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Customizable programs enable users to generate tailor-made program variants
from a common code base. To generate a variant, users select features that satisfy
their functional and non-functional requirements. Finding features that satisfy func-
tional requirements is straightforward, whereas finding a feature selection that fulfills
non-functional requirements, for example, minimizing response time or footprint, is a
challenge. Knowing in advance which feature selection yields the best non-functional
properties is difficult, because a direct measurement of all possible feature combi-
nations is infeasible: 33 optional and independent features yield a configuration for
each human on the planet, and 265 optional features yield more configurations than
estimated atoms in the universe.

In this thesis, we present a technique to predict a variant’s non-functional prop-
erties based on selected features. To this end, we determine the influence of each
feature on a non-functional property by measuring two variants that differ only in
a single feature. The difference of both measurements is the impact of the differing
feature on a non-functional property.

We evaluate our approach with three series of experiments for the non-functional
properties footprint, main-memory consumption, and performance using real-world
programs from different domains (e.g., databases, operating systems) and imple-
mented with different languages and techniques. We observe that prediction accu-
racy depends on whether there are feature interactions. A feature interaction exists
if the simultaneous presence of two features lead to an unexpected behavior of a
variant, whereas their individual presences do not.

To detect feature interactions, we developed two approaches. One requires manual
analysis and domain knowledge, but achieves high accuracy. The other approach au-
tomatically detects interactions of black-box programs, but at the cost of accuracy.
We evaluate their effectiveness based on the non-functional properties footprint and
main-memory consumption. Depending on the approach and non-functional prop-
erty, the average accuracy lies between 89 % and 99 %. We further found in our
analysis that feature interactions are not evenly distributed among all features and
feature interactions occur in patterns.

Base on these insights, we propose a two-step approach that automatically detects
relevant feature interactions to improve prediction accuracy for black-box programs.
First, we find only the features that interact. Second, we detect combinations of the
identified interacting features that actually cause a feature interaction. To this end,
we use three heuristics based on the insights of the previous evaluation. We evaluate
this approach for performance with six real-world programs from different domains
and vendors. We improve our prediction from an average accuracy of 79 % to 95 %
when using all heuristics. Since a error rate of 5 % lyes with the measurement error,
our predictions are nearly perfect. Hence, in this thesis, we developed a scalable
and efficient method to accurately predict different non-functional properties of
customizable black-box programs.
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1. Introduction

We develop means to measure and predict non-functional properties, such as per-
formance and footprint, of customizable programs. In this way, we enable stakehold-
ers to select appropriate customization options that optimize a program for their
specific functional and non-functional requirements.

1.1. Motivation

A typical process of software development is to improve non-functional properties
– such as performance, energy consumption, and footprint – of a program as it is
being designed or developed. We review how non-functional properties are optimized
in traditional software development and discuss limitations of conventional software
development regarding applicability for different application scenarios and optimiza-
tion goals. We demonstrate how customizable programs overcome these limitations,
but give users the burden to find a suitable selection of customization options that
optimize non-functional properties. Consider the embedded database system SQLite:
If users want to find the selection of customization options with the smallest foot-
print and fastest performance, they are confronted with 288 possibilities; a hardly
solvable problem up to this time.

In traditional software development, developers capture requirements of stake-
holders and implement an according program. There are two approaches to develop
a program with respect to the specified requirements: specialized programs and
general-purpose programs.

Specialized Programs. When developing specialized programs, we consider only
a single application scenario. This allows us to tailor a program according to the
functional requirements of this application scenario. This tailoring of functionality
enables us to implement resource-efficient software, because a program contains only
the actually needed functions.

Another benefit of specialized programs is that we can optimize certain non-
functional properties that are important in the specific application scenario. To
this end, developers use tools – such as the non-functional requirements frame-
work [Chung et al., 1999], i* framework [Yu, 1997], and KAOS [van Lamsweerde,
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2001] – to make design decisions during development that optimize certain non-
functional properties of the final program.

The drawback of specialized programs is the limited functionality such that we
can use specialized programs only in the intended scenario. When vendors want
to support additional application scenarios, developers have to reimplement their
changes on new versions of programs – possibly starting from scratch. This is espe-
cially the case when other non-functional properties become important. For instance,
Windows and Linux cannot be used for real-time applications. Hence, specialized
operating systems – such as eCos – or extensions to existing systems, which reimple-
ment large portions of the kernel – such as Windows RTX, RTLinux, and Xenomai –
were developed. Since different requirements regarding non-functional properties can
be contradicting (e.g., optimize performance vs. maximize reliability vs. maximize
availability), specialized programs have only a limited applicability.

General-Purpose Programs. The opposite to specialized programs represent
general-purpose programs. A general purpose program covers application scenarios
of a whole domain. For example, the database management system (DBMS) Oracle
provides a wide variety of functions, such as XML storage, relational storage, trans-
action management, and data warehousing. In this context, Stonebraker et al. [2007]
coined the expression “one-size-fits-all”, meaning that a single program covers the
whole database domain. However, he and others emphasized that “one-size-fits-all”
is a bad idea with respect to non-functional properties.

General-purpose programs satisfy a wide range of functional requirements, but
this comes at the cost of a limited applicability regarding non-functional properties.
Requirements on non-functional properties imposed by the used hardware constrain
the applicability of a general purpose program. For instance, installing Windows 7
on a smart phone will fail, because Windows 7 targets desktop computers with a
powerful hardware, and using a full-fledged DBMS (such as Oracle) on a sensor is
infeasible due to resource constraints. Hence, in spite of its usually large applicability,
a general purpose program is often limited to powerful hardware.

Another drawback is the waste of resources: Functionality that is never executed
remains in the program. This unnecessary functionality increases binary size, which
may be important for embedded systems, and consumes main memory for data that
is never accessed. Moreover, internal program functions may increase in complexity
and size, because a variety of use cases have to be supported all at once. This
complexity degrades performance and security, since code must be executed that
has either no effect or is not of interest to the user.

Since there is often a trade-off between different non-functional properties (e.g.,
footprint vs. performance vs. energy consumption), general-purpose programs can-
not be optimized for a specific property, because it would mean to sacrifice ap-
plicability in application scenarios that require other properties to be optimized.
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Stonebraker et al. [2007] have shown that specialized programs (e.g., XML and doc-
ument databases) outperform general-purpose programs by orders of magnitudes
better performance, but only for certain scenarios.

Hence, vendors face the dilemma to develop either a specialized program that
is highly optimized, but has only a limited scope, or a general purpose program
that can be used in many scenarios, but sacrifices optimization potentials. Program
customization can solve this problem.

Customizable Programs

Customization is not new. Already the first operating-system tools allowed users to
specify customization options (in terms of command-line parameters) to customize
the program behavior. For instance, the 1969-introduced Unix command cp, which
copies files, had five options (e.g., recursive copy). These early customization options
focus on functional tailoring. The growing demand for new and more sophisticated
functionality resulted in more complex software and in the development of diverse
customization mechanisms [Rabkin and Katz, 2011]. Today, we use compile-time
(e.g., conditional compilation), load-time (e.g., configuration files and command-
line parameters), and even run-time mechanisms (e.g., dynamic product lines) to
tailor a program to our needs. All these techniques have in common that we select
appropriate customization options – here called features – to obtain the desired
program – called a variant. Features are mapped to implementation units to (de-
)activate a certain function or to set some parameters.

Similar to general-purpose programs, customizable programs cover a whole domain
instead of a specific application scenario. This leads to the situation that vendors
have to cope with very different non-functional requirements to not lose optimization
possibilities. For example, customers of a DBMS have completely different non-
functional requirements when they use a particular variant in different application
scenarios, such as mobile devices, parallel computers, or desktop computers. For
instance, the footprint of a DBMS variant has to be minimized for an embedded
system, a variant for real-time systems must provide a deterministic response time,
and a DBMS variant for a mobile device requires minimized energy consumption. If
developers face contradicting requirements, they often develop alternative features
to provide different variants that are functionally equal, but satisfy different non-
functional requirements. For instance, a customizable DBMS may provide alternative
buffer-manager features: one minimizes working-memory consumption and another
feature optimizes performance.

3
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Finding an Optimal Variant

If a customizable program has many features, it is rarely clear which feature selection
gives rise to which non-functional properties. That is, how should we customize an
embedded database (e.g., SQLite) to yield a variant with a footprint lower than
200 KB and a response time of less than one second?

A major problem is that customizable programs often have many and partially
unknown features for which users do not know how the features satisfy their require-
ments. Hence, users specify only a partial feature selection. They know which fea-
tures provide functionality that is required for their application scenario, but which
of the remaining features provide an additional benefit for their use case remains
unclear, because the influence of a feature selection on non-functional properties
could not be quantified so far.

Consider the Linux kernel to make the above problem clear, because it represents a
common case of customization problem [Hubaux et al., 2012]. Linux contains about
8 000 features. For a single person, it is not possible to know what each of these
features do and how these features influence other features [Hubaux et al., 2012].
The website linux.com lists the top five deployment mistakes for Linux. The top one
mistake addresses the non-functional properties performance and user-experience:

‘‘For mission critical server systems, you need to make sure that you can
handle peak loads and ensure uptime. This means doing extensive load
testing before you deploy Linux servers to see whether you need heftier
hardware, configuration changes, etc. For user systems, you need to make
sure that there are no unpleasant surprises when the systems are put in
front of real users who aren’t already Linux experts.”1

Users can specify only features that realize their functional requirements, e.g., by
selecting hardware drivers in Linux. However, which memory strategy, file system,
or compiler optimization is additionally needed when, for example, Linux should be
deployed on a web server, remains unknown. Users expect that remaining variability
should be bound such that they obtain an optimal and valid kernel. Whether a
feature selection is valid defines a variability model (e.g., a feature model). But
which additional features should we select to, for example, minimize binary size or
optimize performance when it is used in an automotive system?

Answering this question is far from trivial. A correct answer requires a vendor to
measure non-functional properties of all of these variants. This measurement pro-
cess is usually costly and time-consuming, because even programs with a limited
variability (i.e., only few features exist), can have millions of possible variants. With
an increasing number of features, vendors face an exponential explosion of the vari-
ant space. There can be hundreds of features resulting in myriads of configurations:

1Source: http://www.linux.com/news/technology-feature/security/383997-top-five-linux--
deployment-mistakes Accessed on: August 20th, 2012
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33 optional and independent features yield a configuration for each human on the
planet, and 265 optional features yield more configurations than there are estimated
atoms in the universe. To find the feature selection with the best performance for
a specific workload requires an intelligent search; brute-force is infeasible. Hence,
rather than measuring each variant, we have to predict the optimal feature selection.
This prediction, however, requires knowledge about how features and feature com-
binations influence non-functional properties. To the best of our knowledge, there is
no method that gives us this information in the necessary detail and accuracy.

Goal of this Thesis

Our goal is to enable users to derive nearly-optimal variants of customizable pro-
grams with respect to measurable non-functional properties. Instead of measuring
each variant, we predict a variant’s non-functional properties based on user-selected
features. That is, we aggregate the influence of each selected feature on a non-
functional property to compute the properties of a specific variant. To this end, we
measure non-functional properties per feature. We compile and measure two variants
and approximate values per feature from the delta between these variants. That is,
we predict what influence the selection of a single feature will have on non-functional
properties of the final program. We show that for programs with n features, already
n + 1 measurements can lead to acceptable predictions, which can be improved
further with more measurements.

The accuracy of predictions depends on many factors. There are non-functional
properties, such as performance, that are program wide: They emerge from the pres-
ence and interplay of multiple features. For example, database performance depends
on whether a search index or encryption is used and how both features operate to-
gether. We show how we can determine how the combined presence of two features
influences non-functional properties. Two features interact if their simultaneous pres-
ence in a configuration leads to an unexpected behavior, whereas their individual
presences do not [Calder et al., 2003b, Nhlabatsi et al., 2008].

We present a prediction model that captures the influence of features and feature
interactions on non-functional properties. We propose three heuristics to automate
the detection of feature interactions. An important goal is that our predictions and
measurements are applicable for black-box programs. That is, we develop an ap-
proach that is independent of programming language, implementation techniques,
and customization mechanisms. Furthermore, our approach does not rely on any
domain knowledge or implementation artifacts. Hence, we aim at treating a cus-
tomizable program as a black box.

We evaluate our prediction model in several experiments with different non-
functional properties, such as footprint, main-memory consumption, code metrics,
and performance. We use real-world programs – such as Linux, SQLite, Berkeley DB,
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and Apache – coming from different domains and vendors and implemented with
varying programming languages (C, C++, Java) and customization techniques (e.g.,
condition compilation, command-line parameters). We show that an average accu-
racy of 95 % for performance is possible when interactions are known. Furtermore,
we demonstrate that we can predict footprint of nine programs with an accuracy of
99.8 %, on average. With these predictions, users can find nearly-optimal variants,
for example, using constraint-satisfaction problem solvers.

1.2. Contributions

We enable stakeholders to find a nearly-optimal variant for their application sce-
nario that has an optimized performance, a minimized binary size, or reduced main-
memory consumption. To this end, we propose, implement, and evaluate a novel
approach that quantifies non-functional properties of features and feature interac-
tions. We make the following contributions:

1. Feature-wise Measurement of Non-Functional Properties. We propose
a technique that enables users to measure the influence of features on measur-
able non-functional properties. Although many programs were customizable
for decades, there is no generally applicable approach yet that quantifies the
influence of customization options on non-functional properties. Two major
problems prevented solutions in this area: how to quantify the influence of
individual features and how to manage the huge configuration space. We pro-
pose to use the delta (or difference) of two measured variants that differ only
in a single feature to approximate this feature’s influence on non-functional
properties.

2. Prediction of Non-Functional Properties. We develop a prediction model
that incorporates features, feature interactions, and non-functional properties.
Although simple in structure, it achieves accurate predictions for customiz-
able programs. Furthermore, we outline how this model can be extended to
incorporate also the workload of an application.

3. Feature-Interaction Detection. Feature interactions are a major problem
when coping with variable software, because they cause unexpected system
behaviors. Such an unexpected behavior is especially a concern when predicting
non-functional properties and measurement per feature is no longer possible.
We provide a method to automatically detect feature interactions using three
heuristics. These heuristics define configurations that must be measured to
find feature interactions.

4. Analysis of Customizable Programs and Non-functional Properties.
Our work provides measurement data of real-world programs for the first time.
These data lay the foundation with respect to non-functional properties for
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other research directions. Currently, researchers from University of Waterloo,
University of Passau, and ETH Zurich use our measurement data and ap-
proximations to develop new methods in their respective fields. For example,
researchers at the University of Waterloo work on multi-objective optimization
of software product lines, for which they use our approximations of a feature’s
influence on non-functional properties.

5. Black-Box Approach. Related approaches to prediction have relied on do-
main knowledge. Especially, the detection of feature interactions usually re-
quires that either the source code of a program or feature specifications are
available. We rely only on a description of what features exist and in what
format a program expects a feature selection, so that we can automatically
produce and measure variants. Hence, we do not rely on special implementa-
tion techniques, customization options, programming languages, or application
domains. The drawback of a black-box approach is a less precise prediction
compared to white-box approaches that can take program internals into ac-
count. Our goal is to find a sweet spot between generality (i.e., applicable to
black-box programs), measurement effort, and prediction accuracy. We show
in our evaluation that we reach a sufficient accuracy in our predictions.

Our aim is to make a real-world impact with this thesis. Hence, we have looked at a
real-world problem: finding a suitable configuration that meets functional and non-
functional requirements. Choosing appropriate options can reduce hardware costs
(e.g., due to minimizing hardware requirements), improve response times, and pro-
duce more efficient programs in terms of energy consumption. Furthermore, we se-
lected real-world programs to evaluate our approach under realistic conditions and
to provide realistic measurement data to vendors.

1.3. Key Assumptions

Our approach is not applicable to all kinds of programs and non-functional prop-
erties, because there can be significant differences in properties that may prevent
their values being measured in an automated way. Hence, to clarify which conditions
must be met to use our approach, we list our assumptions:

• Measurable Non-Functional Properties (A1). There are many kinds of
non-functional properties. We divide them into automatically measurable and
non-measurable properties. Non-measurable properties are (i) qualitative prop-
erties (e.g., reliability in some application scenarios) for which we cannot spec-
ify a meaningful measurement approach and (ii) properties that are too ex-
pensive to measure or require manual tasks (e.g., human experiments). For
instance, user experience, security, and usefulness are non-measurable or very
expensive to measure. Hence, we concentrate on measurable non-functional

7
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properties – such as performance and binary size – for which we can automate
the measurement process.

• Automated Variant Derivation (A2). Variant derivation refers to the pro-
cess of generating a variant based on a feature selection (e.g., by specifying
command-line parameters). Our approach requires that a program can be au-
tomatically produced given its feature selection. That is, we must be able to
generate a variant in an automated manner, because we automate the whole
measurement process. Many binary programs that can be executed with some
kind of feature selection (e.g., command-line parameters) fulfill this require-
ment. However, there are customization mechanisms that require a manual
preparation to produce a variant. For example, software product lines can
provide features that are not yet implemented or need to be manually assem-
bled from components (see application engineering in Section 2.3.1). These
programs cannot be compiled and measured automatically, which is a prereq-
uisite for our work.

• Feature Order (A3). In this work, we do not consider the ordering at which
implementation units are composed. Either the ordering is implicit (e.g., in the
case of annotated source code) or the order at which features are composed
is explicitly given. That is, a variant has always the same absolute order of
features, which is, for example, different in component-based programs.

1.4. Research Method

We follow a constructive research approach, as shown in Figure 1.1. That is, based
on the initial problem analysis in Section 3.1, we develop our prediction model. We
use this model to estimate non-functional properties based on a feature selection.

Our research started with an initial prediction model (Chapter 3). Next, we evalu-
ated the prediction model in terms of its accuracy. To this end, we conducted several
experiments to empirically rate the accuracy of the model for the non-functional
properties footprint, main-memory consumption, and performance (Chapter 6). We
analyzed the results of the evaluation to identify problems that cause prediction
inaccuracies. This resulted in an extension of the problem statement. We refined the
prediction model to solve the newly identified problems. Again, we evaluated the ac-
curacy of the refined model by multiple experiments (Chapters 7 and 8). With this
method, we improved our model in each step such that our predictions become more
accurate and the external validity is increased (i.e., more non-functional properties
and programs are evaluated).

In this thesis, we developed the above concepts in three iterations:

1. Feature-Wise Measurement. In the first iteration, we propose to measure
the influence of a feature based on the non-functional delta of two variants
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Figure 1.1.: Research Method.

that differ only in the corresponding feature. Since we do not measure features
directly, one research question during the first iteration is how to keep the
prediction accuracy high with only few measurements. We call this approach
feature-wise measurement (described in Chapter 6). We conduct experiments
with the properties footprint, main-memory consumption, and performance to
evaluate prediction accuracy.

2. Feature Interactions. Based on (1), we identify that feature interactions
cause significant prediction error rates. From this insight, we extend our prob-
lem statement, such that we need to determine the influence of feature in-
teractions on non-functional properties. In the second iteration, our first at-
tempt to incorporate feature interactions is to use domain knowledge (called
interaction-wise measurement) and a näıve detection approach (called pair-
wise measurement). We describe and evaluate these approaches in Chapter 7.

3. Automated Detection of Feature Interactions. We observed in (1) and
(2) that interactions are not evenly distributed among all features such that
we do not have to measure all feature combinations to find interactions. Fur-
thermore, we identify that higher-order feature interactions (i.e., interactions
between more than two features) exist, which can degrade prediction accuracy
of pair-wise measurement.

Since our main goal is to support black-box programs, we cannot rely on do-
main knowledge and source-code analysis. Hence, we cannot use interaction-
wise measurement. Instead, we developed an automated feature-interaction de-
tection approach, which uses three heuristics (presented in Chapter 8) based
on the observations of our second iteration. We conduct an experiment with
the non-functional property performance to evaluate feasibility and accuracy
of our automated detection approach.

1.5. Outline

Chapter 2. In the next chapter, we give background about different customization
techniques, which we support with our approach. This description helps to judge
applicability of our approach compared to other techniques. Furthermore, we define
our terminology we used to ease understanding of the remaining thesis. Finally, we
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show important concepts of software product line engineering, such as implementa-
tion techniques and the feature model, which we use as a central element to choose
appropriate configurations for measurement.

Chapter 3. We describe our initial problem statement, why we developed a black-
box approach to increase applicability, and why scalability of measurements is crucial
for highly customizable programs. We propose a classification of non-functional prop-
erties that addresses the problem of measuring very diverse non-functional proper-
ties. Based on this classification, we suggest different measurement and configuration
strategies, which we outline in Chapter 4. We conclude this chapter by illustrating
the big picture of incorporating non-functional properties in the configuration of a
customizable program. In particular, we explain when each class of non-functional
properties should be measured and configured.

Chapter 4. We present our prediction model by introducing the concept of feature
and feature-interaction terms. We infer the concept of terms in a feature selection
from a feature-composition model and map it to the composition of the compu-
tational effects of selected features on non-functional properties. Furthermore, we
explain the relationship between feature model (as a mean to configure a program)
and prediction model. In this context, we propose an extension to feature models,
called product-line models, to be able to represent feature interactions, which map
to feature-interaction terms in the prediction model. Furthermore, we describe how
non-functional properties can be assigned to features in the product-line model. We
optionally support the definition of implementation units, which help in identifying
feature interactions.

Chapter 5. We explain and compare three strategies to measure and quantify the
influence of features on non-functional properties. These strategies are: direct mea-
surement, family-based measurement, and feature-wise measurement. We show that
feature-wise measurement supports measurement of most non-functional properties
and is implementation independent. For these reasons we present feature-wise mea-
surement in Chapter 6.

Chapter 6. We present our main approach to quantify the influence of features
on non-functional properties. We show how to derive and measure suitable vari-
ants and how to infer from these measurements the impact of a feature on a non-
functional property. We evaluate this approach with three series of experiments
using the non-functional properties footprint, main-memory consumption, and per-
formance. We show that feature-wise measurement achieves a good accuracy for
some non-functional properties, but when features interact, we observe high error
rates.

Chapter 7. We propose two approaches to determine the influence of feature in-
teractions on non-functional properties with the goal to improve prediction accu-
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racy. The first approach (interaction-wise measurement) uses domain knowledge and
source-code analysis to manually define feature interactions. The second approach
(pair-wise measurement) defines an interaction between each pair of features. We
evaluate both approaches and extend our problem statement with the findings.

Chapter 8. We present an approach that automatically detects feature interactions
without the use of domain knowledge or code analysis. We propose a two-step tech-
nique, in which we first detect features that interact at all, and, second, we find
combinations of these features using three heuristics that actually cause a feature
interaction. We evaluate measurement effort and prediction accuracy of our three
heuristics with six real-world programs for the non-functional property performance.
We found that we can predict different non-functional properties for black-box pro-
grams with an acceptable accuracy by finding the sweet spot between measurement
effort, generality of the approach, and prediction accuracy.

Chapter 8. We summarize our results and give future research directions for mea-
suring and optimizing non-functional properties.
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We give background about customization mechanisms to show which customizable
programs we can measure and predict with our approach. Furthermore, we present
our terminology, which we use throughout the thesis. We conclude this chapter by
presenting feature models, which are a central element for our approach. Next, we
review definitions of the term non-functional property.

2.1. Non-Functional Properties

In literature, there are controversial discussions about the terms non-functional prop-
erties, non-functional requirements, and quality attributes. There are over 25 defini-
tions for these terms and even surveys that reflect and comment these definitions to
add their own definition at the end [Glinz, 2007, Chung and do Prado Leite, 2009].
To give an impression, we present some of these definitions:

• ”Describe the nonbehavioral aspects of a system, capturing the properties and
constraints under which a system must operate.” [Anton, 1997]
• ”The required overall attributes of the system, including portability, reliability,

efficiency, human engineering, testability, understandability, and modifiabil-
ity.” [Davis, 1993]
• ”A description of a property or characteristic that a software system must

exhibit or a constraint that it must respect, other than an observable system
behavior.” [Wiegers, 2003]
• ”A property, or quality, that the product must have, such as an appearance, or

a speed or accuracy property.” [Robertson and Robertson, 1999]

However, we identify a consensus that a non-functional property does not relate to
the functionality of a variant, but to a quality or behavioral attribute. Hence, not to
give a 26th definition of non-functional properties, we use this consensus to express
non-functional properties. In our work, we measured several kinds of properties,
such as footprint (as binary size of a program), main-memory consumption (as peak
memory consumption of a program), and performance (as response or execution
time of a program). We further give a classification of non-functional properties in
Section 3.2 and describe related models in Section 3.4. Furthermore, we consider a
non-functional requirement as a qualitative or quantitative requirement on a specific
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non-functional property, such that a requirement usually constrains the number of
valid programs.

2.2. Customization Mechanisms

Users can customize programs with many different techniques and at different times.
For example, they can specify command-line options at program start to dynami-
cally tailor a program to their current needs. Moreover, they can also generate and
construct a tailor-made program specifying which implementation units have to be
compiled. In the following, we provide an overview of different customization mech-
anisms, because they affect how non-functional properties emerge and how we have
to measure them. We divide them into compile-time, load-time, and run-time cus-
tomization times, because these different customization times allow us to measure
different non-functional properties, which affect the design of a general measurement
approach.

2.2.1. Compile-Time Customization

Compile-time customization refers to techniques with which stakeholders tailor pro-
grams through compilation. That is, a stakeholder specifies a configuration to define
which code must be compiled. For example, a preprocessor removes code from a
source-code file that is not annotated (e.g., using #ifdef statements) with user-
defined flags. Hence, code remains in a file only when it was annotated with defined
preprocessor flags. Also, code that was not annotated remains in a file.

Other techniques use composition. That is, a developer specifies a feature selec-
tion, which maps to modules that have to be assembled and compiled. Prominent
techniques in this area are aspect-oriented [Kiczales et al., 1997] and feature-oriented
programming [Prehofer, 1997, Batory et al., 2004], as well as program generators
using components. Depending on the concrete implementation technique, measuring
non-functional properties can be challenging. For example, we can easily measure
performance or footprint of components, because we can compile and execute them
individually. But this means that we measure only a subset of the behavior, because
we cannot measure how components work together.

In contrast to components, feature modules, as used in feature-oriented program-
ming, have no explicit interface and may not even provide a cohesive implementation.
Instead, feature modules are often entangled with other features, such that the im-
plementation of a single feature can cut across several classes introduced by other
features. Measuring execution time in such an entangled scenario is complicated,
because the program flow may frequently visit several features, so that an isolated
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measurement is not possible. Hence, a general applicable measurement approach has
to consider also such techniques.

Compile-time customization is the only technique that influences the non-
functional property binary size. That is, when stakeholders want to minimize bi-
nary size of a program, they have to apply compile-time customization. Moreover,
when variants are sold as source code (e.g., as libraries), code metrics may become
important to judge (at some degree) the code quality. Improving code metrics via
customization is only possible for compile-time customization. That is, the source
code of a variant is assembled, but not yet compiled.

2.2.2. Load-Time Customization

When customizing a program at load time, we tailor the behavior of a program
dynamically with configuration options [Rabkin and Katz, 2011]. Variability is en-
coded using condition statements (e.g., if statements), which change the program
flow depending on the given configuration. This kind of customization affects only
non-functional properties that emerge at runtime. For example, the binary size of
a program will not change no matter what the configuration looks like, but the
main-memory consumption and performance can change substantially. Hence, when
customizing a program at load-time, we can only influence properties that emerge
from the program’s execution behavior.

A traditional method to customize a program at load-time is the use of command-
line parameters or configuration files. A program is called with a specific set of
flags. These flags determine the executed functionality (e.g., /r for recursive search),
quality aspects (e.g., /c=1 for a high compression rate in the data-compression
program RAR1), and the workload (e.g., which folders to analyze). Usually, each
of these options influences non-functional properties. For example, selecting a high
compression rate increases processing time.

With an increasing complexity of programs and the desire for high customization,
command-line options have reached their limits in terms of manual specification.
Instead of specifying parameters at each program start, we can use configuration
files to customize programs with hundreds of parameters, such as a web server. A
configuration file (e.g., an ini-file in Windows) typically stores a set of key-value
parameters. A program reads at start the configuration file and stores the values
internally. When the program flow reaches a point in which a configuration option
defines the following execution path, the program accesses its repository and eval-
uates the corresponding parameter. There are a number of ways to customize a
program at load-time. For example, we can define key-value parameters within the
Windows registry and read these values in our program.

1Source: http://www.winrar.de [Accessed: December 6th, 2012]
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An important prerequisite for our approach is that all customization techniques
can be used programmatically (A2). That is, we can generate a certain configura-
tion and start the program accordingly. If there is user interaction involved (e.g.,
a customization option is selected only in a user-interface dialog), we cannot sup-
port this customization technique with our approach, because we aim at measuring
non-functional properties in an automated manner.

2.2.3. Run-Time Customization

In contrast to load-time customization, we do not customize at program start, but
when the program is running. Hence, run-time customization can trigger an adap-
tation of the program at run-time.

Currently, we do not support measurement and prediction of non-functional prop-
erties of programs that are customized at run-time. However, this is only a technical
issue, as we experimentally showed that determining non-functional properties is
possible at run-time [Rosenmüller et al., 2011b]. Adaptive systems provide vari-
ability to customize programs at run-time. Such approaches are often based on
components [Oreizy et al., 1999]. Developers define adaptation rules, which trigger
the actual adaptation process [Floch et al., 2006, Garlan et al., 2004]. For exam-
ple, they change the currently executed component architecture by connecting new
components.

A novel customization concept represents dynamic software product lines. Run-
time customization is performed via a reconfiguration of a product line at run-
time [Alves et al., 2009, Hallsteinsen et al., 2008, Rosenmüller et al., 2011b]. That
is, the same concepts that we rely on for compile-time customization are lifted to
run-time configuration. For example, feature models are used to reconfigure these
programs, which allows for consistency checks of run-time adaptations [Cetina et al.,
2009]. Hence, we argue that our approach is applicable also for run-time customiza-
tion.

2.3. A Feature-Oriented Perspective

In this thesis, we address different types of customization mechanisms. Although each
mechanism has a different notation about how to specify customization options, we
consider all of them as features. The process of selecting features is a central topic of
software product line engineering and therein well understood. This is why we use
product-line terminology in our work and this is why we describe concepts of software
product line engineering in the following to ease comprehending the remaining thesis.
We continue with a description of feature models that we use to structure features
and derive valid variants. We conclude with a description of the terminology we use
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throughout the thesis such that the reader has a glossary about the meaning of the
various terms we use.

2.3.1. Software Product Line Engineering

The manufacturing industry use product lines since the beginning of the 20th cen-
tury. Besides cost-reduction and a decreased time-to-market, a product line provides
another major benefit: customization. Instead of producing a single product for all
customers, customers specify their desired features so that a tailor-made product is
manufactured. Although customized, these products are all related; build up from
a common set of assets. Software engineers transferred this concept to software de-
velopment. A software product line is a set of related programs sharing a common
code base [Clements and Northrop, 2002]. We distinguish programs of a product line
in terms of features, in which a feature is a stakeholder-visible characteristic [Kang
et al., 1990].

In software product line engineering, we differentiate between domain engineering
and application engineering [Czarnecki and Eisenecker, 2000, Pohl et al., 2005] as
illustrated in Figure 2.1. The goal of the domain-engineering phase is to capture
and model necessary features based on an analysis of the domain and to imple-
ment these common features. During application engineering, users specify concrete
requirements that are specific for their application scenario. Based on these require-
ments, they select features to produce a tailor-made variant. In the following, we
describe each phase in detail.

- Scope
- Common domain 
requirements

Domain 
Analysis

Requirements 
Analysis

Domain Design

Program 
Configuration

Application Engineering

Domain Engineering

Required 
features

Features Domain 
Implementation

Variant 
Production

Generator

Configuration

System 
architecture

Missing feature
Requirements 
Engineering

Feature model

- Customer requirements
- Concrete application 
scenario

Figure 2.1.: Domain and application engineering phases in software product line
development including requirements specification [Czarnecki and Eise-
necker, 2000].
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Domain Engineering

Domain engineering splits into three tasks: analysis, design, and implementa-
tion [Czarnecki and Eisenecker, 2000].

• Domain Analysis. A domain engineer analyzes functional and non-functional
requirements that are important for an entire domain (i.e., not necessarily
for a single application scenario). Feature-oriented domain analysis is a tech-
nique to capture commonalities and differences of requirements in terms of
features [Kang et al., 1990]. Common requirements lead to features that are
central for reuse in different programs of a product line, whereas different
requirements lead to features that distinguish programs. Feature-oriented do-
main analysis describes a way to structure features of a domain in a feature
model, which we describe in Section 2.3.2.

• Domain Design. Product-line architecture has to reflect the diverse require-
ments that are identified during domain analysis. It must support variability
such that different programs can be generated. The aim of this task is to
specify the used techniques to realize variability (e.g., with preprocessor or
components) and to specify in which form the identified features can be imple-
mented. For example, it may be suitable to implement several features within
a single component to reduce complexity of implementation.

• Implementation. Finally, based on the architecture, developers implement
all common features. Depending on the vendor, not all features may be imple-
mented at this phase. For instance, a feature that is required only seldom may
be implemented when the first variant requires it. Nevertheless, typically al-
most the whole implementation work is done in the domain-engineering phase,
affecting the point at which we can quantify the influence of features on non-
functional properties.

Domain engineering is in contrast to conventional software development, in which
concrete requirements are specified before development. For example, a DBMS prod-
uct line can provide features for in-memory and persistent-storage support. Although
both features have contradicting goals (i.e., performance vs. reliability), they both
are useful for specific scenarios (e.g., an in-memory variant for a web browser and
a persistent variant for an e-mail client). Developers implement such alternative
features to satisfy different and even incompatible goals.

Application Engineering

For each variant, application engineers analyze requirements of the concrete appli-
cation scenario and map them to a selection of features of the product line. This set
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of selected features, called a configuration, satisfies all requirements.2 By mapping
features to implementation units, a generator produces a program based on a con-
figuration. This process is called program derivation and described in detail next.
Depending on the used implementation technique, a generator may be a compiler
including a preprocessor or a composition-based tool, such as FeatureHouse [Apel
et al., 2012] and AHEAD [Batory et al., 2004].

Program Derivation. Program derivation is the process of obtaining a variant from
a customizable program. This process contains of several steps, as we illustrate in
Figure 2.2. A stakeholder defines functional and non-functional requirements on a
program. Functional requirements can often be mapped directly to a set of fea-
tures. This results in a partial configuration – also called partial feature selection.
Usually, only a subset of features is required, because customizable programs cover
a whole domain rather than a specific application scenario. Nevertheless, the re-
maining variability has to be bound. This leads to the situation that stakeholders
have to decide which additional features to select and which not. Furthermore, there
can be alternative features that provide the same functionality, but optimize dif-
ferent non-functional properties. This decision, however, is not trivial and has a
crucial influence on non-functional properties. So, which remaining features should
be selected to, for example, minimize binary size or optimize performance, remains
unclear. This thesis focuses on this step to give feedback to the user which features
influence non-functional properties to what extent in order to derive an optimized
variant.

After binding the remaining variability, the configuration is mapped to implemen-
tation artifacts (e.g., components, command-line parameters, or preprocessor flags).
With this mapping, we produce a variant. There are a large number of tools sup-
porting program derivation [Antkiewicz and Czarnecki, 2004, Czarnecki et al., 2004,
Batory, 2005]. A prominent example is the Linux kbuild tool.3 Kbuild encompasses
a Linux variability model, a configuration language (kconfig), and a production tool.
It resolves dependencies between features and produces a valid kernel based on a
partial configuration. However, it does not support means to specify non-functional
requirements.

2.3.2. Feature Models

A feature model specifies all valid configurations of a customizable program. It was
introduced by Kang and others in 1990 as a way to model the result of a domain
analysis [Kang et al., 1990]. Since its publication, many researchers proposed exten-
sions to feature models (see Schobbens et al. [2006] and Benavides et al. [2010]

2If requirements cannot be satisfied (e.g., because functionality is missing or non-functional require-
ments cannot be fulfilled), new features or alternative implementations have to be developed.

3http://kernel.org/doc/Documentation/kbuild/
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Partial feature selection

Configuration
Mapping to assets Production

Tailor-made variant

Configuration files, 
command-line parameters, 

preprocessor flags, ...

1. Requirement
2. Requirement

…

Figure 2.2.: Program-derivation process.

for a survey), such as cardinality-based feature models [Czarnecki et al., 2004].
Next to conceptual extensions, there are various approaches that specify alterna-
tive representations of feature models, such as graphically (e.g., feature diagrams),
textual [Rosenmüller et al., 2011c], or as propositional formulas [Batory, 2005].

A feature diagram has a hierarchical structure beginning with a root node, which
represents the domain concept. In Figure 2.2, we visualize the feature model of a
customizable DBMS using a feature diagram. We use a DBMS as a running example.
A feature model defines four basic relationships between features (see Figure 2.3):

• Mandatory. A mandatory feature must always be selected when its parent
feature is selected. If its parent feature is the root node, then all configurations
must contain this feature. Often, core functionality is modeled as a manda-
tory feature. For example, feature base in Figure 2.2 is mandatory, because it
implements basic storage functionality that is common in all variants.
• Optional. An optional feature represents a variability point in a feature model.

We can decide whether to select this feature. For instance, we can choose be-
tween a DBMS variant with Transaction support (by selecting feature Trans-
action in Figure 2.2) or without. Optional features double the number of con-
figurations, which leads to an exponential increase.
• Alternative Group. Alternative features cannot occur in the same config-

uration. We have to select exactly one (no more and no less) feature from a
group of alternative features. In our sample feature diagram, features Btree
and Hash are alternative features.
• Or Group. In contrast to an alternative group, we can select more than one

feature in an or group. Still, we have to select at least one feature. When
selecting feature Transaction, we can select either one of the features Logging
and 2PC or both. In cardinality-based feature models, we can specify a range
to define a minimal and maximal boundary of selected features within a group.

In addition, feature models support the definition of cross-tree constraints (e.g.,
feature InMemory requires feature RSA) or, more general, the definition of arbitrary
propositional formulas, which we support with our approach.
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2.3. A Feature-Oriented Perspective

Using propositional formulas has the advantage that we can encode a whole fea-
ture model into a single formula and apply different reasoning techniques [Batory,
2005, Benavides et al., 2005]. For example, we can use a satisfiability solver to verify
whether a feature selection is valid. We can also enumerate all valid configurations
or detect dead features, for which their selection always results in an invalid config-
uration.

DBMS

Base IndexTransactions

Btree HashLogging 2PC

Encryption

RSAInMemory

requires

Feature

optional

mandatory

alternative

or

requires

Legend:

Figure 2.3.: Feature model of a DBMS product line.

2.3.3. Terminology

In the following, we present the terminology, derived from software product line
engineering, to ease understanding of the remaining thesis. Although some terms
presented below are introduced and defined later, we list all of them in one spot to
provide a glossary for the reader.

Feature (aka. Customization Option). In literature, there are different definitions
regarding the term feature. Czarnecki and others define a feature as [Czarnecki
and Eisenecker, 2000]: ”a distinguishable characteristic of a concept that is relevant
to some stakeholder of the concept.”, whereas Kang and others defines a feature
as a user-visible characteristic of a system [Kang et al., 1990]. Batory and others
focus on functionality and define a feature as an increment in functionality of a
program [Batory et al., 2004].

In this thesis, a feature is a configuration option provided by a customizable pro-
gram. We do not distinguish between different kinds of customization mechanisms.
That is, a feature may include or remove code during compilation, (de-)activate a
function at load-time, and change the behavior of a program at run-time. When a
user can customize a program with an option, then we consider it as a feature and
we determine its influence on non-functional properties.
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Feature Interaction. The term feature interaction has different meanings depend-
ing on the context. In a broad scope, two features interact if their simultaneous
presence in a configuration leads to an unexpected behavior, whereas their individ-
ual presences do not [Calder et al., 2003b, Nhlabatsi et al., 2008]. But what does
unexpected behavior mean for non-functional properties? It means that we predict
non-functional properties differently than what we actually measure, but only for a
certain feature combination.

To clarify the meaning of a feature interaction, consider the following example for
performance: When determining performance of feature Compression, which com-
presses data, we measure a value of 20 s to pass a benchmark. Furthermore, we
measure performance of feature Encryption, which encrypts data, and observe 40 s
to pass the same benchmark. Now, we expect that when selecting both features in
combination, we measure a performance of 60 s, because we first compress data (tak-
ing 20 s) and afterwards encrypt this data (taking 40 s). However, when we actually
execute the benchmark, we measure only 50 s rather than the expected 60 s. The
reason for this difference is a feature interaction between features Encryption and
Compression, because feature Encryption encrypts already compressed data, which
has a significant smaller size and therefore requires less time. We introduce feature
interactions in full detail in Chapter 7.

Throughout this paper, we use # as the interaction symbol (described in Sec-
tion 4.2). That is, when features a and b interact, we denote the interaction between
both features with a#b.

Interacting Features. Interacting features are features that participate in a feature
interaction. That is, features a and b are interaction features if the combination of
both features lead to unexpected change of a variant’s non-functional properties (i.e.,
there is an observable feature interaction a#b). We explain how to detect interacting
features in Chapter 8.

Feature Model. A feature model describes all valid configuration of a customizable
program [Kang et al., 1990]. It captures features and relationships among them. We
described feature models in Section 2.3.2 in detail.

Configuration (aka. Feature Selection). A configuration is a valid feature selec-
tion according to the constraints and relationships specified in a feature model. To
derive a valid feature selection, we use feature models. We denote configurations by
specifying a set of selected features. For example, to denote a configuration with
features a and b, we write: C = {a, b}.
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Partial Configuration (aka. Partial Feature Selection). A partial configuration is
a feature selection, in which not the complete variability of a customizable program
is bound. That is, there are some customization decisions left. Since not all features
are selected or deselected, a partial configuration may be invalid according to the
constraints in a feature model.

Variant (aka. Product). A variant is the final and fully customized program that a
stakeholder actually uses. Hence, it is a concrete instance of a customizable program
according to a given configuration. That is, a configuration maps to a specific variant
and vice versa.

Configuration Space. The configuration space enumerates all valid configurations
of a customizable program. Hence, it is the search space in which we want to find a
near-optimal variant.

Variant Production. Variant production refers to the process of generating a vari-
ant. How this production is realized depends on the used customization and imple-
mentation techniques. For example, variant production can be compiling a program
with a specific set of preprocessor flags. It also can be the generation of command-line
parameters or configuration files.

Program Derivation (aka. Product Derivation). Program derivation describes the
complete process of obtaining a variant. That means, it includes the selection of
features to yield a valid configuration and the subsequent variant production process.
We described this process in Section 2.3.1 in detail.

Near-Optimal Solution. A near-optimal solution (or variant) is a configuration
(or variant) that is close to the optimal configuration (or variant) for a given non-
functional requirement. Although we aim at finding the best configuration for a
certain non-functional requirement (e.g., to produce the fastest variant), we cannot
give a guarantee, because our approach uses heuristics to decide which features
and feature interactions to measure and we can only approximate the influence of
features on non-functional properties. Hence, we cannot claim to find always the
best configuration. However, we usually find a configuration that is nearly-optimal,
as we will show in our evaluations.

Initial Feature Set. An initial feature set is a set of features that build a valid
configuration and has a minimal number of features. We use this set as a base
for further measurements to determine non-functional properties of features. We
introduce the initial feature set in Chapter 6.

