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Zusammenfassung

Die systematische Erhebung komplexer, inhärent mengenwertiger Daten in Wirt-
schaft und Forschung sowie die Einbindung ontologiebasierter Annotationen zur
Darstellung von Kontextwissen stellen statistische Modellierungen zur Wissensre-
präsentation vor neue Herausforderungen. Einerseits stehen bei mengenwertigen
Daten bereits für vergleichsweise kleine Wertevorräte kombinatorische Effekte
der direkten Modellierung durch Random Sets entgegen; andererseits erfordert
der Wegfall von Standardannahmen etwa über die Disjunktheit von Attributwer-
ten oder statistische Unabhängigkeiten, eine Neubewertung und Ergänzung des
bestehenden Methodenpools für komprimierte Darstellungen.

Der im Rahmen dieser Arbeit entwickelte empirische Modellierungsansatz für
Verteilungen über mengenwertigen Attributen unterstützt die Aufbereitung, Ver-
knüpfung und Interpretation derartiger Daten. Durch die Nutzung lokaler Ap-
proximationen innerhalb eines probabilistischen Rahmenmodells werden dabei
die Vorteile einer kompakten und skalierbaren Repräsentation mit dem interpre-
tierbarer Marginalverteilungen kombiniert.

Erweiterungen des Ansatzes auf multivariate Verteilungen und strukturierte Wer-
tedomänen ergänzen das Modell. Letztere ermöglicht die Integration formal spe-
zifizierten Kontextwissens zur Erschließung umfangreicher inhomogener Daten-
bestände. Zusammen mit einem in der Arbeit eingeführten mit einer Interpreta-
tion im Kontextmodell kompatiblen Aggreationsoperator gestattet sie es hierbei,
Beobachtungen unterschiedlicher Granularität in einem gemeinsamen Modell zu
verknüpfen und die gesammelte Verteilungsinformation innerhalb einer induzier-
te Familie gekoppelter Ereignisräume zu projezieren. Das Modell unterstützt so
nutzer- und einsatzspezifische Sichten, die durch wahlweises Aggregieren oder
Expandieren von Detailinformationen erzeugt werden.

Das vorgestellte Modell wird hinsichtlich seiner Eigenschaften und seines Einsatz-
bereichs von bestehende Ansätzen wie Dempster-Shafer Theorie, Possibilitäts-
theorie und einer Codierung unter Nutzung eines probabilistischen Graphischen
Models abgrenzt. Die zunächst auf Basis theoretischer Erkenntnisse geführte Ar-
gumentation setzt sich in einer experimentellen Evaluierung der implementierten
Modelle anhand eines komplexen öffentlich verfügbaren Datensatzes fort.

Obwohl Anwendungen derzeit vorrangig in der Bioinformatik liegen, ist das zu-
grunde liegende Modell selbst nicht an eine spezifische Interpretationen gebun-
den. Die im Rahmen der Arbeit erstelle Softwarebibliothek und die dazugehörigen
Tools reflektieren dies durch die Unterstützung eine Reihe unterschiedlicher Men-
geninterpretationen und Abfragemodi.



iv



Contents

1 Introduction 1
1.1 Annotated Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 Research Tasks . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.3 Outline of this Dissertation . . . . . . . . . . . . . . . . . . . . . 5

2 Foundations 7
2.1 Perception and Knowledge . . . . . . . . . . . . . . . . . . . . . . 7

2.1.1 Related Notions . . . . . . . . . . . . . . . . . . . . . . . . 14
2.2 Mathematical Formulation . . . . . . . . . . . . . . . . . . . . . . 15

2.2.1 Attributes and the Frame of Discernment . . . . . . . . . . 15
2.2.2 Set-Valued Attributes . . . . . . . . . . . . . . . . . . . . 17

2.3 Choice of Representation Framework . . . . . . . . . . . . . . . . 19
2.3.1 Symbolic Approaches . . . . . . . . . . . . . . . . . . . . . 22
2.3.2 Ordered Facts and Epistemic Entrenchment . . . . . . . . 24
2.3.3 Probability-Based Representations . . . . . . . . . . . . . 26

2.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3 Graphical Models 35
3.1 Introduction and Principles . . . . . . . . . . . . . . . . . . . . . 35
3.2 Statistical Independence and Decomposition . . . . . . . . . . . . 38
3.3 Node Separation in Graphs . . . . . . . . . . . . . . . . . . . . . . 41
3.4 Bayesian Networks . . . . . . . . . . . . . . . . . . . . . . . . . . 43
3.5 Markov Networks . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
3.6 Reasoning with Graphical Models . . . . . . . . . . . . . . . . . . 45
3.7 Summary and Further Reading . . . . . . . . . . . . . . . . . . . 49

4 Probability and Set-Valued Data 51
4.1 Interpretation of Model Components . . . . . . . . . . . . . . . . 51

4.1.1 Interpretations for Sets . . . . . . . . . . . . . . . . . . . . 52
4.1.2 Interpretation of Probability Distributions . . . . . . . . . 54

4.2 Random Sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
4.2.1 Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
4.2.2 Properties of Random Sets . . . . . . . . . . . . . . . . . . 55
4.2.3 Uses and Limitations . . . . . . . . . . . . . . . . . . . . . 56

v



Contents

4.3 Dempster-Shafer Theory of Evidence . . . . . . . . . . . . . . . . 57
4.3.1 Upper and Lower Probability . . . . . . . . . . . . . . . . 57
4.3.2 Reinterpretation by Shafer . . . . . . . . . . . . . . . . . . 58
4.3.3 Reasoning in the Dempster-Shafer Framework . . . . . . . 61
4.3.4 Critical Discussion . . . . . . . . . . . . . . . . . . . . . . 64

4.4 Possibility Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
4.4.1 Axiomatic Approach to Possibility . . . . . . . . . . . . . 68
4.4.2 Context Model Interpretation of Possibility . . . . . . . . . 71
4.4.3 Formalization . . . . . . . . . . . . . . . . . . . . . . . . . 75
4.4.4 Relation to Random Set Properties . . . . . . . . . . . . . 76
4.4.5 The Possibilistic Aggregation Problem . . . . . . . . . . . 78
4.4.6 Maxitivity and Consonance . . . . . . . . . . . . . . . . . 82
4.4.7 Discussion of Possibility Theory . . . . . . . . . . . . . . . 83

4.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

5 Condensed Representation for Set-Attribute Distributions 87
5.1 Conventions and Notation . . . . . . . . . . . . . . . . . . . . . . 88
5.2 Condensed Representation . . . . . . . . . . . . . . . . . . . . . . 88
5.3 Extension to the Multivariate Case . . . . . . . . . . . . . . . . . 93

5.3.1 Introduction to Tuple-Based Formalization . . . . . . . . . 94
5.3.2 Multiple Condensed Set-Valued Attributes . . . . . . . . . 97
5.3.3 Marginal Distributions . . . . . . . . . . . . . . . . . . . . 102
5.3.4 Conditioning and Conditional Distributions . . . . . . . . 105
5.3.5 Combination with Graphical Models . . . . . . . . . . . . 108

5.4 Application to Tree-Structured Domains . . . . . . . . . . . . . . 109
5.4.1 Related Frames of Discernment . . . . . . . . . . . . . . . 110
5.4.2 Uncertainty over Hierarchical Attribute Domains . . . . . 114
5.4.3 Multi-Label Instantiations . . . . . . . . . . . . . . . . . . 118
5.4.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

5.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

6 Experiments and Evaluation 129
6.1 Saccharomyces Gene Annotation Data . . . . . . . . . . . . . . . 129
6.2 Model Types and Experimental Setup . . . . . . . . . . . . . . . . 131
6.3 Data Preparation . . . . . . . . . . . . . . . . . . . . . . . . . . . 132
6.4 Parameter Estimation . . . . . . . . . . . . . . . . . . . . . . . . 133
6.5 Evaluation Measures . . . . . . . . . . . . . . . . . . . . . . . . . 135
6.6 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137
6.7 Comparison of Computation Time . . . . . . . . . . . . . . . . . . 142
6.8 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143

7 Implications and Perspectives 145

vi



Contents

7.1 Scientific Results . . . . . . . . . . . . . . . . . . . . . . . . . . . 145
7.2 Software Development . . . . . . . . . . . . . . . . . . . . . . . . 149

List of Symbols 153

Bibliography 163

Index 175

vii



Contents

viii



List of Figures

2.1 Two relations corresponding to identical set-instantiations of their
component attributes (elements tuples indicated in grey). The
relation on the left is a Cartesian product. . . . . . . . . . . . . . 18

3.1 Structural component of a Bayesian Network Model for the chest
clinic diagnostic problem (example initially proposed by Lauritzen
and Spiegelhalter, 1988). . . . . . . . . . . . . . . . . . . . . . . . 38

3.2 Graph representations, which encode the statements A ⊥⊥ B | C
and A 6⊥⊥ B | ∅ (from left to right: using an undirected graph,
using directed graphs with diverging edges in C or directed paths
from A to B and from B to A respectively). . . . . . . . . . . . . 42

3.3 An undirected graph, its corresponding hypergraph representation
and a join tree for propagation on the clique graph . . . . . . . . 44

3.4 Partitionings of a polytree w.r.t. two different pivot nodes (strong
contour); light shading: node contributing to the π-factor, dark
shading: nodes contributing to the λ-factor, not shaded: nodes
unconnected to pivot node). . . . . . . . . . . . . . . . . . . . . . 46

3.5 Message passing for the polytree propagation algorithm: π-messages
travel from parent to child nodes, λ-messages from child to parent
nodes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

4.1 Three urns containing colored spheres . . . . . . . . . . . . . . . . 72

4.2 Two random sets with identical one-point coverages (shading in-
dicates contributions from individual contexts) . . . . . . . . . . . 76

4.3 Examples of random sets and their respective one-point coverages
(from top to bottom: consistent, with consonant focal sets, focal
sets are singletons, disjoint focal sets) . . . . . . . . . . . . . . . 77

5.1 Domains of a set-valued attribute A∗, the induced condensed set-
valued attribute A� and underlying basic domain Ω. Arrows in-
dicate the set reduction mapping w.r.t Ω. Shaded elements of
dom(A∗) mark multi-valued outcomes covering ω2. . . . . . . . . . 91

ix



List of Figures

5.2 Three relations with different projections to the individual at-
tribute domains. The respective tuples assigned by the set re-
duction mapping are (from left to right): (a�, b�); (a�, b3) and
(a2, b

�). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
5.3 Joint distribution with coverage factors for two condensed set-

valued attributes and one of its marginal distributions. . . . . . . 100
5.4 Attribute value hierarchy with attached branching probabilities

(root label not shown) . . . . . . . . . . . . . . . . . . . . . . . . 115
5.5 Correspondence of subframes and single labels . . . . . . . . . . . 118
5.6 Possible refinements of an applicable label during sub-frame ex-

pansion w.r.t. the label a1 from Figure 5.4 . . . . . . . . . . . . . 120
5.7 Extended attribute value hierarchy as data structure for the con-

densed representation of distributions over multi-valued instanti-
ations (conditional probabilities and coverage factors indicated by
solid and dotted arrows respectively) . . . . . . . . . . . . . . . . 121

6.1 Segment of the slim version of the biological process sub-ontology
in GO: Edges indicate hyponym relations, that is, “nucleus organi-
zation” is represented as a special type of “organelle organization”
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

6.2 Average record Log-Likelihood for Random Set representation on
test data as a function of Laplace Correction (log. scale); broken
line indicates parameter value used for model RS1 . . . . . . . . . 141

6.3 Comparison of processing time for each distribution model (sum
of training and application phases during crossover procedure). . . 142

x



List of Tables

2.1 Relation between location and leisure activities . . . . . . . . . . 24
2.2 Production summary for Example 2.2 . . . . . . . . . . . . . . . 30
2.3 Factorized representation using conditional distribution . . . . . . 32

4.1 Mapping used to select urn after die is thrown . . . . . . . . . . . 73
4.2 Probability distribution for the urn example . . . . . . . . . . . . 73
4.3 Elementary possibility assignments for the modified urn example

computed via the probability of compatible contexts . . . . . . . . 74

6.1 Evaluation results for model using independent binary variables
(one-point-coverage) with Laplace correction of 0.5 (INDEP) . . . 138

6.2 Evaluation results for condensed distribution on hierarchically struc-
tured domain with Laplace correction of 0.5 (HCDM) . . . . . . . 138

6.3 Evaluation results for condensed distribution on unstructured do-
main with Laplace correction of 0.5 (CDM) . . . . . . . . . . . . . 138

6.4 Evaluation results for Bayesian Network Model (Laplace correc-
tion of 0.5, independence criterion ≤ 0.1) (BN1) . . . . . . . . . . 138

6.5 Evaluation results for Bayesian Network Model (Laplace correc-
tion of 0.5, independence criterion ≤ 0.01) (BN2) . . . . . . . . . 139

6.6 Evaluation results for Random Set representation (Laplace correc-
tion of 2.5 · 10−9) (RS1) . . . . . . . . . . . . . . . . . . . . . . . 139

6.7 Evaluation results for Random Set representation (Laplace correc-
tion of 1.0 · 10−12) (RS2) . . . . . . . . . . . . . . . . . . . . . . . 139

6.8 Summary of evaluation results over all model classes and criteria . 139
6.9 Cardinality of annotation sets in Saccharomyces cerevisiae data . 140

7.1 Software components implementing core functionality of hierar-
chical distribution model . . . . . . . . . . . . . . . . . . . . . . . 149

xi





1 Introduction

Owing the rapid development of information technology, economic activities are
now supported by an information infrastructure that collects and processes large
amounts of data. Technologies such as bar-code readers and transponders permit
real-time automated updates of databases to reflect changes in the physical world.
In addition to its immediate use to process control and decision making such
data can be analyzed to detect error sources or help optimize business processes.
The broad coverage of information collected not only entails the creation of
large databases but is frequently accompanied by the introduction of additional,
less stringent data representation formats and a stronger emphasis on relations
between different data.

In research this development is paralleled by the introduction of new instru-
ments and experimental techniques in the natural sciences. It has lead to a
previously unmatched rate at which scientific data are being acquired and dis-
tributed. These new techniques are complemented with an storage and com-
munication infrastructure, but also provide challenges to data processing. The
field of molecular biology, for instance, has undergone a remarkable transforma-
tion that saw time-consuming laboratory techniques replaced by high-throughput
processes such as genome-wide sequencing or microarray experiments. Even a
basic analysis of these data heavily relies on computational methods, e.g., to
match observed sequences against those stored in databases, to standardize data
from different microarray chips, or to identify protein in a sample by comparing
observed mass spectra with the output of in-silico models.

However, complex patterns of interdependence, the inhomogeneous nature of
data obtained from complementary types of experiments, the need to integrate
extensive background knowledge and – not a least – sheer amount of collected
data still pose considerable obstacles for researchers that aim to interpret data in
the context of the underlying biological systems or harness them for testable pre-
dictions. Additionally, data analysis and modeling must deal with biological and
technical variance in the measurements, which occurs even in tightly controlled
experiments.

In the light of these challenges, methods for data integration, data-driven model
induction, as well as hypotheses generation and testing are drawing interest from

1



1 Introduction

a growing community. Statistical and Machine Learning approaches address
these needs by providing computational tools for the induction of predictive
models from empirical data. Such tools draw on a selection of techniques to
solve reoccurring tasks, such as the integration of information from multiple
sources, quantitative prediction, classification, i.e., the assignment of data to one
of several predefined groups, and clustering – understood as the partitioning of
a data set into subsets of similar cases.

But regardless of the specific application, any predictive data-driven model relies
on on some compact representations of general properties of the data generating
process. These dense representations are applied either by themselves or in com-
bination with case-specific observations to make predictions about new cases.
The quality of predictions directly depends on the assumptions and methods
employed for the internal representations of those models. This is particularly
relevant for models in systems biology – an area that focuses on studying com-
plex, evolved systems and their regulation in the living organism. Unfortunately
that setting is considerably removed form the idealized scenario of a low number
of weakly connected variables for which standard modeling approaches were orig-
inally developed. Only through careful reassessment of assumptions in modeling
techniques and by supplementing information available from diverse informa-
tion sources can we hope to construct models that serve current needs and yet
withstand the challenge of empirical validation.

1.1 Annotated Data

With the emergence of new types of data sources, requirements for knowledge rep-
resentations and processing method become more varied. Textbooks on statistics
assume that each case is described by a vector of values chosen from a static set
of mutually exclusive values per property. However, such data representations no
longer constitute a default. Instead, the highly structured data processed in text
analysis and biology are typically supplemented with annotations, frequently in
the form of sets of terms from a restricted vocabulary that are assigned to objects
to collectively describe one particular property. The advantages of this approach
as compared to using mutually exclusive category labels are manifold:

1. Annotation sets are well suited to express structured information such as
relations,

2. Annotation sets are easily extensible, i.e. the set of terms used in annota-
tions can be expanded when additional distinctions are required or when
new cases are not well covered by concepts described by the existing term
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1.2 Research Tasks

set (it is common practice to release new versions of annotation schemes
at intervals to keep them in line with recent research results),

3. Annotation sets tolerate overlap between concepts allowing domain experts
to specify facts using the established terminology of their respective field,

4. Annotations sets avoid the artificial, often arbitrary distinctions, when pre-
defined categories force the assignment of intermediate cases to a single
descriptor, and

5. Annotators are free to chose concepts on a suitable level of specificity (con-
cept hierarchies).

Unfortunately, automated model induction techniques employed for categorical
data are rarely suited to deal with data that features set-annotations. The am-
bition of this work is the develop a compact representation for statistical prop-
erties of set-annotated data that provides access to informative summaries and
can serve as an internal knowledge representation for use in predictive models.
In particular the work focuses on the aspects of a compact, scalable represen-
tation, robustness against overfitting and the capacity to integrate data that is
specified in relation to different levels of detail, e.g. due to its origin from diverse
sources. The proposed algorithms and models are embedded into a generally ap-
plicable formal framework. Nevertheless interpretations for model elements and
operations are provided and discussed in relation to application tasks. While
tools and concepts introduced in this thesis are general and support applications
in other fields, the presentation and the examples given focus on current chal-
lenges of computational biology, namely the analysis of expression, proteome or
metabolome data and their integration with the increasingly rich body of bio-
logical background knowledge that has been formalized in ontologies.

1.2 Research Tasks

The program of providing a modeling framework for set-annotated data was
subdivided into six research tasks, which are reflected in the structure of the
thesis:

Task 1 – Establishing terms and notations: The objective of this task is to pre-
pare the ground for the subsequent scientific tasks. It involves positioning
the research in a broader context, discussing elementary concepts of data
and knowledge representations and clarifying notions and terminology. It
is furthermore concerned with the development of a notation system that
is required to specify model components and operations. This step involves

3



1 Introduction

a short review of existing formalizations, which are than adapted to the
particular questions at hand and – where necessary – supplemented and
extended to support the set-annotation setting.

Task 2 – Review of extant modeling approaches: Distributions over sets are typi-
cally defined over large sample spaces. This requirement needs to be recon-
ciled with technological (e.g. number representations, storage capacity) and
theoretical limitations (e.g., algorithmic complexity, (un)desirable proper-
ties) of modeling techniques for knowledge representation. Conducting an
in-depth study of the strengths, application range, inherent assumptions
and limitations among the existing approaches allows to identify suitable
techniques for modeling set-distributions. The research task therefore con-
sists in investigating these characteristics to identify both documented and
implicit assumptions of various model types. Following that, the uncovered
model properties are analyzed and assessed with regard to their suitability
for the representation of set-distributions.

Task 3 – Model development: Based on the results of the Tasks 1 and 2, this
task is concerned with the development of data structures and algorithms
for efficient induction, storage and querying of a statistical model for dis-
tribution of set-instantiations.

Task 4 – Data integration: To enhance the utility of the model developed in
Task 3, data structures and algorithms for the conversion of data between
domains of varying underlying variable sets and resolutions are developed.
This capability is essential to integrate data from multiple sources or com-
plementary experiments and to adapt the presentation results to the dif-
ferent information needs of users.

Task 5 – Software development: The objective of this task is to implement tools
that facilitates the application and evaluation of distribution models for set-
valued data. To enable a comparison to alternative representation strate-
gies the task also includes the adaptation or de-novo implementation of
tools that support several extant approaches and the development of a test
framework for assessing model performance. The implementations will be
directed at advanced users, who wish to embed the developed approaches
into their own data processing pipelines.

Task 6 – Comparative assessment: The final task is to empirically test and eval-
uate the performance of the developed approaches in comparison to extant
methods described in the literature. The goal of this task is to point out
advantages and limitations for each method and provide guidelines for the
application of the new model.
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1.3 Outline of this Dissertation

1.3 Outline of this Dissertation

In Chapter 2 the reader is introduced to notions employed throughout this the-
sis. I provide a brief exposition of the underlying epistemological theory and its
implications for knowledge engineering. On this basis, I proceed to elaborate
a terminology and recapitulate suitable formalizations of the related concepts.
To facilitate the discussion of advanced representation types the resulting frame-
work is extended by introducing and formalizing new concepts, such as composite
and set-valued attributes, along with their associated domains and notation for-
mats.

A subsequent analysis is concerned with the mathematical frameworks that form
the basis of several popular approaches to knowledge representations. I com-
ment on the respective objectives, capabilities and limitations of each class of
approach. Based on this analysis and the clarified notions of knowledge, I de-
lineate the central problem motivating this thesis, namely the application of
statistical modeling to annotation sets.

In Chapter 3 I proceed with a more detailed investigation into Graphical Models.
Graphical models have previously been used in knowledge representation as they
have comparatively storage requirements and allow for efficient reasoning oper-
ations. The decomposition techniques employed in Graphical Models are later
applied to multivariate versions of the proposed condensed random set approach.
A Probabilistic Graphical Model also provides one of the candidate models for
the representation distributions over annotation sets. The chapter furthermore
contains a detailed exposition on the notion of statistical independence and the
relevance of this notion for modeling. It explains why independence assumptions
are essential to achieve compact representations of large distributions including
those over sets. Recognizing and understanding how these assumptions are used
in any particular model therefore provides insights into the type of tasks to which
the model is applicable.

In Chapter 4 I discuss different interpretations of sets and relate them to various
applications of the random set concept. Following that, I point out practical
limitation of the random set approach and explain why a direct modeling of set
distributions is unrealistic for large-scale modeling. Existing frameworks for the
representation of information about set-distributions are studied, compared to
each other and related to the properties and semantic aspects of random sets that
they intended to reproduce. The majority of the discussed limitations arise from
a number of subtle assumptions inherent to those frameworks, which nevertheless
have to be considered in any earnest attempt to apply these methods. These
assumptions are made explicit and their consequences are discussed. From the
results of that study I elaborate desirable properties and, eventually, a draft of
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1 Introduction

a new compact and efficient knowledge representation that retains many of the
advantages of extant random set-based approaches, without suffering from the
critical limitation identified in those models.

The Chapter 5 serves to formulate the ideas developed from the results of the
analysis from Chapter 4 into a general model for the condensed representation of
distributions over sets. While the model is probability-based, it reuses features
previously discussed in conjunction with possibility distributions. It is later
extended to the multivariate setting, including a discussion on its integrates
with probabilistic Graphical Models and a hierarchical version, which focuses
on current needs of structured knowledge representations, e.g., in ontologies is
introduced.

Chapter 6 is concerned with the experimental validation of claims and model
assumptions. To that end implementations of the proposed knowledge represen-
tation and several alternative frameworks are evaluated in an application context
using real data. This study reveals advantages and drawbacks of the respective
approaches and allows an assessment of prediction quality based on measurable
criteria.

In the final Chapter 7 I summarize the results and the main conclusions of
my work before discussing recent applications and directions of future develop-
ment.

6



2 Foundations

Although the nature of knowledge and the means to obtain it have been as a
subject of philosophical discourse since antiquity, the term “knowledge” itself
remains surprisingly vague. So far no precise definition has been universally
adopted. Instead, a variety of definitions have been proposed and used – often
tailored to specific contexts and applications, and although they overlap to a
degree, the definitions differ in the use of the term, and the extend of its applica-
tion. To further complicate matters, the colloquial use of the term “knowledge”
has a diffuse boundary with several related concepts.

The objective of 2.1 is to clarify the notions as used throughout this thesis and to
point out differences and relations between them. By giving a short exposition
of the philosophical background I aim to guard against misunderstandings that
may result from the adoption of different vantage points. Based on the concepts
introduced in that section, the mathematical foundation for formal knowledge
representation using attributes is recapitulated. This is followed by the intro-
duction of the notion of a set-valued attribute. It is then argued that set-valued
attributes provide a convenient approach to address many current challenges in
knowledge modeling. I then proceed to investigate popular approaches to knowl-
edge representation that rely on the concept of attributes, point out differences
and similarities between them, identify the predominant classes of mathematical
formulations and discuss the individual capabilities of each class.

2.1 Perception and Knowledge

The capacity to recognize and integrate information, generalize it into recognized
patterns of stimuli and provide responses to those stimuli equips living beings
with an ability for controlled interaction with their environment (e.g. Ritchie
et al., 2008). The way we perceive and experience our environment is studied
in the fields of cognitive neuroscience and psychology. While a comprehensive
discussion of underlying biological and neurological mechanisms is not within
the scope of this work, a brief excursion into models of human perception shall
serve as a guide in setting up the framework for investigating knowledge, its
acquisition, and ultimately finding suitable formal representations.

7



2 Foundations

Adopting this perception-oriented view leads to the realization, that the major-
ity of sources for human knowledge are subject to limitations – be it due to the
construction of sense organs or, in extension, the available instruments. Conse-
quently, knowledge will almost always be imperfect. Besides these limitations,
additional factors may diminish the reliability of observation results:

� failure to control/observe variables relevant to a situation,

� limited precision resolution of numerical representations,

� missing or corrupted data,

� systematic biases, e.g. range-dependent sensitivity of instruments.

Moreover, errors may accidentally introduced in early preprocessing, e.g. by
an instrument’s firmware. Such problematic processsing steps include, for in-
stance

� non-bijective mappings,

� inadequate rounding,

� “outlier removal” heuristics.

Finally, errors may be introduced in the interpretation of collected data. Com-
mon examples include:

� detection of spurious correlations (mistaking noise for signal),

� bias towards observers expectations,

� attribution of effects to incorrect causes,

� inadequate null models in statistical tests.

Throughout this work I therefore acknowledge, that absolute certainty about
empirical statements is exceptional rather than commonplace. Any result that
is based on measurements or observations retains some degree of uncertainty.
Because reasoning with conventional, that is truth-functional, formal logic pre-
supposes certainty, its application for real-world problems necessarily constitutes
an idealization. Other widely used idealizations in knowledge representations are
assumptions about logical or statistical independence of variables. Of course,
such idealizations are often necessary or at least very useful to solve real-world
problems. Yet, they impose a limit to the accuracy of models and potentially
introduce systematic bias.

The task of the knowledge engineer consists in selecting such idealizations, assess-
ing their suitability to a task at hand and devise a representation and operations
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to model a situation of interest. For instance, most models will provide mecha-
nisms to summarize collected data or to combine different pieces of information
to meet information needs of users. If appropriate idealizations are chosen the re-
sulting model is a valuable tool that serves its users in solving complex planning
or decision tasks.

Objects The basis of any meaningful discourse is the coherent perception of
entities, and their representation as mental concepts. Human beings have in fact
evolved a remarkable ability1 to do so, which they routinely use when interact-
ing with their environment. We call those entities objects and usually take for
granted that others arrive at conceptualizations very similar to our own one,
so communication is possible. Moreover, we have learned to deal with abstract
concepts, such as categories, and to attribute a certain degree of autonomy to
them. This allows reasoning about notions independent of an immediate physical
environment.

According to the philosopher Karl Popper (Popper and Eccles, 1985, ch. P2), all
concepts or entities can be assigned to one or more of three worlds, namely

� The world of physical objects (World 1)

� The world of mental states (World 2)

� The world of products of the mind (World 3)

Popper describes World 1 as a world of physical entities, states of physical enti-
ties or physical states. These entities include “physical objects, processes, forces
and fields of forces which may interact with material bodies”. World 2 refers to
an individuals subjective experience and includes “states of consciousness, psy-
chological dispositions and possibly unconscious states”. Examples of entities
belonging to World 3 include stories, myths, language, works of art, institutions,
but also scientific theories and problems. In contrast to the entities of World 2
the entities in World 3 are no longer dependent on an individual, but instead
represent communicable ideas that are part of a shared culture. Many of those
entities have a corresponding representation in World 1. A printed book obvi-
ously has a physical existence. The content of the book though is attributed to
World 3. Remarkably, with the introduction of World 3 entities, knowledge itself
is recognized as an object of study.

A critical reader might point out the lack of agreement among philosophical
schools concerning the reality of entities from World 2 and World 3. However, I

1That very feat still provides a significant challenge for AI researchers trying to emulate it in
artificial systems.
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consider that question of no consequence with regard to knowledge representa-
tion. It suffices that entities are perceived as having an autonomous identity, so
one can mentally refer to and formulate statements about them. The existence
of a active market for software and electronic books, that are available as pure
data streams clearly demonstrates that this is the case.

Finally, let me point out that many complex objects can be viewed both as
composites of more fundamental entities, their relations and their interactions,
and as separate entities with emergent properties. This allows observers to choose
between levels of detail and provides a strategy to deal with a complex world
by means of abstraction. Recently, ontologies have become a prominent tool in
computer science to make relations between concepts explicit and available for
formal modeling.

Attributes The means to discern, recognize and describe objects are provided
by attributes. Attributes serve to represent object properties. In order to describe
the realization of particular property, the object is assigned an attribute value
or instantiation from a pool of labels. That pool of available labels forms the
so-called attribute domain. The attribute domain must either be specified explic-
itly or implicitly by a system of conventions. Such conventions enable compact
encodings and are a feature of all natural languages (Lewis, 1969).

attribute value
color white
material ceramic
capacity 50 ml
temperature 60 �

As an example, consider the information given on the
right about an espresso cup on my desk. Each of the
value assignments extends the information about the
object. The example also demonstrates different scale
types associated with attributes. Nominal attributes,
such as “color” and “basic material”, only allow to test
for equality. Dichotomies (the cup is either dishwasher-safe or not) are modeled
using a special case of a two-valued nominal scale. In contrast, capacity and
temperature are measured on metric scales. For scales of the metric type, there
is a meaningful interpretation of not only equality, but also of comparisons and
differences. It is also possible to specify meaningful ratios of capacities (The cup
is half filled.), whereas temperature would have to be converted to an absolute
(e.g. Kelvin) scale first. A third type of scale is called ordinal scale and applies,
for instance, to academic degrees. It supports equality and comparisons but
provides no meaningful differences.
Finally, with respect to admissible attribute values, it is convenient to distinguish
between the single-valued attributes with mutually exclusive values and set-valued
attributes that may simultaneously be instantiated with the elements of a subset
of their basic attribute domain. In Data-Mining, set-valued attributes are used in
association analysis, e.g. to specify which products a customer of an online book
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store bought on the same purchase. Another example of a set-valued attribute
is the indication that a board game is “for 3–5 players” . More recently set-
valued attributes have become popular as a means to provide annotations to
existing data. For instance, the Gene Ontology (GO) annotation system uses
three set-valued attributes (called aspects) to characterize gene products: cellular
component, molecular function and biological process (Ashburner et al., 2000).
A GO-annotation is considered complete for an organism if each of these aspect
attributes is instantiated with one or more values per gene product.

In other cases set-valued characteristics arise from properties with values that
were once perceived as mutually exclusive. For instance, many forms treat a per-
sons nationality as a single-valued characteristic, even though it is not uncommon
for individuals to hold citizenship of more than one country.

It is remarked that for the above examples set-valued attributes are not the only
possible representation. For instance defining a new attribute with all admissible
combinations of values in its domain, would always allow for a reduction to the
single-valued case. While such a reductionist approach can provide a viable
solution for problems on a smaller scale, it is problematic when applied to larger
term sets, as the exponential increase of possible value combinations will rapidly
overwhelm existing software. It can thus be argued, that the variant using set-
valued attributes not only provides a clear intuition of the meaning, but also
circumvents a critical representation problem.

Data In order to discuss model induction and reasoning it is convenient to dis-
tinguish between data and knowledge. Concerning the definition of the terms
I closely follow the terminology presented by Borgelt and Kruse (2002). Data
is understood as specific information about individual entities. Statements like
“Oslo is the capital of Norway.” or the “The French revolution started in 1789.”
provide data2. Data are generated either actively by direct experimentation or
collected passively by observation and measurement. In both cases the obser-
vation justifies the assignment of values to attributes of specific objects. While
data are sometimes available in large quantities they do not by themselves sup-
ply explanations or allow to make predictions. Only in concert with information
on general patterns, and regularities can data contribute to those tasks. Such
patterns and regularities, are provided by context knowledge (see below) about
the matter considered. Moreover, such general patterns and regularities can fre-
quently be discovered within large datasets. This inductive approach is used to

2As acknowledged by Borgelt and Kruse, such statements are often colloquially referred to as
knowledge. Borgelt and Kruse consider this disagreement as unfortunate, but hold on to
their stricter distinction of the notions, which will be useful for the upcoming discussions.
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obtain new hypotheses, which pending compatibility with new observations, may
eventually become part of established knowledge.

Knowledge In contrast to “data”, I will use the the term “knowledge” only to
refer to generic information, i.e. information that applies to a class of entities.
It is expressed in generalizing statements, such as “most mammals have fur”,
rules, principles or even complete scientific theories. Knowledge is efficient in the
sense that it explains data for a large number of cases. Newtonian Mechanics,
for instance, provide a very condensed description of the movement of physical
objects. The generic character of knowledge is revealed in its capacity to make
predictions about cases that have not been observed yet. This capacity to predict
new cases based on acquired knowledge is used in all tasks involving planned
action. For instance, a gardener who sows in spring does so in the expectation
that the seeds will germinate and grow into plants of a certain species during
the following months. This expectation is the result of knowledge about the life
circle of plants. Apart from that role, predictions are essential for refining an
existing pool of knowledge by means of falsification or repeated validation of new
hypotheses.

Classical pre-Aristotelean philosophers distinguished between true, that is abso-
lute, knowledge (epistéme) and mere opinion (doxa). In Plato’s works it is argued
that knowledge entails truth (Plato, 1999a). The distinction of knowledge from
true opinions (orthai doxai) is further elaborated in (Plato, 1999b):

”The difference [. . . ] is only that he who has knowledge will always
be right; but he who has right opinion will sometimes be right, and
sometimes not.”

According to that definition, knowledge is certain. The argumentation in Plato’s
dialog continues by stating that in order for a proposition to be certain, it requires
justification, which leads to the popular “traditional” definition of knowledge as
justified true opinion.

The notion that knowledge entails truth and certainty, was adopted in many
subsequent definitions (e.g. Reimer, 1991). In the field of knowledge discovery,
Fayyad et al. (1996) have used an even more restrictive definition by adding an
“interestingness” criterion. How exactly this interestingness is measured follows
pragmatic considerations and depends on the application context.

An absolute notion of truth, however, is problematic outside the context of pure
logic. Because observations made when learning from data represent only a
sample of the full range of possible cases, the means to assess the truth of a
statement are limited. The above definitions of knowledge fail to provide a
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practical mechanism to expand a body of knowledge other than by reduction to
statements already contained therein, which we are supposed to accept as true
for an unspecified reason.

Furthermore, models may be useful even if a fraction of their predictions are
incorrect (e.g., weather forecast). For those reasons the notion of knowledge
adopted in this thesis requires neither truth nor interestingness as defining crite-
ria. Instead, individual pieces of knowledge are characterized and assessed w.r.t.
gradual qualities. Borgelt and Kruse (2002) suggest a list of assessment criteria,
which is repeated below:

� correctness (probability of success in tests)

� generality (range of validity, conditions for validity)

� usefulness (relevance, predictive power)

� comprehensibility (simplicity, clarity, parsimony)

� novelty (previously unknown, unexpected)

The degree of correctness determines how often the predictions resulting from
the knowledge turn out to be true. Correctness of a theory is often tested experi-
mentally. Established scientific theories have usually been tested through a large
number of trials and are assumed to possess a very high degree of correctness.
As an example of pieces of knowledge with a lower degree of correctness one
may cite heuristics or technical advice like “Restarting the server may solve the
problem.”. Such pieces of knowledge are useful, despite occasionally supplying
incorrect answers. The advantage of the notion of correctness, however is, that
it not only applies to a wider range of cases, but also replaces the philosophically
cloudy criterion of truth with an empirically assessable gradual property.

Generality refers to the conditions under which a piece of knowledge may be
applied. For example, the theory of Newtonian mechanics is quite general, in the
sense that the same set of formulae describes a wide range of phenomena. Never-
theless, some limitations to the theory are documented. The “failed” experiments
to measure the motion of the then postulated “luminiferous aether” by Michel-
son (1881) and later Michelson and Morley (1887) pointed to inconsistencies in
its explanation of electromagnetic waves. For objects moving at considerable
fractions of the speed of light or within strong gravitational fields, predictions
from classical mechanics have been found to differ from results obtained from
observations and measurements (Le Verrier, 1843; Walsh et al., 1979), nor does
the theory apply to processes on sub-molecular scales (Feynman et al., 1965).
By quantifying generality, scope is recognized as a criterion for characterizing
knowledge.
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Usefulness is concerned with the potential relevance of the knowledge to appli-
cations. The predictions obtained using Newtonian Mechanics, for instance, are
useful due to their applications in engineering.

A high level of comprehensibility facilitates the transfer of knowledge. In con-
junction with usefulness, comprehensibility also influences how easily knowledge
is turned into applications. Comprehensibility depends on the complexity and
presentation of the knowledge, but also on previous experiences of potential re-
cipients, i.e., its relation to other pieces of knowledge.

Finally the novelty criterion is relevant in knowledge discovery tasks, though,
even the affirmation of extant knowledge usually conveys some degree of novelty
as it adds to evaluating the degree of correctness of a model or a hypothesis.

2.1.1 Related Notions

To further substantiate and clarify the notion of knowledge and contrast it with
related concepts, it is useful to elaborate its relation to belief and the idea of
justification.

Belief The notion of belief emphasizes subjectivity and is used to specify which
pieces of knowledge a given agent holds for true. Thus, unlike knowledge, belief is
always expressed relative to a particular agent and that agent’s epistemic state.
In quantitative approaches, belief may be seen as a gradual property allowing
to express an agents preference w.r.t. (preliminarily) accepting either of two
mutually exclusive pieces of knowledge. Belief models aim at providing rules
that establish what an intelligent agent’s opinion about the truth of statements
should be in a certain situation.

Because a rational belief should at least partially be based on facts and knowl-
edge, mathematical tools used for the representation of (partial) knowledge and
belief frequently overlap. While it is assumed that rational agents form their
opinions in agreement with their knowledge, some authors allow belief to be in-
fluenced by preferences or considerations of utility with respect to future decisions
or assumptions, e.g. by using of non-empirical priors in a Bayesian approach.
Thus not all beliefs necessarily result from immediate evidence. This argument
can be used to justify heuristics, such as default assumptions and ambiguity aver-
sion, which many belief models draw upon to deal with insufficient information
in decision tasks. Moreover, given the practical difficulty in verifying consistency
between all pieces of knowledge, several approaches for belief representation allow
to ascribe partially inconsistent belief states to agents.

