Heat flux of AA6082 and Inconel plates with the thickness of 3 mm at 34
mm from center point



150 Appendix A. Appendix 150

0 100 200 300 400 500

0.5

1

1.5

2

2.5

3

3.5

4

4.5

TEMP[
o
C]

H
ea

t F
lu

x 
[M

W
/m

2 ]

 

 

Copper L49  [1]

Copper K14  [3]

Copper B14  [3]

1

32

3  kg/m
2
/s

At:17  mm from the center

Figure A.43: Heat flux of Copper alloys L49, K14 and B14 with the thickness of 4 mm
at 17 mm from center point
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Figure A.44: Heat flux of Copper alloys L49, K14 and B14 with the thickness of 4 mm
at 34 mm from center point
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Figure A.45: Heat transfer coefficient of Nickel and Nicrofer at 17 mm from center poin

0 50 100 150 200 250 300 350 400 450 500
0

0.5

1

1.5

2
x 10

4

TEMP[
o
C]

H
.T

.C
. 

[w
/m

2
 k

]

 

 

Copper L49[1]

Copper K14[2]

Copper B14[3]

Single Fluid Nozzle
20  l/hr
At:Center point

1

2

3

H
.T

.C
. [

kW
/m

2
K

]

TEMP. [oC]

20

15

10

5

TEMP. [oC]

Figure A.46: Heat transfer coefficient of Nickel and Nicrofer at 34 mm from center poin
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Figure A.47: Heat transfer coefficient in film boiling region of metal plates used at 17
mm from center point
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Figure A.48: Heat transfer coefficient in film boiling region of metal plates used at 34
mm from center point
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Figure A.49: Temperature profile of rough AA6082 surfaces at 17 mm from center
point
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Figure A.50: Temperature profile of rough AA6082 surfaces at 34 mm from center
point
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