23



2. Customizable Programs

Implementation Unit. An implementation unit is a piece of code that realizes a
feature’s functionality. For example, a component may be an implementation unit
for a feature. We do not limit implementation units to have a one-to-one mapping
to features. That is, a single implementation unit may realize multiple features and
multiple features may map to the same implementation unit. We describe this con-
cept in Section 4.3.

Variability. Variability describes the quantity of customization possibilities pro-
vided by a program. That is, a program with high variability allows us to derive
many variants, whereas limited variability reduces the number of producable vari-
ants.
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3. Incorporating Non-Functional
Properties in Program Derivation

This chapter shares material with the following papers:

• ”Measurement and Optimization of Non-functional Properties” in APSEC’08 [Siegmund
et al., 2008b],

• ”SPL Conqueror: Toward Optimization of Non-functional Properties in Software Product
Lines” in Software Quality Journal [Siegmund et al., 2012c], and

• ”Integrated Product Line Model for Semi-Automated Product Derivation Using Non-
Functional Properties” in VaMoS’08 [Siegmund et al., 2008a].

We present the big picture of deriving a variant optimized for specific non-
functional properties. To this end, we propose different classes of non-functional
properties that determine when to use different measurement strategies, which we
describe in the next chapter. Finally, we describe the overall process of deriving op-
timized variants to provide an orientation at which phase our approach should be
used. We begin with a problem analysis, in which we outline challenges to incorpo-
rate non-functional properties in program derivation.

3.1. Problem Analysis

In the following, we present several problems that arise when deriving near-optimal
variants: late requirements, unknown influence of features on non-functional proper-
ties, black-box approach, complexity and effort, and diversity of non-functional prop-
erties. We present these problems to clarify why we cannot use existing approaches
and why we have to develop new measurement strategies to quantify the influence
of features on non-functional properties.

3.1.1. Late Requirements

In traditional software engineering, domain engineers specify requirements on soft-
ware before development. Functional requirements are usually easy to describe and
implement, because there is often a straight-forward way to verify whether the func-
tional requirement is realized. However, when it comes to non-functional require-
ments, it is often not clear how to implement a complex program consisting of
multiple components with response times of less than one second. Developers have
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to make design decisions to satisfy non-functional requirements (e.g., implementing
an authentication system to improve security). Since there are trade-offs between
different non-functional properties, developers need a model to structure and reason
about design decisions.

Prominent examples of models to guide developers during software develop-
ment with non-functional requirements are the non-functional requirement frame-
work [Chung et al., 1999], the i* framework [Yu, 1997], and the goal model used in
KAOS [van Lamsweerde, 2001]. Unfortunately, we cannot use such models when it
comes to customizable programs.

To realize customizable programs, developers face the problem that requirements
of concrete customers are specified after development. That is, vendors have to con-
sider a spectrum of non-functional properties during development and may imple-
ment several alternative algorithms. This prohibits using existing models. A major
reason for these late requirements is that a customizable program targets a whole
domain, instead of a single application scenario. As an example, consider the Apache
web server, which we can use for different non-functional requirements. We can host
personal web pages with characteristics, such as low access rates and low security
requirements, and large commercial portals (e.g., YouTube.com) with completely
other characteristics, such as performance, reliability, and security. Heterogeneous
and sometimes contradicting requirements need a customizable code base rather
than a single tailored one.

The same problems hold for other domains. For example, the main task of database
and web-server administrators is to find the program configuration that is optimal
to non-functional requirements. Unfortunately, we often cannot rely on such ex-
pert knowledge or other domain experience. The only resource of information is to
measure the non-functional properties of the program itself. Hence, our approach
targets programs after development. We do not want to change a program (e.g., the
code base) to optimize certain non-functional properties, but to find a near-optimal
configuration.

3.1.2. Unknown Influence of Features on Non-functional Properties

To incorporate non-functional properties in program derivation, we need to know
to what extent a feature influences a non-functional property. That is, we need a
concrete value per feature to enable users to find a suitable configuration.

This problem of how to quantify the influence of features on non-functional prop-
erties is fundamental in practice. Let us have a look at a representative case study:
SQLite is a customizable DBMS deployed on over 500 million systems.1 Although it
targets embedded systems and thus has already a small footprint, its developers pro-

1Source: http://sqlite.org [Accessed: August 28th 2012]
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vide further customization options to reduce the binary size of the compiled DBMS.
However, they can neither provide values to which degree a deactivated feature re-
duces binary size, nor what influence a deactivation has on other non-functional
properties, such as performance. The website states only: “the library size can be
less than 300KiB, depending on compiler optimization settings” and “If optional fea-
tures are omitted, the size of the SQLite library can be reduced below 180KiB.” For
many application scenarios, users need more exact information than “less than” or
“can be reduced below”, because they would need to generate and measure variants
as long as they find a variant that meets their requirements and even if they find a
variant, they do not know whether this is a near-optimal variant for their use case
or variant that sacrifices large optimization potentials. Determining the influence of
a feature on non-functional properties is a major problem that we aim to solve with
this thesis.

3.1.3. Black-Box Approach

Instead of measuring non-functional properties, we can develop a prediction model
that captures the program behavior. These models are called white-box approaches,
because they require knowledge about the program internals. White-box approaches
are, however, often not applicable. From a vendor’s point of view, they require do-
main knowledge, which may not be available, because it got lost during development.
Furthermore, creating such models is a time-consuming and complex task, which in-
creases costs. Developers have to be familiar with concrete prediction approaches,
such as Markov models [Happe, 2005] and petri nets [Kounev and Dutz, 2009].

From a customer’s point of view, developing a white-box model requires not only
domain knowledge, but also the source code of the respective program, which may
not be available. Furthermore, constructing a model as a user is risky, because users
may invest a lot of time and effort only to identify that no variant satisfies their
requirements. Hence, to maximize the applicability of a prediction approach, we
have to develop a black-box approach that does not require availability of source
code and domain knowledge, but provides a sufficient accurate prediction of non-
functional properties.

3.1.4. Measurement Effort and Accuracy

The goal of a customizable program is to support many application scenarios by
providing a large number of customization options. The drawback of an increased
variability is the huge configuration space. Each optional and independent feature
doubles the number of variants; 265 optional and independent features yield more
configurations than there are estimated atoms in the universe.
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SQLite, for instance, consists of 85 compiler flags (i.e., features) to generate dif-
ferent variants.2 When all features are optional and can be arbitrarily configured,
there are 285 different variants. To measure footprint of a single variant, we have
to compile the corresponding code, which takes approximately five minutes. Mea-
suring all 285 variants would take approximately 3.6 ∗ 1020 years, a billion times
longer than our universe exists. Obviously, a customer cannot find the optimal vari-
ant with a brute-force approach and no prediction approach can guarantee to find
the optimal variant. Scalability is henceforth a crucial factor of a practical solution
and prediction can only provide a near-optimal solution.

3.1.5. Measurement of Non-Functional Properties

Since we target black-box programs, we must measure non-functional properties.
Hence, we need to determine how to measure an individual property. Not all non-
functional properties can be measured and an even smaller subset can be measured
with the same technique. For example, properties based on code metrics require
a measurement tool that reads the source code of programs and outputs the ana-
lyzed metrics per feature. Measuring performance requires a running variant with a
certain workload, for example, a benchmark; for binary size, we need to compile a
program, measure the binary files (e.g., executable files or class files), and aggregate
the measurements. Other non-functional properties cannot automatically be mea-
sured at all. For example, measuring usability, user experience, and security may not
be possible in an automated manner, because we cannot define a meaningful metric
that quantitatively describes a program or we cannot exclude user interaction from
the measurement (e.g., human experiments to measure user experience). Hence, we
need to differentiate between different types of non-functional properties, so that
we can define for which types which measurement and configuration techniques are
suitable. Moreover, we can set the focus of our approach to only those properties
that are measurable in an automated manner.

3.1.6. Initial Problem Statement

We summarize the above problems in our initial problem statement and subsequently
infer requirements for a prediction approach to overcome these problems.

Of course, many application scenarios require precise estimates about the non-
functional properties of a variant to be able to determine which one is the best
(R1). Unfortunately, we cannot use traditional techniques to optimize programs
for non-functional properties, because explicit requirements are usually not known
before development and even contradicting requirements must be supported by a

2We count all compiler flags given on SQLite’s website as well as additional flags that allows us
to define important static parameters, such as different cache and page sizes.
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customizable program. Also, we cannot develop a white-box prediction model, be-
cause these models require domain knowledge and availability of source code, which
limits applicability – however, our main goal is to support any customizable program
(R2). A possible solution is the direct measurement of a variant to identify whether it
satisfies all requirements. Unfortunately, the huge number of possible variants makes
a direct measurement not feasible. Hence, we can measure only a small number of
variants to quantify the influence of individual features on non-functional properties
to enable the accurate predictions (R3).

Based on our initial problem statement, we define the following three requirements
for a prediction approach that satisfies our thesis goals:

• (R1) Accurate predictions of non-functional properties.

• (R2) Black-box approach.

• (R3) Determine the influence of individual features on non-functional prop-
erties.

Our solution to the previously described problems is to determine the influence of
each feature on non-functional properties with only few measurements using heuris-
tics and, based on this, predict the properties of a variant.

3.2. Classification of Non-Functional Properties

Based on the problem analysis, we discovered that we need different means to treat
non-functional properties during measurement and program derivation. The clas-
sification proposed in the section is driven by the need to determine which non-
functional properties can be measured in an automated manner and which non-
functional properties allow us to quantify the influence of features on a metric scale
to enable the computation of an optimal configuration. In Figure 3.1, we illustrate
our three different classes: non-measurable properties, measurable properties per fea-
ture, and measurable properties per variant. In our context, measurable means prac-
tically measurable. That is, although we can measure a non-functional property,
such as user friendliness, we classify it as a non-measurable property, because we
neither can automate the measurement process nor define a meaningful metric that
quantifies the influence of features on a metric scale.

The theory of measurement describes different levels (nominal, ordinal, and met-
ric) of how measured values can be interpreted [Stevens, 1946]. That is, the theory
defines valid operations and valid statistical tests for each scale. This is important
in our context, since we want to compute an optimized variant using numbers on a
metric scale. In Table 3.1, we present an overview of Stevens’ measurement scales
including exemplary properties that belong to different scales. Note that the classi-
fication of Table 3.1 may differ depending on the application scenario and customiz-
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Non-Functional 
Properties

Non-measurable Measurable

Per Feature Per Variant

Figure 3.1.: Classes of non-functional properties. The highlighted class denotes the
most challenging class for measurement.

able program. For example, we cannot predict security of a configuration, because
we cannot quantify the influence of a feature on a metric scale. We can only rank
different features according to their qualitative influence on security.

Scale Operations Statistics Non-Functional Properties

Ordinal equality (=), order (<) median, percentile,
mode, chi-squared

availability, reliability, security,
user-friendliness, trustability, us-
ability, integrity, completeness,
user-experience, adaptability, in-
teroperability, modularity

Metric addition (+), multipli-
cation (∗)

mean, std. dev.,
variation coefficient

footprint, performance, energy
consumption, maintainability,
accuracy/resolution of data, re-
sponse time, resource behavior,
bandwidth

Table 3.1.: Measurement scales according to Stevens [1946] with an exemplary classi-
fication of non-functional properties. Note that metric encompasses ratio
and interval scales. Std. dev.: Standard deviation,

In the following, we explain each class in detail and use the feature model of a
customizable DBMS depicted in Figure 3.2 as an example.

Non-Measurable Properties. There are non-functional properties that can be de-
scribed only qualitatively using an ordinal or nominal scale (i.e., there is no metric
from which we can retrieve quantifiable measures). For example, we can define that
features Transactions, Logging, and 2PC improve reliability of a DBMS, because
logging data and transactions allow us to recover data after a system crash (see Fig-
ure 3.2). We can assign such qualitative statement to features (i.e., ‘feature Logging
improves reliability’). Since ranking is a valid operation for values on an ordinal scale,
a domain expert can rate features according to their influence on a non-functional
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Figure 3.2.: Feature model of a customizable DBMS with annotated non-functional
properties. 2PC: Two-phase commit protocols.

property. For example, we can even assign numbers to features such that a feature
with high number improves a certain non-functional property more than a feature
with a low number.

We consider also non-functional properties as non-measurable if there is no method
that allows us to automate measuring the property. Since we cannot programmati-
cally assign values to features, a stakeholder has to manually define the correspond-
ing values to features. As an example, consider user friendliness. It needs large and
costly user studies to quantify the influence of different features on user friendliness.
The evaluation of such a study is usually done manually. Hence, a property, such as
user friendliness, is out of scope, because we want to fully automate the measure-
ment of non-functional properties. Since for qualitative properties, too, there is no
measurement involved, we do not consider this class in the remaining thesis, but can
support their configuration during program derivation.

We propose to optimize non-measurable properties with three techniques: (a)
show the ranking of features assigned to qualitative properties that can satisfy non-
functional requirements to the user (e.g., hint which features qualitatively improve
a certain property), (b) automatically select features with a positive influence, and
(c) avoid the selection of features with a negative influence during the computation
of a near-optimal variant. For non-functional properties for which a stakeholder has
manually measured and assigned metric values, we suggest to include them for an
automated computation as we use it for the following two classes.

Measurable Properties Per Feature. This class contains only properties that can
be measured on a metric scale with a user-defined metric (i.e., either customers
or vendors provide suitable metrics). In addition, we require that we can either
measure these properties directly for an individual feature or infer the results of the
measurement of a variant to single features (i.e., a family-based approach).
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The reason for defining this class is that we can use more efficient measurement
techniques than for the class of measurable properties per variant. That is, the worst-
case measurement complexity is O(n), because we can measure each feature directly.
Hence, this class represents no challenge for stakeholders to determine the influence
of a feature on a non-functional property.

Depending on the implementation technique, we can measure, for example, foot-
print of a feature directly [Siegmund et al., 2008b]. If a feature maps one-to-one to a
code unit (e.g., a component) that can be separately compiled, we can automatically
measure each feature’s footprint directly. We extract the results from these measure-
ments and assign them to their corresponding features as shown in Figure 3.2, in
which we assigned the measured footprint to each feature.

During program derivation, we suggest to find an optimized configuration by stat-
ing an objective function. For example, an objective function may minimize footprint
of a variant. By using a constraint-satisfaction-problem solver that allows us to de-
fine objective functions, we compute, based on a partial feature selection, which
(alternative) features should be selected to minimize footprint. For example, we se-
lect feature Hash rather than feature Btree to minimize the footprint of a variant
(cf. Figure 3.2).

In Chapter 5, we outline how to measure features individually using the direct-
measurement and family-based measurement.

Measurable Properties Per Variant. Some non-functional properties have either
no meaning for single features or we are not able to break down measured non-
functional properties of a variant to the individual influences of present features.
For example, we cannot measure performance of a feature individually, because a
feature’s performance depends on other features of a variant and we usually cannot
execute a feature in isolation. Hence, these properties are measurable only per vari-
ant. Considering the exponential number of variants, properties of this class raise
the challenge how to find near-optimal variants for these kinds of properties.

Although it was stated before that breaking down properties of a variant to single
features is not possible [Sincero et al., 2010], we propose a novel approach in the
remaining thesis that makes it possible to infer the influence of individual features
from the measurement of only few variants. Hence, similar to measurable properties
per feature, we assign concrete values to features as we have shown for performance
in Figure 3.2. This way, we can even compute a near-optimal configuration for this
kind of properties and enable a multi-objective optimization with non-functional
properties of different classes.

Note that the classification of a specific non-functional property depends on the
customizable program and the application scenario – it is not general. This means
that the same property can be located in different classes for different programs or
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domains. Reasons for different classifications are, for example, different viewpoints
and interpretations of stakeholders for the same property, different metrics and mea-
surements. Also the domain of a customizable program may change the category of
a property. For instance, in a web-service program, security may be measured via an
intrusion-detection system resulting in quantifiable measures. In another scenario,
security can only be qualitatively specified (e.g., with weak, medium, and strong
security), like it is done in Windows 7.3

3.3. Incorporating Non-Functional Properties in Program
Derivation

In this section, we propose a holistic approach to the optimization of non-functional
properties in the program-derivation process. By holistic, we mean that we support
the measurement and optimization of desired non-functional properties during pro-
gram derivation. We support different classes of non-functional properties, which
we described in the previous section. Here, we show how these different classes of
non-functional properties are treated during program derivation and highlight the
steps to derive a near-optimal variant.

In Figure 3.3, we show the big picture of how to incorporate non-functional prop-
erties in program derivation. It consists of six steps:

• (a) Create a feature model, which describes features and variability of the
customizable program (by vendor)
• (b) Assign non-measurable properties to features and measure the remaining

properties per feature (by domain expert and vendor)
• (c) Define functional and non-functional requirements to obtain a partial fea-

ture selection (by customer)
• (d) Build the prediction model and state an objective function that expresses

non-functional requirements (by domain expert and customer)
• (e) Obtain multiple configurations that are near-optimal solutions by predict-

ing their non-functional properties and, optionally, identify the best configu-
ration by measuring these configurations again (by vendor)
• (f) Produce the variant that corresponds to the chosen configuration (by ven-

dor)

We describe in the following each of the steps in detail.

(a) Feature Model. The initial task to enable program derivation is to create a
feature model (as shown in Figure 3.3). We use feature models to configure a variant.

3Source: http://www.microsoft.com/de-de/security/pc-security/windows7.aspx [Accesed:
August 8th 2012]
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Figure 3.3.: Big picture of incorporating non-functional properties into program
derivation including measurement and prediction.
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Hence, vendors of a customizable program use their domain and implementation
knowledge to extract all customization options and develop an according feature
model including all constraints and relationships among features. Usually, vendors
develop a feature model before implementation, such that this development artifact
already exists. For customizable programs that were developed traditionally (i.e.,
without dividing development in domain and application engineering as described
in Section 2.3.1), this task may require some effort, because domain knowledge may
be lost during development, such that not all relationships and constraints between
features are known.

(b) Measurement and Assignment of Non-Functional Properties. The raw fea-
ture model builds the base to manually assign non-measurable non-functional prop-
erties. That is, a domain expert ranks features according to their qualitative influence
on non-functional properties, as we describe in Section 3.2. The result is an enriched
feature model, which we use to determine the influence of features on measurable
non-functional properties either via a measurement per feature or a measurement
per variant. The vendor has to perform these measurements only once per customiz-
able program for non-functional properties that are independent of the program’s
workload (e.g., footprint).

If we measure non-functional properties that depend on a certain workload (e.g.,
performance of a DBMS depends on the type and quantity of queries as well as on
the amount and diversity of stored data), we can either use a standard benchmark
as it is done in many domains, such as databases and video encoding, or the re-
alistic workload is given by a concrete customer. Since customers have to specify
their requirements anyway, they can also specify their actual workload to measure
non-functional properties in a realistic environment. These measurements need to
be repeated for each customer, but produce more realistic statements about the
influence of features on non-functional properties. Since we aim at conquering the
exponential effort to measure customizable programs and automate the measurement
process, we provide a practical solution that allows vendors without user-interaction
to measure non-functional properties with customer-defined workloads in hours (or
few days for highly variable programs).4

(c) Partial Feature Selection. The actual program derivation begins with the
feature selection based on functional requirements. That is, customers select those
features that provide the functionality needed in their application scenario. Also
in this step, customers select features that satisfy requirements on qualitative non-
functional properties. For example, if customers require high reliability of a DBMS
variant, they select those features that were assigned with having a positive effect on
reliability (e.g., Transactions). The result of this process is a partial feature selection.

4Note that our current and future work targets to extend our approach to measure a feature’s
influence on a variable workload. We outline this work in Section 9.3.
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That is, some variability is bound, but there are decisions left to be selected to
optimize the variant regarding non-functional properties.

(d) Prediction Model. In this step, we build our prediction model (presented in
Chapter 4) based on the measurements and partial configurations. The prediction
model allows us to reason about a variant’s non-functional properties without the
need to actually produce and measure it. This is the key benefit that makes our
approach feasible in practice.

Furthermore, the customer defines an objective function that represents the cus-
tomer requirements on measurable non-functional properties (i.e., the optimization
goal). For example, if customers are interested in the best trade-off between per-
formance and footprint and have a limited budget, they may define an objective
function like this:

max(
performance

1000 ∗ footprint
) | Price ≤ 1000 $ (3.1)

Specifying appropriate objective functions based on customers non-functional re-
quirements is out of scope of this thesis. However, there is a large community that
focuses on quantifying requirements – that is, making requirements explicit, such
that we can use them for optimization.

(e) Predicting Optimal Configuration. Since the computation of finding an opti-
mal configuration is NP-hard [White et al., 2009], we may be able to give only an
approximately good feature selection. In this thesis, we use constraint-satisfaction-
problem solver to compute an optimized feature selection. There are other ap-
proaches that approximate in less time near-optimal solutions [White et al., 2009].
Since our contribution is not the computation of the optimal configuration, but pro-
ducing the necessary input with a suitable accuracy for such approaches, we are not
limited to a specific technique.

The result of this prediction is either a single configuration or a list of candidate
configurations that all may be suitable for the customer. If the customer requires
a high reliability of finding the optimal variant and satisfying hard non-functional
constraints (e.g., a variant must not exceed a certain response time), we can pro-
duce and measure the variants that correspond to the candidate configurations to
completely omit approximation errors of the prediction process.

(f) Near-Optimal Variant. The last step is to produce the variant that corresponds
to the selected configuration in the previous step. Again, we cannot guarantee that
we actually found the optimal variant. We described in Section 2.2 different types
of customization techniques. Depending on the type, the variant production differs.
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For example, we map a configuration to a set of preprocessor flags and compile the
corresponding variant or we map a configuration to a customized configuration file.
At the end of this process, customers or users receive a variant that satisfies their
functional requirements and is optimized to desired non-functional properties.

In the next chapter, we explain how we compute a variant’s non-functional prop-
erties based on the influences of individual features. That is, we introduce our pre-
diction model which we use as an input for a constraint-satisfaction-problem solver
to compute a near-optimal variant.

3.4. Related Work

In the following, we present related work regarding our classification of non-
functional properties and our program-derivation approach.

3.4.1. Models of Non-functional Properties

Quality models are used to bridge the gap between metrics and quality attributes.
They describe which metrics allow us to measure the quality of which attribute.
Furthermore, they model relationships between properties and ease the specification
of non-functional requirements [Deissenboeck et al., 2009]. Since we aim at measuring
and predicting non-functional properties, these quality models can be used as a
foundation to identify which metric is suitable for which property. A quality model
is defined by the ISO/IEC 14598 International Standard (standard for information
technology - Software product evaluation - Part 1: General overview):
”The set of characteristics and the relationships between them which provides the
basis for specifying requirements and evaluating quality.” [International Organization
for Standardization (ISO), 1999]

There are a number of non-functional properties including their classification de-
scribed in the literature, for instance, McCall’s quality model [Mccall et al., 1977],
Boehm’s quality model [Boehm et al., 1978], and the ISO 9126 quality model [In-
ternational Organization for Standardization (ISO), 2001]. These models have a
distinct purpose. For example, McCall’s quality model bridges the gap between a
customer’s quality perspective and a developer’s view on quality attributes. Hence,
McCall describes factors based on an external view of software and quality criteria
that describe the internal view of a software. A developer can use this model to de-
rive suitable metrics (e.g., error tolerance and accuracy) to improve a quality factor
(e.g., reliability). Boehm’s quality model is a hierarchical model to refine and fur-
ther specify characteristics from which a property is composed [Boehm et al., 1978].
For example, maintainability is refined to understandability, which in turn is refined
to conciseness. Hence, Boehm qualitatively defines software quality with a given
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set of metrics. In contrast to the mentioned models, our purpose is to classify non-
functional properties, such that we can choose proper measurement techniques in the
context of customizable programs. Some non-functional properties can be described
only qualitatively, whereas other properties can be represented with metric-based
values, so we cannot use the same optimization technique for all properties.

There are a number of approaches that target the development of programs with
desired non-functional properties. These approaches, such as the non-functional re-
quirement framework [Chung et al., 1999], i* framework [Yu, 1997], and KAOS [van
Lamsweerde, 2001], are originally intended to help developers with design decisions
to develop a software considering non-functional requirements. For customizable
programs, software artifacts are usually already implemented when new customers
derive a variant, but decisions regarding desired non-functional properties can be
made during the variant-derivation process. Hence, these frameworks target tradi-
tional monolithic programs, in which non-functional properties must be optimized
before and during development, whereas we concentrate on customizable programs
and on the optimization after development.

3.4.2. Program-Derivation Approaches

The vast majority of variant-derivation tools focuses on reducing the complexity
of the configuration process and supporting the user with advanced user interfaces
during feature selection [Batory, 2005, Antkiewicz and Czarnecki, 2004, Czarnecki
et al., 2004, Botterweck et al., 2007, Rabiser et al., 2007]. These tools often use sat-
isfiability solvers or Prolog (e.g., in pure::variants5) to verify a configuration against
the constraints of a feature model.

As we explained before, we use a constraint-satisfaction-problem solver to compute
an optimized variant. There are also some approaches that allow a user to optimize
the feature selection with regard to a specific non-functional property. Benavides
et al. [2005, 2007] presented a technique based on constraint-satisfaction-problem
solvers to find an optimal variant. The solver evaluates values attached to features
in the feature model and then computes an optimal configuration for a small num-
ber of features. Their studies show that with an increasing number of features,
the computation time exponentially grows. White et al. [2007, 2009] extended the
program-derivation process by enabling the definition of resource constraints (i.e.,
non-functional requirements). Moreover, they propose a solution based on filtered
Cartesian flattening to approximate a nearly optimal variant for even large-scale
feature models. However, although required, both approaches do not present a way
how to obtain the influences of features on non-functional properties. In contrast,
we provide a holistic concept of including the measurement of non-functional prop-
erties in the whole program-derivation process. Furthermore, since we do not focus

5Source: http://www.pure-systems.com/pure variants.49.0.html [Accessed: August 9th 2012]
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on how to compute the optimal configuration (we provide the necessary input and
use a standard solver), we can integrate their solutions in our holistic approach.

3.5. Summary

We presented our initial problem statement, in which we outlined that quantifying a
feature’s influence on non-functional properties is problematic in terms of diversity
of non-functional properties and measurement effort. We explained why we target
black-box programs to increase applicability. Furthermore, we argued that we have
to measure non-functional properties after program development and not before, as
it is done for specialized programs, because customizable programs are developed to
cover application scenarios of a whole domain, such that concrete requirements of
customers are often known only after development.

We proposed to classify non-functional properties into three classes: non-
measurable properties, measurable properties per feature, and measurable properties
per variant. We explained that by using these classes, we address the problem of mea-
suring very diverse non-functional properties. We argued that we cannot target all
kinds of non-functional properties, because we either cannot provide a meaningful
metric to quantify the influence of features on a non-functional property or the mea-
surement effort is too high and cannot be automated (e.g., in the case of human
experiments). Hence, we specified how to measure and configure properties of the
respective classes.

Finally, we presented the big picture of incorporating non-functional properties
in the configuration of a customizable program to yield optimized variants. We ex-
plained six important steps of the program-derivation process: (a) feature-model
creation, (b) measurement and assignment of non-functional properties, (c) specifi-
cation of a partial feature selection based on functional requirements and require-
ments on qualitative non-functional properties, (d) building the prediction model
to estimate non-functional properties of different configurations and specifying an
objective function for later optimization, (e) computing different configurations ac-
cording to the objective function, and (f) producing the variant that corresponds to
the best found configuration.

With the big picture in mind, we describe our prediction model in the next section.
We show how features and their influences are represented in the prediction model
and how we can map this model to the derivation of an actual variant.
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This chapter shares material with the following papers:

• ”Integrated Product Line Model for Semi-Automated Product Derivation Using Non-
Functional Properties” in VaMoS’08 and

• ”Predicting Performance via Automated Feature-Interaction Detection.” in ICSE’12 [Sieg-
mund et al., 2012a].

This chapter presents our prediction model, which receives a configuration as an
input and estimates non-functional properties of its corresponding variant. In the big
picture, we are located at the step, when a customer has made his partial feature se-
lection and now wants to know what the non-functional properties of a corresponding
variant are. Our prediction model is based on a feature-composition model, which we
introduce with its important properties first. Afterwards, we describe the mapping
between the feature-composition model and our prediction model. In this way, we
introduce the concept of terms, which describe the impact of features and feature
combinations (i.e., feature interactions) on a variant’s non-functional properties.

Furthermore, we present how different non-functional properties can be supported
via different mappings (i.e., homomorphisms), such that we can tailor the computa-
tion of a prediction to different properties. Afterwards, we describe how the model
relates to feature models, because feature models are the central model to compute
valid configuration and to visualize the variability of a program. Finally, we present
an extension to feature models to support the definition of feature interactions and
implementation units. This is useful to map all elements in the prediction model to
elements in the extended feature model and vice versa.

4.1. Feature-Composition Model

We predict a variant’s non-functional properties based on the corresponding feature
selection. Hence, our prediction model relies on the feature composition. To this end,
we use a recent model of feature composition by Batory et al. [2011]. This model
treats programs as a sequential composition of features. If program P consists of
features a, b, and c, we write: P = a · b · c, where · denotes the associative and
commutative composition of features. That is, evaluating a · b · c generates P . Low-
ercase letters (e.g, a) are terms representing either features or feature interactions.
Capital letters denote compositions of one or more terms.
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Feature interactions play a central role in this model. To work correctly, a program
requires not only the implementation units that correspond to selected features,
but also interaction units that ensure that features operate together in a desired
way (e.g., interaction unit a#b denotes the interaction between features a and b);
these interaction units are called lifters [Prehofer, 1997] or derivatives [Liu et al.,
2006]. Consider the classic example from fire and flood control [Lee et al., 2004].
In this example, we have a flood-control (fc) sensor working with a fire-alarm (fa)
sensor. If only one of fc or fa is present, the behavior is unambiguous: Water is
turned on when fire is detected and turned off when a flood is detected. When
fc and fa are both present, we observe an interaction fc#fa that turns water off
after the fire sensor turned water on to prevent a fire. Obviously, we do not get
our desired result, because a house burns down when both features are present. In
code, we make this interaction explicit, such that we control this interaction with an
appropriate behavior (i.e., never turn water off when fire is detected). Nevertheless,
the interaction at a behavioral level is present whether we handle it or not.

As a result, a stakeholder wants not only the composition of implementation units
that correspond to selected features, but also all necessary interaction units. [Batory
et al., 2011] introduce the concept of a cross-product (×) that maps a given feature
selection a, b to the composition of its corresponding implementation units and
interactions:

a× b = a#b · a · b (4.1)

where features a and b are composed with their interaction unit a#b.

[Batory et al., 2011] showed that the × operation is associative and commutative:

Commutativity : a× b = b× a (4.2)

Associativity : (a× b)× c = a× (b× c) (4.3)

Interaction units are composed by the changes needed to modify the participating
feature such that they work together correctly. Also for the interaction composition,
commutativity and associativity holds:

Commutativity : a#b = b#a (4.4)

Associativity : (a#b)#c = a#(b#c) (4.5)

Commutativity means that there is no order in which an interaction unit changes im-
plementation units of a feature. Hence, the interaction unit abstracts from a certain
implementation technique, in which ordering may matter. This way, an interaction
unit comprises all permutations of interactions: a#b comprises interaction units a#b
and b#a. This already justifies the associativity of the # operation. There are also
additional axioms, such as distributivity, that are not relevant for our work.

We use this terminology to specify feature selections, incorporate feature interac-
tions, and relate these units to the prediction of non-functional properties.
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4.2. Prediction Model

We consider the previous model as an abstract and uniform way to represent features
and feature combinations of a customizable program. Our main idea is that we use
the same model to not only describe functionality of a program, but also other
characteristics of features, such as non-functional properties. From this model, we
map a feature selection (i.e., terms of the abstract model) to distinct representations
as shown in Figure 4.1. For example, we use the abstract model as a mapping
to different implementation artifacts, such as components or feature modules. We
denote a mapping from terms (i.e., features and feature interactions) in the abstract
model to their corresponding implementations with the operator τ . That is, τ(a)
represents the implementation unit of feature a.

By using these mappings, we make domain knowledge explicit. For example, we
can use the mapping from a feature selection to its implementation units to identify
which features map to the same implementation unit. For instance, features a and
b map to the same component τc. Note that τc has no unambiguous mapping to
a single feature (i.e., there is no feature c). Therefore, we write τc, instead of τ(c)
to distinguish from a one-to-one mapping. In other words, τc comprises τ(a) · τ(b),
which can be rewritten as τc = τ(a ·b). This explicit mapping helps us in identifying
feature interactions for different non-functional properties. We describe in Chapter 7
feature interactions in detail.

Abstract model
Mapping to various implementations: τ

Mapping to prediction model: Π

Figure 4.1.: Mapping feature selection of abstract model to other representations.

In contrast to the original feature-composition model, we map terms in a configu-
ration to the impact of features and feature interactions (i.e., feature combinations)
on non-functional properties, denoted with Π. That is, when selecting feature a and
b, we map them to their influences to non-functional properties Π(a) and Π(b). Note
that we specify the concrete non-functional property as follows: ΠPerf (a) indicates
the influence of feature a on performance and ΠF (a) indicates the footprint (binary
size) of feature a. We explain in Chapter 6 how to measure these terms.

From Equation 4.1, we know that when selecting multiple features, we have to
consider in addition to the feature terms also feature-interaction terms. That is,
non-functional properties of a variant with features a and b are not only caused
by the individual influences of both features, Π(a) and Π(b), but also how these
two features work in combination: Π(a#b). That is, interaction Π(a#b) describes
how features a and b operate together at the level of non-functional properties, for
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example, how performance changes when features Btree and Transaction work in
combination.1

The benefit of using the feature-composition model is that it clearly states which
terms exists for a configuration. This allows us to selectively determine which terms
to measure to predict a variant’s non-functional properties. If we determine all terms
that exist for a customizable program, we would determine the influence of all feature
combinations on non-functional properties. Clearly, this approach does not scale,
because there is an exponential number of terms. However, we can identify which
terms may be beneficial to determine to achieve a near-optimal prediction. That
is, we can specify heuristics to determine only a subset of terms, which have a
measurable effect on non-functional properties. This way, we can omit measurements
without sacrificing too much accuracy in predictions. We present in Chapters 6-8
means to identify those relevant terms in order to find the best trade-off between
measurement effort and prediction accuracy.

Since we consider terms as impacts on non-functional properties, we have to spec-
ify how to aggregate these influences of each feature on a non-functional property.
In Equation 4.1, terms represent implementation units such that the aggregation
function is the feature composition operation (·). Considering non-functional prop-
erties, we need other aggregation functions. We use different mappings to translate
the feature-composition model to our prediction model. In the following equation,
we define a mapping that uses the addition to predict a non-functional property:

Π(a× b) = Π(a · b · a#b)

= Π(a)Π(·)Π(b)Π(·)Π(a#b) // Homomorphism (4.6)

= Π(a) + Π(b) + Π(a#b)

We predict non-functional properties of a program with features a and b with Π(a×b)
using the influences of both feature terms Π(a) and Π(b) and the feature-interaction
term Π(a#b). Hence, our prediction model requires us to know how each feature
influences a non-functional property and, optionally, how the combination of features
affect a non-functional property, whose effect may be negligible.

An aggregation function may differ depending on the non-functional property,
the customizable program, how non-functional properties are measured, and which
metric is used to quantify a property. For example, aggregating maintainability of
features using the cyclomatic-complexity metric requires a max aggregation func-
tion [Mccall et al., 1977]. That is, the worst-case complexity of any selected feature

1We assume that the composition order has no effect on non-functional properties. This might
be different for some implementation techniques, such as components, in which the composition
changes performance and other properties. As a prerequisite, we consider that there is an absolute
order at which features are composed or executed.
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defines the overall complexity of a variant. We define the mapping to predict cyclo-
matic complexity (CC ) using the maximum as the aggregation function as follows:

ΠCC (a× b) = ΠCC (a · b · a#b)

= ΠCC(a) ΠCC (·) ΠCC (b) ΠCC (·) ΠCC (b)

= Max (ΠCC (a),Max (ΠCC (b),ΠCC (a#b)) (4.7)

Feature-Interaction Terms. Our prediction model includes feature-interaction
terms to quantify the behavior of how features operate together. If a feature com-
bination has a relevant, measurable effect on a non-functional property, we have to
consider and include this term to improve prediction accuracy. We use a basic result
that follows from 4.1 and 4.7. If we can measure the influence of a feature on a
non-functional property (e.g., Π(a) and Π(b)) and the non-functional properties of a
variant that includes both features, Π(a× b), we can compute the value of Π(a#b):

Π(a#b) = Π(a× b)−Π(a)−Π(b) (4.8)

= Π(a) + Π(b) + Π(a#b)−Π(a)−Π(b)

= Π(a#b)

Unfortunately, the number of feature-interaction terms grows exponentially with
the number of features in a configuration. Until now, we have considered feature
interactions only between pairs of features, but their number grows exponentially
with the number of selected features. For example, to predict variant’s P properties
with three features, we have to determine seven terms (three feature terms and four
feature-interaction terms):

Π(P ) = Π(a× b× c)
= Π(a · b · c · a#b · a#c · b#c · a#b#c)

= Π(a) + Π(b) + Π(c) +

Π(a#b) + Π(a#c) + Π(b#c) + Π(a#b#c) (4.9)

The possible exponential number of terms raises the question how to find only the
relevant feature-interaction terms. Relevant means that we need to consider only
those terms for prediction that have a measurable and observable effect on a vari-
ant’s non-functional properties. Finding only relevant feature-interactions is far from
trivial. We will discuss in the following chapters how we determine these interaction
terms and at what cost in terms of measurement effort.

The simplicity of the prediction model is the key to be feasible for highly cus-
tomizable programs, because it allows us to increase the number of measurements
if needed. Overall, we achieve the following benefits:
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• Scalable Prediction. In our prediction model, we need to quantify at least
the feature terms, which requires a linear number of measurements. We can
increase prediction accuracy by measuring more variants to determine the in-
fluence of feature-interaction terms on non-functional properties. This process
can be stopped when a sufficient accuracy is reached or the measurement effort
becomes too high.
• Reduction of Terms. If we identify that a feature term has no effect on a

certain non-functional property (e.g., a command-line parameter has no effect
on the binary size of a program), we can remove this term from the model and
all feature-interaction terms in which this feature participates. This can result
in considerably fewer measurements for particular non-functional properties.
• Generality. The model allows us to predict all quantifiable non-functional

properties for which we can define a meaningful mapping between feature
composition and prediction of non-functional properties. That is, if we can
specify a sound aggregation function, we can use this model. Examples include
addition and multiplication for performance, energy and memory consumption,
max, min, and average for software measures, etc.
• Extendability. Since all terms in our prediction model are an abstract rep-

resentation, we can map them to cost functions instead of concrete values
to predict non-functional properties with a variable workload. Moreover, we
can also model other variable factors, such as the environment, the operat-
ing system, and different hardware configurations as additional terms. The
prediction model stays the same, but we may have to combine multiple aggre-
gation functions for a single non-functional property. For example, if we predict
performance, we may sum up the performance influences of all features and
feature-interaction terms. Additionally, we use multiplication to predict per-
formance for different CPUs.

In the following, we describe the mapping of a configuration in the feature model
to a configuration in the prediction model. We need this mapping to account for
dependencies and relationships among features, to derive only valid variants.

4.3. Relating Feature Model to Prediction Model

So far, we ignored dependencies between features, as documented in feature models.
However, to derive a valid variant, we have to consider them. Furthermore, these
dependencies specify which terms in the prediction model can exist in the same
configuration. Hence, we draw the relationship between a feature model, which ex-
presses all valid variants, the prediction model, which takes a valid feature selection
and estimates non-functional properties of the corresponding variant, and the im-
plementation units, which realize a feature’s functionality. To establish this relation-
ship, we propose an extension to feature models, called product-line model [Siegmund
et al., 2008a], which we already used in Chapter 3. Our product-line model captures
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non-functional properties of features, differentiates between different classes of prop-
erties (which we described in Section 3.2), and models implementation units as well
as feature interactions. In the following, we describe the new concepts and explain
the benefits of having them integrated in a single model.

Implementation Units. Implementation units realize a feature’s functionality. It is
an abstract representation to support any implementation technique. For example,
an implementation unit can be a component, a feature module, or even an if-
branch in normal program code, which is executed when a certain command-line
parameter is defined. Implementation units realize a feature’s functionality. Since
we target a black-box approach, we do not require to model them, but we can use
this information to determine which feature-interaction terms might be relevant for
measurement.

The integration of implementation units into the feature model requires two con-
ditions. First, implementation units can only be child elements of features or other
implementation units. An implementation unit cannot be a root node or a parent of
a feature, because features are defined during the domain analysis, which precedes
the implementation phase (the feature model written once is solely extended but
not changed). Second, we need an additional relation to represent the interaction
between implementation units (i.e., derivatives).

A further benefit of capturing implementation units is to establish a mapping
between features, which might be represented in a stakeholder-convenient way, and
the implementation units that a program generator needs to know to generate a
corresponding variant. For example, we may model a set of command-line param-
eters as implementation units as the realization of a certain domain feature. We
map features to implementation units using τ , as we already illustrated. There are
different cases for this mapping:

• One-to-one: Features a and b map to their implementation units τ(a) and τ(b).
• N-to-one: Features a and b map to the single implementation unit τ(a · b).
• M-to-n: Features a and b map to the implementation units τ(a) · τ(b) · τ(a#b).

Note that there is no case in which a single feature maps to several implementa-
tion units that realize only a single feature’s functionality (i.e., there is no one-to-n
mapping), because we comprise multiple physically existing implementation artifacts
(e.g., multiple pieces of code that belong only to one feature) to a single abstract
implementation unit. The reason is that it does not make any difference for pro-
gram production and computation of non-functional properties whether a feature is
realized by multiple pieces of code when they all compiled at once. It makes only
a difference when these artifacts are simultaneously used by other features, because
this causes different expectations of a variant’s non-functional properties for different
feature selections.
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Non-Functional Properties. The product-line model supports the assignment of
qualitative properties (with ordinal values) and quantifiable properties (with actu-
ally measured metric values). We do not have to differentiate between feature-wise
and variant-wise quantifiable properties, because the main difference between these
classes of properties is how to measure them and not how to configure and model
them. Hence, this extension to feature models is similar to the one of Benavides
et al. [2005] with the addition of qualitative properties. The mapping of assigned
non-functional properties to our prediction model is that the quantifiable prop-
erty defines which mapping and therefore which aggregation function to use. The
mapping of features to their concrete influence on non-functional properties is re-
alized by an assignment of their corresponding impacts: ΠF (a) represents feature
a’s assigned influence on footprint. Qualitative properties are not mapped to the
prediction model, but configured directly as we described in Section 3.3.

Feature Interactions. As an important extension to feature models, we introduce
the concept of feature interactions in our product-line model [Siegmund et al., 2008a].
We map interactions between features to our prediction model as feature-interaction
terms, which are equivalent to the abstract model. Since we do not consider imple-
mentation units in our prediction model, we cannot map these interactions to the
prediction model as they have no directly corresponding term (i.e., τ(a#b) has no
representation in the prediction model). However, we compute – using the mapping
from features to implementation units – at which feature combinations the interac-
tion of the implementation unit would occur. That is, if τ(a#b) or τ(a · b) exists, we
mark the interaction term Π(a#b) in the prediction model as a relevant term. That
is, we expect that this interaction has an influence on non-functional properties.
Hence, the product-line model allows us to specify which terms in the prediction
model need to be quantified. Note that it is also possible that features interact with-
out having an interaction at the level of source code. Hence, this is only one method
to identify a subset of all possible feature interactions.

