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Abstract

Systems and control theory is of great importance for the analysis, the design, and the
operation of complex dynamical systems. The prototypical problem in control theory
is the stabilization of a set point. This is the problem of designing a feedback such that
the closed-loop solutions stay in a neighborhood of the set point and converge to it.
When, instead of a set point, a time-varying reference needs to be stabilized—i.e., the
closed-loop solutions shall converge to a time-varying reference trajectory—then the
problem is called trajectory tracking. Typical examples of trajectory-tracking problems
are set point changes along precomputed references, synchronization tasks or startup
of processes. While stabilization and trajectory tracking are well-understood for a wide
range of systems, not all control tasks arising in practise belong to these categories.

For example, consider the case of steering a car automatically along a road. Usu-
ally, the driving velocity is not predetermined. The only requirements are to keep the
car on the road while driving sufficiently fast. Formally, we can reformulate this task
as follows: the system state or output should converge to a known geometric curve
and follow it along in a specific direction. These kinds of control tasks are known
as path-following problems. The major difference to trajectory tracking is that the
speed along the path along is not fixed a priori. Instead it is an additional degree of
freedom which can be tuned to achieve fast convergence, and small deviations of the
system state or output to the path. Path-following problems typically arise in robotics
and vehicle-like applications, such as unmanned aerial vehicles, robots, or milling ma-
chines. Moreover, some process control problems can be formulated as path following,
for example, the task of steering a batch reactor along a temperature profile while
maximizing the process productivity.
This thesis deals with the design of optimization-based control schemes for trajectory-
tracking and path-following problems in the presence of constraints. We present novel
results on the design of nonlinear model predictive control (NMPC) schemes for both
problem classes.
Sufficient conditions for the stability of NMPC for trajectory tracking based on time-
varying terminal regions are derived. The key feature of our approach is the intro-
duction of positive invariant time-varying level sets of Lyapunov functions as terminal
regions. These sets allow enlarging the region of attraction of the proposed control
schemes and thereby improve the control performance.
Furthermore, we discuss path-following problems for constrained nonlinear systems.
We propose using a nonlinear normal form of an augmented system to analyze these
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Abstract

problems. We investigate sufficient conditions for exact path followability of uncon-
strained and constrained nonlinear systems. Based on these results we present tailored
predictive control schemes for path following. We derive sufficient conditions which
guarantee the convergence of the system output to the path. In contrast to previous
works—for example, in the field of robotics—our schemes can handle constraints on
states and inputs as well as situations where the system does not start on the path.
In other words, using the proposed control schemes makes it possible to stabilize the
motion of a system in the presence of constraints with respect to a path defined in an
output space. Examples from robotics and chemical engineering are drawn upon to
support our results.
The main intention of this thesis is twofold: Firstly, we show that nonlinear model
predictive control is very well applicable to problems beyond set point stabilization.
Secondly, we demonstrate that path-following concepts provide a suitable framework
for many challenging control problems ranging from robotics to chemical engineering.
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Deutsche Kurzfassung

Die Bedeutung der Regelungstechnik und Systemtheorie für die Analyse, den Entwurf
und den Betrieb komplexer dynamischer Systeme ist immens. Das prototypische Pro-
blem des Reglerentwurfs ist die Stabilisierung eines Arbeitspunktes. Dabei ist es das
Ziel, durch Wahl einer geeigneten Rückführung, die Trajektorien eines dynamischen
Systems in der Umgebung eines festen Arbeitspunktes zu halten und die Konver-
genz der Lösungen des geregelten Systems gegen diesen Arbeitspunkt sicherzustellen.
Wenn anstelle eines festen Arbeitspunktes eine zeitveränderliche Referenztrajektorie
stabilisiert werden soll, so spricht man von einem Trajektorienfolgeproblem. Typischer-
weise werden Anfahrprozesse von Reaktoren, Synchronisationsaufgaben oder Wech-
sel zwischen Arbeitspunkten entlang vorab berechneter Verläufe als Trajektorienfolge-
probleme formuliert. Für den Entwurf stabilisierender Rückführungen und Folgerege-
lungen sind verschiedene Methoden und Lösungsansätze bekannt. Jedoch lassen sich
bei weitem nicht alle in der Praxis auftretenden Fragestellungen als Probleme der
Stabilisierung von Arbeitspunkten oder der Trajektorienfolge auffassen.
Falls beispielsweise ein autonomes Fahrzeug einer Straße folgen soll, so ist nicht not-
wendigerweise auch die Geschwindigkeit vorgegeben. Stattdessen reicht es aus, das
Fahrzeug auf der Straße zu halten und hinreichend schnell die Strasse entlang zu
führen. Abstrakter gesprochen: Der Zustand oder der Ausgang eines Systems soll ge-
gen eine geometrische Kurve konvergieren und dieser Kurve in vorgegebener Richtung
folgen. Solche Fragestellungen bezeichnet man als Pfadverfolgungsprobleme. Der maß-
gebliche Unterschied zur Trajektorienfolge ist, dass die Geschwindigkeit der Bewegung
entlang der Kurve, beziehungsweise entlang des Pfades, nicht fest vorgegeben ist. Viel-
mehr kann dieser Freiheitsgrad genutzt werden, um eine schnellere Konvergenz gegen
den Pfad und eine geringere Abweichung zu erzielen. Typische Anwendungsbeispiele
für Pfadverfolgungsprobleme sind die angesprochenen autonomen Fahrzeuge, unbe-
mannte Fluggeräte, Roboter oder Fräs- und Werkzeugmaschinen. Weiterhin kann das
Abfahren von Temperatur- oder Konzentrationsprofilen in verfahrenstechnischen Pro-
zessen als Pfadverfolgungsproblem aufgefasst werden.
Die vorliegende Arbeit beschäftigt sich mit dem Entwurf von optimierungsbasierten
Regelungsverfahren für Trajektorien- und Pfadverfolgungsprobleme unter Berücksich-
tigung von Beschränkungen der Stell- und Zustandsgrößen. Es werden neue, nicht-
lineare, modell-basierte, prädiktive Regelungsverfahren für beide Problemklassen vor-
gestellt. Unter anderem werden hinreichende Bedingungen für die Stabilität, bezie-
hungsweise die Konvergenz, der vorgeschlagenen Verfahren entwickelt.
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Deutsche Kurzfassung

Als Hilfsmittel für den Entwurf prädiktiver Regler für Probleme der Trajektorienfolge
werden dabei vorwärtsinvariante, zeitveränderliche Niveaumengen von Lyapunovfunk-
tionen eingeführt. Dies erlaubt es, den Einzugsbereich der Regler deutlich zu vergrößern
und dadurch die Regelgüte zu verbessern.
Außerdem werden Beiträge zur Beschreibung, Analyse und Lösung von Pfadverfol-
gungsproblemen mit Hilfe erweiterter Systemdynamiken und geeigneter Normalform-
koordinaten geleistet. Es werden hinreichende Bedingungen für die exakte Verfolgbar-
keit von Pfaden in Ausgangsräumen vorgestellt. Insbesondere wird auf Fragestellungen
der Verfolgbarkeit von Pfaden unter Beschränkungen der Stell- und Zustandsgrößen
eingegangen.
Aufbauend auf diese Ergebnisse zur Analyse werden neue, modell-basierte, prädiktive
Regelungsansätze für Pfadverfolgungsprobleme unter Berücksichtigung von Beschrän-
kungen entwickelt. Im Gegensatz zu existierenden Ansätzen für diese Probleme, zum
Beispiel aus dem Bereich der Robotik, können hierbei Fälle berücksichtigt werden, bei
denen das System nicht direkt auf dem Pfad startet. Es werden rigorose Bedingungen
vorgestellt, welche garantieren, dass die Anwendung der vorgeschlagenen prädiktiven
Regelungsschemata zur Konvergenz des Ausgangs gegen den zu verfolgenden Pfad
führt. Die Ergebnisse der Arbeit werden anhand verschiedener Beispiele aus der Ro-
botik und der Verfahrenstechnik illustriert.
Die Anliegen dieser Arbeit können in zwei Punkten zusammengefasst werden: Zum
einen ist es das Ziel, die Anwendbarkeit der nichtlinearen modell-prädiktiven Rege-
lung auf Probleme jenseits typischer Arbeitspunktstabilisierung aufzuzeigen. Zum an-
deren soll verdeutlicht werden, dass die Pfadverfolgung einen geeigneten Rahmen für
die Formulierung und Lösung herausfordernder Fragestellungen aus verschiedenen An-
wendungsgebieten – von der Robotik bis hin zur Verfahrenstechnik – bietet.
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Index of Notation

Abbreviations and Acronyms

This list serves as a reference for abbreviations and acronyms.

CSTR continuously stirred tank reactor
DAE differential algebraic equation
LTI linear time invariant
LTV linear time-varying
LP linear program
LQR linear quadratic regulator
MIMO multiple input multiple output
MPC model predictive control
MPFC model predictive path-following control
NMPC nonlinear model predictive control
OCP optimal control problem
ODE ordinary differential equation
RDE Riccati differential equation
QP quadratic program
SISO single input single output
w.l.o.g. without loss of generality

Mathematical Notation

The following symbols are used throughout the thesis.

t time variable
θ scalar path parameter
x state vector x ∈ Rnx

y output vector y ∈ Rny

u input vector u ∈ Rnu

nx dimension of the real valued state vector x
nu dimension of the real valued input vector u
ny dimension of the real valued output vector y
f vector field describing the system dynamics
x0 initial condition of the system dynamics
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Index of Notation

x(·, t0, x0|u(·)) state trajectory starting at t0 at x0 driven by an signal u(·); if an
autonomous system is considered, we drop t0 and write x(·, x0|u(·))

∂fj(x)
∂xi

partial derivative of the j-th component of f with respect to the i-th
component of x = (x1, . . . , xi, . . . , xnx)T

∇E(x) gradient of E : Rk → R. ∇E =
(
∂E
∂x1
, . . . , ∂E∂xk

)T
∂E(x)
∂x transposed gradient ∂E(x)

∂x = (∇E(x))T

Lf hi Lie derivative of hi along f , i.e. Lf hi = ∂hi
∂x f(x, u) whereby hi :

Rnx → R and f : Rnx × Rnu → Rnx

In×n identity matrix of Rn

0n×m zero matrix of Rn×m

diag(q1, . . . , qn) diagonal matrix with entries q1, . . . , qn
Q ≥ 0 positive semi-definite matrix Q
R > 0 positive definite matrix R
‖x‖ 2-norm of a vector x ∈ Rn

‖x‖2
Q brief notation for xTQx, Q ≥ 0

X set describing the state constraints X ⊆ Rnx

U set describing the input constraints U ⊆ Rnu

intA interior of a set A
∂A boundary of a set A
K set of class K functions, cf. Definition B.1, Appendix B
KL set of class KL functions, cf. Definition B.2, Appendix B
Ck set of k-times continuously differentiable functions mapping from

[t0, t1] ⊆ R to Rn 1

PC(A) set of piecewise continuous and right continuous functions mapping
from [t0, t1] ⊆ R to A ⊆ Rn 1

Lp set of p-integrable functions—with p ∈ [1,∞)—mapping from
[t0, t1] ⊆ R to Rn 1

BC(Rn×n) set of elementwise bounded and elementwise continuous time-varying
matrices on Rn×n

BC+(Rn×n) set of elementwise bounded and elementwise continuous time-varying
matrices on Rn×n which are symmetric and strictly positive definite

BC+
0 (Rn×n) set of elementwise bounded and elementwise continuous time-varying

matrices on Rn×n which are symmetric and positive semi-definite

1The dimension n <∞ and the size of the domain [t0, t1] follow from the context.
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1 Set Point Stabilization, Trajectory Tracking,
and Path Following

Feedback is a fundamental concept, which is present in many technical, as well as non-
technical systems. It is of great importance for the solution to manifold automation
and control problems. An omnipresent and prototypical problem in control is set point
stabilization. Consider a dynamical system with control

ẋ(t) = f(x(t), u(t)), x(t0) = x0 (1.1)

where t ∈ R is the time, x ∈ Rnx is the state, u ∈ Rnu is the input, and xs is a set
point to be stabilized. The stabilization problem can be stated as follows: Design a
feedback k : x 7→ u such that the solutions x(t, x0|k(x))—i.e., the solutions of (1.1)
starting at x0 driven by the feedback u = k(x)—stay close to the desired set point xs
and converge

lim
t→∞
‖x(t)− xs‖ = 0. (1.2)

The stabilization problem is well understood for a wide range of systems: linear and
nonlinear, continuous and discrete time, finite and infinite dimensional. Any many
control tasks belong to this class. Typical examples are temperature control in building
automation or the task to keep an unstable vehicle like a SEGWAY ® in an upright
position. Yet, not all control problems arising in applications are set point stabilization
problems.
For example, consider the task of driving a car automatically along a road. From the
driver’s point of view two main objectives are evident. Keep the car on the road, and
ensure that the car moves forward sufficiently fast. One can break this task down into
two subproblems: control of the lateral position of the car on the road, and assignment
of an admissible speed. Often both subproblems are solved as decoupled stabilization
problems: One controller stabilizes the lateral position by using the steering angle as
input. Another controller stabilizes the vehicle speed via engine thrust. Although
quite simplistic this approach is successfully employed in practice. Modern drivers
assistance systems such as cruise control, and lane assistance systems are instances of
this decomposition approach. The achievable performance is, however, limited due to
the problem reformulation.
Not necessarily it is required to keep the car in the middle of the road. It might suffice
to stay on the road. If this is the case, one can take another point of view to formulate
the problem. Firstly, compute offline a reference motion xr : [t0,∞)→ Rnx for the car
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along the road. And secondly, design a controller which tracks online this reference
motion such that

lim
t→∞
‖x(t)− xr(t)‖ = 0. (1.3)

This means that we determine the velocity along the road offline and design a controller
to track this reference motion online. Literally speaking the trajectory xr : [t0,∞)→
Rnx is an explicit requirement when to be where on the road. Following this concept
automatic car control is considered as a trajectory-tracking problem.1
In the control literature the aforementioned two problems of stabilization and tracking
are predominant. Nevertheless, one can take a third point of view on the problem of
driving a car automatically. Instead of breaking the problem down—either into two
control tasks or into reference trajectory generation and tracking—we can consider it
in the original form. This means that we regard the road as a geometric reference curve
without any preassigned timing information. Let us assume we are given a description
of the road as a geometric curve

P = {x ∈ Rnx | θ 7→ p(θ)}

whereby p : R → Rnx is a parametrization of P and increasing values of θ denote
forward movement on the road. Then the task can be formulated as

lim
t→∞
‖x(t)− p(θ(t))‖ = 0 and θ̇ ≥ 0. (1.4)

Here, the first part reflects the objective of staying on the road. And the second
part expresses the objective of moving forward. Clearly, the challenge of this problem
formulation is that the timing along the track or specifically the map t 7→ θ(t) is
not given a priori. Rather it needs to be determined online in the controller. In
other words, we have to design a controller which keeps the car on track and assigns a
reference velocity online. Taking this point of view, automatic car control is considered
as a path-following problem. While literally being more complicated, this formulation
introduces additional freedom to the controller design—the speed to move along the
curve—and does not limit the performance from the beginning.

1The terminology with respect to trajectory-tracking problems is not unified. We follow along the classic
lines of [Athans and Falb 1966]. If the task is to track a trajectory defined in an output space and this
reference trajectory is generated by an exogenous system—a so-called exo-system—then one denotes the
problem either as model-following problem, servo problem, or as output regulation problem. The first two
denominations stem from optimal control approaches towards the problem [Anderson and Moore 1990].
The latter is common if one refers to geometric approaches to tracking problems [Isidori 1995].
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1 Set Point Stabilization, Trajectory Tracking, and Path Following

1.1 Stabilization, Tracking, Path Following, and Model
Predictive Control

For set point stabilization problems a large variety of suitable control methods with
specific properties exist: from classic techniques for linear systems in time and fre-
quency domain, via optimization-based approaches, to advanced differential geometric
tools for nonlinear systems. If an application requires the design of controllers with
explicit consideration of constraints on states and inputs, or if a prediction of the
future system behavior is required, only a few suitable design techniques are known.
Nowadays, intensive research efforts on model predictive control (MPC) try to shrink
this gap in the set of controller design techniques. Basically, MPC is built upon the
idea of choosing the current control actions on the basis of repeated predictions of the
future system behavior. To do so, one needs a suitable model of the system to be
controlled as well as a strategy on how to predict its behavior and decide on control
actions.
Since the 1960s optimal control has been proven to be very powerful. Mainly, it allows
computation of constraint-consistent open-loop control actions based on a model and
a cost criterion [Athans and Falb 1966; Berkovitz 1974; Bryson and Ho 1969; Lee and
Markus 1967]. Usually, these methods are employed in the prediction and decision step
of MPC, and hence MPC can be understood as repetitive optimal control. From a
systems and control point of view MPC has several advantageous properties [Findeisen
et al. 2003]:

• Consideration of nonlinear systems with multiple inputs and outputs.
• Online performance optimization with respect to a cost criterion.
• Consideration of constraints on states and inputs.
• Rigorous stability and robustness conditions.

In view of the introductory distinction between set point stabilization, trajectory track-
ing, and path following, one can say that the vast majority of MPC results consider
set point stabilization, see i.a. [Chen and Allgöwer 1998; Findeisen 2006; Mayne et
al. 2000]. The problem of steering a system from one set point to another without
the specification of a specific continuous transition trajectory is often called set point
tracking [Grüne and Pannek 2011; Rawlings and Mayne 2009]. It can be regarded as
an intermediate problem between stabilization and trajectory tracking. If one regards
the step-wise change of the set point as reference trajectory, then set point tracking is
a tracking problem. If one treats the change of the set point as a disturbance which
instantaneously leads to a big set point deviation, then it is a stabilization problem.
Hence we call it an intermediate problem. This problem is frequently discussed in the
context of MPC, see [Broeck 2011; Ferramosca et al. 2009; Limon et al. 2008; Magni
and Scattolini 2005] and the corresponding chapters in the recent monographs [Grüne
and Pannek 2011; Rawlings and Mayne 2009].

4



1.1 Stabilization, Tracking, Path Following, and Predictive Control

Although trajectory tracking can be considered as a classic problem [Athans and Falb
1966; Kalman 1963; Kreindler 1969], only a few works consider explicitly the design
of MPC schemes for trajectory tracking [Gu and Hu 2006; Magni and Scattolini 2007;
Magni et al. 2001; Michalska 1996]. These results have shortcomings. Constraints
are only sparsely considered, and if so very long prediction horizons are required. One
reason for the lack of results on MPC for trajectory tracking might be as follows: Even
for time-invariant systems, the standard approach of reformulating trajectory-tracking
as set point stabilization in error coordinates leads to inherently time-varying error
dynamics. Due to the technical challenges, MPC schemes which allow the consideration
of time-varying systems are sparsely available. Among the exceptions are [Fontes 2001;
Gondhalekar and Jones 2011; Kern et al. 2009]. This lack of results is the motivation
to investigate MPC for trajectory tracking in this work, see Chapter 3.
Path-following problems arise in many different applications as control of robots or au-
tonomous vehicles, ships, and aircrafts. Additionally, some control concepts in process
engineering implicitly rely on structures similar to path-following problems, for exam-
ple, super saturation control of crystallization processes [Fujiwara et al. 2005; Nagy
et al. 2008]. There the primary objective is to steer a batch crystallization reactor
as close as possible along the solubility curve. The end time of the batch process is
secondary.
Surprisingly, path following was mainly considered in robot control until the mid 1990s
[Dahl and Nielsen 1990; Shin and McKay 1985; Slotine and Yang 1989]. There the
task of assigning feedforward inputs such that the robot follows the path exactly
and in minimum time is considered. Stabilization of the motion of a robot with
respect to the path is not discussed. Beginning with [Banaszuk and Hauser 1995;
Hauser and Hindman 1995] path following is regarded as a challenging control problem
itself and beyond specific robot control applications. Two reasons have been decisive
for these developments. In contrast to trajectory tracking, path following for non-
minimum phase systems is not subject to fundamental performance limits [Aguiar
et al. 2004, 2005]. Additionally, path-following problems are accessible via geometric
and Lyapunov based nonlinear feedback control methods [Banaszuk and Hauser 1995;
Nielsen and Maggiore 2004; Skjetne et al. 2004]. Consequently, these methods are the
dominant controller design techniques used in the existing path-following literature.
The pitfall of these methods is that constraints cannot be considered in a structured
way. However, consideration of constraints is an intrinsic feature and novelty of MPC.
This is the motivation to investigate the path-following problem in the presence of
constraints as well as the design of predictive path-following controllers in Chapters 4
and 5, respectively.

5
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1.2 Outline

This thesis is devided into three parts. In Part I Chapters 1 and 2 give an introduction.
In the remainder of this part we provide a brief review on sampled-data MPC for
set point stabilization problems in Chapter 2. We introduce different approaches to
rigorous stability conditions and restate an important result on sufficient stability
conditions.
Part II of the thesis deals with predictive control schemes for trajectory-tracking prob-
lems. We begin with a formal problem description in Section 3.1 and an overview of
existing results in Section 3.2. Based on this we consider tracking of output reference
signals in Section 3.3. We focus on tracking of state space trajectories in Section 3.4,
where we introduce the notion of a time-varying level set of a Lyapunov function to
derive computable candidates for the time-varying terminal regions. Background in-
formation on positive invariance of general time-varying sets is provided in Appendix
C. For asymptotically constant reference trajectories we show how positive invariant
time-varying level sets can be computed via an optimal control problem based on
scalar dynamics, affine constraints and an affine cost function, see Section 3.5. As
an example we consider trajectory tracking of a nonlinear chemical reactor in Section
3.5.5.
Finally, in Part III of the thesis (Chapters 4 & 5) we consider the path-following
problem and the design of predictive control schemes for this problem. In Chapter
4 we state the problem to be solved. We provide an extensive overview of existing
results on the problem analysis as well as on synthesis of path-following controllers in
Section 4.2. A framework to analyze path-following problems via an augmented system
description is presented in Section 4.3. There we show that output path following is
not a typical stabilization problem but rather a special manifold or set stabilization
problem. Moreover, we investigate constrained path-followability problems for the
special case of differentially flat systems, see Section 4.4. This concept is illustrated
by a simulation study of a nonlinear chemical reactor in Section 4.4.2.
These investigations on the problem structure allow the introduction of predictive
control schemes for path-following problems in Chapter 5. We present results on the
slightly simplifed problem of following paths directly in the state space in Section 5.1.
Section 5.1.4 deals with the design of a predictive control scheme for path-following of
a simple autonomous robot. In Section 5.2 we transfer these results to the more general
problem of following paths in output spaces. In Sections 5.2.2–5.2.3 we illustrate our
predictive control approach to path-following problems by examples. We consider a
robot control problem in Section 5.2.2. The applicability to non-square input-output
structures is shown by means of a ship course control problem in Section 5.2.3.
This thesis ends with a brief summary and an outlook on open issues in Chapter 6.
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1.3 Contributions

As mentioned we investigate the design of predictive controllers for control tasks be-
yond set point stabilization. Specifically, we discuss the design of predictive controllers
for constrained trajectory-tracking and path-following problems. We derive new the-
oretical results with respect to these problems. The contributions are presented in
Chapters 3–5.

Chapter 3—MPC for Trajectory Tracking

In this chapter we discuss a model predictive control approach to trajectory-tracking
problems of constrained nonlinear continuous time systems. The main idea is to use
time-varying level sets as terminal regions. In the context of (offline) discrete time
robust MPC the use of time-varying level sets has been previously proposed in [Wan
and Kothare 2003]. However, in the context of MPC for trajectory tracking usually
time-invariant terminal sets are employed [Gu and Hu 2006; Magni and Scattolini
2007]. Time-invariant terminal regions are conservative, since the trajectory-tracking
problem is inherently time-varying.
Specifically, we adapt a notion of time-varying sets [Michel and Miller 1977] and pro-
pose to use time-varying level sets of Lyapunov functions as terminal regions to gu-
rantee stability. In contrast to a usual level set {x | V (t, x) ≤ c2} of a time-varying
Lyapunov function V (t, x) a time-varying level set {x | V (t, x) ≤ π2(t)} employs a
time-varying diameter function π(t). The nice feature about these sets is that the
function π(t) does not necessarily need to be monotonously decreasing. We prove
necessary and sufficient conditions for positive invariance of these sets.
To determine locally attractive trajectories of uncontrolled systems a concept similar
to time-varying level sets was proposed in [Tobenkin et al. 2011]. In contrast to our ap-
proach, the structure of polynomial systems is exploited, yet inputs are not considered.
Another related approach considers Lyapunov functions for periodic discrete-time sys-
tems [Böhm et al. 2010a,b]. There periodic Lyapunov functions which decrease only
from period to period and not monotonously are considered. Furthermore, the use of
inequalities with time-varying levels π(t) is mentioned but not further elaborated in
[Böhm 2010].
For the special case of asymptotically constant state space reference trajectories we
show how the level sets {x | V (t, x) ≤ π2(t)} can be computed efficiently. We propose
solving an optimal control problem with scalar dynamics, affine constraints, and linear
cost in order to compute maximum volume time-varying terminal regions. The com-
putational approach can be considered as a numerical approximation of the region of
attraction of a two-degrees-of-freedom control scheme in the presence of constraints.
Parts of the results of Chapter 3 have appeared in [Faulwasser and Findeisen 2011].
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Chapter 4—Path Followability

In this chapter we analyze path-following problems from a geometric point of view.
In contrast to previous approaches we work directly with a parametrization of the
reference paths and do not rely on the descriptions of paths as level sets as in [Nielsen
and Maggiore 2006, 2008; Nielsen et al. 2010]. The main idea is to use an augmented
system to describe and analyze path-following problems.
Based on this we discuss the path-followability problem, i.e., the question of whether a
given path in the output space of a nonlinear system is exactly followable. Additionally,
we investigate path-followability problems of differentially flat systems in the presence
of constraints on states and inputs. We derive a novel approach for general flat systems
using an approach similar to results from robotics [Dahl and Nielsen 1990; Shin and
McKay 1985; Slotine and Yang 1989]. The notion of paths and trajectories is not
completely new in the context of flat systems [Martin et al. 1997; Raczy and Jacob
1999; Rothfuß et al. 1996; Rouchon et al. 1993]. In contrast to these works we state
sufficient conditions for exact path followability of constrained flat systems. Moreover,
we show how to compute feedforward controls ensuring exact path following via a low
dimensional optimal control problem subject to single input dynamics in Brunovský
normal form. These results have been published in [Faulwasser et al. 2011].

Chapter 5—Model Predictive Path-following Control (MPFC)

We present novel MPC schemes which are tailored to path-following tasks subject to
constraints. Compared to previous approaches to the problem in context of robotics
[Dahl and Nielsen 1990; Shin and McKay 1985; Slotine and Yang 1989] the main advan-
tage is to directly ensure path stabilization. The usual results in robotics merely allow
the computation of feedforward inputs which guarantee nominal path following. In
contrast to geometric approaches we consider constraints on states and inputs [Aguiar
2005; Nielsen et al. 2010; Skjetne et al. 2004, 2005]. Furthermore, we do not rely on
a decomposition of the problem into stabilization of the zero-path-error manifold and
assignment of a forward velocity to the path as in [Nielsen et al. 2010].
Different to other works dealing with MPC for path-following problems, we give rig-
orous stability conditions for both path following in the state space as well as path
following in an output space of a nonlinear system, cf. [Ghaemi et al. 2010; Li et al.
2009]. One of the rare works giving stability conditions on MPC for path following is
[Lam et al. 2010]. However, these conditions utilize concepts from contractive MPC
[de Oliveira Kothare and Morari 2000] and hence guaranteed recursive feasibility is
lost. That means that feasibility of the optimal control problem for one prediction
step does not imply the feasibility of the optimal control problem at the next step.
In contrast to that our results guarantee recursive feasibility in the presence of input
and state constraints. We show how to obtain stabilizing terminal regions and end
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penalties. A genuine advantage of our approach is to directly tackle the path-following
problem and to not rely on preassignment of reference trajectories to the path geome-
try. The presented results have been published in [Faulwasser and Findeisen 2009a,b,
2010; Faulwasser et al. 2009a]
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2 Brief Review of Model Predictive Control for
Set Point Stabilization

During the last decades manifold research efforts have been dedicated to model pre-
dictive control or receding horizon control. And still today MPC is a very active field
of research. One reason for this might be the following observation [Maciejowski 2002,
p. xi]:

Predictive Control [...] is the only advanced control technique—
that is, more advanced than standard PID control—to have had
a significant and widespread impact on industrial process control.

The goal of this chapter is a brief introduction into sampled-data nonlinear model
predictive control (NMPC) for set point stabilization problems of continuous time
systems.1 Due to the vast and steadily increasing amount of results published in the
field of MPC, the objective of giving a brief introduction contradicts any attempt of
being complete in terms of a literature review. We focus on the aspects of NMPC
which are relevant for later chapters, i.e., we work in a continuous time sampled-data
setting. We do not discuss discrete time, offline, and tube-based NMPC or explicit
MPC approaches in detail. For a broader and general introduction to these and other
aspects of MPC the reader is referred to the recent research monographs [Grüne and
Pannek 2011; Rawlings and Mayne 2009] and the miscellanies [Allgöwer and Zheng
2000; Findeisen et al. 2007; Magni et al. 2009].

2.1 Principle of Model Predictive Control

The main idea of MPC is to use a model of a system to predict and to optimize its
future behavior, i.e., to choose the inputs such that the predicted behavior is optimized.
Consequently, MPC relies on a (dynamical) model of the system to be controlled as
well as on a cost criterion to be minimized. Basically, MPC is built upon the iterative
scheme:

1. At a sampling time tk obtain a state measurement x(tk).
1There is a slight difference between the terms model predictive control and receding horizon control. While
the former refers to the model-based nature the later refers to the iterative aspects of predictive or receding
horizon control algorithms. Here we use the terms synonymously as in [Grüne and Pannek 2011; Rawlings
and Mayne 2009]. Also note that the acronym NMPC is commonly used to emphasize the use of nonlinear
models.
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2. Predict the system behavior by means of a system model, a set of admissible
open-loop control actions, and a cost criterion to be minimized.

3. Apply the optimal open-loop input signal u?k(·). Go back to 1.
This conceptual idea was already formulated in the 1960s, when optimal control at-
tracted a lot of research attention, see [Lee and Markus 1967, p. 423]. Therefore, one
can claim that “[MPC] has its roots in optimal control[...]”, cf. [Rawlings and Mayne
2009, p. 1]. Although the above description is (intentionally) simplified it shows sev-
eral important features. In essence MPC is built upon the repetitive solution of an
optimal control problem. One could aim at deriving an optimal feedback controller and
thereby avoid the repetitive optimal control. This is often not feasible for nonlinear
systems, since the computation of an optimal feedback involves the Hamilton-Jacobi-
Bellman equation, and solving this partial differential equation is, in general, difficult.
Instead MPC aims at the easier computation of an optimal open-loop input trajectory
for the given state at each step. In order to perform the optimization-based prediction,
MPC requires three main ingredients: a model, a cost criterion to be minimized as
well as state information at each sampling time.
Despite the simplicity of the basic MPC formulation manifold system theoretic issues
arise immediately: Under which conditions does the repetitive application of open-
loop inputs lead to stability? How robust is such a scheme with respect to a mismatch
between the model used for prediction and the system/plant to be controlled? Is
it necessary to compute the optimal input trajectory or does a suboptimal solution
suffice? How can one handle computational delay in the prediction steps? Is the basic
idea applicable to control problems beyond set point stabilization?

2.1.1 Mathematical Formulation of Predictive Control

To set the basis for this work we shift to a formal description of NMPC. We work in
a sampled-data continuous time setting similar to the ones used in [Findeisen 2006;
Fontes 2001]. However, the general ideas transfer to discrete time, see [Grüne and
Pannek 2011; Mayne et al. 2000; Rawlings and Mayne 2009].
Assume that the model of the system to be controlled is a time-varying differential
equation

ẋ(t) = f(t, x(t), u(t)), x(t0) = x0 ∈ X0 ⊂ Rnx. (2.1)

The system states and inputs are subject to constraints. The system states x are
restricted to the simply connected and closed set X ⊆ Rnx with 0 ∈ X . The inputs
are piecewise continuous functions with values in the compact set U ⊂ Rnu and 0 ∈ U .
These input signals are briefly written as u(·) ∈ PC(U). If a solution to (2.1) at
time t ≥ t0, starting at time t0 at x(t0), driven by an input u(·) exists, we denote
it as x(t, t0, x(t0)|u(·)). To explain the concept of NMPC we consider a set-point
stabilization problem. In other words, the control task is to steer the system state
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x to the set point xs, and to stabilize the system against disturbances. For sake of
simplicity we assume that for all t ≥ t0 : f(t, xs, us) = 0, and xs = 0, us = 0, i.e., the
origin is a steady state to be stabilized.
In order to distinguish between the real system variables x, u and predicted variables
the latter are denoted by x̄, ū. The performance criterion to be optimized at each
prediction step is given as a cost functional of the form

J (tk, x(tk), x̄(·), ū(·)) =
∫ tk+Tp

tk
F (τ, x̄(τ), ū(τ)) dτ + E (tk + Tp, x̄(tk + Tp)) . (2.2)

Commonly, F : R+
0 ×X ×U → R+

0 is denoted as cost function, and E : R+
0 ×X → R+

0
is called end or terminal penalty. At each sampling instance tk = t0 +kδ, k ∈ N, where
δ > 0 is the sampling time, the prediction is performed via the solution of the optimal
control problem (OCP)

minimize
ū(·)∈PC(U)

J (tk, x(tk), x̄(·), ū(·)) (2.3a)

subject to

∀τ ∈ [tk, tk + Tp] : ˙̄x(τ) = f(τ, x̄(τ), ū(τ)), x̄(tk) = x(tk) (2.3b)
x̄(τ) ∈ X (2.3c)
ū(τ) ∈ U (2.3d)

x̄(tk + Tp) ∈ E ⊆ X ⊆ Rnx. (2.3e)

The optimal solution to this problem—denoted by superscript ·?—is the input trajec-
tory2

u?k(·) = argmin
ū(·)∈PC(U)

J (tk, x(tk), x̄(·), ū(·)) . (2.4)

The subscript ·k indicates that the input signal ū?k(·) is computed using the state infor-
mation x(tk). The basic principle of an NMPC scheme built upon (2.3) is illustrated
in Figure 2.1. At each sampling time tk we predict the system behavior over the
horizon [tk, tk + Tp] by computation of the input (2.4) and x̄(·, tk, x(tk)|u?k(·)). During
the time span [tk, tk + δ) the optimal input u?k(·) is applied to the system (2.1). The
remaining part of u?k(·) is discarded. Then the prediction horizon is shifted forward to
[tk+1, tk+1 + Tp], and the whole procedure is repeated.
A predicted input ū(·) is called admissible, if it satisfies the input constraints (2.3d)
and the corresponding state trajectory x̄(·, tk, x(tk)|ū(·)) satisfies the following: for all
t ∈ [tk, tk + Tp] : x̄(t, tk, x(tk)|ūk(·)) ∈ X and x̄(tk + Tp, tk, x(tk)|ūk(·)) ∈ E . That is,

2From the optimal control point of view, it is fair to ask under which conditions an optimal solution to (2.3)
exists. Here, we assume for sake of simplicity that the minimum is attained and write min instead of inf.
Guaranteeing this is in general challenging. However, under certain convexity assumptions the existence
of optimal solutions can be guaranteed. We refer to Theorem E.1 in Appendix E, and to [Berkovitz 1974;
Bryson and Ho 1969; Lee and Markus 1967].
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Figure 2.1: Basic principle of NMPC.

Figure 2.2: Role of terminal constraint (2.3e) in NMPC.

the predicted trajectories have to fulfill the state constraint (2.3c) and the terminal
constraint (2.3e). The application of the optimal input u?k(·) during the time interval
[tk, tk+δ) leads to a trajectory x(·, tk, x(tk)|u?k(·)) which in general will not be identical
to the predicted trajectory x̄(·, tk, x(tk)|u?k(·)). This situation is depicted in Figure 2.2.

While the OCP (2.3) is solved online at each sampling instance several design
parameters of the NMPC scheme need to be determined offline to guarantee stability
and performance. In principle, the sampling or recalculation time δ > 0 should be
as short as possible to use as much feedback information as possible. However, the
achievable sampling rate is often limited by the available computational resources. If
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the system model is sufficiently accurate, the prediction horizon Tp should be as large
as possible to guarantee good control performance. Clearly, long prediction horizons
increase the computational burden. Of course we cannot compute the solution to the
OCP (2.3) arbitrarily fast. This leads to a trade-off between fast sampling (small δ)
and long prediction horizon (large Tp). Hence, in applications one needs to take com-
putation times and possible computational and/or communication delays into account.
Closely related to this issue is the possibility to asynchronously trigger the solution
of the OCP by system specific events online. The computation can, for example, be
triggered by error and performance thresholds or disturbance measurements. Both as-
pects are beyond the scope of this work. We refer the interested reader to [Faulwasser
et al. 2009b; Findeisen et al. 2011; Varutti et al. 2009] and the references therein.
Additionally, one has to choose the cost function F , the terminal penalty E, as well
as the terminal region E as design parameters. Often the cost function F reflects
performance aspects like a trade-off between input energy and set point deviation, or
economical and ecological aspects of system operation. The choices for F,E, E , and
Tp are not completely free, since stability depends one their choice. This is discussed
in the next section.