14



2.2 Mathematical Formulation

Justification Justification is tied to the idea of knowledge as “justified true
belief”. The justification for believing a proposition consists in the reasons for
holding it for true. Justification-based approaches to knowledge representation
(Doyle, 1979; de Kleer, 1986) aim at supporting dynamic knowledge by keeping
track of these reasons. This additional structure allows pieces of knowledge to
be retracted in along with any conclusion that depend on them.

2.2 Mathematical Formulation

Of course the practical utility of knowledge results from its application to prob-
lems. Problem solving almost always requires some kind of modeling. By fo-
cusing on a small set of objects related to the problem at hand, their relevant
properties and presumed interaction are more easily understood. In this work I
restrict the discussion to reasoning about such ensembles and assume that a finite
set {A1, . . . , An} of attributes is employed to describe it. For a broader overview
of approaches to knowledge representation methods the reader is referred to the
dedicated literature (e.g. Brachman and Levesque, 2004; Sowa, 2000).

2.2.1 Attributes and the Frame of Discernment

While so far I focused on providing an intuition to concepts and notions of
knowledge representation, is now helpful to supplement that intuition with a
framework of formal definitions. Given an a universe of conceivable objects
O, a (single-valued) attribute A applicable to the elements in O constitutes a
mapping

A : O → Λ, (2.1)

where Λ is a set of the labels forming the attribute domain (written dom(A) = Λ).
For an object o ∈ O the attribute value A(o) provides a partial specification of
that object’s state. The value A(o) is an instantiation of the attribute A. In this
dissertation it is generally assumed that dom(A) is modeled as a finite set.

In a model the choice of attributes determines the possible distinctions between
object states. The set of all admissible state descriptions Ω is called frame of
discernment (Shafer, 1976) or sometimes universe of discourse (Zadeh, 1978).
Figuratively, the frame of discernment determines the “vocabulary” available for
referring to the state of the world, and therefore the type of propositions that
can be considered in the knowledge model. A single, precise attribute A only
supports the frame of discernment Ω{A} = dom(A) since state descriptions may
only differ with respect to the value of A. Extending the representation to include
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a set {A1, . . . , An} of such attributes with dom(Ai) = Λi ∀i = 1, . . . , n adds
further dimensions to the description and thus permits a more detailed frame of
discernment to be formed. When sets of attributes are used, instantiations are
n-tuples of attribute values from the respective domains. Since each permutation
of the attributes leads to a different way to describe such a tuple, an arbitrary
but fixed order ≺ is defined over the attributes to enforce a unique representation
of elements. Using the implicit order defined by the attribute indices yields

Ω{A1,...,An} =×n

i=1 dom(Ai) =×n

i=1 Λi = Λ1 × · · · × Λn.

Obviously, if all attributes Ai have finite domains and are freely combined, the
cardinality of the resulting frame is the product of the cardinalities of the indi-
vidual attribute domains:

|Ω{A1,...,An}| =
∏n

i=1 |dom(Ai)|.

For brevity, I will omit indices if the underlying set of attributes is irrelevant or
clear from the context.

In order to convey partial knowledge about Ω one would often focus on selected
attributes and their instantiations. A combination of existing attributes that are
instantiated simultaneously gives rise to a new, derived attribute. The domain
of such a composite attribute consist in the product space of the constituent
attributes’ domains. Accordingly, the composite attribute catt(X) generated
from a set X = {Aj1 , . . . , Ajk} ⊆ {A1, . . . , An} of attributes, where the indices
are chosen in such a way, that Aj1 ≺ · · · ≺ Ajk , is defined as the function

catt(X) : O →
k

×
l=1

dom(Ajk(o)

o 7→ (Aj1(o), . . . , Ajk(o)).

In practice, the combined domain may be a true subset of the joint domain due
to logical dependencies within the considered attribute set. Although composite
attributes rarely translate to a natural language assessment of a situation, they
serve as abstractions for investigating interactions between attributes. Specif-
ically, they allow us to treat the elements ω ∈ Ω as instantiations of a single
composite attribute, which maps to the frame of discernment:

catt({A1, . . . , An}) : O → Ω

o 7→ (A1(o), . . . , An(o)).

Conversely, specifying instantiations for all attributes Ai, i = 1 . . . n singles out
a unique element of Ω. Thus the same information may be stated using values
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of individual attributes or directly on the higher dimensional combined space.
A formalization specifically developed to support operations with composite at-
tributes is introduced in Borgelt and Kruse (2002, page 63ff.)

2.2.2 Set-Valued Attributes

Although single-valued attributes have proven sufficient to represent the relevant
information for numerous problems, some concepts are more easily modeled if sets
are admitted as attribute values. In addition to their natural interpretation as
descriptors for potentially multi-valued properties (cf. page 10), set-attributes
can be used, for instance, to refer to quantities subject to intrinsic variability
(Dubois, 2006) or to imprecision that arises from information deficits (compare
page 23).

A formal definition of a set-valued attribute (Equation 2.2) is obtained by ex-
tension from the single-valued case given in Equation 2.1:

A∗ : O → 2Λ. (2.2)

To distinguish between conventional, precise attributes and their set-valued coun-
terparts the latter are marked with the superscript “∗”.

In terms of expressiveness, set-valued attributes are an extension of their conven-
tional counterparts. Each conventional attribute can be emulated by a set-valued
attribute that is restricted to singleton values. Occasionally, one will find it con-
venient to modify the definition of set-valued attributes to exclude assignments
to the empty set, as the latter may not be meaningful in that a particular inter-
pretation (see discussion of imprecision on page 23):

A∗ : O → 2Λ \ ∅. (2.3)

The choice of the formalization of a set-valued counterpart of the composite at-
tribute requires some consideration though. A mapping from objects to vectors of
set-instantiations w.r.t. the component attributes may initially seem a good can-
didate for such an extension. However, such a mapping would yield vectors over
fixed domains, not sets. This change of representation format is inconvenient for
modeling the subsequent combination with with other set-valued attributes. On
the other hand, mapping to subsets of the product space of the underlying label
sets allows to connect set-descriptions referring to higher dimensional spaces to
set-valued instantiations of individual attributes. From a mathematical point of
view the images of those mappings are relations . By choosing mappings to rela-
tions over n-dimensional attribute domains, conventional attributes, set-valued
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attributes and concurrent instantiation over sets of such attributes seamlessly
integrate into a unified framework.

To formalize that idea, consider a subspace Λ = (Λj1 × · · · ×Λjk), {j1, . . . , jk} ⊆
1, . . . , n of Ω. The elements of Λ are vectors over instantiations of a selection
of variables. A set-valued attribute A∗ : O → 2Λ over that domain induces
other set-valued attributes A∗jl , l = 1, . . . , k over the component domains via
its projections

A∗jl : O → 2Λjl

o 7→
{
λ′ ∈ Λjl :

(
∃~λ ∈ A∗(o) : λ′ = λl

)}
.

The move from instances to relations brings along some changes that are relevant
for the choice of the representation. For single-valued attributes, instantiation
vectors over the domain of a combined attribute are uniquely described by a
combination of the instantiations on each one-dimensional subspace. In contrast,
in the multi-valued case, several different relations can induce an identical vector
of set-instantiations w.r.t. those elementary subspaces. The largest such relation
is the Cartesian product, which can always be formed by listing all combinations
of elements from the instantiations of the individual attributes. Figure 2.1 shows
two different relations between properties individually described by attribute sets
{A∗, B∗} with dom(A∗) = 2{a1,a2,a3,a4,a5} and dom(B∗) = 2{b1,b2,b3,b4}. Still, both
relations correspond to identical set-instantiations {a2, a3, a4} and {b2, b3} on the
one-dimensional component domains.

Relations can also be used to reflect information about the interaction of at-
tributes. For instance, if the attribute A∗ maps to countries that may be visited
by a given person o without visa requirements and attribute B∗ to the countries

a1 a2 a3 a4 a5

b1

b2

b3

b4

(a)

a1 a2 a3 a4 a5

b1

b2

b3

b4

(b)

Figure 2.1: Two relations corresponding to identical set-instantiations of their
component attributes (elements tuples indicated in grey). The rela-
tion on the left is a Cartesian product.

18



2.3 Choice of Representation Framework

for which the person o holds citizenship, then the relation in Figure 2.1(b) could
indicate due to which citizenship visa waivers are granted to o.

While attributes and frames form the common basis of knowledge representa-
tions, application tasks often call for emphasis on selected aspects of knowledge.
Consequently there is no single universal approach to knowledge representation.
Instead the differences in interpretation, inherent assumptions and aims lead to
a variety of formalisms and calculi – each with its own benefits and drawbacks.
The following section is concerned with some of those representation frameworks
as well as their properties, interpretations and uses.

2.3 Choice of Representation Framework

The definition of attributes and the frame of discernment provides basic ele-
ments of a formal representations of selected aspects of the world. This permits
to express data and knowledge about the modeled world segments in the form
of assertions. To construct a knowledge representation we must specify a repre-
sentation format and corresponding interpretation rules for such assertions. In
practice the variety of knowledge representation tasks and their respective sets
of requirements, gave rise to a considerable number of different formalisms and
interpretations. In order analyze extant approaches and to systematically elab-
orate the similarities and differences between them I will focus on the following
questions:

1. What is the subject of the assertions made?

2. What type of knowledge do the assertions refer to?

3. What is the expressive power of the assertion language?

4. Which the rules apply for drawing inferences?

5. Which assumptions are implicitly made in the approach?

The subject of the assertions reflects a perspective chosen for describing the
modeled world. A number of representations are centered around explicitly list-
ing objects within the modeled world (set-of-instances view). In those models
attributes are used to directly provide information about particular instances
that exist in the considered world segment. The set-of-instances perspective is
commonly adopted e.g., for databases.

Alternatively one may consider the modeled world segment as a whole. In this
type of model attributes are used to make assertions about the state of that
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modeled world segment itself, allowing to discerning it from other potential re-
alization. This second view presupposes that the selected set of attributes is at
least in principle sufficient to fully discern relevant the state of the model world.
A particular, usually unknown instantiation ω0 ∈ Ω of those attributes identi-
fies a unique, true state of the modeled section of the world (state-of-the-world
view) and knowledge is given in the form of constraints that aim to help iden-
tify the true situation among the alternatives. All statements implicitly refer to
the same object, which often allows for a simplified representation. Because of
the close correspondence between states and their respective descriptions and for
parsimony of expression, I will use “state” also to refer to state descriptions.

Conversely, for the set-of-instances view, the situation of the considered world
segment is described by referring to a non-empty subset W0 ⊆ Ω of realized
instantiations. It is specifically suited to formulate statements about collections
of objects or relations. Again, the distinction between that situation itself and
its respective formal representation is dropped in favor of linguistic convenience.
For the purposes considered in this work it is assumed that the attribute domains
– and thus the frame of discernment Ω – are specified in advance.

Depending on the answer to the first question, assertions about different types
of knowledge can used. Frequently, the information is conveyed in the form of
constraints w.r.t. the value assignments for attributes. Some constraints suitable
to the set-of-instances view are:

� restrictions to attribute values for individual objects or classes of objects
(“That car is blue”; “None of these books are in English or French”),

� relation between objects and/or classes of objects (“The blue block is on
top of the yellow block.”,“Lions are mammals”).

� relations between the values of attributes of an individual object or a class
of objects (“Raw potatoes are inedible.”)

� relations between the attribute values of different objects or classes of ob-
jects (“The car and the bus have the same color”),

� statistical properties about the values assigned to a class of objects, (“40%
of the world population have blood type A”),

In the set-of-instances view assertions must specify the object(s) they refer to.
Thus assertion languages will usually use conventions (like pre-defined categories)
or mechanisms to support such specifications (e.g. predicate logic).

If attributes refer directly to the state of the world, of course, no such specification
is required:

� attribute value constants taken or excluded (“The temperature is low.”)
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� relations between the value of different attributes (“If the taste is sweet,
the energy content is high.”)

� assessments of the probability of particular attribute-values or attribute-
value combinations, (“The chance of precipitation is at 80%.”)

The above examples demonstrate very different types of constraints. In partic-
ular the last statement in each groups refer a distribution of values rather then
the set of possible attribute values for selected subset of objects/object of in-
terest. Moreover the linguistic terms used to make these assertions e.g. ’low’
or ’sweet’ may themselves be represented as precise labels for scalar values, as
intervals or e.g. fuzzy concepts. Knowledge engineers may choose from a number
the mathematical formalizations, that emphasize qualitatively different aspects
of knowledge. Such a formalization typically consists of a coding method, a
matching set of operations (a logic) and a suitable interpretation. Naturally the
choice of the framework depends on the desired expressive power of the speci-
fication language. Consider for example the two representations of knowledge
about Joe’s car:

a) a simple attribute vector,

b) lists of possible attribute values for each attribute

Initially all attributes in (a) will be set to ”unknown”, (b) will simply permit
all values for each attribute. Both representations allow to record knowledge
about an object that reflects positive evidence (“Joe’s car is red.”). Negative
evidence as in “Joe’s car is not yellow.”, however, can not be used in (a), as the
statement on it’s own does not justify the assignment of any of the other values.
In contrast, with representation (b) the assertion is handled by simply excluding
yellow from the list of remaining values for the color attribute.

Although the simple tuple representation (a) is inferior to (b) in terms of ex-
pressiveness, it is also more compact. Moreover, many observation tasks involve
only positive information and a compact representation as suggested in (a) can
well be an appropriate choice.

Among commonly used formal frameworks two major classes stand out. On
one side there are frameworks for dichotomous assessments, which are based
on binary logic (e.g. symbolic logic, relational algebra) on the other side those
that draw on the probabilistic calculus. Furthermore, a number of ordinal and
non-probabilistic numeric frameworks exist. Some of these frameworks forming
intermediates, which combine aspects of both the above classes. The members
of the main groups emphasize different properties of knowledge reflecting the
distinction between non-statistical certain knowledge – or at least knowledge
considered certain for the purpose of reasoning – and knowledge, that is uncertain
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or refers to statistical properties of collections of cases. The difference between
those formalisms is explained by looking at the way inferences are drawn.

Inference denotes the process of combining pieces of information to arrive at
previously unknown conclusions. Regardless of the calculus used, a successful
inference requires premises, as well as an inference mechanism. Only if the pieces
of information match, the inference can be drawn. The (potentially repeated)
application of that process is called reasoning .

Example 2.1. To establish whether a heated piece of metal has reached a desired
temperature for further processing the following inference can be used:

The metal is glowing orange(A).
If the metal is glowing orange the metal has the right temperature (A→ B).

Therefore, the metal has the right temperature (B).

Observing the piece of metal is indeed glowing orange and assuming the specified
rule is accepted, the inference leading to the conclusion about the metals temper-
ature can be drawn. In this case A and A→ B serve as premises. The conclusion
B is obtained by employing the modus ponens as an inference mechanism. �

Example 2.1 illustrated an inference drawn using propositional logic. When
deducing specific information by reasoning, the task consists in finding a viable
path of inferences leading from the already established pieces of information to
other pieces that satisfy current information needs.

2.3.1 Symbolic Approaches

For the symbolic approaches to knowledge representation, it is assumed that
a situation can in principle be correctly described in terms of a set of non-
contradictory facts, where a fact is a proposition that is true in the described
situation. In the context of belief representation that set contains those propo-
sitions that are held for true by an agent.

Once the set of facts is established, logical inferences are used to derive additional
propositions. Thus reasoning amounts to applying the propositional calculus
or – for more advanced models – the predicate calculus on the sentences of
a language (Example 2.1). The direct implementation of that idea leads to
knowledge representations via belief sets (Levi, 1980) and belief bases.

In the case of belief sets, the set of stored propositions is closed under logical
inference and directly equated with the agents current beliefs. Due to the poten-
tially exponential growth of the closure and the correspondingly costly expansion
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operation, the applications of that approach are limited to very restricted lan-
guages or problem settings.

In contrast to that, belief bases distinguish between explicitly accepted sentences
and those that are merely derived by inference. Only the originally accepted
sentences need to be stored and inferences are drawn only as part of the query
processing. The PROLOG programming language considerably contributed to
the prominence of the belief base approach in artificial intelligence, as it enabled
practitioners to comfortably implement such systems. Unlike with the belief
set approach, the distinction between primary and derived pieces of knowledge
supports interpretations where acceptance of derived sentences is provisional.
This view has implications for belief change operations (Gärdenfors, 1988; Dubois
and Prade, 1998b) in the light of new evidence. The recurring problem of dealing
with inconsistent information was one of the motivating factors that lead to the
development of the ordinal representation frameworks discussed in 2.3.2.

Drawing on the same mathematical foundation of two-valued logic, relational
knowledge representations are usually employed in connection with the set-of-
instances view. Internally the relations are stored as lists of tuples or tuple
indices encoding the indicator function of the relation. Relational databases are
a prominent application that relies on this interpretation. In that context instan-
tiations W0 realized in the current situation are identified with tuples stored in
the database. To store relations efficiently, the decomposable structure of many
high-dimensional relations is used by splitting them into linked sub-relations of
lower dimensionality. Decomposition (of relations) forms the basis of the compact
data representation and efficient operations achieved with relational databases
(compare Chapter 3).

When applied to the state-of-the world approach, relational representations pro-
vide the means to deal with situations, where the actual state is underspecified.
In that case, we speak of knowledge that is imprecise w.r.t. the identity of the
true state ω0. Imprecision occurs when the best possible description of ω0 under
the current knowledge consists in a sets of several candidate states that are com-
patible with the restrictions imposed by the accepted sentences. Statements like
“It will visit either on Wednesday, Friday or Saturday” and “The train will ar-
rive between 8 and 9 o’clock” are imprecise because they do not supply an exact
value, but rather limit the “set of alternatives”. In comparison, the statement
“The train arrived at 8.37” gives a precise3 value. Reasoning under imprecision
is founded on constraints, which are expressed by compatibility relations that

3Time being a continuum, there is some imprecision even in that statement; it is introduced
inadvertently due to the limited resolution of the chosen scale (minutes). For all practical
purposes, however, imprecision on that level can be neglected if the measurement scale is
chosen sufficiently fine-grained.
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link the values of different attributes to each other. A restriction of the instan-
tiations of a subset of attributes may then reduce the possible choices for the
instantiation of the remaining attributes. Imprecision can be a property of both
generic and factual pieces of information.

If imprecision is represented via sets of candidates, that set of candidates should
at all times contain the true state ω0. Thus the empty set is never a valid
result. Its appearance as the result of reasoning processes therefore indicates
contradictions in the processed information or inadequacies of the modeling.

location
mountains seaside urban

ac
ti

v
it

y

climbing •
cycling • •
sailing •
shopping •
sightseeing • •
swimming • •

Table 2.1: Relation between location and leisure activities

To illustrate reasoning with relations consider Table 2.1. The table visualizes a
body of generic knowledge linking recreation sites with available leisure activities.
Each of the marked fields corresponds to a particular tuple in a relation R ⊆
dom(activity) × dom(location) Suppose, we have not decided on a specific site
yet, but have already made some choices for weekend activity; for instance,
we would like to go sailing or cycling. That constraint is formalized as a subset
S = {cycling, sailing} of dom(activity). Applying S to R only three tuples remain
and the set of choices for location is restricted to S ◦ R = {seaside,mountains}

2.3.2 Ordered Facts and Epistemic Entrenchment

With a (binary) symbolic or relational representation, all accepted sentences are
treated equally, regardless of the evidence that lead to their acceptance in the
first place. This view is founded on the assumption that all included statements
are definite and certain. On the modeling level the reliance on the correctness
of accepted statements is reflected in the application of truth-preserving infer-
ences.
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In practice, however, we must concede that measurements and observations con-
tributing to the evidence are not absolutely reliable. Moreover, even originally
correct observations are prone to become outdated in a dynamic world. Hence
one must recognize the possibility that the set of assertions held for true becomes
inconsistent. The resolution of inconsistency requires operations, such as revi-
sion and updating, which can be used withdraw or modify in certain pieces of
information, that are deemed as conflicting with the new evidence.

Unfortunately, the existence of a unique solution is not guaranteed. The reason
is, that a conflict can arise from a combination of pieces of information, which are
each individually compatible with the new evidence, whereas their combination
is not. Depending on which of these pieces is retained alternative resolutions of
the conflict are obtained. A policy of removing all pieces of information that
contribute to a conflict with newly acquired evidence is usually too rigorous.
One of the solutions proposed for belief modeling is to introduce a selection
function that chooses among the maximal subsets of facts that are still consistent
(Alchourrón et al., 1985). However, since the choice of that set would not be
based on the available knowledge itself, any specific selection involves a subjective
element.

To address these difficulties, Alchourrón and Makinson (1985) suggested to en-
rich the representation of belief bases by supplying a strict partial order over
its elements. That way, a precedence hierarchy for the conflicting sentences is
established. This ordering in turn determines how conflicts are resolved. How-
ever the approach merely shifts the problem of conflict resolution to the initial
specification of the priority of the facts. Other, approaches such as epistemic en-
trenchment (Groove, 1988; Spohn, 1988) or relational belief revision (Lindström
and Rabinowicz, 1990) provide interpretable theories for forming rational believes
based on dynamic relational knowledge (Spohn, 1990). The underlying idea is
that accepted propositions are assigned values from an ordinal scale, which reflect
an agents reluctance to abandon those propositions in the light of new evidence.
Agents receiving information that is in conflict with a subset of their current
beliefs, compare the priority rank assigned to that new information to the level
of entrenchment of their current beliefs. Based on this comparison it is decided,
which pieces of knowledge are kept and which are discarded to form a new, inter-
nally consistent knowledge state. The calculus used for epistemic entrenchment
is closely related to the qualitative interpretations of possibility theory (Dubois
and Prade, 1988a, 2004), which in turn refines concepts previously presented in
the context of modal logic (Lewis and Langford, 1932). Mapping ranks to levels
of necessity has even allowed to establish a direct formal correspondence between
those two frameworks (Benferhat et al., 1994; Dubois and Prade, 1997; Gérard
et al., 2007).

25



2 Foundations

2.3.3 Probability-Based Representations

In Section 2.1 I argued that knowledge is inherently uncertain, i.e., there is a
risk that a statement does not correctly reflect the actual situation. Uncertainty
may be attached to both precise and imprecise statements. The logic-based ap-
proaches listed previously relied on the comfortable assumption that for most
practical purposes we can treat “sufficiently certain” statements as if they were
true. But how should we model knowledge, if this uncertainty is more pro-
nounced?

The extensions introduced in Subsection 2.3.2 addressed some of the limitations
of two-valued logic, but do not provide a quantitative approach to modeling un-
certainty yet. However, decisions often have to be made on the basis of informa-
tion that is not fully reliable. In that case a statement’s degree of (un)certainty
itself becomes a focus of interest. This challenge motivates the introduction of
methods for formal reasoning under uncertainty.

Among the mathematical frameworks employed to represent uncertainty, prob-
ability theory (see, e.g. Feller, 1968) as defined by Kolmogorov’s axiomatization
(Kolmogorov, 1933) is arguably the most prominent one. For single-valued at-
tributes, the frame of discernment Ω has the properties of a sample space. To
reflect the uncertainty w.r.t. the identity of the true state ω0, the elements ω ∈ Ω
are viewed as potential outcomes of a random experiment, that is as mutually
exclusive, indecomposable elementary events . Collected knowledge about the in-
vestigated situation is then expressed in terms of a probability measure P , which
quantifies the uncertainty about the realization of possible events. In practice
the measure is usually encoded via a probability mass (discrete) or probability
density (continuous) function

p : Ω → [0, 1],

ω 7→ P ({ω}), ∀ω ∈ Ω

over the frame of discernment. The term probability distribution is used generi-
cally to refer to the encoded information regardless of its particular formal rep-
resentation. In the knowledge representation literature, the term “probability
distribution” is frequently used to refer specifically to “probability density func-
tion” or “probability mass function”. In some instances, however, the term has
even been applied to probability measures (possibly as a contraction of “cumu-
lative probability distribution function”)4.

4This rather confusing practice is discouraged by the author of this thesis.
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An additional application of the above formal framework is to model relative
frequencies and ratios, i.e. proportions. Proportions are closely related to proba-
bilities, but may be distinguished from them on a semantic level. Proportion are
relative frequencies in collections of objects and thus quantify emergent prop-
erties of such collections. The explicit representation of proportions accounts
for a wide range of applications of the probabilistic framework, for instance in
logistics, manufacturing control or other planning and analysis tasks. Addition-
ally, proportions remain important for providing estimates of probabilities on an
empirical basis. The idea to define probability directly as the limit of relative
frequency for increasingly larger samples, however, had to be discarded as self-
referential, because that definition itself is based on convergence in probability
(von Mises, 1957).

To illustrate how proportions are linked to probabilities consider the task of
modeling the behavior of a six-sided die. The faces of the die are labeled with
numbers from 1 to 6 corresponding to 6 elementary outcomes when throwing the
die. Suppose we do not want to make any assumptions about the fairness of the
die but would still like to model the probability for each outcome. In that case
knowing the probability of each of the six elemental events suffices to compute
the probability for all other events (such as throwing a number greater than 4).
To estimate that probability distribution we could throw the die repeatedly, e.g.
N = 1000 times, and count for each outcome ω ∈ Ω the respective number Nω

of occurrences in the sequence.

The relative frequencies Nω
N

with which a given outcome is observed in a se-
ries of repeated experiments may be used as an estimate for the probability of
the respective realization. While there is no actual guarantee that this proce-
dure will succeed, the probability to obtain an estimate within any given epsilon
environment of the true value may be brought arbitrarily close to unity with
arbitrarily high probability by choosing a sufficiently large number of trials for
the experiment, i.e.

lim
N→∞

P

(
|Nω

N
− p(ω)| ≥ ε

)
= 0.

The above statement is known as Bernoulli’s theorem or weak law of large num-
bers.

Because the relative frequency in a sample is a consistent and unbiased estimator
for the probability of an event, it is frequently used in machine learning to fit
parameters of probabilistic models. One drawback of this procedure is that the
finite size of the sample necessarily precludes guarantees for the coverage of rare
events in the training phase. As a result parameters that represent small positive
probabilities would often be estimated with a value of 0. If these parameters are
subsequently used as factors in computing probability values for more complex
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events, they force the result to extreme values regardless of the values of other
parameters. This behavior is problematic for a number of applications. For
instance, when evaluating model fit via the likelihood of test cases (page 135),
the zero values produce to undefined or insufficiently discriminating measures.

The above problem can be countered by applying the so-called Laplace correc-
tion. The Laplace correction is a small value that is added to the counts of each
category when estimating probabilities based on observed relative frequencies5.
Thus the correction is added to the nominator and once for each of the disjoint
categories in the denominator of the fraction. This results in estimates of the
form

p̂(ω) =
Nω + lcorr∑

ω′∈Ω

(Nω′ + lcorr)
=

Nω + lcorr

N + |Ω| · lcorr
. (2.4)

While heuristic in nature, the modification prevents the parameter estimates
from adopting extreme values – namely by introducing a small tendency towards
the uniform distribution. For sufficiently large training sets the bias introduced
due to the Laplace correction is negligible and the mathematical properties of
the model become better suited to the subsequent applications.

If the data generating process is well understood an alternative to the estimation
of probability distributions from data may be applied. For simple experiments
like throwing dice or drawing cards symmetry arguments may be used to define
sets of equiprobable elementary events. For instance, permuting the labels on
the faces of a fair die does not change the expected outcomes.

Because the pioneers in probability theory have made extensive use of such as-
sumptions in their the study of games of chance, probability assignments derived
from such symmetry arguments are commonly referred to as “classical” proba-
bilities.

Even in the stricter sense of the word, probability is still used in at least two
meanings. Depending on the interpretation, postulates chosen to deal with in-
complete information may differ in applications. To distinguish these interpre-
tations from each other, they are often called “subjective” and “objective” prob-
abilities. The so called “subjective view”, centers around modeling an agents
opinions and beliefs i.e., a mental state. Subjectivists subscribe to the view
that the probability assigned to an event merely reflects a subjective assessment
of the chance that the event occurs. Subjective probabilities are traditionally
associated with the study of betting behavior (de Finetti, 1974, 1975).

In contrast to that, the interpretation called “objective probability” focuses on
the description of a data-generating process independent of the observers dispo-

5Common choices for the value of the Laplace correction are lcorr = 0.5 and lcorr = 1.
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sitions or preferences. They are thus frequently employed for modeling in science
and engineering. Theoretical insights about such processes sometimes allow to
re-construct a distribution from very few parameters or bypass the estimation
step altogether (e.g. emission spectra). Objective probabilities also assume a
pivotal role in modern theories of physics (cf. Feynman et al., 1965).

The question of whether probabilities encountered in applications are subjective
or objective ones, has been the cause of much confusion. The debate is fed by
ambiguity of the terms and unfortunately often interwoven with epistemological
issues6. To avoid misunderstandings I will use the terms subjective and objective
only to denote whether the model attaches probabilities to opinions of observers
or to the data-generating process without regard to how their values are deter-
mined when applying the model. The advantage of this distinction is that by
emphasizing the model aspect it separates the formal representation of a prob-
lem from the purely epistemological question of whether or not the exact value
of objective probabilities is actually accessible to an external observer.

In the probabilistic approaches, generic information is represented by a proba-
bility distribution. Such a distribution, quantifies the chance that a randomly
drawn object from a studied population has a given combination of properties.
If one is only interested in a specific subset of attributes then the possible value
combinations may be grouped by those attributes. Adding the probability of the
elements in each group yields so called marginal distributions which refer to the
selected attributes only.

Reasoning takes place when a piece of information, allows to associate the object
of interest with a specific subgroup, corresponding to the observed values of the
measured attributes. In that case the more specific distribution associated with
that subgroup provides a more specific description of the situation. It is obtained
by conditioning the generic distribution with values of the observed attribute and
adapting the distribution for the remaining ones accordingly. Thus conditioning
reflects a change of reference class. Another form of conditioning occurs when
the individual instantiation is replaced with a marginal distribution. In that
case the result reflects a weighted mixture of the distributions that would have
been obtained by instantiating with each of the individual values. Together,
conditioning and marginalization provide the standard tools for reasoning in the
probabilistic framework.

Example 2.2. A manufacturer has set up three production lines to fabricate
machine parts. Once finished, the products are tested to separate out defec-
tive parts (D) and sort the remaining ones into two qualities. In this case one

6Whereas epistemic is used to refer to knowledge and its properties in general, epistemology
deals with the origin, nature and limits of human knowledge.
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would use a probability distribution to model properties of the production pro-
cess (“objective” interpretation). In practice such distributions are estimated
from empirical probabilities, i.e. observed proportions in samples.

To translate this description into a formal notation, we introduce two attributes
“production line” and “quality” with respective domains dom(prod. line) =
{L1, L2, L3} and dom(quality) = {Q1, Q2, D}. Table 2.2 specifies the joint dis-
tribution of part properties with respect to both attributes.

prod. line
L1 L2 L3

∑
q
u
al

it
y Q1 0.08 0.08 0.04 0.2

Q2 0.11 0.26 0.32 0.69
D 0.01 0.06 0.04 0.11∑

0.2 0.4 0.4 1

Table 2.2: Production summary for Example 2.2

If one is interested only in product quality the respective marginal distribution
given in rightmost column supplies the desired information. Since we are dealing
with a discrete distribution, the respective values are computed as sums:

∀q ∈ {Q1, Q2, D} :
P (quality (x) = q) =

∑
p∈dom(prod. line)

P (quality(x) = q, prod. line(x) = p) .

In general, marginal distributions over a subset Y ⊂ X of attributes are com-
puted from joint distributions over an attribute set X = {A1 . . . An} by “sum-
ming out” the variables X \ Y , i.e.:

P

( ∧
Ai∈Y

Ai = ai

)
=

∑
Aj∈X\Y

∑
aj∈dom(Aj)

P

( ∧
Ak∈X

Ak = ak

)
. (2.5)

The shortcut notation
∧

shall indicate a conjunction of conditions. It is used here
to refer to the simultaneous instantiation of the attributes in a set. Equation 2.5
states, that marginal probabilities are computed by collecting the probability
of all compatible instantiations w.r.t in the higher dimensional space. This is
achieved by taking the sum over all values of the attributes in X \ Y , that is, by
ignoring any distinctions w.r.t. the attributes outside Y .

In applications one is frequently interested in those cases that realize a specific
instantiation of one or more attributes. For instance, to calculate the expected
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ratio of defective parts in the output of production line L2 one must compute
the conditional probability

P (quality(x) = D | prod. line(x) = L2)

=
P (quality(x) = D, prod. line(x) = L2)

P (prod. line(x) = L2)
=

0.06

0.4
= 0.15.

�

Note that with the classical definition, conditional probabilities are defined only,
if the conditioning event has positive probability7. Because conditional distri-
butions are well-suited to compare groups, they are frequently employed to vi-
sualize data or summarize it for reports. Moreover, robust generic knowledge
about causal dependencies may be expressed using conditional probability. For
instance, a statement like “Approximately 1% of the patients experience slight
headaches when treated with drug X.” retains its meaning regardless of current
prescription levels of that drug or variations in the prevalence of headaches in
the general population due to other reasons.

Example 2.3. Recall the situation presented in Example 2.2. This time, it is
described by means of a marginal distribution P (prod. line) and a supplementary
conditional distribution P (quality | prod. line) (Table 2.3).

From that representation the joint distribution is recovered using the chain rule
of probability

P (prod. line(x) = p, quality(x) = q)

= P (quality(x) = q | prod. line(x) = p) · P (prod. line(x) = p).

Finally, suppose one is interested in the probability that a product of given
quality is produced on a specific production line. The probability that a given
defect product originates from line L2 is computed using Bayes’ rule:

P (prod. line(x) = L2 | quality(x) = D)

=
P (quality(x) = D | prod. line(x) = L2) · P (prod. line(x) = L2)

P (quality(x) = D)

=
0.15 · 0.4

0.11
≈ 0.55.

7An alternative proposal, without the restriction to conditioning events with positive proba-
bility is presented by Coletti and Scozzafava (2005). Their approach introduces the notion
of “coherent conditional probabilities”, and views conditional probability as a fundamental
rather than a derived concept.
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prod. line
L1 L2 L3

0.2 0.4 0.4

P (quality | prod. line)
quality

Q1 Q2 D

L1 : 0.4 0.55 0.05
L2 : 0.2 0.65 0.15
L3 : 0.1 0.8 0.1

Table 2.3: Factorized representation using conditional distribution

The value of the denominator is not given directly but can be computed from
the provided information:

P (quality(x) = D

=
∑

p∈dom(prod. line)

P (quality(x) = D | prod. line(x) = p) · P (prod. line(x) = p)

= 0.05 · 0.2 + 0.15 · 0.4 + 0.1 · 0. = 0.11

�

2.4 Conclusions

The discussion of the predominant formalisms of knowledge representation in
Section 2.3 points out their respective properties and their supported range of
interpretations. With respect to suitability for applications the advantages of
the individual approaches can be summarized as follows:

� Symbolic and relational approaches are adequate for representing set-based
concepts such as relations, imprecision and multi-label descriptions (Sub-
section 2.3.1). They do not support quantitative reasoning though.

� Graded knowledge representation schemes define several discrete levels of
evidence an an ordinal scale. They support the representation of epistemic
preferences and provide improved capabilities concerning dynamic knowl-
edge and partially inconsistent information (Subsection 2.3.2).

� Probabilistic approaches are used to construct quantitative models of un-
certainty or to represent statistical properties of larger collections (Subsec-
tion 2.3.3). They use a continuous scale.
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These representations already cover a number of practically relevant tasks. For
instance, relational models are successfully applied in databases, whereas prob-
abilistic approaches have been shown to provide a powerful tool for solving pre-
diction, classification and planning tasks.

However, a number of applications that are suited for neither of the probabilistic,
relational or ordinal knowledge representation frameworks have come to atten-
tion. For tasks such as reasoning with vague data and, more recently, the analysis
of gene expression and protein level data, statistical information needs to be com-
bined with set-based concepts. Similar difficulties are encountered in connection
with ambiguity in natural language processing and the application of statistical
methods to multiply-labeled data.

To address that challenge I propose an efficient and scalable knowledge represen-
tation for properties of set distributions suitable for these tasks. To achieve that
goal I will first discuss means to efficiently represent multivariate distributions
(Chapter 3). Following that I compare and analyze existing models that relate
to distributions over sets. The insights gained from this comparison are then
used to compile desired properties and define requirements for the new model.
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3 Graphical Models

The state of any complex system is characterized by a number of variables. To
understand and model the behavior of the system the interactions between these
variables need to be investigated. Interactions between variables can be repre-
sented qualitatively, via relations, or an a quantitative level, e.g. using functions
or probability distributions over the frame of discernment formed by the model’s
variables. For a given set of attributes, that frame of discernment is the prod-
uct space of the individual attribute domains, that is the set of all combinations
of values of the individual attributes. Hence, the number of elements in that
space equals the product of the cardinality of all attribute domains (see Subsec-
tion 2.2.1). Unfortunately, the cardinality of the resulting sample space makes
the straightforward approach of building knowledge representations based on re-
lations and distributions over the frame of discernment itself impractical for even
moderately sized variable sets.

Graphical Models are powerful tools to represent the interaction of variables
within complex systems. They provide compact descriptions of large distribu-
tions, and although the structure of a Graphical Model can be learned directly
from data, they allow integrating prior knowledge about variable dependencies
via structure constraints. This permits to reconstruct likely system states from
a comparatively limited number of observations. Finally, Graphical Models pro-
vide efficient reasoning operations that allow to simulate how changes in one part
of the system affect other elements.

3.1 Introduction and Principles

The defining characteristic of Graphical Models is their approach to dealing with
the large product spaces in multivariate settings. The central idea consists in
finding decompositions of high-dimensional distributions into sets of overlapping
distributions on lower-dimensional subspaces. Since the cardinality of each indi-
vidual subspace is considerably lower than the cardinality of the high-dimensional
space (see page 16), this may be used to efficiently represent high-dimensional
distributions via their decompositions and the respective distributions on the
subspaces.
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Although Graphical Models have been applied used predominantly in connection
with strictly positive probability distributions (Hammersley and Clifford, 1971;
Lauritzen and Spiegelhalter, 1988; Pearl, 1988), the decomposition approach has
been generalized to a wider class of distribution types (Pearl and Paz, 1985;
Studený, 1993; Jiroušek and Vejnarová, 2003)1.