Example. In Figure 4.2, we show a concrete example of the product-line model of
Berkeley DB’s C version.2 We show the measured footprint of each feature (described
in Section 4) and also an assigned price for features for illustration purposes. That
is, when selecting feature Hash, we map it to the terms ΠPrice(Hash) = 125 $ and
ΠF (Hash) = 113KB in the prediction model.

Furthermore, we defined two qualitative properties, security and reliability, and
highlight which features have a positive influence on these properties. For exam-
ple, feature Verification has a positive effect on reliability for a DBMS variant. As

2Note that the model does not correspond exactly to the official version:
http://oracle.com/technetwork/products/berkeleydb/. For instance, we model an ad-
ditional Btree implementation and assigned a price per feature only for illustration of the
concepts.
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Berkeley DB

Statistics Indexes

B-tree Hash Queue

Cryptography Replication Verification SequenceDiagnostic

Footprint: 340KB

Feature Impl. Unit
Non-functional 

Property

OptionalMandatoryAlternative

Footprint: 19 KB

Footprint: 113 KB Footprint: 58 KB

Footprint: 89 KB Footprint: 50 KB Footprint: 20 KBFootprint: 285 KB Footprint: 191 KB

Repl_Diag

Footprint: 93 KB

Repl_Stats

Footprint: 40 KB

Interaction

Security: ↑ Reliability: ↑ Reliability: ↑Reliability: ↑

Price: 125$ Price: 50$

Price: 50$

Price: 300$ Price: 200$ Price: 100$

OR

Price: 0$

Figure 4.2.: Product-line model of Berkeley DB with assigned non-functional prop-
erties. Footprint represents measured binary size per feature. The up-
arrow visualizes an improvement for a qualitative property.

explained before, we do not map qualitative properties to the prediction model,
because we require metric values for our prediction.

In our example, we model two feature interactions, Repl Stats and Repl Diag,
which increase footprint of a variant when the corresponding features are se-
lected in combination. That is, we map the feature interaction Repl Stats to
ΠF (Repl#Stats) = 40KB in the prediction model. This interaction does not have
a corresponding mapping to an implementation unit (i.e., τ(Repl#Stats) does not
exist), because the selection of both features, Replication and Statistics, does not
require to select an additional distinct implementation unit. That is, there is no
additional module that needs to be defined for a program generator to produce
the corresponding variant. In the case of Berkeley DB, this feature interaction is
caused by a nested #ifdef statement. That is, just by defining τ(Replication) and
τ(Statistics) additional code is included in a variant.

To reduce complexity of the product-line model, we omit implementation units if
there is a one-to-one mapping between a feature and its implementation unit.
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When we want to predict the footprint of a variant V with features Statistics (s),
Replication (r), Indexes (i), and Btree (b), we yield the following prediction equation
using the product-line model of Figure 4.2:

ΠF (V ) = ΠF (s× r × i× b)
= ΠF (s) + ΠF (r) + ΠF (i) + ΠF (b) +

ΠF (s#r) + ΠF (s#i) + ΠF (s#b) +

... // all interaction terms

= ΠF (s) + ΠF (r) + ΠF (b) + ΠF (s#r) // only relevant terms

= 285 KB + 89 KB + 340 KB + 40 KB

= 754 KB

Hence, we predict that the given equation yields a footprint of 2,214 KB. In this ex-
ample, we removed all terms that are either unknown (e.g., we do not know about the
influence of most of the interactions on footprint) or zero (i.e., in the case of feature
Index ). To know which terms are relevant, we must determine them in the mea-
surement phase, which precedes the program-derivation phase (cf. Section 3.3). We
show in the following chapters how to determine which terms affect non-functional
properties and to what extent.

4.4. Related Work

Model-based predictions are common [Balsamo et al., 2004, Witten and Frank, 2005].
For example, linear and multiple regression explore relationships between input pa-
rameters and measurements. Based on a regression model, different estimation meth-
ods (e.g., ordinary least squares) can be used to predict performance for specific input
parameters. Bayesian (or belief) networks are used to model dependencies between
variables in a network [Jensen and Nielsen, 2007]. They are used to learn causal
relationships and hence may be applicable to detect feature interactions. Further-
more, machine-learning approaches can be used to find the correlation between a
configuration and a measurement (e.g., canonical correlation analysis [Mardia et al.,
1980]). It uses dataset pairs to identify those linear combinations of variables with
the best correlation. Principal component analysis [Hotelling, 1933] finds dimensions
of maximal variance in a dataset that can also be used to detect interactions. Gana-
pathi et al. [2009] provides an analysis for different machine-learning approaches in
the context of performance prediction of database queries, which is an important
non-functional property.

The feasibility of model-based approaches depends on the application scenario
and program to be analyzed. Our work differs in that it offers a general way to pro-
duce accurate predictions independent of the application scenario and non-functional
property. By using terms (i.e., feature terms and feature-interaction terms) in our
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prediction model, we abstract from a concrete realization. That is, we can set differ-
ent approaches on top of this model (e.g., heuristics to determine which terms have
to be quantified) to reduce measurement effort.

There are a number of approaches that predict output parameters for given input
parameters using statistical learning methods. Using measurements as a training
set and the configuration for input parameters, we can define this prediction as
a nonlinear regression problem, for which we can use hierarchical clustering ap-
proaches to map measurement results to certain feature combinations [Hastie et al.,
2009]. Furthermore, we can use classification and regression trees for the prediction
step [Breiman et al., 1984]. The idea is to measure combinations of feature and
store their measured non-functional properties. When predicting a configuration,
we search for the most similar feature combination stored in the model and predict
a corresponding value. However, many learning techniques considerably depend on
the quantity and quality of the training sets and overfitting is a serious practical
problem [Mitchell, 1997]. We overcome the problems above by providing a holistic
approach that combines measurement and prediction. That is, our prediction model
specifies the terms that have to be determined and in the measurement process, we
specify and measure the configurations to determine the terms (i.e., we define the
training set). Furthermore, we can quantitatively describe what each feature and
each feature interaction contribute to a non-functional property, which is usually
not possible with this granularity for statistical learning approaches.

Krogmann et al. [2010] combine monitoring data, genetic programming, and re-
verse engineering to reduce the number of measurements to create a platform-
independent behavioral model of components. For a platform-specific prediction,
they use bytecode-benchmark results of concrete systems to parameterize the be-
havior model. Happe et al. [2011] present a compositional reasoning approach, based
on the Palladio component model. The idea is that each component specifies its re-
source demands and predicted execution time in a global repository. We predict
not only performance, but all measurable non-functional properties independently
of the used programming language, implementation technique, and availability of
bytecode.

Other approaches usually require either expert knowledge to, for example, specify
components’ performance behavior [Bertolino and Mirandola, 2003, Aigner et al.,
2003], or use connectors and meta-programs to monitor the program flow [Woodside
and Litoiu, 2008]. We concentrate on end users or stakeholders that have no domain
knowledge available and cannot intercept or monitor an application (e.g., a user that
installs a Linux kernel instead of a kernel developer). Hence, we provide a general
approach to predict non-functional properties of customizable black-box programs.

Also in this vein, model-driven-engineering-based work uses feature models to
customize or synthesize performance models (e.g. [Tawhid and Petriu, 2011]). This
line of research requires up-front and detailed knowledge of domain-specific perfor-
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mance modeling, where tuning predictions for accuracy can be difficult. Our ap-
proach avoids these problems by directly measuring non-functional properties.

4.5. Summary

We presented our prediction model based on a model of feature composition. We
describe how to map this model to the prediction of different non-functional prop-
erties by means of different mappings. We introduced the concept of feature terms
and feature-interaction terms as central elements for the prediction.

We explained the relationship between a feature model and the prediction model,
such that, based on a valid configuration, we can predict in advance the ex-
pected non-functional properties. Next, we proposed an extension to feature models,
called product-line model, to represent feature interactions, which map to feature-
interaction terms in the prediction model, in feature models. Furthermore, we de-
scribed how non-functional properties can be assigned to features in the product-line
model and how the optional definition of implementation units helps in identifying
possible feature interactions.

This concludes Part I in this thesis. We showed the big picture of how to derive
an optimized variant from a customizable program. We explained the challenges to
enable the incorporation of non-functional properties in program derivation (e.g.,
unknown influence of features on non-functional properties and exponential num-
ber of variants) and proposed a new classification of non-functional properties to
define suitable configuration and measurement techniques. We proposed our pre-
diction model, which uses terms to express the influence of features and feature
combinations on non-functional properties. We explained how these terms and the
prediction model map to feature models, which are commonly used for configuration
as they describe all valid variants.
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This chapter shares material with the following papers:

• ”Measurement and Optimization of Non-functional Properties” in APSEC’08 [Siegmund
et al., 2008b] and

• ”SPL Conqueror: Toward Optimization of Non-functional Properties in Software Product
Lines” in Software Quality Journal [Siegmund et al., 2012c],

In Part 2, we show how to determine the terms in the prediction model. That
is, we show how we can approximate the influence of individual features on non-
functional properties. In Chapter 6, we present our initial approach that determines
only the terms that correspond to features in the prediction model. In Chapter 7,
we extend this approach by determining terms that correspond to (a) known feature
interactions and (b) all pair-wise interactions. Finally, we propose an automated
feature-interaction-detection approach in Chapter 8, which determines terms in the
prediction model based on heuristics. We developed these heuristics from the obser-
vations and insights we gained by analyzing the evaluation of the prior approaches.

The main challenge to enable the prediction of a variant’s non-functional prop-
erties is how to measure the impact of each feature on non-functional properties.
In this chapter, we define goals that a measurement strategy has to fulfill for a
practical usage in the context of customizable programs. Afterwards, we explain
three measurement strategies, direct measurement, family-based measurement, and
feature-wise measurement. We rate their feasibility according to our defined goals.
We developed these measurement strategies, because they correspond to general
strategies of analyzing variable software [Thüm et al., 2012]. Finally, we compare
the three strategies and conclude that feature-wise measurement satisfies our defined
goals.

Measurement Goals. To enable the prediction of non-functional properties, we
need a measurement strategy that measures the influence of individual features on
non-functional properties. We define several goals that a strategy has to accomplish.
These goals are driven by the necessity (a) to make the measurement feasibility for
highly variable programs, (b) to increase the applicability and generality regarding
supported non-functional properties and our targeted black-box approach, and (c)
to enable accurate predictions. In the following, we explain each goal in detail:

1. Measurement Effort. Measurement effort is an important factor that spec-
ifies whether a measurement strategy is feasible for highly variable programs.
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Since we can produce millions of variants with only few independent and op-
tional features, a feasible strategy should require only a linear number of mea-
surements with respect to the number of features.

2. Prediction Accuracy. The more accurate we measure the influence of indi-
vidual features, the more accurate are our predictions. Hence, an important
goal is that the measurement itself quantifies the true influence of a feature,
such that the measurement is not disturbed by other factors, for example the
presence of other features or compiler optimizations.

3. Applicability. To increase applicability, a measurement strategy must not re-
quire implementation artifacts. Otherwise, we could not support black-box pro-
grams, which is, however, one of our overall goals in this thesis. Furthermore, a
strategy must not depend on a certain implementation technique to not limit
applicability. For example, if we can measure performance only for customiz-
able programs implemented with components, but not for preprocessor-based
programs, then our goal of a broad applicability is not accomplished.

4. Generality. We aim at measuring all measurable non-functional properties.
That is, a measurement strategy must not exclude some non-functional prop-
erties that are, in general, measurable, but not with this strategy. Hence, we
target a general solution.

5. Realistic Environment. Our last goal is that a measurement strategy has
to be applicable in a realistic environment to produce realistic measurement
results. That is, when measuring a program, we should measure it as if it
were practically used. For example, measuring binary size or performance of a
generated program without compiler optimization is not realistic, because, in
practice, we would use compiler optimizations, which can substantially change
the influence of features on non-functional properties. From a mathematical
point a view, in practice, we measure the following properties: Πopt(a · b) =
Πopt(a) Πopt(·) Πopt(b) 6= Πunopt(a · b). Hence, the prediction of an optimized
variant might be inaccurate.

We use measurement effort and prediction accuracy in the remaining thesis as key
factors to quantitatively evaluate and rate an approach. Applicability, generality,
and realistic environment are mainly discussed in this section, because they are
qualitative factors, which we can use to quickly rule out inappropriate measurement
strategies. Based on these goals, we propose and compare different measurement
strategies.

5.1. Direct Measurement

Direct measurement means that we measure not a whole variant, but features di-
rectly. That is, we perform our measurements on the corresponding implementation
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units. Since we know the mapping between features and implementation units from
the product-line model, we know which implementation units have to be measured
for which feature. Hence, the general approach is as follows: Π(a) = Π(τ(a)). We can
assign the measured result either to the implementation unit or to the corresponding
feature, if a one-to-one mapping is present.

Definition 1. Direct Measurement : A measurement of a customizable program
is called a direct measurement if (a) it operates only on the features’ individual
artifacts (i.e., measurement of a feature’s source code or object files) and (b) the
measurement is performed for each feature and physically existing feature interaction
(e.g., derivatives or nested #ifdefs) in isolation.

The benefit of a direct measurement is that we need only a linear number of
measurements. We need to measure each feature only once to quantify its influence on
a non-functional property. Furthermore, the analysis of the measurements is simple,
because each measurement result maps directly to a feature. This is different to
measuring a variant, because we would have to extract the individual influence of a
feature, which might be difficult. Another benefit is that a direct measurement is fast,
because we often do not have to generate and even execute a corresponding variant.
Finally, when a customizable program changes (e.g., additional features are added),
we need to measure only the added implementation units and not all features again.
Hence, we conclude that the measurement effort is low (goal 1) and this strategy is
optimal for non-functional properties of the class measurable properties per feature
(cf. Section 3.2).

Unfortunately, the direct measurement strategy has significant limitations. First,
we can measure only a subset of all quantifiable non-functional properties. That
is, we cannot measure properties that emerge in a generated or running program,
because we analyze only an individual feature at a time. Hence, we cannot perform
measurements for the properties of the class measurable properties per variant (e.g.,
performance, main-memory consumption, and energy consumption). We conclude
that generality is limited (goal 4).

Second, this strategy requires that features either are implemented in a modular
way, such that we can perform our measurements on each module, or that features
map one-to-one to produced artifacts (e.g., object files), which we can measure indi-
vidually. This precondition limits applicability, such that we cannot measure already
compiled customizable programs. This excludes black-box programs, which rely on
load-time or run-time customization techniques, such as command-line parameters
or configuration files. In a black-box program, we cannot measure implementation
units of features individually, because we have no information about the mapping
from features to implementation units and we do not have access to implementation
units. That is, features a and b map to τ(a · b) and not to τ(a) · τ(b). Hence, we
can only determine Π(τ(a · b)), but we need to determine Π(τ(a)) and Π(τ(b)). We
conclude that also applicability is limited (goal 3).
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Third, we cannot quantify the influence of feature interactions on non-functional
properties if they are not implemented as separate implementation modules or if
we cannot identify the produced artifacts that emerge due to a feature interaction.
Finally, a direct measurement can degrade accuracy of predictions, because to be
able to measure certain properties, such as binary size, we may need to construct
an artificial environment (e.g., generating interfaces to be able to compile individ-
ual modules). This, however, may prohibit optimizations, such as method inlining
by compilers, which cause non-realistic measurement results. Using these artificial
measurements for predicting production systems can cause significant inaccuracies.
We conclude that both goals, prediction accuracy (goal 2) and realistic environ-
ment (goal 5), are not accomplished by this strategy. We summarize our findings in
Table 5.1.

1. Effort 2. Accuracy 3. Applicability 4. Generality 5. Environment

satisfied not satisfied not satisfied not satisfied not satisfied

Table 5.1.: Relating direct measurement to goals.

5.2. Family-Based Measurement

Family-based measurement is a strategy in which we measure all features at once by
evaluating valid feature combinations given by a feature model. Hence, we measure
the influence of all features in a single step and infer afterwards how each feature
contributes to the overall measured property. To this end, we produce a variant that
contains all features: τ(a · b · ...) and extract with specialized measurement tech-
niques the individual influence of features: τ(Π(a) · Π(b) · ...). Hence, family-based
measurement results in a white-box approach. Possible techniques are symbolic exe-
cution [King, 1976], program simulators [Parnas, 1972], or monitoring and profiling
approaches.

An analogy how such a measurement can be realized for variable software provide
approaches that ensure type safety in software product lines [Apel et al., 2010a]. In
an automated analysis, a program performs reference checks on an abstract syntax
tree that encodes valid feature combinations. If such a check identifies that a valid
variant exists in which a method call cannot be referenced, because a feature is
missing, then an error is given, such that either the feature model must be changed
to require existence of the missing feature or the code must be fixed. Regarding non-
functional properties, such a variability-aware analysis might also be implemented,
but it is unclear how non-functional properties, such as performance, can be mea-
sured, because probably all feature combinations must be executed in a single (or
few) run.

60



5.3. Feature-Wise Measurement

Definition 2. Family-Based Measurement : A measurement of a customizable pro-
gram is called a family-based measurement if it (a) operates on all features at once
and (b) maps the result based on the encoded variability to the individual influences
of all features.

The advantage of this strategy is that we need to measure all implementation
units only once. That is, performing a measurement has a constant complexity. We
conclude that the measurement effort is very low (goal 1).

The disadvantages of the family-based measurement are similar to the direct mea-
surement approach. In most cases, we cannot execute the variant containing all fea-
tures, because a customizable program usually has alternative features. This, how-
ever, prohibits measurement of non-functional properties that emerge only in run-
ning variants (i.e., it excludes the class measurable properties per variant). Hence,
generality is limited (goal 4).

Furthermore, we need special implementation techniques that allow us to produce
a variant that consists of all features including alternatives and to manipulate the
program code to include monitoring capabilities as well as variability information
from a feature model. Hence, this measurement strategy relies on a white-box ap-
proach rather than on a black-box approach, such that applicability is limited (goal
3).

A further problem is the difficulty to identify a feature’s influence on non-
functional properties in this variant. We need means to extract this information,
which in turn disturb accuracy of measurements (goal 2). The family-based strategy
has the same drawbacks as the direct measurement regarding feature-interaction
detection (we can measure only explicitly implemented interactions) and an ar-
tificial measurement environment, which decreases prediction inaccuracies for the
production system (goal 5). We relate our findings to the defined goals in Table 5.2.
Although there are a number of drawbacks, this approach is promising for white-box
programs in future work, such that we can improve accuracy and generality.

1. Effort 2. Accuracy 3. Applicability 4. Generality 5. Environment

satisfied not satisfied not satisfied not satisfied not satisfied

Table 5.2.: Relating family-based measurement to goals.

5.3. Feature-Wise Measurement

Feature-wise measurement is a strategy in which we measure non-functional prop-
erties of two valid variants that differ in a single feature. We interpret the delta of
these two measurements as the influence of the respective feature on non-functional
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properties. For example, to determine the influence features a and b on performance,
we measure the following variants:

ΠPerf (a) = ΠPerf (a× ∅)−ΠPerf (∅)
= 40s− 0s

= 40s

ΠPerf (b) = ΠPerf (a× b)−ΠPerf (a)

= 90s− 40s

= 50s

On the right side of the equations are only two measured variants. These variants
differ only in the feature to be measured. This results in a worst-case complexity
of O(n). We describe this approach in Chapter 6 in detail. To quantify the influ-
ence of feature interactions on non-functional properties, we generate a variant that
consists of the combination of features that cause an interaction and compare the
measurement of this variant against our prediction. We interpret the delta of this
comparison as the influence of the feature interaction on non-functional properties.

Definition 3. Feature-Wise Measurement : A measurement of a customizable pro-
gram is called feature-wise measurement if (a) it operates only on produced variants
and (b) uses the results of two variants that differ in a single feature to compute the
influence of the respective feature on non-functional properties.

Feature-wise measurement has a number of benefits. First, we need only a linear
number of measurements to quantify the influence of all features on non-functional
properties. That is, we need two measurements per feature to determine the delta.
Second, this approach is scalable in the number of measurements. From our pre-
diction model in Section 4.2, we know that there are an exponential number of
terms. With this approach, we can measure these terms directly to, for example,
improve prediction accuracy, and to find a sweet-spot between measurement effort
and accuracy (goals 1 and 4).

Third, with feature-wise measurement, we measure only the produced variants.
That is, we measure black-box programs with standard measurement techniques,
which do not need to consider the context of variable software. This maximizes
applicability, because this strategy is independent of how a program is customized
or implemented (goal 3). Furthermore, measuring variants directly means that we
can measure all kinds of measurable non-functional properties. Hence, this strategy
maximizes also generality (goal 4).

Finally, we can measure variants under realistic conditions. That is, we can turn
all compiler optimizations on, we do not have to extract information from a run-
time environment (e.g., no need to profile a Java program with the Java runtime
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environment), and we can run the variant on the customer’s system when measuring
non-functionality properties. We conclude that goal 5 is satisfied.

The main drawback of feature-wise measurement is the required measurement
effort when many feature interactions exist (i.e., if we have to determine many
terms of the prediction model). As we show in Chapter 7, we need to determine all
relevant feature-interaction terms to enable a precise prediction. We conclude that
measurement effort and prediction accuracy depend on each other in this strategy
(summarized in Table 5.3). Hence, we have to find a sweet-spot between both of
them. In Chapter 8, we show how to find this sweet-spot using three heuristics.

1. Effort 2. Accuracy 3. Applicability 4. Generality 5. Environment

partly satisfied partly satisfied satisfied satisfied satisfied

Table 5.3.: Relating feature-wise measurement to goals.

5.4. Comparison of Strategies

In Table 5.4, we provide a comparison of the different measurement strategies, in-
cluding a pure brute-force approach. The best trade-off between measurement effort,
prediction accuracy, applicability, and supported non-functional properties provides
the feature-wise measurement. Although the brute-force approach seems to be an-
other good option, it is not feasible for highly customizable programs because of an
exponential number of variants that would be needed to measure. Here, feature-wise
measurement clearly outperforms brute force.

Direct measurement has the benefit of less measurement effort. Although it has
only limited applicability, it is reasonable to use this technique whenever a non-
functional property can be measured with this approach. As we have shown in pre-
vious work [Siegmund et al., 2012c], a possible use case are code metrics, such as
cyclomatic complexity [McCabe, 1976]. For this metric, we need to measure only
each feature’s implementation units to determine their complexity value.

The main drawback of family-based measurement is the use of white-box mea-
surements. Since a major contribution in this thesis is to give a general applicable
solution, family-based measurement is not feasible. However, we believe that with
further research, many of the drawbacks (e.g., regarding accuracy and generality)
can be eliminated. Hence, we see more potential in this solution than for direct
measurement.

We summarize that for the defined goals, feature-wise measurements seems to be
the only appropriate solution. Again, we selected these strategies based on more
general analysis strategies for variable programs and because of the necessity of
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Strategy 1. Effort 2. Accuracy 3. Applicability 4. Generality 5. Environment

Direct + − − − −
Family-based + − − − −
Feature-wise +− + + + +
Brute force − + + + +

Table 5.4.: Comparision between the three measurement strategies and a brute-force
approach.

determine a feature’s influence on non-functional properties, which, for example,
excludes statistical learning-based approaches. Hence, our strategies are a repre-
sentative selection. In the remaining thesis, we describe feature-wise measurement,
explain how to realize it, evaluate its effort and accuracy, and propose a solution to
find a sweet-spot between measurement effort and prediction accuracy.

5.5. Related Work

In recent years, researchers developed different approaches to analyze variable soft-
ware, especially in the area of software product lines, such as type checks [Apel
et al., 2010a, Kästner et al., 2012], theorem proving [Bruns et al., 2011], and model
checks [Kishi and Noda, 2006, Apel et al., 2011]. Thüm et al. [2012] provide an
overview of these analyses. The main contribution, however, is that they give a clas-
sification about how these analyses are applied to software product lines. That is,
should we analyze all variants, specific variants, or should we analyze only the fea-
tures instead of programs? For this reason, Thüm and others suggest three categories
of analysis strategies: product-based, family-based, and feature-based.

In a parallel line of research, we developed our strategies to measure non-functional
properties of customizable programs. We call our strategies direct measurement,
which refers to a feature-based analysis, family-based measurement, which corre-
sponds to a family-based analysis, and delta-wise measurement, which is a form
of an optimized product-based analysis. Hence, both strategies are related, but we
have specific goals, such as generality, efficiency, and accuracy of predictions, in
mind, whereas Thüm discusses more general properties (e.g., scalability) that are
applicable for all kinds of analyses and not specific for non-functional properties.

5.6. Summary

We defined five goals (measurement effort, prediction accuracy, applicability to
black-box programs, generality to measurable non-functional properties, and usage

64



5.6. Summary

in realistic environments) that a measurement strategy in the context of customiz-
able programs has to satisfy. We outlined three strategies based on analysis strategies
of software product lines to measure non-functional properties of features.

We presented the direct measurement strategy, which measures non-functional
properties of a feature’s implementation unit. That is, the approach is applicable
only if we have access to the source code and if the mapping between features and
implementation units is known (i.e., it prohibits a black-box approach).

The second strategy is family-based measurement. We showed that the complete
customizable program is measured once and afterwards, the measurement results
are mapped back to individual features. This strategy also requires the presence of
source code or the ability to instrumentalize the code with variability information,
which makes it possible to map measurements to individual features. However also
for this strategy, a black-box approach is not possible.

Finally, we outlined the concept of feature-wise measurement. We measure pro-
duced variants, which maximizes applicability (e.g., we can measure black-box pro-
grams). To this end, we compute the difference of measured non-functional properties
of two variants that differ only in a single feature to determine the influence of the
corresponding feature on a non-functional property. We compared all three strategies
regarding our defined goals. We concluded that feature-wise measurements represent
the best trade-off between these goals.
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6. Feature-Wise Measurement

This chapter shares material with the following papers:

• ”Scalable Prediction of Non-Functional Properties in Software Product Lines.” in
SPLC’11 [Siegmund et al., 2011],

• ”Predicting Performance via Automated Feature-Interaction Detection.” in ICSE’12 [Sieg-
mund et al., 2012a], and

• ”Scalable Prediction of Non-Functional Properties in Software Product Lines: Footprint and
Memory Consumption.” in IST’12 [Siegmund et al., 2012b]

In this chapter, we present our approach to measure a feature’s influence on
non-functional properties. We concentrate only on feature terms in our predic-
tion model and call this approach feature-wise measurement. We omit measuring
feature-interaction terms, because we want to find out how accurate our predictions
are with as few measurements as possible. That is, we define a#b = ∅, such that
Π(a#b) = 0. Hence, we extend a configuration for feature-wise measurement as fol-
lows: Π(a×b) = Π(a)·Π(b)·Π(a#b) = Π(a)·Π(b)·Π(∅) = Π(a)·Π(b). Furthermore, we
want to identify the effects of feature interactions for different non-functional prop-
erties. An important aspect of our approach is to determine which configurations
need to be measured. Hence, we explain how to identify these configurations and
how to compute the influence of all feature terms. We evaluate prediction accuracy
and measurement effort with several experiments by means of three non-functional
properties: performance, footprint (binary size), and main-memory consumption.

6.1. Feature-Wise Measurement

The main idea of feature-wise measurement is simple: measure two variants that
differ in a single feature and interpret the difference of these measurements as the
influence of the differing feature on non-functional properties. This simplicity is
the key to conquer the exponential complexity of measurements and to achieve a
wide applicability in terms of supported non-functional properties and customization
techniques. Since we measure actually generated variants, we are not limited to
specific implementation techniques, and require neither domain knowledge nor the
source code of the customizable program. With few measurements (linear complexity
in terms of number of features), we can predict non-functional properties of all
configurations (exponential in the number of features). Although the approach is
simple, it yields surprisingly good results, as we show in our evaluation.



6. Feature-Wise Measurement

We explain in Chapters 7 and 8, how feature interactions influence prediction
accuracy and how interactions can be detected and quantified with respect to their
influence on non-functional properties.

6.1.1. Computing Feature Terms

In this section, we describe how to determine the feature terms. That is, the con-
figurations that must be measured to quantify the influence of each feature on a
non-functional property. First, we describe the general concept of our approach.
Next, we explain why and how we build a set of equations from the measurements.
Afterwards, we explain algorithms necessary to extract the approximations of each
feature’s influence on a non-functional property from a (minimal) set of variants.
We start with a description of our notation that we use to express configurations,
measurements, and approximations of a feature’s influence on a property. For illus-
tration, we use the property footprint in the examples.

Determine configurations 
to measure

Measure configurations
Build set of equations and 

solve

Figure 6.1.: Process of computing all features’ terms for the prediction model.

The overall process is as follows: First, we determine configurations that we have
to measure to approximate the influence of each feature on a non-functional property
(as depicted in Figure 6.1). Second, we measure these configurations. Third, we build
a set of equations from these measurements. Each feature represents a variable in
these equations. A single equation is therefore the set of selected features that equals
to the measurement result. By solving this set of equations, we compute for each
feature the influence on the measured non-functional property. Next, we describe
this process in detail.

We have to keep in mind that all configurations must be valid, because we must be
able to generate the corresponding variants to measure them. Thus, we use feature
models as a base to determine necessary configurations. In Figure 6.2, we show a
feature model of a customizable DBMS, which we use as example. If we want to
approximate the influence of feature Encryption, we have to determine two configu-
rations that differ in the presence of feature Encryption only. We select and measure
configurations C1 = {Base,Encryption,RSA}, where the measured footprint of C1 is
ΠF (C1) = 730 KB, and C2 = {Base}, where ΠF (C2) = 420 KB. Note that we have to
select feature RSA in C1, too, because it is a mandatory child feature of Encryption
and must therefore always be selected in combination with Encryption. From these
two configurations, we determine the delta, which is 310 KB and interpret this as
the influence of features Encryption and RSA on footprint: ΠF (Encryption ×RSA)
= 310 KB. Since there is no variant that allows us to select Encryption without
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6.1. Feature-Wise Measurement

RSA (consequently, there is no need to measure these features individually), we
successfully determined Encryption’s influence on footprint.

DBMS

Base IndexTransaction

Btree HashLogging 2PC

Encryption

RSAInMemory

requires

Figure 6.2.: Sample customizable DBMS program. The root denotes the concept.
2PC: two phase commit protocol.

Although the main idea is to determine only two configurations per feature, we
already observed in the above example that this is not always possible. Feature RSA
cannot be measured in isolation, because we cannot measure Encryption’s influ-
ence without RSA. This and other constraints are defined in feature models either
by common relationships or by propositional formulas. In the following, we show
how to determine necessary configurations for the most common relationships. This
is sufficient, because it is possible to translate propositional formulas into feature
models with these relationships, as shown by Czarnecki and Wasowski [2007]. Fur-
thermore, we show in Chapter 8 how to completely abstract from feature models and
their relationships – for now, we keep them to describe the basics of our approach.

In Table 6.1, we summarize all configurations that we need to determine all fea-
ture terms of the DBMS example (Figure 6.2) for the property footprint ΠF (for
illustration purpose). To distinguish the two configurations we need to measure for
each feature, we call the configuration with the feature to be approximated feature
variant and the configuration without this feature delta variant.

Note that although we show in the following individual equations that compute
the influence of a feature on a non-functional property, we do not perform this
computation in isolation per feature, but collect all measurements to build a set of
equations. As said before, in an equation, each feature is represented by a single
variable and the sum of all variables equals to the measurement result. Then, we
solve this set of equations to approximate the influence of all features in one step.
This has several benefits, as we discuss in Section 6.1.2.

(1) Initial Feature Set. There are customizable programs that always require se-
lecting some features to derive a valid configuration (e.g., we may have to choose
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Feature Feature Variant ΠF Delta Variant ΠF

Base P1 ={Base} 420 ∅ 0
Encryption P2 ={Base, Encryption, RSA} 730 P1 ={Base} 420
RSA P2 ={Base, Encryption, RSA} 730 P2 ={Base} 420
Index P4 ={Base, Index, Hash} 570 P1 ={Base} 420
Btree P3 ={Base, Index, Btree} 740 P1 ={Base} 420
Hash P4 ={Base, Index, Hash} 570 P1 ={Base} 420
InMemory P5 ={Base, InMemory, Encryption, RSA} 610 P2 ={Base, Encryption, RSA} 730
Transactions P6 ={Base, Transactions, Logging} 845 P1 ={Base} 420
Logging P6 ={Base, Transactions, Logging, 2PC} 995 P7 ={Base, Transactions, 2PC} 885
2PC P6 ={Base, Transactions, Logging, 2PC} P8 ={Base, Transactions, Logging} 845

Table 6.1.: Set of configurations to determine feature terms. All measured values are
in KB.

between alternative features). In such a case, we cannot determine a configuration
that differs only in these features, because we always have to select them. To over-
come this problem, our first task is to measure the influence of an initial feature set
on a non-functional property. This initial feature set acts as the base configuration
for all features that have no parent feature. Since there is no variant with fewer fea-
tures, the minimal variant is the empty set, for which each non-functional property
is zero. Hence, we interpret the influence of the initial feature set on a non-functional
property as the measured value of the corresponding variant. For example, feature
Base must always be selected in our sample program (see Figure 6.2):

Feature Feature Variant Delta Variant Feature Term Result

Base ΠF (P1) = 420 KB ΠF (∅) = 0 KB ΠF (Base) = 420 KB Base
420KB

The corresponding equation is:

ΠF (Base) = ΠF (P1)−ΠF (∅)
= 420 KB− 0 KB

= 420 KB

(2) Optional. In an optional relationship, it is not required to select the child
feature. Hence, we generate two variants: The first contains only the parent feature.1

And, in the second, we additionally include the optional child feature. In our sample
program, feature Encryption is an optional feature. Since it has no parent feature,

1Of course, we have to include all necessary features to derive a valid variant, e.g., all mandatory
features.
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the initial feature set is considered as the root feature and acts as the parent feature.
Based on the computed set of configurations in Table 6.1, we measure the following
variants:

Feature Feature Variant Delta Variant Feature Term Result

Encryption ΠF (P2) = 730 KB ΠF (P1) = 420 KB ΠF (Enc) = 310 KB Encryption
310KB

With these measurements, we compute the term of feature Encryption:2

ΠF (Encryption) = ΠF (P2)−ΠF (P1)

= 730 KB− 420 KB

= 310 KB

= ΠF (Encryption × RSA)// per defintion

where P1 represents the variant that we measure for Encryption’s parent feature.
Note that ΠF (Encryption) does not contain the influence of feature Encryption
solely, but also the influence of feature RSA and their feature interactions. This
is because feature RSA is a mandatory child feature of Encryption and thus must
always be selected in combination. We explain this behavior next.

(3) Mandatory. A mandatory relationship enforces that, whenever the parent fea-
ture is selected, we must also select its child feature. As a consequence, we cannot
measure the parent feature’s influence on a property without measuring the influ-
ence also of all mandatory children. Hence, we set the value of the child feature to
zero (i.e., Π(Child) = 0) and the value of the parent term to computed delta (e.g.,
310 KB for feature Encryption).

When working with feature models, a preprocessing step often takes place, which
builds atomic feature sets [Segura, 2008]. An atomic feature set is a set of features,
which are always selected in combination. That is, we compose multiple features
that must always be selected in combination into a single feature. This reduction
of the number of features has benefits for feature-model analysis, because we have
to consider less features without sacrificing any information or variability [Thüm
et al., 2011]. In our case, features Encryption and RSA are always selected in com-
bination. Hence, they build an atomic set not only regarding their code base, but
also regarding their influence on non-functional properties. When a stakeholder se-
lects the parent feature of a mandatory relationship during configuration, we show

2Again, we omit all feature-interaction terms, because in the feature-wise measurement, we do not
consider feature interactions. We explain how to incorporate interactions in Chapter 7.

71



6. Feature-Wise Measurement

already the aggregated value of both features. This way, stakeholders can easily see
the implications of a feature selection, because they usually select features starting
from the root node.

Feature Feature Variant Delta Variant Feature Term Result

RSA N/A N/A ΠF (RSA) = 0 by definition RSA
0KB

We define the term for a mandatory relationship as follows:

ΠF (RSA) = 0 // atomic feature set

Although we measured the influence of feature RSA already with ΠF (Enc), we do
not assign values to both features in the product-line model. Instead, we assign
always the value zero to a mandatory feature that is not in the initial feature set
(i.e., not a root feature), because we approximated the influence of this feature when
measuring its parent feature.

(4) Alternative. In an alternative relationship, we cannot select the parent feature
of the relationship individually, but measure its value always in combination with
its child features. Since we cannot select multiple child features, there is no need to
quantify the influence of the parent feature. Any valid configuration that includes a
child feature contains also the parent feature. Hence, this is exactly the same case
as for mandatory features. The only difference is that we cannot assign the influence
to the parent feature, because depending on which child feature is selected, this
influence changes.

There are at least two ways to store the influence of feature Index and its chil-
dren Hash and Btree in the product-line model. In the first variant, we can set
ΠF (Index ) = 0 and approximate only the influence of its child features (i.e., we
store only ΠF (Hash) and ΠF (Btree)). In the second variant, we set the smallest
measured value of the alternative features as the influence of feature Index, because
selecting Index has at least the smallest measured influence on non-functional prop-
erties. Furthermore, we set the influences of the alternative features to the difference
of the smallest influence and their actually measured influence.

From the above description, we see that there is a unique solution, but lots of dif-
ferent ways to represent them. That is, we can build different, sometimes equivalent,
prediction models from the same measurement data. This may lead to prediction
errors or at least different prediction outcomes. This is why we give our definitions
and describe later their corresponding realization for which we experienced the most
accurate predictions.
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Feature Feature Variant Delta Variant Feature Term Result

Index N/A N/A
ΠF (Index ) = 0 KB by
definition

Index
0KB

Btree ΠF (P3) = 740 KB ΠF (P1) = 420 KB ΠF (Btree) = 320 KB
Btree

320KB

Hash ΠF (P4) = 570 KB ΠF (P1) = 420 KB ΠF (Hash) = 150 KB Hash
150KB

In our example, we require two variants P3 ={Base, Index, Btree} and P4 ={Base,
Index, Hash}. To use the first method to store the influences of alternative features,
we define the following equations:

ΠF (Btree) = ΠF (P3)−ΠF (P1)

= 740 KB− 420 KB

= 220 KB

ΠF (Hash) = ΠF (P4)−ΠF (P1)

= 570 KB− 420 KB

= 150 KB

ΠF (Index ) = 0 KB // by definition

If we decide for the second method of storing the influences of alternatives, we
additionally use the following equations after computing the terms for features Btree
and Hash:

ΠF (Index ) = Min(ΠF (Hash),ΠF (Btree))

= Min(740 KB, 570 KB)− 420 KB

= 570 KB− 420 KB

= 150 KB

ΠF (Btree) = ΠF (Btree)−ΠF (Index )

= 740 KB− 570 KB

= 170 KB

ΠF (Hash) = ΠF (Hash)−ΠF (Index )

= 570 KB− 570 KB

= 0 KB

(5) OR. In contrast to an alternative relationship, in an OR relationship, we can
select multiple child features. This raises the problem that we have to quantify
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the influence of the parent feature to predict configurations accurately when more
than one child feature is selected. For instance, if we approximate the influence of
feature Logging, we measure not only the footprint of Logging. ΠFLogging , but also
feature Transaction’s footprint ΠFTransaction. Approximating 2PC ’s influence on
footprint is similar. We measure 2PC ’s footprint, but also Transaction’s footprint.
When we predict the footprint of a configuration with features Logging and 2PC,
we take the footprint of feature Transaction into account twice.

Feature Feature Variant Delta Variant Feature Term Result

Transaction ΠF (P6) = 995 KB ΠF (P1) = 420 KB ΠF (Txn) = 315 KB
Transaction

315KB

Logging ΠF (P6) = 995 KB ΠF (P7) = 885 KB ΠF (Log) = 110 KB
Logging

110KB

2PC ΠF (P6) = 995 KB ΠF (P8) = 845 KB ΠF (2PC ) = 150 KB 2PC
150KB

We overcome the above problem by additionally measuring one configuration in
which two child features are present (P6). The approach is as follows: We determine
the influence of each OR feature by determining two configurations that differ only in
the current feature. For instance, configurations P6 and P7 differ only in the presence
of feature Logging. Hence, we interpret the delta of the corresponding measured
footprint as Logging ’s footprint. We yield the following equations:

ΠF (Logging) = ΠF (P6)−ΠF (P7)

= 995 KB− 885 KB

= 110 KB

ΠF (2PC ) = ΠF (P6)−ΠF (P8)

= 995 KB− 845 KB

= 150 KB

To approximate the impact of the parent feature of an OR relationship, we have
several possibilities. We can subtract the already approximated influence of fea-
tures Logging and Base from measurement P8 = ({Base,Transaction,Logging}):
ΠF (Transaction) = ΠF (P8) − ΠF (Base) − ΠF (Logging). Another possibility is to
not use any intermediate result, but calculate Transaction’s footprint directly from
measurements:

ΠF (Transaction) = ΠF (P7) + ΠF (P8)−ΠF (P1)−ΠF (P6)

= 885 KB + 845 KB− 420 KB− 995 KB

= 315 KB
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Here, we use the measured configurations for each OR feature (ΠF (P7) and ΠF (P8))
and subtract the measurement of the configuration without Transaction (ΠF (P1))
and the measurement of the configuration in which both OR features are present
(ΠF (P6)). This way, we add the influence of Transaction twice and subtract it only
once. Hence, the result of this computation is the influence of feature Transaction
on footprint.

(6) Requires. Finally, we also consider cross-tree constraints in the feature model.
The excludes constraint does not change the computation of a feature’s non-
functional properties, because it restricts only the number of features, and we already
measure a variant with a minimal number of features. In contrast, the requires con-
straint prohibits the measurement of a single feature. For example, we cannot mea-
sure feature InMemory without feature RSA. In such a case, our approach is to first
measure the variant that includes the target of the requires constraint (i.e., feature
RSA with configuration P2 is the target of feature InMemory). Then, we measure
the variant that includes both features of the requires constraint P5 ={Base, In-
Memory, Encryption, RSA}. Therefore, the delta of both measurements represents
the influence of feature InMemory.

Feature Feature Variant Delta Variant Feature Term Result

InMemory ΠF (P5) = 610 KB ΠF (P2) = 730 KB ΠF (Mem) = −120 KB
InMemory

-120KB

ΠF (InMemory) = ΠF (P5)−ΠF (P2)

= 610 KB− 730 KB

= −120 KB

We visualize the result of our computations in Figure 6.3. We are aware of that
there might be cycles in a feature model, such that each feature of the cycle cannot be
measured without any other feature of the cycle. Hence, approximations of individual
features in a cycle cannot be computed, but this is not necessary. Cycles can both
be removed by computing the corresponding atomic feature set or by assigning the
measured value to one feature of the cycle and set all others to zero.

