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Abstract

Program comprehension is a major human factor in software development. It often
makes the difference between success and failure of a software product, because main-
tenance programmers spend most of their time with understanding code, and because
maintenance is the main cost factor in software development. Thus, if program com-
prehension is not supported properly, time and cost for software development increase
significantly.

Although program comprehension has such importance, researchers and practition-
ers do not consider it properly, but use plausibility arguments to claim positive or neg-
ative effects on program comprehension. Program comprehension is an internal cogni-
tive process, so we cannot rely on plausibility arguments only, but need to conduct con-
trolled experiments to empirically evaluate what improves and what impairs program
comprehension. We believe that one reason for this mismatch between the importance
of program comprehension and its insufficient evaluation is the effort of conducting con-
trolled experiments.

Thus, a plethora of new programming paradigms and techniques exist that suppos-
edly improve program comprehension, but have not been evaluated empirically to con-
firm a positive effect on program comprehension. Although there is effort to improve
program comprehension, it is not clear whether this effort has success. To improve the
current situation, we define two goals in this thesis: First, reducing the effort for con-
ducting controlled experiments, and, second, creating first empirical evidence how one
of the plethora of new approaches, feature-oriented software development, affects pro-
gram comprehension.

To address our first goal, we first evaluate whether software measures represent a
suitable alternative to controlled experiments. Software measures rely only on source-
code properties and do not require observing human participants. However, the results
indicate that software measure are not a reliable substitute for controlled experiments
with human participants. Hence, we aim at reducing the effort for controlled experi-
ments with human participants. To this end, we conduct a literature survey of controlled
experiments of the last ten years published in seven major journals and conferences of
the software-engineering domain. This way, we get an overview of the state of the art
of measuring program comprehension, on which we base a framework to support plan-
ning, conducting, and replicating experiments. Specifically, we provide a list of con-
founding parameters for program comprehension, including control techniques, so that
researchers know how the validity of experiments is threatened and how they can ad-
dress the threats. Doing so, we reduce the major obstacle for conducting controlled exper-
iments with human participants. Furthermore, we develop and evaluate a questionnaire
to reliably and conveniently measure programming experience, the most important con-
founding parameter for program comprehension. Additionally, we provide a tool that
helps researchers to design and replicate experiments.

With our second goal, we analyze how a specific programming approach, feature-
oriented software development, affects program comprehension. To this end, we conduct
a series of controlled experiments, in which we show how different facets of feature-
oriented software development affect program comprehension. Specifically, we show
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how background colors speed up program comprehension in terms of locating code frag-
ments. Furthermore, we evaluate whether a claimed benefit for program comprehension,
which is separation of code along features, really improves program comprehension.
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Chapter 1

Introduction

Program comprehension is an important human factor in software development. Pro-
grammers spend about 50% of their time with understanding source code [Standish,
1984; Tiarks, 2011; von Mayrhauser et al., 1997]. Since maintenance is the main cost fac-
tor during software development [Boehm, 1981], we can save cost and time during the
software-development process by making software more comprehendable.

To improve program comprehension, programming techniques came a long way
since the development of the first programmable computers around 1945 [Neumann,
1945]. Programming started at a machine-oriented level, in which numbers represented
instructions. Then, assembly languages emerged, in which mnemonics refer to instruc-
tions [Salomon, 1992]. Over procedural languages, such as Ada [Carlson et al., 1980]
and Fortran [Backus et al., 1957], contemporary object-oriented programming was cre-
ated, which is still a state-of-the-art programming paradigm [Meyer, 1997]. To show the
positive effect of object-oriented programming on program comprehension, researchers
conducted empirical studies with human participants (e.g., Daly et al. [1995]; Henry et al.
[1990]).

To address new requirements that exceed the limits of object-oriented programming,
such as variability, extensibility, and customizability, researchers developed novel ap-
proaches to implement software. One promising approach is feature-oriented software
development, in which features are the central elements, instead of objects. A feature is
“a unit of functionality of a software system that satisfies a requirement, represents a de-
sign decision, and provides a potential configuration option” [Apel and Kästner, 2009].
Features are made explicit to decompose code along them, which supposedly improves
program comprehension compared to contemporary object-oriented programming.

So far, there is only little empirical work evaluating the effect of feature-oriented soft-
ware development on program comprehension, but there are mostly discussions based
on plausibility arguments [Apel et al., 2007]. For example, one argument in favor of de-
composing code along features is that the amount of information present at the same
time is limited, so a developer has to deal with less information. However, as a draw-
back, when developers need information of other features, they have to trace the infor-
mation to other files and folders. Thus, limited information can be seen both as benefit
and drawback. However, without evaluating how decomposed code affects program
comprehension, we do not know whether it is a benefit or a drawback.
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To evaluate program comprehension, we need to conduct controlled experiments
with human participants, because program comprehension is an internal cognitive pro-
cess that we cannot observe directly [Koenemann and Robertson, 1991]. Developers un-
derstand programs in different ways. If they are familiar with a program’s domain, they
use top-down comprehension—they derive a general hypothesis about a program and
then look for information to confirm or reject this hypothesis [Brooks, 1978; Shaft and
Vessey, 1995; Soloway and Ehrlich, 1984]. If developers are not familiar with the do-
main, they use bottom-up comprehension by analyzing the program statement by state-
ment [Pennington, 1987; Shneiderman and Mayer, 1979]. Thus, to understand the com-
plex process of comprehending source code, we need to observe developers in controlled
experiments. Based on the results of such experiments, we can state what effects mod-
ern programming techniques, such as feature-oriented software development, have on
program comprehension. The more experiments there are, the more reliable and detailed
knowledge we can gather.

When we started this project, our initial goal was to evaluate how feature-oriented
software development affects program comprehension. However, during our research,
we found that there are no common methodologies or tools for conducting experiments.
Instead, researchers use their own tools and materials, and only rarely reuse work of
other researchers. Thus, there are diverse ways in which researchers conduct controlled
experiments, which makes it difficult to compare results of similar experiments, which is
necessary to create a common knowledge base.

One reason for this situation is that conducting controlled experiments is time con-
suming and costly. We need to define an experimental set up, select suitable material and
tasks, control for confounding parameters, recruit participants and compensate them for
participation, and so on. We believe that this high effort discourages researchers from
conducting experiments. We aim at reducing this effort.

Specifically, we define two goals:

• A framework to support controlled program-comprehension experiments.

• A knowledge base that comprises information on the effect of feature-oriented soft-
ware development on program comprehension.

First, we develop tools and guidelines for conducting experiments that evaluate pro-
gram comprehension. We refer to them as framework, since they are similar to frame-
works as used to develop programs, such as Eclipse [Johnson and Foote, 1988]: There
are common parts that are required in every comprehension experiment (e.g., presenting
material), and user-specific parts that differ in across different experiments (e.g., the kind
of material). With our framework, we target the obstacles that prohibit researchers from
conducting controlled experiments. Specifically, we give recommendations how to mea-
sure program comprehension, assemble and analyze a list of confounding parameters for
program comprehension, present a questionnaire to measure programming experience
as the most important confounding parameter, and provide a tool to support conducting
and replicating comprehension experiments.

Second, we pursue our initial goal to evaluate how feature-oriented software devel-
opment affects program comprehension. This way, we start creating a knowledge base
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about the positive or negative effects of decomposing source code along features. Since
feature-oriented software development is a new approach, it is not established in indus-
try yet and is still refined by researchers. Thus, with a sound empirical knowledge base,
we can guide the refinement of feature-oriented software development in a direction that
improves program comprehension and, in the long run, reduces the time and cost of
real-world software development.

For a better overview, we divide this thesis into two parts according to our goals: In
the first part, we develop our framework, and in the second part, we present our experi-
ments regarding program comprehension in feature-oriented software development. We
pursued both goals in parallel, so work of both parts influenced each other. Thus, the
order of the chapters does not reflect the chronological order of our work. Instead, we
ordered the chapters according to a coherent story line. Hence, we often use prelimi-
nary parts of our framework for our experiments and extended these preliminary parts
afterwards.

1.1 Contributions

By addressing our goals, we make the following contributions to the software-engineering
community:

1. Recommendation for measuring program comprehension.
Researchers often use software measure to assess program comprehension. In a
controlled experiment, we evaluate whether software measures are reliable in-
dicators for program comprehension. Furthermore, we are currently exploring
whether we can use functional magnetic resonance imaging to measure program
comprehension. Based on the results of both studies, we recommend to conduct
controlled experiments to reliably measure program comprehension.

2. Overview of confounding parameters and control techniques.
To reliably measure program comprehension in experiments, we need to control
for confounding parameters, which may bias our results. To support researchers
in this process, we conducted a literature survey and analyzed how confounding
parameters are currently managed. Based on the results of the literature survey and
standard control techniques rooted in psychology, we give recommendations how
to deal with confounding parameters during experimental designs.

3. Initial questionnaire to measure programming experience.
To control for confounding parameters, we often need to measure them. In our
work, we develop a questionnaire to measure programming experience, the major
confounding parameter for program comprehension. Our work also serves as rec-
ommendation how to create questionnaires to reliably measure certain confound-
ing parameters.

4. Tool support for comprehension experiments.
In comprehension experiments, source code and other material needs to be pre-
sented to participants. To support this presentation, we present the tool PROPHET,
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which allows experimenters to specify how participants see material, for exam-
ple, with or without syntax highlighting or with or without a search functionality.
PROPHET documents all customizations automatically, so it supports exact repli-
cation of experiments. Furthermore, PROPHET logs behavior of participants and
can be extended with further functionality.

5. Empirical evidence of how feature-oriented software development affects program com-
prehension.
With our experiments, we provide first empirical evidence on the benefits and
drawbacks of feature-oriented software development on program comprehension.
We show that background colors can speed up program comprehension even in
large preprocessor-based software. Furthermore, we compare different techniques
to separate code along features regarding their effect on program comprehension.

6. Reusable experimental designs.
Furthermore, we designed our experiments to be reusable. To this end, we provide
detailed descriptions of our settings and make the tools we used available online at
our website (http://fosd.net/experiments). Thus, we and others can repli-
cate our experiments, either exact or with slightly modified settings, so that we can
extend our knowledge base regarding the effect of feature-oriented software devel-
opment on program comprehension.

1.2 Outline

In Chapter 2 (Background), we briefly introduce general terms and concepts regarding
program comprehension, controlled experiments, and feature-oriented software devel-
opment. This way, we present the most important topics to understand this thesis.

1.2.1 Part I

In Chapter 3 (Exploring software measures to assess program comprehension), we describe
a controlled experiment to evaluate whether software measures are suitable program-
comprehension indicators. We give a detailed explanation of our experimental setting
and analysis. The result of this experiment motivates the work presented in the remain-
ing chapters of Part I.

In Chapter 4 (Confounding parameters for program comprehension), we present our litera-
ture survey to identify confounding parameters for program comprehension. We explain
in detail how we selected the papers and extracted relevant information to support other
researchers in confirming and extending our list of confounding parameters. Further-
more, we give recommendations on how to manage confounding parameters.

In Chapter 5 (Measuring programming experience), we describe how we developed a
questionnaire to measure programming experience, the major confounding parameter
for program comprehension. We explain in detail the design of the questionnaire based
on a literature survey and its evaluation. This way, we enable other researchers to de-
velop reliable questionnaires for other confounding parameters.

http://fosd.net/experiments
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In Chapter 6 (PROPHET: Program-comprehension experiment tool), we present our tool
to support planning, conducting, and replicating comprehension experiments. We de-
scribe the requirements we address with our tool based on a literature survey and eval-
uate whether and how we fulfill these requirements. Furthermore, we describe the ar-
chitecture of our tool, which we designed such that currently not supported or identified
requirements can be addressed.

1.2.2 Part II

In Chapter 7 (Using background colors to escape the #ifdef hell), we present our family of
three controlled experiments to evaluate whether and how background colors improve
program comprehension in preprocessor-based software. With the family of experiments,
we show how to start empirical research of an unexplored topic: We start with a small
focus and then extend the focus stepwise by replicating experiments with (slightly) mod-
ified settings.

In Chapter 8 (Current projects), we present the projects we are currently working on.
First, we describe the current status of our experiments to evaluate whether we can use
functional magnetic resonance imaging to measure program comprehension. Second, we
present our experimental setting to compare different techniques to separate code along
features. Last, we describe an experiment in which we evaluated whether presenting a
software model in a stepwise manner improves its comprehension, compared to present-
ing a software model all at once.

In Chapter 9 (Conclusion and future work), we summarize our contributions and give
suggestions for future work.

1.3 Limitation

One important limitation of our research is that we mostly recruited students as partic-
ipants. Thus, our results are only valid in the context of students. For our results to
be valid for professional programmers, we would have to recruit professional program-
mers. However, they typically get paid for their participation, leading to high costs for
conducting experiments. For example, Arisholm and others paid up to 90 000 Euros for
their experiments with 130 professional Java developers [Arisholm et al., 2002]. Since we
do not have these resources, we recruited mostly students, which are typically rewarded
by bonus points for their university courses and/or raffles for gift cards.

Of course, recruiting students is discussed controversially, because they do not
have the experience and knowledge of professional programmers [Hanenberg, 2010;
Höst et al., 2000; Svahnberg et al., 2008; Tichy, 2000]. However, it is often the only
choice. Hence, many experiments in the empirical-software-engineering literature are
conducted with students. Thus, our results make a useful contribution to the empirical-
software-engineering research community. Additionally, since our experimental settings
are designed to be reusable, researches who have according resources can replicate our
experiments with professionals.
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1.4 How to Read this Thesis

In this thesis, we describe numerous experiments in detail to support their replication.
However, reading each experiment with all details is not necessary to understand our
work. Thus, we provide an overview of each experiment in a table at the beginning of
each chapter or section, including pointers to sections that contain more information.
Thus, readers who want to get an overview do not need to read the complete experiment
descriptions, but can refer to that summary. To present further material to support repli-
cation of experiments, we use the project’s website (http://fosd.net). We decided
not to use the appendix, because we often have large Excel sheets with information that
cannot reasonably be presented in text documents. Furthermore, we avoid increasing the
number of pages of our thesis and can save some trees.

To present the experiments, we use the guidelines developed by Jedlitschka and oth-
ers [2008]. Thus, we first discuss the objective and hypotheses of an experiment, then the
material we used to evaluate our hypothesis, then our sample, and the tasks we used.
We describe the conduct of the experiments and whether and what deviations occurred.
Then, we analyze our data, starting with descriptive statistics followed by hypothesis
testing, and interpret them, after which we discuss threats to validity.

At the beginning of each chapter, we give an outline of its sections to give the reader
an overview. Each chapter contains the sections threats to validity, related work, and sum-
mary, which we do not mention in chapter overviews.

Furthermore, all experiments have the threat to external validity that we recruited
students and generalizability to experts not possible. Since we already discussed this
problem, we do not mention it for neither of the experiments anymore.

Last, we give a brief background to understand the main conclusions of our thesis.
We present detailed background information specific for a chapter in separate sections,
denoted with “Background: [Section Title]”. This way, we clearly separate existing work
from our own work and allow the reader familiar with this topic to easily skip according
sections.

http://fosd.net
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Chapter 2

Background

In this chapter, we present background information regarding program comprehension
(Section 2.1), controlled experiments (Section 2.2), and feature-oriented software devel-
opment ( 2.3), which is necessary to understand the contributions of this thesis. Since we
cover a broad topic, introducing all relevant information would bloat this chapter. Hence,
we present only common background information in this chapter, and discuss specific
or uncommon techniques we use in a specific chapter in according sections, marked by
“Background: [Title of Technique]”.

In addition to program comprehension, controlled experiments, and feature-oriented
software development, we introduce the software system MobileMedia for the manipu-
lation of multi-media data on mobile devices (Section 2.4), because we use it in most of
our experiments.

2.1 Program Comprehension

Program comprehension is an internal cognitive, hypothesis-driven problem solving pro-
cess that can be defined as

“the process of understanding a program code unfamiliar to the program-
mer” [Koenemann and Robertson, 1991].

How this process takes place depends on how much knowledge programmers can use
to understand a program. Programmers who have knowledge about a program’s domain
use their knowledge during the comprehension process. Based on amount of domain
knowledge, there are three different kinds of comprehension models: top-down models,
bottom-up models, and integrated models. To understand program comprehension, we
take a closer look at each of these models.

2.1.1 Top-down Models

If programmers are familiar with a program’s domain (e.g., operating systems), they un-
derstand programs top down. First, they state a general hypothesis about a program’s
purpose. To this end, programmers compare the current program with familiar programs
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and ideas (e.g., scheduling strategies) of that domain. During that first step, they ignore
details and only focus on relevant facets for building the hypothesis.

After stating a general hypothesis, programmers evaluate it by looking at details.
They refine their hypothesis in a stepwise manner by defining and refining subsidiary hy-
pothesis, until having a low-level understanding of the source code. During that process,
beacons (i.e., “sets of features that typically indicate the occurrence of certain structures
or operations in the code” [Brooks, 1983], such as identifier names) give hints about the
purpose of statements. Furthermore, program plans (i.e., “program fragments that repre-
sent stereotypic action sequences in programming” Soloway and Ehrlich [1984], such as
increments, which indicate loops) can be used to understand groups of statements [Rich,
1987]. Based on domain knowledge, and using beacons and program plans, program-
mers verify, modify, or reject the general hypothesis.

Examples of top-down models are described by Brooks [1978], Shaft and Vessey
[1995], as well as Soloway and Ehrlich [1984].

2.1.2 Bottom-up Models

Without domain knowledge, programmers cannot compare the current program with
other programs or search for beacons, because they do not know what they look like.
Hence, programmers need to examine source code closely to be able to state hypotheses
of a program’s purpose. In this case, they start to understand a program by examining
details of a program—the statements or control constructs that comprise the program.
Statements that semantically belong together are grouped into higher level abstractions,
called chunks. If enough chunks are created, programmers leave the statement level and
integrate those chunks to further higher level abstractions.

For example, if programmers recognize that a group of statements have a high level
purpose, they create one chunk and then refer to that chunk (e.g., as “sorting elements in
a list”), not the single statements. When further examining the program, programmers
combine these chunks into larger chunks (e.g., “implementing scheduling strategies”),
until they have a high-level understanding of a program.

Examples of bottom-up models differ on the kind of information that is combined to
chunks. For example, Pennington [1987] states that control constructs (e.g., sequences
or iterations) are used as base for chunking, whereas Shneiderman and Mayer [1979]
describe that chunking begins on the statements of a program.

In practice, programmers do not understand source code solely top down or bottom
up, but use both approaches depending on how much knowledge they can use to under-
stand a portion of a program. This is described by integrated models, which we discuss
next.

2.1.3 Integrated Models

Integrated models combine top-down and bottom-up comprehension. For example, if
programmers have domain knowledge about a program, they form a hypothesis about
its purpose. During the comprehension process, they encounter several fragments that
they cannot explain using their domain knowledge. Hence, they start to examine the



Chapter 2. Background 9

program statement by statement, and integrate the newly acquired knowledge in the
hypotheses about the source code. Usually, programmers use top-down comprehension
where possible and bottom-up comprehension only where necessary, because top-down
comprehension is more efficient [Shaft and Vessey, 1995].

One example of integrated models is described by von Mayrhauser and Vans [1993].
They divide program comprehension into four processes, where three of them are com-
prehension processes that construct an understanding of the code and the fourth provides
the knowledge necessary for the current comprehension task.

2.1.4 Discussion of Comprehension Models

All program-comprehension models we described were developed at least 20 years ago.
To the best of our knowledge, there are no contemporary models explaining program
comprehension, but only extensions. For example, Rajlich and Wilde describe how con-
cepts play a role in the comprehension process [Rajlich and Wilde, 2002]. Concepts are
“units of human knowledge”, such as classes or high-level design patterns and are iden-
tified by programmers during their comprehension process and supporting top-down
comprehension.

We believe that contemporary programming approaches better reflect the human way
of thinking, for example, the classification into objects. Furthermore, abstractions, such as
inheritance hierarchies, help developers to structure information and increase program
comprehension. For example, Daly and others showed that programs using inheritance
are more maintainable then programs without inheritance [Daly et al., 1995]. For future
work, it would be interesting to evaluate what facets of modern programming paradigms
influence program comprehension in what way.

Furthermore, all models assume that developers are familiar with the underlying pro-
gramming language. Otherwise, an additional learning process takes place, in which de-
velopers have to familiarize with the new language. For our experiments, we recruited
participants who are familiar with the used programming language.

Being aware of the different kinds of comprehension models is necessary to soundly
and reliably measure program comprehension. If we do not consider these differences,
results of experiment may be biased and describe something different. For example,
if we compare two different programming techniques between two groups of partici-
pants, and observe one group of participants with domain knowledge using one tech-
nique, and another group of participants without domain knowledge with another tech-
nique, we would not only compare the programming techniques, but also top-down with
bottom-up comprehension. However, this would bias our results, because top-down
comprehension is more efficient, and we cannot be sure what exactly we measured. Thus,
taking into account different comprehension models is one important facet in creating
sound and reliable experimental designs that measure program comprehension.
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2.1.5 Measuring Program Comprehension

So, program comprehension is a complex internal cognitive process—but how can we
measure it? In literature, we found four different approaches:

• Think-aloud protocols

• Tasks

• Subjective rating

• Software measures

Think-Aloud Protocols Think-aloud protocols are rooted in cognitive psychology and
require participants to verbalize their thoughts [Wundt, 1874]. This way, we can observe
the comprehension process. To enable a detailed analysis of participants’ thoughts, think-
aloud sessions are usually recorded on audio- and/or videotape (or manually by the
experimenter).

After recording think-aloud protocols, they have to be analyzed. To ensure objec-
tive analysis, experimenters often create coding instructions that describe how to ana-
lyze the data [Lang and von Mayrhauser, 1997; Shaft and Vessey, 1995]. For example,
Shaft and Vessey defined what statements of participants are hypotheses (e.g., “proba-
bly scheduling strategy”), and what statements are inferences (e.g., “must have some-
thing to do with scheduling”) [Shaft and Vessey, 1995]. Since hypotheses are typical
indicators of top-down comprehension, and inferences of bottom-up comprehension, the
authors could analyze what comprehension process developers apply. To assure that
coding instructions are followed, several researchers should analyze the recorded pro-
tocols independently and then compare their answers and discuss disagreements until
reaching interpersonal consensus [Someren et al., 1994, p. 45]. To further increase objec-
tivity, researchers who categorize the protocols should not be aware of the hypotheses
(e.g., that programmers use top-down comprehension more often) to not intentionally
or unintentionally bias the categorization (e.g., categorizing statements as hypothesis,
although they are inferences).

Applied correctly, think-aloud protocols provide a sound insight into the com-
prehension process. However, they are time consuming and costly [Someren et al.,
1994]: Sessions of participants need to be recorded and participants’ statements need to
be categorized carefully according to rules and/or by different persons. Furthermore,
only one participant at a time can be evaluated, because if more than one participant
talks during comprehending code in the same room, other participants are disturbed.
Hence, think-aloud protocols can only be applied if sufficient resources are available.

Tasks During tasks, participants are asked to work with source code, for example, fix-
ing a bug, enhancing the code, or locating certain code fragments. If participants success-
fully solve a task, they must have understood the code. To analyze comprehension, we
can use correctness or response time of a solution [Dunsmore and Roper, 2000]. When
using tasks, we can observe a large number of participants at the same time. However,
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we do not get information about the comprehension process itself, but only how fast or
correct the comprehension process was. Such results are useful, for example, when we
analyze whether a certain technique speeds up comprehension or improves correctness.

Subjective Rating When using subjective rating, participants estimate how much they
understood of the code, for example, on a five-point scale ranging from “nothing at all”
over “about half of the source code” to “the complete source code”. However, this can
easily be biased, because participants may over- or underestimate how much they under-
stood [Dunsmore and Roper, 2000]. Furthermore, we do not have information about the
comprehension process itself.

Software Measures Software measures describe properties of source code. For exam-
ple, the number of lines of code represents a size measure [Henderson-Sellers, 1995] or
cyclomatic complexity describes the number possible execution paths [McCabe, 1976].
The more lines a program has or the more complex it is, the more difficult it is supposed
to be understood. Software measures can be computed automatically and are easy to
apply, because they do not consider the developer who comprehends source code. How-
ever, that is also the problem with software measures, so we cannot be sure how well
the comprehension process is assessed. To learn more about whether software measures
are suitable to assess program comprehension, we conducted a controlled experiment in
Chapter 3.

Think-aloud protocols, tasks, subjective rating, and software measures are the four
most commonly used techniques to measure program comprehension. However, we
found that in cognitive neuroscience, researchers use functional magnetic resonance
imaging to observe cognitive processes since 1991 [Belliveau et al., 1991]. To evaluate
the feasibility of functional magnetic resonance imaging as technique to measure pro-
gram comprehension, we are currently planning an experiment, which we describe in
Chapter 8.

Having described program comprehension and its measurement, we discuss how to
plan, conduct, and analyze controlled experiments, which are often used to apply any of
the techniques measuring program comprehension.

2.2 Experiments

Since this thesis describes controlled experiments and requires knowledge about how to
design, conduct, analyze, and interpret experiments, we give an introduction to experi-
ments in this section.

An experiment can be described as a systematic research study, in which experi-
menters directly and intentionally vary one or more independent variables while holding
everything else constant and observe the results of the systematic variation (Woodworth
[1939]; Wundt [1914]).

The process of conducting experiments can be divided into five stages [Juristo and
Moreno, 2001, p. 49]:
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1. Objective definition

2. Design

3. Experiment Execution

4. Analysis

5. Interpretation

For better overview, we visualize this process in Figure 2.1. First, the variables and
hypotheses of the experiment need to be specified. Second, a detailed plan for conduct-
ing the experiment needs to be developed. Third, the experiment needs to be executed
according to the plan. Fourth, the data collected during the execution need to be ana-
lyzed. Finally, the results need to be interpreted and their meaning for the hypotheses
evaluated. In this section, we discuss each step in detail.

Hypotheses;
Independent 
& Dependent 

Variables

Experimental 
Design;

Confounding 
Variables

Data
Confirmed/
Rejected 

Hypotheses

Figure 2.1: Stages of an experiment.

2.2.1 Objective Definition

During objective definition, we define variables of interest and hypotheses about the re-
lationship between our variables [Juristo and Moreno, 2001, p. 49]. This enables us to
choose a suitable experimental design and analysis methods. If we defined our hypothe-
ses after conducting the experiment, we might find that our material, tasks, and/or par-
ticipants were not suitable to test our hypotheses, leaving us with useless data. Defining
variables and hypotheses is referred to as operationalization, because a set of operations is
defined with which we measure our variables and test our hypotheses [Bridgman, 1927].

There are three kinds of variables: independent, dependent, and confounding vari-
ables. First, independent variables are intentionally varied by experimenters and influence
the outcome of an experiment [Juristo and Moreno, 2001, p. 60]. They are also referred to
as predictor (variables) or factors. Each independent variable has at least two levels, alterna-
tives, or treatments. For example, when comparing the effect of Java and C++ on program
comprehension, the independent variable is programming language with the two levels
Java and C++.

Second, dependent variables are the outcome of an experiment [Juristo and Moreno,
2001, p. 59] and depend on variations of the independent variable. They are also referred
to as response variable. In our work, program comprehension is the dependent variable,
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because we observe program comprehension, for example, how it is affected by feature-
oriented software development.

Third, confounding variables, confounding parameters, or extraneous variables influence
the dependent variable besides variations of the independent variable [Goodwin, 1999, p.
143]—they bias the dependent variable. To clearly separate independent and dependent
variables from confounding variables, we use the term confounding parameters from here
on. Examples of confounding parameters for program comprehension are programming
experience or intelligence. To avoid bias, we need to identify and control for confounding
parameters, which we discuss in detail in Chapter 4.

Having defined the variables, we have to specify the research hypotheses or research
questions. Typically, a hypothesis claims benefits or drawbacks (e.g., Java improves pro-
gram comprehension compared to C++), where as a question does not (e.g., Does Java
improve program comprehension compared to C++?). Typically, we state research ques-
tions when we have no knowledge about how levels of the independent variable affect
the dependent variable or when we can plausibly argue in both directions.

It is important to specify research hypotheses and questions during the objective def-
inition, because they influence the decisions in the remaining stages of the experiment
(e.g., participants and analysis methods) [Bortz, 2004, p. 2]. Furthermore, since we de-
fine beforehand what questions we address, we avoid “fishing for results” in our data,
which may lead to discovering random relationships between variables [Easterbrook
et al., 2008].

2.2.2 Design

The next step is to design a plan for conducting the experiment. In this stage, we have to
ensure that our experiment is internally and externally valid.

Validity Internal validity describes the degree to which the value of the dependent vari-
able can be assigned to the variation of the independent variable [Shadish et al., 2002]. To
assure that the result can be attributed to the independent variable, we need to control
for confounding parameters. Otherwise, we cannot be sure that our result can solely be
attributed to our variation of the independent variable.

External validity describes the degree to which the results gained in one experiment
can be generalized to other participants and settings [Shadish et al., 2002]. The more
realistic an experimental setting is, the higher its external validity is.

Both kinds of validity are conflicting: Maximizing internal validity means control-
ling everything, leading to an artificial setting (e.g., only bottom-up comprehension of
students of a programming course) and low external validity. Maximizing external va-
lidity means a realistic setting (e.g., all comprehension models with students and pro-
fessional programmers), but now internal validity is minimized. Thus, we need to find
a tradeoff between internal and external validity. To this end, we can use a two-staged
approach [Shadish et al., 2002]. First, we maximize internal validity in a series of ex-
periments, so that we create a sound knowledge base about what influences program
comprehension. Second, we increase external validity in subsequent experiments to test
and improve the knowledge base under realistic settings.
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Language Group

Java 1
C++ 2

(a) Two groups, between-
subjects

Session 1 Session 2

Java C++
(b) One group, within-
subjects

Group Session 1 Session 2

1 Java C++
2 C++ Java

(c) Two groups, within-subjects

Table 2.1: Examples of one-factorial designs.

Experimental Designs Next, we have to choose an appropriate experimental design,
which defines how we apply levels of the independent variable(s) to participants [Ju-
risto and Moreno, 2001]. The most common designs are one-factorial (one independent
variable) and two-factorial (two independent variables) designs. There are also three- or
more-factorial designs, but they are time consuming and costly, because they require a
large sample and specific analysis methods. Thus, we focus on one- and two-factorial
designs.

In one-factorial designs, we have one independent variable with two or more levels.
We can either use a between-subjects or within-subjects design [Goodwin, 1999, p. 205].
Between-subjects means that we split our sample in two or more groups and then com-
pare these groups. Hence, participants experience only one treatment. Within-subjects
means that we apply all treatment to all participants. For illustration, we show a few
one-factorial designs in Table 2.1. As example, we use programming language with the
levels Java and C++ as independent variable. All designs have benefits and drawbacks.
The design in Table 2.1a is simple, but we have to ensure that both groups are compa-
rable, for example, have the same level of programming experience. Furthermore, our
sample should be large enough to be split into two groups. Unfortunately, large cannot
be defined as a fixed number; in discussions with other researchers, we found that ten
participants per groups seem to be acceptable, but five per group not enough. The design
in Table 2.1b uses only one group, so it does not require comparable groups, and the sam-
ple can be smaller. However, participants might learn from the first session and behave
differently in the second session. Furthermore, the order of sessions might influence the
behavior of participants. To control for such learning and ordering effects, we can use the
design in Table 2.1c, which is more complex and requires a large enough sample size.

In a two-factorial design, we have two independent variables. We show an example
with programming experience (two levels) as second independent variable in Table 2.2a.
Now, we have four groups based on the combination of the levels of the independent
variables. Here, we have the same problems as for the one-factorial between-subjects
design in Table 2.1a. To address these problems, we can use a within-subjects design, in
which each group experiences all four combinations of levels, as shown in Table 2.2b.

Carefully designing experiments is crucial for drawing sound conclusions from our
data. It helps to decide whether our data are valid and, thus, the evaluation of our hy-
potheses is unbiased.
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Independent Variables Group

Java/novice 1
Java/expert 2
C++/novice 3
C++/expert 4

(a) Four groups, between-subjects

Independent Variables Session 1 Session 2 Session 3 Session 4

Java/novice A B C D
Java/expert B C D A
C++/novice C D A B
C++/expert D A B C

(a) Four groups, between-subjects

Table 2.2: Examples of two-factorial designs.

2.2.3 Experiment Execution

In this stage, the experiment is conducted according to the developed plan. Despite all
careful planning, deviations can occur, for example, participants who arrive late, missing
questionnaires, or program crashes. These deviations should be recorded and described
when writing a report, because they can threaten validity of experiments and to avoid
that other researchers who replicate an experiment have the same deviations.

2.2.4 Data Analysis

Having conducted the experiment, we need to analyze the data. To apply the correct anal-
ysis method, we need to know the scale of our data. Then, we can compute descriptive
statistics to describe the data and conduct significance tests to evaluate our hypotheses.

Scale Types

There are four common scale types: nominal, ordinal, interval, and ratio [Fenton et al.,
1994]. Nominal scales are classification of values, such as male or female. We can assign
numbers to the values (e.g., 0 and 1), but they have no quantitative meaning. Ordinal
scales describe a ranking, for example, the order of participants according to their re-
sponse time. The ranks indicate only the order of participants. On interval scales, num-
bers have a quantitative meaning, and the difference between two consecutive numbers
is constant for each pair of numbers. There is no absolute zero, in contrast to ratio scales,
which include an absolute zero. Both scales are also referred to as metric. From hereon,
we do not differentiate between interval and ratio scale, because the analysis methods
we need for our experiments do not differentiate between them.
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Figure 2.2: Illustration of a box plot.

Scale Frequencies Median Mean Standard deviation Box plot

Nominal Yes No No No No
Ordinal Yes Yes No No Yes
Metric Yes Yes Yes Yes Yes

Table 2.3: Scale types and allowed measures.

Descriptive Statistics

Depending on the scale type, we can compute descriptive statistics [Bortz, 2004, p. 35].
For nominal data, we can compute only frequencies, for example, the number of males
and females in our sample. For ordinal data, we can compute the median, which is the
value in the middle of an ordered list of values. For example, if we have the ordered list
of numbers 1, 5, 5, 6, 10, the median of those numbers is 5, because it lies in the middle of
this list. If we have metric data, we can compute the arithmetic mean (or mean, from here
on) and standard deviation.

Besides computing numbers, we can visualize the distribution of data with a box plot,
as shown in Figure 2.2 [Tukey, 1977]. The box contains 50% of all values, the thick line
shows the median. The whiskers contain the upper and lower 25% of the values. We can
also draw outliers as separate dots (i.e., values that deviate strongly from the median, e.g.,
more than 2 standard deviations). For better overview, we summarize what measure can
be applied to what scale in Table 2.3.

Hypothesis Testing

Having described the data, we can evaluate our hypotheses. To this end, we conduct sig-
nificance tests. For example, if we observe a difference in program comprehension in favor
of Java, significance tests evaluate whether this difference is real or occurred randomly.
To this end, they compute the conditional probability of having observed the result under
the assumption that there is no difference between program comprehension of Java and
C++. The smaller the conditional probability, the more unlikely the assumption of no
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difference is. If the conditional probability is below 5%, we reject the assumption that
there is no difference between Java and C++. The assumption is also referred to as null
hypothesis (i.e., there is no difference), and the conditional probability as significance level
or p value.

Depending on the scale, we have to select an appropriate test. There are a plethora of
significance tests (see, e.g., Anderson and Finn [1996]; Bortz [2004]). We explain only the
ones we use in this thesis, and give an overview of when to apply which test in Figure 2.3
at the end of this section.

Nominal Scale—chi2 Test When comparing frequencies, we typically conduct a chi2

test [Anderson and Finn, 1996]. It evaluates whether the observed frequencies deviate
from expected frequencies. For example, if we have a sample of 7 males and 3 females,
and we expect that gender is equally distributed (i.e., 5 males and 5 females, which is
the null hypothesis), the chi2 test evaluates whether the observed frequencies deviate
significantly from the expected frequencies. To apply the chi2 test, expected frequencies
must be larger than 5. Otherwise, we have to apply a Fisher’s exact test to compensate
for small expected frequencies [Fisher, 1922].

Ordinal Scale—Mann-Whitney-U Test When comparing the order of data, we conduct
a Mann-Whitney-U test [Anderson and Finn, 1996]. For example, if we order the fictional
response times of a task measuring program comprehension with Java and C++ accord-
ing to their values, the Mann-Whitney-U test analyzes the order of the values (i.e., the
ranks, cf. Table 2.4) and evaluates whether the sum of ranks of both groups are signif-
icantly different. The null hypothesis is that the sum of ranks is the same for Java and
C++. If the sums of ranks differ significantly, we reject the null hypothesis.

Java C++
Time (s) Rank Time (s) Rank

85 4 96 8
106 13 105 12
118 17 104 11
81 2 108 15
138 20 86 5
90 6 84 3
112 16 99 9
119 18 101 10
107 14 78 1
95 7 124 19

Rank sums: T1 = 117 T2 = 93
Mean: 105.1 98.5

Table 2.4: Example response times to illustrate the Mann-Whitney-U test.
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1 independent variable
1 dependent variable

2 levels

nominal ordinal metric 
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Significance tests

Figure 2.3: Overview of significance tests.

Metric Scale—T Test For metric scales, we use the t test [Anderson and Finn, 1996].
For example, we can compare whether the means of response times of Table 2.4 differ
significantly. The null hypothesis is that the response times do not differ. The t test
requires that our data are normally distributed, for which we can use a Shapiro-Wilk
test [Shapiro and Wilk, 1965]. If they are not normally distributed, we have to apply
a Mann-Whitney-U test instead. However, if our sample is large enough (at least 30
participants), the t test is robust against not normally distributed data.

These are the most common significance tests. In Figure 2.3, we give an overview
of further significance tests and when to apply which test (for more information, see
standard statistic books, e.g., Bortz [2004] or Anderson and Finn [1996]). There are also
exploratory methods, which analyze whether there are certain relationships or patterns in
a large amount of data. In Chapter 5, we use such methods and introduce them there.

2.2.5 Interpretation

Computing descriptive statistics and evaluating hypotheses are instruments to analyze
the data. Once we accepted or rejected our hypotheses, we have to relate our results
to the objective of our experiment. Furthermore, if we obtained unexpected results, we
have to search for possible explanations, for example, by exploring our data or consulting
similar experiences found in literature.

Reporting data should be strictly separated from their interpretation [American Psy-
chological Association 2009]. This way, results can be presented objectively, which gives
the reader the chance to understand our interpretations and conclusions we draw from
our results.
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2.2.6 Ethical Issues

In experiments with human participants, the outcome of experiments has to be in relation
to what participants have to endure during the experiment Wiesing [2003]. In software
engineering, this is often not problematic, because participants typically have to imple-
ment code or work with new tools. However, when evaluating the efficiency of new
teaching methods with students, a between-subjects design is questionable, because one
group may profit from the new teaching method, whereas the other is not.

Furthermore, participating in an experiment should not lead to a disadvantage of
participants. This is especially important for students, who are often recruited from a
university course. Their participation should not affect the completion or grade of the
course. To this end, the data of participants are often anonymized. This way, the perfor-
mance in the experiment cannot be mapped to the students.

2.3 Feature-Oriented Software Development

Feature-oriented software development describes the design and implementation of ap-
plications based on features [Apel et al., 2008b; Kästner et al., 2009b]. A feature is a
user-visible characteristic of a software system [Clements and Northrop, 2001, p. 114].
Feature-oriented software development provides formalisms, methods, languages, and
tools for building variable, customizable, and extendable software [Apel and Kästner,
2009]. One goal of feature-oriented software development is to separate crosscutting con-
cerns. A concern is anything a stakeholder might be interested in [Robillard and Murphy,
2007]. It can be the same as a feature, but does not have to be. In our case, the difference
between concern and feature is irrelevant, so we use both terms interchangeably.

To illustrate crosscutting concerns, consider a database implementation with the fea-
tures Logging and Transaction management. Logging is responsible for logging each access
to the database, and Transaction management is responsible for assuring that if several
users access the database at the same time, no inconsistencies occur. Now, statements
that access the database belong to feature Logging. However, Transaction management also
accesses the database, so we need code for both features in the same module. Now, we
can either separate code according to feature Logging, or according to feature Transaction
management, but not both at the same time. Feature Logging is either scattered over the
implementation of Transaction management, or it is tangled with code of Transaction man-
agement. With two features, scattering and tangling do not appear to be a problem, but
real databases consist of considerably more features (e.g., SQLite has 85 features1).

Feature-oriented software development summarized techniques to overcome this
dilemma and modularize crosscutting concerns. By separating code along features, we
create a software product line, which allows us to create different variants of a product.
As running example, we use a simple stack as shown in Figure 2.4. It consists of the
features Base, Safe, Top, and Element. Base is the base implementation and is part of every
variant. Safe ensures that no elements can be popped from an empty stack. Top adds the
method top, which returns the first element from a stack without removing it. Element

1http://sqlite.org/

http://sqlite.org/
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Stack

Base Safe Top Element

Figure 2.4: Feature diagram of a stack.

ensures that only elements with a specified type can be stored in the stack. Now, by
combining features, we can create different variants of the Stack, for example, a stack
with the features Base, Safe, and Element, or with the features Base and Top, or with all
four features. Thus, we have a customizable implementation, from which we can create
different variants without implementing any code.

Typically, feature-oriented programming techniques separate concerns either physi-
cally, that is, in different modules (e.g., files or folders), or virtually, such that source code
belonging to a feature (i.e., feature code) is annotated accordingly. We discuss both ap-
proaches in this section.

2.3.1 Physical Separation of Concerns

There are different ways to separate concerns physically. We focus on the most commonly
used techniques: feature-oriented programming [Prehofer, 1997] and aspect-oriented
programming [Kiczales et al., 1997]. First, in feature-oriented programming, features
are encapsulated in units, called feature modules. For illustration, we show a collabora-
tion diagram of the stack including its implementation. Class Stack is divided into three
roles, such that each role contains the implementation of one feature. For each feature,
a folder exists, and for each role, the according class is stored in one file in the accord-
ing folder. For example, folder Top contains one file with class Stack that contains only
code of the according role. Now, if we select the features Base and Top, the according
roles are combined, for example, by creating inheritance chains [Batory et al., 2004] or by
superimposition [Apel and Lengauer, 2008].

Second, in aspect-oriented programming, features are encapsulated in aspects, which
are stored in separated files and/or folders. An aspect contains source code that allows
us to alter the behavior of a program during runtime. For illustration, we show how
features Top and Safe can be implemented in Figure 2.6. The implementation of feature
Base remains the same. When we run the code of feature Base, and the method pop is
executed, the pointcut defined in Line 7 captures this event, and the advice defined from
Line 8 to Line 11 is executed instead, ensuring that no elements can be popped from an
empty stack.

Besides feature-oriented and aspect-oriented programming, there are further ap-
proaches that separate code physically, for example, Hyper/J [Tarr and Ossher, 2001],
CaesarJ [Aracic et al., 2006], and aspectual feature modules [Apel et al., 2008a].
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Stack Element

public class Stack {
  List elements = new List();

void push (Element element) {
    elements.addFirst(element);
  }
  Element pop () {

return elements.removeFirst();
  }
}

Base

Top

Element

public class Element {
private String content;
public Element(String content) {

this.content = content;
  }

public String getContent() {
return this.content;

  }
}

refines class Stack {
  Element top () {

return elements.getFirst();
  }
}

refines class Element {
public Element(String content) {

  }
}

Safe

Fe
at
ur
es

Classes

refines class Stack {
  Element pop () {

if (elements.getSize() > 0)
return Super.pop();

return null;
  }
}

Figure 2.5: Collaboration diagram of a stack.

1 public aspect Top {
2 public Element Stack.top() {
3 return elements.getFirst();
4 }
5 }
6
7 public aspect Safe {
8 pointcut safePop(Stack stack): execution(Element pop()) && this(stack);
9

10 Element around(Stack stack): safePop(stack) {
11 if (stack.items.size() > 0) return proceed(stack);
12 return null;
13 }
14 }

Figure 2.6: Aspect-oriented implementation of Safe and Top of the stack example.



Chapter 2. Background 22

1 public class Stack {
2 LinkedList<Element> elements = new LinkedList<Element>();
3
4 public void push(Element element) {
5 elements.addFirst(element);
6 }
7
8 public Element pop() {
9 // #ifdef SAFE

10 if (elements.size == 0) return null;
11 // #endif
12 return elements.removeFirst();
13 }
14
15 // #ifdef TOP
16 public Element top() {
17 // #ifdef SAFE
18 if (elements.size == 0) return null;
19 // #endif
20 return elements.getFirst();
21 }
22 // #endif
23 }

Figure 2.7: Preprocessor-based implementation of the stack example (Antenna).

2.3.2 Virtual Separation of Concerns

With virtual separation of concerns, feature code is annotated, for example, with pre-
processor directives or colors. Based on annotations, views on the source code can be
created, thus emulating modules [Kästner et al., 2008]. The most common technique to
virtually separate concerns is preprocessor directives or #ifdef directives, which we illustrate
with the stack example in Figure 2.7. Code that belongs to feature Safe is enclosed in an
#ifdef (followed the name of the feature) and according #endif statement (Line 9 and 11).
To create a variant, a preprocessor deletes code of not selected features before compiling.
For example, if we do not select feature Top, everything from Line 15 to 22 is deleted
before compilation.

Similar or in addition to ifdef directives, we can use background colors to annotate
feature code. For example, the tool CIDE allows users to assign colors to features [Kästner
et al., 2008]. Other approaches are XVCL [Jarzabek et al., 2003], FEAT [Robillard and
Murphy, 2003], pure::variants [Beuche et al., 2004], feature-based templates [Czarnecki
and Pietroszek, 2006], and GEARS [Krueger, 2002].

The advantages and disadvantages of physical and virtual separation of concerns
lie—among others—in the grain of feature code and the information that is presented at
the same time. First, physical separation of concerns supports a coarse-grained imple-
mentation of features, whereas virtual separation of concerns, especially preprocessor di-
rectives, supports fine-grained annotations. For example, a single opening bracket can be
annotated with an #ifdef directive without the corresponding closing bracket. The coarse
granularity limits flexibility, but the fine granularity might lead to compilation problems
(e.g., when a feature with the opening bracket is deleted, but the closing bracket is still
present).
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Second, in physical separations, only limited information is presented at once. Since
developers are only interested in few features at the same time, the limitation might be
beneficial for their comprehension, because they only have to deal with a limited amount
of information. However, relevant information might also be missing, in which case de-
velopers have to look into different folders, which might impair program comprehension.
We discuss this issue in more detail in Section 8.2, when we describe an experiment to
evaluate how physical and virtual separation of concerns affect program comprehension.