In de Campos and Huete (1993) the authors have used a calculus for probability
intervals to model imprecision in subjective probability assessments. The goal
of enriching the knowledge representation in Graphical Models with a notion
of imprecision also motivated the development of possibilistic Graphical Models
(Dubois and Prade, 1990; Gebhardt, 1997; Borgelt et al., 2000; Vejnarová, 2003;
Borgelt and Kruse, 2003). Interpretations and applications of the possibilistic
framework are extensively covered by Section 4.4. Since the possibilistic frame-
work may be viewed as an extension of the relational one (compare Borgelt and
Kruse, 2002), Graphical Models are also closely connected to database theory.
Stated in the language of Graphical Models the database schema describes a
decomposition of a high-dimensional relation into lower-dimensional ones. Each
table of the relational database constitutes one such lower-dimensional relation,
and links between tables are established via the shared key-attributes. It is
this common decompositions principle that underlies the compact representa-
tion and efficient reasoning methods both and other types of Graphical models.
In all cases, the graphical representation is based on analogues of the notion of
independence and conditional independence properties for the respective frame-
works. Such properties have been studied, e.g. in Hisdal (1978); Studený (1993);
Dubois et al. (1994); de Cooman (1997c); Cozman and Walley (2005).

The term Graphical Model itself is derived from the common representation of
the decomposition using a graph. A graph as used throughout this dissertation
is a pair a G = (V,E) formed from a finite set of nodes V and a set of edges
E ⊆ V × V . An edge (A,B) ∈ E is called undirected, if both (A,B) and (B,A)
are in E. Conversely, the edge (A,B) ∈ E is called directed, (B,A) 6∈ E. In
extension, we speak of an undirected graph if that graph has only undirected
edges and of a directed graph if all its edges are directed. Moreover, in context
of Graphical Models we are concerned with simple graphs, that is graphs that
neither contain loops nor multiple edges. For better distinction I will adopt
the notations G = (V,E) and ~G = (V, ~E) for undirected and directed graphs
respectively (Borgelt and Kruse, 2002, cf.).

In the case of Graphical Models, the set of nodes in the underlying graph is a
set of attributes forming a global frame of discernment. The organization of the

1As pointed out by Pearl and Paz exact decomposition is based on a trinary relation that
satisfies the so called semi-graphoid axioms. For probabilistic decomposition the conditional
independence relation is used in this capacity (cf. Section 3.2).
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nodes in the graph encodes independence statements regarding the respective
attributes. Conversely, the set of edges determines paths along which evidence
is propagated. The decomposition approach is used, not only for the compact
representation of relations and distributions, but also to simplify reasoning. Infer-
ences are drawn using operations on the local distributions only, that is marginal
distributions and relations may be computed without actually having to com-
pute the respective joint distribution and relations on the full sample space. Due
to their application in reasoning Graphical Models are also known as Inference
Networks or Causal Networks .

An example of such a network – more specifically a Bayesian Network – for
reasoning with regard to a hypothetical diagnostic problem in a lung clinic was
proposed by Lauritzen and Spiegelhalter (1988). The model is aimed at repre-
senting generic knowledge about the interaction between a number of Boolean
attributes, linking results of medical tests, risk factors and possible diseases.
Information about dependency/independence of attributes is encoded using a
directed acyclic graph (Figure 3.1) and supplemented with conditional probabil-
ity distribution for each of attributes given the set of their parent attributes in
the graph. Reasoning with probabilistic graphical models requires the network
to be initialized with an prior distribution. This for prior could, for instance, be
chosen to reflect the distribution for the variables for the general patient popu-
lation of the area. Additional knowledge about the a specific case at hand then
allows to instantiate variables in the network. This evidence may then be used
to update the distribution of other variables resulting in a better assessment of
the particular case.

Although all Graphical Models are based on the same fundamental concepts,
a large number of variants have been proposed over the time. These variants
mainly differ in the the choice of the knowledge representation framework em-
ployed, in the representation of local distributions and the way, in which in-
dependence statements are expressed. Additionally, implementations may differ
w.r.t. the choice of implemented evidence propagation methods. In the literature
separate names are sometimes used to refer to subclasses of Graphical Models,
which are defined by via constraints to the network architecture (e.g. tree struc-
tured networks or chain graphs (Buntine, 1995; Studený, 1996)). The additional
constraints usually allow to use modified propagation methods with increased ef-
ficiency on that particular type of structure, but come at the cost of a restricted
application range. Since the aim of this section is to provide an introduction into
the common underlying concepts that are relate to this thesis, these variants will
not be covered in detail. For a more extensive study of these variants of Graph-
ical Models and their associated propagation methods, the reader is referred to
the specialized literature, e.g. Lauritzen and Spiegelhalter (1988); Pearl (1988);
Whittaker (1990); Jensen (1996); Lauritzen (1996); Borgelt and Kruse (2002).
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Visit to Asia?

Has Tuberculosis?

Has Either Tuberculosis or Lung Cancer?

Has positive X−ray? Has Dyspnoea?

Smoker?

Has Lung Cancer?

Has Bronchitis?

Figure 3.1: Structural component of a Bayesian Network Model for the chest
clinic diagnostic problem (example initially proposed by Lauritzen
and Spiegelhalter, 1988).

3.2 Statistical Independence and Decomposition

Decomposition in Graphical Models is based on marginal or conditional indepen-
dence statements between attributes or sets of attributes. Put in simple words,
two attributes A and B are independent, if obtaining knowledge about the in-
stantiation of any one of them does not supply additional information about the
instantiation of the other one. The exact formulation of the independence condi-
tion depends on the particular knowledge representation framework at hand. For
the probabilistic framework, decomposition is based on the notion of statistical
independence. In order for two attributes or variables A and B to be statistically
independent their joint distribution must fulfill the condition:

∀a ∈ dom(A) : ∀b ∈ dom(B) : P (A = a,B = b) = P (A = a) · P (B = b). (3.1)

The above formulation of the independence condition immediately provides a
mechanism to reconstruct the joint distribution of the independent variables A,
and B from their respective marginal distributions. Also, Equation 3.1 shows,
that pairwise independence is a symmetric property (exchanging A and B results
in an equivalent formula).

Assuming the conditioning event has positive probability, instantiating either of
the variables in the joint distributions does not affect the a-posteriori marginal
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3.2 Statistical Independence and Decomposition

distribution of the other one due to

P (A = a | B = b) = P (A=a,B=b)
P (B=b)

= P (A=a)·P (B=b)
P (B=b)

= P (A = a) and

P (B = b | A = a) = P (A=a,B=b)
P (A=a)

= P (A=a)·P (B=b)
P (A=a)

= P (B = b) respectively.

In their short form P (A = a | B = b) = P (A = a) and P (B = b | A = a) =
P (B = b) the above equations are frequently used as alternative formulations
of the independence criterion. That formulation is mainly applied in connection
with conditional distributions.

When three or more attributes are considered, more subtle independence state-
ments may be formulated. For instance, a pair of attributes may be statistically
dependent when considered alone, yet independent for each fixed value of a third
attribute. Such interactions are captured in the notion of conditional indepen-
dence:

Definition 3.1. Let X be a set of attributes, A,B,C ∈ X and p a probability
distribution defined over X. With respect to p the attributes A and B are called
conditionally independent given C (written A ⊥⊥ B | C) iff:

∀a ∈ dom(A) : ∀b ∈ dom(B) : ∀c ∈ dom(C) :

P (A = a,B = b | C = c) = P (A = a | C = c) · P (B = b | C = c)

Like with its unconditional counterpart, the attributes A and B may be ex-
changed in the equation without changing the meaning, so conditional indepen-
dence is symmetric. The alternative formulations are given by the equations

∀a ∈ dom(A) : ∀b ∈ dom(B) : ∀ ∈ dom(C) :

P (A = a | B = b, C = c) = P (A = a | C = c) and

P (B = b | A = a, C = c) = P (B = b | C = c).

The notion of conditional independence may also be generalized from single at-
tributes to sets of attributes. Any joint instantiation of an attribute set may be
viewed as an instantiation of a composite attribute(compare page 16) to which
the independence condition may be applied. Drawing on this correspondence,
the same notation is used for expressing independence statements w.r.t. both
individual attributes and sets of attributes. For attribute sets that only contain
a single element, only that attribute will usually be written. Although the term
“conditional independence” is normally used only in conjunction with condition-
ing attributes, the notion also covers the case of marginal independence with

39
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marginal dependency/independence statements being expressed using an empty
set of conditioning attributes.

So far conditional independence statements have been described as a property
of attributes w.r.t. a given distribution. A more intuitive understanding may
be obtained by considering typical explanations for conditional independence
relations in data:

� Common cause: The value of a single attribute influences the values of two
or more otherwise unrelated attributes. But the two dependent attributes
are conditionally independent from each other given the common cause.

� Chain structure: An attribute is indirectly affected due to its statistical
dependency from the values of another attribute, which in turn is linked
to a third one. Yet, for any fixed value of the mediating attribute the first
and third attribute are independent.

A textbook example of a common cause relation is an (alleged) statistical depen-
dency observed between ice-cream sales and bathing accidents. The value of both
variables plausibly depends on an additional factor, namely the daytime temper-
ature. However, the values of the two attributes are not significantly related if
the data is presorted into groups by ranges of outside temperature. A similar
relation exist in Lauritzen and Spiegelhalter’s chest clinic example (Figure 3.1)
between the result of an X-ray test and dyspnoea (shortness of breath) since
both may indicate lung cancer or tuberculosis. Moreover, the indirect connec-
tion between traveling to Asia and positive X-ray diagnosis provides an example
of a chain structure. A recent a visit to Asia is associated with an increased
tuberculosis risk, and in the case of an infection it is more likely that an X-ray
scan will result in the diagnosis of abnormal lung tissue in the respective pa-
tient. Whereas causal explanations are readily understood by humans and often
used by domain experts to specify a model structure, the structural component
of a Graphical Model merely encodes statistical dependencies and independence
relations. The results of an experiment conducted by Borgelt and Kruse with
several algorithms for learning the structure of Graphical Models (Chow and
Liu, 1968; Cooper and Herskovits, 1992; Chickering et al., 1995, 1997; Borgelt
and Kruse, 2002), demonstrate that suitable decompositions need not reflect true
causal relations.

In general, a joint distribution fully reflects the statistical interactions within sets
of attributes. The presence of (conditional) independence properties allows to
write such distributions in terms of their decomposition into local distributions.
Ideally, a decomposition expressed by the graph and the associated local distribu-
tions would allow to recover the original distribution exactly, though in practice,
probabilistic Graphical Models will often represent only close approximations to
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the original distribution. This discrepancy is tolerated for two reasons: Firstly,
applications often benefit from disregarding weak statistical interactions in favor
of more efficient decompositions with smaller local distributions. Secondly, be-
cause models are trained from finite data sets, sampling error is likely to result in
spurious statistical dependencies. Omitting weaker observed dependencies from
the model is a strategy to avoid overfitting.

3.3 Node Separation in Graphs

At the beginning of the section it was stated that the graphical representation
of decompositions is based on encoding independence statements. To that end,
independence statements are reflected via node separation in graphs. In order
to explain that idea, it is necessary to make clear the criteria for by which
separation in graphs is defined. These criteria differ for directed and undirected
graphs (after Borgelt and Kruse, 2002):

Definition 3.2. Consider an undirected graph G = (V,E) and three disjoint
subsets X, Y and Z of the node set V . Z u-separates X from Y (written
(X | Z | Y )G) if every path from a node in X to a node in Y also contains a
node in Z. A path that contains a node in Z is called blocked by Z. Otherwise
it is called active.

For directed graphs the so called d-separation criterion in applied (Pearl, 1988;
Pearl and Paz, 1985; Verma and Pearl, 1992):

Definition 3.3. Consider a directed graph ~G = (V, ~E) and the disjoint subsets
X, Y and Z of the node set V . A path is called active iff:

1. Every node with converging edges (non-terminal node that receives a di-
rected edge from both of its neighbors in the path) is either in Z or has a
descendant in Z.

2. No other node on the path is in Z.

In this context, a path is understood as any sequence of nodes connected by edges
regardless of the edges direction, that is any sequence of nodes (V1, . . . Vn), Vi ∈ V ,

i = 1, . . . , n, such that ∀i : 1 ≤ i < n : (Vi, Vi+1) ∈ ~E or (Vi+1, Vi) ∈ ~E. The set
Z d-separates X from Y (written (X | Z | Y ) ~G) if all paths from a node in X
to a node in Y are blocked by Z, i.e. there is no active path from a node in X
to a node in Y .
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Figure 3.2: Graph representations, which encode the statements A ⊥⊥ B | C and
A 6⊥⊥ B | ∅ (from left to right: using an undirected graph, using
directed graphs with diverging edges in C or directed paths from A
to B and from B to A respectively).

Figure 3.2 shows a simple example for the representation of independence state-
ments with graphs. Applying the d-separation criterion to directed graphs there
are several possibilities for the direction of the edges of an active path from A to
B. However, a structure with converging edges in C would represent a different
set of independence relations since the path from A to B would become active
only if C is given (corresponding to the statements A ⊥⊥ B | ∅ and A 6⊥⊥ B | C) in
that case.

When an undirected or a directed graph is used as the structural component
of a Graphical Model, the respective separation criterion encodes (conditional)
independence statements that hold for the represented distribution. For two dis-
joint attribute sets that are separated by a third attribute set Z in the graph,
their respective elements are conditionally independent given Z. For Z = ∅ the
elements are called marginally independent. This connection between separa-
tion in graphs and conditional independence statements leads to the notion of a
conditional independence graph (Pearl, 1988):

Definition 3.4. Let (· ⊥⊥δ · | ·) be a tree-place relation representing the set of
conditional independence statements that hold in a given distribution δ over a set
of attributes V . An undirected graph G is called a conditional independence
graph or independence map w.r.t. δ iff for all disjoint subsets X, Y, Z ⊆ V
of attributes

(X | Z | Y )G =⇒ X ⊥⊥δ Y | Z.

An analog notion has been defined for directed graph and the d-separation crite-
rion. If the implication also holds in the converse direction, i.e. X ⊥⊥δ Y | Z =⇒
(X | Z | Y )G, the graph is called a perfect map. Because neither graph represen-
tation is capable of capturing all possible conditional independence statements
that may hold in distributions, such a perfect map does not always exist however
(compare Borgelt and Kruse, 2002, ch. 4 for counterexamples).
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3.4 Bayesian Networks

3.4 Bayesian Networks

For probabilistic Bayesian Networks Pearl (1988), the joint distribution over the
global frame of discernment is written as a product of marginal and conditional
distributions. Any multivariate probability distribution can be factorized by ap-
plying the chain rule of probability (see page 31). By adding knowledge about
conditional independence statements these products can then be further simpli-
fied. Typically independence statements are given via a directed acyclic graph
G(X, ~E), X = {A1, . . . , An}, where each attribute is independent of its non-
descendants given its parents (d-separation criterion). The graph corresponds to
a factorization into a set of conditional probability distributions (Castillo et al.,
1997; Borgelt and Kruse, 2002):

∀a1 ∈ dom(A1) : . . . ∀an ∈ dom(An) :

PX

(
n∧
i=1

Ai = ai

)
=

n∏
i=1

P

(
Ai = ai

∣∣∣∣∣ ∧
Aj∈pred(Ai)

Aj = aj

)
,

(3.2)

where again
∧

denotes the conjunction of the conditions regarding the instanti-
ation of the attributes and pred(Ai) = {Aj ∈ X | (Aj, Ai) ∈ E} is the set of the

attribute Ai’s direct predecessors in the graph ~G. This type of factorization is
called chain rule factorization.

In addition to the graph structure, Bayesian Networks include specifications of
the factor distributions that appear in the above formula. These distributions
form the qualitative component of the Bayesian Network Model. For each of
the attribute Ai ∈ X that do not have predecessors in the graph, the marginal
distribution w.r.t. that attribute appears as a factor distribution in Equation 3.2.
For the remaining attributes the conditional distribution given their respective
predecessors pred(Ai) in ~G is stored instead.

3.5 Markov Networks

In contrast to Bayesian Networks, the independence structure for Markov net-
works (Lauritzen and Spiegelhalter, 1988; Guyon, 1995) – also called Markov
Random fields (Kindermann and Snell, 1980) is represented using an undirected
graph. For the construction of Markov networks, preprocessing may include a
triangulation step, in which edges are inserted into a dependency graph learned
from data or given by experts to break circles of length ≥ 4. Triangulating cycles
leads to graph structures that are better suited to reasoning using the hypertree
propagation method (compare Section 3.6). Although a triangulated graph may
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3 Graphical Models

fail to express some of the original independence statements, all dependencies
are preserved, so the accuracy of the decomposition is not compromised by that
procedure.

In a Markov Network the joint distribution for the considered attributes is ex-
pressed as a product of so called factor potentials assigned to the maximal cliques
C = {C1, . . . , Ck} of G Lauritzen and Spiegelhalter (1988).

∀a1 ∈ dom(A1) : . . . ∀an ∈ dom(An) :

P

(
n∧
i=1

Ai = ai

)
=
∏

Cj∈C
φCj

( ∧
Ai∈Cj

Ai = ai

)
(3.3)

These factor potentials are closely related to the marginal clique distributions..
To illustrate the above statement consider the very simple undirected graph
previously shown in Figure 3.2. The corresponding clique graph only contains
the cliques {A,C} and {B,C}, which are connected via the shared attribute set
{C} (Figure 3.3). In order to represent the quantitative aspect of the models the
factor potentials may be distributed to the cliques in different ways. For instance,
factor potentials can be computed from the marginal distributions w.r.t. the
attributes in each clique.

Since separator variables are common to two or more cliques, the contribution
of these separator sets is divided between the cliques sharing them. For the
decomposition shown in Figure 3.3 this strategy would yield two factors for
the marginal distributions w.r.t. {A,C} and {B,C} respectively, divided by the
marginal distribution w.r.t. the separator set {C}:

∀a ∈ dom(A) : ∀b ∈ dom(B) : ∀c ∈ dom(c) :

P (A = a,B = b, C = c) = P (A=a,C=c)·P (B=b,C=c)
P (C=c)

.

Different ways to distribute the factor 1
P (C=c)

correspond to different solutions

for assigning the clique potentials (see Borgelt and Kruse (2002) for further
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Figure 3.3: An undirected graph, its corresponding hypergraph representation
and a join tree for propagation on the clique graph
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examples). For an application of probabilistic Markov Models to a real-world
planing problem see Gebhardt et al. (2004); Kruse et al. (2006); Steinbrecher
et al. (2008).

3.6 Reasoning with Graphical Models

As stated in the introduction of this chapter, Graphical Models allow for efficient
reasoning on large distributions. To elaborate that statement, is is appropriate to
review evidence propagation methods for probabilistic Graphical Models. A list
of popular propagation methods along with a list of references is given below:

� polytree propagation (Pearl, 1986, 1988)

� join tree propagation (also called clique tree propagation) (Lauritzen and
Spiegelhalter, 1988; Castillo et al., 1997)

� iterative proportional fitting (Whittaker, 1990)

� bucket elimination (Dechter, 1996; Zhang and Poole, 1996)

The most well-known among these methods are polytree propagation (Pearl,
1986) and join tree propagation (Lauritzen and Spiegelhalter, 1988). Given the
introductory character of this chapter I will not discuss the individual propa-
gation algorithms in detail, but confine myself to present the underlying ideas.
For proofs and implementation details the reader is referred to the referenced
original publications.

As suggested by its name, the polytree propagation method (Pearl, 1986) pre-
supposes a special structure of the given independence graphs. A directed graph
~G(V, ~E) is called a polytree, if for all pairs of two nodes from V there is at most
one path connecting these nodes in the underlying undirected graph G′. The
underlying undirected graph G′ is obtained by replacing all directed edges in ~G
by undirected ones. Since there is only one path between any two nodes in the
graph, any fixed node A ∈ V corresponds to one particular partitioning of V
(Figure 3.4), with the individual partitions are defined as follows:

� the set of nodes consisting of A, the predecessors of A in ~G and nodes
that are connected to A in G′ via such a predecessor node (light shading
in Figure 3.4),

� the set of nodes that are successors of A in ~G or are connected to A in G′

via such a successor node (dark shading in Figure 3.4), and

� the set of nodes that are not connected to A in G′.
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Figure 3.4: Partitionings of a polytree w.r.t. two different pivot nodes (strong
contour); light shading: node contributing to the π-factor, dark shad-
ing: nodes contributing to the λ-factor, not shaded: nodes uncon-
nected to pivot node).

Obviously, the pivot node A d-separates any pair of nodes from two different
partitions (compare Definition 3.3 on page 41). Thus the respective variables
are modeled as conditionally independent of each other given the pivot node
variable.

This property may be used to to construct a local propagation algorithm for
polytrees. Given the partitioning of V w.r.t. any particular attribute A, consider
the decomposition of the joint distribution achieved by accumulating the con-
ditional probability distributions for node instantiations given their respective
parents for each of the partitions separately (cf. Equation 3.2).

Using Equation 2.5, the marginal distribution for the attribute A may be com-
puted by summing out all other attributes from the joint distribution. Summing
out the attributes in V \ {A} from the above factorization yields a so-called π-
value and the λ-value. The π-value represents the influence of the information
reaching A via its parent attributes whereas the λ-value represents the infor-
mation obtained via child-attributes (cf. Borgelt and Kruse, 2002, ch 4). For
the variables not connected to A in G′ a constant of 1 is obtained, regardless
of their instantiation, reflecting their independence of A. If A has more than
one parent in the graph, the π-value itself may be further decomposed into a
products with each factor referring to the subgraph of G connected to A via one
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3.6 Reasoning with Graphical Models

particular parent attribute. Similarly, the influence of the attributes “below” A
may be split into one factor per child node. For static distributions, the product
of the π-values for each non-root variable in the graph mirrors the univariate
distribution of the values of that attribute, whereas λ-value(s) are one. However
changing the distribution of variables in the respective set affects the distribution
of A. The local propagation in the polytree algorithm is based on restoring that
invariant when either value is altered.

Due to the polytree property, changing the distribution of a variable in either of
the subsets contributing to the π- or λ-value may affect variables in the respective
other subset only via the attribute A. Since this reasoning applies w.r.t. any
attribute in the graph, information about by new evidence may be propagated
through the graph by sending local update messages between neighboring nodes
in the graph.

These messages are generated whenever the distribution of an attribute is altered
due to the integration of new evidence. To that end messages in the form of
factor distributions are sent from the corresponding node to its respective parent
(λ-messages) and child nodes (π-messages)in the graph (Figure 3.6. For each
receiving node the incoming messages are processed to generate new update
messages that are then be passed on to the remaining neighbors of the receiving
node.

If several variables are instantiated concurrently the message passing scheme is
slightly altered reflecting the fact that instantiated variables d-separate certain
subsets of nodes, thereby preventing the propagation of evidence between those
sets. As a result instantiated variables do not generate messages for incoming
λ-messages. The incoming π-messages, however, are still processed and trigger
λ-messages to other parent attributes.

After all messages have been propagated, the now updated π− and λ−factors
associated with each node allow to compute the new distribution for all modeled
variables.

��
��
A ��

��
B-

-

�

πA→B

λB→A

Figure 3.5: Message passing for the polytree propagation algorithm: π-messages
travel from parent to child nodes, λ-messages from child to parent
nodes.
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While based on the same principles as the polytree propagation algorithm, the
clique tree propagation approach associates the node processors not with sin-
gle attributes, but with groups of closely interrelated attributes – namely the
maximal cliques of an underlying independence graph. The quantitative part of
the model is defined by multivariate distributions for these groups of attributes.
Local distributions interact by means of so called separator sets, that is sets of
attributes shared between two or more cliques. Conditioning a local distribution
may also cause the distribution of a separator set to be changed. The modified
distribution on the separator set is in turn used to condition the local distri-
bution of other cliques covering that separator set. Since these cliques can in
turn share variables with further cliques, this approach results in a mechanism
for iteratively propagating evidence through the network. Whereas the origi-
nal version of the algorithm proposed by Lauritzen and Spiegelhalter operates
on cliques of the junction tree, the version implemented in the HUGIN Soft-
ware package (Andersen et al., 1989) provides additional storage for explicitly
representing the distributions for separator sets. To extend the algorithms to
non-probabilistic settings Shenoy and Shafer (1986) have formulated a version of
clique tree propagation that does not require an operation for division.

In analogy to the polytree condition, many clique graph propagation algorithms
require that the clique graph associated with the underlying independence graph
has tree structure (hypertree property) to ensure a unique path of evidence prop-
agation. The reason is, that the presence of circular connections would allow
information about the same evidence to travel on different paths leading to du-
plicate updates. For the clique tree approach that difficulty can be avoided by
triangulating the underlying independence graph. Triangulation entails that the
associated clique graph has tree structure and only one path between two given
cliques exists (e.g. Andersen et al., 1989; Lauritzen, 1996). Additionally Castillo
et al. have proposed a method for converting directed independence graphs into
a Markov hypertree by triangulating their moral graph (Castillo et al., 1997). In
order to facilitate propagation, this hypertree is then further transformed into a
join tree, that is a graph denoting the cliques and paths for evidence propaga-
tion via separator sets. The transition from graphs based on single attributes to
clique based approaches is an example of the so called node merging approach
to resolve circular evidence propagation paths.

An alternative approach to dealing with circles consists in instantiating a se-
lection of attributes in the graph, thus restricting evidence propagation via the
respective nodes. The additional restrictions introduced by those instantiations
give rise to a set of partial solutions. The unrestricted solution is then recovered
from a weighted superposition of partial solutions for all possible combinations
of attribute value assignments. Unfortunately, as the number of instantiations
to be considered grows exponentially in the number of additionally instantiated
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attributes this approach is only applicable on a small scale.

Finally the variable elimination algorithm may be applied to replace the need
for propagation altogether(Dechter, 1996; Zhang and Poole, 1996). To that end,
Equation 2.5 is applied directly to the factor potentials to sum out individual
variables. This elimination process is repeated for all variables that are neither
observables O or query variables Q using heuristics to determine an efficient
elimination order. During this process, variables that are no longer connected2

to any of the variables in O ∪ Q may be removed without calculation, as they
have no influence on the output.

The variable elimination algorithms effectively collapses the model in such a
way, that only variables relevant to the given query are represented. Due to
this initial reduction in model complexity the algorithm may be used to process
queries to very large Graphical Models more efficiently than the propagation-
based methods. Moreover, variable elimination permits to project a complex
graphical model to a subspace. The resulting auxiliary model can then be used
for processing large numbers of queries involving a limited subset of variables in
an more efficient manner. This strategy is used in chapter 6 to compute marginal
one point coverages from set-instantiations represented using Graphical models.
Since the variable elimination approach processes queries one-by-one, it is less
suited, however, to dealing with dynamic states of knowledge, where the value
and instantiation state of nodes may change between queries time, or if the set
of variables eventually to be instantiated is not known in advance.

3.7 Summary and Further Reading

Graphical Models allow for the decompositions of relations or distributions on
high-dimensional spaces into overlapping relations or distributions on lower-
dimensional ones (decomposition) and provide efficient reasoning techniques for
large multivariate problems. By means of these decompositions they help to
overcome limitations of knowledge representation frameworks that arise from
the computational complexity of operations with large frames of discernment.

Although the algorithms outlined in this chapter are used in most practical ap-
plications of Graphical Models, several modifications and alternatives have been
suggested to improve performance for specific applications. Buntine and Studený

2The notion of connected in this contexts pays no regard to edge direction, i.e. two nodes in
a directed graphs ~G are considered connected, if there exists a path between those nodes
in the underlying undirected graph. The underlying graph is obtained from ~G by replacing
all directed edges with undirected ones.
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have investigated properties and fast propagation methods for so-called chain
graphs (Buntine, 1995; Studený, 1996) – a subclass of Graphical Models with
constrained architecture. In contrast, Gaussian Graphical Models (Whittaker,
1990) heavily restrict the distribution types to be modeled and assume linear
dependence of attributes, but in return draw on simplified structure learning
methods previously described in the context of covariance selection (Dempster,
1972).

Causal Bayesian Networks (Heckerman, 1993; Pearl, 2000) add functionality to
model the effects of external interventions on the modeled systems. The in-
terventions artificially fix the value of variables decoupling it from its normal
causal influences in the system. In contrast to the passive observation of statis-
tical interactions between variables, which does not allow to distinguish between
causes and effects, the effects of such interventions propagate according to in the
direction of causality. For this reason Causal Bayesian Networks make use of
two separate modes of propagation – one for reasoning about observations, and
another one for inferring effects of interventions. More recently their capacity
to model high-dimensional dependency structures and to incorporate informa-
tion from several sources has motivated a number of applications of Graphical
Models in Computational Linguistics (e.g. De Luca and Rügheimer, 2007) and
Bioinformatics (e.g. Lauritzen and Sheehan, 2003; Friedman, 2004; Segal et al.,
2005; Listgarten et al., 2007; Peña, 2008).
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The majority of commonly applied knowledge representations fall into one of two
categories: those suited to deal with qualitative, relational pieces of information
and those adapted for modeling quantitative aspects, such as value distribu-
tions. This division is sensible as long as the problem setting is dominated by
either aspect of knowledge. But with the developments in data collection and
experimental techniques scientific questions are now frequently addressed by a
combination of data from multiple different sources. Within this setting the prob-
lem of applying probabilistic methods in conjunction with set-based concepts has
become an important challenge, e.g. for investigating statistical properties over
imprecise data, relations and candidate sets or modeling an agents subjective
knowledge state. The following sections are concerned with approaches for rep-
resenting statistical information about sets and set-interactions. After discussing
a straightforward approach based on random sets (Section 4.2), I highlight dif-
ficulties related to the implementation and application of such a representation
with large-scale data. Following that, two popular extant approaches to address
these challenges – the Dempster-Shafer theory and the possibilistic framework –
are discussed (the latter with a strong emphasis on the so called context model
interpretation). In a detailed analysis of these frameworks their advantages and
limitations are pointed out. Based on the results of that analysis, I proceed
to draft a consistent frame-spanning representation for information about set-
concepts in multivariate modeling.

4.1 Interpretation of Model Components

In the previous chapters several applications for knowledge representations using
sets were mentioned. Although these applications use a variety of interpretation
of the sets, they are very similar on the level formal representation. Similar
observation can be made about other mathematical concepts, as the abstract
mathematical notions are flexible enough to support applications in a wide range
of contexts. Yet, to ensure meaningful results, the interpretations often have
to impose constraints on the choice of operations permitted. For this reason
it is useful to investigate the interpretation level of knowledge representations
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separately from the mathematical tools that are used to formalize them. This
approach allows to select and adapt operation in such a way that the alignment
of the formal model with a meaningful empirical interpretation is preserved.

4.1.1 Interpretations for Sets

In order to point out the sometimes subtle differences between knowledge repre-
sentations I distinguish between four different uses of sets:

Classical Interpretation I apply the term classical interpretation if the set
represents a collection of physical objects (compare page 9). This approach is
often used to provide a detailed model of a small section of the world. For
instance software systems for warehouse management would employ a database
that represents palettes with goods as data objects. Each palette is linked to
a physical location, content description, transport history, storage requirements
and similar information. Sets are natural means to represent groups of such
palettes e.g. for further shipping. Moreover the database itself models the set
of objects that constitute the current inventory of the warehouse. In modern
computational biology sets are particularly relevant due to their role in expressing
relations. For instance Protein-DNA interaction experiments identify sets of
putative transcription factors (regulatory proteins) that bind to the promoter
region of a gene. Because functional units in biological systems are frequently
protein complexes formed from several interacting components, sets constitute a
natural elements in the description of such processes.

Applicable Attribute Values With a slightly higher level of abstraction sets
are used to specify realizations of properties applicable to an object. The dis-
tinctive difference to the classical interpretation is that elements no longer cor-
respond to representations of physical objects themselves but rather values of
their attributes. Specifying sets of applicable values for one or more attributes
characterizes classes of objects without explicitly listing their members. The
indirect reference to objects via characteristic properties is particularly advanta-
geous when knowledge about the properties of individual objects or the possible
realizations of those properties in general is yet incomplete. In particular the
set of known applicable values can be expanded if additional information be-
comes available. For this reason the interpretation is often used in conjunctions
of set-valued attributes in annotation databases, which are updated at intervals
to account for insights from recent publications.
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Imprecise Specification The third interpretation refers to an incomplete state
of knowledge that manifests itself as imprecision. It is often associated with the
state-of-the-world view, but may also be applied to states of individual objects
or object attributes. In both cases the goal is to discern the current true state of
the world (or of the object under consideration) among a number of alternatives
in a state space. It is assumed that this true state is unique and in principle
precisely defined. However the available information is not necessarily sufficient
to identify this “true state”. Instead a partial specification is provided via a set
of candidates. Alternatives that are inconsistent with observations are excluded
from the candidate set. In the special case, where precise knowledge about
the targeted state is available, the candidate set collapses to a singleton. In
contrast to the applicable attribute values interpretation imprecise specifications
require fully known attribute domains (knowledge is represented by successively
eliminating incompatible alternatives).

Non-Quantified Intrinsic Variability Finally sets may be used to express non-
quantified intrinsic variability, that is to refer variable do not have a fixed value,
or for the specification of perception intervals when the variable can be observed
with limited resolution only (Dubois, 2006). For example a coastline varies to the
effect of tides and waves. Above a given spacial resolution a precise specification
of a coastline could only represent a snapshot with questionable utility. Instead
the notion is extended to the more convenient set-based concept of a coastal
zone1. The main difference between intrinsic variability and imprecision is that
imprecision refers to an epistemic state only, whereas the former is used to ex-
press an intrinsic property of the described objects. To illustrate this difference
consider a series of photographs of a section of guitar string in three-dimensional
space, that are take from several known locations. After one photograph is ob-
tained, knowledge about the position of a string at rest is imprecise, as only a
projection was observed. However combining photos from multiple angles allows
to reconstruct the strings exact position via triangulation. In contrast a string
oscillating at a sufficiently high frequency, does not have a precise discernible
position when viewed at the typical temporal resolution of the camera shutter.
Thus additional photos will not resolve the location of the string segment beyond
its intrinsic variability within the amplitude of the oscillation.

Due to the close relation of the set-based concepts the applicable interpretation
sometimes depends on the focus of interest and the resulting point of view taken.
For instance, the set of train stations in a larger city is used with the classical

1An even more flexible way to formally describe such vague concepts is by means of a fuzzy
set Zadeh (1965). In a fuzzy set representation each geographical location is assigned a
degree of membership to the concept of being “coast”.

53



4 Probability and Set-Valued Data

interpretation when speaking about that city in general, yet, when referring to
a particular location only given as “at the station” the same set is used in the
role of an imprecise specification resulting from that ambiguous description.

4.1.2 Interpretation of Probability Distributions

Regardless of the interpretation applied, the knowledge represented can be sub-
ject to uncertainty. Thus uncertainty may originate from different sources, e.g.:

� Uncertainty about properties of individual objects due the variability within
a reference class (frequentist view),

� Uncertainty about the state of a system due to stochastic evolution since
the last observation or

� Uncertainty due to limited accuracy of the observation process itself, e.g.
measurement error (see Subsection 2.3.3 of the previous Chapter).

For the purpose of formal modeling uncertainty can be quantified using prob-
ability distributions. Apart from this direct description of random processes,
probability distributions have also been used in belief representation, where they
are interpreted as subjective assessments of the uncertainty w.r.t. propositions
or states.

When probability distributions are applied to set-based representations they give
rise to random sets. The notion of random sets establishes a general framework
that subsumes a number of popular approaches such as upper and lower prob-
abilities (Dempster, 1967) or the Dempster-Shafer theory of evidence (Shafer,
1976).

4.2 Random Sets

With the semantics for sets and distributions outlined in the previous sections,
it is now possible to descend to the level of formal representations for distri-
butions over sets. First we notice, that the definition of a probability space
does not restrict the type of the mathematical objects that are used to describe
experimental outcomes. Choosing sets for the elements of the sample space is
a straightforward way to extend probabilistic reasoning to sets-based concepts.
This idea gives rise to random sets.
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4.2.1 Definition

Random sets were brought to the attention of the knowledge representation com-
munity by Nguyen (1978a, 2005) who coined the term and investigated their re-
lation to to belief functions, fuzzy sets and several uncertainty calculi. A random
set is introduced as the a set-valued mapping from a probability space:

Definition 4.1. Consider a probability space (C, 2C , P ) and a nonempty set U .
Given that probability space, a mapping Γ: C → 2U is called a random set. The
sets Γ(c), c ∈ C with P (c) > 0 are called focal sets of Γ.

Random sets may be used to extend probabilistic reasoning to set-valued at-
tributes. To that end the sets O and Λ in Equation 2.2 are respectively identified
with C and U in the definition of the random set (Definition 4.1). Accordingly,
the attribute A takes the role of the set-valued mapping Γ.

Some authors have used definitions that refer not to the mapping Γ itself, but
to the tuple (P,Γ) as a random set. However, definition 4.1 clearly points out
the relation to random variables. A random set may simply be viewed as a
set-valued random variable with each focal set forming a possible set-valued
outcome. Provided that the number of potential set-outcomes is low, random
sets by themselves already constitute effective knowledge representations.

4.2.2 Properties of Random Sets

In knowledge representation one is often interested in random sets that exhibit
specific properties. Two of the properties frequently discussed in the context
of knowledge representation frameworks are consistency and consonance. The
consistency criterion requires that all focal sets overlap, so that some elements
are contained in all focal sets (after Kruse et al., 1994):

Definition 4.2. A random set is called consistent iff⋂
c∈C

Γ(c) 6= ∅.

Clearly, a random set Γ can only be consistent if the empty set is not among the
focal sets of Γ. Under the interpretation of focal sets as representing possible
states under hypotheses based on individual piece of evidence, consistency is
equivalent to the absence of contradiction between those pieces of evidence.

The other subclass of random sets that is useful to discuss in the context of
knowledge representation are those with consonant focal sets (Kruse et al., 1994;
Dubois and Prade, 1999; Borgelt and Kruse, 2002):
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Definition 4.3. Let Γ : C → 2Ω be a random set with C = {c1, . . . , cn}. The
focal sets Γ(ci), 1 ≤ i ≤ n, are called consonant iff there exists a sequence
ci1 , ci2 , . . . , cin , 1 ≤ i1, . . . , in ≤ n, ∀1 ≤ j < k ≤ n : ij 6= ik, so that

Γ(ci1) ⊆ Γ(ci2) ⊆ · · · ⊆ Γ(cin).

In other words, consonance describes the property that focal sets are nested.
Unless Γ maps to the empty set for some c ∈ C, consonant random sets are also
consistent. In that case the common intersection is simply the smallest focal set,
that is the leftmost element in the sequence denoting the subset relations from
Definition 4.3.

4.2.3 Uses and Limitations

Whereas the random set concept is useful in modeling imprecision and experi-
ments with a limited number of multi-valued outcomes there are also some unfa-
vorable aspects to the approach. Firstly, switching from elementary descriptions
to sets considerably increases the number of potential alternative outcomes to
be considered. In the absence of external information restricting the focal sets,
a full modeling calls for the representation of a probability distribution defined
over the power set of Ω. As a result, the number of potential outcomes grows
exponentially with the cardinality of the base domain. Because Ω itself is often
formed as a product space, the number of values to be stored reaches adverse
levels even for comparatively small problems. Apart from storage requirements,
larger distributions are increasingly expensive to determine from data. The rea-
son is, that in order to obtain reliable estimates for marginal and conditional
probabilities, the required sample needs to supply a sufficient number of sup-
porting cases per class. Hence, with a large number of classes, data availability
becomes a limiting factor. Therefore, the random set approach is rarely applied
directly. Nevertheless it provides a useful reference model that helps to illustrate
the benefits and limitations of alternative frameworks.