6.1.2. Algorithms and Realization

To realize feature-wise measurement, we need a constraint-satisfaction-problem
solver that allows us to define objective functions. The solver computes two con-
figurations for each feature and determines configurations with a minimal number

75



6. Feature-Wise Measurement

DBMS

Base IndexTransaction

Btree HashLogging 2PC

Encryption

RSAInMemory

requires

110KB 150KB

315KB 420KB 0 KB

150 KB320KB-120KB 0KB

310KB

Figure 6.3.: Feature model after approximating the influence of each feature on
footprint.

of features, which is the optimization goal and the reason why we cannot use satis-
fiability solvers. Furthermore, we use a linear-equation solver to compute all feature
terms. In the following, we describe our implementations, which we used in our tool
SPL Conqueror.3

Computing the Set of Configurations for Measurement. Measurements can be
time consuming and expensive. This is the reason why we aim at further reducing
the number of necessary measurements from 2n to n+1 by reusing already executed
measurements. To reach this goal, we use the hierarchical structure of feature models
that allows us to reuse variants already defined for the parent feature.

Since a feature model has a hierarchical form, every feature, but the root, has a
parent feature. In case we have to select multiple features to obtain a minimal valid
configuration, we use the initial feature set as the root node. Beginning with the root
node, we traverse the feature tree and add for each feature a single configuration to
the configuration set. For example, when reaching feature Encryption of our sample
program, we add configuration P2 ={Base, Encryption, RSA}. We add also feature
RSA, because features Encryption and RSA are in an atomic feature set. The reused
configuration for this feature is the initial feature set. Hence, each newly determined
configuration can use the previously defined configuration (e.g., the one for the
parent) to compute the difference of its non-functional properties. An exception
for this rule is the OR relationship, in which we have to measure an additional
configuration to determine the influence of the parent feature of the OR group (as
we explained before).

Although the feature model of Figure 6.3 has ten features,4 we need to measure
only eight configurations, because we reuse already measured configurations and

3http://fosd.de/SPLConqueror
4The root node does not represent a feature.
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we can omit measurements due to the mandatory feature RSA and the alternative
relationship between Btree and Hash.

In Figure 6.4, we show our corresponding implementation to compute the set of
configurations for measurement. The input is a feature model that consists of a
list of features and a list of constraints in propositional formulas. The output is a
list of configurations, which have to be measured. After initializing all variables,
we transform the feature model by computing atomic feature sets (Line 4). This
removes mandatory features and can remove circles. In Line 5, we compute the
initial feature set, if possible. That is, we check whether we always have to select
features to obtain a valid configuration. Since all features of the initial feature set
will have the same value (because we cannot measure them individually), we add
only a single configuration to the set of configurations to be measured (Line 6).

In Line 9, we begin traversing the feature model.5 As said before, we handle OR
groups differently to compute the feature terms of the OR group’s parent feature
(Lines 11–14). That is, we add a configuration for the parent of an OR group that
contains two additional child features (Line 13 encoded with f.children). Of course,
we check whether these features can be selected in combination, but this can be easily
done using a satisfiability solver. Hence, we omitted this part for brevity.

We compute a valid configuration for a given feature f using a constraints-
satisfaction-problem solver. In Lines 13 and 15, we make calls to an intermediate
function that actually uses the solver. We explain the details of this function next.
The result of function getConfig(..) is a valid configuration that contains the
given features (first argument), has a minimal number of features, and contains –
if possible – the initial feature set (second argument) to enable reuse of configura-
tions. For brevity, we omitted the part at which we translate the first argument of
function getConfig(..) (in Line 13 and 15) to a list of features. We add the result
configuration to the list configurationSet and continue with the next feature. Af-
ter all features have been processed, we remove all duplicates from the list to obtain
a set of configurations. Afterwards, we generate the corresponding variants of the
configurations.

Function CSP.getConfig(..) is responsible for translating a feature model into
propositional formula and to use a constraint-satisfaction-problem solver, such that
the solver computes a minimal valid configuration. We show the corresponding im-
plementation in Figure 6.5. The function takes a partial configuration (i.e., a list of
required features, Line 1), the initial feature set (Line 2), and the feature model (Line
3) as an input. We need the initial feature set to keep a consistent base configura-
tion for all our approximations, which eases a later detection of feature interactions.
Furthermore, we need the feature model to translate all constraints of the feature

5We do not need a specific traversing order to measure only n+1 variants, because we automatically
reach every position in the model in which we add a configuration for the parent of the current
feature to the configuration set.
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1 Data: FeatureModel fm

2 Result: List <Configuration > configurationSet

3
4 fm = buildAtomicFeatureSet(fm);

5 List <Feature > initialFeatureSet = getInitialFeatureSet(fm);

6 configurationSet.Add(initialFeatureSet );

7
8 //Run through a l l f e a t u r e s and add a corresponding con f i gu ra t i on
9 foreach(Feature f in fm){

10 i f (! processedFeatures.Contains(f) && !initialFeatureSet.Contains(f)){

11 i f (f.is_OR_Group_Parent ()){
12 //add con f i gu ra t i on tha t i n c l ude s f and two c h i l d f e a t u r e s
13 configurationSet.Add(CSP.getConfig(f + f.children , initialFeatureSet ,fm));

14 }

15 configurationSet.Add(CSP.getConfig(f, initialFeatureSet , fm));

16 processedFeatures.Add(f)\;

17 }

18 }

19 return configurationSet;

Figure 6.4.: Algorithm to compute set of configurations that have to be measured
to compute all feature terms.

model to boolean terms, which we can put into the solver, so that we derive a valid
variant.

Finally, we use a solver with the ability to optimize a solution, because we want
to minimize the number of features in each configuration. The reason to keep the
number of features minimal is twofold: First, we enable reuse of already measured
variants. Second, a minimal number of features also minimizes the number of feature-
interaction terms in a variant (see Equation 4.1). Since feature-interaction terms can
change the approximated influence of a feature, we aim to exclude this threat to
accuracy.

To minimize the number of features in a configuration, we use a solver that takes
a partial feature selection and outputs a valid feature selection with a minimal
number of features. To enable the minimization, we assign an artificial cost of 1 to
each feature as a penalty for the optimizer to not include more features than needed
(Line 14 in Algorithm 6.5). Hence, we translated the problem of minimizing the
number of features to minimizing the cost of a feature selection. Furthermore, we
assign features of the initial feature set a value of -1000 as a reward to include these
features in a configuration (Line 12). This has the benefit that we encourage the
solver to reuse features that were already measured.

Furthermore, to enforce that the solution of the solver is a configuration in which
the required features are present, we define additional constraints that state that
a valid solution implies the presence of the required features (the corresponding
boolean representation is set to true in Line 24). Finally, we map the result of the
solver from its boolean representation back to a feature selection (Line 21).
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1 Data: Configuration RequiredFeatures

2 Data: Configuration initialFeatureSet

3 Data: FeatureModel fm

4 Result: Configuration configToMeasure

5
6 //Bui ld CSP model , map f e a t u r e s to CSP var i a b l e s ,
7 // bu i l d cos t map to ge t minimal con f i gu ra t i on
8 foreach(Feature f in fm){

9 initialize boolean term t that corresponds to f;

10 add t to CSP solver;

11 i f (f in InitialFeatureSet)

12 set cost of t = -1000;

13 else
14 set cost of t = 1;

15
16 get all constraints of f in fm;

17 build boolean terms of constraints;

18 add these terms to CSP model;

19 }

20
21 // Set requ i red f e a t u r e s to t rue in CSP model
22 foreach(Feature f in RequiredFeatures ){

23 get boolean term t of feature f;

24 add implication to CSP model: true implies t;

25 }

26
27 // S ta r t op t imi za t i on and ob ta in con f i gu ra t i on
28 CSP.minimize ();

29 foreach(Term t in CSP.Solution ){

30 map boolean term t of the solution back to feature f;

31 add feature f to configToMeasure;

32 }

33 return configToMeasure;

Figure 6.5.: Algorithm to obtain a valid minimal configuration from a CSP solver
for a given partial feature selection.

Computing Feature Terms From Measurements. In the previous paragraph, we
explained how to calculate the configurations that we have to measure. Here, we
explain how to compute feature terms from these measurements. As said before, we
use a set of equations rather than computing the influences separately. The benefits
of using such a set of equations are the following: First, measurement errors have
a weaker effect on the approximation of a feature’s impact, because by solving all
equations at once, measurement errors distribute over all measurements. Second, we
can already weaken the effect of feature interactions by over-specifying the set of
equations. That is, we can use more equations than necessary to approximate the
features’ influences (e.g., because a feature is present in multiple configurations).
To this end, we can define additional variables (in the following called error vector)
that account for inconsistencies in solving the equations. The benefits become clear
when we describe the realization.

The first task is to build the set of equations. It bases on the set of previously
measured configurations. Each configuration maps to a single equation, in which
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x1

x1 + x2

x1 + x4

x1 + x3 + x4

x1 + x2 + x4 + x5

x1 + x2 + x3

...

+    e1        = 200

+    e2        = 50

+    e3        = 120

+    e4        = 225

+    e5        = 325

+    e6        = 480

+    ek        = ... 

Configuration: a × b × c = 200 KB

Equation:        x1 + x2 + x3 = 200

error

Mapping

x (x1, x2, …, xn) results

A

Vectors

Figure 6.6.: Building the set of equations based on measurements.

features of a configuration are represented by variables (see top of Figure 6.6). That
is, we map each feature of a customizable program to a variable xi and build a
vector x = (x1, ..., xn), where n is the number of all features. The left part of
each equation represents the corresponding feature selection x1 × x2 ≈ x1 + x2 .
The right part of each equation represents the corresponding measurement result
Π({x1 × x2}) = VALUE . Hence, the mapping is as follows (cf. top of Figure 6.6):

Π(Base × Encryption × RSA) = 730 KB

x1 + x2 + x3 = 730

Unfortunately, this mapping is not accurate, because operator × expands to more
than the three variables Base, Encryption, and RSA (i.e., we miss feature-interaction
terms). Hence, we may face inaccuracies. To account for interaction and measure-
ment errors, we introduce a variable ei in each equation, which compensates for
these errors. We yield the following equation:

x1 + x2 + x3 + e1 = 730

The remaining task is to solve all variables and minimize the error variable at the
same time. The underlying technique is a well known simplex algorithm. Simplex
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6.1. Feature-Wise Measurement

allows us not only to solve a set of linear equations, but also minimize the error of
the solution. As an input, we need vectors that represent our set of equations. We
build a vector error , which contains for each configuration the approximation error.
Hence, |error | is equal to the number of measured configurations n. Similarly, we
build a second vector results (with cardinality of n) that stores the measurement
results for all configurations (as depicted in Figure 6.6).

Finally, we build a k×n matrix A that contains for all k measurements the feature
selection (i.e., the previously described mapping) and the measured result (result
vector). Now, we define the following objective function to compute all feature terms
by minimizing the approximation error:

Minimize : error · x
where Ax = results | xi ≥ 0

Note that although the definition of simplex requires that resultsi ≥ 0 and xi ≥ 0,
there is a standard way to enable also negative measurements. In short, each variable
is split into its positive and negative parts: xi = xi pos − xi neg . If a variable is
negative, then the negative part is greater than zero and the positive part is zero.

As a result of simplex, we obtain a value for each xi, which represents the influence
of the corresponding feature on a non-functional property. Vector error compensates
measurement bias and can be used as a first indicator for possible feature interac-
tions.

Tool Support: SPL Conqueror. We developed the tool SPL Conqueror6 to manage
and automate the process of determining and measuring variants and to approxi-
mate a feature’s influence on non-functional properties [Siegmund et al., 2012c]. The
application of SPL Conqueror provides two major benefits compared to a manual
approach. First, SPL Conqueror realizes an automated measurement and approx-
imation process that does not require any user interaction (e.g., the measurement
process can run over night without monitoring). Second, based on the results of
the automated measurement and approximation process, it predicts a variant’s non-
functional properties almost instantly.

SPL Conqueror maintains a product-line model of the given customizable pro-
gram. We use SPL Conqueror to determine valid configurations that have to be mea-
sured. To support arbitrary programming languages and composition techniques, we
abstract from specific implementation techniques and consider a customizable pro-
gram as a black box. All customizable programs have in common that they require
a configuration in a special format to be executed with this given configuration. The
measurement process has three steps: (1) generate a configuration in the application-
specific format, (2) trigger the generation or execution of the variant, and (3) execute

6http://fosd.de/SPLConqueror
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a user-defined measurement program, which, in turn, executes the application, mea-
sures its non-functional properties, and writes the results in a XML format that can
be read by SPL Conqueror.

Each step must be defined in SPL Conqueror, so that the whole measurement
process can be automated. SPL Conqueror needs to know in which format a con-
figuration must be generated. For example, for preprocessor-based customization,
we generate a flags.h file, which contains preprocessor statements (e.g., #define
HAVE ENCRYPTION to compile Berkeley DB with encryption support). The remaining
task (once per customizable program) is to manually include this flags.h file in the
compilation process (e.g., in the makefile). We support a wide array of customization
techniques, but further techniques can be included:

• Preprocessor-based customization is supported via an automated generation
of a user-defined header file, which includes the definition of preprocessor flags
corresponding to selected features.
• FeatureHouse is a language-independent composition tool based on feature-

oriented programming [Apel et al., 2009]. It stores configurations in an expres-
sion file, in which the selected features are listed.
• AHEAD is a composition tool suite for programs and other artifacts based on

feature-oriented programming [Batory et al., 2004]. The configuration mecha-
nism is similar to FeatureHouse.
• FeatureC++ generates C++ programs based on feature-oriented program-

ming [Apel et al., 2005] and uses also expression files with a slightly changed
syntax.
• Configuration files are used in many programs, such as the Apache web

server and the RAR compression library. To use this method with SPL Con-
queror, a user specifies the name and path of the configuration file as well
as how a selected customization option is specified by the corresponding pro-
gram. Basically, we define the value for these key-value pairs in the product-line
model and generate the according configuration file.
• Command-line options represent a common way to customize a program.

In this case, triggering the variant production is the process of executing a
program with a generated set of command-line parameters. This set of param-
eters is also derived as key-value pairs from the product-line model. With this
technique, we measure only runtime properties.

We implemented all concepts presented in this thesis in SPL Conqueror. Next, we
evaluate prediction accuracy and measurement effort of feature-wise measurement.

6.2. Evaluation

Since our approach only predicts non-functional properties and cannot provide pre-
cise results, we evaluated accuracy of our approximations with three series of ex-
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periments. These experiments help to judge feasibility of feature-wise measurement
regarding measurement effort and accuracy. Furthermore, they help identifying for
which non-functional property it is important to also identify feature interactions.

The first series of experiments addresses measurement and prediction of property
footprint (binary size of a program), the second series of experiment concentrates
on the main-memory consumption, and the third series of experiments targets per-
formance. We conducted three experiments to increase external validity of our ap-
proach. Furthermore, we want to investigate whether there are commonalities or
differences of prediction accuracies among the three non-functional properties. We
use the goal question metric (GQM) to evaluate our defined goals and research
questions [Basili, 1992]. That is, for each evaluation we state the goal, the according
research questions, and the metric to answer the questions.

We demonstrate that our predictions are sufficiently accurate for many real-
world scenarios, in which we want to constrain the configuration space or select
a nearly-optimal product regarding some non-functional property. We provide a
detailed analysis for each program online and here show the aggregated results.
Furthermore, we present in the appendix feature models and additional informa-
tion of all programs used as case studies in this thesis. We refer the interested
reader to our Web site for more detailed information and for downloading our tool:
http://fosd.de/SPLConqueror

6.2.1. Experiments

The goal of our evaluation is to rate the prediction accuracy of feature-wise measure-
ment using the three different non-functional properties: footprint, main-memory
consumption, and performance. To this end, we state the following research ques-
tions:

• Q1: What is the mean error rate of the feature-wise measurement for footprint?

• Q2: What is the mean error rate of the feature-wise measurement for main-
memory consumption?

• Q3: What is the mean error rate of the feature-wise measurement for perfor-
mance?

• Q4: Are there differences in the mean error rates between different non-
functional properties?

As a metric for evaluation, we calculate the error rate of our prediction as the
relative difference between predicted and actual property: |actual−predicted|actual ∗ 100.

In the following, we describe the parts of experiments that are common for all ex-
periments: experimental design, experimental variables, and analyze procedure. We
keep these parts constant to ease comparing error rates for different non-functional
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properties. Differences occur only for the experimental material and experimental
procedure, which we explain separately for each experiment. We had to change the
material, because programs that are customized via command-line parameters or
configuration files do not change their footprint. Since we want to measure also
programs customized via command-line parameters, we had to select different pro-
grams. Furthermore, the measurement of different non-functional properties requires
different measurement procedures. For footprint, we must compile a program and
measure the size of the generated files. For performance and main-memory consump-
tion, we have to execute a benchmark and measure the run-time behavior. Note that
we provide feature models and additional descriptions for all customizable programs
in the Appendix.

Experimental Design. Our experimental design consists of two phases: creation
of prediction model and evaluation of prediction error rate (see Figure 6.7). The
first step is to build the prediction model including all feature terms as described
in Section 4.2. To this end, we determine the necessary configurations that we have
to measure to compute the influence of each feature. This process follows our given
description in Section 6.1.2. The result is a prediction model in which we have
quantified all feature terms.

In the second step, we evaluate the error rate of our predictions. To this end,
we select the configurations for which we compare our prediction against the ac-
tually measured non-functional property. We either measure all configurations of
a customizable program or select 100 random variants. The threshold for selecting
the random variants is determined by the amount of time it takes to measure all
variants. If this is feasible (i.e., all measurements can be done within one week),
we measure all configurations; otherwise, we measure 100 variants. We state in the
corresponding experiments for which programs we measure 100 variants.

After measurement, we compare the predicted non-functional property against
the measured. We calculate a error rate of our prediction as the relative difference
between predicted and actual property: |actual−predicted|actual ∗ 100. The metric we use
is addition (sum) for all non-functional properties. For evaluation, we compute the
arithmetic mean of all error rates and present the distribution of error rates using
box plots.

Phase 1: Create prediction model Phase 2: Evaluate prediction error rate

Determine
configurations

Measure
Compute

feature terms

(all vs. random)

Select
configurations

Compare
Measure & 

predict
Compute
error rate

Figure 6.7.: Experimental design with two phases.
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Name Type Class Scale Type Unit Range/Value

Configuration indep. flags, etc. nominal N.A. 2n

Measurement dep. measurement. ratio KB ≥ 0
Prediction dep. prediction ratio KB ≥ 0

Error rate dep. |measurement−prediction|
measurement ∗ 100 ratio % ≥ 0

Table 6.2.: Description of experiment variables. Indep: independent; dep: dependent;
n: number of features.

Variables. The experiment has a single independent variable: configuration. A con-
figuration plays two roles. First, it determines which features are compiled or ex-
ecuted. That is, it influences the measurement result. The measurement result de-
pends on the configuration; it is a dependent variable. Second, a configuration is
the basis for our prediction model. From a configuration, we derive which terms we
have to determine to compute the prediction for a non-functional property. Hence,
prediction also depends on the configuration and is our second dependent variable.

Error rate describes the difference between the predicted and measured non-
functional property of a variant. Note, the error rate requires careful interpretation:
a base variant or a feature with over proportional influence on the property may
distort the error rate. We cannot provide a relative error rate corresponding to some
base or minimal variant, because it is not clear what the base or minimal variant is
(we would need to measure all variants in the first place).

Analysis Procedure. We analyze the error rate visually using box plots [Anderson
and Finn, 1996], violin plots, and Quantile-Quantile (Q-Q) plots. A box plot is a
graphical method to describe the distribution of data in a comprehensible way. The
box of a box plot summarizes 50 % of all data points. The upper and lower borders
of a box represent the respective upper and lower quartile of the data distribution.
The thick line in the box shows the median value. Finally, whiskers describe the
distribution of the remaining data points with the exception of outliers, which are
plotted as small dots. We use the statistical tool R to compute box blots.7 The
whiskers extend to the most extreme data point which is no more than 1.5 times the
length of the box away from the box. We show in the left part of Figure 6.8 a box
plot that illustrates prediction error rates of the customizable program ZipMe. We
see that all predictions have an error rate below 1.5 %. The mean prediction error
rate is below 0.5 % (thick line).

Although the box plot provides information of how the error rates distribute, we
cannot look inside the box. To increase the granularity of showing the error-rate
distribution, we can use violin plots. Similar to box plots, violin plots allows us to

7http://www.r-project.org/
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Figure 6.8.: Box plot (left) and violin plot (right) of ZipMe’s prediction error rate
for footprint.

analyze data distributions visually. The difference is that a violin plot additionally
shows a kernel density plot around the box plot. A kernel density plot, in turn, plots
a probability density function of a random (input) variable. A well known way to
plot such probability functions is a histogram. A kernel density plot, however, has
a smooth curve instead of discrete numbers. This smooth curve is placed around a
box plot to draw a violin plot. We show markers in a violin plot to visualize the
interquartiles and the median of the data.

Right in Figure 6.8, we depict a violin plot using the same data as the box plot.
This data set has about 100 observations. Considering the violin plot, most of these
observations (ca. 80) are either below 0.5 % error rate or between 1.0 and 1.3 % error
rate. Addtionally, we see that there are less observations (ca. 20) with an error rate
between 0.5 and 1.0 %. The box plot of Figure 6.8 does not provide this information,
because it has a coarser granularity.

A Q-Q plot is often used to compare two ordered data distributions by plotting
their quantiles against each other. That is, a point (xi, yi) on the plot refers to the i-
th data point of the first distribution (x-coordinate) and to the i-th data point of the
second distribution (y-coordinate). If both distributions are similar, then x is equal
to y and the point lies on the diagonal line y = x. We use this plot to compare for the
same configurations predicted versus measured properties. For a perfect prediction,
all dots lie on the diagonal line. We visualize each configuration as a dot on the plot.
In Figure 6.9, we illustrate a Q-Q plot with the ZipMe measurement and prediction
data. We see that most of the predictions are correct by lying on the diagonal
line. This means that the predicted footprint exactly corresponds to the measured
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footprint. For some of the variants, we measured a too small footprint, which is
indicated by a dot below the diagonal line.
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Figure 6.9.: Q-Q plot of prediction and estimated footprint of ZipMe.

In addition to the visual analysis, we compute the mean error rate (arithmetic
mean) per customizable program (also noted here as average error rate). To this
end, we compute for each sample variant P the error rate, sum them up, and divide
the result by the number of measurements:

AvgerrorRate =
n∑

i=1

|measurement(Pi)− prediction(Pi)|
measurement(Pi)

∗ 100 (6.1)

Furthermore, we compute the standard deviation in percent of all measurements
per customizable program to quantify the scattering of predictions around the mean
error rate.

6.2.2. Footprint

We selected footprint for several reasons:

• Although it may appear trivial, footprint is quite difficult to predict. As for
performance, feature interactions can have an immense effect: Features that ex-
tend or alter the code of other features can significantly influence the footprint
of many other features. Interactions due to shared libraries, nested #ifdefs

(code is only included when two or more features are selected), or possible
compiler optimizations make footprint difficult to predict.
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• We can measure footprint quickly and without measurement bias, which is
important for a large-scale evaluation with multiple customizable programs as
ours. We can easily reproduce values, and we exclude noise and confounding
influences, such as system load, which easily can bias benchmarks. In addi-
tion, since we need to automate a high number of measurements (not only for
variants used to compute feature terms, which a normal user of our approach
would do, but, in addition, also for reference variants to compare predicted
and actual size), it comes in handy that measuring footprint is quick.

In the following, we describe the experimental design and the data analysis.

Experimental Material. As experimental units for our footprint prediction, we
selected nine existing customizable programs with very different characteristics to
cover a broad spectrum of scenarios. A prerequisite was that we can customize
all programs at compile-time so that we can measure different program sizes. In
Table 6.3, we provide an overview of the programs: We selected programs of dif-
ferent sizes (2 500 to 13 million lines of code, 5 to 100 features), implemented with
different languages (C, C++, and Java) and different variability mechanisms (condi-
tional compilation and feature-oriented programming), from different domains (e.g.,
operating systems, database engines, end-user applications), and from different de-
velopers (both academic and industrial). Although very different programs are used,
the main technical commonality is that we can automatically generate and com-
pile variants for a given feature selection. To set the error rate into perspective for
footprint, we provide also the highest and lowest measured value in Table 6.3.

Features are either explicitly given by an already existing feature model (i.e.,
LinkedList, Prevaylor, ZipMe, PKJab, SensorNetwork, Violet) or derived from doc-
umentation. For SQLite and Berkeley, we analyze the documentation to identify
features. The document specifies preprocessor flags to turn functions on and off. We
extracted this information and created a corresponding feature model. The configu-
ration is given as preprocessor flags to generate the according program.

From Linux, due to the huge configuration space, we considered only a subset
of 25 features, selected as representative by a domain expert. The domain ex-
pert selected the following features, which cover both modular features, such as
drivers, as well as crosscutting features : DEBUG BUGVERBOSE, INLINE SPIN LOCK,

OPTIMIZE INLINING, CC OPTIMIZE FOR SIZE, MODULE UNLOAD, FRAME POINTER, MOD-

ULE SRCVERSION, DNOTIFY, INOTIFY USER, FIRMWARE IN KERNEL, SND VERBOSE PRO-

CFS, POWER SUPPLY DEBUG, PCNET32, NF CONNTRACK IPV6, NLS ISO8859 15, NO HZ, NET-

POLL CONTROLLER, PRINTK TIME, SATA NV, SC520 WDT, KPROBES SANITY TEST, I2C DE-

BUG ALGO, CHR DEV SCH. Among the 25 features were some features that we knew
would change the footprint (as the evaluated non-functional property) of other fea-
tures (e.g., OPTIMIZE INLINING and CC OTPIMIZE FOR SIZE both apply global opti-
mizations).
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Size in KB
Program Domain Lang. Techn. Feat. Variants LOC Min∗ Max∗

LinkedList Component Java Comp. 18 492 2 595 4.4 10.5
Prevayler Database Java CC 5 24 4 030 87 169
ZipMe Compression Java Comp. 8 104 4 874 79 99
PKJab Messenger Java Comp. 11 72 5 016 39 161
SensorNetwork Simulation C++ Comp. 26 3 240 7 303 19 875
Violet UML editor Java Comp. 100 1020 19 379 6.3 185
Berkeley DB Database C CC 8 256 209 682 1 800 2 740
SQLite Database C CC 85 1023 305 191 166 200
Linux kernel+ OS C CC 25 3·1024 13 005 842 11 245 13 829

∗ Minimal and maximal size of highly variable programs may not be exact, because we cannot

measure all variants. We list the smallest and largest measured value.
+ We use only a subset of 25 features of the Linux kernel selected by a domain expert. CC: condi-

tional compilation, Comp.: composition approach.

Table 6.3.: Overview of the customizable programs used in the evaluation of foot-
print prediction.

Experimental Procedure. We compiled all C-based programs with GCC and with
-O2 optimization, which performs all compiler optimizations that do not involve a
size-speed trade-off. Since footprint measurements are not influenced by the used
hardware and we kept the same compiler for all measurements, we could parallelize
the footprint measurements on three systems.

Deviations occurred in the experiment for SQLite. It was not possible to measure
all variants that are valid with respect to the feature model. In these cases, we run
into compilation errors, because of undocumented dependencies between features
(compilation flags). However, we could perform all measurements that were necessary
to compute all feature terms.

Results. In Table 6.4, we summarize the results of our footprint measurements and
predictions for all customizable programs. We observe that the relative number of
measurements is low. Especially for customizable programs with a high variability,
we need to measure below 1 % of all configurations to achieve an error rate below
1 % on average without Violet. Hence, referring to our research question Q1, our
predictions are usually very accurate; a mean error rate of 0.6 % for all programs
without Violet and 21.6 % including Violet. We visualize the distribution of the error
rates in Figure 6.10 using a violin plot. It shows that the predictions are not scattered
but are mostly around a 0–1 % error rate. Berkeley DB and the SensorNetwork
simulation exhibit a higher error rate. These are caused by feature interactions at
the level of source code. We explain feature interactions in the next chapter.
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Measurements Error Rate in %

Program Absolute Relative in % Mean Std. Dev. Median

LinkedList 11 2 0.9 0.9 0.51
Prevayler 5 21 0.1 0.1 0.03
ZipMe 8 8 0.6 0.6 0.40
PKJab 8 11 0 0 0.00
SensorNetwork 26 1 0.5 1 0.23
Violet 80 0 186.7 34.4 209.27
Berkeley DB 9 4 1.9 2.2 0.80
SQLite 85 0 0 0 0.03
Linux kernel 25 0 0.4 0.3 0.20

Table 6.4.: Overview of mean prediction error rate and measurement effort for foot-
print. Relative measurement effort compared to all valid configurations.
Std. Dev.: Standard deviation.
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Figure 6.10.: Error rates in percent of all customizable programs for footprint. SNW:
SensorNetwork.

An interesting case in the analysis represents Violet. The mean error rate is
186.7 %. We show the corresponding violin plot in Figure 6.11. In our experiments,
there is no better prediction than with an error rate of 90 % and no worse predic-
tion that with a error rate of 220 %. Although the prediction error rate seems to
be irrational, the reason why we obtain these error rates is simple. We determine
the influence of a feature only for a specific base configuration. This delta is the
difference in footprint between a variant without the current feature and a variant
with this feature. In the case of Violet, we have an n-to-m mapping between features
and implementation units. That is, when measuring footprint of a single feature, we
measure the footprint of multiple implementation units that are also used by other
features. When summing the influences of multiple features to predict a variant’s
footprint, we sum up the footprint of the same implementation units multiple times.
This leads to a large error rate. With this in mind, we can explain why the prediction
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error rate has its maximum at around 220 % error rate. This error rate is where the
largest number of features shares the same implementation units. We do not obtain
an error rate of 0 %, because we selected 100 sample configurations, in which we
randomly selected more features than the minimal number of features leading to
always an overestimation of the footprint.
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Figure 6.11.: Error-rate distribution of predicting Violet’s footprint.

The key results are as follows:

• Predictions with an accuracy of above 99 %, on average, are possible with only
a linear number of measurements.
• Prediction accuracy is independent of programming languages, implementation

techniques, and domain.
• Complex mappings between feature selection and implementation artifacts

cause feature interactions that considerably increase error rates.

6.2.3. Main-Memory Consumption

To increase external validity of feature-wise measurement and to evaluate whether
the non-functional property has an influence on prediction accuracy, we performed a
second experiment. We selected main-memory consumption for the following reasons:

• Main-memory consumption is a property that emerges at runtime. That is,
it is not a static property, such as footprint, but a dynamic one, which can
substantially vary depending on which features and how many features are
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selected. We expect that predicting main-memory consumption is a challenging
task, because we expect many feature interactions.

• Measurement bias for main-memory consumption occurs, but is usually very
low. We wanted to explore how accurate predictions are when measurement
bias occurs. That is, we evaluate if our approach is still feasible for non-
functional properties in which measurements contain noise and may be subject
to confounding influences.

• Finally, we chose main-memory consumption, because we are able to automate
the measurement procedure for main-memory consumption performing a large
number of measurements in a reasonable time.

Experimental Material. To evaluate prediction of main-memory consumption, we
initially selected seven existing customizable programs (see Table 6.5). We use fresh
programs, because we measure a different characteristic compared to footprint, which
requires different measurement techniques and, partly, different customization tech-
niques. For example, footprint is not interesting for programs that are customized
via program parameters, because their sizes remain unchanged. Instead, we require
a benchmark to measure the runtime behavior, which again is hard to define for a
complex system (e.g., a single benchmark to measure the full Linux kernel).

Since benchmarks are often used and important in the database domain, we se-
lected Berkeley DB and SQLite. These systems represent customizable programs, for
which variants are generated using conditional compilation. Note that feature mod-
els of both programs differ to the models we used for footprint prediction, because we
included features that are likely to change memory consumption (e.g., different page
sizes) and excluded features that are not executed by the benchmark we used. As
additional programs, we selected Curl, LLVM, x264, RAR, and Wget; programs that
users can customize via program parameters. We selected these programs to demon-
strate that our approach can be applied to black-box programs, for which either no
source code or no domain knowledge is available. We deliberately include many dif-
ferent domains, such as video encryption, compilers, and data transfer. Furthermore,
these programs are well documented, such that we could easily create feature models
for them. Finally, all sample systems are industrial strength real-world applications.

Experimental Procedure. Compared to footprint, we face two additional chal-
lenges. First, when measuring a non-functional property at run-time, we have to
execute a benchmark application, which we discuss shortly. Second, we face mea-
surement bias; that is, measuring the same variant several times may result in dif-
ferent values. To overcome measurement bias, we measure each variant three to ten
times depending on the program. We use this number of repetitions, because of
two reasons. First, for all customizable programs (with the exception of RAR), the
standard deviation of measuring a single variant is less than 1 % of the arithmetic
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Program Domain Lang. Techn. Feat. Variants LOC

Curl Data transfer C CP 13 768 52 341
LLVM Compiler C CP 11 1 024 47 549
x264 Video Encoding C CP 16 1 152 45 743
Wget Data transfer C CP 16 5 120 34 880
Berkeley DB Database C CC 18 2 560 209 682
SQLite Database C CC 39 3 932 160 305 191
RAR Compression C++ CP 38 500 000 N/A

Table 6.5.: Overview of customizable programs used to predict main-memory con-
sumption. CC:= conditional compilation; CP: command-line parameter.

mean, which is sufficient for our studies. Second, increasing the number of measure-
ments per variant would substantially increase the time needed for this evaluation.
Thus, we decided to include more programs in the evaluation and reduce the number
of repetitions per measurement instead of reducing the standard deviation to, say
0.1 %, and measuring a single variant hundred times. From these measurements, we
compute the arithmetic mean and use it for our subsequent computations.

We use standard benchmarks (if available) for all customizable programs, because
self-developed benchmarks would bias the outcome of the measurements and repre-
sent a possible threat to construct validity, which we want to minimize. Furthermore,
standard benchmarks are created to simulate a common workload that is used in
practice, which is our intended goal. To measure the maximum required memory
when performing a benchmark, we use the Linux standard program time. That is,
we execute time and pass the program to be measured as an argument. Time out-
puts the maximum used memory when the execution of the passed program has
ended.

We used the following benchmarks:

• We use Oracle’s standard benchmark for Berkeley DB. Similarly, we execute
a benchmark script provided by SQLite to run a typical workload.
• LLVM is a modular compiler infrastructure. For our benchmarks, we use the

opt-tool that provides different compile-time optimizations. We measure the
main-memory LLVM needs to compile its standard test suite in several con-
figurations (e.g., inline functions and combine redundant instructions).
• x264 is a command-line tool to encode video streams into H.264 and MPEG-4

AVC format. We measure the main memory needed to encode the trailer of
the cartoon Sintel, often used as a standard benchmark (735 MB) for video-
encoding projects.
• Curl and Wget are applications to transfer data over the Internet. As we found

no standard benchmark, we download Apache’s user manual which contains
static HTML pages, CSS files and pictures. Due to the manual’s folder struc-

93



6. Feature-Wise Measurement

Measurements Error Rate in %

Program Absolute Relative in % Mean Std. Dev. Median

Curl 11 1 0.4 0.6 0.16
LLVM 11 1 28.8 26.3 14.18
x264 12 1 27.9 47.8 0.03
Wget 14 0 18.6 24.9 9.25
Berkeley DB 15 1 1.4 1.3 1.03
SQLite 26 0 4.4 3.8 3.40

Table 6.6.: Overview of mean prediction error rate and measurement effort for main-
memory consumption. Relative measurement effort to all valid configu-
rations. Std. Dev.: Standard deviation.

ture, we can use several features of both programs (e.g., recursive download)
to measure significant effects on memory consumption.

We measured main-memory consumption with the following systems, but mea-
sure all individual configurations of a customizable program on the same system:
AMD Athlon64 2.2GHz, 2GB RAM, Debian GNU/Linux 7; AMD Athlon64 Dual Core

@2.0GHz, 2GB RAM, Debian GNU/Linux 7; Intel Core2 Quad @2.4GHz, 8GB RAM, De-

bian GNU/Linux 7.

Deviations. Early during our measurements of RAR, we identified huge measure-
ment biases. Measurements of the same configuration deviated by 50 to 100 percent.
This behavior was present with the Windows and Linux version of RAR. A possible
reason may be that the algorithm of RAR is not deterministic. As a result, we were
unable to approximate the influence of a single feature and thus discarded this pro-
gram. For all other customizable programs, the measurement bias is less than one
percent.

Results. We summarize the results of the main-memory experiment in Table 6.6. In
contrast to footprint, we observe higher error rates, which we partially expected due
to the dynamic nature of main-memory consumption. We achieve for the programs
Curl, Berkeley DB, and SQLite a low mean error rate of 3 % on average. Considering
the measurement bias of 1 %, the true error rate is 2 % on average, which is surpris-
ingly good considering the low number of measurements (below 1 % of all variants).
The picture changes for the programs LLVM, x264, and Wget. Here, we observe a
mean error rate of 25 %. To answer our research question Q2, the mean error rate
of the main-memory experiment over all sample programs is 13.6 %.
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We show the error-rate distributions of predicting main-memory consumption in
Figure 6.12. Considering LLVM, x264, and Wget, we note that most of our predic-
tions have an error rate of below 19 % percent, but there are many variants which
exhibit a high error rate. We recognized a pattern: If certain feature combinations
are selected, the prediction becomes inaccurate (because of interactions). This indi-
cates the presence of feature interactions. That is, there are combinations of features
that cause a higher usage of main memory than when used in isolation. Hence, fea-
tures of these programs tend to interact on the level of main-memory consumption,
whereas features of programs Curl, Berkeley DB, and SQLite seems to be cohesive
in their memory usage. As a result of this analysis, we observe that feature-wise
measurement without considering feature interactions can be accurate even for non-
functional properties that emerge at run-time if programs have cohesive features.
Cohesive means in this case that features implement a self-contained functionality
that does not interact with other functions of a program. If this is not the case, pre-
dictions become inaccurate and ignoring feature interactions to save measurements
does not pay off anymore.
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Figure 6.12.: Error rates in percent of all customizable programs for main-memory
consumption.

The key results are as follows:

• The mean prediction error rate is 13.6 %, which is significantly worse than for
footprint.
• Prediction accuracy heavily differs depending on the non-functional property

(i.e., static property vs. runtime property).
• Unlike footprint, prediction error rates heavily differ with different programs.

6.2.4. Performance

We conducted a third experiment to validate our findings of the second experiment.
That is, we want to identify whether prediction error rates are worse for run-time
(or dynamic) non-functional properties compared to the static property footprint.

95



6. Feature-Wise Measurement

Furthermore, we further extend external validity by selecting a property that is
relevant in research and practice. We selected performance for the following reasons:

• Performance is one of the most important non-functional properties of pro-
grams. For example, performance is critical for business processes, user expe-
rience, and real-time requirements. Hence, supporting the accurate prediction
of performance underlines the practicability of our approach for real-world
scenarios.

• Performance is a challenging property for prediction for two reasons. First,
it depends on many factors (e.g., environmental influences, background ac-
tivity, workloads), such that a prediction may be inaccurate due to unknown
influences. Second, performance of a program emerges from the interplay of
a program’s functions. Thus, we expect many relevant feature interactions,
which may make our feature-wise measurement inaccurate when we approxi-
mate only the feature terms.

• Similarly to the other properties, we are able to automate the measurement
procedure for performance, such that we can execute a large number of mea-
surements in a reasonable time.

Experimental Material. We selected six existing industrial-strength real-world pro-
grams (i.e., three customizable programs and three software product lines) with dif-
ferent characteristics to cover a broad spectrum of scenarios (see Table 6.2.4). From
these six programs, we kept Berkeley DB, SQLite, LLVM, and x264 from the previ-
ous experiment to ease comparison of results. We additionally selected the Apache
web server and Berkeley DB Java version to have programs for which performance
is relevant and predictions have a practical impact.

The programs are of different sizes (45 000 to 300 000 lines of code, 192 to millions
of configurations), implemented in different languages (C, C++, and Java), and con-
figurable with varying mechanisms (such as conditional compilation, configuration
files, and command-line options).

The programs we selected have usually under 3 000 configurations. The reason is
that we can actually measure all configurations of these programs in a reasonable
time. Hence, even though it required over 60 days of measurement with multiple
computers, we could actually perform the brute-force approach and determine ac-
curacy of our prediction over all configurations.

Experimental Procedure. We automated the process of generating programs ac-
cording to specific configurations and running the benchmark. Since Berkeley DB
(C and Java) and SQLite use compile-time configuration, we compiled a new variant
for each configuration that includes only the relevant features. For Apache, LLVM,
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Program Domain Lang. LOC Features Variants

Berkeley DB CE Database C 219,811 18 2560
Berkeley DB JE Database Java 42,596 32 400
Apache Web Server C 230,277 9 192
SQLite Database C 312,625 39 3,932,160
LLVM Compiler C++ 47,549 11 1024
x264 Video Enc. C 45,743 16 1152

Table 6.7.: Overview of sample programs used in the evaluation of performance.

and x264, we mapped the configuration to command-line parameters. We used five
standard desktop computers for the measurements.8

We repeated each measurement between 5 to 20 times depending on the measure-
ment bias. It is known that measurement bias can cause false interpretations and
are difficult to control [Mytkowicz et al., 2009], especially for performance [Georges
et al., 2007]. The width of the 95 % confidence interval is smaller than 10 % of the
according means. We use the arithmetic mean of all measurements of a single con-
figuration C as Π(C).

We use standard benchmarks, either delivered by the vendor or used in the com-
munity of the respective application. We did not develop our own benchmark to avoid
bias and uncommon performance behavior caused by flaws in benchmark designs.

Since performance predictions are especially important in the database domain, we
list three customizable database systems: Berkeley DB’s Java and C version (which
differ significantly in their implementation and provided functionality) and SQLite.
For each program, we use the benchmark delivered by the vendor. For example, we
use Oracle’s standard benchmark to measure the performance of Berkeley DB. The
workload produced by the benchmarks is a typical sequence of database operations.

Furthermore, we selected the Apache Web server to measure its performance in
different configurations. We used the tools autobench and httperf to produce the
following workload: For each server configuration, we send 810 requests per second to
a static HTML page (2 KB) provided by the server. After 60 seconds, we increase the
request rate by 30 until 2700 requests per seconds are reached. After this process, we
analyzed at which request rate the Web server could no longer respond or produced
connection errors.

LLVM is a modular compiler infrastructure, which we described previously. For our
benchmarks, we use the opt-tool that provides different compile-time optimizations.

8Intel Core 2 Quad CPU 2.66 GHZ, 4GB RAM, Vista 64Bit; AMD Athlon64 2.2GHz, 2GB RAM,
Debian GNU/Linux 7; AMD Athlon64 Dual Core @2.0GHz, 2GB RAM, Debian GNU/Linux 7;
Intel Core2 Quad @2.4GHz, 8GB RAM, Debian GNU/Linux 7. Each program was benchmarked
on an individual systems.
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Measurements Error Rate in %

Program Absolute Relative in % Mean Std. Dev. Median

Berkeley DB CE 15 0.6 44.1 42.3 49.97
Berkeley DB JE 10 3 17.7 19.6 11.27
Apache 9 4.7 14.9 24.8 5.88
SQLite 26 0 7.8 9.2 6.90
LLVM 11 1.1 7.8 9 7.49
x264 12 1 29.6 22 29.23

Table 6.8.: Overview of mean prediction error rate and measurement effort for per-
formance. Relative measurement effort compared to all valid configura-
tions. Std. Dev.: Standard deviation.