2.1.2 Approaches to Nominal Stability

As is well-known optimization of input or feedback signals does not necessarily lead
to stability [Kalman 1960]. Consequently, the design of NMPC schemes with stability
guarantees is of major interest. One can distinguish two approaches to guarantee
stability of NMPC schemes for set point stabilization. Either, one enforces stability via
suitable terminal regions E and terminal penalties E, or one imposes controllability-
like conditions and sufficiently long prediction horizons. While the former is often
called a classical NMPC approach the latter is—easily misleading, since constraints
on states and inputs are considered—referred to as an unconstrained NMPC approach.
The main idea of classical NMPC schemes relying on terminal constraints can be
divided into two parts. The first part is to determine an admissibe control, which
is valid in a set containing the set point to be stabilized. During the optimization
it is enforced that the predicted trajectories end in this terminal set, which leads to
the constraint (2.3e). Due to this constraint recursive feasibility is enforced, i.e., the
existence of an admissible solution to (2.3) at t0 implies the existence of admissible
solutions for all later sampling instance tk = t0 + kδ, k ∈ N. The second part is to
ensure convergence to the set point by construction of a strictly decreasing bound on
the cost implied by the closed-loop trajectories x(·, tk, x(tk)|u?k(·)) which arise from the
NMPC scheme (2.3). To construct such a bound one often requires that inside the set
E the end penalty E is a local control Lyapunov function.
For autonomous systems early NMPC schemes with terminal constraints are presented
in [Keerthi and Gilbert 1988; Mayne and Michalska 1990]. In these works the terminal
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equality constraint x(tk + Tp) = 0 is used in conjunction with the trivial terminal
penalty E(x) = 0 to enforce stability. Such a minimal choice of a terminal region is
also called zero-terminal constraint. However, zero-terminal constraints increase the
computational burden of solving the OCP (2.3) dramatically. To alleviate this major
drawback one can rely on a dual-mode strategy [Michalska and Mayne 1993]. There the
predicted system state x(tk+Tp) is required to be contained in a neighborhood E of the
set point to be stabilized. As soon as the real system state enters this neighborhood the
control strategy switches from the application of the predicted inputs (2.4) to a local
feedback law. The local feedback ensures constraint satisfaction, positive invariance
of E , and convergence to the set point.
Also in so-called quasi infinite horizon NMPC schemes a terminal region or terminal
inequality constraint is used to enforce stability [Chen and Allgöwer 1998]. As depicted
in Figure 2.2, the terminal region is a neighborhood of the desired set point. Moreover,
a terminal feedback law guarantees constraint satisfaction and convergence inside E .
In contrast to the dual-mode strategy the terminal feedback is never applied to the real
system. Its value is merely conceptual in the sense that it allows the construction of a
local Lyapunov function which is valid on E . Using this local Lyapunov function one
can guarantee the decrease of the optimal value function of the OCP (2.3) and show
stability of the closed NMPC loop. A seminal overview on these approaches covering
discrete and continuous time formulations is provided in [Mayne et al. 2000]. More
general formulations allowing consideration of non-autonomous systems and relaxed
controls have been proposed, for example, in [Findeisen 2006; Fontes 2001]. There gen-
eralized terminal penalties—not necessarily local Lyapunov functions—are employed.
It should be noted that a terminal region implies a rather strong requirement on the
controllability properties in the presence of constraints: in a finite time span Tp the
predicted state needs to be steered into the terminal set E . Hence the main challenge of
the classical approaches is to determine a terminal region which is as large as possible.
The results in [Chen et al. 2003; Yu et al. 2009] directly aim in this direction.
Approaches employing a terminal constraint have several advantages, i.e., input and
state constraints can be considered and recursive feasibility can be shown. Further-
more, for stable systems the computation of suitable terminal regions is simplified. In
case of globally asymptotically stable systems they can be completely dropped [Chen
and Allgöwer 1997]. Additionally, the prediction horizon Tp can be chosen rather
short without a severe loss of performance as long as the terminal region constraint
(2.3e) can be satisfied [Chen and Allgöwer 1998]. The typical drawback of classical
NMPC approaches is the computational burden of terminal constraints (equality or
inequality). In practice implemented NMPC schemes, however, often work well with-
out terminal constraints, see [Dittmar and Pfeiffer 2006; Ferreau et al. 2007; Qin and
Badgwell 2000; Santos et al. 2001; Simon et al. 2009]. One of the rare works showing
the necessity of a terminal constraint in an application is [Raff et al. 2006].
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Consequently, there are efforts to overcome terminal region constraints. Early results
for discrete time NMPC without terminal constraints are, for example, [Alamir and
Bornard 1995; Parisini and Zoppoli 1995]. In continuous time settings [Jadbabaie
2000; Jadbabaie et al. 2001] use a control Lyapunov function as terminal cost, how-
ever, no constraints on inputs and states are considered. An extension considering
input constraints and generalized terminal costs is [Jadbabaie and Hauser 2005]. The
aspect that usually only suboptimal solutions to the OCP are computed is discussed
in [Graichen and Kugi 2010]. Based on an asymptotic controllability assumption one
can also establish the existence of a finite stabilizing horizon length for discrete time
NMPC [Grimm et al. 2005]. The last three results suffer from the drawback that
merely the existence of a stabilizing horizon length Tp is shown. They do not provide
a constructive way to determine the minimal stabilizing horizon length. To overcome
this limitation a discrete time approach, based on similar controllability assumptions
as in [Grimm et al. 2005], is presented in [Grüne 2009]. The main idea is to derive a
bound on the suboptimality of an NMPC scheme with a finite horizon compared to a
scheme with an infinite horizon. Input constraints are included in this framework. A
remarkable feature of this approach is the possibility to explicitly compute a stabilizing
horizon length. Additionally, the relation between the stabilizing horizon length and
the cost function is investigated in [Grüne et al. 2010]. A drawback of these works is
that a rather strong assumption of an asymptotically controllable cost function is re-
quired. In general, the verification of such an assumption for a given nonlinear system
is very challenging. First steps towards an extension to continuous time systems are
discussed in [Reble and Allgöwer 2011, 2012].
A different route to overcome terminal constraints for autonomous discrete time sys-
tems is presented, for example, in [Limon et al. 2006; Pannocchia et al. 2011; Rawlings
and Mayne 2009]. There the argumentation begins with a stabilizing terminal region
which is a level set of the end penalty E = {x | E(x) ≤ α}. Based on this and on
an assumption on the reachability of the terminal region a modified terminal penalty
Ẽ(x) = βE(x), β ≥ 0 is constructed, which ensures that the terminal region constraint
is fulfilled without explicitly being a constraint in the OCP. The major advantage of
NMPC schemes without terminal constraints is the reduced computational burden.
However, if state constraints are present, it is in general very difficult to guarantee
recursive feasibility.

2.1.3 Explicit Stability Conditions

In the remainder of this work we aim at sampled-data NMPC schemes with terminal
constraints which are applicable to control problems beyond set point stabilization.
To prove stability for the NMPC scheme based on (2.3) we use similar assumptions as
in [Chen and Allgöwer 1998; Findeisen 2006; Fontes 2001; Mayne et al. 2000].
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Assumption 2.1 (Input constraints).
The input constraint set U ⊂ Rnu is compact and 0 ∈ U . The input functions u(·) are
piecewise continuous or right continuous and take values in U : u(·) ∈ PC(U).3

Assumption 2.2 (State constraints).
The state constraint set X ⊆ Rnx is closed, simply connected, and 0 ∈ X .

Assumption 2.3 (System dynamics).
The vector field f : R+

0 ×Rnx×Rnu → Rnx from (2.1) is continuous and locally Lipschitz
for any pair (t, u) with u ∈ U . Additionally, f(t, 0, 0) = 0.

Assumption 2.4 (Continuity of system trajectories).
For any x0 ∈ X0, t0 ∈ R, and any input function u(·) ∈ PC(U) the system (2.1) has
an absolutely continuous solution.

Assumption 2.5 (Cost function).
The cost function F : R+

0 ×X×U → R+
0 is continuous, and F (t, 0, 0) = 0. Furthermore,

F is lower bounded by a class K function such that for all (t, x, u) ∈ R+
0 × X × U :

ψ(‖x‖) ≤ F (t, x, u).4

Assumptions 2.1 and 2.4 ensure that the solutions obtained from the NMPC scheme
based on (2.3) exist and are sufficiently smooth. The lower boundedness of the cost
F is an assumption typically required for set point stabilization. It enforces that
minimizing F leads to convergence of the state to the desired set point (xs = 0). In
the remainder of this work we refer to Assumptions 2.1–2.5 as standard assumptions.
Following along the lines of [Fontes 2001, Theorem 3] and [Findeisen 2006, Theorems
2.2 and 4.3] one can state the following result.

Theorem 2.1 (Convergence of sampled-data NMPC for set point stabilization).
Given system (2.1), the NMPC scheme based on (2.3) with sampling time δ > 0, and
Assumptions 2.1-2.5 hold. Suppose that a terminal region E, and a terminal penalty
E exist such that the following holds:

i) E ⊂ X is closed, and E : R+
0 ×X → R+

0 is continuously differentiable in t and x.
ii) For all xt ∈ E and all t ∈ [t0,∞) there exist a scalar ε ≥ δ > 0 and a control

signal uE(·) ∈ PC(U) such that for all τ ∈ [t, t+ ε]

∂E

∂τ
+ ∂E

∂x
f(τ, x(τ, t, xt|uE(·)), uE(τ)) + F (τ, x(τ, t, xt|uE), uE(τ)) ≤ 0, (2.5)

and the trajectory x(τ, t, xt|uE(·)) ∈ E.
iii) The OCP (2.3) is feasible for t0 and all x0 ∈ X0.
3Extending this assumption to more general classes of input functions—also called relaxed controls—is
possible, cf. [Berkovitz 1974; Fontes 2001].

4The properties of a class K function are stated in Definition B.1 in Appendix B.
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Then
a) OCP (2.3) is feasible for all sampling instances tk = t0 + kδ, k ∈ N;
b) and the system states converge to the steady state lim

t→∞
‖x(t)‖ = 0.

A detailed proof of this result is given in Appendix A. Subsequently, we derive con-
vergence results on NMPC for trajectory-tracking and path-following problems which
are similar to the previous prototypical theorem for set point stabilization. Note that
Assumptions 2.1–2.5 are valid unless we explicitly comment on modifications.

2.2 Open Issues and Challenges

In the remainder of this thesis we discuss the design of NMPC schemes beyond set
point stabilization. However, beyond this scope there are further open issues of model
predictive control.
By nature NMPC is a state-feedback control approach. Hence in practice an NMPC
scheme has to be combined with a suitable observer. In general, a separation principle
does not hold for nonlinear systems. Consequently, there is a lack of results on the
stability of NMPC based on observed state information and on output feedback. A
review on existing schemes is given in [Findeisen et al. 2003]. Additionally, one should
note that Theorem 2.1 is merely a result on nominal stability, i.e., no model-plant
mismatch and no exogenous disturbances are considered. Therefore, the question of
robustness of NMPC is of vital interest. In discrete time settings different approaches
to robust NMPC schemes have been proposed, see i.a. [Bemporad and Morari 1999;
Grimm et al. 2007; Magni et al. 2009; Pannocchia et al. 2011; Rawlings and Mayne
2009] and the references therein. The robustness of NMPC in continuous time is
investigated, for example, in [Findeisen 2006; Yu 2011]. As pointed out, two main
branches of stability results can be identified, i.e., schemes with and without terminal
constraints. Both approaches implicitly require strong controllability properties in the
presence of constraints. The relation between the terminal region condition (2.5) and
the asymptotic controllability properties required in [Grüne 2009; Reble and Allgöwer
2012] has not been closely investigated yet.
Besides trajectory tracking and path following also economic MPC deals with questions
beyond set point stabilization. The conceptual idea of economic MPC is to consider
economically induced cost functions and no a priori fixed set point to be stabilized.
Essentially, it deals with predictive controls schemes that rely on cost functions, which
are not necessarily measuring the distance to a desired steady state. Often these
cost functions are linear and hence Assumption 2.5, which implies lower boundedness
of F by a positive definite function, has to be dropped. The aim is to optimize
the performance with respect to the economic cost, and to converge to an—implicitly
defined—set point only in the long term. For more details see [Angeli et al. 2009; Diehl
et al. 2011; Rawlings and Amrit 2009]. It is also possible to interpret this as a kind
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of set stabilization approach [Grüne 2011]. Furthermore, the control of decentralized
and large scale systems via predictive control methods is a field of intensive research
activities, cf. [Magni and Scattolini 2006; Raimondo et al. 2007].
From the applications point of view fast and robust implementations of MPC schemes
are needed. As discussed in [Dittmar and Pfeiffer 2006; Qin and Badgwell 1997, 2000]
most the of commercial MPC applications focus on linear systems, since for MPC based
on discrete time linear models industrial off-the-shelf solutions are available. Often
these industrial tools are applied for process control, where dynamics are rather slow
and sufficient computational resources are available. In case of linear MPC for mecha-
tronic systems, where controllers are implemented on embedded platforms, industrial
off-the-shelf tools are not yet available. Often mechatronic systems are governed by
fast dynamics and require sampling times in the order of milliseconds. Moreover, em-
bedded platforms offer only limited computational resources. A lot of ongoing research
tries to exploit the structure of the quadratic programs arising in discrete time linear
MPC to speed up the computations, see i.a. [Ferreau et al. 2008; Kögel and Findeisen
2011; Richter et al. 2009, 2010; Zometa et al. 2012]. For NMPC of continuous time
systems academic as well as commercial tools are available, for example [Ariens et al.
2010-2011; Houska et al. 2011; Nagy 2007; Rutquist and Edvall 2009]. However, the in-
dustrial use of these tools in applications under explicit consideration of nonlinearities
is still out of reach and requires development of customized software.

2.3 Summary

In this chapter we gave a brief introduction to NMPC. Additionally, we presented a
concise overview on the existing approaches to stability guarantees for NMPC. We
recalled a stability result based on terminal regions and end penalties which serves
as the basis for our subsequent developments on NMPC for trajectory-tracking and
path-following problems.
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Part II

Predictive Trajectory Tracking

21



3 Predictive Control for Trajectory-tracking
Problems

In this chapter we investigate the design of NMPC schemes for trajectory-tracking
problems. We begin with a concise statement of the output-tracking problem. We
briefly review existing results on NMPC for trajectory tracking. Furthermore, we
present a general NMPC scheme for tracking of reference trajectories defined in an
output space. The main parts of this chapter in Sections 3.4 and 3.5 deal with state
space trajectory-tracking problems. We show how stabilizing time-varying terminal
regions and terminal penalties can be derived. A key element in our developments
is the notion of time-varying level sets of Lyapunov functions which we employ as
terminal regions. Parts of the results have appeared in [Faulwasser and Findeisen
2011].

3.1 The Constrained Trajectory-tracking Problem

We consider autonomous, continuous time systems

ẋ(t) = f(x(t), u(t)), x(0) = x0, (3.1a)
y(t) = h(x(t)) (3.1b)

where x ∈ X ⊆ Rnx, u ∈ U ⊂ Rnu are state and input constraints. The map h :
Rnx → Rny (3.1b) defines the output y ∈ Rny and is assumed to be suffciently often
continuously differentiable. Moreover, we assume that the system and the constraints
fulfill our standard assumptions from Chapter 2. Subsequently, we consider the output
trajectory-tracking problem.

Problem 3.1 (Constrained output trajectory tracking).
Given system (3.1), and an a priori known output reference trajectory yr : [0,∞) →
Rny , design a controller that achieves:

i) Reference Convergence: The system output y from (3.1b) converges to the
reference: lim

t→∞
‖y(t)− yr(t)‖ = 0.

ii) Constraint Satisfaction: The state and input constraints are satisfied for all
t ≥ 0 : x(t) ∈ X , u(t) ∈ U .

With the denomination of this problem as trajectory tracking we follow along the lines
of [Athans and Falb 1966]. If the reference trajectory is generated by an exogenous
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system, then one denotes the problem of tracking its output either as model following,
servo problem, or as output regulation problem. The first two denominations stem
from optimal control approaches towards the problem [Anderson and Moore 1990].
The latter is common, if one refers to geometric approaches to tracking problems
[Isidori 1995].
One should note that even the unconstrained trajectory-tracking problem is in general
difficult. The objective of tracking a time-varying reference signal as well as possible
is subject to fundamental performance limits, if the system is non-minimum phase. In
case of linear systems these limits are induced by the right half plane zeros, see [Seron
et al. 1999; Su et al. 2003]. These performance limits are closely connected to the
cheap control problem [Kwakernaak and Sivan 1972a,b]. However, this issue is beyond
the scope of this thesis.

3.2 Existing NMPC Approaches to Trajectory Tracking

Stability results for NMPC applied to trajectory-tracking problems are only sparsely
available. In the early work [Michalska 1996] the tracking of output reference trajec-
tories via NMPC is discussed. No state or input constraints are considered. These
results suffer from the major drawback of an output trackability assumption. This as-
sumption requires that a zero output tracking error y(t1)− yr(t1) = 0 at some time t1
implies the existence of admissible controls for all t ≥ t1 such that the output tracking
error remains zero for t ≥ t1. We show in Section 3.3.2 that such an assumption often
does not hold. Furthermore, output trackability assumptions imply an output termi-
nal equality constraint y(tk +Tp)− yr(tk +Tp) = 0, which increases the computational
burden.
In [Magni et al. 2001] an approach to general output tracking problems, where the
reference is generated by an exogenous system, is outlined. This work is related to
geometric approaches to tracking of exogenous reference signals, cf. [Isidori 1995]. A
limitation is that neither input nor state constraints are considered. The tracking of
asymptotically constant output references in the presence of constraints is considered
in [Magni and Scattolini 2007]. A pitfall of this work is that the prediction horizon
has to cover the full length of the reference trajectory. The use of long prediction
horizons is computationally demanding. Moreover, it limits the achievable sampling
rate and hence also the robustness of the predictive controller. In Section 3.4 we present
an approach for tracking of state space reference trajectories which overcomes this
limitation. The trajectory-tracking problem for the kinematic unicycle is dealt with
in [Gu and Hu 2006]. There a stabilizing terminal region for the unicycle is derived.
However, the approach relies on the specific system structure and its generalization is
not straightforward.
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3 Predictive Control for Trajectory-tracking Problems

It might be surprising that only a few results on stability of NMPC for tracking
problem are available. One reason for this is that the tracking problem is inherently
time-varying for time-varying yr(t). For an a priori given reference consider the track-
ing error as e(t) = y(t) − yr(t). Using this variable the task to stabilize the error is
equivalent to stabilizing a non-autonomous system at e = 0. While the stabilization
of time-invariant systems has been extensively considered in discrete as well as in con-
tinuous time, the same is not true for time-varying systems. This can be explained
as follows. As outlined in Chapter 2 often local control Lyapunov functions are used
as stabilizing terminal penalties, cf. [Chen and Allgöwer 1998; Jadbabaie et al. 2001;
Mayne et al. 2000]. Determining these functions is especially difficult for nonlinear
time-varying systems. Consequently, only a few results—compared to the large num-
ber of publications on NMPC for autonomous systems—explicitly consider predictive
control for time-varying systems, e.g. [Fontes 2001; Gondhalekar and Jones 2011; Kern
et al. 2009].1

3.3 NMPC Schemes for Output Trajectory Tracking

Often tracking problems are solved based on the definition of the error variable

e(t) := h(x(t))− yr(t). (3.2)

We make the following standing assumption to avoid problems of existence of solutions.
It is valid throughout the remainder of this chapter.

Assumption 3.1 (Smoothness of reference trajectory).
The reference yr : [0,∞)→ Rny is a priori known and yr(t) ∈ C1.

Relying on this assumption the tracking problem can be reformulated as an output
stabilization problem for the augmented dynamics

ẋ(t) = f(x(t), u(t)) (3.3a)

ė(t) = ∂h

∂x
· f(x(t), u(t))− ẏr(t) (3.3b)

ỹ(t) = e(t) (3.3c)

where ỹ is the output corresponding to the tracking error (3.2). These augmented
dynamics are time-varying for time-varying yr(t). In this general version the trajectory
problem is challenging even without constraints. The challenges stem from the fact
that in the problem statement non-square input-output structures and constraints are
allowed. As we will see, additional NMPC specific difficulties arise from the fact that
an output reference trajectory should be tracked.

1Note that if the reference is generated by an exo system, the error dynamics are not necessarily time-varying.
However, the exo system can be regared as an uncontrollable part of the error dynamics, cf. [Isidori 1995].
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In order to solve the output tracking problem we propose an NMPC scheme based on
the error variable e defined in (3.2). The main idea is to use the knowledge about
the reference yr in an NMPC scheme to predict the error dynamics (3.3), and to
stabilize e at 0. To distinguish between the predicted controller variables and the
real system variables we denote the predicted inputs, states, and outputs with ū, x̄, ȳ,
respectively. To find suitable inputs, as commonly done in NMPC, at each sampling
instant tk = kδ, k ∈ N, δ > 0 an optimal control problem (OCP) is solved. The cost
functional to be minimized is

J (tk, x(tk), ē(·), ū(·)) =
∫ tk+Tp

tk
F (τ, ē(τ), ū(τ)) dτ + E(t, x̄(t))|tk+Tp. (3.4)

The OCP is
minimize
ū(·)∈PC(U)

J (tk, x(tk), ē(·), ū(·)) (3.5a)

subject to

∀τ ∈ [tk, tk + Tp] : ˙̄x(τ) = f(x̄(τ), ū(τ)), x̄(tk) = x(tk) (3.5b)
ē(τ) = h(x̄(τ))− yr(τ) (3.5c)
x̄(τ) ∈ X (3.5d)
ū(τ) ∈ U (3.5e)

x̄(tk + Tp) ∈ Etk+Tp. (3.5f)

For simplicity we assume that the problem data fulfill our standard assumptions from
Chapter 2. The differences to these assumptions are as follows. Now, the stage cost
F : R×Rny ×U → R+

0 penalizes the error e and F (t, 0, 0) = 0. Similar to Assumption
2.5 we assume that F is lower bounded by a class K function ψ(‖e‖). The function
E : R×Rnx → R+

0 is the end penalty. As in Chapter 2 the optimal solution is denoted
as ū?k(·), and its first part is applied to the system

∀t ∈ [tk, tk + δ) : u(t) = ū?k(t).

Equation (3.5f) requires that at the end of each prediction the predicted state x̄(tk+Tp)
has to be inside a terminal region in the state space. One should also note that in the
cost functional (3.4) the end penalty E(t, x̄) is defined as a function of the time and
the predicted state x̄. The reason for this is that the end penalty is used to bound
from above the cost-to-go of the NMPC scheme for any solution which starts inside
the terminal region Et ⊆ X . This region, however, is defined in the state space. And
thus we use a state-dependent end penalty. Since E(t, x) is required to be positive
semi-definite, this choice captures the case where one penalizes the output tracking
error e via an end penalty E(t, e). Furthermore, we advocate the use of time-varying
terminal regions, which we denote as Etk+Tp. We assume that the time-varying sets
are such that their boundary set evolves without sharp kinks in time, and for fixed t
the set Et is closed. For details on time-varying sets and their properties we refer to
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3 Predictive Control for Trajectory-tracking Problems

Appendix C. Clearly, it has to hold that Etk+Tp ⊆ X . At this point we do not specify
how to obtain suitable time-varying terminal regions. In Section 3.3.2 we discuss the
computation of suitable sets. Note that the length of the prediction horizon Tp has to
be chosen such that the OCP (3.5) is feasible.
The question arises of under which conditions the proposed control scheme guarantees
convergence of the tracking error. We have to take into account that the trajectory-
tracking problem is inherently time-varying. The next result is mainly an adaption of
Theorem 2.1.

Theorem 3.1 (Convergence of NMPC for trajectory tracking).
Given Problem 3.1, the tracking error e(t) = h(x(t)) − yr(t), and its dynamics (3.3).
Suppose that an end penalty E(t, x(t)), and a time-varying terminal region Et ⊆ X
exist such that the following holds:

i) E(t, x(t)) ∈ C1 is positive semi-definite. And for all t ≥ 0 the sets Et ⊆ X are
closed.

ii) For all xt ∈ Et and all t ∈ [0,∞) there exists a scalar ε ≥ δ > 0, and a control
uE(·) ∈ PC(U) such that for all τ ∈ [t, t+ δ]

x(τ, t, xt|uE(·)) ∈ Eτ (3.6a)

holds.
iii) For all τ ∈ [t, t+ δ] the solutions x(τ, t, xt|uE(·)) ∈ Eτ satisfy

∂E

∂τ
+ ∂E

∂x
f(τ, x(τ, t, xt|uE(·)), uE(τ)) + F (τ, e(τ), uE(τ)) ≤ 0, (3.6b)

where e(τ) = h(x(τ, t, xt|uE(·)))− yr(τ).
iv) The optimal control problem (3.5) has a feasible solution for t = 0 and x(0).

Then the closed loop defined by (3.1) and (3.5) guarantees convergence of the tracking
error in the sense that

lim
t→∞
‖e(t)‖ = lim

t→∞
‖h(x(t))− yr(t)‖ = 0

and satisfaction of the constraints for all t ≥ 0 : x(t) ∈ X , u(t) ∈ U .

Proof. In essence this result is an adaption of the stability result on NMPC for time-
varying systems as presented in Theorem 2.1. We briefly sketch the main differences to
the proof of Theorem 2.1 as given in Appendix A. Firstly, note that part ii) is simply
a version of positive invariance, where the invariant set Et is allowed to change with
time. If the positive invariance of Et is guaranteed this causes no further difficulties.2

2Verifying the invariance of general time-varying sets can be complicated. A useful property which simplifies
these investigations is Property P which is introduced in the Appendix C. This property ensures that one
can check positive invariance of candidates Et by evaluation of f(x, uE) on the boundary ∂Et. In detail
these issues are discussed in Appendix C.
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Secondly, recursive feasibility can easily be shown by concatenating an optimal input
with the terminal control uE(·). Thirdly, condition (3.6b) requires a cost decrease for
all x(t) ∈ Et, which is necessary in order to conclude from Barbalat’s Lemma that
limt→∞ ‖e(t)‖ = 0, see Appendix A. The crucial difference to Theorem 2.1 is that F
is lower bounded by a class K function ψ(‖e‖). Thus F is only positive semi-definite
with respect to x. Consequently, we merely establish convergence of the output to the
reference.

3.3.1 Challenges of Predictive Output Tracking

The convergence conditions of Theorem 3.1 are in general difficult to verify. Two main
causes for these difficulties can be identified. Firstly, for general nonlinear systems it
is hard to check whether for a given time-varying reference there exists an admissi-
ble input u(·) ∈ U such that the corresponding state evolution x(t, t0, x0|u(·)) fulfills
h(x(t, t0, x0|u(·)) = yr(t) for all times t. Secondly, the derivation of a suitable termi-
nal region Et depends on yr(·) since the reference is defined in terms of the output
y = h(x).
To illustrate these issues we consider the set of all points in the output space which
lie on the reference trajectory yr(·), and denote this set as

R := {r ∈ Rny | t ∈ [0,∞) 7→ yr(t)}. (3.7)

If one asks for conditions ensuring trackability of reference trajectories, it is clear that
the pointwise image of the state constraints h(X ) := {y ∈ Rny | x ∈ X 7→ h(x)} has
to be a superset of the reference R, cf. Figure 3.1. Hence a basic necessary condition
for trackability of reference trajectories in the presence of constraints is

R ⊂ h(X ). (3.8)

If this relation does not hold, parts of the output reference R are not feasible under
the given state constraints X . Usually, the output space has a smaller dimension
than the state space ny < nx, and hence it is not easy to characterize the pointwise
preimage of the reference h−1(R). For general continuous output maps h : Rnx → Rny

with nx > ny the preimage of a compact set R might neither be simply connected nor
compact, cf. Figure 3.1. Formally, one can require that at the end of each prediction
x̄(tk + Tp, tk, x(tk)|ū(·)) lies in some neighborhood of a set Γ ⊆ {h−1(R) ∩ X}. Here
Γ is the set of all constraint consistent state space trajectories which correspond to an
output identical to the reference trajectory yr(·). However, for general systems it is
difficult to characterize Γ, and to determine such terminal constraints solely in terms
of the output y = h(x).
Subsequently, we discuss two possibilities to overcome these problems. Either one
postulates rather restrictive observability conditions on the output space and relies on
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Figure 3.1: Relations between constraints X , reference R, and preimage h−1(R).

zero terminal constraints. Or one restricts the consideration to reference trajectories
which are initially defined in the state space. The former is discussed next while the
latter is elaborated in Section 3.4.

3.3.2 Output Tracking via Zero Terminal Constraints

One way to circumvent the aforementioned difficulties is to rely on the concept of
output trackability as used in [Michalska 1996].

Definition 3.1 (Output trackability).
The system (3.1) is said to be completely output trackable with respect to a reference
yr(·), if for all t0 ≥ 0, and all x with h(x0) = yr(t0), there exists an admissible input
u(·) ∈ PC(U) such that for all t ≥ t0 it holds h(x(t, t0, x0|u(·))) = yr(t).

Relying on an output trackability assumption it is rather easy to state stabilizing
terminal regions and end penalties. The main idea is to enforce that the predicted
outputs reach the reference trajectory.

Corollary 3.1 (Convergence of output tracking via zero terminal constraints).
Consider the output tracking problem for system (3.1) as defined in Problem 3.1. The
time-varying terminal region is given by Etk+Tp = {x ∈ Rnx | h(x(tk+Tp)) = yr(tk+Tp)}
and E(t, x) = 0, and the following conditions hold:

i) The system is output trackable with respect to the reference yr(·), i.e., for all
t ≥ 0, and all xt ∈ Et there exists an input ur(·) ∈ PC(U) such that h(xt) = yr(t)
implies h(x(τ, t, xt|ur(τ)) = yr(τ) for all τ ∈ [t,∞).

ii) The cost function is such that for all τ ≥ t : F (τ, 0, ur(τ)) = 0.
iii) The optimal control problem (3.5) has a feasible solution for t = 0 and x(0).

Then the closed loop defined by (3.1) and (3.5) guarantees convergence of the tracking
error

lim
t→∞
‖e(t)‖ = lim

t→∞
‖h(x(t))− yr(t)‖ = 0,

and satisfaction of the constraints for all t ≥ 0 : x(t) ∈ X , u(t) ∈ U .
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3.3 NMPC Schemes for Output Trajectory Tracking

Mainly, the corollary expresses the idea of using a time-varying zero terminal constraint
as stabilizing terminal region. The proof follows directly from Theorem 3.1 and is
omitted here. The result has two main pitfalls. Firstly, the zero terminal constraint
h(x(tk + Tp)) = yr(tk + Tp) is a strict finite time controllability requirement. It causes
numerical difficulties and usually shrinks the region of attraction, cf. Section 2.2.
Secondly, except for cases of explicitly invertible output maps h : Rnx → Rny with
nx = ny, it is hard to verify the output trackability assumption. Often even academic
example systems turn out to be not output trackable.

Example 3.1 (Output trackability).
Consider the double integrator

ẋ =
0 1

0 0

x+
0

1

u, x(0) = x0 (3.9a)

y =
(
1 0

)
x, (3.9b)

where no constraints except ∀t : ‖u(t)‖ <∞ are present. The reference to be tracked is
yr(t) = t. Assume that at t = 1 the system state is x(1) = (1, 0). Clearly y(1) = yr(1).
In order to derive an input u(t) at time t = 1, which keeps the output on the reference,
we determine ẏ = CT (Ax + Bu) and check whether there exists an u(t) such that
ẏ(t) = ẏr(t). It is easy to see that ẋ(t) = (x2(t), u(t))T , and therefore one yields
ẏ(1) = 0. Consequently, at t = 1 there exists no finite u(t) to keep the output on the
reference. And hence the double integrator is not output trackable with respect to the
considered reference.

Note this small example system has rather strong control properties. It is minimum
phase, controllable, and furthermore the considered output is a differentially flat out-
put, cf. Section 4.4 and the references therein for details on flatness. Thus one can
conclude that even in the case of unconstrained linear controllable systems output
trackability assumptions are very restrictive.

Remark 3.1 (Output trackability of differentially flat systems).
If the reference is defined in a flat output space things simplify. If the output map
y = h(x) defines a differentially flat output, this implies (among other properties) that
the state evolution can be locally completely parametrized by a map

x = Φ
(
y1, ẏ1, . . . , y

(l1)
1 , . . . , yny , . . . , y

(lny )
ny

)
, (3.10)

where y(j)
i is the j-th time derivative of the i-th output component, cf. [Fliess et al.

1995b] and Section 4.4. In this case, and under suitable technical assumptions, one
may equivalently reformulate any reference yr(t) ∈ C l̂, where l̂ is highest derivative
appearing in (3.10), as a state space trajectory given by (3.10).
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These insights—and the fact that zero terminal constraints impose strict controlla-
bility requirements and are numerically not desireable—motivate to focus the further
considerations on state space trajectory-tracking problems.

3.4 Trajectory Tracking in the State Space

In the following we focus on trajectory-tracking problems, where the reference is defined
directly in the state space of the considered system. Thus instead of (3.1) we consider

ẋ(t) = f(x(t), u(t)), x(0) = x0, (3.11)

where x ∈ X ⊆ Rnx, u ∈ U ⊂ Rnu are as before. Suppose that the system and the
constraints fulfill our standard assumptions from Chapter 2. We want to solve the
following state space trajectory-tracking problem.
Problem 3.2 (Constrained state space trajectory tracking).
Given system (3.11) and an a priori known reference trajectory xr : [0,∞) → Rnx

where for all t ≥ 0 it holds xr(t) ∈ C1. Design a controller such that:
i) Reference Convergence: The system state x converges to the reference

lim
t→∞
‖x(t)− xr(t)‖ = 0.

ii) Constraint Satisfaction: The state and input constraints are satisfied for all
t ≥ 0 : x(t) ∈ X , u(t) ∈ U .

Trajectory tracking in state space is relevant and important for many applications.
Often the desired state trajectories are computed offline by means of dynamic opti-
mization based on system models. Typical examples from chemical and biochemical
engineering are the startup and set point changes of processes like batch crystalliza-
tion or batch fermentation, see [Constantinides et al. 1970; Kravaris et al. 1989; Nagy
et al. 2007; Soroush and Kravaris 1992]. In these cases state trajectories are computed
offline such that the process performance is optimized with respect to yield, energy
consumption or time duration. The optimal trajectories are often tracked by means
of a two-degrees-of-freedom control structure, where a nominal feedforward input is
combined with a feedback controller, e.g. [Anderson and Moore 1990; Hagenmeyer
and Delaleau 2003; Hagenmeyer and Zeitz 2004].3 However, this makes it challenging
to consider constraints.
As for the output tracking case, the solution is based on the error variable

e(t) := x(t)− xr(t). (3.12)

We rely on Assumption 3.1, i.e., the reference is a priori known and continuously dif-
ferentiable. Thus the tracking problem can be reformulated as a set point stabilization

3Note that two-degrees-of-freedom control structures are also used to track references defined in an output
space. Hence the feedback part can be state or output feedback.
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problem for the error dynamics

ė = f̃(t, e, u) := f(e+ xr(t), u)− ẋr(t), (3.13)

which are inherently time-varying for varying xr(t).
Similar to the one for output tracking (3.5) the NMPC scheme for tracking of state
space trajectories reads as follows. The cost functional to be minimized is

J (tk, x(tk), ē(·), ū(·)) =
∫ tk+Tp

tk
F (τ, ē(τ), ū(τ)) dτ + E(t, ē(t))|tk+Tp, (3.14)

where F : R × X × U → R+
0 is the stage cost and fulfills Assumption 2.5. And

E : R × Rnx → R+
0 is the positive semi-definite end penalty, which is now defined in

terms of the state space tracking error. The OCP to be solved repetitively is

minimize
ū(·)∈PC(U)

J (tk, x(tk), ē(·), ū(·)) . (3.15a)

subject to

∀τ ∈ [tk, tk + Tp] : ˙̄e(τ) = f̃(τ, ē(τ), ū(τ)), ē(tk) = x(tk)− xr(tk) (3.15b)
ē(τ) + xr(τ) ∈ X (3.15c)
ū(τ) ∈ U (3.15d)

ē(tk + Tp) ∈ Etk+Tp. (3.15e)

The main difference of this scheme compared to (3.5) is the fact that the reference is
defined in the state space. The next result is a corollary to Theorem 3.1.
Corollary 3.2 (Convergence of NMPC for state space trajectory tracking).
Consider Problem 3.2, the tracking error e(t) = x(t)− xr(t), and its dynamics (3.13).
Suppose that an end penalty E(t, e(t)) ∈ C1 and a time-varying terminal region Etk+Tp
exist, such that for all t ≥ 0 the set Et is closed, and a feedback k(t, e) ∈ C0 guarantees
the following:

i) For all et ∈ Et and all τ ∈ [t,∞) it holds that

e(τ, t, et|k(τ, e)) ∈ Eτ
xr(τ) + e(τ, t, et|k(τ, e)) ∈ X . (3.16a)

ii) For all solutions e(τ, t, et|k(τ, e)) ∈ Eτ it holds that

∂E(τ, e)
∂τ

+ ∂E(τ, e)
∂e

ė+ F (τ, e(τ), k(τ, e)) ≤ 0. (3.16b)

iii) The optimal control problem (3.15) has a feasible solution for t = 0.
Then the closed loop defined by (3.11) and (3.15) guarantees convergence of the error

lim
t→∞
‖e(t)‖ = lim

t→∞
‖x(t)− xr(t)‖ = 0,

and satisfaction of the constraints for all t ≥ 0 : e(t) + xr(t) ∈ X , u(t) ∈ U .
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The proof follows mutatis mutandis the previous considerations and is thus omitted.
However, one difference should be observed. Instead of a control signal uE(·) we require
the existence of a continuous time-varying feedback k(t, e), which is admissible on the
terminal region Et. This result is the basis for our further developments.

3.5 Tracking of Asymptotically Constant References

Subsequently, we focus on a special case which is of interest in many applications. In
order to derive a terminal region and an end penalty which fulfill the suppositions of
Corollary 3.2 we restrict our investigations to reference trajectories which are asymp-
totically constant. We make the following standing assumptions.

Assumption 3.2 (Asymptotically constant reference).
i) The asymptotically constant reference trajectory is a priori known such that for

all t ≥ 0 : xr(t) ∈ intX ⊆ Rnx, and xr(t) ∈ C1. Furthermore, lim
t→∞

xr(t) = xr(T )
with T <∞.

ii) An admissible reference input ur : [0,∞) → intU ⊂ Rnu, ur(t) ∈ C0 with ẋr =
f(xr, ur) is known.

iii) The reference trajectory xr(·) ends at t = T in a stabilizable set point of (3.11),
i.e. f(x, u)|xr(T ),ur(T ) = 0 and the matrix pair A(T ), B(T )

A(T ) := ∂f

∂x

∣∣∣∣
xr(T ),ur(T )

∈ Rnx×nx, B(T ) := ∂f

∂u

∣∣∣∣
xr(T ),ur(T )

∈ Rnx×nu (3.17)

is stabilizable.

Assumption 3.3 (Quadratic cost function and box constraints).
i) The constraint sets X ,U of the original system (3.11) are box constraints

∀i ∈ {1, . . . , nx} : xmin,i ≤ xi ≤ xmax,i

∀i ∈ {1, . . . , nu} : umin,i ≤ ui ≤ umax,i.

ii) The stage cost F in (3.14) is given by

F (t, e, u) := eTQF e+ (u− ur(t))TRF (u− ur(t))

with QF , RF > 0.