The practical challenges listed above lead several authors to suggest frameworks
that emphasize applicability rather than attempting to exactly represent poten-
tially inassessable probability distributions. Although these approaches usually
give up some of the accuracy and representation power of the direct approach
using random sets, some of them have turned out to be very successful. One
such approach the Dempster-Shafer theory of evidence has been received with
considerable interest (e.g. Kohlas and Monney, 1995; Lee and Zhu, 1995; Lalmas,
1997; Nakamura et al., 2007), in particular within the field of economics.
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4.3 Dempster-Shafer Theory of Evidence

In 1967 Dempster published an article, in which he investigated upper and lower
probability measures induced by set-valued mappings from a probability space
to a frame of discernment Ω. To that end, he depicted a scenario, where each
element of a probability space is mapped to a subset of Ω. In conjunction with
the probability distribution on its domain, such a set-valued mapping constitutes
a random set.

4.3.1 Upper and Lower Probability

The random set approach emphasizes focal sets as central elements of the repre-
sentations. But considering that question often relate to occurrences of certain
ω ∈ Ω that can be elements of more than one focal set, an element-wise perspec-
tive is sometimes desirable for querying the model. To summarize such infor-
mation, Dempster defined upper and lower probability measures P ∗ : 2Ω → [0, 1]
and P∗ : 2Ω → [0, 1], which reflect the a rescaled aggregated probability from all
non-empty focal sets that overlap with, or are fully contained within a subset
E of Ω respectively. For a discussion of Dempster’s idea, it is advantageous
to initially concentrate on the cases that do not require rescaling. Assuming
∀c ∈ C : (Γ(c) = ∅) =⇒ P ({c}) = 0, P∗(E) and P ∗(E) may be computed
∀E ⊆ Ω as

P∗(E) =
∑
c∈C

∅6=Γ(c)⊆E

P ({c}) = P ({c ∈ C: ∅ 6= Γ(c) ⊆ E}) (4.1)

P ∗(E) =
∑
c∈C

E∩Γ(c)6=∅

P ({c}) = P ({c ∈ C:E ∩ Γ(c) 6= ∅}) . (4.2)

Dempster then turned his attention to the family of probability measures over
Ω that are compatible with those bounds and provided two further, equivalent
definitions. One of these definitions characterizes compatible measures as those,
which may be obtained by freely distributing probability mass within focal sets.
Thus Dempster’s approach can be understood as an attempt to trace probability
mass for underspecified distributions. Every focal set marks out the most specific
subset of the frame of discernment Ω, to which a distinct portion of probabil-
ity mass is assigned. Beyond that, nothing is known about its distribution to
the elementary events within the focal set. The class of compatible probability
distributions is generated by the different ways of shifting the probability mass
within their respective focal set. One of the advantages of this representation
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is the capacity to express states of partial knowledge by restricting the set of
admissible distributions. In a state of total ignorance all probability distribu-
tions over Ω would be admissible, which is represented by assigning the complete
probability mass to the whole of Ω. The other extreme occurs when all focal
sets Γ(c) are singletons. For such cases the index set used for computing P∗ and
P ∗ in Equations 4.1 and 4.2 is identical and the boundaries determine a unique
probability measure.

The interpretation of set-valuedness applied in the previous paragraph slightly
differs from imprecision (see page 23), in that probability mass associated with a
focal set may be distributed freely among the elementary events within the focal
set, rather than being assigned “en bloc” to an unknown, yet specific element.
However, the imprecision interpretation does lead to the subclass of so called
extremal measures. Dempster pointed out, that his compatible measures can
also be described as the closure of those extremal solutions under mixing. In a
brief example he further suggested, that random sets be used to present degrees
of belief that quantify the partial knowledge available from information sources,
such as human experts. That idea was further elaborated by Shafer and is treated
in the following subsection.

It is also noteworthy that the function Γ in Dempster’s formalization may map
to the empty set even though such an assignment would be meaningless under
the suggested interpretation. According to Dempster, that case was included
in order to arrive at a “more general” theory. Yet, this effectively allows to
attach a positive probability to the impossible event giving rise to a problem
of “lost probability mass” – an anomaly that occurs because the calculation of
P ∗(Ω) and P∗(Ω) does not account for probability mass linked to the empty
set. To compensate for that loss of probability mass, the definitions suggested
by Dempster include a renormalization constant for rescaling the probability
associated with non-empty focal sets to unity. The required renormalization
factor is

1∑
c∈C

Γ(c)6=∅
P ({c}).

Because the denominator collects the probability mass assigned to non-empty
subsets of Ω, the definition assumes, that P ({c: c ∈ C ∧ Γ(c) = ∅}) < 1 holds.
Otherwise the denominator would become zero, so both upper and lower proba-
bility remain undefined.

4.3.2 Reinterpretation by Shafer

Although Dempster already suggested to apply his approach to represent ev-
idential support, it was Shafer, who reformulated, reinterpreted and extended
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these ideas for a theory of evidence Shafer (1976). Using a state-of-the world
type representation (cf. page 20), Shafer modeled rational beliefs of intelligent
agents with only partial knowledge about a situation. That partial knowledge is
due to pieces of evidence, including prior knowledge and possibly preconceptions.
However, it is usually not known, whether a certain piece of evidence is relevant
to the question at hand or not. To express the agents commitments regarding
these alternative interpretations of the pieces of evidence an assessment of their
relative relevance is given in terms of a subjective probability assignment. The
agents use these assessment to attribute an amount of belief to propositions. In
this context, a proposition is the statement, that the true state of the world is
described by an element of a certain subset E of Ω. When referring to a fixed
frame of discernment, I will apply the term proposition for both the statement
itself, and the corresponding subset of the frame that represents that statement
in the model.

Different propositions can be related to each other in that they refer to overlap-
ping or even nested subsets of Ω. For instance, a tourist may attach belief to
the proposition that the Luxembourg Palace is somewhere in Europe but also
to the more specific proposition that it is actually situated in the French capital
of Paris. Of course with Paris being located in Europe, belief attributed to the
second hypothesis should also be attributed to the more general one expressed
by the first proposition. Formally, considering two nonempty sets E1 and E2 the
implication

E1 ⊂ E2 =⇒ Bel(E1) ≤ Bel(E2) (4.3)

should hold.

In this modeling, a piece of evidence justifies attributing an amount of belief to
a whole class of hypotheses, but Shafer noticed that the same information can
be represented by considering only the most specific propositions supported by
each interpretation of the given evidence. These most specific hypotheses are
described by the focal sets of a random set Γ.

The probability distribution over C reflects the relative amount of belief at-
tached to the different interpretations of the evidence. The belief in any given
proposition is determined from the amount of belief attributed to the supporting
interpretations of the evidence. A focal set reflects the most specific proposition
supported by some interpretation of the evidence. Equipped with these seman-
tics, belief is more comfortably quantified in terms of belief mass attributed to
focal sets.

The belief mass m(H) of a set H ⊆ Ω measures the belief attributed to evidence
that points exactly to H but none of the more specific hypotheses reflected by
subsets of H. Formally m(H) can be defined as the probability assigned to the
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preimage of a set H, so m(H) = P (Γ−1(H)). Since only the focal sets belong to
the range of Γ, the function m describes a distribution of weight to focal sets.
For all other sets, the assigned value is m(H) = P (Γ−1(H)) = P (∅) = 0. This so
called basic probability assignment forms the fundament of Shafer’s formalization
(adapted from Shafer, 1976):

Definition 4.4. A function

m : 2Ω → [0, 1], with

m(∅) = 0, and∑
H⊆Ω

m(H) = 1.

is called a basic probability assignment.

In comparison to Dempster’s suggestion, two additional criteria of that definition
reflect the adopted interpretation. Since the true state must be some element of
Ω, the empty set encodes an unsatisfiable hypothesis. Moreover, the total belief
mass distributed to the focal sets must be one.

Having assigned the belief mass to a focal set, it is now possible to compute a
measure of belief for arbitrary subsets of Ω. Any given proposition E ⊆ Ω is
supported by exactly those interpretations of the evidence that correspond to a
focal set fully contained in that proposition. With that interpretation the lower
probability of Dempster’s approach is viewed as a measure of belief, i.e.

P∗(E) =
∑
c∈C

Γ(c)⊆E

P ({c}) =
∑
H⊆E

m(H) = Bel(E). (4.4)

Conversely the upper probability

P ∗(E) =
∑
c∈C

Γ(c)∩E 6=∅

P ({c}) =
∑

H∩E 6=∅

m(H) = Pl(E). (4.5)

measures the plausibility of proposition E. Although the above equations are
applicable for the original interpretation of evidence, Dempster (1967) and Shafer
(1981) realized that the operations they had proposed for their approach do not
generally preserve the probability bounds. Thus, results acquired by reasoning
within the framework are usually not interpretable as probability bounds any
more.
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4.3.3 Reasoning in the Dempster-Shafer Framework

Dempster-Shafer theory provides mechanisms for combining information sources
(Dempster, 1967, 1968) now commonly referred to as “Dempster’s rule of condi-
tioning” and “Dempster’s rule of combination”, which Dempster considered as
an extension of the conditioning rule.

Dempster’s Rule of Conditioning The term “conditioning” refers to an op-
eration, in which the representation of an epistemic state is supplemented with
a new piece of information, e.g., due to an assumption or an observation. The
new information is expressed as a proposition F ⊆ Ω. It is then asserted, that
outcomes outside F are excluded. In the framework suggested by Dempster, com-
puting the conditional measures P ∗(E | F ) and P∗(E | F ) is based on the idea of
restricting all focal sets to F . For conditioning with proposition F ⊆ Ω, images
of the set-valued mapping are updated such that ∀c ∈ C : Γ′(c) = Γ(c) ∩ F . If
F and some of the original focal sets of Γ are disjoint, however, this operation
will assign a positive probability to the empty set, resulting in an inconsistent
intermediate state. Consistency is restored by subsequent renormalization, that
is a rescaling of probability/belief mass attributed to the remaining focal sets.
The approach can be viewed as a proportional redistribution of belief after rul-
ing out interpretations of the evidence that conflict with F , i.e. as a form of
Bayesian conditioning. Indeed, if all images under Γ are singletons the operation
is equivalent to Bayesian conditioning of a probability distribution. At the same
time, the restriction of the focal sets directly corresponds to an application of an
expansion operation (Alchourrón et al., 1985) from the relational framework for
each of the remaining interpretations of the evidence.

The conditioning rule is frequently expressed in terms of the upper and lower
probability measures P ∗ and P∗, which are derived in Dempster (1967):

P ∗(E | F ) =
P ∗(E ∩ F )

P ∗(F )
and (4.6)

P∗(E | F ) = 1− P ∗(E | F ) = 1− P ∗(E ∩ F )

P ∗(F )
. (4.7)

However, renormalization produces counterintuitive results when other inter-
pretations of the framework are applied. For that reason, some variants and
extensions of Dempster-Shafer theory use alternative rules that skip the renor-
malization step (e.g. Smets, 1990; Smets and Kennes, 1994). The normality
criterion from Definition 4.4 is relaxed to

∑
H⊆Ω

m(H) ≤ 1 in those frameworks. A

broader discussion of semantic problems related to renormalization will be given
in Subsection 4.3.4.
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Dempster’s Rule of Combination Among the most notable results of Demp-
ster’s work is the formulation of a mechanism for combining evidence now com-
monly referred to as Dempster’s Rule of combination (Dempster, 1967; Shafer,
1976). The rule was originally proposed as a method to summarize information
from several independent information sources. Each individual source provides
a random set representation that reflects an assessment of the situation using
only the evidence from that source, which is called a body of evidence. The rule
may be used to produce a combined assessment from several bodies of evidence,
which again is expressed as a random set representation.

The rule of combination is more easily understood by referring to basic prob-
ability assignments. Each focal set corresponds to a certain interpretation of
the evidence, and belief in any particular interpretation is quantified via the be-
lief/probability mass assigned to its corresponding focal set. The rule aims at
providing new basic probability assignments to distribute belief to interpretations
of the combined evidence.

The combination of basic probability assignments conducted by that rule follows
the suggestion, that an an interpretation for the combined evidence is formed by
selecting an interpretation for each of the input representations and combining
the constraints by intersecting the corresponding focal sets. The complete repre-
sentation resulting from the combination of basic probability assignments then
contains all possible (non-empty) intersections that can be generated from such
combinations.

The belief/probability mass associated with a focal set in the new representa-
tion is computed from aggregated contributions for each combination of focal
sets in the input representation that produce it as their intersection, were mass
contributed by a combination of focal sets is the product of its elements’ be-
lief/probability masses in the respective in the input representations.

Again, one drawback of this idea is revealed when it is applied to selections of
focal sets, which have an empty intersection. According to the above calculation,
such as situation would lead to belief mass being assigned to the empty set. To
remain compatible with Definition 4.4, the belief mass assigned to the empty set
is discarded and the remainder rescaled to unity (Equation 4.9).

Although that combination rule was originally presented for only two information
sources (e.g. Shafer, 1976), it is easily extended to a more general form that is
suitable for the simultaneous combination of several information sources:

Definition 4.5. Suppose m1, . . . ,mk are basic probability assignments to subsets
of the same frame Ω. Let F1, . . . ,Fk denote the respective sets of focal sets, i.e,

Fi = {H:H ⊆ Ω ∧mi(H) > 0} .
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Under the condition, that

∑
(H1,...,Hk)∈F1×···×Fk⋂k

i=1
Hi=∅

k∏
i=1

mi(Hi) < 1 (4.8)

the function m : 2Ω → [0, 1], ∅ 7→ 0 and for H : ∅ 6= H ⊆ Ω:

H 7→

∑
(H1,...,Hk)∈F1×···×Fk⋂k

i=1
Hi=H

k∏
i=1

mi(Hi)

∑
(H1,...,Hk)∈F1×···×Fk⋂k

i=1
Hi 6=∅

k∏
i=1

mi(Hi)

(4.9)

is a basic probability assignment.

This combined representation only exists if the condition expressed in Equa-
tion 4.8 holds. Shafer noted that, since the focal sets refer to mutually exclusive
interpretations of the combined evidence, the term

∑
(H1,...,Hk)∈F1×···×Fk⋂k

i=1
Hi=∅

k∏
i=1

mi(Hi)

measures a degree of conflict between the information sources. After rescaling,
the non-empty intersections from the set of focal sets F = {H : ∅ 6= H ⊆ Ω :
(∃(H1, . . . , Hk) ∈ F1 × · · · × Fk :

⋂k
i=1Hi = H)} for the unified representation.

Obviously, the rule of combination is as an extension of the rule of conditioning,
where the conditioning information itself is provided via a random set represen-
tation. Conversely the rule of conditioning results can be viewed as a special
case where a random set representation is combined with a piece of information
that has a unique interpretation.

Combination via Common Refinements So far, it was assumed that infor-
mation acquired from different sources was expressed with respect to the same
frame of discernment. However, such a common frame may not always have
been established in advance. If, for instance, two information sources rely on
different sets of attributes to supply interpretations of their respective evidence,
the propositions reflecting those interpretations of the evidence may well refer
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to different frames of discernment. In order to combine these propositions, their
corresponding set-representations must first be converted to a common reference.
In Shafer’s notion such a reference frame is provided by a common refinement
of the original frames of discernment. Assuming what Shafer calls independent
frames, i.e. that “no proposition on one of [the original frames] non-trivially
implies a proposition discerned by the other”2, that common refinement is the
Cartesian product of the original frames of discernment. Shafer argued that since
propositions merely reflect constraints on the frames of discernment, any given
proposition may be expressed using a semantically equivalent restriction w.r.t.
a finer frame, namely the Cartesian product of that proposition and the frame
used by of respective other representation. With the subsequent application
of Dempster’s rule the intersections obtained as focal sets the in the combined
representations are then the Cartesian products of focal sets from the parent
frames.

4.3.4 Critical Discussion

One of the controversial aspects of using Dempster’s rule of combination in the
framework refers to the way, it deals with conflict. Zadeh (1984) proposed an
example, where the combination of two strongly conflicting information sources
using Dempster’s rule resulted in a representation that suggested high belief in
a proposition that is only weakly supported by each of the individual informa-
tion sources. While some authors have argued that conflict merely indicates
an incomplete definition of the frame of discernment (Smets, 1990), others have
connected the paradoxical result to the reassignment of conflict mass to focal
sets only (Yager, 1987) or to inherent, overly optimistic assumptions about the
reliability of information sources (Dubois and Prade, 1988b). For each of these
views, alternative combination rules have been proposed, which are extensively
discussed and compared in Lefevre et al. (2002).

The normalization problem can also be viewed a symptom of a more fundamen-
tal discrepancy between the mechanism applied for combining propositions or
theories linked to specific interpretations of evidence from individual sources,
and the assumptions used to integrate information from different sources. The
former operations are based on a set-theoretic mechanism using a binary logic,
whereas the latter model the relative relevance of individual interpretations using
a probability-based approach with corresponding conditioning and combination
rules. In Dempster (1967) it is remarked that the mechanism assumes “inde-
pendence of sources”, which is later explained as “independence of errors”. The

2Relations between logically dependent frames are investigated in Chapter 5. For a discussion
of special cases see chapter 6 of Shafer (1976).
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meaning of this informal statement, becomes clearer when the combination rule
itself is investigated more closely: From the multiplicative combination of be-
lief mass, one can infer that the independence assumption not just refers to the
acquisition of the pieces of evidence, but to statistical independence of their
interpretations (given as the focal hypotheses) w.r.t. the basic probability as-
signment m (the subjective probability measure used to assesses the relevance
of the interpretations). Yet, with Shafer’s interpretation the focal sets obtained
from the different sources are still formed over the same domain. This situation
can lead to logical dependencies that conflict with an independent combination
of interpretations, so the above assumption does not generally hold:

Example 4.1. Consider two basic probability assignments m1 and m2 that de-
scribe belief structures obtained using two pieces of evidence from different in-
formation sources w.r.t. a frame of discernment Ω = {ω1, ω2, ω3 ω4}. Each as-
signments assigns probability mass to the focal sets H1 and H2. Let

H1 = {ω1}, H2 = {ω2, ω3},

m1(H1) = 0.8, m1(Ω) = 0.2,

m2(H2) = 0.5, m2(Ω) = 0.5.

In this case H1 and H2 are disjoint, so at most one of the proposition may cover
the unknown true state of the world. Thus, provided both pieces of evidence
were reliable, at least one of these pieces must be irrelevant and the interpre-
tation that both pieces of evidence apply is not admissible. Nevertheless the
subjective probability of m1(H1) ·m2(H2) = 0.4 assigned to that interpretation
under the independence assumption is greater than 0 and therefore inconsistent
with logical restrictions already given due to background knowledge about the
intended semantics. �

The example demonstrates, that inherent assumptions of the combination rule
used in the model may result in an inappropriate approximation of the unknown
true interaction structure. It disregards possible logical dependencies between
admissible interpretations of subsets of the evidence. These dependencies arise
from compatible or incompatible interpretations of these pieces of evidence within
the calculus for propositional logic. Indeed, the problem of positive probability
mass assignments to the empty set could not even occur, if the statistical inde-
pendence assumption w.r.t. interpretations of disjoint subsets of the evidence
really applied. Even in the absence of such logical constraints, the assumption of
independence would require further justification because statistical interactions
between interpretations of evidence from different information sources may not
be ruled out (absence of logical dependency does not imply statistical indepen-
dence).
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The lack of means to represent probabilistic interaction structures, such as con-
ditional information, extends to other versions of the belief function formalism
and has lead Pearl (1990) to point out, that the belief framework is too limited
to serve as a general representation of partial knowledge. In their approach to
this problem, Kruse et al. (1991a), Kruse et al. (1991b, ch. 14) have applied
separate data structures (specialization matrices) to model information about
interactions when reasoning with mass distributions.

Other limitations of the Dempster-Shafer approach have been overcome by ap-
plying relatively minor modifications to the framework. For instance the basic
version of the Dempster-Shafer framework calls for repeated renormalization, to
update the internal belief state whenever new evidence is encountered. In a mul-
tiple update scenario this has the undesired effect of giving to each new piece
of evidence the same weight as to the entire prior evidence encountered (weight
of evidence problem). More advanced variants of the framework, however, avoid
that problem by either keeping track of the weight of the accumulated evidence
or removing the renormalization step from the actual belief representation alto-
gether.

Regardless of its limitations, the framework has successfully been applied to ran-
dom set representations as a heuristic to obtain coarse numerical assessments,
if detailed information on the interaction were unavailable. An unnormalized
version of Dempster’s rule has also been employed for the pooling of evidence in
the transferable belief model (Smets, 1990, 1993; Smets and Kennes, 1994). That
model uses a subjectivist interpretation of probability and focuses on supporting
decision tasks. The transferable belief model (TBM) maintains a strict sepa-
ration between the epistemic or credal level encompassing the parameters that
encode the actual belief state, and a so-called pignistic level used for decision
making. Normalization, in the form of the pignistic transformation operation is
shifted into the decision stage of the model to be performed on-demand when-
ever a decision needs to be made. While this delayed renormalization remedies
the weight of evidence problem, the criticism with respect to the independence
assumptions still applies (see Snow (1998) for an example that leads to a counter-
intuitive belief state with the TBM.) In addition the TBM relies on storing belief
functions over the power set of the base domain for encoding a belief state at the
credal level, limiting its applicability on large domains such as those typically
encountered in computational biology.
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4.4 Possibility Theory

Besides belief functions, other frameworks may be subsumed under the random
set formalism – among them possibility theory. The notion of possibility that
underlies this theory was suggested by Zadeh (1978) as means to express certain
aspects of natural language. It may be used to refer to statements or pieces of
information that are both imprecise and uncertain. In contrast to the colloquial
meaning of the term “possible”, which is based on a binary distinction, Zadeh
proposed degrees of possibility assigned to elements of a frame of discernment3.

The original formulation presented by Zadeh closely relates possibility to the
theory of fuzzy sets by the same author (Zadeh, 1965). Zadeh’s initial consid-
eration was that information is often provided in the form of statements that
relate attributes to fuzzy concepts (Zadeh had previously suggested to use such
fuzzy concepts to reflect the intrinsic vagueness of expressions in natural lan-
guage). This induces a fuzzy restriction of the attribute domain, which reflects
the compatibility of individual instantiations with that concept. He argued, that
such restrictions are not well represented in probabilistic terms since they merely
quantify if an instantiation can occur in principle, but not the likelihood of its
actual realization. Nevertheless, Zadeh acknowledges a heuristic connection be-
tween possibilities and probabilities in that any probable event must at least be
possible.

Zadeh’s suggestions were subsequently taken up and expanded by several other
authors (Hisdal, 1978; Nguyen, 1978b; Yager, 1981; Higashi and Klir, 1983;
Shafer, 1986; Dubois and Prade, 1988a), who worked towards establishing the
semantics of possibility, added further interpretations and provided views on
operations and constraints vital to making testable predictions in the frame-
work. Many of the contributions published in the 1980’s investigated the formal
similarities of possibility theory and the belief function framework to develop
information measures to quantify evidence. While this development induced a
fruitful discussion on the meaning of possibility it also added to the existing con-
fusion w.r.t. the term, so that several interpretations and formalizations coexist
to this day.

3Unfortunately, “possibility” is not used consistently, even within the field of knowledge repre-
sentation itself. For instance, in modal logic the term is applied in its original dichotomous
meaning.
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4.4.1 Axiomatic Approach to Possibility

The arguably best developed formalization of possibility theory is the axiomatic
approach (Dubois and Prade, 1988a). With that axiomatic approach, events
from a sample space Ω are assigned a degree of possibility from a totally ordered
set V . That set contains at least a smallest element 0 and a largest element 1.
For V = {0, 1} this leads called to so called binary possibility measures, which
reflect the concept of possibility as it is understood in modal logic, but typically
the complete interval [0, 1] is chosen The assignment is formally represented as
a possibility distribution:

Definition 4.6. A possibility distribution is a function

π : Ω→ [0, 1]. (4.10)

A possibility distribution is called normalized, iff

∃ω ∈ Ω : π(ω) = 1. (4.11)

Like with the probabilistic framework, possibility distributions allow to construct
a function on subsets of Ω. For standard possibility theory this function is given
by the following definition (Borgelt and Kruse, 2002), (cf. Dubois and Prade,
1988a; Zadeh, 1978):

Definition 4.7. Let Ω be a sample space. A (general) possibility measure is
a function Π : 2Ω → [0, 1] satisfying

1. Π(∅) = 0 and

2. ∀E1, E2 ⊆ Ω : Π(E1 ∪ E2) = max{Π(E1),Π(E2)} (Maxitivity)

It is appropriate to remark that Π is not required to be σ-additive. Therefore it
does not generally constitute a measure in the sense of measure theory. The name
“possibility measure” was merely coined in analogy to the concept of a probability
measure. Subsection 4.4.5 will discuss the consequences of this difference in terms
of operations within the possibilistic framework.

Each possibility distribution π leads to a unique possibility measure Π via Π({ω}) =
π(ω) and therefore

Π(E) =

{
0 if E = ∅,
maxω∈E π(ω) otherwise.

(4.12)
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An interesting property of possibility measures is that the possibility for the union
of two events may be computed from their respective possibility measures only,
even if these events are not disjoint. This contrasts with the probabilistic case,
were such an operation is only applicable to disjoint events. Moreover, from the
second axiom in Definition 4.7 it may be concluded ∀E1, E2 : E1 ⊆ E2 ⊆ Ω :

Π(E1) ≤ max(Π(E1),Π(E2)) = Π(E1 ∪ E2) = Π(E2). (4.13)

This result is in analogous to the monotonicity condition for belief functions
given on page 59.

With the axiom stating how to compute the possibility of unions of events
E1, E2 ∈ Ω, it would be convenient if a similar rule could be formulated for
the intersection of events. However this is not possible in general, because the
attribution of the degree of possibility of a set to its subsets is ambiguous for
all but trivial cases (see Dubois and Prade (1998a) for a brief discussion of
this problem). Yet, a simple consideration permits to compute an upper bound
for the possibility of the intersection of events. Let E1, E2 ⊆ Ω. Obviously,
(E1 ∩ E2) ⊆ E1, and (E1 ∩ E2) ⊆ E2. Then substituting into our result about
the union of events from Equation 4.13 yields two conditions:

Π(E1 ∩ E2) ≤ max{Π(E1 ∩ E2),Π(E1)} = Π((E1 ∩ E2) ∪ E1) = Π(E1)

Π(E1 ∩ E2) ≤ max{Π(E1 ∩ E2),Π(E2)} = Π((E1 ∩ E2) ∪ E2) = Π(E2).

Combined, these two conditions can be summarized as

Π(E1 ∩ E2) ≤ min{Π(E1),Π(E2)}. (4.14)

Indeed, the intersection E1 ∩ E2 may have a lower possibility than each of the
events E1 and E2, for the maximally possible elements of E1 and E2 need not be in
the common intersection of the two events. On the other hand, the possibility of
E1∩E2 cannot be higher than that of either E1 or E2 because that would require
the existence of an element ω′ in E1∩E2 such that ∀ω ∈ (E1∪E2) : π(ω′) > π(ω).
However, since as E1 ∩ E2 ⊆ E1 ∪ E2, any maximally possible element ω′ would
be contained in at least one the events E1 and E2 as well.

Among the possibility measures demarcated by Definition 4.7, the subclass of
measures corresponding to normalized possibility distributions has received par-
ticular attention by researchers. Because for normalized possibility distributions
at least one element in Ω must be fully possible, Π(Ω) = maxω∈E π(ω) = 1 holds
for the measures in that class.

Such normalized measures may be complemented with necessity measures, which
are usually defined via the equation N(E) = 1−Π(E). This reconciles possibility
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theory, with the understanding of possibility adopted in philosophy. On account
of the normalization condition, these versions of possibility theory modify Def-
inition 4.6 by introducing Π(Ω) = 1 as an additional axiom (e.g. Dubois and
Prade, 1988a). Unless stated otherwise, I will apply the term possibility theory
in this dissertation to refer to the axiomatization without the normality axiom.
For a discussion and comparison of other notions of possibility theory the reader
is referred to Dubois (2006) and the very extensive papers of De Cooman (de
Cooman, 1997a,b,c).

The practical value of the axiomatic approach to possibility theory is in its stan-
dardization of several operations with possibility measures. However, it leaves
open the essential question of how possibility degrees are determined in the first
place. In order to apply the formal model to an empirical problem so testable
and practically relevant conclusions can be derived from it, it is necessary to find
a suitable interpretation of possibility values.

The fuzzy-set-based epistemic interpretation suggested in Zadeh (1978) merely
shifts this problem to the semantically appropriate definition of fuzzy concepts,
which would, for instance, have to be supplied by experts. While it can be
questioned whether users can be expected to specify such fuzzy sets in accor-
dance with the given axiomatization, the approach has been used with predefined
fuzzy restrictions to define possibilistic databases (e.g. Bosc et al., 2006). A non-
quantitative version of possibility degrees (on a finite range) is applied in decision
support to pre-order goals and rank decision alternatives (Grabisch, 1995; Ben-
ferhat et al., 2001; Gérard et al., 2007). Similarly, Spohn’s representation of epis-
temic entrenchment can be reformulated in terms of possibility theory (Spohn,
1990; Gebhardt and Kruse, 1998). Commonly employed quantitative notions
of possibility distributions are those used for dealing with imperfect statistical
information, e.g. on the basis of likelihoods (Dubois et al., 1997; Dubois, 2006),
that of an upper bound for probability distributions for reasoning with imprecise
probabilities (Delgado and Moral, 1987; Dubois and Prade, 1992) and the related
interpretation as a plausibility measure on a consonant body of evidence4 (e.g.
Higashi and Klir, 1983; Dubois and Prade, 1999; Masson and Denœux, 2006).
The latter interpretations belongs to a larger class of proposals that draw on
the random sets framework to provide a meaning for possibility measures. Other
representatives of that class are the theory of large deviations explored in Nguyen
and Bouchon-Meunier (2003) and the context model (Gebhardt and Kruse, 1993,
1998; Borgelt and Kruse, 1998). The idea of reasoning with a consonant body
of evidence is also taken up for the knowledge representation using mass distri-
bution (Baldwin et al., 1995). However, the consonance requirement is a very
strict condition, which considerably limits the applicability of those frameworks.

4compare Definition 4.3
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Under the assumption that focal sets represent imprecise specifications, Yager
(1983) has developed an information-theoretic approach, to compare random sets
with regard to their compliance with the consistency/consonance assumptions.
Additionally, Yager (1983) and Higashi and Klir (1983) proposed measures of
specificity which allow to numerically assess the information content of possibil-
ity distributions.

4.4.2 Context Model Interpretation of Possibility

In the following I will adopt the so called context model interpretation of possi-
bility described in Gebhardt and Kruse (1993, 1998); Borgelt and Kruse (1998).
Using a small example I will explain the differences between the probabilistic
and the possibility-based approach to modeling a partial knowledge state and
explore the relation between possibility measures and random sets.

The context model aims at combining both uncertainty and imprecision about
a facts into a single function. That function assigns a degree of possibility to
every element a sample space Ω and is called elementary possibility assignment
(Borgelt and Kruse, 2002). The construction of possibility assignments is directly
derived from a random set representation.

With the elementary possibility assignment directly applied to individual ele-
ments of the frame of discernment, the number of parameters required to rep-
resent the possibility distribution is small in comparison to a full random set
representation. Thus they are more convenient to store and operate upon than
random sets. Of course that benefit does not come without a reduction in repre-
sentation power. It is therefore appropriate to investigate what information may
be represented using possibility assignments.

The context model is used for instance to express partial knowledge of a given
process. Consider an observer, who can assign probability distributions to de-
scribe value distributions for a subset of the variables governing the process,
but whose relevant knowledge about the remaining variables is limited to simple
constraints for the range of values, with no preference for any of the remaining
realizations. The probability distribution about the state of the first set of vari-
ables reflects uncertainty in the distinction between so called contexts, and may
be an objective probabilities from a theoretical model, reflect a subjective assess-
ment, or have been determined empirically. The contexts themselves represent,
for instance, sets of physical frame conditions, that cannot be distinguished or
controlled for in that particular experiment, though their general distribution is
known from other types of experiments. Each context is characterized by specific
constraints on the values of the remaining variables, determining a set of value
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combinations that are possible under that context. The existence of more than
one admissible combination of values under a given context reflect imprecision,
either from inability to discern occurrences or due irrelevance of further distinc-
tions. The idea of the model is to combine the uncertainty w.r.t. context selection
with the imprecise specification of variable values under each context.

With these interpretations the context model is employed as a basis for a quan-
titative assessment of possibility in terms of a probability of logical possibility. In
a broader application of the mathematical framework, the probability measure
may also be used reflect a relative weight of importance or reliability (Gebhardt
and Kruse, 1998).

In order to further clarify the view of possibility proposed by the context model
consider the experiment in Example 4.2.

Example 4.2. Consider three identical opaque urns (A through C) as pictured
in Figure 4.1. Each of the urns contains spheres of up to tree different colors
(represented by different shades), that are otherwise identical. The experiment
consist of two steps. First a die is thrown by an experimenter. Depending on
the number shown, an urn is selected in accordance to the mapping given by
Table 4.1. In a second step one sphere is drawn from the selected urn. The
color/shade of the drawn sphere determines the outcome of the experiment, so
a sample space may be defined as a set Ω = {light,medium,dark}. �

In the above experiment the result of the first step set the conditions – a context
– for the second part of the experiment. Before the die is thrown, all of the
outcomes in Ω are possible. But because some urns do not contain spheres of
all colors, certain results may be excluded once an urn is selected. To model
the experiment it is not necessary to consider all numbers that may be rolled
as separate contexts. Since several outcomes lead to the same urn being se-
lected it suffices to group them into three mutually exclusive intermediate events
{ , , },{ , } and { }. Each of these events is associated with one element

Urn B Urn CUrn A

Figure 4.1: Three urns containing colored spheres
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, , ,

urn A urn B urn C

Table 4.1: Mapping used to select urn after die is thrown

in a set of contexts C = {cA, cB, cC}. Let us now consider an agent familiar
with that experimental setup. Suppose that the die has already been thrown,
but the intermediate result is not accessible to the agent, so it remains ignorant
about the identity of the urn selected. Can the agent assess the situation using
its limited information about the context?

To reconstruct a probabilistic assessment of the uncertainty w.r.t the outcome of
the experiment as a whole, the agent would require information regarding context
selection (Table 4.1) and – for each of the urns – the respective conditional
probabilities of drawing a given color. Assuming a fair die and interpreting the
proportions of colors as pictured in Figure 4.1, as conditional probabilities, the
chain rule P (ω = Ω) =

∑
c∈C P (ω = Ω | C = c)P (C = c) allows to compute a

probability assignment for the final outcomes of the experiment (Table 4.2).

Picture a slightly altered situation now. This time the agent gets to know which
types of spheres are contained in any the urns A–C only, but remains ignorant
of their actual ratios. In this case, the information is insufficient to provide a
well-founded probability assessment. Nevertheless some useful constraints are
specified. For instance, whenever urn B is selected (context cB), the outcome is
guaranteed to be “‘medium”. Similarly, in the context of urn C being selected
(cC), “light” can be ruled out as a result of the experiment. For every context
a set of logically possible candidate outcomes is generated. According to the
context model interpretation the possibility of an outcome in any given situation
reflects the probability that a context applies, in which the outcome is logically
possible. Applying this notion to the experiment from Example 4.2 yields the
elementary possibility assignment given in Table 4.3.

shade ω elementary probability p(ω)

medium 1
2
· 2

5
+ 1

3
· 1 + 1

6
· 1

5
= 17

30

dark 1
2
· 1

5
+ 1

6
· 4

5
= 7

30

light 1
2
· 2

5
= 6

30

Table 4.2: Probability distribution for the urn example
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shade ω elementary possibility π(ω)

medium 1
3

+ 1
2

+ 1
6

= 1

dark 1
2

+ 1
6

= 4
6

= 2
3

light 1
2

= 1
2

Table 4.3: Elementary possibility assignments for the modified urn example com-
puted via the probability of compatible contexts

In the axiomatic approach to possibility discussed in the previous section a possi-
bility distribution π defines a possibility measure Π Equation 4.12. That measure
allows to assign possibility degrees to the events from 2Ω. For the example it can
easily be verified that the computed degrees of possibility are consistent with the
context model interpretation as a probability of logical possibility. However this
is due to special way, in which the example was constructed, and does not hold
in general (compare Subsection 4.4.5).

It should also be remarked that possibility assignments in the context model
depend on the set of contexts distinguished for their construction. That set of
contexts is usually determined by the agents ability to make a probability assess-
ment for the individual contexts. The contexts are in turn identified by means of
their associated candidate sets which reflect the constraints derived from frame
conditions, but also the agent’s background knowledge and the latter’s capacity
of observation. Thus, even for identical physical frame conditions two agents
may obtain different sets of candidates and consequently different elementary
possibility assignments. Depending on the agents capacity, coarser of finer dis-
tinctions between contexts may be applied. For instance, suppose that instead
of the mapping from Table 4.1 a second agent’s knowledge consist merely of the
statements

� If an even number faces up then the outcome is medium or dark.

� If an odd number faces up any of the three outcomes light,medium or dark
is possible.

That agent might distinguish between the context even/odd number faces up
only, which nets the less informative possibility assignment.

π2 : light 7→ 0.5, medium 7→ 1, dark 7→ 1.

Since a possibility degree in the context model refers to (the absence of) weighted
constraints of possible attribute values, an elementary possibility assignment
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reflects negative information. The second agent, being ignorant of the distinction
between contexts cB and cC , may not exploit the additional restriction in context
cB leading to the less informative possibility assessment π2. In general, if a
distribution π1 is at least as specific as another possibility distribution π2 if
the condition ∀ω ∈ Ω : π2(ω) ≥ π1(ω) holds. Interestingly, unlike with the
probabilistic framework, the context model interpretation remain applicable even
when the outcome is a set-valued attribute, that may take several values from
their domain concurrently.

4.4.3 Formalization

In the previous subsection it was explained, how in the context model a possibility
degree is viewed as a result of uncertainty w.r.t. context selection (modeled by
means of probability theory) and context-dependent logical constraints expressed
via candidate sets. Obviously such a structure lends itself well to a random set
representation.

Indeed, the logically possible outcomes in any given context may be seen as
focal sets of a random set. The underlying probability measure P functions as
a description of the agents uncertainty about which of the contexts applies to
the situation at hand. The basic possibility assignment induced by that random
set may then be defined according to (Kruse et al., 1994; Borgelt and Kruse,
2002):

Definition 4.8. Consider a set of contexts C that is the carrier of a probability
space (C, 2C , P ) associated with a random set Γ : C → 2Ω, such that the focal
sets Γ(c) reflects possible outcomes of an experiment under the uncertain contexts
c ∈ C. The possibility distribution induced by Γ is the mapping

π : Ω → [0, 1]

∀ω ∈ Ω : ω 7→ P ({c ∈ C:ω ∈ Γ(c)}) .