We measure the time LLVM needs to compile its standard test suite (i.e., with
different optimizations, such as inline functions and combine redundant instructions
enabled). In this case, the workload is the program code from the LLVM test suite
that has to be compiled with the enabled optimizations.

For x264, we measured the time needed to encode the video trailer Sintel (735
MB).

Results. In Table 6.8, we show the results of our performance predictions. We
observe higher error rates compared to the other experiments. The mean error rate
over all programs is 20.3 % (Q3). We observed larger measurement bias compared
to the main-memory measurement. For example, we observed a difference of 7 %
when measuring SQLite’s performance of a single variant multiple times. Hence,
the prediction for SQLite is quite accurate, because they are nearly in the range
of a measurement bias. Nevertheless, our results show that when many interactions
occur, feature-wise measurement may become too inaccurate.

The violin plot in Figure 6.13 shows that even for Apache, most of the predictions
have an error rate of less than 15 %. Considering the measurement bias of 5 % on
average for all customizable programs, most of the predictions have a true error
rate of below 10 %, which is suprisingly good for a linear number of measurements.
However, Berkeley DB’s C and Java version and x264 show that a large number of
predictions are evenly distributed with error rates from 0 to 90 %. Here, we observe
the true limitations of feature-wise measurement when ignoring feature interactions.

The key results are as follows:

• The mean prediction error rate is 20 %, which is even worse than for main-
memory consumption.
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Figure 6.13.: Error rates in percent of all customizable programs for performance.

• Prediction accuracy differs between main-memory consumption and perfor-
mance for a single program (e.g., Berkeley DB C).
• We confirmed that prediction error rates heavily differ among different pro-

grams.

Next, we describe threats to validity and discuss our evaluation afterwards.

6.2.5. Discussion: The Influence of Feature Interactions

In our evaluation, we answered the research question whether feature-wise measure-
ment is feasible to predict different non-functional properties of highly customizable
programs without considering feature interactions. Regarding measurement effort,
we can clearly state that we always need only a linear number of measurements.
Hence, even for programs, such as SQLite, which allows us to generate up to 285

variants, the approach scales. Unfortunately, the picture is not that clear when it
comes to prediction accuracy. The observed error rates substantially differ between
non-functional properties and sample programs. Our hypothesis is that feature in-
teractions cause the observed error rates. We discuss their influence in the following.

Footprint. We achieve the best accuracy for footprint. With one exception, we
reach a mean error rate for all sample programs of 0.6 %. That is, a prediction accu-
racy of 99.4 % for all variants of eight different programs. This is an amazingly good
result, considering the large diversity of used programs, implementation techniques,
and programming languages.

Let us have a closer look at Berkeley DB, Violet, and the Linux kernel, because
their results show interesting points for further investigations. Berkeley DB is a
customizable database that makes exhaustive use of nested #ifdefs. This means,
it is often the case that a certain feature combination requires additional code,
which increases footprint for this feature combination. Hence, our predictions become
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inaccurate. For Linux, we expected heavy inaccuracies regarding the 100 randomly
generated variants, because all Linux features affect the size of other features (as
selected by a domain expert). We were surprised that we still achieved a quite
precise prediction, even without considering feature interactions, partially because
the features had a weaker effect than expected.

For Violet, we observed the largest error rates (above 180 %). Hence, we analyzed
this program and identified that there is a complex mapping between (some) fea-
tures and implementation units. That is, an individual feature may map to multiple
implementation units (i.e., feature a maps to units τ(G) · τ(H) · τ(J)) and a single
implementation unit may be used by multiple features (i.e., features a, b, and c map
to τ(G)). Hence, when measuring such a feature, the corresponding variant contains
several implementation units that are also present when measuring another feature’s
variant. Therefore, predicting footprint of a variant that includes multiple features
with an overlapping set of implementation units is inaccurate, because we consider
the footprint of the implementation units multiple times.

We believe that programs with a complex mapping are the exception rather than
the rule, because in many customization techniques, such as command-line param-
eter, a feature maps to a single variable (which in turn changes the behavior of
the program) and not to multiple variables. Also for compile-time customization,
mapping from features to preprocessor variables (i.e.,#define statements) is mostly
one-to-one, as it is usually the case for programs implemented with feature-oriented
and aspect-oriented programming. Considering a component-based program, we may
have an n-to-m mapping, but this mapping is often not distributed over many com-
ponents. That is, n or m is small, which was, however, not the case for Violet.
Nevertheless, to improve predictions also in the presence of complex mappings, we
have to find means to incorporate the mapping in the measurement and prediction
process.

Main-Memory Consumption. In our second experiment, we observe higher error
rates, on average, for all programs. For footprint, a feature interaction occurs that
degrades our prediction when in a specific feature combination additional code is
included or code is reused by multiple features. Since these cases can be easily de-
tected by static code analyses, they do not cause a serious problem. This is different
when considering main-memory consumption or performance. Here, we often have
no concrete code fragment that causes a feature interaction. Instead, features inter-
act implicitly by using the same resource: main memory. Here, we may use more
main memory in a certain feature combination, which is, however, not explicitly en-
coded. For example, there is no nested #ifdef statement that consumes additional
main memory. Hence, we argue that interactions occur in a greater number. Our
assumptions is also backed up by the increased prediction error rates compared to
footprint.
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Performance. In our performance experiment, we observe similar results as for
main-memory consumption. The error rate is higher for more programs compared to
our footprint evaluation. Hence, feature interactions seem to exist in larger numbers
or are more significant than for footprint. From this insight, we conclude that without
considering feature interactions in measurement and prediction, we cannot achieve
accurate predictions for many programs. Furthermore, a common user cannot rely
on domain knowledge when identifying feature interactions, because programs, such
as Apache or x264, are black boxes for them. Investigating the over 230 000 lines of
code for possible feature interaction in a reasonable time is infeasible for a common
user and a challenge even for a developer. Also, asking a developer may work in a
single case, but is likely to fail when all customers start asking for possible feature
interactions in their specific application scenario. In other cases, we do not have any
implementation artifacts available, nor do we know anything about the internals
to guess which features may interact. Hence, we have to develop means to identify
feature interactions for black-box programs.

Comparison of Non-Functional Properties. We want to discuss the influence of
different non-functional properties on prediction accuracy in more detail. First, let us
have a look on Figure 6.14. We compare average prediction error rates for the three
non-functional properties. Clearly, we see that footprint predictions are significantly
more accurate than predictions of main-memory consumption and performance. One
reason is that footprint is not subject to measurement bias, but the other properties.
This can explain that the approximation of the influence of single features may
already be inaccurate and therefore, the prediction. However, this has only a small
effect.
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Figure 6.14.: Violin plots of average prediction error rates of the three non-functional
properties.
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We have the hypothesis that the main difference between these properties is due to
the greater number of causes that potentially yield feature interactions. For footprint,
a feature interaction exists when code is reused or additionally introduced in a
certain feature combination. Hence, it requires a physical artifact to emerge. This
is different for performance and main-memory consumption. Here, environmental
influences, implicitly shared hardware resources (e.g., CPU), and the source code
can cause feature interactions. These large number of possible causes may explain
the higher average error rates and may also be a reason why different programs
exhibit such large differences for the same property. For example, we predicted all
variants of Berkeley DB C version for main-memory consumption with an average
error rate of 1.4 %, whereas we predicted with the same program an average error
rate of 44.1 % for performance. Since the source code and features remain the same,
other factors, such as resource usage, must be a cause of these inaccuracies, which
cannot occur for footprint.

6.2.6. Extended Problem Statement

We use a constructive research approach. Hence, we extend our initial problem state-
ment (see Section 3.1.6) with insights we gained during our evaluations. We found
that we satisfied our initial requirements only partly. Although we determined the
influence of individual features in a black-box fashion, our predictions are not accu-
rate in all cases. We identified that feature interactions have a crucial influence on
non-functional properties. Hence, a holistic measurement and prediction approach
has to detect feature interactions and quantify their impact (R4). However, detect-
ing feature interactions usually increases measurement effort, because we need to
measure more variants. Thus, we require a detection approach that is both: efficient
in terms of number of measurements and provides accurate predictions. We extend
our initial problem statement with requirement R4:

• (R1) Accurate predictions of non-functional properties.

• (R2) Black-box approach.

• (R3) Determining the influence of individual features on non-functional prop-
erties.

• (R4) Efficient detection of feature interactions.

Based on these requirements, we extend feature-wise measurement to incorporate
detection and quantification of feature interactions, which we present in the next
chapter. Next, we discuss threats to validity of our evaluation.
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6.2.7. Threats to Validity

Most of the presented threats to validity apply to all our evaluations. If necessary,
we notify when there are additional threats in other evaluations.

Construct Validity. Benchmarks influence the outcome of measurements. By choos-
ing inappropriate benchmarks, we may improve or degrade prediction accuracy. We
use standard benchmarks delivered by vendors or used in the respective commu-
nity if possible. These benchmarks are designed by domain experts to represent a
common program workload. Hence, we perform our predictions according to the ex-
pected workload. In case of Wget, we could not find any standardized benchmark,
which leaves room for a validity threat. We chose to download the Apache manual
as a benchmark, because there is a large spectrum of common use cases (e.g., large
files, many small files, nested folders, and pictures).

Conclusion Validity. The reliability of measures strongly affects the conclusion
validity of experiments. In our first experiment, we use footprint, defined as binary
size of the generated program. For this measure, we can accurately determine the
true size of programs using OS functions either by aggregating the size of all class
files of a Java program or by determining the size of the executable in a case of a
C/C++ program. Regarding main-memory consumption, we use the Linux Gnu tool
time and depend therefore on its reliability. It measures the maximum resident set
size of the process during its lifetime in KB. Since we measure only peak memory and
not the average consumption over time, our measurements are not affected by page
swapping of the OS or other influential factors that may be able to affect validity
of measurement. Furthermore, we repeated measurements and identified that the
differences of several runs with the same configurations are below one percent.

Internal Validity. For customizable programs with many features and for the main-
memory and performance evaluation, we only sampled 100 variants to compare pre-
diction and measured property, because we cannot possibly generate and measure
all products (exponential with the number of features) in reasonable time – this is
exactly the motivation for our approach. We are aware of our evaluation leaving
room for outliers, but we believe that 100 samples provide a reasonable number.

When measuring main-memory consumption and performance, we have to deal
with measurement bias. We repeated each measurement three to ten times and use
the arithmetic mean of these measurements to compute a feature’ influence and for
our evaluation. For performance, we similarly repeat measurements, such that the
width of the 95 % confidence interval is smaller than 10 % of the according means.
With the exception of RAR, we observed only small deviations when measuring
the same variant multiple times for main-memory consumption (below 1 %) and
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a maximum bias of 7 % for performance, which indicates that the measurement
procedure is reliable. Also, we are aware that measurement bias can cause false
interpretations [Mytkowicz et al., 2009]. Since we aim at predicting performance for
a special workload, we do not have to vary benchmarks.

External Validity. Although we use a large variety of different customizable pro-
grams, we are aware of that the results of our evaluations are not automatically
transferable to all other customizable programs and all kinds of customization tech-
niques. We selected real-world customizable programs from different domains, having
different sizes, and using varying implementation techniques. Furthermore, different
compilers and workloads are used to evaluate prediction accuracy for a broad range
of application scenarios. Our used programs have feature models with a typical struc-
ture and number of constraints (according to the criteria defined by [Thüm et al.,
2009]). We did not evaluate customizable programs with an unusual, possibly de-
generated feature model, which might influence the computation of the variant set
(cf. Section 6.1.2). Thus, we cannot generalize our results to such programs.

Although we used three important non-functional properties with different char-
acteristics, we cannot yet judge our approach for properties that exhibit different
behaviors for the same workload within the same environment. That is, if the mea-
surement of the same variant yields different results, also the predicted variant can
have heavily changing values of a non-functional property. We do not address this
issue in this thesis and leave it for future work.

Finally, we cannot generalize our evaluation to non-functional properties other
than footprint, main-memory consumption, and performance. However, we argue
that footprint, main-memory consumption, and performance are subject to many
internal and external influences as many other non-functional properties do. Hence,
we expect that also other properties, such as energy consumption, are influenced by
the same factors and produce an equivalent behavior. Furthermore, these external
and internal influences have a crucial impact on the applicability of our approach,
which we could handle for these three properties. In this series of experiments, we
want to convey that the approach of approximating non-functional properties per
features (i.e., without taking feature interactions into account) is realistic at all.

6.3. Related Work

Only a few approaches apply measurements of non-functional properties to customiz-
able programs (especially software product lines). Dave Zubrow and Gary Chastek
[2003] proposed measures that evaluate the development effort for a software prod-
uct line. Lopez-Herrejon and Apel [2007] express the complexity of a product line
in terms of variation points with a dedicated metric. An approach close to our work
is the measurement of the binary size of aspect-oriented programs [Hunleth and
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Cytron, 2002]. The authors compiled aspects in distinct files and measured the bi-
nary size. The footprint of different variants can then be computed. Another related
approach for optimizing non-functional properties was developed in the COMQUAD
project [Aigner et al., 2003]. The project focuses on techniques for tracing and adapt-
ing non-functional properties in component-based systems. Particular, alternative
implementations can be selected dynamically and are weaved as non-functional as-
pects in the component [Göbel et al., 2004]. The approach requires an own compo-
nent model, which is an extension of Enterprise JavaBeans and CORBA Compo-
nents and relies on aspect-oriented programming as implementation technique. In
contrast to these approaches, we consider also other non-functional properties and
address the exponential number of variants of customizable programs. Moreover, we
use a black-box approach. That is, we are independent of how a program is imple-
mented and the customization is realized. Hence, we are not restricted to aspects or
components.

Sincero et al. [2007, 2010] propose to estimate a variant’s non-functional properties
based on a knowledge base consisting of measurements of already produced variants.
Their Feedback approach aims to find a covariance between feature selection and
measurement. This way, it can give information about how a feature influences a
non-functional property during configuration. In contrast to our approach, they do
not determine to what extent a feature affects non-functional properties, but present
a qualitative statement, such as feature a improves performance. When it comes
to program derivation, they do not present an expected value for a variant’s non-
functional properties, as we do, but show with a slider whether a feature selection
improves a property.

Abdelaziz et al. [2011] argue that most measurement approaches for the prediction
of non-functional properties lack generality, as they are applicable only to specific
application scenarios or infrastructures [Chen et al., 2005, Yacoub, 2002]. In con-
trast, our work can be used for a broad range of applications of different domains,
implementation techniques, etc.

Profiling tools, such as GNU gprof 9 and TPTP 10, usually intercept the execution
of a target application and monitor its execution. They can identify performance
bottlenecks or other performance-relevant execution states. However, profiling tools
have the drawback that only a single configuration can be profiled at a time. Results
of such a profiling run can usually not be transferred to other configurations to gain
information about how different configurations affect the performance. Hence, they
are commonly combined with prediction models.

Chen et al. [2005] use a combined benchmarking and profiling approach to predict
the performance of component-based applications. Based on a benchmark and a
Java profiling tool, a performance prediction model is constructed for application

9http://www.gnu.org/software/binutils
10http://www.eclipse.org/tptp
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server components. In contrast, we correlate the measurements to the configuration,
and measure only those configurations from which we expect to detect performance
feature interactions.

Especially in the database domain, performance benchmarks and predictions are
frequently used. For example, Agrawal et al. [2004] propose an automated database
tuning advisor that is capable of computing the optimal database schema for achiev-
ing the best performance (e.g. which indexes or materialized views should be cre-
ated). Similarly, the DB2 Design Advisor estimates for a given workload the best
database design [Zilio et al., 2004], which can be compared to a configuration in
our case. Both approaches perform measurements or evaluate query plans via their
internal query optimizers to predict the performance of a certain design. Different
features, such as indexes, materialized views, and partitioning, influence each other,
which is similar to the non-functional feature interactions we are looking for in the
next chapter. Such approaches commonly use cost models and are limited to a sin-
gle database engine and heavily rely on domain knowledge. Furthermore, we do not
need any domain knowledge about the database internals for our predictions.

6.4. Summary

We proposed feature-wise measurement of customizable programs to quantify the
influence of individual features on non-functional properties. We have shown that by
measuring two variants that differ only in a single feature, we can interpret the result
of both measurements and the influence of the differing feature on a non-functional
property. We demonstrated the computation of these influences as feature terms
in the prediction model for the common relationships that are present in feature
models. We presented our algorithm to compute a set of configurations that have to
be measured. We explained that computing the influence of features not individually,
but all at once with a set of equations, minimizes errors caused by measurement bias
and feature interactions.

We evaluated our approach with three experiments using the non-functional prop-
erties footprint, main-memory consumption, and performance. We selected customiz-
able programs from different domains (e.g., databases, operating systems) and ori-
gins (i.e., academic and real-word), implemented with different programming lan-
guages, and customized with varying techniques (e.g., compilation and command-line
parameters). We demonstrated that feature-wise measurement achieves a mean pre-
diction error rate of 0.6 % for all programs without Violet for footprint. However, we
observed high error rates for main-memory consumption (13.6 %, on average, rang-
ing from 0.4 % error rate for Curl to 28.8 % for LLVM) and performance (20.3 %,
on average, ranging from 7.8 % error rate for SQLite to 44.1 % for Berkeley DB C
version). We identified that feature interactions are a main cause for these error
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rates and extended our problem statement with the requirement to detect feature
interactions.

We made the following observations in our evaluation:

• Prediction accuracy depends on the non-functional property. We observed low
error rates for footprint (below 5 %) and high error rates for main-memory
consumption (below 14 %) and performance (below 21 %). We identified feature
interactions as a cause for these inaccuracies, which occur in different quantity
for the different properties.
• Different programming languages and customization techniques have no effect

on the accuracy of predictions.
• Feature-wise measurement performs surprisingly good for many programs con-

sidering the measurement of only a linear number of variants.

Clearly, the evaluation has shown that we have to determine also the feature-
interaction terms in our prediction model. Hence, our next step is to develop means to
quantify the influence of feature interactions on non-functional properties to improve
prediction accuracy.
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This chapter shares material with the following papers:

• ”Scalable Prediction of Non-Functional Properties in Software Product Lines.” in
SPLC’11 [Siegmund et al., 2011] and

• ”Scalable Prediction of Non-Functional Properties in Software Product Lines: Footprint and
Memory Consumption.” in IST’12 [Siegmund et al., 2012b]

We introduce feature interactions with respect to non-functional properties. That
is, we describe with several examples what feature interactions at the level of non-
functional properties are, give possible causes for feature interactions, and discuss
different types of interactions. Based on this knowledge, we propose an extension
to feature-wise measurement to incorporate feature interactions. We propose two
feature-interaction-detection approaches that tackle some of the requirements given
in the previous section and evaluate their accuracy and measurement effort. Based
on this evaluation, we make several observations that lead to a further analysis of
the evaluation results. In this analysis, we gain additional insights in the nature
of feature interactions, such as patterns for the distribution of interactions among
features. Based on these insights, we derive heuristics for the detection of feature
interactions, which we use in an automated detection approach presented in the next
chapter.

7.1. Introducing Feature Interactions

A common definition of feature interaction is the following [Calder et al., 2003b,
Nhlabatsi et al., 2008]:

Two features interact if their simultaneous presence in a configuration
leads to an unexpected behavior, whereas their individual presences do
not.

This definition raises two questions. First, we have to clarify what an unexpected
behavior is. Second, we have to discuss when features interact.

To understand what an unexpected behavior is, we have to clarify first that there
are different types (or levels) of feature interactions. That is, depending on our scope
and context, a feature interaction may be a completely different thing. For exam-
ple, in the context of non-functional properties, a feature interaction occurs when
non-functional properties of a variant (perhaps) unexpectedly change for a certain
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feature combination (e.g., performance drops significantly only when selecting two
specific features in combination). This can be the case if two features are compu-
tation intensive, such that frequent context switches are necessary, which have a
significant effect on the performance of both features.

With a semantic context, the meaning or functionality of a program may change
for a certain feature combination. Remember our example from fire and flood control
in Section 4.1, in which the behavior of the system was unexpected when selecting
both sensors, the flood-control and the fire-alarm sensor.1 Hence, feature interactions
can mean different things. In this thesis, we concentrate on feature interactions at
the level of non-functional properties only.

The definition above states that two features interact only if there is an unex-
pected behavior. Although interaction terms are always present in Batory’s com-
position model, features are not required to interact. That is, an interaction term
does not necessarily have a corresponding implementation or, when considering non-
functional properties, does not always have a non-zero value. Equation 4.1 defines
that a customizable program with n features has 2n−1 feature-interaction terms. To
relate the above definition to Batory’s feature-composition model and, subsequently,
to our prediction model, we have to differentiate between relevant and non-relevant
feature interactions. Relevant feature interactions cause an unexpected behavior as
stated in the definition above. This means that a feature-interaction term of a rele-
vant feature interaction is not zero and has, thus, an observable effect in a variant.
This ultimately means that all non-relevant feature-interaction terms have a value
of zero and have no measurable effect on non-functional properties. Hence, when
speaking of feature interaction, we refer to relevant feature-interaction terms that
have a measurable effect on non-functional properties.

To clarify what a feature interaction at the level of non-functional properties is,
we give two concrete examples.

7.1.1. Example: Footprint Feature Interaction.

To illustrate a non-functional feature interaction, we show in Figure 7.1 the C++
implementation of a customizable linked list with two features: PrintList and Print-
Element. Features are implemented with conditional compilation. To determine the
feature terms, we measure each individual feature. That is, we measure the footprint
of the code in Lines 5 and 6 as well as Line 11 for feature PrintList. We would not
measure Lines 8 and 9, because these lines are compiled only for a variant that con-
tains both features PrintList and PrintElement. Hence, if we predict footprint of a
variant that includes both features, the prediction would be inaccurate. To predict

1During fire, the fire-alarm sensor turns water on, but then flood is detected by the flood-control
sensor, so water is turned off and the building burns down.
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1 class List {

2 int numberOfElements;

3 Element* head;

4 #ifdef PrintList

5 void printList () {

6 cout << numberOfElements;

7 #ifdef PrintElement

8 i f ( this ->head != NULL)

9 printElement( this ->head);
10 #endif
11 }

12 #endif
13 #ifdef PrintElement

14 void printElement(Element* node){

15 node ->print ();

16 i f (node ->hasNext ())
17 this ->printElement(node ->getNext ());}
18 #endif
19 };

List SPL

PrintList PrintElement

Figure 7.1.: C++ code of a customizable list with two features: PrintList and Print-
Element. We show the feature model in the upper right corner.

the footprint correctly, we have to measure the influence of the feature interaction
caused by the additional lines of code (Lines 8-9).

As another example, consider a set of features that use the same resource. A
shared resource may be an external library or otherwise shared code. We can easily
extend the list example to show the problems of shared resources. We may use an
external library to log the elements of a list instead of printing them. To this end,
we change the call to cout and method print (in Lines 6 and 15 of Figure 7.1) to
use the external logging library. The library has a considerably larger binary size
than the features itself. When approximating a feature’s non-functional properties,
the predominant part of the footprint would stem from the logging library. Because
we measure the size of the library for both features, we would predict the size of a
variant with both features unexpectedly incorrect. The reason is that both features
share the same library, which is included only once in the variant, but was measured
twice (once for each feature). So the interaction term in our prediction model for
these features would correct for the double count of the logging library.

7.1.2. Example: Performance Feature Interaction.

A relevant feature interaction for performance occurs when we observe a completely
different performance for a specific feature combination than expected. This can be
a degraded or improved performance. Consider the following example: A stream-
ing database has two optional features: Encryption and Compression. The first
step is to measure performance of both features in isolation. That is, we gener-
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ate for each feature two variants: one with and the other without that feature.
Assuming we executed a benchmark and measured the following response times
ΠPerf (Encryption) = 100 s and ΠPerf (Compression) = 80 s, we predict a variant
with both features:

ΠPerf (Encryption × Compression) = ΠPerf (Encryption) + ΠPerf (Compression) +

ΠPerf (Encryption#Compression)

= 100 s+ 80 s+ 0 s

= 180 s

However, when we actually measure performance of this variant, we obtain a value
of 140 s. The discrepancy between the predicted 180 s and the measured 140 s is
caused by a feature interaction. Feature Compression compresses the data in the
workload. Afterwards, the compressed data is encrypted. Since the compressed data
is significantly smaller, encryption does not take 100 s, but only 60 s. Hence, when we
want to predict the variant with both features correctly, we have to set the feature-
interaction term ΠPerf (Encryption#Compression) = −40 s in our prediction model.

In the footprint example, the interaction exists, because a developer defined addi-
tional code in a nested #ifdef, which is compiled only when both features, PrintList
and PrintElement, are selected in combination. That is, the feature interaction is
caused by the source code of the program. In the performance example, the in-
teraction is not visible directly in the source code, but by using and changing a
shared resource. Both features, Encryption and Compression, work on the same re-
source data stream. If one feature changes the data, it ultimately affects all other
features using the same data afterwards. We discuss causes of feature interactions
in Section 7.1.4 in detail.

7.1.3. Order of Interactions.

Feature interactions can occur with an arbitrary number of features. To denote the
number of interacting features of a feature interaction, we use the term ´´order”.
That is, the order of an interaction specifies the number of interacting features. When
two features interact, we observe a first-order feature interaction (also called pair-
wise interaction). If three features interact, we observe a second-order interaction
and so forth. In literature, a feature interaction with an order of two or higher is
called a higher-order feature interaction [Kim et al., 2008].

The order of an interaction is also encoded in our prediction model. A first-order
feature interaction is denoted with a single interaction symbol #. For instance, the
interaction between features a and b is denoted with a#b. We denote a second-order
interaction between features a, b, and c with a#b#c.
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7.1.4. Causes of Feature Interactions

Relevant feature interactions at the level of non-functional properties can have mul-
tiple causes. In the following, we present these causes to help developers in detecting
and omitting feature interactions and to help understand our evaluation results.

Functional Interactions. If two features interact at a functional level, for instance,
a feature parallelizes another feature’s processing, it affects often also non-functional
properties. Hence, to nearly every functional feature interaction, we observe also a
non-functional feature interaction for some non-functional properties. To interact at
a functional level, a feature usually requires additional code that is responsible for
operating together with another feature (e.g., calling methods of other features or
changing data). These code units are called lifters or derivatives [Liu et al., 2006]
for compositional implementation techniques and nested #ifdefs for conditional
compilation. Hence, when searching for non-functional feature interactions, we may
start searching for functional feature interactions first by using static code analysis.
We can measure non-functional properties of the corresponding feature combination,
in which the additional code is used, to determine whether a non-functional feature
interaction exists.

Shared Resources. Features can share arbitrary resources. These resources can be
implementation units such as components and aspects, external libraries, and hard-
ware resources. For example, features PrintList and PrintElement share the same
code fragment in line 4 of Figure 7.1. If a customizable program contains a shared
resource, we can analyze the source code, the architecture, or an implementation
model to identify shared resources. However, this identification may require a high
effort, because different tools and techniques are needed to retrieve the necessary
information. For example, to find the shared code in Line 4, we need a parser, which
scans all code files in the program for a shared code pattern.

Using composition based approaches, such as FeatureHouse [Apel et al., 2012], we
may analyze a feature model. For example, we search in a feature model for elements
with requires relationships. Particularly, we search for the pattern: feature a OR
feature b requires feature c. In this case, c is a shared resource. When considering
shared resources that do not belong to the program itself (e.g., external libraries) the
identification becomes complex. Even a call of a simple print function in Java can
result in a shared resource (i.e., importing a Java SDK function). Finally, sharing
non-code related resources, such as energy, working memory, and threads, raises the
most challenging problems, because there is no easy way to identify these feature
interactions. Such interactions have no physical representatives, e.g., in the form of
implementation units.
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Environmental Influences. The environment, in which a variant runs, can also
impose non-functional feature interactions. Consider a customizable program with
two features that require large portions of main memory. If our system runs out of
memory, these two features interact, because they both have not enough memory
to run properly (e.g., we need to frequently swap large chunks of data to persistent
storage), which degrades performance substantially. If we select only one of these
features or if we increase the amount of available memory, the program runs as
expected. Other environmental factors are operating systems, hardware resources in
general, user interactions, as well as interactive and dynamically changing events.

7.2. Detection Approaches

There are multiple ways to detect feature interactions. Here, we present two ap-
proaches: (a) using domain knowledge, called interaction-wise (IW) measurement
and (b) using pair-wise measurement. We selected interaction-wise measurement,
because many feature-interaction-detection approaches use domain knowledge and
implementation artifacts to find interactions, which we present in related work (Sec-
tion 8.5 in the next chapter). Hence, we adopt the general idea of using implementa-
tion artifacts and transfer it to the detection of non-functional feature interactions.

We choose pair-wise measurement, because related approaches in software test-
ing use the same technique to detect bugs and errors for certain feature combina-
tions [Oster et al., 2010]. Hence, we want to evaluate whether this state-of-the-art
technique is transferable to the detection of non-functional properties. In the next
chapter, we propose an additional solution that is based on the insights we gain
during the evaluation of interaction-wise and pair-wise measurement.

Interaction-Wise Measurement. Previously, we described different causes of non-
functional feature interactions. Often, we have to know the customizable program
and its source code to identify such causes. However, if we have this knowledge, we
can use it to find relevant feature-interaction terms. As we explained for our predic-
tion model (see Section 4.2), we have to find only the relevant feature-interaction
terms (i.e., those terms that are non-zero) to improve prediction accuracy. With
domain knowledge, we know these interactions, for example, by statically analyzing
the source code to find functional feature interactions. The remaining task is to mea-
sure these interactions, such that we can quantify their impact on non-functional
properties.

For each identified interaction, we produce a variant that contains the features
that interact. By calculating the difference between the measured and the predicted
value, we quantify the influence of the interaction on a non-functional property. That
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is, we subtract the influence of all already quantified terms from the measurement.
The remaining value represents the influence of the interaction:

Π(a#b) = Π(a× b)−Π(a)−Π(b)

where Π(a × b) quantifies the measurement and Π(a) and Π(b) represent the influ-
ences of both selected features, which we determined using feature-wise measure-
ment.

This way, we have to measure O(n+ k) variants, in which n is the number of fea-
tures and k is the number of known interactions. If k = 0, interaction-wise measure-
ment is identical to feature-wise measurement. Measuring all interactions improves
the accuracy in the prediction of a variant’s non-functional properties. Especially
when a customizable program contains a large number of features, domain knowl-
edge can help to identify which of them interact. Our assumption, which we want
to evaluate, is that this approach results in a solid prediction base.

Pair-Wise Measurement. Pair-wise measurement (or in general n-wise measure-
ment) means that we measure all (first-order) interactions between pairs of features.
That is, a pair-wise measurement means that we measure and quantify all feature-
interaction terms, in which exactly two features interact. A triple-wise measurement
would mean that we additionally measure all feature-interaction terms, in which
three features interact (an order of two).

Since we do not use any domain knowledge, pair-wise measurement is a brute-
force-like method to quantify additional terms to improve prediction accuracy. With
an increasing order of interactions, we have to measure an increasing number of
variants. Hence, only the measurement of pair-wise interactions is usually feasible.
We measure n(n − 1)/2 + n variants, in which n is the number of features. The
approach results in a substantially increased variant set to measure compared to
feature-wise measurement (O(n) vs. O(n2)). This concept is similar to pair-wise
testing [Williams, 2000], in which test configurations are determined, such that all
input variables of a programs are covered.

Also both approaches cannot accomplish all our goals individually, we expect that
the evaluation of these approaches provides insights and observations to develop a
feature-interaction detection that achieves all goals. In the the following, we evaluate
these two approaches and discuss their results.

7.3. Evaluation

The goal of our evaluation is to rate prediction accuracy and measurement effort of
interaction-wise and pair-wise measurement. To this end, we use two experiments
with the non-functional properties footprint and main-memory consumption. For
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main-memory consumption, we cannot use static code analysis to find all interactions
manually, because interactions are often not visible in the source code. Also, we do
not have expert knowledge, which is, however, necessary to manually identify feature
interactions. Hence, we can evaluate prediction accuracy regarding main-memory
consumption only with pair-wise measurement.

We did not evaluate pair-wise measurements for performance, because we would
need two months for the additional measurements.2 Since we observed in the previous
experiment that performance behaves equal to main-memory consumption, we omit
performance here, but use performance for the experiment in the next chapter.

The evaluation is structured as follows. First, we present our research questions
and the adapted experimental design. Second, we show for each non-functional prop-
erties the results of the experiment separately (Sections 7.3.2-7.3.3). Note that we
neither make a discussion at this point nor do we compare both approaches, but
present only the data. Afterwards, we compare both feature-interaction-detection
approaches by analyzing and discussing the experimental results in Section 7.3.4.

7.3.1. Experiments

Since we use the same experimental setup as in Section 6.2 (see Figure 7.2 for
a short summary), we describe only the differences here. To achieve our goal of
rating feasibility of both measurement approaches, we state the following research
questions:

• Q1: What is the average error rate of interaction-wise measurement? (only
footprint experiments)

• Q2: What is the average error rate of pair-wise measurement?

• Q3: How do interaction-wise and pair-wise measurements perform against
feature-wise measurement and each other in terms of prediction accuracy and
measurement effort?

Again, we use the error rate of predictions as the metric for our evaluation:
|actual−predicted|

actual ∗ 100. Since the measurement effort plays a crucial role, we also
compare both measurement approaches against the brute-force approach (BF). The
brute-force approach assumes that we measured all variants, such that the error rate
is 0 % and the effort is equal to the number of valid configurations (i.e., O(2n) in
the worst case for n features).

2We cannot conduct interaction-wise measurement for performance for the same reasons as for
main-memory consumption, i.e., static code analysis does not find all interactions and expert
knowledge is not available.
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Experimental Setup for Feature-Wise Measurement (see Section 6.2):

• Error rate as metric for evaluation: |actual−predicted|
actual

∗ 100
• Two-step design: (i) Build prediction model with measurements and (ii) evaluate pre-

diction model against whole population or randomly selected variants.
• Footprint material: LinkedList, Prevayler, ZipMe, PKJab, SensorNetwork, Violet,

Berkeley DB, SQLite, and Linux kernel.
• Main-memory-consumption material: Curl, LLVM, x264Wget, Berkeley DB CE, and

SQLite.

Figure 7.2.: Recap: Experimental setup of feature-wise measurement.

Experimental Design. For the experimental design, the first step is to build the
prediction model. The main difference to feature-wise measurement is that we have
two additional measurement approaches, for which we build two additional predic-
tions models (see Figure 7.3 IW and PW). To this end, we have to determine addi-
tional configurations, for which we produce the corresponding variants and measure
their non-functional properties. We approximate feature-interaction terms by using
the difference of prediction and measurement. Phase 2 is similar to our first ex-
periment, but we have to predict the error rates for our two additional prediction
models. Again, we measure all or 100 random variants and compare measurement
against prediction.

Phase 1: Create prediction model Phase 2: Evaluate prediction error rate

Determine
configurations

Measure
Compute

feature  and
Interaction terms (all vs. random)

Select
configurations

Compare
Measure & 

predict

(IW & PW)
(IW & PW)

Compute
error rate

Figure 7.3.: Experimental design with interaction-wise (IW) and pair-wise (PW)
measurement.

For the interaction-wise prediction model, we measure the influence of known
interactions. We analyze the source code of the used customizable programs to gain
the knowledge which interactions exist. To this end, we build a model that describes
the mapping between features and implementation units to find feature interactions.
As explained in Section 4.2, we can have several instances of the abstract feature-
composition model. One instance is the prediction model and another instance is
the mapping model.

To build the mapping model, we have to determine how features map to implemen-
tation units by analyzing the source code of our sample programs. With a self-written
tool, we detect nested #ifdef statements in programs based on conditional compila-
tion (cf. Table 6.2.4). For compositional approaches, we search for the existence of in-
teraction modules (e.g., derivatives [Liu et al., 2006]). If we find a nested #ifdef or an
interaction module, we define the corresponding mapping. For example, we detected
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for Berkeley DB that features Statistics and Replication have nested #ifdefs. Hence,
we additionally create the term τ(Statistics#Replication) in the mapping model.
Selecting both features results in the compilation of three implementation units:
Statistics × Replication = τ(Statistics) · τ(Replication) · τ(Statistics#Replication).
In the case that two features a and b map to the same implementation unit, we note
τ(a · b) in the mapping model.

We measure additional configurations, for which we either have to compile an
additional implementation unit (i.e., when τ(a#b) exists) or when multiple features
map to the same unit (i.e., τ(a · b)). In the first case, we need only one additional
measurement to quantify the influence of τ(a#b) on footprint. In the second case,
we need multiple additional measurements when more than two features map to
the same implementation unit. For instance, if features a, b, and c map to a single
unit τ(a · b · c), we have to measure four additional configurations: C1 = {a, b},
C3 = {a, c}, C3 = {b, c}, and C4 = {a, b, c}. This is because our prediction model
a×b×c expands to seven terms, that is, Π(a), Π(b), Π(c), Π(a#b), Π(a#c), Π(b#c),
and Π(a#b#c), that all have an influence on prediction accuracy.

Regarding pair-wise measurement, we define that each pair of features has a rele-
vant feature interaction and so we have to determine its influence on a non-functional
property.

In the following, we first describe both experiments, footprint and main-memory
consumption, separately and present the corresponding results. Afterwards, we an-
alyze and discuss the results by comparing interaction-wise and pair-wise measure-
ment regarding prediction accuracy, measurement effort, and applicability (in Sec-
tion 7.3.4).

7.3.2. Footprint

In this section, we present the experimental procedure and the results for the foot-
print experiment.

Experiment Procedure. To measure footprint with the interaction-wise approach,
we have to manually define relevant feature interactions. This changes the experi-
mental procedure of the previous experiment in Section 6.2.2, such that we define
additional configurations for measurement.

We use three different sources to identify feature interactions depending on the
program. For Violet, LinkedList, ZipMe, PkJab, and SensorNetwork, we use the
mapping between domain features and implementation units. We analyze the source
code of Berkeley DB, Prevayler, and SQLite for nested #ifdefs. We ask a domain
expert for the Linux kernel to identify feature interactions. For each of the defined
interactions, we measure an additional variant that includes the features that par-
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ticipate in the respective interaction. Furthermore, we try to minimize the number
of features of this variant to only include the interaction that we want to determine.

Deviations. For SQLite, we observed compilation errors of valid variants. As a
consequence, it was not possible to measure all variants that are valid according to
the feature model. The effect of the compiler errors is that we could not measure
all pair-wise interaction and not all manually specified interaction. That is, the
feature-wise prediction model is complete, but the other prediction models lack
some interaction terms.

These incomplete prediction models may degrade accuracy, because of the missing
terms. However, considering the huge configuration space of SQLite, the few failed
configurations are negligible. The reason for these compilations errors is that SQLite
was not tested for all possible combinations, as also noted by the developers.3

Results. In Table 7.1, we summarize the results of the footprint measurements
and predictions for all customizable programs. To put the results into perspective,
we additionally show the measurement effort of feature-wise measurement and the
brute-force approach (i.e., measuring all variants). We use box plots in the table
to highlight the distribution of the error rates and to ease comparing the different
prediction models. We use box plots instead of violin plots, because they provide
a more comprehensible view on the same data. Hence, we ease comparing the raw
data in the table with the distribution.

Predictions based on domain knowledge are in general better than for feature-wise
measurement. For Q1, we identify an error rate of 0.18 %, on average, (i.e., an average
accuracy of 99.82 %). That is, when determining relevant feature-interaction terms
based on code analysis and mapping information, we achieve very precise prediction
accuracy even for the problematic case of Violet. In Figure 7.4, we show the error-
rate distributions for the interaction-wise measurement.

Regarding Q2, determining pair-wise interaction terms usually reduces prediction
error rate for all programs without Violet from 0.6 % (FW) to 0.23 % (see Figure 7.5).
With Violet, the average error rate is 80.5 % over all customizable programs. This
high average error rate is due to Violet’s error rate of 722 %.

The key results are as follows:

• Interaction-wise measurement considerably improves prediction accuracy and
handles also complex cases.
• Pair-wise measurement can improve prediction accuracy, but may even worsen

the results when complex mappings between features and implementation units
exist.

3Source: http://www.sqlite.org/compile.html [Accessed on August 30th, 2012].
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Figure 7.4.: Error-rate distribution of predicting footprint with interaction-wise
measurement.
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Figure 7.5.: Error-rate distribution of predicting footprint with pair-wise
measurement.

• Measurement effort of pair-wise measurement is larger than for interaction-
wise measurement.

Next, we evaluate if our observations hold for a further non-functional property:
main-memory consumption.

7.3.3. Main-Memory Consumption

For the selected programs in the experiment of main-memory consumption, we are
either no domain experts or we have no access to them. Since feature interactions are
not necessarily caused by functional interactions, we cannot use source-code analysis
as we did for the footprint experiment. Hence, most of the programs are black-box
programs, for which we know only how they can be customized. Thus, we cannot
use interaction-wise measurement here, but only pair-wise measurement.

The experimental setup as well as the experimental procedure are equal to the
one for feature-wise measurement of Section 6.2. That is, we use the same programs
and the same benchmarks. Hence, we present the results next.