2.4 MobileMedia

In our experiments, we often use MobileMedia as example of a feature-oriented software
system. Thus, we discuss it in this chapter, instead of explaining it for each experiment.
MobileMedia is a medium-sized software product line for the manipulation of multi-
media data on mobile devices and was implemented by Figueiredo and others with the
support of post-graduate students [Figueiredo et al., 2008a]. MobileMedia was devel-
oped in parallel in two versions: one version implemented in Java ME with the prepro-
cessor Antenna2, and one version implemented in AspectJ, an aspect-oriented extension
to Java [Kiczales et al., 1997].

MobileMedia was developed in eight releases, of which we use different ones, de-
pending on the purpose of our experiment. In Figure 2.8, we give an overview of the
features of the last release. For our experiments, we use the following features:

Sorting: Sorts media according to how often it was viewed

Favourites: Allows users to define and view favorite photos, music, or videos

Video: Plays and captures videos

Music: Plays and captures music

CopyMedia: Copies multi-media data in different albums

SMSTransfer: Sends multi-media data via SMS

AlbumManagement: Allows users to store multi-media data in albums

Note that, since we use different releases of MobileMedia, some features in the ex-
periment descriptions have different names and reduced functionality. For example, in
our experiment on background colors, we use the fifth release with a predecessor of fea-
ture CopyMedia, which only copies photos, but neither music nor video, and is called
CopyPhoto.

There are several benefits in using MobileMedia for our experiments: First, both ver-
sions of MobileMedia were code reviewed, such that the same coding conventions have
been applied to both versions. Moreover, exhaustive tests were conducted to assure that
both versions are comparable. Because of the efforts of the developers (see Figueiredo
et al. [2008a] for more details), two comparable versions exist.

2http://antenna.sourceforge.net/
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Figure 2.8: Features of Mobile Media.

Second, numerous researchers used MobileMedia in their studies [Bertoncello et al.,
2008; Bryant et al., 2006; Dyer et al., 2010; Feigenspan et al., 2009; Figueiredo et al.,
2008a; Galvâo et al., 2010; Garcia et al., 2005; Greenwood et al., 2007; Kulesza et al., 2006;
Molesini et al., 2008; Morin et al., 2009]. Hence, there are a lot of results by other re-
searches, which allow us to relate our work to them and vice versa. Consequently, we
contribute to the knowledge base regarding MobileMedia. Furthermore, MobileMedia is
a good starting point for generalizing results to other software systems, because numer-
ous different facets have been evaluated thoroughly.

Last, MobileMedia was developed as a software product line. Users can generate
different variants of MobileMedia by selecting desired features (e.g., one variant with
features CountViews and Favourites, another variant without both features). To this end,
the implementation of a software product line must ensure that there is a mapping of fea-
tures to the corresponding code units. Thus, we can evaluate program comprehension on
the level of features, not only the complete system, allowing us to draw more thorough,
low level conclusions (e.g., regarding physically and virtually separated code).

2.5 Summary

In this chapter, we introduced program comprehension, which is an internal cognitive,
hypothesis-driven problem solving process. Developers understand code top down or
bottom up, depending on their domain knowledge. Thus, program comprehension is a
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complex process. To measure program comprehension, researchers typically use think-
aloud protocols, tasks, subjective rating, and software measures.

Then, we presented the basics of planning and conducting experiments as well as
analyzing and interpreting data. We explained different types of variables (independent,
dependent, and confounding) as well as how to assure internal and external validity. To
analyze the data, we introduced standard descriptive measures and significance tests to
evaluate whether a result occurred randomly or indicates a real difference.

Additionally, we presented feature-oriented software development, a new program-
ming paradigm to modularize crosscutting concerns and implement software product
lines. We described physical and virtual separation of concerns and discussed benefits
and drawbacks of each approach.

Last, we introduced MobileMedia, a software product line for the manipulation of
multi-media data on mobile devices, which we often use in our experiments.

In the next chapter, we evaluate whether we can use existing software measures to
assess program comprehension.
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Chapter 3

Exploring Software Measures to
Assess Program Comprehension

This chapter shares content with the ESEM’11 paper “Exploring Software
Measures to Assess Program Comprehension” [Feigenspan et al., 2011a], the
WSR’11 paper “On the Role of Program Comprehension in Embedded Sys-
tems’ [Feigenspan et al., 2011c], and the IWDE’12 paper “Program Com-
prehension in Preprocessor-Based Software” [Siegmund et al., 2012c].

In the previous chapter, we described how program comprehension can be measured.
Among others, we presented software measures based on properties of source code. Soft-
ware measures are easy to apply, because they do not require controlled experiments with
human participants. However, their reliability is questionable, because they do not con-
sider human factors, but only source-code properties. Thus, it is unclear whether we can
use software measures to assess program comprehension. Thus, we defined the follow-
ing goal for this chapter:

• Recommendation about the use of software measures to assess program com-
prehension based on empirical evidence.

If we can find empirical evidence that software measures are related to program com-
prehension, we could recommend using them to evaluate how new programming tech-
niques, such as feature-oriented software development, affect program comprehension.
If we cannot find such a relationship, we show that software measures should not be
used as sole indicators for program comprehension.

Since in our work, we are interested in feature-oriented software development as new
programming paradigm, we focus on software measures for feature-oriented software
systems. Nevertheless, our experimental setup can be reused for other software mea-
sures.

In Section 3.1, we take a closer look at software measures and how they might relate
to program comprehension to understand why software measures are so popular. In Sec-
tion 3.2, we describe our experimental setting in detail. This way, we enable researchers
to reuse our set up for different software measures and software systems. In Section 3.3,
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Reference Goal Software Measures

Bryant et al. 2006 Modularization of Pattern In-
teractions, Composability

CBC, CDC, CDLOC, CDO, DIT,
LCOO, LOC, NOA, WOC, Inter-
action Analysis

Figueiredo et al.
2008a

Modularization, Changeability,
Dependencies

CBC, CDC, CDLOC, CDO, DIT,
LCOO, VS, LOC, NOA, WOC,
Added and Changed Elements,
Interaction Analysis

Garcia et al. 2005 Modularization CBC, CDC, CDLOC, CDO, DIT,
LCOO, LOC, NOA, WOC

Greenwood et al.
2007

Stability in the face of Changes CBC, CDC, CDLOC, CDO, DIT,
LCOO, VS, LOC, NOA, WOC,
Added and Changed Elements,
Interaction Analysis

Kulesza et al. 2006 Modularization, Maintainabil-
ity

CBC, CDC, CDLOC, CDO, DIT,
LCOO, VS, LOC, NOA, WOC

Molesini et al. 2008 Stability in the face of Changes Added and Changed Elements
CBC: Coupling between Components, CDC: Concern Diffusion over Components, CDLOC: Concern
Diffusion over LOC, CDO: Concern Diffusion over Operations, DIT: Depth of Inheritance Tree, LCOO:
Lack of Cohesion in Operations, LOC: Lines of Code, NOA: Number of Attributes, VS: Vocabulary
Size, WOC: Weighted Operations per Component

Table 3.1: Software measures used in settings with AspectJ and Java programs.

we describe correctness and response times of answers, before we explore the relation-
ship of software measures and program comprehension in Section 3.4, so that we get an
impression of the nature of a relationship. We discuss whether software measures are
reliable indicators for program comprehension in Section 3.5.

3.1 Background: Software Measures

The first software measures were developed to give project managers a tool to observe
the progress of their monitored software projects [Henderson-Sellers, 1995, p. 24]. This
way, the quality of projects could be evaluated during the development phase and threats
to quality or delivery date could be responded to before it was too late.

Today, software measures are also often used in research to evaluate facets of new pro-
gramming paradigms. For example, there is a large body of work analyzing the effect of
aspect-oriented-programming techniques on software, which we summarize in Table 3.1.
In this work, researchers compute software measures for different software systems and
draw conclusions about the effect of aspect-oriented programming on facets of software
quality, such as changeability or maintainability.

So, what are Software Measures? Melton and others define them as:

“measures that are obtainable directly from software documents” [Melton
et al., 1990].
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1 public class GcD {
2 static int number1, number2;
3 public static void main(String[] args) {
4 int temp;
5 do {
6 if (number1 < number2) {
7 temp = number1;
8 number1 = number2;
9 number2 = temp;

10 }
11 temp = number1 % number2;
12 if (temp != 0) {
13 number1 = number2;
14 number2 = temp;
15 }
16 } while (temp != 0);
17 System.out.println("result: " + number2);
18 }
19 public void setNumber1(int num){
20 number1 = num;
21 }
22 public void setNumber2(int num){
23 number2 = num;
24 }
25 }

Figure 3.1: Source code to determine the greatest common divisor.

They typically describe properties of source code. For better overview, we divide
them into three categories: size measures, complexity measures, and concern measures.
For each category, we present some measures and illustrate them with an algorithm to
determine the greatest common divisor, which we show in Figure 3.1.

Our intention is not to give a complete overview of all measures (there are alone
over 100 complexity measures [Zuse, 1991]), but to show the diversity and plausi-
bility of software measures. For a more exhaustive overview of software measures,
we recommend Henderson-Sellers [1995], Lorenz and Kidd [1994], or survey papers
(e.g., Figueiredo et al. [2005]; Kafura [1985]; Riguzzi [1996]).

3.1.1 Size Measures

Size measures describe the size of a program [Henderson-Sellers, 1995, p. 87]. They were
developed to measure the size of fixed-format assembler languages, which do not allow
much variability in source code. Hence, solutions to a problem were of similar length.

There are numerous size measures, for example, based on lines of code or on to-
kens [Henderson-Sellers, 1995, pp. 88]. Lines of code describes the number of lines a
program consists of. There are several variants of lines of code, such as including blank
lines or comment lines. The most common variant is defined by Conte and others:

“A line of code is any line of program text that is not a comment or blank
line, regardless of the number of statements or fragments of statements on
the line” [Conte et al., 1986, p. 35].

Thus, lines of code for our example is 25 (cf. Figure 3.1).
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Tokens are units of which a program consists, for example, variable names or key-
words [Henderson-Sellers, 1995, p. 89]. Tokens describing data, such as identifiers, are
called operands, and tokens describing actions, such as arithmetic symbols and keywords,
are called operators [Halstead, 1977]. By combining operators and operands, we can de-
fine the vocabulary of a program (sum of unique operators and operands) or the length of
a program (sum of total operators and operands). In our example, we have 10 unique
operands (e.g., number1, main) and 17 unique operators (e.g., <, =), so our vocabulary is
27. The total sum of operands and operators is 36 and 56, respectively, so the length is 92.

Even in contemporary programming languages, it seems plausible that with increas-
ing size, source code is more difficult to understand—simply because there is more code
to look at.

3.1.2 Complexity Measures

In the 1970s, complexity of software started to become important, as systems grew larger
and maintaining them became difficult [Henderson-Sellers, 1995, p. 57]. To monitor and
improve the quality of large software systems, complexity measures were introduced.
They try to capture

“those characteristics of software that affect the level of resources used by a
person performing a given task on it” [Henderson-Sellers, 1995, p. 166].

The earliest and still most widely used measure is called cyclomatic complexity [Mc-
Cabe, 1976]. It is based on the control-flow graph of a method and counts the number of
possible execution paths. For our example, cyclomatic complexity of the main method is
4: We have one loop do... while, two if statements, and, per default, each method
has a complexity of 1.

Now, there are variants to define the complexity of a file. First, we can use the value
of the most complex method, which is 4. Second, we can use the sum of the complexity
values of all methods, which is 6. Finally, we can use the average complexity by dividing
the sum of complexity values by the number of methods, which yields 2.

Complexity measures are based on the assumption that the more complex code is,
the more difficult it is to understand. That sounds plausible, because the more branching
statements there are, the more a developer has to consider, which requires more cognitive
resources.

3.1.3 Concern Measures

Typical measures to describe concerns of a software system are concern attributes and
concern operations, which represent, respectively, the number of attributes and opera-
tions assigned to a concern [Figueiredo et al., 2009]. In our example (cf. Figure 3.1),
we have 2 attributes (number1, number2) and 3 operations (methods main, setNumber1,
and setNumber2).

The more attributes and operations a concern defines, the more facets a developer has
to consider to understand a concern, which should make it more difficult to understand.
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Context Description Section

Objective Analyze the relationship of software measures to program
comprehension

3.2.1

Material MobileMedia in two versions: AspectJ, Java ME with An-
tenna

3.2.2

Participants 21 graduate students from the University of Passau 3.2.3
Tasks Maintenance tasks (locating bugs) 3.2.4
Execution One computer lab; 19" TFT; predecessor of PROPHET 3.2.5
Analysis Correctness of answers and response time 3.3
Result No relationship of software measures and program com-

prehension
3.4

Table 3.2: Experiment in a nutshell.

Especially in systems, in which concerns are not encapsulated in a module, understand-
ing should be impaired, because programmers have to trace attributes and operations of
a concern across the entire system.

To summarize, software measures appear to be plausible indicators for program com-
prehension: The more lines of code or branching statements a program has, the more
effort a programmer has to invest to understand it. Furthermore, computing software
measures is easy, because they can simply be computed based on source-code properties.
To this end, tools, such as SourceMonitor1 or ConcernMorph [Figueiredo et al., 2009]
were developed.

However, considering the complexity of the comprehension process, plausibility
fades. Program comprehension does not only depend on source-code properties, but
also on the person who is working with source code. Thus, it is unclear whether software
measures are suitable to assess program comprehension.

3.2 Experimental Design

Since controlled experiments have proven useful to analyze cognitive processes [Good-
win, 1999, p. 100], we conducted an experiment to analyze whether software measures
can be used to assess program comprehension. In Table 3.2, we summarize our exper-
iment. In a nutshell, we used two comparable version of MobileMedia with different
software measures and observed how students understand both systems. If there is a re-
lationship between software measures and program comprehension, we should observe
a difference in comprehension of our students. Our results did not show such a differ-
ence, indicating that software measures are not related to program comprehension.

1http://www.campwoodsw.com/source/monitor.html

http://www.campwoodsw.com/source/monitor.html


Chapter 3. Software Measures and Program Comprehension 32

3.2.1 Objective

The objective of our experiment is to evaluate the relationship between software mea-
sures and program comprehension. We included four software measures that we in-
troduced in Section 3.1: lines of code as representative of size measure and cyclomatic
complexity (average per file) as representative of complexity measure. We used these
measures because they are the most widely used measure for size and complexity, re-
spectively [Henderson-Sellers, 1995]. Since with our work, we focus on feature-oriented
software development, in which separation of concerns is a key principle, we include
both concern measures concern attributes and concern operations. This way, we can
evaluate whether software measures specifically designed for feature-oriented software
products differ from traditional software measures regarding their relationship to pro-
gram comprehension.

Since we can argue (and others have) both in favor of and against a relationship be-
tween software measures and program comprehension, we state a research question:

RQ: Is there a relationship between software measures and program com-
prehension?

3.2.2 Material

As material, we use the last release of MobileMedia, because it was most suitable for
our objective: The implemented features have considerably different software measures,
which should make it easier for us to observe a difference in program comprehension of
our participants.

To illustrate the difference in software measures, we give an overview in Table 3.3.
We computed lines of code and cyclomatic complexity with SourceMonitor and by hand;
concern attributes and concern operations with ConcernMorph [Figueiredo et al., 2009]
and by hand. There are large differences between the two versions per feature, which
are caused by the different implementation techniques, such that in the AspectJ version,
source code is separated into more, but smaller modules.

If software measures indeed describe program comprehension, then this large dif-
ference in software measures should be reflected in a large difference in program com-
prehension. For example, concern Video in the Java version has a 5 times higher com-
plexity value, 86% more lines of code, and about 4 times more attributes and operations
than in the AspectJ version. Hence, software measures suggest that the AspectJ version
is more comprehensible than the Java version.

To illustrate the commonalities and differences of both versions, we show code ex-
cerpts of each version implementing the same functionality in Figure 3.2. The left part
shows the AspectJ version, in which a pointcut (Lines 7 to 9) captures the execution of the
method initMenu() in class MediaListScreen. When this method is executed, the ad-
vice (Lines 12 to 14) is executed, which adds the sortCommand to a menu. In the right
part of Figure 3.2, we show the Java version, which uses ifdef directives to map the
sortCommand in class MediaListScreen.
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Concern Version LOC Complexity CA CO

CountViews AspectJ 319 0.97 2 21
Java 1 268 3.39 27 41

PhotoAlbum AspectJ 257 1.29 5 23
Java 1 771 2.15 49 73

Favourites AspectJ 257 1.70 3 19
Java 1 268 3.39 27 41

Video AspectJ 262 0.96 11 20
Java 1 892 2.31 45 78

Music AspectJ 326 1.05 12 24
/MMAPI Java 2 081 2.32 63 88

LOC: lines of code; Complexity: cyclomatic complexity; CA: concern at-
tributes; CO: concern operations.

Table 3.3: Software measures per concern.

To control the level of experience of our participants with a certain tool (e.g., call
hierarchy in Eclipse), we implemented our own tool infrastructure, a predecessor of
PROPHET, with source-code viewing and a project-browsing component to display the
source code. The tool uses Eclipse-like syntax highlighting and shows all files of the
software system ordered by packages (similar to the package explorer in Eclipse). We
implemented a logging functionality to track each action of our participants during the
experiment. We also used this tool to display the descriptions of the tasks and capture
the answers of participants.

In addition to the source code, participants got a feature diagram of MobileMedia on
a sheet of paper and a mapping of files to concerns (cf. Section 2.3). Participants were
familiarized with feature diagrams before the experiment. We provided both to ensure
that participants direct their attention to those files that belong to a concern, which allows
us to compare software measures and program comprehension at the concern level.

At the end of the experiment, we gave participants a debriefing questionnaire, in
which we asked about the perceived difficulty of each task and motivation to solve each
task, both on a five-point Likert scale [Likert, 1932]. Furthermore, we encouraged partic-
ipants to leave comments about the experiment.

3.2.3 Participants

Participants were 21 graduate students at the University of Passau. They were enrolled
in the course Contemporary Programming Paradigms (German: Moderne Programmierparadig-
men), in which advanced programming techniques, such as AspectJ and preprocessors,
were taught and practiced. All participants were aware that they are participating in an
experiment and that their performance does not affect their grade for the course.

We used a between-subjects design, so one group worked with the AspectJ version
of MobileMedia (AspectJ group), the other group with the Java version (Java group). We



Chapter 3. Software Measures and Program Comprehension 34

1 public privileged aspect CountViewsAspect {
2
3 // 147 additional lines of code
4
5
6 public static final Command sortCommand =
7 new Command("Sort by Views",
8 Command.ITEM, 1);
9

10
11 // pointcut declaration
12 pointcut initMenu(MediaListScreen screen):
13 execution(public void MediaListScreen.
14 initMenu()) && this (screen);
15
16 // advice code
17 after(MediaListScreen screen):
18 initMenu(screen) {
19 screen.addCommand(sortCommand);
20 }
21 // 66 additional lines of code
22 }

1 public class MediaListScreen
2 extends List {
3 // 39 additional lines of code
4
5 // #ifdef includeCountViews
6 public static final Command
7 sortCommand = new Command(
8 "Sort by Views", Command.ITEM, 1);
9 // #endif

10
11 // 19 additional lines of code
12 public void initMenu() {
13 // 40 additional lines of code
14
15
16 // #ifdef includeCountViews
17 this.addCommand(sortCommand);
18 // #endif
19 // 6 additional lines of code...
20 }
21
22 }

Figure 3.2: Comparison of AspectJ and Java version of MobileMedia. Left: AspectJ version,
showing pointcut expression and advice code. Right: Java version, showing #ifdefs to annotate
code fragments.

decided against a within-subjects design, because the experiment would have lasted too
long, leading to fatigued participants. Additionally, participants could have learned from
the version they started with, so we could not be sure how confounded our result would
be. Nevertheless, since both versions of MobileMedia were designed to be comparable,
our setting allows us to draw sound conclusions without stressing our participants too
much.

To form two comparable groups, we measured programming experience with a pre-
decessor of the questionnaire that we describe in Chapter 5. In short, we asked partici-
pants to estimate their experience with several programming languages and paradigms
on a five-point Likert scale, as well as the size of projects they have worked with. A
low value in the questionnaire (minimum: 5) indicates no programming experience; the
higher the value is, the more programming experience participants have (high value: 60,
the scale is open ended). The mean programming experience of the AspectJ group is 41.9
(standard deviation: 10.6), and of the Java group 40.8 (standard deviation 10.5). We had
21 participants, of which one was female—she was in the Java group. Altogether, there
were 10 participants in the Java group and 11 participants in the AspectJ group.

To account for the possibly more complex nature of AspectJ, we did not introduce
bugs in highly syntax-specific code. Since AspectJ is an extension to Java, its syntax is
based on Java, and introduces additional elements, such as pointcuts (roughly similar to
pattern matching) and advice (roughly similar to Java syntax). We introduced the bugs
only to advice code and made sure that the claimed benefits of aspect-oriented program-
ming for program comprehension, such as separation of concerns, could still be mea-
sured. Since participants did not have to implement any source code or understand com-
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Task Bug description Concern

1 When creating/converting media, the counter how often a
medium was shown, is always set to 0.

CountViews

2 If a picture of a photo album should be displayed (action
“View”), nothing is displayed, although the photo album is not
empty.

PhotoAlbum

3 Although several pictures are set as favorites, the action “View
favorites” is not displayed in the menu. The developer claims,
he implemented the according functionality.

Favourites

4 The option to play a video (command “Play video”) is not dis-
played.

Video

5 If you click in the menu on “Play music”, no music is played,
although the according functionality is implemented.

Music/
MMAPI

6 If you click on “View favorites” in the menu, no favorites are
shown, although favorites exists and the according functional-
ity is implemented.

Favourites

Table 3.4: Overview of Tasks.

plex pointcut declarations, a thorough understanding of AspectJ syntax is not necessary
in our experiment.

3.2.4 Tasks

We created six maintenance tasks and gave participants a bug description as a user might
provide it for each task. In addition, we provided the concern in which the bug occurred,
to ensure that participants focus on concern code. Second, we opened for each task all
files that belong to the according concern. However, participants could open all other
files of MobileMedia, if they thought it was necessary (e.g., to trace a method call). Thus,
we can evaluate program comprehension on the concern level. To solve a task, partic-
ipants should locate the position at which the bug occurs (file and line), state why the
bug occurs, and suggest a solution. We used all information to decide whether a bug was
identified correctly. Additionally, we measured the time participants needed to solve a
task (referred to as response time). For all tasks, we carefully introduced bugs into the
source code.

We present all tasks in Table 3.4 to give an overview. To better understand of the
nature of bugs, we describe the cause of the first bug in detail. It was caused by set-
ting a variable that counts the number of views to 0, instead of setting it to the cor-
rect value. In the AspectJ version, the bug was located in aspect CountViewsAspect
in Line 223, where the code stated mediaData.setNumberOf Views(0) instead of
mediaData.setNumberOfViews(numberOfViews). In the Java version, the bug was
located at a corresponding position in class MediaUtil. In Line 151, the code stated
ii.setNumberOfViews(0) instead of ii.setNumberOfViews(numberOfViews) .
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In addition to these six tasks, we designed a warming up task to let participants fa-
miliarize with the experimental setting. In the AspectJ version, participants should count
the number of pointcuts of the concern PhotoAlbum, in the Java version how often the
command includeFavourites of the concern Favourites occurs. To have comparable ef-
fort for both tasks, the same number of files was opened and had to be looked at and
about the same number of occurrences existed. This task is not included in the analysis.

3.2.5 Experiment Execution

The experiment was conducted in July 2010 instead of a regular lecture session in a lab
room with Linux computers and 19" screens. We gave an introduction to all participants,
in which we explained important facets of the experiment and repeated facts from their
programming course relevant for the experiment as a reminder. After the introduction,
participants were seated at a computer and started to work on the tasks on their own.
Four experimenters regularly checked that participants worked as planned. After partic-
ipants were finished, they were instructed to raise their arm, so that we can give them
the debriefing questionnaire. After completing the questionnaire, participants were in-
structed to leave quietly without disturbing the others. There are no deviations to report.

3.3 Experiment Results

In this section, we present the results of our experiment regarding program com-
prehension. To evaluate program comprehension, we measured correctness and response
time of an answer.
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Figure 3.3: Number of correct answers per group and task.

Correctness In Figure 3.3, we give an overview of the number of correct answers per
task and group. For most of the tasks, both groups have about the same number of
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Variable Version Distribution Mean N t/U p

Task 1 AspectJ 956.55 11 1.032 0.321
Java 883.6 10

Task 2 AspectJ 875.91 11 -0.476 0.646
Java 1056 10

Task 3 AspectJ ● 807.64 11 20 0.151
Java 508.8 10

Task 4 AspectJ 669.64 11 36 0.397
Java 471.5 10

Task 5 AspectJ 406.82 13 22 0.18
Java 683.1 10

Task 6 AspectJ 631.73 11 – –
Java 459.4 10

0 10 20 30

Only for the significance tests, we omitted response times for wrong answers; there are too few data
for Task 6 to conduct a significance test; t/U: test values; t for Tasks 1 and 2, U for Tasks 3 to 5

Table 3.5: Response time of participants.

correct solutions. For the sixth task, there is a large difference: Only two participants of
the AspectJ group entered the correct solution.

To evaluate whether there are significant differences in the number of correct solu-
tions, we conducted Fisher’s exact test. We cannot conduct the χ2 test, because expected
frequencies are smaller than 5 (cf. Section 2.2.4). Only for the last task, we found a sig-
nificant difference in the number of correct solutions (p = 0.03). For all other tasks, the p
values range from 0.361 to 1.

Response Time In Table 3.5, we show the mean response times of participants for each
task. For the Tasks 2 and 5, participants of the AspectJ group were faster; for the remain-
ing tasks, participants of the Java group were faster. The largest differences appear in
Task 5 in favor of the AspectJ group, and in Task 3 in favor of the Java group.

For completeness, we show the response times for all tasks in Figure 3.4. The differ-
ence in response time is negligible with 2% (1.2 minutes, compared to almost 1.5 hours
for all tasks). A t test shows that the difference is not significant (t value: 0.1715, p value:
0.866).

Before conducting significance tests for response times, we have to consider whether
a task was solved correctly or not, because response times differ for correct and incor-
rect solutions [Yellott, 1971]. For example, a participant might enter a wrong answer
deliberately, for example, to be finished with a task, which would bias the response time.
We could compute efficiency measures, for example, combinations of correctness and re-
sponse times, but it is not clear what they mean. Hence, we excluded response times



Chapter 3. Software Measures and Program Comprehension 38

●Java
AspectJ

50 60 70 80 90 100 110
min

77.4
76.2

±
±

16.9
14.7

Figure 3.4: Response time of participants for all tasks. The numbers indicate mean and standard
deviation.

of wrong answers from the analysis. For the last task, this leaves us with only 2 values
for response times in the AspectJ group, so we cannot conduct a significance test for this
task.

To check whether the observed differences in response time are significant, we con-
ducted a t-test for Task 1 and 2, and a Mann-Whitney-U test for Tasks 3 to 5, in which the
response times are not normally distributed. In Table 3.5, we show the distribution of re-
sponse times for each task (including wrong answers) and the results of the significance
tests (without wrong answers). All p values are larger than 0.05, meaning that none of
the differences is significant.

Taking both, the results for correctness and response time into account, we found no
significant differences for program comprehension between the AspectJ and Java version,
except for the correctness of one task. We believe there are two reasons responsible for the
difference in correctness: First, participants of the AspectJ group estimated this task as
more difficult (U value: −3.029; p < .05), and their motivation as lower (U value: −3.079;
p< .05). Second, when we told participants the group assignment, several participants of
the AspectJ group complained, but none of the Java group. We believe that both affected
the performance negatively, resulting in fewer correct answers for the last task.

3.4 Software Measures and Program Comprehension

Having found (almost) not differences in program comprehension, we can assume that
both versions are equally comprehendable, which is in contrast to what the software
measures suggest (i.e., that the AspectJ version is more comprehendable).

After evaluating our research question, we go one step further and explore our data
for a possible relationship. During this process, we refine the computation of software
measures by including the behavior of participants, such that we can have a detailed
look on how software measures and program comprehension could correlate. This
data exploration may sound like “fishing for results”. However, since we defined a
research question (i.e., is there a relationship between software measures and program
comprehension?), exploring our data is a legitimate step to answer this question. Further-
more, we defined the modification of software measures before starting the exploration,
so we do not juggle with the numbers until finding something interesting. With our
exploration, we provide some insights into possible relationships and concrete research
hypotheses for future experiments.
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Version LOC Complexity CA CO

AspectJ 6 717 1.6 477 182
Java 5 397 2.0 271 165
LOC: lines of code; Complexity: cyclomatic complexity; CA: concern at-
tributes; CO: concern operations.

Table 3.6: Software measures of MobileMedia.

3.4.1 Software Measures of Complete System

Although software measures are often calculated in terms of concerns, we start in a gen-
eral way by comparing the entire application for completeness. In Table 3.6, we present
an overview of software measures for the complete system. The AspectJ version has sub-
stantially more lines of code, more attributes, and more operations. In contrast, the com-
plexity value is smaller in the AspectJ version. Since we did not observe a significant dif-
ference in program comprehension that reflects this difference in software measures, we
cannot confirm a relationship between software measures and program comprehension
on the level of the complete program. Next, we look at the concern level.

3.4.2 Software Measures in Terms of Concerns

Software measures for the entire system do not necessarily reflect the subsystem analyzed
for a specific task. Hence, we compare the software measures in terms of concerns with
program comprehension as we observed it. In Table 3.7, we show the software measures
of both systems in terms of concerns. The software measures for each concern of the
AspectJ version are smaller, that is, suggest better comprehensibility. This means that the
AspectJ group should make fewer errors and be faster for every task. However, we could
not find such a difference. Only for correctness of the last task, we discovered a significant
difference, but in favor of the Java group (opposite of what the measures suggest). Hence,
we cannot confirm that software measures and program comprehension correlate when
considering the concerns participants worked with.

One might argue that when participants worked on a task, they did not only look
at files that belong to the according concern, but opened other files, as well. Hence, we
should compute software measures based on the files participants actually looked at. Since
we logged what participants did during working on a task, including opening files, we
are able to compute software measures based on the files participants looked at.

3.4.3 Software Measures Related to Files

To compute the software measures related to files for a single task, we determined per-
sonal software measures for each participant and computed their mean in three steps. We
describe this aggregation process for one task. First, we extracted all files a participant
looked at and determined the software measure for each file. Second, we computed the
average complexity value, and the sum for lines of code, concern attributes, and concern
operations, respectively, of all files. Hence, each participant has an own personal value
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Feature/Task Version LOC Complexity CA CO

CountViews AspectJ 319 0.97 2 21
Task 1 Java 1 268 3.39 27 41

PhotoAlbum AspectJ 257 1.29 5 23
Task 2 Java 1 771 2.15 49 73

Favourites AspectJ 257 1.70 3 19
Task 3 & 6 Java 1 268 3.39 27 41

Video AspectJ 262 0.96 11 20
Task 4 Java 1 892 2.31 45 78

Music/MMAPI AspectJ 326 1.05 12 24
Task 5 Java 2 081 2.32 63 88

LOC: lines of code; Complexity: cyclomatic complexity; CA: concern at-
tributes; CO: concern operations.

Table 3.7: Software measures per feature.

for complexity, lines of code, concern attributes, and concern operations. Finally, we
computed these personal measures for each participant and averaged over the personal
software measures of all participants. We repeated this process for each task.

We summarize the results of the adapted software measures in Table 3.8. The dif-
ference of software measures between both versions is smaller now for most tasks and
measures. This indicates that, if we take into account what participants actually did,
software measures better reflect program comprehension. However, the differences be-
tween software measures are still too large, compared to the fact that we did not observe
significant differences in program comprehension.

Now, participants looked at one file only for a few seconds, but several minutes at
another file. Hence, the time a participant looked at a file should also be considered, because
the file at which a participant looked longer should have more influence on the personal
software measure. Since we logged the time participants looked at a file, we can compute
weighted personal software measures.

3.4.4 Software Measures Weighted with Response Time

To compute weighted software measures for a single task, we again computed personal
software measures for each participant, and additionally took into account the time a par-
ticipant spent with a file. We describe this approach for a single task. First, we divided
the time a participant spent with each file by the complete time for a task. Second, we
multiplied this value with the according software measures for a file. Thus, if a partici-
pant looked at a complex file only for a few seconds, the weighted value for complexity
is low. Hence, for each file and each participant, we got personal weighted values for lines
of code, complexity, concern attributes, and concern operations, respectively. Finally, we
proceeded as described in the previous section for the computation of software measures
related to files, based on the personal weighted software measures.
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Task Version LOC Complexity CA CO

1 AspectJ 440.18 1.12 8.64 29.64
Java 1 290.30 2.95 28.50 39.70

2 AspectJ 409.36 1.38 7.36 30.55
Java 1 658.20 2.24 44.90 66.70

3 AspectJ 369.18 1.66 5.55 25.27
Java 1 149,50 3.04 27.50 34.80

4 AspectJ 481.00 1.02 15.36 32.91
Java 1 210.30 3.07 31.70 44.40

5 AspectJ 382.82 1.33 12.27 28.27
Java 1 896.30 2.58 55.70 74.50

6 AspectJ 501.27 1.45 8.82 33.09
Java 1 167.90 3.48 24.20 36.30

LOC: lines of code; Complexity: cyclomatic complexity; CA: concern at-
tributes; CO: concern operations.

Table 3.8: Software measures per task.

In Table 3.9, we present the mean of weighted software measures for each task. The
difference between the software measures of both versions got smaller again, compared
to the unweighted values. Especially the complexity values are all smaller than 1, which
indicates that complexity can be an appropriate measure if we consider participants’ be-
havior. The smaller difference for the other software measures aligns better with the
results of our experiment, as well.

Another interesting observation for weighted software measures is that the weighted
value for concern operations is smaller in the Java version; most likely, because partic-
ipants of the AspectJ group spent most of their time in aspects with a large concern-
operations value, because those contained most of the implementation of a concern. In
contrast to the AspectJ group, the Java group looked at more files per task, so the time
per file is considerably smaller. Multiplying this small value with the concern-operations
value results in smaller weighted concern-operations values, and, thus, in a smaller
weighted value.

Finally, one might argue that we should also take into account the methods of each
file participants looked at, because a very complex method may be somewhere in a file
where a participant did not even look. Unfortunately, this is difficult to assess reliably in
an experimental setting without eye-tracking software. We could take code displayed on
a screen at any time (start line – end line) as indicator, but this does not allow us to deduce
at which method on the screen participants looked, or whether they just scrolled through
the code. Nevertheless, this would be an interesting challenge for future experiments, for
example, by using an eye-tracking system.
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Task Version LOC Complexity CA CO

1 AspectJ 210.07 0.50 2.26 15.88
Java 254.82 0.67 3.47 6.35

2 AspectJ 134.82 0.28 3.14 12.15
Java 232.33 0.31 3.83 7.10

3 AspectJ 176.31 0.53 2.74 14.47
Java 293.34 0.87 6.56 6.73

4 AspectJ 145.64 0.27 5.13 11.89
Java 162.95 0.87 10.06 3.96

5 AspectJ 207.43 0.60 6.26 15.88
Java 250.16 0.29 5.44 6.95

6 AspectJ 174.77 0.52 2.67 13.89
Java 310.22 0.85 4.67 7.61

LOC: lines of code; Complexity: cyclomatic complexity; CA: concern at-
tributes; CO: concern operations.

Table 3.9: Weighted software measures per task.

3.5 Discussion

So, can we use software measures to measure program comprehension? Although we re-
fined software measures, such that they better fit the behavior of participants, none of the
refinements was entirely satisfactory. The values of lines of code, concern attributes, and
concern operations still differed considerably, which is not reflected by program com-
prehension as we measured it. For complexity, we found that the weighted value is
similar for both versions (all smaller than 1). For all other software measures, we cannot
confirm a relationship between software measures and program comprehension.

The reader may have noticed that using the observed data to refine software mea-
sures eliminates the benefit of easy computation: Instead of basing the computation of
measures solely on source code, we included what participants did. This approach is not
feasible in practice, because we cannot predict which developers work with the source
code or how long they look at what file. Hence, adapting software measures is not a
practical way to improve the predictive power of software measures.

Thus, we have to conclude that we cannot use software measures to assess program
comprehension. Even personal software measures to not predict the comprehensibility
of source code. Instead, software measures should only be used for what we know they
describe, for example, the size of a program, the complexity of a method, or the size of a
concern. If we need to evaluate the comprehensibility of software, there is no way around
controlled experiments.

Nevertheless, for initial research on a new concept, plausibility discussions with soft-
ware measures are helpful to establish research hypotheses regarding benefits and draw-
backs. However, such hypotheses should be evaluated empirically eventually. This helps
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us to discover possible hidden relationships, to describe and evaluate claimed benefits of
a concept more easily, and to gain a more thorough understanding of the relationship of
software measures and program comprehension. Furthermore, our results and proceed-
ings can act as inspiration to develop and evaluate new software measures that better
describe comprehensibility of source code.

3.6 Threats to Validity

Threats to internal validity are caused by the low experience of our participants with
AspectJ and by exploring the data. Threats to external validity are rooted in using only
one software system, four software measures, and limiting our study to program com-
prehension.

3.6.1 Internal Validity

One problem of our study is the experience of our participants with AspectJ. They were
introduced to AspectJ in the course they were enrolled in, whereas they worked with
Java since they started to study. To diminish the influence of experience with AspectJ,
we made sure that for understanding the cause of bugs, participants did not need a deep
understanding of AspectJ syntax. To further reduce the influence of AspectJ experience,
we did not let participants implement source code, but only explain the problem and
suggest a verbal solution. This way, participants did not have to implement AspectJ
code. Hence, the experience of participants with AspectJ was sufficient for our purpose.

Another issue is that we explored the data, which can easily drift off to “fishing for
results”. However, we did not exploit our data until we found interesting results, but
made some reasonable, well-defined refinements to the computation of software mea-
sures. Our data exploration is rather a benefit, because we obtained some insights of a
possible relationship of software measures and program comprehension, which should
be evaluated in further experiments.

3.6.2 External Validity

For our study, we used only one software system. However, using MobileMedia has the
benefit that our results are comparable with numerous results of other researchers, who
also used MobileMedia in their work. Consequently, the generalizability to other research
with MobileMedia is given, but not the generalizability to other software systems. Thus,
the restriction to MobileMedia is both a benefit and a drawback for external validity.

A further restriction is that we only used four software measures. Our results are only
applicable to these software measures. To limit this restriction, we used a representative
measure of every category we described in Section 3.1. This allows us to carefully draw
conclusions for the categories of software measures. Nevertheless, to be able to state a
relationship of other software measures (e.g., coupling and cohesion) to program com-
prehension, they should also be evaluated in a carefully designed experiment. Here, we
showed what a carefully designed setting looks like.



Chapter 3. Software Measures and Program Comprehension 44

Furthermore, we only evaluated how program comprehension and software mea-
sures could correlate. We cannot generalize from program comprehension to other soft-
ware quality facets, such as maintainability and design stability, and their relationship to
software measures, which was the focus of numerous studies (cf. Table 3.1).

3.7 Related Work

There is a lot of work regarding software measures. We already mentioned one line
of research that develops and tests measures to evaluate quality properties of aspect-
oriented software systems [Figueiredo et al., 2008a,b; Greenwood et al., 2007; Molesini
et al., 2008]. In this work, several software projects are evaluated with the developed
software measures. For example, Figueiredo and others [2008a] assess the design stability
of MobileMedia based on software measures. To this end, MobileMedia was developed in
two versions in several scenarios, while with every scenario, the program was extended.
Based on software measures, both versions were compared. However, the studies did
not include the behavior of human participants to assess quality properties.

On the other hand, there is also empirical research with human participants regard-
ing program comprehension, in which properties of source code, such as depth of inher-
itance hierarchies [Daly et al., 1995], comment style [Prechelt et al., 2002], and identifier
styles [Sharif and Maletic, 2010] were evaluated regarding their effect on comprehensi-
bility. This is similar to our work, in which we assessed the comprehensibility of two
systems. However, we did not evaluate whether several facets of source code influence
program comprehension. Instead, we were only interested in whether we could observe
a difference in comprehensibility.

Another line of work evaluates empirically the benefit of aspect-oriented program-
ming compared to object-oriented programming [Hanenberg et al., 2009]. In an exper-
iment, participants implemented crosscutting code into a small target application, one
implemented in AspectJ, the other in Java. Depending on the kind of code changes, As-
pectJ had a positive or negative influence on the development time of participants. Like
in our experiment, students were recruited as participants, which were introduced to
AspectJ, however, without a link to software measures.

Another research topic that addresses the costs produced by maintenance are bug
prediction models [Bettenburg and Hassan, 2010; Zimmermann et al., 2007]. In such
models, properties of source code and change logs are analyzed so that possible bugs can
be predicted. This is similar to computing software measures based on source code to de-
scribe its comprehensibility. However, the goal is to predict future bugs. Bettenburg and
Hassan [2010] analyzed social facets of the concurrent-version-system entries six months
before and after a major Eclipse release and derived a regression model based on those
logs. Zimmermann and others [2007] analyzed complexity measures of several Eclipse
releases and found that the more complex code is, the more defects it has. It could be an
interesting step to combine bug prediction models with software measures, such that the
prediction, where bugs might occur, can be used to adapt software measures.
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3.8 Summary

Software measures are often used to assess comprehensibility of source code. However,
software measures are based on properties of source code and do not consider the de-
veloper. In this chapter, our goal was to give recommendations about using software
measures as program-comprehension indicators based on empirical evidence.

To fulfill our goal, we conducted a controlled experiment, in which we gave two
groups of participants two versions of MobileMedia with different software measures.
If there is a relationship between software measures and program comprehension, we
should also see a difference in the comprehension between both groups.

We focused on measures for feature-oriented software systems, because feature-
oriented software development is the focus of our research, and because software mea-
sures are especially used to evaluate quality facets of feature-oriented software systems.

We did not find any differences, indicating that the software measures we used are
not suitable to measure program comprehension. Even after refining software measures
by taking into account the files participants looked at and how long they looked at each
file, we did not find a relationship of software measures and program comprehension
(except for one complexity measure). Thus, we cannot recommend software measures
as indicators for program comprehension of software systems. Furthermore, the effect of
feature-oriented software development (and other modern programming paradigms) on
program comprehension should not solely be evaluated based on software measures. In-
stead, we recommend to conduct controlled experiments, in which we take into account
the developer.

To reduce the effort of controlled experiment, we developed several tools and guide-
lines, which we present in the following chapters.
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Chapter 4

Confounding Parameters for
Program Comprehension

This chapter shares content with a submitted article.

In the previous chapter, we concluded that we need to conduct controlled experi-
ments to reliably measure program comprehension. To this end, we need to control for
confounding parameters, which threaten the validity of results and may lead to false
conclusions. To control for confounding parameters, we need to identify them first.

Based on our experience with planning experiments and based on discussions with
other researchers and students, we found that identifying and controlling for confound-
ing parameters is one of the major obstacles for conducting experiments. Since we aim
at reducing the effort for conducting controlled experiments with our work, we start by
reducing the effort of identifying and controlling for confounding parameters. To this
end, we conducted a literature survey of controlled experiments, which we present in
this chapter. Our goal is the following:

• An extensive list of confounding parameters for program comprehension and con-
trol techniques.

With an extensive list, researchers do not have to identify confounding parameters,
but can simply consult our list and decide for each parameter whether it has an important
influence or not. Furthermore, with recommendations how to control for a confounding
parameter, we support researchers in selecting a suitable control technique and, thus, in
producing valid experimental results.

To have a better impression of the relevance of our goal, we discuss the importance of
confounding parameters in Section 4.1. In Section 4.2, we describe the selected journals
and conferences, how we selected relevant papers, and how we extracted confounding
parameters. This way, we enable researchers evaluate the suitability of our approach and
extend our work based on the same approach. To give an overview of the state of the art
and derive recommendations for its improvement, we discuss how researchers control
for confounding parameters in Section 4.3. In Section 4.4, we describe five common tech-
niques to control for confounding parameters to enable researchers to select appropriate
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control techniques. In Section 4.5, we describe all 39 confounding parameters we identi-
fied and discuss how each of them can be controlled. We give recommendations how to
manage confounding parameters in Section 4.6.

4.1 Importance of Confounding Parameters

When conducting experiments, we have to ensure internal and external validity (cf. Sec-
tion 2.2.2). When recruiting human participants, this is especially problematic, because
there are considerable inter-individual differences: Participants have different experience
with programming, different intelligence, different familiarity with different domains,
and so on. If we do not consider these differences, our results are most likely biased.
That is, variations in the outcome are not caused by the intentional variations of the in-
dependent variable, but by unintentional variations of the confounding parameters (i.e.,
the inter-individual differences). To reduce this bias, we can restrict our population, for
example, to professional programmers only, but even in this population, there are con-
siderable differences in development and maintenance time McConnell [2011]; Sackman
et al. [1968]. Thus, controlling for confounding parameters is not as straightforward as it
appears.

In the context of psychology, many confounding parameters for experiments are well
known, because experimentation has a long history [Wundt, 1874]. For example, dur-
ing evaluation of productivity of employers in the Hawthorne Works, experimenters
found that higher illumination increased productivity [Roethlisberger, 1939]. However,
in subsequent observations, researchers found that not the higher illumination caused
the increase, but simply the fact employees were observed. In the context of program
comprehension, there are in addition to the well known parameters other specific con-
founding parameters, such as programming experience or domain knowledge.

To avoid bias due to confounding parameters, we can either increase our sample size
or reduce variation in confounding parameters. When increasing the sample size, we
need to consider the number of independent variables and their levels. For example,
if we have two independent variables with two levels each, we have four experimental
groups (cf. Section 2.2.2). For each group, we need about 10 participants to sufficiently
control the bias, leading to a sample size of 40 participants. However, there are not only
two confounding parameters, but considerably more. In our review, we identified 39.
Assuming two levels per parameter, we have 239 = 549 755 813 888 experimental groups.
Thus, increasing the sample size is not feasible. Even if we select only the five most im-
portant parameters, we would still need 25 × 10 = 320 participants to produce sound
results. This sounds more feasible, but typically, it is difficult to find that many partici-
pants for a study.