This definition formalizes the interpretation of possibility given in the previous
subsection and permits to view an elementary possibility assignment in the con-
text model as the one-point coverage of a random set (compare also Dubois and
Prade, 1982). The main difference compared to the direct representation using
a random set is, that the basic possibility assignment disregards the connection
of candidates to their original context. For this reason different random-set rep-
resentations may induce identical possibility assignments (Figure 4.2). In the
following I will only distinguish between contexts that are mapped to differ-
ent focal sets. This merger is justified by the identical effect of these contexts
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within the modeled piece of the world. Due to their comparatively small stor-
age requirements, possibility distributions are applied as information-compressed
representations of random sets when the association with the original contexts
is not relevant to the application (Gebhardt and Kruse, 1998).

context prob.
focal set

ω1 ω2 ω3 ω4 ω5

c1
1
3

• •
c2

1
2

• •
c3

1
6

• • • ω1 ω2 ω3 ω4 ω5

6

0

1

context prob.
focal set

ω1 ω2 ω3 ω4 ω5

c1
1
3

• •
c2

1
2

• •
c3

1
6

• • • ω1 ω2 ω3 ω4 ω5

6

0

1

Figure 4.2: Two random sets with identical one-point coverages (shading indi-
cates contributions from individual contexts)

4.4.4 Relation to Random Set Properties

Definition 4.8 permits to link some properties of possibility distributions to prop-
erties of the random sets from which they were generated. In order for a possi-
bility distribution to be normalized in the context model at least one element of
its domain Ω must exhibit a possibility degree of 1. This means that the element
has to be logically possible in all contexts with positive probability. Therefore,
the underlying random set must fulfill the consistency criterion previously given
by Definition 4.2. Conversely, every consistent random sets induces a normal-
ized possibility distribution. Figure 4.3 demonstrates the connection between
properties of random sets and induced one-point coverages.

If we further restrict the admissible random sets to those with consonant focal
sets, then the elementary possibility assignment suffices to reconstruct the orig-
inal random set representation. Because the focal sets are nested, the subset
relation defines a total ordering on those sets (compare Definition 4.3). Conse-
quently, for each element ω ∈ Ω with π(ω) > 0 there is a minimal focal F set
such that the element is covered by all focal sets at least as large as F but none
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context prob.
focal set

ω1 ω2 ω3 ω4 ω5

c1
1
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2
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6
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0
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Figure 4.3: Examples of random sets and their respective one-point coverages
(from top to bottom: consistent, with consonant focal sets, focal sets
are singletons, disjoint focal sets)

of the smaller ones. Moreover, contexts are required to have distinct focal sets,
so every particular focal set F contains at least one element ωF not covered by
any smaller focal set.

The probability for the largest focal set may be recovered directly as the minimum
of the individual possibility degrees of its elements. Once the probability of the
contexts associated with all larger focal sets is known, the same argument can
be applied to deduce the context probability of the second largest and then
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increasingly smaller focal sets. To compute the probability P (Γ−1(F )) of the
context related too a focal set F the aggregated probability of the contexts
P ({c ∈ C: Γ(c) ⊃ F}) is deducted from the possibility π(ωF ) = minω∈F π(ω) =
P ({c ∈ C: Γ(c) ⊇ F}) for one such least possible element ωF ∈ F .

Finally it is remarked that if all focal sets are singletons, than the resulting one-
point coverage is a probability distribution. Likewise, the probabilistic approach
is applicable whenever focal sets are mutually disjoint. In that case the underly-
ing frame of discernment can simply be replaced with a coarsened version that
drops the distinction between elements of the same focal set. Unfortunately,
some operations of the axiomatic possibilistic framework are inconsistent with
the probabilistic view adopted under a random set-based interpretation, as will
be demonstrated below.

4.4.5 The Possibilistic Aggregation Problem

Although the random set-based interpretation applied in the context model pro-
vides semantics for elementary possibility assignments, possibility measures over
subsets of a frame of discernment must still be addressed. Applying the intu-
ition proposed by the context model, the possibility of an event E should reflect
the combined probability of contexts, under which an event E ⊆ Ω is logically
possible. A formalization of that idea results in the re-definition of a possibility
measure in the sense of the context model (Borgelt and Kruse, 2002):

Definition 4.9. Consider a set of contexts C that is the carrier of a probability
space (C, 2C , P ) associated with a random set Γ : C → 2Ω, such that the focal
sets Γ(c) reflects possible outcomes of an experiment under the uncertain contexts
c ∈ C. The possibility measure induced by Γ is the mapping

Π : 2Ω → [0, 1]

∀E ⊆ Ω : E 7→ P ({c ∈ C:E ∩ Γ(c) 6= ∅}) .

In order for an event E to be possible under the a given context it suffices if one
of the elementary outcomes in E is logically possible. Thus E will be possible
under any context that enables at least one of the elements ω ∈ E. This view
formally coincides with the concept of a plausibility measure (Equation 4.5),
which was discussed earlier.

The advantage of using Definition 4.9 as the basis of a possibility measure is
that the possibility assignments reflect upper bounds for probabilities, yet do
not require observations of the same quality as would be required for a full
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probabilistic assessment. This property is useful, whenever variables are difficult
or costly to observe, become available only at a late stage of an ongoing process
under observation or rely on extensive collections of sample cases for acceptable
distribution estimates. For the same reason it is sometimes appropriate to drop
the distinction with respect to a subset of variables, that are irrelevant to the
investigated situation. The the latter case one chooses to operate with statements
that refer to a coarsened frame of discernment.

Example 4.3. During admission to hospital for a planned procedure a patient
tests positive for a bacterial pathogen. The infection is at an early stage and
the initial analysis does not reveal the actual strain involved. Results of a de-
tailed analysis will not be available for several days. Patients will almost never
be infected with more than one strain at a time and the distribution of strains
attributed to recent infections in the area is as follows:

Strain Strain A Strain B Strain C
proportion of infections 0.75 0.2 0.05

The medical literature lists possible progressions and associated transmission
risks for each of the strains:

Strain A:
infectious- symptoms

ness none mild serious
low • •
high •

Strain B:
infectious- symptoms

ness none mild serious
low
high • • •

Strain C:
infectious- symptoms

ness none mild serious
low • •
high

Setting the unknown strain as a context attribute and applying the context model
to summarize the above pieces of information yields a possibilistic assessment:

infectious- symptoms
ness none mild serious
low 0.75 0.80 0.05
high 0.95 0.20 0.20
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Because the patient was isolated before reaching an infective stage, infectiousness
is not relevant for the assessment. Dropping the distinction by that attribute,
we observe that asymptomatic progression is possible for infections with strain
A and B. Moreover, while mild symptoms are possible for all strains, only the
strains B and C have potential to cause serious symptoms in the patient. The
application of Equation 4.9 with the now coarsened frame of discernment yields
the one-dimensional possibility distribution:

symptoms
none mild serious
0.95 1.0 0.25

�

Example 4.3 demonstrates the effect of coarsening a frame of discernment on a
possibility assignment in the context model. If some attributes defining a frame of
discernment are unobserved, irrelevant to the question at hand or have a domain
that is insufficiently discerned by the observation a modeler can choose to merge
subsets of an original frame of discernment and view them as single states. With
the distinction of the original elements abandoned, that new states are logically
possible in any of the contexts that permit at least one of its constituent ele-
ment (those distinguished only w.r.t. the original frame of discernment). Hence,
the possibility degree induced w.r.t. an element of the resulting, coarser frame is
equivalent to assigning a degree of plausibility to their corresponding subsets of
the original, finer frame (cf. Equation 4.5. Any event discerned in the coarser
frame will also be discernible in the finer one. The resulting possibility assign-
ments that are compatible with the formal requirements for plausibility measures
in the random set framework.

Unfortunately, the axiomatic approach to possibility and its mechanism for ex-
tending a possibility distributions to compute a possibility measure do not meet
this compatibility criterion. According to Equation 4.12 the possibility of any
nonempty subset E of Ω is simply fixed as the largest possibility degree assigned
to any individual element in E. In the diagnosis example 4.3 this would result
in underestimating the possibility of symptomatic progression.

Phrased in the terminology of the context model, the aggregation rule of the
axiomatic approach, attributes the probability that the context in effect allows
for the maximal possible element in E as a degree of possibility Π(E) to the
whole subset E ⊆ Ω claiming:

Π(E) = max
ω∈E

π(ω) = max
ω∈E

P ({c ∈ C:ω ∈ Γ(c)}). (4.15)
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Yet, possibility measures in the sense of the context model do not in general
exhibit the maxitivity property from Definition 4.6.

The difference is highlighted when looking at the sequence of operations that
leads form the random set representations reflecting context selection probabili-
ties and their associated permissible outcomes to the marginal possibility assign-
ment: The context model interpretation requires to project the sets of outcomes
to the target attribute set first and only then aggregate context probabilities for
elements covered by the projection. In contrast computation via the maximum
involves aggregation of context probabilities on the original domain, followed by
a projection of the resulting possibility assignments. Yet, as demonstrated by
Example 4.3 the two operations are not distributive. Hence, Equation 4.15 is
not applicable.

This presents us with the choice to restrict the model to the case of consonant
focal sets, for which aggregation is consistent with the maxitivity axiom, or to
dismiss the maxitivity axiom altogether in order to retain a meaningful interpre-
tation of numerical possibility degrees in the more general setting.

First we remark that the consonance assumption for an application context re-
quires justification in the form of background knowledge about the relation of
contexts. If such constraints are available, however, a more direct approach us-
ing a parametric model based on probability theory would usually be preferable
to reasoning with possibility distributions. We will therefore pursue the second
option.

As a consequence of our dismissal of the maxitivity criterion, a possibility mea-
sure may not be computed from the elementary possibility assignments alone. As
a one-point coverage of a random set, the possibility assignment accounts for the
probability mass of the contexts compatible to individual elements in a subset
E ⊆ Ω only. But unlike the full random set representation, the more compact
one-point-coverage does not retain the separation of contributions from different
contexts when |E| > 1. If the possibility of an event cannot be computed using
the maximum operator, can we at least determine bounds for this possibility from
the elementary possibility distribution? Obviously, the elementary possibility as-
signed to a maximally possible element ωi ∈ E:∀ω ∈ Eπ(ωj) ≥ π(ω) constitutes
a lower bound for the possibility of E. Any context that permits the “most
possible” element of E also permits the event E as a whole. On the other hand,
Π(E) potentially includes additional probability mass from contexts associated
with focal sets that cover elements of E other than ωi, so Π(E) ≥ maxω∈E π(ω).
To find an upper boundary of Π(E) one must consider a compatible random
set such that the probability mass associated with focal sets with E is maximal
for a given one point coverage. A straightforward approach to construct such
a random set is to distribute possibility assignments to the elements of E, to
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separate context whenever possible, permitting overlap only to ensure the total
mass of all involved contexts remains limited to unity.

Summarizing these considerations, the context model interpretation demands
that Equation 4.15 is replaced by the weaker condition

max
ω∈E

π(ω) ≤ Π(E) ≤ min

{∑
ω∈E

π(ω), 1

}
. (4.16)

With only the weak link between joint and marginal possibility distributions
provided by the above inequality the capacity of joint possibility distributions
to serve as knowledge representations is limited. I will refer to this limitation as
the possibilistic aggregation problem.

4.4.6 Maxitivity and Consonance

The problem of possibilistic aggregation may be resolved for the case of conso-
nant, i.e. nested focal sets. For random sets with the consonance property all
focal sets overlapping with an arbitrary set E ⊆ Ω are guaranteed to have a com-
mon intersection. It is this intersection, that necessarily contains the maximally
possible elements of E. This argument allows to reconcile Equation 4.15 with
the idea of a plausibility measure:

max
ω∈E

π(ω) = max
ω∈E

P ({c ∈ C:ω ∈ Γ(c)})

= P ({c ∈ C: Γ(c) ∩ E 6= ∅}) = Π(E) = Pl(E). (4.17)

It can also be demonstrated, that in the maximum of elementary possibility
degrees are not necessarily plausibility measure: For instance, using the pos-
sibility distribution induced from the consistent random set from Figure 4.3
(topmost diagrams) and E = {ω4, ω5} the maximal value of the elementary pos-
sibility assignment maxω∈E π(ω) is only 2

3
whereas the plausibility measure yields

Pl(E) = 1.

More generally: for any random set with non-consonant focal sets there exists a
pair of contexts c1, c2 ∈ C,P ({c1}) > 0, P ({c2}) > 0, such that neither Γ(c1) ⊆
Γ(c2) nor Γ(c2) ⊆ Γ(c1) (Equation 4.3). If we choose E = (Γ(c1)∪Γ(c2))\(Γ(c1)∩
Γ(c2)), then the resulting set contains elements of both Γ(c1) and Γ(c2). Thus
Π(E) draws on the probability mass of both contexts. Yet, since the intersection
Γ(c1) ∩ Γ(c2) is excluded, there is no single element in ω ∈ E that is enabled
under both contexts. Because any other contexts under which an individual
element of ω ∈ E is logically possible also contribute to Π(E), it follows that
maxω∈E π(ω) < Π(E).
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This argument limits the maximum-based aggregation operator in the axiomatic
possibility theory to distributions induced from consonant random sets. Al-
though this limitation was already recognized in (Dubois and Prade, 1988a), the
restrictive consonance requirements still present mayor limitation to proposed
applications of the framework.

4.4.7 Discussion of Possibility Theory

Possibility distributions in the sense of the context model provide easily com-
puted, interpretable and compact summary of random sets. Even though pos-
sibility distributions may not reflect the relation between contexts, the repre-
sentation preserves practically relevant aspects of random sets. For that reason
the concept of possibility proves useful for the presentation or visualization of
static distributions over sets. The arguably most substantial limitation of possi-
bilistic information representations using the context model, however, is due to
the lack of a well-defined aggregation operator. This effectively restricts purely
possibilistic models to elementary events and a single fixed frame of discernment
at a time.

Although restricting the application of possibilistic models to consonant focal
sets, would ensure the semantically meaningful aggregation of possibility mea-
sures via the maximum operator, the assumption, that unrelated contexts should
produce nested focal sets cannot be reconciled with the goal of developing a gen-
erally applicable information-compressed representation of random sets. For in-
stance with random sets based on empirical probability, it is hard to see why the
observed sets should exhibit the consonance property. If, however the application
context provides such constraints the possibilistic approach permits simple and
efficient tools for reasoning.

While it might be suggested to employ the possibility bounds identified in Equa-
tion 4.16 as a basis of a knowledge model, at least two arguments may be brought
up against this proposal. Firstly, the possibility degree of any event already con-
stitutes an upper boundary of a probability degree. A lower bound of such a
possibility degree would be difficult to interpret and hardly convey useful infor-
mation about the occurrence of an event. Secondly, unless almost all focal sets
associated with common contexts are singletons, the upper boundary based on
the bounded sum of elementary possibility degrees would not be very informa-
tive, almost always taking the value 1. In other words, the transfer of information
between different frames would not be sufficiently information-efficient to be of
practical utility in a knowledge model.
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4.5 Conclusions

Having investigated extant techniques to represent distributions over set-valued
concepts, we may now assess those approaches w.r.t their suitability to the de-
velopment of an extended framework that allows to construct such models from
inhomogeneous data sources and convert the resulting distributions between dif-
ferent frames of discernment.

The most direct approach using random set applies the conventional probabilis-
tic framework to set-concepts by considering probability distributions over power
sets of an underlying set-universe (i.e., the frame of discernment). The frame-
work may draw on the well-founded probabilistic reasoning methods to combine
information from different sources. As outlined in Section 4.2 its main drawback
when applied to modeling knowledge is the insufficient scalability of the approach
due to the exponential growth of the sample space, when the resolution of the
frame of discernment is increased. The large number of degrees of freedom for
the resulting distributions is detrimental both in regard to its storage require-
ments and, more importantly, due to the difficulties of reliably estimating the
numerous model parameters from limited data.

In contrast to that, an approach based on the Dempster-Shafer framework (Sec-
tion 4.3) lacks the means to encode the statistical interaction between attributes
or information sources. While the Dempster-Shafer theory complies with the
more general random set framework with regard to the transfer of information
from finer to coarser frames of discernment, its simple rule for combining infor-
mation must be rejected for the knowledge representation setting at hand due to
the lack of justification for the postulated independence assumptions. Moreover,
as with random sets, the need to explicitly represent focal sets seriously restricts
the application of the approach for larger attribute domains, as the number of
potential focal sets grows exponentially with the cardinality of the underlying
set domain.

Finally, the possibilistic framework, which was investigated in Section 4.4, per-
mits to capture some relevant pieces of information about random sets in a com-
pact representation. Yet, unless consonance is presumed, the maximum-based
aggregation method of as standard possibility theory fails to conform with the
semantics of the underlying context model interpretation. Due to the lack of a
generally applicable aggregation operator, possibility theory as discussed in the
preceding section may not serve as the basis of a frame-spanning representation
for set-attributes.

Nevertheless, each of the above approaches can contributes to the development of
a frame-spanning knowledge representation for set-based concepts. The random
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set model, although limited in its practical applicability due to scalability issues,
provides a reference for comparison via test cases and a starting point for the
development of a simplified representation framework.

The inspiration that may be drawn from Shafer’s approach is the introduction
a heuristic component, which may in part takes over the role of the potentially
inassessable probabilistic interaction structure of a direct random set represen-
tation. However, to avoid inconsistencies due to unjustified assumptions, the
application of heuristics in models should be limited. For instance, it may be
admissible to supplement missing detail to a model otherwise built upon a solid
foundation of empirical estimates, if the consequences of these assumption do
not propagate to pollute empirically accessible parameters.

The arguably most interesting feature of the possibilistic framework for the con-
text model is its use of one-point coverages for summarizing random-set repre-
sentations. Depending on the particular concepts formalized using the focal sets,
the one-point coverage has an intuitive interpretation, e.g. as a degree of eviden-
tial support or as a measure of an elements compatibility with soft constraints
(Hüllermeier, 2003). The key to their successful application in a knowledge model
is to overcome the limitations of the possibilistic aggregation operator. To that
end it is necessary to provide algorithms and data structures for relating one-
point coverages induced w.r.t. different frames of discernment to each other.

In the following chapter I will introduce a condensed representation for multivari-
ate distributions obtained from set-valued data, which was developed based on
these conclusions. It adopts one-point coverages and the context model interpre-
tation as its main tools for presenting information, but anchors their distributions
on a probabilistic framework and a partitioning of the power set of a frame of
discernment. Specialized data structures serve to connect joint and marginal
distributions and can be used to to implement reasoning on structured domains.
The proposed representation allows to recover the probability of singleton events
and one-point-coverages for each element of the frame of discernment.
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5 Condensed Representation for
Set-Attribute Distributions

In the previous chapters I have argued for developing a new frame-spanning
knowledge representation for set-valued attributes, discussed desired properties
such a framework and elaborated an outline for implementing it. The present
chapter serves to further elaborate the mathematical foundations, data structures
and formal mechanisms that enabled the realization of these ideas.

Following the introduction of some conventions and helpful notations, Section 5.2
presents a condensed representation for set-valued attributes (Rügheimer, 2007).
While conceptually drawing on the random-set approach, the proposed represen-
tations avoids the difficulties linked to distributions on power sets by grouping
multi-valued outcomes. This permits to strike a balance between practical con-
siderations, such as scalability and the availability of data for parameter estima-
tion on one hand, and accuracy on various levels of detail on the other hand. The
approach is later extended to multi-dimensional domains in Section 5.3 before
being complemented with an investigation into operations for conditioning con-
densed set-valued distributions and for computing their marginal distributions.
The results are then integrated into the general framework of Graphical Models
to achieve a compact representation that supports efficient reasoning.

Section 5.4 deals with the application of the condensed distributions to hierar-
chically structured attribute domains. It is shown that condensed distributions
provide the means to extend such structures to adapt them to the case of multi-
label instantiations. The resulting data structures and associated mechanisms
are well suited to modern knowledge representation and data analysis tasks.
When projecting onto ontologies used in information retrieval or bioinformatics,
for instance, condensed distributions provide meaningful operations for relating
and mapping annotations or compare their distributions on multiple levels of de-
tail while taking into account the structure of underlying term relations. Because
the model uses a decomposition of distributions, it permits the combination of
scarce case-specific observation with a lager body of generic distribution infor-
mation about reference cases.
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5.1 Conventions and Notation

To enhance the presentation of subsequent sections and facilitate their recep-
tion, it is useful to stipulate some conventions. I will designate attributes with
capital letters from the beginning of the alphabet, whereas letters from the sec-
ond half are used for sets. Resuming the notation introduced in chapter 2, the
superscripts ∗ and � indicate set-valued attributes and condensed set-valued at-
tributes1 respectively. The same superscripts are used to mark the associated
distributions. When applied to symbols that denote a distribution, subscripts
indicate the set of attributes or base attributes over whose joint domain the
distribution is defined. The same scheme is applied to symbols for frames of dis-
cernment. Furthermore, subscripts are used for indices, e.g. when enumerating
the elements of an attribute domain.

Although, in a strict sense, proportions and empirical probability refer to an
underlying set of objects O, I will treat the induced distributions over attribute
domains as results of random processes in their own right. Thus, when dealing
with distributions, attributes are represented as random variables. For instance,
I write P (ω) or P (A = ω) as a shortcut for P ({o ∈ O:A(o) = ω}). The
justification for this abstraction is that the original set of objects is not part
of the model itself and of concern only on the interpretation level. For similar
reasons, I will not exclude the empty set from the admissible values of a set-valued
attribute, as the question of whether it should be permitted or not is related to
the applied interpretation rather than the formal representation itself. Although
for the proposed versions of the framework, no special precautions are taken to
ensure high precision for recovering the probability mass assigned to the empty
set outcome2 from the condensed representation, the proposed data structures
are easily modified by an additional field to better support interpretations that
attribute a special role to the empty-set outcome.

5.2 Condensed Representation

As demonstrated in Subsection 2.3.3 the probability (density) distribution p over
an attribute domain Ω{A} carries all the information required to recover a prob-
ability measure P over that domain. Obviously, this property is independent of
the interpretation or type of elements forming the sample space. Hence the above
argument fully applies to a set-valued attribute A∗ taking values from 2Ω{A} , in
which the underlying probability distribution p∗ is defined over the power set

1to be introduced in Section 5.2
2Note the difference between the empty-set outcome {∅} and the impossible event ∅
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(i.e., the set of all subsets) of Ω{A}. Each individual subset corresponds to a
combination of the two possible states (presence or absence) for each element of
the carrier set. Thus the number of elements in 2Ω{A} is exponential in the size
of Ω{A}.

Given that the “base vocabulary” of even the smallest ontologies rarely comprises
less than 50 terms, (e.g., Gene Ontology: > 120 in slim version, > 32000 in
full version) several issues must be addressed to develop useable computational
models for distributions over sets. Because the space of possible set instantiations
grows exponentially in the number of admissible elements, memory requirements
become an obvious obstacle to a direct representation (Gigabyte range being
reached for underlying sets with around 30 items). The same considerations
apply to computational resources required for operating on such distributions.
But even if all values can be represented in memory and sufficient computational
capacity is available, the problem of providing estimates of these often very
small probabilities from observed data remains. This however would requires
unrealistically large samples (see, e.g. Wasserman, 2006).

Fortunately, probability estimates are rarely required on the level of individual
set-valued outcomes. Instead, applications may draw on certain summaries of
value distributions to provide useful decision criteria or even comparisons be-
tween sets of observations. Probabilities of singletons and the probability of
coverage of elements by set-valued events (one-point coverages) are of particular
interest in that respect. In fact, for application, such as mass spectrometry, one
point coverages are correspond to only measurements directly obtained in exper-
iments with other variables being inferred by comparison with results from to
in-silico models. By focusing on a small set of relevant parameters the proposed
condensed representation achieves a compact, scalable summary of statistical
information regarding set attributes.

The approach is based on partitioning the set of the subsets of a sample space
Ω and a mapping of set-distributions to a probability/possibility distribution
over the condensed domains. In the formalization of that approach a special
attribute value is introduced to label outcomes that are multi-valued w.r.t. a
frame of discernment Ω. In the standard variant of the model the same label
is applied to empty set outcomes if it is enabled for the setting. For simplicity,
let us initially consider the case of a frame of discernment based on a single
attribute:

Definition 5.1. Let Ω denote a frame of discernment. Furthermore let ω� be a
special symbol uniquely associated with and not already contained in Ω. Consider
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a mapping σ from the set of subsets 2Ω to the extended set universe Ω∪{ω�}

σ : 2Ω → Ω ∪ {ω�}

∀S ⊆ Ω : σ(S) =

 ω if S = {ω}, ω ∈ Ω,

ω� otherwise.

I call σ the set reduction mapping w.r.t. Ω.

It is easily verified that σ preserves the distinction between singleton elements
of 2Ω, but groups the multi-valued outcomes in a separate class. Consider now
a set-valued attribute A∗ taking values from 2Ω. Using the the set reduction
mapping, it is now possible to define an condensed set-valued attribute A� that
is linked to the values of A∗:

Definition 5.2. Let A∗ be a set-valued attribute A∗ : O → 2Ω. Additionally let
σ : 2Ω → Ω ∪ {ω�} denote the set reduction mapping w.r.t. Ω. The condensed
set-valued attribute A� induced by A∗ is a mapping:

A� : O → Ω ∪ {ω�}

∀o ∈ O : o 7→ σ(A∗(o)).

The relation between the attribute domain conveyed by the set reduction map-
ping is illustrated in Figure 5.1. The underlying set Ω is referred to as the basic
domain of the condensed set-valued attribute A� (written Ω = bdom(A�)).

Per Definition 5.2 the values of A� depend directly on the values of A∗. Conse-
quently a probability distribution p∗ over dom(A∗) induces a probability distri-
bution p� over dom(A�), which summarizes p∗.

p�(ω) = P ∗({S:σ(S) = ω})

= P ∗(σ−1(ω))

=


p∗({ω}) if ω ∈ bdom(A�),∑
S∈dom(A∗),|S|6=1

p∗(S) if ω = ω�.

(5.1)

The function p� is called a condensed probability distribution One advantage of
defining P ∗ via the pre-image of ω under σ is the abstraction from the underlying
set of objects. This allows to separate the interpretation layer of the model from
the mathematical tools for reasoning. Moreover, the abstraction permits to view
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ω1 ω2 ω3 ω� ω1 ω2 ω3

{ω1} {ω2} {ω3} {ω1, ω2} {ω1, ω3} {ω2, ω3} {ω1, ω2, ω3} ∅

? ? ? ?

dom(A∗) = 2Ω︷ ︸︸ ︷

︸ ︷︷ ︸
dom(A�) = Ω ∪ {ω�}

︸ ︷︷ ︸
bdom(A�) = Ω

Figure 5.1: Domains of a set-valued attribute A∗, the induced condensed set-
valued attribute A� and underlying basic domain Ω. Arrows indicate
the set reduction mapping w.r.t Ω. Shaded elements of dom(A∗)
mark multi-valued outcomes covering ω2.

attributes as random variables, when the focus is on distributions of attribute
values rather than on individual objects in O. Specifically, a set-valued attribute
A∗ will be viewed as a random set.

It is remarked, that for any element ω ∈ bdom(A�), the value p�(ω) quanti-
fies not a probability of occurrence, but rather the probability of observing ω
as the only element in a set-valued outcome of A∗(ω). The probability mass
originally associated with multi-valued outcomes S:S ∈ dom(A∗), |S| > 1 or
with the empty-set outcome is assigned to a surrogate attribute value ω� in
the condensed probability distribution. This approach leads to two immediate
benefits: Firstly, since p� is still a probability distribution, well established oper-
ations of the probabilistic framework like conditioning and marginalization can
be employed with this representation. In addition to that, Definition 5.2 can be
applied to estimate the condensed probability distributions directly from obser-
vations of set-outcomes, i.e. without prior computation of the distribution p∗. It
is also remarked any that probability distribution over a single-valued attribute
A, dom(A) = bdom(A�) = Ω is subsumed in the representation without loss of
information. In that case the corresponding condensed probability distribution
is simply given by p�(ω) = p(ω) and p�(ω�) = 0.

So far the discussion on a compact representation of distributions related to set-
valued attributes was focused on the probabilities of singleton outcomes. Due
to the equality p∗({ω}) = p�(ω), the probability of such outcomes may be read
directly from the distributions for the corresponding condensed set-valued at-
tributes. To support the reconstruction of one-point coverages, however, a richer
representation is required.
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Given a probability distribution p∗ for a set-valued attribute A∗ taking values
from 2Ω, the one-point coverage of individual elements ω ∈ Ω is computed as
follows:

∀ω ∈ Ω : opc(ω) = P ∗(S : S ⊆ Ω ∧ ω ∈ S) =
∑
S⊆Ω
ω∈S

p∗(S). (5.2)

For each ω ∈ Ω one element of the sum in the right-hand expression of Equa-
tion 5.2 is obtained directly from the distribution p� of the induced condensed
attribute A�. For S = {ω} the summand is recovered due to the equality
p∗(S) = p∗({ω}) = p�(ω). Moreover S = ∅ needs not be considered, when
computing one-point coverages (no element can be covered by the empty set).
To represent the joint contributions from all other subsets of Ω, the latter are
encoded as proportions relative to p�(ω�) (called coverage factors):

Definition 5.3. Let p∗ denote a distribution linked to a set-valued attribute (A∗)
over 2Ω and p� the distribution over the domain dom(A�) of an induced condensed
set-valued attribute A� obtained by applying equation 5.1. Then the coverage
function c� relative to multi-valued outcomes of A∗ is defined as a function

c� : Ω → [0, 1]

ω 7→


∑
S⊆Ω,ω∈S,|S|>1 p

∗(S)

p�(ω�)
if p�(ω�) > 0,

1 otherwise.

For p�(ω�) the value c�(ω) denotes the conditional probability for ω being con-
tained in an outcome, given that outcome is not a singleton. Although the con-
tributions to the one-point coverage could have been stored directly, the repre-
sentation via relative coverage factors was chosen to better support probabilistic
conditioning and marginalization operations discussed in Section 5.3.

It is remarked that for p�(ω�) = 0, the conditional probability expressed in the
coverage factor remains undefined. The reference implementation handles this
situation by assigning a fixed positive value of 1. This has no adverse effects
on subsequent calculations, as those values will always be weighted with a zero
probability p�(ω�). Once assigned, a zero-value is not affected by subsequent
conditioning operations, so the is guaranteed to work even in a dynamic set-
ting. An additional benefit of the above technique is that it permits to recover
contributions to the one-point coverage simply by multiplying with p�(ω�).

Like the distribution p�, the relative coverage factors assigned by c� can be com-
puted directly from data. Replacing the sum in Equation 5.2 the one-point
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coverage may now be rewritten as

∀ω ∈ Ω : opc(ω) =
∑
S⊆Ω
ω∈S

p∗(S) = p�(ω) + p�(ω�) · c�(ω) (5.3)

In the following, the term condensed distribution is understood to refer to a
tuple (p�, c�) that is formed by a condensed probability distribution and the
corresponding coverage function.

The advantage of the condensed set-valued attribute A� and the function p�

and c� over the full random set representation is the reduction of the number
of parameters. For each attribute value only the probability for the singleton
outcome and the coverage factor, that is 2|Ω| values, need to be stored. For
practical reasons, it is also advantageous to explicitly represent the total prob-
ability mass of multi-valued outcomes (though in principle this value could be
recovered by deducting the combined probability of all singleton outcomes from
unity). Thus the number of distribution parameters grows linearly in the size of
the underlying base domain Ω. In contrast, a full distribution over sets considers
2|Ω| elements, where one parameter is redundant due to the normality condition
for the probability distribution p∗.

Besides its capacity to provide information summaries, the condensed repre-
sentation is well suited to model the interactions of set distributions and one
point coverages between joint and marginal domains. This property allows to
substitute condensed distributions for random sets in multivariate or structured
domains.

5.3 Extension to the Multivariate Case

So far only distributions over single attributes have been considered. This is
usually sufficient for tasks centered around processing static information, such
as the comparison between of gene expression patterns between conditions or
between different populations. For reasoning or dependency analysis however, it
is necessary to examine the interactions across attributes. Attribute interactions
are captured directly by modeling joint distributions (contingency tables) or
indirectly by estimating derived properties of such distributions (e.g. correlation
analysis). This section extends the condensed distribution framework to the
multivariate setting. Furthermore, it proposes an analogue of the contingency
table approach for obtaining multivariate versions of condensed distributions
from empirical data. Following that, operations for reasoning with condensed
distribution are elaborated.
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5 Condensed Representation for Set-Attribute Distributions

5.3.1 Introduction to Tuple-Based Formalization

For clarity the condensed distribution was introduced for the one-dimensional
case first. To that end a simple representation on the basis of attributes as
functions defined on sets of objects was used. When working with multivari-
ate distributions however, observations and propositions may refer not only to
the complete variable set under investigation, but also to lower-dimensional pro-
jections thereof. Therefore the specification language and connected operations
must clearly identify the set of variables an observation or statement refers to.
Moreover the integration of data from different sources and goal-oriented pre-
sentation of results call for operations to convert information about observed
instances and distributions between different sets of reference variables.

A tuple-oriented formalization of the sample space provides a convenient tool
to address these issues. Although the additional layer of abstraction introduced
by tuples initially calls for a slightly more complicated formalization of object
properties, this is more than made up for by the unique advantages this for-
malization offers for the discussion of multivariate distributions. The formalism
allows to approach the projection and aggregation operations used for computing
and exchanging information via marginal distributions in an intuitive manner.
Those operations have a central role when dealing with high-dimensional mul-
tivariate data because they allow to consider distributions on lower-dimensional
subspaces rather than the variable set as a whole. The tuple-based formaliza-
tion was previously used in Borgelt and Kruse (2002), where it is explicated in
detail and applied to the discussion of problems in reasoning with probabilistic
and possibilistic Graphical Models. This subsection recapitulates some essential
definitions adapted from that source and supplements them with the extensions
for the additional distribution types proposed in this thesis.

The central idea of the alternative formalization suggested by Borgelt and Kruse
is to provide object descriptions not via attributes themselves, but rather indi-
rectly by mapping to so called tuples or instantiations. The instantiations in
turn are represented as functions that assign values to the elements of a selection
of attributes. The attributes are thus reduced to the role of variables that are
connected to a range of possible values. The tuples themselves are represent
combinations of constraints on a set of entities, that is, they delineate subsets or
categories of such entities.

This indirect approach allows to make explicit the set of attributes considered
in the model. More importantly, it permits to define partial instantiations w.r.t.
different subsets of attributes. While all these functions could also be achieved
using a more “conventional’ formalization that encodes each attribute as a posi-
tion in a value vector for a specified reference set, the convenience of conducting
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5.3 Extension to the Multivariate Case

operation without the need of index transformations provides a powerful argu-
ment for switching to the function-based formalization (compare Borgelt and
Kruse, 2002, p. 64).

Since the tuple-based formalization of joint attribute domains was originally used
for single-valued attributes. I will start by re-iterating the definitions for that
case (after Borgelt and Kruse (2002)):

Definition 5.4. Consider a finite set X of attributes. An instantiation of the
attributes in X or a tuple over X is a mapping

tX : X →
⋃
A∈X dom(A)

such that

∀A ∈ X : tX(A) ∈ dom(A).

The set of all tuples over X is denoted TX .

The definition ensures that each attribute A ∈ X may only be mapped to el-
ements of its original domain dom(A). The notation dom(t) = X is used to
indicate that t is a tuple over X. A tuple t over {A,B,C}, which maps attribute
A to a1, B to b2 and C to c2 is written t = (A 7→ a1, B 7→ b2, C 7→ c2). This is
shortened to t = (a1, b2, c2), if an implicit order is fixed.

As remarked earlier, the formalization is particularly useful for discussing the
projection operation. The practical utility of the projections is that information
need not be presented with respect to a fixed frame of discernment. Projections
allows to “disregard” distinctions based on attributes that are unavailable or
deemed irrelevant to particular information needs. Thus the presentation of
information can be adapted to suit specific tasks. To project a single tuple over
an attribute set X to an attribute set Y ⊆ X it suffices to apply the mappings
for the attributes in Y from the tuple tX , or formally (from Borgelt and Kruse,
2002, p. 64):

Definition 5.5. If tX is a tuple over a set X of attributes and Y ⊆ X, then
tX|Y denotes the restriction or projection of the tuple tX to Y . That is, the
mapping tX|Y assigns values only to the attributes in Y . Hence dom(tX|Y ) = Y ,
i.e. tX|Y is a tuple over the attribute set Y .

In other words, the operation allows to select a relevant subset of attributes. In
particular, tX|∅ yields the empty tuple (). For application to sets of tuples over
an attribute set (i.e. relations), that definition is extended (after Borgelt and
Kruse, 2002, p. 64):
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5 Condensed Representation for Set-Attribute Distributions

Definition 5.6. Let RX be a relation over a set X of attributes and Y ⊆ X.
The projection projXY (RX) of the relation RX from X to Y is defined as

projXY (RX)
def
={tY ∈ TY | ∃tX ∈ RX : tY ≡ tX|Y }.

The relevance of the projection operation results from its capability to relate
and convert between set-valued instantiations with respect to different subsets
of underlying attribute set X. This may be used, for instance, to simplify the
notation of the decomposition rules given in Chapter 3. In the new notation, the
chain rule decomposition formula applied in Bayesian networks (Equation 3.2)
can be written as

pX(tX) =
∏
Ai∈X

p{Ai}|pred(Ai)(tX|{Ai} | tX|pred(Ai)). (5.4)

Similarly, a modified formulation of the decomposition rule for undirected graphs
used in Markov Networks may be given (compare Equation 3.3):

pX(tX) =
∏
Ci∈C

φCi(tX|Ci). (5.5)

As argued in Subsection 2.2.2 the set-valued descriptions with respect to groups
of attributes X are not limited to Cartesian products, but may well be a more
general relation over the domain of a combined attribute3. In the tuple-based
formalism such a relation is expressed directly as a subset RX ⊆ TX . It is
noted that by switching to the tuple-based formalization the observation-style
attributes that directly differentiated between classes of objects in a population
have been superseded by a new type of attribute. In the advanced formalization
the elements of the attribute set X discern the tuples in TX , and those tuples
now serve as the exclusive interface between formal model and modeled world
segment.

If the only cases considered are instantiations yielding a singleton, one triv-
ially represent this situation by using conventional attribute with dom(A) =
bdom(A�). We call such an attribute A the base attribute of a condensed set
valued attribute A�.