120



7.3. Evaluation
Effort Error Rate (in %)

Program Appr. # Measurements Distribution Mean±Std Median

LinkedList FW 11 2 % 0.9± 0.9 0.51

IW 13 3 % 0.7± 0.7 0.43

PW 88 18 % 0.2± 0.2 0.13

BF 492 100 %
●

−6 −4 −2 0 2 4 6
●

−6 −4 −2 0 2 4 6

Prevayler FW 5 21 % 0.1± 0.1 0.03

IW 7 29 % 0± 0 0.0

PW 17 70 % 0± 0 0.0

BF 24 100 %
●

−6 −4 −2 0 2 4 6
●

−6 −4 −2 0 2 4 6

ZipMe FW 8 8 % 0.6± 0.6 0.4

IW 10 10 %
●●●●

0.2± 0.3 0.0

PW 21 20 %
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

0.3± 0.5 0.01

BF 104 100 %
●

−6 −4 −2 0 2 4 6
●

−6 −4 −2 0 2 4 6

PKJab FW 8 11 % 0± 0 0.0

IW 8 11 % 0± 0 0.0

PW 36 50 % 0± 0 0.0

BF 72 100 %
●

−6 −4 −2 0 2 4 6
●

−6 −4 −2 0 2 4 6

SNW FW 26 1 %
●●●● ● ●● ●● ●● ●● ●● ● ● ●● ●● ●● ●● ●● ●● ●● ●● ●● ●● ●● ●● ●● ●● ●● ●● ●● ●●●●●●●●● ● ●● ●● ●● ●● ●● ●● ●● ●● ●● ●● ●● ●● ●● ●● ●● ●● ●● ● ● ●● ●● ●● ●● ●● ●● ●● ●● ●● ●● ●● ● ● ●● ●● ●● ●●● ●●● ●● ●● ●● ●●● ●●● ●● ●● ●● ●● ●● ●● ●● ●●● ●● ●●● ●●● ●● ●● ●●● ●● ●●● ●●● ●● ●● ●● ●● ●● ●● ● ● ●● ●● ●● ●● ●● ●● ●● ●● ●● ●● ● ● ●● ●●● ●● ●●● ●● ●●● ●● ●●● ●● ●●● ●● ●●● ● ● ●● ●● ●● ●● ●● ●● ●● ●● ● ● ●● ●● ●● ●● ●● ●● ●● ●● ●● ●● ●● ●● ●● ●●● ●●● ●● ● ● ●● ●● ●● ●● ●● ●● ●● ●● ●● ●● ●● ●● ●● ●● ●● ●●● ●●● ●● ●● ●● ●● ●● ●● ●● ●● ●● ●● ●●● ●● ● ●● ●● ●●● ●● ● ●● ●● ●●● ●● ● ●● ●● ●●● ●● ● ●●●●●●●●● ● ●● ●● ●● ●● ●● ● ● ●● ●● ●● ●● ●● ●● ●● ●● ●● ●● ●● ●● ●● ●● ●● ●● ●● ●●●●●●●●● ● ●● ●● ●● ●● ●● ●● ●● ●● ●● ●● ●● ●● ●● ●● ●● ●● ●● ● ● ●● ●● ●● ●● ●● ●● ●● ●● ●● ●● ●● ● ● ●● ●● ●● ●●● ●●● ●● ●● ●● ●●● ●●● ●● ●● ●● ●● ●● ●● ●● ●●● ●● ●●● ●●● ●● ●● ●●● ●● ●●● ●●● ●● ●● ●● ●● ●● ●● ● ● ●● ●● ●● ●● ●● ●● ●● ●● ●● ●● ● ● ●● ●●● ●● ●●● ●● ●●● ●● ●●● ●● ●●● ●● ●●● ● ● ●● ●● ●● ●● ●● ●● ●● ●● ● ● ●● ●● ●● ●● ●● ●● ●● ●● ●● ●● ●● ●● ●● ●●● ●●● ●● ● ● ●● ●● ●● ●● ●● ●● ●● ●● ●● ●● ●● ●● ●● ●● ●● ●●● ●●● ●● ●● ●● ●● ●● ●● ●● ●● ●● ●● ●●● ●● ● ●● ●● ●●● ●● ● ●● ●● ●●● ●● ● ●● ●● ●●● ●● ● ●●●●●

0.5± 1 0.23

IW 34 1 %
●● ●●● ●● ● ●● ●● ●● ●● ●● ●● ●● ●● ●● ●● ●● ●● ●● ●● ●● ●● ●● ●● ●● ●● ●● ●● ●● ●●●● ●● ●●● ●●● ● ● ●● ●● ●● ●● ●● ●● ●● ●● ●● ●● ●● ●● ●● ●● ●● ●● ●● ●● ●● ●● ●● ●● ●● ●● ●● ●● ●● ●● ●● ●●●●●●●●●●●●● ● ●● ●● ●● ●● ●● ●● ● ●● ●● ●● ●●● ●●● ●● ●● ●● ●● ●● ●● ●●● ●●● ●● ●● ●● ●● ●● ●● ●● ●● ● ● ●● ●● ●● ●● ●● ●● ●● ●● ●● ●● ● ● ●● ●● ●● ●● ●● ●● ●● ●● ●● ●● ●● ●● ●● ●● ●● ●● ●● ●● ●●●●●●● ●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●● ●● ●●● ●●● ●● ● ●● ●● ●● ●● ●● ●● ●● ●● ●● ●● ●● ●● ●● ●● ●● ●● ●● ●● ●● ●● ●● ●● ●● ●●●● ●● ●●● ●●● ● ● ●● ●● ●● ●● ●● ●● ●● ●● ●● ●● ●● ●● ●● ●● ●● ●● ●● ●● ●● ●● ●● ●● ●● ●● ●● ●● ●● ●● ●● ●●●●●●●●●●●●● ● ●● ●● ●● ●● ●● ●● ● ●● ●● ●● ●●● ●●● ●● ●● ●● ●● ●● ●● ●●● ●●● ●● ●● ●● ●● ●● ●● ●● ●● ● ● ●● ●● ●● ●● ●● ●● ●● ●● ●● ●● ● ● ●● ●● ●● ●● ●● ●● ●● ●● ●● ●● ●● ●● ●● ●● ●● ●● ●● ●● ●●●●●●● ●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●● ●● ●

0.3± 0.5 0.16

PW 252 8 %
● ●●● ●● ●●● ●●●●●●●●●●●● ●●● ●●●●● ●●● ●●●●●●●● ●● ●●● ●● ● ●● ●●● ●● ●●● ●●●● ●● ●●●●●●●●●●●●●●● ●●● ● ●● ●●●● ●● ●●● ●●● ●●●●● ●●● ●●●●● ●●● ●●● ●●●● ●●● ●●● ●●●●●● ●●● ●●● ●●●●●●●● ● ●● ●● ●●● ●●●● ●●● ●●●● ● ●●●●● ● ●● ●●● ●●●● ●●● ●●●●● ●● ● ●● ●●●● ●● ●●●●●● ●●●● ●●● ● ●● ● ●●● ●●●● ●●● ●●●●●●●●●●● ●●● ●●●●●●●●●●●●●●●●● ●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●● ●●●●● ●●● ●●●●●●●●●● ●● ●●● ●● ● ●● ●●● ●● ●●● ●●●●●●●●●●●● ●●● ●●●●● ●●● ●●●●●●●● ●● ●●● ●● ● ●● ●●● ●● ●●● ●●●● ●● ●●●●●●●●●●●●●●● ●●● ● ●● ●●●● ●● ●●● ●●● ●●●●● ●●● ●●●●● ●●● ●●● ●●●● ●●● ●●● ●●●●●● ●●● ●●● ●●●●●●●● ● ●● ●● ●●● ●●●● ●●● ●●●● ● ●●●●● ● ●● ●●● ●●●● ●●● ●●●●● ●● ● ●● ●●●● ●● ●●●●●● ●●●● ●●● ● ●● ● ●●● ●●●● ●●● ●●●●●●●●●●● ●●● ●●●●●●●●●●●●●●●●● ●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●● ●●●●● ●●● ●●●●●●●●●● ●● ●●● ●● ● ●

0.2± 0.6 0.11

BF 3 240 100 %
●

−6 −4 −2 0 2 4 6
●

−6 −4 −2 0 2 4 6

Violet FW 80 0 % 186.7± 34.4 209.27

IW 2115 0 % 0± 0 0.0

PW 5229 0 % 722.5± 362 997.43

BF 1020 10 %)
●

−6 −4 −2 0 2 4 6
●

−6 −4 −2 0 2 4 6

Berkeley FW 9 4 % 1.9± 2.2 0.8

IW 15 6 % 0.5± 0.8 0.2

PW 33 13 %
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

0± 0 0.0

BF 256 100 %
●

−6 −4 −2 0 2 4 6
●

−6 −4 −2 0 2 4 6

SQLite FW 85 0 %
●●●● ●●●●

0± 0 0.03

IW 146 0 %
●●●●

0± 0 0.0

PW 3306 0 % 0.1± 0 0.12

BF 1023 100 %
●

−6 −4 −2 0 2 4 6
●

−6 −4 −2 0 2 4 6

Linux FW 25 0 % 0.4± 0.3 0.2

IW 207 0 %
●●●●●●

0.4± 0.3 0.31

PW 326 0 %
●●

0.3± 0.2 0.25

BF 33·1023 100 %
●

−6 −4 −2 0 2 4 6
●

−6 −4 −2 0 2 4 6

Table 7.1.: Error rates in percent of footprint predictions using the approaches
(Appr.): feature-wise (FW), interaction-wise (IW), pair-wise (PW), brute
force (BF). Mean: mean error rate, Std: standard deviation.
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Results. In Table 7.2, we summarize the error rates of predicting main-memory
consumption for the sample programs. Additionally, we show the results of feature-
wise measurement and the brute-force approach for comparison. Using the pair-wise
approach (Q2), we see that the error rate usually decreases (with the exception of
Wget and LLVM, which we discuss in the following): The average error rate is 11 %
for all programs and 0.9 % without Wget and LLVM. This means that our assump-
tion, that measuring how each pair of features affects a non-functional property
improves accuracy of predictions by 2.6 % when compared to feature-wise measure-
ment. However, this improvement requires additional measurements. These addi-
tional measurements tend to increase by up to 6 % for programs with limited vari-
ability (e.g., Curl and LLVM) and by less than one percent for SQLite. Furthermore,
we need to measure less than 10 % of all variants to determine all pair-wise inter-
actions. For example, in the case of SQLite, we need to measure only 317 variants
which is 0.008 % of all possible variants.

Effort Error Rate (in %)

Program Appr. # Measurements Distribution Mean±Std Median

Curl FW 11 1 %
●●●●●●●●●●●●●●●●●●●●

0.4± 0.6 0.16

PW 56 7 %
●●●●●●●●●●●●●●●●●●

0.1± 0.2 0.06

BF 768 100 %
● ●●●●●●●● ●●●●● ●●●●●●

−10 0 10 20 30
● ●●●●●●●● ●●●●● ●●●●●●

−10 0 10 20 30

LLVM FW 11 1 % 28.8± 26.3 14.18

PW 56 6 % 43.1± 59.5 12.85

BF 1 024 100 %
● ●●●●●●●● ●●●●● ●●●●●●

−10 0 10 20 30
● ●●●●●●●● ●●●●● ●●●●●●

−10 0 10 20 30

x264 FW 12 1 % 27.9± 47.8 0.03

PW 66 6 %
●● ● ●● ● ● ●●●●● ●●●● ●●● ● ●● ● ● ●●●●● ●●●● ●

1.9± 5 0.0

BF 1 152 100 %
● ●●●●●●●● ●●●●● ●●●●●●

−10 0 10 20 30
● ●●●●●●●● ●●●●● ●●●●●●

−10 0 10 20 30

Wget FW 14 0 % 18.6± 24.9 9.25

PW 91 2 % 20.6± 50.6 12.85

BF 5 120 100 %
● ●●●●●●●● ●●●●● ●●●●●●

−10 0 10 20 30
● ●●●●●●●● ●●●●● ●●●●●●

−10 0 10 20 30

BerkeleyDB FW 15 1 %
●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●● ●●●●●●●●●● ●●● ●●●● ●●●●●●●●●●● ●● ●●●●●●●●●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●● ●●●●●●●●●● ●●● ●●●● ●●●●●●●●●●● ●● ●●●●●●●●●

1.4± 1.3 1.03

PW 98 4 %
●●●●●●●● ●●● ●●●●●●●●●●● ●●●●● ●●●● ●●● ●●●●●●●●●●●●● ●●● ●●●●●●●●●●● ●●●●● ●●●● ●●● ●●●●●

1.4± 1.3 0.97

BF 2 560 100 %
● ●●●●●●●● ●●●●● ●●●●●●

−10 0 10 20 30
● ●●●●●●●● ●●●●● ●●●●●●

−10 0 10 20 30

SQLite FW 26 0 %
●●

4.4± 3.8 3.4

PW 317 0 %
● ●●●●●●●● ●●●●● ●●●●●●● ●●●●●●●● ●●●●● ●●●●●●

0.3± 1.8 0.0

BF 3 932 160 100 %
● ●●●●●●●● ●●●●● ●●●●●●

−10 0 10 20 30
● ●●●●●●●● ●●●●● ●●●●●●

−10 0 10 20 30

Table 7.2.: Error rates in percent of predicting main-memory consumption of all
customizable programs using the approaches (Appr.): feature-wise (FW),
pair-wise (PW), brute force (BF). Mean: arithmetic mean error rate of
predictions, Std: standard deviation of predictions.

In Figure 7.6, we show the error-rate distributions for pair-wise measurement. We
see that LLVM and Wget still exhibit high error rates, but error rates of x264 could
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7.3. Evaluation

be reduced from 27.9 %, on average, to 1.9%̇. A closer look at the distribution of
Wget’s error rates shows that the mean (thick line) of all predictions is close to
zero (see box plots in Table 7.2). That is, a large number of predictions are still
accurate (even more accurate than feature-wise measurement). However, there are
a few outlier predictions that show a very high error rate (i.e., over 75 %), which
leads to a high arithmetic mean error rate. We can easily see this case for x264
with feature-wise measurement when considering the median (cf. 7.2). The median
is 0.03, which means that half of our predictions have an error rate of nearly zero
percent. That is, most of our predictions are perfect.

However, we further use the arithmetic mean for evaluation, although in statis-
tics, the median usage is standard. Although our results are clearly better with the
median, we would also hide the interesting cases (i.e., the outliers). Hence, we stick
with the arithmetic mean for discussion. As a result, at least partially, determining
pair-wise feature interactions improves prediction accuracy. However, there are still
inaccurate predictions, which are caused by higher-order feature interactions.
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Figure 7.6.: Error rates in percent of all customizable programs for main-memory
consumption using pair-wise measurement.

The key results are as follows:

• Identifying interactions based on domain knowledge is challenging for main-
memory consumption, because expert knowledge is needed to find interactions
that are not directly visible in the source code.
• Pair-wise measurement partly improved and partly worsened prediction accu-

racy, which we discuss next.
• Measurement effort of pair-wise measurement is still low in terms of absolute

number of measurements, especially for highly customizable programs, such as
SQLite.

Next, we compare interaction-wise and pair-wise measurement with the results of
the two experiments to answer research question 3.
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7. Feature Interactions

7.3.4. Discussion and Analysis of Measurement Approaches

In this section, we answer our third research question (i.e., how the three measure-
ment approaches perform against each other). To this end, we compare prediction
accuracy, measurement effort, and applicability. For each of these topics, we present
our findings with a concrete example first and summarize and generalize our findings
at the end to give recommendations which one to use in practice.

Comparing Prediction Accuracy

To compare prediction accuracy of the three measurement approaches, we use two
examples at which the difference of these approaches become clear: Violet and LLVM.
We use these examples, because they represent interesting and challenging cases. In
our summary, we generalize these findings to all observed customizable programs.

Example: Violet. For Violet, we observed the largest error rates for feature-wise
(left violin in Figure 7.7) and pair-wise measurement (right violin in Figure 7.7).
We investigate the reason for these error rates later in Section 7.4 when analyzing
feature interactions. Here, it is important that by having the knowledge only about
the mapping from features to implementation units, we reach a error rate of below
1 %, on average. We achieved this by measuring less than half of the variants we
needed to quantify all pair-wise interactions (2115 vs. 5229 measurements). This
example demonstrates that interaction-wise measurement can outperform pair-wise
measurement, especially when there are higher-order feature interactions. Since we
quantified the influence of all pair-wise feature interactions, only higher-order feature
interactions can cause these inaccuracies in predictions.

Example: LLVM. In Violet, we could improve prediction accuracy significantly
with domain knowledge. Unfortunately, we do not have the necessary knowledge for
LLVM to show how this would affect accuracy. Nevertheless, we tried to identify
feature interactions.

We believe higher-order feature interactions are very plausible for LLVM; we hy-
pothesize that they can be explained as follows. Each LLVM feature toggles a differ-
ent optimization phase during compilation; each optimization might act differently
on a code fragment, depending on how and whether previous optimizations have
transformed it. For instance, function inlining enables other optimizations to oper-
ate on longer code fragments; depending on the size of code fragments and on the
possibilities for optimizations, further optimization might be executed.

To evaluate our assumptions, we used the documentation of LLVM to manually
define feature interactions. Overall, we measured 129 variants of LLVM, which is
12.6 % percent of all variants. Although we are no domain experts, our predictions
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Figure 7.7.: Error-rate distribution of Violet for the three measurement approaches.

significantly improved to a mean error rate of 11 %, which is an improvement of
22 % compared to pair-wise measurement and 14 % compared to feature-wise mea-
surement (see Figure 7.8). This means that even with little domain knowledge, it is
possible to achieve considerable improvements of prediction accuracy.
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Figure 7.8.: Error-rate distributions of different measurement approaches for LLVM.
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Comparing Measurement Effort.

Regarding measurement effort, we use Berkeley DB as a concrete example, because
we can easily analyze at which point pair-wise measurement wastes resources. Similar
to prediction accuracy, we summarize and generalize our findings at the end of this
section.

Feature-Wise Interaction-Wise Pair-Wise
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Figure 7.9.: Measured and predicted footprint in KB of Berkeley DB (compiled as
static link library) using different approaches.

Example: Berkeley DB. In Figure 7.9, we show the results of our different mea-
surement approaches for Berkeley DB. We use Q-Q plots to visualize the trend at
which predictions become more inaccurate. Each dot represents a single configu-
ration, for which we compare predicted footprint (y-axis) against actual footprint
(x-axis). If the prediction is correct, the dot lies on the diagonal line. Since each
feature increases the footprint of a variant, configurations with more features are
located more right.

Although we measured only 9 variants of Berkeley DB with feature-wise measure-
ment, we achieve a mean error rate of about 1.9 % only for all 256 variants. We often
predict a footprint that is too low, because we did not determine feature interactions
that include additional code in a variant. Hence, for variants containing an increasing
number of features that depend on each other, the error rate increases (see left Q-Q
plot in Figure 7.9). We see that the distance from a dot to the diagonal increases
when the size of a variant increases, too. This means that there is additional code
included with more features that we did not consider.

With interaction-wise measurement, the average error rate is reduced to 0.5 %.
Thus, by measuring only 15 variants of Berkeley DB, we can predict the footprint of
all 256 variants with nearly perfect accuracy (99.5 % on average). But the Q-Q plot in
the center of Figure 7.9 clearly shows that we missed only a single interaction. That
is, with only 16 measurements, we would have found all interactions of Berkeley DB.
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Although, pair-wise measurement eliminated errors entirely (maximum error rate of
0.1%), it required 37 measurements. This means that we performed more than twice
the measurements that would actually be needed.

Hence, this example makes clear that pair-wise measurement can waste resources
to gain only a slight improvement of measurement accuracy. For Violet, we described
previously that we required only half of the measurements with the interaction-wise
approach compared to the pair-wise approach. This observation holds for all other
programs: We measured 2 547 variants with interaction-wise measurement and 9 308
with pair-wise measurement. Hence, we require nearly four times more measure-
ments with the pair-wise approach. In relation to the overall number of variants, the
difference is 13.4 %. That is, 13.4 % of the whole population of all used customiz-
able programs must be additionally measured when using pair-wise measurements
compared to interaction-wise measurement.

Applicability

The benefit of using interaction-wise measurement compared to pair-wise measure-
ment was clear up to know. However, when comparing applicability of both ap-
proaches, the picture changes. Of course, we can use interaction-wise measurements
only when we have domain knowledge or the source code. This is already a key lim-
itation compared to pair-wise measurement, which can be used also for black-box
programs. However, we additionally found a further limitation of interaction-wise
measurement: expectation of the kind of feature interactions. We make this finding
clear with the example Linux kernel.

Example: Linux kernel. For Linux, we expected large error rates regarding the 100
randomly generated variants, because many Linux features affect the size of other
features. We were surprised that we still achieved a quite precise prediction even
with feature-wise measurement, partially, because the features had a weaker effect
than expected. We slightly improved the accuracy of the interaction-wise approach,
because we defined feature interactions between more than two features (i.e., we
defined an interaction between every feature and the features OPTIMIZE INLINING

and CC OTPIMIZE FOR SIZE).

In Figure 7.10, we show Q-Q plots of all measurement approaches for the Linux
kernel. With feature-wise measurement, we tend to over and under estimate a vari-
ant’s footprint, because there is code reused and additional code introduced. With
interaction-wise measurement, the domain expert defined only those interactions
that introduce additional code and therefore increase the size of a variant. The do-
main expert did not define an interaction that decreases the size of a variant, because
he was either not aware of this case or could not determine for which combination
of these features this case occurs. This is an important insight, because it indicates
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that certain types of interactions are easier to find than others. For instance, a sim-
ple call to a print method in Java in two different features already results in a code
reuse, because code from the Java standard package is included in the program. This
is not obvious and may be difficult and costly to detect. The result is that all our
interaction-wise predictions are over estimates (see middle of Figure 7.10).

Our finding is backed up by the distribution of error rates with pair-wise measure-
ment. Here, pair-wise measurement reduced the distance of dots to the diagonal in
both directions, because it makes no assumptions about sharing or introducing code.
This indicates that there are interactions that even a domain expert cannot foresee.
If such interactions would have a more severe influence on a non-functional property,
interaction-wise measurement would have performed worse than pair-wise measure-
ment. Hence, applicability of interaction-wise measurement is further restricted to
the available knowledge.
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Figure 7.10.: Measured and predicted footprint in KB of Linux kernel using different
approaches.

Summary.

We summarize the evaluation of interaction-wise and pair-wise measurement in Ta-
ble 7.3. We answer the research questions in terms of average error rates (for Q1-Q2)
and measurement effort relative to a brute-force approach (Q3). We can see that, for
many sample programs, all three measurement approaches provide a high accuracy
of predictions. However, interaction-wise measurement outperforms pair-wise mea-
surement in both, prediction accuracy and measurement effort and interaction-wise
measurement gives clearly more accurate predictions than feature-wise measure-
ment.

For pair-wise measurement, we observe that higher-order feature interactions play
a crucial role for the accuracy, because we determined all first-order interactions, but
still got high error rates. This is why our predictions for Violet, LLVM, and Wget
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Q1&Q2: Error rate Q3: Effort

Experiment FW IW PW FW IW PW

Footprint 21.3 % 0.1%̇ 80 % 5.0 % 6.6 % 20 %
without Violet 5.5% 0.2 % 0.2 % 5.8 % 7.5 % 22 %

Main Memory 13.6 % N/A 11 % 0.6 % N/A 4.1 %
without LLVM & Wget 8.5 % N/A 0.9 % 0.7 % N/A 4.2 %

Table 7.3.: Evaluation of feature-wise (FW), interaction-wise (IW), and pair-wise
(PW) measurement and overview of research questions and experiment
results. Effort means measurement effort. Q1-Q3 refer to the research
questions given in the experiment description.

are inaccurate; for that reason we provide the error rates with and without these
programs. Table 7.3 shows that if a program has no higher-order feature interac-
tions, pair-wise measurement has an equal accuracy as interaction-wise measurement
(0.2 % vs. 0.2 % for footprint and a mean error rate of only 0.9 % for main-memory
consumption), but is applicable for black-box programs.4 This is an interesting in-
sight, which leads to further research questions about the distribution and order of
feature interactions. For this purpose, we did a more detailed analysis in Section 7.4.

Insight 1: The number of higher-order feature interactions varies between cus-
tomizable programs.

We also want to compare measurement effort for all approaches. The effort of
interaction-wise measurement is only slightly higher than for feature-wise measure-
ment; an increase of 1.6 % relative to the number of all variants used for the footprint
experiment. Since these few additional measurements improved prediction accuracy
considerably, it indicates that the overall number of relevant feature interactions in
a customizable programs is low, which is another important insight.

Insight 2: The number of relevant feature interactions is low (below quadratic).

Regarding pair-wise measurement, the effort is around 20 %, on average, for foot-
print. However, the reason for this high percentage is that the absolute number of
valid configurations is low. That is, when measuring all pairs of features, we nearly
measured all valid variants of programs with only few features. Since programs with
a limited customizability are not our intended scenario (since we can measure all
variants for these programs), important cases are SQLite, Linux, and Violet for which
we need to measure less than 1 % of all variants. In the main-memory-consumption
experiment, the relative number of measurements is less than 5 %, which is low, but
substantially larger than for feature-wise measurement.

4For interaction-wise measurement, we have to know all major interactions.
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Table 7.3 shows that more measurements provide more accurate predictions, with
some exceptions. These exceptions, however, could be easily fixed with domain
knowledge. A further result is that one of nine programs for footprint and two
of six programs for main-memory consumption exhibit a high error rate. Although
the number of these programs is too small to know how often such exceptions occur,
it indicates that in 75 % of all programs, a simple feature-wise technique including
a pair-wise measurement is sufficient and, for the rest, a more sophisticated feature-
interaction-detection approach or domain knowledge is needed to improve prediction
accuracy.

The key findings are as follows:

• Interaction-wise measurement outperforms feature-wise and pair-wise mea-
surement in prediction accuracy and, partly, in measurement effort.
• Applicability of interaction-wise measurement is significantly limited compared

to pair-wise measurement.
• The number of higher-order feature interactions varies between customizable

programs.
• The number of feature interactions is low.

Based on this evaluation, we give recommendations of which of the approaches to
use in practice.

Recommendation and Generalization.

The results have shown that feature-wise measurement is a good initial approxi-
mation of a variant’s non-functional properties. However, if domain knowledge is
available, we suggest to always use it, because it can significantly improve accuracy
with only few additional measurements. Additionally, complex mappings or unknown
feature interactions can cause large error rates making predictions less accurate.

If domain knowledge is not available, it is difficult to decide whether it is worth
to measure more variants to increase prediction accuracy. For some non-functional
properties, such as footprint, it might be feasible to extract information about in-
teractions from the source code. Sometimes other sources may be available.

At this point, the measurements are often already sufficiently accurate to use them
during program derivation – our initial goal –, for example, to rule out variants that
obviously do not fulfill the required constraints or to determine a set of possible
candidates for the optimal variant.

Finally, if domain knowledge is not available, pair-wise measurements are a good
strategy to increase accuracy of predictions at cost of an increased effort for mea-
surements (from O(n) to O(n2)). We recommend it only if there is either no domain
knowledge available or to combine it with interaction-wise measurement, when the
number of features is acceptably small. But we also recommend to verify a prediction
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model that is based purely on pair-wise measurements, because our experiments have
shown that there are cases in which pair-wise measurements produce heavy error
rates because of higher-order feature interactions.

We illustrate the trade-off between measurement effort and prediction error rate in
Figure 7.11. In general, the error rate decreases with additional measurements, but
a stakeholder must be aware of the fact that too many measurements render the ap-
proach infeasible. For example, if we want to measure all 8 000 features of the Linux
kernel [Lotufo et al., 2010] (we considered only 25 in our evaluation) with pair-wise
measurement, we would need about 64 million measurements (which, extrapolat-
ing from our experiments, would take roughly 2 years to measure on a cluster of
1 000 computers). In contrast, feature-wise measurement requires the measurement
of only about 8 000 variants (which could be realistically done in one day using a
cluster of 100 computers). For our approach, balancing between desired accuracy
and investment in measurements is essential.

Feat.-wise Int.-wise Pair-wise

# of measurements

Error rate

0
n

n = number of features
k = number of known feature interactions

n2n + k
Pair-Wise + Int.-wise
n2 + k

Figure 7.11.: Conceptual relation between number of measurements and error rate
of predictions.

Unfortunately, the findings also show that all three approaches, feature-wise,
interaction-wise, and pair-wise measurement, do not satisfy our stated goals of this
thesis. Interaction-wise measurement would be a good candidate, but it does not
satisfy our second requirement (R2): black-box approach. Hence, we did not find a
method that allows us to produce accurate predictions with only few measurements
and is applicable for black-box programs. At this point, it is clear that efficiently
finding relevant feature interactions without using domain knowledge is the key to
reach our goals. To follow the path of our constructive research method, we con-
ducted a deep analysis of feature interactions with the material of this experiment.
We describe this analysis in the next section, but, first, we discuss threats to validity
of this experiment.
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Threats to Validity of Feature-Wise Measurement (see Section 6.2.7):
Construct validity:
• Stated research questions before conducting the experiments.
• Using standard benchmarks for main-memory measurement rather than self-

developed.
Conclusion validity:
• Footprint can be accurately measured without any measurement bias.
• Measuring only peak memory to determine main-memory consumption.

Internal validity:
• Using 100 sample variants for highly customizable programs.
• Measurement bias for main-memory consumption were below 1 %.

External validity:
• Measurement of two different non-functional properties.
• Measurement of many, very different real-world programs with varying imple-

mentation techniques, languages, etc.

Figure 7.12.: Recap: Threats to validity of feature-wise measurement.

7.3.5. Threats to Validity

Since we used the same experimental setup as for feature-wise measurement (see
Figure 7.12 for a short summary), we discuss only an additional threat to validity.

Internal Threat to Validity. In our footprint evaluation, we observed high error
rates for Violet. These error rates were caused by complex mappings between features
and implementation units. As we have shown, when this mapping is known, we can
easily compute which configurations have to be additionally measured to achieve
accurate predictions. Hence, the real problem is when we have a complex mapping
between features and implementation units and this mapping is not known. Thus,
the question is: Is this the rule or exception in real-world applications? We believe
that unknown complex mappings are the exception. Considering software product
lines and customizable programs implemented with preprocessors, we almost always
have a direct mapping between features and preprocessor flags, because we have
to know these flags in order to generate the desired program. Since most of the
customizable real-world programs today are based on preprocessors, this is already
a strong argument.

Furthermore, new programming paradigms, such as aspect-oriented and feature-
oriented programming aim at a direct one-to-one mapping between features and
implementation units. The general idea is to model features at the domain level and
implement a feature accordingly Apel and Kästner [2009]. Although Violet is im-
plemented with feature-oriented programming, the mapping problem is an improper
modeling or implementation of the functionality. Finally, complex mappings also
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occur for component-based software development. Here, however, we always need
the mapping between features and components to be able to assemble this compo-
nents Pour [1998]. Hence, we believe that there is in most cases either the mapping
known to be able to generate a program or the mapping is one-to-one.

7.4. Analysis of Feature Interactions

The previous evaluation has shown satisfying, but also unsatisfying results regard-
ing accuracy and feasibility of our approaches. On the one hand, interaction-wise
measurement enables accurate predictions, but on the other hand, it is not applica-
ble for black-box programs. Also for pair-wise measurement, the picture is unclear.
For most of the programs, our predictions are accurate, but for three others (Vi-
olet, LLVM, and Wget), we observed error rates that are higher than feature-wise
measurement.

We identified that feature interactions play a crucial role for the accuracy of
predictions. We already gained two insights from the previous evaluation: Higher-
order feature interactions exist not always, but in some programs (Violet, LLVM,
and Wget). Furthermore, there are only a limited number of higher-order feature
interactions. This lead us to the conclusion that we have to further analyze the
nature of feature interaction to be able to develop an automated feature-interaction
detection for black-box programs. To this end, we decided to use the existing data
we gained from the previous experiment to answer our new research questions.

• Q4: What is the distribution of feature interactions among all features?

• Q5: Do all features interact or only few?

• Q6: At which order are most of the detected feature interactions?

• Q7: Are there any reoccurring patterns recognizable that help us detecting
relevant feature interactions without the need of domain knowledge?

We defined research questions Q4 and Q5 based on our Insight 2 (there are only
few feature interactions). We wanted to know whether these few interactions are dis-
tributed among all features or only among few. Furthermore, we wanted to identify
the influence of higher-order feature interactions on non-functional properties (Q6
and Q7), because pair-wise measurement showed that there are some cases at which
determining all first-order feature interactions is not sufficient to produce accurate
predictions (Insight 1).

Again, we use the same experimental results as in the previous experiment in Sec-
tion 7.3. Our analysis gives us additional insights from which we develop heuristics
that help us detecting feature interactions without domain knowledge, which is one
of our main contributions in this thesis.
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Research Question 4: Distribution of Feature Interactions.

With research question 4, we are interested in the distribution of feature interactions.
To answer this question, we created several graphs in which we connected features
with a line for which we found a relevant feature interaction. In Figure 7.13, we show
such a graph for SQLite created with the data of the footprint experiment.5 We visu-
alize all pair-wise interactions using a line for which we determined a non-zero value.
The important part of this figure is the pattern of the edges. The picture clearly
shows that two features (SQLITE OMIT COMPLETE and SQLITE OMIT PRAMGA)
interact with many other features and that most features interact only with these
two and maybe two other features. Hence, it seems that there are features that are
more critical to the prediction of non-functional properties than others. A feature
that interacts with many other features raises the possibility of higher-order feature
interactions.

The distribution of feature interactions is, therefore, not uniform, but very concen-
trated on some spots. We call these features hot-spot features, because they interact
with many other features and form a hot spot of interactions. This graphical analysis
answers our research question:

Insight 3: The distribution of feature interactions among features of a customiz-
able program is not uniform. Instead there are few hot-spot features that interact
with many other features.

Research Question 5: Occurrence of Feature Interactions.

To answer whether all features interact or only few (research question 5), we draw
similar graphs as previously, but with a different layout. What we cannot easily
identify in Figure 7.13 becomes clear with the layout of Figure 7.14. Again, dots
represent features and lines represent pair-wise interactions. Many features do not
interact at all. In this layout, features that interact are placed towards the center
of the figure, and features that do interact are placed at the border. Again, only
the pattern is important and not the feature names. We see that a large number
of features do not interact with any other features. This means that we do not
need to determine feature-interaction terms for a large number of features, which
significantly reduces the number of measurements to provide accurate predictions.

This picture backs up our finding of the increased measurement effort of pair-wise
measurement compared to interaction-wise measurement. In Section 7.3.4, we found
that for Berkeley DB, 16 measurements would be necessary to find all interactions,
but pair-wise measurements required 37. This is because the pair-wise approach
determined the influence of feature-interaction terms of features that never interact.
Hence, an import insight, which also follows from Insight 2 and 3 (the number

5The graphs of the remaining programs look similar.
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Figure 7.13.: Distribution of pair-wise interactions of SQLite’s features (footprint
experiment).

of feature interactions is low and their distribution is not uniform), is that many
features do not interact.

Insight 4: Many features do not interact at all.

Research Question 6: Order of Feature Interactions.

The order of feature interactions has an influence on the number of variants we have
to measure to determine this interaction. Also, the order of an interaction determines
whether measurement approaches, such as pair-wise measurement, exhibit high error
rates. Hence, it is important to know how many feature interactions occur at which
order. That is, whether most of the interactions are of a higher order or only between
two features. This finding would help to detect feature interactions more efficiently,
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Figure 7.14.: A large number of features in SQLite do not interact (footprint
experiment).

because we can search for feature combinations at which relevant interactions are
more likely.

Since we do not know all interactions for all used programs, we can give only
a qualitative analysis. In eight out of nine customizable programs in the footprint
experiments and in four out of six programs in the main-memory-consumption ex-
periment, pair-wise measurement produced the highest accuracy. This means that,
at least for our experiments, in three out of four programs, first-order interactions
exist with no or only few higher-order interactions. For LLVM and Violet, we can
compare interaction-wise with pair-wise measurement regarding the order of feature
interactions. For both programs, first-order interactions had the largest number com-
pared to the number of each interaction at each individual order. Furthermore, we
observed that to each higher-order interaction, at least two first-order interactions
exist with the participating features. This leads to the following insight:
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Insight 5: Most feature interactions are first-order (pair-wise) feature interac-
tions.

Research Question 7: Patterns of Feature Interactions.

With our last research question, we want to investigate whether there are certain
patterns in the distribution of feature interactions. That is, whether there are first-
order interactions from which we can infer the existence of higher-order interactions.
If there are patterns, we can develop according heuristics to find feature interactions
with fewer measurements. We use Violet as an example, because the error rate of
below 1 % with interaction-wise measurement indicates that we actually determined
all relevant feature interactions, including higher-order interactions.
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Figure 7.15.: Measured and predicted footprint in KB of Violet using different mea-
surement approaches.

The reason for Violet’s high error rates is a complex mapping between (some)
features and implementation units. That is, an individual feature may map to mul-
tiple implementation units and a single implementation unit may be required by
multiple features. Hence, when measuring such a feature, the corresponding variant
contains several implementation units that are also present when measuring another
feature’s variant. Therefore, predicting the footprint of a variant that includes mul-
tiple features with an overlapping set of implementation units is inaccurate, because
we consider the footprint of the implementation unit multiple times. This is why we
see an upper shift in the feature-wise plot in Figure 7.15. It means that we usually
predict a too high footprint.

Predictions of pair-wise measurement are even worse, because more than two fea-
tures map to the same code. When predicting a variant containing three features, we
aggregate three times the first-order feature-interaction terms, though only two times
would be correct. If more features interact, the inaccuracy quadratically increases,
which is an interesting insight about feature interactions. That is, when there are
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multiple pair-wise interactions with the same set of features, we may account for
too many interactions. The increasing inaccuracies with an increasing usage of first-
order interaction terms in a prediction are shown as a down shift of the dots in the
pair-wise plot in Figure 7.15. This is why we predict even a negative footprint of over
1,500 KB (-1,036 % worst-case error rate). By determining higher-order interactions,
we can correct the predictions. This indicates the existence of a reoccurring pattern.

To illustrate the cause of the high error rates, we show an excerpt of Violet’s
product-line model in Figure 7.16. We observe a complex mapping between features
and implementation units. Using feature-wise measurement, we determine the influ-
ence of all feature terms on footprint (indicated with the annotated values). However,
what we actually measure is not the feature, but the corresponding implementation
units. Since several features use the same implementation units, we account for these
shared implementation units multiple times. That is, if we predict a variant with
all features (Class Diagram (CD), Object Diagram (OD), UseCase Diagram (UD),
and State Diagram (SD)), we sum up four times the size of Diagram Module, three
times the size of Window, and two times the size of I/O Operations.

Violet

Class 
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UseCase 
Diagram

Object 
Diagram

State 
Diagram

ObjectDiag
Impl.

Diagram Module

Footprint: 630 KBFootprint: 565 KB Footprint: 455 KBFootprint: 595 KB

UseCaseDiag
Impl.

StateDiag
Impl.

ClassDiag
Impl.

Window I/O Operations

Figure 7.16.: Partial product-line model of Violet including the mapping between
features and implementation units.

To make this problem clear, we show a table that lists all determined feature and
feature-interaction terms using pair-wise measurement:

Feature Terms ΠF in KB Interaction Terms ΠF in KB
CD 595 CD#OD -415
OD 630 CD#UD -415
UD 565 CD#SD -205
SD 455 OD#UD -415
– – OD#SD -325
– – UD#SD -205

In this table, we see that all feature terms have a positive footprint, because selecting
a single feature causes the compilation of multiple implementation units. We also
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see that all pair-wise interactions have a negative footprint. The reason is that,
when we determine the size of a pair-wise interaction, we measure a variant with
two features and compare it against the prediction, which accounts for the size of
several implementation units twice. For example, when we want to determine feature
interaction CD#OD , we measure a variant with features CD and OD and compare
it to the corresponding prediction:

ΠF (CD#OD = ΠF (CD ×OD)−ΠF (CD)−ΠF (OD)

= 810 KB − 595 KB − 630 KB

= −415 KB

The value of - 415 KB is exactly the size of the shared implementation units by the
two features, i.e., ΠF (τ(CD ·OD)). All other pair-wise interactions are determined
similarly. The problem is that, when we want to predict a program with more than
two features, we include too many pair-wise interactions, leading to a too high
subtraction. For example, if we predict a program P that contains all features, we
obtain the following false prediction:

ΠF (P ) = ΠF (CD ×OD ×UD × SD)

= ΠF (CD) + ΠF (OD) + ΠF (UD) + ΠF (SD) +

ΠF (CD#UD) + ΠF (CD#OD) + ΠF (CD#SD) +

ΠF (OD#UD) + ΠF (OD#SD) + ΠF (UD#SD)

= 595 KB + 630 KB + 565 KB + 455 KB −
415 KB − 415 KB − 205 KB − 415 KB − 325 KB − 205 KB

= 265 KB

We obtain a result that is smaller than the minimal measured variant. This ex-
ample shows that by omitting higher-order interaction terms (e.g., CD#OD#UD),
we get false predictions. Hence, we have to consider also higher-order feature inter-
actions to achieve accurate predictions. This is especially the case when multiple
pair-wise interactions exist with an overlapping set of features.

From this insight, we observe the following pattern: If multiple features use the
same resource (e.g., implementation unit, CPU, memory, and data), they all interact
pair-wise, because each of these features influence the other features. Moreover, when
having these first-order interactions, also the combination of more than two features
influences non-functional properties. Hence, based on the first-order interactions, we
have to determine higher-order interactions. We can, therefore, infer which higher-
order features must be additionally determined.

We visualize the identified pattern in Figure 7.17. Here, four features use the
same resource (e.g., a component). Hence, all features interact with each other as
denoted with the dotted lines. Moreover, when selecting three or more features, again
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the predicted outcome changes, because either we have included too many first-
order interactions (as in the example of Violet) or the combination of these features
unexpectedly changed the non-functional property. Hence, we must determine, in
addition to the six first-order interactions, also four second-order and one third-
order interaction.
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Figure 7.17.: Pattern of the occurrence of non-functional feature interactions. Or-
ange: first-order interactions; blue: second-order interactions; yellow:
third-order interaction.

We define the following recursive pattern: If two of these three interactions {a#b,
b#c, a#c} are non-zero, then we expect that also the interaction a#b#c is non-zero,
i.e., has an influence on a non-functional property. Recursively, if two of these three
interactions {a#b#c, a#c#d, b#c#d} are non-zero, then we expect that also the
interaction a#b#c#d is non-zero and so on. This pattern can even connect multiple
interaction “bulks”. That is, when we have two groups of features that both use
their own resource (i.e., twice the circle of Figure 7.17), but in which at least one
feature depends on both resources (e.g., a hot-spot features), we can determine a
higher-order interaction that includes features of both groups. Also note that this
pattern does not require any source code or domain knowledge. It needs only to
know which feature interactions are non-zero. Hence, it is applicable for black-box
programs.
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Insight 6: Feature interactions can occur in patterns when multiple features access
or use the same resource. This pattern suggests how feature interactions distribute
to higher orders.

7.5. Extended Problem Statement

From the previous evaluation and analysis, we obtain six important insights that are
relevant not only for a new feature-interaction-detection approach, but also for the
whole feature-interaction research community. That is, we produced empirical data
giving new indications regarding the distribution of non-functional feature interac-
tions for the first time. Based on these results, we again extend our requirements:

• (R1) Accurate predictions of non-functional properties.

• (R2) Black-box approach.

• (R3) Determining the influence of individual features on non-functional prop-
erties.

• (R4) Efficient detection of feature interactions.

• (R5) Identifying interacting and non-interacting features.

• (R6) Identifying hot-spot features.

• (R7) Infer higher-order from detected first-order feature interactions.

The new requirements (R5-R7) are based on our findings. We expect that an ac-
curate, efficient, and general applicable prediction approach has to meet all these
requirements. In the next chapter, we propose an approach that incorporates these
requirements and evaluate it for the non-functional property performance – a prop-
erty for which we observed the highest error rates with feature-wise measurement.

7.6. Summary

We introduced feature interaction in this chapter. We explained how to measure
feature interactions to compute feature-interaction terms for our prediction model.
We outlined different causes of feature interactions (e.g., shared resources) and dis-
cussed different orders of interactions. We proposed two approaches of identifying
interactions: interaction-wise and pair-wise measurement.

For interaction-wise measurement, we use domain knowledge or program analysis
to manually identify feature combinations that may cause feature interactions. For
pair-wise measurement, we assume that each pair of feature interacts and measure
the corresponding feature combination to quantify the influence of these interactions.
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• Insight 1: The number of higher-order feature interactions vary between cus-
tomizable programs.

• Insight 2: The number of relevant feature interactions is low (below quadratic).
• Insight 3: The distribution of feature interactions among features of a customiz-

able program is not uniform. Instead there are few hot-spot features that interact
with many other features.

• Insight 4: Many features do not interact at all.
• Insight 5: Most feature interactions are first-order (pair-wise) feature interac-

tions.
• Insight 6: Feature interactions can occur in patterns when multiple features ac-

cess or use the same resource. This pattern describes how feature interactions
distribute to higher orders.

Figure 7.18.: Insights regarding the nature of feature interactions.

We evaluated both approaches with the non-functional properties main-memory
consumption and footprint. We used the same programs as for feature-wise mea-
surement to foster comparison the different approaches in terms of accuracy and
measurement effort. The results are: Interaction-wise measurement has an average
accuracy of 99.9 % for footprint. Pair-wise measurement has an average accuracy of
99.8 % for footprint and 99.1 % for main-memory consumption, when no higher-order
interactions are present. In the presence of higher-order interactions, the accuracy
drops to 20 % (footprint) and 89 % (main-memory consumption), on average. This
low accuracy is, however, predominated by few programs with overproportionally
high error rates. We discussed the results and extended our problem statement, such
that we need an automated feature-interaction detection to achieve always good pre-
dictions with few measurements and to be applicable for black-box programs. We
present the key insights of our evaluation in Figure 7.18.