Thus, it is more feasible to reduce the variation of a confounding parameter. To this
end, we control their influence, for example, by ensuring comparable groups of partici-
pants or by including only one level, such as low programming experience. The first step
in controlling for confounding parameters is identifying them. Thus, with fulfilling our
goal, we support researchers in producing sound experimental results.
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4.2 Methodology of Literature Survey

Since our goal is to provide an extensive list of confounding parameters, we selected the
following broad, representative set of journals and conferences:

Empirical Software Engineering (ESE)

Transactions on Software Engineering and Methodology (TOSEM)

Transactions on Software Engineering (TSE)

International Conference on Program Comprehension (ICPC)1

International Conference on Software Engineering (ICSE)

Symposium on the Foundations of Software Engineering (FSE)

International Symposium on Empirical Software Engineering and Measurement (ESEM)

We selected ESE as leading platform for empirical research in the field of software
engineering. We included TOSEM and TSE as leading journals in software engineering.
ICPC is the leading conference for research regarding program comprehension. ICSE
and FSE are the leading conferences on software engineering. Additionally, we chose
ESEM as platform in the empirical-software-engineering domain. From each journal and
conference, we considered all papers published between 2001 and 2010.2 Hence, we have
a representative set of journals and conferences.

From these journals and conferences, we selected all papers that report an experiment.
Since there are different kinds of experiments and only certain kinds are relevant for our
survey, we give a short overview of different types of experiments (see, e.g., Sjøberg et al.
[2005]).

Background: Types of Experiments In general, a setting in which a treatment is de-
liberately applied to a group of participants is called an experiment. We can describe the
following types of experiments:

• Randomized experiment

• Quasi experiment

• Correlational study

• Case study

First, if participants are randomly assigned to treatment and control condition(s), an
experiment is referred to as randomized experiment. Second, in a quasi experiment, partic-
ipants are not assigned randomly to conditions, for example, when groups are already

1ICPC was a workshop until 2005.
2ESEM started in 2007, so we have papers of only four years for this conference.
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Figure 4.1: Approach to select papers that describe experiments with participants.

present (which is often the case in studies conducted in companies). Third, in a correla-
tional study, size and direction of relationships among variables are observed, often on
existing data. Fourth, in case studies, only one or few participants are observed and the
outcome has a qualitative nature.

For our survey, we include all types of experiments except for correlational studies
that observe only existing data and do not recruit human participants. For example,
Bettenburg and others [2010] analyzed the commit data of the development of an Eclipse
version six months before and after its release to identify how commit comments help
to predict bugs. Since this experiment was not conducted with human participants, we
excluded it. For simplicity, we do not differentiate different kinds of experiments from
here on.

To extract relevant papers from the selected journals and conferences, we used the
following procedure: First, we read the abstract of a paper. If the abstract describes an
experiment with human participants, we added the paper to our initial set; if not, we
discarded it. If the abstract is inconclusive, we skimmed through the paper for any infor-
mation that indicates the conduct of an experiment. Furthermore, we searched the paper
with a fixed set of keywords: (programming) experience, expert, expertise, professional,
subject, and participant. Those keywords are typical for program-comprehension exper-
iments with human participants. Based on the skimming and search result, we either
added a paper to our initial set or discarded it. To have a better understanding of our
approach, we visualize it in Figure 4.1. As result of this selection process, we have an
initial set of 291 papers (out of 2161).

As next step, we read each paper of our initial set completely. During that process,
we discarded some papers, because the described experiment was too far away from
program comprehension. Before discarding a paper, we discussed whether it is relevant
for us until we reached inter-personal consensus. When in doubt, we included a paper,
because it is better to have more parameters in our list than missing one. This way,
researchers can decide whether a parameter is relevant or not. We excluded 133 irrelevant
papers, so we had 158 papers in our final set. On the project’s website, we have a current
list of all extracted papers, including the ones we discarded. In Table 4.1, we show how
many papers from which journal and conference we extracted and included in the final
set.

As last step, we extracted confounding parameters. To this end, we included vari-
ables that authors categorized as confounding variables (e.g., some authors listed these
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Source 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 Sum

ESE All 24 18 15 15 19 21 24 26 24 16 202
Extr. 2 9 5 8 10 7 7 4 7 3 62
Final 1 5 1 4 3 3 3 2 5 2 29

TOSEM All 11 15 13 10 12 12 15 21 13 13 135
Extr. 0 0 0 0 1 0 3 0 0 3 7
Final 0 0 0 0 0 0 2 0 0 0 2

TSE All 66 73 88 72 68 61 55 53 50 48 634
Extr. 5 6 6 5 5 3 2 5 3 5 45
Final 4 4 5 3 3 3 1 5 2 3 33

ICPC All 28 24 22 21 24 23 22 21 22 16 223
Extr. 2 3 3 8 8 3 4 5 4 3 43
Final 2 2 3 3 7 3 4 5 4 3 36

ICSE All 47 48 42 58 44 36 49 56 20 52 482
Extr. 8 10 8 1 11 12 9 8 9 12 88
Final 0 3 3 4 3 4 1 3 4 5 30

FSE All 29 17 42 25 32 25 63 31 39 34 337
Extr. 0 1 0 0 1 2 3 3 1 1 12
Final 0 1 0 0 0 2 2 3 1 0 9

ESEM All - - - - - - 45 29 44 30 148
Extr. - - - - - - 12 3 11 8 34
Final - - - - - - 6 5 1 7 19

All: All papers of the source in the according year. Extr.: Extracted papers in our initial set. Final: Papers
in the final set (after discarding non-relevant papers).

Table 4.1: Overview of all, included, and extracted papers by year and journal/ conference.

variables in a table or used terms like “Our confounding parameters are” to describe
them). Furthermore, we included variables that followed terms like “To control for”, “To
avoid bias due to”, or “A threat to validity was caused by”, because such a variable was
treated as confounding.

The complete selection and extraction process was conducted by the author and a re-
search assistant (Jana Schumann, University of Magdeburg). To reduce bias, we checked
the selection and extraction work of the other researcher on random samples, as sug-
gested by Kitchenham and Charters [2007]. We discuss the validity of this approach more
detailed in Section 4.7. To give an impression of the effort of the selection and extraction
process, we estimated the time we needed, which is about 63 work days (à 8 hours).
When extending our list, researchers can use these numbers to estimate their effort.
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4.3 State of the Art

To get an impression of the state of the art, we present insights of how confounding
parameters are managed in literature. The main findings are:

• There is no systematic way to describe confounding parameters

• Researchers use different ways to measure and control for the same confounding
parameter

• Only a fraction of identified confounding parameters are considered in each paper

We discuss each of the findings in detail in this section.

4.3.1 Describing Confounding Parameters

In our survey, we found that confounding parameters are described at different places in
the papers, which typically are the following [Jedlitschka et al., 2008]:

• Experimental design

• Analysis

• Interpretation

• Threats to validity

In experimental design, authors describe the setting of an experiment, including material,
participants, and means to control confounding parameters. In the analysis, the authors
present the data analysis, for example, means, standard deviations, and statistical tests.
After the analysis, the results of the experiment are interpreted and set in relation to the
research hypotheses or questions. Finally, authors discuss the validity of the experiments.

In Table 4.2, we give an overview in which parts confounding parameters were in-
troduced. Column “N” contains the total amount of how often parameters were men-
tioned in each section; mean denotes the average, relative amount of parameters of all
papers mentioned in the according section. Most parameters were discussed during the
experimental design. This is not surprising, because in this stage, means to manage con-
founding parameters are typically discussed. Next, in part threats to validity, 17% of the
confounding parameters are described. In this part, authors mostly describe confound-
ing parameters, how they could have threatened the validity of the experiments, and
how they controlled for a parameter so that the threat to validity is minimized. Only a
small part of the parameters is described in the analysis and interpretation.

Thus, the major part of confounding parameters is introduced in the experimental
design. However, about a fifth of the confounding parameters was not mentioned in ex-
perimental design, although we specify in the design phase how we manage confound-
ing parameters (cf. Section 2.2). As a consequence, readers of a report might overlook
a parameter, because it is mentioned only implicitly. Thus, they cannot be sure whether
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Part N Mean

Experimental design 716 79.14 %
Analysis 22 1.78 %
Interpretation 19 1.91 %
Threats to validity 199 17.17 %
N: number of mentions of paramater; Mean: rel-
ative amount of mentions of parameters

Table 4.2: First mentions of a parameter per part of the experiment description.

all relevant parameters have been considered. Consequently, readers might misjudge the
soundness of an experimental design.

Furthermore, we found different ways of describing confounding parameters and ac-
cording control techniques. In some papers, confounding parameters were introduced
in a table (along with the other experimental variables), which often did not necessar-
ily include all confounding parameters, but some were introduced as threat to validity.
In other papers, confounding parameters were introduced with phrases like “Our con-
founding parameters are” or “To control for”. Additionally, some parameters were not
described as confounding, but authors only described that they measured it. This unsys-
tematic way makes it difficult fully understand an experimental design.

4.3.2 Measuring and Controlling for Confounding Parameters

There are various ways to measure and control the influence of a confounding param-
eter.3 For example, we found several different ways for measuring and controlling for
programming experience: It was kept constant by recruiting only students or creating
two groups with comparable level of programming experience. To create comparable
groups, researchers had to measure programming experience, which they realized with
different indicators, such as the years participants have been programming, participants’
level of education (e.g., undergraduate vs. graduate student), self estimation, or super-
visor estimation. Often, authors wrote that they controlled for a parameter, but did not
specify how.

The different means of measuring and controlling for confounding parameters can
make the comparison of experiments difficult. For example, when we try to compare pro-
gramming experience based on years participants have been programming, and based on
the level of education, it is likely that we compare different things, because an undergrad-
uate student may have been programming for several years, whereas a graduate student
may have started programming when starting to study. Comparing experiments gets
even more problematic when we do not know how a parameter was controlled for. Thus,
researchers might not be able to fully understand and replicate an experiment.

3In Section 4.5, we discuss control techniques and parameters in detail. Here, we give only an example.



Chapter 4. Confounding Parameters 53

0

1

5

10

15

20

25

2 43 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Number of parameters

Number of papers

Figure 4.2: Number of parameters mentioned per paper.

4.3.3 Number of Confounding Parameters

In our survey, we found 39 confounding parameters. However, only a fraction is men-
tioned in each paper. In Figure 4.2, we give an overview of how many papers mentioned
how many parameters. Most of the papers mentioned 10 or less parameters; one paper
named 20 parameters. We believe that most authors controlled more parameters than
they actually described, but that space restrictions prohibited mentioning each parameter
and how it was controlled. However, knowing whether and how researchers managed
confounding parameters helps to evaluate the soundness of an experiment.

To summarize, there is effort to control for confounding parameters. However, re-
porting this effort is too unsystematic, so it is difficult to evaluate the soundness of an
experimental design. To address the identified problems, we give recommendations in
Section 4.6.

4.4 Background: Techniques to Control for Confounding Param-
eters

Experimentation in psychology has a long history [Wundt, 1874]. Hence, all control tech-
niques are based on psychological research and have proven useful in numerous experi-
ments. Since we give recommendations how to control for confounding parameters, we
present typical control techniques in this section, which are the following:

• Randomization

• Matching
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• Keep confounding parameter constant

• Use confounding parameter as independent variable

• Analyze the influence of confounding parameters on result

For better illustration, we describe the control techniques with the confounding pa-
rameter programming experience as example (we go into more detail in Section 4.5.1.2).
For each technique, we first explain it, and then discuss advantages and disadvantages
regarding the criteria sample size, measurement requirement, effort of applying it, and
generalizability of results.

4.4.1 Randomization

Using randomization, a confounding parameter is randomly assigned to experimental
groups. This way, the influence of confounding parameters is spread evenly across ex-
perimental groups and is comparable in all groups [Goodwin, 1999]. For example, to cre-
ate two comparable groups regarding programming experience, we toss a coin to assign
all participants to groups. Since the group assignment is random, there is no systematic
bias. That is, the coin toss does not assign more experienced participants to one group,
and less experienced participants to another group. Hence, both groups are comparable,
or homogeneous, regarding programming experience.

For randomization to be effective, we need a large enough sample size. Otherwise,
chances of considerably different group sizes or heterogeneous groups are too high. Un-
fortunately, large cannot be defined as a fixed number. Assigning 30 participants to two
experimental groups seems reasonably large, but assigning 30 participants to six exper-
imental groups may be too small to ensure homogeneity. Thus, the more experimental
groups there are, the more participants we need. In our own experience and discussions
with other researchers, we found that five participants per group are too few, but ten
seem to be acceptable. The benefit of randomization is that it does not require measuring
a parameter and that applying it requires almost no effort. However, the generalizability
of results depends on our sample: If we only recruit novices programmers, our results
are only applicable for novice programmers; if we recruit participants with all levels of
programming experience, our results are valid for all levels.

Thus, randomization is the most convenient way to control for a confounding param-
eter, because it does not require measurement of a parameter.

4.4.2 Matching

With matching, we measure a confounding parameter and assign participants to experi-
mental groups, such that both groups have about the same size and same level regarding
the confounding parameter [Goodwin, 1999]. To illustrate matching, we show fictional
values for programming experience of participants in Table 4.3. The participants are or-
dered according to the quantified programming-experience value. Now, we assign Par-
ticipant 5 to Group A, Participant 7 to Group B, Participant 1 to Group B, and Participant
10 to Group A again. We repeat this process until all participants are assigned to groups.
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Participant Value Group

5 67 A
7 63 B
1 62 B

10 59 A
8 57 A
6 57 B
3 53 B
2 50 A
9 45 A
4 43 B

Table 4.3: Fictional programming-experience values and according group assignments.

This is also called as the odd-even-even-odd principle. We can also combine random-
ization and matching, such that we randomly assign blocks of participants (e.g., the first
four, the second four, and the last two) to groups A and B.

The benefit of matching is that a smaller sample size suffices, because we control how
we create groups: We can assign four participants to two groups, such that both groups
have the same level of experience. However, the drawback is that we have to measure
a confounding parameter, which increases the effort of matching compared to random-
ization. The more difficult a parameter is to measure, the higher the effort of applying
matching. For example, for intelligence, there are a number of definitions and different
tests [Jäger et al., 1997; Raven, 1936; Wechsler, 1950], which take time to conduct (e.g., 3h
for the BIS [Jäger et al., 1997]) and a suitable one has to be chosen. Additionally, not for
every parameter a suitable test exists. For example, there is no accepted way to measure
programming experience. Thus, depending on the parameter, the effort for matching
increases. The generalizability depends on the selected sample, like for randomization.

4.4.3 Keep Confounding Parameter Constant

When keeping a confounding parameter constant, we have exactly one level of this pa-
rameter in our experimental design (or at least exclude outliers) [Markgraf et al., 2001].
For example, to keep programming experience constant, we can measure programming
experience and recruit participants only with a certain value. Alternatively, we can re-
cruit participants from a population of which we know that a parameter has only one
level. For instance, when we recruit freshmen, we can assume that their programming
experience is roughly at one low, comparable level. There might be some students who
started to program earlier, but we can exclude them by requiring that participants did
not start programming before they started to study.

Like for matching, smaller samples suffice when keeping a confounding parameter
constant. Whether a parameter needs to be measured depends on the parameter: If we
recruit only freshmen, we can assume a low level of programming experience. Hence,
if we minimize the effort of measuring a parameter, keeping it constant does not require
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more effort than applying randomization. As a drawback, generalizability is reduced,
because our results are only applicable to the selected level of the parameter, for example,
low programming experience.

4.4.4 Use Confounding Parameter as Independent Variable

We can include a confounding parameter as independent variable in our experimental
design [Markgraf et al., 2001]. This way, we can manipulate it and control its influence.
For example, we can recruit participants with high and low programming experience,
such that our results are applicable to people with high and low programming experi-
ence.

As a drawback, we need a large sample size, because we have more experimental
groups (cf. Section 4.1). Regarding measurement, the same counts as for keeping a pa-
rameter constant: When we can apply heuristics to ensure certain levels (e.g., freshmen
as novice programmers, senior software developers as expert programmers), the effort
regarding measurement is low. A further drawback regarding the effort is that we need
more complex research hypotheses and a more complex experimental design: If our ini-
tial design was one factorial, we now need a two-factorial design, leading to more com-
plex analysis. However, the benefit is that generalizability is high, depending on the
number of levels.

4.4.5 Analyze the Influence of Confounding Parameter on Result

When we cannot assign participants to experimental groups, we can analyze the influ-
ence of a confounding parameter after the experiment [Shadish et al., 2002]. This is often
necessary when we recruit participants from companies, because we cannot assign par-
ticipants to different companies. In this case, we can measure a parameter and analyze
its influence on the result after conducting the experiment or excluding certain levels of a
parameter (i.e., a variant of the technique to keep a parameter constant). For example, we
can measure whether participants of Company A have a different level of programming
experience than participants of Company B and then evaluate whether these differences
influenced our result.

As benefit, a smaller sample size suffices to apply this technique. As a drawback,
we need to measure a parameter, which may lead to high effort. The generalizability of
results depends on the parameter and its values: If we find that only novice programmers
participated, our results only count for novice programmers. If also experts participated,
our results can be applied to both levels of programming experience.

4.4.6 Summary of Control Techniques

These five techniques are the most common control techniques. There are also other
techniques that are specific for a confounding parameter. For example, when controlling
for ordering effects (i.e., when the order of tasks or treatments influences results), we can
use a one-factorial, within-subjects design with two groups (cf. Table 2.1c). We describe
these techniques when we explain a corresponding parameter.
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Technique Sample
size

Requires
measurement

Effort to apply
technique

Generalizability

Randomization large no low depends on
sample

Matching small yes depends
on parameter

depends on
sample

Constant small depends on
parameter

depends on
measurement

limited

Independent large depends on
parameter

high good

Analyzed
afterwards

small yes depends on
parameter

depends on
parameter

Table 4.4: Approximate benefits and drawbacks of control techniques.

When we cannot apply any control technique, we should explain why and how that
influences the validity of experiments. If the influence of a parameter is evidently negli-
gible, we can even ignore it, but make this decision deliberately, not haphazardly.

In Table 4.4, we summarize the control techniques and their benefits and drawbacks.
Note that we cannot give a general recommendation on which control technique to use,
because that depends on the circumstances of the experiment. If the sample is small, we
should avoid randomization and using a parameter as independent variable. If measur-
ing a confounding parameter is too time consuming, we should use randomization. If
we want to have high external validity, we should not keep a parameter constant. Thus,
for each experiment and parameter, we need to carefully decide which control technique
we use.

4.5 Identified Confounding Parameters

In this section, we present the confounding parameters we extracted. For a better
overview, we divide confounding parameters into two categories: personal and ex-
perimental parameters. Personal parameters are related to the person of the participants,
for example, programming experience or intelligence, and experimental parameters are
related to the experimental setting, for example, tasks or source code. Personal param-
eters always influence the behavior of participants, whereas experimental parameters
only influence the behavior of participants because they take part in an experiment. We
found 16 personal and 23 experimental parameters. To have an understanding of the role
of each parameter, we describe it and how it can influence the result, give an overview of
how it was controlled and measured, and give recommendations how to manage it.

In addition to controlling for a confounding parameter, we often found in our review
that authors discussed how a parameter could have influenced the result, or that authors
just mentioned a parameter, but did not specify whether they controlled it or whether it
had an influence. Additionally, some parameters can be avoided, for example, learning
effects.
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When describing how a parameter was controlled for in literature, we start with the
five techniques we presented, then state when it was discussed, not specified, or avoided.
Then, we mention other techniques authors used that are specific for an according pa-
rameter. We also denote the frequency of how often a technique was applied in round
brackets following the technique, (like this). If only one paper used a technique, we cite
the paper instead.

4.5.1 Personal Parameters

In Table 4.5, we summarize how often each of the 16 personal confounding parameters
on program comprehension was considered.

Parameter ESE TOSEM TSE ICPC ICSE ESEM FSE Sum

Personal background (Section 4.5.1.1)
Color blindness 0 0 0 1 0 0 0 1
Culture 0 0 2 1 0 0 0 3
Gender 0 0 3 4 1 0 0 8
Intelligence 0 0 2 4 1 0 0 7

Personal knowledge (Section 4.5.1.2)
Ability 12 2 12 7 5 4 2 44
Domain knowledge 3 0 5 4 0 0 0 12
Education 8 1 6 15 8 3 0 41
Programming experience 24 2 25 23 22 11 5 112
Reading time 0 0 0 3 0 1 0 4

Personal circumstances (Section 4.5.1.3)
Attitude toward study object 0 0 1 1 0 0 0 2
Familiarity with study object 19 2 17 10 10 12 6 76
Familiarity with tools 5 2 9 8 9 1 3 37
Fatigue 8 0 5 0 2 5 0 20
Motivation 12 0 10 7 3 2 0 34
Occupation 0 0 0 3 0 1 0 4
Treatment preference 0 0 0 3 1 2 0 6

Table 4.5: Number of personal confounding parameters mentioned per journal/conference.

For better overview, we present a summary of how each parameter was controlled in
Table 4.6. We discuss each parameter and how it was controlled detail in this section. To
have a better overview, we divide personal parameters further into the groups personal
background, personal knowledge, and personal circumstances. Within each group, we discuss
the parameters in alphabetic order.

4.5.1.1 Personal Background

Personal background describes parameters that have a fixed value for a participant, that
is, with which participants are born and that hardly change during life time.
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Parameter Ran. Mat. Con. Ind. Ana. Dis. Not sp. Other

Personal background (Section 4.5.1.1)
Color blindness 0 0 0 0 0 1 0 0
Culture 0 0 1 0 0 2 0 0
Gender 1 0 4 0 2 1 0 0
Intelligence 0 1 4 0 0 0 2 0

Personal knowledge (Section 4.5.1.2)
Ability 7 8 4 6 12 2 6 0
Domain knowledge 1 0 2 1 1 4 3 0
Education 0 1 25 2 4 4 3 1
Programming experience 8 8 23 17 7 14 32 2
Reading time 0 0 1 0 2 1 0 0

Personal circumstances (Section 4.5.1.3)
Attitude toward study object 0 0 0 0 2 0 0 0
Familiarity with study object 2 1 51 0 7 3 11 0
Familiarity with tools 1 0 32 0 1 0 3 0
Fatigue 0 7 1 0 2 2 0 7
Motivation 3 1 17 0 3 3 4 3
Occupation 0 0 2 0 2 0 0 0
Treatment preference 0 0 3 0 0 3 0 0
Ran.: Randomization; Mat.: Matching; Con.: Kept constant; Ind.: Used as independent variable; Ana.:
Analyzed afterwards; Dis.: A parameter was discussed; Not sp.: A parameter was not specified; Other:
Other control technique than mentioned

Table 4.6: Control techniques for personal confounding parameters.

Color blindness Persons who are unable to perceive certain colors, for example, red
and green, are referred to as color blind [Goldstein, 2002]. When colors play a role in an
experiment, for example, when participants see source code with syntax highlighting or
when the effectiveness of background colors is analyzed, color-blind participants might
respond different or slower than other participants. Furthermore, they might be unable
to solve a task if they cannot distinguish relevant colors.

Color blindness was considered in only one experiment, in which it was discussed as
threat to validity [Jablonski and Hou, 2010].

To control for color blindness, randomization is not suitable, because only a small
fraction of the population are color blind and it interacts with gender (i.e., females are
less frequently color blind) [Goldstein, 2002]. For example, if we have 20 participants,
maybe one or two are color blind, who might easily be assigned to the same group. Since
it is easy to measure color blindness, either by asking participants or by applying the
Ishihara test4 [Ishihara, 1972], we recommend to measure it, if relevant. Then, we can
choose how we deal with color-blind participants (e.g., excluding them, assigning them
to an experimental group in which colors do not play a role).

4The test consists of colored plates that show numbers. Only persons with normal color vision can see
the numbers.
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Culture Culture refers to the origin of participants. This can affect the outcome, because
different cultures (especially Western compared to Asian cultures) often have different
ways to solve a problem.

In literature, we found three papers that mentioned culture. In two of them, the in-
fluence of different cultures was analyzed afterwards, and in one, culture was kept con-
stant [Lui et al., 2008]. Although none of the other papers mentioned culture, we believe
most of them held it constant, because they recruited students from one university (or
even one class) or one company.

Since culture is easy to measure by asking participants to which culture they belong,
we recommend to assess it and then decide what to do with participants. However, we
have to be careful not to discriminate against participants. For example, when evaluating
the effectiveness of new teaching methods, it might be unethical to exclude participants
because they have a different culture. In this case, we can also let participants complete
the experiment and then exclude the data set from the analysis. However, we have to
ensure that all experimental groups have a comparable size after exclusion.

Gender Gender of participants might influence program comprehension, for example,
because boys were more encouraged than girls to play with computers. Thus, male par-
ticipants may be more familiar with computers.

In literature, gender was kept constant (4), randomized [Vitharana and Ramamurthy,
2003], and analyzed afterwards (2). In one paper, gender was discussed as threat to va-
lidity [Ko and Uttl, 2003].

Regarding controlling for gender, the same arguments apply as for the culture of par-
ticipants: It is easy to measure, but we should avoid discriminating against participants.

Intelligence5 The ability to solve problems, memorize material (e.g., using working
memory capacity), recognize complex relationships, or combinations thereof is referred
to as intelligence [Jäger et al., 1997; Raven, 1936; Wechsler, 1950]. Intelligence can influ-
ence program comprehension, such that the higher problem-solving skills or memory
skills participants have, the better they are able to understand source code.

In our literature survey, intelligence was kept constant (4), such that the memory
capacity was not exceeded. To this end, material was either presented on paper to par-
ticipants (so participants could look up information and did not have to memorize ev-
erything), or the number of items was small enough to avoid memory overload. In one
paper, intelligence was analyzed afterwards (measured with an intelligence test) [Ko and
Uttl, 2003]. In one other paper, a within-subjects design was used, such that the same
group of participants received all experimental treatments [Lui et al., 2008]. In another
paper, intelligence was measured, but not specified how [Vitharana and Ramamurthy,
2003].

There are numerous tests to measure intelligence, but they are time consuming [Jäger
et al., 1997; Raven, 1936; Wechsler, 1950]. Hence, we recommend randomization. How-
ever, when certain facets of intelligence, such as memory capacity, are assumed to have a

5There are voices that say intelligence is rather something learned than something inborn. Thus, we could
also classify it as personal knowledge.
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significant influence on program comprehension, we recommend to measure that facets
and apply a suitable control technique (e.g., using it as independent variable).

4.5.1.2 Personal Knowledge

Personal knowledge describes parameters that are influenced by learning and experi-
ence. These parameters change, but rather slowly over a period of weeks, months, or
years.

Ability Ability as a general term describes skills or competence of participants. The
more and higher ability participants have (e.g., regarding implementing code or using
language constructs), the better they may comprehend source code. Unfortunately, au-
thors only rarely specified what they mean with ability. Based on the descriptions in the
papers, we believe that ability refers to how skilled participants are with the study object,
such as writing code or UML modeling.

Authors used randomization (7), matching (8), kept it constant (4), used it as indepen-
dent variable (6), and analyzed it afterwards (12). Additionally, authors discussed it (2)
or did not specify how they controlled for ability (2). To measure ability, authors often
used grades of courses participants were enrolled in.

Since ability is not clearly specified, we cannot give recommendations beyond rules
of thumb. When it is easy to measure or has a considerable influence, we should measure
it; otherwise, we should randomize it.

Domain knowledge The familiarity of participants with the domain of the study object,
for example, databases, is called domain knowledge. It influences whether participants
use top-down or bottom-up comprehension. Usually, top-down comprehension is faster
than bottom-up comprehension, because developers can compare source code with what
is in their memory and use beacons, plans, or concepts. With bottom-up comprehension,
developers have to analyze each statement, which inherently takes more time.

In our survey, domain knowledge was randomized [Vitharana and Ramamurthy,
2003], kept constant (2), used as independent variable [O’Brien and Buckley, 2001], and
analyzed afterwards [Ko and Uttl, 2003]. Furthermore, it was discussed (4) and not spec-
ified (3). To measure domain knowledge, author’s asked participants or assumed famil-
iarity based on the courses participants were enrolled in.

Since domain knowledge has a strong influence on program comprehension, we
should usually avoid randomization. Instead, we should measure it, for example, by
asking participants how familiar they are with relevant domains and exclude partici-
pants that are too familiar or unfamiliar or apply an according training.

Education The education of participants describes the topics participants learned dur-
ing their studies, but not the status of participants’ studies (e.g., whether participants
are freshmen or graduate students). If students attended mostly programming courses,
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their skills are different from students who mostly attended database or graphical-user-
interface courses, in which programming may not be the primary content.6

In literature, education was controlled with matching [Svahnberg and Wohlin, 2005],
kept constant (25), used as independent variable (2), and analyzed afterwards (4). In one
paper, participants with different education were treated as different samples [Thelin,
2004]. Furthermore, authors discussed its influence (4) or did not specify how they man-
aged it (3). Often, participants of one course were recruited to keep it constant. In some
other cases, authors asked participants the courses they completed.

To control for education, we can ask participants the courses they were enrolled in,
but we cannot be sure what was taught in these courses. Instead, we recommend to
ask what participants learned that might be relevant for the experiment. For example,
if UML is relevant, we can ask whether they completed courses in which they learned
UML. Additionally, we can use randomization if we are not sure what might be relevant
for an experiment.

Familiarity with study object/tools Participants have different levels of experience
with the evaluated concepts or tools, such as Oracle or Eclipse, which is referred to as
familiarity with study object/tools. Familiarity with study object appears to be the same
as domain knowledge. However, looking closer, they slightly differ, such that domain
knowledge describes the domain of a study object (e.g., databases), and familiarity with
study object the object itself (e.g., Oracle as one concrete database system). If participants
are familiar with the study object or tools, then they do not need as much cognitive
resources as unfamiliar participants. Thus, they might perform better. We summarize
familiarity with study object and tools, because they are closely related. Numbers for
both variables are presented together and separated with a slash (<numbers for study
object>/<numbers for tools>).

In our survey, familiarity with study object/tools was controlled with randomization
(2/[Sarma et al., 2008]), matching ([Itkonen et al., 2007]/0), kept constant (51/32), and
analyzed afterwards (7/[Walenstein, 2003]). Furthermore, authors discussed its influence
(3/0) or did not specify how they controlled it (11/3). Often, participants were trained to
assure a comparable level of familiarity. To measure familiarity, participants were asked
how familiar they are or a pretest was conducted.

Since familiarity with study object/tools is easy to measure, we recommend to assess
it, for example, by asking participants or conducting a pretest. We can also reliably keep
it constant by recruiting unfamiliar participants or train participants to have the same
level of familiarity.

Programming experience Programming experience describes the experience partici-
pants had so far with writing and understanding source code. The more source code par-
ticipants have seen and implemented, the better they can adapt to comprehending source
code, and the higher the chance is that they will be more efficient in experiments [Mc-
Connell, 2011; Sackman et al., 1968].

6Of course, the specific contents of courses depend on the country and specific university.
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Most of the papers of our survey took programming experience into account (112).
Authors used randomization (8), matching (8), kept it constant (23), used it as indepen-
dent variable (19), and analyzed it afterwards (7). Additionally, authors discussed the
influence of programming experience (14) or did not specify how they managed it (32).
To measure programming experience, authors often assessed the years participants have
been programming, the status of education, and self estimation.

Programming experience has an important influence in program-comprehension ex-
periments. Hence, we should not use randomization, but measure programming expe-
rience and apply a suitable control technique (e.g., matching, using it as independent
variable). To this end, we developed a programming-experience questionnaire based on
self estimation (cf. Chapter 5).

Reading time Participants may differ in their reading time, that is, how fast they can
read. The faster they are, the more they can read in a given time interval. Consequently,
they may be faster in understanding source code.

In literature, reading time was kept constant [Sharif and Maletic, 2010], analyzed af-
terwards (2), and discussed as threat to validity [Xie et al., 2007]. To measure it, authors
always used an eye tracker.

Reading source code is only a minor part in the comprehension process, because state-
ments are short compared to normal text and because source code is often formatted to
improve readability. Thus, we recommend to use randomization or ignore it, unless au-
thors believe that reading time has a significant influence on the result. To measure read-
ing time without an eye tracker, we can let participants read a text and stop the time and
confirm that participants read the text with comprehension questions.

4.5.1.3 Personal Circumstances

Parameters in this category describe how participants feel at the time of the experiment.
These parameters can change rapidly, that is, within minutes. For these parameters,
matching is not feasible, because they can change during the experiment.

Treatment preference Treatment preference refers to whether participants prefer a cer-
tain treatment, such as a new tool. This can affect performance, such that participants
who do not like a new tool are not willing to work with it as they are supposed to.

In our survey, treatment preference was kept constant (3), analyzed afterwards (2),
and discussed (3). To measure it, authors asked participants which treatment they prefer.
To keep it constant, authors of one paper designed a context-neutral task and compared
the performance with other treatment tasks.

To control for treatment preference, we recommend to measure it (e.g., by self esti-
mation of participants) and analyze its influence afterwards, with which we had good
experience in our experiments. Furthermore, experimenters should take care not to in-
fluence participants to prefer one treatment over the other.
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Fatigue If participants get fatigued, they lose concentration. This occurs especially in
long experiments and could affect performance of participants, such that the error rate
increases toward the end of the experiment.

In literature, fatigue was controlled for with matching (7), kept constant [Ko et al.,
2006], and analyzed afterwards (2). Furthermore, session duration was short enough
to avoid fatigue (7). In two papers, it was discussed. To measure it, authors used self
estimation or the performance of participants (e.g., whether the error rate increases). For
matching, authors assessed fatigue before the experiment. To keep it constant, authors
deleted data indicating poor performance from the analysis.

The best way to control for fatigue is to avoid it by having short enough sessions.
Humans typically can work concentrated for about 90 minutes [Jensen, 1998]. After that,
attention decreases. In our experience, sessions that last longer than 2 hours, including
introduction and debriefing, are too exhausting. If sessions need to be longer, we can
randomize the order of tasks (i.e., use randomization), so that not the same tasks are
completed at the end of the experiment, or split sessions.

Motivation Participants may have different levels of motivation to participate in the
experiment. If participants are not motivated, it may affect their performance nega-
tively [Mook, 1996].

In our survey, motivation was controlled for using randomization [Knodel et al.,
2008], kept constant (17), or analyzed afterwards (3). Furthermore, authors used dif-
ferent task orders [Baniassad et al., 2003], short enough session duration [Sfetsos et al.,
2009], or included the performance in the experiment as part of a participant’s grade to
assure high motivation [Sharif and Maletic, 2009]. In another paper, the tasks built up on
each other, so participants were motivated to perform well for a task [Biffl and Halling,
2003]. Additionally, the influence of motivation was discussed (3) or not specified (4).
To measure motivation, authors asked participants to estimate their motivation. To keep
motivation constant, authors offered rewards for the best-performing participant(s) to
motivate participants to show their best performance.

To control for motivation, we recommend to assure high motivation. To this end,
we can recruit participants on a voluntary basis, not make participation mandatory to
complete a course, because participants who volunteer are typically motivated. To fur-
ther increase motivation, good performance can be rewarded. Additionally, we can ask
participants how motivated they were and analyze its influence afterwards.

4.5.2 Experimental Parameters

Experimental parameters are related to the experiment and its setting. We found 23 pa-
rameters, which we summarize in Table 4.7. In Table 4.8, we give a summary of how each
parameter was controlled. For a better overview, we divide experimental parameters into
four categories: subject related, technical, context related, and study object related.
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Parameter ESE TOSEM TSE ICPC ICSE ESEM FSE Sum

Subject related (Section 4.5.2.1)
Evaluation apprehension 0 0 1 1 0 0 0 2
Hawthorne effect 9 1 3 2 2 5 0 22
Process conformance 15 1 10 4 5 8 1 44
Study-object coverage 2 0 0 1 0 1 0 4
Ties to persistent memory 0 0 0 1 0 0 0 1
Time pressure 7 0 4 1 0 2 0 14
Visual effort 0 0 0 1 0 0 0 1

Technical (Section 4.5.2.2)
Data consistency 0 0 1 0 0 0 0 1
Instrumentation 8 0 8 2 0 1 0 19
Mono-method bias 2 0 1 0 0 0 0 4
Mono-operation bias 2 0 1 1 0 0 0 3
Technical problems 0 0 0 2 0 2 0 2

Context related (Section 4.5.2.3)
Learning effects 15 0 14 16 7 9 4 65
Mortality 0 0 1 0 0 0 1 2
Operationalization of study object 1 1 0 0 0 0 0 2
Ordering 5 0 7 8 2 2 3 27
Rosenthal 10 1 2 3 3 5 0 24
Selection 11 1 6 1 2 2 1 24

Study-object related (Section 4.5.2.4)
Content of study object 5 1 1 9 0 2 1 19
Language 7 2 14 23 13 7 6 72
Layout of study object 4 0 2 7 0 3 1 17
Size of study object 14 1 19 15 9 6 3 67
Tasks 6 0 6 14 5 4 2 37

Table 4.7: Experimental confounding parameters.

4.5.2.1 Subject-Related parameters

Subject-related parameters are caused by participants and only emerge because partic-
ipants take part in an experiment. In this way, they differ from personal parameters,
which are always present.

Evaluation apprehension Evaluation apprehension refers to the fear of being evalu-
ated. This may bias responses of participants toward what they perceive as better. For
example, participants could judge tasks easier than they actually think to hide from the
experimenter that they had difficulties. Another problem might be that participants can-
not show their best performance, because they feel frightened.
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Parameter Ran. Mat. Con. Ind. Ana. Dis. Not sp. Other

Subject related (Section 4.5.2.1)
Evaluation apprehension 0 0 0 0 0 0 0 2
Hawthorne effect 0 0 1 0 0 6 0 15
Process conformance 0 3 4 0 9 6 0 21
Study-object coverage 0 0 3 1 0 0 0 0
Ties to persistent memory 0 0 0 1 0 0 0 0
Time pressure 0 0 6 0 2 4 0 2
Visual effort 0 0 0 1 0 0 0 0

Technical (Section 4.5.2.2)
Data consistency 0 0 0 0 0 0 0 1
Instrumentation 0 0 5 0 1 11 0 2
Mono-method bias 0 0 0 0 0 0 0 3
Mono-operation bias 0 0 0 0 0 1 0 2
Technical problems 0 0 4 0 0 0 0 0

Context related (Section 4.5.2.3)
Learning effects 5 21 5 1 12 7 2 4
Mortality 0 0 0 0 0 2 0 0
Operationalization of study object 0 0 0 0 0 1 0 0
Ordering 5 13 1 0 3 5 0 0
Rosenthal 0 0 0 0 0 6 0 18
Selection 3 4 1 0 2 11 1 2

Study-object related (Section 4.5.2.4)
Content of study object 2 1 7 0 1 3 0 7
Language 1 0 48 0 2 7 6 0
Layout of study object 0 1 3 6 1 2 1 2
Size of study object 0 1 1 1 1 4 2 59
Tasks 2 8 2 1 4 10 2 5
Ran.: Randomization; Mat.: Matching; Con.: Kept constant; Ind.: Used as independent variable; Ana.:
Analyzed afterwards; Dis.: A parameter was discussed; Not sp.: A parameter was not specified; Other:
Other control technique than mentioned

Table 4.8: Control techniques for experimental confounding parameters.

In our survey, evaluation apprehension was avoided by anonymizing the data [Mo-
han and Gold, 2004] and by assuring participants that their performance does not affect
their grade for the course [Do et al., 2010]. However, we believe that considerably more
authors anonymized the data, but did not mention it, because anonymization is often
used to ensure that participants have no disadvantage from participation.

To control for evaluation apprehension, we recommend to assure anonymity of par-
ticipants. Additionally, we can encourage participants to answer honestly by clarifying
that only honest answers are of value for us. Furthermore, with randomization, the effect
of evaluation apprehension should be homogeneous between groups.
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Hawthorne effect The Hawthorne effect is closely related to evaluation apprehension.
It describes that participants behave differently in experiments, because they are being
observed [Roethlisberger, 1939]. Like evaluation apprehension, we may observe different
behavior compared to observing participants in their real environment, thus threatening
validity. The difference to evaluation apprehension is that participants do not change
their behavior because they are afraid of being evaluated, but because they are observed.

In our survey, the influence of the Hawthorne effect was discussed (6). Furthermore,
to avoid it, authors did not reveal their hypotheses to participants (15) or used a context-
neutral task [Ellis et al., 2007]. It was measured once by comparing the performance in a
context-neutral task to performance in treatment tasks.

To control for the Hawthorne effect, the best way is to avoid it by not letting partic-
ipants know that they take part in an experiment. However, this can raise ethical prob-
lems and must be discussed with an ethics committee to ensure fair treatment of all par-
ticipants. In most cases, not telling participants that they take part in an experiment is
impossible, because we need to instruct participants. Thus, we recommend not to reveal
hypotheses to participants, such that they cannot bias their performance in favor of or
against our hypotheses. After the experiment, we recommend to reveal participants the
hypotheses, so that they understand what their data is used for.

Process conformance If participants follow the instructions, they maintain process con-
formance. If participants deviate from their instructions, for example, searching the in-
ternet for solutions or giving subsequent participants information about the experiment,
the results may be biased.

In our survey, process conformance was kept constant (4) and analyzed afterwards
(9). Furthermore, participants were observed to assure process conformance (15), were
encouraged to stick to the instructions (2), or signed a consent not to disclose any infor-
mation (3). In one experiment with several sessions, participants were not allowed to
take any material home [Briand et al., 2005], and three experiments used different tasks
for participants seated next to each other. Additionally, the influence of process confor-
mance was discussed (6) or not specified [Gupta and Jalote, 2007]. To measure process
conformance, authors often asked the participants how well they followed the instruc-
tions. To keep it constant, authors deleted data from participants who deviated from the
instructions.

To control for process conformance, we recommend to tell participants exactly what
they have to do and observe that they are following these instructions. If observation
is not possible (e.g., when participants are allowed to work at home), we should asked
participants how well they followed the protocol and analyze the effect of deviations
afterwards. This may threaten internal validity, but increases external validity.

Study-object coverage Study-object coverage describes how much of the study object
was covered by participants. If a participant solved half as much tasks as another par-
ticipant, the results could mean something different, because, for example, the slower
participant was more thorough.
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In our survey, study-object coverage was kept constant (3) or used as independent
variable [Mouchawrab et al., 2007]. To keep it constant, authors excluded participants
who did not complete all tasks.

Since we can easily determine study-object coverage, we recommend to assess it and
apply suitable control techniques (e.g., keeping it constant by excluding participants).

Ties to persistent memory Experimental material can have ties or links to persistent (or
long-term) memory of participants. If source code has no ties to persistent memory and
working memory becomes flooded (e.g., because of long variable names or long method
calls), comprehension may be impaired.

Ties to persistent memory was relevant in only one study [Binkley et al., 2008]. It was
measured in terms of the usage of identifiers: Identifiers often used in packages were
assumed to have ties to persistent memory, whereas program or domain identifiers have
no ties to persistent memory.

The influence of ties to persistent memory is not always important. Only in com-
prehension experiments, in which the memory capacity plays a crucial role, we should
consider it. To measure it, we can categorize material into having ties or not having ties
to persistent memory, for example, based on participants’ domain knowledge.

Time pressure If participants feel rushed to complete the experiment in a given time
frame, they experience time pressure. This can bias the performance, such that partici-
pants make more errors when time is running out.

Time pressure was kept constant (6) and analyzed afterwards (2). Furthermore, au-
thors used a realistic setting [Arisholm et al., 2007] and encouraged participants to work
as fast as possible [Hannay et al., 2010]. In four papers, it was discussed as confound-
ing parameter. To measure it, authors asked participants whether they experienced time
pressure. To keep it constant, authors did not set a time limit for a task.

To control for time pressure, we recommend to keep it constant. Since it is difficult to
create the same time pressure for all participants, we should set no time limit for an ex-
periment. If a time limit is unavoidable, we should analyze the influence of time pressure
afterwards (e.g., by asking participants).

Visual effort Visual effort describes the number and length of eye movements to find
the correct answer. The more effort a task has, the longer it takes to find the correct
answer.

Visual effort was relevant in only one experiment [Sharif and Maletic, 2010]. It was
controlled by analyzing the eye movements of participants recorded with an eye tracker.

Visual effort cannot be measured upfront. The best way to control for visual effort is
to use an eye tracker. If it is not important, we can ignore it.

4.5.2.2 Technical Parameters

Technical parameters are related to the experimental set up, such as the tools that are
used.
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Instrumentation The instruments used in the experiment, such as questionnaires,
tasks, or eye trackers are referred to as instrumentation. This can influence the result,
especially when instruments are not carefully designed or unusual for participants.

In literature, instrumentation was kept constant (5) and analyzed afterwards [Otero
and Dolado, 2002]. Furthermore, authors conducted pilot studies [Güleşir et al., 2009]
and evaluated the instruments based on design principles [Dzidek et al., 2008]. Addi-
tionally, the influence of instrumentation was discussed (11). To keep it constant, authors
often used comparable systems and tasks (without further specifying how they ensured
comparability).

To control for instrumentation effects, we need to carefully choose and design the
instruments we use. For example, when we use a questionnaire, we should use one
that is validated to measure what it intends to measure. If there is no questionnaire, we
should carefully design our own by consulting literature and/or experts on that topic.
Furthermore, we recommend to conduct pilot tests to ensure that the instruments are
appropriate and applicable.

Data consistency Data consistency refers to how consistent the data of the experiment
are. For example, when paper-based answers of participants are digitalized, answers
can be forgotten or transferred wrong. Inconsistent data can bias the results, because we
analyze something different than we measured.

In our survey, only one paper controlled for data consistency [Biffl and Halling, 2003].
To this end, data digitalized from paper to computer were checked by two independent
reviewers.

To avoid inconsistent data, we recommend to check data, especially when transcrib-
ing paper-based data to a digital form.

Mono-method bias If we use only one measure to assess a variable, we have a mono-
method bias (e.g., only response time of programming tasks to measure program com-
prehension). If that measure is badly chosen, the results are biased. For example, when
participants wanted to finish a task independent of correctness, response time is not a
suitable indicator.

In three papers, we found that authors explicitly mentioned and controlled for mono-
method bias by using different measures for comprehension. However, we believe that
more authors controlled for mono-method bias, but did not mention it.