3In this point I deviate from Borgelt and Kruse (2002). The reason is, that Borgelt and Kruse
employed set-instantiations in connection to a database of sample cases, that contained
imprecise specifications for individual attribute values only, making a the limitation to
Cartesian product a convenient choice. Yet, their equations concerning the mechanism of
projection transfer to the more general case considered here.
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5.3.2 Multiple Condensed Set-Valued Attributes

Having generalized the notion of set-outcomes to combined attribute domains,
we can now formalize the proposed approach for generating, interpreting and and
operating with the condensed representation on in a multivariate setting. Like
with the one-dimensional case the condensed representation is based on mapping
sets of tuples from TX to instantiations tX� ∈ TX� w.r.t. condensed set-valued
attributes. On the formal level, the tuples TX� are treated just like instantiations
of single-valued attributes. Each of the tuples in turn specifies a combination of
the instantiations of component attributes taking values from extensions of the
domains of the attributes in X.

In the one-dimensional case, the conversion from of the set-valued attribute to a
regular one was achieved by grouping the non-singleton set-outcomes using the
set reduction mapping (Equation 5.1). In the multivariate case, however, indi-
vidual condensed set-valued attributes refer to projections of higher-dimensional
relations and not necessarily to those relations themselves. To keep track of
singleton elements in marginal distribution w.r.t. arbitrary subsets Y of the un-
derlying attribute set X, a finer partitioning based on the projections of the
multi-dimensional relation to the domains of individual attributes is employed.
To that end the simple set reduction mapping introduced in Definition 5.1 is
replaced with a more general mapping σX from set-valued outcomes to tuples
over of condensed set-valued attributes:

Definition 5.7. Consider a set X = {A1, . . . , An} of attributes and an asso-
ciated set of condensed set-valued attributes X� = {A�1, . . . , A�n} with domains
dom(A�i ) = dom(Ai) ∪ {a�i } for i = 1, . . . , n. The tuple-based set reduction
mapping is the function

σX : 2TX → TX�

that assigns to a relation S ⊆ TX the tuple

σX(S) : X� →
⋃

A�∈X�
dom(A�)

∀A�i ∈ X� : A�i 7→

 t{Ai}(Ai), if projX{Ai}(S) = {t{Ai}},

a�i , if |projX{Ai}(S)| 6= 1.

If S is a singleton {tX}, so are all its projections and σX({tX})(A�) = tX(A)
for all attributes A ∈ X. Conversely, if the cardinality of S differs from one,
σX(S) maps at least one of the attributes to the special symbol denoting a non-
singleton outcome. That mapping σX is now used to relate a distribution p∗ over
the power set of TX to a corresponding distribution over TX� .
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5 Condensed Representation for Set-Attribute Distributions

Definition 5.8. Let X� = {A�1, . . . , A�n} be a finite nonempty set of condensed
set-valued attributes with respective domains dom(A�1), . . . , dom(A�n) and let X =
{A1, . . . , An} denote the set of associated base attributes, such that dom(Ai) =
bdom(A�i ). A probability distribution p∗ over 2TX induces a condensed probability
distribution p� : TX� → [0, 1] with

p�(tX�) = P ∗({S ∈ TX : σ(S) = tX�}) =
∑

S∈σ−1
X (tX� )

p∗(S) (5.6)

For each tuple tX� , the inverse image under σX identifies the set-valued outcomes
that contribute to its probability mass in the condensed joint distribution. The
definition assigns exactly those set-outcomes S to tX� that fulfill either of the
following conditions for all attributes A ∈ X:

� tX�(A
�) ∈ bdom(A�) and S contains only tuples that assign the same value

to A as tX� does to A� (the outcome is single-valued w.r.t. A)

� tX�(A
�) 6∈ bdom(A�) and S has a projection to {A} with cardinality dif-

ferent from one, i.e., the outcome is either multi-valued w.r.t. A or the
empty-set outcome.

Thus, a tuple w.r.t. condensed set-valued attributes represents a class of set-
valued outcomes, defined by the cardinality class (singleton vs. non-singleton)
of an the outcome’s projections to each individual attribute’s domain and, if it
projects to a singleton, the particular instantiation of that attribute. Due to this
distinction, the representation retains all necessary information for computing
marginal distribution w.r.t. to any chosen subset of attributes (Figure 5.2).

The same distinction is applied for coverage functions. Whereas in the one-
dimensional case only one set of coverage factors was required, the multivariate

a1 a2 a3 a4 a5

b1

b2

b3

b4

a1 a2 a3 a4 a5

b1

b2

b3

b4

a1 a2 a3 a4 a5

b1

b2

b3

b4

Figure 5.2: Three relations with different projections to the individual attribute
domains. The respective tuples assigned by the set reduction map-
ping are (from left to right): (a�, b�); (a�, b3) and (a2, b

�).
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approach defines separate coverage functions with respect to all tuples over con-
densed set-valued attributes. For any fixed tuple tX� the attribute set X can be
partitioned into subsets:

Y � = {A� ∈ X�: tX�(A�) 6∈ bdom(A�)} and (5.7)

Z� = {A� ∈ X�: tY �(A�) ∈ bdom(A�)} = X� \ Y �. (5.8)

By Definition 5.7 the relations of the class represented via tX� contain only tuples
for which the instantiation of base attributes Z� have values corresponding to the
images of the respective condensed set-valued attributes under tX� . Furthermore,
these relations are set-valued w.r.t any of the attributes in Y . To enable the
reconstruction of the contribution of those relations to the one point-coverage
w.r.t. any set of tuples TW ,W ⊆ X, is suffices to store the coverage of tuples in
TY by the projections of the represented relations from 2TX .

This observation motivates a definition of the coverage factors with respect to the
classes induced by σ. To specify these factors a coverage function c�X,[Y ],tZ�

: TY →
[0, 1] is defined for any tuple TX� . The reference set, and thus TX� , is indicated
via the 2nd and 3rd subscripts. Assuming that the coverage function refers to
those relations that are mapped to a tuple tX� by the function σ, Y specifies the
set of attributes for which the relations have non-singleton projections, whereas
the tuple tZ� ≡ tX�|Z� serves to identify the common singleton projections to the
remaining attributes (compare Equations 5.7 and Equations 5.8).

Definition 5.9. Let X� = {A�1, . . . , A�n} be a finite nonempty set of condensed
set-valued attributes and X the set of respective base attributes. Furthermore let
p∗ denote a distribution over 2TX and p� the condensed set-valued distribution
induced by p∗. Let tX� be a tuple from TX� and the subsets Y � and Z� of X�

determined by applying Equations 5.7 and 5.8 w.r.t the tuple tX�. The coverage
function associated with the tuple tX� is a mapping c�X,[Y ],tZ�

: TY → [0, 1]

c�X,[Y ],tZ�
(tY )

def
=

{
P ∗({S:σ(S)=tX�∧tY ∈projXY (S)})

P ∗({S:σ(S)=tX�})
if P ∗({S : σ(S) = tX�}) > 0

1 otherwise,

=


∑

S∈σ−1(tX� )

tY ∈projX
Y

(S)

p∗(S)

p�(tX� )
if p�(tX�) > 0

1 otherwise,

(5.9)

where tZ� ≡ tX�|Z�.

Intuitively c�X,[Y ],tZ�
(tX|Y ) may be interpreted as the proportion of cases, in which

a particular tuple tX ∈ TX is covered by a relation, known to be multi-valued
w.r.t. all attributes in Y and none of the other attributes.
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5 Condensed Representation for Set-Attribute Distributions

The function c�X,[X],() specifies the relative coverage due to relations that under no
projection other than the one to the empty set appear as singletons. Its second
argument is always the empty tuple and coverage factors are given for the original
space TX . On the other end of the scale are the functions c�X,[∅],tX� . For these,
Equation 5.9 may be simplified as the inverse image of the respective tuples
tX� = tZ� under σX contains only a singleton {tX}. Furthermore, the projection
condition in the numerator may be dropped. This is seen by computing the
projection projX∅ ({tX}) = {()}, which is also the only possible tuple over the
empty variable set. Together with Equation 5.6 this yields unit value coverage
factors

c�X,[∅],tX� (()) =

{ ∑
S∈σ−1

X
(tX� )

p∗(S)

p�(tX� )
if p�(tX�) > 0

1 otherwise

=

{
p∗({tX})
p∗({tX})

if p�(tX�) > 0

1 otherwise
= 1.

Of course, these constant values need not be represented explicitly. A schematic
representation of a two-dimensional distribution over condensed set-valued at-
tributes with associated coverage factors is given in Figure 5.3.

c�{A,B},[{B}],(ai)(.)

p�{A,B}(.)

c�{A,B},[{A,B}],()(.)

c�{A,B},[{A}],(bj)(.)

b1

...

bm

b�

b1

...

bm

a1 a2 . . . an a� a1 a2 . . . an

c�{B},[{B}],()(.)


p�{B}(.)

b1
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b�

b1

...
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�
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�
�

B
B
B
B
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B

Figure 5.3: Joint distribution with coverage factors for two condensed set-valued
attributes and one of its marginal distributions.

The one-point coverage of a tuple tY ∈ TY from that representation, is computed
from the relative coverage functions for each the partitions introduced by the set
reduction mapping. For iterating over these coverage functions, it is convenient
to introduce an auxiliary function:
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Definition 5.10. Let X = {A1 . . . An} be a set of attributes. Furthermore, let
X� = {A�1 . . . A�n} be an associated set of condensed set-valued attributes, such
that dom(A�i ) = dom(Ai) ∪ {a�i }, ∀i = 1 . . . n. Given a tuple tX ∈ TX and an
attribute set Y ⊆ X The mapping mvX is the two-place function TX×2X → TX�
satisfying

mvX(tX , Y )(A�i ) =

{
tX(Ai), if Ai 6∈ Y ,
a�i , if Ai ∈ Y ,

(5.10)

where Y � ⊆ X� denotes those condensed-set valued attributes, that correspond to
the attributes in Y .

For convenience, the index indicating the reference set will be dropped if it is clear
from to the first argument. For instance mv(tX , Y ) will be used as a shorthand for
mvX(tX , Y ). When working with condensed set-valued attributes, the function
mvX can be used to mark out tuples that are images of relations containing a
given tuple tX in the corresponding full random set representation. Together with
the set of attributes Y w.r.t which the relations have non-singleton projections,
this allows to identify the cases that contribute to a particular coverage factor.
Based on this consideration we can now express one-point coverages opc(tX)
in terms of relative coverage factors and of probability degrees for tuples of
condensed attributes:

opc(tX) = P ∗({S ∈ 2TX : tX ∈ S})

=
∑

tX�∈TX� P
∗({S:σ(S) = tX� ∧ tX ∈ S})

Assuming that P ∗({S:σ(S) = tX�}) > 0, this is further expanded to

opc(tX) =
∑

tX�∈TX� P
∗({S:σ(S) = tX�}) · P

∗({S:σ(S)=tX�∧tX∈S})
P ∗({S:σ(S)=tX�})

=
∑

Y⊆X
Z=X\Y

P ∗({S:σ(S) = mv(tX , Y )}) · P
∗({S:σ(S)=mv(tX ,Y )∧tX|Y ∈projXY (S)})

P ∗({S:σ(S)=mv(tX ,Y )})

=
∑

Y⊆X
Z=X\Y

p�(mv(tX , Y )) ·

∑
S∈σ−1(mv(tX,Y ))

tX|Y ∈projX
Y

(S)

p∗(S)

p�(mv(tX ,Y ))

=
∑

Y⊆X
Z=X\Y

p�(mv(tX , Y )) · c�X,[Y ],mv(tX|Z ,∅)(tX|Y ).

The tuples tX� compatible with tX are constructed by applying mv with all
selections of attributes Y from X. To compute the one-point coverage of a
tuple tX ∈ TX , probabilities assigned to those compatible tuples are weighted
with the respective relative coverage factors. Conveniently, the above result also
applies if p�(tX�) = P ∗(σ(S) = tX�) = 0 for some tX� as the correct contribution
p�(tX�) · c�X,[Y ],(tX� )(tY ) = 0 · 1 = 0 will be returned in that case.
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5.3.3 Marginal Distributions

Whereas joint distributions provide detailed information about dependencies and
statistical interactions between attributes, they are impractical when attention
is turned to specific aspects of a complex system. Marginal distributions permit
to discern events according to a chosen subset of the attributes rather than the
complete attribute set. Thus they extract relevant information for specific tasks,
summarize information from more complex models, provide interfaces to link
between global and specialized local models or data sources. To obtain marginals
for condensed distributions both marginal probability distributions and coverage
factors need to be computed.

For the probabilistic component p� of the condensed set-valued distribution over
a set of attributes X� the marginal distribution w.r.t. any subset W � ⊆ X� is
computed by aggregating the probability mass of tuples tX that have common
projections into the lower dimensional space TW .

p�W (tW �) = P �W ({tW �}) = P �X({tX� | tX�|W � ≡ tW �})
=

∑
tX�∈TX� ,tX�|W�≡tW�

p�X(tX�). (5.11)

This computation yields the same result as applying the set reduction mapping
σW to projections of the original relations from X to W , as is pointed out by the
following argument:

p�W (tW �) = P ∗W ({R:σW (R) = tW �})
= P ∗X

(
{S:σW

(
projXW (S)

)
= tW �}

)
= P ∗X

(
{S:σX(S) = tX� ∧ tX�|W � ≡ tW �}

)
=

∑
tX�∈TX�

tX�|W�≡tW�

p�X(tX�) (5.12)

The third equality in the above argument follows from the definition of the set
reduction mapping. Since the images of the individual attributes under the
tuples are determined from the one-dimensional projections only, σX(S) assigns
the same values to the attributes in W � as σW

(
projXW (S)

)
for every S ⊆ TX .

In a similar manner, coverage factors w.r.t. a set of attributes W ⊆ X should
be defined to be consistent with an application of Equation 5.9 to the projection
of a distributions over 2TX to 2TW . To that end the coverage functions of the
condensed representation for distributions over that projected space are defined
with respect to tuples TW � . For each tuple tW � ∈ TW � the attribute set W � is
composed of the two disjoint subsets Y � = {A� ∈ W �: tW �(A

�) 6∈ bdom(A�)} and

102



5.3 Extension to the Multivariate Case

Z� = {A� ∈ W �: tW �(A
�) ∈ bdom(A�)}. The former set contains the attribute

that with non-singleton values, whereas the latter contains the attributes for
which the value is a singleton. As before, the set Y contains the base attributes
corresponding to the condensed set valued attributes in Y � and tZ� ≡ tW �|Z� .
Given the condensed distribution and coverage factors referring to tuples TX�
the coverage functions associated with TW � are computed as follows:

c�W,[Y ],tZ�
(tY ) =


P ∗W ({R:σW (R)=tW�∧tY ∈projWY (R)})

P ∗W ({R:σW (R)=tW�})
if P ∗W ({R:σW (R)=tW�})>0

1 otherwise

(5.13)

By applying Equation 5.12 to the denominator of the fraction and substituting
the projections we obtain:

c�W,[Y ],tZ�
(tY ) =


P ∗X({S:σW (projXW (S))=tW�∧tY ∈projWY (projXW (S))})

p�(tW� )
if p�(tW �) > 0

1 otherwise

=


P ∗({S:σX(S)=tX�∧tX�|W�≡tW�∧tY ∈projXY (S)})

p�(tW� )
if p�(tW �) > 0

1 otherwise

=


∑

tX�|W�≡tW�
P ∗({S:σX(S)=tX�∧tY ∈projXY (S)})

p�(tW� )
if p�(tW �) > 0

1 otherwise

The expression in the numerator computes a one-point coverage. As before,
probability-weighted relative coverage factors compatible with the restrictions
imposed by tY and tZ� are aggregated. However, since these restrictions only
apply to attributes in W �, combinations with all possible instantiations for the
remaining attributes in X� need to be considered:

c�W,[Y ],tZ�
(tY )

=


∑

tX∈TX,tX|Y ≡tY ,mv(tX|Z,∅)=tZ�
Y ′⊆X\W,tX�=mv(tX,Y ∪Y ′)

p�(tX� )·c�
X,[Y ∪Y ′],mv(tX,Y ∪Y ′)

(tX|(Y ∪Y ′))

p�(tW� )
if p�(tW� )>0

1 otherwise

=



∑
tX∈TX
tX|Y ≡tY

mv(tX|Z ,∅)=tZ�
Y ′⊆X\W

tX�=mv(tX ,Y ∪Y ′)

p�(tX� )
p�(tW� )

·c�
X,[Y ∪Y ′],tX�

(tX|(Y ∪Y ′)) if p�(tW� )>0

1 otherwise

(5.14)
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Because the above equation requires operations on the parameters of the sum
to identify the correct attribute sets and coverage functions, this result is still
difficult to apply. Using an auxiliary function τ the transformation of the pa-
rameters can be separated from the remaining computations:
Let τ denote a function that maps its arguments (W,Y, Z�, tZ� , tY ) to the set of
all tuples (Y+, tW � , tX , tX� , tY ) that fulfill the following criteria:

tX ∈ TX (iterate over instantiations)
tX|Y ≡ tY (compatible with tY )
mv(tX|Z , ∅) = tZ� (compatible with singleton instantiations

for attributes in Z�)
Y ′ ⊆ X \W (iterate over attributes with possible
Y+ = Y ′ ∪ Y set instantiations)
tX� = mv(tX , Y+) (generate compatible tuples over TX�)
tW � ≡ tX�|W � (from definition of attribute sets)

On the implementation side the function τ is reflected by an iterator that is used
to traverse the instantiations of the non-constrained attributes X�\W �. For each
of the resulting instantiations in the marginal distribution it supplies the respec-
tive higher-dimensional coverage factors allowing to compute their contribution
to the marginal coverage factor.

With the above definition of the function τ the relation between the joint and
marginal coverage factors can be expressed in a more convenient manner:

c�W,[Y ],tZ�
(tY ) =


∑

(Y+,tW� ,tX,tX� ,tY � )

∈τ(W,Y,Z�,tZ� ,tY )

p�(tX� )
p�(tW� )

·c�
X,[Y+],tX�

(tX|(Y+)) if p�(tW� )>0

1 otherwise

(5.15)

The short summary of the above results is that marginal coverage factors are
obtained by computing a weighted average of coverage factors over a higher di-
mensional reference set, with the weights given by the tuple probabilities. To
better understand this result, it is helpful to to remember that coverage values
specify a proportion relative to the a tuple t�X . Each tuple in turn stands for a
class of set-valued outcomes. The projection, makes those classes of set-valued
outcomes that are reflected by identical tuples tW � in the target space indistin-
guishable from each other. This results in the formation of to a new combined
group. The weighted average reflects the contributions from each original class
to the newly formed group.

Alternatively one may choose to view each individual coverage factors as a pa-
rameter of a binary probability distribution. According to this interpretation the
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5.3 Extension to the Multivariate Case

coverage factors in the target space reflect the parameters of mixtures of such
distributions. To distinguish coverage factors referring to the full attribute set
of a model from their counterparts for marginal attribute domains, the former
will be called elementary coverage factors.

An important property of condensed distributions is, that the marginal distri-
butions coincide with the condensed distributions that are computed directly
from projections of the original set-valued outcomes. This semantic consistency
is essential to relate observations that are made with respect to different but
overlapping sets of attributes. Moreover, because the coarsened distribution p�

is a regular probability distribution. Thus the representation is fully embedded
within the probabilistic framework. Specifically, if only singleton outcomes occur,
the condensed set-valued distribution is equivalent to a representation via a con-
ventional probability distribution. Therefore set-valued attributes can interface
with other probabilistic model when used along with them in applications.

5.3.4 Conditioning and Conditional Distributions

Like marginal distributions and the operations connected with them, conditional
distributions and conditioning are basic tools of probabilistic and relational rea-
soning. Conditioning serves to combine case-specific observations with generic
(a-priori) knowledge or to simulate the effects of changes to the modeled system.
In bioinformatics it can be applied to predict function for expression when an-
notations on an organism are still limited. In that case conditioning permits to
adapt detailed statistical models available for better studied model organisms to
observations on the target organism.

Under an empirical interpretation of probability, conditioning reflects a change of
the reference set. The particular reference set to which a conditional distribution
refers is specified in one of three modes, namely

� by choosing a fixed instantiation,

� by excluding instantiations incompatible with observations or

� by providing a specific distribution over the values of so called conditioning
variables (attributes).

The result of conditioning is a conditional distribution for the instantiations of
the modeled systems variables w.r.t. the selected reference set.

If the conditioning variables are known in advance, knowledge representations can
provide pre-calculated families of conditional distributions given the individual
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5 Condensed Representation for Set-Attribute Distributions

instantiations of these variables. Once the actual instantiations of the condi-
tioning variables become available, the corresponding conditional distribution is
selected. If the conditioning information is given as a marginal distribution, the
conditional distribution is computed as a mixture of the conditional distribu-
tions w.r.t. the individual instantiations, with the weights given by the provided
marginal distribution. A similar procedure is applied to exclude incompatible in-
stantiations, though an intermediate step is required to re-distribute probability
mass on marginal distributions.

It is remarked that in the relational framework conditioning simply amounts to a
restriction of the tuples in a relation to those, which exhibit the required values
for the conditioning attributes. In the context of databases the equivalent of the
conditioning operation would be called a selection.

Probabilistic Component

When applying the notion of conditioning to condensed distributions it is desir-
able to maintain consistency with the random set framework. This constraint
immediately determines the definition of most conditioning operations. For the
probabilistic part p� of the condensed distribution, conditioning with an event
E ⊆ 2TX� with P �(E) > 0 is straightforward:

p�(tX� | E) = P �({tX�} | E) =
P �({tX�} ∩ E)

P �(E)

=


p�(tX� )∑

t′
X�∈E

p�(t′
X� )

if tX� ∈ E

0 otherwise.
(5.16)

A conditioning event may alternatively be specified using tuples over a subset
U� ⊆ X� of attributes. Such a specification EU� is considered a shortcut notation
for the event E = {tX� | tX� ∈ TX� ∧ tX�|U� ∈ EU�} i.e., the most general event
over TX� matching the restrictions expressed in EU� .

To support conditioning with distributions over tuples, it is useful to formulate a
rule for conditioning with individual tuples w.r.t. arbitrary reference sets, that is
to compute conditional probabilities of the form p�W �(tW � | tU�). The conditional
distributions for elementary tuples can subsequently be combined to achieve
conditioning with distributions. In order to adapt the probabilistic conditioning
rules to the tuple-based notation, it is important to remember, that tuples reflect
sets of restrictions w.r.t. the instantiations of attributes. When conditioning in
the tuple-based notation the intersection of events is expressed by joining tuples,
with the result being a tuple over the combined set of attributes.
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Obviously, if the set of attributes U� and W � have a nonempty intersection,
then tW �|(U�∩W �) ≡ tU�|(U�∩W �) must hold in order for the conditioned and the
conditioning events to compatible. The expressed restrictions would otherwise
require mutually exclusive instantiations for at least one of the shared attributes
in U� ∩W �, resulting in a conditional probability of 0. Assuming tU�|U�∩W � ≡
tW �|U�∩W � as well as p�U�(tU�) > 0, the formula for computing a conditional
probability distributions for condensed set-valued attributes may be written

p�W �(tW � | tU�) =
p�U�∪W �(tU�∪W �)

p�W �(tW �)
, (5.17)

where U�,W � ⊆ X�, t(U�∪W �)|U� ≡ tU� and t(U�∪W �)|W � ≡ tW � . For p�W �(tW �) = 0
the conditional distribution is neither defined, nor required to reconstruct the
joint distribution. However, to simplify evidence propagation when working
with distributions estimated from empirical data, one may choose p�W �|U�(tW � |
tU�)

def
= p�W �(tW �) for that case, thereby substituting the known unconditioned

distribution for an unknown conditional one.

Coverage Factors and Conditioning

Having discussed the effect of conditioning on the probabilistic part of the model
we can now turn to the coverage factors . To that end, it is worthwhile to differen-
tiate between two cases: (a) new information is supplied only w.r.t. the condensed
probability distribution p� only (all three modes), and (b) the conditioning pieces
information specify both a condensed probability distribution and coverage fac-
tors (including conditioning with individual set-outcomes). In comparison to a
random-set representation, however, conditioning on the condensed distribution
is subject to certain limitations. In a full random set representation (as with
any other probability distribution), conditioning redistributes probability mass
of individual outcomes to those that are more compatible to the conditioning
information. In contrast, coverage factors of the condensed representation refer
to a group of set-outcomes, in which contributions from individual outcomes are
no longer tracked separately.

In case (a) the elementary coverage factors are left unchanged taking advantage
of the fact that the elementary coverage functions are already defined in relation
to fixed tuples in TX� . The assumption behind this approach is that the average
coverage ratios of elements by the multi-valued outcomes are more robust than
the joint distribution (compare page 31). Conditioning a joint distribution via
observations on a subspace, requires some additional consideration. The key is
to recall that the model represents the marginal coverage factor as a probability-
weighted mixture of conditional coverage factors. Because the weights are deter-
mined by the probabilistic part of the distribution, the marginal coverage factors
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have to be adapted under conditioning. To achieve this, it suffices to replace all
references to the condensed probability distribution p� in Equation 5.13 with the
respective values of the new conditional distribution.

Another possible scenario is that conditioning information has been obtained
empirically from data on observed set-instantiations. In that case both the prob-
abilistic part of the model and the coverage factors may be specified (b). If the
specified coverage factors are defined with respect to the full attribute set X of
the model, this new information takes precedence over the respective elementary
coverage factors of the unconditioned distribution. Marginal coverage factors,
however, are modeled as mixtures of elementary coverage factors. Thus the dif-
ferences between the observed marginal coverage factors c�W,[Y ],tW�\Y � obs

(tY ) and

the computed marginal coverage factor need to be resolved. The above problem
can be approached heuristically, e.g., by assigning to each of the coverage fac-
tors c�X,[Y+],tX�

(
tX|(Y+)(Y+, tW � , tX , tX� , tY �

)
(tY+), with (Y+, tW � , tX , tX� , tY �) ∈

τ(W,Y,W � \ Y, tW �\Y � , tY ) the value c�W,[Y ],tW�\Y � obs
(tY ) in the conditioned dis-

tribution. An alternative heuristic is to apply a proportional fitting strategy,
that rescales the values of the coverage factors. To ensure valid results, however,
the individual coverage factor need to be bounded by the interval (0, 1]. There-
fore, such a fitting procedure should be conducted in an iterative manner with
correction applied in between runs to enforce boundary constraints.

5.3.5 Combination with Graphical Models

On the previous pages I have discussed, how the basic operations of condition-
ing and marginalization are adapted to joined distributions of condensed set-
valued attributes. With those results it is possible to combine the decomposition
approach of Graphical Models to probability distributions over condensed set-
valued attributes. To that end, consider the reconstruction of a joint distribution
from independent marginal ones. The probabilistic part of the joint distribution
is computed using the standard probabilistic operation (Section 3.2). Moreover,
the conditional coverage functions of an attribute given its parents in the graph
are identical to those of the joint distribution of these attributes. Thus, the
task is reduced to combining sets of marginal coverage functions. This combina-
tion of marginal coverage functions is achieved by computing their products (see
Equation 5.18 below).

The above recombination procedure implicitly assumes a property parallel to
the notion of independence for condensed set-valued attributes A� and B�. Due
to the reuse of the probabilistic operation, a minimum requirement is inde-
pendence w.r.t. the condensed probability distribution. In addition to that,
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changing marginal distributions w.r.t. one attribute must not affect the cov-
erage factors for the other attribute, so all coverage factors c�{A,B},[{A}],(b) ((a))

and c�{A,B},[{B}],(a) ((b)) must coincide with the respective marginal coverage fac-

tors c�{A},[{A}],()((a)) and c�{B},[{B}],() ((b)). For the higher dimensional coverage
functions there are several possible solutions. In the absence of more specific
information about the focal sets we may choose

c�{A,B},[{A,B}],() ((a, b)) = c�{A},[{A}],() ((a)) · c�{B},[{B}],() ((b)) . (5.18)

An interesting observation is, that the factors c�{A,B},[{A}],()((a, b)) are required
for computation of one-point coverages in the joint distribution only. If the joint
distribution merely serves to mediate the interaction between the distributions
of the attributes A� and B�, the respective criterion can be omitted for a weaker
definition. The analogue extension is applied to conditional independence (w.r.t.
the conditional coverage factors). When conditioning the joint distribution with
marginal probability distributions for the separator sets the coverage factors
defined w.r.t. conditioning attributes are considered as fixed. Nevertheless, other
marginal coverage factors have to be corrected for the altered distributions and
coverage functions for higher dimensional tuples have to be re-computed.

Although Graphical Models provide a very general approach to model interac-
tions between variables with set-instantiations, it is remarked that the predom-
inant source of complex data involving set-valued attributes in bioinformatics
are gene, protein, or pathway annotation databases. To the authors knowledge
all major publicly available data sets use annotations based on ontologies with
tree-based relation structures. In the following section I present adapted models
that achieve efficient operations on such structured attribute domains.

5.4 Application to Tree-Structured Domains

As previously stated, the amount of information provided in the description of
objects can be controlled via the choice of the attribute set used to describe
their properties. In addition to that, many properties can be presented with
variable resolution. For instance, the birthplace of a person may be specified
in terms of a country, but also on the finer scales of region or community. It is
convenient to organize such different layers of detail into hierarchies that allow to
easily summarize detail information. When enriched with statistical information
about value distributions, hierarchically structured attribute domains support
the transfer of knowledge between alternative frames of discernment. Thus they
provide flexibly in serving various information needs and facilitate the processing
of inhomogeneous data.
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By applying the condensed representation of set-valued data to hierarchically
structured attribute domains I aim to provide a robust and interpretable ap-
proach to problems such as the incomplete classification of objects encountered
when processing/mining annotation sets formed from hierarchically organized
terms. I doing so I restrict myself to finite frames of discernment, which cover all
cases of set-valued data annotations currently known to the author and can be
applied to discretized continuous attributes as well. Nevertheless, most consid-
erations directly transfer to the continuous case using parametric descriptions.

Using probability trees as a starting point, I will initially investigate a data repre-
sentation with attributes exhibiting a hierarchical value domain structure. After
shortly recapitulating the concept of frames of discernment (cf. 2.2.1), I proceed
to discuss relations between frames and their relevance to structured attribute do-
mains (Subsection reference frames). From this discussion a method to efficiently
model parallel frames and their interactions is developed (Subsection 5.4.2). In
Subsection 5.4.3 the approach is extended to set-valued attributes, which repre-
sent, e.g. parallel instantiations, sets of alternatives or imprecise data. To that
end condensed distributions are integrated into the hierarchical model leading to
a scalable non-parametric distribution model for structured annotation data.

5.4.1 Related Frames of Discernment

In 2.2.1 the single-valued attribute was introduced via a universe O of objects
and a set Λ of labels – the frame of discernment , which supplies attribute values
for characterizing individual objects w. r. t. a particular property. In that rep-
resentation and attribute A is identified with a (potentially unknown) function
A : O → Λ that assigns the appropriate label to describe each of the consid-
ered objects. This definition presumes, that there exists a generally accepted
set of mutually exclusive attribute values suitable for recording, processing and
presenting any information about the considered property. Yet, it is sometimes
useful to define several frames of discernment that complement each other. Such
multi-frame representations are used, for instance:

� to combine information sources with differing observation capabilities,

� to meet restrictions of certain data analysis or processing methods (dis-
cretization, binning, data conversion for use in existing models)

� to tend to user- and task-specific information requirements

� to enable informative summaries

Adapting the level of detail in a description to a particular user’s level of prior
knowledge can contribute to better reception of relevant pieces of information.
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To support the integrated discernment of a property on multiple frames, an at-
tribute must be re-imagined as a collection of frame-specific mappings that assign
labels to objects. But in contrast to the more general interaction between differ-
ent attributes, label assignments for frames that refer to the same attribute are
closely coupled. Labels that are shared between frames have identical instantia-
tion states and a conversion of a statement to a coarser, that is, less informative,
frame of discernment (Shafer, 1976) must be reflected in a compatible mapping
of instantiation states and distributions. That change of resolution defines a
partial ordering on the set of frames. The concept of refinement captures these
ideas in a formal notion:

Definition 5.11. (Shafer 1976) A set Λ′ is a refinement of Λ if there is a
mapping ref : 2Λ → 2Λ′ such that ∀λ1, λ2 ∈ Λ :

1. ∀λ ∈ Λ : ref({λ}) 6= ∅

2. (λ1 6= λ2)⇒ ref({λ1}) ∩ ref({λ2}) = ∅

3.
⋃
{ref({λ}) | λ ∈ Λ} = Λ′

4. ref(L) =
⋃
{ref({λ}) | λ ∈ L}

Condition (1) ensures that any label in the original frame is still represented
by at least one label in the refined frame, whereas condition (2) guarantees the
preservation of any existing distinctions. Conditions (3) and (4) ensure corre-
spondence of the considered attribute domains and provide a set extension for
mapping operations, respectively. A set Λ is called a coarsening of a set Λ′ if
there is a refinement ref, such that ref(Λ) = Λ′. By this property the refinement
relation defines a partial ordering on the set of reference frames.

Although there are usually several meaningful ways to subdivide the equivalence
class associated with a label during refinement, a hierarchical organization of the
attribute domain is advantageous because it permits to easily find, summarize or
arrange objects and information (the same reasoning is behind the organization
of libraries according to a fixed topic hierarchies, even though several equally
suited taxonomies can be conceived).

To formalize the hierarchical organization of the attribute labels consider the a
nonempty set L together with a binary relation Rparent over L, where (λ2, λ1) ∈
Rparent indicates that λ1 is a direct parent (superior) of λ2 in the hierarchy.

Definition 5.12. Let L be a set of labels and Rparent a binary relation over the
elements of L. Moreover let Ranc denote the transitive closure of Rparent. The
tuple (Rparent,L) defines a hierarchy, iff

1. ∀λ, λ′, λ′′ ∈ L : (λ, λ′) ∈ Rparent ∧ (λ, λ′′) ∈ Rparent =⇒ λ′ = λ′′
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2. ∃λ0 ∈ L : ∀λ ∈ L \ {λ0} : (λ, λ0) ∈ Ranc

3. ∀λ ∈ L : (λ, λ) 6∈ Ranc

The element λ0 forms the root of the attribute value hierarchy. Due to the first
two conditions all other elements of L must have a parent element (2), which
is also unique (1). Thus for hierarchies, Rparent gives rise to a function over the
values of L\ {λ0}. The third condition ensures an acyclic structure. Moreover –
together with the second one – it guarantees the uniqueness of the root element.
To show that this is indeed the case, assume for a moment that condition (2)
would hold w.r.t. two different root labels λ0 6= λ′0. Then, by application of
condition (2), both (λ0, λ

′
0) ∈ Ranc and (λ′0, λ0) ∈ Ranc. However, due to the

transitivity of Ranc this entails (λ0, λ0) ∈ Ranc violating the third condition.

With the above properties specified, it is useful to introduce notions for ex-
pressing relations in the hierarchy H. I write parentH(λ) to denote the unique
parent element of label λ ∈ L \ {λ0} w.r.t. the hierarchy H. Similarly ancH(λ)
is used to denote the set of a label’s ancestors in H (including indirect ones). In
a similar manner I write childrenH(λ) for the set of a label λ’s direct children
{λ′ : Rparent(λ

′, λ)} in the hierarchy H. In extension of that, the set of all de-
scendants, including indirect ones, of a label λ in H is denoted by descH(λ).

Any label hierarchy H generates a family of related frames, (Λ)H , which differ
only with regard to the level of detail discerned in their respective sub-frames.
Starting with {λ0} = Λ0 ∈ (Λ)H , new frames are iteratively generated by replac-
ing non-leaf elements of a previously found frame in (Λ)H with their respective
sets of child labels in H (sub-frame expansion). Whenever this set of child la-
bels contains more than one element, the resulting frame allows for more specific
descriptions than its parent frame.

Definition 5.13. Let H be a label hierarchy with root label λ0. H generates a
family of frames (Λ)H via the following rules:

1. Λ0 = {λ0} ∈ (Λ)H

2. childrenH(λr) 6= ∅ ∧ λr ∈ Λ ∧ Λ ∈ (Λ)H
=⇒ Λ′ = childrenH(λr) ∪ Λ \ {λr} ∈ (Λ)H

Theorem 5.1. For any frame of discernment Λ ∈ (Λ)H and for any element
λr : λr ∈ Λ ∧ childrenH(λr) 6= ∅ the frame Λ′ = childrenH(λr) ∪ Λ \ {λr} is a
refinement of Λ.

The particular sub-frame childrenH(λr) ⊆ Λ′ is called direct refinement of λr
w.r.t. H, and the replacement of labels that generates Λ′ from Λ an elementary
refinement operation.
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To prove the above theorem, we need to find a mapping ref : 2Λ → 2Λ′ and verify,
that it possesses the properties of a refinement mapping as stated in Definition
5.11. Indeed, using ∀L ⊆ Λ

ref(L) =

{
L if λr 6∈ L
childrenH(λr) ∪ L \ {λr} otherwise,

(5.19)

and recalling that the theorem is restricted to non-leaf λr, one concludes for the
refinements of the singleton subframes:

ref({λ}) =

{
{λ} 6= ∅ if λ 6= λr
childrenH(λr) 6= ∅ otherwise.

(5.20)

To check whether refinements of singleton subsets of Λ are disjoint, we note that
except for {λr} all singletons are mapped to themselves. Hence, ∀λ1, λ2 ∈ Λ,
λ1 6= λ2 and λ1 6= λr 6= λ2:

ref({λ1}) ∩ ref({λ2}) = {λ1} ∩ {λ2} = ∅.

If, however, one of the two elements is replaced by λr the application of the
refinement mapping only yields

ref({λ1}) ∩ ref({λr} = {λ1} ∩ childrenH(λr),

and it remains to verified that the set childrenH(λr) does not contain any element
from Λ \ {λr}. This condition can be further transformed:

∀Λ ∈ (Λ)H : ∀λ ∈ Λ \ {λr} : λ 6∈ childrenH(λr)

⇔ ∀Λ ∈ (Λ)H : ∀λ ∈ Λ \ {λr} : (λ, λr) 6∈ RparentH . (5.21)

The statement obviously holds for λ = λ0, as the root node does not have any
parent. Moreover, by Definition 5.12, for any other choice for λ, Λ0 = {λ0}
contains exactly one ancestor. Due to the unique parent property, each applica-
tion of the replacement operation (Equation 5.19) on that ancestor replaces it
with a sub-frame containing either a single closer ancestor of λ or λ itself in the
expanded frame. On the other hand, expanding any label that is not already an
ancestor of λ may neither produce λ nor ancestors of λ. Consequently, for any
frame generated by this procedure the presence of a label in a frame excludes
all ancestors of that element. In particular, this entails the weaker statement
expressed in Equation 5.21.