We use our observations to develop an automated feature-interaction detection,
which we present next.
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8. Automated Feature-Interaction
Detection

This chapter shares material with the following paper:

• ”Predicting Performance via Automated Feature-Interaction Detection.” in ICSE’12 [Sieg-
mund et al., 2012a],

Based on the additional requirements that we specified in the previous chapter, we
propose an automated feature-interaction detection approach. Our approach satisfies
all thesis goals:

• Quantification of the influence of features on non-functional properties,
• Detection of feature interactions,
• Black-box approach without the need of domain knowledge or source code,
• Scalable measurement effort using heuristics instead of an exhaustive search,

and
• Precise predictions, which we validate in an evaluation using performance.

8.1. Introducing Deltas

In the following, we introduce the concept of deltas. Deltas integrate in our prediction
model in such a way that they comprise multiple terms into a single value. That
is, a delta represents the influence of a feature and/or multiple feature interactions
on a non-functional property. Unlike feature-wise measurement and the preceding
interaction-detection approaches, deltas have the following benefits:

1. Deltas are independent of the relationships in a feature model (i.e., there are
no special cases).

2. Deltas document with which configuration a feature was measured and there-
fore its influence determined.

3. Deltas comprise multiple terms into a single value to reduce computation effort.

The evaluation of pair-wise measurement in the previous chapter showed that we
cannot measure in a brute-force fashion all n-wise interactions, because this does not
scale. The question is: Which terms do we have to determine? From Equation 4.9,
we know that a variant of n features yields an exponential number of terms (see
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Recap: Equations of the Prediction Model (see Section 4.2):

Π(P ) = Π(a× b× c)

= Π(a · b · c · a#b · a#c · b#c · a#b#c)

= Π(a) + Π(b) + Π(c) + Π(a#b) + Π(a#c) + Π(b#c) + Π(a#b#c) (4.9)

Figure 8.1.: Recap: Selecting three features requires the approximation of seven
terms.

Figure 8.1). We cannot compute or measure a value for each term, as this is infeasible
for anything beyond programs with few features.

Furthermore, our prediction model in Equation 4.9 assumes that we can measure
each feature in isolation. This is not always possible (as we have already shown in
Chapter 6 for feature-wise measurement). We avoid both problems (i.e., exponential
number of terms and individual measurement of terms) by composing multiple terms
that cannot be separately measured as a single term, called a delta. Given a base
configuration C, we compute the impact of a feature a on C’s non-functional property
as the property delta induced by feature a:

∆(a,C) = Π(a× C)−Π(C) (8.1)

Using Equations 8.1 and 4.9, we can describe the terms that a delta comprises as
follows:

∆(a,C) = Π(a× C)−Π(C) // (8.1)

= Π(a#C) + Π(a) + Π(C)−Π(C) // (4.1)

= Π(a#C) + Π(a) (8.2)

That is, ∆(a,C) is the contribution of a on a non-functional property by itself plus
the contributions of a’s interaction with all terms in C on a non-functional property.
If C is the empty set, then ∆(a,C) = Π(a), which means that a’s delta maps directly
to the term of a. Furthermore, if C is a variant of i features, ∆(a,C) is a sum of
O(2i) terms. This is the key to handle the exponential number of interaction terms
and a key difference to our previous approaches.

Another benefit of the previous definition is that it is independent of the re-
lationships in a feature model. We can use a satisfiability solver to compute the
corresponding configurations and determine all according deltas. Hence, we increase
generality. As we demonstrate in our evaluation (Section 8.4), knowing ∆(a,C) for
some C is often sufficient to accurately predict non-functional properties of pro-
grams that include a. We do not need to assign values to each of ∆(a,C)’s terms;
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we measure only two variants of 8.1 instead of 2i terms. Herein lies the key to the
efficiency and practicality of our approach.

8.2. Determining Deltas

In the following, we describe our approach to compute each feature’s delta. First,
we present the general approach and continue with a step-by-step description using
a concrete example.

To determine the delta of feature a, we need two measurements: Π(a × C) and
Π(C). By adding a to C, we add the behavior and influence of this feature to
the variant. Importantly, this delta is only valid (or accurate) for the given base
configuration. If C changes to C ′, then the influence of a on C ′ may change, too,
resulting in a different delta value. Reasons for this change are feature interactions,
which we discuss later in this chapter.

Determining the Base Configuration. We purposefully made a delta dependent on
the base configuration. This way, we can determine how many terms are comprised to
a single delta. That is, by increasing the number of features in the base configuration,
we also increase the number of interaction terms that a delta comprises (see Π(a#C)
in Equation 8.2). To determine the influence of a feature, we aim at excluding as
many interaction terms as possible from C. The intention is that we want to measure
only the influence of feature a and not how feature a works together with other
features. Hence, by minimizing C, we minimize the number of interaction terms
a#C that affect the computation of ∆(a,C). The general concept is as follows: For
each feature a, we find a minimal configuration min(a) that has a minimal number
of features and does not contain a. The goal is to introduce feature a in the second
configuration and to minimize the number of selected features. We define a minimal
configuration as follows:

Definition 4. Minimal Configuration: Let min(a) and a×min(a) be two valid con-
figurations, such that (i) min(a) does not contain a and (ii) min(a) is a minimal set
of features that could be composed with a. We call min(a) a minimal configuration.

With constraints between features, in principle, there can be multiple minimal
configurations (for example, in the presence of mutually exclusive features). In this
case, we use the minimal configuration that includes features of the initial feature
set (cf. Section 6.1.1). Furthermore, we admit the empty or null program as a mini-
mal configuration when determining non-functional properties of a root feature. We
determine each feature’s delta as:

∆(a,min(a)) = Π(a×min(a)) − Π(min(a))
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Example: A Customizable DBMS. Consider the feature model in Figure 8.2, which
has five features. The minimal valid configurations for all features are:

Feature min()
b ∅
i b
t b
e b
d b× e

We need only five measurements to determine the influence of each feature (all values
in our example are measured in transactions per second):

∆Perf (b,min(b)) = ΠPerf (b)− 0 = 100

∆Perf (i,min(i)) = ΠPerf (b× i)−ΠPerf (b) = 15

∆Perf (t,min(t)) = ΠPerf (b× t)−ΠPerf (b) = −10

∆Perf (e,min(e)) = ΠPerf (b× e)−ΠPerf (b) = −20

∆Perf (d,min(d)) = ΠPerf (b× e× d)−ΠPerf (b× e) = −10

To predict performance of a configuration, we simply add the deltas of all relevant
features. For example, for configuration b × t × i, we predict ∆Perf (b,min(b)) +
∆Perf (t,min(t)) + ∆Perf (i,min(i)) = 100 − 10 + 15 = 105. This is in line with our
prediction model, because if we expand the deltas, we yield the following equation:

ΠPerf (b× t× i) = ∆Perf (b,min(b)) + ∆Perf (t,min(t)) + ∆Perf (i,min(i))

= ΠPerf (b) + ΠPerf (b#min(b)) + ΠPerf (t) + ΠPerf (t#min(t))

ΠPerf (i) + ΠPerf (i#min(i))

= ΠPerf (b) + ΠPerf (t) + ΠPerf (i) + ΠPerf (t#b) + ΠPerf (i#b)

Without considering feature interactions explicitly, the above equation is correct and
even accounts for two feature-interaction terms implicitly.

Feature Interactions and Deltas. Unfortunately, this prediction scheme can be-
come inaccurate. When measuring a feature’s delta, we might obtain very different
results when using different base configurations. Consider Figure 8.2b, which com-
putes the delta for feature t with a different base configuration. Our first value,
computed above, was ∆Perf (t,min(t)) = −10, whereas the newly computed value is
∆Perf (t, {b× i}) = −5. Consequently, predictions for the same configuration b× t× i
will differ when using ∆Perf (t,min(t)) (105) or ∆Perf (t, {b × i}) (110). The differ-
ence is due to feature interactions. We clarify the difference between both deltas by
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Figure 8.2.: Measuring deltas for features and interactions. We omitted the subscript
”Perf ”, because of space constraints.

mapping all known terms (i.e., quantified by the deltas) to our prediction model.
All remaining terms are set to zero and, thus, omitted in the equations below.

First, lets have a look at the prediction model for the configuration b× t× i:

ΠPerf (b× t× i) = ΠPerf (b) + ΠPerf (t) + ΠPerf (i) + ΠPerf (b#t) + ΠPerf (b#i) +

ΠPerf (t#i) + ΠPerf (b#t#i)

We consider all terms that may affect the non-functional properties of the variant
with features a, b, and c. However, when using the deltas of Figure 8.2a, we have
determined only a subset of all terms. There are terms for which we have no knowl-
edge about how they influence non-functional properties. In particular, we have no
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knowledge about the terms ΠPerf (t#i) and ΠPerf (b#t#i) and, therefore, set them
to zero. Hence, we build the following prediction model:

ΠPerf (b× t× i) = ∆Perf (b,min(b)) + ∆Perf (t,min(t)) + ∆Perf (i,min(i))

= ΠPerf (b) + ΠPerf (t) + ΠPerf (i) + ΠPerf (t#b) + ΠPerf (i#b)

Considering the delta of feature t in Figure 8.2b with a different base configuration,
we obtain a different prediction model:

ΠPerf (b× t× i) = ∆Perf (b,min(b)) + ∆Perf (t, {b× i}) + ∆Perf (i,min(i))

= ΠPerf (b) + ΠPerf (t) + ΠPerf (i) + ΠPerf (i#b) +

ΠPerf (t#b) + ΠPerf (t#i) + ΠPerf (t#b#i)

We highlight the differences between both deltas for feature t with the color red in
the above equation. We can see that the delta in the second variant expands to two
additional feature-interaction terms: ΠPerf (t#i) and ΠPerf (t#b#i). If only one of
these terms is not zero, we measure a different delta, which we actually do in our
example. Hence, by changing the base configuration of a delta, we can influence the
number of determined interaction terms. Detecting and quantifying the influence
of interactions allows us to overcome the differences among different deltas leading
to consistent predictions. The question is: Which features interact that cause this
discrepancy?

If we know that two features interact, we can improve our prediction by deter-
mining the influence of their interaction on a non-functional property. Our approach
is to compare our prediction against the measurement of a variant. In our predic-
tion, we do not know the influence of a feature interaction, whereas the measured
value contains the interaction’s influence. If we want to determine the influence of
interaction a#b on a non-functional property, we build the following equation:

Π(a#b) = Πmeasured (a× b)−Πpredicted (a× b)
= Π(a) + Π(b) + Π(a#b)−Π(a)−Π(b)− 0

= Π(a#b)

In our prediction, we do not know the value of the term Π(a#b) and must set it
to zero. Since we already determined the influences of features a and b in isolation
(i.e., Π(a) and Π(b)), the only term that differs is Π(a#b).

Similar to features, we can express interactions also in terms of deltas, because
also interactions can be determined with different base configurations. This is impor-
tant, because, in practice, we cannot generate for each interaction term an exactly
corresponding variant. Consider the interaction i#t of Figure 8.2c. To determine its
influence, we cannot generate a variant that includes only features i and t. Instead,
we always have to include also feature b. However, this means that we do not de-
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termine ΠPerf (i#t) solely, but also ΠPerf (b#i#t). We clarify this in the following
equation:1

Π(b× i× t)−∆(b, ∅)−∆(i, b)−∆(t, b) = Π(b) + Π(i) + Π(t) + Π(b#i) +

Π(b#t) + Π(t#i) + Π(b#t#i)−
Π(b)−Π(i)−Π(t)−Π(b#i)−Π(b#t)

= Π(t#i) + Π(b#t#i)

= ∆(t#i,min(t#i))

Rather than determine the interaction term Π(t#i), we determine the delta between
predicted and measured variant, in which the interaction term is present. Hence, we
write ∆(t#i,min(t#i)), in which min(t#i) represents the base configuration that
has the minimal number of features and includes the interaction term t#i. Again,
by changing the base configuration, we influence the number of interaction terms
that a delta comprises.

In Figure 8.2c, we illustrate such a measurement and prediction for interaction
i#t. Knowing the interaction’s delta improves our predictions: in our example, it
patches the value of ∆(t,min(t)). For higher-order interactions, we proceed in a
similar way. The challenge is how to find interactions that actually contribute to
a non-functional property out of an exponential number of potential interactions.
To solve this problem, we use the insights we gained in the previous chapter when
analyzing the evaluation of interaction-wise and pair-wise measurement. Based on
these insights, we define how to detect relevant feature interactions for black-box
programs.

8.3. Feature-Interaction Detection

Our goal is to identify feature interactions automatically using a small number of
measurements. To this end, we specified seven requirements that an accurate pre-
diction approach has to satisfy (see Figure 8.3). Our approach consists of two steps:
(1) identifying features that participate in relevant interactions (called interacting
features) and (2) finding minimal combinations of interacting features that actu-
ally cause a feature interaction. We use the setting from Figure 8.2 as our running
example.

8.3.1. Detecting Interacting Features

Our first step is to identify features that interact. One of the insights of our previous
evaluation is that only few features interact. By finding these features, we reduce
our search space, which separates this approach from pair-wise measurement of

1We omit the subscript Perf for space reasons.
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• (R1) Accurate predictions of non-functional properties.
• (R2) Black-box approach.
• (R3) Determining the influence of individual features on non-functional proper-

ties.
• (R4) Efficient detection of feature interactions.
• (R5) Identifying interacting and non-interacting features.
• (R6) Identifying hot-spot features.
• (R7) Infer higher-order from detected first-order feature interactions.

Figure 8.3.: Recap: Specified requirements for a prediction approach that satisfy the
thesis goals.

the previous chapter. For example, suppose a program has 16 features, in which
4 features interact, the rest do not. We have to look only at 24 = 16 instead of
216 = 65536 configurations to detect interactions (or 162 = 256 configurations for
pair-wise measurement). In the evaluation of pair-wise measurement in the previous
chapter, we identified for SQLite that from 88 features, only 54 features interact (cf.
Section 7.3). Hence, we satisfy our requirement R5.

In the presence of interacting features, the delta for a feature a differs depending
on which base configurations it was measured with. We say a is not an interacting
feature if ∆(a,C) is the same for all possible base configurations C (within some
measurement accuracy). Conversely, if ∆(a,C) changes with different configurations
of C, we know that a is interacting. We express this as:

a interacts ⇔ ∃ C, D | C 6= D ∧ ∆(a,C) 6= ∆(a,D)

To avoid measuring ∆(a,C) for a potentially exponential number of configurations
of C, we use a heuristic. We determine the deltas of a that are most likely to differ,
because it is affected by the largest number of feature interactions: We compare
∆(a,min(a)), the delta for the minimal configuration, with ∆(a,max(a)), a delta
for a configuration with the most features selected.2 That is, we specify a maximal
configuration that maximizes the number of features:

Definition 5. Maximal Configuration: Let max(a) and a ×max(a) be two valid
configurations, such that (i) max(a) does not contain a and (ii) max(a) is a maximal
set of features that can be composed with a.3 We call max(a) a maximal configura-
tion.

2We allow the empty set as a valid configuration. This is necessary to create a maximal configu-
ration for mandatory features. Furthermore, some constraints result in the presence of multiple
maximal configurations. In this case, we have to check against all of them.

3This may be not unique. That is, there might be several maximal set of features. In this situation,
we have to measure multiple maximum configurations.
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∆(a,max(a)) is, therefore, defined as:

∆(a,max(a)) = Π(a×max(a)) − Π(max(a))

The rationale of determining max(a) is that it maximizes the number of features
that could interact with a. Consequently, if ∆(a,min(a)) and ∆(a,max(a)) are
similar, then a does not interact with the features that are present in max(a), but
not in min(a). Otherwise, a interacts with those features (we do not know yet
with which features and to what extent). Thus, with at most four measurements
per feature (two for ∆(a,min(a)) using Π(a × min(a)) and Π(min(a)), and two
for ∆(a,max(a)) using Π(a × max(a)) and Π(max(a))), we discover interacting
features.4

In our running example, we determine the following maximal configurations and
assume the following corresponding measurements:5

Feature max() ΠPerf (max())
i b × t × e × d 60
t b × i × e × d 85
e b × i × t 110
d b × i × t × e 90

Note max(e) does not include d, as d requires e for a valid configuration (cf. Fig-
ure 8.2). With these additional measurements, we compute the additional deltas as
follows with six measurements:

∆Perf (i,max (i)) = ΠPerf (i×max(i))−ΠPerf (max(i)) = 20

∆Perf (t,max (t)) = ΠPerf (t×max(t))−ΠPerf (max(t)) = −5

∆Perf (e,max (e)) = ΠPerf (e×max(e))−ΠPerf (max(e)) = −20

∆Perf (d,max (d)) = ΠPerf (d×max(d))−ΠPerf (max(d)) = −10

We conclude that features i and t are interacting:

∆Perf (i,min(i)) 6= ∆Perf (i,max (i)) since 15 6= 20

∆Perf (t,min(t)) 6= ∆Perf (t,max (t)) since − 10 6= −5

∆Perf (e,min(e)) = ∆Perf (e,max (e)) since − 20 = −20

∆Perf (d,min(d)) = ∆Perf (d,max (d)) since − 10 = −10

4Of course, there is an obvious situation that we cannot detect: when two interactions cancel each
other (e.g., one has influence +4 and another one −4), we will not detect them. We have no
evidence that this situation is common, but we are aware of its existence.

5 Surprisingly, max(b) is an empty configuration, because feature b is mandatory; the only valid
configuration without feature b is the empty set.
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We know that feature i interacts with a feature in the set max(i)\min(i).6 From
these candidate features, we can exclude features b, e, and d, because their deltas do
not change. Feature t remains the only candidate for interaction. The same conclu-
sion would have been reached had we analyzed feature t (concluding feature i is the
only possible interaction candidate). In this way, we found the feature combination
that causes an interaction. Note that if we find more than two interacting features,
we have no information which feature combination causes an interaction. Finding
these feature combinations is the goal of the next step. Again, we use our insights
of the previous chapter to accomplish the goal.

8.3.2. Identifying Feature Combinations Causing Interactions

After detecting all interacting features, we have to find the specific, valid combi-
nations that actually have an influence on a non-functional property. Suppose we
know that features a, b, and c are interacting. We have to identify which of the fol-
lowing interactions have an influence on a non-functional property: a#b, a#c, b#c,
or a#b#c. Again, we do not want to measure all combinations (whose number is
exponential in the number of interacting features).

At this point, our other findings of the previous experiment become important. We
identified that (a) most of the interactions are first-order interactions, (b) there are
patterns from which we can infer higher-order feature interactions based on detected
first-order interactions, and (c) there can be hot-spot features (cf. Section 7.4). To
this end, we developed three heuristics. Each makes an assumption under which it
can detect interactions (thus, improving prediction accuracy) with few additional
measurements. That this, the more of our heuristics we use, the more measurements
we need, but the more interactions we detect. This way, we attempt to detect all
relevant interactions without measuring all configurations. Again, our heuristics are
based on the experience we gained during the analysis of feature interactions in the
last chapter. We further backed up our assumptions with findings of related research
regarding the occurrence of functional feature interactions [Liebig et al., 2010] and
coupling of feature code [Apel and Beyer, 2011].

Note that our heuristics are based on each other. That is, the second heuristic
requires the detected feature interactions as a result of applying the first heuristic.
Hence, we consecutively apply our heuristics to a customizable program. We explore
in our evaluation whether our heuristics actually reduce measurement effort and
improve accuracy of our predictions.

Auxiliary – Implication Graph. In all three heuristics, we reason about feature
chains in an implication graph. An implication graph is a graph in which nodes
represent features and directed edges denote implications between features. Using

6max(i)\min(i) = A−B in set algebra.
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implications, we conclude that ∆(a,min(a)) always includes the influence of all in-
teractions with features implied by a (i.e., all features in a’s implication chain). For
example, if feature a always requires the presence of feature b, then we have implic-
itly quantified the influence of interaction a#b when computing ∆(a,min(a)). This
mechanism reduces computation effort in all heuristics, especially for hierarchically-
deep feature models and for feature models with many constraints. We describe the
concept of the implication graph in Section 8.3.3 in detail.

Heuristic 1 – Pair-Wise Interactions (PW). Based on Insight 5 in Section 7.4,
we assume that pair-wise (or first-order) interactions are the most common form of
non-functional feature interactions.

In addition to our analysis, we justify this assumption as follows: Related research
often uses a similar approach. The software-test community often uses pair-wise
testing to verify the correctness of programs [Cohen et al., 1996, Tai and Lei, 2002].
Pair-wise testing was also applied successfully to test feature interactions in the
communication domain [Williams, 2000] and to find bugs in product-line config-
urations [Oster et al., 2010]. Furthermore, analysis of variability in 40 large-scale
programs showed that functional interactions (i.e., nested #ifdefs) occur mostly
between two features [Liebig et al., 2010]; although functional interactions do not
necessarily cause non-functional feature interactions, we assume that this distribu-
tion also holds for most non-functional properties, because the additional code may
have some affect.

Within the set of interacting features, we use this heuristic to locate pair-wise
interactions first (as they are the most common). We search for higher-order inter-
actions with the remaining heuristics.

Heuristic 2 – Composition of Higher-Order Interactions (HO). Based on Insight
6, we assume that second-order feature interactions (i.e., interactions among three
features) can be predicted by analyzing already detected pair-wise interactions.

In our analysis, we found the following pattern: If two of these three interactions
{a#b, b#c, a#c} are non-zero, then also the interaction a#b#c is non-zero, i.e., has
an influence on a non-functional property. The rationale is, if three features interact
pair wise in any combination, they likely also participate in a triple-wise (second-
order) interaction. For example, if both a#b and b#c allocate 1 GB RAM, then it is
likely that there is an interaction a#b#c that results in a lower performance (because
2 GB RAM was allocated). Although we could analyze this phenomenon only for
the footprint experiment, a different footprint may also indicate a possible impact
on other non-functional properties, such as performance and energy consumption,
because either functionality is added (increased footprint) or is removed (decreased
footprint). This added or removed functionality can cause deviations in observed
non-functional properties.
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We do not consider other higher-order interactions for this heuristic to save a
huge number of measurements, although this is possible, because we found that this
pattern propagates to higher interactions. Thus, we might miss some interactions in
attempt to balance measurement effort and accuracy.

Heuristic 3 – Hot-Spot Features (HS). Finally, based on Insight 4, we assume
the existence of hot-spot features. We identified that there are usually few features
that interact with many features and there are many features that interact only
with few features. High coupling between features or many dependencies can impact
the non-functional properties of the whole system, because both features strongly
interact with each other at the implementation level.

In the previous chapter, we found that footprint feature interactions do not
normally distribute over all features in a customizable program. Instead, there
are hot-spot features that interact with (nearly) all other features. For example,
the Linux kernel feature CC Optimize For Size interacts with all other features.
That is, it changes the size of all other Linux modules. Similarly, SQLite’s feature
SQL OMIT COMPLETE interacts with many other features (cf. Figure 7.13).

Recent studies about module coupling and feature cohesion back up our assump-
tion [Apel and Beyer, 2011, Taube-Schock et al., 2011]. Features and modules are
often coupled in a scale-free graph. In a scale-free graph, links l (or dependencies)
of modules follow a power-law distribution. This means that the probability P (l)
of linking to a given node is proportional to the number of existing links that the
node has and the scaling exponent γ [Barabási et al., 1999]: P (l) ∼ l−y. High cou-
pling between features or many dependencies can impact the performance of the
whole system, because both features strongly interact with each other at the imple-
mentation level. Since we confirmed this assumption not only on functional feature
interactions, but also on non-functional feature interactions of the type footprint,
we assume that this holds for many non-functional properties, such as performance.

Using this heuristic, we perform additional measurements to locate interactions
of hot-spot features with other interacting features. Specifically, we attempt to lo-
cate second and third-order interactions for hot-spot features, because they seem
to represent a non-functional property-critical functionality in a program. We do
not identify interactions with an order higher than three, because this increases
measurement effort substantially.

8.3.3. Realization

So far, we described a general approach to (1) detect interacting features and (2)
to find feature combinations that cause interactions. Next, we detail how we imple-
mented these techniques and heuristics in our tool SPL Conqueror.
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As an underlying data structure, we use an implication graph, as described ear-
lier. We can easily generate this graph from a feature model using a satisfiability
solver [She et al., 2011]. To locate pair-wise interactions (PW heuristic), we con-
sider only pair-wise interactions between interacting features of different implication
chains. We do not need to determine interactions of features belonging to the same
implication chain, because the interaction is already included in the delta of the
feature that is closer to the end of the chain. Consider the implication graph in
Figure 8.4, when measuring the delta of feature F4 with min(F4), then min(F4)
already contains features F1, F2, and F3, because we cannot derive a valid configu-
ration without these features to measure Π(F4)×min(F4). Hence, ∆(F4,min(F4))
has the following terms: Π(F4)+Π(F1#F4)+Π(F2#F4)+Π(F3#F4). We comprised
the last three terms as F4#min(F4) in our delta definition (cf. Equation 8.2). Hence,
this concept is a further optimization to reduce measurements compared to pair-wise
measurement.

The order of the measurements is crucial. For example, in Figure 8.4, if we measure
the pair F4×F7 first, we would measure the influence not only of interaction F4#F7,
but also F1#F6. That is, ∆(F4#F5,min(F4#F5)) sums the influence of both terms.
If we would later determine ∆(F1#F6,min(F1#F6)), then we would consider the
interaction twice in our prediction model leading to inaccurate predictions. Hence,
our algorithm starts from the top of one implication chain and determines the in-
fluence of interacting features with the interacting features of another chain, also
starting from the top. Afterwards, we continue with the next chain. In our example,
the order we use to detect pair-wise interactions is F1#F6, F1#F7, F4#F6, F4#F7,
F6#F11, F7#F11,F1#F11, and F4#F11.

To identify whether two features a and b interact, we compare the measured non-
functional property Π(a × b) with the prediction of the same configuration that
includes all known feature interactions up to this time. If the result of ∆(a#b, C)
exceeds a threshold (e.g., we use the standard deviation of measurement bias as a
threshold), we record it.

Next, we search for second-order interactions among features that interact in a
pair-wise fashion (HO heuristic). Again, we perform additional measurements and
compare them to the predicted results. For example, if we noticed that F1 inter-
acts with F7 and F7 interacts with F14, we would examine whether interaction
F1#F7#F14 has an influence on a non-functional property.

Finally, we search for further second-order and third-order interactions involving
hot-spot features (HS heuristic). We count the number of interactions per feature
identified so far. Next, we compute the arithmetic mean of interactions per feature.
We classify all features that interact above the arithmetic mean as hot-spot features
(other thresholds are possible, too). With hot-spot features, we search (with the usual
mechanism: additional measurements, comparing deltas) for interactions involving
(1) a hot-spot feature, (2) a feature that already interacts with this hot-spot feature,
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Figure 8.4.: Implication chains with interacting features.

and (3) an interacting feature that does not interact in a pair-wise manner with the
hot-spot feature.

Optimization for Deep Implication Chains. We said above that the ordering mat-
ters at which we detect feature interactions – that is, why we start from the top
of an implication chain. However, for deep implication chains, it may be beneficial
to detect whether there is an interaction at all among features of two chains. For
example, there is no interaction between features of the left and right chains in
Figure 8.4. But we perform two measurements to check whether F1 interacts with
F11 and F4 interacts with F11. Consider more interacting features in both chains,
we would need a quadratical number of measurements to identify only that there is
no interaction at all. To overcome this problem, we can check whether two chains
interact depending on the length of a chain with respect to the number of interacting
features. If the prediction of a variant containing features that are located at the end
of two implication chains is correct, we assume that there is no interaction among
all features of both chains.

To determine the existence of at least one interaction in two chains is easy. Rather
than starting from the top of a chain, we measure the combination of the interacting
features that are at the bottom of two chains. That is, we measure the combination
F4 × F7, F4 × F11, and F7 × F11 to check for interactions among these chains.

Even if we detect an interaction between two chains, it can be beneficial to reduce
the combinations of interacting features that cause this interaction. We do so by
selecting interacting features at the middle of both chains and check whether there
is an interaction. If not, we have to consider only feature interactions that are below
of the chosen features. These additional checks have a complexity of O(logn), in
which n is the number of interacting features of both chains. Furthermore, these
additional measurements are not in vain. If we detect interactions between two
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chains, we reach eventually the point at which we used the feature combination for
checking whether two chains interact. We predict non-functional properties for the
corresponding variant with all identified interaction terms so far and compare it with
the already executed measurement.

8.4. Evaluation

The goal of this evaluation is to verify whether our automated feature-interaction
detection is feasible with respect to measurement effort and prediction accuracy. We
use performance for this evaluation for the several reasons. First, for performance,
we observed the highest error rates with feature-wise measurement. Hence, we con-
sider performance as a challenging property for which many (higher-order) feature
interactions exist. Second, performance is important in practice. Showing that our
approach is feasible for performance is an important contribution not only for the
research community, but also for practice. Third, our heuristics base on our findings
of the properties footprint and main-memory consumption. If we would use these
properties again for verification, we might observe only good results, because we tai-
lored our approach to these two properties. Hence, we verify these heuristic with a
new property. Finally, the measurement effort for this experiment is very high. Eval-
uating performance required over 60 days of measurement for all our customizable
programs, including the measurement of the evaluation set.

We use the same experimental setup as for feature-wise measurement (see Fig-
ure 8.5). Since we observed measurement bias for performance, we measure each
program several times. From these measurements, we compute the average per-
formance (i.e., arithmetic mean) and the standard deviation. We use the average
performance to compute the delta of a feature. We use the standard deviation to set
the threshold at which we identify a feature interaction, because we consider every
unexpected performance behavior above the measurement error as an interaction.

To rate accuracy and measurement effort, we state the following research ques-
tions:

• Q1: Do the heuristics reduce the average error rate of predictions, especially
compared to feature-wise measurement?

• Q2: What is the additional measurement effort for the different heuristics?

Again, we use the error rate as a metric to answer the first research question. We
compute an error rate of our prediction as the relative difference between predicted
and actual performance: |actual−predicted|actual ∗100 and accuracy as 1-error rate in percent.

Results. In Table 8.4, we show the results of our six case studies: For each ap-
proach, we depict the required number of measurements, the time needed for these
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Experimental setup for feature-wise measurement (see Section 6.2):

• Error rate: |actual−predicted|actual ∗ 100
• Two-step design: (i) Building prediction model with measurements and (ii) eval-

uating prediction model against whole population or randomly selected variants.
• Performance material: Berkeley DB CE, Berkeley DB JE, Apache, SQLite,

LLVM, and x264.

Figure 8.5.: Recap: Experimental setup for performance.

measurements, and the number of identified interactions. Furthermore, we show the
distribution of the error rate of our predictions with box plots. Finally, we show for
each approach the mean error rate of all predictions, including the standard devia-
tion. Again, when adding a new heuristic, we keep the previous heuristic working,
because a new heuristic requires the detected feature interactions of the previous
heuristic.

158



8.4. Evaluation

Effort Error Rate (in %)

Program Appr. Measurements Time (in h) Interactions Distribution Mean±Std Median

Berkeley CE FW 15 (0.6 %) 3 0 44.1±42.3 49.97

PW 139 (5.4 %) 23 14
●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●● ●●● ●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●● ●●●●● ●●●●●●● ●●●●●●●●●●●●● ●●●●●●●●●●●●●●●● ●●●●● ●●●●● ●●●●●●●● ●●●●●●● ●● ●●●●● ●●●●●● ●●● ●●●●●●● ●● ●● ●●● ●●●●●●●●●●●●●● ●●●●●●●●●●●● ●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●● ●●● ●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●● ●●●●● ●●●●●●● ●●●●●●●●●●●●● ●●●●●●●●●●●●●●●● ●●●●● ●●●●● ●●●●●●●● ●●●●●●● ●● ●●●●● ●●●●●● ●●● ●●●●●●● ●● ●● ●●● ●●●●●●●●●●●●●● ●●●●●●●●●●●●

3.9±5.3 2.23

HO 160 (6.3 %) 27 22
●●●●●●●●● ●●● ●●●●●●●●●● ●●●● ●●●●● ●●●● ●●●●●●●● ●●●● ●●● ●●●●●● ●●●● ●●●●●● ● ●●●●●●● ●●● ●●●●●●●●● ●● ●●● ●●● ●●●●●●●● ●●●●●●●●● ●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●● ●●● ●●●●●●●●●● ●●●● ●●●●● ●●●● ●●●●●●●● ●●●● ●●● ●●●●●● ●●●● ●●●●●● ● ●●●●●●● ●●● ●●●●●●●●● ●● ●●● ●●● ●●●●●●●● ●●●●●●●●● ●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●

2.8±3.7 0.9

HS 164 (6.4 %) 27 22
●●●●●●●●● ●●● ●●●●●●●●●● ●●●● ●●●●● ●●●● ●●●●●●●● ●●●● ●●● ●●●●●● ●●●● ●●●●●● ● ●●●●●●● ●●● ●●●●●●●●● ●● ●●● ●●● ●●●●●●●● ●●●●●●●●● ●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●● ●●● ●●●●●●●●●● ●●●● ●●●●● ●●●● ●●●●●●●● ●●●● ●●● ●●●●●● ●●●● ●●●●●● ● ●●●●●●● ●●● ●●●●●●●●● ●● ●●● ●●● ●●●●●●●● ●●●●●●●●● ●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●

2.8±3.7 0.9

BF 2 560 (100 %) 426 -

● ●

−40 −20 0 20 40

● ●

−40 −20 0 20 40

Berkeley JE FW 10 (3 %) 8.4 0 17.7±19.6 11.27

PW 48 (12 %) 40 24
●● ●●●● ●● ●●●●

8.5±9.6 5.47

HO 116 (29 %) 97 51
● ● ●●●●●●● ●●●●●●●● ● ●●●●●●● ●●●●●●●

3.8±5.7 1.41

HS 162 (40.5 %) 137 69
● ●● ●●● ●●●●● ●● ●● ●●● ● ●● ● ●●● ●●●●●● ●●●●● ●● ●●● ●●●●● ●● ●● ●●● ● ●● ● ●●● ●●●●●● ●●●●

1.7±3.5 0.57

BF 400 (100 %) 335 -

● ●

−40 −20 0 20 40

● ●

−40 −20 0 20 40

Apache FW 9 (4.7 %) 10 0
●●● ●● ●● ●●●●● ●● ●● ●●

14.9±24.8 5.88

PW 29 (15.1 %) 32 18
● ●●●●● ●● ● ●● ●●● ●●●●● ●● ● ●● ●●

7.7±11.2 5.0

HO 80 (41.7 %) 89 44
●● ●● ●●● ● ●● ●●●● ●●● ●● ●●● ● ●● ●●●● ●

11.6±22.7 3.39

HS 143 (74.5 %) 159 73
●● ●● ●●●●● ●● ●●● ●●●● ●● ● ● ●● ●●●● ●● ●● ● ● ●● ●● ●●●●● ● ●●● ●●● ●●● ●●● ●● ●● ●●● ●● ●● ● ●●●●● ●● ●●●●● ●● ●●● ●●●● ●● ● ● ●● ●●●● ●● ●● ● ● ●● ●● ●●●●● ● ●●● ●●● ●●● ●●● ●● ●● ●●● ●● ●● ● ●●●

5.3±10.8 1.21

BF 192 (100 %) 213 -

● ●

−40 −20 0 20 40

● ●

−40 −20 0 20 40

SQLite FW 26 (0 %) 2.1 0 7.8±9.2 6.9

PW 566 (0 %) 47 2
●●●●●● ●●●●●●●● ●●

9.3±12.5 6.04

HO 567 (0 %) 47 3
●●

7.1±9.1 5.79

HS 569 (0 %) 47.4 3
●●

7±9 5.75

BF 3 932 160 (100 %) ca. 327 680

● ●

−40 −20 0 20 40

● ●

−40 −20 0 20 40

LLVM FW 11 (1.1 %) 2 0 7.8±9 7.49

PW 62 (6.1 %) 12 27
● ● ●●●●●●● ●● ● ●●● ●● ● ●●●●●● ●●●●●●●●● ●●● ●●● ●●● ●●●● ●●● ●● ●● ●● ●●●●●●● ● ●●●●●●●● ●●● ●●● ●●●●●●●●●●●●● ● ●●●● ● ●●●●● ●●●●● ● ●●●●●●● ●● ● ●●● ●● ● ●●●●●● ●●●●●●●●● ●●● ●●● ●●● ●●●● ●●● ●● ●● ●● ●●●●●●● ● ●●●●●●●● ●●● ●●● ●●●●●●●●●●●●● ● ●●●● ● ●●●●● ●●●●

7.4±10.2 5.53

HO 62 (6.1 %) 12 27
● ● ●●●●●●● ●● ● ●●● ●● ● ●●●●●● ●●●●●●●●● ●●● ●●● ●●● ●●●● ●●● ●● ●● ●● ●●●●●●● ● ●●●●●●●● ●●● ●●● ●●●●●●●●●●●●● ● ●●●● ● ●●●●● ●●●●● ● ●●●●●●● ●● ● ●●● ●● ● ●●●●●● ●●●●●●●●● ●●● ●●● ●●● ●●●● ●●● ●● ●● ●● ●●●●●●● ● ●●●●●●●● ●●● ●●● ●●●●●●●●●●●●● ● ●●●● ● ●●●●● ●●●●

7.4±10.2 5.53

HS 88 (8.6 %) 17 38
●● ●●●●●● ●● ●● ●● ●● ●● ●●●● ●●●● ●●●● ●● ● ●●●● ●●●● ●●● ●●●● ●●●● ●●●● ●●●●●●●●● ●●●●●●●●● ●●● ●●● ●● ●●●● ●●●●●● ●●●●●● ●● ●● ●● ●● ●● ●●●● ●●●● ●●●● ●● ● ●●●● ●●●● ●●● ●●●● ●●●● ●●●● ●●●●●●●●● ●●●●●●●●● ●●● ●●● ●● ●●●● ●●●●

5.7±7 4.43

BF 1 024 (100 %) 202 -

● ●

−40 −20 0 20 40

● ●

−40 −20 0 20 40

x264 FW 12 (1 %) 2 0 29.6±22 29.23

PW 81 (7 %) 16 13 17.9±27.2 2.32

HO 89 (7.7 %) 17 17
● ●● ●

5.1±15.1 1.32

HS 89 (7.7 %) 17 17
● ●● ●

5.1±15.1 1.32

BF 1 152 (100 %) 224 -

● ●

−40 −20 0 20 40

● ●

−40 −20 0 20 40

Table 8.1.: Evaluation results for customizable programs; approaches (Appr.):
feature-wise (FW), pair-wise heuristic (PW), higher-order heuristic
(HO), hot-spot heuristic (HS), brute force (BF). Mean: mean error rate
of predictions, Std: standard deviation of predictions.
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8. Automated Feature-Interaction Detection

Feature-wise measurement (FW) does not use a heuristic and does not account for
feature interactions (i.e., we note the results of our first experiment; cf. Section 6.2.4).
We achieve good predictions for programs in which interactions have no substantial
influence on performance. For example, our predictions have an average error rate of
less than 8 % for all LLVM configurations. In contrast, we usually have a high error
rate (e.g., over 44 % for BerkeleyDB C version) when no interactions are considered.
The average error rate of feature-wise performance prediction is 20.3 %.

Using the pair-wise heuristic (PW) usually improves predictions significantly to
a mean error rate of 9 % (i.e., 91 % accuracy, on average), because the majority of
interactions are pair-wise, as also identified by our Insight 5 (cf. Section 7.4). The
benefit of implication chains compared to the common pair-wise measurement is that
it reduces the number of measurements. For example, we require 81 measurements
to detect first-order interactions for x264 (see Table 8.4), which is 82 less than 163,
which would be needed to measure all pairs of features.

With the higher-order (HO) heuristic, we achieve an average error rate of 6.3 %
for all case studies, which means that we predict, on average, 93.7 % of all programs
correctly. Interestingly, for LLVM, we could not find a feature combination that
satisfies our preconditions to search for higher-order interactions. It is important to
note that this heuristic usually doubles the number of measurements. For Apache,
the error rate increases, because measurement bias over the determined threshold
leads to a false detection of interactions. We detected these false positives when we
search for third-order feature interactions, as we do with the hot-spot heuristic.

Finally, the hot-spot heuristic (HS) (including the other two heuristics) decreases
error rate again to 4.6 % (an average accuracy of 95.4 %). Considering that the
measurement bias for a single measurement of the case studies Apache, LLVM, and
x264 is 5 %, for SQLite it is 7 %, and for Berkeley DB C and Java version it is 2 %,
our predictions are as accurate as the measurement error of a single measurement
(Q1).

To summarize our observations, we show the error-rate distributions using violin
plots in Figure 8.6. We see that with each additional heuristic, we reduce the error
rates of our predictions considerably. Interestingly, we observe for x264 some outliers.
Although the overwhelming majority of variants is predicted within an error rate
of about 5 %, there are still higher-order feature interactions that we do not find
with our approach. A possible reason is that we did not follow the identified pattern
of propagation of higher-order feature interactions completely, but stopped at the
order of two (to limit measurement effort). Again, these are only heuristics and not
an exhaustive measurement. We would need to measure a large number of additional
variants to reduce the error rate by some few percents. The question is, it is worth
measuring these variants and is it even possible for highly variable programs?

We believe that the results strongly suggest that the heuristics substantially im-
prove prediction accuracy with only few additional measurements. Furthermore, our
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average error rate of all variants stays within the measurement error, which means
that our predictions are nearly perfect. In addition, when investigating the median
of predictions (which is usually done in statistics), we observe that the average me-
dians over all customizable programs drop from 18.47 % tp 2.36 % for the hot-spot
heuristic. That means that half of our predictions of all programs achieve an accu-
racy of nearly 98 % by measuring only a small fraction of the programs and without
considering domain knowledge.
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Figure 8.6.: Error-rate distributions for feature-wise measurement and our three
heuristics: pair-wise, higher-order, and hot-spot.

The key findings are as follows:
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8. Automated Feature-Interaction Detection

• Predictions are nearly perfect: a error rate of 4.6 % lies within the measurement
inaccuracies of the used programs.
• Median error rates are: FW 18.46 %, PW heuristc: 4.32 %, HO heuristic 3.06 %,

and HS heuristc 2.36 %.
• Each heuristic improved prediction accuracy further. Average error rates: PW

heuristic 9 %, HO heuristic 6.3 %, and HS heuristic 4.6 %.
• Measurement effort is low for highly customizable programs: using all heuris-

tics, 0.01 % of all variants must be measured for SQLite.

8.4.1. Discussion

In the following, we discuss the influence of our heuristics regarding measurement
effort and accuracy.

Influence of Heuristics. Since all our heuristics are consecutively applied, we can
visualize the trade-off between additional measurements and error rate of predictions
as in Figure 8.7 (Q2). For each of the customizable programs, we show a diagram, in
which we compare measurement effort in percentage with respect to number of valid
configuration with error rate in percent. As expected, with an increasing number of
measurements, the error rate decreases. The results show that the relative number
of measurements differs when we want to reach the same accuracy for different
programs, but the absolute number of measurements stays low.