To control for mono-method bias, we recommend to always use at least two measures
for comprehension. For example, we can use correctness and response time of tasks
and/or an efficiency measure as combination of both.

Mono-operation bias Mono-operation bias is related to mono-method bias; it refers to
an underrepresentation of the evaluated construct, for example, when we use only one
task to measure comprehension. If that task is not representative, then our results may
be biased. For example, a task can be designed such that it confirms a hypothesis.
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In our survey, mono-operation bias was controlled for by using different tasks
[Torchiano, 2004] or a representative task (2). Furthermore, it was discussed [Porras
and Guéhéneuc, 2010].

To avoid mono-operation bias, we should include several tasks that are representative
for the evaluated construct. To ensure representativeness, we can consult literature or
experts in the domain.

Technical problems During experiments, technical problems can occur, for example,
a computer crash or missing questionnaires for participants. This may bias the results,
such that participants have to repeat a task or that we miss answers of participants.

In literature, four papers kept the influence of technical problems constant, such that
they excluded participants from the analysis when a problem occurred.

The best way to manage technical problems is to avoid them where possible. Hence,
we recommend to always have some extra questionnaires, papers, or pens. If we cannot
avoid them, such as computer crashes, we should analyze the effect on the result and, if
necessary, exclude data from the analysis.

4.5.2.3 Context-Related Parameters

Context-related parameters are typical problems that occur in nearly all experiments,
such as participants that drop out or learn from experimental tasks.

Learning effects Typically, participants learn during the session of an experiment,
which is called learning effects. This is especially problematic in within-subject designs,
because participants could learn from the first application of a treatment.

In our survey, learning effects were controlled for by randomization (5), match-
ing (22), keeping it constant (5), using it as independent variable [Mouchawrab et al.,
2007], and analyzing it afterwards (12). Furthermore, it was discussed (7), or not speci-
fied (2). To measure it, authors often compared the performance of subsequent tasks. To
keep it constant, authors conducted a training before the experiment, such that partici-
pants learned mostly during the training, not during the experiment.

To control for learning effects, we can conduct a training before the experiment, so that
the effect is minimized. Furthermore, we recommend to use different tasks in different
sessions, so that participants cannot learn too much from a session. Additionally, we can
use matching by applying a between-subjects design to avoid learning effects or measure
them.

Mortality Mortality occurs when participants drop out from an experiment. This is es-
pecially a problem in multi-session experiments, where participants have to return for
sessions. Mortality may influence the result, because participants may not drop out ran-
domly, but, for example, only low-skilled participants because of frustration caused by
perceived difficulty of the experiment.

Only two papers discussed the effect of mortality on their result.
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To control for mortality, we should avoid it where possible, for example, by splitting
the experiment in as few sessions as possible. If we need multiple sessions, for example,
to avoid fatigue due to too long sessions, we should encourage participants to return, for
example, by rewarding participants for completing all sessions.

Operationalization of study object If the study object is not suitably operationalized
(i.e., its measurement is unsuitable), our results may be biased. For example, to measure
program comprehension, we can use the correctness of solutions to tasks, but the number
of opened files is not a good indicator. If we use an inappropriate measure, then not the
study object, but something else is measured.

In our survey, we found that the operationalization of study object was discussed
(2). However, we found that authors typically carefully operationalized the study object
without explicitly discussing whether their operationalization is suitable.

To avoid bias due to inappropriate operationalization, we recommend to consult lit-
erature and/or experts to find the optimal operationalization of the study object.

Ordering The order in which tasks or experimental treatments are applied may influ-
ence the result, which is referred to as ordering effect. If the solution of one task automat-
ically leads to the solution of subsequent tasks, but not the other way around, a different
order of these tasks leads to different results.

In our survey, ordering was controlled for by randomization (5), matching (13), kept
constant [Vokáč et al., 2004], and analyzed afterwards (3). In five other papers, the effect
of ordering was discussed. In none of the papers, authors described how they measured
the influence of the ordering effect.

To control for ordering effects, we recommend to randomize the order or use match-
ing by applying an appropriate experimental design (e.g., between-subjects). If we can-
not randomize the order (e.g., when tasks built up on each other), we should analyze
whether and how the order influenced our result.

Rosenthal effect The Rosenthal effect refers to that the experimenter influences con-
sciously or subconsciously the behavior of participants [Rosenthal and Jacobson, 1966].
This can influence the result, especially when we assess participants’ opinion about a
new technique or tool, such that participants rate it more positive.

In literature, none of the standard control techniques was used. Instead, authors dis-
cussed the effect (6), were careful not to bias participants (4), were objective (i.e., they
did not develop the technique under evaluation) (4), or used standardized instructions
(6). Furthermore, the objectivity of the material was evaluated by several reviewers (3).
The Rosenthal effect is difficult to measure. Instead, authors used different techniques to
avoid it.

To avoid the Rosenthal effect, we recommend to use a standardized, neutral, well-
defined set of instructions for the experimenter and ensure that these instructions are
followed.
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Selection If the selection of participants for an experiment is not representative, bias
may occur, such that the conclusions are not applicable to the intended population. For
example, if we select students as participants, we cannot apply results to programming
experts. Selection influences some of the personal confounding parameters (e.g., pro-
gramming experience, motivation). Thus, if we avoid selection bias, we reduce the bias
due to some personal parameters. However, avoiding selection bias is not sufficient to
control for the according personal parameters.

In our survey, selection was controlled for by using randomization (3), match-
ing [Dunsmore et al., 2002], kept constant [Porras and Guéhéneuc, 2010], and ana-
lyzed afterwards (2). Furthermore, authors used block designs (3), special analysis
techniques (2), discussed it (11), or did not specify how they controlled it [Thelin et al.,
2004]. Selection bias is difficult to measure. Thus, authors used techniques to avoid it.

To control for selection bias, we have to ensure to select a representative sample. The
best way to do so is to randomly recruit participants from the intended population. How-
ever, this is not feasible in most cases (e.g., we cannot recruit all students who start to
learn Java from all over the world, because we lack the resources). Typically, we recruit
participants from one university or company. Hence, our results are only applicable for
similar universities or companies. Thus, we must be aware of that limitation and should
communicate that as threat to validity, even though it limits external validity of an exper-
iment.

4.5.2.4 Study-Object-Related Parameters

Study-object-related parameters describe properties of the study object, such as its size.

Content of study object Experimenters should ensure that the content of the study
object, that is, what source code or models are about, is comparable between different
treatments. Otherwise, it may bias the results, such that one content is more difficult to
comprehend. For example, when we compare the comprehensibility of object-oriented
with imperative programming based on two programs, we need to make sure that both
programs differ only in the paradigm, not the language or the functionality they are
implementing.

In literature, the content of study object was controlled for by using randomiza-
tion (2), kept constant (7), and analyzed afterwards [Vokáč et al., 2004]. Furthermore,
authors used a realistic setting (6), compared realistic to non-realistic tasks [Binkley et al.,
2009], and let two reviewers evaluate that the content is comparable [De Lucia et al.,
2010]. In two papers, authors discussed how the content of study object may have influ-
enced the result. The effect of the content of study object is difficult to measure. Instead,
authors relied on their own or expert estimation to ensure that there is no bias caused by
inappropriate content.

To control for content of study object, we recommend to use the same content or
standardized material whenever possible. In other cases, we should consult at least two
reviewers who evaluate whether the content of the study object is comparable.
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Language Language refers to the underlying programming language of the experi-
ment. We could also summarize language under familiarity with study object or content
of study object, but we decided to keep it separate, because we work with program com-
prehension, for which the underlying programming language has an important influ-
ence. If participants work with an unfamiliar programming language, their performance
is different than if they work with a familiar language, because they need additional cog-
nitive resources for understanding the unfamiliar language.

In our survey, we found that authors used randomization [Vitharana and Rama-
murthy, 2003], kept the language constant (48), and analyzed its influence afterwards
(2). Furthermore, authors discussed the influence of language (7) or did not specify how
they controlled for it (6). To measure language, authors most often used self estimation of
participants. To keep it constant, authors recruited participants who were familiar with a
language.

To control for language, we recommend to keep its influence constant. This reduces
external validity. However, if we use a common language, such as Java, results still count
for a large number of cases. To measure it, we can ask participants to estimate their
experience or conduct a pretest.

Layout of study object The study object can be presented using different layouts. For
example, source code can be formatted according to different guidelines or not formatted
consistently, or different UML models can have different layouts. This may influence the
comprehension of participants, because they have to get used to the layouts.

In our survey, the layout of the study object was kept constant (3), used as indepen-
dent variable (6), or analyzed afterwards [Ng et al., 2006]. Furthermore, authors used a
real-world setting [Matthijssen et al., 2010] or a specific experimental design [Sajaniemi
and Prieto, 2005]. In two papers, authors discussed the influence of the layout of study
object, and in one paper, authors did not specify how they controlled it [Qattous et al.,
2010]. To ensure comparable layouts, authors used their common sense to avoid influ-
ences due to differences in the layout.

To control for layout of study object, we recommend to keep the layout constant across
different treatments. Furthermore, we should use a realistic layout, such as standard
formatting styles for source code. This way, we do not threaten external validity.

Size of study object Study objects can differ in their size, for example, the number of
lines of source code or the number of elements in a UML model. The larger an object is,
the more time participants need to work with it. If objects of different treatments differ in
their size, the results of the experiment are also influenced by different sizes, not different
treatments.

In literature, we found that authors used matching [Kuzniarz et al., 2004], kept it con-
stant [Quante, 2008], used it as independent variable [Lemon et al., 2007], and analyzed it
afterwards [Vitharana et al., 2003]. Furthermore, authors discussed its influence (4), men-
tioned the size (59), or did not specify how they managed it (2). To measure the size of the
study object, authors used lines of code, number of files/classes, or number of elements
in a UML model.
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To control for size of study object, we recommend to keep it constant in different treat-
ments. If that is not possible, we should make sure that the different size of study objects
is as similar as possible, such that it does not influence the outcome of the experiment.

Task Task describes how tasks can differ, for example, in difficulty or complexity. If the
difficulty of tasks for different treatments is not the same, then the difficulty would bias
the results.

In our survey, we found that authors used randomization (2), matching (8), kept it
constant (2), used it as independent variable [Dias-Neto and Travassos, 2009], or ana-
lyzed it afterwards (4). Furthermore, authors used realistic tasks (5), discussed its in-
fluence (10), or did not specify how they managed it (2). The influence of task cannot
be measured directly. Instead, authors used their own estimation to ensure comparable
tasks.

To avoid influence due to tasks, we recommend to carefully design tasks with the
help of literature and/or experts. If possible, we should use standardized tasks.

4.5.3 Concluding Remarks about Confounding Parameters in Literature

To summarize, there are numerous confounding parameters for program comprehension.
There is no general control technique to control all parameters, but depending on the cir-
cumstances of the experiment, the most suitable control technique(s) needs to be chosen.
In this section, we gave recommendations for typical program-comprehension experi-
ments as we encountered them in our literature survey.

The categorization we used here serves as overview and should not be seen as abso-
lute. For example, intelligence can be defined as something that is learned rather than
inborn. Thus, we could also categorize intelligence as personal knowledge.

Furthermore, it might seem unsettling that some parameters, such as mono-operation
bias, are considered in only few studies. However, we believe that authors controlled
for parameters more often than we found in our survey, but did neither explicitly nor
implicitly mentioned it. Thus, the actual number of how often confounding parameters
are controlled should be higher than we found.

Additionally, some parameters appear very similar, such as domain knowledge and
familiarity with study object. However, instead of describing similar parameters as one,
we kept them separate to have a broad overview and enable experimenters to look at
variables from different points of views. This way, we hope that experimenters can better
decide whether and how a parameter influences the outcome of an experiment.

4.6 Recommendation

In this section, we give recommendations on how to manage confounding parameters.
In short, they are the following:

• Decide whether a confounding parameter is relevant for an experiment

• Select an appropriate control technique
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• Describe all confounding parameters explicitly in the design part of a report

• Report whether and how confounding parameters are measured and controlled for

First, we have to decide whether a parameter has an influence in an experiment. Un-
fortunately, we cannot give general recommendations on which parameter is relevant,
because that depends on the circumstances of the experiment. Thus, we recommend to
check the list of parameters we identified and provide in Appendix 10 when designing
an experiment. By systematically considering each parameter, researchers can evaluate
whether it is relevant for an experiment or not. Since this step significantly influences the
validity of an experiment, we need to put great care in the decision whether a parameter
is relevant or not. Thus, we recommend to discuss it in a group of at least two experi-
menters who are familiar with the study object, its domain, and experiments in general.
This way, we are assured to have several relevant opinions about whether a parameter is
relevant. If we cannot reach an agreement, we recommend to treat a parameter as con-
founding to minimize possible bias on our results. If we decide that a parameter has no
influence, we can ignore it.

Second, the same great care should be put into the selection of an appropriate control
technique. If we decide that a confounding parameter is relevant, but choose an inap-
propriate control technique, our results would be biased. To support the decision for a
suitable control technique, we gave an overview of how other researchers controlled a
parameter and gave general recommendations for each parameter.

Third, experimenters should describe all confounding parameters in the design part
of a report and should explicitly define it as a confounding parameter. For example, Jedl-
itschka and others suggest to explain hypotheses and variables in one section as part of
the experiment planning [Jedlitschka et al., 2008]. We recommend to list confounding pa-
rameters also in this section. This way, authors enable other researchers to easily perceive
which confounding parameters authors considered as relevant for an experiment.

Finally, we should report whether and how we controlled for a confounding parame-
ter. To this end, we recommend to use a pattern similar to the one described in Table 4.9.
We illustrate this pattern with the parameters programming experience, the Rosenthal
effect, and ties to persistent memory. We mention each parameter, provide an abbrevi-
ation to reduce the space we need to refer to it, describe the control technique(s) and
the explain why we applied it, and describe how we measured it or ensured that it is
sufficiently controlled and why we measure/ensure it that way. With this pattern, we en-
able other researchers to easily perceive which parameter we considered as relevant, how
we controlled and measured it and why. Thus, researchers can more easily evaluate the
soundness of an experimental design. Furthermore, we can support replication, because
relevant information for confounding parameters is presented at one defined location.

We are aware that most reports on experiments have space restrictions. To avoid
incomplete descriptions of confounding parameters, we recommend to give only a short
description of the most important parameters in the report, and provide the complete
list of parameters, according control techniques, and measurements in accompanying
material (e.g., on a website or a technical report) using the same pattern. This way, reports
do not become bloated, but all relevant information is available.
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Parameter Control technique Measured/Ensured
How? Why? How? Why?

Programming ex-
perience (PE)

Matching Major confound Education
level

undergraduates
have less experi-
ence than graduates

Rosenthal effect
(RE)

Avoided Reliable Standardized
instructions

Most reliable

Ties to persistent
memory (Ties)

Ignored Not relevant — —

Table 4.9: Pattern to describe confounding parameters.

4.7 Threats to Validity

Internal validity is threatened by the selection and extraction process of articles and pa-
rameters and by our list of keywords. External validity is threatened by the selection of
journals, conferences, and issues.

4.7.1 Internal Validity

The selection of articles and extraction of parameters may be biased. In our survey, we
had one reviewer selecting the papers, the other reviewer extracting the confounding
parameters. To minimize bias, we checked the work of the other reviewer on random
samples in alignment with suggestions of [Kitchenham and Charters, 2007]. That is, the
reviewer who selected the papers checked the extraction process, and the reviewer who
extracted the parameters checked the selection process. Thus, we sufficiently controlled
this threat.

Furthermore, the list of keywords ((programming) experience, expert, expertise, pro-
fessional, subject, participant) may lead to incorrectly excluding a paper. However, these
keywords are typical for experiments. Additionally, we used these keywords in con-
junction with skimming the paper to minimize the threat of falsely discarding a paper.
Furthermore, we excluded several papers of our initial set, so we do not have irrelevant
papers in our final set. Thus, our final set of papers is representative, so we minimized
the threat caused by the selection of keywords.

4.7.2 External Validity

As for every literature survey, the selection of journals, conferences, and issues as well
as the data extraction may be biased. First, we selected three journals and four confer-
ences that are the leading publication platform in their field. However, seven sources
may be not enough for a literature survey. To reduce this threat, we selected a broad
spectrum, so that we also included more general sources in the area of software engi-
neering, not only sources for empirical research. Additionally, we could have considered
a larger time frame, but 10 years is enough to get at least a starting point for an exhaus-
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tive overview of confounding parameters. In future work, we can consider additional
journals, conferences, and years to extend our list.

Additionally, it is unlikely that we extracted all relevant confounding parameters for
program comprehension. Although we had a broad set of papers, there might be parame-
ters missing. For example, the size of the monitor on which the study object is presented
might influence the result, or the operating system, because participants are used to a
different one than what is used in the experiment. Thus, our list can be extended. To
minimize the number of missed parameters, we set the selection and extraction criteria
for papers and confounding parameters as broad as possible. Thus, our list provides a
good foundation for creating sound experimental designs.

4.8 Related Work

Based on work in psychology, Wohlin and others provide a checklist of confounding pa-
rameters for software-engineering experiments [Wohlin et al., 2000]. This is a good start-
ing point for experiments. However, the application of this list was not evaluated based
on a literature survey. Furthermore, this checklist applies for experiments in software
engineering in general, not specific to comprehension experiments.

There are a lot of literature surveys about experiments in software engineering. For
example, Sjøberg and others conducted a survey about the amount of empirical research
in software engineering [Sjøberg et al., 2005]. Dybå and others analyzed the statistical
power in software-engineering experiments [Dybå et al., 2006]; Kampenes and others
analyzed the conduct of quasi experiments [Kampenes et al., 2009]; Budgen and others
analyzed how UML and different facets of it have been studied empirically [Budgen et al.,
2011]. In addition to these meta studies, Kitchenham and others conducted tertiary stud-
ies, for example, about systematic reviews in software engineering [Kitchenham et al.,
2009]. Our work is similar, in that we draw conclusion about the status of empirical
research in software engineering. However, we focus on the facet of confounding param-
eters and give recommendations how to manage them.

4.9 Summary

Program comprehension is an internal cognitive process and should be evaluated based
on controlled experiments with human participants. One of the major obstacles for con-
ducting experiments is identifying and controlling for confounding parameters. To re-
duce this obstacle, we set as goal for this chapter to provide a list of confounding param-
eters. This way, we give researchers a tool to design reliable and valid experiments.

To fulfill our goal, we conducted a literature survey of seven major journals and con-
ferences of the last ten years. We identified 39 personal and experimental parameters.
We described how they were controlled for in literature and gave recommendations how
to manage them in experiments. Researchers can consult our list when identifying con-
founding parameters for program comprehension. Hence, we reduced the effort for plan-
ning experiments.
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Furthermore, we gave an overview of the state of the art, indicating that confounding
parameters are managed in an unsystematic way. To improve this situation, we recom-
mend to systematically decide whether a parameter is relevant and what control tech-
nique(s) to apply. Additionally, we recommend to explicitly describe a confounding pa-
rameter and its control technique in a report. This way, researchers can evaluate the
soundness of an experimental design and know where to find information about con-
founding parameters.
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Chapter 5

Measuring Programming Experience

This chapter shares content with the ICPC’12 paper “Measuring Program-
ming Experience” [Feigenspan et al., 2012c].

In the previous chapter, we presented a list of confounding parameters based on a lit-
erature survey. In this chapter, we describe programming experience, one of the most im-
portant and most often considered confounding parameter for program-comprehension
experiments: Novice programmers need considerable more time to implement and main-
tain programs than expert programmers [McConnell, 2011; Sackman et al., 1968]. Cur-
rently, there is no valid way to measure programming experience. Thus, we defined the
following goal for this chapter:

• Questionnaire to reliably and conveniently measure programming experience.

We aim at a questionnaire, because, in psychology, they have proven as a useful, easy-
to-apply, and often used instrument to measure numerous facets of the human mind, for
example, personality traits [Myers and McCaulley, 1985]. Thus, if we can give researchers
a convenient instrument to measure programming experience, we can reduce the effort
for designing program-comprehension experiments.

We developed the questionnaire based on the literature survey presented in the pre-
vious chapter, so that we consider the opinion of different researchers and increase ac-
ceptance of the questionnaire. We present a summary of the literature survey and results
in Section 5.1. In Section 5.2, we present the questionnaire to measure programming ex-
perience, so that the reader can get an impression of it. To evaluate our questionnaire,
we conducted a controlled experiment, in which we let participants complete the ques-
tionnaire and compare the answers with the performance in program-comprehension
tasks. We present the experiment in Section 5.3 and the results in Section 5.4. Further-
more, we conduct an exploratory analysis to identify the most relevant questions of our
questionnaire and to find a model that describes programming experience in Section 5.5.
To enable other researchers to measure programming experience and develop their own
questionnaire, we give recommendations in Section 5.6.
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Years

Education

Self Estimation

Quesitonnaire

Size

Pretest

Supervisor

Not controlled

Not specified

0 5040302010

ESE

453525155

TOSEM
TSE
ICPC
ICSE
FSE
ESEM

Figure 5.1: Operationalization of programming experience.

5.1 Literature Survey

To evaluate how other researchers measure programming experience, we consulted the
paper of our literature survey we presented in the previous chapter. The only difference
is that we focused on programming experience and its measurement. Hence, we do not
explain the selection and extraction process here, but present only the results.

We found several ways to measure programming experience, which we divide into
7 categories and summarize in Figure 5.1. Furthermore, we found that authors did not
specify how the measured programming experience or did not control for it. The cate-
gories are not disjoint: When authors combined indicators from different categories, the
according paper counts for each category.

1. Years: In many papers (47/29%), the years participants were programming at all or
programming in a company or certain language was used to measure programming
experience. For example, Sillito and others asked the number of years participants
were programming professionally [Sillito et al., 2008].

2. Education: The education of participants was used to indicate their experience in 19
(12%) of the reviewed papers. Education includes information such as the level of
education (e.g., undergraduate or graduate student) or the grades of courses. For
example, Ricca and others recruited undergraduate students as low-experience and
graduate students as high-experience participants [Ricca et al., 2007].
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3. Self estimation: In 12 (7%) papers, participants were asked to estimate their expe-
rience themselves (e.g., with Java or object-oriented programming). For example,
Bunse let his participants estimate their experience on a five-point scale [Bunse,
2006].

4. Unspecified questionnaire: Some authors (9/6%) applied a questionnaire to assess
programming experience. For example, Erdogmus and others let participants fill
out a questionnaire before the experiment [Erdogmus et al., 2005]. However, none
of the authors specified what the questionnaire looked like.

5. Size: The size of programs participants have written was used as indicator in 6
(4%) papers. For example, Müller [2004] asked how many lines of code the largest
program has that participants had implemented.

6. Unspecified pretest: In 3 (2%) experiments, a pretest was conducted to assess par-
ticipants’ programming experience. For example, Biffl and Grossmann [Biffl and
Grossmann, 2001] used a pretest to create three groups of skill levels (excellent,
medium, little). However, none of the authors specified what the pretest looked
like.

7. Supervisor: In two experiments (1%), in which professional programmers were re-
cruited as participants, the supervising managers estimated the experience of par-
ticipants [Arisholm et al., 2007; Hannay et al., 2010].

8. Not specified/not controlled: Often, the authors state that they measured program-
ming experience, but did not specify how (39/24%). Even more often (45/28%),
authors did not mention programming experience at all, which may threaten the
validity of the corresponding experiments.

The measurement of programming experience is diverse, which could threaten the
validity of experiments, because researchers use their own definition of programming
experience without validating it. Thus, we cannot be sure whether researchers really
captured programming experience or something else.

Additionally, when authors do not specify how they measured programming expe-
rience, it is difficult to compare experiments. For example, if in one study graduate stu-
dents were categorized as expert programmers, and in another study as novice program-
mers, then expert programmer means different things. Now, if we compare experts of
both studies, we actually do not have comparable programming experience, although
the studies suggest that. Thus, when we compare results of both studies without know-
ing that expert describes different levels of programming experience, we might draw
wrong conclusions. This is especially problematic in meta analyses, in which conclusions
are drawn based on a number of experiments.

Another interesting observation is that, in none of the papers, we found a definition
of programming experience, but authors only described how they measured it. There
seems to be an implicit consensus of what programming experience is. To make this
understanding explicit, we asked four programming experts to define programming ex-
perience. In summary, most experts had difficulties finding a clear, explicit definition.
During discussions, the following definition emerged:
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“Programming experience describes the amount of acquired knowledge re-
garding the development of programs, so that the ability to analyze and create
programs is improved.”

In future work, we plan to evaluate whether this definition holds when consulting a
representative set of programming experts. For now, since our goal is to measure pro-
gramming experience, not define it, we adopt this definition for our work.

5.2 Programming-Experience Questionnaire

Most measurements of programming experience that we found in literature can be per-
formed as part of a questionnaire. Only pretest and supervisor estimation require addi-
tional effort, but are also rarely used in our analyzed papers. Hence, we excluded both
categories from our analysis. Furthermore, we excluded the category unspecified question-
naire, because the contents of questionnaires were not specified in our analyzed papers.

We designed a single questionnaire, which includes questions of the remaining cat-
egories years, education, self estimation, and size. For each category, we selected multiple
questions that we found in literature. Additionally, we added questions that we found
in previous experiments and during talking to programming experts to be related to pro-
gramming experience, but were not mentioned in literature. This way, we aim at having
a more exhaustive set of indicators for programming experience and, consequently, a
better measurement of programming experience. During our analysis, we can exclude
questions that prove irrelevant. Some questions are specific to students; when working
with different participants (e.g., professional programmers), they need to be adapted.

In Table 5.1, we summarize our questionnaire. The version of the questionnaire we
used in our experiment is available at the project’s website. We also show the scale of the
answers, that is, how participants entered their answers. In column “Abbreviation”, we
show the abbreviation of each question (the first letter encodes the category), which we
use in the remainder of this chapter.

5.2.1 Years

Questions of this category mostly referred to how many years participants were program-
ming in general and professionally. Programming in general describes the time since
participants started programming, which includes hello-world-like programs (y.Prog).
Professional programming describes when participants earned money for programming,
which typically requires a certain experience level (y.ProgProf ). In our questionnaire,
we asked both questions. We believe that both are an indicator for programming ex-
perience, because the longer participants are programming, the more source code they
implemented and, thus, the higher their programming experience should be.

5.2.2 Education

This category contains questions that assess educational facets. We asked participants to
state the number of courses they took in which they implemented source code (e.Courses)
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Category Question Scale Abbreviation

Self esti- Programming experience 1 to 10 s.PE
mation Programming experience compared

to experts
1 to 5 s.Experts

Programming experience compared
to class mates

1 to 5 s.ClassMates

Experience with Java/Prolog/C/
Haskell

1 to 5 s.Java/s.Prolog/
s.C/s.Haskell

Number of further languages with at
least medium experience

Integer s.NumLanguages

Experience with functional/imper-
ative/logical/object-oriented pro-
gramming

1 to 5 s.Functional/
s.Logical/
s.Imperative/
s.ObjectOriented

Years Years of programming Integer y.Prog
Years of programming professionally Integer y.ProgProf

Edu- Year of enrollment Integer e.Years
cation Number of programming courses Integer e.Courses

Size Size of professional projects <900, 900–
40k, >40k

z.Size

Other Age Integer o.Age
Integer: Answer is an integer; 1 to 10/5: scale from 1 to 10/5, 1 meaning very inexperienced, 10/5
meaning very experienced. The abbreviation of each question encodes also the category to which it
belongs.

Table 5.1: Questions to assess programming-experience.

and the year in which they enrolled (e.Years), recoded into number of years participants
were enrolled. The number of courses roughly indicates how much source code partici-
pants have implemented. With the years participants are studying, we get an indicator
of the education level: The longer participants have been studying, the more experience
they should gained through their studies.

5.2.3 Self Estimation

In this category, we asked participants to estimate their own experience level. With the
first question, we asked participants to estimate their programming experience on a scale
from 1 to 10 (s.PE). We did not clarify what we mean by programming experience, but
let participants use their intuitive definition of programming experience to not use a def-
inition that felt unnatural. We used a 10-point scale to have a fine-grained estimation. In
the remaining questions, we used a five-point scale, because a coarse-grained estimation
is better for participants to estimate their experience in these more specific questions.
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Next, we asked participants to relate their programming experience to experienced
programmers (s.Experts) and their class mates (s.ClassMates) to let participants think more
thoroughly about their level of experience.

Additionally, we asked participants how familiar they are with certain programming
languages. We chose Java (s.Java), C (s.C), Haskell (s.Haskell), and Prolog (s.Prolog) as
common languages and because they are taught at the universities our participants were
enrolled at. The more programming languages participants are familiar with, the more
they have learned about programming in general and their experience should be larger.
Furthermore, experience with the underlying programming language of the experiment
can be assessed. Beyond that, we asked participants to state the number of programming
languages in which they are experienced at least to a medium level (s.NumLanguages).
This way, we can assess familiarity with many languages without listing each of them.
The same counts for familiarity with different programming paradigms (s.Functional,
s.Logical, s.Imperative, s.ObjectOriented).

5.2.4 Size

We asked participants with professional experience about the size of their projects (z.Size).
We used the categorization into small (< 900), medium (900–40 000), and large (> 40 000)
based on the lines of code according to von Mayrhauser and Vans [1995]. The larger
the size of projects, the more experienced participants should be, because they saw more
code and need to have a certain skill level.

In addition, we also included the age of participants (o.Age) in the questionnaire, be-
cause it might be possible that the older participants are, the more code they have seen,
and the more experienced they should be. This way, we aim at having a more exhaustive
understanding of programming experience.

5.3 Empirical Validation

Constructing and validating a questionnaire is a long and tedious endeavor that requires
several (replicated) experiments [Peterson, 2000]. In this chapter, we start this process.

There are different ways to validate a questionnaire. We could recruit programming
experts and novices as participants and compare their answers in the questionnaire. Since
we know there is a difference in the experience between both groups, we should also
see a difference in the questionnaire. Another way is to compare the answers in the
questionnaire with performance in tasks that are related to programming experience. The
benefit is that we do not need different groups of participants—one group is sufficient.
We used the latter way with a group of students, because we found in our survey that
they are often recruited as participants in software-engineering experiments. Hence, they
represent an important sample.

For better overview, we present the most important information of the experiment in
Table 5.2.

Since we recruit students, we expect only little variation for some questions (e.g.,
o.Age). We asked these questions anyway to have a more exhaustive data set. Of course,
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Context Description Section

Objective Evaluate constructed programming-experience question-
naire

5.3.1

Material 9 small programs, such as a sorting algorithm; 1 variant of
MobileMedia; Questionnaire

5.3.2

Participants 128 undergraduate students from the universities of Pas-
sau, Marburg, and Magdeburg

5.3.3

Tasks Determining the output of a method 5.3.4
Execution One computer lab per university; 17 to 22" TFT; PROPHET 5.3.6
Analysis Correctness of answers; correlations of correctness and

answers in questionnaire; stepwise regression to extract
relevant questions; exploratory factor analysis to explore
model of programming experience

5.4

Result Self estimation suitable to measure programming experi-
ence; five-factor model of programming experience

5.6

Table 5.2: Experiment in a nutshell.

further experiments with different groups of participants (e.g., professional program-
mers) are necessary, which we plan to do in future work. To this end, we can reuse our
experimental design.

5.3.1 Objective

With our experiment, we aim at evaluating how the questions relate to programming
experience. To this end, we need an indicator for programming experience to which
we can compare the answers of our programming-experience questionnaire. Hence, we
designed programming tasks that participants should solve in a given time. For each
task, we measure whether participants solve a task correctly and how long they need to
complete a task. The first underlying assumption is that the more experienced partici-
pants are, the more tasks they solve correctly. Since experienced participants have seen
more source code compared to inexperienced participants, they should have less trouble
in analyzing what source code does and, hence, solve more tasks correctly. The second
assumption is that experienced participants are faster in analyzing source code, because
they have done it more often and know better what to look for.

As we are starting the validation, we have no hypotheses about how our questions
relate to the performance in the programming tasks. Instead, we have a research ques-
tions:

RQ: Do the questions of our questionnaire correlate with programming ex-
perience?
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1 public class Class1 {
2 public static void main(String[] args) {
3 int array[] = {14,5,7};
4
5 for (int counter1 = 0; counter1 < array.length; counter1++) {
6 for (int counter2 = counter1; counter2 > 0; counter2--) {
7 if (array[counter2 - 1] > array[counter2]) {
8 int variable1 = array[counter2];
9 array[counter2] = array[counter2 - 1];

10 array[counter2 - 1] = variable1;
11 }
12 }
13 }
14
15 for (int counter3 = 0; counter3 < array.length; counter3++)
16 System.out.println(array[counter3]);
17 }
18 }
19 }

Figure 5.2: Source code for the first task.

5.3.2 Material

As material, we selected typical algorithms presented in introductory programming lec-
tures. This way, we match the average experience level of undergraduates, our partic-
ipants. When replicating this experiment with programming experts, the tasks should
be matched to the high level of experience. For illustration, we show the source code of
the first task in Figure 5.2. The source code sorts an array of numbers, so the correct an-
swer is “5, 7, 14”. The remaining algorithms were roughly similar (except for two): Two
algorithms implemented a stack and five a linked list.

In two algorithms, one involved command-line parameters and one was a running
variant of MobileMedia (i.e., without information of features in the code) of the fifth
release. We included these two algorithms to identify highly experienced participants
among second-year undergraduate students, since some students start to program before
their studies. We expected that only highly experienced participants should be able to
sufficiently understand these algorithms in the given time. In Appendix 10.3, we present
source code of the first 9 tasks.

All source code was in Java, the language that participants were most familiar with.
To present the questionnaire, tasks, and source code, we used our tool infrastructure

PROPHET (cf. Chapter 6).

5.3.3 Participants

Participants were recruited from the University of Passau (27), Philipps University Mar-
burg (31), and University of Magdeburg (70), so we had 128 participants in total. All uni-
versities are located in Germany. Participants from Passau and Marburg were in the end
of their third semester and attended a course on software engineering. Participants from
Magdeburg were at the beginning of their fourth semester and from different courses.
The level of education of all participants was comparable, because no courses took place
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between semesters and participants had to complete similar courses at all universities.
All participants were offered different kinds of bonus points for their course (e.g., omit-
ting one homework assignment) for participating in the experiment independent of their
performance. All participants took part voluntarily, were aware that they participated in
an experiment, and could quit anytime without consequences. Data were logged anony-
mously.

Since we recruited participants from three different universities, we actually have
three different samples. However, only the question s.ClassMates is specific for each
university, because participants can only compare themselves to the students of their
university. A Kruskal-Wallis test to evaluate whether there are significant differences in
the answer of s.ClassMates between the three universities was not significant (χ2 = 1.275,
df = 2, p = 0.529) [Anderson and Finn, 1996]. Furthermore, we selected the tasks to be
typical examples of what students learn in introductory programming courses at their
universities. Hence, we can treat our three samples as one sample.

5.3.4 Tasks

We had ten different algorithms. For the first nine, participants should determine what
executing the algorithms would print. Furthermore, participants should explain what
the source code is doing.

In the last task, we used MobileMedia, in which we introduced a bug into class
AddPhotoToAlbum, such that a variable holding the path of a photo was initialized with
null instead of the actual path. Thus, a NullPointerException would be thrown. Par-
ticipants got a bug description explaining the behavior and should locate the cause of the
bug, explain why it occurs, and suggest a solution.

An answer was correct when it was the result of running the program, ignoring
whitespace (or the correct bug location). When an answer diverged from the expected
result, a programming expert analyzed participants’ explanation of the source code and
decided whether the answer could be counted as correct.

We had 10 tasks so that only experienced participants would be able to complete all
tasks in the given time of 40 minutes, which we confirmed in a pretest with PhD students
from the University of Magdeburg. This way, we can better differentiate between high
and low experienced participants. To make sure that participants are not disappointed
with their performance in the experiment, we explained that they would not be able to
solve all tasks, but should simply proceed as far as possible within the given time. An-
other way would be to have no time limit and let participants work until they completed
all task. However, we had a time slot of only one hour, including introduction and de-
briefing, so we specified a time limit for all tasks.

5.3.5 Confounding Parameters

In alignment with our suggestion of managing confounding parameters, we summarize
the most important confounding parameters for our study and describe how we con-
trolled them. In Table 5.3, we give an overview.
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For intelligence and ability, we used randomization, because we had not time to reli-
ably measure it before the experiment. To control for education, we kept it constant by
recruiting students from similar courses. This way, we ensure that participants learned
similar topics during their studies and have the same familiarity with the algorithms we
used in our experiment. We kept domain knowledge constant by obfuscating identifier
names. This way, we ensure bottom-up comprehension. Since we need a large sam-
ple size, we cannot test top-down and bottom-up comprehension, because that would
significantly increase the required sample size. For motivation, we asked participants
afterwards how motivated they were to solve a task, because the level of motivation can
change during the experiment; additionally, participation was voluntary.

To control for evaluation apprehension, we anonymized the data, so that we get the
actual performance of participants. We avoided the Hawthorne effect by not revealing
our hypotheses; thus, participants could not bias their performance. For learning effects,
we expect that more experienced participants should learn faster; thus, some tasks were
similar, so more experienced participants should solve more tasks correctly. To have
a suitable operationalization of study object, we consulted programming experts, who
confirmed that programming experience should correlate with the number of correct an-
swers in our tasks.

To avoid the Rosenthal effect, we carefully developed standardized instructions for
the one experimenter who instructed participants. We accepted bias due to the selection
of our sample, because we do not have resources to have a heterogeneous sample (e.g.,
with programming experts). Thus, we interpreted the results only in the context of our
sample (i.e., undergraduate students). Finally, we avoided bias due to technical problems
by excluding the affected question of the questionnaire. We could not collect the answers
of that question afterwards, because participants were then aware of the hypotheses,
which could have introduced the Hawthorne effect.

We present the remaining parameters in Appendix 10.2. Since the parameters and
control techniques are similar for all our experiments, we summarize the confounding
parameters of all experiments to avoid redundancy.

5.3.6 Experiment Execution

The experiments took place in January and April 2011 at the Universities of Passau, Mar-
burg, and Magdeburg as part of a regular lecture session. First, we let participants com-
plete the programming-experience questionnaire without knowing its specific purpose.
Then, we gave participants an introduction about the general purpose and proceeding
of the experiment, without revealing our goal. The introduction was given by the same
experimenter each time. After all questions were answered, participants worked on the
tasks on their own. Since we had time constraints, the time limit for completing the tasks
was 40 minutes. After time ran out, participants were allowed to finish the task they were
currently working on. Two to three experimenters checked that participants worked as
planned. After the experiment, we revealed the purpose of this experiment to the partic-
ipants.

One deviation occurred, in that we had a technical error for the presentation of the
programming-experience questionnaire, such that we could not measure s.PE for all par-
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No. Question Distribution Completed

1 s.PE 70
2 s.Experts 126
3 s.ClassMates 127
4 s.Java 124
5 s.C 127
6 s.Haskell 128
7 s.Prolog 128
8 s.NumLanguages 0 ●●●● 6 118
9 s.Functional 127

10 s.Imperative 128
11 s.Logical 126
12 s.ObjectOriented 127
13 y.Prog 0 ●● ●● ●● ●● 25 123
14 y.ProgProf 0 ●● ● ●●● ●● ● ●● ●●● ●● ● ●●● ●● ● ●● ●●● 7 127
15 e.Years 0 ●●● ●● ●● ●●● ●● ●● 9 126
16 e.Courses 0 ●●● ●●● ●●● ●●● 20 123
17 z.Size 128
18 o.Age 19 ● ●● ●●●●● ● ● ●●● ●● ●●●●● ● ● ●● 40 128

The higher a value, the higher the experience/familiarity of par-
ticipants. Completed: number of participants who completed
this task.

Table 5.4: Answers in questionnaire.

ticipants. Hence, we only have the answer of 70 (of 128) participants for this question.
We discuss the implication in Section 5.5.

5.4 Experiment Results

First, we describe descriptive statistics to get an overview of our data. Second, we present
how each question correlates with the performance in the tasks. This way, we get an
impression of how important each question is as indicator for programming experience
in our sample.

5.4.1 Descriptive Statistics

In Table 5.4, we show the answers participants gave in our questionnaire. The median for
s.PE varies between 2 and 3, which we would expect from second-year undergraduate
students. In general, participants felt very inexperienced with logical programming and
experienced with object-oriented programming. The median of how long participants are
programming is four years, but only few participants said they were programming for
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Task
Response time in minutes

Completed
Correct

Distribution Mean Absolute Relative

1 ●●●●●●●● 4.44 124 70 55 %

2 ●●●● ●● 3.65 123 90 70 %

3 ● ●● 5.02 121 97 76 %

4 ● 6.17 117 22 17 %

5 ● ● 4.06 118 46 36 %

6 ● 4.72 111 40 31 %

7 ●●● ●●● ● 2.34 92 31 24 %

8 ● ●●● ● 4.1 82 69 54 %

9 ●● 1.94 78 11 9 %

10 ● 9.64 30 22 17 %

0 5 10 15 20 25

Completed: number of participants who completed this task;
Correct: number of participants with correct solution.

Table 5.5: Response time for each task.

more than ten years. Although participants took a second-year undergraduate course,
some participants were enrolled for more than three years,1 which could also explain
why some participants completed numerous courses in which they had to implement
source code.

In Table 5.5, we give an overview of how participants solved the tasks. Column
“Mean” contains the average time in minutes of participants who completed a task. Since
not all participants finished all tasks, they cannot be interpreted across tasks. We discuss
the most important values. Task 10 took the longest time to complete (on average, 9.6
minutes). This is caused by size of the source code of MobileMedia for the last task with
2 800 lines of code. To solve Task 9, participants needed on average 1.9 minutes; most
likely, because its source code consisted of only 10 lines. However, only 11 participants
solved it correctly. To solve this task, participants must be familiar with command-line
parameters, which may not be typical for the average second-year undergraduate stu-
dent. Considering the correctness of Task 4, we see that only 22 participants solved it
correctly. In this task, elements were added to an initially empty linked list, such that
the list is sorted in a descending order after the insertion. In most of the wrong answers,
we found that the order of the elements was wrong. We believe that participants did
not analyze the insert algorithm thoroughly enough and assumed an ascending order of
elements.

1The German system allows participants to take courses in a somewhat flexible order and timing.
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In Figure 5.3, we show the number of correctly solved tasks per participant. As we
expected, none of our participants solved all tasks correctly (cf. Section 5.3.2). Especially
the last two tasks (Task 9: command-line parameters; Task 10: bug fix in MobileMedia)
required an experience level beyond that of second-year undergraduate students. More
than half of the students (72) solved two to four tasks correctly. Taking into account the
time constraints (40 minutes to solve 10 tasks), it is not surprising that the number of
correctly solved tasks is that low.

0
1

5

10

15

20

25

2 43 5 6 7 8 9 100

30

Figure 5.3: Number of correct answers for all tasks.

5.4.2 Correlations

In Table 5.6, we give an overview of the correlation of the number of correct answers
with the answers of the questionnaire. A high value indicates that the higher partici-
pants answered a question, the more correct answers they gave in the tasks. Since we
correlate ordinal data, we use the Spearman rank correlation [Anderson and Finn, 1996].
For about half of the questions of self estimation, we obtain small to strong correlations.2

The highest correlation with number of correct answers has s.PE. The lowest significant
correlation is with s.NumLanguages. Regarding y.Prog and y.ProgProf, we have medium
correlations with the number of correct answers. E.Years does not correlate with the
number of correct answers. For the remaining questions, we do not observe significant
correlations.

For completeness, we show the correlations of response time with each of the ques-
tions of our questionnaire in Table 5.7. Only 23 correlations, of 180, are significant, which
is in the range of coincidence, given the common significance level of 0.05. Since there are
so many correlations, a meaningful interpretation is impossible without further analysis,
for example, a factor analysis. However, such analysis typically requires a larger number

2Correlations can beare categorized as small ( ±0.1 to ±0.3), medium (±0.3 to ±0.5), or strong (±0.5 to
±1) [Cohen, 1988].
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No. Question ρ N

1 s.PE 0.539 70
2 s.Experts 0.292 126
3 s.ClassMates 0.403 127
4 s.Java 0.277 124
5 s.C 0.057 127
6 s.Haskell 0.252 128
7 s.Prolog 0.186 128
8 s.NumLanguages 0.182 118
9 s.Functional 0.238 127

10 s.Imperative 0.244 128
11 s.Logical 0.128 126
12 s.ObjectOriented 0.354 127

13 y.Prog 0.359 123
14 y.ProgProf 0.004 127

15 e.Years -0.058 126
16 e.Courses 0.135 123

17 z.Size -0.108 128
18 o.Age -0.116 128

ρ: Spearman correlation; N: number of participants;
gray cells denote significant correlations (p < .05).

Table 5.6: Spearman correlations of number of correct solutions with answers in questionnaire.

of participants. Since we have a decreasing number of participants with each task, we
leave analyzing the response times for future experiments.

In the next section, we discuss which questions are good indicators for programming
experience.
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5.5 Exploratory Analysis

In this section, we explore the data further to extract relevant questions for measuring
programming experience and to develop a model describing programming experience.
For this analysis, we excluded question s.PE, because only 70 participants answered this
question (cf. Section 5.3.6). Alternatively, we could have removed participants who did
not answer this question from the analysis, but this would have made our sample too
small for the exploratory analysis.

5.5.1 Stepwise Regression

So, which questions are the best indicators for programming experience? The first obvi-
ous selection criterion is to include all questions that have at least a medium correlation
(> 0.30) with the number of correctly solved task, because they are typically considered as
relevant. However, the questions themselves might correlate with each other. For exam-
ple, the s.ClassMates correlates with s.ObjectOriented with 0.552. Hence, we can assume
that both questions are not independent from each other. If we used both questions as
indicator, we would overestimate the relationship of both questions with programming
experience; that is, we would count the common part of both questions twice, although
we should count it only once. To account for the correlations between questions, we use
stepwise regression [Lewis-Beck, 1980].

Background: Stepwise Regression With stepwise regression, we build a model of
the influence of the questions on the number of correct answers in a stepwise manner.
We start by including the question with the highest correlation, which, in our case, is
s.ClassMates. Then, we consider the question with the next highest correlation, which is
y.Prog. Using this question, we compute the partial correlation with the number of correct
answers, describing the correlation of two variables cleaned from the influence of a third
variable [Cohen and Cohen, 1983]. Thus, the correlation of y.Prog with the number of
correct answers, cleaned from the influence of s.ClassMates, is computed. If this cleaned
correlation is high enough, the question is included, else it is excluded. The goal is to
include questions with a high partial correlation with the number of correct answers,
such that as few questions as possible are selected to have a model as parsimonious as
possible. This is repeated with all questions of the questionnaire.