Finally the third and forth conditions of Definition 5.11 are checked by directly
substituting the chosen refinement mapping from Equation 5.19. This respec-
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tively yields⋃
{ref({λ}) | λ ∈ Λ} = ref({λr}) ∪

⋃
{ref({λ}) | λ ∈ Λ \ {λr}}

= childrenH(λr) ∪
⋃
{λ | λ ∈ Λ \ {λr}}

= childrenH(λr) ∪ Λ \ {λr} = Λ′

and

ref(L)
(5.19)
=

{
L if λr 6∈ L
childrenH(λr) ∪ L \ {λr} otherwise,

=

{ ⋃
{{λ} | λ ∈ L} if λr 6∈ L

childrenH(λr) ∪
⋃
{{λ} | λ ∈ L \ {λr}} otherwise,

(5.19)
=

{ ⋃
{ref({λ}) | λ ∈ L} if λr 6∈ L

ref({λr}) ∪
⋃
{ref({λ}) | λ ∈ L \ {λr}} otherwise,

=
⋃
{ref({λ}) | λ ∈ L} ,

concluding our argument that Λ′ is indeed a refinement of Λ.

Apart from the obvious restriction, that the elementary refinement operation can
be applied to a given label only after all of that label’s ancestors in the hierarchy
have been expanded, the order in which the label expansions are carried out is
irrelevant to the composition of the generated frame. The finest frame that can
be generated for a given label hierarchy is {λ ∈ L | childrenH(λ) = ∅}, which
consists of the leaves in the label hierarchy.

An example of a label hierarchy is shown in Figure 5.4. The attribute value
hierarchy is obtained by subdividing the values a1 and a3 according to

descH(a1) = childrenH(a1) = {a11, a21, a31},
descH(a3) = childrenH(a3) = {a31, a32}.

Starting from the coarsest non-trivial frame {a1, a2, a3} (repeatedly) replacing
labels with their direct refinements H produces three new frames of discernment
{a11, a12, a13, a2, a3}, {a11, a12, a13, a2, a31, a32} and {a1, a2, a31, a32}.

5.4.2 Uncertainty over Hierarchical Attribute Domains

Having discussed the formalization of attributes and their domains, let us now
consider the representation of uncertain knowledge on a family of frames. One
factor that gives rise to uncertainty about label assignments are limitations to
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Figure 5.4: Attribute value hierarchy with attached branching probabilities (root
label not shown)

observation capabilities. Although the observed label should be linked to the
true one at least in a statistical sense, the probability to actually observe the
correct label in measurements is usually lower than one. In practice, quantitative
models for this type of uncertainty are based on background knowledge about the
measuring process or on estimates from representative reference data. They can
be formalized by a family of conditional probability distributions characterized
by PΛ(AΛ = λi | Aobs,Λ = λj), which model the statistical relation of the unknown
matching labels AΛ on a given frame Λ to observed ones Aobs,Λ. In combination
with observed instantiations, this determines a distribution pΛ : Λ → [0, 1] over
Λ and the associated probability measure PΛ.

When switching between alternative frames of discernment further information
deficits arise due to non-corresponding labels. Unlike the previously discussed
one, this uncertainty component is not inherent to the measurement process but
due to the frame conversion itself. Adequate choices for the frames of discern-
ment help minimize uncertainty in frame conversion. To model this uncertainty
component, the representation needs to be supplemented with information about
the pairwise statistical interaction between distributions on pairs of frames.

In the absence of a logical dependency structure, knowing the correct label in
one frame does not allow to exclude any of the labels of the other frame with
certainty. Fortunately, if the admissible frames are restricted to those generated
from a single hierarchically structured attribute domain, logical dependencies
considerably simplify the representation. In particular a given label λ will always
have the same (conditional) probability regardless of the frame it appears in.
The (conditional) prior distributions over all frames can therefore be represented
using probability assignment functions pH(λ) and pH(λ1 | λ2) on the labels in L,
with the distribution on any particular frame Λ given by the restriction of the
respective assignment function to the elements of Λ.

Moving the discussion to the determination of the probability values, it is ser-
viceable to start with the conditional assignments. In the most simple case, no
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label conversion is required at all. This trivially leads to

∀λ ∈ L : pH(λ | λ) = 1. (5.22)

For an object that is correctly described by a label λ, the branch probabili-
ties pH(λ′ | λ) quantify the uncertainty regarding which of the sub-labels λ′ ∈
childrenH(λ) provides the matching description on a frame, where label λ is ex-
panded. Since a label λ in a frame Λ correctly describes a situation whenever
any one of its descendants does so on a refinement of Λ, we also have:

∀λ1, λ2 ∈ L, λ2 ∈ descH(λ1) : pH(λ1 | λ2) = 1. (5.23)

To go from general labels to more specific ones, the branch probabilities for each
elementary refinement step on the path from λ2 to λ1 are combined:

∀λ1, λ2 ∈ L, λ2 ∈ ancH(λ1) :

pH(λ1 | λ2) =
∏

λ′∈{λ1}∪(ancH(λ1)∩descH(λ2))

(λ′ | parentH(λ′)).
(5.24)

In the remaining cases, the labels that are not located on the same refinement
path through H. Such labels are mutually exclusive:

∀λ1, λ2 ∈ L, λ1 6= λ2, λ1 6∈ ancH(λ2), λ2 6∈ ancH(λ1) : pH(λ1 | λ2) = 0 (5.25)

To clarify the last statement, consider the frame from Λ that is generated by
consecutive application of the elementary frame refinement operation w.r.t. the
labels {ancH(λ1)∪ancH(λ2). Although both labels are specializations of λ0 there
is some point in the refinement process where their last common ancestor is split
into a new sub-frame, thereby discerning the cases described by λ1 from those
described by λ2.

The marginal prior probability assignments for the labels in L can be obtained
directly from the conditional ones. Because the coarsest possible frame Λ0 only
contains one element, there is only one valid probability distribution over that
frame. It immediately follows that pH(λ0) = PH({λ0}) = PH(Λ0) = 1. The
prior probability distributions over frames are then reconstructed by multiplying
branch probabilities along a path of serial refinements, i.e.:

∀λ ∈ L : pH(λ) = pH(λ0) ·
∏

λ′∈({λ}∪ancH(λ))\λ0

pH(λ′ | parentH(λ′))

=
∏

λ′∈({λ}∪ancH(λ))\λ0

pH(λ′ | parentH(λ′)).
(5.26)

Because the marginal and conditional prior probability assignments can be as-
sembled from the branch probabilities pH(λ | parentH(λ)), λ 6= λ0 alone, the
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5.4 Application to Tree-Structured Domains

situation lends itself well to a probability tree representation. In this representa-
tion the value assigned to a non-leaf label λ summarizes the probability mass pH
of the leaves in the subtree rooted at λ (illustrated in Figure 5.4). When com-
puting the distributions pH the values pH(λ) can be reused as common factors
in the decomposition of the probability function for all descendants of λ. More-
over, uncertainty due to frame conversion is contained locally in the respective
subtrees.

With the conditional prior distributions over the labels in L we now have the
means to convert distributions between frames of the same family. As a result of
the imposed restrictions, only three cases have to be considered when mapping
an element λ1 from a frame Λ1 to a frame Λ2 generated by the same hierarchy
H of attribute values:

� λ1 is an element of Λ2 as well,

� λ1 summarizes a sub-frame L ⊆ Λ2 consisting only of its (possibly indirect)
descendants in the hierarchy

� λ1 is itself part of a sub-frame associated with a unique element of Λ2.

It is remarked, that none of the frames is marked out so Λ1 and Λ2 can be
interchanged in that statement (Figure 5.5). Instantiating with observations on
the source frame Λ1 and applying the Equations 5.22–5.25 to infer probability
values for the elements of Λ2 results in a rule for converting distributions between
related frames:

Definition 5.14. Let Λ1 and Λ2 be two frames of discernment generated from
the same hierarchy H and pΛ1 a probability function over Λ1. The mapping
convΛ1→Λ2 : Prob(Λ1)→ Prob(Λ2) that converts a probability distribution over a
frame Λ1 to a probability distribution over Λ2 is computed as:

pΛ2(λ2) = convΛ1→Λ2(λ2)

=


pΛ1(λ2) if λ2 ∈ Λ1,∑
λ∈descH(λ2)∩Λ1

pΛ1(λ) if descH(λ2) ∩ Λ1 6= ∅,

pH(λ2 | λ) · pΛ1(λ) if ∃λ ∈ Λ1 : λ2 ∈ descH(λ),

(5.27)

where Prob(Λ) denotes the set of all conceivable probability distributions on a
frame Λ.

Note, that the probability assigned to a given label does not depend on the com-
position of the particular frame Λ2 under consideration. Indeed, equation 5.27
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5 Condensed Representation for Set-Attribute Distributions

may be used to condition the probabilities for all labels in the hierarchy with
new information from observations on a specific frame. Moreover, the function
pH itself encodes the a-priori probabilities for all labels and – via its restrictions
– the a-priori distributions over the frames of the hierarchy reflecting the generic
component of this knowledge model.

a1 a2 a31 a32

a11 a12 a13 a2 a3Λ1:

Λ2:

Figure 5.5: Correspondence of subframes and single labels

Example 5.1. Consider a conversion from Λ1 to Λ2 as given by figure 5.5 with
an original distribution on Λ1 given by

pΛ1(a11) = pΛ1(a2) = 0.2, pΛ1(a12) = pΛ1(a13) = 0.1 and pΛ1(a3) = 0.4.

We apply Equation 5.27 to compute the distribution pΛ2 = convΛ1→Λ2(pΛ1) in-
duced over the new frame. The sub-frame {a11, a12, a13} = L ⊆ Λ1 is represented
in Λ2 by the single attribute value a1. Thus the probability assigned to the
elements of L in Λ1 is attributed to a1 in Λ2, i.e

pΛ2(a1) = pΛ1(a11) + pΛ1(a12) + pΛ1(a13) = 0.4.

Label a2 appears in both frames, so

pΛ2(a2) = pΛ1(a2).

The two remaining elementary probability values are computed using the esti-
mated sub-label distribution:

pΛ2(a31) = pH(a31 | a3) · pΛ1(a3) = 0.1 and

pΛ2(a32) = pH(a32 | a3) · pΛ1(a3) = 0.3.

This fully determines the probability function pΛ2 . �

5.4.3 Multi-Label Instantiations

So far it was assumed that all objects in O could be described using no more than
one label per object. But given that only a subset of those objects would actually
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have been observed by the time the attribute hierarchy is chosen, new cases
may not always be suitably characterized by any of the predefined categories.
Furthermore, if composite objects are considered (e.g. texts) or objects that
interact within a complex system (genes) a single label per attribute does not
provide the best possible specification. In such cases, it is more realistic to
have an attribute A∗ assign a set of applicable labels to each object, that is,
A∗Λ : O → 2Λ \ {∅}, where 2Λ denotes the power set of Λ. An object is thus
described by the set of all labels applicable to it. The downside of that solution
is, that the labels are not mutually exclusive, so that uncertainty may no longer
be represented by a simple probability distribution over the label domain.

The introduction of random sets formally reduces the problem of uncertainty
representation for set-valued attributes to the probabilistic case. The main dif-
ference to the approach for disjoint labels discussed in the previous subsection
is, that the distributions are now defined on the power set of the frames. When
investigating corresponding multi-label instantiations on frames from the same
family (Λ)H , the constraints previously discussed for instantiations with indi-
vidual labels still apply: Since the frames of discernment generated by the same
hierarchy may have labels in common, any labels that are applicable in one frame
also apply in all other frames containing those labels. Moreover, if a label applies
to a given case or object, so do all its ancestors in H. Finally we know that at
least one of the children of an applicable non-leaf label must apply when using a
description in a refined frame. In the light of these considerations it makes sense
to define multi-label instantiations globally for all frames in (Λ)H .

Definition 5.15. Let H be a hierarchy of labels L. A set of labels SH ⊆ L is a
multi-label instantiation w.r.t. H, if it fulfills the following properties:

1. ∀λ ∈ SH : ∀λ′ ∈ L : λ′ ∈ ancH(λ) =⇒ λ′ ∈ SH ,

2. ∀λ ∈ SH : childrenH(λ) 6= ∅ =⇒ ∃λ′ ∈ childrenH(λ) : λ′ ∈ SH .

With these constraint each SH specifies a sub-tree of the labels in H that con-
tains exactly those elements of L that apply to a given situation. The multi-label
instantiation for a particular frame Λ is obtained by intersecting SH with that
frame. It is remarked that due to the first condition the maximally refined frame
contains all the information to recover instantiations for all other frames. In
practice however, one would expect that for at least some of the cases observa-
tions are only available on one of the coarser frames, so that knowledge about
the elements of SH remains incomplete.

The above strategy for the consistent representation of set-instantiations in a
hierarchy is easily adapted for use with distributions. To model a family of
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5 Condensed Representation for Set-Attribute Distributions

probability distributions p∗Λ, Λ ∈ (Λ)H over set-instantiations on frames in a hi-
erarchy, the latter are viewed as induced manifestations of a single probability
distribution p∗H over the permissible multi-label instantiations SH ⊆ L. In or-
der to reconstruct that global distribution p∗H from observations, it is assumed
that the distributions on sub-frames that arise from an elementary refinement
operations are (statistically) independent of each other given their respective
parent labels. This means that direct interactions w.r.t. to the applicability of
labels of a frame are considered only between the labels that are generated from
the same refinement operation. With this assumption the distribution over set
instantiations can be decomposed into conditional branch probabilities

p∗H,λr(S) = P ∗H({SH | S = SH ∩ childrenH(λr)} | {SH | λr ∈ SH}), (5.28)

with λr ∈ L, S ⊆ childrenH(λr) and P ∗H({SH | λr ∈ SH}) > 0. For each
λr the values p∗H,λr(S) define a probability distribution over the selections of
children of λr providing information about how the the applicable labels of an
instantiation are split when switching to a finer frame of discernment (Figure 5.6).
An advantage of the representation strategy via branch distributions is that even
partial specifications of SH contribute to the estimation of p∗H,λr(S) as long as
the respective label λr has been expanded in the frame on which the observation
is based. If nevertheless P ∗H({SH | λr ∈ SH}) = 0 for some λr then the branch
probabilities for the respective sub-frame instantiations remain undefined, and
the modeled probability for instantiations containing labels from that subtree is
0. To counter practical difficulties connected to undefined branch distributions in
reasoning, one would often choose to set those branch distributions heuristically,
e.g. using the Laplace correction, thereby ensuring that results for previously
unseen instantiations can still be computed (see Algorithm 1).

Although in order to convert distributions between frames the branch distribu-
tions would need to be normalized to∑

S⊆childrenH(λr)

p∗H,λr(S) = 1,

it is remarked that values may also be stored in their unnormalized form, e.g. to
encode the relative frequency of observations of the unrefined sub-frame in empir-
ical data. Unless explicitly stated otherwise, all explanations in this section refer

{a11} {a12} {a13} {a11, a12} {a11, a13} {a12, a13} {a11, a12, a13}

{a1}

Figure 5.6: Possible refinements of an applicable label during sub-frame expan-
sion w.r.t. the label a1 from Figure 5.4
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to normalized sub-frame distributions though. A further layer of compression
is introduced by switching to a condensed representation for the subset branch
distributions in the refinement of applicable labels. Applied to all expandable
labels of the hierarchy, this leads to the data structure depicted in Figure 5.7.
For each non-leaf label λr an additional label λ�r is introduced. In the con-
densed representation the conditional probability assigned to that label reflects
the probability that the applicable label λr is split into more than one applicable
child labels during the next stage of sub-frame expansion. This is complemented
with conditional coverage factors, which are stored for each element in the direct
refinement of λr.

To estimate the model parameters from empirical data the Equations 5.1 and
5.3 are applied to the branch distributions of non-leaf labels λr. The respective
reference set is formed by those observations, for which λr is both applicable
and has been expanded on the observed frame. In that case information on the
applicability of the individual child labels of λr is available too. By viewing the
respective intersections SH ∩ childrenH(λr) as instantiations of a multi-valued
attribute with basic domain childrenH(λ) the empirical branch distribution is
calculated from the relative frequencies of these instantiation. An algorithm to
calculate the branch distributions for a given label hierarchy H is given below
(Algorithms 1 and 2).

The branch distribution on the originally set-valued selections of applicable labels
from elementary refinement of λr is represented using the condensed distribution
(p�H,λr , c

�
H,λr

), with the new element λ�r representing the multi-valued outcomes.
The lcorr parameter denotes a user-defined constant for an optional Laplace
correction, which is applied for both the induction of branch probabilities and

a0

��
��

��
��

���

�
�
��

@
@
@@

PP
PP

PP
PP

PPP

� � � �

a1 a2 a3 a�0
··
··
·

··
··
·

··
··
·

··
··
·· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·

? ? ?

�
��

�
��
�

�
�
��

S
S
SS

HH
H

HH
HH

� / w � �
�
��

S
S
SS

HH
H
HH

HH

/ w j

·····

·····

·····

······ · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·

·····

·····

······ · · · · · · · · · · · · · · · · · · · · · · · ·
6 6 6 6 6

a11 a12 a13 a�1 a31 a32 a�3

Figure 5.7: Extended attribute value hierarchy as data structure for the con-
densed representation of distributions over multi-valued instantia-
tions (conditional probabilities and coverage factors indicated by solid
and dotted arrows respectively)
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5 Condensed Representation for Set-Attribute Distributions

Algorithm 1 Inducing branch distributions

procedure getFrequencies(H,Observations,lcorr)
ResetCounters
for currentObs ∈ Observations do

for λ ∈ currentObs do
markLabel(H,λ)
markAncestors(H, λ)

end for
updateCounters(H)
obsCnt← obsCnt + 1

end for
λr ← rootLabel(H)
while validLabel(λr) do

nrm p← max {1,GetNumSgltExp(λr) + GetNumMltvExp(λr)
+(1 + |childrenH(H, λr)|) · lcorr}

nrm c← max {1,GetNumMltvExp(λr) + 2 · lcorr}
for λ ∈ childrenH(λr) do

p�H,λr(λ)← (GetNumAsSglt(λ) + lcorr)

nrm p

c�H,λr(λ)← (GetNumAsCvrd(λ) + lcorr)

nrm c
end for

p�H,λr(λ
�
r)←

(GetNumMltvExp(λr) + lcorr)

nrm p
λr ← nextLabelInDepthFirstSearchOrder(H)

end while
end procedure

conditional coverage factors (the latter being instances of a two class problem).
The bounding of the normalization factors ensures that all marginal probabilities
will be defined, even if the Laplace correction is not applied. This guarantee does
not extend to conditional branch probabilities though. By altering the normal-
ization factors the algorithm is easily adapted to alternative interpretations of
the non-expanded values in the training data set. An experimental evaluation of
these algorithms is provided in Chapter 6.

To facilitate the use of the above representation in models, let us now turn to
the recovery the stored information. To recover a set-distribution from the repre-
sentation, the conditional branch distributions on the hierarchy are recombined
into corresponding distributions on the frames. For for singleton outcomes this is
analogous to the case with single-label instantiations and achieved by multiplying
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Algorithm 2 Inducing condensed branch distributions (counting)

procedure updateCounters(H)
p← rootLabel(H)
while validLabel(p) do

nMarkedChildren← 0
for c ∈ ChildrenH(p) do

if isMarked(c) then
if nMarkedChildren = 0 then

firstChild← c
nMarkedchildren← 1

else
countAsCovered(c)
nMarkedChildren← nMarkedChildren + 1

end if
end if

end for
if nMarkedChildren = 1 then

countAsSingleton(firstChild)
countSgltExpansion(p)

else if nMarkedChildren > 1 then
countAsCovered(firstChild)
countMltvExpansion(p)

end if
clearMark(H, p)
p← nextMarkedLabelInDepthFirstSearchOrder(H)

end while
end procedure

branch probabilities along a path of label refinement, i.e.

∀λ ∈ L : p∗′H({λ}) =
∏

λ′∈({λ}∪ancH(λ))\λ0

p�H,parentH(λ′)(λ
′). (5.29)

In general the approximation will be imperfect. In addition to the unavoidable
sampling error, the branch distributions do not distinguish between real single-
tons and cases where a label is merely the only applicable element in the local
sub-frame. If required and provided sufficient training data is available, addi-
tional precision in the probability approximation for singletons can be obtained
by adding a separate set of branch distributions though.

The one point coverages of individual labels are retrieved by recursively ac-
cumulating conditional probabilities and coverage factors for each elementary
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5 Condensed Representation for Set-Attribute Distributions

refinement leading to the label in question. For a single recursion step the recon-
structed one-point coverage of a given label is obtained by application of Equa-
tion 5.3. Because each branch distribution refers only to those cases where the
respective ancestor labels are applicable, the result is than multiplied with the re-

spective one-point coverage for the ancestors: ∀λ ∈ L 6= λ0, λr
def
= parentH(λ) :

opc′H(λ) = opc′H(λr) ·
(
p�H,λr(λ) + p�H,λr(λ

�
r) · cH,λr(λ)

)
, (5.30)

where λr is used as a shorthand notation for the parent label of λ in the hierarchy
and λ�r the corresponding surrogate label that indicates multiple applicable ele-
ments in the extension of λr. Each level in the hierarchy adds another factor until
the root label λ0 is reached. If the empty instantiations are excluded the one-
point coverage of that label is always one, as it is the only element in its frame4

To efficiently compute one-point coverages for several elements of a frame an im-
plementation would reuse partial results whenever the recursion runs over shared
ancestors in the hierarchy. Under the assumption that applicability of the indi-
vidual labels within an elementary refinement is independent for non-singleton
instantiations, the one-point coverages can also be used to approximate proba-
bility values for multi-valued instantiations, though the approximation quality
is lower than for the singletons (consult Section 6.6 for detailed evaluation re-
sults).

Finally case-specific information on one-point coverages and probabilities can be
integrated to allow reasoning. This is achieved by temporarily fixing conditional
branch distributions to externally supplied inputs. In the next step the distri-
butions on the target frame(s) is recomputed with the provided values taking
precedence over those supplied by the model. Recursions are broken early when-
ever one of the externally provided values is encountered and only the missing
conditional branch probabilities are supplemented by the model.

While the proposed representation strategy leads to a considerable reduction
in the information content, it focuses on preserving local interactions between
closely related labels. To justify this emphasis one can argue that interactions
between labels that are separated by longer paths in the hierarchy are often in-
direct. Such indirect interactions are difficult to observe in isolation though and
the superposition of many influences is likely to mask the signal of genuine in-
teractions, making it indistinguishable from sample variation in empirical data.
The emphasis on the local sub-frames is therefore in line with the goal of obtain-
ing a good generalization. Equations 5.29 and 5.30 assume the local distribution

4Otherwise, empty instantiations can easily be represented by inserting a “virtual” root label
with an unnormalized branch distribution at the top of the hierarchy. In that case, the
one point coverage of the original root label is computed using Equation 5.30, whereas the
one-point coverage of the new root label is set to one.

124



5.5 Discussion

within direct refinements to be invariant w.r.t. presence of alternative labels on
coarser frames. Depending on the interpretation of set-valuedness, this assump-
tion may require justification. It can be avoided though, by introducing separate
sets of conditional probabilities.

5.4.4 Summary

The hierarchically structured attribute domain permits to combine observations
from sources that differ w.r.t. resolution, reliability and focus, into a single coher-
ent probabilistic model. In particular the representation makes use of a family
of interrelated frames of discernment that are generated from the same attribute
value hierarchy. The integration of information from different sources is due op-
erations that map distributions between frames. By projection of distribution
information onto any of the linked frames, the same operations enable application
task, such as enrichment analysis, clustering, classification and identification, the
quantitative assessment of the (dis)agreement of experiments to control condi-
tions, or simply the presentation of data on multiple scales. If the hierarchical
model is used to represent prior knowledge on the general distribution of sub-
labels, the operations can to support decisions under uncertainty by integrating
case-specific observations w.r.t. specific frames. Finally, the model can serve as
a component in larger probability-based models.

For use with annotation sets, the approach was adapted to use a condensed rep-
resentation of uncertain set-valued information (introduced in Subsection 5.4.3).
This approach is loosely related to the more general framework of random sets
but trades storage efficiency for some representation capabilities. It was argued,
that this the reduction in representational power is justified when models have to
be induced from data as the detailed interaction structure potentially available
with a full representation is often masked by sampling effects. A demonstration
of the developed model including an evaluation on a large, publicly available
scientific dataset will be discussed in the next chapter.

5.5 Discussion

The condensed set-valued attributes and their associated distributions intro-
duced in this work provide a compact, yet informative summary of probability
distributions of over sets. Due to its combination of a coarsened frame of discern-
ment and the use of coverage factors the approach takes an intermediate positions
between a full probabilistic modeling (using random sets) and approximations
via independent binary attributes for each element in the underlying set universe.
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The representation allows for high-quality approximations of distributions over
sets in empirical data (see Chapter 6 for evaluation results).

One of the most distinguishing features of the suggested representation format is
the separate representation of singleton outcomes in conjunction with additional
model parameters that permit to reconstruct one-point coverages. This property
addresses elements that are important for the interpretation of many knowledge
representations. For instance, singleton rate and one-point coverage correspond
to lower and upper probability bounds when interpreting set-valued outcomes to
model imprecision. The high incidence of singleton annotations in the datasets
studied in the evaluation part of this work indicates that the focus on singletons
is also advantageous in other contexts where variables are permitted simultane-
ously adopt several values of their domain, such as with annotation databases.
Because annotation databases are one of the most widely available resources in
computational biology the model has a number of applications in that field.

The principle behind the condensed representation is a partitioning of a power set
an the basis of element cardinality. These partitions are then used to group set
outcomes and calculate frequency statistics and coverage factors for each group.
Of course the same principle could be applied to further subdivide the group of
non-singleton subsets leading to a complete family of distribution models that
form intermediates between with full random sets and possibility distributions
in the sense of the context model at the other end of the spectrum. However
restricting the approach to the separate representation of singleton subsets has
distinct advantages:

� Singleton outcomes are abundant in many datasets featuring set-valued
attributes.

� The separate representation of singletons is sufficient to subsume the proba-
bilistic models as a special case, thus establishing compatibility with extant
tools and approaches.

� Singletons have a special role in the interpretation of knowledge models
(see previous paragraph).

� The separate representation of singletons entails only a moderate increase
in storage requirements over probability and possibility distributions. Be-
cause a base domain with n elements has

(
n
m

)
different m-elementary sub-

sets, the restriction to singletons (m = 1) allows the model size to remain
linear in the cardinality of the underlying base domain.

It is also remarked that due to the capability of the model to reconstruct one-
point coverages, non-normalized possibility distributions are included as special
cases.
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It was shown, how the approach is transferred to multivariate case and how
marginal and conditional distributions are computed. These operations allow
to employ Graphical Models to summarize distributions for high-dimensional
domains and to propagate the effects of local modifications. Like with the prob-
abilistic framework, marginal and conditional distributions always retain their
empirical interpretation w.r.t. the modeled world. In particular one-point cover-
ages of all marginal distribution are consistent with the context model interpre-
tation of possibility. Owing to this property generic knowledge represented in the
distributions can be combined with partial case-specific information from obser-
vations. In this respect the model exceeds the capabilities of possibility models,
for which marginal distributions retain their empirical interpretation only if the
underlying random set has the consonance property.

The increasing relevance of ontologies as knowledge representations motivated
the development of a hierarchical version of the framework. In that variant
hierarchically structured relations specified in those ontologies are enriched with
empirical distributions obtained from data. When operating with annotations
that draw on labels from a structured term set, the models capability to “sum
out” variables is employed to present empirical distribution on multiple levels of
detail. The resulting combination of domain knowledge reflected in the ontology
with meaningful statistics obtained via the model supports the analysis of large
complex datasets.

The next chapter provides an experimental validation of the introduced concepts
and algorithms for a prototypical application case. The analysis is based on a
widely-known publicly available gene-annotation data set and uses the associ-
ated ontology to compute and represent a functional profile of the genome of a
model organism. Such profiles can be applied to highlight and assess similarities
and differences between populations grown under different conditions or between
phylogenetically related species.
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6 Experiments and Evaluation

The elaboration of desired model properties and the study of limitations of extant
approaches given in Chapter 4 provided a theoretical basis for assessing the
suitability of particular model assumptions and mathematical formalisms. These
results were reflected in the design decisions for the condensed representation for
set distributions introduced in Chapter 5.

But it remains to be investigated how the proposed model and its inherent set
of assumptions affect results when processing empirical data under realistic con-
ditions. This chapter provides this complementary picture, pointing out the
strengths and weaknesses of the suggested representation scheme in a prototypi-
cal application context. The performance of the condensed random set models is
evaluated and and compared to popular alternative approaches. All models were
tested on a biological dataset from a publicly available research database.

Section 6.1 briefly introduces the dataset and discusses the purpose of the anno-
tations provided therein. The outline of the experiment and a list of investigated
model types are given in Section 6.2. This is followed by details on data prepara-
tion and preprocessing (Section 6.3), an exposition of the respective methods to
estimate the model parameters from training data and some information on how
these parameters are used to predict target values (Section 6.4). Section 6.5 is
concerned with a discussion of the evaluation measures used. The results of the
experiments are presented and discussed in Section 6.6. An abbreviated version
of this evaluation was presented in Rügheimer (2010).

6.1 Saccharomyces Gene Annotation Data

The study has been conducted on an annotated genome dataset released to the
public via the Saccharomyces Genome Database project (SGD Curators, b). The
SGD-project maintains a curated database that summarizes published results
about the function of the genes and gene products of the baker’s and brewer’s
yeast Saccharomyces cerevisiae, as well as their respective roles in biological pro-
cesses and their intracellular activity sites. Annotation follows a domain-wide
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standard defined in the gene-ontology (GO, Ashburner et al., 2000). The on-
tology provides a controlled vocabulary and defines term relations that allow to
relate annotations on different levels of specificity to each other. Terms are orga-
nized into three non-overlapping term hierarchies provided for the tree aspects of
annotation: (biological) process, (molecular) function, and cellular component.
The process aspect describes what general cell-level functionality a gene prod-
uct is contributing to, e.g., ”carbohydrate metabolism”. The molecular function
aspect focuses on how the gene product is involved in biochemical reactions rel-
evant for that process. The term ”hydrolase activity”, for instance, marks the
gene product as a member of an particular enzyme class. Finally the ”cellular
component” aspect describes where the activity of the gene product takes place
(example: cytoplasm). The three term hierarchies form separate branches of the
ontology and are connected to each other only via the common root node and
some supplementary relations that provide cross references are not relevant to
definition of the ontology structure itself.
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Figure 6.1: Segment of the slim version of the biological process sub-ontology in
GO: Edges indicate hyponym relations, that is, “nucleus organiza-
tion” is represented as a special type of “organelle organization”

Because the full annotation is very detailed, a considerable fraction of the an-
notation terms is only applied to a very small subset of the database. Due to
their extremely low term coverage they do not lend themselves to a statistical
analysis. To provide a standardized broader view of the represented knowl-
edge, less specific versions of the ontology have been released by the consortium.
These so-called “slim ontologies” define species-specific subsets using compara-
tively general Gene Ontology terms. They are usually released together with
the annotation data collected in coordinated efforts to analyze the genome and
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proteome of the respective organism. The dataset used in this study was based
on a projection of the full SGD annotations to a subset of relatively broad gene-
ontology terms – the GO-Slim terms for yeast (SGD Curators, a). Terms that
were not included in the in the slim version of the ontology were mapped to their
most specific remaining ancestor in the original term hierarchy set. Current and
archived versions of both that mapping and the GO-Slim itself are maintained
at the SGD website.

6.2 Model Types and Experimental Setup

To evaluate the proposed framework, test its underlying assumptions and com-
pare its predictions with those of alternative frameworks, several distribution
models were implemented and evaluated on the S. cerevisiae dataset. In partic-
ular, this comparison included the following model types:

� A model in which presence or absence of elements in a set are encoded using
binary variables (INDEP). The latter variables are treated as independent,
so the distribution of set-instantiations is obtained as a product of binary
distributions for the state of the elements of the underlying carrier set. The
set-distribution is described via its one-point-coverage.

� A condensed distribution model using an unstructured attribute domain
(CDM) as described in Section 5.2;

� The hierarchical version of the condensed distribution model (HCDM) as
described in Section 5.4);

� Two Bayesian Models (BN1 and BN2) induced from the training data using
conditional independence tests (cf. Section 3.4). The models differ in that
BN2 applies more stringent conditional independence tests than BN1. Thus
the model variants represent different trade-offs between efficiency gained
from the decomposition and accuracy on the training data.

� Two models based on a full Random Set representation (RS1 and RS2)
using Laplace corrections of 10−9 and 10−12 respectively.

The Random Set representation serve as a reference for the assessment of the
evaluation scores. Their practical use, however, is limited due to the large number
of possible set-instantiations. Even when only the focal sets are stored the model
effectively consists of a slightly compressed representation of the training data
set1.

1The same argument applies to all other models that rely on the direct assignment of proba-
bility or belief mass to the focal sets (see Section 4.3).
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For the experiment the models for each of the listed types were used to represent
the distribution of annotation sets for a randomly selected subset of the yeast
genome. The resulting distribution models were then compared with the distri-
bution of the annotation term combinations on the remaining genes. To that
end approximation quality and generalization were evaluated based on measures
that respectively emphasize overall quality of fit, the representation of singleton
outcomes and the prediction of element coverage.

Because the distributions are learned from data, it is worthwhile to dedicate some
attention to the so called variance error . If the observed data is considered as a
sample obtained by drawing from the unknown distribution to be approximated,
then the learning methods have no means to distinguish between general patterns
due to regularities in that distribution and mere coincidences that arose as a
result of the sampling procedure. Thus, models induced from data exhibit a
tendency to adapt to such random, non-generalizable patterns in the data – an
effect known as overfitting . This undesirable effect is revealed by evaluating
data on a test data set, which is separate from the one used in the training.
To increase the robustness of the evaluation and avoid biases due to sampling
effects, a cross-validation strategy was employed for all experiments.

6.3 Data Preparation

Due to the structure of the database maintained in the SGD project, each as-
signment of an annotation term to a gene is represented as separate database
record. Apart form the gene name and annotation term these records contain
supplementary information, such as alternative gene names, the annotation as-
pect class, types of information sources used to assign the annotation, references
to the location of the gene within the genome or connected publications.

Because the content of the annotation databases has been compiled from various
publications spanning several years, preprocessing had to ensure that unique
identifiers were used for each gene. For historical reasons some genes were given
several alternative names. For instance a gene may have been assigned a name at
the time of its initial sequencing and been renamed once the gene was linked to a
specific function. In other cases gene homonyms arose from their association with
homologue genes in other species, or due to independent discovery by different
research groups. In order to ensure that annotations can be correctly attributed,
the first step of preprocessing consisted in mapping all alternative gene names to
unique standard identifiers which are used throughout all subsequent processes.

Following the mapping to standard identifiers, the records where filtered accord-
ing to the annotation aspect given. For the purpose of this evaluation only
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annotation w.r.t. the “biological process” aspect were chosen. The annotations
on the biological processes provide a comparatively reliable and extensive higher-
level description of the role of the gene product in the organism. In the remaining
part of the database, annotations for individual genes are still spread over several
database records. To better support a gene-based view on the data annotations
where grouped by the genes they refer to. The resulting file summarizes the
known biological function for each of 6849 genes using 909 distinct annotation
sets.

In addition to compiling the annotations-sets from the database, the preprocess-
ing stage included routines to assemble information about the annotation scheme
itself: The term hierarchy structure was extracted from the ontology and con-
verted into a domain specification for the hierarchical version of the condensed
distribution models. In a similar manner domain specifications were prepared
for the non-hierarchical version, the model based on independent binary vari-
ables, the Graphical Models and the Random Set representations. The domain
specifications for those models, however, were simple lists of annotation terms,
that is the information on term organization was disregarded. The generated do-
main specifications were later used in the training phase to configure the learning
algorithms for the respective distribution models .

The above preprocessing resulted in a database of annotation sets for 6849 genes.
For the assessment the database randomly divided into five disjoint partitions (4
partition with 1370 genes each and one partition with 1369 genes). To limit sam-
pling effects, the evaluation measures were computed in a 5-fold cross-validation
process (Mosier, 1951; Kohavi, 1995; Mitchell, 1997) with a different partition
serving as a test data set and the remaining partitions providing training data
in each run. Because the implementations of the models require different input
formats all training and tests sets were converted to an alternative file format
based on a binary encoding of the annotation sets.

6.4 Parameter Estimation

Using the model configuration files prepared in the preprocessing step and the
training data for each validation run, the different model types were trained for
the distribution of gene annotation sets. In the case of the model with inde-
pendent binary variables the parameter set consists of one value per element
in the carrier set. Each value describes the probability of an instantiation con-
taining its associated element. The modeled probability p̂INDEP(S) of any given
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set-instantiation S ⊆ Ω is obtained by computing the products

p̂INDEP(S) =

(∏
ω∈S

opc(ω)

)
·

 ∏
ω∈Ω\S

(1− opc(ω))

 , (6.1)

with the model parameters opc(ω) denoting the (estimated) probability of ω to be
an element of the outcome. Coverage rates for the elements of the carrier set are
estimated from the observed frequencies of the two possible outcomes “element
is present in the instantiation” and “element is absent in the instantiation” in
training data.

For the condensed distribution the parameters are singleton probabilities and
conditional coverage factors for the distribution. The hierarchy-based condensed
distribution model coverage factors refer to subtrees of the label hierarchy in-
stead. For a detailed description of parameters and the model induction proce-
dures see Sections 5.2 and 5.4 respectively.

The Bayesian Network models were induced from the binary encoding of the
training files using INeS Borgelt and Kruse (2002) – an open source implementa-
tion of several algorithms for the induction of Graphical Models. To determine
network structure the program was configured to use the conditional indepen-
dence test method with information gain as evaluation measure (applied for the
independence tests during network induction) and indepence tresholds of 0.1
and 0.01 respectively. For the evaluation of the induced models against the test
datasets the program “neval” of INeS package was substituted by a modified ver-
sion, which accesses the existing Bayesian Network structure for efficient compu-
tation of predicted one-point coverages and implements the additional evaluation
measures introduced in Section 6.5. In all of the above cases, the parameters were
estimated from the observed frequencies in the training data applying a Laplace
correction of 0.5 (compare page 28).

Due to the size of the distributions over the power set, the random sets where
not explicitly represented in memory. Instead all required evaluation measures
were computed directly from the size of the training and test sets, the number
of tuples in the overlap of both sets and the respective absolute frequencies,
of set-outcomes in this overlap with Laplace corrections applied according to
the settings for the evaluation run. This procedure avoids the iteration over a
large number of tuples (for which the pre-set computation time cap was exceeded
already for base domains of as few as 20 elements). The fact that the distribution
over the power set is more efficiently modeled by the training data set itself
than by its parametric form underlines the lack of generalization inherent to
approaches that rely on direct modeling over the power set of the base domain.
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For the Random Set Model a Laplace correction of 0.5 dominates the results
because the correction is applied to each element of the power set. To prevent
this undesired effect a much lower Laplace correction of 2.5 · 10−9 was used in
the evaluation. With this choice the representation achieves considerably better
evaluation results (Figure 6.2) and the fraction of probability mass distributed
due to the Laplace correction is approximately the same as for the other models.
Nevertheless the large number of parameters used for storing the distribution
over the power set in comparison to the available sample size makes the estimates
obtained from Random Set representations sensitive to the choice of the Laplace
correction value. In the experiment results for a run using a much lower Laplace
correction of 10 · 10−12 were added to the evaluation. The comparison of results
for those different parameters is used to illustrate the effects of the Laplace
correction on the performance of the Random Set model.