We proceed as follows: Firstly, we consider the linearization of the error dynamics
(3.13) along the reference xr(·). Assumption 3.2 enables the derivation of a suitable
feedback law as well as a Lyapunov function for the contolled linear time-varying
(LTV) error system. This feedback law serves as terminal control law k(t, e) in (3.16).
Secondly, we introduce the concept of time-varying level sets of Lyapunov functions to
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derive candidate terminal regions for the LTV error system. We formulate an optimal
control problem to compute the time-varying level sets via an approximation to a
convex optimization problem. Based on the linearization we derive a suitable time-
varying terminal region also for the nonlinear error dynamics. Finally, we clarify how
the suppositions of Corollary 3.2 can be verified.

3.5.1 Stabilization of the Linearized Error System

Consider the error dynamics (3.13) and Assumptions 3.2–3.3. The Jacobian lineariza-
tion of the error system along the reference trajectory xr(·) and reference input ur(·)
expressed in the coordinates e = x− xr, w = u− ur is

ė = A(t)e+B(t)w. (3.18)

From Assumption 3.2 it follows that the time-varying matrices A(t), B(t) are bounded
and continuous in their elements, which is briefly written as A(t) ∈ BC(Rnx×nx) and
B(t) ∈ BC(Rnx×nu). Our goal is to derive a time-varying feedback which exponentially
stabilizes the LTV system (3.18). We rely on a solution to a time-varying Riccati
differential equation (RDE) to construct such a feedback. To this end we recall the
following definition and a helpful result.

Definition 3.2 (Q-stabilizability, [Phat and Jeyakumar 2010]).
Consider the LTV system (3.18) and a matrix Q(t) ∈ BC+

0 (Rnx×nx). System (3.18) is
denoted as Q-stabilizable, if for any initial condition e0 there exists a control w(·) ∈ L2

such that the functional

JQ(e0, w(·)) =
∫ ∞

0
‖w‖2 + eTQ(τ)e dτ, (3.19)

is bounded.

Lemma 3.1 (Existence of semi-definite RDE solutions, [Phat and Jeyakumar 2010]).
If the LTV system (3.18) is Q-stabilizable for some Q(t) ∈ BC+

0 (Rnx×nx), then for all
t ≥ 0 the Riccati differential equation

Ṗ (t) = P (t)B(t)BT (t)P (t)−Q(t)− P (t)A(t)− AT (t)P (t), P (T ) = PT (3.20)

has a positive semi-definite solution P (t) ∈ BC+
0 (Rnx×nx).

Now we are ready to state sufficient conditions for exponential stabilizability of the
LTV system (3.18).

Lemma 3.2 (Exponential stabilizability of LTV error system).
If Assumption 3.2 holds, then the LTV error system (3.18) is exponentially stabilizable.
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Proof. We give a constructive proof. We explicitly derive a suitable feedback and a
Lyapunov function for (3.18) subject to this feedback. Firstly, we verify that the error
system (3.18) is Q-stabilizable for any Q(t) ∈ BC+

0 (Rnx×nx). Secondly, we construct a
feedback via Lemma 3.1 and a suitably chosen RDE. Finally, we derive a Lyapunov
function for the controlled system.
Step 1: To show that (3.18) is Q-stabilizable we have to verify the boundedness of
(3.19). Recall that due to Assumption 3.2 iii) for any t ≥ T the pair (A(t), B(t))|t≥T
is constant and stabilizable. Pick any constant feedback w = Ke, K ∈ Rnx×nu such
that for fixed t = T the matrix A(T ) + B(T )K is asymptotically stable. Split (3.19)
into two parts

JQ(e0, Ke) =
∫ T

0
‖Ke‖2 + eTQ(t)e dτ +

∫ ∞
T
‖Ke‖2 + eTQ(t)e dτ,

where Q(t) is any matrix from BC+
0 (Rnx×nx). Obviously, the first integral is bounded.

The second integral is also bounded, since for all t ≥ T the closed loop behaves like a
stable LTI-system. Hence (3.18) is Q-stabilizable for any Q(t) ∈ BC+

0 (Rnx×nx).
Step 2: Consider another RDE

Ṗ (t) = P (t)B(t)R−1(t)BT (t)P (t)−Q(t)−P (t)A(t)−AT (t)P (t), P (T ) = PT (3.21)

where the boundary condition P (T ) = PT solves

0 = PTB(T )R−1
T B(T )PT −QT − PTA(T )− AT (T )PT . (3.22)

If we rely on an input transformation w̃ =
√
R(t)−1w and take Step 1 into account,

we can conclude that for any Q(t) ∈ BC+
0 (Rnx×nx) and R(t) ∈ BC+(Rnu×nu) the RDE

(3.21) has a positive semi-definite solution P (t) ∈ BC+
0 (Rnx×nx).

W.l.o.g. assume that two positive definite and symmetric matricesQ(t) ∈ BC+(Rnx×nx)
and R(t) ∈ BC+(Rnu×nu) are chosen such that for all t ∈ [0, T ]

Q(t)−
(
A(t) + AT (t) +B(t)R−1(t)BT (t)

)
≥ q̃I (3.23)

holds for some q̃ > 0, and for t ≥ T Q(t) = QT , R(t) = RT are constant. Subsequently,
we use P (t) ∈ BC+

0 (Rnx×nx) to verify that the time-varying feedback given by

ω = K(t)e = −1
2R
−1(t)BT (t) (P (t)− I) e (3.24)

stabilizes the LTV error system (3.18) exponentially.
Step 3: We restrict ourselves to the case that Q(t), R(t) have been chosen according
to (3.23). Ã(t) := A(t) + B(t)K(t) is the closed loop system matrix of (3.18) under
(3.24). Consider the candidate Lyapunov function

V (t, e) = eT (P (t) + I) e (3.25)
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where P (t) + I ∈ BC+(Rnx×nx). Its time derivative along the solution trajectories of
(3.18) under the feedback (3.24) is

∂V (t, e)
∂t

+ ∂V (t, e)
∂e

ė = eT
(
ÃT (t)P̃ (t) + P̃ (t)Ã(t) + Ṗ (t)

)
e (3.26)

where P̃ (t) = P (t) + I. Since

Ṗ (t) + ÃT (t)P̃ (t) + P̃ (t)Ã(t) = −Q(t) +
(
A(t) + AT (t) +B(t)R−1(t)BT (t)

)
(3.27)

it follows from (3.23) that V̇ (t, e) ≤ −q̃‖e‖2. Hence V (t, e) = eT (P (t) + I) e is a
Lyapunov function for (3.18) under the feedback (3.24). Recall P (t) ∈ BC+

0 (Rnx×nx),
and for all t ≥ T : P (t) = PT . We can assume w.l.o.g. that p := supt∈[0,T ] ‖P (t)‖ with
p ≥ 0 exists. Thus quadratic bounds for the Lyapunov function are given by

c1‖e‖2 ≤ V (t, e) ≤ c2‖e‖2 (3.28a)
∂V

∂t
+ ∂V

∂e
ė ≤ −c3‖e‖2 (3.28b)∥∥∥∥∥∂V∂e
∥∥∥∥∥ ≤ c4‖e‖ (3.28c)

where c1 = 1, c2 = p+ 1, and c4 = 2(p+ 1). The constant c3 = q̃ follows directly from
(3.27) combined with (3.23). Using Lemma B.3 from Appendix B it follows that the
LTV error system (3.18) is exponentially stabilized by (3.24).

In principle, the core statement of the last lemma can be proven more briefly than done
here. Firstly, construct a simple time-invariant feedback and an exponential bound
on the controlled solutions of (3.18) t ≥ T : ‖e(t)‖ ≤ αe−βt, α, β > 0. Secondly,
choose α sufficiently large, such that the exponential bound also captures the solutions
on the finite time interval [0, T ). In contrast to that, we have chosen a constructive
approach, which leads to a time-varying Lyapunov function for the LTV error system
(3.18) under the control (3.24). Explicit knowledge of this Lyapunov function is crucial
for the later developments. We also mention that the finite-time convergence stated
in Assumption 3.2 is important for the construction of the Lyapunov function. If we
allow T =∞—i.e., the reference trajetory converges only in the limit to a set point—it
is much more difficult to establish exponential stabilizability of (3.18).
Recall that in order to compute P (t) we have to choose Q(t) and R(t) such that (3.23)
is satisfied. At first glance this seems to be hard to verify. However, for a constant
R(t) = R > 0 one can set

Q(t) = Q̃+ A(t) + AT (t) +B(t)R−1BT (t) > 0, Q̃ > 0 (3.29)

which—for sufficiently large matrices Q̃ > 0—fulfills (3.23). A suitable Q̃ > q̃I can
be determined via a time-discretized approximation of (3.29). In that case the decay
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(3.26) of V (t, e) is V̇ = −eT Q̃e, and for all t ≥ T the RDE (3.21) is time-invariant.
To simplify the later considerations we make the assumption.

Assumption 3.4 (Choice of Q and R in the RDE).
The solution P (t) ∈ BC+

0 to the RDE (3.21) is obtained for a constant matrix R(t) =
R > 0 and a time-varying matrix Q(t) satisfying (3.29).

Remark 3.2 (Uniformly controllable LTV error systems).
If the matrix pair (A(t), B(t)) from (3.17) is uniformly controllable, the existence of a
symmetric strictly positive definite solution P (t) to (3.21) is guaranteed, see Lemma
D.2 from Appendix D. Moreover, the altered version of the stabilizing feedback (3.24)
is w = −1

2R
−1(t)BT (t)P (t)e. Using this feedback V (t, e) = eTP (t)e being a suitable

Lyapunov function is easily verified. For this case all of the subsequent considerations
apply similarly.

3.5.2 Positive Invariant Time-varying Level Sets

So far we have shown how to construct a Lyapunov function for the controlled LTV
error system. Now we want to use this Lyapunov function to compute a terminal
region. In a standard NMPC approach a terminal region would be obtained as a level
set Et = {e | V (t, e) ≤ c2} such that for all e ∈ Et and all t ≥ 0 the constraints
e + xr(t) ∈ X , K(t)e + ur(t) ∈ U and ∂V

∂e f̃(·) + F (·) ≤ 0 are satisfied, see [Chen and
Allgöwer 1998]. Indeed such a terminal region would be already time-varying, since
V (t, e) depends explicitly on t. However, it is a restrictive choice. For a given V (t, e)
the set is defined by a constant c > 0, i.e., the time instant t ≥ 0 where the constraints
are most restrictive determines the value of c. Subsequently, we want to relax this
conservatism by using a time-varying function π : R+

0 → R+ on the right hand side of
the inequality, and thus we work with V (t, e) ≤ π2(t). To this end we formulate the
notion of a positive invariant time-varying level set of a Lyapunov function.4
Consider the Lyapunov function (3.25) for the controlled LTV system and a function
π : R+

0 → R+, π ∈ C1. In order to handle the time-varying right hand side in V (t, e) ≤
π2(t) we consider the closed set

Λ :=
{
(t, e) | V (t, e) ≤ π2(t)

}
⊂ R+

0 × Rnx, (3.30)

in the extended space R+
0 × Rnx. It is helpful to work with a subset of Λ where the

coordinate t is fixed
Λt := Λ ∩ {{t} × Rnx} ⊂ R+

0 × Rnx. (3.31)
4A related approach to periodic Lyapunov functions for periodic discrete-time systems was presented in
[Böhm 2010; Böhm et al. 2010a,b]. There periodic Lyapunov functions which decrease only from period
to period and not monotonously are considered. In [Böhm 2010] the use of inequalities with time-varying
levels π(t) is hinted. However, this issue is not fully elaborated.
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Figure 3.2: Time-varying level set of the LTV error system.

We define the map Π : R+
0 × Rnx → Rnx

Π : (t, e) 7→ e (3.32)

which projects any extended state (t, e) onto e ∈ Rnx. Relying on Π we define time-
varying level sets of V (t, e) as the images t 7→ Π (Λt).

Definition 3.3 (Time-varying level sets).
For all t ∈ [0,∞) we call the family of sets

Lt,V,π := {Π (Λt) | t ∈ [0,∞)} (3.33a)

a time-varying level set of the Lyapunov function V (t, e) from (3.25). Accordingly, we
define the boundary of Lt,V,π point-wise in time as

∂Lt,V,π := {∂Π (Λt) | t ∈ [0,∞)} . (3.33b)

For the LTV error system of the trajectory-tracking task the time-varying level set can
be understood as ellipsoids {x ∈ Rnx | (x−xr(t))T (P (t)+I)(x−xr(t)) ≤ π2(t)} which
are centered along the reference, see Figure 3.2. Note that the shape P (t) + I and the
diameter π(t) of the ellipsoids vary with time.
For level sets of Lyapunov functions defined by constants {V (t, e) ≤ c2} it is straight-
forward to show positive invariance with respect to (3.18) subject to (3.24). In the case
of time-varying level sets as defined above we need an additional property to guarantee
this. The next result is directly formulated for the LTV error system (3.18) and the
Lyapunov function from Lemma 3.2. Sufficient and necessary conditions for positive
invariance of these sets are as follows.
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Theorem 3.2 (Positive invariance of time-varying level sets).
Consider system (3.18) under the feedback (3.24) and the time-varying level sets Lt,V,π.
All solutions e(t, t0, e0 | K(t)e) with e0 ∈ Lt0,V,π stay inside Lt,V,π for all t ≥ t0 ≥ 0 if
and only if

∀t ≥ t0, ∀e ∈ ∂Lt,V,π : V̇ (t, e) ≤ 2π(t)π̇(t). (3.34)

Proof. Consider the function s(t) = V (t, e(t)) − π2(t). Since π(t) ∈ C1 the time
derivative of s(t)

ṡ(t) = V̇ (t, e(t))− 2π(t)π̇(t)

is continuous. If at some time t0 the error state e0 ∈ ∂Lt0,V,π we have s(t0) = 0.
Assume (3.34) holds at t0, then a τ > 0 exists such that s(t0 + τ) = ∫ t0+τ

t0 ṡ dt ≤ 0.
Hence e(t0 + τ, t0, e0 | K(t)e) ∈ Lt0+τ,V,π. Thus (3.34) is sufficient.
The necessity of condition (3.34) is shown via contradiction. Assume that at some
time t0 we have s(t0) = 0, ṡ(t0) > 0. Then for some τ > 0 we have that s(t + τ) =
s(t0)+ ∫ t0+τ

t0 ṡ dt > 0. Which implies V (t0 +τ, e(t0 +τ)) > π2(t0 +τ), and consequently
e(t0 + τ, t0, e0 | K(t)e) 6∈ Lt0+τ,V,π.

An intuitive explanation of the invariance condition (3.34) is as follows: the decay of
π2(t) may not be faster than the decay of the Lyapunov function V (t, e) along solutions
of (3.18) controlled via (3.24). One should note that by Assumption 3.2 the reference
is constant for t ≥ T . Moreover, the Lyapunov function V (t, e) (3.25) of the LTV error
system (3.18) is explicitly time-varying only for t ∈ [0, T ]. Thus if π̇(t) = 0 for t ≥ T ,
then the sets Lt,V,π are time-invariant for t ≥ T .
Remark 3.3 (Time-varying level sets for nonlinear systems).
Two issues concerning time-varying level sets should be noted. Firstly, at no point in
the preceding proof we use the fact that the LTV error system is linear. The concept
of positive invariant time-varying level sets of Lyapunov functions is applicable to
nonlinear globally asymptotically stable systems as well. Secondly, it is not required
that the function π : R → R+, which defines the time-varying level set in (3.30), is
monotonously decreasing. An increasing function π(t) always fulfills the conditions of
Theorem 3.2. However, constraints on states and inputs usually limit the maximum
size of the time-varying level set and thereby imply a bound on π(t).
Remark 3.4 (Extension to π(t) ∈ C0).
To simplify the computation of π(t) one may wish to extend the time-varying level sets
to functions π(t) which are not C1. If one requires that π(t) is absolutely continuous,
one can reformulate the invariance condition (3.34) as follows

∀t ≥ t0,∀e ∈ ∂Lt,V,π : V̇ (t, e) ≤ 2π(t)D+π(t).

Here D+π(t) is the upper right hand derivative of π(t). The sufficiency of this condition
is shown in Lemma C.3 in Apppendix C. There we also show that V (t, e) does not need
to be a Lyapunov function.
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3.5.3 Approximative Computation of Time-varying Level Sets
The consideration of invariant sets becomes more complicated if constraints on states
and inputs are present. The LTV error system (3.18) is subject to the constraints
∀t ≥ 0 : e(t) + xr(t) ∈ X and K(t)e(t) + ur(t) ∈ U . Subsequently, we want to
determine π(t) such that Lt,V,π is as large as possible, consistent with the constraints,
and positive invariant with respect to the flow of (3.18). To achieve this one can state
the problem of finding the maximum integral volume time-varying level set as follows.
Determine

sup
wπ(·)∈C0, π0

∫ T

0
vol (Lτ,V,π) dτ (3.35a)

subject to the scalar ODE

π̇(t) = wπ(t), π(0) = π0, π̇(T ) = 0 (3.35b)

and

∀t ∈ [0, T ] : π(t) ≥ 0 (3.35c)
∀t ∈ [0, T ], ∀e ∈ ∂Lt,V,π : V̇ (t, e) ≤ 2π(t)wπ(t) (3.35d)
∀t ∈ [0, T ], ∀e ∈ Lt,V,π : K(t)e+ ur(t) ∈ U ⊂ Rnu (3.35e)
∀t ∈ [0, T ], ∀e ∈ Lt,V,π : e+ xr(t) ∈ X ⊆ Rnx. (3.35f)

The main idea behind this OCP is to maximize the volume of the corresponding
projections Lt,V,π = Π (Λt) over the time span [0, T ] by influencing the evolution of
the function π(t). We work here with sup instead of max, since for general compact
constraints X ,U the existence of an optimal solution π(t) ∈ C1 is difficult to verify.
Note the time span [0, T ] is induced by the time length of the asymptotically constant
reference trajectory, cf. Assumption 3.2. We describe the time evolution of π(t) by the
scalar ODE (3.35b), where wπ : [0, T ] → R is the input and consequently a decision
variable of the OCP (3.35). Since π(t) ∈ C1 we have to require that wπ(t) ∈ C0.
At the end of the reference trajectory the time-varying level set should not change
anymore, thus for t = T we enforce wπ(T ) = 0. The initial condition π(0) = π0 is also
a decision variable. Due to the construction of the time-varying level sets π(t) has to
be non-negative (3.35c). The positive invariance property from (3.34) is expressed in
(3.35d). Additionally, we want to achieve that the constraints on states and input are
respected, hence (3.35e-f). One could also ask for the maximal averaged volume. If
this is desired, then one has to modify (3.35a) to

sup
wπ(·)∈C0, π0

1
T

∫ T

0
vol (Lτ,V,π) dτ. (3.36)

In principle, one could not only optimize the right hand side of the inequality eT (P (t)+
I)e ≤ π2(t) but also the shape of the ellipsoids Lt,V,π by changing P (t). More precisely,
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one could add the RDE (3.21) as a dynamic constraint to (3.35) and regard Q(t), R(t)
as decision variables. However, we are interested in obtaining a computationally less
demanding approach. Thus we do not optimize the shape matrix P (t).
It is easy to see that the OCP (3.35) has the trivial feasible solution π(t) = 0. The
question arises of whether the OCP (3.35) admits feasible and strictly positive solutions
π(t) > 0. The next lemma answers this question.

Lemma 3.3 (Existence of non-zero time-varying level sets).
If Assumption 3.2 holds, then OCP (3.35) has at least one strictly positive feasible
solution, such that for all t ∈ [0, T ] : π(t) > 0.

Proof. The proof is done by construction of an admissible solution π(t) > 0. Due to
Assumption 3.2 part i) the reference is contained in the interior of the state constraints
for all t ∈ [0, T ] : xr(t) ∈ intX . Hence an εX > 0 exists, such that for all e ∈ {‖e‖2 ≤
εX} and all t ∈ [0, T ] one has e + xr(t) ∈ X . Due to Assumption 3.2 part ii) also a
constant εU > 0 with e ∈ {‖e‖2 ≤ εU} exists, such that for all t ∈ [0, T ] one has that
K(t)e+ ur(t) ∈ U . Denote with ε̄ the minimum of these constants ε̄ = min{εX , εU}.
W.l.o.g. we restrict ourselves to the set {‖e‖2 ≤ ε̄} and choose π(0) = ε̄

2 . For all
t ∈ [0, T ) an admissible input driving the evolution of π(t) is wπ(t) = ε̄/T 2 · (T − t).
For t = T we have wπ(T ) = 0. Since π(0) = ε̄

2 > 0 and wπ ≥ 0 the invariance
condition (3.35d) is satisfied for all t ∈ [0, T ]. Consequently, one obtains a feasible
solution 0 < π(t) ≤ ε̄, π(t) ∈ C1 to OCP (3.35).

The numerical solution to the OCP (3.35) is not straightforward. Even if (3.35) is
discretized in time, the constraints (3.35d-g) have to be evaluated over compact sets of
real vectors. Subsequently, we rely on concepts for computation of maximum volume
ellipsoids to reformulate (3.35) in a more convenient way. Mainly, we use the fact that
the Lyapunov function (3.25) is quadratic.
Consider the change of coordinates

ξ = 1
π(t)S(t)e, S(t) =

√
(P (t) + I). (3.37)

Note that due to P (t) + I ∈ BC+(Rnx×nx) it follows that S(t) ∈ BC+(Rnx×nx) with
S(t) = ST (t) and S(t)S(t) = P (t) + I exists. We reformulate Lt,V,π in ξ coordinates

Lt,V,π =
{
e ∈ Rnx | ξ 7→ π(t)S−1(t)ξ, ‖ξ‖2 ≤ 1

}
. (3.38)

Using similar ideas as in [Boyd and Vandenberghe 2004, Chap. 8] the objective (3.35a)
can be rewritten as

sup
∫ T

0
log det

(
S−1(τ)π(τ)

)
dτ.

Since P (t) and S(t) are not effected by the choice of π(t), we could consider the
objective sup ∫ T

0 log(π(τ))dτ . Due to the strict monotonicity of the log function this
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is equivalent to
sup

∫ T

0
π(τ) dτ.

We now reformulate the invariance constraint (3.35d). Recall that the weight matrix
Q(t) is chosen according to Assumption 3.4. From (3.23) and (3.27) we know V̇ (t, e) ≤
−eT Q̃e. Rewriting (3.35d) in ξ coordinates we obtain

V̇ (t, e) ≤ −π2(t) · ξTS−T (t)Q̃S−1(t)ξ ≤ −q(t)π2(t)

where
q(t) = λmin

(
S−T (t)Q̃S−1(t)

)
> 0.

Since π(t) > 0, π̇ = wπ we require −q(t)π(t) ≤ 2wπ(t) instead of (3.35d). This leads
to an inner approximation of (3.35d). It remains to reformulate (3.35e-f). The input
and state constraints (3.35e-f) of the error system are affine in e, and the set Lt,V,π is
compact. We express these constraints in ξ coordinates by

xmin − xr(t) � π(t)S−1(t)ξ � xmax − xr(t)
umin − ur(t) � π(t)K(t)S−1(t)ξ � umax − ur(t).

Note that � denotes component-wise inequality. We rewrite the matrices S−1(t) and
K(t)S−1(t) in terms of their rows as

S−1(t) = (σT1 (t), σT2 (t), . . . , σTnx(t))
T

K(t)S−1(t) = (κT1 (t), κT2 (t), . . . , κTnu(t))
T .

and use
∀‖ξ‖2 ≤ 1 : −‖σTi (t)‖ ≤ σTi (t)ξ ≤ ‖σTi (t)‖.

This yields an inner approximation of the state constraints (3.35f)

∀i ∈ {1, . . . , nx} : ‖xmin,i − xr,i(t)‖ ≥ π(t)‖σTi (t)‖
∀i ∈ {1, . . . , nx} : ‖xmax,i − xr,i(t)‖ ≥ π(t)‖σTi (t)‖.

The input constraints (3.35e) can be rewritten in a similar fashion. The reformulation
of (3.35) can now be stated as follows:

sup
wπ(·)∈C0, π0

∫ T

0
π(τ) dτ (3.39a)

subject to

∀t ∈ [0, T ] : π̇(t) = wπ(t), π(0) = π0, π̇(T ) = 0 (3.39b)
∀t ∈ [0, T ] : π(t) ≥ 0 (3.39c)
∀t ∈ [0, T ] : 2wπ(t) ≥ −q(t)π(t) (3.39d)
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and

∀i ∈ {1, . . . , nx} : ‖xmax,i − xr,i(t)‖ ≥ ‖σTi (t)‖π(t) (3.39e)
∀i ∈ {1, . . . , nx} : ‖xmin,i − xr,i(t)‖ ≥ ‖σTi (t)‖π(t) (3.39f)
∀i ∈ {1, . . . , nu} : ‖umax,i − ur,i(t)‖ ≥ ‖κTi (t)‖π(t) (3.39g)
∀i ∈ {1, . . . , nu} : ‖umin,i − ur,i(t)‖ ≥ ‖κTi (t)‖π(t). (3.39h)

OCP (3.39) is an infinite dimensional linear program (LP). It is straightforward to ap-
proximate its solution by a finite dimensional LP. To this end one discretizes the ODE
π̇ = wπ, and uses the fact that the cost and all constraints are affine in π(t). Clearly,
one has to be careful to use a sufficiently accurate time discretization. Taking Lemma
3.3 into account it is also clear that a time discretization of the reformulated problem
is an LP with at least one feasible and hence also an optimal solution. The price for
this reformulation of (3.35) as an LP is that the invariance and input/state constraints
(3.35d-f) are only inner approximated by (3.39d-h). Note that the assumption of box
constraints—Assumption 3.3 part i)—can be relaxed to polytopic constraints.

3.5.4 Terminal Regions and End Penalties

So far the conceptual idea of time-varying level sets allows us to compute constraint
consistent positive invariant time-varying terminal regions at least for trajectory-
tracking of LTV systems. Here, we aim at a control scheme applicable to trajectory-
tracking problems of constrained nonlinear systems. Thus we need to guarantee that
the time-varying set Lt,V,π is positive invariant with respect to the nonlinear error
dynamics (3.13) subject to the two-degrees-of-freedom control u = K(t)e + ur(t). In
general this is not the case and difficult to enforce. As we will show, the existence of
a function π̃ ∈ C1 with ∀t ∈ [0, T ] : π̃(t) ≤ π(t), which describes a sufficiently smaller
time-varying level set valid for the nonlinear system, can be guaranteed.
We rewrite the nonlinear error dynamics (3.13) under the linear feedback (3.24) as

ė = Ã(t)e+ Φ(t, e). (3.40)

Ã(t) = A(t) +B(t)K(t) is the closed loop system matrix of the LTV error system and
Φ(t, e) = f̃ (t, e,K(t)e+ ur(t))− Ã(t)e. For sake of simplicity we denote the solutions
of (3.40) as e(t, t0, e0).

Lemma 3.4 (Existence of time-varying level sets for nonlinear error dynamics).
Given the LTV error system (3.18), and assume that Assumptions 3.2–3.3 hold. Sup-
pose that a time-varying level set Lt,V,π based on V (t, e) from (3.25) has been obtained
via (3.35).
Then a function π̃(t), which for all t ∈ [0, T ] satisfies 0 < π̃(t) ≤ π(t), ˙̃π(T ) = 0,
exists such that for all e ∈ L̃t,V,π̃ = {e ∈ Rnx | V (t, e) ≤ π̃(t)} the following holds:
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i) All solutions e(t, t0, e0) of (3.40) starting at t0 ∈ [0, T ] and e0 ∈ L̃t0,V,π̃ converge
to e = 0 exponentially fast, and L̃t,V,π̃ is positively invariant with respect to (3.40).

ii) Along the solutions e(t, t0, e0) starting at t0 ∈ [0, T ] and e0 ∈ L̃t0,V,π̃ the con-
straints are satisfied ∀t ≥ t0 : u(t) = K(t)e(t) + ur(t) ∈ U and e(t) + xr(t) ∈ X .

Proof. Recall that for t ≥ T the set L̃t,V,π̃ and the error dynamics (3.40) are time
invariant. Due to Assumption 3.2 and the assumptions on the original system dynamics
(3.11) the nonlinear error dynamics are locally Lipschitz for all t ≥ 0 and all e+xr(t) ∈
X . Moreover, the closed loop system matrix A(t)+B(t)K(t) of the LTV system (3.18)
is bounded for all t ≥ 0 and its closed loop solutions are exponentially stable. Thus
one can apply results on Lyapunov’s indirect method for non-autonomous systems
and conclude that e = 0 is a locally exponentially stable equilibrium also for the
nonlinear error system (3.40), see [Khalil 2002, Thm. 4.13]. Consequently, a set
{e | ‖e‖2 ≤ ρ2}, ρ > 0 exists such that all solutions of the controlled nonlinear error
dynamics starting in this set stay inside the set and converge to e = 0 exponentially
fast. If we choose π̄ = mint∈[0,T ]{

√
c2ρ, π(t)}, with c2 > 0 from (3.28), it follows

∀t ∈ [0,∞) :
{
e ∈ Rnx | V (t, e) ≤ π̄2

}
⊆ {e | ‖e‖2 ≤ ρ2}.

With the same arguments as in the proof of Lemma 3.3 one can construct an increasing
function π̃(t) such that 0 < π̃(t) ≤ π̄ ≤ π(t) and ˙̃π(t) ≥ 0. Moreover, ˙̃π(t) ≥ 0 ensures
that L̃t,V,π̃ is positively invariant with respect to (3.40). This proves part i). Part ii)
follows direct from π̃(t) ≤ π(t) and the positive invariance of L̃t,V,π̃ with respect to
(3.40).

From Lemma 3.4 we know that if we shrink the level set of the LTV error system
Lt,V,π sufficiently, we obtain a time-varying set L̃t,V,π̃ for the nonlinear system (3.40).
And inside this shrunken set V (t, e) is a local Lyapunov function also for the nonlinear
error dynamics subject to u = K(t)e+ur(t). Unfortunately, the time-varying set L̃t,V,π̃
is often very small and a conservative approximation of the true region of attraction.
To relax this conservatism we propose to compute π̃(t) such that only for t ≥ T the
function V (t, e) is a local Lyapunov function. In other words, for t ∈ [0, T ) the linear
feedback law u = K(t)e + ur shall ensure positive invariance of L̃t,V,π̃ for solutions of
the nonlinear error dynamics (3.13) controlled via u = K(t)e + ur. Stabilization is
merely enforced for t ≥ T and all e ∈ L̃T,V,π̃.
To compute a time-varying π̃(t) we apply a similar reasoning as for usual time-invariant
level sets, cf. [Chen and Allgöwer 1998; Michalska and Mayne 1993]. We distinguish
two cases: t ≥ T and t ∈ [0, T ).
Case 1 t ≥ T : We derive an upper bound on V̇ (t, e) along the trajectories of the
nonlinear error dynamics (3.40). Recall Assumption 3.4. Hence we have V̇ (t, e) =
−eT Q̃e for the decay of V (t, e) along the solutions of (3.18). The decay of V (t, e)
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along the solutions of the nonlinear system (3.40) is

∀t ≥ T : V̇f̃ (t, e) = 2eT P̃ (T )Φ(T, e)− eT Q̃e. (3.41)

where P̃ (T ) = P (T ) + I. It holds that

2eT P̃ (T )Φ(T, e)− eT Q̃e ≤ 2‖e‖2‖P̃ (T )‖‖Φ(T, e)‖
‖e‖

− eT Q̃e. (3.42)

For ‖e‖ → 0 we have ‖Φ(T,e)‖
‖e‖ → 0, and thus there exist constants 0 < ε, π̃(T ) < ∞

such that
∀e ∈ L̃T,V,π̃ : 2eT P̃ (T )Φ(T, e)− eT Q̃e+ ε · eT P̃ (t)e ≤ 0. (3.43)

W.l.o.g. we choose ε = λmin
(
S(T )−1Q̃S(T )−1

)
with S(t) from (3.37). We denote the

function on the left hand side of the last inequality as

φT (e) = 2eT P̃ (T )Φ(T, e)− eT Q̃e+ ε · eT P̃ (T )e.

Now, we are ready to shrink π(T ) down to π̃(T ) ≤ π(T ) by solving the semi-infinite
program

maximize
π̃(T )≤π(T )

π̃(T ) (3.44a)

subject to
∀e ∈ L̃T,V,π̃ : φT (e) ≤ 0. (3.44b)

The solution to this problem can be approximated by a sequence of global optimization
problems. Start with π̃(T ) = π(T ) and compute φ?T = max φT (e). If φ?T > 0, halve
π̃(T ), and solve (3.44a) again. Repeat until φ?T ≤ 0. Note that for small values of
π̃(T ) the function φT is concave, cf. [Michalska and Mayne 1993]. Moreover, we have

∀e ∈ L̃T,V,π̃ : V̇f̃ (T, e) ≤ −ε · eT P̃ (T )e ≤ −ε · ‖e‖2

which ensures that V (T, e) is a local Lyapunov function of (3.40) on L̃T,V,π̃.
Case 2 t ∈ [0, T ): For the remaining time points 0 ≤ t < T we only enforce that L̃T,V,π̃
is positively invariant. We do not require that V (t, e) is a local Lyapunov function for
the nonlinear system (3.40). The derivative of V (t, e)− π̃(t)2 along solutions of (3.40)
is

V̇f̃ (t, e)− 2π̃(t) ˙̃π(t) = 2eT P̃ (t)Φ(t, e)− eT Q̃e− 2π̃(t) ˙̃π(t) =: φt(e).

For 0 ≤ t < T we solve in a similar fashion as before the slightly easier problem

maximize
π̃(t)≤π(t)

π̃(t) (3.44c)

subject to
∀e ∈ ∂L̃T,V,π̃ : φt(e) ≤ 0. (3.44d)
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The main idea is to check the invariance condition (3.34) for the time-varying level set
only on its boundary ∂L̃t,V,π̃. From Lemma C.3, Appendix C it follows that (3.44d)
ensures positive invariance of L̃T,V,π̃ with respect to (3.40). Obviously, we cannot
solve this problem for all t ∈ [0, T ). If one applies a time discretization on the ODE
˙̃π(t) = wπ̃, a sequence of nonlinear optimization problems is obtained, which can
be solved recursively backwards in time. We point out that one needs to ensure a
sufficiently fine time discretization in order to keep the error sufficiently small.
It remains to show that the time-varying level sets L̃t,V,π̃ and a suitably defined end
penalty fulfill the suppositions of Corollary 3.2. This is done in the next lemma.

Lemma 3.5 (Time dependent end penalties).
Consider Problem 3.2 under Assumptions 3.2-3.4, and assume further that π̃ : [0, T ]→
(0,∞) has been obtained via (3.44).
Suppose that the terminal region is Etk+Tp = L̃tk+Tp,V,π̃, then the time-varying set L̃t,V,π̃
and the end penalty

E(t) =


∫ T

t
α(τ)β dτ + α(T )β

2γ t ∈ [0, T )
α(T )β

2γ e−2γ(t−T ) t ≥ T
(3.45a)

where α(t), β, γ are

α(t) = π̃2(t)
∥∥∥S−1(t)

∥∥∥2
· ‖QF +K(t)TRFK(t)‖+ α̂, α̂ ∈ [0,∞) (3.45b)

β = p+ 1, p = sup
t∈[0,T ]

‖P (t)‖ (3.45c)

γ = 1
2(p+1)λmin

(
S−1(T )Q̃S−1(T )

)
, (3.45d)

fulfill the suppositions (3.16) of Corollary 3.2.

Proof. The end penalty (3.45a) is obtained as an approximation of the worst case cost
inside L̃t,V,π̃ which consists of two parts, see Figure 3.3. The first part is the cost
associated to a solution which travels through the boundary of the terminal region
∂L̃t,V,π̃ for all t ∈ [0, T ). The second part uses the fact that inside L̃T,V,π̃ the terminal
control law guarantees exponential cost decrease. By construction the time-varying
sets L̃t,V,π̃ are positive invariant with respect to (3.40). That is L̃t,V,π̃ is a positive
invariant time-varying set of (3.13) under the terminal control law u = K(t)e+ ur(t).
Note that state and input constraints are fulfilled for any solution e(t, t0, e0|u) with
e0 ∈ L̃t0,V,π̃. Hence the terminal region is set as Etk+Tp = L̃tk+Tp,V,π̃. Furthermore,
it is straightforward to check that the proposed terminal penalty (3.45a) is mapping
E : R+

0 → R+
0 and E(t) ∈ C1.