In Table 5.8, we show the results for our questionnaire. With stepwise regression
(specifically, we used stepwise as inclusion method), we extracted two questions: self-
estimated experience compared to class mates (s.ClassMates) and experience with logical
programming (s.Logical). The higher the Beta value, the larger the influence of a question
on the number of correctly solved tasks. The model is significant (F2,45 = 8.472, p <
.002) and the adjusted R2 is 0.241, meaning that we explain 24.1% of the variance in the
number of correct answers with our model.

Hence, the result of the stepwise-regression algorithm is that questions s.ClassMates
and s.Logical contribute most to the number of correct answers: The higher participants
estimate their experience compared to class mates and their experience with logical pro-



Chapter 5. Measuring Programming Experience 96

Question Beta t p

s.ClassMates 0.441 3.219 0.002
s.Logical 0.286 2.241 0.030

Table 5.8: Resulting model of stepwise regression.

gramming, the more tasks they solve correctly. We believe that stepwise regression ex-
tracted s.ClassMates, and not s.Experts, because we recruited students as participants
and the tasks are taken from introductory programming lectures. Hence, if participants
estimate their experience better than their class mates, they should be better in solving
the tasks.

Why was s.Logical extracted and not s.Java, which is closer to our experiment? We be-
lieve that the reason is that our participants learn Java as one of their first programming
language and feel confident with it. In contrast, learning a logical programming lan-
guage is only a minor part of the curriculum of all three universities. Hence, if students
estimate that they are familiar with logical programming, they may have an interest in
learning other ways of programming and pursue it, which increases their programming
experience. However, we need to confirm the results of stepwise regression in future
experiments.

The model we received from stepwise regression describes Beta values, which are
weights for each question. For example, if a participant estimates a 4 in s.ClassMates
(more experienced than class mates) and a 2 in s.Logical (unfamiliar with logical pro-
gramming), the resulting value for programming experience is 0.441∗4+0.286∗2 = 2.336
(for simplicity, we omitted a constant to add as part of the model).

Hence, we identified two questions that explain 24.1% of the variance of the number
of correct answers. For our sample, these two questions explain programming experience
best. We could include more questions to improve the amount of explained variance, but
none of the questions contribute a significant amount of variance. Since a model should
be parsimonious, stepwise regression excluded all other questions. Thus, for our sample,
these two questions provide the best indicators for programming experience.

5.5.2 Exploratory Factor Analysis

Furthermore, to look for a pattern in our questions, we analyzed whether questions in our
questionnaire correlate. To this end, we conducted an exploratory factor analysis [Anderson
and Rubin, 1956].

Background: Exploratory Factor Analysis The goal of an exploratory factor analysis is
to reduce a number of observed variables to a small number of underlying latent variables
or factors (i.e., variables that cannot be observed directly). To this end, the correlations of
the observed variables are analyzed to identify groups of variables that correlate among
each other. For example, the experience with Haskell and functional programming are
very similar and might be explained by a common underlying factor. The result of an
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exploratory factor analysis is a number of factors that summarize observed variables into
groups. The meaning of the factors relies on interpretation.

Furthermore, we obtain correlations or factor loadings of the variables in our ques-
tionnaire with identified factors. By convention, factor loadings that have an absolute of
smaller than 0.32 are omitted, because they are too small to be relevant [Costello and Os-
borne, 2005]. There are main loadings, which are the highest factor loading of one variable,
and cross loadings, which are all other factor loadings of a variable that have an absolute
of more than 0.32. The higher the main loading and the smaller the number and values
of cross loadings, the more unambiguously the influence of one factor on a variable is.
If a variable has many cross loadings, it is unclear what it exactly measures and more
investigations on this variable are necessary in subsequent experiments.

In Table 5.9, we show the results of our exploratory factor analysis. The first factor
of our analysis groups the variables s.C, s.ObjectOriented, s.Imperative, s.Experts, and
s.Java. This means that these variables have a high correlation amongst each other and
can be described by an underlying factor. Except for s.Experts, this seems to make sense,
because C and Java and the corresponding paradigms are similar and often taught at uni-
versities. Hence, if participants have Java experience, they are most likely familiar with
C, too. The same counts for the underlying programming paradigms. We conjecture that
s.Experts also loads on this factor, because it explains the confidence level with main-
stream programming languages, because C and Java, as well the according paradigms,
are taught as state of the art. Thus, if participants estimate to be more familiar with state-
of-the-art techniques, they also estimate their experience compared to experts higher. We
can name this factor experience with common languages.

The second factor contains the variables y.ProgProf, z.Size, s.NumLanguages, and
s.ClassMates. These variables fit together well, because the longer participants are pro-
gramming professionally, the more likely they have worked with large projects and the
more languages they have encountered. Additionally, since it is not typical for second-
year undergraduates to program professionally, participants who have programmed pro-
fessionally estimate their experience higher compared to their class mates. We can name
this factor professional experience.

Factor 3 and 5 group s.Functional/s.Haskell and s.Logical/s.Prolog in an intuitive
way. Hence, we name these factors functional experience and logical experience.

The fourth factor summarizes the variables e.Courses, e.Years, and y.Prog, which are
all related to the participant’s education. We can name this factor experience from education.

Now, we have to take a look at the cross loadings. As an example, we look at e.Years,
which also loads on functional experience. This means that part of this variable can also
be explained by this factor. Unfortunately, we cannot unambiguously define to which
factor this variable belongs best, we can only state e.Years has a higher loading on fac-
tor experience from education. This could also mean that we need two factors to explain
this variable. However, with a factor analysis, we are looking for a parsimonious model
without having more relationships than necessary. To have a deeper understanding of
the relationship of our questions and factors, we need to conduct future experiments.
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Variable Factor 1 Factor 2 Factor 3 Factor 4 Factor 5

s.C 0.723
s.ObjectOriented 0.700 0.403
s.Imperative 0.673 0.333 0.303
s.Experts 0.600 0.326
s.Java 0.540 0.427

y.ProgProf 0.859
z.Size 0.764
s.NumLanguages 0.335 0.489 0.403
s.ClassMates 0.449 0.403 0.424

s.Functional 0.880
s.Haskell 0.879

e.Courses 0.795
e.Years -0.460 0.573
y.Prog 0.493 0.554

s.Logical 0.905
s.Prolog 0.883
Gray cells denote main factor loadings.

Table 5.9: Factor loadings of variables in questionnaire.

To sum up the exploratory factor analysis, we extracted five factors: experience with
common languages, professional experience, functional experience, experience from education,
and logical experience that summarize the questions of our questionnaire in our sample.

The next step after an exploratory analysis is a confirmatory analysis. In a confirmatory
analysis, we aim at confirming the model we have received, which has to be done with
another data set. If we used the same data set, we could not show that our model is valid
in general, but only for our specific data set. Currently, we are collecting data of addi-
tional students who answer our questionnaire. So far, we have more than 100 students
of the universities of Magdeburg, Passau, Marburg, and Duisburg-Essen who completed
the questionnaire. Since confirmatory analysis requires large sample sizes [Bentler and
Chou, 1987], we need more participants before we can confirm our results.

5.6 Recommendations

The goal of this chapter is to develop a reliable and easy-to-apply questionnaire to mea-
sure programming experience. So far, we combined different questions from different
categories found in literature into a single questionnaire. We conducted a controlled ex-
periment with undergraduate students and explored our data for initial validation. Based
on the results, we give the following recommendations for future research:
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First, we showed that in literature, there are many different ways to measure and
control programming experience. Furthermore, in many cases, the control techniques
are not reported. We recommend to mix questions from different categories into a single
questionnaire, of which we presented a draft. We recommend to report precisely which
measure was used and how groups have been formed according to it. This helps to judge
validity and compare and interpret multiple studies.

Second, we can recommend self-estimation questions to judge programming ex-
perience among undergraduate students. In our experiment, several self-estimation
questions correlated with a strong to medium degree (s.PE: 0.539; s.ClassMates: 0.403;
s.ObjectOriented: 0.354) with the number of correct answers—much more than questions
regarding the categories education, size, and other. Among undergraduate students, an-
swers to questions from the latter categories differ only slightly. The only medium
correlation beyond self estimation is y.Prog (0.359), the number of years a participant is
programming at all.

Third, if resource constraints allow it, researchers can combine multiple questions,
of which some serve as control questions to see whether participants answer consis-
tently, which is custom in designing questionnaires [Peterson, 2000]. For example, in our
case, when using s.PE, questions s.ClassMates and s.ObjectOriented are suitable as con-
trol questions, since they both show a strong correlation with s.PE (s.ClassMates: 0.625;
s.ObjectOriented: 0.696).

Fourth, since correlations between questions confound the strength of a question as
indicator for programming experience (cf. Section 5.5.1), we applied stepwise regression
and extracted two relevant questions, s.ClassMates and s.Logical, that together serve as
best indicator to predict the number of correct answers in our experiment (each question
can be supplied with control questions).

Fifth, our exploratory factor analysis indicates five factors for programming experi-
ence that can serve as starting point for developing a theory on programming experience.
The results do not help building a survey right away, but with additional confirmation,
such as confirmatory factor analysis on other data sets, they can help understanding how
programming experience works and which kinds of questions query relevant parame-
ters. However, to that end, there is still a long way.

Last, our proceeding can serve as recommendation for developing questionnaires.
We constructed the questionnaire based on a literature survey, to include how other
researchers understand programming experience. Another way is to consult experts
on programming experience (e.g., programming experts, project managers) about their
opinion on programming experience. We can also combine literature survey and expert
consultancy. After we constructed questionnaire, we evaluated it with a controlled ex-
periment.

Overall, note that while our literature survey and the construction of the question-
naire are intended for measuring programming experience in general, we only vali-
dated it for a specific setting: predicting programming experience among a homogeneous
group of undergraduate students. This way, we achieve high internal validity, because
our results are not confounded by different backgrounds of the participants. However,
our recommendations remain limited to this setting. We conjecture that with experienced
programmers, questions from the categories years and size have more predictive power.
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Whether self estimation remains a good indicator in this setting remains an open question
for future work. Thus, with our work, we completed only the first steps for developing a
questionnaire—in future work, we plan to continue our endeavor.

5.7 Threats to Validity

Threats to internal validity are caused by the selection of tasks, by keeping wrong an-
swers in our response-time analysis, and by the answers of participants. Threats to ex-
ternal validity are caused by neglecting categories of the measurement of programming
experience.

5.7.1 Internal Validity

A first threat to validity is caused by the tasks. With other tasks, results may look differ-
ent. However, we selected tasks representative for the experience level of undergraduate
students and with varying difficulty. Thus, more experienced participants should per-
form better than less experienced participants. Hence, we argue that our task selection is
appropriate for our purpose.

Next, we did not correct the response times for wrong answers when looking at the
correlations with the answers in the questionnaire. Since we did not see any considerable
deviations of response times toward zero and we do not analyze response time further,
we sufficiently controlled this threat.

Last, we found that some questions of the questionnaire were difficult to answer, for
example, for how many years participants were programming. Thus, the answers of
participants might not be completely accurate. However, we believe that answers are a
reliable approximation, because we observed that participants thoroughly searched for
their answer. Nevertheless, in future work, we can analyze the predictive power of these
questions.

5.7.2 External Validity

We did not compare self estimation with all identified ways to measure programming
experience. We neglected the categories pretests and unspecified questionnaire, because
we do not know what the tests and questionnaires looked like. Thus, it is impossible
to test this category. Furthermore, we excluded supervisor assessment, because in our
sample, we have no comparable supervisor. We could ask teachers of students to assess
their programming experience, but teachers do not know their students nearly as good as
supervisors know their professional programmers, so the reliability of teacher estimation
is questionable. Despite those, we considered all other categories, so we controlled this
threat sufficiently. Nevertheless, in future work, we can also work on comparing self
estimation with the other techniques, for example, by asking authors of papers which
pretest or questionnaire they used.
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Last, the results of our exploratory analysis cannot be generalized without confir-
matory analysis based on further experiments. To reduce this threat, we are currently
collecting data, so that we can conduct a confirmatory analysis.

5.8 Related Work

In general, related work to ours evaluated possible criteria that can be used to categorize
participants upfront. For example, Kleinschmager and Hanenberg analyzed the influence
of self estimation, university grades, and pretests on historical data for programming
experiments [Kleinschmager and Hanenberg, 2011]. To this end, they analyzed the data
of two previously conducted programming experiments with students as participants.
They compared self estimation, university grades, and pretests with the performance
of participants in the experiments and found that self estimation was not worse than
university grades or pretests to categorize participants. These results complement ours,
as we did not look into pretests and grades.

Bornat and others compared the performance of students with the performance of
professional software developers for non-trivial tasks regarding judgment about factors
affecting the lead-time of software-development projects [Bornat et al., 2008]. They found
no differences between groups. Thus, classification of participants had no effect on their
performance.

Instead of studying single criteria to categorize participants, other lines of research
use more complex criteria, such as the Myers-Briggs Type Indicator, an index for estimat-
ing the personality of humans [Myers and McCaulley, 1985]. For example, Sfetsos and
others study the impact of certain criteria, such as the personality type of participants, on
building groups doing pair programming [Sfetsos et al., 2009]. They found that pairs of
different personality types are more effective than pairs of the same personality types.

5.9 Summary

To conduct reliable program-comprehension experiments, we need to control for pro-
gramming experience as a major confounding parameter. Currently, researchers often
do not specify their understanding of programming experience or do not consider it at
all, which threatens the validity of experiments and makes interpretations across experi-
ments difficult. Thus, we defined the goal to develop a questionnaire to reliably measure
programming experience in an easy and cost-efficient way.

Based on a literature survey, we identified 7 categories how researchers measure pro-
gramming experience: years, education, self estimation, unspecified questionnaire, size,
unspecified pretest, and supervisor. Based on these categories, we designed a question-
naire that aims at measuring programming experience.

In a controlled experiment, we evaluated the relationship of each question with the
performance of 128 students who solve program comprehension tasks. We found that
self estimation is a good indicator for programming experience. Furthermore, results
of stepwise regression suggest that programming experience compared to class mates
(s.ClassMates) and experience with logical programming (s.Logical) are the most relevant
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questions to measure programming experience. Additionally, with an exploratory factor
analysis, we extracted a five-factor model describing programming experience.

Thus, with an overview of confounding parameters for program comprehension and
a first version of a questionnaire to measure programming experience as the most impor-
tant parameter, we reduced the effort for planning experiments. Next, we present our
tool PROPHET, which supports researchers in conducting and replicating experiments.
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Chapter 6

PROPHET:
Program-Comprehension
Experiment Tool

This chapter shares content with the ICPC’12 tool demo “Supporting Com-
prehension Experiments with Human Participants” [Feigenspan and Sieg-
mund, 2012] and the ESEM’11 poster “PROPHET: Tool Infrastructure to
Support Program Comprehension Experiments” [Feigenspan et al., 2011d].

The last part of our framework to support conducting comprehension experiments
is the tool PROPHET (short for program-comprehension experiment tool). During our
work on program comprehension in feature-oriented software development, we found
similar, but slightly different requirements to present source code, tasks, and question-
naires to participants. Furthermore, in the literature survey, we found that researchers
often implemented tool infrastructures with similar requirements. Thus, instead of de-
veloping different tool infrastructures with similar requirements for each experiment, we
set out to implement a customizable and extendable tool:

• A tool to fulfill common requirements of program-comprehension experiments that
can be extended to address additional requirements.

To fulfill the requirements of a large set of experiments, we again consulted the paper
of our literature survey, this time analyzing requirements to conduct comprehension ex-
periments. Based on the identified requirements, we implemented our tool PROPHET.
We developed it as stand-alone tool, not integrate it into existing integrated develop-
ment environments, such as Eclipse, so that we can control the influence of familiarity
with tools (cf. Section 4.5.1.2). PROPHET provides only basic functionality to browse
through source code, so participants can easily learn how to use it. Furthermore, we
focus on text-based material, so experiments on visual programming languages are cur-
rently not supported.

In Section 6.1, we describe the most common requirements of comprehension experi-
ments based on a literature survey to give an overview. In Section 6.2, we present our tool
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Component ESE TOSEM TSE ICPC ICSE FSE ESEM Total (%)

Source-code viewer 26 2 30 24 29 9 18 138 (81.7 %)
Measurement of time 24 2 32 29 28 9 18 142 (84.0 %)
Presenting tasks/
questionnaires

31 2 32 32 37 9 18 164 (97.0 %)

Logging 23 2 32 21 24 9 18 129 (76.3 %)
External tool 22 2 26 15 18 9 17 109 (64.5 %)

Table 6.1: Requirements for comprehension experiments.

PROPHET based on the identified requirements and discuss whether and how it fulfills
these requirements. This way, we demonstrate the usefulness of our tool. To demon-
strate its extensibility, we present and evaluate the extendable plug-in architecture in
Section 6.3.

6.1 Requirements for Comprehension Experiments

In this section, we analyze how researchers conduct comprehension experiments. To this
end, we again consulted the papers of our literature survey (cf. Chapter 4). We set the
selection criteria broader, such that we also included experiments similar to program-
comprehension experiments, such as experiments on software inspection (instead of
source code, normal text documents are shown). Thus, for both International Conference
on Software Engineering and Journal of Empirical Software Engineering, we considered
36 papers. For all other journals and conferences, the number of papers remains un-
changed. Thus, we have 169 papers in total for this chapter. To identify requirements of
comprehension experiments, we read all papers completely.1 In Table 6.1, we summarize
the identified requirements, including the number of papers per requirement.

In most experiments, authors implemented their own tool infrastructure or used ex-
isting tools, such as Eclipse, with or without extensions, or let participants complete the
experiment by themselves (e.g., online, at home). Only rarely, authors reused self-made
tool infrastructures. Some experiments were even paper based. However, using differ-
ent tools makes the comparability of experiments difficult, because the underlying tools
provide considerably different functionality. For example, Eclipse provides search func-
tions, auto completion, compiling code, and running code. Experimental tools typically
provide only limited subsets of these features, and paper-based experiments do not have
any of the functionalities. Furthermore, familiarity with tool support can significantly
influence the results. Additionally, replication of experiments is difficult, because provid-
ing all necessary details (e.g., what kind of search participants could use or in what size/
font/color source code is presented) is often impossible due to space restrictions. Thus,
with PROPHET, we aim at having one tool that can be used in typical comprehension
experiments and that stores relevant details about the experimental set up.

1For most of the papers, we extracted requirements at the same time as extracting confounding parame-
ters. Thus, we rarely read a paper twice.
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To have an understanding about the requirements that PROPHET should fulfill, we
describe them in detail, including example studies.

6.1.1 Source-Code Viewer

In 82% of the experiments, independent of the focus, source code was presented to par-
ticipants, either just as fragments or as complete project. For example, in an experiment
by Sfetsos and others [2009], participants should work in groups on maintenance tasks,
and the effectiveness of groups was measured. Ceccato and others [2009] let participants
implement source code based on decompiled obfuscated systems using Eclipse. In an-
other experiment, source code was presented on paper [Bunse, 2006].

Thus, PROPHET should provide an according customizable source-code-viewing
component, such that experimenters can selected whether source code is shown with
or without syntax highlighting, with or without line numbers, can be editable or not, and
provide a search or not.

6.1.2 Measurement of Time

In 84% of the reviewed experiments, time was measured, either because of time con-
straints for a session, or to analyze how long participants needed to complete tasks or
an experiment. For example, El-Attar and others [2009] measured the time participants
needed to solve a task, and the time constraint was large enough to not let participants
feel time pressure. Och Dag and others [2006] measured the time participants needed to
consolidate requirements, so that the performance of participants could be analyzed in
terms of requirements per minute. Experimenters instructed participants to stop when
a defined amount of time had passed, and participants had to write down the time and
number of analyzed requirements.

To support experimenters in measurement of time, PROPHET should automatically
log the time participants need to solve a task or answer a question.

6.1.3 Presenting Tasks and Questionnaires

In most of the experiments (97%), tasks were used to measure program comprehension
or questionnaires were used to assess participants’ opinion. In some experiments, par-
ticipants were allowed to go back to previous tasks and questions. For example, Binkley
and others [2009] let participants detect camelCase and under score style identifiers and
presented tasks subsequently on screen. Matthijssen and others [2010] used tasks and
questionnaires to analyze how tool support helps to understand the code of Ajax appli-
cations.

Thus, PROPHET should show tasks and questionnaires to participants. Further-
more, PROPHET should allow the experimenter to decide whether participants are al-
lowed to go back to previous tasks.
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6.1.4 Logging

In 76% of the experiments, the actions of participants were logged (including the an-
swers) and used to analyze the behavior. For example, de Alwis and others [2007] logged
the behavior of participants using an Eclipse plug in to evaluate how tools can help to
complete software evolution tasks. Ko and Uttl [2003] video taped participants and cap-
tured their screen during completing tasks. Sharif and others logged the eye movements
of participants with an eye tracker [Sharif and Maletic, 2010].

Thus, there are different ways to log the behavior of participants, of which PROPHET
should at least support the basic data. We omit audio-, video-, and eye-tracking data
in the first implementation, because they are not often logged and require additional
hardware, which often is not available.

6.1.5 External Tools

About two third of the experiments (65%) used external tools, which means that tools
besides the actual experimentation environment are used. For example, LaToza and My-
ers [2010] allowed participants to use Windows Notepad to take notes. Dekel and Her-
sleb [2009] evaluated how programmers can be motivated to read the documentation
of API functions more thoroughly. In addition to source code, participants viewed API
specifications in a web browser.

Thus, PROPHET should support experimenters in specifying tools that participants
are allowed to use and which should be called from within PROPHET.

6.2 PROPHET

Having identified typical requirements of comprehension experiments, we can present
our tool PROPHET in this section, which we implemented in Java. Furthermore, we
discuss how it supported us with our experiment regarding programming experience (cf.
Chapter 5) to show its usefulness. PROPHET has two views: In the experimenter view,
experimenters specify the settings, and in the subject view, participants see the material
and tasks.

6.2.1 Experimenter View

In the experimenter view, we provide a user interface for experimenters that allows them
to customize the experimental setting according to their needs. In Figure 6.1, we show a
screenshot of the experimenter view. On the left side, we provide an overview of existing
tasks. Categories group similar tasks. For convenience, tasks or categories can be copied
and pasted, including all specified settings, so that similar tasks can be efficiently created.

For each category/task, there are four different tabs, which we discus from left to
right. The content of the tab Editor allows experimenters to create descriptions of tasks
and questions as HTML code. For convenience, we provide templates for commonly
used HTML elements, such as font type (e.g., bold, italic) and forms (e.g., text field, radio



Chapter 6. PROPHET 107

Figure 6.1: Screenshot of experimenter view (Editor tab).

Figure 6.2: Screenshot of the Preview tab.

button). Furthermore, experimenters can define macros for often used combinations of
HTML elements.

The tab Preview in Figure 6.2 shows a preview of how participants see the descrip-
tion of a task. In addition to the specified task or question, PROPHET automatically
adds a horizontal line and a button “Next”, with which participants start the next task or
question.

The tab Preferences in Figure 6.3 shows numerous customizing options to present
source code and tasks to participants. We describe the most interesting options in more
detail. When the code viewer is activated (check box “Activate code viewer”), we can
customize it, for example:

(1) Define a folder of which the contents are shown in the package explorer in the subject
view (Section 6.2.2).

(2) Define a file that is displayed when a task begins.
(3) Choose whether source code is editable by participants.
(4) Choose what behavior of participants we log.
(5) Choose whether participants see line numbers.
(6) Decide whether participants can turn on and off line numbers.
(7) Choose whether participants can use the search (local, global, both, regex).
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Figure 6.3: Screenshot of the Preferences tab. The numbers refer to options we explain in detail.

(8) Choose whether source code is displayed with syntax highlighting (for several lan-
guages).

Thus, the source-code viewer has several customizing options regarding how partici-
pants see source code. In our experiment, we presented source code with syntax high-
lighting and line numbers. Furthermore, participants should not modify source code, so
it was not editable. We did not provide a search feature, because the source code was
small enough to get an overview without search function.

When selecting to log data, PROPHET creates a folder for each participant during
the experiment execution and stores all specified data as XML. In our experiment, we
logged the answers of participants and how they opened and selected files.
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Furthermore, we can define a time out at which the task is aborted (9). We can define
a maximum time for a complete category (10) and additionally decide whether partici-
pants are allowed to finish the currently displayed task (soft time out) or not (hard time
out, 11). Additionally, we can ignore a time out that may be set for a complete experi-
ment (12). This is useful for debriefing questionnaires, which participants complete after
they finished experimental tasks. In our experiment, we defined a soft time out, so that
participants could finish a task. Furthermore, we showed a debriefing questionnaire af-
ter the time out, for which we selected the option to ignore the time out of the complete
experiment.

Moreover, we can specify external programs that participants are allowed to use (13),
which we did not need for our experiment.

In addition to defining settings for categories or tasks, we can define settings for a
complete experiment. In Figure 6.4, we show a screenshot with the options. The most
interesting option here is to send an e-mail. If this option is selected, the logged files
will be automatically zipped and sent via e-mail at the end of the experiment, without
requiring any interaction from participants. The sender and receiver mail addresses can
be specified by the experimenter. We provide this option, because collecting log files per
hand from each participant is tedious and error prone (e.g., we experienced in a previous
experiment that we forgot the data of some participants). Another way would be to send
the data to a database, but that requires additional software, such as database drivers. In
our experiment, we used this option without any problems.

The last tab Notes contains an empty editor. It allows experimenters to take notes
for a task, for example, deviations during the conduct of an experiment. This option
proved useful for one experiment (described in Section 8.2), in which not the experiment
designer, but a colleague at the according university conducted the experiment.

PROPHET stores the experiment, including all customizations and notes of experi-
menters, in an XML file. Researchers who want to replicate an experiment can just reuse
the XML file. Thus, we improve the replicability of experiments with PROPHET.

PROPHET provides further options to increase usability, which we describe briefly:

• Export the experiment to PHP to conduct it via Internet in a browser; the hosting
server needs to run Apache and MySQL

• Check for duplicate form entries to avoid errors caused by copying and pasting
HTML elements

• Export answers and logged data to CSV, such that common statistic tools can read
the data

6.2.2 Subject View

After the experiment is specified, it can be executed using the subject view. To this end,
participants have to double click a jar file, so the working stations needs to run Java.
Since nothing is installed, participants do not need administrator rights on the working
station. To clearly separate tasks and according source code, the subject view consists of
two separate windows: a task viewer and a source-code viewer. In the task viewer, the tasks
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Figure 6.4: Screenshot of Preferences tab for the complete Experiment.

are displayed as specified in the Editor tab of the experimenter view. In Figure 6.5, we show
a screen shot. In addition to the Preview tab of the experimenter view, the elapsed time for
the current category and complete experiment is shown. Note that an overview of all
tasks is not shown on the left side, because we did not select the option (cf. Figure 6.4,
check box “Show list of questions”).

In the source-code viewer, we present source code to participants with the specifications
defined in the Preferences tab of the experimenter view. We show an example of the source-
code viewer in Figure 6.6, in which line numbers are displayed and syntax highlighting is
enabled.

6.2.3 PROPHET for Other Experiments

To evaluate whether PROPHET supports other experiments, we describe how it can
help in two papers of the literature review. To have a fair evaluation, we selected one
experiment that can be well supported, and another for which PROPHET needs to be
adapted. In the first experiment, participants should rate how much they understand of
source code [Lawrie et al., 2006]. The authors needed to present source code and provide
means to rate it. Both can be done with PROPHET. A time limit was not mentioned, just
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Figure 6.5: Task viewer of the subject view of PROPHET.

Figure 6.6: Source-code viewer of PROPHET.

that the experiment needed to be “completed in a timely manner”; it is possible to use
the soft time out (i.e., a task can be finished after time has run out) to support this.

In the second experiment, participants worked with UML diagrams [Genero et al.,
2007]. The UML diagrams were presented on paper, and participants should modify
them. Currently, PROPHET does not support modifying images; we can only show
them. There are two options to conduct this experiment with PROPHET: First, imple-
menting a plug in that allows participants to modify graphics and log their changes. Sec-
ond, specifying an external program from PROPHET. However, we give the control to
the external program and cannot log participants’ behavior. Thus, in its current version,
PROPHET provides only limited support for experiments in which participants should
modify graphics.

Thus, PROPHET fulfills most parts of the identified requirements. Current limita-
tions are that source code cannot be compiled and executed, audio, video, or eye-tracking
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1 public interface PluginInterface {
2
3 //Delivers settings components shown in the settings tab of the experiment editor.
4 public SettingsComponentDescription getSettingsComponentDescription(
5 QuestionTreeNode node);
6
7 //Called once when the experiment viewer is initialized.
8 public void experimentViewerRun(ExperimentViewer experimentViewer);
9

10 //If any plugin denies the currentNode to be entered
11 //(e.g., because of a timeout), it will be skipped.
12 public boolean denyEnterNode(QuestionTreeNode node);
13
14 //The node entered
15 public void enterNode(QuestionTreeNode node);
16
17 //A message shown to the participant to indicate what needs to be
18 //done to accept finishing this node (e.g. enter a needed answer)
19 public String denyNextNode(QuestionTreeNode currentNode);
20
21 //The node to be exited
22 public void exitNode(QuestionTreeNode node);
23
24 //A unique name for the plugin.
25 public String getKey();
26
27 //A message shown to the participant at experiment’s end
28 public String finishExperiment();
29 }

Figure 6.7: Source code of the interface to define new plug ins.

data cannot be logged, and images cannot be modified, which is often necessary for UML
experiments. Thus, experiments using such data (e.g., Sharif and Maletic [2010], Ko and
Uttl [2003]) or require participants to modify images (e.g., Genero et al. [2007]) are cur-
rently not supported.

To address new requirements, we implemented PROPHET as plug-in architecture,
which we discuss next.

6.3 Extensibility

To support extensibility, we use an approach based on plug ins [Clayberg and Rubel,
2006]. To implement additional functionality, experimenters need to implement a plug in.
A plug in must implement PROPHET’s plug-in interface, which we show in Figure 6.7.
Available plug ins are displayed in the experimenter view (e.g., syntax highlighting, run
external programs), and if an experimenter selects a plug in, it defines the customization
options it provides.

In Line 4, we show the interface to the experimenter view of PROPHET. The type
SettingsComponentDescription is used to describe possible settings of a plug in. To
illustrate this mechanism, we show an excerpt of the plug in to hide a task (cf. Figure 6.3,
check box “Deactivate this node and its children”) in Figure 6.8. In Line 2, it implements
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1 class InactivityPlugin implements PluginInterface{
2 public SettingsComponentDescription getSettingsComponentDescription(
3 QuestionTreeNode node) {
4 if (!node.isExperiment()) {
5 return new SettingsComponentDescription(SettingsCheckBox.class, KEY,
6 "Deactive this node and its children");
7 } else {
8 return null;
9 }

10 }
11
12 //...
13 public boolean denyEnterNode(QuestionTreeNode node) {
14 return Boolean.parseBoolean(node.getAttributeValue(KEY));
15 }
16 }

Figure 6.8: Source code of a plug in to deactivate certain tasks.

the method declared in PROPHET’s plug-in interface (Line 4 in Figure 6.7) and intro-
duces the according check box.

In addition to extending PROPHET with plug ins, we can also extend plug ins with
plug ins. That is, plug ins can use or define other plug ins. For example, the source-code-
viewer plug in uses sub plug ins, such as the search, which in turn define further plug
ins, such as global search or regular-expression search. For the source-code viewer to
use plug ins, it defines its own interface that has to be implemented by a sub plug in.
One interface method is used to delegate customization options for experimenters to the
plug-in structure of our tool, so that options of sub plug ins can also be visualized and
manipulated in the experimenter view. Furthermore, we define interface options to modify
contents of the Preferences tab (e.g., to show line numbers).

We experienced the extensibility of PROPHET during planning our experiment re-
garding programming experience, because we found that we needed requirements cur-
rently not implemented. Specifically, we implemented the PHP export, time limits, and
mail delivery as plug ins. For none of the plug ins, we had to adapt the underlying
implementation.

6.4 Related Work

SESE is a support environment for conducting experiments to evaluate software-engi-
neering technologies [Arisholm et al., 2002]. It supports defining the experiment, recruit-
ing participants, running the experiment, monitoring the experiment, and collecting the
results. The focus of SESE is different from PROPHET, in that it supports the conduct
of large-scale experiments with focus on external validity. This is possible with our tool
using the PHP export, but we target laboratory experiments. Furthermore, our tool is
designed to be extendable, such that new functionality can be added without adapting
the code base.
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EFS Survey2 is a proprietary web-based survey system. It supports creating and con-
ducting online questionnaires based on HTML pages. Like our tool, HTML forms are
used to record answers of participants. Furthermore, stored data can be exported to
several formats, including CSV and XLS. However, the focus of EFS Survey lies on con-
ducting questionnaires and recruiting participants, not on assessing the performance of
participants. Our tool supports questionnaires as well, but does not provide as much
specialized functionality.

Do and others describe an infrastructure for evaluating software-testing mecha-
nisms [Do et al., 2005]. The tool is based on a literature survey of papers describing
testing procedures and aims at supporting experimentation on testing techniques. Simi-
lar to our tool, it is designed to be extendable. However, it does not focus on supporting
experiments on comprehension, but on testing techniques.

6.5 Summary

In the context of comprehension experiments, similar, but slightly different requirements
exist to present source code, tasks, and questionnaires to participants. In this chapter, we
set the goal to develop a tool that meets these requirements and that can be extended to
address additional requirements.

To fulfill our goal, we developed PROPHET, which addresses common requirements
for comprehension experiments, which we identified based on a literature survey. Ad-
ditionally, PROPHET has a plug-in architecture, so that currently not fulfilled require-
ments can be addressed.

We evaluated PROPHET by showing how the implemented components supported
us during planning, conducting, and replicating experiments and by discussing how
other experiments of the literature survey could be supported. We also encountered
limitations, such that PROPHET does not support modifying images (e.g., UML mod-
els), compiling and executing source code, or logging video, audio, or eye-tracking data.
However, we demonstrated PROPHET’s extensibility, such that future plug ins can ad-
dress current limitations.

Thus, with PROPHET, we provide a useful, extendable tool to support researchers
in planning, conducting, and replicating experiments.

This concludes Part I of our thesis. We showed that software measures are not suitable
for measuring program comprehension. Instead, we should conduct controlled experi-
ments with human participants to observe this internal cognitive process. To reduce the
effort for planning, conducting, and replicating experiments, we presented a list of con-
founding parameters for program comprehension, developed a preliminary version of
a questionnaire to measure programming experience, the most important confounding
parameters for program comprehension, and implemented our tool PROPHET.

In Part II, we present controlled experiments we conducted to evaluate program com-
prehension in feature-oriented software development. To show the applicability of our
framework, we discuss how it supported us for each experiment. Since we developed the

2http://www.unipark.info/63-0-efs-survey.htm

http://www.unipark.info/63-0-efs-survey.htm
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framework in parallel to conducting the experiments, we could not use all components of
the framework for all experiments. In such cases, we discuss how the framework could
have helped.



Part II

Conducting Comprehension
Experiments
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Chapter 7

Using Background Colors to Escape
#ifdef Hell

This chapter shares content with ESE’12 paper “Do Background Colors Im-
prove Program Comprehension in the #ifdef Hell?” [Feigenspan et al., 2012b],
the EASE’11 “Using Background Colors to Support Program Comprehension
in Software Product Lines [Feigenspan et al., 2011b]”, the IET’12 paper
“Supporting Program Comprehension in Large Preprocessor-Based Software
Product Lines”, the FOSD’09 paper “How to Compare Program Com-
prehension in FOSD Empirically–An Experience Report” [Feigenspan et al.,
2009], and the ICPC’10 paper “Visual Support for Understanding Product
Lines” [Feigenspan et al., 2010].

Having developed the framework in Part I, we can address our second goal to cre-
ate a knowledge base regarding the effect of feature-oriented software development on
program comprehension. To this end, we conducted a series of controlled experiments to
address the goal of this chapter:

• Recommendation about the use of background colors to improve program com-
prehension in preprocessor-based software.

By improving how developers comprehend preprocessor-based code, we make an
important contribution regarding time and cost of real-world software development, be-
cause preprocessors are often used in industry to implement variable code. Furthermore,
they will still be widely used at least in the medium-term future, because introducing
new techniques in industry is time-consuming, especially when large amount of legacy
applications are involved.

In Section 7.1, we describe why background colors can improve program com-
prehension. This way, we enable others to understand our experimental set up. In
Section 7.2, we discuss how the experiments build up on each other to increase exter-
nal validity step by step. Then, we describe all three experiments in Sections 7.3 to
7.5 to enable researchers to understand our conclusions and replicate our experiments.
In Section 7.6, we integrate the results of all three experiments to a knowledge base
regarding the effect of background colors in preprocessor-based software on program
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1 static int __rep_queue_filedone(dbenv, rep, rfp)
2 DB_ENV *dbenv;
3 REP *rep;
4 __rep_fileinfo_args *rfp; {
5 #ifndef HAVE QUEUE
6 COMPQUIET(rep, NULL);
7 COMPQUIET(rfp, NULL);
8 return (__db_no_queue_am(dbenv));
9 #else

10 db_pgno_t first, last;
11 u_int32_t flags;
12 int empty, ret, t_ret;
13 #ifdef DIAGNOSTIC
14 DB_MSGBUF mb;
15 #endif
16 // over 100 lines of additional code
17 #endif
18 }

Figure 7.1: Code excerpt of Berkeley DB.

comprehension. In Section 7.7, we apply this knowledge base to create FeatureComman-
der, a prototype of an integrated development environment, which consistently uses
background colors. In Section 7.8, we discuss threats to validity for all three experiments,
because similar threats exist. To show the applicability of our framework, we discuss
how it could have supported us with these experiments in Section 7.9.

7.1 Background: Why Background Colors?

To understand why we use background colors to annotate feature code, we introduce
typical problems that occur when using ifdef directives. Then, we explain why back-
ground colors can solve these problems.

7.1.1 Welcome to #ifdef Hell

We illustrate the use of ifdef directives in Figure 7.1 with an excerpt of Berkeley DB1. We
used a real-world example instead of the stack example of Section 2.3 to better demon-
strate the problems when using ifdef directives. Identifying code fragments annotated
with ifdef directives can be problematic, especially when
• ifdef directives are fine grained
• ifdef directives are scattered
• ifdef directives are nested
• long code fragments are annotated

These properties and combinations thereof often occur in preprocessor-based soft-
ware [Liebig et al., 2010, 2011].

First, ifdef directives can be “hidden” somewhere within a single statement at a fine
grain. For example, a programmer may annotate a variable or a bracket. Such anno-

1http://www.oracle.com/technetwork/database/berkeleydb
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tations are difficult to locate, because they can hardly be distinguished from “normal”
source code. Another problem is that fine-grained annotations can lead to syntactic er-
rors after preprocessing, because a closing bracket may be annotated, but not the cor-
responding opening one. Tracking these errors at source-code level is difficult, because
both brackets are visible in the source code.

Second, ifdef directives are typically scattered across the code base. In Figure 7.2, we
illustrate this problem with a source-code excerpt from the Apache Tomcat web server,
showing session management. Implementing an optional session-expiration mechanism
involves the addition of code and ifdef directives in many locations. The red background
color illustrates the scattering of feature Session expiration over the complete implemen-
tation of session management, which makes implementing and tracing this feature a te-
dious and error-prone task. A developer must take into account all affected modules
when keeping track of the Session-expiration feature.

Third, ifdef directives can be nested. For example, in Figure 7.1, Lines 13 to 15 are
defined within another ifdef directive, starting in Line 5. It might not be difficult to keep
track of a nesting level of two (as in this case), which is typical for most projects. However,
in practice, nesting levels of up to 24 may occur [Liebig et al., 2010].

Fourth, long code fragments can be annotated, as indicated in Figure 7.1: Line 16
states that over 100 additional lines of code occur, after which the according #endif of
the #ifndef in Line 5 occurs. To keep track of this fragment of feature code, a developer
typically has to scroll and, thus, keep in mind which code fragments belong to the ac-
cording feature and which do not. A surrounding annotation might not be visible from
the source-code excerpt shown in an editor.

7.1.2 Stairway to Heaven?

To escape the “#ifdef hell”, several approaches were developed that aim at improving
the readability of preprocessors, for example, by hiding selected feature code such as in
the Version Editor [Atkins et al., 2002], CViMe [Singh et al., 2006], or C-CLR [Singh et al.,
2007], or by annotating features with colors, such as in Spotlight [Coppit et al., 2007] (with
vertical bars next to the code editor), NetBeans (one background color for all features), or
CIDE [Kästner et al., 2008].
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1 static int __rep_queue_filedone(, dbenv, rep, rfp)
2 DB_ENV *dbenv;
3 REP *rep;
4 __rep_fileinfo_args *rfp; {
5 #ifndef HAVE QUEUE
6 COMPQUIET(rep, NULL);
7 COMPQUIET(rfp, NULL);
8 return ( db no queue am(dbenv));
9 #else

10 db pgno t first, last;
11 u int32 t flags;
12 int empty, ret, t ret;
13 #ifdef DIAGNOSTIC
14 DB MSGBUF mb;
15 #endif
16 // over 100 lines of additional code
17 #endif
18 }

Figure 7.3: Excerpt of Berkeley DB with background colors to highlight feature code. Lines 5 to
16 are yellow, Lines 12 to 14 orange.

In Figure 7.3, we illustrate how background colors can be used to annotate source
code. All annotated source-code lines are displayed with a background color. Code of
feature HAVE QUEUE (Lines 5 to 16) is annotated with yellow. The according else direc-
tive (Line 8) has the same color, because the according annotated code is also relevant for
this feature. Code of feature DIAGNOSTIC (Lines 12 to 14) is annotated with orange. In
this example, we see how we deal with nested code: We display the background color of
the inner feature DIAGNOSTIC, which is orange. In an early prototype, we blended the
colors of all features that are nested. However, this way we introduced more colors than
necessary and make distinguishing code of different features more difficult. Addition-
ally, with a deeper nesting level it becomes difficult to recognize all involved features,
because the blended colors would result in a shade of gray.

With background colors, we use a highlighting technique that supports users in find-
ing relevant information [Fisher and Tan, 1989; Tamborello and Byrne, 2007]. Highlight-
ing emphasizes objects that users might look for, such as menu entries or certain code
fragments. It can be realized with different mechanisms, such as blinking or moving an
object. In past work, colors have been shown to be effective for classifying objects into
separate categories and to increase the accuracy in comprehension tasks [Chevalier et al.,
2010; Fisher and Tan, 1989; Ware, 2000].

The benefit of colors compared to text-based annotations is twofold: First, back-
ground colors clearly differ from source code, which helps distinguish feature code from
base code. Second, humans process colors preattentively2 and, thus, considerably faster
than text [Goldstein, 2002]. This allows a programmer to identify feature code at first
sight and distinguish code of different features. As a consequence, a programmer should
be able to get an overview of a software system considerably faster.

Based on the comparison of the code fragments in Figures 7.1 and 7.3, we could intu-
itively argue that one approach is better than the other or that both should be combined.

2Preattentive perception is the fast recognition of a limited set of visual properties [Goldstein, 2002].
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GQM Experiment 1 Experiment 2 Experiment 3

Analyze Background colors Background colors Background colors
Purpose Evaluation Evaluation Evaluation
With respect to Program

comprehension
Use of opportunity to
switch

Program
comprehension

Point of view Developer Developer Developer
Context Medium preprocessor-

based system
Medium preprocessor-
based system

Large
preprocessor-based
system

Table 7.1: Description of all three experiments using the goal-question-metric approach. We
emphasized differences of experiments.

For example, one could argue that colors are distracting [Fisher and Tan, 1989] or do
not scale for large software systems, or colors do improve program comprehension due
to preattentive perception [Goldstein, 2002]. However, since program comprehension
is an internal cognitive process, we can only assess it empirically. In the remainder of
this chapter, we describe our experiments to evaluate whether background colors have a
benefit for program comprehension.

7.2 Family of Experiments

Each experiment focuses on a different facet of background-color use. In short, they
address the following questions:

• Can colors improve program comprehension? (Section 7.3)

• Do participants use colors? (Section 7.4)

• Do colors scale to large systems? (Section 7.5)

By combining the results of all three experiments, we aim at providing a deeper
understanding of the influence of background colors on program comprehension in
preprocessor-based software. For a better overview, we describe each experiment using
the goal-question-metric approach in Table 7.1 [Basili, 1992].

The focus of the first and third experiment lies on program comprehension, whereas
the focus of the second experiment lies on the behavior of participants, that is, how partic-
ipants use the opportunity to switch between background colors and preprocessor direc-
tives. The context of the first and second experiment is medium-sized systems, whereas
the last experiment uses a large system. In all other criteria of the goal-question-metric
approach, the experiments are the same. Due to this small delta between the experiments
and the combination of their results, we ensured high internal and external validity.

Furthermore, we avoided threats to validity caused by learning or maturation effects
by recruiting different participants for the first two experiments. In the third experiment,
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Context Description

Objective Evaluate whether background colors improve program comprehension
in preprocessor-based software

Material 5th release of MobileMedia in two versions: Java ME with Antenna,
Java ME with background-color annotation

Participants 43 undergraduate students from the University of Passau
Tasks Static tasks (locating feature code); maintenance tasks (locating bugs)
Execution One computer lab; 17" TFT; browser w/o search to present source code
Analysis Correctness of answers and response time
Result Colors speed up program comprehension in static tasks; no effect or

slow down for maintenance tasks

Table 7.2: Experiment 1 in a nutshell.

one participant of the second experiment also took part. However, since we had different
research hypotheses and different material, no learning or maturation effects occurred.

7.3 Experiment 1: Can Colors Improve Program Comprehension?

In this section, we present the design of our first experiment. Since we described it in
detail in our master’s thesis, we present only a summary of this experiment [Feigenspan,
2009]. We start with an overview of the most important information in Table 7.2. This
was the first experiment regarding colors, so we started with a medium-sized software
system with only four features. The rationale was that we assumed a benefit to occur in
small settings with only a few features, because preattentive perception is limited to only
few items. Thus, if there is a benefit, we most likely find it here.