6.5 Evaluation Measures

Having discussed the model classes, their respective training procedures and
the general evaluation method, we shall now investigate evaluation measures.
The measures where chosen to provide complementary information on how well
different aspects of the set-distribution are captured by each model type.

Log-Likelihood To describe those measures we consider a process were distri-
bution models are evaluated against a test database Dtst = (d1, d2, . . . , dm). Each
record di formed by the set of annotations applicable to one particular gene. A
common way to evaluate the fit of a probability-based model M is to consider
the likelihood of the observed test data Dtst under the model, that is, the con-
ditional probability estimate P (Dtst | M). The closer the agreement between
test data and model, the higher that likelihood will be. An advantage of using
the likelihood-based approach over distribution-oriented measures, such as the
χ2 measure, is the possibility to compute the probability assessments using the
instantiations actually found in the training and test sets only rather than the
complete power-set.

Of course the likelihood can also be used to test model generalization. Mod-
els that overfit the training data predict low likelihoods for independent test
datasets drawn from the same background distribution as the training data. To
circumvent technical limitations concerning the representation of multiplication
with small numbers in the computer, the actual measure used is based on the
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logarithm of the likelihood:

logL(Dtst) = log
∏
d∈Dtst

P (d |M) (6.2)

=
∑
d∈Dtst

logP (d |M). (6.3)

Of course the particular term used to estimate the probabilities P (d | M) of
the records in D depends on the model type and its parameters. The measure
builds on the idea that the individual cases (genes) in both the training and
the test set are considered as independent samples of a multi-valued random
variable drawn from the same distribution. Having modeled that distribution
by estimating parameters form the training data, the likelihood of a particular
test database of size m is computed as the product of the likelihoods of its m
records. However, due to the low likelihood of individual sample realizations
even for good model approximation, the formula is almost always implemented
using the mathematically equivalent formulation given in Equation 6.3, which
yields intermediate results within the bounds of standard floating point format
number representations.

One particular difficulty connected with the Log-Likelihood, relates to the treat-
ment of previously unobserved cases in the test data set. If such values were
simply assigned a likelihood of zero by the model then the whole database would
have to be considered impossible and the Log-Likelihood becomes undefined. In
the experiment this undesired effect was countered by applying a Laplace cor-
rection during the training phase. This modification ensures that conceivable
events are assigned non-zero probability estimates even if they have not been
covered in the training data and enables the measures to discriminate between
databases containing such records.

Average Record Log-Likelihood: The main idea of the Log-Likelihood mea-
sure is to separately evaluate the likelihood of each record in the test database
with respect to the model and consider the database construction process a se-
quence of a finite number of independent trials. This makes it difficult to compare
measures obtained for test databases of different size. By correcting for the size
of the test database one may obtain an average record (Log-)Likelihood as a
more suitable measure for such tasks:

arLL(Dtst) =
logL(Dtst)

|Dtst|
(6.4)

Note that in the untransformed domain the mean of the log-likelihoods corre-
sponds to the geometric mean of the likelihoods, and is thus consistent with the
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construction of the measure from a product of evaluations for independently gen-
erated records. The arLL is used to measure the overall fit of the models to test
data sets in the experiments and takes values from the range (− inf, 0]. Values
closer to 0 indicate better fits.

Singleton and Coverage Rate Errors: In addition to the overall fit between
model and data, it is desirable to characterize how well particular properties of
a set-distribution are represented. It has previously been pointed out that the
condensed distribution emphasizes the approximation of both singleton prob-
abilities and the values of the element coverage2. To assess the quality of the
approximations from an application-oriented viewpoint and compare it to results
achieved using by other methods, two additional measures – dsglt and dcov – have
been employed. These measures are based on the sum of squared errors for the
respective statistics over all elements of the base domain:

dsglt =
∑
ω∈Ω

(p′(ω)− p(ω))
2
, (6.5)

dcov =
∑
ω∈Ω

(opc′(ω)− opc(ω))
2
. (6.6)

For both measures smaller values indicate better reconstructions.

6.6 Results

In order to increase the robustness of the results the evaluation was conducted
using 5-fold cross-validation. In each of the five runs the models were trained
using a Laplace correction of 0.5. For the assessment and comparison of the dif-
ferent methods, the evaluation results of the individual runs were collected and
– with the exception of the logL measure3 – averaged. These results are sum-
marized in the Tables 6.1–6.5. For comparison, the same procedure was applied
to two full Random Set representations using an adapted Laplace correction of
2.5 · 10−9 and a reduced value of 10−12 respectively (Tables 6.6 and 6.7).

As demonstrated by the arLL measure (logarithmic scale!) both versions of the
condensed distribution model provide a better overall fit to the test data than
the one with independent modeling of term appearance using one-point coverage

2Compare Section 4.1 for the role of singleton probabilities and coverage in different interpre-
tations

3See the discussion on the arLL measure on page 136 to review the argument why averaging
Log-Likelihoods is not meaningful here
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logL arLL dsglt dcov

-9039.60 -6.60 0.067856 0.001324
-8957.19 -6.54 0.064273 0.001524
-9132.09 -6.67 0.060619 0.001851
-8935.82 -6.52 0.074337 0.001906
-9193.44 -6.72 0.059949 0.001321

-6.61 0.065406 0.001585

Table 6.1: Evaluation results for model using independent binary variables (one-
point-coverage) with Laplace correction of 0.5 (INDEP)

logL arLL dsglt dcov

-7629.66 -5.57 0.000539 0.008293
-7559.38 -5.52 0.000457 0.011652
-7752.21 -5.66 0.000857 0.006998
-7529.83 -5.50 0.001014 0.004767
-7828.44 -5.72 0.000567 0.009961

-5.59 0.000686 0.008334

Table 6.2: Evaluation results for condensed distribution on hierarchically struc-
tured domain with Laplace correction of 0.5 (HCDM)

logL arLL dsglt dcov

-7992.76 -5.83 0.000241 0.001342
-7885.19 -5.76 0.000222 0.001531
-8045.31 -5.87 0.000411 0.001838
-7839.16 -5.72 0.000612 0.001895
-8195.49 -5.99 0.000268 0.001316

-5.83 0.000350 0.001584

Table 6.3: Evaluation results for condensed distribution on unstructured domain
with Laplace correction of 0.5 (CDM)

logL arLL dsglt dcov

-7305.45 -5.33 0.005469 0.000928
-7385.09 -5.39 0.005544 0.000946
-7276.01 -5.31 0.006352 0.001218
-7514.56 -5.49 0.004684 0.000625

-5.38 0.005512 0.000929

Table 6.4: Evaluation results for Bayesian Network Model (Laplace correction of
0.5, independence criterion ≤ 0.1) (BN1)
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logL arLL dsglt dcov

-7349.38 -5.36 0.005877 0.001324
-7324.65 -5.35 0.005638 0.001524
-7455.47 -5.44 0.005360 0.001851
-7333.04 -5.35 0.008129 0.001906
-7562.74 -5.52 0.005980 0.001321

-5.41 0.006196 0.001585

Table 6.5: Evaluation results for Bayesian Network Model (Laplace correction of
0.5, independence criterion ≤ 0.01) (BN2)

logL arLL dsglt dcov

-8259.66 -6.03 0.001823 0.098462
-8346.13 -6.09 0.001311 0.100860
-8651.12 -6.31 0.000964 0.095850
-8288.68 -6.05 0.003105 0.103200
-8534.30 -6.23 0.000671 0.094305

-6.14 0.001574 0.098536

Table 6.6: Evaluation results for Random Set representation (Laplace correction
of 2.5 · 10−9) (RS1)

logL arLL dsglt dcov

-8974.15 -6.55 0.000226 0.001324
-9107.57 -6.65 0.000228 0.001521
-9490.80 -6.93 0.000433 0.001854
-9050.11 -6.61 0.000575 0.001901
-9319.35 -6.81 0.000289 0.001326

-6.71 0.000350 0.001585

Table 6.7: Evaluation results for Random Set representation (Laplace correction
of 1.0 · 10−12) (RS2)

model arLL dsglt dcov

Rand. Set (RS1) -6.14 0.001574 0.098536
Rand. Set (RS2) -6.71 0.000350 0.001585
indep. bin. var. -6.61 0.065406 0.001585
CDM (flat term set) -5.83 0.000350 0.001584
HCDM (enriched ontol.) -5.59 0.000686 0.008334
Bayesian Network (BN1) -5.38 0.005512 0.000929
Bayesian Network (BN2) -5.41 0.006196 0.001585

Table 6.8: Summary of evaluation results over all model classes and criteria
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alone. Among the two condensed distribution models the variant integrating the
term hierarchy exhibits a consistently better fit. The advantage of the condensed
distribution models over the independent modeling can be explained by their
accurate representations of annotations with singletons or terms from a single
path of refinements. This particular class of annotations is frequent in the dataset
(compare Table 6.9). In fact, only the probabilistic Bayesian Networks achieve
a better assessment with respect to this criterion. Indeed, Graphical Models are
well-known for finding accurate, yet compact approximations of high dimensional
distributions. Although the complexity of the conditional independence tests
required to construct the models increases with the number of variables, use
of heuristics allows to find good model structures at acceptable computational
costs. Interestingly, the approximation results with the network based on more
stringent independence test achieves a lower fit to the test data than the more
tolerant model. Again, this effect can be attributed to overfitting as the inverse
relation is found for the training data.

cardinality 1 2 3 4 5 6 7 8 9 10 >10
abs. frequency 3896 1186 947 427 228 74 54 21 9 3 4

Table 6.9: Cardinality of annotation sets in Saccharomyces cerevisiae data

In spite of using the largest number of parameters the Random Set represen-
tations are clearly behind other model types in the comparison of general ap-
proximation quality (arTT measure). This is a result of overfitting as the even
the considerable training sample appears small in comparison to the number of
possible elements in the power set of the domain. Laplace correction (RS1) mit-
igates this effect to some degree but also introduces biases that interfere with
the accurate reconstruction of coverage factors. The effect of different choices for
the Laplace correction value on the accuracy of the Random Set representation
is shown in Figure 6.2.

With regard to the accuracy of the predicted rates of single-element annotations
the independent modeling of elements leads to a high error rate. In contrast,
the condensed distribution models benefit from their separate representations of
the probability associated with singleton annotation sets (the latter representing
56.9% of all database entries) to produce very low error measures. The accu-
racy of the hierarchical variant of the condensed distribution model is marginally
lower, which is explained by its reliance on local branch distributions for deter-
mining singleton rates4. Even the Graphical Models, with their excellent overall
fit to the distribution cannot compete with the specialized models for this task.
For the Random Set representation it becomes apparent that the very Laplace

4see page 125 for a discussion of and a proposed solution to that problem
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Figure 6.2: Average record Log-Likelihood for Random Set representation on test
data as a function of Laplace Correction (log. scale); broken line
indicates parameter value used for model RS1

correction that allowed to increase the overall fit of the distribution also increases
the error in the estimates of singleton rates (Table 6.6). As already explained on
page 134, this results from the sensitivity of the the Random Set approach to the
bias introduced by the correction. That bias is avoided by choosing low values
for the Laplace correction (Table 6.7) allowing to match the low error rate of
the condensed representation model for the unstructured domain. However, this
reduced Laplace correction is not effective in alleviating the overfitting problem
(see comparison of RS1 and RS2 in Table 6.8).

The adverse effect of the Laplace correction in the Random Set representation
is even more pronounced w.r.t. the error in one point coverages (dcov column in
Table 6.6. Again, that bias can be neglected when the Laplace correction is set
sufficiently low to balance the number of available observations with the cumu-
lative contributions of applying the correction to the elements from the power
set (Table 6.7, Laplace correction 10−12). By construction, the independence
model (Table 6.1) as well as the non-hierarchical condensed distribution model
accurately reflect the one point coverages in the training data. They achieve
essentially identical prediction errors (negligible differences between the tables
occur due to numerical effects in the calculations to recover one-point coverage
values from several parameters in the condensed representation). As before, the
error in the hierarchical version is slightly larger due to the conditional indepen-
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dence assumptions in the construction of the local distribution. Whereas the
Bayesian Network Model trained with stringent independence tests predicts the
one-point coverages (corresponding to the marginal distributions in the encod-
ing using binary variables) with error comparable to the error using the accurate
representations, the conditional independence assumption in the less constrained
model allows even better predictions. This indicates that good generalization
properties the less stringent condition.

6.7 Comparison of Computation Time

Its potential for processing of large annotation data sets was one of the motivating
factors for the development of the condensed distribution model. Obviously its
suitability for this tasks critically depends on the efficiency and scalability of
the approach. It is therefore appropriate to study the computational resources
required for running analyses using the condensed distribution in comparison
to other models for set distributions. In the experiment on the yeast dataset
processing times for each of the model types were measured and recorded in a
logfile. Figure 6.3 visualizes that data.

6time
(s)

0.12

INDEP

0.25

HCDM

0.21

CDM

0.30

BN1

1.46

BN2

156.98

RS1

158.52

RS2

Figure 6.3: Comparison of processing time for each distribution model (sum of
training and application phases during crossover procedure).
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6.8 Conclusions

The results of the experimental evaluation of the tested models agree with the
predicted properties of underlying frameworks that were elaborated in (Chap-
ters 3–5). Although their memory and processing time requirements by far ex-
ceed those of all other tested methods, Random Set representations achieved low
accuracy of predictions in comparison to the other approaches. This is largely
attributed to overfitting. On the other hand the independent treatment of term
occurrences in the annotation sets also led to low evaluation results, due to is
its disregard for the logical and statistical relations between terms. In partic-
ular, the difference between the observed frequency of single-term annotations
and the respective predicted frequency under the independence assumptions in
the data indicates that such assumptions do not generally hold. Conversely both
Graphical Models and the newly introduced condensed representations of set dis-
tributions were shown to provide compact yet accurate models for distributions
over sets. The most important difference between these two classes of models is
the origin of the structural component of the models. Whereas in the Graphical
Models the structure is directly induced from the training data. The hierarchi-
cal version of the condensed representation constructs the model around a given
hierarchy representing prior relational knowledge.

In the structure learning step of the Bayesian Network construction algorithm
independence assumptions expressed via the graph component are tested on the
training data before the final model structure is fixed. Whereas this strategy
leads to a better overall fit to the data, the best results were achieved when
the criteria used in the independence test were relaxed. The reason is that the
distinction of genuine but weak statistical interactions against a background of
sampling effects requires very large sets of training data. Allowing the learning
process to accept additional independence assumption results in a lower perfor-
mance on the training data, but improves generalization due to the reduced risk
of overfitting the model structure.

For the condensed representation of distributions over sets the model induction
process is restricted by the fixed model structure. This results in lower over-
all fit to the data (see arLL-measure) as compared to the Bayesian Network
approach. But due to the separate representation of the singleton refinements
in the (branch) distribution(s), the error rates for single-label descriptions are
lower. The evaluation of the experiments indicates, that the enforced structural
correspondence with the knowledge on term relations does not substantially limit
the overall accuracy of predictions in comparison to the Graphical Models. The
practical implications of these results are discussed in the final chapter of this
dissertation.
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The study of representations for statistical models of annotations and other set-
valued data types, demonstrated that the existing methods can summarily be
grouped into a small number of formal approaches. Details and assumptions that
allow to reduce the model complexity for individual frameworks are commonly
derived from particular interpretations, but prove difficult to transfer to new
application contexts.

After the requirements and desired properties for such an approach had been
elaborated, major classes of knowledge representations have been investigated
and evaluated w.r.t. their suitability to these requirements. While many proper-
ties of the extant representations are documented in the literature, the detailed
investigation also points out lesser known, often undesirable consequences of the
subtle independence assumptions in different model types. Although none of
the studied extant approaches fully met the desired model requirements, the de-
tailed analysis of the existing approaches and their capabilities provided valuable
lessons, which were integrated into the concept of a new knowledge representation
for empirical distributions over set-valued data. This concept was later imple-
mented and tested using a publicly available compilation of current biological
knowledge about gene function in S. cerevisiae.

7.1 Scientific Results

The central result of the present dissertation was the development of a knowledge
representation framework that is suited to data integration and modeling tasks
with annotation data. These capabilities enable the model to address critical
challenges in fields, such as systems biology.

In the order of their discussion in this dissertation the main results of this work
are:

� A survey of interpretations for distributions over sets and the extant ap-
proaches to represent such distributions. Major model classes were identi-
fied, then analyzed with respect to their properties, inherent assumptions
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and the aspects of knowledge emphasized by them. For each class of models
I discussed comparative strengths and limitations. This analysis allowed to
outline the aggregation problem in possibility theory, which impedes the di-
rect interpretation of marginal possibility distributions in the multivariate
case (Chapter 4).

� The introduction of the condensed representation to efficiently model dis-
tributions over sets. The condensed representation applies ideas inspired by
knowledge representations via possibility distributions, but embeds them in
a probabilistic framework to maintain interpretable aggregation operations
(Section 5.2).

� The extensions of said model to the multivariate case (Section 5.3) and
for attributes with hierarchically structured domains (Section 5.4). I pro-
posed data structures and operations for converting between information
representations relative to descriptions via different subsets of attributes,
that is, different frames of discernment. Because operations for changing
the frame of discernment are based on the probabilistic part of the model,
it circumvents the possibilistic aggregation problem and allows to obtain
interpretable results for marginal or coarsened domains. This information
consists of one-point coverages in the sense of the context model, and de-
tailed probability assignments for all singleton outcomes in the considered
frame.

� The experimental validation and comparative assessment of the proposed
models using publicly available biological datasets (Chapter 6). In par-
ticular it was demonstrated that the separate representation of singleton
outcomes is well-suited to the properties of annotation sets and allows for
improved approximations of their distributions as compared to other rep-
resentations with similar storage and processing time requirements.

Among the features of the condensed representation for random sets introduced
in this work, some aspects are highlighted due their implications for applications
in modeling and data analysis:

Empirical Foundation The condensed representation of random sets offers em-
pirical interpretations of all its marginal distributions. This empirical interpreta-
tion allows models utilizing the representation to be induced from data on objec-
tive observations or measurements and permits to generate empirically testable
predictions. Whereas the interpretation of singleton probabilities is identical to
the that of the probabilistic framework, represented one-point coverages are con-
sistent with the interpretation offered by the context model. This makes the
context model interpretation applicable in a frame-spanning manner, as opposed
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to having to specify all inputs with respect to a fixed reference set of variables
(see 4.4.5).

Integration with Probabilistic Models Due to the use of a coarsened proba-
bility space as a starting point of the representations, the effects resulting from
independence assumptions made to reduce model complexity are limited to the
reconstruction of set frequencies in local distributions. In contrast, marginal
distributions are computed using a the probabilistic aggregation method. If all
sets-outcomes are singletons for some selection of variables then the model is
equivalent to a probabilistic knowledge representation. Together with the proba-
bilistic aggregation operator this property can be used to extend the capabilities
of existing probability-based models by interfacing with the multivariate or hier-
archical versions of the models’ proposed condensed representations, with data
being exchanged via shared probabilistic marginal or coarsened distributions.

Data Representation and Ontology Enrichment By offering a method to
switch between frames of discernment within an efficient information-compressed
representation for distributions over sets, the proposed representation strikes a
compromise between full random sets, and simpler representations e.g., based
on term frequency. This makes the model suitable for tasks where the former
approaches are prone to overfitting due to a high number of focal sets, whereas
the accuracy requirements or and application context do not admit the additional
independence assumptions made by simpler approaches. Moreover, in the one-
dimensional version of the representation, the number of parameters is linear in
the size of the base domain, allowing for a compact representation. In particular
the condensed representations are well-suited to annotations and can be used to
enrich associated ontologies. For example, the hierarchical model variant used in
the evaluation (in Chapter 6) enriches the Gene Ontology with species-specific
quantitative information about the relation between biological processes and the
composition of the genome.

Significance for Research Set-based concepts and annotations are extensively
used in emerging research fields, in particular in Computational Biology. Al-
though this research is fueled by rapid improvements in experimental techniques
and the wide availability of computational resources the a lack of suitable eval-
uated algorithms, models, and model components often limits to progress in
application projects. In Computational Biology ontologies and complementary
annotations in genome and proteome databases from publicly available resources
have acquired a pivotal role for the interpretation experimental data and the for-
mulation of new hypotheses. They are routinely used, for instance, to integrate
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mRNA level data for thousands gene loci into a higher level biological context,
integrate such context information into graph-based models of gene-interaction
(Maere et al., 2005) or select candidate hypotheses for further investigation in
targeted experiments (Buescher et al., 2012); furthermore to study the emer-
gence of new capabilities during evolution by analyzing enrichment and differ-
ences of annotations or annotation groups in phylogenetic trees. The central role
of annotations and ontologies is illustrated by the number of large international
collaborations that aim to create, maintain and extend such resources.

The main incentive for the development of such automated tools is the shift
from a small number of experiments focused on a particular pathway to large-
scale, high-throughput experimental techniques. Due to the amount the collected
data, the analysis and interpretation of these results can no longer be conducted
unassisted. Providing adequate statistical models and tools that are suitable to
support operating with set-based data, they aid researchers to automate tasks
in the integration of information from different sources as well as the planning
and analysis of experiments.

Possible Use in Clustering and Classification Because the condensed repre-
sentation of Random Sets provides a very compact summary representation for
a group of annotated objects, it may itself serve as a representation of cluster
or class prototypes in machine learning. In particular the evaluation measures
applied in Chapter 6 already measure distances in a data and model space for
clustering or classification tasks. However, in their current form the measures are
not well adapted to such tasks, and modifications would have to be applied to
achieve suitable value ranges and better comparability between distances mea-
sured. Given the continuing interest in multi-clustering by the machine learning
community, the development of this approach and comparison to alternative
strategies are an option for a future line of investigation.

Applications in Combination with Graphical Models While one of the in-
spirations for the development of the condensed representation came from the
potential integration of set-based data into graphical models, at the time of this
writing the author is not aware of any extensive publicly available collections
of multivariate data sets using set-valued data. The comparison with other ap-
proaches was thus limited to the more readily available hierarchical data-sets.
Nevertheless an application to more general Graphical models would build on
the same principles and was considered in the method design.
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7.2 Software Development

The condensed representation of random sets as well as additional data struc-
tures and operations to support hierarchical models for imported ontologies have
been implemented as C libraries, which are available from the author. A software
tool that allows the induction of and operations on condensed distributions for
random sets has been implemented on the basis of these libraries. The software
supports several modeling approaches and can be adapted for different interpre-
tations of set distributions. Configuration options are accessed via a command
line interface, that facilitates integration into scripted workflows.

package/tool Description

hdist.c, hdist.h C library implementing (hierarchical) distribution over
sets and support functionality, permits programmatic ac-
cess to all distribution parameters, conversion between
frames, etc.

psvmodel integrated model induction and evaluation tool for both
flat and hierarchical versions of distribution model over
sets; also implements model based on independent bi-
nary variables (accessed via command line parameters)

crsinduce command line interface for inducing (hierarchical) mod-
els for set-valued data from case database

crsapply command line interface for querying (hierarchical) model
for set-value data and assessing the likelihood of sample
databases under the model

Table 7.1: Software components implementing core functionality of hierarchical
distribution model

An introduction to the software interface is given via a demonstration script
(output abbreviated): The first commands show small sample files for a hier-
archy and set instantiations compatible with that hierarchy. From this data
a hierarchical model is induced and saved to file (crsinduce). The model is
subsequently reloaded and applied to a sample database that lists all possible
set-instantiations compatible with the chosen hierarchy (crsapply). This eval-
uation provides statistics for the fit of the sample database to the model and,
optionally, assessments of the likelihood of each individual instantiation under
the induced model. Converting these likelihood assessments back to sample prob-
abilities demonstrates that the condensed representation indeed expands into a
probability distribution over the sets.
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> cat ex/demo.htr

digraph demo {

A -> B;

A [label="nodeA"] -> C;

C -> D;

}

> cat ex/demo.tab

A

A

A

B

A

B

B C

B C

D

B D

> ./crsinduce -s -l0.0 -mincl ex/demo.htr ex/demo.tab ex/demo.mdl

...reading training data from file ex/demo.tab

> cat ex/demoqry.tab

A

B

B C

B D

C

D

> ./crsapply -s ex/demo.mdl ex/demoqry.tab -

...assessing data from file ex/demoqry.tab

{ A } -0.916291

{ B } -1.609438

{ B C } -1.897120

{ B D } -1.897120

{ C } -2.995732

{ D } -2.995732

-------------------------------------------------------------

model logL(D_test) logL(d_avg) sum err_frq^2 sum err_cov^2

-------------------------------------------------------------

hdist -12.311433 -2.051906 0.082778 0.090000
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> ./crsapply -s ex/demo.mdl ex/demoqry.tab - |head -n6 | \

awk -vOFS="\t" -vFS="\t" ’{ print $0, exp($2)}’

...assessing data from file ex/demoqry.tab

{ A } -0.916291 0.4

{ B } -1.609438 0.2

{ B C } -1.897120 0.15

{ B D } -1.897120 0.15

{ C } -2.995732 0.05

{ D } -2.995732 0.05

Alternatively crsapply can be configured to show the probability mass of the
complete subtree rooted at a node. In that mode the probability of any compat-
ible refinement will count towards the assessment. This mode can be used for
conducting enrichment studies based on sample sets with inhomogeneous gran-
ularity. The combination of both modes can be used for assessing instantiations
for a particular selected frame, depending on the expansion level of elements in
the queried instantiation relative to the frame resolution hierarchy, and the cho-
sen model settings regarding the assignment of probability mass to instantiations
with non-leaf elements (allowed by default).

Passing the option “-?” to any of the programs will open a screen with command-
line help.

Additional software implemented includes:

� An emulation of the Random Set model via database operations on training
and test databases

� Modified components of the INES software package for network induction
with Graphical Models, which were adapted to evaluation measures defined
and applied in chapter 6

� Various support scripts used for format conversion, identifier mapping, data
import and pre-processing of Gene Ontology and Gene Ontology Annota-
tion files, automated evaluation and aggregation of results (many of the
reusable ones are available on the authors website).

� Supporting tools for frame conversion in structured domains.

All software is available on request or via the authors website www.ruegheimer.
org.
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List of Symbols

A ⊥⊥ B | Z Variables A and B are conditionally independent for every
fixed instantiation of the attributes in the set Z

A 6⊥⊥ B | Z Variables A and B are not independent for every fixed in-
stantiation of the attributes in the set Z

X ⊥⊥δ Y | Z Variable sets X and Y are conditionally independent for
every fixed instantiation of the attributes in the set Z under
the distribution δ

λB→A A λ-message sent from attribute B to attribute A, used in
polytree propagation algorithm for Bayesian Network

πA→B A π-message sent from attribute A to attribute B, used in
polytree propagation algorithm for Bayesian Network

(X | Z | Y )G Variable sets X and Y are u-separated by the variable set
Z in the undirected graph G

(X | Z | Y ) ~G Variable sets X and Y are d-separated by the variable set

Z in the directed graph ~G

X \ Y The set difference of set X and set Y

(Λ)H The set of related frames generated by the label hierarchy
H

(p�, c�) A condensed distribution composed of a condensed proba-
bility distribution on the coarsened power domain and an
associated coverage function

(p�H,λr , c
�
H,λr

) A condensed conditional distribution over power set of sub-
frame formed by children of lable λr in the hierarchy H.
Used to refine distributions over multi-label description.
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2Λ The power set (set of subsets) of the label set Λ∧
Extension of the conjunction operator to a set of conditions.
The aggregate condition is true if and only if all conditions
of the indexed family hold.

|X| The cardinality of the set X

X The complement of the set X with respect to its set universe

A Mostly: attribute (single-valued)
Also: proposition (Example 2.1)

a1, a2, b1, b2 etc. Labels – usually associated with domain or base domain of
attribute designated by corresponding capital letter

A� A condensed set-valued attribute

Ai Attributes

AΛ An attribute that takes values from the frame Λ

A∗Λ Set-valued attribute taking values from the power set of the
frame Λ

Aobs,Λ Attribute that represents an observed value w.r.t. the frame
Λ in a hierarchy.

A∗, B∗ etc. Set-valued attributes

ancH(λ) The set of ancestors of a label λ in a hierarchy H

arLL average record Log-Likelihood (see page 136)

B Mostly: attribute (single-valued)
Also: proposition (Example 2.1)

bdom(A�) The basic domain of the condensed set-valued attribute (set
of labels from which set-outcomes can be formed)

Bel Belief measure

B� A condensed set-valued attribute
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C Set of Cliques in graph component of a Markov Network

C Attribute

C Mostly: a sample space – used in random set definition
(Definition 4.1), interpreted as set of contexts in the context
model
Also: attribute (Chapter 3)

c� A coverage function

c� The coverage function of a condensed representation for set-
valued distributions

c�(ω) The relative coverage factor associated with an element of
the basic domain of a condensed set-valued attribute

c�H,λr A conditional coverage function for children of λr in hier-
archy H (used for mapping distributions over multi-label
instantiations to finer frames)

c�X,[Y ],tZ�
A coverage function for the multivariate version of the con-
densed representation of set-valued attributes, parameters
identify a set of reference attribute X�, the subset Y � of X�

with attributes that have non-singleton instantiations and
the (precise) instantiation for all attributes Z� = X� \ Y �
(subscripts indicate respective base attributes)

Ci Clique in the graph component of a Markov Network

catt(X) A composite attribute constructed from attributes in set X
– instantiations are defined as combinations of instantia-
tions of component attributes

childrenH(λ) The set of children (direct descendants) of a label λ in the
hierarchy H

convΛ1→Λ2 Mapping to convert probability distribution over frame of
discernment Λ1 to probability distribution over frame Λ2

(Λ1 and Λ2 must be generated by the same hierarchy)

δ A distribution, e.g., probability distribution
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dom(A�) Domain of a condensed set-valued attribute (probabilistic
component)

dcov Singleton coverage rate error sum (see page 137)

dsglt Singleton probability error sum (see page 137)

descH(λ) The set of descendants of a label λ in a hierarchy H

dom(A) The range of values (domain) of attribute A

E A proposition, expressed as subset of Ω

E The edge set for the graph component of a Graphical Model
(with undirected graphs)

~E The edge set for the graph component of a Graphical Model
(with directed graphs)

EU� Set of tuples over attribute set specifying an event in terms
of the condensed set-valued attribute set EU� (tuple-based
notation)

F General use: a proposition, expressed as subset of Ω
Specifically: a focal set

F The set of focal sets for a random set-based representation

Fi A focal set

G An undirected graph, used to represent set of independence
relations for a Graphical Model

G′ The underlying undirected graph w.r.t. the directed graph
~G of a Bayesian Network, obtained by replacing directed
edges in ~G by undirected ones

~G A directed graph, used to represent set of independence
relations for a Graphical Model

Γ General use: set-valued mapping
Specifically: a random set

Γ′ A random set
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List of Symbols

H A hierarchy

L A set of labels

L The set of labels in a hierarchy

Λ General use: A set of labels
Specifically: A frame of discernment

Λ0 Coarsest frame of a label hierarchy, contains root label only
(Λ0 = {λ0})

λ0 The root label of a hierarchy

Λ′ General use: A set of labels
Specifically: A frame of discernment

λr Used to indicate non-leaf element of a hierachically struc-
tured label set L that is replaced by the set of its children
under an elementary refinement operation

λ�r Surrogate label to represent non-singleton outcomes in con-
desed version of distribution over subsets of the direct re-
finement of λr

lcorr Value of the Laplace correction

m(H) Mass assignment to H ⊆ Ω, also called basic probability
assignment

mvX(tX , Y ) A tuple over the set-valued attributes X� – values for the at-
tribute subsets X� \Y � corresponds to precise values speci-
fied in tX , other variables are set to symbol for non-singleton
outcomes

N (function) Necessity measure

N (variable) The total number of trials in a series of experiments

Nω The number of trials, in which outcome ω was observed in
a series of experiments

O A set of observed variables (used in variable elimination
algorithm for reasoning with Graphical Models)
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O A set of objects or entities in the modeled world

o An object or entity in the modeled world

Ω A frame of discernment (general)

ω An element of a frame of discernment

ω0 In modeling approaches based on the state-of-the-world view:
the element of a frame of discernment representing the sin-
gle true state of a modeled world (uncertainty about the
identity of this state may be reduced due to the integration
of new facts)

ω� Surrogate label used to summarize set-outcomes in prob-
abilistic part of the condensed representation for random
sets.

ωF An element of focal set F , not contained in any focal subset
of F

ΩX A frame of discernment providing distinctions w.r.t. the val-
ues of the attributes in the attribute set X

opc(ω) The one-point coverage for element ω by a random set

opc′H(λ) Estimate of one-point coverage (probability of applicability)
of label λ in label hierarchy H – reconstructed from model
using condensed distribution to represent branch probabil-
ities in H.

P A probability measure

p A probability distribution (probability density function)

P (A = a | B = b) Conditional probability for instantiation a of attribute A,
given that attribute B is instantiated with b.

p� A condensed probability distribution

p�H,λr A condensed conditional probability distribution over the
power set of sub-frame formed by the children of λr in the
hierarchy H
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pH Function providing probability assignments for each label of
a hierarchy H, used to construct probability distributions
for individual frames

p̂(ω) A point estimate for the probability of observing outcome
ω in a random experiment

p̂INDEP Estimated probability distribution for over set-instantiations
according to a model with independnent element member-
ship provided by model)

PΛ A probability measure over the frame of discernment Λ

P ∗ Probability measure over a domain of a set-valued attribute

p∗ A probability distributions over a power set

P ∗(E) Upper probability of event E induced by a set-valued map-
ping from a probability space (Chapter 4 only)

P∗(E) Lower probability of event E induced by a set-valued map-
ping from a probability space (Chapter 4 only)

P ∗H Probability measure for multi-label instantiantions w.r.t. a
hierarchy H (see underlying distribution p∗H)

p∗H Probability distribution over the space of multi-label in-
stantiations w.r.t. a hierarchy H.

p∗H,λr(S) Conditional probability distribution over power set of the
subframe defined by the children of label λr in hierarchy H
– used for mapping set-distributions in hierarchies to finer
frames.

parentHλ The direct parent of a label λ in the hierarchy H

φCi The factor potential associated with clique Ci in a Markov
Model

Π The set extension of a possibility distribution function (pos-
sibility measure)

π A possibility distribution
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Pl Plausibility measure

pred(A) Set of predecessors of node A in a directed graph

projXY (RX) The projection of the set or relation RX to the attribute set
Y

Q A set of query variables (used in variable elimination algo-
rithm for reasoning with Graphical Models)

R A relation linking activities to locations (used in Chapter 2)

Ranc Ancestor relation in a hierarchy, transitive closure of Rparent

Rparent A relation: (λ2, λ1) ∈ Rparent indicates that λ1 is a direct
parent (superior) of λ2 a hierarchy

ref General use: A refinement function
Specifically: The elementary refinement operation on a hi-
erarchy

S General use: a set or relation

Specifically: a set of holiday activities (Chapter 2)
a set-valued outcome of a random experiment
(Chapter 5)

σ Set reduction mapping (used for condensed representation
of random sets)

σX Set reduction mapping (extension to multivariate case using
attributes from X as base attributes)

SH A multi-label instantiation with respect to a hierarchy H

τ A parameter conversion function – used for iteration over
coverage groups when computing marginal and conditional
coverage functions in the multivariate case

TX The set of all tuples (instantiations) over the attribute set
X
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tX A tuple or instantiation represented as a mapping from the
attributes in an attribute set X to their respective attribute
values

TX� The set of tuples over a set X� of condensed set-valued
attributes

tX� A tuple over a set X� of condensed set-valued attributes

tX|Y A tuple over the attribute set Y , obtained as a restriction
of a tuple tX over the attribute set X, with X ⊇ Y (all
attributes of Y are mapped to the same values as under
tX)

U� General use: set of condensed set-valued attributes
Specifically: used in specification of conditioning events or
distributions

V The set of variables referred to by a Graphical Model, con-
stitutes the set of vertices in the model’s graph component

W0 A subset of a frame of discernment that comprises instances
realized in modeled situation, applied in set-of-instances
view

W �, X�, Y �, Z� Sets of condensed set-valued attributes

X, Y, Z Attribute sets
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Enrique Castillo, José M. Guitérrez, and Ali S. Hadi. Expert Systems and Prob-
abilistic Network Models. Springer-Verlag, New York, USA, 1997.

David M. Chickering, Dan Geiger, and David Heckerman. Learning Bayesian
networks from data. Machine Learning, 20(3):197–243, 1995.

David M. Chickering, David Heckerman, and Christopher Meek. A Bayesian
approach to learning Bayesian networks with local structure. In Proceedings of

164



Bibliography

the 13th Conference on Uncertainty in Artificial Intelligence (UAI’97), pages
80–89, 1997.

C.K. Chow and C.N. Liu. Approximating discrete probability distributions with
dependence trees. IEEE Transactions on Information Theory, 14(3):462–467,
1968.

Giulianella Coletti and Romano Scozzafava. Conditioning in a coherent setting:
Theory and applications. Fuzzy Sets and Systems, 155(1):26–49, 2005.

Gregory F. Cooper and Edward Herskovits. A Bayesian method for induction of
probabilistic networks from data. Machine Learning, 9:309–347, 1992.

Fabio Gagliardi Cozman and Peter Walley. Graphoid properties of epistemic ir-
relevance and independence. Annals of Mathematics and Artificial Intelligence,
45(1–2):173–195, 2005.

Luis M. de Campos and Juan F. Huete. Learning non probabilistic belief net-
works. In Michael Clarke, Rudolf Kruse, and Seraf́ın Moral, editors, Symbolic
and Quantitative Approaches to Reasoning and Uncertainty (LNCS 747), pages
57–64. Springer, 1993.

Gert de Cooman. Possibility theory I: the measure- and integral-theoretic
groundwork. International Journal of General Systems, 25:291–323, 1997a.

Gert de Cooman. Possibility theory II: conditional possibility. International
Journal of General Systems, 25:325–351, 1997b.

Gert de Cooman. Possibility theory III: possibilistic independence. International
Journal of General Systems, 25:353–371, 1997c.

Bruno de Finetti. Theory of Probability: A Critical Introductory Treatment,
volume 1. John Wiley, New York, 1974.

Bruno de Finetti. Theory of Probability: A Critical Introductory Treatment,
volume 2. John Wiley, New York, 1975.

Johan de Kleer. An assumption-based TMS. Artificial Intelligence, 28(2):127–
162, 1986.
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Matthias Steinbrecher, Frank Rügheimer, and Rudolf Kruse. Computational
Intelligence in Automotive Applications, volume 132/2008 of Studies in Com-
putational Intelligence, chapter Application of Graphical Models in the Auto-
motive Industry, pages 79–88. Springer, Berlin / Heidelberg, 2008. ISBN
978-3-540-79256-7. doi: 10.1007/978-3-540-79257-4 5. URL http://www.
springerlink.com/content/v2g556403238145v/.
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