As a preparation step of the proof we show that inside L̃t,V,π̃ the function α(t) from
(3.45b) is an upper bound for the cost F (t, e,K(t)e + ur(t)). Due to Assumption 3.3
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Figure 3.3: Schematic sketch of the end penalty E(t) from (3.45).

part ii) it holds for all e ∈ Rnx

F (t, e,K(t)e+ ur(t)) ≤ ‖e‖2 ·
∥∥∥QF +KT (t)RFK(t)

∥∥∥ .
Using the coordinate transformation e = π̃(t)S−1(t)ξ from (3.37), the set L̃t,V,π̃ is
described by ‖ξ‖ ≤ 1. Hence we obtain

∀e ∈ L̃t,V,π̃ : F (·) ≤ π̃2(t)
∥∥∥S−1(t)

∥∥∥2
·
∥∥∥QF +KT (t)RFK(t)

∥∥∥ .
Referring to α(t) from (3.45b) the right hand side of this inequality is exactly α(t)− α̂,
where α̂ ∈ [0,∞). Recalling from (3.45c) that β ≥ 1 it follows

∀t ∈ [0, T ), ∀e ∈ L̃t,V,π̃ : F (·) ≤ α(t)− α̂ ≤ (α(t)− α̂) β. (3.46)

It remains to verifiy that E(t) from (3.45) fulfills (3.16b) of Corollary 3.2. The time
derivative of E(t) is

Ė(t) =
{
−α(t)β t ∈ [0, T )
−α(T )βe−2γ(t−T ) t ≥ T

. (3.47)

Thus we proceed with a case distinction for t < T and t ≥ T .
Case 1 t ∈ [0, T ): Using the approximation (3.46) to check supposition (3.16b) of
Corollary 3.2 for all t ∈ [0, T ) yields

Ė(t) + F (t, e,K(t)e+ ur(t)) ≤ −α(t)β + (α(t)− α̂) β (3.48)

where β ≥ 1 and α̂ ∈ [0,∞). Hence E(t) from (3.45) fufills (3.16b) for all t ∈ [0, T ).
Case 2 t ≥ T : Recall that for t ≥ T : π̃(t) = π̃(T ). And π̃(T ) is determined via the
optimization problem (3.44a) such that inside L̃T,V,π̃ the exponential stability of e = 0
with respect to (3.40) is guaranteed. Hence one can use [Khalil 2002, Thm. 4.10] to
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derive a bound on the solutions of (3.40) which start inside L̃T,V,π̃. We obtain

∀t ≥ T, ∀eT ∈ L̃T,V,π̃ : ‖e (t, T, eT )‖ ≤
√
p̄+ 1 · ‖eT‖ · e

−
ε(t− T )
2(p̄+ 1) ,

where p̄ = supt ‖P (t)‖, and as before ε = λmin
(
S−1(T )Q̃S−1(T )

)
> 0. Using β from

(3.45c) and γ from (3.45c) the last equation can be written as

∀eT ∈ L̃T,V,π̃ : ‖e(t, T, eT )‖ ≤
√
β · ‖eT‖ · e−γ(t−T ). (3.49)

We use this bound on ‖e (t, T, e(T )) ‖—which are the solutions to the nonlinear error
dynamics (3.13) under the terminal control (3.24)—to estimate from above the decay
of F (t, e,K(t)e+ ur(t)) along these solutions. This yields

∀t ≥ T : F (t, e,K(t)e + ur(t)) ≤ βe−2γ(t−T ) · ‖e(T )‖2 ·
∥∥∥QF +KT (t)RFK(t)

∥∥∥ .
Note that for t ≥ T the feedback gain and the coordinate transformation (3.37) are
constant K(t) = K(T ), S(t) = S(T ). We rely on (3.37) and obtain for all eT ∈ L̃T,V,π̃

‖eT‖2 ·
∥∥∥QF +KT (T )RFK(T )

∥∥∥ ≤ π̃2(T )
∥∥∥S−1(T )

∥∥∥2
·
∥∥∥QF +KT (T )RFK(T )

∥∥∥ .
If we combine the last two equations to evaluate (3.16b) for t ≥ T , it follows

Ė + F (·) ≤ βe−2γ(t−T )
(
−α(T ) + π̃2(T )

∥∥∥S−1(T )
∥∥∥2
·
∥∥∥QF +KT (T )RFK(T )

∥∥∥) .
Due to (3.45b) we have that

α(T ) = π̃2(T )
∥∥∥S−1(T )

∥∥∥2
·
∥∥∥QF +KT (T )RFK(T )

∥∥∥ + α̂, α̂ ≥ 0.

Hence
∀t ≥ T : Ė + F (·) ≤ −α̂βe−2γ(t−T ) ≤ 0,

and therefore the end penalty E(t) from (3.45) fulfills (3.16b) for all t ≥ T .

A surprising consequence of Lemma 3.5 is that we can use E(t) = 0 in conjunction
with the terminal region L̃tk+Tp,V,π̃ to guarantee convergence of the proposed NMPC
scheme. This can be explained as follows: The end penalty E(t) from (3.45a) is purely
time-dependent. However, a purely time-dependent end penalty is not effected by the
inputs computed via the NMPC scheme (3.15). This implies that E(t) can be dropped
during the optimization.

Remark 3.5 (Purely time dependent end penalties for set point stabilization).
It is easy to see that purely time-dependent end penalties can also be used for set
point stabilization problems. Whenever a terminal feedback uE = k(x) ensures ex-
ponential set point convergence for solutions starting at x0 ∈ E, we have a bound
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‖x(t)‖ ≤ α(x0)e−βt. If additionally limt→∞ ‖x‖ = 0 implies that uE → 0, and technical
integrability conditions hold, then we can estimate from above the cost-to-go inside the
terminal region by a purely time-dependent function. In other words, if the terminal
feedback ensures good convergence, then we can drop the terminal penalty.

One might want to consider a terminal penalty, which also penalizes the tracking error
at the end of each prediction. The next result shows that this is also possible.

Lemma 3.6 (State dependent end penalties).
Consider Problem 3.2 under Assumptions 3.2–3.4. Suppose that a time-varying termi-
nal region Etk+Tp = L̃tk+Tp,V,π̃ based on π̃(t) ∈ (0,∞) from (3.44) is used in the NMPC
scheme (3.15), then any end penalty of the form

Ẽ(t, e) = η · eT (P (t) + I)e, η ∈ [0,∞), (3.50)

guarantees convergence of the tracking error

lim
t→∞
‖e(t)‖ = lim

t→∞
‖x(t)− xr(t)‖ = 0.

Proof. Our proof consists of two parts. Firstly, we show that a modified NMPC scheme
based on the time-varying terminal region and a preliminary end penalty E1(t, e) fulfills
the conditions of Corollary 3.2. This part follows along the lines of the proof of Lemma
3.5. The main idea is to use the free parameter α̂ in the definition of E(t) in (3.45)
to compensate ηeT (P (t) + I)e not being a Lyapunov function for t ∈ [0, T ). Secondly,
we show the equivalence in terms of generated inputs using either (3.50) or E1(t, e) in
the NMPC scheme (3.15).
Consider the NMPC scheme (3.15) with Etk+Tp = L̃tk+Tp,V,π̃ and the preliminary choice
of an end penalty

E1(t, e) = E(t) + ηeT (P (t) + I)e, (3.51)

where E(t) is from (3.45) and η ∈ [0,∞). Due to 0 < π̃(t) < ∞ for t ∈ [0,∞) the
sets L̃tk+Tp,V,π̃ are compact. Note that f̃ from (3.13) is locally Lipschitz. Hence we
can assume w.l.o.g. that the free parameter α̂ ∈ [0,∞) of E(t) appearing in (3.45b) is
such that

∀t ∈ [0, T ] : α̂ ≥ η · max
e∈L̃t,V,π̃

eT Ṗ (t)e+ 2eT (P (t) + I)f̃(t, e,K(t)e+ ur(t)). (3.52)

Case 1 t ∈ [0, T ): Considering this case as in the preceding proof yields

∀t ∈ [0, T ) : Ė1(t, e(t)) + F (·) = −α̂β + η
(
eT Ṗ (t)e+ 2eT (P (t) + I)f̃(·)

)
.

Since α̂ satisfies (3.52) and β ≥ 1 it follows

∀t ∈ [0, T ) : Ė1(t, e(t)) + F (·) ≤ 0.
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Case 2 t ≥ T : The same steps as in the proof of Lemma 3.5 yield

∀t ≥ 0 : Ė1(t, e(t)) + F (·) ≤ −α̂βe−2γ(t−T ) + η
(
eT Ṗ (t)e+ 2eT (P (t) + I)f̃(·)

)
.

Clearly, the first term on the right hand side of the inequality is negative. Due to the
construction of L̃T,V,π̃ via (3.44) it holds that

∀t ≥ T, ∀e ∈ L̃T,V,π̃, ∀η ≥ 0 : η
(
eT Ṗ (t)e+ 2eT (P (t) + I)f̃(·)

)
≤ 0.

Hence we have shown that an NMPC scheme with Etk+Tp = L̃tk+Tp,V,π̃, and the prelim-
inary end penalty (3.51) guarantees reference convergence.
As last step consider two versions of the OCP (3.15) with two different objective
functionals

J1(tk, x(tk), e(·), u(·)) =
∫ tk+Tp

tk
F (·)dτ + ηe(t)T (P (t) + I)e(t)

∣∣∣
tk+Tp

+ E(t)
∣∣∣
tk+Tp

J2(tk, x(tk), e(·), u(·)) =
∫ tk+Tp

tk
F (·)dτ + ηe(t)T (P (t) + I)e(t)

∣∣∣
tk+Tp

where E(t) is from (3.45). The value of E(tk + Tp) is not effected by the choice of
u(·), i.e., an input that minimizes J1(·) is also a minimizing input for J2(·). Hence
one obtains the same sequence of input signals via optimization of J1 or J2. And thus
the NMPC scheme (3.15) with terminal region Etk+Tp = L̃tk+Tp,V,π̃ and end penalty
η · eT (P (t) + I)e is stabilizing in the sense of Corollary 3.2.

Let us briefly summarize what we have shown in the last two sections of this chapter:
From Section 3.5.3 we learned how to compute candidate time-varying terminal regions
as time-varying level sets of Lyapunov functions. From the Lemmas 3.5 and 3.6 we
know how to choose suitable end penalties.
An important point to recognize is that the length of the prediction horizon Tp in
the OCP (3.15) is not directly related to the finite length of the reference trajectory
T < ∞. The prediction horizon Tp has to be chosen sufficiently long, such that for a
given initial condition x0 and a start time t0 the terminal constraint (3.15e) is satisfied.
Often one can work with Tp � T , which is desireable from the computations as well
as from the robustness point of view.

3.5.5 Example: Trajectory Tracking of a Chemical Reactor

To illustrate the concept of time-varying terminal regions we consider a set point
change of a continuously stirred tank reactor (CSTR) along an a priori given reference
trajectory. In the reactor an exothermic, irreversible reaction A→ B takes place. The
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dynamics of the CSTR are as follows

ċA = q

V
(cAf − cA)− k(cA, T ) (3.53a)

Ṫ = q

V
(Tf − T ) + −4H

ρCp
k(cA, T ) + UA

V ρCp
(TC − T ) (3.53b)

where
k(cA, T ) = k0e

−E
RT cA.

Details on the model can be found in [Henson and Seborg 1997], the model parameters
are listed in Table 3.1. The states cA and T describe the educt concentration and
the reactor temperature, respectively. The coolant stream temperature TC is the
input variable. The objective is to design an NMPC controller which stabilizes the
CSTR around a previously computed reference trajectory which drives the system
in 18 minutes from the set point cA1 = 0.6mol/, T1 = 344.4K to cA2 = 0.45mol/l,
T2 = 352.8K. The coolant stream temperature is subject to the input constraint 270K
≤ TC ≤ 350K, the state constraints are 0.1mol/l≤ cA ≤ 0.9mol/l, 300K ≤ T ≤ 400K.
Reference trajectory and input are precomputed via system inversion and depicted in
Figure 3.4.
The weight matrices for the cost function F are

RF = 10−3, QF =
60.7 −6.5
−6.5 2.5


where QF satisfies (3.29). The boundary condition P (T ) and the time-varying Q(t) for
the RDE (3.21) are chosen according to Assumption 3.4 with Q̃ = QF and R = RF .
The terminal control law is computed according to Lemma 3.2 based on the solution
P (t) to the RDE. The diameter function π(t) is obtained via (3.39) and π̃(t) via (3.44),
both on a time grid with δt = 10−3min.
The results are illustrated in Figure 3.5 left part. The red curve shows π(t) which
defines the positively invariant time-varying level set Lt,V,π from (3.33). The blue
curve depicts π̃(t), which is obtained via successive shrinking of π(t) point-wise in
time until (3.44) is satisfied. The peaks at t = 4min and t = 5min in the blue curve
are caused by changes in the set of active constraints. It should be noted that the

Table 3.1: Parameters for CSTR model (3.53).

q 100 [l/min] cAf 1 [mol/l]
Tf 350 [K] V 100 [l]
ρ 1000 [ g/l] Cp 0.239 [J/g·K]

−4H 5 · 104 [ J/mol] E
R 8750 [K]

k0 7.2 · 1010 [ min−1] UA 5 · 104 [J/min K]
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Figure 3.4: Reference trajectory and reference input.

Figure 3.5: Diameter function π(t) and visualization of time-varying level sets L̃t,V,π̃.

time-varying level sets are of varying size. This can be observed in Figure 3.5 left part.
The diameter π̃(t) is increasing along several parts of the reference trajectory. The
varying size can also be seen in the visualization of the time-varying level set L̃t,V,π̃ in
Figure 3.5, right part. The black curve depicts the reference trajectory in the cA − T
plane. The red ellipsoids are a selection from the time-varying level set for the LTV
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error system. The blue ellipsoids are samples from the terminal region L̃t,V,π̃ obtained
via (3.44). We plot only a few of the numerous ellipsoids computed on the time grid
with δt = 10−3min.
At this point one can ask, whether the efforts to work with time-varying terminal
regions pay off. One could compute a constraint-consistent level set {e|V (t, e) ≤ c2}
with constant c for (3.53). However, the following issues should be noted: A constant
level c is always upper bounded by c ≤ mint∈[0,T ] π̃(t). Furthermore, we only enforce
positive invariance of the terminal region L̃t,V,π̃ with respect to the nonlinear error
dynamics (3.13) for t ∈ [0, T ). In other words, for t ∈ [0, T ) V (t, e) is not necessarily
a local Lyapunov function on L̃t,V,π̃. Moreover, positive invariance on L̃t,V,π̃ is a much
weaker property than local Lyapunov stability. Hence a constant level c is in many
cases much smaller than π̃(t). Taking these issues and Figure 3.5 into account we
conclude that working with time-varying level sets increases the terminal region as
well as the region of attraction of the NMPC schemes (3.15).
To assess the performance of the proposed NMPC scheme with time-varying terminal
region we compare it to the local controller derived for the LTV error system along
the reference trajectory. The structure of this controller (3.24) is

u2DoF (t) = K(t)e+ ur(t), K(t) = −1
2R
−1BT (t) (P (t) + I) .

Basically, it is a two-degrees-of-freedom (2-DoF) scheme, where the nominal input
ur(t) is used as feedforward control. The solution P (t) ∈ BC+(Rnx×nx) of the RDE
(3.21) is used to obtain the feedback part. The input u2DoF (t) is clipped whenever the
constraints are violated

u(t) =


umin u2DoF (t) < umin
u2DoF (t) u2DoF (t) ∈ [umin, umax]
umax u2DoF (t) > umax.

In Figure 3.6 the behaviors of the closed loop under this 2-DoF controller and the
proposed NMPC scheme are illustrated on the left and right side, respectively. In all
pictures the blue-colored areas visualize the constraints on states and inputs. We plot
the behavior of the closed loops for several initial conditions. Clearly, the convergence
of the solutions to the reference using the 2-DoF controller depends on the initial
conditions. For some initial conditions very slow transient behavior can be observed
in the reactor temperature T (middle left side) and the product concentration cA
(upper left side). The corresponding input signals u(t) = TC(t)—i.e., the cooling
stream temperature—are depicted on the lower left side. Also note that for one of the
solutions starting at t = 0min the state constraints on cA and T are violated.
Figure 3.6 right shows the closed-loop behavior of the proposed NMPC scheme. The
same initial conditions as for the 2-DoF controller are used. The prediction horizon is
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Figure 3.6: Simluation results for 2-DoF controller and NMPC scheme.

set to Tp = 1.0min and much shorter than the length of the reference trajectory 18min.
The time dependent terminal penalty E(t) is skipped during the optimization. The
resampling time is δ = 0.01min. The solutions have been computed with the ACADO
Toolkit [Houska et al. 2011]. All solutions converge rapidly to the reference.
In the lower part of the Figure 3.6 the input signals for the 2-DoF and the NMPC
controller are depicted. One can see that the NMPC controller is slightly more aggres-
sive. The orange tubes around the reference trajectories in the upper and middle plots
on both sides are an outer-bounding projection of the time-varying terminal region to
the time domain. Obviously, the time-varying terminal constraint allows only small
temperature and larger concentration deviations. Comparing the zoomed plots in the
middle part, we see that even close to the reference trajectory the 2-DoF controller
results in much slower convergence than the NMPC scheme.
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3.6 Summary

In this chapter we discussed predictive control approaches to trajectory-tracking prob-
lems. We derived convergence conditions based on time-varying terminal regions for
general constrained output trajectory-tracking problems. These conditions are a refor-
mulation of the usual ones for set point stabilization of time-varying systems. The new
feature is the use of time-varying terminal regions in the context of NMPC for trajec-
tory tracking. We focussed on the special case of asymptotically constant references to
show how time-varying terminal regions can be obtained as time-varying level sets of
Lyapunov functions. In essence, these time-varying level sets are an approximation of
the domain of attraction of a two-degrees-of-freedom control scheme along a reference
trajectory. For systems with a quadratic Lyapunov function these sets are efficiently
computable via an optimal control problem, which can be easily approximated by a
linear program. Besides this, the application of the proposed NMPC scheme requires
solving a Riccati differential equation offline and storing the solution in order to de-
fine the terminal regions online. The sequence of global optimization problems to be
solved offline in case of time-varying level sets for nonlinear systems limits our scheme
to small scale nonlinear systems. For linear systems these problems are avoided. As
we have seen from the CSTR example allowing time-varying right hand sides in the
inequality V (t, e) ≤ π(t)2 can increase the size of the terminal region significantly.
The main challenge of NMPC for trajectory-tracking problems—even if autonomous
systems are considered—is the inherent time-varying nature. As we see in the next
chapters, this is not the case if path following of autonomous systems is considered.
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In this chapter we shift the focus to path-following problems. Subsequently, the ref-
erence to be followed is not a time-varying trajectory but rather a geometric curve
without any preassigned timing information. We begin with a statement of the path-
following problem in Section 4.1. A brief overview of existing control approaches is
given in Section 4.2. In Section 4.3 we investigate the question of under which condi-
tions a given path in the output space of a nonlinear system is exactly followable. In
order to also consider state and input constraints we focus on differentially flat systems
in Section 4.4. The results presented in this section have appeared in [Faulwasser et al.
2011]. Finally, this chapter ends with a summary in Section 4.5.

4.1 The Constrained Output Path-following Problem

We consider nonlinear systems

ẋ(t) = f(x(t), u(t)), x(t0) = x0, (4.1a)
y(t) = h(x(t)), (4.1b)

where x ∈ X ⊆ Rnx, u ∈ U ⊂ Rnu are state and input constraints. The map h : Rnx →
Rny (4.1b) defines the output y ∈ Rny . We assume that the maps f, h are sufficiently
often continuously differentiable and that the system as well as the constraints fulfill
our standard assumptions from Chapter 2.
In contrast to set point stabilization and trajectory tracking we aim at driving the
system along a geometric reference. This reference is denoted as path P and given as
a parametrized regular curve in the output space

P = {y ∈ Rny | θ ∈ [θ0, θ1] 7→ p(θ)} . (4.2)

The scalar variable θ is called the path parameter. Note that the regularity of a geo-
metric curve implies the local bijectivity of the parametrization p(θ), cf. [Topogonov
2006]. The domain [θ0, θ1] of the path parameter is a closed but might be unbounded,
i.e., θ1 = ∞ is possible. The map p is sufficiently often continuously differentiable.
In general, the path parameter θ is time dependent but its time evolution t 7→ θ(t) is
not known a priori. Subsequently, we investigate the problem of steering the output
(4.1b) to the path P and following it along in direction of increasing values. In other
words, we consider the following problem.
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Problem 4.1 (Constrained output path following).
Given the system (4.1) and the reference path P (4.2) design a controller that achieves:

i) Path Convergence: The system output y = h(x) converges to the set P s.t.:

lim
t→∞
‖h(x(t))− p(θ(t))‖ = 0.

ii) Strict Forward Motion: The system moves along P in the direction of in-
creasing values of θ s.t. θ̇(t) > 0 holds for almost all θ ∈ [θ0, θ1).

iii) Constraint Satisfaction: The constraints on states x ∈ X and inputs u ∈ U
are satisfied for all times.

Whenever no confusion can arise we may simply speak of constrained path-following
problems and drop the reference to the output. If no constraints are present—cf. part
iii) of the problem statement—we say it is an unconstrained path-following problem.
Part ii) requires that the system should not stop along the path unless θ = θ1.
Referring to the path-following problem two issues arise immediately:

• Given a system (4.1), possibly subject to input and state constraints, and a path
P . Under which conditions is the path P exactly followable such that for all
t ≥ t0 it holds ‖h(x(t))− p(θ(t))‖ = 0?

• How can a controller fulfilling the requirements of the problem statement be
designed?

The former question requires a system theoretic analysis. It is considered in this
chapter. The latter question refers to the controller design. The conceptual idea of
controller design for path-following problems is to obtain the system inputs u : t 7→ u(t)
as well as the reference timing t 7→ θ(t) in the controller. The path parameter is
regarded as a virtual state, whose evolution is determined through a timing law

g
(
θ(k), θ(k−1), . . . , θ̇, θ, v

)
= 0, ∀i ∈ {1, . . . , k} : θ(i)(t0) = θ

(i)
0 , θ(t0) = θ0. (4.3)

The timing law g is an additional degree of freedom during the controller design. It is
important to note that the time evolution of θ can be influenced by the virtual input
v ∈ V ⊂ R. At this point it remains open how to choose the timing law g. Usually,
one restricts the choices for the timing law g such that it can be written as an explicit
ODE, which is controllable through v. Furthermore, it is convenient to require that
equivalent properties as assumed for f from (4.1a) hold. We will discuss the choice
of suitable timing laws in detail in Section 4.3.1. The design of predictive controllers
solving Problem 4.1 is postponed to Chapter 5.

4.2 Existing Approaches to Path-following Problems

Before we start the further investigations, existing approaches to the path-following
problem are briefly reviewed. Besides the different scopes—controller synthesis and
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problem analysis—the available results differ in terms of methods used. Figure 4.1
depicts a schematic overview of results on path following. As shown, mainly two
different approaches focus on the analysis of the problem while many more methods
are used to solve the controller synthesis problem.

4.2.1 Problem Analysis and Path Followability

Referring to the problem analysis two main questions have been examined: perfor-
mance comparisons to trajectory-tracking problems and geometric approaches.

L2 Performance Limits

Several works focus on fundamental performance limits of trajectory-tracking and
path-following problems in terms of L2 error norms. It is well-known that the non-
minimum phase nature of a system implies fundamental performance limits not only
to cheap control problems [Kwakernaak and Sivan 1972b; Seron et al. 1999] but also to
general tracking or servomechanism problems [Qui and Davison 1993; Su et al. 2003].
However, the situation is different for path-following problems. It can be shown that
for linear non-minimum phase systems and certain classes of paths such fundamental
limits of path-following performance are not present [Aguiar et al. 2004, 2005; Dacic
and Kokotovic 2006; Miller and Middleton 2008]. Even in the case of nonlinear non-
minimum phase systems in strict-feedback form no fundamental performance limits
exist for path-following problems, see [Aguiar et al. 2008]. Also note that the problems
of constrained and unconstrained exact path followability, which we discuss in Sections
4.3–4.4, refer to cases where the L2 norm of the path-following error can be kept
identically zero along the path.

Geometric Analysis of Path Following

Another branch of the analysis refers to the geometric properties of the problem.
The conceptual idea of the works [Banaszuk and Hauser 1994, 1995; Nielsen and
Maggiore 2004, 2006, 2008] is to consider path following as a problem, where the
output path implicitly defines a manifold in the state space. This zero-path-error
manifold or shortly path manifold has to be stabilized and rendered positively invariant
via an appropriate feedback. In order to achieve such a stabilization with feedback
linearization techniques, the first step is to map the nonlinear output path-following
problem into new coordinates via a diffeomorphism. In these coordinates the dynamics
are splitted into a part transverse to the zero-path-error manifold and the dynamics on
that manifold. The second step is to decouple the transverse part of the dynamics from
the part on the zero-path-error manifold by means of feedback linearization. The works
of [Banaszuk and Hauser 1995; Nielsen and Maggiore 2006, 2008] derive necessary and
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Figure 4.1: Schematic overview of existing results for path following.

sufficient conditions for the existence of a nonlinear coordinate transformation and a
transversely linearizing feedback. The early works [Banaszuk and Hauser 1994, 1995]
coined the term transverse feedback linearization for these approaches. They consider
periodic state space paths of single-input systems. The extension to non-periodic paths
can be found in [Nielsen and Maggiore 2006]. The case of nonlinear MIMO systems is
presented in [Nielsen and Maggiore 2008].
In Section 4.3 we present conditions closely related to the ones provided in [Nielsen and
Maggiore 2008]. While these results use a description of the zero-path-error manifold,
we rely later on a known path parametrization p(θ) from (4.2) and on an augmented
system. Note that the works mentioned so far do not consider constraints on states nor
inputs. In Section 4.4 we tackle the problem of constrained path-followability with a
combined geometric and optimization-based ansatz for the special case of differentially
flat systems.
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4.2.2 Controller Synthesis

Referring to Figure 4.1 several methods are used for the design of path-following con-
trollers one can distinguish two main directions: feedforward and feedback control.

Feedforward Control Approaches

In robotic applications often a robotic manipulator has to be steered precisely and
fast along a given geometric reference curve. An early optimization-based approach
to the problem of computing suitable feedforward controls in the presence of input
constraints is proposed in [Shin and McKay 1985]. From the systems theory point of
view this approach mainly uses the fact that the considered robots are fully acutated
and hence the dynamic models are invertible. More precisely, they are differentially
flat, see i.a. [Fliess et al. 1995a; Lévine 2009; Sira-Ramírez and Agrawal 2004] and
Section 4.4. Follow-up works improve the numerical efficiency and incorporate effects
as viscous friction [Slotine and Yang 1989]. In [Boe and Hannaford 1998] it is suggested
to iteratively perform a time-rescaling of the reference trajectories in order to reduce
the path-following error.
Recently, a convex reformulation of the involved optimization problems was proposed,
see [Verscheure 2009; Verscheure et al. 2009]. However, all these approaches rely on the
differentially flatness of the system model and exploit special structures arising in flat
mechanical systems. Thus their applicability is limited. Input constraints (precisely
torque constraints) are frequently considered. A closely related approach—relying on
a differentially flat system and a path specified in a flat output space—is presented in
[Raczy and Jacob 1999] for the problem of designing time-optimal feedforward controls
for an overhead crane. There constraints on states and inputs are considered.

Feedback Control Approaches

Compared to the existing results mentioned so far the area of feedback control ap-
proaches is rather rich in terms of methods used, cf. Figure 4.1.
Backstepping/Lyapunov Approaches: Frequently, path-folllowing problems are
solved by classic backstepping techniques, cf. [Krstic et al. 1995] for details on back-
steppping. The main idea as presented in [Aguiar et al. 2004] is to use the path evolu-
tion θ(t) or more precisely a virtual input v influencing θ(t) through the so-called timing
law g(θ(k), . . . , θ, v) = 0 to stabilize the unstable zero dynamics of non-minimum phase
systems via recursive backstepping. This approach is further elaborated in [Encarnaçao
and Pascoal 2001; Skjetne and Fossen 2001], where a similar approach is taken towards
path following for ships. In [Dacic and Kokotovic 2006] the path-following problem is
solved for linear systems via a time discretization. Note that [Aguiar et al. 2004; Dacic
and Kokotovic 2006] work with non-minimum phase systems while [Encarnaçao and
Pascoal 2001; Skjetne and Fossen 2001] consider minimum phase systems. Specific
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path following tasks with an additional requirement that the time-derivative of the
path parameter converges to a prespecified reference θ̇(t) are frequently discussed in
context of vehicle-like systems. These tasks are also called maneuver regulation prob-
lems, see [Skjetne 2005]. An optimization-based approach for the case of maneuvering
problems defined directly in the state space is presented in [Skjetne et al. 2002]. The
constructive design of Lyapunov functions is also employed in [Astolfi et al. 2004] in
order to tackle path following of the frequently discussed car with n-trailers. A special
feature of this last work is the fact that input saturation is explicitly considered.
Backstepping is a control design technique which also allows to consider parameter
uncertainties. Thus it is not surprising that [Do and Pan 2006; Do et al. 2004; Skjetne
et al. 2004, 2005] rely on backstepping in order to derive results on adaptive control of
path-following problems. While [Skjetne et al. 2004] focus on robust output feedback
for a class of minimum phase nonlinear systems, [Do and Pan 2006; Do et al. 2004;
Skjetne et al. 2005] design adaptive controllers for specific ship models.
A similar approach to path following for the uni-cycle under parametric uncertainties
is suggested in [Lapierre et al. 2006]. As a variant the combination of backstepping and
logic-based switching is proposed in [Aguiar and Hespanha 2004, 2007]. Hybrid control
approaches to path-following problems are considered in [Balluchi et al. 2005; Dacic
et al. 2007; Hamel et al. 2001; Soueres et al. 2001]. Results on passivity-based path
following are given in [El-Hawwary and Maggiore 2008; Ihle et al. 2007]. Synchronized
or formation-based path following is discussed in [Ghabcheloo et al. 2005; Ihle et al.
2007].
Transverse Feedback Linearizaton: Another route to path-following problems
is to map the associated dynamics of the system and the path parameter via a
diffeomorphism—and a suitably chosen state feedback—into new coordinates of a
transverse normal form. As mentioned before, these new coordinates consist of an
integrator chain of finite length for each output and the partially decoupled, possibly
unstable, zero dynamics with respect to the zero-path-error manifold. Such control
approaches are presented in [Banaszuk and Hauser 1994, 1995; Nielsen and Maggiore
2004, 2006, 2008]. One should note that the crucial step is the derivation of the diffeo-
morphism and the input-output linearizing state feedback. If this is achieved, the task
of ensuring path convergence and boundedness of the zero dynamics is signifcantly
simplified. In essence these approaches solve the path-following problem by breaking
it down into two subproblems. In suitable coordinates, the dynamics transversal to
zero-path-error manifold are decoupled from the dynamics in the manifold by input-
output feedback linearization. Based on this decoupling two controllers are designed,
one to stabilize the transversal dynamics, and another one to stabilize the internal dy-
namics. In [Hladio et al. 2011] this is tailored to mechanical systems. The application
to a magnetic levitation system is considered in [Nielsen et al. 2010].
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An alternative but related approach via input-output feedback linearization for a gen-
eral car with n-trailers and off-axle hitching is considered in [Altafini 2002]. The last
results pay attention to the question of existence of the transformation and the state
feedback, which yield the transversely feedback linearized system. Variants of these
approaches suppose that a transverse normal form is given and focus on the controller
design, for example, in [Al-Hiddabi and McClamroch 2002] constant LQR feedback
gains are used. In [Dacic et al. 2011] an input-to-state stability assumption is em-
ployed.
Differential Flatness: If the mapping to the transverse coordinates can be achieved
such that the mapped system does not have any internal dynamics, the problem is
simplified. For example, this is the case for statically feedback linearizable systems
and also for differentially flat systems, cf. to [Fliess et al. 1995b; Lévine 2009; Rothfuß
1997; Sira-Ramírez and Agrawal 2004] and the references therein for details on flatness.
Flatness is exploited in the early work [Hauser and Hindman 1997]. How to obtain
a controller for maneuver regulation of a flat system from an available trajectory-
tracking controller is discussed in [Hauser and Hindman 1996]. A related inversion
based approach for a kinematic model of an object moving in 3 dimensions in the
presence of disturbances on states and outputs is presented in [Consolini and Tosques
2005]. A different route which directly relies on the flatness of the system to be
controlled is taken by [Samson 1995]. There a controller for path following of a car with
n-trailers and on-axle hitching is derived. Online time scaling of reference trajectories
for differentially flat models of robots, which can be regarded as a path-following
approach, is presented in [Dahl and Nielsen 1990]. Therein the authors propose a
closed-loop scheme to scale the reference trajectories in time.
Tracking Controllers: Often path-following problems are solved as tracking prob-
lems or via the application of tracking controllers. These approaches are based on a
simple reasoning: if one tracks the trajectory resulting from an a priori choice of the
path parameter evolution one follows the underlying geometric path. In [Frezza 1999;
Notarstefano et al. 2005] receding horizon control approaches are presented, which are
based on the combination of a backstepping tracking controller with suitable reference
trajectories. The references are computed in a receding horizon fashion in order to
approximate the path reasonably well. A similar idea is used in [Frezza et al. 2004;
Saccon et al. 2012] to explore the set of feasible trajectories approximating a given
path well for a motorcycle. In [Wahl and Gilles 2003] a similar idea is used to de-
sign controllers for ships following rivers or canals. Also predictive controllers have
been proposed to solve the resulting trajectory-tracking problem, however, the stabil-
ity issues are not investigated [Kanjanawanishkul and Zell 2009]. Application-related
approaches are considered in [Kehl et al. 2005], where a path-following problem for a
single-track model of a car is solved via trajectory tracking, and in [Nakamura et al.
2001], where trailers with extra steering are considered.
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Model Predictive Control: It is also to possible to design predictive path-following
controllers. In Chapter 5 we present NMPC schemes for path-following problems in
the presence of constraints. These results have partially appeared in [Faulwasser and
Findeisen 2009a,b, 2010; Faulwasser et al. 2009a].
Besides the results of Chapter 5, MPC is also used to solve path-following problems in
a few other works. In [Ghaemi et al. 2010; Li et al. 2009] the path-following problem
for a simplified nonlinear model of a ship is considered. Although constraints on
inputs and states are considered these results are of limited applicability to general
path-following problems. Due to the problem setup only paths consisting of straight
lines are considered, and the proposed MPC algorithm is based on linearization and
time discretization of the error dynamics. Furthermore, the stability of the proposed
control approach is not investigated. An extension with a local linear approximation
of the optimization problem and explicit stability conditions for the linearized MPC
scheme are provided in [Lam et al. 2010], whereby the higher order nonlinear terms
are neglected, and the nominal stability of the MPC scheme is enforced by contraction
constraints. The pitfall is that recursive feasibility of the optimal control problems to
be solved is lost, cf. [de Oliveira Kothare and Morari 2000]. An application of the
ideas from [Lam et al. 2010] to a contouring task in a 2-dimensional output space is
presented in [Lam et al. 2011]. The advantages of our NMPC schemes presented in
Chapter 5 are: We avoid linearization and derive rigorous stability conditions, which
ensure recursive feasibility. Moreover, we consider constraints on states and inputs.

Two general conclusions can be drawn from this overview. A variety of control
methods are applied to path-following problems. However, only a few results explicitly
consider constraints on states or inputs.

4.3 Path Followability

Referring to Problem 4.1 one can ask for sufficient conditions ensuring that a given
path P is exactly followable by a system (4.1). To this end we define path followability
as follows.

Definition 4.1 (Exact path followability).
A path P is called exactly followable by the system (4.1), if there exists at least one
continuous solution trajectory x(t, t0, x0|u(·)) driven by an input u : t 7→ u(t), such
that for all t ≥ t0 the error variable

e(t) = h(x(t, t0, x0|u(·)))− p(θ(t)) (4.4)

is zero, while the path parameter θ(t) evolves continuously with time, and θ̇ > 0 holds
almost everywhere in [θ0, θ1).
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The question arises of how to verifiy if a path P is exactly followable by a system. To
this end assume temporarily that e(t) ∈ C1. Differentiating the error variable (4.4)
with respect to time we obtain

ė(t) = ∂h

∂x
· f(x, u)− ∂p

∂θ
· θ̇. (4.5)

Clearly, if we want to ensure that a path is exactly followable by a system, we have
to investigate whether it is possible to keep the error dynamics (4.5) at zero while
θ̇ ≥ 0 holds. This naive approach reveals two interesting aspects of path-following
problems: Firstly, if the system to be controlled (4.1) is time-invariant, then also the
error dynamics (4.5) are time-invariant. Secondly, since θ̇ appears on the right side of
(4.5) the degree of freedom to choose θ(t) can be understood as the possibility to scale
the length but not the direction of ṗ(θ(t)). We illustrate these considerations by an
example.

Example 4.1 (Ship course control).
We consider a simple model of a ship [Wahl and Gilles 2003]

ẋ1
ẋ2
ẋ3
ẋ4

 =


w cosx3 − Lwx4 sin x3
w sin x3 + Lwx4 cosx3

x4
1
τ (−x4 +Ku)

 . (4.6)

Here, x1, x2 is the position in the plane, x3 is the yaw angle of the ship, and x4 is the
velocity of the yaw angle. The model parameter w > 0 refers to the forward velocity
of the ship. The input u is the rudder angle. The considered output is the position in
the x1 − x2 plane

y =
(
x1, x2

)T
.

The path to be followed is a regular curve P

P :=
{
y ∈ R2 | θ ∈ R 7→ (p1(θ), p2(θ))T

}
.

Definition 4.1 implies that a path is exactly followable, if the time derivatives of output
and reference are the same. Hence we have to check whether there exist inputs such
that

ẏi = ∂pi
∂θ

θ̇, i = 1, 2

holds. Evaluating these conditions we obtainθ̇ ∂p1
∂θ

θ̇ ∂p2
∂θ

 =
w cosx3 − Lwx4 sin x3
w sin x3 + Lwx4 cosx3

 .
From the dynamics (4.6) it follows that x4 = ẋ3. Thus the last equations can be written
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as a system of two implicit nonlinear ODEsθ̇ ∂p1
∂θ

θ̇ ∂p2
∂θ

 =
w cosx3 − Lwẋ3 sin x3
w sin x3 + Lwẋ3 cosx3

 .
These equations are affine in θ̇ and ẋ3, and thus they can be solved for these variables

θ̇ = w

cosx3 · ∂p1
∂θ + sin x3 · ∂p2

∂θ

(4.7a)

ẋ3 = cosx3 · ∂p2
∂θ − sin x3 · ∂p1

∂θ

L
(
cosx3 · ∂p1

∂θ + sin x3 · ∂p2
∂θ

) . (4.7b)

If these ODEs have a solution such that

∀t ≥ t0 : cosx3 ·
∂p1
∂θ

+ sin x3 ·
∂p2
∂θ

> 0, (4.8)

and additionally w > 0, then θ̇ > 0 holds for all t ≥ t0. Based on a solution x3(t) to
(4.7) it is straightforward to obtain a suitable u(t) via inversion of the linear part ẋ3, ẋ4
of the dynamics (4.6). Hence the path is exactly followable by (4.6). Additionally, for
this particular example, we have that the existence of a unique solution to (4.7) implies
that the veloctiy to follow the path exactly is not free. The speed is determined by the
path geometry and the parameter w > 0 which is the forward speed of the ship.

4.3.1 Geometric Approach to Unconstrained Path Followability

In the last example we used very specific properties of the model (4.6) to derive (4.8)
from the first time derivative of the error (4.4). One can ask how to generalize this
approach in order to state sufficient conditions for path followability. One possibility
to derive such conditions is to not only consider the first time derivative of the error
(4.4) but also higher derivatives obtaining a set of suitable equations. As we show
subsequently, this leads to a setting which relates path followability to the question of
existence of a specific nonlinear Byrnes-Isidori normal form. To proceed we make the
following assumption which is valid for the remainder of this section.

Assumption 4.1 (Square input-output structure).
System (4.1) has a square input-output structure, i.e., ny = nu. The vector fields f, h
are smooth (f, h ∈ C∞).

Further, we use the notion of a vector relative degree of a system.