As material, we used the fifth release of MobilbeMedia (cf. Section 2.4). From the
original source code annotated with ifdef directives (referred to as ifdef version), we cre-
ated a version that uses background colors (referred to as color version) instead of ifdef
directives. We did not combine background colors and ifdef directives, because there is
no prior empirical work regarding the effect of colors on program comprehension in the
context of preprocessor-based software on which we can base our experiment. Thus, to
not confound the effect of text and background colors, we explicitly compare the two ex-
tremes of pure textual annotations versus pure graphical annotations with background
colors in this first experiment.

For code fragments that were shared by the features SMSFeature and CopyPhoto (see
Figure 7.3 for an example of shared/nested code), we selected a separate color. We se-
lected the following bright and clearly distinguishable colors as background colors:
• SMSFeature: red (rgb: 255− 127− 127)
• CopyPhoto: blue (rgb: 127− 127− 255)
• Favourites: yellow (rgb: 255− 255− 127)
• CountViews: orange (rgb: 255− 191− 127)
• SMSFeature & CopyPhoto: violet (rgb: 170− 85− 170)
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Task Bug description Feature

S1 Which features implement code in which classes? —
S2 In which classes do features CopyPhoto and SMSFeature share

code (i.e., interact)?
CopyPhoto,
SMSFeature

M1 If pictures should be sorted by views, they are displayed un-
sorted anyway.

CountViews

M2 When a picture is displayed, the variable that counts the views
is not updated.

CountViews

M3 Although several pictures are set as favorites, the command
to view favorites is not displayed in the menu. However, the
developer claims having implemented the according actions.

Favourites

M4 If during sending a picture the according picture is not found,
a NullPointerException is thrown.

SMSFeature

Table 7.3: Overview of Tasks.

To measure program comprehension, we designed six tasks (plus a warming up task
to let participants familiarize with the setting). We had two static tasks, in which partic-
ipants should locate features and locate all occurrences of two interacting features. The
remaining four tasks were maintenance tasks. For a better overview, we present all tasks
in Table 7.3. For each task, we provided the according feature to participants, so that they
could concentrate on feature code (which is highlighted with background colors). We
expect a speed up in the comprehension process especially in the first two tasks, because
participants only need to look for the presence of a color or recognize a certain color.
Thus, due to preattentive perception, participants should be faster than without colors.
For maintenance tasks, we do not expect a benefit, because we believe that locating fea-
ture code is only a minor part of the comprehension process. Furthermore, we do not
expect a difference in correctness of solutions, because both versions provide the same
amount of information.

We divided our sample of 43 students into two homogenous groups regarding pro-
gramming experience (based on a preliminary version of the questionnaire in Chapter 5).
One group worked with the color version, the other group with the ifdef version of Mo-
bileMedia. We conducted the experiment in a computer lab with 50 seats, 17" TFT moni-
tors, Linux as operating system, and Mozilla as browser to present the source code, tasks,
and forms to enter the solutions. Few deviations occurred, such that participants arrived
late and were seated in another room to not disturb the others. To not jeopardize the
anonymity of participants, we did not trace the deviations to the participants. Our sam-
ple is large enough to compensate for these deviations.

We found that, for static tasks, participants of the color group were significantly faster
(on average by 34%). Thus, colors provide a benefit as expected. For maintenance tasks,
we found a significant difference for the last task, such that participants of the color group
were significantly slower (by 37%) than participants of the ifdef group. This is in contrast
to our expectation that there should be no difference. We believe this is caused by the
annotation: In this task, relevant source code was annotated entirely with red, which
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may have caused visual fatigue, such that participants had to rest their eyes more often.
This explanation is supported by comments of participants, stating that the red color for
this task was annoying. For correctness, we found no significant differences as expected.

Furthermore, we analyzed the opinion of participants regarding background colors.
Almost all participants who worked with the ifdef version estimated that they would
have performed better with the color version, whereas participants who worked with
the color version thought they would have performed worse with the ifdef version. This
holds even in the last task, in which participants of the color group were significantly
slower than participants of the ifdef group. Hence, we found a strong effect regarding
participants’ estimation that is in contrast to participants’ actual performance. Some par-
ticipants of the color group noted that they were happy to get to work with it, whereas
some participants of the ifdef group wished they had worked with the color version. This
could explain the difference in estimating the performance, because some participants
liked the color version better, which they reflected to their performance.

7.4 Experiment 2: Do Participants Use Colors?

The results of our first experiment indicate that participants like the color idea, but that
carelessly chosen colors are disturbing (as some participants noted) and can slow them
down. This indicates that different kinds of annotations might be suitable for different
tasks, and we should offer developers the opportunity to switch between them as needed
for the task at hand. Hence, in a follow-up experiment, we evaluated whether develop-
ers would use the option to switch between background colors and ifdef directives. Our
results indicate that participants prefer background colors, even if they slow them down.
We had the chance to perform this experiment twice, first in 2010, then we replicated
it with different participants with similar background in 2011. Hence, we have two in-
stances of our second experiment. Since both instances differ only in few details, we
describe them together, and present information about the replication in angle brackets,
〈like this〉.

For better overview, we present important information of this experiment in Table 7.4.

7.4.1 Objective and Material

The goals of the follow-up experiment differ from the first experiment: Rather than exam-
ining the effect of background colors on program comprehension, we evaluate whether
and how participants use the chance to switch between ifdef directives and colors as
annotations. Based on the insights from the first experiment, we state the following hy-
pothesis:

RH1: For locating feature code, participants use colors, while for closely ex-
amining feature code, participants use ifdef directives.

We used the same source code and background colors as for our first experiment.
To present the source code, we implemented a tool similar to the browser setting. In
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Context Description Section

Objective Evaluate whether participants use background colors 7.4.1
Material 5th release of MobileMedia in two versions: Java ME with

Antenna, Java ME with background-color annotation
Participants 10 〈10〉 graduate students from the University of Magde-

burg
7.4.2

Tasks Static tasks (locating feature code); maintenance tasks (lo-
cating bugs)

7.4.3

Execution One computer lab; 17" TFT; tool w/o search with two but-
tons to switch between annotations to present source code

7.4.4

Analysis Behavior of participants regarding use of background colors 7.4.5
Result Participants use colors in the beginning, but reduce their

switching behavior
7.4.6

Table 7.4: Experiment 2 in a nutshell.

addition, we provided two buttons to enable participants to switch easily between color
version and ifdef version. Our tool logged each button click with a time stamp, such that
we can analyze the behavior of participants.

7.4.2 Participants

We asked students of the 2009 〈2010〉 course Contemporary Programming Paradigms at the
University of Magdeburg, Germany to participate, which was one of multiple alterna-
tive prerequisites to pass the course. The course was very similar to that of our first
experiment, so the background of students was comparable. Additionally, two gradu-
ate students who attended that course in the fall term 2008 volunteered to participate, as
well. Altogether, our sample consisted of 10 〈10〉 participants. One week before the ex-
periment, we administered the same preliminary version of the programming-experience
questionnaire as in the first experiment. None of the participants was color blind, and 1
〈0〉was female.

7.4.3 Tasks

We used the same tasks as for our first experiment (cf. Table 7.3, including a warming-up
task (W0)). However, we changed the order of the tasks to M1, M3, S1, M4, M2, S2. We
alternated static and maintenance tasks, such that we could observe whether participants
actually switch between both representations in line with our hypothesis.

7.4.4 Experiment Execution

We booked a room with 16 seats. All computers had Windows XP as operating sys-
tem and 17" TFT screens. The experiment took place in January 2010 〈January 2011〉 in
Magdeburg instead of a regular lecture session. We gave the same introduction as for
the first experiment, with the addition that we showed how participants could switch
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W0 M1 M3 S1 M4 M2 S2

W0 M1 M3 S1 M4 M2 S2

Legend: : ifdef; : color; : 5 minutes

Figure 7.4: Experiment 2: Timeline how participants switched between textual and colored an-
notations. Top: first instance 2010; bottom: second instance 2011.

between ifdef directives and background colors. We did not provide any information on
which annotation style is most suitable for which task, so that we could observe the be-
havior of participants unbiased. Since we had a smaller sample, two experimenters 〈one
experimenter〉 sufficed to conduct the experiment. No deviations occurred.

7.4.5 Analysis

We discuss only the information necessary to evaluate our hypothesis. In Figure 7.4,
we show how participants switched between the annotation styles in each task (light
gray: ifdefs; dark gray: colors). Each row denotes the performance of a participant. For
example, if we look at the first row, for W0 (warming-up task), the according participant
switched between annotation styles (light and dark gray alternate). For all remaining
tasks, the participant used only background colors.

The lengths of the bars indicate the time participants spend with a task. For example,
the first participant needed considerable more time to solve M1 than to solve M2.

An interesting result can be seen in M4, the task, in which the target code was anno-
tated with a red background color and participants of the color group performed worse
in the first experiment. Although participants of our first experiment complained about
the background color, most participants of our follow-up experiment used mainly the
color version; only 3 of 10 〈4 of 10〉 participants spent more time with the ifdef version.

We included the warming-up task W0 (counting the number of features), because
it allows an interesting observation: All participants switched between the annotation
styles in this task. As the experiment went on, participants tend to stick with the color
version. Hence, we reject our research hypothesis.
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7.4.6 Interpretation

The results contradict our hypothesis. Based on the result of the first experiment and
on the comments of some participants that the background color in M4 was disturbing,
we assumed that participants would switch to ifdef directives when working on mainte-
nance tasks, especially in M4, in which the entire class was annotated with red. However,
most participants used the color version.

We believe that most participants did not even notice the disturbing background
color. When we observed participants during the experiment, we found that some of
them, currently working with the color version, moved close to the screen and stared
at source code with red background color. Hence, we could observe that participants
behaved like the background color was disturbing, but did not notice this consciously—
they did not think of switching to ifdefs. We could have made our participants aware
of the unpleasant background color. However, this would have biased our results, be-
cause our objective was to evaluate whether and how participants used the opportunity
to switch between ifdef directives and colors.

Thus, participants did not necessarily recognize the disturbing effect of a background
color. As a consequence, they were slowed down, such that they were as fast as the par-
ticipants of our first experiment who also had the color version (a Mann-Whitney-U test
revealed no differences between participants of this experiment and the color group of
the first experiment). This illustrates the importance of choosing suitable background
colors, because developers may not always be aware that their screen arrangement is un-
suitable. Furthermore, since we did not tell our participants when to use ifdef directives
and when to use background colors (we only showed them how they could switch), our
result indicates that developers need to be trained in using a tool that uses background
colors to highlight source code. We come back to the discussion of how to design proper
tool support in Section 7.7.

7.5 Experiment 3: Do Colors Scale?

A question that immediately arose, even before the first experiment, is whether back-
ground-color use scales to large software systems. Obvious objections are that in real-
world systems with several hundred of features, there would be considerably more colors
than a developer can distinguish and that the nesting depth of ifdef directives would be
too high to be visualized by blending colors. Hence, in a third experiment, we concentrate
on scalability. In a nutshell, we could confirm the results of our first experiment for a large
software system with over 99 000 lines of code and 346 features implemented in C, in that
we could show an improvement of program comprehension for locating feature code
when using background colors. In this section, we present the details of this experiment.

For better overview, we present the most important information in Table 7.5.

7.5.1 Objective

In this experiment, we evaluate whether background colors improve program com-
prehension in large software systems. To understand our setting, we have to understand
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Context Description Section

Objective Evaluate whether background-color usage scales to large
systems

7.5.1

Material Xenomai in two versions: C preprocessor, C preprocessor +
background colors

7.5.2

Participants 14 graduate students from the University of Magdeburg 7.5.3
Tasks Static tasks (locating features, interacting features, and

files that contain feature code); maintenance tasks (locating
bugs)

7.5.4

Execution One computer lab; 17" TFT; source code presented in pre-
decessor of FeatureCommander

7.5.5

Analysis Correctness of answers and response time 7.5.6
Result Colors speed up program comprehension in two kinds of

static tasks; no effect for maintenance tasks
7.5.7

Table 7.5: Experiment 3 in a nutshell.

human limitations on perception. First, preattentive perception is limited to only few
items (e.g., few different colors [Goldstein, 2002]). When there are too many distinc-
tive items, the perception process is slowed down considerably, because more cognitive
resources are required (e.g., to count the number of items). Second, human working
memory capacity is limited to about 7 ± 2 items [Miller, 1956]. When there are more
items to be kept in mind, they have to be memorized otherwise (e.g., by writing them
down). Third, human ability to distinguish colors without direct comparison (i.e., when
they are not shown directly next to each other) is limited to only few colors [Rice, 1991].

These limitations make a one-to-one mapping of colors to features infeasible in large
software systems. Instead, we suggest an as-needed mapping, such that only a limited
subset of colors is used at any time, which facilitates human perception. Our as-needed
mapping is based on previous investigations of occurrences of ifdef directives in source
code. First, for most parts of the source code, only two to three features appear on one
screen [Kästner, 2010]. Second, most bugs can be narrowed down to certain features or
feature combinations [Kästner, 2010]. Hence, developers can focus on few features most
of the time, and avoid limitations to perception.

Thus, we propose a customizable mapping, which we show in Figure 7.5 (we present
an extension of this tool, FeatureCommander, in Figure 7.9). We provide a default setting,
in which two shades of gray are assigned to features. Code of features located nearby in
the source-code file has a different shade of gray, such that developers can distinguish
them, but not recognize the features. Additionally, developers can assign colors to fea-
tures they are currently working with. Since they are working only with a few features
at a time, perception limits are not exceeded. Hence, our research hypothesis is:

RH2: Background colors improve program comprehension in large software
systems.
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Figure 7.5: Experiment 3: Screenshot of tool infrastructure of the color version.

Large means that the source code consists of at least 40 000 lines of code [von
Mayrhauser and Vans, 1995] and considerably more than 7±2 features, such that humans
cannot distinguish colors without direct comparison, if we used a one-to-one mapping
of colors to features.

Regarding the opinion of our participants, we assume that they like background col-
ors also in large software projects. Hence, our last research hypothesis is:

RH3: Participants prefer background colors over ifdef directives in large
software systems.

7.5.2 Material

To evaluate our hypotheses, we replace MobileMedia (5 000 lines of code, 4 features) with
Xenomai3, a large real-time extension for Linux implemented in C. It consists of 99 010
lines of code including 24 709 lines of feature code and 346 different features. Xenomai
can be configured for different platforms and provides numerous features, such as real-
time communication and scheduling. There are a number of projects using Xenomai for

3http://www.xenomai.org

http://www.xenomai.org
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System LOC NOFC LOF (%) AND SD TD ND

Apache 212 159 1113 44 426 (20.9) 1.17 5.57 1.74 5
FreeBSD 5 902 461 16 135 841 360 (14.3) 1.13 10.48 2.51 24
Linux 5 985 066 9 093 642 304 (10.7) 1.09 4.66 1.68 6
Solaris 8 238 178 10 290 1 630 809 (19.8) 1.12 16.17 2.72 8
SQLite 94 463 273 48 845 (51.7) 1.29 7.59 1.67 5
Sylpheed 99 786 150 13 607 (13.6) 1.06 6.31 1.38 6
Xenomai 99 010 346 24 709 (25.0) 1.21 6.07 1.44 5
LOC: Lines of code; NOFC; Number of features; LOF: Lines of feature code; AND: Average nest-
ing depth; ND: maximum nesting depth; SD: Occurrences of features in different ifdef expres-
sions; TD: tangling degree of expressions in ifdef directive.

Table 7.6: Comparison of complexity of different systems.

real-time behavior, for example, RT-FireWire4, USB for Real-Time5, and SCALE-RT Real-
time Simulation Software6.

To ensure the comparability of Xenomai with other real-world systems, we compared
it with Apache, FreeBSD, Linux, Solaris, SQLite, and Sylpheed. To this end, we used
cppstats7, which computes several metrics to analyze the complexity of ifdef directives.
In Table 7.6, we summarize the metrics [Liebig et al., 2010]. The systems differ in lines of
code (LOC) and number of features (NOFC), some in the same range (e.g., SQLite), some
larger (e.g., Linux) than Xenomai. Regarding the use of ifdef directives, Xenomai has
the second highest percentage of annotated code (LOF) and the second highest average
nesting depth (AND). The scattering degree (SD) indicates how often a feature occurs
in different ifdef expressions, whereas the tangling degree (TD) indicates the number of
different features in an ifdef expression. In both metrics, Xenomai shows similar values
as Apache, Linux, SQLite, and Sylpheed. The same counts for the maximum nesting
depth (ND).

We did not base this experiment on Java as the other experiments, because it was
rather difficult to find a large-scale preprocessor-based software system implemented in
Java. The largest we are aware of is ArgoUML, which consists of more than 100 000 lines
of code, but has only 8 features [Couto et al., 2011]. We could have developed our own
system in Java, but this would have been very time consuming and could have easily lead
to a biased program (in that we design the system such that it confirms our hypotheses).
Since there are numerous systems implemented in C [Liebig et al., 2010], we used an
existing large-scale system, even though it was in a different language.

To present the source code to our participants, we implemented our own tool infras-
tructure including a source-code viewer using standard syntax highlighting and back-
ground colors (cf. Figure 7.5). We provided a file-browsing component, a list of all fea-
tures as tree structure derived from Xenomai’s build system, and a menu to load pre-
defined color assignments. The file-browsing component had horizontal bars for each

4http://rtfirewire.dynamized.com
5http://developer.berlios.de/projects/usb4rt
6http://www.linux-real-time.com
7http://fosd.de/cppstats

http://rtfirewire.dynamized.com
http://developer.berlios.de/projects/usb4rt
http://www.linux-real-time.com
http://fosd.de/cppstats
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folder and file, which indicates whether and how much feature code a folder or file con-
tains.

In Xenomai, else and elif directives occurred.8 We decided to assign the same color
for each else and elif directive as to the according ifdef directive for two reasons. First, the
code is still relevant for the same feature, because the selection of a feature has an effect
on all accordingly annotated code fragments. This way, we can visualize that the same
feature influences the annotated code fragments. Second, we did not want to introduce
more colors than necessary because of the limits of human perception. Annotating each
else and elif directive in a different color would exceed the limit of human perception
faster. In Section 7.7, we present additional concepts to visualize nested ifdef directives
as well as else and elif directives, which we did not evaluate in this experiment.

To ensure an optimal color selection for each task and prevent participants from hav-
ing to search their own preferred color assignment, we defined a set of colors for each
task. We ensured an optimal color selection by having consistent color assignments
across tasks (i.e., a feature that occurred in more tasks has the same or similar color in all
tasks) and by having colors that participants can distinguish within a task without direct
comparison [Rice, 1991]. We chose more transparent colors than in the first two experi-
ments and additionally allowed participants to adjust the intensity of background colors
with a slider. In this experiment, we displayed the ifdef directives in the color version (in-
stead of removing them as in the first experiment), because in the previous experiments,
we showed a benefit of pure background colors. Furthermore, to scale background-color
use to large systems, we do not have a one-to-one mapping of colors to features, so we
need the textual information to tell to which feature a colored code fragment belongs.
Additionally, we do not blend colors of nested ifdef directives, because we did not want
to introduce more colors than necessary. Instead, we always display the color of the in-
nermost feature and use vertical bars next to the source-code editor to visualize nested
ifdef directives.

In addition to the color version, we designed another version, in which we removed
everything associated to colors (ifdef version). Since the source code was large, we pro-
vided search functionalities for both versions.

In a second window, we presented the tasks to participants and provided text fields
for their answers. Furthermore, to support participants in keeping track of time and
preventing them from getting stuck on a task, a pop up appeared every 15 minutes to
notify participants about the time that had passed.

As in the previous experiments, we gave participants paper-based questionnaires to
collect their opinion (i.e., estimation of difficulty, motivation, and performance with the
other version).

7.5.3 Participants

Our sample consisted of 9 master’s and 5 PhD students from the University of Magde-
burg, Germany. The master’s students were participants of the 2010 course Embedded
Networks, in which they completed several assignments regarding operating systems and
networks, such as the implementation of clock synchronization of different computers.

8Code of an else directive is selected when code of an according ifdef directive is not selected.
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They were offered to omit one implementation assignment as reward for participating
in the experiment. The PhD students were experienced in the operating and embedded-
systems domain and invited via e-mail. They participated without reward.

We measured programming experience with a preliminary version of the question-
naire described in Chapter 5. All participants were male; none was color blind. As in the
first experiment, we created two comparable groups regarding programming experience
according to the value of the questionnaire. Additionally, we matched both groups ac-
cording to the familiarity with Xenomai, because some participants had some experience
with the source code of Xenomai.

7.5.4 Tasks

In this experiment, we focused on static tasks, because we found in our first experiment
a benefit of background colors for static tasks, but not for maintenance tasks. However,
we included two maintenance tasks to control whether our findings still hold.

We had 10 tasks: 2 warming-up tasks (W1, W2; not included in the analysis), 6 static
tasks (S1–S6), and 2 maintenance tasks (M1, M2). We had three different types of static
tasks, two tasks per type:

For each type, we prepared two tasks. As example, we present one task for each type:

S1: In which files does feature CONFIG XENO OPT TATS occur?

The feature occurred in 9 files that were distributed in two folders: One include folder
that contained the header files, and another folder that contained the c-files. In this task,
the feature was annotated with a yellow background color. Hence, participants with the
color version only had to look for a yellow background color in the software project.

S2: Do features CONFIG XENO OPT PRIOCPL and CONFIG XENO OPT
SCHED SPORADIC occur together (i.e., nested) somewhere? If yes, in which
files? At which lines does the inner feature start and end?

Both features were nested in the file xenomai/ksrc/nucleus/sched-sporadic.c, once in the
middle, once near the end of the file. Nested ifdef statements are especially difficult to get
right, which is why we included this type of task. We assigned yellow and blue to both
features, because these colors are clearly distinguishable. To solve this task, participants
with the color version had to look for a joint occurrence of yellow and blue, and make
sure that the according ifdef statements are nested, not just used subsequently. In the
second task of this type, the nesting occurred only at one position.

S3: Which features occur in file xenomai/ksrc/nucleus/sched.h?

In this task, participants had to identify twelve different features. Hence, participants
with the color version had to look for twelve different colors. This is an important task to
get an overview of a file.

For maintenance tasks, we proceeded as for the first experiment. That is, we intro-
duced bugs into the source code and gave participants a typical bug description that
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included the feature selections in which the bug occurred. We consulted an expert in C
and Xenomai to make sure that the bugs were typical for C programs. As example, we
present the first maintenance task:
M1: If the PEAK parallel port dongle driver (XENO DRIVERS CAN SJA1000

PEAK DNG) should be unloaded, a segmentation fault is thrown.
The problem occurs when we select the following features:

CONFIG XENO DRIVERS CAN
CONFIG XENO DRIVERS CAN SJA1000
CONFIG XENO DRIVERS CAN SJA1000 PEAK DNG

We omitted the check whether a variable was null. Instead of if (ckfn && (err =

ckfn(block)) != 0), the code said if ((err = ckfn(block)) != 0). If ckfn is ac-
cessed when it is null, a segmentation fault is thrown.

We presented the tasks in two phases. In the first phase, participants completed the
tasks W1, S1, S2, S3, M1, and in the second phase, the tasks W2, S4, S5, S6, M2. We used a
within-subjects design with two groups, such that each group works with both versions
of the source code. Group A worked with the color version in the first phase and switched
to the ifdef version in the second phase, whereas Group B worked with the ifdef version
in the first phase and switched to the color version in the second phase. In each phase,
both groups worked with the same tasks in the same order. Hence, Group A solved
tasks W1, S1, S2, S3, and M1 with the color version, and W2, S4, S5, S6, and M2 with the
ifdef version (vice versa for Group B). Corresponding tasks of both phases (i.e., W1/W2,
S1/S4, S2/S5, S3/S6, M1/M2) are comparable (e.g., the same number of features had to
be entered as solution). This allows us to compare the results within phases (between
groups), and between phases (within groups).

7.5.5 Experiment Execution

The experiment took place in June 2010 instead of a regular lecture session in a room with
sufficient working stations (Windows XP) with 17" TFT displays. We gave an introduc-
tion, in which we explained the procedure of the experiment and how to use the tool.
After the introduction, participants started to work on their own. When participants fin-
ished the last task of a phase, we gave them the usual paper-based questionnaire. Three
experimenters checked that participants worked as planned. No deviations occurred.

7.5.6 Analysis

Descriptive Statistics

As we did in the first experiment, we examined response times and correctness of tasks.
In Figure 7.6, we show the response times of our participants. For the first two static
tasks (S1 and S2), Group A (color version) is faster than Group B: In S1, Group A needed
only 3 minutes, compared to 6.6 minutes of Group B (a difference of 55%). In S2, Group
A needed 5.3 minutes, and Group B 10.3 minutes (speed up by 49%). Furthermore,
maintenance tasks needed considerable more time (note the different scale in Figure 7.6b).
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Figure 7.6: Experiment 3: Response time of participants in minutes. Highlighted boxes show
groups who worked with the color version.

In Figure 7.7, we show the correctness of answers. We omitted maintenance tasks in
Figure 7.7, because we could not regard any of the answers as correct, although most
participants narrowed the problem down to the correct file and method. We discuss this
issue in Section 7.8. In S1, the difference is the largest, such that participants of Group B
(without colors) performed better than participants of Group A.

In Figure 7.8, we present the opinion of participants, which we assessed after each
phase. In the first phase, participants of Group A thought they would have performed
worse with the ifdef version (medians for each task range from 2 to 3), whereas par-
ticipants of Group B thought they would have performed better with the color version
(medians for each task vary from 3 to 5). In the second phase, this estimation was re-
versed, such that participants of Group A thought they would have performed better
with the color version (medians of 4 in each task), and vice versa for Group B (medians
of 2 in each task). For difficulty, in four static tasks (S1: locating files of a feature; S2, S5:
locating nested ifdefs; S3: locating all features in a file) and one maintenance task, the me-
dian is the same. For the remaining tasks, the median differs by 1. Regarding motivation,
participants rated their motivation more heterogeneously. The median shows at least
a medium level of motivation. For the first maintenance task (M1), the motivation for
Group A (with colors) was very high, compared to Group B with a medium motivation.

In addition, we asked what version participants prefer: 12 participants liked the
color version better and 13 said the color version is more suitable when working with
preprocessor-based software. One participant did not answer any of both questions.
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Figure 7.8: Experiment 3: Box plots of participants’ opinion.

7.5.6.1 Hypotheses Testing

To evaluate our research hypotheses, we analyze correctness and response time. We start
with evaluating the response times of participants in static tasks (RH2), for which we
make several comparisons: between groups (Group A vs. Group B) and within groups
(Group A (first phase) vs. Group A (second phase)) and (Group B (first phase) vs. Group
B (second phase)). Since we make 3 comparisons on the same data, we need to adjust the
significance level, for example, with a Bonferoni correction [Anderson and Finn, 1996].
In our case, we have to divide the significance level by three (because of 3 comparisons),
which leads to a significance level of 0.017 to observe a significant difference (instead of
0.05).

We start with Group A vs. Group B. We applied t tests for independent samples, since
the response times are normally distributed. In this experiment, we included incorrect
answers, because our sample was too small to delete them. We discuss this in Section 7.8.
We only observed significant differences for tasks S1 (p value: 0.001) and S2 (p value:
0.017). Hence, only for the first two tasks, participants who worked with the color version
(Group A) were faster. In the second phase, we did not observe a benefit of background
colors for program comprehension.
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Next, we compare the response times of corresponding tasks between both phases
(within groups), that is, S1 vs. S4, S2 vs. S5, S3 vs. S6, and M1 vs. M2. For Group A, we
did not find any significant differences. However, for Group B, we observed a significant
speed up for S4 (compared to S1; p value: 0.007) and S5 (compared to S2; p value: 0.011).
Hence, when adding background colors, the performance of according participants in-
creased for two tasks. On the other hand, removing background colors does not seem
to affect performance, because participants of Group A were not significantly slower in
the second phase. Hence, the results regarding response time speak both in favor of and
against our research hypothesis.

Regarding correctness of answers, we conducted Fisher’s exact test, because expected
frequencies are smaller than 5. We did not find any significant difference (p values range
from 0.133 to 0.500)

Finally, we compare the opinion of participants (RH3). A Mann-Whitney-U test re-
veals that the difference regarding estimation of performance with the other version is
significant for all tasks except M1, the first maintenance task. To compensate for our
small sample, we used an adapted table for the U distribution to decide whether a differ-
ence was significant [Nachar, 2008]. For difficulty, participants of Group B rated S4 and
S5 significantly easier than participants of Group A. This is also reflected in the perfor-
mance, such that participants of Group B are faster in these tasks (S4 vs. S1, S5 vs. S2).
For motivation, we observe a significant difference only for the first maintenance tasks,
such that participants of Group A were more motivated to solve this task compared to
participants of Group B.

7.5.7 Interpretation

RH2 Background colors improve program comprehension in large software systems
Our data can be interpreted both in favor of and against this hypothesis. However, since
we did not specify that colors help only for certain kinds of tasks, we cannot accept this
hypothesis. When comparing the response times between groups, we observed signifi-
cant differences only in the first phase for two static tasks, such that participants working
with the color version were up to 55% faster. In the second phase, we did not observe
any significant differences between groups. However, we observed that when we add
colors in the second phase, the comprehension process of according participants (Group
B) got faster by up to 55%. For maintenance tasks, we did not observe a significant
difference in response time. Hence, we found that background colors improve program
comprehension in preprocessor-based software systems in two static tasks.

For the third kind of static tasks (i.e., locating all features in a file), we did not observe
significant differences. A possible reason is that in these tasks, the number of relevant
features was 12, which means that participants had to work with 12 different colors. Al-
though we selected colors to be clearly distinguishable without direct comparison, 12
might be too much and exceed the limits of human perception (cf. Section 7.5.1). Addi-
tionally, the working memory capacity of 7±2 is exceeded with 12 features. For the other
tasks, only 1 (S1, S4) or 2 (S2, S5) features had to be kept in mind. However, since we
only combined 12 features with the third kind of static tasks, we can only theorize why
this result occurred.
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Furthermore, none of our participants solved a maintenance task correctly. The most
likely explanation is that these tasks were too difficult given the time limit of the experi-
ment. We discuss this problem in more detail in Section 7.8.

To sum up, background colors can help to familiarize with a large software system, es-
pecially to get an overview of the files of a feature or of nested ifdef directives. When we
add background colors in the second phase, the performance of according participants
increases. When we remove colors, it has no effect on the performance of according par-
ticipants. Our observations align with the results of the first experiment that background
colors can improve program comprehension in static tasks.

RH3 Participants prefer background colors over ifdef directives in large software sys-
tems We can accept this research hypothesis, because we found a preference for back-
ground colors. Participants who worked with the color version estimate they would per-
form worse without colors, even when we observed no difference in performance. We
found the same effect in our first experiment. Additionally, all participants rate colors
as more suitable when working with preprocessor-based software systems, and all but
one participant preferred colors over no colors (except one participant who answered
neither of both questions). This is also in line with the first two experiments, in which
background colors were rated positively.

Hence, in large preprocessor-based systems, background colors have a potentially
positive impact on program comprehension in terms of locating feature code. This means
that we can circumvent human limitations regarding (preattentive) color perception and
working memory capacity. Instead of a one-to-one mapping, we used an as-needed
mapping based on observations about the occurrences of ifdef directives in source code,
which scales to large software systems with over 300 features.

7.6 Summary of the Experiments

All three experiments analyzed how background colors affect program comprehension
in preprocessor-based software. The focus of the first experiment was on medium-sized
preprocessor-based systems, the focus of the second experiment on the behavior of par-
ticipants using medium-sized systems, and the focus of the third experiment was on
program comprehension in large systems. In Table 7.7, we summarize the results of all
three experiments to give a better overview.

Interpreting the results of all three experiments together yields the following conclu-
sions:

1. Carefully chosen background colors improve program comprehension in prepro-
cessor-based software systems in terms of locating feature code, independently of
size and programming language of the underlying system

2. Colors with a high saturation can slow down the comprehension process in terms
of bug fixing

3. Participants like and prefer the color idea
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Exp. Source code LOC Features Result

1 MobileMedia 5 000 4 Colors speed up static tasks; no effect
or slow down for maintenance tasks

2 MobileMedia 5 000 4 Participants are unaware of the poten-
tially negative effect of colors

3 Xenomai 99 010 346 The positive effects found in Experi-
ment 1 scale for large systems

LOC: Lines of code.

Table 7.7: Summary of main findings for all three experiments.

First, we could show that carefully chosen background colors lead to a performance
increase of participants for static tasks. This generalizes to medium-sized and large soft-
ware systems. Additionally, we observed a performance speed up with both Java and
C. Although we showed the positive effect only for two different sizes and two differ-
ent programming languages, we expect similar positive effects also with small software
systems (because limits to human perception are less stressed) and other programming
languages that are similar to Java and C.

Second, we found that highly saturated background colors can slow down the com-
prehension process during bug fixing. We believe that visual fatigue causes this slow
down. However, when given the choice, participants do not seem to be aware that a
background color is disturbing and slowing them down. Nevertheless, for locating fea-
ture code, we did only find positive (or no) effects of background colors. Hence, depend-
ing on the task, the saturation of colors may play an important role. Thus, we suggest that
source-code editors using background colors provide the option to adjust the saturation
of background colors.

Third, the majority of our participants favored background colors. This is encourag-
ing, because a new concept that is not accepted by the ones who are supposed to use it
will hardly have a chance in practice. Hence, the acceptance of background colors is an
important positive result.

However, we have to be careful with our conclusions. We cannot state that back-
ground colors are always helpful in every situation in which preprocessors are used to
implement variability. Instead, we have to keep in mind the context of our experiments.
We recruited mostly students for our experiments with considerably less experience than
experts, who spent years on developing and maintaining preprocessor-based software
systems. Furthermore, we only used two different software systems. Our results only
apply to similar software systems, although we have evidence that many open-source
systems, such as FreeBSD, Linux, Solaris, SQLite, and Sylpheed have similar characteris-
tics. If the nature of a software system is different, we can only theorize how background
colors affect the comprehension of preprocessor directives. Hence, future experiments
with different experimental contexts are necessary to build a more complete understand-
ing of the effect of background colors on program comprehension in preprocessor-based
software systems.
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To sum up, all results encourage us to use background colors more often in source-
code editors. Hence, we developed a prototype FeatureCommander, which we present
next.

7.7 Toward Better Tool Support

Our experiments were based on a relatively simple concept of background colors. Specif-
ically, we based our work on CIDE [Kästner et al., 2008], a tool that uses background
colors to visualize feature code. With our experiments, we gained useful insights into
tool requirements for preprocessor-based software development. Based on these insights,
including comments and suggestions from participants about functionalities, and by con-
sulting similar tools (e.g., Spotlight) and literature on software visualization (e.g., Diehl
[2007]), we implemented the tool FeatureCommander9.

FeatureCommander is a prototype of an integrated development for the development
of preprocessor-based software systems. It offers multiple visualizations to support pro-
gram comprehension. The basic characteristic of FeatureCommander is the consistent
use of colors throughout all visualizations. In Figure 7.9, we show a screenshot of Fea-
tureCommander displaying source code from our third experiment. We refer to the num-
bers in Figure 7.9 when explaining the according concepts in the next paragraphs.

To assign colors to feature, we provide two different options: First, users can assign
colors to features by dragging a color from the color palette (1) and dropping it on a
feature in any of the views.10 For efficiency, users can also automatically assign a palette
of colors to multiple features (2). The automatic color assignment chooses colors such
that they are as different as possible in the hue value of the HSV color model [Smith,
1978]. Furthermore, color assignments can be saved (3) and loaded (4), so that developers
can easily resume their work. This way, we support an as-needed mapping of colors to
features. When no color is assigned to a feature, it is represented by a shade of gray in all
visualizations.

Using the color concept, we address the restricted human working memory capac-
ity and the restricted human ability to distinguish colors without direct comparison (cf.
Section 7.5.1). First, with the customizable color assignment to features and the default
setting (shades of gray), we support the limited working memory capacity. Developers
can select the features that are relevant for their task at hand, which is typically in the
range of 7±2. Hence, developers can immediately recognize whether they are looking at
a relevant feature, because it is colored, whereas the non-relevant features do not stand
out; they are gray. Second, developers have to tell only a few different colors apart, which
is well within the human range to distinguish colors without direct comparison. Further-
more, we support developers in switching between tasks with different features, because
color assignments can be easily saved and loaded.

9http://fosd.de/fc. On the website, there is also a video demonstrating the use of FeatureCom-
mander. This video shows all functionality of FeatureCommander, not the reduced set we used in the third
experiment. FeatureCommander with the reduced set is also available at the website.

10To recognize feature code, FeatureCommander uses a file that describes where an ifdef directive starts
and where it ends.

http://fosd.de/fc
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Figure 7.9: Screenshot of FeatureCommander. The numbers designate concepts we explain in
detail in the text.

Similar to other integrated development environments [Kästner et al., 2009b; Stengel
et al., 2011], we provide different views: source-code view, explorer view, and feature-model
view. In the source-code view (5), the background color of source-code fragments indicates
to which features fragments are related; according ifdef directives are also shown. To
compromise between code readability and feature recognition, users can adjust the opac-
ity of the background color (6). This way, we address that too highly saturated colors
negatively affect program comprehension.

If a code fragment is assigned to multiple features (i.e., nested ifdef directives), we
show only the background color of the innermost feature (7). The other features are
visualized in the sidebars on either side of the source-code view, which visualize features
as bars, ordered by the nesting hierarchy (8, 9). The right sidebar gives an overview of
the whole document (8), the left sidebar shows the hierarchy of features of the currently
displayed source code (9). Both sidebars are interactive, such that clicking them shows
the according code fragment immediately. We implemented both sidebars, because it
further supports users in locating a code fragment (although we did not evaluate the
impact on program comprehension).

With our concept to deal with nested ifdef directives, we address both limitations of
human perception: limited working memory capacity and limited ability to distinguish
colors without direct comparison. First, when developers are working with a set of fea-
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tures, they do not have to memorize additional colors, which would occur if we blended
the colors. Second, the limited capability to distinguish colors without direct comparison
is not exceeded, since the number of colors is not larger than the number of currently
relevant features. In addition, the sidebars allow developers to navigate efficiently to
feature code.

In the explorer view (10), users can navigate the file structure and open files. Files
and folders are represented by their name and horizontal boxes, in which we visualize
whether a file/folder contains feature code or not: If a file/folder does not contain any
feature code, we leave the horizontal box empty (11). If a file/folder does contain feature
code, we display vertical bars of different colors. When a feature has no color assigned,
we use a shade of gray to indicate the occurrence of feature code (12). To allow developers
to distinguish subsequent features without an assigned color, we use alternating shades
of gray. When a feature has a color assigned, we show the according color in the explorer
view (13). Furthermore, the amount of feature code in a file/folder is indicated by the
length of each vertical bar. For example, if half a file contains feature code, then the
horizontal box is filled half with vertical bars.

By using a visual representation to highlight files/folders, we allow developers to
efficiently get an overview of a software system. They immediately recognize whether a
file/folder contains feature code and whether the feature code is relevant for their current
task. By using alternating shades of gray in the default setting, we allow developers
to recognize the presence of different features in a file/folder, including the amount of
feature code, without opening it.

To further support the developer in navigating in a large software system, we provide
two tree representations of the project. One ordered according to the file structure, as
displayed in Figure 7.9 (10). The other representation is ordered by features (14). For each
feature, the files and folder hierarchies are displayed, including the horizontal boxes and
vertical bars indicating the amount of feature code in a file/folder. This way, if developers
need to get an overview of all files of a feature, they just activate the feature representation
of the explorer view and can see the according files at one glance. In both representations,
tool tips show the features of a file/folder.

With the representation ordered by features, we support developers in getting an
overview of a software system. This way, they immediately recognize the files/folders,
in which a feature is defined, without having to open any of them.

Finally, in the feature-model view (15), the feature model is shown in a simple tree lay-
out. Features that are currently not of interest to developers can be collapsed. Colors can
be dragged and dropped on features, as well as deleted. This helps developers to quickly
locate a feature relevant for the current task and assign a color. After color assignment, all
other views of FeatureCommander are updated with the assigned colors, so developers
can efficiently locate feature code in files and folders of all other views.

FeatureCommander addresses the restricted human working memory capacity and
the restricted human ability to distinguish colors without direct comparison. Both hu-
man limitations pose problems to a scalable use of background colors in large software
systems. Developers can assign colors to features as needed. Since they typically work
with only few features at the same time, we do not exceed working memory capacity or
ability to distinguish colors. Furthermore, tool tips in the explorer view and source-code
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view as well as assigned colors in the feature-model view support developers: When
they forgot or cannot tell to which feature a color belongs, they can easily look it up.

In addition to the human-related problem, we address the problems of preprocessor
statements: Long annotated code fragments, nested statements, and similarity to non-
preprocessor code. First, since we highlight code fragments with background colors, ifdef
and according endif statements can be easily spotted. Furthermore, we display vertical
bars left and right of the source-code editor, which visualize the features of the currently
displayed code fragment (left) or the features scaled to the complete file (right). Hence,
the beginning and ending of each feature can be spotted easily. Second, we visualize
nested statements. We always show the color of the innermost feature and the nesting
hierarchy with the vertical bars, which allow users to easily identify the location of nested
features in a file. Third, since background colors clearly distinguish from source code
and colors are processed preattentively, FeatureCommander helps to locate feature code
at first sight.

To sum up, with FeatureCommander, we provide a tool that support developers and
researchers in working with preprocessor-based software systems. So far, we found that
one other researcher group uses FeatureCommander [Zhang, 2012].

7.8 Threats to Validity

In this section, we discuss threats to validity for all three experiments. We summarize the
threats, because they are similar for all experiments, and because we minimized some
threats to external validity by conducting three similar experiments. Internal validity
is threatened by the deviations, by the programming-experience questionnaire, and by
keeping wrong answers in the response-time analysis. Furthermore, for the third experi-
ment we could not rate any of the answers for the maintenance tasks as correct. External
validity is threatened by maximizing internal validity in the first experiments.

7.8.1 Internal Validity

Some threats to internal validity are caused by deviations that occurred (described more
detailed in Feigenspan [2009]). For example, a few participants arrived late, were seated
in another room, received a personal introduction to the experiment, and could not be
observed during the complete experiment. However, to assure anonymity of our partic-
ipants, we did not retrace the deviations to the participants. Our sample is large enough
to compensate for the deviations. They may have intensified or weakened the differences
we observed, but they were too small compared to our large sample to significantly bias
our results.

Another threat to internal validity is caused by the programming-experience ques-
tionnaire we used. Since these experiments were conducted before we developed the
questionnaire presented in Chapter 5, we cannot be sure how well we measured pro-
gramming experience. However, we constructed the questionnaire with the help of pro-
gramming experts and a literature survey. Furthermore, the questionnaire was similar to
the one we developed, so we measured programming experience well enough.
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Additionally, we did not correct the response times for wrong answers for the second
and third experiment. For the second experiment, this does not pose a threat, because we
were not interested in response times, but in the behavior of participants. For the third
experiment, our sample was too small to omit response times for wrong answers. To
evaluate whether wrong answers might threaten the validity of our results, we checked
the log data and response times for indications of biased results. We found no indication
of bias in our data (i.e., wrong answers often missed only one or two features and the re-
sponse times did not deviate considerably toward zero), so the threat caused by response
times for wrong answers is negligible.

One problem only of the third experiment is that we could not rate any solution
for maintenance task as correct. However, participants often named the correct file and
method, which indicates that if participants had more time, they might have succeeded
eventually. We believe that the realistic nature of the maintenance task (ensured by an
expert on C and Xenomai) was too difficult for the time constraint and participants’ ex-
pertise, despite pretests. Furthermore, our primary focus was static tasks. Thus, this
threat does not bias our results.

7.8.2 External Validity

In the first experiment, we maximized internal validity to feasibly and soundly measure
the effect of different annotations on program comprehension in pre-processor-based
software systems. Thus, we deliberately accepted reduced external validity as tradeoff
for increased internal validity. In the two follow-up experiments, we increased external
validity by using different color settings, material, and more experienced participants.

In the first two experiments, we selected colors that are clearly distinguishable for
participants. If we chose other colors (e.g., less saturated), we could have received dif-
ferent results (e.g., no significant differences for the last maintenance task). However,
we wanted to make sure that colors are easily perceived and distinguished by partici-
pants. In our third experiment, we used different color settings to generalize our results
regarding the use of colors and find optimal colors for highlighting feature code. Thus,
we minimized the threat caused by color selection.

Another important facet is the scalability of colors to a large number of features. For
the first two experiments, we had only four features, which is few enough that for a
one-to-one color assignment, participants can discriminate different colors without direct
comparison. To evaluate whether background-color use scales, we conducted the third
experiment. Since we could confirm the benefit of background colors, we minimized this
threat.

7.9 Applying our Framework

How could our framework helped us for our experiments? First, the overview of con-
founding parameters would have supported us in the planning phase of the experiment,
such that we could have consulted the list and then decided for each parameter whether
it is important and how we could have controlled it. To demonstrate the feasibility of our
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Parameter Control technique Measured/Ensured
How? Why? How? Why?

Personal parameters
Color
blindness

Constant Large bias
on result

Asked
participants

Reliable

Domain
knowledge

Constant Ensure same com-
prehension process

Asked
participants

Reliable

Programming
experience

Matching Major confound Questionnaire Reliable

Experimental parameters
Attitude
toward
study object

Analyzed
afterwards

Changes during ex-
periment

Questionnaire Reliable

Familiarity with
study object

Constant Reliable Participants of
same course

Have same
familiarity

Process
conformance

Observed
participants

Reliable Reminded partici-
pants to follow in-
structions

Reliable

Table 7.8: Selection of confounding parameters for presented experiments.

suggestion to present confounding parameters, we show the most important confound-
ing parameters of all three experiments in Table 7.8. For example, we controlled for color
blindness by keeping it constant. We selected this control technique, because colors blind-
ness is rare in the population, so our results are applicable to a large part of the sample;
thus, we do not limit external validity to much. To measure it, we asked participants
whether they are color blind, because it is reliable and easy to apply. For programming
experience, we applied matching, because it is the most important confounding param-
eter. We could not use it as independent variable, because we do not have the resources
to recruit expert programmers. To measure it, we applied a questionnaire (i.e., a pre-
liminary version of our questionnaire), because it is a reliable technique. Of course, it
is subjective what parameters are most important; we believe that if we ignored any of
these parameters, our results would have been significantly biased. In alignment with
our recommendation, we present all confounding parameters in Appendix 10.2.