Interestingly, we always reach a point for which we can provide accurate predic-
tions with a relatively low number of measurements. For example, for Berkeley DB C
version, we need to measure only 5 % of all variants to reach an accuracy of 96 % on
average. Further increasing the number of measurements by applying more heuris-
tics does not make sense, because we reached already a sufficient accuracy for most
application scenarios (i.e., we are in the region of the measurement error regarding
our prediction error rate). Similarly for Apache, by measuring only 29 variants, we
can predict all 192 variants with an accuracy of over 92 % on average. A considerable
increase of measurement improves the accuracy only slightly.

We showed that the pair-wise heuristic generally improves accuracy, but also iden-
tified that it reaches not always a sufficiently high accuracy. The higher-order heuris-
tic achieves with only 8 additional measurements (0.7 % of all variants), compared
to the pair-wise heuristic, an improvement from 18 % error rate to 6 % error rate
(94 % accuracy). Further, note that we have to measure approximately 0.1 % of
all variants of SQLite, even when using all our heuristics, which demonstrates the
scalability of our approach. Hence, we see that our heuristics make the connection
between measurement effort and prediction accuracy clear, which allows us to find
for each customizable program the sweet-spot at which our approach is feasible.
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Feature‐Wise Pair‐Wise Higher‐Order Hot‐Spot

Error rate 44,10 3,90 2,80 2,80 Berkeley DB C

Measurement 0,59 5,43 6,25 6,41 BDB C

Feature‐Wise Pair‐Wise Higher‐Order Hot‐Spot
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Figure 8.7.: Comparing percentage of measurements with average error rates of pre-
dictions for each heuristic and customizable program.

Accuracy. By additionally determining feature-interaction terms, we demonstrated
that the approach is feasible and achieve an average accuracy of 95 %. That is,
our predictions are nearly perfect, because they are in the range of the observed
measurement bias for the case studies. It is important to note that we experienced
large differences in accuracy, when we changed the threshold at which a feature
interaction is detected. Having a too small threshold causes many false detections of
interactions. The error rate increases, because we sum the influence of measurement
bias instead of the influence of interactions.

We observed that we need a relatively large number of measurements when many
alternative features exist compared to independent features, because alternative fea-
tures limit the number of valid configurations significantly. For example, we can
generate only 400 configurations in Berkeley DB Java, although it has 32 features.
This number is below quadratic. Hence, already the detection of interacting features
requires a relatively high number of measurements. However, having programs with
a small number of valid configurations makes a brute-force approach feasible, which
is not our intended scenario.

163



8. Automated Feature-Interaction Detection

Threats to validity of feature-wise measurement (cf. Section 6.2.7):
Construct validity:
• Stated research questions before conducting the experiments.
• Using standard benchmarks for performance measurement rather than self-

developed.
Internal validity:
• Using 100 sample variants for SQLite.

External validity:
• Measurement of many, very different real-world programs with varying imple-

mentation techniques, languages, etc.

Figure 8.8.: Recap: Threats to validity of feature-wise measurement.

Furthermore, we do not consider performance behavior of a program indepen-
dently of the workload, which we leave for future work (see Section 9.3). We make
accurate statements for any configuration given a specific workload. That is, we ad-
dress end users who have a certain application scenario in mind, but do not know
which configuration performs best. Measurements can be performed on a live sys-
tem in a real environment, which produces more accurate predictions than standard
benchmark results in a synthetic environment, which was one of our stated goals in
Chapter 5. With a new workload, we have to repeat the measurements. We believe
that many interactions still exist, although the values of the interactions will change.
This, however, means that we may save measurements for new workloads, since we
already know which features interact.

8.4.2. Threats to Validity

The threats to validity are the same as for feature-wise measurement (see Figure 8.8).
We consider an additional external threat to validity.

External Threat to Validity. We evaluated our approach only for performance. We
selected performance, because we identified the highest error rates using feature-wise
measurement. Hence, we believe that performance is a challenging problem for an
accurate prediction. Furthermore, we consider performance as a non-functional prop-
erty that exhibits many non-functional feature interactions. Hence, an automated
feature-interaction-detection approach must find feature interactions of different or-
ders and in different distributions among all features. We showed for performance
that the findings based on footprint and main-memory-consumption experiments
hold for performance. Since it would be not fair to evaluate the heuristics for the
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same properties that we used to define, we had to chose another property to maxi-
mize internal and external validity.

8.5. Related Work

There is a large body of research on automated detection of feature interactions (e.g.,
see Nhlabatsi et al. [2008] and Calder et al. [2003a] for surveys). Many approaches
aim at detecting feature interactions at the specification level. For example, Calder
and Miller use a pair-wise measurement approach based on linear temporal logic
to detect feature interactions [Calder and Miller, 2006]. They specify the behavior
of a product line in Promela (a modeling language). Using a model checker, they
generate for each pair-wise combination a model checking run to verify whether
the defined properties are still valid. Other approaches use state charts to model
and detect feature interactions [Prehofer, 2004]. For example,Pomakis and Atlee
[1996] translate feature specifications to a reachability graph. The authors use state
transitions to detect whether a certain state is not exclusively reachable in isolation
(i.e. a feature interaction occurs).

There are approaches that provide means to detect semantic feature interactions,
i.e., feature interactions that change the functional behavior of a program. Some
use model checking techniques to find semantic feature interactions [Classen et al.,
2010, Lauenroth et al., 2009]. Apel’s work uses model-checking techniques to verify
whether semantic constraints still hold in a particular feature combination [Apel
et al., 2010b, 2011]. Other approaches aim at investigating the code base to detect
structural feature interactions. For example, Batory et al. [2011] and Liu et al. [2005]
propose to model feature interactions explicitly using algebraic theory. In contrast
to these approaches, we focus on non-functional feature interactions in a black-box
fashion.

8.6. Summary

We presented an approach to automatically detect non-functional feature interac-
tions of customizable programs. Our approach does not require any domain knowl-
edge or source code. It considers a program as a black box, in which only the input
variables are known (i.e., the configuration). Hence, we are not limited to a specific
customization technique, implementation language, or domain.

The detection has two steps: (i) detecting which features interact at all and (ii)
finding the combination of interacting features that actually cause a feature inter-
action. In the first step, we determine the influence of each feature two times. First,
we measure a minimal configuration for a feature to minimize the influence of in-
teractions on this measurement result. Second, we measure a maximal configuration
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to maximize the influence of interactions on the result. We know that a feature
interacts if the approximations of both measurements yield different results.

In the second step, we use three heuristics to find combinations of interacting
features that influence non-functional properties. The first heuristic determines be-
tween each pairs of features whether an interaction exists (pair-wise heuristic). The
higher-order heuristic bases on the identified pair-wise heuristic by measuring only
those combinations of feature interactions, in which at least one feature partici-
pates in several pair-wise interactions. The hot-spot heuristic determines whether
third-order interactions exist between interacting features and a hot-spot feature.
A hot-spot feature has an overproportional number of interactions with other fea-
tures. By counting interactions that we determined with both previous heuristics,
we identify hot-spot features.

We evaluated the three heuristics with performance using six real-world customiz-
able programs. We identified that the error rate decreases from 21.3 %, on average,
over all programs using feature-wise measurement to 5 % using all three heuristics.
We made the following observations:

• The order at which we determine feature-interaction terms matters. We need
to determine feature interactions beginning from the root of an implication
chain. Otherwise, we would account for the same feature interaction multiple
times.

• Feature terms can be composed using deltas without sacrificing prediction ac-
curacy. We showed that using deltas in combination with implication chains
reduce the number of measurements significantly for programs with deep fea-
ture models.

• We confirmed the trade-off between measurement accuracy and number of
measurements. With our heuristics, we required additional measurements, but
could improve prediction accuracy. We limited the order of interactions that
we want to determine to reduce the number of measurements.

• Non-functional feature interactions occur in some patterns. We used these
patterns to define heuristics that help finding these interactions. With our
evaluation, we could confirm the existence of these patterns as we find feature
interactions to reduce the prediction error rate significantly.

We believe that these observations may also be important for detecting other kinds
of feature interactions, such as behavior feature interactions. Hence, our research
has not only an influence on non-functional properties, but also for the feature-
interaction-detection community. This finalizes the measurement part of this thesis.

We presented means to determine the influence of individual features and different
approach to detect and quantify the impact of feature interactions on non-functional
properties. Together with Part 1 of this thesis, we enable measurement and predic-

166



8.6. Summary

tion of non-functional properties of customizable programs, such that we can com-
pute (with constraint-satisfaction-problem solver) variants that are near-optimal for
given non-functional requirements. With each evaluation and using the construc-
tive research method, we extended our problem statement, such that we defined
additional requirements that an accurate and feasible measurement and prediction
approach must satisfy. We summarize our approach:

• Accuracy: We predict performance nearly perfect with an accuracy of over
95 %, on average, which is in the rage of measurement bias.

• Measurement effort: Our heuristics required measuring less than 1 % of variants
of SQLite and requires few measurements for the other programs in absolute
numbers.

• Black box: Our approach does not require any domain knowledge or source
code.

Hence, we conclude that our automated feature-interaction-detection approach pre-
sented in this chapter satisfies all thesis goals and all requirements.
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9. Concluding Remarks and Future Work

We summarize the results of the thesis in general and each chapter in detail. Sub-
sequently, we state our contributions to the research community and to real-world
applications. We conclude with an outline of current and future research directions.

9.1. Conclusion

We developed an approach that allows software developers to predict measurable
non-functional properties, such as performance, footprint, and main-memory con-
sumption of feature-customizable programs. We considered a broad range of cus-
tomization techniques, such as automated generation using software product line
engineering, command-line parameters, and configuration files.

To yield a tailor-made program of a customizable program (called a variant),
users select customization options (called features) that satisfy their requirements.
Although qualitative estimations about some features of a program may be possible
(e.g., a hash index is often faster than a list), it is often not possible without a mea-
surement to quantify the influence of a certain feature on non-functional properties.
This quantification is, however, often required when a variant needs to fulfill guar-
antees (e.g., performance guarantees) or strict constraints (e.g., resource limitations
of embedded systems) regarding non-functional properties. The benefit of customiz-
able programs (i.e., providing many customization options for tailoring) becomes a
drawback when users want to know which is the best variant for their requirements,
because we observe an exponential explosion of the variant space: Each optional
and independent feature doubles the number of variants, and already 265 optional
features yield more variants than estimated number of atoms in the universe. Hence,
a brute-force approach to measure non-functional properties is infeasible (cf. Chap-
ter 3).

To overcome the scalability problem of measuring an exponential number of vari-
ants, we proposed to predict rather than measure a variant’s non-functional prop-
erties (cf. Chapter 4). To this end, we presented a prediction model derived from a
feature-composition models that allows us to determine which features and feature
combinations have to be measured to predict a variant’s non-functional properties.
In Chapter 5, we reviewed and compared alternative measurement strategies to mea-
sure the influence of features and feature combinations on non-functional properties.



9. Concluding Remarks and Future Work

We found that our approach of feature-wise measurement satisfies our goals of: (i)
reduced measurement effort, (ii) high prediction accuracy, (iii) large applicability
(by supporting black-box programs), (iv) large generality (by supporting all mea-
surable non-functional properties), and (v) support for measurements in realistic
environments.

In Chapter 6, we described feature-wise measurement in detail. We generate two
variants per feature (one with the feature and one without) and interpret the delta
(or difference) of the measured properties of these variants as the influence of the cor-
responding feature. To predict a variant’s non-functional properties, we aggregate
(i.e., add, max, min, mean, etc.) the influences of all selected features. Further-
more, our approach considers all programs as black boxes. Hence, measurement and
predictions are independent from certain programming languages, implementation
techniques, customization mechanisms, application domains, and so on.

This simple approach is the key to manage a huge configuration space. Although
this approach exhibits already a good prediction accuracy (e.g., an average accuracy
of 94.5 % when predicting footprint for eight customizable programs), we encoun-
tered inaccuracies when feature interactions occur. A feature interaction exists if a
variant with two features exhibits unexpected behavior of non-functional properties,
whereas we do not detect such a behavior when only a single feature is present.
Hence, to increase accuracy of predictions, we proposed two approaches to quantify
the influence of feature interactions on non-functional properties: interaction-wise
and pair-wise measurement (cf. Chapter 7). For interaction-wise measurement, we
use domain knowledge and code analyses to manually identify which features inter-
act. For pair-wise measurement, we assume that each pair of features interact and
measure the corresponding interactions. We showed that interaction-wise measure-
ment significantly increase prediction accuracy (i.e., 99.8 % accuracy, on average, for
eigth programs), and pair-wise interactions often improve prediction accuracy, but
sometimes also decrease accuracy.

We found that higher-order interactions may decrease accuracy for pair-wise mea-
surement. Hence, we conducted a second analysis based on the same evaluation
data. From this analysis, we gained several important insights: We observed that
feature interactions are not evenly distributed over all features, but follow patterns.
Furthermore, we identified that many features do not interact and that first-order
interactions a more common than higher-order interactions. Based on these insights,
we developed an approach that automates the detection of feature interactions with-
out the need of domain knowledge and availability of source code (cf. Chapter 8).

In two steps, we identify which features interact and which combinations of these
interacting features actually cause an observable interaction. To find these combina-
tions, we use three heuristics (pair-wise, higher-order, and hot-spot) that are based
on the patterns we identified in the previous experiments. We evaluate prediction
accuracy for our three heuristics of six real-world programs with the non-functional
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property performance. We demonstrated that the error rate of predictions decreased
from 20.3 %, on average, for feature-wise measurement, to 4.6 %, on average, when
using all heuristics. Since these heuristics aim at measuring only few additional vari-
ants, we found a sweet spot between measurement effort, accuracy, and generality
of our approach.

We conclude that by using our prediction model in combination with the au-
tomated feature-interaction detection, we fulfill all thesis goals: We achieve nearly
perfect predictions (over 95 %, on average, for performance), we need only few mea-
surements (below 1 % of all variants for highly customizable programs), and we
support black-box programs (i.e., we do not rely on domain knowledge or source-
code analysis). Since our prediction model abstracts from concrete implementation
and allows us to have different mappings and aggregation functions, we support all
automatically measurable properties. To the best of our knowledge, this is the first
time that a prediction approach achieves this high accuracy, is applicable for diverse
non-functional properties, and supports even black-box programs.

In the following, we summarize our contributions.

9.2. Contributions

We showed that it is indeed possible to predict measurable non-functional properties
of highly customizable programs with justifiable measurement effort and for black-
box programs.

Our contributions are the following:

1. Measurement of Non-Functional Properties. Measuring non-functional
properties is a challenging task, because different non-functional properties of-
ten require different measurement techniques, and different programs require
different customization methods to generate a variant to be measured. For the
first time, we showed a generally applicable measurement strategy that is in-
dependent of implementation techniques, programming languages, works for
black-box programs, and achieves nearly perfect prediction results. Further-
more, it can be used in realistic environments and does not need to use the
source code of a program.

2. Automated Feature-Interaction Detection. Feature interactions cause
problems in many situations and domains, because they cause an unexpected
system behavior. Many approaches were published to detect feature inter-
actions, but they require domain knowledge or availability of code or other
development artifacts. In contrast, we developed a novel automated detection
approach that identifies feature interactions in black-box programs using three
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heuristics. Detecting these interactions reduced the average error rate of our
predictions by 15 %, which results in accurate predictions.

We believe that similar patterns exist also for other domains (not only for
non-functional properties). We showed how to identify such patterns and how
to develop from these insights heuristics that allow us to detect feature in-
teractions in an automated manner. Hence, we believe that related research
communities profit from our research methodology and even from our identified
patterns to detect feature interactions in their respective domains.

3. Prediction of Non-Functional Properties. We contribute a prediction
model to the research community, which is extensible and adaptable to differ-
ent non-functional properties. The central elements are terms, which quantify
the influence of features and feature combinations on non-functional proper-
ties. We outlined that, when predicting non-functional properties, we need to
identify only the relevant terms in our prediction model. Furthermore, we can
use different aggregation functions, such as multiplication, addition, and max-
imum, to address different properties (e.g., maintainability vs. performance).
The model is extensible in the way that the terms abstract from the concrete
realization. That is, we proposed to use two measurements to compute the
corresponding delta to have a concrete value per term.

Furthermore, we currently extend our model, such that terms do not repre-
sent concrete values, but workload-dependent cost functions to quantify the
influence of features on non-functional properties. That is, we aim at consid-
ering the workload in our predictions. Similarly, our prediction model can be
extended to represent hardware components or environmental influences using
terms. Although this is future work, we laid the base with our prediction model
to these new important research fields.

4. Analysis of Customizable Programs and Non-functional Properties.
We provide our measurement raw material online to support other researchers
in developing prediction approaches and other analyses based on customizable
programs. For the first time, such a quantity of raw material is presented. On
realistic programs, we did a brute-force approach as base line, although it cost a
huge time investment. That is, we thoroughly evaluated all our approaches: we
spent about five months of measurement with multiple computers to conduct
the experiments presented in this thesis, which underlines the feasibility of
our approach. We recognized already three research groups using our data.
Considering the short amount of time at which this data is public, it clearly
shows the need for such quantitative data and that we make an important
contribution by making them available.

An important aspect during our evaluations was to use real-world programs. We
contribute to the real world to make it possible to, for example, generate a variant of
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SQLite with a specific performance and footprint. We show which features contribute
positively or negatively to a non-functional property and to what extent.

We conclude that we found a scalable and efficient method to accurately predict
different non-functional properties of customizable black-box programs.

9.3. Future Work

Our work lays the foundation for different research directions in the area of non-
functional properties for customizable programs. Moreover, we plan to extend our
work in the area of self-adaptive systems, because these systems have to cope with
varying (mostly) non-functional requirements, leading to frequent reconfiguration.
In the following, we highlight some promising directions.

9.3.1. Feature Libraries

Rather than optimizing non-functional properties by finding an optimized configu-
ration, we can also optimize a program by refactoring. We proposed to use feature
libraries as means to optimize a program for a user-specified non-functional prop-
erty [Siegmund et al., 2010b]. Depending on the property to be optimized, we use a
different feature library. A feature library contains algorithms of reoccurring func-
tionality that are optimized for a specific non-functional property. As an example, we
suggested the use of an energy feature library, which contains energy-efficient sorting
algorithms (e.g., JouleSort [Rivoire et al., 2007]). Moreover, the library has features
that control hardware devices in an energy-efficient manner. For example, we pro-
posed to automatically switch the WLAN in a smart phone on and off depending
on the functionality that is executed in the customizable program.

The energy features (e.g., to control hardware usage) have to be weaved into
the client program, which is actually executed on a system. We proposed different
weaving approaches based on aspectual feature modules [Apel et al., 2008] and
aspect-oriented programming [Kiczales et al., 1997] to integrate the energy features.
In future work, we extend these techniques to incorporate also other non-functional
properties, such as performance. The combination with the ability to quantify the
influence of a feature on a non-functional property allows us to selectively choose
which features of the feature library to integrate in the client program.

9.3.2. Workload-Aware Prediction of Non-Functional Properties

A crucial factor for the prediction of non-functional properties is the workload of a
program. The workload specifies which features are used how extensively at runtime.
In our future work, we aim at describing the influence of features on non-functional
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properties depending on the workload. That is, we determine cost functions for work-
load parameters, parameterize these cost functions using curve-fitting approaches,
and build a prediction function. This prediction function is composed of the param-
eterized cost functions of each selected feature and identified feature interactions.

In Figure 9.1, we show initial results to predict a variant’s non-functional prop-
erties with respect to variable workload parameters. In this example, we predict
performance of Berkeley DB C version for three workload parameters:

• Selects. We chose selects (i.e., “gets” for key-value databases) as the first
workload parameter, because selects are the most common form of using a
database. Here, we are interested in how the features of Berkeley DB affect
the response time of a select. For example, how does Encryption slow the
response time.
• Inserts. We chose inserts (i.e., “puts” for key-value databases) as the second

workload parameter, because, together with selects, we can describe a complete
real-word workload.
• Database size. Finally, we select database size as a workload parameter,

because it affects the response times of select and insert operations. That is,
depending on how much data are already stored in a database, retrieving a
certain data set requires more time.

With these three parameters, we can build cost functions; that is, what is the cost
of a select for a certain size of a database when feature Encryption is selected.

In Figure 9.1, we show the changing response times (y-axis) for different workload
parameters of selects (x-axis from center to left) and inserts (x-axis from center to
right). We see that with an increasing number of inserts and selects, the response
time increases, too. Since we provide only preliminary results, concrete values do not
matter in Figure 9.1. Here, only the overall shape of the distribution of the measured
and predicted performance is of interest.

At the top left corner, we depict the shape of the predicted cost function for
this workload. At the bottom left corner, we show the error rate for our prediction
against the measurement. As we can see, the overall function is appropriately ap-
proximated, but requires additional measurement points at the edges to be more
accurate. Nevertheless, we show this figure to illustrate in which directions our re-
search will follow. That is, it is possible to provide workload-aware predictions of
non-functional properties.

The challenge of a workload-aware prediction is to find efficient sampling tech-
niques for parameterization of the cost functions. Furthermore, this technique re-
quires knowledge about the polynomial structure of cost functions. We aim at au-
tomatically identifying the structure of these cost functions. Here, the integration
of code-metric analysis seems to be beneficial. Identifying a certain structure in the
program may allow developers to automatically approximate the structure of a cost
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Figure 9.1.: Initial results to predict a variant’s non-functional properties depending
on workload parameters.

function, which then only needs to be parameterized. Similarly, the used hardware
needs to be described with appropriate models. We analyze existing languages and
tools, such as LCFG and Karl to be integrated in our prediction model.

9.3.3. Software Measures and Non-Functional Properties

The work in this thesis targets black-box programs. While this extends applicability
of our approach, it may sacrifice prediction accuracy. Hence, in a new line of research,
we aim at improving our predictions by using static code analysis to find non-
functional feature interactions and to find patterns that degrade or improve certain
properties.

As a first step, we plan to empirically identify which software measures (e.g.,
code metrics for internal and external feature dependencies) are good predictors for
non-functional properties. This work is in line with the DFG funded research project
Pythia (techniques and prediction models for sustainable product-line engineering).1

Pythia aims at utilizing software-product-line analysis to improve predictions of non-
functional properties.

1http://www.infosun.fim.uni-passau.de/spl/pythia/
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Together, we compare these predictors with the empirical studies performed in
this thesis to detect which architectural pattern and which variability mechanism are
likely to cause feature interactions and degrade or improve certain properties, such as
performance. Based on this, we plan to develop code-transformation techniques that
optimize a certain non-functional property. These code transformations are partially
based on previous work, in which we suggested the use of refactorings to improve
performance [Siegmund et al., 2010a]. The combination with feature libraries seems
to be beneficial for this line of research.

9.3.4. Self-Adaptive Systems

An important trend in current research is the development of self-adaptive sys-
tems [Sawyer et al., 2010]. Self-adaptive systems change their functionality and ar-
chitecture depending on the current environment, context, and requirements. Hence,
an adaptive system must provide means to customize itself according to ever chang-
ing requirements.

Important run-time requirements are the optimization of certain non-functional
properties. For example, sensor networks have often self-adaptive nodes, which
change their role depending on the context and non-functional property that must
be optimized [Siegmund et al., 2009b]. Nodes can change their role to save as much
energy as possible to extend life-time of the hardware and the overall network. Other
roles are performance optimized to provide fast response times of network queries.
Finally, sensor networks contain aggregation nodes, which improve reliability of data.

In previous work, we already investigated the possibility of reconfiguring a pro-
gram at run-time to optimize different non-functional properties [Siegmund et al.,
2009a, Rosenmüller et al., 2011b]. In future work, we combine our prediction model,
including the feature-interaction detection, with self-adaptive systems. TOD This
allows a program to build and extended the prediction model with monitoring data
at run-time. That is, with each reconfiguration, we enrich our prediction model by
measuring additional terms, such that our predictions become more accurate and a
self-adaptive system finds to each context the optimal configuration. In this line of
research, we are currently working on simulating these systems in the virtual reality
to test and train reconfiguration for changing environmental influences [Rosenmüller
et al., 2011a].
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A. List of Case Studies

To evaluate our approach, we conducted a series of experiments. In the following,
we describe the programs and software product lines we used in these experiments
in detail. We describe attributes, such as origin, feature models, and features.

A.1. Case Studies for Footprint

LinkedList

Developed by: Martin Kuhlemann (translated to Java by Norbert Siegmund)
Developed as: software product line
Domain: component
Origin: academic
Language: Java
Customization: composition (Jak)
Features: 18
Variants: 492
Lines of code: 2 595

LinkedList was originally developed by Martin Kuhlemann in FeatureC++, a
language extension to C++ to support feature-oriented programming. This version
was translated to Java by Norbert Siegmund using the language Jak, an extension
to Java to support feature-oriented programming. Further features of alternative
sorting algorithms were added to allow users to generate a linked list component,
which is optimized either for performance or for memory consumption. Features of
LinkedList are:

• AbstractElement: Represents an abstract object, which can be stored in the
list.
• AbstractSort: Represents an abstract sorting algorithm.
• BackwardInterator: Iterates the list from the end to the head.
• Base: Basic list functionality.
• BubbleSort: Implements the bubble-sort algorithm.
• Element A, B, and C: Represent alternative concrete objects to be stored in

the list.
• ForwardIterator: Iterates the list from head to tail.
• InsertionSort: Implements the insertion-sort algorithm.



A. List of Case Studies

• Measurement: Includes basic monitoring functionality.
• MemorySize: Monitoring code to measure current main-memory consumption.
• MergeSort: Implements the merge-sort algorithm.
• Performance: Monitoring code to measure performance for the currently se-

lected sorting algorithm.
• Print: Prints the elements of the list.
• QuickSort: Implements the quick-sort algorithm.
• TCP/IP: Sends monitoring data to a network address.

LinkdedList
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Interator
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Realterator
ForwardIterator

BackwardIterator

Sort
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Figure A.1.: Feature model of LinkedList.
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Prevayler

Developed by: Klaus Wuestefeld and others
Developed as: single library
URL: http://www.prevayler.org

Domain: persistence library
Origin: industrial
Language: Java
Customization: conditional compilation
Features: 5
Variants: 24
Lines of code: 4 030

Prevayler is a customizable object-persistence library. It can be embedded into
existing Java programs to enable efficient in-memory data storage. Prevayler was
not initially developed as a customizable program, but it was refactored by other
researchers Godil and Jacobsen [2005] such that features were extracted to be user-
selectable. We use a version in which variability is realized with preprocessor anno-
tations.

• Base: Basic functionality.
• Censor: Allows roll backs of transactions.
• Gzip: Compression support.
• Monitor: Enables monitoring functionality.
• Replication: Supports duplicating contents between a server and multiple

clients..
• Snapshot: Enables to do snapshots of the current database status.
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Figure A.2.: Feature model of Prevayler.
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ZipMe

Developed by: Akihiko Kusanagi and others
Developed as: single library
URL: http://zipme.sourceforge.net/

Domain: compression library
Origin: industrial
Language: Java
Customization: composition (Jak)
Features: 8
Variants: 104
Lines of code: 4 874

ZipMe is an open-source Java library, which allows developers to compress data.
It was refactored by other reserachers [] to make library customizable. In our used
version, it has the following features:

• CRC: Implements CRC32 data checksum of a data stream.
• ArchiveCheck: Checks archives for checksums.
• GZIP: GZIP compression algorithm.
• Adaptation: Exception support.
• Adler32Checksum: Includes checksums in the archive.
• Compress: Standard compression engine.
• Extract: Standard extraction engine.
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Figure A.3.: Feature model of ZipMe.
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PKJab

Developed by: student project at University of Passau
Developed as: software product line
URL: http://zipme.sourceforge.net/

Domain: messenger
Origin: academical
Language: Java
Customization: composition (FeatureHouse)
Features: 11
Variants: 73
Lines of code: 5 016

PKjab was developed during a student project. It allows asynchronous messaging
between remote computers.

• Base: Basic messaging functionality.
• ContactListSource: Implementation of a contract list.
• ServerRoster: Integrates the XMPP protocol.
• Composing and SendComposing: Basic messaging support and notification of

typing a message.
• History: Persistent storage of messaging history.
• Timestamps: Support for timestamps for message sending.
• ThemeSelection: Support for different user-interface themes.
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Figure A.4.: Feature model of PKJab.
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SensorNetwork

Developed by: Marko Rosenmüller
Developed as: software product line
Domain: simulation
Origin: academical
Language: C++
Customization: composition (FeatureC++)
Features: 26
Variants: 3 240
Lines of code: 7 303

The SensorNetwork is a software product line, which simulates different inter-
connecting sensor nodes. The product line can be customized for different sensor
types (sensor node, aggregation node, entrance node) and with varying functional-
ity (e.g., data storage and stream processing). It was developed in a research project
to demonstrate flexibility of feature bindings [Rosenmüller et al., 2011b].

• Http: Provides access to sensor nodes via the http protocol.
• Communication: Provides different communication schemes with its child fea-

tures (i.e, client, server, multicast).
• ConnectSensors: Connects the sensors in the simulation such that data is trans-

ferred.
• Routing: Different routing schemes (i.e., routing by query or routing via con-

nected sensors).
• Data: Provides two methods to handle data (i.e., aggregate data or stream

data).
• Threading: Provides single and multi threading for sensors.
• Sensor: Includes a simple simulation program on the sensor.
• Storage: Supports different database systems for storing data on a node.
• Statistics: Collects communication statistics.
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Figure A.5.: Feature model of SensorNetwork.
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Violet

Developed by: Cay S. Horstmann and Alexandre de Pellegrin
Developed as: software product line
URL: http://alexdp.free.fr/violetumleditor/page.php

Domain: diagram editor
Origin: industrial
Language: Java
Customization: composition (FeatureHouse)
Features: 100
Variants: 1020

Lines of code: 19 379

Violet is a graphical editor, which supports different types of diagrams (e.g., UML
diagram, state-chart diagram). It was originally not developed as a customizable
program, but refactored in a student project at the University of Passau. It supports
a large number of features. We describe only a subset of them in the following:

• ObjectDiagram: Support for UML object diagrams.
• SequenceDiagram: Support for sequence diagrams.
• StateDiagram: Support for state-chart diagrams.
• ClassDiagram: Support for UML class diagrams.
• UseCaseDiagram: Support for use-case diagrams.
• File: Implements the file menu with features as open file, save file, and export

image.
• Edit: Allows to edit diagrams.
• View: Provides basic functions for the drawing area (e.g., zooming, clip area,

show grid on screen).
• Window: Realizes Windows look-and-feel buttons.
• Additional: Implements various functions, such as command-line support, im-

age filters, preferences, version checker.
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Figure A.6.: Feature model of Violet.
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Figure A.7.: Boolean constraints of Violet.
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Berkeley DB (Version 4.4.20)

Developed by: University of California, Berkeley
Developed as: customizable embedded database system
URL: http://www.oracle.com/technetwork/products/berkeleydb/

Domain: database
Origin: industrial
Language: C
Customization: conditional compilation
Features: 8
Variants: 256
Lines of code: 209 682

Berkeley DB was originally developed by University of California. Developers of
Berkeley DB founded the company Sleepycat Software, which added new features.
Each release version introduced a new major feature: 1.x introduced key/value stor-
age, 2.x introduced locking functionality to support concurrent data access, 3.x
added transaction support, such as logging functionality and recovery, 4.x intro-
duced replication to improve availability of data. Today, Oracle maintains three
versions of Berkeley DB: Berkeley DB C version (which is more or less the original
version), Berkeley DB Java version with a complete different code base, and Berkeley
DB XML. For our footprint evaluation, we use the C version 4.4.20 of Berkeley DB.
We slightly modified the code to ease generation of customized variants. That is, we
moved functionality from the make file that was responsible to tailor the program to
#ifdefs in the source code. This way, the preprocessor removes code of unselected
features and we compile only selected features.

• Base: Basic database functionality.
• Crypto: Encrypts data pages and log files using advanced encryption standard

(AES).
• Hash: Implements a hash-based search index.
• Queue: Realizes list and queue data structures.
• Replication: Replicates data to improve availability.
• Verify: Verifies the integrity of all the database.
• Sequence: Support for sequential data structures.
• Diagnostic: Diagnostic functions.
• Statistics: Statistics about search indexes, stored data, etc.

BerkeleyDB

Base Crypto Hash Queue Replication Verify Sequence Diagnostic Statistics

Legend:

Mandatory
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Figure A.8.: Feature model of Berkeley DB.
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SQLite (Version 3.7.4)

Developed by: D. Richard Hipp and others
Developed as: customizable embedded database system
URL: http://sqlite.org

Domain: database
Origin: industrial
Language: C
Customization: conditional compilation
Features: 88
Variants: ca. 1023

Lines of code: 305 191

SQLite is a customizable relational database system implemented to be small
and fast. It is ACID-compliant and supports most of the SQL standard. SQLite is
likely the most widely used SQL-based database in the world with over 500 mil-
lion deployments. It is mainly used for embedded systems (e.g., smart phones),
application software (e.g., Mozilla Firefox), and other programs (e.g., PHP, McAfee,
and Skype). The source code is under public domain. We selected features from the
available compilation options. Since there are over 80 compilation options, we do not
list them here, but refer to SQLite’s website, which provides a detail description:
http://www.sqlite.org/compile.html.

Slackware Linux Kernel

Developed by: Patrick Volkerding and others
Developed as: customizable operating system
URL: http://www.slackware.com/

Domain: operating system
Origin: industrial
Language: C
Customization: conditional compilation
Features: 25 (selected by domain expert)
Variants: ca. 3·1024

Lines of code: 13 005 842

Slackware Linux is a Linux derivate, which aims at simplicity and ease of use.
It was released in April 1993 by Patrick Volkerding. Since it is Linux compliant, it
supports a large number of features (called packages). A domain expert selected 25
features that can be arbitrary configured to compile a tailor-made kernel.
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Figure A.9.: Feature model of SQLite.
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LinuxKernel
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Figure A.10.: Feature model of selected features of the Linux kernel.
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A.2. Case Studies for Main-Memory Consumption

Curl

Developed by: Daniel Stenberg and others
Developed as: command-line tool
URL: http://http://curl.haxx.se/

Domain: data transfer
Origin: industrial
Language: C
Customization: command-line parameters
Features: 13
Variants: 768
Lines of code: 52 341

Curl is a tool to transfer data with URL syntax and was released in 1997. It
supports various protocols, such as FTP, HTTP, and SCP. Curl can be customized
via command-line parameters.1

• Compressed: Request a compressed response from a server.
• Dump Header: Writes the protocol to a file.
• Include: Includes the HTTP-header in the output.
• No Buffer: Disables buffering of the output stream.
• Trace: Enables a full trace dump of all incoming and outgoing data.
• Verbose: Makes the fetching more verbose/talkative.
• Silent: Set curl silent.
• Raw: Disables all internal HTTP decoding of content.
• HTTP1 0: Forces curl to issue its requests using HTTP 1.0.
• Progress Bar: Visualizes a simple progress bar.
• No KeepAlive: Disables the use of keepalive messages on a TCP connection.

Curl

Base Compressed Dump_Header Include No_Buffer No_KeepAliveRaw Http1_0 Progress_BarVerbosity
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Figure A.11.: Feature model of Curl.

1See website for a full list of customization options: http://curl.haxx.se/docs/manpage.html.
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LLVM

Developed by: University of Illinois at Urbana-Champaign
Developed as: research infrastructure to investigate dynamic compilation
URL: http://llvm.org/

Domain: compiler infrastructure
Origin: industrial
Language: C++
Customization: command-line parameters
Features: 11
Variants: 1 024
Lines of code: 47 549

LLVM stands for low level virtual machine. It is a compiler infrastructure to
optimize programs at compile-time, link-time, and run-time. To this end, LLVM
implements layers in a compiler system, in which it take intermediate form (IF) code
from a compiler and emitting an optimized IF. Since its publication in 2000, LLVM
was extended with several front-ends to support different programming languages
and is now used in Apple’s development system. All customizations options can be
found here: http://llvm.org/docs/Passes.html.

• Time passes: Records the amount of time needed for each pass and print it to
standard error.
• Gvn: Enables blobal value numbering (GVN) to assign unique value numbers

to variables and expressions (across basic blocks) having the same static value.
• InstCombine: Combines redundant instructions.
• Inline: Specifies Whether inlining is used as a compile-time optimization.
• Jump Threading: Finds distinct threads of control flow running through a

basic block and optimizes them.
• SimplifyCfg: Simplifies the CFG (performs dead code elimination and basic

block merging).
• Sccp: Enables sparse conditional constant propagation.
• Print used Types: Prints the internally used types.
• IPSccp: Enables inter-procedual sparse conditional constant propagation.
• IV Users: Induction variable users,
• Licm: Enables loop invariant code motion.

LLVM
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Figure A.12.: Feature model of LLVM.
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x264

Developed by: Laurent Aimar and others
Developed as: software library
URL: http://www.videolan.org/developers/x264.html

Domain: video encoding
Origin: industrial
Language: C
Customization: command-line parameters
Features: 16
Variants: 1 152
Lines of code: 45 743

x264 is a free video encoding library. It implements h264 encoding and many
other encoding algorithms. x264 is customizable via command-line parameter or via
API calls when used as a library. A complete list of parameters can be found here:
http://mewiki.project357.com/wiki/X264 Settings.

• No asm: Disables all CPU optimiztions.
• No 8x8dct: Disables intelligent adaptive use of 8x8 transforms in I-frames.
• No cabac: Disables context adaptive binary arithmetic coder stream compres-

sion and uses instead the less efficient context adaptive variable length coder.
• No deblock: Disables the loop filter (coding time vs. quality).
• Rc LookAhead: Sets the number of frames to use for mb-tree rate control and

vbv-lookahead.
• No fast pskip: Disables early skip detection on P-frames (quality increase vs.

performance degrade).
• Ref: Sets the size of the decoded picture buffer.
• No mixed refs: Select refs on a per-macro block basis (reduces quality).
• No MBtree: Disable macro block tree rate control.
• No wightb: Disables weighing of references in B-frames.

x264
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Figure A.13.: Feature model of x264.
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Wget

Developed by: Giuseppe Scrivano and others
Developed as: software package
URL: http://www.gnu.org/software/wget/

Domain: retrieving files
Origin: industrial
Language: C
Customization: command-line parameters
Features: 16
Variants: 5 120
Lines of code: 34 880

Wget is a free software package to download contents and re-
trieve files from web servers using multiple Internet protocols,
such as HTTP, HTTPS and FTP. Customization is done via a
command-line interface. A full list of options can be found here:
http://www.gnu.org/software/wget/manual/html node/Wgetrc-Commands.html.

• Output File: Specifies an output file for the download.
• Server Response: Prints the HTTP and FTP server responses.
• No Clobber: Disables overwriting of already downloades files.
• No DNS Cache: Disables caching of DNS lookups.
• Verbosity: Defines the amount of messages.
• No Directories: Ignores directories.
• No Host Directories: Ignores directories at Host side.
• No Http Keep Alive: Disables keep alive messages.
• No Cookies: Disables cookies.
• Save Headers: Saves file headers.
• Convert Links: Enables the conversion of non-relative links locally.
• Strict Comments: Escaping of characters in comments.

Berkeley DB (Version 4.4.20)

The basic version is the same as for footprint measurements. We included features
that set different cache and page sizes.

SQLite (Version 3.7.4)

The basic version of SQLite is the same as for footprint measurements. We removed
features that do not affect performance or main-memory consumption of the used
benchmark. We added features to set different cache sizes.
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Figure A.14.: Feature model of Wget.
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Figure A.15.: Feature model of Berkeley DB for main-memory consumption and
performance measurements.
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SQLite
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Figure A.16.: Feature model of SQLite for main-memory consumption and perfor-
mance measurements.
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A.3. Case Studies for Performance

Most of the case studies were already presented in the previous sections. We describe
only the two new programs: Berkeley DB Java version and Apache.

Berkeley DB JE

Developed by: Oracle
Developed as: non-customizable embedded database
URL: http://www.oracle.com/technetwork/database/

berkeleydb/overview/index-093405.html

Domain: database
Origin: industrial
Language: Java
Customization: conditional compilation
Features: 32
Variants: 400
Lines of code: 42 596

Berkeley DB Java edition is an open source persistent layer for Java objects with
full ACID compliance. Hence, it supports transactional storage including object-
oriented information, such as object graphs and objects in collections. However,
unlike the C version, the Java version is not customizable. Hence, we refactored
this version and extracted 32 features. Since it is a legacy system, there are many
dependencies among these 32 features such that there are only 400 different variants.
We extracted features for alternative versions of input/output functionality (i.e.,
disk storage), for different btree features, such as Evictor pattern (to free resources),
alternative cache sizes, and verifier functionality. Furthermore, we extracted different
tracing levels and statistics as individual features.
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Figure A.17.: Feature model of Berkeley DB Java version.
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Apache

Developed by: Rober McCool and Apache Software Foundation
Developed as: customizable web server
URL: http://httpd.apache.org/

Domain: HTTP web server
Origin: industrial
Language: C
Customization: configuration files
Features: 9
Variants: 192
Lines of code: 230 277

The Apache web server is one of the most widely used web servers. It is open
source and customizable via a configuration file. See the website for all customization
options: http://httpd.apache.org/docs/current/en/mod/core.html.

• HostnameLookups: Enables DNS lookups, such that host names can be logged.
• KeepAlive: Enables persistent and long running connections.
• EnableSendfile: Avoids distinct read and send operations.
• FollowSymLinks: Apache follows symbolic links in a directive.
• AccessLog: Logs the data access on the server.
• ExtendedStatus: Enables an extended status information for each request.
• InMemory: Enables memory mapping.
• Handle: Enforces the server to operate all data with a single handle.

Apache
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Figure A.18.: Feature model of Apache.

Remaining Programs

Berkeley DB CE, SQLite, LLVM, and x264 are identical case studies as used for the
main-memory measurement.
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Sven Apel, Christian Kästner, and Christian Lengauer. FeatureHouse: Language-
independent, automated software composition. In Proceedings of the International
Conference on Software Engineering (ICSE), pages 221–231. IEEE, 2009.
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derivation in large-scale product lines: A wizard-based approach. In Proceedings
of the International Workshop on Visualisation in Software Product Line Engi-
neering (ViSPLE), pages 119–124. IEEE, 2007.

Ariel Rabkin and Randy Katz. Static extraction of program configuration options.
In Proceedings of the International Conference on Software Engineering (ICSE),
pages 131–140. ACM, 2011.

208



Bibliography

Suzanne Rivoire, Mehul A. Shah, Parthasarathy Ranganathan, and Christos
Kozyrakis. Joulesort: A balanced energy-efficiency benchmark. In Proceedings
of the International Conference on Management of Data (COMAD), pages 365–
376. ACM, 2007.

Suzanne Robertson and James Robertson. Mastering the requirements process. ACM
Press, 1999. ISBN 0-201-36046-2.

Marko Rosenmüller, Norbert Siegmund, Sven Apel, and Gunter Saake. Flexible
feature binding in software product lines. Automated Software Engineering – An
International Journal, 18(2):163–197, 2011a.

Marko Rosenmüller, Norbert Siegmund, Mario Pukall, and Sven Apel. Tailoring
dynamic software product lines. In Proceedings of the International Conference
on Generative Programming and Component Engineering (GPCE), pages 3–12.
ACM Press, 2011b.

Marko Rosenmüller, Norbert Siegmund, Thomas Thüm, and Gunter Saake. Multi-
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