Definition 4.2 (Vector relative degree).
The nonlinear MIMO system (4.1) is said to have vector relative degree r =
(r1, r2, . . . , rny) at a point x = x0 ∈ Rnx if the following two conditions hold:
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i) ∀j, k ∈ {1, . . . , ny}, i = 1, . . . , rk−1 : ∂

∂uj
Lif hk(x) = 0 (4.9a)

For at least one j ∈ {1, . . . , ny} : ∂

∂uj
Lrkf hk(x) 6= 0 (4.9b)

for all admissible u and all x in a neighborhood Nx0 of x0.
ii) The ny × ny decoupling matrix

A(x) :=


∂
∂u1

Lr1
f h1(x) . . . ∂

∂uny
Lr1
f h1(x)

... ...
∂
∂u1

Lrnyf hny(x) . . . ∂
∂uny

Lrnyf hny(x)

 (4.9c)

is non-singular at x = x0.

In this definition Lf denotes the Lie derivative along the vector field f . Note that the
above definition is a slight modification of the standard definition provided in [Isidori
1995]. As in [Nijmeijer and van der Schaft 1990, Chap. 13] we consider ẋ = f(x, u)
(4.1) instead of an input affine MIMO system ẋ = f(x) + g(x)u.
If a system has a well-defined vector relative degree at x0, this implies its static input-
output feedback linearizability for all x neighborhood of x0, cf. [Isidori 1995; Nijmeijer
and van der Schaft 1990]. Based on this definition we make the following assumptions
which ensure that we can map the path-following problem into suitable coordinates.

Assumption 4.2 (Well-defined vector relative degree).
At a point x0 ∈ Rnx system (4.1) has a well-defined vector relative degree

r = (r1, . . . , rny), r̂ = max{r1, . . . , rny}, ρ =
ny∑
i=1

ri ≤ nx. (4.10)

As mentioned at the beginning of this chapter a common ansatz to solve path-following
problems is to describe the time evolution of the path parameter θ via an additional
ODE. This additional ODE is called timing law. It is controlled via a virtual path
parameter input v, cf. (4.3). To simplify the later developments we assume that the
timing law is a sufficiently long integrator chain.

Assumption 4.3 (Timing law and path parametrization).
i) The timing law g from (4.3) is chosen as

θ(r̂+1) = v, θ(t0) = θ0, ∀j ∈ 1, . . . , r̂ : θ(j)(t0) = 0, (4.11)

with r̂ from (4.10).
ii) The path parametrization p(θ) from (4.2) is r̂-times continuously differentiable

with r̂ from (4.10).
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This assumption has technical reasons. If the timing law is chosen as an integrator
chain of length r̂ + 1, the influence of v to the solution θ(t, θ0|v) can be described by
a state space model that simplifies the notation. In other words, it is written as

ż = l(z, v) = Az +Bv, z(t0) = (θ0, 0, . . . , 0) ∈ Rr̂+1 (4.12a)
θ = Cz = z1 (4.12b)

where C = (1, 0, . . . , 0) ∈ R1×nx, and

A :=
 0r̂×1 Ir̂×r̂

0 01×r̂

 ∈ R(r̂+1)×(r̂+1), B :=
(
0, . . . , 0, 1

)T
∈ Rr̂+1. (4.12c)

The idea is that θ(t) and the first r̂ time derivatives of θ(t) are the states z =
(θ, θ̇, . . . , θ(r̂))T . We are only interested in solutions of (4.12) with z1(t) ∈ [θ1, θ2]
and z2(t) = θ̇ ≥ 0. Therefore we define

Z :=
{
[θ0, θ1]× [0,∞)× Rr̂−1

}
⊂ Rr̂+1, (4.13)

which is the set of all states z of (4.12) consistent with the forward motion requirement
θ̇ ≥ 0 of the path-following problem. Using this description of the path parameter
dynamics we introduce an augmented systemẋ

ż

 =
f(x, u)
l(z, v)

 (4.14a)
e
θ

 =
h(x)− p(z1)

z1

 (4.14b)

where (x, z)T ∈ Rnx+r̂+1 and (e, z1) ∈ Rny+1. We show subsequently that this aug-
mented system description allows analyzing path followability. The next result is a
technical Lemma which prepares the ground for local geometric conditions on path
followability.
Lemma 4.1 (Existence of a local transverse normal form).
Consider the augmented system (4.14) and Assumptions 4.1–4.3 then the following
statements hold:

i) For all (x, z)T ∈ Nx0 × Z system (4.14) has a well-defined vector relative degree
r̃ = (r1, . . . , rny , r̂ + 1), where r1, . . . , rny and r̂ are from (4.10).

ii) For all (x, z)T ∈ Nx0 ×Z there exists a local diffeomorphism (ξ, η) = Φ(x, z) s.t.
(4.14) is equivalent to a transverse normal form

ξ̇i =
 0ri−1×1 Iri−1×ri−1

0 01×ri−1

 ξi +
 0ri−1×1

αi(ξ1, . . . , ξny , η1, η2, u)

 (4.15a)

η̇ = β(ξ, η, u, v) (4.15b)
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where

ξ =

(
e1, ė1, . . . , e

(r1−1)
1︸ ︷︷ ︸, e2, . . . , e

(r2−1)
2︸ ︷︷ ︸, . . . , eny , . . . , e

(rny−1)
ny︸ ︷︷ ︸

)T
ξ1 ξ2 . . . ξny

∈ Rρ

with ρ = ∑ny
i=1 ri and η ∈ Rnx+r̂+1−ρ.

Proof. The proof mainly exploits the fact that the dynamics of x and z are only
coupled via the output of (4.14). We proceed in two steps. Firstly, we show how
the Lie derivatives of the output of the augmented system (4.14) can be obtained, and
thereby we proof part i) of the Lemma. Secondly, we rely on results given in [Nijmeijer
and van der Schaft 1990]. We use the Lie derivatives of (4.14b) to obtain a suitable
diffeomorphism and to prove part ii).
Step 1: Using the simple change of coordinates χ = (x, z)T , ν = (u, v), µ = (e, θ)
system (4.14) can be written as

χ̇ = φ(χ, ν) (4.16a)
µ = ψ(χ) (4.16b)

where the vector fields φ : Rnx+r̂+1 × Rny+1 → Rnx+r̂+1, ψ : Rnx+r̂+1 → Rny+1 follow
directly from (4.14). Next, we apply condition (4.9a) from Definition 4.2 to this system.
For all k ∈ {1, . . . , ny} the first Lie derivative of the k-th component of µ is

Lφ ψk(χ) = ∂ψk(χ)
∂χ

φ =
(
∂hk
∂x

, −∂pk
∂z

)f(x, u)
l(z, v)

 .
For the i-th Lie derivative of the k-th component of µ with k ∈ {1, . . . , ny} it follows
that

Liφ ψk(χ) = Lif hk(x)− Lil pk(z).

Now, consider the partial derivatives with respect to the inputs of (4.16)

∀k ∈ {1, . . . , ny} : ∂

∂νj
Liφ ψk(χ) =


∂
∂uj

Lif hk(x) j ∈ {1, . . . , nu}
− ∂
∂v Lil pk(z) j = nu + 1

. (4.17)

Using this and Assumption 4.2 we yield for all j ∈ {1, . . . , nu} and all k ∈ {1, . . . , ny}

∀i ∈ {1, . . . , rk−1} : ∂

∂νj
Liφ ψk(χ) = ∂

∂uj
Lif hk(x) = 0 (4.18a)

i = rk : ∂

∂νj
Liφ ψk(χ) = ∂

∂uj
Lif hk(x) 6= 0. (4.18b)
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And for j = nu + 1 and all k ∈ {1, . . . , ny} it follows

∀i = {1, . . . , r̂} : ∂

∂νj
Liφ ψk(χ) = − ∂

∂v
Lil pk(z) = 0, (4.18c)

i.e., the first r̂ time derivatives of p(θ(t)) do not depend on the input v = νny+1.
It remains to consider the Lie derivatives of the ny + 1-th output of (4.16). From
(4.17), and the timing law being an integrator chain of length r̂ + 1, we obtain

∂

∂νj
Liφ ψny+1(χ) =

 0 j ∈ {1, . . . , nu}, i ∈ {1, . . . , r̂}
1 j = nu + 1, i = r̂ + 1 . (4.18d)

Bascially, (4.18a-d) state that condition i) of Definition 4.2 is fulfilled. Recall that we
consider systems with a square input-output structure (nu = ny). Thus the (ny + 1)×
(ny + 1) decoupling matrix of (4.16) is

A(χ) =


∂
∂ν1

Lr̃1
φ ψ1(χ) . . . ∂

∂νny+1
Lr̃1
φ ψ1(χ)

... ...
∂
∂ν1

Lr̃ny+1
φ ψny+1(χ) . . . ∂

∂νny+1
Lr̃ny+1
φ ψny+1(χ)

 .

Using (4.18a-d) and χ = (x, z) we rewrite A(χ) in (x, z) coordinates

A(x, z) =



∂
∂u1

Lr1
f h1(x) . . . ∂

∂uny
Lr1
f h1(x) 0

... ... ...
∂
∂u1

Lrnyf hny(x) . . . ∂
∂uny

Lrnyf hny(x) 0
0 . . . 0 1

 =
 A(x) 0ny×1

01×ny 1

 . (4.19)

The upper left part of this matrix is the decoupling matrix A(x) of the original system
(4.1). Clearly, for all (x, z) ∈ Nx0×Z the matrix A(χ) is non-singular if and only if the
decoupling matrix A(x) of the original system (4.1) is non-singular for all x ∈ Nx0.
Hence Assumptions 4.2 and 4.3 guarantee that the augmented system (4.14) has a
well-defined vector relative degree r̃ = (r1, . . . , rny , r̂ + 1).
Step 2: So far we have shown that the augmented system (4.14) has a well-defined
vector relative degree. In order to obtain the transverse normal form (4.15) we follow
along the lines of [Nijmeijer and van der Schaft 1990]. Consider a change of coordinates
Φ : Rnx × Rr̂+1 → Rnx × Rr̂+1. The first ρ-components where ρ = ∑ny

i=1 ri of Φ are
chosen as the components of the error output e = h(x)−p(θ) and their time derivatives

Φξ(x, z) =
(
ψ1,Lφ ψ1(χ), . . . ,Lr1−1

φ ψ1(χ), ψ2, . . . , ψny , . . . ,L
rny−1
φ ψny(χ)

)T

=

(
e1, ė1, . . . , e

(r1−1)
1︸ ︷︷ ︸, e2, . . . , e

(r2−1)
2︸ ︷︷ ︸, . . . , eny , . . . , e

(rny−1)
ny︸ ︷︷ ︸

)T
ξ1 ξ2 . . . ξny

. (4.20a)
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This yields Φξ(x, z) = ξ ∈ Rρ. And for all j ∈ {nx + 1, . . . , nx + r̂ + 1} we choose

Φη2,j(x, z) = zj−nx (4.20b)

and obtain
Φη2(x, z) = η2 = (z1, . . . , zr̂+1)T ∈ Rr̂+1.

The remaining nx − ρ components of Φ have to be chosen such that

Φη1(x, z) = η1 ∈ Rnx−ρ (4.20c)

holds. Furthermore, we have to ensure that Φ = (Φξ,Φη1,Φη2)T is a diffeomorphism.
The independence of Φξ,Φη2 as well as the existence of the supplementary independent
functions Φη1(x, z) is guaranteed since the augmented system (4.14) is smooth and has
a well-defined vector relative degree for (x, z) ∈ Nx0 × Z, cf. [Nijmeijer and van der
Schaft 1990, Thm. 13.24, p. 418]. Using ξ = (ξ1, . . . , ξny)T from (4.20a) one obtains a
transverse normal form in the proposed structure (4.15)

ξ̇i =
 0ri−1×1 Iri−1×ri−1

0 01×ri−1

 ξi +
 0ri−1×1

αi(ξ1, . . . , ξny , η1, η2, u)

 (4.21a)

η̇1 = β1(ξ1, . . . , ξny , η1, η2, u, v) (4.21b)
η̇2 = β2(η2, v) (4.21c)

where i ∈ {1, . . . , ny}. The functions αi : Rnx+r̂+1 × Rny → R in the nonlinear part of
(4.21a) are

αi(ξ1, . . . , ξny , η1, η2, u) =
(
Lrif hi(x)− Lril pi(z)

)
◦ Φ−1(x, z). (4.22)

Recalling (4.18c) it is clear that αi do not depend on the path parameter input v.1
Due to the fact that the Φj from (4.20b) simply map z onto η2 the vector field in
(4.21b) is β2(η2, v) = Aη2 +Bv, where the matrices A,B are from the path parameter
dynamics (4.12). This finishes the proof.

We have shown that for (x, z) ∈ Nx0 × Z we can map (4.14) into new coordinates
(4.21). In general, these coordinates are valid only locally on Nx0 × Z, since we have
assumed that (4.1) has a well-defined vector relative degree at x0.
For the further developments it is helpful to interpret the local coordinates (4.21)
geometrically. To this end we define a projection Π : Rnx × Rr̂+1 → Rnx

Π : (x, z)T 7→ x. (4.23)

Basically, this projection maps from the augmented system description (4.14) back to
1If one would choose the timing law in Assumption (4.3) as θ(r̂) = v, then the functions αi depend explicitly
on v for all i : ri = r̂.
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the original system (4.1). To locally describe the set of all points x which map to the
path P—i.e., the path pre-image h−1(P) = {x ∈ Rnx | h(x) ∈ P}—we consider the
following subset of Rnx+r̂+1

Ξ̂ =
{
(ξ, η) ∈ Rnx+r̂+1 | (ξ1,1, ξ2,1 . . . , ξny,1)T = 0

}
, (4.24)

where ξi,1 = ei(x, z), i ∈ {1, . . . , ny} as in (4.20a). The set Ξ̂ is characterized in (ξ, η)
coordinates by ξi = 0 and ξi = ei = hi(x) − pi(θ). We rely on the diffeomorphism
(4.20) and on the map Π to project Ξ̂ to x coordinates. This way we obtain the path
pre-image with respect to the output map h of the original description (4.1)

h−1(P) = Π
(
Φ−1

(
Ξ̂
))
. (4.25)

Additionally, we can use the coordinates (4.21) to locally describe the set of solutions
to (4.1) which are such that the output (4.1b) travels along the path P . Consider a
subset of Ξ̂ which is defined as follows

Ξ =
{
(ξ, η) ∈ Rnx+r̂+1 | ξ = 0

}
⊂ Ξ̂. (4.26)

Literally speaking, Ξ is the subset of Rnx+r̂+1 where the time derivatives of the path
error (4.4) are exactly zero. A local description of the manifold of solutions to (4.1)
which travel exactly along the path P— the zero-path-error manifold—is obtained by
projecting Ξ to x coordinates

IP = Π
(
Φ−1(Ξ)

)
. (4.27)

Using this notation we can interpret the local transverse normal form (4.21) geometri-
cally, see Figure 4.2. The coordinates ξ = (ξ1, . . . , ξny)T locally describe the dynamics
transversal to the zero-path-error manifold IP . In other words, these directions point
away from IP .
As illustrated in Figure 4.2, the first set of internal states η1 describes the dynamics
on IP . That is (4.21b) corresponds to the internal dynamics of (4.1) with respect to
the error output e = h(x)− p(θ) from (4.4). Finally, η2 lives in Z ⊂ Rr̂+1 from (4.13).
The state η2 = z is merely a virtual one and not directly influenced by η1 or ξ. It
describes the dynamics of the reference p(θ(t)) which can be controlled via the virtual
input v, cf. (4.21c).
The decomposition into transversal states and states in the zero-path-error manifold
is the reason to call (4.15) and (4.21) transverse normal forms, cf. [Banaszuk and
Hauser 1995; Nielsen and Maggiore 2006, 2008].
We show subsequently that the introduction of the augmented dynamics (4.14) and
their local description via (4.21) simplifies the analysis path-following problems. Based
on Lemma 4.1 we can state a local result for unconstrained path followability.
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Figure 4.2: Geometric interpretation of the transverse normal form (4.21).

Theorem 4.1 (Sufficient conditions for local path followability).
Consider system (4.1), a path P as defined in (4.2) and Assumptions 4.1–4.3 hold.
Suppose Φ : Nx0 ×Z 7→ Rnx ×Rr̂+1 is a local diffeomorphism mapping to a transverse
normal formal, and Ξ, Z are as defined in (4.26) and (4.13).
Then for any (x0, z0) ∈ Nx0 ×Z with

Φ(x0, z0) ∈ Ξ and z0 ∈ intZ, (4.28)

the path P is locally exactly followable by system (4.1) s.t. θ̇ > 0 holds.

Proof. Assumptions 4.1–4.2 ensure that for any point (x0, z0), we can find a local
diffeomorphism Φ to map the system into a transversal normal from. Rewriting the
exact path-following problem in the local coordinates (4.21) yields

ξ̇i =
 0ri−1×1 Iri−1×ri−1

0 01×ri−1

 ξi +
 0ri−1×1

αi(ξ1, . . . , ξny , η1, η2, u)


η̇1 =β1(ξ1, . . . , ξny , η1, η2, u, v)
η̇2 =Aη2 +Bv.

In these coordinates we can check whether the initial condition satisfies (4.28). The
condition (4.28) implies that ξ(t0) = 0. Additionally, we need to ensure that we can
move forward along the path. z0 ∈ intZ is required, since it implies that θ̇0 > 0. The
input uP to the transverse part of the dynamics is chosen such that

∀i ∈ {1, . . . , ny} : αi(0, . . . , 0, η1, η2, uP) = 0. (4.29)
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Due to the implicit function theorem and the rank condition (4.9c) uP can be calculated
at least locally from the last equation as a function of the current values of η1, η2. Hence
the zero dynamics of (4.21) can be written as

η̇1 =β1(0, . . . , 0, η1, η2, uP , v) (4.30a)
η̇2 =Aη2 +Bv. (4.30b)

Provided the original system (4.1) is locally Lipschitz these dynamics are locally Lip-
schitz. Denote η2(0) = Φη2(z0). In (4.30) the virtual input v is a degree of freedom. It
can be chosen such that the solution η2 (t, η2(0)|v) stays inside the interior of Z from
(4.13), the solutions x(t, x0|uP) to the original system (4.1) exist locally, and they
fulfill h(x(t, x0|uP)) = p(θ(t|v)) with θ̇ > 0.

One should note that the conditions of the theorem can easiliy be modified to guarantee
path followability with non-increasing timings θ̇ Q 0. One simply needs to modify or
drop the condition z0 ∈ intZ from (4.28). Note that for any path parameter evolution,
and thus for any η2 ∈ Z, we can use (4.29) to obtain the inputs uP . In other words,
this implies that the square input-output structure (Assumption 4.1) ensures that the
speed to move along the path is a degree of freedom.
Remark 4.1 (Local nature of Theorem 4.1).
The last result is of local nature only. Firstly, in many cases only local diffeomorphisms
Φ to map into the transverse normal can be found. Secondly, only local existence of the
solutions to the zero dynamics (4.30) is guaranteed. Furthermore, the result does not
imply stability in the sense of boundedness of solutions to the zero dynamics (4.30).
A stability statement can be obtained, for example, if either the zero dynamics η̇1 are
minimum phase, or if input-to-state stability properties of η̇1 can be verified. In the
latter case one needs to design a suitable control to ensure θ̇ ≥ 0 and stability or
boundedness of η̇1 = β1(ξ, η1, η2, u, v), see [Dacic et al. 2011]. However, the design
of suitable feedback strategies is beyond the scope of this chapter. For an overview on
existing methods we refer the reader to Section 4.2.

One might ask how one can check unconstrained exact path followability for a given
application. One way to do this is as follows:

1. Start with a point x ∈ h−1(P) which has a well defined vector relativ degree with
respect to (4.1) in a neighborhood of x, cf. Definition 4.2.

2. Define a suitable augmented system as in (4.14).
3. Calculate a local diffeomorphism Φ around x. Map the augmented system to a

transverse normal form as described in the proof of Lemma 4.1.
4. Evaluate the set of all x ∈ IP for which Φ is defined, and compute the corre-

sponding values of z1 = θ.
5. The transverse normal description obtained via Φ is valid for the parts of the

path identified in the last step.
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For the parts of the path where Φ is not a diffeomorphism one has to adjust the free
components of the diffeomorphism, which are related to the internal dynamics on the
zero-path-error manifold (4.21b) and for the path parameter dynamics (4.21c). From
the procedure described above one obtains a transverse normal form description which
is valid at least for a part of the path. If one fails to find one diffeomorphism to cover
the whole path, one can still try to cover the path with several local diffeomorphisms.2

Example 4.2 (Planar 2-DOF robot).
To illustrate the last developments we consider a fully-actuated planar robot with two
degrees of freedom as an example. Without friction and external contact forces the
dynamics of such a robot areẋ1

ẋ2

 =
 x2
B−1(x1) (u− C(x1, x2)x2 − g(x1))

 (4.31a)

y = x1. (4.31b)

Here x1 = (q1, q2) ∈ R2 is the vector of joint angles, x2 = (q̇1, q̇2) ∈ R2 is the vector of
joint velocities. B : R2 → R2×2, C : R4 → R2×2 describe the dependence of the inertias
on the joint angles and dependence of centrifugal and coriolis forces on joint angles and
velocities, respectively. g : R2 → R2 models the effect of gravity. The output y = x1
denotes the space of joint angles. The matrix B is vertible for all x1 ∈ R2 and C and
g are bounded. The considered path-following task is described in the joint space. The
path is assumed to be a regular curve

P =
y ∈ R2 | θ 7→

p1(θ)
p2(θ)


with p(θ) ∈ C2. Here, we aim at the construction of a transverse normal form for this
path-following problem.
It is easy to see that (4.31) has a global vector relative degree r = (2, 2)T with respect
to the output y = x1. As in Assumption 4.3 we use as path parameter dynamics an
integrator chain of length 3. Thus we obtain an augmented system description (4.14)ẋ1

ẋ2

 =
 x2
B−1(x1) (u− C(x1, x2)x2 − g(x1))

 (4.32a)

ż =
 02×1 I2×2

0 01×2

 z +
(
0, 0, 1

)T
v (4.32b)

2Basically, such an approach can be seen as obtaining an atlas of maps to cover the whole zero-path-error
manifold. For details on the connection between differentiable manifolds and nonlinear normal forms
we refer the reader to [Bullo and Lewis 2004; Isidori 1995; Nijmeijer and van der Schaft 1990] and the
references therein.
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e = x1 − p(z1) (4.32c)
θ = z1. (4.32d)

We want to map these augmented dynamics into a transverse normal form. Follow-
ing along the lines of the proof of Lemma 4.1 we obtain a coordinate transformation
Φ : R4 × R3 → R4 × R3 and its inverse Φ−1

Φ :


ξ1
ξ2
η

 =


x1 − p(z1)
x2 − ∂p

∂z1
z2

z

 , Φ−1 :


x1
x2
z

 =


ξ1 − p(η1)
ξ2 − ∂p

∂η1
η2

η

 .
Compared to (4.21) we have chosen a different ordering of the ξ-variables. Further-
more, note that only the virtual states z appear in η. This can be explained as follows:
The robot dynamics have a state dimension of nx = 4 and a vector relative degree of
(4.31) of r = (2, 2)T with respect to the output y = x1. Thus by calculation of the time
derivatives of e we obtain four new coordinates ξ ∈ R4.
Due to its simple structure and the global vector relative degree (2, 2)T it is easy to
see that Φ is a global diffeomorphism. Using Φ it is straightforward to rewrite the
augmented robot dynamics (4.32) into a transversal normal form. We obtainξ̇1

ξ̇2

 =
 ξ2
α(ξ, η, u)

 (4.33a)

η̇ =
 02×1 I2×2

0 01×2

 η +
(
0, 0, 1

)T
v (4.33b)

e = ξ1 − p(η1) (4.33c)
θ = η1 (4.33d)

and the vector field α : R4 × R3 × R2 → R2 is

α(ξ, η, u) = B−1(ξ1, η1)
(
u− C(ξ, η)

(
ξ2 −

∂p

∂η1
η2

)
− g(ξ1, η1)

)
− ∂2p

∂η2
1
(η2)2 − ∂p

∂η1
η3.

Based on this problem description path following for the robot can be achieved by break-
ing the problem down into two parts: Firstly, we feedback linearize the transversal part
of (4.33). And secondly, we assign a timing to the path via the virtual input v. In
other words, one can use the feedback

uP(ξ, η) = C(ξ, η)
(
ξ2 −

∂p

∂η1
η2

)
+ g(ξ1, η1) +B(ξ1, η1)

(
∂2p

∂η2
1
(η2)2 + ∂p

∂η1
η3

)
(4.34)

to achieve exact path following for any initial condition with Φξ(x0, z0) = ξ0 = 0.
Note we have not assigned v, and thus the speed to follow the path exactly is free. We
conclude that the 2-DOF robot (4.31) can follow paths with p(θ) ∈ C2 exactly.
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4 Path Following and Path Followability

The ansatz to use the augmented system description (4.14) to describe path-following
problems has further degrees of freedom which have not been mentioned so far. It
also offers insights on the connection between path following and other problems. We
briefly comment on these issues in the next remarks.

Remark 4.2 (Non-uniqueness of transverse normal forms).
In general the transverse normal form (4.21) is not unique. Due to (4.20) we have

Φ(x, z) =


Φξ(x, z)
Φη1(z)

Φη2(x, z)

 =


Φξ(x, z)
Φη1(x, z)

z

 . (4.35)

If one changes the last two components of Φ (4.35) such that the resulting map is still
a (local) diffeomorphism, the obtained (local) system description is another transverse
normal form. This means that we have degrees of freedom not only in the choice
of Φη1 but also in the choice of Φη2 in (4.35). One does not necessarily need to set
Φη2 : η2 = z. The derivatives θ(i) = zi+1 appear affinely in the i-th derivative of the
path-following error e = h(x) − p(θ). More precisely we have for all j ∈ {1, . . . , ny}
and all i ∈ {1, . . . , rj}

e
(i)
j = Lif hj(x)− Lil pj(z) = Lif hj(x)−

(
∂ipj
∂zi1

zi2 + · · ·+ ∂pj
∂z1

zi+1

)
.

The structure of these equations can be used to calculate zi from e
(i)
j . Clearly, singular-

ities should be avoided in the definition of the map Φ. It is also useful, if the inverse
map Φ−1 does not have singularities, since Φ−1 directly enters the transverse normal
form through αi(·) in (4.21a). As we see later in Section 4.3.2 one can use this freedom
in the choice of Φη1,η2 to influence the structure of the transverse normal form.

Remark 4.3 (Choice of suitable timing laws).
The statements of Lemma 4.1 and Theorem 4.1 rely on the timing law θ(r̂+1) = v

from Assumption 4.3. Thus they offer some insight, how to choose timing laws in a
suitbale way. Due to Assumption 4.2 it is reasonable to choose the timing law such
that, given a class of path parameter inputs v ∈ V, the parameter evolution θ(t, θ0|v)
is sufficiently often continuously differentiable. So, either one restricts the admissible
inputs v, or one ensures that even discontinuous inputs v result in θ(t, θ0|v) ∈ C r̂, where
r̂ is largest element of the vector relative degree. In Section 4.4 we present an optimal
control scheme to compute suitable feedforward controls for exact path following. Our
ansatz to rely on sufficiently long integrator chains as timing laws is directly motivated
by this optimization-based approach. Due to this choice we can use piecewise constant
path parameter inputs v. In applications—for example, if continuous feedbacks or a
sufficiently fine input discretization are used—one might also rely on θ(r̂) = v.
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Remark 4.4 (Path followability and DAEs).
The augmented system (4.14) provides also some insight on the connection between the
question of path-followability and differential algebraic equations (DAEs). Recalling the
structure of (4.14) it is clear that exact path followability in the sense of Definition 4.1
requires keeping e = h(x)− p(θ) = 0 while the θ̇ ≥ 0 holds. Thus h(x)− p(θ) = 0 can
be understood as an algebraic constraint. One can regard the path-followability problem
as the question of existence of solutions to the DAEẋ

ż

 =
 f(x, u)
Az +Bv

 (4.36a)

θ = z1 (4.36b)
0 = hi(x)− pi(z1), i ∈ {1, . . . , nu} (4.36c)

subject to the additional state constraint θ̇ = z2 ≥ 0. In the proof of Lemma 4.1 we
verified that one needs to differentiate the i-th components of the constraint hi(x) −
pi(θ) = 0 ri-times in order to obtain the description in the transverse normal form
(4.21). And in the proof of Theorem 4.1 we have shown how to obtain an input which
renders the zero-path-error manifold IP from (4.26) positively invariant, and how to
characterize all solutions of (4.36) consistent with h(x)−p(θ) = 0 via (4.30). Thus one
can conclude that the differential index of the DAE (4.36) is r̂, r̂ = max{r1, . . . , rny},
cf. [Brenan et al. 1996].
A similar approach in context of general DAEs is considered in [McClamroch 1990].
There the vector relative degree of an algebraic constraint is used to make statements
about the existence of solutions to DAEs.3

Remark 4.5 (Non-square input-output structures).
In our previous consideration we require that the number of inputs nu is identical to the
number of outputs ny, cf. Assumption 4.1. The path followability results as presented
are thus restricted to the case of square input-output structures. However, often one
has to deal with non-square input-output structures.
If the number of outputs ny is less than the number of inputs nu, no problems arise
as long as decoupling matrix A(x) appearing in Definition 4.2 has full column rank,
cf. [Isidori 1995]. The main idea is to reduce the number of inputs needed to obtain a
transverse normal form. The contrary case ny > nu is much more sophisticated. The
easiest version of this case is ny − 1 = nu. One can try to tackle this case via variant

3So far we have not commented on the connection between holonomic and non-holonomic constraints—as
they are often present in mechanical systems—and the path-followability problem we are discussing here.
For example, the question of whether the 2-DoF robot from Example 4.2 can follow a joint space path is
in essence equivalent to the introduction of virtual holonomic constraints. However, our approach, which
is basically the classification of the vector relative degree of the algebraic constraints, is more general and
applicable to holonomic as well as to non-holonomic constraints, see also [McClamroch 1990].
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of the augmented system (4.14) where the output θ = z1 is neglectedẋ
ż

 =
 f(x, u)
Az +Bv


e = h(x)− p(z1).

Relying on this formulation, one can attempt to check whether this system has a well-
defined vector relative degree with respect to the square input-output structure (u, v) ∈
Rnu × R and e = h(x) − p(z1) ∈ Rny . Even if the DAE given by e = 0 has a unique
solution, it is often not possible to ensure forward motion θ̇ = z2 ≥ 0 and exact path
followability at the same time. In Section 4.3.2 we use this ansatz to derive a transverse
normal form for the non-square ship dynamics from Example 4.1.
A different possibility of dealing with the case ny > nu is to adapt the problem for-
mulation. Instead of a 1-dimensional path P from (4.2) one can consider generalized
k-dimensional geometric reference descriptions. The intuitive idea is to add spatial de-
grees of freedom to the geometric reference description and derive a generalized problem
setting. First steps in this direction have been proposed in [Faulwasser and Findeisen
2009a; Faulwasser et al. 2009a].

4.3.2 Example: Geometric Ship Course Control

So far we have proposed to analyze path-following problems with the help of an aug-
mented system (4.14). We have seen that this description allows a local analysis of the
problems. To illustrate our augmented system approach further we reconsider the ship
course control problem from Example 4.1. Our goal is to obtain a transverse normal
form description of the path-following problem for the ship model (4.6). Recall that
the ship dynamics (4.6) are non-square with dim u = 1 and dim y = 2. To handle this,
we use the ideas presented in Remarks 4.2 and 4.5.
We rewrite the path-following task for (4.6) in the augmented system description (4.14)



ẋ1
ẋ2
ẋ3
ẋ4
ż1
ż2


=



w cosx3 − Lwx4 sin x3
w sin x3 + Lwx4 cosx3

x4
1
τ (−x4 +Ku)

z2
v


. (4.37a)

The considered output becomes

e =
x1 − p1(z1)
x2 − p2(z1)

 , (4.37b)
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where the path parametrization p(θ) = (p1(θ), p2(θ))T from (4.2) is used, and the
z-states describe the path parameter θ and its time derivative θ̇. This augmented
system has a square input-output structure. The virtual dynamics for z are chosen as
an integrator chain of length two due to two reasons: the system input u appears in
ë1,2

ë1 = −Lw
(
ẋ4 sin x3 − x2

4 cosx3
)
− wx4 sin x3 −

(
∂2p1
∂z2

1
z2

2 + ∂p1
∂z1
v
)

(4.38a)

ë2 = Lw
(
ẋ4 cosx3 − x2

4 sin x3
)

+ wx4 cosx3 −
(
∂2p2
∂z2

1
z2

2 + ∂p2
∂z1
v
)

(4.38b)

and we want to avoid the appearance of derivatives of the input u. Checking the
definition of the vector relative degree (4.9) for the augmented system (4.37) leads to
the decoupling matrix

A(x, z) =
−γ sin x3 −∂p1

∂z1

γ cosx3 −∂p2
∂z1

 , γ = LwK
τ 6= 0. (4.39)

A(x, z) has full rank if and only if

δ(x3, z1) :=
(
∂p2
∂z1

sin x3 + ∂p1
∂z1

cosx3
)
6= 0. (4.40)

This is always the case if the exact path-following condition obtained in (4.8) in Ex-
ample 4.1 holds. From (4.8) it can be also deduced that if the ship follows the path
exactly and w > 0, then forward motion is equivalent to

θ̇ > 0 ⇔ δ(x3, z1) > 0.

Consequently, the augmented dynamics (4.37) locally have a vector relative degree of
r = (2, 2)T . Next, we map (4.37) to a transverse normal form. Since r = (2, 2)T , and
recalling the structure of Φ from (4.35), it is clear that

ξ1
ξ2
ξ3
ξ4

 = Φξ(x, z) =


x1 − p1(z1)

w cosx3 − Lwx4 sin x3 − ∂p1
∂z1
z2

x2 − p2(z1)
w sin x3 + Lwx4 cosx3 − ∂p2

∂z1
z2

 =


e1
ė1
e2
ė2

 . (4.41)

Hence we only need to find two more elements of Φ. If one follows directly the approach
used in the proof of Lemma 4.1, and in Example 4.2, the choice would be

η = Φη(x, z) =
z1
z2

 =
θ
θ̇

 . (4.42)

Provided that the Jacobian of Φ has full rank, which is equivalent to the condition∣∣∣∣∣
(
∂Φ
∂x

,
∂Φ
∂z

)∣∣∣∣∣ = L2w2 x4 6= 0,
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this choice of coordinates defines a (local) diffeomorphism. The inverse map Φ−1 is,
however, complicated, since for given ξ2,4 and η1,2 one needs to solve

ξ2 = w cosx3 − Lwx4 sin x3 − ∂p1
∂η1
η2

ξ4 = w sin x3 + Lwx4 cosx3 − ∂p2
∂η1
η2

for x3 and x4. Furthermore, a complicated inverse Φ−1 often leads to complicated
expressions in the transverse normal from, cf. Remark 4.2. Hence we discard Φη

from (4.42). As pointed out in Remark 4.2, we are free to modify Φη from (4.42)
to obtain more convienent expressions. Therefore we consider the alternative map
Φ̃ = (Φξ, Φ̃η)T , where

η = Φ̃η(x, z) =
z1
x3

 =
 θ
x3

 . (4.43)

This choice is motivated by the fact that the remaining coordinates θ̇ = z2 and x4
appear affinely in the equations for ξ2, ξ4 in (4.41). The Jacobian of Φ̃ has full rank if
and only if ∣∣∣∣∣∣

∂Φ̃
∂x

,
∂Φ̃
∂z

∣∣∣∣∣∣ = −Lw · δ(x3, z1) 6= 0,

where δ(x3, θ) is as defined in (4.40). Note that this is equivalent to the condition
ensuring a well-defined relative degree (4.40) of the augmented system (4.37). The
full rank of the Jacobian of Φ̃ is also implied by the exact path followability condition
(4.8) given in Example 4.1. The inverse of Φ̃ is

x
z

 = Φ̃−1(ξ, η) =



ξ1 + p1(η1)
ξ3 + p2(η1)

η2
1

Lwδ(η)
(
∂p1
∂η1

(ξ4 − w sin η2) + ∂p2
∂η1

(w cos η2 − ξ2)
)

η1
1
δ(η) (w − ξ2 cos η2 − ξ4 sin η2) ,


, (4.44)

where δ(η) = δ(x3, z1) as in (4.40). Obviously, Φ̃−1 is defined for all η ∈ {η ∈
R2 | δ(η) 6= 0}. The internal dynamics of the transverse normal form description
of (4.37) areη̇1

η̇2

 = 1
Lwδ(η)

 Lw (w − ξ2 cos η2 − ξ4 sin η2)
∂p1
∂η1

(ξ4 − w sin η2) + ∂p2
∂η1

(w cos η2 − ξ2)

 =
β1(ξ, η)
β2(ξ, η)

 . (4.45a)

The transverse dynamics of (4.37) are obtained using (4.38) and the fact that ẋ3 = x4
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implies η̇2 = β2(·) = x4. This leads to

ξ̇1
ξ̇2
ξ̇3
ξ̇4

 =


ξ2

−a1
(
(β2(·) + a2u) sin η2 + a3(β2(·))2 cos η2

)
− ∂2p1

∂η2
1

(β1(·))2 − ∂p1
∂η1
v

ξ4

a1
(
(β2(·) + a2u) cos η2 − a3(β2(·))2 sin η2

)
− ∂2p2

∂η2
1

(β1(·))2 − ∂p2
∂η1
v

 ,

(4.45b)

where the terms β1,2(·) = β1,2(ξ, η) are from (4.45a), and the constants ai, i = 1, . . . , 3
are

a1 = w(τ − L)
τ

, a2 = KL

τ − L
, a3 = Lτ

τ − L
. (4.46)

Finally, (4.45) states a transverse normal form description of the path-following prob-
lem for the ship dynamics (4.6). Note that forward motion on the path (ξ̇1,...,4 = 0) as
well as existence and invertibility of Φ̃ are guaranteed by the constraint δ(η) ≥ 0.
From (4.45) we can also calculate inputs uP and vP which render the zero-path-error
manifold positively invariant. Rendering the zero-path-error manifold positively in-
variant implies application of inputs to the transversal dynamics (4.45b) such that
ξ = ξ̇ = 0 holds. In other words, one needs to calculate output-zeroing inputs for
(4.45). Setting ξ1,...,4 = 0 this is achieved by solving ξ̇2,4 = 0 for u and v. Since the
inputs appear affinely in (4.45b) we obtain without difficulty the exact path-following
inputs uP , vP (

uP , vP
)T = A−1(η) · kP(ξ, η)|ξ=0, (4.47)

where

kP(ξ, η) =

 a1
(
β2(ξ, η) sin η2 + a3(β2(ξ, η))2 cos η2

)
+ ∂2p1

∂η2
1

(β1(ξ, η))2

−a1
(
β2(ξ, η) cos η2 − a3(β2(ξ, η))2 sin η2

)
+ ∂2p2

∂η2
1

(β1(ξ, η))2

 .
The matrix A−1(η) is directly the inverse of the decoupling matrix (4.39) expressed in
ξ, η coordinates. Again δ(η) > 0 is sufficient to guarantee the existence of A−1(η). The
exact path-following inputs are unique and depend on the zero dynamics η̇ = β(0, η).
This implies that the speed to follow the path along exactly is not free. Note that the
internal dynamics (4.45a) for ξ = 0 are directly the equations (4.7) obtained in the
previous consideration of the ship example.
Now, consider the following parameter values for the ship (4.37) w = 10m/s, L = 3.92,
K = −0.036 and τ = 22.32s. The path to be followed is given by the regular curve

p(θ) =
 θ

c1 sin(c2θ)

T . (4.48)
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The path constants are c1 = −103 and c2 = −1.5 · 10−3. For this particular path
and the given parameters we solve the internal dynamics (4.45a) under the condition
ξ = 0. The phase portrait of the zero dynamics is depicted in Figure 4.3. For any
initial condition with δ(η(0)) > 0 the path parameter η1(t) = z1(t) grows unboundedly.
For δ(η(0)) > 0 the solutions converge to a stable oscillation in the phase plane which
is depicted as a continuous blue curve (η1,P , η2,P) in Figure 4.3. For initial conditions
with δ(η(0)) < 0 we have η̇1 = ż1(t) < 0 and η1(t) → −∞. The red curves illustrate
the convergence of solutions η(t) for different initial conditions with δ(η(0)) < 0. Again
the solutions converge—now to the blue dash-dot curve (η1,P , η2,P) in Figure 4.3. This
curve refers to the zero-dynamics (4.45a) for a backward motion with η1 < 0 along P .
The behavior of η1,P(t) and η2,P(t) in the time domain for δ(η) > 0 is shown in Figure
4.4 left. The exact path-following inputs uP(t), vP(t) are depicted in Figure 4.4 right.
One can also construct a nonlinear controller to stabilize the path. The exact path-
following inputs uP , vP (4.47) are obtained via static input-output linearization of
(4.37). Hence the feedback

(
uP , vP

)T = A−1(η) (kP(ξ, η) +Kξ)

leads to linear input-output dynamics and nonlinear internal dynamics

ξ̇ = (A+BK)ξ
η̇ = β(ξ, η).