Second, we developed a preliminary version of the programming-experience ques-
tionnaire, for which we had to consult programming experts and literature to create the
questionnaire, which took us some time. If we already had the questionnaire, we could
have completed the planning phase of the experiment faster.

Third, PROPHET would have been very valuable for us. For the first experiment,
we used a browser to present source code and created web pages for each source-code
file, ensuring syntax highlighting and an equivalent to a package explorer. Furthermore,
since participants were not allowed to use the search, we had to observe and remind par-
ticipants to follow these instructions. For the second experiment, we implemented our
own tool infrastructure to allow participants to switch between annotations. For the third
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experiment, we implemented another tool infrastructure for the scalable color concepts.
For both tools, we again had to implement several functionality, such as syntax highlight-
ing and a package-explorer equivalent. If we could have extended PROPHET instead,
such that it supports highlighting source code with background colors, we would have
saved a considerable amount of time.

7.10 Related Work

In literature, the C preprocessor is often heavily criticized. Numerous studies discuss
the negative effect of preprocessor use on code quality and maintainability (e.g., Adams
et al. [2008]; Ernst et al. [2002]; Favre [1995, 1997]; Krone and Snelting [1994]; Spencer and
Collyer [1992]). However, researchers have also explored different strategies to deal with
these problems.

One group of approaches extracts structures from the source code (e.g., nesting, de-
pendencies, and include hierarchies) and visualizes them in a separate view [Krone and
Snelting, 1994; Pearse and Oman, 1997; Spencer and Collyer, 1992]. We follow this line
of work and use similarly simple structures, but we focus on supporting developers di-
rectly in working with the annotated source code and integrate a visual representation of
annotations with the underlying source code.

The model editors fmp2rsm [Czarnecki and Antkiewicz, 2005] and FeatureMapper [Hei-
denreich et al., 2008] allow users to annotate model elements to generate different model
variants. Both tools can represent annotations with colors. The tool Spotlight [Coppit
et al., 2007] uses vertical bars in the source-code editor to represent annotations, which
are more subtle than background colors. Spotlight aims at improving the traceability of
scattered concerns, which are represented by different colors. SeeSoft [Eick et al., 1992]
represents files as rectangles and source-code lines as colored pixel lines. The color is an
indicator for the age of the according source-code line. In contrast to our work, the in-
fluence of visualizations of these tools on program comprehension has not been assessed
empirically.

In addition to visualizations, also views on configurations have been explored, which
show only part of the feature code and, hence, reduce complexity [Atkins et al., 2002;
Chu-Carroll et al., 2003; Hofer et al., 2010; Kästner et al., 2008; Singh et al., 2007]. A
view on a variant or a view on a feature displays only feature code of selected features
and hides all remaining code. Some tools even hide annotations completely, such that
developers work on only one variant and may not even be aware of other variants or
features [Atkins et al., 2002]. In an analysis of the change history of a large telephone
switching software system, Atkins and others showed a productivity increase of 40%,
when developers work with views provided by the Version Editor. However, hiding
feature code may not always be feasible: For example, when code of a hidden feature
shares code with a feature in which developers fix a bug, they might introduce bugs into
the hidden feature code without knowing it [Ribeiro et al., 2010]. In this case, developers
need the context of the complete software system to fix a feature-specific bug. Hence,
views on source code and background colors complement each other for different tasks.
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Furthermore, a severe problem for many approaches is precise fact extraction from
unpreprocessed C code, especially if we want to reason not only about the preproces-
sor directives, but also about their combination of C code. Many researchers attempted
analysis and rewrite systems for unpreprocessed C code [Aversano et al., 2002; Baxter
and Mehlich, 2001; Garrido and Johnson, 2005; Hu et al., 2000; Livadas and Small, 1994;
Overbey and Johnson, 2009; Tartler et al., 2011; Vidács et al., 2004]. For example, Ernst
and others identify problematic patterns and quantify them in a large code base [Ernst
et al., 2002], Tartler and others search for code blocks that are dead in all feature con-
figurations [Tartler et al., 2011], and Hu and others use control-flow graphs to analyze
the inclusion structure of files [Hu et al., 2000]. However, all these approaches aim not
directly at improving program comprehension of developers, but form underlying mech-
anisms that can be used to build tools.

Another way to overcome understanding problems caused by preprocessors is to
abandon them in favor of more disciplined approaches, such as feature-oriented pro-
gramming [Prehofer, 1997] and aspect-oriented programming [Kiczales et al., 1997],
or syntactic preprocessors such as ASTEC [McCloskey and Brewer, 2005]. Several re-
searchers investigated automated refactorings [Adams et al., 2009; Kästner et al., 2009a].
However, preprocessors are still common in practice and the vast amount of legacy code
will not disappear soon. Hence, there is still significant need for tools like ours that
support developers when forced to deal with legacy code.

Finally, the idea of using colors to support a developer is not new. Early empiri-
cal work was published in 1986 [Rambally, 1986]. In this experiment, Rambally found
that annotating source-code fragments with colors according to their functionality im-
proves program comprehension, compared to a control-structure color-coding scheme
(e.g., loops, if-then-else statements), and no colors at all. Furthermore, color use for vari-
ous tasks is evaluated by several research groups, for example, highlighting source code
for error reporting [Oberg and Notkin, 1992] or merging [Yang, 1994]. In 1988, the AN-
SI/HFS 100-1988 standard11 was published, which included recommendations about the
contrast of background colors and foreground colors. Today, syntax highlighting is an
integral part of most integrated development environments. However, to the best of our
knowledge, the use of background colors in preprocessor-based software has not been
evaluated empirically.

7.11 Summary

Preprocessors are frequently used in practice to implement variable software. However,
they introduce threats to program comprehension and are even referred to as “#ifdef
hell”. In this chapter, our goal was to give recommendations about the use of background
colors to improve program comprehension in preprocessor-based software.

To fulfill our goal, we conducted a family of three controlled experiments, in which
we revealed both benefits and drawbacks of background-color use. The results clearly
showed that background colors have the potential to improve program comprehension
in preprocessor-based software systems. Specifically, background colors helped par-

11http://www.hfes.org/web/Standards/standards.html.

http://www.hfes.org/web/Standards/standards.html
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ticipants to locate feature code, independently of size and language of the underlying
project. Additionally, we found in all experiments that participants favor background
colors. This is an important result, because the attitude of developers toward the tool
they are working with can significantly affect their performance [Mook, 1996], for ex-
ample, because they may stick longer with a task and not get frustrated by the tool. This
effect is exploited in many tools, which typically provide numerous customizing options,
so that users can adjust the tool according to their preferences.

However, we also found that colors have to be chosen with great care. Otherwise, they
can slow down developers. Our results indicate that bright, saturated colors, such as we
used in the first two experiments, are distracting and cause visual fatigue. Consequently,
developers need more time when working with colors, for example, because of a need to
rest their eyes. Hence, developers should be able to customize color settings according to
their needs. For example, when developers located a code fragment that they suspect to
cause a problem, they can turn off colors or adjust the saturation to a low degree.

Based on the results of our experiments, we implemented the prototype FeatureCom-
mander, in which we realized scalable background-color use. Developers can efficiently
adjust color settings to their needs, for example, by adjusting opacity. Thus, customiz-
able background-color concepts as implemented in FeatureCommander can increase the
efficiency of maintenance developers and reduce the cost of software development.
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Chapter 8

Current Projects

The current projects are collaborations with André Brechmann (Leibniz In-
stitute for Neurobiology), Christian Kästner (Philipps University Marburg),
Sven Apel (University of Passau), Thomas Leich (Metop Research Institute),
Don Batory (University of Texas at Austin), and Taylor Riché (National In-
struments).

8.1 Using Functional Magnetic Resonance Imaging to Measure
Program Comprehension

This section shares content with FSE-NIER’12 paper “Toward Measur-
ing Program Comprehension with Functional Magnetic Resonance Imag-
ing” [Siegmund et al., 2012a]

In Chapter 3, we described how we can measure program comprehension. We found
that software measures should not be used as indicator for program comprehension and
that controlled experiments are necessary. However, even when letting participants com-
plete maintenance tasks or think aloud during program comprehension, we only have an
indirect measure. To the best of our knowledge, researchers have not yet explored a direct
way to observe what is happening inside the brain during program comprehension.

In neuroscience, researchers use functional Magnetic Resonance Imaging (fMRI) to ob-
serve cognitive processes since 1991 [Belliveau et al., 1991].

Background: Functional Magnetic Resonance Imaging fMRI is based on measuring
differences in oxygen levels of blood flow in the brain. If a region in a brain becomes
active, its oxygen need increases. To fulfill that increased need, the amount of oxygenated
blood increases, and the amount of deoxygenated blood decreases. Both have different
magnetic properties, which are used by fMRI to identify active brain areas.

Today, numerous studies analyze the functional organization of brain areas by vary-
ing cognitive tasks and task demands. The results can be used to interpret which brain
areas contribute to which cognitive processes. For example, Cabeza and Nyberg describe
that the prefrontal cortex is activated in almost all tasks that require high-level cognitive
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functions, such as memory retrieval [Cabeza and Nyberg, 2000]. Thus, for a number of
cognitive processes, we know which brain regions are responsible. This enables us to
draw conclusions about how many resources different cognitive processes require and
how different cognitive processes might be related.

In this section, we present our work regarding whether and how fMRI can be used
to identify brain areas that are activated during the cognitive processes needed for pro-
gram comprehension. We do not expect to find one area that is activated during pro-
gram comprehension, but several areas that reflect the different facets of programming,
such as reading words and working with numbers. This way, we hope to relate pro-
gram comprehension to other cognitive processes (e.g., reading comprehension) and get
a deeper understanding of how developers comprehend source code. In the long run,
we might be able to answer questions like “What distinguishes good programmers from
bad programmers?” “What distinguishes program comprehension from reading com-
prehension?” “How can we design better tools and programming languages?”. Here, we
present a concept of how such questions can be addressed with fMRI and propose a first
experimental setup that is able to identify brain areas that are required during program
comprehension.

8.1.1 Requirements for fMRI Studies

The most difficult issue in fMRI studies and most other studies that evaluate cognitive
processes is to select suitable material and tasks (that is, source code in our case) and
devise control tasks that control for brain activation elicited by processes that are needed
for programming, but are not specific for it, such as reading itself. It is imperative that
source code and tasks without a doubt lead participants to use the cognitive process that
is the target of the evaluation, because otherwise, we cannot be sure what we measure.
Furthermore, there are requirements specific to fMRI studies:

1. Source code should be short enough

2. Source code should have appropriate difficulty

3. There must be a control task

4. The complete experiment should not last too long

First, source code needs to be short enough to fit on a screen that is typically used
within a magnetic-resonance scanner (from here on referred to as scanner). If source code
is too long, participants would have to scroll. However, scrolling would also activate
brain regions responsible for motor areas, so the activation caused by understanding
would be confounded with the activation caused by scrolling.

Second, source code should be neither too difficult nor too easy to solve. If programs
are too difficult, participants might not be able to determine the output correctly. In this
case, we cannot be sure whether the understanding process took place or whether partic-
ipants did something else. Furthermore, participants might require too much or too little
time to solve a task. Typically, cognitive fMRI experiments require several repetitions
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of tasks to ensure sufficient statistical power for data analysis. Between these blocks of
programming activity, which should be of comparable length of up to 1–2 minutes, pe-
riods of rest or other control conditions are required to allow the amount of oxygenated
blood elicited by the programming activity to return to a resting baseline. If a program is
too easy to understand (i.e., within a few seconds), we might not be able to observe the
activation elicited by the comprehension process, because of insufficient demand on the
neural processes. In our studies, we have the opportunity to work with undergraduate
students; thus, we adapt the difficulty to their ability.

Third, we need control tasks. Imagine we have suitable programs and tasks, what
kind of brain activation would we see? Of course, the activation that is necessary for
understanding. However, there is additional activation. First, participants see the source
code, so there is an activation in the visual cortex (i.e., the part in the brain responsi-
ble for perceiving visual information). Second, participants move their eyes to see the
source code, so we have to expect activation in the responsible motor cortex. To deal
with these additional activations, we need control tasks that ideally only differ to the
processes needed for program comprehension, nothing else. This way, we can compute
the difference of activation between the control task and understanding task and see acti-
vation caused only by understanding.

Fourth, one complete session in a scanner should not last longer than one hour. Inside
the scanner, participants have to lie as motionless as possible to avoid motion artifacts.
However, after an hour, participants start getting restless and lose attention. To avoid
bias, the session duration should not be too long.

Having presented requirements for fMRI studies, we describe how we selected ac-
cording material and tasks in the next section.

8.1.2 Pilot Studies

To select suitable source code, experimental tasks, and control tasks, we conducted two
pilot studies, which we summarize in Table 8.1. In this stage, it is not necessary to observe
participants inside an fMRI scanner, because we can use response time and correctness to
evaluate the suitability of source code and tasks. Thus, we conducted both pilot studies
without a scanner. In Section 8.1.3, we describe the current setting of our study with fMRI.

8.1.2.1 Finding Suitable Understanding Tasks

As tasks, participants should manually compute the output of source-code snippets. To
compute the output, they must understand the snippets. Thus, if participants determined
an output correctly, a comprehension process must have occurred. As source code, we
selected 23 different snippets from typical algorithms taught in first-year courses at Ger-
man universities. Algorithms of first-year courses have a suitable difficulty, because we
have the opportunity to work with second-year students and our participants should be
able to solve as many tasks as possible correctly (so that we have as many times as pos-
sible a successful understanding process). To illustrate the nature of the programs, we
show an example in Figure 8.1, which reverses a String, so the correct output is “olleH”.
We present the selected source codes in Appendix 10.4.
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Context Description

Objective Find suitable understanding tasks
Find suitable control tasks

Material 23 small Java programs
Subset (16) of previous programs

Participants 41 undergraduate students from the University of Passau
8 students from the universities of Marburg and Magdeburg,
1 professional Java developer

Tasks Determining the output of a method
Execution One computer lab; 17" TFT; PROPHET
Analysis Correctness of answers and response time for both experiments
Result 12 understanding and control tasks

Table 8.1: FMRI: Pilot studies in a nutshell.

1 public static void main(String[] args) {
2 String word = "Hello";
3 String result = new String();
4
5 for ( int j = word.length() - 1; j >= 0; j--)
6 result = result + word.charAt(j);
7
8 System.out.println(result);
9 }

Figure 8.1: Source code for one task.

Note that, in all programs, we obfuscated identifier names to avoid giving partici-
pants hints about a program’s purpose. For example, the variable result, which contains
the result, is not named after what it contains (i.e., the reversed string), but the purpose
of the variable (i.e., to hold the result of the program). This way, we force participants to
use bottom-up comprehension. If participants would use top-down comprehension, we
would also observe activation caused by memory retrieval, because information in source
code is compared with domain knowledge, which is stored in memory. Thus, we focus
on bottom-up comprehension, because brain activation is not confounded with memory
activation. In the long run, if fMRI proves useful to measure program comprehension,
we shall also consider more sophisticated settings measuring top-down comprehension.

In our first pilot study, we evaluated the suitability of the selected source-code snip-
pets. To this end, we analyzed the time participants needed to compute the output of a
source-code snippet and the correctness of the determined output.

Our participants were 41 second-year students from a software-engineering course
at the University of Passau. They completed a basic programming course, so they were
familiar with this kind of programs. The experiment was conducted on a computer in a
lab at the University of Passau. To present source code and tasks to participants, we used
our tool PROPHET (cf. Chapter 6).

To evaluate the difficulty of programs, we looked at response time and correctness.
First, the mean response times for the tasks are between 15 and 316 seconds. Based on
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1 public static void main(String[] ) {
2 String word = "Hello’;
3 String result = new String();
4
5 for (int j = word.length() - 1; j >= 0; j--)
6 result = result + word.charAt(j);
7
8 System.out.println{result);
9 }

Figure 8.2: Syntax errors for one task.

these results, we excluded six tasks from further studies with response times above 120
seconds, because participants would require too much time to solve them while in the
scanner. Furthermore, we excluded one task with a mean response time below 30 seconds
to further reduce the variability of fMRI activation due to differences in task duration.
Consequently, we have 16 tasks with mean response times between 37 and 104 seconds.
When looking at correctness, the 16 tasks were solved correctly by 29 to 41 participants.
On average, the number of correct solutions for a task was 37 (90%) participants. Thus,
the tasks did not seem too difficult to solve, so we did not exclude any task based on
correctness.

8.1.2.2 Finding Suitable Control Tasks

Suitable control tasks should ideally only differ to the understanding task in that com-
prehension did not take place. Everything else should be the same. Thus, we use the
same programs as for the understanding task. As tasks, we ask participants to iden-
tify syntax errors that we introduced to the source code. As an example, we show the
source code of the first pilot study (cf. Figure 8.1) with syntax errors in Figure 8.2. The
errors are in Line 1 (parameter name is missing), Line 2 (wrong character to terminate
String “Hello”), and Line 8 (curly bracket to pass result). For the remaining 15 tasks, we
included similar errors (always 3).

To evaluate the suitability of our control tasks, we conducted a second pilot study. As
participants, we recruited students from the Philipps University Marburg (4), students
from the University of Magdeburg (4), as well as one professional Java programmer. All
participants were familiar with Java at least at the level of second-year students. Again,
we used PROPHET to show source code to participants and collect response times and
answers of participants.

To select suitable control tasks, we looked at the response times of participants, which
are between 20 and 120 seconds. Regarding correctness, we found that most participants
found at least two syntax errors. Thus, we can be sure that participants worked on the
tasks and that the tasks are neither too easy nor too difficult.

Based on the pilot studies, we found suitable understanding and control tasks. The
next step is to set up the experiment for the fMRI scanner. In the next section, we describe
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what a session inside a scanner can look like as a first approach to understand the neural
correlates1 of program comprehension.

8.1.3 Program Comprehension Based on fMRI

To better understand our setting, we introduce the typical setting of fMRI experiments.
First, there is a measuring stage of about 10 to 20 minutes, in which the brain of par-
ticipants is measured regarding size and form. This is necessary to map the measured
changes in blood flow to the brain region. Then, the actual experiment starts. One typical
trial is structured as follows:

• Experiment condition

• Rest condition

• Control condition

• Rest condition

The experiment and control conditions are the ones we described in the previous
section (i.e., understanding, syntax error). In the rest condition, participants relax or do
nothing. This is necessary to let the level of oxygenated and deoxygenated blood return
to a baseline level, and because working inside the scanner is exhausting.

Taking into account the initial measuring and trial length, we have to make sure that
a session inside the scanner does not last too long (cf. Section 8.1.1). However, with our
16 tasks, the experiment would be too long. Hence, we excluded another four tasks. We
excluded one task with the shortest and one with the longest response time in the second
pilot study. Furthermore, we excluded two tasks that are similar to other tasks (e.g., we
excluded a program that computes the sum from 1 to n, which is similar to compute the
product from 1 to n). Thus, we have 12 tasks in our final experiment.

While lying inside the scanner, participants are instructed to determine the output of
a method (experiment condition) or find three syntax errors (control condition) and press
a button when they are finished. They do not say or enter their solution to avoid motion
artifacts, activation in the brain region responsible for producing speech, and to minimize
the time inside the scanner. To evaluate whether participants solved a task correctly,
we ask them after the scanner session to look again at the source code and state the
answer, which is a typical setting for fMRI studies. In the rest condition, participants are
instructed to relax. During all conditions, participants are told to move as little as possible
to avoid motion artifacts. Furthermore, we use an eye tracker to track eye movement
during tasks. To show what it is like for participants to lie inside the scanner, we show
a photo of one of our participants in Figure 8.3. To reduce motion artifacts, the head of
participants is fixated.

We arranged the order of code of the experiment and control condition such that most
of the code in the experiment condition is presented before code in the control condition.

1Neural correlates are activated breain areas during a cognitive process.
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Figure 8.3: Photo of participant inside the scanner.

This way, participants do not recognize source code from the control condition, but un-
derstand a program bottom up.

Currently, we are running the experiment described in the previous section inside
the scanner. Conducting and running such experiments is a long process (e.g., getting a
time slot to use the scanner, recruiting participants, analyzing the data), so we have only
preliminary results to report. So far, we can confirm that the tasks are actually suitable
for our purpose, and that a session is not too long for participants. Furthermore, the
experiment is interesting for participants.

To give an impression of the results we might get from our study, we show a typical
image of brain activation in Figure 8.4 from a different study of ours. Highlighted regions
indicate an activation, in this case mostly the prefrontal and visual cortex. When our
studies are completed, we might obtain similar images.

8.1.4 Vision

When finished with the measurements, we hope to have a first impression about which
brain regions are activated during program comprehension. Specifically, we expect to see
activation in the prefrontal cortex, which is active during higher cognitive tasks (what we
believe program comprehension is). Furthermore, we believe that programs containing
loops require more cognitive resources than programs without any loops. Thus, we may
observe a stronger activation during understanding programs with loops. We also be-
lieve that we observe more eye movements in source code containing loops (which we
observe with an eye tracker). Additionally, we may see activation in regions related to
reading comprehension, because participants have to read and understand words. More-
over, we believe that verbal working memory capacity is needed to comprehend source
code, because words have to be processed. Thus, we expect activation in the related brain
areas (left parietal lobe). To sum up, we believe to observe several activations in different
brain regions that are related to activities involved in program comprehension.
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Figure 8.4: Example for activation pattern.

In the long run, we might be able to find out what distinguishes good programmers
from bad programmers. Good programmers may have a certain activation pattern that
completely differs from bad programmers. For example, fMRI studies of expert and
novice golfers showed completely different activation patterns when they were think-
ing about hitting a golf ball. Expert golfers showed activation in one small, distinguished
brain region, whereas novices showed activation in several different brain regions. The
reason is that expert golfers have abstracted the knowledge of hitting a ball. With pro-
gram comprehension, it might be similar, such that experts somewhat abstracted the com-
prehension process.

Having a deeper understanding of program comprehension, we might be able to bet-
ter teach programming to students and develop tools and languages that support the
human way of program comprehension.

8.1.5 Related Work

The single most related paper to our work describes the information programmers need
to continue their tasks after interruption [Parnin and Rugaber, 2012]. To this end, Parnin
and Rugaber describe how different types of memory located in different brain areas
affect different programming activities. It is similar to our work, in that it maps brain
regions to programming tasks. However, the authors do not use fMRI, but base their
work on previous studies that map brain regions to different types of memory. We are
not aware of any results regarding program comprehension based on fMRI.

Furthermore, there is work in the domain of neuroscience to analyze cognitive pro-
cesses. Most related to ours is work based on reading comprehension (i.e., how partic-
ipants understand written text). For example, Moss and others analyzed brain regions
activated during strategic reading comprehension [Moss et al., 2011]. To this end, partic-
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ipants were given different tasks, such as paraphrasing of different texts. Depending on
the tasks, different brain regions were activated.

In the domain of software engineering, there is work aiming at measuring and im-
proving program comprehension without fMRI. For example, Robillard and others con-
ducted a controlled experiment to analyze how developers understand source code and
how effective they are [Robillard et al., 2004]. Jeanmart and others analyze how different
programming styles affect program comprehension [Jeanmart et al., 2009].

8.1.6 Conclusion

To conclude, we are exploring whether we can use fMRI to better understand program
comprehension in an ongoing endeavor. To the best of our knowledge, there is no prior
empirical work to measure program comprehension using fMRI. So far, we designed
and tested the material we are using. Furthermore, we conducted first sessions inside a
scanner that show that our experimental setup is feasible.

As a next step, we will continue our measurements. We hope to find a mapping
of brain regions to other, already evaluated cognitive processes, such as reading com-
prehension, which might enable us to develop a theory of program-comprehension pro-
cesses based on neuroscience.

8.2 Comparing Comprehension of Physically and Virtually Sep-
arated Concerns

This section shares content with FOSD’12 paper “Comparing Program Com-
prehension of Physically and Virtually Separated Concerns” [Siegmund et al.,
2012b]

Separation of concerns has been recognized as an essential strategy to implement un-
derstandable and maintainable software systems [Parnas, 1972]. It is common to believe
that separating code along features improves program comprehension. In this section,
we set out to evaluate whether separating features physically (i.e., into separate feature
modules) improves program comprehension compared to separating code virtually (i.e.,
annotating feature code). In particular, we compare the mechanism of feature-oriented
programming as implemented in the tool FeatureHouse [Apel et al., 2009] to preproces-
sors, in which feature code is annotated with ifdef directives.

8.2.1 Experimental Design

To evaluate whether physical separation of concerns à la FeatureHouse has a benefit on
program comprehension, we designed a controlled experiment. So far, we have only
preliminary data to report, because we could recruit only eight participants. Hence, we
regard the first conduct as pilot study to evaluate the feasibility of our experimental set-
ting. Thus, we focus on the design of the experiment. Our data analysis and interpre-
tation are a suggestion on how the research questions can be answered; we do not have
sufficient data to reliably answer any of the research questions. Hence, our analysis and
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Context Description Section

Objective Evaluate feasibility of experimental design;
Compare effect of physical and virtual separation of con-
cerns on program comprehension

8.2.1.1

Material MobileMedia in two versions: Java ME with Antenna, Fea-
tureHouse

8.2.1.2

Participants 8 graduate students from the University of Passau 8.2.2
Tasks Maintenance tasks (locating bugs) 8.2.1.3
Execution One computer lab; 17" TFT; PROPHET 8.2.2
Analysis Correctness of answers, response time, search behavior,

first action to solve task
8.2.2.1

Result Two tasks are too easy, FeatureHouse group unhappy to
work with that version

8.2.2.3

Table 8.2: Separation of concerns: Pilot study in a nutshell.

interpretation do not aim at answering the research questions, but serve as example how
the research questions can be answered. To give an overview of our experiment, we
summarize the most important information in Table 8.2.

8.2.1.1 Objective

With our experiment, we target the question whether participants understand physically
separated source code (feature modules) different than virtually separated source code
(preprocessor directives). This question arises when we look at human information pro-
cessing. To process information from the outside world, we use our working memory,
which holds information we perceive and makes it available for further processing [Bad-
deley, 2001]. However, working memory capacity is limited to only few items [Miller,
1956]. By structuring information, we can store more information. For example, we
can group information of a shopping list into groceries and clothing and then memorize
few items of the grocery and few items of the clothing category. In physically separated
source code, the amount of information presented in one place is smaller and more clearly
structured, so the working memory of participants might not be stressed too much.

However, when the present information is not enough to understand code, partici-
pants need to search for relevant information. Hence, they might need more time, and
during their search, they have to keep in mind where their search started. For that, they
need more working memory capacity. Thus, our first research question is the following:

RQ1: Does physical separation of concerns improve program comprehension?

Additionally, we are interested in the search behavior of participants. In virtually sep-
arated code, files are larger, because they typically contain code of several features. Thus,
participants may use the search function more often to find information. In physically
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separated code, one file contains information of only one feature; hence, relevant code
may be easier to find without using the search or using it less frequently. However, the
information presented in one file might not be enough to understand the code, so partici-
pants might use a global search (i.e., across modules) more often. Thus, we state a second
research question:

RQ2: Is there a difference in the search behavior between physically and vir-
tually separated concerns?

Furthermore, there might be a difference in the strategy that participants use to find
a bug. In the FeatureHouse version, participants might start by opening a file in the rele-
vant feature module, because according code is located only in that module and because
files are short compared to the ifdef version. In the ifdef version, participants might start
by using the global search function to locate code of the relevant feature, because accord-
ing code is scattered across the project. Thus, we state a third research question:

RQ3: Is there a difference in the first action to find a bug?

8.2.1.2 Material

As material, we used the last release of MobileMedia. From the ifdef version, we created
another version based on FeatureHouse.2 To ensure that both versions differ only in
the underlying programming technique, two reviewers realized the refactorings. They
evaluated the work of the other reviewer on few code fragments. We explicitly encourage
other experimenters to evaluate the comparability of both versions and give us feedback.

To illustrate what physical and virtual separation looks like in MobileMedia, we show
an example in Figure 8.5. The top excerpts (8.5a) show virtual separation implemented
with ifdef directives; the bottom excerpts (8.5b to d) an implementation of the same code
with FeatureHouse.

An important difference between both versions is caused by the technique, such that
in the FeatureHouse version, there are more folders, because for every feature or feature
combination, a new folder is created, in which files are stored according to the declared
packages. In the ifdef version, there are no folders for features or feature combinations,
but only those folders defined by the package declarations (which are also present in the
FeatureHouse version). To illustrate this difference, we present screen shots of the file
structure of both versions in Figure 8.6.

To evaluate our research questions, we use a between-subjects design. This way, we
can compare the performance of participants of both groups. For the first research ques-
tion, we analyze response time and correctness for maintenance tasks. Response time

2There is also an AspectJ version of MobileMedia, which uses physical separation of concerns. However,
AspectJ syntax requires considerable training, so we use FeatureHouse instead, and leave evaluation of
physical separation of concerns á la AspectJ for future work.
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1 // #if includeMusic ‖ includeVideo
2 //...
3 public class MusicMediaUtil extends MediaUtil {
4 public byte[] getBytesFromMediaInfo(MediaData ii)
5 throws InvalidImageDataException {
6 byte[] mediadata = super.getBytesFromMediaInfo(ii);
7 if (ii.getTypeMedia() != null) {
8 //#if (includeMusic && includeVideo)
9 if ((ii.getTypeMedia().equals(MediaData.MUSIC)) ||

10 (ii.getTypeMedia().equals(MediaData.VIDEO)))
11 //#elif includeMusic
12 if (ii.getTypeMedia().equals(MediaData.MUSIC))
13 //#elif includeVideo
14 if (ii.getTypeMedia().equals(MediaData.VIDEO))
15 //#endif
16 //#endif
17 //#endif
18 //...
19 }
20 //...
21 }
22 //#endif

(a) Virtual Separation

1 public class MusicMediaUtil extends}}@* MediaUtil {
2 private boolean isSupportedMediaType(MediaData ii) {
3 return false;
4 }
5
6 public byte[] getBytesFromMediaInfo(MediaData ii)
7 throws InvalidImageDataException {
8 byte[] mediadata = super.getBytesFromMediaInfo(ii);
9 if (ii.getTypeMedia() != null) {

10 if (isSupportedMediaType(ii))
11 { ... }
12 }
13 }
14 //...
15 }

(b) FeatureHouse–Music OR Video

16 class MusicMediaUtil {
17 private boolean isSupportedMediaType(MediaData ii) {
18 return original(ii) || ii.getTypeMedia().equals(MediaData.MUSIC);
19 }
20 }

(c) FeatureHouse–Music

21 class MusicMediaUtil {
22 private boolean isSupportedMediaType(MediaData ii) {
23 return original(ii) || ii.getTypeMedia().equals(MediaData.VIDEO);
24 }
25 }

(d) FeatureHouse–Video

Figure 8.5: Virtual and physical separation of concerns using the preprocessor Antenna (a) and
FeatureHouse (b-d).
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Figure 8.6: File structure of ifdef version (left) and FeatureHouse version (right).

was logged automatically with PROPHET, and correctness determined manually by an
expert.

For the second research question (regarding the search behavior), we log how partic-
ipants use the search function during solving maintenance tasks. Participants can either
use a local search, that is, within a file, or a global search, that is, in all files and folders
of the complete project. Both searches use strings (no pattern matching or syntactical
search).

For the third research question, we log the behavior of participants, that is, opening
and closing files, switching between files, and using local or global search, including the
search term.

To present source code, tasks, and the questionnaire to participants, we used our
tool PROPHET (cf. Chapter 6). To control for programming experience, we used the
questionnaire presented in Chapter 5. In addition to measuring program comprehension,
the search behavior, and first action for a task, we used a questionnaire to assess the
opinion of participants regarding difficulty of tasks and motivation to solve a task (both
on a five-point Likert scale). This way, we get more information to interpret our data.

8.2.1.3 Tasks

We developed five bug-fixing tasks, such that we can evaluate the claimed benefit of
physical separation of concerns. Hence, classes in the FeatureHouse version that contain
the bug are small compared to the ifdef version. To get an impression of how short
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Task Bug Description Feature

1 When converting media, the counter that describes how often
a medium was looked at is always set to 0 instead of the actual
value.

Sorting

2 When a video should be played, the according screen (“Play
Video”) is not shown. Nothing happens.

Video

3 When clicking on “View Favorites” in the menu, no favorites
are shown, although there are favorites and the according
functionality is implemented.

Favourites

4 When pictures should be shown sorted by number of views,
they appear unsorted anyway.

Sorting

5 Although a user has no rights to delete a picture, she can delete
it anyway.

AccessControl

Table 8.3: Overview of maintenance tasks.

source code has to be to provide a benefit (if any), we introduced the bugs in classes
of different size. All tasks were designed to have comparable difficulty, so that it does
not confound the results. We encourage other researchers to evaluate the comparability
of tasks. Additionally, we evaluate whether comparing similar statements of different
features helps to find a bug (Task 2). Furthermore, we analyze how the need to consider
two classes of different features affects program comprehension (Task 5). We designed
only 5 tasks to avoid a too long duration.

To present the tasks, we gave participants a bug description as a user might provide
it. Additionally, we provided the feature that is selected when the bug occurs, so that
participants can focus on feature code. This way, we can evaluate our research ques-
tion, because code is separated along features. In Table 8.3, we provide an overview of
all tasks. To complete a task, participants are instructed to determine the class and line
number of the bug, describe why the problem occurs, and suggest a solution as verbal de-
scription. We use all information to determine whether a task was solved correctly. Next,
we describe each task in detail, show relevant code fragments with bugs highlighted, and
discuss whether the FeatureHouse or ifdef version might provide benefits for program
comprehension.

Task 1 In this task, the bug is located in feature Sorting, which provides functionality to
sort media data, for example, according to how often a photo was viewed. As a bug, we
set the according counter to 0 instead of the actual value. To illustrate this bug, we show
relevant source code in Fig. 8.7. The class that contains the bug is considerably smaller in
the FeatureHouse version, such that the complete class fits on one screen. However, the
original method definition in the base feature might be relevant to understand the bug.
Thus, participants of the FeatureHouse group might be faster, if they do not look at the
base code.
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1 public class MediaUtil {
2 // 73 lines of additional code
3 public MediaData getMediaInfoFromBytes(byte[] bytes)
4 throws InvalidArrayFormatException {
5 // 64 lines of additional code
6 MediaData ii = new MediaData(x.intValue(),
7 albumLabel, imageLabel);
8 // 5 lines of additional code
9

10 // #ifdef includeSorting
11 ii.setNumberOfViews(0);
12 // #endif
13 // 62 lines of additional code

(a) Ifdef

1 class MediaUtil{
2 private MediaData createMediaData(String iiString, String fidString,
3 String albumLabel, String imageLabel) {
4
5 // 16 Lines of additional code
6 MediaData ii = original(iiString, fidString,
7 albumLabel, imageLabel);
8
9 ii.setNumberOfViews(0);

10 return ii;
11 }
12
13 // 10 lines of additional code

(b) FeatureHouse–Sorting

14 public class MediaUtil {
15 // 121 additional lines of code
16 private MediaData createMediaData(String iiString,
17 String fidString, String albumLabel, String imageLabel) {
18
19 Integer x = Integer.valueOf(fidString);
20 MediaData ii = new MediaData(x.intValue(), albumLabel, imageLabel);
21
22 return ii;
23 }
24 // 47 additional lines of code

(c) FeatureHouse–Base

Figure 8.7: Bug location for Task 1 (bug highlighted).

Task 2 In Task 2, a false identifier is used (SHOWPHOTO instead of PLAYVIDEO). We show
an excerpt in Figure 8.8. Like in Task 1, the FeatureHouse version is considerably shorter.
However, in the ifdef version, source code for other features (e.g., Photo) is visible, which
participants might compare with feature Video and, thus, might use to recognize that
SHOWPHOTO is the wrong identifier to play a video. Another difference is the location at
which the command is defined. In the FeatureHouse version, command definition and
use appears on the same screen, but not in the ifdef version. Thus, we can argue both in
favor of and against a benefit for program comprehension in the FeatureHouse version.
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1 public class MediaListScreen extends List {
2 // #ifdef includePhoto
3 public static final int SHOWPHOTO = 1;
4 // #endif
5 // #ifdef includeVideo
6 public static final int PLAYVIDEO = 3;
7 // #endif
8 // 64 additional lines of code
9 public void initMenu() {

10 // #ifdef includePhoto
11 if(typeOfScreen == SHOWPHOTO)
12 this.addCommand(viewCommand);
13 // #endif
14 // 7 additional lines of code
15 // #ifdef includeVideo
16 // [NC] Added in the scenario 08
17 if(typeOfScreen == SHOWPHOTO)
18 this.addCommand(playVideoCommand);
19 // #endif
20 // 32 additional lines of code

(a) Ifdef

1 class MediaListScreen {
2 public static final Command playVideoCommand =
3 new Command("Play Video", Command.ITEM, 1);
4 public static final int PLAYVIDEO = 3;
5
6 public void initMenu() {
7 original();
8
9 if(typeOfScreen == SHOWPHOTO)

10 this.addCommand(playVideoCommand);
11 }
12 }

(b) FeatureHouse–Video

Figure 8.8: Bug location for Task 2 (bug highlighted).

Task 3 In Task 3, false instead of true is passed to a method showing a list of media,
so no favorites are shown (Figure 8.9). In the ifdef version, the bug is located in class
MediaController in Line 6; in the FeatureHouse version, the bug is located in class
MediaController in feature Favourites in Line 5. Like for the other tasks, the ifdef version
is longer; however, the code of the FeatureHouse version does not fit on one screen. Thus,
we might observe no or a weaker benefit for program comprehension for this task.

Task 4 In this task, the sorting algorithm is not implemented, so calling it is futile (Fig-
ure 8.10). In the ifdef version, the bug is located in class MediaListController in Line 5;
in the FeatureHouse version in feature Sorting, Line 6 of class MediaListController.
Again, the ifdef version is considerably longer, whereas in the FeatureHouse version, the
according class fits on one screen. However, this is a rather obvious bug, so it is not clear
whether the shorter class helps finding this bug.
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1 public class MediaController extends MediaListController {
2 // 10 additional lines of code
3 public boolean handleCommand(Command command) {
4 // 215 additional lines of code
5 } else if (label.equals("View Favorites")) {
6 showMediaList(getCurrentStoreName(), false, false);
7 ScreenSingleton.getInstance()
8 .setCurrentScreenName(Constants.IMAGELIST_SCREEN);
9 // 257 additional lines of code

(b) Ifdef

1 class MediaController {
2 public boolean handleCommand(Command command) {
3 // 34 additional lines of code
4 if (label.equals("View Favorites")) {
5 showMediaList(getCurrentStoreName(), false, false);
6 ScreenSingleton.getInstance().
7 setCurrentScreenName(Constants.IMAGELIST_SCREEN);
8 // 7 additional lines of code

(b) FeatureHouse–Favourites

Figure 8.9: Bug location for Task 3 (bug highlighted).

1 public class MediaListController extends AbstractController {
2 // 124 additional lines of code
3 public void bubbleSort(MediaData[] medias) {
4 System.out.print("Sorting by BubbleSort...");
5 // TODO implement bubbleSort
6 }

(a) Ifdef

1 class MediaListController {
2 // 27 additional lines of code
3 public void bubbleSort(MediaData[] medias) {
4 System.out.print("Sorting by BubbleSort...");
5 // TODO implement bubbleSort
6 }

(b) FeatureHouse–Sorting

Figure 8.10: Bug location for Task 4 (bug highlighted).

Task 5 In Task 5, we implemented the additional feature AccessControl to observe how
participants of the FeatureHouse group can trace source code across different feature
modules. The feature introduces rights to manage pictures, so if users have no rights to
delete a picture, they cannot delete it. As bug, we use a wrong label for deleting a picture,
such that the check for according rights is never executed and a user can delete a picture
without according rights (Figure 8.11). The definition of the correct label is in another
class, so participants have to look at two classes to locate the bug. In the FeatureHouse
version, the two classes are located in different feature modules, which might slow down
participants.



Chapter 8. Current Projects 166

1 public class MediaController extends MediaListController {
2 // 14 additional lines of code
3 public boolean handleCommand(Command command) {
4 // #ifdef includeAccessControl
5 if (label.equals("Delete Label"))
6 if (!AccessController.hasDeleteRights()) {
7 gotoAccessDeniedScreen();
8 return true;
9 // 467 additional lines of code

(a) Ifdef

1 class MediaController {
2 public boolean handleCommand(Command command) {
3 if (label.equals("Delete Label"))
4 if (!AccessController.hasDeleteRights()) {
5 gotoAccessDeniedScreen();
6 return true;
7 // 16 additional lines of code

(b) FeatureHouse–AccessControl

8 public class MediaController extends MediaListController {
9 // 8 additional lines of code

10 public boolean handleCommand(Command command) {
11 // 43 additional lines of code
12 /* Case: Delete selected Photo from recordstore */
13 } else if (label.equals("Delete")) {
14 String selectedMediaName = getSelectedMediaName();
15 // 169 additional lines of code

(c) FeatureHouse–Base

Figure 8.11: Bug location for Task 5 (bug highlighted).

In addition to the five maintenance tasks, we designed a warming up task to let par-
ticipants familiarize with the experimental setting. In this task, participants should count
the occurrence of a feature (ifdef version) or how often a class is refined (FeatureHouse
version). The result of this task is not analyzed.

8.2.1.4 Analysis Methods

To analyze the data, we use descriptive statistics (mean, standard deviation, frequencies,
and box plots) to describe response time, correctness, search behavior, and first action for
a task. This way, we get an overview of how data are distributed. To evaluate the first
research question, we analyze whether there is a difference in correctness (χ2 test) and
response time (either t test or Mann-Whitney-U test).

For the second research question, we compare the frequencies of local and global
search within groups and between groups with a χ2 test. For the third research question,
we can either use a qualitative analysis, or compare frequencies of different actions with
a χ2 test or Fisher’s exact test.
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8.2.2 Pilot Study

To evaluate the feasibility of our design and give suggestions how to analyze and in-
terpret the data to evaluate our research questions, we conducted a pilot study. Our
participants were 8 undergraduate and graduate students from the University of Passau,
who were enrolled in the course Contemporary Programming Paradigms, in which modern
programming techniques, such as preprocessors and FeatureHouse, were taught. Thus,
participants have the necessary knowledge to complete the tasks. All were aware that
they took part in an experiment and that their performance does not affect their grade for
the course. Participants volunteered and did not receive compensation for their partici-
pation.

To create two comparable groups, we applied our programming-experience ques-
tionnaire before the experiment. Unfortunately, not all participants who completed the
questionnaire showed up for the experiment. Thus, both groups differ in size and their
programming experience. The ifdef group consists of 5 participants and is more experi-
enced than the FeatureHouse group, which consists of 3 participants.

We conducted the experiment at the University of Passau in one computer lab in-
stead of a lecture session. Before the experiment, we gave participants an introduction
about what to expect. After all questions were answered, participants started to work
on the tasks on their own. One to two experimenters checked that participants worked
as planned. On two occasions, participants talked to each other, until the experimenter
reminded them to work for themselves.

8.2.2.1 Experiment Results

In this section, we demonstrate how the results can be analyzed. The purpose of the
analysis is not to evaluate the research questions, for which our sample is to small and
groups are too heterogeneous.

First, we evaluate program comprehension by analyzing correctness, response time,
search behavior, and first action for each task. To separate reporting data from interpret-
ing them, we only report the data here and discuss them in Section 8.2.2.2, in which we
also discuss the feasibility of our design.

Correctness First, we look at correctness. In Figure 8.12, we give an overview of the
number of correct solutions. Task 3 and 4 appear to be easy, because all participants
found the correct solution. The first task appears to be too difficult for the FeatureHouse
group, because no participant found the correct solution. The same counts for the second
task for participants of the ifdef group.

Response Time Second, we look at the response times. In Table 8.4, we show how long
participants needed to solve each task and all tasks together (in minutes). For most of the
tasks, the ifdef group was faster. Only for the second task, the FeatureHouse group was
faster—one participant of the ifdef group needed 48 minutes for this task. The difficulty
seems to vary, because the response times differ between tasks.
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Figure 8.12: Number of correct answers per group and task.

Task Group RT Std Min Max

1 Ifdef 12.41 4.99 3.86 16.17
FeatureHouse 14.03 5.37 7.84 17.42

2 Ifdef 22.79 15.34 9.53 48.14
FeatureHouse 13.06 1.92 10.86 14.41

3 Ifdef 8.2 1.05 7.29 9.49
FeatureHouse 12.77 3.78 8.98 16.53

4 Ifdef 4.16 2.34 2.14 7.86
FeatureHouse 9.53 2.68 6.47 11.42

5 Ifdef 7.27 3.35 2.95 12.27
FeatureHouse 12.38 6.08 6.08 18.08

All Ifdef 54.83 9.97 42.17 66.58
FeatureHouse 61.77 7.81 53.99 69.60

RT: response time in minutes, Std: standard deviation, Min: fastest response
time, Max: slowest response time, All (last row): response time for all task
combined.

Table 8.4: Response times of participants per task.

Search Behavior In Table 8.5, we show how often participants used the search feature
(local, global, and combined). Participants of the ifdef group used the search considerably
more often than participants of the FeatureHouse group. For the local search, participants
always used it more often than the global search.

First Action In Table 8.6, we summarize how participants started to solve a task. Par-
ticipants of the ifdef group most often used a global search to find code fragments of the
relevant feature, whereas participants of the FeatureHouse group most often opened a
file in the relevant feature. Additionally, in tasks where a label of a button is mentioned
in the bug description, some participants searched for that label. However, they did not
start to search for the label in the first task where it is mentioned (Task 2), but only for
the subsequent tasks. Furthermore, two participants of the FeatureHouse group started



Chapter 8. Current Projects 169

Task Group Local Global Combined

1 Ifdef 166 21 187
FeatureHouse 32 13 45

2 Ifdef 152 25 177
FeatureHouse 28 13 41

3 Ifdef 106 11 117
FeatureHouse 39 19 58

4 Ifdef 21 5 34
FeatureHouse 16 7 23

5 Ifdef 73 8 91
FeatureHouse 25 12 37

Table 8.5: Search behavior of participants per task.

in a wrong feature (SortPhoto), most likely, because SortPhoto sounds relevant for the task
(feature Sorting is the correct one).