Obviously, K has to be chosen such that the transversal part of the dynamics is
stabilized. Such an approach suffers from the general drawbacks of input-output lin-
earization. The linearizing part of the feedback A−1(η)kP(ξ, η) can be very large.
Especially, if the initial condition is close to δ(η) = 0. For δ(η) = 0 the matrix A(η)
is singular. The initial condition determines, if the path is transversed with θ̇ > 0 or
θ̇ < 0. In general, one needs to check whether the internal dynamics are stable or not.

Our approach via the augmented dynamics (4.37) allows deriving a transverse
normal form for this example. Comparing Example 4.2 on robot path following with
this example several issues can be noted: Since the original ship model (4.6) has only
one input and two outputs we have no input left to stabilize the internal dynamics.
However, for general systems with square input-output structures—and fulfilling As-
sumptions 4.1–4.3—the path parameter input v appears in the internal dynamics of
the augmented system, cf. Example 4.2. Thus this virtual input might be used to
stabilize the internal dynamics. Finally, the conclusion from this example is that the
price for allowing a non-square input-output structure are uncontrolled internal dy-
namics. Moreover, we have seen that the derivation of a transverse normal form can
be difficult. Yet, the approach allows a structured assessment of path followability.
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Figure 4.3: Phase portrait of the zero dynamics of (4.45).

Figure 4.4: Nominal solution to (4.45a) and exact path-following inputs for δ(η) > 0.
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4.4 Constrained Path Followability of Flat Systems

So far our results do not allow to assess path followability in the presence of constraints
directly. We know, however, that the dynamics on the zero-path-error manifold are
governed by the internal dynamics of the augmented system (4.14) with respect to
the error output e = h(x) − p(θ). If we rely on assumptions on the structure of the
augmented system (4.14) and its internal dynamics, it is easier to answer the question
of path followability in presence of constraints. In other words, we change the class
of considered systems such that in the transverse normal form description (4.21) no
internal dynamics of the original system (4.1) are present.
One way to ensure this is as follows: As before consider the nonlinear system (4.1).
Temporarily suppose that locally the vector relative degree r = (r1, . . . , rny)T of (4.1)
is such that ρ = ∑ny

i=1 ri = nx. This implies that (locally) the dimension of the internal
dynamics is dim η1 = nx−ρ = 0, dim η2 = r̂+ 1. The requirement ρ = nx is equivalent
to the requirement that the orignal system (4.1) is statically feedback linearizable.
Here, we do not use this assumption but a more general one.
Subsequently, we assume that the considered system (4.1) is differentially flat. For
MIMO systems static feedback linearizability is a sufficient condition for flatness [Fliess
et al. 1995b; Lévine 2009; Martin et al. 1997; Rothfuß 1997; Sira-Ramírez and Agrawal
2004].4 Moreover, also systems which are linearizable by endogenous dynamic feed-
backs are differentially flat. Thus flatness of (4.1) is more general than static feedback
linearizablility. The focus on flat systems enables us to state sufficient conditions for
exact path followability in the presence of constraints on states and inputs. Formally
flatness can be defined as follows, cf. [Fliess et al. 1995b; Lévine 2009; Rothfuß 1997].

Definition 4.3 (Differential flatness).
Consider the system (4.1). If there exists a variable ζ = (ζ1, . . . , ζnu)T with dim ζ =
dim u such that the following statements hold at least locally:

i) The variable ζ can be written as a function of the state variables x =
(x1, . . . , xnx)T , the input variables u = (u1, . . . , unu)T , and a finite number of
time derivatives of the input variables

ζ = k
(
x, u1, . . . , u

(l1)
1 , . . . , unu, . . . , u

(lnu)
nu

)
. (4.49a)

ii) The system variables x and u can be expressed as functions of the variable ζ =
[ζ1, . . . , ζnu]T and a finite number of time-derivatives of ζ. Hence

x = Φ
(
ζ1, . . . , ζ

(k1−1)
1 , . . . , ζnu, . . . , ζ

(knu−1)
)
, (4.49b)

u = Ψ
(
ζ1, . . . , ζ

(k1)
1 , . . . , ζnu, . . . , ζ

(knu)
nu

)
. (4.49c)

4For SISO systems differential flatness is equivalent to static feedback linearizability [Charlet et al. 1989,
1991].
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A variable ζ satisfying i)–ii) is called a flat output of (4.1). And (4.1) is called a
(differentially) flat system.

Note that if a system is flat, the flat output is not unique. For example, consider a
system with two inputs. If y = (y1, y2)T is a flat output, then z = (y1 + ẏ2, y2)T is
also a flat output, since y = (z1 − ż2, z2)T , cf. [Lévine 2009].
Flatness can, simplistically, be interpreted as follows: The map Φ (4.49b) parametrizes
the state x(t) in terms of a flat output ζ(t) and its time derivatives. This can be under-
stood as an observability property of a flat output ζ. Additionally, the map Ψ (4.49c)
parametrizes the input u(t) in terms of the flat output. This implies that if we want
to steer a flat system from x0(t0) to x1(t1), it suffices to compute an output trajectory
ζ(t) ∈ C(k̂) such that x0 = Φ(ζ1(t0), . . . , ζ(knu−1)(t0) and x1 = Φ(ζ1(t1), . . . , ζ(knu−1)(t1).
Hence flatness implies a (local) nonlinear reachability property. For details on flatness
and its implications for controller design we refer to [Fliess et al. 1995b; Hagenmeyer
2003; Lévine 2009; Martin et al. 1997; Rothfuß 1997; Sira-Ramírez and Agrawal 2004]
and the references therein.
A consequence of the previous definition is that flat systems have a square input-
output structure. Thus Assumption 4.1 remains valid. We replace the relative degree
Assumption 4.2 by an assumption that the path is defined in a flat output space of
the system. Additionally, Assumption 4.3 needs to be modified. The required degree
of continuous differentiability is now defined via the derivatives of the flat output
appearing in (4.49c). This leads to the following assumptions.

Assumption 4.4 (Differentially flat system).
System (4.1) is differentially flat. The output (4.1b) is a flat output of (4.1).

Assumption 4.5 (Timing law and path parametrization).
i) The timing law g from (4.3) is chosen as

θ(k̂+1) = v, θ(t0) = θ0, ∀j ∈ 1, . . . , k̂ : θ(j)(t0) = 0,

with k̂ = max{1, . . . , knu} from (4.49c).
ii) The path parametrization p(θ) from (4.2) is k̂-times continuously differentiable

with k̂ = max{1, . . . , knu} from (4.49c).

Assumption 4.6 (Input and state constraints).
The input and state constraints of (4.1) are described by continuous functions cix :
Rnx → R and ciu : Rnu → R as cix(x) ≤ 0 and ciu(u) ≤ 0.

The last assumption is purely technical and will be used in the proof of Theorem 4.3
later on. For convenient notation we write the evaluation of Φ (4.49b) along an output
trajectory ζ(t) as x(t) = Φ(·)|ζ(t). If we refer to a single point rather than a trajectory
we write x(t0) = Φ(·)|ζ(t=t0). The evaluation of Ψ from (4.49c) is denoted in the same
fashion.
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Subsequently, we derive sufficient conditions for exact path followability of flat systems
in the presence of constraints. Moreover, we propose an optimal control problem
subject to a small dimensional linear single input system, which allows to compute
admissible feedforward controls that nominally guarantee exact path-following. The
consideration of constraints is simplified due to the fact that property (4.49b) implies
that (4.1) has no internal dynamics. In order to be precise about our later results we
reformulate the path followability problem implicity stated in Definition 4.1 as follows.

Problem 4.2 (Optimal exact path following).
Given the constrained system (4.1), and a path P (4.2) to be followed. Find a transition
time T > 0 and an input signal u : [0, T ] → U such that the following conditions are
satisfied:

i) Exact Path-following: The system output (4.1b) moves from a consistent
initial condition h(x0) = p(θ0) in forward direction exactly along the path P.
Hence for all t ∈ [0, T ] it holds that θ̇(t) ≥ 0 and h(x(t, x0|u(·))) ∈ P.

ii) Constraint Satisfaction: For all t ∈ [0, T ] the feedforward signal u(·) satisfies
the input constraints u(t) ∈ U , and the corresponding system trajectory satisfies
the state constraints x(t, x0|u(·)) ∈ X .

iii) Cost Minimization: The feedforward input signal is designed such that the
cost functional

J(u(·), x(·)) =
∫ T

0
1 + F (x(τ), u(τ)) dτ, (4.50)

with F : X × U → R+
0 and F (x, u) ∈ C1, is minimized.

It is well-known that trajectory tracking or set point changes can be achieved easily
for flat systems, cf. [Fliess et al. 1995b; Lévine 2009; Sira-Ramírez and Agrawal 2004].
If a sufficiently smooth reference trajectory is known a priori, one basically exploits
(4.49c) and obtains a suitable feedforward control. Consequently, it is rather easy to
state sufficient conditions for unconstrained exact path followability of flat systems.

Lemma 4.2 (Unconstrained path followability of flat systems).
Given an unconstrained nonlinear flat system (4.1) and any regular path P specified
by an a priori known parametrization p(θ) in a flat output space (4.1b).
Suppose that

i) the parametrization p(θ) ∈ C k̂, where k̂ = max{ki} and the constants ki ∈ N are
defined by (4.49c);

ii) the initial condition x0 of (4.1) is consistent with P and θ(t) ∈ C k̂, i.e.

x0 = Φ (·) |p(θ(t=0)), (4.51)

where θ̇(t) ≥ 0, and θ(0) = θ0, θ(T ) = θ1.
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Then the feedforward input

u(t) = Ψ
p1(θ(t)), . . . , d

k1p1(θ(t))
dtk1

, . . . , pny(θ(t)), . . . ,
dknypny(θ(t))

dtkny

 (4.52)

guarantees that the system (4.1), starting from x0, follows the path P exactly in forward
direction.

Proof. The proof of this lemma follows directly by calculation of the time derivatives of
p(θ(t)), use of (4.49c) and the ideas, e.g. presented in [Hagenmeyer and Delaleau 2003;
Lévine 2009; Sira-Ramírez and Agrawal 2004]. The path P and its parametrization
p(θ) are given a priori. Thus p(t) := p(θ(t)) is the reference to be followed. The time
derivatives of all components pi(θ), i = 1, . . . , ny of this reference are

ṗi(θ(t)) = ∂θpi(θ) · θ̇ (4.53a)
p̈i(θ(t)) = ∂2

θpi(θ) · θ̇2 + ∂θpi(θ) · θ̈ (4.53b)
... ...

dkipi(θ(t))
dtki

= ∂kiθ pi(θ) · θ̇ki + · · ·+ ∂θpi(θ) · θ(ki). (4.53c)

Since θ(t) ∈ C k̂ and k̂ as in condition i), each component of p(θ) satisfies pi(θ(t)) ∈ C k̂.
Hence we substitute these derivatives into the flat input parametrization given by
(4.49c). This yields (4.52). Condition ii) of the lemma ensures that the initial condition
of the system (4.1) is consistent with the path P and a timing θ(t). Due to the flatness
of (4.1) it follows, that any non-decreasing timing θ(t) specifies an input u = Ψ(·)|p(θ(t))
which follows the path P exactly in forward direction.

The challenging part is to extend Lemma 4.2 such that constraints on inputs and
states can be considered. We start with a technical lemma. It is subsequently used to
project the feedforward controlled nonlinear MIMO dynamics (4.1) along the path P
to a linear single-input system in Brunovský normal form. Finally, the projection is
used to obtain a small dimensional optimal control problem and sufficient conditions
for exact path followability.

Lemma 4.3.
Given a regular path P ⊂ Rny from (4.2) and its k-times continuously differentiable
parametrization θ 7→ p(θ). Suppose that the time evolution t 7→ θ(t) is also k-times
continuously differentiable. Then the map ∆ : Rk+1 → Rny×(k+1)

∆ :
(
θ, θ̇, . . . , θ(k)

)T
7→

(
p, ṗ, . . . , p(k)

)
given by p(θ(t)) and its time derivatives is locally invertible for all values of(
p, ṗ, . . . , p(k)

)T
which are contained in the image of ∆.
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Proof. The regularity of P implies the local bijectivity of θ 7→ p(θ) and rank (∂θp(θ)) =
1 for all θ, cf. [Topogonov 2006]. Therefore, given the parametrization p(θ) and a
specific point y ∈ P , the equation y = p(θ) can be locally solved for the unique
value of θ. Due to the rank condition, it follows that at least one component of
∂θp(θ) = (∂θp1(θ), . . . , ∂θpi(θ), . . . , ∂θpny(θ))T is not equal to zero. Hence one can solve
ṗi = ∂θpi(θ) · θ̇ for θ̇. Using the equation for p̈(θ), and the previously calculated values
of θ and θ̇, one can determine θ̈ from p̈i − ∂2

θpi(θ) · θ̇2 = ∂θpi(θ) · θ̈. Following this
procedure for the remaining time derivatives of p(θ) one obtains the unique values of...
θ , . . . , θ(k).

The following result sets the conceptual basis for the further considerations.

Theorem 4.2 (Equivalence to single input system).
Given a nonlinear flat system (4.1) and a regular path P specified by an a priori known
parametrization p(θ) in a flat output space of (4.1). Suppose that conditions i) and ii)
of Lemma 4.2 are satisfied.
Then the dynamics of the nonlinear MIMO system (4.1) under the feedforward control
u = Ψ(·)|p(θ(t)) given by (4.52), where θ(t) is of class C k̂, are equivalent to a linear,
single input system in Brunovský normal form.

Proof. Provided that condition i) of Lemma 4.2 is satisfied, any choice of a class C k̂
timing θ(t) specifies a sufficiently often continuously differentiable output reference
trajectory for the flat system (4.1). It follows that system (4.1) under the feedforward
control (4.52) is equivalent to a linear MIMO system in Brunovský normal form such
that for all i = 1, . . . , ny

χ̇i =
 0ki−1×1 Iki−1×ki−1

0 01×ki−1

χi +
0ki−1×1

1

 dkipi(θ(t))
dtki

(4.54)

where the time derivatives dkipi(θ(t))
dtki

are the inputs, see [Hagenmeyer and Delaleau
2003]. On the one hand, the input and state parametrizations (4.49b-c) reveal that
any choice of θ(t) ∈ C k̂ leads to a unique state evolution of (4.1). On the other hand,
Lemma 4.3 states that from the knowledge of the parametrization p(θ) and the values
p, ṗ, . . . , p(k̂) the values of θ, θ̇, . . . , θ(k̂) can be uniquely determined. Thus the dynamics
of the system (4.1) along a given regular path P are uniquely described by the choice
of a class C k̂ timing θ(t). Therefore the MIMO Brunovský normal form reduces to the
following single input Brunovský normal form

ż1 = z2
ż2 = z3
... ...

żk̂+1 = θ(k̂+1)(t),

(4.55)
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Figure 4.5: Geometric interpretation of Theorem 4.2.

where the k̂+ 1-th time derivative of θ(t) can be regarded as free input variable. Since
system (4.1) under the feedforward control u = Ψ(·)|p(θ(t)) is equivalent to (4.54), and
the latter is equivalent to (4.55), it follows that (4.1) is also equivalent to (4.55).

The core statement of the last theorem is illustrated in Figure 4.5. The motion along
the path using the feedforward input (4.52) is completely parametrized by the states
z1, . . . , zk̂+1 of (4.55). This implies that the dimension of the zero-path-error manifold
IP is zero, since the transversal directions as introduced in Section 4.3.1 have dimension
nx. Comparing this to the result on the transversal normal form reveals an essential
difference: no internal dynamics related to the state x are present, cf. Figure 4.2 in
Section 4.3.1.

4.4.1 Optimal Exact Feedforward Path Following

The previous considerations show that the feedforward input u = Ψ(·)|p(θ(t)) can be
reformulated as a function of θ(t) and its first k̂ time derivatives. Equivalently, one may
use the representation via the single input system (4.55). Recall the path parameter
dynamics (4.12), where the k̂+1-th time derivative of θ(t) is the path parameter input
v. Similar to (4.12) we use the substitution

z := (z1, z2, . . . , zk̂+1)T =
(
θ, θ̇, . . . , θ(k̂)

)T
.
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We rewrite (4.52) and (4.49b) as

u =Ψ
(
θ, θ̇, . . . , θ(k̂)

)
=: Ψ(z) (4.56a)

x =Φ
(
θ, θ̇, . . . , θ(k̂−1)

)
=: Φ(z). (4.56b)

Consider the feedforward path-following task stated in Problem 4.2 for (4.1). A feed-
forward input signal, which respects the constraints (x, u) ∈ X × U , is given by the
solution of the following optimal control problem

minimize
v(·),T

∫ T

0
1 + F (x(τ), u(τ)) dτ (4.57a)

subject to the dynamics

ż = Az +Bv, (4.57b)

the (convex) state constraints

z(0) = [θ0, 0, . . . , 0]T , (4.57c)
z(T ) = [θ1, 0, . . . , 0]T , (4.57d)

∀t ∈ [0, T ] : z2 ≥ 0, (4.57e)

and the additional constraints

∀t ∈ [0, T ] : u(t) = Ψ(z(t)) ∈ U , (4.57f)
∀t ∈ [0, T ] : x(t) = Φ(z(t)) ∈ X , (4.57g)
∀t ∈ [0, T ] : v(t) ∈ V . (4.57h)

Note that the proposed optimal control problem has a small number of linearly coupled
dynamic states. Scalar input v(·) and free end time T are decision variables. The class
of considered virtual inputs v(·) are scalar measurable functions taking values in a
sufficiently large closed interval V ⊂ R. The cost functional (4.57a) directly expresses
the requirement from part ii) of Problem 4.2. The dynamics (4.57b) are the path
parameter dynamics as defined in (4.12). Note that due to Assumption 4.5 we have
an integrator chain of length k̂ + 1 as timing law. The constraints (4.57c-d) state
that the initial path point is p(θ0), and the final path point is p(θ1). Equation (4.57e)
expresses the condition on forward movement along the path. The constraints on
states and inputs of the flat system (4.1) u = Ψ(z) ∈ U , x = Φ(z) ∈ X are considered
via (4.57f,g), cf. part ii) of Problem 4.2. Note that the optimal solution v?(·) is
the input to the virtual system (4.57b). Finally, the input applied to the nonlinear
differentially flat system (4.1) is calculated from the optimal evolution of z(t, z0|v?(·))
via the input parametrization u(t) = Ψ(z(t, z0|v?(·))) from (4.56). In order to achieve
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that the original system (4.1) follows the path P exactly, it suffices to compute any
admissible solution v to (4.57) and the corresponding evolution of z(t, z0|v(·)).

Remark 4.6 (Bang-bang solutions).
If the cost function is F (x, u) = 0, the condition (4.57h) is necessary in order to
avoid impulsive solutions, which typically arise in minimum-time or cheap optimal
control problems. In general, the OCP (4.57) might have bang-bang solutions for v(·).
The virtual input v acts on the derivative of zk̂+1 = θ(k̂). Thus the restriction of v
to a compact set V and Ψ ∈ C0 ensure that the input applied to the original system
u = Ψ(z1, . . . , zk̂+1) is continuous.

For general flat systems and arbitrary paths P the constraints of the proposed opti-
mal control problem will usually be non-convex due to the nonlinear maps Ψ and Φ
from (4.57f–g). Nevertheless, under fairly mild assumptions, the existence of optimal
solutions to (4.57) in the presence of constraints on states and inputs of the original
system (4.1) can be guaranteed. To this end we investigate the relation between a
path P , the set of steady states, and the constraints of (4.1).

Definition 4.4 (Steady state consistent path).
We call a path P from (4.2) weakly steady state consistent with respect to system (4.1)
and its constraints X and U , if for all θ ∈ [θ0, θ1] exist (xs, us)T ∈ int(X × U) s.t.

0 = f(xs, us), (4.58a)
p(θ) = h(xs, us, 0, . . . , 0) (4.58b)

hold.
If additionally for all θ ∈ [θ0, θ1] we have that (xs, us) ∈ int(X × U) then we call P
strongly steady state consistent.

Let Z ⊂ Rk̂+1 be the set of all states z which satisfy the constraints (4.57c-e). This
is equivalent to our previous introduction of Z in (4.13). For steady state consistent
paths the following result holds.

Theorem 4.3 (Constrained path followability of flat systems).
Given a flat system (4.1), a path P (4.2), Assumptions 4.4–4.6, and the corresponding
optimal control problem (4.57).
Suppose that conditions i) and ii) of Lemma 4.2 are satisfied, and [θ0, θ1] is compact.
Moreover, assume that

i) the maps Ψ : z ∈ Rk̂+1 7→ u ∈ Rnu and Φ : z ∈ Rk̂+1 7→ x ∈ Rnx from (4.56) are
continuous in a neighborhood of the set {[θ0, θ1]× 0× · · · × 0} ⊂ Z;

ii) the path P is strongly steady state consistent with respect to (4.1) and the con-
straint sets X ,U .
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Then
a) P is exactly followable by system (4.1) s.t. the constraints x ∈ X and u ∈ U are

satisfied;
b) and if condition i) holds for all z ∈ Z, then OCP (4.57) has an optimal solu-

tion. Moreover, if the minimum-time case (F (x, u) = 0) is considered, then the
minimal transition time T ? is finite.

Proof. Our proof is based on the construction of an admissible solution to (4.57). We
proceeds in four steps. Firstly, we express the supposition of strongly path consistency
in terms of the flat state and input parametrizations. Secondly, we split the integrator
chain (4.57b) into two parts, consider the last integrator as a flat system, and use that
[θ0, θ1] is compact. We construct an admissible reference signal for z2(t) = θ̇ which
guarantees that θ1 < ∞ is reached in finite time. In the third step, we consider the
remaining k̂ integrators again as a flat system, and design an admissible v such that
the desired z2(t) trajectory is perfectly tracked. This leads to part a). Finally, we
conclude from the existence of an admissible input v : [0, T ] → V to the existence of
an optimal finite-time solution to (4.57) (part b)).
Step 1: In terms of the flat input and state parametrization a strongly steady state
consistent path implies that for all z1 ∈ [θ0, θ1]

Φ(z1, 0, . . . , 0) ∈ intX , (4.59a)
Ψ(z1, 0, . . . , 0) ∈ intU . (4.59b)

In the following we focus solely on the constraint Ψ(·) ∈ U since the consideration
of Φ(·) ∈ X relies on the same concept. Consider the set Z̃ := [θ0, θ1] × [0, c2] ×
[−c3, c3] × · · · × [−ck̂+1, ck̂+1]. Due to the continuity of Ψ(·) on a neighborhood of
{[θ0, θ1]× 0× · · · × 0} ⊂ Z there exists constants ci such that the image of Z̃ under Ψ
is completely contained in the interior of U . The main idea is to rely on the tightened
constraint set Z̃ since keeping z(t) in Z̃ suffices to satisfy (4.57f). Thus we restrict the
considerations to Z̃ with Ψ(Z̃) ∈ intU .
W.l.o.g. assume that there exists a function γ(t) ∈ R, defined on t ∈ [0, s], 0 < s <∞,
which is monotonously increasing γ̇(t) ≥ 0 and γ(t) ∈ C k̂. Moreover, this function can
be chosen such that γ(0) = 0, γ(s) = c2, γ(i)(t)|0 = γ(i)(t)|s = 0 for i = 1, . . . , k̂. And
γ(i) ∈ [−ci+1, ci+1] for all i = 1, . . . , k̂ holds. Basically, γ(t) is a sufficiently smooth
signal which increases from 0 to c2 during some finite time s, while its time derivatives
remain bounded. Using γ(t) we can construct a reference motion for z2(t).
Step 2: Consider the last part of the integrator chain (4.57b) and denote z2 as w, hence
ż1 = w. Next, we design a signal w ∈ [0, c2] which is sufficiently often continuously
differentiable (w ∈ C k̂) and ensures for some T < ∞ that z1(T, θ0|w) = θ1. Using the
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function γ(t) introduced before we choose w as

w(t, T ) =


γ(t), t ∈ [0, s]
c2, t ∈ (s, s+ T )
c2 − γ(t), t ∈ [s+ T, 2s+ T ].

Due to the properties of γ(t) the signal w(t, T ) is in C k̂. Furthermore, w(t, T ) ≥ 0
for all t ∈ [0, 2s + T ], and w(i)(t, T )|0 = w(i)(t, T )|2s+T = 0 for i = 1, . . . , k̂. For any
∞ > T ≥ θ1−θ0

c2
it follows that

z1(2s+ T, θ0|w(t, T )) = θ0 +
∫ 2s+T

0
w(τ, T )dτ > θ1.

The inequality follows directly from the construction of w(t, T ). Furthermore, s and T
are finite, and so is 2s+T . We know from the mean value theorem that for some finite
T ◦ : 0 ≤ T ◦ < T the value z1(2s+ T ◦, θ0|w(t, T ◦)) = θ1. It is clear that w(t, T ◦) ∈ C k̂
and w(t, T ◦) ≥ 0.
Step 3: Note that the complete integrator chain (4.57b) is linear controllable, and
thus it is a flat system, cf. [Fliess et al. 1995b]. A flat output of (4.57b) is given by
z1. Indeed also the k̂ last parts of the integrator chain z(k̂)

2 (t) = v can be regarded as
a flat system, where z2 is the considered flat output. In order to design the desired
input we set v◦(t) = w(k̂)(t, T ◦). Since w(t, T ◦) ∈ C k̂ it follows that w(k̂)(t, T ◦) ∈ V ,
where V is some closed interval of R. So far we have shown that an admissible input
v◦(t) to (4.57) exists. This proves part a).
Step 4: To derive the existence of an optimal solution to (4.57) we apply Theorem E.1
from Appendix E. By assumption the maps Ψ : z ∈ Rk̂+1 7→ u ∈ Rnu and Φ : z ∈ Rk̂+1

from (4.56) are now continuous for all z ∈ Z. Combining this with Assumption 4.6 we
obtain that the constraints on the states z (4.57f-g) are given by continuous functions
cxi(Φ(z)) = x and cui(Ψ(z)) = u. Thus the existence of an optimal solution to (4.57)
can be deduced from two properties: the existence of at least one admissible solution
to the problem and the convexity and compactness of the extended velocity set

S :=
{
s ∈ Rk̂+2 | v ∈ V 7→ (Az +Bv, F (Φ(z),Ψ(z))T

}
for all fixed z. Linearity of (4.57b) and compactness of V ⊂ R imply compactness and
convexity of S.
In the preceding steps we have constructed an admissible input v◦(·) for (4.57) which
guarantees that the solution z(t, z0|v◦) satisfies the tightened constraints Z̃, therefore
u = Ψ (z(t, z0|v◦)) ∈ intU satisfies the constraint (4.57f). Hence we conclude from the
existence of an admissible solution that an optimal solution to OCP (4.57) exists.
Moreover, if the minimum time case (F (·) = 0) is considered, then v◦ guarantees that
for some finite T ◦ : z1(2s + T ◦, θ0|v◦) = θ1. It follows that 0 ≤ T ? < 2s + T ◦ < ∞.
Hence the minimal transition time T ? is finite. This proves part b).
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Note that strong steady state consistency of a path P combined with local continuity
of input and state parametrizations of a flat system is merely a sufficient condition.
However, if P is only weakly steady state consistent, then it is in general difficult
to guarantee constraint satisfaction. In that case even a slow motion along the path
might cause violation of the constraints.
Moreover, the existence of an admissible solution to (4.57) can also be shown for the
case of infinitely long paths, i.e., the path parameter interval [θ0, θ1] is not bounded.
This means that also for infinitely long paths strong steady state consistency implies
exact path followability. One should also note that we required continuity of the
maps Ψ,Φ in part b) to derive existence of optimal controllers via Theorem E.1. In
applications the continuity of the flat state and input parametrization might hold only
locally. Nevertheless, one can compute admissible—not necessarily optimal—path
evolutions via OCP (4.57).

Remark 4.7 (Path followability and constrained reachability).
In essence, the last result implies a reachability property of flat systems in presence
of constraints: Given two constraint consistent steady states. The transition between
these set points can be achieved in finite time, if the set points are connected by strongly
steady state consistent paths.

The result of Theorem 4.3 simplifies, if no state constraints are present.

Corollary 4.1 (Path followability and input constraints).
Given the optimal control problem (4.57) in which the state constraint (4.57g) is not
present. Suppose that for all z ∈ Z ⊂ Rk̂+1

i) Ψ(z) : z ∈ Rk̂+1 7→ u ∈ Rnu is continuous;
ii) and additionally

lim
z2↓0
‖Ψ(z1, z2, . . . , zk̂+1)‖ = 0. (4.60)

Then for any compact constraint set U ⊂ Rnu, that contains 0 ∈ Rnu in its interior,
OCP (4.57) has an optimal solution. Moreover, if the minimum-time case (F (x, u) =
0) is considered, the optimal transition time T ? is finite.

Proof. The proof follows along the same ideas as the preceding proof of Theorem 4.3
and is hence only briefly sketched here. Continuity of Ψ combined with the input scal-
ing property expressed in (4.60) guarantees that u = Ψ(z) can be kept in a sufficiently
small neighborhood of the origin. Basically, (4.60) means that by driving slower along
the path the inputs can be made arbitrarily small.
Consider the set Z̃ := {z ∈ Z, ‖Ψ(z)‖ ≤ δ}. Due to continuity of Ψ(z) a constant
δ > 0 exists, s.t. for all z ∈ Z̃ and any compact set U ⊂ Rnu with 0 ∈ intU we have
z ∈ Z̃ ⇒ Ψ(z) ∈ U . Now, proceed with similar constructive steps as in the proof
of Theorem 4.3 to construct a signal v(t) which keeps z ∈ Z̃ and drives the system
exactly along the path.
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4.4 Constrained Path Followability of Flat Systems

At first glance the conditions of Corollary 4.1 seem to be restrictive. However, for cer-
tain paths the kinematic unicycle or car-trailer systems with on-axle-hitching partially
fulfill the input scaling property expressed in (4.60), e.g. [Rouchon et al. 1993].

Example 4.3 (Path followability of an autonomous robot).
As an example of a flat system partially fulfilling the suppositions of Corollary 4.1
consider the model of mobile robot in a fixed coordinate frame

ẋ1
ẋ2
ẋ3

 =


u1 cos(x3)
u1 sin(x3)
u1 tan(u2)

 . (4.61)

The states x1 and x2 describe the position in the x1–x2 plane. x3 is the yaw angle.
u1 refers to the speed of the vehicle, and u2 is the steering angle. The system inputs
are subject to constraints u1 ∈ [0, û1] and u2 ∈ [−ũ2, ũ2]. The considered flat output of
system (4.61) is

y = (x1, x2)T .

The flat parametrizations of state and input variables (4.49b-c) are

x = Φ(y1, ẏ1, y2, ẏ2) =
(
y1, y2, arctan ẏ2

ẏ1

)
u1 = Ψ1(ẏ1, ẏ2) = ẏ1

√
1 +

(
ẏ2
ẏ1

)2

u2 = Ψ2(ẏ1, ÿ1, ẏ2, ÿ2) = arctan
(1 +

(
ẏ2
ẏ1

)2)− 3
2
· ÿ2ẏ1 − ẏ2ÿ1

(ẏ1)3

 .
The maps Φ,Ψ are valid only locally. Specifically, one has to restrict the yaw angle
x3 ∈ (−π

2 ,
π
2 ). Under this restriction it holds that −∞ < ẏ2

ẏ1
< ∞. The path P to be

followed is an explicitly parametrized curve

P =
{
y ∈ R2 | [θ0, θ1] 7→ p(θ) =

(
θ, ρ(θ)

)T}
,

where ρ : R → R is a twice continuously differentiable function. Substitution of the
path parametrization p(θ) into u = Ψ(·) yields

u1 = θ̇ ·
√

1 +
(
∂ρ
∂θ

)2

u2 = arctan
(1 +

(
∂ρ
∂θ

)2)− 3
2
· ∂

2ρ

∂θ2

 .
Recall z = (θ, θ̇, . . . , θ(k̂))T . Thus the input parametrization for the speed of the vehicle
u1 = Ψ1(·) fulfills the scaling property (4.60) of Corollary 4.1. The steering input
u2 = Ψ2(·) depends solely on the geometry of the reference path. From the flat state
parametrization x = Φ(·) one can also infer that a consistent initial condition x(0) = x0
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for exact path-following—see also condition ii) of Lemma 4.2—has to fulfill

x0 =
(
θ0, ρ(θ0), arctan

(
∂ρ
∂θ

) ∣∣∣
θ0

)T
.

Additionally, one should note that for this example the higher time derivatives of the
path parameter θ do not appear in the path specific input maps. Thus it suffices to
choose a timing law θ̇ = v to obtain inputs u(t) ∈ C1 via OCP (4.57) under the
restriction v(t) ∈ C0. In case of piecewise constant v(·) the timing law should be
chosen as θ̈ = v.

Let us briefly summarize the main points of this section: For flat systems we can
project the feedforward controlled MIMO dynamics onto linear single input dynamics
which describe the motion along the path. Using this description we obtain an optimal
control problem with small dimensional linear dynamic constraints. Furthermore,
the projection enables us to state sufficient conditions for exact path followability as
conditions guaranteeing the existence of admissible solutions to (4.57). The bottleneck
of this OCP is that the constraints (4.57f-g)—i.e., the constraints that parametrize the
states and inputs of the original system (4.1)—are usually non-convex.

4.4.2 Example: Feedforward Path Following for a Chemical Reactor

To illustrate the previous investigations we consider a Van der Vusse CSTR reactor
described by the dynamics

ċA = rA(cA, T ) + (cIn − cA)u1 (4.62a)
ċB = rB(cA, cB, T )− cBu1 (4.62b)
Ṫ = h(cA, cB, T ) + α(u2 − T ) + (TIn − T )u1, (4.62c)

where

rA(cA, T ) = −k1(T )cA − k2(T )c2
A

rB(cA, cB, T ) = k1(T )(cA − cB)
h(cA, cB, T ) = −δ

(
k1(T ) (cAHAB + cBHBC) + k2(T )c2

AHAD)
)
,

and the reactions kinetics are of Arrhenius type ki(T ) = ki0e
−Ei
T+T0 , i = 1, 2. The

system states cA and cB refer to the educt and product concentration in the CSTR.
T is the reactor temperature. The educt concentration is subject to the constraint
2mol/l≤ cA ≤ 10mol/l. The input u1 ≥ 01/h is the normalized flow rate through the
reactor and u2 ∈ [106.2◦C, 115◦C] refers to the temperature in the cooling jacket. The
system parameters are listed in Table 4.1. In [Rothfuß 1997; Rothfuß et al. 1996] it is
shown that

y =
(
T, cIn−cA

cB

)T (4.63)
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4.4 Constrained Path Followability of Flat Systems

Figure 4.6: Paths P1,2 and surface of stationary product concentration.

is a flat output of (4.62). There an extended version of the model (4.62) is considered:
the temperature dynamics of the cooling jacket are described by an additional scalar
linear ODE, and the cooling rate instead ot the jacket temperature is an input variable.
Nevertheless, one can rely on these results in order to show that the reduced system
(4.62) admits (4.63) as a flat output. Since the calculation of the flat state and
input parametrizations (4.49b,c) leads to vast and complex expressions, we give here
only functional dependencies. The detailed derivation can be found in [Rothfuß 1997;
Rothfuß et al. 1996]. Considering the flat output (4.63) the states of (4.62) can be
expressed as

cB = Φ1(y1, y2, ẏ2) (4.64a)
cA = cIn − y2Φ1(y1, y2, ẏ2) (4.64b)
T = y1. (4.64c)

Table 4.1: Parameters for system (4.62), [Rothfuß et al. 1996].

α 30.828 [h−1] k20 9.043 · 106 [m3/(mol h)]
δ 3.522 · 10−4 [m−3 K kJ ] E1 9578.3
TIn 104.9 [◦C] E2 8560.0
T0 273.15 [◦C] HAB 4.2 [kJ/mol]
cIn 5.1 · 103 [mol/m3] HBC −11.0 [kJ/mol]
k10 1.287 · 1012 [h−1] HAB −41.85 [kJ/mol]
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The inputs are parametrized via

u1 = Ψ1 (y1, y2, ẏ1, ẏ2, ÿ2) (4.64d)
u2 = Ψ2 (y1, y2, ẏ1, ẏ2, ÿ2) . (4.64e)

The considered path-following problem was proposed in [Rothfuß 1997; Rothfuß et al.
1996]. The task is to perform a fast set point change in two steps, see Figure 4.6. The
first step leads from the set point ySP1 = (110◦C, 2.2)T along the path P1 defined by
the affine parametrization

P1 : θ ∈ [2.2, 2.69] 7→ p(θ) =
(
110◦C, θ

)T
.

The second step is to move along the path of maximal steady state product concen-
tration given by the nonlinear parametrization

P2 : θ ∈ [110◦C, 114.21◦C] 7→ p(θ) =
(
θ, 2

√
k1(θ)+cInk2(θ)

k1(θ)

)T
to the final set point ySP2 = (114.21◦C, 2.69)T .
Relying on the input parametrization (4.64) and the path descriptions for P1,2, it is
easy to check numerically that the considered path is strongly steady state consistent
with respect to the considered input and state constraints. In Figure 4.7 the black
continuous and dash-dot lines show the steady states along to the paths P1,2 and the
corresponding stationary input values. Clearly, the paths P1,2 are steady state consis-
tent in the sense of Definition 4.4. Since the flat parametrization from (4.64) depends
on ÿ2 as highest output derivative, the virtual dynamics (4.57b) are an integrator chain
of length three. The set point change should be achieved reasonably fast, therefore
the cost F (x, u) = 0 is used in (4.57a). In order to compute feedforward controls
which nominally move the system (4.62) from one set point to the other we apply the
proposed approach for both paths separately.
The simulations are carried out with Matlab and a multiple-shooting implementation
available in the ACADO Toolkit [Houska et al. 2011]. Problem (4.57) is solved sepa-
rately for both paths P1,2. How the solution in the state space differs from the steady
state solutions is depicted in Figure 4.7. The red continuous curves show the trajecto-
ries as computed via (4.57). The behavior in the time domain is illustrated in Figure
4.8. The left hand side shows the state evolutions of the original system (4.62), the
right hand side presents the corresponding input signals. P1 is accomplished in less
then 0.2h while steering the system along P2 needs about 0.06h. The simulation results
show that the obtained solution respects the considered constraints. Additionally, the
overall transition time ≈ 0.26h is much shorter than the heuristic solution of 1.0h
presented in [Rothfuß 1997; Rothfuß et al. 1996]. Note that if the obtained inputs are
applied to a real system, one needs to combine them with a suitable feedback controller
in a two-degrees-of-freedom structure, cf. [Hagenmeyer and Delaleau 2003].
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4.4 Constrained Path Followability of Flat Systems

Figure 4.7: Steady state consistency of P1,P2 and optimized x(t), u(t).

Figure 4.8: Optimized state evolution and inputs.
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4.5 Summary

In this chapter we gave an introduction on path following for nonlinear systems and in-
vestigated the question of path followability. Firstly, we provided an extensive overview
of existing results on path following. Secondly, we introduced an augmented system
description of these problems. Under mild assumptions this description allows lo-
cal transformation of the problem into suitable coordinates, which allow to analyze
path-followability problems. In accordance with [Banaszuk and Hauser 1995; Nielsen
and Maggiore 2006] we call this description a transverse normal form. In essence it
is a Byrnes-Isidori normal form which is tailored to path-following problems. This
description allows investigation of the question of (unconstrained) path followability.

Finally, we investigated path followability in the presence of constraints on states
and inputs for the special case of flat systems. We have shown that along a path
a feedforward controlled nonlinear flat MIMO system can be projected onto a linear
single-input system. Based on this projection we proposed a small dimensional op-
timal control problem, which can be efficiently solved in order to compute optimal
feedforward control signals for exact path following. Additionally, we presented suffi-
cient conditions for path followability of flat systems in the presence of constraints on
states and inputs.
So far we have not discussed the question of designing path-following controllers in the
presence of constraints. In the next chapter we shift the focus to the design of tailored
predictive controllers.
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In this chapter we discuss tailored predictive control schemes for path-following prob-
lems. We start with a simplified problem, where the reference path is directly defined
in the state space to line out the conceptual ideas. These results have appeared in
[Faulwasser and Findeisen 2009a,b; Faulwasser et al. 2009a]. In Section 5.2 we con-
sider the general and application-relevant case of reference paths defined in an output
space. These results have been partially presented in [Faulwasser and Findeisen 2010].
To illustrate our results we discuss examples in Sections 5.2.2 and 5.2.3. Specifically,
we consider an example from robot control and a ship course control problem.

5.1 Predictive Path Following in the State Space

We consider nonlinear systems

ẋ(t) = f(x(t), u(t)), x(t0) = x0, (5.1)

where x ∈ X ⊆ Rnx, u ∈ U ⊂ Rnu are state and input constraints. To outline the
main ideas we do not consider an output map. Rather we focus on problems, where
the path is directly defined in the state space. Let us suppose that the system and
the constraints fulfill our standard assumptions from Chapter 2. Moreover, we require
f(0, 0) = 0. The path to be followed is a regular curve defined in the state space

P = {x ∈ Rnx | θ ∈ [θ0, 0] 7→ p(θ)} . (5.2)

To simplify the exposition we require −∞ < θ0 ≤ 0, and that the path ends in the
origin p(0) = 0. Additionally, we assume the parametrization p to be sufficiently
often continuously differentiable. We aim at solving a modified version of the general
path-following problem introduced in Section 4.1 which reads as follows.
Problem 5.1 (State space path-following).
Given system (5.1) design a controller that achieves:

ı) Path Convergence: The path-following error converges asymptotically

lim
t→∞
‖x(t)− p(θ(t))‖ = 0.

ii) Strict Forward Motion: The system moves along P in the direction of in-
creasing values of θ s.t. θ̇(t) > 0 holds for almost all θ ∈ [θ0, 0).

iii) Constraint Satisfaction: The constraints on states x ∈ X and inputs u ∈ U
are satisfied for all times.
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Note that we require in ii) that θ̇ > 0 holds only for the open interval [θ0, 0). This,
combined with f(0, 0) = 0, allows to consider cases where the system should stop at a
final path point p(0) = 0.
The time evolution of the path parameter is not given a priori, it has to be obtained
by the controller. We rely on a timing law

θ̇ = g(θ, v), θ(t0) = θ0 (5.3)

which allows controlling the evolution along the path via the virtual input v. Here,
we assume a first-order timing law. The motivation for this choice is similar to the
previous considerations on output paths: the order of the timing law corresponds to
the lowest time derivative of the path-following error in which the input u appears.
Consider a non-pathological system (5.1) where for all x ∈ X : rank

(
∂f
∂u

)
> 0. Similar

to the geometric considerations from Section 4.3 the first time derivative of the error
e = x− p(θ) is

ė = f(x, u)−
(
∂p1
∂θ

, . . . ,
∂pnx
∂θ

)T
· g(θ, v). (5.4)

Clearly, ė depends on u. Thus a first-order timing law is a reasonable choice for
path-following problems in the state space.

5.1.1 Model Predictive Path Following

We propose a continuous time sampled-data NMPC scheme, denoted as model predic-
tive path-following control (MPFC), to tackle this problem. Our main idea is to treat
the path parameter as an additional state variable which can be controlled via the
virtual path parameter input v. We propose an expanded predictive setup to obtain
the path parameter input v and the real system input u by solving repetitively an
optimal control problem. Predicted system states and inputs are denoted by x̄ and ū.
In contrast to standard NMPC approaches—cf. Chapter 2—the cost functional to be
minimized at the sampling instances tk = kδ, k ∈ N is

J
(
x(tk), x̄(·), θ̄(·), ū(·), v̄(·)

)
=
∫ tk+Tp

tk
F
(
x̄(τ), θ̄(τ), ū(τ), v̄(τ)

)
dτ

+ E
(
x̄(tk + Tp), θ̄(tk + Tp)

)
. (5.5)

Here, F : X×[θ0, 0]×U×R→ R+
0 denotes the cost function, and E : X×[θ0, 0]→ R+

0 is
the end penalty. F is assumed to be lower bounded by a class K function ψ(‖x−p(θ)‖),
i.e., F penalizes the deviation from the path. Besides x̄ and ū, the cost functional
depends on the path parameter θ̄ and the path parameter input v̄. The proposed
control strategy is based on the repeated solution of the following optimal control
problem:
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minimize
(ū(·),v̄(·))∈PC(U×V)

J
(
x(tk), x̄(·), θ̄(·), ū(·), v̄(·)

)
(5.6a)

subject to

∀τ ∈ [tk, tk + Tp] : ˙̄x(τ) = f(x̄(τ), ū(τ)), x̄(tk) = x(tk) (5.6b)
x̄(τ) ∈ X (5.6c)
ū(τ) ∈ U (5.6d)

x̄(tk + Tp) ∈ E ⊆ X ⊆ Rnx (5.6e)

and the additional path-following constraints

∀τ ∈ [tk, tk + Tp] : ˙̄θ(τ) = g
(
θ̄(τ), v̄(τ)

)
, θ̄(tk) = θ (tk) (5.6f)

θ̄(τ) ∈ [θ0, 0] (5.6g)
v̄(τ) ∈ V . (5.6h)

As common in NMPC the system dynamics appear as constraints (5.6b). Equations
(5.6c-d) are the state and input constraints. The terminal constraint (5.6e) restricts the
predicted state x̄(tk+Tp) to a specific region at the end of each prediction, i.e., at time
tk+Tp the predicted state needs to be in the closed set E . The extra constraints (5.6f-h)
describe the evolution of the path, which is specified by the timing law ˙̄θ = g(θ̄, v̄). The
virtual input v controls the evolution of θ. Note that the timing law g : [θ0, 0]×V → R+

0
is an additional degree of freedom in the controller design. To solve the (5.6f) an initial
condition θ(tk) is necessary at every sampling instance tk. If an initial path point
p0 = p(θ0) is given a priori, then the corresponding value of the path parameter θ0
serves as an initial condition for θ̄(t0) at the first sampling instant. If no initial path
point is given, we have to choose a suitable initial condition θ̄(t0). For example, a path
point close to x0 can be obtained by (locally) solving the minimum distance problem

θ̄(t0) = argmin
θ∈[θ0,0]

‖x0 − p(θ)‖. (5.7)

This problem might have several optimal solutions, and we have to pick one of them.
At all subsequent sampling instances k ≥ 1 the corresponding value of the previous
prediction can be used

θ(tk) = θ̄
(
tk, tk−1, θ̄(tk−1)|v̄

)
.

The solution of (5.6) leads to the optimal input trajectory u?k(·) which is applied for
all t ∈ [tk, tk + δ) : u(t) = u?k(t).
The proposed MPFC scheme (5.6) is an extended NMPC scheme. The open-loop
optimal control problem is augmented by the virtual state θ and by the virtual input
v. Essentially, v controls the path parameter evolution t 7→ θ(t). The main idea of
this scheme is to obtain the real system inputs u(·) as well as the virtual input v(·) via
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repeated solutions of the optimal control problem (5.6). Thus it tackles two issues at
once: the planning of suitable trajectories t 7→ p(θ(t)) inside P , and the computation
of inputs u(·) to track the resulting trajectories. We do not aim at a time-optimal
motion along the path as it is often considered in robotics [Raczy and Jacob 1999;
Shin and McKay 1985; Verscheure et al. 2009]. Instead we aim at stabilization of the
zero-path-error manifold. We want to achieve that the system state converges to the
path and moves along it as close as possible. Referring to the MPFC scheme (5.6)
path convergence is more important than speed.

5.1.2 Stability of Predictive Path Following

To ensure stability of the proposed MPFC scheme we suppose that our standard NMPC
specific assumptions from Chapter 2 hold. Additionally, we assume the following.

Assumption 5.1 (Constraint consistent path).
The path (5.2) is contained in the interior of the state constraints P ⊂ intX and
p(0) = 0 holds.
Assumption 5.2 (Monotonous solutions to timing law).
The timing law is chosen such that g(θ, v) has equivalent properties as required for
f(x, u) in Chapter 2. Furthermore, for all v ∈ V and all θ ∈ [θ0, 0) it holds that
θ̇ = g(θ, v) > 0.

The first assumption ensures that the path P is consistent with the state constraints
X . The second assumption is technical. It is introduced to avoid cases where the
system stops on the path before the end point 0 is reached or moves backward on the
path. For example, a suitable choice is g(θ, v) = −λ · θ + v, λ > 0 and v ∈ [0, vmax].
Given the MPFC scheme (5.6) the following result holds.

Theorem 5.1 (Convergence of MPFC for state space paths).
Consider the path-following problem as defined in Problem 5.1 and Assumptions 5.1–
5.2. Suppose that a terminal region E ⊆ X and a terminal penalty E(x, θ) exist such
that the following holds:

i) E is closed. E(x, θ) is positive semi-definite, C1 in (x, θ), and E(0, 0) = 0.
ii) For all (x̃, θ̃) ∈ E × [θ0, 0] there exists a scalar ε ≥ δ > 0 and a pair of admissible

inputs (uE(·), vE(·)) ∈ PC(U × V) such that for all τ ∈ [0, δ](
∂E

∂x
,
∂E

∂θ

)
·
f(x(τ), uE(τ))
g(θ(τ), vE(τ))

 + F
(
x(τ), θ(τ), uE(τ), vE(τ)

)
≤ 0, (5.8)

and the solutions x(τ) = x(τ, x̃|uE(·)), θ(τ) = θ(τ, θ̃|vE(·)), starting at (x̃, θ̃) ∈
E × [θ0, 0], stay in E × [θ0, 0] for τ ∈ [0, δ].

iii) The OCP (5.6) is feasible for t0.
Then the MPFC scheme based on (5.6) solves Problem 5.1.
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Proof. The proof consists of two steps. Firstly, we show that the proposed MPFC
scheme is equivalent to a set point stabilization in different coordinates. In these
coordinates one can apply Theorem 2.1 from Chapter 2. Secondly, we demonstrate
how the stability conditions map back to the original coordinates.
Step 1: Consider the change of coordinates

y =
(
x− p(θ), θ

)T
, w =

(
u, v

)T
. (5.9)

In the new coordinates y, w the control scheme is equivalent to a set point stabilization
in Rnx+1, thus we can apply the NMPC stability conditions directly, see e.g. Chapter
2. In fact, conditions i) and iii) of the theorem are special cases of conditions i) and
iii) of Theorem 2.1 from Chapter 2.
In y, w coordinates the augmented system dynamics are given by

ẏ = f̃(y, w) =



f1(x, u)− ∂p1
∂θ

g(θ, v)
...

fnx(x, u)− ∂pnx
∂θ

g(θ, v)
g(θ, v)


.

The terminal region in y, w coordinates is the image of E × [θ0, 0] under (5.9). For
wE = (uE , vE)T the cost-decrease condition inside the terminal region is given by

∂Ẽ(y)
∂y

· f̃(y, wE) + F̃ (y, wE) ≤ 0. (5.10)

Step 2: To map this condition back to the original coordinates x, θ, u, v we use

∂Ẽ(y)
∂y

=
(
∂E

∂x
,
∂E

∂θ

)
·
 Inx×nx ∂p

∂θ

0 1×nx 1

 .
If we apply this relation to (5.10), condition (5.8) follows immediately. Since conver-
gence of y to 0 implies limt→∞ ‖x− p(θ)‖ = 0 we conclude that the main parts of the
state space path-following problem—path convergence i) and constraint satisfaction
ii)—are fulfilled. Furthermore, Assumption 5.2 requires the timing law θ̇ = g(θ, v) to
be chosen such that θ̇ is positive for all admissible v ∈ V and all θ ∈ [θ0, 0). Hence the
forward motion requirement ii) of the system along the path is also satisfied.

Note that the last theorem also ensures recursive feasibility of the MPFC scheme (5.6).
This can easily be shown along the lines of the proof of Theorem 2.1 in Appendix A.

Remark 5.1 (Ensuring forward motion).
In the design of the cost function F and the timing law g the forward motion require-
ment of Problem 5.1 has to be taken into account. Mainly, one has to prevent cases
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where the system stops on the path without reaching the final point θ = 0. Either As-
sumption 5.2 has to hold, which restricts the choice of suitable timing laws. Or one en-
sures that the cost function F is lower bounded by a class K function ψ(‖(x−p(θ), θ)‖),
i.e., the cost penalizes θ 6= 0. In the latter case it is tricky to ensure strict forward mo-
tion θ̇ > 0. Nevertheless, one can use a path-followability argument to show that opti-
mal solutions move the system forward along the path such that θ̇ ≥ 0 and limt→∞ θ = 0
hold.
In some cases no (controlled) equilibria lie on the path P, and additionally staying
inside P implies that θ̇ > 0 holds. In such a situation one can drop Assumption 5.2,
and it is also not necessary to require penalization of ‖θ‖ in F .

5.1.3 Stabilizing Terminal Path Constraints

As we have already seen in Chapter 3 the calculation of suitable end penalties E and
terminal regions E for NMPC schemes is challenging, see also [Chen and Allgöwer 1998;
Findeisen 2006; Mayne et al. 2000; Yu et al. 2009]. This raises the question of whether
suitable E and E can be found for path following. For the proposed scheme (5.6) we
basically need to derive a local controller which stabilizes the path P and renders it
positively invariant. Subsequently, we use the fact that f and g appear decoupled in
(5.8) to find suitable terminal regions and penalties for the proposed MPFC scheme.
The main idea is to employ the path P as terminal region.
The considerations are simplified if the cost function is restricted to be quadratic in
the path error e = x− p(θ) as well as in the path parameter θ and the inputs u, v.

Assumption 5.3 (Quadratic cost function).
The cost function F : X × U × [θ0, 0]× R→ R+

0 for the MPFC scheme (5.6) is

F (x, θ, u, v) =
∥∥∥∥∥∥x− p(θ)θ

∥∥∥∥∥∥
2

Q̂

+
∥∥∥∥∥∥uv
∥∥∥∥∥∥

2

R

, (5.11)

where
Q̂ =

 Q 0nx×1

01×nx q̂

 > 0, Q ∈ Rnx×nx

and R ≥ 0.

We use the fact that f(x, u) and g(θ, v) appear decoupled in (5.8) to derive the following
corollary to Theorem 5.1.

Corollary 5.1 (Stabilizing zero path constraint for MPFC).
Consider Problem 5.1 and Assumptions 5.1–5.3. Suppose that the terminal region is
E = P and the following holds:
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i) For all θ ∈ [θ0, 0] there exists a pair of admissible input signals (uE(·), vE(·)) ∈
PC(U × V), which guarantee that the system follows the path P exactly, and
θ̇ = g(θ, vE) > 0 holds on [θ0, 0).

ii) Along the path parameter evolution θ(t, θ0|vE) it holds for all t ≥ 0

∞ > η > −
q̂ · (θ(t))2 +

∥∥∥∥∥∥uE(t)vE(t)

∥∥∥∥∥∥
2

R

g(θ(t), vE(t)) · (−1)k(θ(t))k−1 ≥ 0, k ≥ 1. (5.12a)

iii) The optimal control problem (5.6) has a feasible solution for t0.
Then the end penalty

Ek(θ) = η
(−1)k
k

θk (5.12b)

guarantees that the MPFC scheme (5.6) solves Problem 5.1.

Proof. The corollary is built upon two ideas. Firstly, we use the path parameter θ as
alternative time coordinate along the path. Secondly, we eliminate the state x from the
cost-decrease condition (5.8) of Theorem 5.1, and we derive a bound on the cost-to-go
which solely depends on the path parameter θ. Our proof directly follows these ideas.

Start at a point p(θ0) on the path P and apply the admissible inputs uE(·)
and vE(·). These inputs are designed such that the system follows the trajectory
p(θ(t, θ0|vE)), where θ̇ = g(θ, vE). Due to i) θ̇ > 0 holds on [θ0, 0). Thus one can invert
the map t 7→ θ(t, θ0|vE) also on [θ0, 0]. Consequently, for all θ ∈ [θ0, 0] one writes
t = t(θ), and hence uE(t) = uE(θ) and vE(t) = vE(θ).
Using this substitution the cost function F (·) from (5.11) depends only on the argu-
ments θ, uE , vE since on P it holds that x = p(θ). This leads to a simplified version of
(5.8) in E = P

∂Ek(θ)
∂θ

· g(θ, vE) + q̂θ2 +
∥∥∥∥∥∥uE(θ)vE(θ)

∥∥∥∥∥∥
2

R

≤ 0.

Using Ek(θ) = η (−1)k
k θk yields

η(−1)kθk−1 · g(θ, vE) + q̂θ2 +
∥∥∥∥∥∥uE(θ)vE(θ))

∥∥∥∥∥∥
2

R

≤ 0.

Solving this equation for η directly leads to (5.12a).

The conceptual idea is to project the cost-decrease condition (5.8) onto the virtual
state θ. If some known inputs uE(·) and vE(·) guarantee that the system follows the
path exactly, the costs of driving the system along the path solely depends on θ. We
only need to check that for all θ ∈ [θ0, 0] the costs of following the path along converge
to zero and are upper bounded along θ. Consider the special case of a linear timing
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Figure 5.1: Bounding the costs along the path by Ek(θ).

law g(θ, 0) = −λθ. In that case the decay of Ek(θ), k = 1, 2 along the path—i.e.,
∂E1
∂θ g(θ, 0) and ∂E2

∂θ g(θ, 0)—are a linear function and a quadratic function, respectively.
The graphical interpretation of this situtation for k = 1, 2 is provided in Figure 5.1.
Basically, the corollary suggests to use a polynomial function in θ to upper bound
the costs along the path. Moreover, one can also construct other end penalties by
superposition of two end penalties Ek(θ).

Lemma 5.1 (Superposition of end penalties).
Consider two end penalties Ek1(θ) and Ek2(θ), which fulfill the conditions of Corollary
5.1, and k1, k2 ≥ 1 holds. Then for positive scalars α1, α2 ≥ 0 with α1 + α2 ≥ 1 the
end penalty

Ek1,k2(θ) = α1Ek1(θ) + α2Ek2(θ)

fulfills the cost-decrease property (5.8).

Proof. Checking (5.8) along the path P for Ek1,k2(θ) yields
∂Ek1,k2
∂θ g(θ, vE) + F (0, θ, uE , vE) =

(
α1

∂Ek1
∂θ + α2

∂Ek2
∂θ

)
g(θ, vE) + F (0, θ, uE , vE).

If α1 ≥ 1 or α2 ≥ 1, then verifcation of (5.8) is straightforward. It remains to deal
with α1, α2 < 1. Using α2 = (α2 − 1 + α1) + (1− α1) we rearrange terms and obtain

∂Ek1,k2
∂θ g(θ, vE) + F (0, θ, uE , vE) = α1

(
∂Ek1
∂θ g(θ, vE) + F (0, θ, uE , vE)

)
+ (1− α1)

(
∂Ek2
∂θ g(θ, vE) + F (0, θ, uE , vE)

)
+ (α2 − 1 + α1)∂Ek2

∂θ g(θ, vE).

Clearly, ∂Ek1
∂θ g + F ≤ 0 and ∂Ek2

∂θ g + F ≤ 0, and thus the first two terms are negative.
Furthermore, (α2 − 1 + α1) > 0 and ∂Ek2

∂θ g ≤ 0. It follows that ∂Ek1,k2
∂θ g + F ≤ 0.

As we will see later, the freedom to choose k in Ek(θ), and the possibility to construct
combined end penalties Ek1,k2(θ) allow tuning of the MPFC scheme with respect to
the trade-off between path convergence and speed.
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In contrast to common zero terminal or terminal equality constraints, the zero path
constraint is less demanding from the computations point of view: For set point stabi-
lization problems terminal equality constraints require x̄(tk+Tp) = 0, i.e., the predicted
state trajectory has to reach the set point. In contrast to that, the zero path constraint
enforces x̄(tk + Tp) = p(θ̄(tk + Tp)). In other words, the predicted trajectories have to
reach the 1-dimensional path manifold P , but it is not exactly determine where.

5.1.4 Example: Path Following for an Autonomous Robot

To illustrate the proposed MPFC scheme we reconsider the autonomous robot from
Example 4.3. In a fixed coordinate frame the dynamics of the robot are

ẋ1
ẋ2
ẋ3

 =


u1 cos(x3)
u1 sin(x3)
u1 tan(u2)

 , x(0) = x0. (5.13)

As before the states x1 and x2 describe the position in the x1–x2 plane, x3 is the
yaw angle, cf. Figure 5.2 left part. u1 refers to the speed of the vehicle, and u2 is
the steering angle. The system inputs are subject to the constraints u1 ∈ [0, 6] and
u2 ∈ [−0.63, 0.63]. The path P to be followed is

P =

x ∈ R3 | [θ0, 0] 7→ p(θ) =


θ

ρ(θ)
arctan

(
∂ρ
∂θ

)

 , (5.14)

where
ρ(θ) = −α log(γ/(β + |θ|)) · sin(ωθ)

and θ0 = −30. The coefficients of ρ(θ) are given by α = 6, β = 5, γ = 20, ω = 0.35.
The path is depicted in the x1–x2 plane in Figure 5.2 right part. From (5.14) it can be
deduced that the vehicle should always follow the curve (θ, ρ(θ))T along a tangential
direction.
The considered cost function is (5.11), the weight matrices are

Q̂ = 8 · diag
(

104, 105, 104,
1
16

)
, R = diag(10, 10, 1).

As mentioned, the timing law is a degree of freedom in the controller design. Here we
choose a simple timing law of the form

θ̇ = g(θ, v) = −λθ + v,

where λ = −10−3 and v ∈ [0, 6]. The initial condition is θ0 = −30. Note that the
chosen timing law satisfies Assumption 5.2. Since we want to apply Corollary 5.1 the
path P is chosen as terminal region E = P .
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Figure 5.2: Sketch of the autonomous robot (5.13) and the path from (5.14).

To apply Corollary 5.1 we need to know inputs signals uE(·) and vE(·) which render
P positively invariant and ensure θ̇ ≥ 0. In Example 4.3 we derived inputs which
guarantee exact path following:

u1,E = θ̇ ·
√

1 +
(
∂ρ
∂θ

)2

u2,E = arctan
(1 +

(
∂ρ
∂θ

)2)− 3
2
· ∂

2ρ

∂θ2

 .
The inputs depend on the path parametrization p(θ) and the parameter evolution
specified by θ̇ = g(θ, v). In Figure 5.3 these inputs are plotted for ∀t ≥ 0 : vE(t) = 0.
Clearly, this virtual input leads to admissible inputs u1,2,E(·). Also note that for
vE(·) = 0 the second input u2,E does not vanish at the end of the path, cf. zoomed
plot in Figure 5.3 right side. Thus we penalize u− ũ in F . The reference values ũ are
set to ũ2 = u2,E |θ=0 and ũ1 = 0.
Investigation of the simplified condition (5.12a) for different values of ε > 0 and k = 1, 2
yields that the end penalties

E1(θ) = −1900 · θ, E2(θ) = 450
2 · θ

2

fulfill the conditions of Corollary 5.1. The time derivatives ∂Ek
∂θ g(θ, 0), k = 1, 2 along

the path are depicted in Figure 5.4. While the quadratic E2(θ) end penalty is a tighter
bound for the cost-to-go in the neighborhood of θ = 0 the linear end penalty E1(θ) is
significantly less conservative for θ � 0. In Figure 5.5 the simulation results for two
different MPFC schemes are shown. Both schemes use the same prediction horizon
of Tp = 1 and the sampling time δ = 0.05. Only the end penalties are different, i.e.,
E1(θ), E2(θ) from above are used. For both control schemes the system initial condition
is x(0) = (−30, 1, 0)T . The upper part of Figure 5.5 illustrates the movement of the
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5.1 Predictive Path Following in the State Space

Figure 5.3: Inputs u1,E and u2,E for vE = 0.

Figure 5.4: Cost function F and derivatives of Ek(θ), k = 1, 2 along P .

autonomous robot in the x1–x2 plane. The black arrows indicate the direction of
movement. Both schemes converge to the path rapidly such that in the x1–x2 plane
no difference can be observed. However, in the time domain the performance of the
MPFC scheme with linear end penalty E1(θ) differs from the one with quadratic end
penalty E2(θ). The lower part of Figure 5.5 depicts the time evolution of the path
parameter θ, the path parameter input v and the inputs applied to the autonomous
robot u1, u2. Dashed blue lines correspond to the scheme with E1(θ), continuous blue
lines to the scheme with E2(θ). Clearly, the scheme with E2(θ) is more aggressive in

111



5 Predictive Path-following Control

Figure 5.5: Simulation results for MPFC schemes with Ek(θ), k = 1, 2.

terms of advancing along the path during the first part of the path. As soon as θ is
close to 0 this scheme converges only very slowly to θ = 0. This means that the vehicle
is moving very slow along the last part of the path P . In contrast to that the scheme
with E1(θ) is less aggressive during the first part of the path and much more aggressive
for small θ. To understand this behavior in detail reconsider Figure 5.4. We know that
E1(θ) induces comparably high costs for θ close to 0 and rather low costs for θ � 0.
Vice versa E2(θ) penalizes θ � 0 heavily. Hence the choice of the end penalty Ek(θ)
has to be made carefully, since it directly influences the trade-off between the speed
to follow along the path and the accuracy. As shown in Lemma 5.1 one can rely on
the superposition of end penalties E1,2(θ) = α1E1(θ) + α2E2(θ), α1 + α2 ≥ 1, if one
wants to achieve rapid movement along the complete path.
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5.2 Predictive Output Path Following

5.2 Predictive Output Path Following

So far we have introduced an NMPC scheme to solve path-following problems in the
state space. The conceptual idea is to treat the path parameter θ as an additional
state, which can be controlled by means of the virtual path parameter input v. Next
we shift to the more general and application relevant problem of following paths in
output spaces. We transfer the conceptual ideas from the last section to output path
following as introduced in Chapter 4.
We consider nonlinear systems of the form

ẋ(t) = f(x(t), u(t)), x(t0) = x0 (5.15a)
y(t) = h(x(t)). (5.15b)

Here, x ∈ X ⊂ Rnx and u ∈ U ⊆ Rnu denote the state and input constraints. The
sufficiently often continuously differentiable map h : Rnx → Rny defines the output y.
We suppose that the system and the constraints fulfill our standard assumptions from
Chapter 2. The path is a regular curve in the output space Rny

P = {y ∈ Rny | θ ∈ [θ0, 0] 7→ p(θ)} . (5.16)

We assume that the parametrization p is sufficiently often continuously differentiable.
In constrast to Chapter 4 we require −∞ < θ0 ≤ 0. As in (4.12) from Chapter 4 the
dynamics of the path parameter are an integrator chain θ(r̂+1) = v and are written as

ż = l(z, v) = Az +Bv, z(t0) = z0 ∈ Rr̂+1, r̂ <∞
θ = Cz = z1.

As in (4.14) we use the augmented systemẋ
ż

 =
f(x, u)
l(z, v)

 (5.17a)
e
θ

 =
h(x)− p(z1)

z1

 (5.17b)

to describe the path-following problem to be solved.
Problem 5.2 (Output path following with monotonous forward motion).
Given system (5.17) and the reference path P (5.16) design a controller that achieves:

i) Path Convergence: The error e = h(x)− p(θ) converges s.t. lim
t→∞
‖e(t)‖ = 0.

ii) Forward Motion: The system moves along P in the direction of increasing
values of θ s.t. lim

t→∞
θ = 0 and θ̇ = ż1(t) ≥ 0.

iii) Constraint Satisfaction: The constraints on states (x, z) ∈ X ×Z and inputs
(u, v) ∈ U × V are satisfied for all times.
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Note that this problem description is a slightly modified version of Problem 4.1. The
major difference is that the forward motion requirement is relaxed, we have to reach the
final path point θ = 0. However, we allow θ̇ = 0 for finite time spans. Moreover, the
formulation directly relies on the augmented system description (5.17). Subsequently,
we formulate the predictive path-following control scheme as well as the convergence
results directly in terms of the augmented system (5.17) in usual coordinates. We rely
on these coordinates to avoid an assumption on existence of a transverse normal form.
Similar to the case of state space paths we propose a predictive control scheme to
tackle the problem. The scheme is based on the repeated solution of an OCP. The
cost functional to be minimized at each sampling instance tk = t0 + kδ, k ∈ N is

J
(
x(tk), ē(·), θ̄(·), ū(·), v̄(·)

)
=
∫ tk+Tp

tk
F
(
ē(τ), θ̄(τ), ū(τ), v̄(τ)

)
dτ

+ E (x̄(tk + Tp), z̄(tk + Tp)) . (5.18)

As before F : Rny × [θ0, 0] × U × V → R+
0 is denoted as cost function, and E :

Rnx ×Rr̂+1 → R+
0 is termed end penalty. The OCP to be solved repetitively becomes:

minimize
(ū(·),v̄(·))∈PC(U×V)

J
(
x(tk), ē(·), θ̄(·), ū(·), v̄(·)

)
(5.19a)

subject to

∀τ ∈ [tk, tk + Tp] : ˙̄x(τ) = f(x̄(τ), ū(τ)), x̄(tk) = x(tk) (5.19b)
˙̄z(τ) = l(z̄(τ), v̄(τ)), z̄(tk) = z̄(tk, tk−1, z̄(tk−1)|v̄)) (5.19c)
ē(τ) = h(x̄(τ))− p(z̄1(τ)) (5.19d)
θ̄(τ) = z̄1(τ) (5.19e)
x̄(τ) ∈ X , ū(τ) ∈ U (5.19f)
z̄(τ) ∈ Z, v̄(τ) ∈ V (5.19g)

(x̄(tk + Tp), z̄(tk + Tp))T ∈ E ⊂ X × Z. (5.19h)

The equations (5.19c) and (5.19e) state that the path parameter θ̄ is regarded as
the output of the (virtual) path parameter dynamics. These dynamics are described
through the higher order timing law l and can be influenced by the virtual input v̄.
As before v̄ is an additional decision variable of the minimization. Since we want to
minimize the deviation from the path, the error output is stated in (5.19d).
Furthermore, the path parameter dynamics (5.19c) are subject to the state and input
constraints (5.19g). The state constraint Z is defined as in (4.13)

Z :=
{
[θ0, 0]× [0,∞)× Rr̂−1

}
⊂ Rr̂+1.

This constraint ensures that θ̄ = z̄1 ∈ [θ0, 0] and ˙̄θ ≥ 0. In order to avoid impulsive
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solutions to the path parameter dynamics ˙̄z = l(z̄, v̄) the admissible path parameter
inputs v̄ are restricted to a compact set V ⊂ R containing 0 in its interior.
While at each sampling instance the measured state information x(tk) serves as initial
condition for (5.19b) the initial conditions for the timing law (5.19c) is the last pre-
dicted trajectory z̄(t, tk−1, z̄(tk−1)|v̄) evaluated at time tk. If no initial condition for
the first sampling instance k = 0 is given, we obtain z(t0) similarly to (5.7)

z̄(t0) = (θ(t0), 0, . . . , 0)T

θ(t0) = argmin
θ∈[θ0,0]

‖h(x0)− p(θ)‖.

To initialize the scheme a value θ(t0) which (at least locally) minimizes the distance
‖h(x0)− p(θ)‖ has to be obtained. The optimal solution of problem (5.19) is denoted
as J?(·) and leads to optimal input trajectories ū?k(·) and v̄?k(·). Finally, ū?k(·) is applied
to system (5.15) such that for all t ∈ [tk, tk + δ): u(t) = ū?k(t).
It is important to note that (5.19h) requires that at the end of each prediction the pre-
dicted augmented state (x̄(tk +Tp), z̄(tk +Tp)) is inside a terminal region E . Although
only outputs and inputs are penalized in the cost function F , the terminal constraint
is stated in the state space. We want to ensure recursive feasibility of the OCPs (5.19)
arising from our MPFC scheme as well as convergence to the output path. Therefore
arguments similar to those used in Section 3.3.1 for the output trajectory-tracking
problem lead to the conclusion that this can be guaranteed via terminal regions in the
state space. And since the end penalty E(x, z) is used to bound from above the cost-
to-go for all solutions starting in the terminal region, it is stated as a state-dependent
function, i.e., a positive semi-definite function of the predicted augmented state (x, z).
Similar to Section 3.3 this allows to include cases where error-dependent end penalties
E(e, θ) are used.
This MPFC scheme to follow paths in output spaces is built upon the same conceptual
ideas as the previous one for state space paths. Relying on (5.19) we compute the
reference motion t 7→ p(θ(t)) together with the real system inputs u(t) to track this
motion.

5.2.1 Sufficient Convergence Conditions

We are interested in conditions ensuring that the MPFC scheme (5.19) solves Problem
5.2. Next we present sufficient conditions which ensure that the repetitive solution of
(5.19) leads to convergence of path-following error e = h(x) − p(θ), forward motion
θ̇ ≥ 0, and satisfaction of constraints. To this end we adjust our assumptions.
Assumption 5.4 (Consistency of path and state constraints).
The path P from (5.16) is contained in the interior of the pointwise image of the state
constraints X under the output map h : Rnx → Rny from (5.17b)

P ⊂ inth(X ).
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If P 6⊂ h(X ), then parts of the path are not consistent with the state constraints.
Additionally, we require that the cost function fits to the considered path-following
problem such that F (e, θ, u, v)→ 0⇒ ‖e‖ → 0.

Assumption 5.5 (Lower bounded cost function F ).
The cost function F (e, θ, u, v) from (5.18) is lower bounded by a class K function
ψ(‖(e, θ)‖).

Under these assumptions the following result can be obtained.

Theorem 5.2 (Convergence of MPFC for constrained output path following).
Consider Problem 5.2 and Assumptions 5.4–5.5. Suppose that a terminal region E ⊂
X × Z, and a terminal penalty E(x, z) exist such that the following holds:

i) The set E is closed. E(x, z) ∈ C1 is positive semidefinite.
ii) For all (x̃, z̃) ∈ E there exists a scalar ε ≥ δ > 0 and admissible inputs

(uE(·), vE(·)) ∈ PC(U × V) such that for all τ ∈ [0, δ]
(
∂E(x, z)
∂x

,
∂E(x, z)
∂z

)
·
f(x(τ), uE(τ))
l(z(τ), vE(τ))


+ F

(
e(τ), θ(τ), uE(τ), vE(τ)

)
≤ 0, (5.20)

and the solutions x(τ) = x(τ, x̃|uE(·)), z(τ) = z(τ, z̃|vE(·)), starting at (x̃, z̃) ∈ E,
stay in E for all τ ∈ [0, δ].

iii) The OCP (5.19) is feasible for t0.
Then the MPFC scheme based on (5.19) solves Problem 5.2.