Task Group Open file in: Global search for:
base relevant

feature
wrong
feature

relevant
feature

label

1 Ifdef - - - 5 -
FeatureHouse 1 1 - 1 -

2 Ifdef 1 - - 4 -
FeatureHouse - 2 - 1 -

3 Ifdef - - - 3 2
FeatureHouse - 1 - - 2

4 Ifdef - - - 2 3
FeatureHouse - - 2 - 1

5 Ifdef - - - 5 -
FeatureHouse - 2 - 1 -

Table 8.6: First action participants used to solve each task.

Opinion of Participants Regarding the opinion of participants, we find a tendency that
the ifdef group found the tasks easier to solve, except for Task 2. For motivation, there
is a tendency that participants of the ifdef group are more motivated to solve a task,
which aligns with the comments of two participants of the FeatureHouse group, who
were unhappy to be in that group. Thus, the FeatureHouse version appears more difficult
to participants and they did not like it. This can affect their performance, such that they
work slower [Mook, 1996].



Chapter 8. Current Projects 170

8.2.2.2 Interpretation

Since our sample is too small and the ifdef group is more experienced, we cannot mean-
ingfully interpret the effect of physically and virtually separated concerns. Except for
Task 2, the faster response time of the ifdef group could be caused by the higher expe-
rience. However, in Task 2, the FeatureHouse group was faster. Thus, in this specific
case (i.e., the class containing the bug fits on one screen, less experienced participants),
physically separated code appears to be beneficial for program comprehension; the op-
portunity to compare similar code fragments does not seem to be a benefit for program
comprehension.

Regarding the search behavior, we found that participants of the ifdef group used the
search function considerably more often than participants of the FeatureHouse group.
Additionally, all participants used the local search more often than the global search.
There are two interesting facets regarding the search behavior of the FeatureHouse group.
First, for the second task, in which the class containing the bug consists of only few lines,
participants used the global search more often. Second, for the last task, in which two
classes in two different folders needed to be located to find the bug, the global search is
used only half as much as the local search (similar to the search behavior for the other
tasks). Thus, this tracing task seems to have comparable effort as the other tasks.

In Table 8.6, we show the first action of each participant for solving a task. Participants
of the ifdef group most often searched for feature code with a global search, whereas
participants of the FeatureHouse group opened a file in the relevant feature (or features
that appear relevant). Thus, it appears as if participants use different strategies to solve a
task.

The interpretations are a suggestion how to draw conclusions from data rather than
actual conclusions for our research hypotheses. We need to replicate the experiment with
more participants to confirm the results and conclusions.

8.2.2.3 Feasibility

With our pilot study, we found evidence about the feasibility of our design. Participants
always understood the tasks and questionnaire and knew what they had to do. Only on
two occasions, participants talked to each other, but the experimenter reminded them to
work for themselves. Furthermore, two participants mentioned being unhappy to be in
the FeatureHouse group. Thus, when conducting the experiment, participants of the Fea-
tureHouse group should be sufficiently motivated about the benefits of FeatureHouse.
Besides that, no problems occurred. Thus, the task descriptions and questionnaires seem
to be clear to participants.

However, we found that two tasks (3 and 4) appear to be too easy, because all partic-
ipants solved it correctly. Hence, when replicating the experiments, we should increase
the difficulty of these tasks. For example, for Task 3, providing the label might have made
the task too easy, because it occurs only 2 times in the complete project. For Task 4, we
can provide an erroneous implementation of bubble sort, instead of a TODO in the empty
method body.
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Additionally, one participant of the ifdef group needed 48 minutes to complete this
task, which is most of the time for the complete experiment (66 minutes). Thus, he might
be fatigued or unmotivated to solve the remaining tasks. Hence, in future experiments,
we can set a time limit for each task or give recommendations how long each task should
last.

8.2.3 Threats to Validity

One threat is how we obtained the physically separated version of MobileMedia. It was
derived from the ifdef version by refactoring. Although the refactorings and the result-
ing code have been reviewed carefully, it is unclear whether designing and implementing
a system like MobileMedia from scratch in a feature-oriented way would have led to a
different, more favorable decomposition, possibly making use of more effective modu-
larization patterns. Exploring such patterns and related anti-patterns empirically is an
avenue of further work.

A second threat is caused by the sample. When comparing techniques, we have to
ensure that participants have comparable familiarity. Otherwise, we would measure dif-
ferences in familiarity, not in the comprehensibility of both techniques. To control this
threat, we recruited students from a course in which FeatureHouse and preprocessors
were taught. Thus, we can assume that all participants have comparable knowledge of
the evaluated techniques.

Last, our sample is too small to draw sound conclusions regarding our research ques-
tions. Thus, we used the data as evidence for the feasibility of our design and for sugges-
tions regarding analysis and interpretation, instead of evaluating our research questions.
Furthermore, the FeatureHouse group is less experienced than the ifdef group and mostly
unhappy to work with the FeatureHouse version. Thus, worse program comprehension
of the FeatureHouse group may be caused by lower experience or happiness, not the
underlying technique. In future experiments, both groups should have comparable pro-
gramming experience and comparable preferences of FeatureHouse and preprocessors.

8.2.4 Related Work

When object-oriented programming emerged, researchers conducted studies to evaluate
its effect on comprehension and maintainability. For example, Daly and others analyzed
how the depth of inheritance affects development time of maintenance tasks [Daly et al.,
1995]. They found that participants maintaining a system with a depth of three were
faster than participants maintaining a system without inheritance. Henry and others
compared the performance during maintenance tasks of a procedural implementation
and an object-oriented version [Henry et al., 1990]. Participants were faster and made
fewer errors with the object-oriented version. Both experiments evaluate a facet of a
programming paradigm that was new and was supposed to improve comprehension
and maintenance, as in our work. The difference is that we focus on feature-oriented
programming, not object-oriented programming.

Besides our own work and tools (cf. Chapter 7), there is work by Robillard and Mur-
phy on concern graphs [Robillard and Murphy, 2002, 2003]. Their tool FEAT allows de-
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velopers to annotate classes, methods, or fields that belong to one concern. The authors
evaluated the usefulness of FEAT and found that developers could trace source code and
that their concept scales to industrial-sized programs.

8.2.5 Conclusion

Separation of concerns is supposed to improve program comprehension. However, there
are no empirical studies that evaluate comprehensibility of physically and virtually sep-
arated code. To close this gap, we presented an experimental design to compare program
comprehension of physical and virtual separation of concerns. We refactored the ifdef
version of MobileMedia (virtually separated) to a FeatureHouse version (physically sep-
arated). In a pilot study with eight students, we showed the feasibility of our design. Our
next step is to replicate the experiment with a larger sample. Furthermore, we encourage
other researchers to replicate our experiment.

8.3 Is the Derivation of a Model Easier to Understand Than the
Model Itself?

This section shares content with ICPC’12 paper “Is the Derivation of a Model
Easier to Understand than the Model Itself?” [Feigenspan et al., 2012a]

Our last ongoing project deals with comprehension of models. Specifically, we are
targeting the question whether presenting a derivation of a complex model improves
comprehensibility, compared to presenting it all at once. Complex architectural models
(typically represented as graphs, in which nodes are components and edges are con-
nectors) encode a substantial amount of expert domain knowledge [Riché et al., 2010].
Without such knowledge, it is difficult to understand a model.

A host of researchers in the past 15 years have suggested another way to explain soft-
ware architectures: Instead of presenting an architectural model as a fully-completed di-
agram, they start from an elementary model that is easily understood, and apply a series
of semantics-preserving refinements and optimizations to transform the simple model
into the complex model that represents the complete architecture [Riché et al., 2010].
Each transformation, in isolation, can be easily grasped and represents a fundamental
mapping that arises in architectural designs in that domain. These mappings, which rep-
resent a computational abstraction with one of its implementations, correspond to a law
in that domain.

To evaluate whether deriving a model improves its comprehensibility, compared
to presenting it at once, we conducted a series of controlled experiments. For better
overview, we present a summary of all three experimental runs in Table 8.7.

8.3.1 Objective

We believe that the derivation of a model is easier to understand than the model itself.
The line of argumentation is the same as for the benefit of physically separated code on
program comprehension: We need working memory to perceive information, which has
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What? Run Section

Objective Pilot Test material and setting 8.3.2
Exp1 Evaluate whether derivation of a model is easier

to manage
8.3.3

Exp2 8.3.4

Material Pilot Gamma (parallelized database machine),
Synchronous Upright (crash-fault-tolerance server
without recovery)

8.3.2.1

Exp1 Synchronous Upright 8.3.3.1
Exp2 Asynchronous Upright (with recovery) 8.3.4.1

Participants Pilot 4 graduate students (either software-engineering or
database domain)

8.3.2.3

Exp1 12 undergraduate students of software-engineering
and database course

8.3.3.1

Exp2 10 undergraduate students of software-engineering
course

8.3.4.1

All participants from the University of Texas at
Austin

Tasks Pilot Redraw and modify models, 5 multiple-choice com-
prehension questions

8.3.2.2

Exp1 Redraw and modify model, 5 multiple-choice com-
prehension questions

8.3.3.1

Exp2 Redraw and modify model, 7 multiple-choice com-
prehension questions

8.3.4.1

Execution Pilot One room, all material on paper, participants looked
at models themselves

8.3.2.4

Exp1 One room, all material on paper, 2 subsequent ses-
sions with different experiment conditions, expert
presented models

8.3.3.1

Exp2 One room, all material on paper, 2 parallel sessions
with different experiment conditions, experts pre-
sented models

8.3.4.1

Analysis Pilot
Correctness of answers, perceived difficulty and
motivation

8.3.2.5
Exp1 8.3.3.2
Exp2 8.3.4.2

Result Pilot Two models too much, going through models alone
too tedious

8.3.2.5

Exp1 No difference between presenting derivation vs.
complete model

8.3.3.2
Exp2 8.3.4.2

Table 8.7: Model comprehension: Experiments in a nutshell.
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limited capacity. If we have a complex model with many items, we cannot understand it
all at once, but look only at parts of the model to comprehend it. Thus, when we present
an architectural model piece by piece, we do not have to absorb more information at a
given time than we can. Hence, we defined the following research hypotheses:

RH1: The derivation of model is easier to memorize than the model itself.

RH2: The derivation of model is easier to comprehend than the model itself.

RH3: The derivation of model is easier to modify than the model itself.

To evaluate our research hypotheses, we conducted a pilot study (to test our material)
and two controlled experiments.

8.3.2 Pilot Study

The pilot study tested our experimental material and setting (e.g., to avoid ambiguous
formulations of the tasks).

8.3.2.1 Material

We used two systems: Gamma (a relational database machine) and Upright (a syn-
chronous crash-fault-tolerance server). First, Gamma is a database machine, which is
known for its innovative parallelization of hash joins [Dewitt et al., 1990]. In Figure 8.13,
we show how Gamma implements parallel hash joins. The relations to be joined are first
split into substreams using a hash function (HSPLIT). For each tuple of the first relation,
the join key is hashed and stored in a bitmap M (BLOOM). Then, for each tuple of the sec-
ond relation, the join key is hashed and compared with the join-key hashes stored in M.
All tuples that have no entry of the hashed join key in M cannot be joined and are deleted
from the second relation (BFILTER). Then, the remaining tuples of the second relation
are joined with the tuples of the first relation (HJOIN). Finally, the joined substreams are
merged and the result is returned. We used the hash join in Gamma, because it is simple
enough to understand in a limited amount of time, but not too simple to understand at
first sight.

Second, we used Upright, a synchronous crash-fault-tolerance server [Riché et al.,
2010]. Client messages are processed sequentially by a server (Figure 8.14a). Through
server and client-message replication, a certain number of server crashes can be tolerated
and still provide the image of a single server processing client messages (Figure 8.14b).
A client Cj sends a message to a routing box Rtj , which routes a copy of the message
to all agreement nodes (A1 to An). As part of the agreement protocol, each agreement
node votes by broadcasting the message that it believes should be processed next to all
quorum nodes (QA1 toQAk). When the quorum nodes have received a sufficient number
of identical messages, that message is sent to each server replica (S1 to Sk). Each server
processes the same message, and sends its response to a quorum node (for a message
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Figure 8.13: Parallel hash join in Gamma.

from Cj , the quorum node would be QSj) that is located in front of the receiving client.
A quorum is taken, and a single response is returned to the client.

For both Gamma and Upright, we found a derivation of their models. For demon-
stration, we illustrate the derivation of Gamma in Figure 8.15. We use Gamma, because it
is easier to understand than Upright and requires fewer steps. We start with a hash join
without optimization (Figure 8.15a). Then, we introduce a bloom filter before the hash
join, in which we delete tuples of B that cannot be joined with A (Figure 8.15b). In the
next steps, we parallelize each box by splitting the stream of tuples into substreams, pro-
cessing each substream, and merging each substream (Figure 8.15c to 8.15e). We put the
parallelized boxes together (Figure 8.15f) and, by deleting unnecessary merge and split
operations, we obtain the final architecture of Gamma (cf. Figure 8.13).

For Upright, we started with a simple client-server abstraction of j clients C1...Cj

sending messages to a single, state-free server, shown in Figure 8.14a. By applying a
sequence of semantics-preserving transformations, we derive the architecture of Upright
as shown in Figure 8.14b. In summary, the transformations contain adding new nodes
step by step and then replicating the nodes to tolerate crashes. For more information on
the transformations, we recommend the article by Riché and others [Riché et al., 2010].

For each model, we created two sets of slides—one with the derivation, one with the
complete model—with explanations of the boxes. One group of participants received the
set with the derivation, the other group the set with the complete model, both on paper.
We did not use PROPHET, because it does not support the tasks, which we present next.

8.3.2.2 Tasks

We created three tasks to test each hypothesis. First, participants should redraw the mod-
els of Gamma and Upright. Second, participants should answer multiple-choice com-
prehension questions (five questions per model), for example:

Why are A nodes required to communicate amongst themselves?
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(b) Upright after transformations.

Figure 8.14: Synchronous crash-fault-tolerance server before and after transformations.

a) To combine messages from the clients to reduce server load
b) The A nodes split the load coming from the clients
c) The A nodes run a decision making protocol that can tolerate if some of them

crash

Third, participants should modify the models of Gamma and Upright. For Gamma,
they should delete the BLOOM box (requiring to also delete the BFILTER box). For Up-
right, they should add a server replica, such that the system can tolerate one more server
crash. The tasks were identical for the derivation and the complete model.

Finally, we asked our participants to estimate the difficulty of the tasks and their
motivation to solve them on a five-point Likert scale.

Both, the first and third task, require participants to draw models, which PROPHET
does not support currently. We could have presented the model and second task with
PROPHET; however, it is unclear whether using two different media (computer, paper)
affects cognitive resources and bias results. Thus, we conducted the complete experiment
on paper.

8.3.2.3 Participants

As participants, we recruited four male PhD students from the University of Texas at
Austin. Two were working in the empirical software-engineering domain, two in the
database domain. All volunteered and did not receive any compensation for their partic-
ipation. All participants had comparable familiarity with databases, crash-fault-tolerance
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Figure 8.15: Derivation of Gamma.

servers, pipe-and-filter architectures (a class of architectures to which Gamma and Up-
right belong), and modeling, which we assessed with a questionnaire. We did not assess
programming experience, because none of the tasks required programming. However,
in future work, it is interesting to develop a questionnaire that assesses experience with
modeling, since it is also an often evaluated facet in empirical software engineering (e.g.,
UML modeling).

8.3.2.4 Experiment Execution

We conducted the pilot study in November 2011. Participants completed the familiarity
questionnaire first. After an introduction, we handed out the slides for Gamma. When
participants finished reviewing the slides, we distributed the tasks one at a time. We
recorded the time participants needed to finish a task manually. Then, we gave partici-
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pants the questionnaire regarding motivation and difficulty. After a few minutes break,
we repeated the same procedure with Upright. There are no deviations to report.

8.3.2.5 Results and Consequences

The pilot study yielded two important results. First, two models were too much. Al-
though we included a short break, participants were fatigued when working with the
second model.

Second, we noticed (and participants told us) that going through the models on their
own is tedious. There were many slides, especially for the derivation. Furthermore,
participants with the derivations felt rushed, since the other participants had to wait for
them before they could start the tasks.

As consequences, we henceforth used only one model. We selected Upright, because
it is more complex and has many elements, such that working memory capacity is ex-
ceeded and we could we assume that the benefit of the derivation would be more evi-
dent (cf. Section 8.3.1). Additionally, we changed the presentation of the model and the
derivation, respectively, such that an expert on crash-fault-tolerance servers presents the
slides in the subsequent experiments.

8.3.3 Experimental Run 1

With our first experimental run, we evaluated our research hypotheses. The material was
the same as for the pilot study, except for the two changes we described.

8.3.3.1 Experiment Design and Execution

Our participants were undergraduate students from the University of Texas at Austin
who were enrolled either in a database or software-engineering course. The mean age
of participants who worked with the complete model was 23, the mean age of partici-
pants who worked with the derivation was 25.7. One female participant worked with
the derivation. Both groups estimated their experience with crash-fault-tolerance servers
as low (2 for the derivation, 1.5 for the complete model; both on a five-point scale). The
same counts for their experience with modeling (3 for the derivation, 2.5 for the complete
model). Participants volunteered and were rewarded with food and beverages. Partici-
pants were aware that their performance in the experiment did not affect their grade and
that they could leave any time.

We had two appointments for the experiment. In the first, we presented the deriva-
tion, in the second, the complete model. Participants could choose the appointment to
their convenience, which lead to different group sizes: Eight participants worked with
the derivation, four with the complete model. We prepared a booklet with all tasks and
questionnaires, which we distributed at the beginning of the experiment. After an in-
troduction, an expert on Upright presented either the derivation or the complete model.
Then, participants solved the tasks. For each task, participants had a time limit (based on
the pilot study), after which they had to turn to the next task. The time limit was large
enough so that no participant experienced time pressure.
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Group Task Median Min Max U value significant?

Derivation 1 4 2 4 7 no
Complete 3 2 5

Derivation 2 4 2 6 10 no
Complete 4 4 5

Derivation 3 0 0 1 19 no
Complete 0.5 0 1

Table 8.8: Experimental run 1: Overview of correctness of solutions.

One experimenter checked that participants worked as planned. There was one de-
viation: For one participant in the derivation group, the first and third tasks were in
reverse order. Since we cannot measure the performance for these tasks, we excluded
this participant from the analysis.

8.3.3.2 Analysis and Interpretation

To analyze the first and third task, we counted the number of elements that did not be-
long to the model, were missing, or were in the wrong order. Hence, the larger the num-
ber, the more errors participants made. For the second task, we counted the number of
correctly solved comprehension questions. The differences between groups are small or
non-existent, as we show in Table 8.8. For the first task, the group with the derivation
made one error more than the group with the complete model. For the second task, both
showed the same performance. For the third task, the difference is smaller than one er-
ror. A Mann-Whitney-U test adjusted for small sample sizes revealed that the differences
between groups are not significant for any of the tasks [Nachar, 2008]. Hence, we cannot
accept our research hypotheses.

At first sight, this result means that the derivation does not provide a benefit, com-
pared to presenting the complete model. However, taking a closer look at Upright, we
see groups of similar elements. We have a group of clients, routing boxes, agreement
nodes, quorum nodes, and servers. Hence, we have six different groups of boxes. It is
possible that participants looked at the group of boxes, not the single boxes, which is called
chunking [Miller, 1956]. Thus, working memory capacity might not have been exceeded,
which means that the model could have been too simple to show a benefit of derivation.
Looking at the estimation of difficulty for each task, it was perceived as medium to easy,
except for the first task (difficult). Looking at the correctness of the first task, participants
only made three to four errors. Thus, we think that the model was too easy to reveal a
benefit of derivation. Hence, we conducted a follow-up experiment with a more complex
model.
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Figure 8.16: Asynchronous crash-fault-tolerance server.

8.3.4 Experimental Run 2

To get more data about the effect of the derivation of a model, we conducted a second
run of our experiment.

8.3.4.1 Experiment Design and Execution

In our second run, we extended Upright with a recovery feature, shown in Figure 8.16.
Via a backward loop, a server replica can now recover from a crash. To this end, it sends
a message to the agreement nodes via quorum nodes asking for the correct timestamp.
Furthermore, the server replicas communicate amongst each other to get the correct sta-
tus.

With the recovery feature, we included two more comprehension questions, so we
had seven questions. Other than that, the experimental material was the same as before.

We recruited different students from the same software-engineering course as before;
six worked with the derivation, four with the complete model. The mean age was 24.3
for the derivation group, and 21.8 for the other group. One participant in each group
was female. Participants estimated their experience with crash-fault-tolerance servers
and modeling as low (1 and 3 for the derivation, 1.5 and 2.5 for the complete model).

The experimental sessions were now held in parallel. Hence, an additional expert on
crash-fault-tolerance servers explained the derivation. No deviations occurred.

8.3.4.2 Analysis and Interpretation

To evaluate whether a task was solved correctly, we used a four-point scale for the first
and third task. A solution could either be completely correct (4), almost correct (3), correct
to some extent (2), or completely wrong (1). An expert evaluated to which category a
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Group Task Median Min Max U value significant?

Derivation 1 2.5 1 4 10.5 no
Complete 2.5 1 3

Derivation 2 5 2 6 11.5 no
Complete 5 2 7

Derivation 3 3 1 4 8 no
Complete 3 1 3

Table 8.9: Experimental run 2: Overview of correctness of solutions.

solution belonged. In Table 8.9, we show an overview of the correctness. The medians
for both groups are the same. Furthermore, the modification task seems to be easier
than the memorization task. A Mann-Whitney-U test revealed no significant differences.
Hence, we cannot accept our research hypotheses.

So, although we increased the complexity of the underlying model, we still did not
observe a significant difference in the performance of participants. The perceived diffi-
culty of the tasks is comparable with that of the first experimental run (medium to easy
difficulty). Hence, the model might still have been too simple to show a benefit of its
derivation.

8.3.5 Combining the Results

So far, we conducted two controlled experiments to evaluate our research hypotheses
(i.e., that the derivation of a model is easier to memorize, comprehend, and modify than
the model itself). We could not accept our research hypotheses, for which we suspect
three possible reasons: First, the models were too simple; second, understanding the
derivation required too much cognitive resources; third, there is no benefit of derivation.

First, the model of the crash-fault-tolerance servers could be too simple. In the first
experimental run, the elements of the model could have been grouped, such that the
working memory capacity was not exceeded. We made the model more complex in the
second experimental run. However, with grouping, the number of elements still lies in
the upper bound of the working memory capacity. Thus, we believe that replicating the
experiment with a more complex model would reveal more insights into the relationship
of the size of a model and the effects of its derivation.

Second, participants who worked with the derivation had to understand several
transformations. It is possible that understanding the transformations required too
much cognitive resources, such that the benefits of the derivation are erased. To test this
hypothesis, we would have to conduct another experiment.

Third, it could also be possible that in our context (i.e., with students and our certain
model), there simply is no benefit of using a derivation. Hence, whether we explain a
model to students incrementally or all at once, might not matter—students might gain a
comparable level of understanding with both approaches.
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The bottom line is that we need to conduct further experiments to gain better insights
into the effects of derivation on memorizing, understanding, and modifying models. To
gain deeper insights, we are currently planning an experiment in which one group of stu-
dents should implement the derivation of Gamma, the other group the complete model.
As dependent variable, we plan to measure development time and code quality.

8.3.6 Threats to Validity

There are several threats to validity for both experiments. First, we used convenient sam-
pling to create our samples, which might lead to incomparable groups. However, both
groups have comparable familiarity with relevant techniques, such as modeling, which
we confirmed with a questionnaire. Furthermore, group sizes are different, because we
could not assign participants to the appointments. Since both groups have comparable
familiarity with relevant techniques, the different group size should not have affected
our result significantly.

Second, we did not test the memory skill of participants. However, memory skills can
have a significant influence on our result, especially on the performance for the first task.
Unfortunately, without a memory-skill test, there is no way to control this threat.

Third, we used multiple-choice questions to measure comprehension. This could
have made the tasks too easy, such that we could have measured how well participants
are able to rule out wrong answers, not how well participants understood the model.
However, we made sure that all possible answers sounded plausible and had about the
same length and detail. Furthermore, none of the participants noted that there were ob-
vious wrong answers. Hence, we believe that we sufficiently controlled this threat.

8.3.7 Related Work

There is a large body of work dealing with comprehension of UML models. For example,
Lange and Chaudron analyzed whether defects in UML models are found by develop-
ers who implemented the model [Lange and Chaudron, 2006]. To this end, participants
saw fragments of UML diagrams and answered multiple-choice questions on how they
would implement the model. The result is that some defect types are almost always de-
tected, whereas other types are almost never detected. Sharif and Maletic compared how
different layouts of UML models affect their comprehension [Sharif and Maletic, 2009].
Based on the answers of participants regarding comprehension questions, authors found
a difference in the comprehension of different layouts. Genero and others assessed how
size and structural complexity of UML models affect their comprehension [Genero et al.,
2007]. Participants answered comprehension and modifying questions. Based on the an-
swers, authors obtained a prediction model based on size and structural complexity of
UML models for comprehension and modification time. All papers analyze how different
facets affect comprehension of UML models, but none considered architectural models.
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8.3.8 Conclusion

Based on limits to working memory capacity, we believed that the derivation of a model
is easier to comprehend than a model itself. To evaluate our belief, we conducted two
controlled experiments, in which we compared how participants memorize, understand,
and modify the derivation of a model and a complete model. Our experiments found no
evidence to support it.

In future work, we plan to let participants implement an architecture and analyze
whether implementing its derivation has a benefit compared to implementing it at once.
This way, we hope to get more insights into whether and how the derivation of a model
affects its comprehension.

8.4 Applying our Framework

So how did our framework supported us for the experiments? First, we consulted the
list of confounding parameters to decide what parameters are relevant and how we can
control them. Even for our project regarding model comprehension, the list was use-
ful, because model comprehension is closely related to program comprehension. Thus,
we could save time during the planning phase of our experiments. To avoid redun-
dancy, we do not present the most important confounding parameters here, but refer to
Appendix 10.2, in which we present an overview of all confounding parameters for all
experiments.

Second, for the first two experiments, we measured programming experience ac-
cording to our questionnaire. Since we did not need to develop the questionnaire from
scratch, we saved time during planning our experiment. For the third experiment, we
did not use the questionnaire. However, our experience during creating the question-
naire helped us to ask participants the right questions to assess their background.

Last, for the first two experiments, we used PROPHET to present source code, tasks,
and questionnaires to participants. Thus, we did not have to develop our own tool infras-
tructure, but could easily customize the presentation of material and use it for replication.
Furthermore, for the second experiment, the experiment designer was not present, but a
colleague conducted the experiment. There were no problems during the conduct, indi-
cating that PROPHET is intuitive and suitable for replicating experiments. For the third
experiment, we could not use PROPHET, because it does not support drawing or modi-
fying images; if it did support working with images, it would have eased the presentation
of material, time measurement, and data logging.

Thus, our framework supports us in our ongoing projects, without being developed
specifically for that purpose. This indicates that our framework is applicable in prac-
tice. Hence, we made an important contribution to the empirical-software-engineering
community.
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Chapter 9

Conclusion and Future Work

Program comprehension is an important factor in the software life cycle, because main-
tenance programmers spend most of their time with understanding code, and mainte-
nance is the main cost factor during software development. Thus, by improving program
comprehension, we can save time and cost during software development and mainte-
nance. To this end, new programming techniques and languages were developed, such
as feature-oriented software development. Among others, it aims at improving program
comprehension by separating code along features.

In this thesis, we set out to evaluate how feature-oriented software development in-
fluences program comprehension. To this end, we conducted a series of controlled ex-
periments. However, during our research, we found that there is no common baseline
for conducting controlled experiments. Thus, in parallel to our experiments, we set out
to develop a framework to support researchers in conducting controlled comprehension
experiments. Specifically, we defined two goals:

• A framework to support controlled program-comprehension experiments.

• A knowledge base regarding how feature-oriented software development affects
program comprehension.

With the following contributions, we fulfilled our goals:

1. Recommendation for measuring program comprehension.
To evaluate whether software measures are suitable indicators for program com-
prehension, we conducted a controlled experiment, in which we let two groups of
participants solve comprehension tasks on two comparable versions of MobileMe-
dia (a program for the manipulation of multi-media data on mobile devices) with
considerably different software measures. We did not find a difference in program
comprehension between both groups as the software measures suggested it. Thus,
we cannot recommend to use software measures to assess program comprehension.

Furthermore, we are currently evaluating whether we can use fMRI to measure pro-
gram comprehension. In first pilot studies (without an fMRI scanner), we selected
tasks and material to measure program comprehension based on fMRI. Currently,
we are conducting measurements inside the scanner.
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2. Overview of confounding parameters and control techniques.
To reliably measure program comprehension, we need to identify and control for
confounding parameters. To support researchers, we conducted a literature survey
and analyzed how confounding parameters are currently managed. We identified
39 confounding parameters, but found that only a fraction of them are mentioned in
each paper, indicating that researchers do not sufficiently consider them. We gave
recommendations how to control for confounding parameters and how to describe
them in a report. This way, we support researchers in creating sound and reliable
results.

3. Initial questionnaire to measure programming experience.
To control for the major confounding parameter, programming experience, we
developed a questionnaire and evaluated it in a controlled experiment with 128
second-year students. To this end, we compared the answers of participants in the
questionnaire with the performance in 10 comprehension tasks (i.e., determine the
output of small source-code fragments). To select suitable questions, we computed
correlations and stepwise regression. As a result, we identified two questions as
indicator for programming experience, which we recommend to use when measur-
ing programming experience. Additionally, with an exploratory factor analysis, we
extracted a five-factor model that describes programming experience. Furthermore,
our proceeding act as guidelines to develop similar questionnaires that measure
different confounding parameters.

4. Tool support for comprehension experiments.
We developed PROPHET to support researchers in planning, conducting, and
replicating experiments. Based on our literature survey, we analyzed requirements
for program-comprehension experiments and implemented PROPHET to fulfill
these requirements. Experimenters can comfortably customize how participants
see material and extend PROPHET to address currently not fulfilled requirements.

5. Empirical evidence of how feature-oriented software development affects program com-
prehension.
In three controlled experiments, we evaluated whether and how background col-
ors improve program comprehension in preprocessor-based software. For locating
feature code, background colors have a positive effect; for maintenance tasks,
background colors have at best no effect. Thus, highlighting feature code with
background colors can improve program comprehension. We used our results
to implement FeatureCommander, the prototype of an integrated development
environment, which provides a consistent and customizable use of background
colors.

Furthermore, we described an experimental design to evaluate whether physically
separated code affects program comprehension compared to virtually separated
code. In a pilot study with 8 students, we evaluated our setting and give recom-
mendations for its improvement.

6. Reusable experimental designs.
Our experimental settings are designed to be reusable. We used common guide-
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lines to present our set up, and made all material available at the project’s website
(http://fosd.net/experiments). Furthermore, we demonstrated where pos-
sible how our framework supported us with our experiments.

Thus, we made valuable contributions to the software-engineering domain and
feature-oriented-software-development domain, which we plan to extend in future work.

Future Work

We are continuing our current projects presented in Chapter 8. Regarding functional
magnetic resonance imaging, we are conducting the measurement inside the fMRI
scanner. Furthermore, we are planning to replicate our experiment regarding physical
and virtual separation of concerns with students from the course Modern Programming
Paradigms that will be held in the winter term 2012/13 at the University of Magdeburg.
Regarding model comprehension, we designed implementing tasks of Gamma, such
that one group of students implements Gamma at once, and another group stepwise.
This way, we analyze whether the derivation of a model affects its understanding on the
implementation level.

Furthermore, we are continuing our work on programming experience. To this end,
we are currently letting different students from four different universities complete the
programming-experience questionnaire. So far, over 100 students completed the ques-
tionnaire. Our goal is to confirm the five-factor model of programming experience in a
different sample, thus completing the next step toward a model of programming experi-
ence.

Since we recruited students in all experiments, we cannot generalize our results to
expert. To do so, we need to conduct experiments with professional programmers, which
is an interesting option for future work. Whenever we have necessary resources, we plan
to recruit expert programmers to generalize our results.

Additionally, our work provides numerous extension points, which we discuss for
each chapter.

1. Software measures and program comprehension do not seem to be related. However, we
focused on feature-oriented software measures and used only one software system.
To extend our work, we can compute other software measures to evaluate how they
relate to program comprehension and use different software systems. Furthermore,
we can evaluate how other concepts that are also often assessed with software mea-
sures, such as maintainability or design stability, relate to software measures. This
way, we can get a deeper understanding of how software measures help to assess
such software quality facets, which might help us to develop more reliable software
measures.

Additionally, we can evaluate how different tasks measure program comprehension.
In our settings, we usually ask participants to fix a bug. However, there are also
other tasks, such as implementing source code, memorizing and recalling source
code, or filling in blank lines in source-code fragments. To the best of our knowl-
edge, there is no empirical comparison of the reliability of these different tasks.

http://fosd.net/experiments
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2. Numerous confounding parameters for program comprehension exist. With our review,
we identified 39 of them in 7 journals and conferences of the last 10 years in the
software-engineering domain. We can extend our work to other journals, confer-
ences, issues, and domains. An especially interesting domain is psychology, be-
cause experiments have a long tradition, which might help us to get a broader
overview of how to manage confounding parameters.

3. Programming experience is an important confounding parameter. With our question-
naire, we made an important step toward its measurement. However, we recruited
students as participants, so our questionnaire is valid only for students. Further-
more, we can evaluate whether our questionnaire is also useful to evaluate pro-
gramming experience of job applicants. In this case, we would have to evaluate
whether self estimation is still a reliable indicator. Additionally, we can develop
questionnaires for other confounding parameters, such as ability or familiarity with
the study object or tools.

4. PROPHET supports researchers in planning, conducting, and replicating experi-
ments. Due to its plug-in architecture, it can be extended with functionality. Thus,
we can identify more requirements by extending our literature survey or by asking
experimenters what functionality they need.

5. Regarding background colors in preprocessor-based software, we found a positive effect
on program comprehension. With the tool FeatureCommander, we implemented
customizable and consistent use of background colors. To evaluate the effective-
ness of the implemented concepts in FeatureCommander, such as the interactive
sidebars or the explorer view ordered by features, we can conduct controlled ex-
periments.

Thus, our thesis constitutes a starting point for interesting research in the context of
program comprehension.
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Chapter 10

Appendix

10.1 Chapter 4:
Checklist of Confounding Parameters for Program Com-
prehension

The check lists of Tables 10.1 and 10.2 can help researchers to control the influence of
confounding parameters. We should note how we controlled for a parameter and why
we selected a technique. Furthermore, we should note how and why we measured a
parameter or ensured that its influence is controlled.

10.2 Confounding Parameters for Conducted Experiments

In Tables 10.3 and 10.4, we summarize how we managed confounding parameters in our
experiments. Since the parameters and control techniques are similar for all our exper-
iments, we summarize them to avoid redundancy. For better comprehensibility, we ex-
plain some entries. For example, we controlled for color blindness by keeping it constant.
We selected this control technique, because colors blindness is rare in the population, so
our results are applicable to a large part of the sample; thus, we do not limit external
validity to much. To measure it, we asked participants whether they are color blind,
because it reliable and easy to apply. For intelligence, we used randomization, because
we do not have the time to conduct an intelligence test. Thus, we did not measure it,
so the last two columns are empty. For programming experience, we applied matching,
because it is the most important confounding parameter. We could not use it as indepen-
dent variable, because we do not have the resources to recruit expert programmers. To
measure it, we applied a questionnaire (i.e., a preliminary version of our questionnaire),
because it is a reliable technique. Last, for instrumentation, we avoided bias due to un-
suitable instruments, because it is the most reliable technique to control for it. To ensure
that we avoided it, we conducted a pilot study, in which we evaluated the suitability of
our instruments.
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Parameter Control technique Measured/Ensured
How? Why? How? Why?

Personal background
Color blindness
Culture
Gender
Intelligence

Personal knowledge
Ability
Domain knowledge
Education
Programming experience
Reading time

Personal circumstances
Attitude toward study object
Familiarity with study object
Familiarity with tools
Fatigue
Motivation
Occupation
Treatment preference

Table 10.1: Checklist of personal confounding parameters.
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Parameter Control technique Measured/Ensured
How? Why? How? Why?

Subject related
Evaluation apprehension
Hawthorne effect
Process conformance
Study-object coverage
Ties to persistent memory
Time pressure
Visual effort

Technical
Data consistency
Instrumentation
Mono-method bias
Mono-operation bias
Technical problems

Context related
Learning effects
Mortality
Operationalization of study object
Ordering
Rosenthal
Selection

Study-object related
Content of study object
Language
Layout of study object
Size of study object
Tasks

Table 10.2: Checklist of experimental confounding parameters.
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10.3 Chapter 5: Measuring Programming Experience—Tasks

Figures 10.1 to 10.6 contain the algorithms we used in our experiment regarding pro-
gramming experience (except for MobileMedia).

1 public class Class1 {
2 public static void main(String[] args) {
3 int array[] = {14,5,7};
4
5 for (int counter1 = 0; counter1 < array.length; counter1++) {
6 for (int counter2 = counter1; counter2 > 0; counter2--) {
7 if (array[counter2 - 1] > array[counter2]) {
8 int variable1 = array[counter2];
9 array[counter2] = array[counter2 - 1];

10 array[counter2 - 1] = variable1;
11 }
12 }
13 }
14
15 for (int counter3 = 0; counter3 < array.length; counter3++)
16 System.out.println(array[counter3]);
17 }
18 }

Figure 10.1: Programming experience: Task 1.

1 public class Class2 {
2
3 public static void main
4 (String args[]){
5 int [] variable1 = new int[128];
6 Class3 variable2 = new Class3(

variable1, 0);
7
8 variable2.method1(7);
9 variable2.method1(2);

10 variable2.method1(8);
11
12 System.out.println(variable2.

method2());
13 System.out.println(variable2.

method2());
14 System.out.println(variable2.

method2());
15 }
16 }

17 public class Class3 {
18
19 private int [] array;
20 private int index;
21
22 public Class3(int[] array,
23 int index) {
24 this.array = array;
25 this.index = index;
26 }
27
28 public void method1
29 (int variable3) {
30 array[index] = variable3;
31 index++;
32 }
33
34 public int method2 () {
35 index--;
36 return array[index];
37 }
38
39 public int methode3(int index) {
40 return array[index];
41 }
42 }

Figure 10.2: Programming experience: Task 2.
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1 public class Stack {
2
3 private int [] elements;
4 private int index;
5
6 public Stack (int[] elements, int

index) {
7 this.elements = elements;
8 this.index = index;
9 }

10
11 public void push (int item) {
12 elements[index] = item;
13 index++;
14 }
15
16 public int pop () {
17 index--;
18 return elements[index];
19 }
20
21 public int get (int index) {
22 return elements[index];
23 }
24 }

Figure 10.3: Programming experience: Task
3.

1 public class Test
2 public static void main(String[] args){
3 String ausgabe = null;
4 if (args[0].equals("Hello"))
5 {
6 ausgabe = args[0] + " World";
7 }
8 System.out.println(ausgabe);
9 }

10 }

Figure 10.4: Programming experience: Task 9.

10.4 Chapter 8: FMRI and Program Comprehension—Tasks

Figures 10.7 to 10.18 contain the source codes we use in our experiment in the fMRI
scanner.
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11 public class ListMain {
12
13 public static void main(String args[]) {
14 LinkedList list = new LinkedList();
15 AbstractElement a1 = new AbstractElement("A1");
16 AbstractElement a2 = new AbstractElement("A2");
17 AbstractElement a3 = new AbstractElement("A3");
18 AbstractElement a4 = new AbstractElement("A4");
19 AbstractElement a5 = new AbstractElement("A5");
20
21 list.insert(a5);
22 list.insert(a4);
23 list.insert(a3);
24 list.insert(a2);
25 list.insert(a1);
26
27 Iterator iter = list.iterator();
28 while (iter.hasNext()) {
29 System.out.println(iter.next().getElement());
30 }
31
32 list.insertAlgorithm(new AbstractElement("A6"));
33
34 iter = list.iterator();
35 while (iter.hasNext()) {
36 System.out.println(iter.next().getElement());
37 }
38
39 }

Figure 10.5: Programming Experience: Tasks 4 to 8. The file ListMain.java changes slightly for
each task.
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1 public class LinkedList {
2
3 Node head;
4
5 public LinkedList() {
6 this.head = new Node();
7 }
8
9 public void insert(AbstractElement e) {

10 Node newNode = new Node(e);
11 newNode.setNext(this.head.getNext());
12 head.setNext(newNode);
13 }
14
15 public void insertAlgorithm(AbstractElement ae){
16 Iterator iter = this.iterator();
17 Node previous = iter.next();
18 if (ae.compareTo(previous.getElement()) < 0) {
19 insert(ae);
20 return;
21 }
22 while (iter.hasNext()) {
23 Node tmp = iter.next();
24 if (ae.compareTo(tmp.getElement()) < 0) {
25 Node newNode = new Node(ae);
26 newNode.setNext(tmp);
27 previous.setNext(newNode);
28 break;
29 }
30 previous = tmp;
31 }
32 if (ae.compareTo(previous.getElement()) > 0) {
33 Node newNode = new Node(ae);
34 previous.setNext(newNode);
35 return;
36 }
37 }
38
39 public String removePos( int pos) {//...}
40 public int size() {//...}
41 public final void sortBubbleSort() {//... }
42 public Node getElementAt( int pos) {//...}
43
44 private void sort(AbstractElement[] array, int size) {
45 boolean swapped;
46 do {
47 swapped = false;
48 for ( int i = 0; i < size - 1; i++) {
49 if (array[i + 1].compareTo(array[i]) < 0) {
50 swap(array, i, i + 1);
51 swapped = true;
52 }
53 }
54 } while (swapped);
55 }
56
57 private void swap(AbstractElement[] array, int index1, int index2) {//...}
58
59 }

Figure 10.6: Programming Experience: Tasks 4 to 8.
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1 public static void main(String[] args) {
2 int result = 1;
3 int x = 4;
4
5 while (x > 1) {
6 result = result * x;
7 x--;
8 }
9 System.out.println(result);

10 }

Figure 10.7: FMRI: Task 1 (Compute faculty).

1 public static void main(String[] args) {
2 int var1 = 23;
3 int var2 = 42;
4 int temp;
5 temp = var1;
6 var1 = var2;
7 var2 = temp;
8 System.out.println(var1);
9 }

Figure 10.8: FMRI: Task 2 (Swap the value of
two variables).

1 public static void main(String[] args) {
2 String word = "Hello";
3 String result = new String();
4
5 for (int j = word.length() - 1; j >= 0; j--)
6 result = result + word.charAt(j);
7
8 System.out.println(result);
9 }

Figure 10.9: FMRI: Task 3 (Reverse string).

1 public static void main(String[] args) {
2 int[] array = {1, 6, 4};
3
4 for (int i = 0; i <= array.length/2 - 1; i++) {
5 int tmp = array[array.length - i - 1];
6 array[array.length - i - 1] = array[i];
7 array[i] = tmp;
8 }
9

10 for (int i = 0; i <= array.length - 1; i++)
11 System.out.println(array[i]);
12 }

Figure 10.10: FMRI: Task 4 (Reverse entries in array).
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1 public static void main(String[] args) {
2 String word = "Programming in Java";
3 String key1 = "Java";
4 String key2 = "Pascal";
5
6 int index1 = word.indexOf(key1);
7 int index2 = word.indexOf(key2);
8
9 if (index1 != -1)

10 System.out.println("Substring is contained: " + key1);
11 else
12 System.out.println("Substring is not contained: " + key1);
13
14 if (index2 != -1)
15 System.out.println("Substring is contained: " + key2);
16 else
17 System.out.println("Substring is not contained: " + key2);
18 }

Figure 10.11: FMRI: Task 5 (Test whether substring is contained).

1 public static void main(String[] args){
2 int i = 4;
3 String result = "";
4
5 while (i > 0) {
6 if (i % 2 == 0)
7 result = "0" + result;
8 else
9 result = "1" + result;

10 i = i/2;
11 }
12
13 System.out.println(result);
14 }

Figure 10.12: FMRI: Task 6 (Convert from dec-
imal to binary).

1 public static void main (String[] args){
2 int array[] = {2, 19, 5, 17};
3 int result = array[0];
4 for (int i = 1; i < array.length; i++)
5 if (array[i] > result)
6 result = array[i];
7 System.out.println(result);
8 }

Figure 10.13: FMRI: Task 7 (Find largest num-
ber in array).

1 public static void main(String[] args) {
2 int number = 323;
3 int result = 0;
4
5 while (number != 0) {
6 result = result + number % 10;
7 number = number/10;
8 }
9 System.out.println(result);

10 }

Figure 10.14: FMRI: Task 8 (Compute cross
sum).

1 public static void main(String[] args) {
2 int number = 11;
3 boolean result = true;
4 for (int i = 2; i < number; i++) {
5 if (number % i == 0) {
6 result = false;
7 break;
8 }
9 }

10 System.out.println(result);
11 }

Figure 10.15: FMRI: Task 9 (Check for prime
number).
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1 public static void main(String[] args) {
2 int[] array= {1, 2, 4, 5, 6, 10};
3 sort(array);
4
5 float b;
6 if (array.length % 2 == 1)
7 b = array[array.length/2];
8 else
9 b = (array[array.length/2 - 1] +

array[array.length/2])/2;
10
11 System.out.println(b);
12 }

Figure 10.16: FMRI: Task 10 (Find medium
number).

1 public static void main(String[] args) {
2 int num1 = 2;
3 int num2 = 3;
4 int result = num1;
5 for (int i = 1; i < num2; i++) {
6 result = result * num1;
7 }
8 System.out.println(result);
9 }

Figure 10.17: FMRI: Task 11 (Compute
power).

1 public static void main(String[] args) {
2 int[] array= {1, 2, 4, 5, 6, 10};
3 sort(array);
4
5 float b;
6 if (array.length % 2 == 1)
7 b = array[array.length/2];
8 else
9 b = (array[array.length/2 - 1] + array[array.length/2])/2;

10
11 System.out.println(b);
12 }

Figure 10.18: FMRI: Task 12 (Find median).
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Ärzte-Verlag, 2003.



BIBLIOGRAPHY 218
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Wilhelm Wundt. Grundzüge der Physiologischen Psychologie. Engelmann, 1874.

Wilhelm Wundt. Grundriß der Psychologie. Kröner, 1914.
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