Proof. In essence this result is a time-invariant reformulation of the results of Theorem
2.1. The main difference is that the cost function F is lower bounded by class K
functions of the outputs (e, θ) of (5.17). Recursive feasibility is shown using the same
concatenation of optimal inputs (u?k(·), v?k(·)) with (uE(·), vE(·)) as in Appendix A. All
the remaining steps of the proof of Theorem 2.1 apply mutatis mutandis. Merely
the last steps which rely on Barbalat’s Lemma lead to a different conclusion. Due to
Assumption 5.5 we can only conclude that the error e = h(x) − p(θ) and the path
parameter θ converge to 0. Additionally, we know that the virtual states z inside E
are restricted to Z, which implies that the forward motion requirement θ̇ = z2 ≥ 0
holds.

Note that the proposed control scheme aims at convergence of the output y = h(x) to
the path and not at Lyapunov-like state stability. In other words, Theorem 5.2 allows
cases where the output converges to the path while the states might move through E .
We also allow cases where the zero dynamics of (5.17) with respect to the outputs e, θ
are not stable.
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Remark 5.2 (Design of suitable cost functions).
So far we have not said anything about the cost function F appearing in the OCP
(5.19) except the assumption that F (e, θ, u, v) should be bounded from below by class a
K function. Often one chooses quadratic path error and input penalties for F as in the
case of state space paths in Assumption 5.3. Due to the penalization of e = h(x)−p(θ)
such a choice ensures that deviations of the system output from the pre-image of the
path h−1(P) are penalized. However, we know from the geometric problem analysis
(Chap. 4) that the zero-path-error manifold is specified by the time-derivatives of the
path-following error dke

dtk = 0. Thus it is reasonable to penalize e = h(x)− p(θ) as well
as its time derivative ė, i.e., one can use cost functions such as

F (e, ė, θ, u, v) = ‖(e, ė, θ)‖2
Q + ‖(u, v)‖2

R.

With straightforward modifications the result of Theorem 5.2 remains valid for this
choice of cost functions.

The question arises of how to verify the conditions Theorem 5.2. In other words, how
to compute suitable end penalties, terminal regions, and local controllers inside the
terminal regions. In general this is difficult. Mainly, two challenges appear. Firstly,
we need to check if the path is exactly followable. This means we have to pinpoint
the zero-path-error manifold. For square MIMO systems this can be done in a struc-
tured way via a transformation to a local transverse normal form, cf. Section 4.3. If
constraints (on state and inputs) are present one needs to identify a sufficiently large
constraint consistent subset of the zero-path-error manifold. For general systems this
step is complicated and one usually needs to take the structure of the nonlinearities
into account. Secondly, we have to verify the existence of local controls uE(·), vE(·).
Actually, designing a local controller for the augmented system (5.17) means to design
a controller which stabilizes the zero-path-error manifold while satisfying constraints
on states and inputs.
Similar to NMPC for set point stabilitzation one could circumvent these problems with
an engineering approach: neglect the terminal constraints and use a sufficiently long
prediction horizon. However, in this case it is in general difficult to ensure recursive
feasibility of the OCP (5.19). Furthermore, boundedness of the internal dynamics of
the augmented system (5.17) is not guaranteed since these states are not penalized in
the cost function.
Yet, if a terminal constraint (x̄(tk+Tp), z̄(tk+Tp))T ∈ E is employed, the corresponding
solutions are required to reach a closed or compact set E ⊆ X × Z, and recursive
feasibility is guaranteed. This means that suitable compact state constraints and
terminal regions ensure the boundedness of the closed-loop trajectories.
To illustrate the properties of the MPFC scheme for output path following we consider
two examples: Firstly, we deal with a path-following task for a robot in Section 5.2.2.
We design an MPFC scheme with terminal region and end penalty. Secondly, we
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5 Predictive Path-following Control

discuss a ship course control problem with a non-square input-output structure in
Section 5.2.3. There we show that stabilizing a path in an output space can lead to
situations where the internal dynamics of the augmented system (5.17) are unstable.

5.2.2 Example: Predictive Robot Control

As an example we reconsider the fully-actuated robot with two degrees of freedom
from Example 4.2. Without friction and external contact forces the dynamics of such
a robot are ẋ1

ẋ2

 =
 x2
B−1(x1) (u− C(x1, x2)x2 − g(x1))

 (5.21a)

y = x1 (5.21b)
yca = hca(x1). (5.21c)

x1 = (q1, q2) ∈ R2 is the vector of joint angles, x2 = (q̇1, q̇2) ∈ R2 is the vector of joint
velocities. B : R2 → R2×2, C : R4 → R2×2 describe the dependence of the inertias
on the joint angles and dependence of centrifugal and coriolis forces on joint angles
and velocities, respectively. g : R2 → R2 models the effect of gravity. The output
y = x1 denotes the space of joint angles, the output yca is the position of the robot
tool in cartesian coordinates. A sketch of the robot is shown in Figure 5.6. The terms
B,C, g, hca are as follows

B(q) =
b1 + b2 cos(q2) b3 + b4cos(q2)
b3 + b4cos(q2) b5

 (5.21d)

C(q, q̇) = −c1 sin(q2)
 q̇1 q̇1 + q̇2
−q̇1 0

 (5.21e)

g(q) =
(
g1 cos(q1) + g2 cos(q1 + q2), g2 cos(q1 + q2)

)T (5.21f)

hca(q) =
l1 cos(q1) + l2 cos(q1 + q2)
l1 sin(q1) + l2 sin(q1 + q2)

 . (5.21g)

The system parameters are listed in Table 5.1. For details on the modelling we refer to
[Siciliano et al. 2009]. The inputs u = (u1, u2)T are the torques applied to each joint.
We consider box constraints on states and inputs

U =
{
u ∈ R2 | ‖u‖∞ ≤ ū

}
(5.22a)

X =
{
x = (x1, x2) ∈ R4 | ‖x2‖∞ = ‖(q̇1, q̇2)‖∞ ≤ ¯̇q

}
(5.22b)

whereby ū = 4000Nm and ¯̇q = 3
2πrad/s.

118



5.2 Predictive Output Path Following

Figure 5.6: Schematic sketch of a 2-DoF robot.

The considered path-following task is stated in the joint space. The path is given as

P =
y ∈ R2 | [θ0, 0] 7→ p(θ) =

 θ − π
3

ω1 cos(ω2(θ − π
3 ))

 , (5.23)

and the constants are θ0 = −5.3, ω1 = 5, ω2 = 0.6. We describe the path-following
task via the augmented system

ẋ =
 x2
B−1(x1) (u− C(x1, x2)x2 − g(x1))

 (5.24a)

ż =
0 1

0 0

 z +
0

1

 v (5.24b)

e = x1 − p(z1) (5.24c)
θ = z1. (5.24d)

Since we will apply a very fine input discretization, we use here an integrator chain of
length two as path parameter dynamics, cf. Remark 4.3.

Table 5.1: Parameters for system (5.21), [Siciliano et al. 2009].

b1 200.0 [kg m2/rad] b2 50.0 [kg m2/rad]
b3 23.5 [kg m2/rad] b4 25.0 [kg m2/rad]
b5 122.5 [kg m2/rad] c1 −25.0 [Nms−2]
g1 784.8 [Nm] g2 245.3 [Nm]
l1 0.5 [m] l2 0.5 [m]
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The cost function for the MPFC scheme is chosen according to Remark 5.2

F (e, ė, θ, u, v) = ‖(e, ė, θ)‖2
Q + ‖(u− ũ, v)‖2

R

Q = diag(105, 105, 10, 10, 5)
R = diag(10−6, 10−6, 10−4).

In Appendix F we derive a terminal region for the augmented system (5.24). Mainly,
we use the exact feedback linearizability of (5.21) to compute an end penalty, which
is of the form

E =
{
(x, z) ∈ R6 | (e, ė)TPξ(e, ė) ≤ 2.53), z ∈ Ez

}
, (5.25a)

Ez =
{
z ∈ R2 | z1 ∈ [−5.3, 0], z2 ∈ [0, 0.4], (−0.78, −0.63)(z1, z2)T ≥ 0

}
. (5.25b)

In (5.25a) the virtual states z are restricted to a polyhedral terminal region Ez. The
path error and its derivative are restricted to an ellipsoidal terminal region (5.25b)
with

Pξ =


1.73 0 1 0

0 1.73 0 1
1 0 1.73 0
0 1 0 1.73

 .

In Appendix F we show that the terminal penalty E(x, z) = 0 combined with E leads
to path convergence in the sense of Theorem 5.2.
The simulations are performed with the following parameters: The virtual input v is
restricted to V = [−50, 50]. The prediction horizon is Tp = 0.75s, the sampling time
is δ = 0.005s, and the OCP is solved with the ACADO Toolkit [Houska et al. 2011].
The terminal region (5.25) and no terminal penalty are used.
Figure 5.7 presents simulations results for an initial condition with x(0) =
(−5.86, 2.43, 0, 0)T and θ(0) = −5.3. The upper right side shows the time evolu-
tion of the joints x1 = (q1, q2) in blue color and the reference p(z1(t)) in red color.
The joint positions converge rapidly to the reference. The upper left side depicts the
corresponding joint velocities and their constraints. In the lower left side the virtual
states z1 = η1, z2 = η2 and the virtual input v are plotted. One can observe that the
path parameter moves forward to the end of the path at θ = z1 = 0.
The input torques are shown in the lower right side. Both inputs satisfy the constraints.
The proposed controller also works for a wide range of initial conditions. In Figure
5.8 the path convergence for several initial conditions is depicted. On the left side the
plane of joint angles x1 = (q1, q2) is plotted. The black arrows indicate the direction
of movement of the robot. On the right side it is shown how the solutions for different
initial conditions converge to the image of the path in the Cartesian output space
defined via (5.21g).
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Figure 5.7: Simluation results for 2-DoF robot.

Figure 5.8: Path convergence in joint space (left) and cartesian output space (right).

Finally, we conclude from this example that the conditions of Theorem 5.2 can be used
to design predictive path-following controllers. In presence of constraints on states and
inputs the MPFC scheme stabilizes the motion of the system with respect to the path.
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5.2.3 Example: Predictive Ship Course Control

To illustrate that the proposed MPFC scheme also works for systems without a non-
square input-output structure we reconsider the ship course control problem from
Example 4.1 and Section 4.3.2. Recall the augmented ship dynamics (4.37)

ẋ1
ẋ2
ẋ3
ẋ4
ż1
ż2


=



w cosx3 − Lwx4 sin x3
w sin x3 + Lwx4 cosx3

x4
1
τ (−x4 +Ku)

z2
v


(5.26a)

e =
(
x1 − p1(z1), x2 − p2(z1)

)T (5.26b)
θ = z1. (5.26c)

The input u is limited to −0.85 ≤ u ≤ 0.85. The system parameters are as introduced
in Section 4.3.2. The path parameter input v is subject to the constraint −0.2 ≤ v ≤
0.2. As in (4.48) the path to be followed is given by the regular curve

p(θ) =
 θ

c1 sin(c2θ)

T , c1 = −103, c2 = −1.5 · 10−3.

The MPFC controller is designed according to the OCP (5.19) and Remark 5.2. As
shown in Section 4.3.2 on the zero-path-error manifold the forward motion requirement
determines unique inputs uP(·), vP(·), i.e., the speed to move exactly along the path
with θ̇ = z2 ≥ 0 is not free. Thus we do not penalize the u, v and θ explictly in the cost
function F . To ensure forward motion along the path we introduce an extra constraint
z2 ≥ 1.5. We penalize the path-following error e as well as its time derivative ė to
enforce fast convergence to the zero-path-error manifold. F is chosen as

F (e, ė) = ‖(e, ė)‖2
Q, Q = diag(1, 1, 0.25, 0.25).

The prediction horizon is Tp = 500s, and the sampling time is δ = 60s. For the
computations the inputs are discretized as piecewise continous functions with δt = 20s.
We do not consider terminal constraint nor terminal penalties.
After a suitable scaling of the states the simulation results are obtained with the
ACADO Toolkit [Houska et al. 2011]. For several initial conditions the results are
depicted in Figure 5.9. The ship movement and the reference path in the x1–x2 plane
are illustrated in Figure 5.9. The black arrows indicate the direction of movement.
For all initial conditions the solutions converge rapidly to the path. In Figure 5.10
the inputs to the augmented dynamics (5.26) are plotted over the path parameter θ.
The left side depicts the real system input u, the right side shows the path parameter
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Figure 5.9: Ship movement and reference path in x1–x2 plane.

Figure 5.10: Path parameter input and system input obtained via MPFC scheme.

input v. The red curves are the nominal solutions uP(·), vP(·), i.e., the inputs which
render P positively invariant with ż1 > 0 as derived in Section 4.3.2. For sake of
a clear presentation only the input trajectories corresponding to the first and the
fourth initial condition are plotted. Both u(·) and v(·) obtained via the MPFC scheme
converge rapidly to the unique path-following inputs.
Finally, in Figure 5.11 the phase plane of the internal dynamics of (5.26)—which have
been derived in (4.45a)—is depicted. The red curve represents the nominal solution
of the zero dynamics of (5.26). In other words, it depicts a solution where the unique
exact path-following inputs uP , vP from (4.47) are applied for an initial condition
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Figure 5.11: Phase plane of internal dynamics (4.45a) under MPFC scheme.

starting in the zero-path-error manifold. The blue curves depict the (θ, x3) trajectories
for the considered initial conditions. Again the solutions obtained with the proposed
MPFC scheme converge rapidly to the nominal solution. The black dash-dot lines
mark δ(x3, θ) = 0, where δ is as in (4.40). As discussed in Section 4.3.2 a description
of the path-following problem for (5.26) in the transverse normal coordinates (4.45) is
restricted to the condition δ(x3, θ) 6= 0. Note in Figure 5.11 the (θ, x3) solutions for
the first, third, and fifth considered initial condition start at points with δ(x3, θ) < 0.
Nevertheless, these solutions converge to the nominal trajectory plotted as red curve.
Comparing this to the previous discussion of the ship example—cf. Figure 4.3 in
Section 4.3.2—it is clear that such a behavior cannot be achieved by a controller
designed in the transverse normal form coordinates (4.45). This is due to the fact that
the transverse normal form coordinates (4.45) are not defined for δ(x3, θ) = 0.
We can draw several conclusions from this example: The proposed MPFC scheme
achieves path convergence in the presence of constraints. Note that the internal dy-
namics of (5.26) are unstable. This means that the MPFC scheme (5.19) stabilizes
only the zero-path-error manifold but not the complete state. On this manifold the
system moves in direction of increasing values of θ. Moreover, our design is applicable
to non-square input-output structures and avoids restrictions of purely geometric con-
troller designs. Finally, we also see that the proposed MPFC scheme can achieve path
convergence even if neither terminal constraints nor end penalties are considered.
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5.3 Summary

5.3 Summary

In this chapter we presented a conceptual framework for model predictive path-
following control. We derived rigorous stability conditions for path-following problems
formulated in the state space as well as for output path following. We demonstrated
that for state space path following exact path followability implies the existence of
stabilizing terminal regions and end penalties. Furthermore, our examples from Sec-
tions 5.1.4, 5.2.2, and 5.2.3 demonstrate the applicability of the augmented system
description, where the path parameter θ and several of its time derivatives are treated
as virtual state variables.
For the 2-DoF robot from Section 5.2.2 we have shown how to obtain stabilizing ter-
minal regions and end penalties. We have drawn upon an example from ship course
control in Section 5.2.3 to illustrate that our predictive control approach to path fol-
lowing is applicable to non-square systems with less inputs than outputs.
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By now model predictive control for set point stabilization of linear systems is a mature
controller design technique which is widely applied in (process control) applications.
Also nonlinear model predictive control for set point stabilization problems is well
understood. However, not all control tasks are set point stabilization problems. In this
thesis we discussed optimization-based approaches to trajectory-tracking and path-
following problems extending the applicability of NMPC to these fields.

6.1 Trajectory Tracking

For trajectory-tracking problems we proposed an NMPC scheme based on time-varying
terminal regions in Chapter 3. We considered output and state space trajectory track-
ing. The concept of time-varying terminal regions helps to overcome limitations of
previous works [Magni and Scattolini 2007; Michalska 1996] on NMPC for trajectory
tracking, for example, overly long prediction horizons or very small terminal regions.
Moreover, the approach allows to explicitly consider input and state constraints. In
case of reference trajectories defined in the state space we have shown how to com-
pute terminal regions as time-varying level sets of a local Lyapunov function. If a
system controlled by an affine feedback admits a quadratic time-varying Lyapunov
function, it is possible to compute time-varying level sets via an infinite dimensional
linear program.
Time-varying level sets can be interpreted as a tool to approximate the region of at-
traction of two-degrees-of-freedom (2-DoF) control structures in the presence of con-
straints. For future research it seems promising to consider specific nonlinearities in
order to maximize not only the diameter of the time-varying level sets but also to
optimize their shape. For example, one could combine the presented approach to
time-varying level sets with results on computation of the region of attraction along
uncontrolled trajectories of polynomial systems [Tobenkin et al. 2011]. This would lead
to semi-definite programs to be solved. Using McCormick relaxations one can also han-
dle non-polynomial nonlinearities at the expense of an increased state dimension [Gu
2009; McCormick 1976].
Furthermore, it would be interesting to combine the classic results on output regu-
lation, where the reference is generated by an exogenous system [Isidori 1995], with
NMPC. First steps in this direction are presented in [Magni et al. 2001]. However, it
is still unclear how to handle constraints in such a framework. More closely related to
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the results presented in Chapter 3, one can ask how to consider periodic references for
nonlinear systems, and how to avoid the use of terminal constraints by sufficiently long
prediction horizons. The last question is challenging, since the usual results on NMPC
for time-invariant systems without terminal constraints require quadratic bounds on
the MPC value function or cost-controllability assumptions, cf . [Graichen and Kugi
2010; Grüne 2009; Jadbabaie and Hauser 2005; Jadbabaie et al. 2001]. In general,
such assumptions are difficult to verify for time-varying systems.

6.2 Path Following

We discussed analysis and controller design aspects of path-following problems in the
presence of constraints. In Chapter 4 we outlined path-following problems and in-
troduced a notion of exact path followability. We propose considering path-following
problems in an augmented system description which can be mapped locally into a
Byrnes-Isidori normal form. As shown, this problem description allows investigation
of the question of path followability. For differentially flat systems we presented suf-
ficient conditions on exact path followability in presence of constraints on states and
inputs. These results provide a framework to analyze path-following problems.
We briefly touched on the question of how to deal with non-square input-output struc-
tures. Extended path-following formulations—for example, geometric reference de-
scriptions with more than one dimension—might provide a useful framework for de-
tailed investigations. First steps in this direction are presented in [Faulwasser and
Findeisen 2009a,b]. Such an approach leads to the problem of stabilizability of general
output manifolds. In fact, path following can be seen as a special manifold stabilization
task.
In Chapter 5 we presented novel NMPC schemes for model predictive path-following
control (MPFC). The schemes rely on the augmented system description of path-
following problems from Chapter 4. We discussed predictive path following in state
and output spaces in presence of constraints on states and inputs. The novel aspect of
our MPFC schemes is rigorously ensuring that the motion of a system is stabilized along
the path. It is important to note that the presented convergence conditions for MPFC
do not rely on specific system properties as, for example, differential flatness or square
input-output structures. While overcoming existing limitations, it remains open how to
design path-following specific NMPC schemes without terminal constraints. We want
to mention, however, that first preliminary steps towards predictive path following
without terminal cosntraints have been presented in [Faulwasser and Findeisen 2012].

Besides schemes without terminal constraints the question of suitable convexifing
approximations to general MPFC schemes is of strong theoretical and practical inter-
est. Even if the system dynamics and the output map are linear, general nonlinear
path descriptions lead to non-convex optimization problems. To relax the computa-
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tional demand one can also think of combining MPFC schemes with locally stabilizing
controllers in a 2-DoF control structure. In such a setting the MPFC scheme would
repeatedly assign reference trajectories to the path and these references would be sta-
bilized with a very fast local controller. In contrast to usual control schemes with
offline trajectory generation it would be rather easy to trigger the computations in
the feedforward part by current information about the distance between reference and
system output in an event-based fashion.
Finally, one could ask what is more challenging: path following in the state space or
in an output space? Often path following in the state space can be reformulated as a
set point stabilization problem in suitable coordinates, cf. Chapter 5. In contrast to
that output path following is more challenging. It is not always possible to reconstruct
complete state information from knowledge about the output path-following error and
the path parameter. Hence we need extra care to ensure boundedness of the states
and path convergence at the same time.
From a controllability or reachability point of view, the answer to this question might
be a different one: Recall that nx, ny, nu are state, output, and input dimensions.
Furthermore, all inputs and outputs are independent. For a general nonlinear MIMO
system with nx > nu the task to follow a path in the state space is challenging. The
state dimension is usually much larger than the dimension of the inputs nx � nu. If
the task is defined in an output space with ny < nx reaching the path and rendering it
positively invariant might be easier, since the ratio of independent inputs and outputs
is more suitable.
Thus one can conclude that the answer to the question of whether path following in the
state space is more difficult than in output spaces, depends on the point of view. Yet,
there is no doubt that output path following is more relevant for applications. Beyond
problems for robotic and vehicle-like systems certain process control problems can
be regarded as (output) path-following problems. For example, consider tasks where
it is required to track a temperature profile in batch or semi-batch reactors. One
can formulate this as the problem of following a temperature path and at the same
time maximizing the process yield along this path. We conclude that path following
in general, and the results presented in this thesis, provide a framework for many
challenging applications.

6.3 Concluding Remarks

The theoretical results on NMPC for set point stabilization are manifold. However,
stabilization is only one aspect which is important in applications. For example, tasks
such as rejection of measured/estimated disturbances, tracking of precomputed refer-
ence trajectories, optimization of economic process performance, or following of geo-
metric references, are more general than set point stabilization problems. For these
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application-relevant problems suitable tools and methods are currently limited. Prob-
lem settings which are suitable from the NMPC point of view often include strong
assumptions, for example, available state feedback, good system models with moder-
ate state dimension, or availability of sufficient computational ressources. In fact, not
all of these requirements can be met in applications. Thus design and implementation
of predictive control schemes pose ongoing research challenges. This thesis has tack-
led some of these challenges by presenting new NMPC schemes which are specifically
tailored to constrained trajectory-tracking and path-following problems.
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A Proof of Theorem 2.1

Theorem 2.1 is a more general version of results on NMPC for autonomous systems
[Chen and Allgöwer 1998; Findeisen 2006]. In essence, it is special case of a result
presented in [Fontes 2001]. In order to simplify the proofs in Chapters 3 & 5 we give
a detailed proof here. We first recall a modified version of Barbalat’s Lemma, see e.g.
[Khalil 2002]. The proof of the following result can be found in [Michalska and Vinter
1994, Lem. 4].

Lemma A.1 (Barbalat’s Lemma).
Let M : Rnx → R+

0 be a continuous positive definite function and x be an absolutely
continuous function on R. If

x(·) ∈ L∞ and ẋ(·) ∈ L∞

and
lim
t→∞

∫ t

0
M(x(τ))dτ <∞

then
lim
t→∞
‖x(t)‖ = 0.

The proof of Theorem 2.1 follows along the lines of [Findeisen 2006; Fontes 2001]. In
step 1 we show recursive feasibility (part a)). In step 2 we establish convergence (part
b)).

Step 1: Recursive Feasibility

Consider a recalculation instant tk, and assume that the OCP (2.3) is feasible. During
the time span t ∈ [tk, tk+δ) the optimal input u?k : [tk, tk+Tp]→ U is applied. Clearly,
u?k(·) is a an admissible input up to t = tk + Tp, and can thus be applied up to this
time instance. Since we consider no model-plant mismatch the real system trajectory
is identical to the predicted one

∀k and ∀τ ∈ [tk, tk + Tp] : x(τ, tk, x(tk)|u?k(·)) = x̄(τ, tk, x(tk)|u?k(·)).

Moreover, at tk + Tp the predicted state starting at time tk at x(tk) is in the terminal
set x̄(tk + Tp, tk, x(tk)|u?k(·)) ∈ E . Due condition ii) for all x inside E and all t the
existence of an admissible input uE(·) is guaranteed for some time span [t, t + ε] with
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ε ≥ δ. Now, consider the concatenated input

ũk+1(τ) =
 u?k(τ) τ ∈ [tk, tk + Tp)
uE(τ) τ ∈ [tk + Tp, tk + Tp + δ]. (A.1)

We have that ũk+1(·) is admissible. Moreover, by condition ii) uE(·) ensures that
x̃(tk+1 + Tp, tk+1, x(tk+1)|ũk+1(·)) ∈ E , and thus the OCP (2.3) at tk+1 has a feasible
solution. Hence, if (2.3) is feasible at t0, it is feasible for all tk = t0 + kδ.
Subsequently, we simplify the notation. We write x̃k(·) and x?k(·) instead of
x̃(·, tk, x(tk)|ũk(·)) and x?(·, tk, x(tk)|u?k(·)), respectively. Note that x̃k(·) and x?k(·)
are predicted trajectories starting at time tk at x(tk). The input signal arising from
the sequence of optimal inputs u?k(·), k ∈ N is denoted as umpc(·). The corresponding
solution x(·, t0, x(t0)|umpc(·)) is briefly denoted as x(·).

Step 2: Asymptotic Convergence

To show asymptotic convergence a strictly decreasing upper bound on the MPC value
function will be constructed. The MPC value function is defined as

Vk(tk, x(tk)) :=
∫ tk+Tp

tk
F (τ, x?k(·), u?k(·))dτ + E(t, x?k(t))|tk+Tp. (A.2)

We investigate the behavior of Vk(tk, x(tk)) over the time span of one control horizon
[tk, tk + δ]. We evaluate the value function which starts at x(t) = x?k(t, tk, x(tk)|u?k(·))
at time t. We obtain

Vk(t, x(t)) =
∫ tk+Tp

t
F (τ, x?k(·), u?k(τ))dτ + E(t, x?k(t))|tk+Tp

= Vk(tk, x(tk))−
∫ t

tk
F (τ, x?k(·), u?k(·))dτ. (A.3)

Clearly, Vk(t, x(t)) decreases for t ∈ [tk, tk + δ].
Next we prove two technical lemmas which are helpful to conclude asymptotic conver-
gence.

Lemma A.2.
For all k ∈ N

Vk+1(tk+1, x(tk+1))− Vk(tk, x(tk)) ≤ 0.

Proof. Consider the cost functional

J(tk, x(tk), x̃k(·), ũk(·)) =
∫ tk+Tp

tk
F (τ, x̃k(·), ũk(·))dτ + E(t, x̃k(t))|tk+Tp

where ũk(·) is from (A.1) and x̃k(·) = x̃(·, tk, x(tk)|ũk(·)). Due to (A.2)
Vk(tk, x(tk)) relies on the optimal solutions x?k(·), u?k(·), and thus Vk(tk, x(tk)) ≤
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A Proof of Theorem 2.1

J(tk, x(tk), x̃k(·), ũk(·)). Hence it holds that

Vk+1(tk+1, x(tk+1))−Vk(tk, x(tk)) ≤ J(tk+1, x(tk+1), x̃k(·), ũk(·))−Vk(tk, x(tk)). (A.4)

From this we obtain

J(tk+1, x(tk+1), x̃k+1(·), ũk+1(·))− Vk(tk, x(tk)) =∫ tk+1+Tp

tk+1
F (τ, x̃k+1(·), ũk+1(·)) dτ + E(t, x̃k+1(t))|tk+1+Tp

−
∫ tk+Tp

tk
F (τ, x?k(·), u?k(·)) dτ − E(t, x?k(t))|tk+Tp.

Rearranging the right hand side leads to

J(tk+1, x(tk+1), x̃k+1(·), ũk+1(·))− Vk(tk, x(tk)) =∫ tk+1+Tp

tk+1
F (τ, x̃k+1(·), ũk+1(·)) dτ −

∫ tk+Tp

tk
F (τ, x?k(·), u?k(·)) dτ

+ E(t, x̃k+1(t))|tk+1+Tp − E(t, x?k(t))|tk+Tp. (A.5)

Due to the construction of ũk+1(·) in (A.1) we know that for τ ∈ [tk+1, tk + Tp] the
inputs ũk+1(τ) = u?k(τ) are identical. Moreover, at time tk+1 the trajectories x̃k+1(·)
and x?k(·) are at x(tk+1). Thus we have

∀τ ∈ [tk+1, tk + Tp] : x?k(τ, tk, x(tk)|u?k(·)) = x̃k+1(τ, tk+1, x(tk+1)|ũk+1(·)). (A.6)

Hence it holds that
∫ tk+1+Tp

tk+1
F (τ, x̃k+1(·), ũk+1(·)) dτ −

∫ tk+Tp

tk
F (τ, x?k(·), u?k(·)) dτ =∫ tk+1+Tp

tk+Tp
F (τ, x̃k+1(·), ũk+1(·)) dτ −

∫ tk+1

tk
F (τ, x?k(·), u?k(·)) dτ.

Subsitution of the last equation in (A.5) yields

J(tk+1, x(tk+1), x̃k+1(·), ũk+1(·))− Vk(tk, x(tk)) = −
∫ tk+1

tk
F (τ, x?k(·), u?k(·)) dτ

+
∫ tk+1+Tp

tk+Tp
F (τ, x̃k(·), ũk(·)) dτ + E(t, x̃(t))|tk+1+Tp − E(t, x?k(t))|tk+Tp. (A.7)

Note that for all τ ∈ [tk +Tp, tk+1 +Tp] we have x̃k+1(τ, tk+1, x(tk+1)|ũ(·)) ∈ E . Due to
condition ii) of the Theorem (2.5) the last three terms are upper bounded by 0. Hence
we have

J(tk+1, x(tk+1), x̃k+1(·), ũk+1(·))− Vk(tk, x(tk)) ≤ −
∫ tk+1

tk
F (τ, x?k(·), u?k(·)) dτ.
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Taking (A.4) into account we get

Vk+1(tk+1, x(tk+1))− Vk(tk, x(tk)) ≤ −
∫ tk+1

tk
F (τ, x?k(·), u?k(·)) dτ ≤ 0. (A.8)

Denote as V δ(t, x(t))

V δ(t, x(t)) := Vk(tk, x(tk))−
∫ t

tk
F (τ, x?k(·), u?k(·))dτ, (A.9)

which is the remainder of the MPC value function for x(t) = x?k(t, tk, x(tk)|u?k(·)). On
the right hand side of the definition of V δ(t, x?k(t)) the time instant is tk = kδ with
k = max

k∈N
{k | tk ≤ t}, i.e., the closest previous sampling instant.

Lemma A.3.
For all t ≥ t0

V δ(t, x(t)) +
∫ t

t0
F (τ, x(·), umpc(·))dτ ≤ V δ(t0, x(t0)).

Proof. First we evaluate V δ(tk, x(tk))− V δ(t0, x(t0)).

V δ(tk, x(tk))− V δ(t0, x(t0)) = Vk(tk, x(tk))− V0(t0, x(t0)) (A.10)

Using (A.8) we have

Vk(tk, x(tk))− V0(t0, x(t0)) ≤

−
k∑
j=0

∫ tj+1

tj
F (τ, x?k(·), u?k(·)) dτ = −

∫ tk

t0
F (τ, x(·), umpc(·)) dτ.

Since we consider the nominal case without model-plant mismatch, the equality on
the right hand side holds. Substitution of (A.10) into the last equation yields

V δ(t, x(t)) ≤ V δ(t0, x(t0))−
∫ t

t0
F (τ, x(·), umpc(·)) dτ.

What we have shown so far is depicted in Figure A.1. From (A.3) we know that
between two sampling instances tk and tk+1 the function V δ(t, x(t)) is decreasing.
From Lemma A.2 we know that Vk+1(tk+1, x(tk+1)) ≤ Vk(tk, x(tk)). Which means that
the starting points for all the decreasing lines Vk(tk, x(tk))−

∫ t
tk
F (τ, x?k(·), u?k(·)dτ are

a decreasing sequence.
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Figure A.1: Decreasing behavior of V δ(t, x(t)).

Now, we use Assumption 2.5, i.e., the cost function F (·) is lower bounded by a positive
definite function ψ(‖x‖) and obtain

∀t ≥ t0 : V δ(t, x(t)) ≤ V δ(t0, x(t0))−
∫ t

t0
ψ(‖x(·)‖)dτ. (A.11)

Due to supposition iii) of the Theorem the OCP (2.3) is feasible for t = t0. Further-
more, we have V δ(t0, x(t0)) <∞. Hence we deduce from Lemma A.3 that

∀t ≥ t0 : V δ(t, x(t)) ≤ V δ(t0, x(t0)) <∞.

From (A.11) we also have that

∀t ≥ t0 :
∫ t

t0
ψ(‖x(·)‖)dτ ≤ V δ(t0, x(t0)) <∞.

Since U is compact and by Assumptions 2.3–2.4 we have x(·) and ẋ(·) ∈ L∞. Hence
we apply Lemma A.1 and conclude convergence to the steady state lim

t→∞
‖x(t)‖ = 0.
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B Lyapunov Stability

We briefly recall some technical definitions and the notion of a Lyapunov function. A
detailed description can be found in many textbooks as, for example, [Khalil 2002].
We consider a non-autonomous system

ẋ(t) = f(t, x(t)), x(t0) = x0 ∈ Rnx. (B.1)

We assume that f is locally Lipschitz. Solutions starting at t0 at x0 are written as
x(t, t0, x0).

Definition B.1 (Class K function).
A scalar function β : R+

0 → R+
0 is said to belong to class K, if it is continuous, strictly

increasing, and β(0) = 0. β : R+
0 → R+

0 is said to belong to class K∞, if β ∈ K and
if it is radially unbounded, i.e. β(s)→∞ as s→∞.

Definition B.2 (Class KL function).
A scalar function γ : R+

0 × R+
0 → R+

0 is said to belong to class KL, if for each fixed
k ∈ R+

0 it holds that γ(s, k) ∈ K, and for each fixed s ∈ R+
0 it holds that γ(s, k) is

decreasing with respect to k and limk→∞ = 0.

Consider system (B.1). The origin x = 0 is called uniformly stable, if the following
definition holds.

Definition B.3 (Uniform stability).
The system (B.1) with f(t, 0) = 0 is said to be uniformly stable at x = 0, if for every
ε > 0 there exists an δ = δ(ε), which is independent from t0, such that all solutions
x(t, t0, x0) of (B.1) fulfill

‖x0‖ ≤ δ ⇒ ‖x(t, t0, x0)‖ ≤ ε for all t ≥ t0 ≥ 0. (B.2)

Definition B.4 (Uniform asymptotic stability).
If x = 0 is a uniformly stable equilibrium of (B.1), and there exists a positive constant
c = c(t0), and additionally the solutions of (B.1) fulfill

i) lim
t→∞
‖x(t, t0, x0)‖ = 0 for all ‖x0‖ < c, (B.3a)

ii) and for each η > 0 there exists T = T (η) > 0 such that

‖x(t, t0, x0)‖ < η, for all t ≥ t0 + T (η), for all ‖x0‖ < c, (B.3b)

then x = 0 is said to be uniformly asymptotically stable.
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Definition B.5 (Exponential stability).
The equilibrium x = 0 of (B.1) is said to be exponentially stable, if there exist positive
constants k, λ, c such that

‖x(t, t0, x0)‖ ≤ k‖x(0)‖e−λ(t−t0) for all ‖x0‖ < c. (B.4)

Lemma B.1.
The equilibrium x = 0 of (B.1) is uniformly asymptotically stable if and only if there
exists a class KL function γ and a positive constant c, independent from t0, such that
for the solutions x(t, t0, x0) of (B.1) it holds that

‖x(t, t0, x0)‖ ≤ γ (‖x0‖, t− t0) for all t ≥ t0 ≥ 0, for all ‖x0‖ < c. (B.5)

Lemma B.2.
Let β1, β2, β3 ∈ K, and system (B.1) fulfills f(t, 0) = 0. Consider some compact
domain X containing x = 0 in its interior, and a function V : R+

0 × X → R+
0 such

that

β1(‖x‖) ≤ V (t, x) ≤ β2(‖x‖) (B.6a)
∂V

∂t
+ ∂V

∂x
f(t, x) ≤ −β3(‖x‖) (B.6b)

holds for all t ≥ 0 and all x ∈ X . Then x = 0 is uniformly asymptotically stable in X .

Lemma B.3.
Consider the suppositions of Lemma B.2. If the class K functions βi, i ∈ {1, 2, 3} are
given by βi(‖x‖) = ki‖x‖ai, where ki, ai, i ∈ {1, 2, 3} are positive constants, then x = 0
is exponentially stable.

The proofs of the last three lemmas can, e.g., be found in [Khalil 2002]. Finally, we
are ready to define a Lyapunov function.

Definition B.6 (Lyapunov function).
A function V : R+

0 ×X → R+
0 which fulfills the suppositions of Lemma B.2 is called a

Lyapunov function of (B.1) on X .
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C Time-varying Sets

We introduce the notion of time-varying sets. The main idea is to define time-varying
sets as point-wise in time projections from an augmented state space R × Rnx to the
usual state space Rnx. This is different to other approaches [Michel and Miller 1977]
which define the time-varying sets directly in the state space. We work with projections
to avoid the formalism of set-valued analysis, see [Aubin and Frankowska 1990]. The
notion of time-varying sets plays a crucial role in our developments in Chapter 3.
We consider time-varying systems without control

ẋ = f(t, x), x(t0) = x0 ∈ Rnx. (C.1)

We assume that f is locally Lipschitz. Solutions starting at t0 at x0 are written as
x(t, t0, x0).
We want to investigate the relation between the solutions to (C.1) and a time-varying
set. To do this we have to introduce the notion of a time-varying set. Consider the
extended states (t, x) contained in a set Γ ⊂ R×Rnx, where t refers to the time and x
refers to the state of (C.1). Corresponding to the set Γ a projection Π : R×Rnx → Rnx

is defined
Π : (t, x) 7→ x (C.2)

which projects any extended state (t, x) onto x ∈ Rnx. Often it is helpful to work with
a subset of Γ where the coordinate t is fixed

Γt := Γ ∩ {{t} × Rnx} ⊂ R× Rnx. (C.3)

Based on this we define a time-varying set as follows.

Definition C.1 (Time-varying set).
Given Π from (C.2) and a non-empty set Γ ⊂ R× Rnx. The family of subsets of Rnx

given by
Gt := {x ∈ Rnx | (t, x) ∈ Γ} = {Π (Γt) | t ∈ R} (C.4)

is called a time-varying set. Accordingly, we define the boundary of Gt point-wise in
time

∂Gt := {∂Π (Γt) | t ∈ R} ⊂ Rnx. (C.5)

A time-varying set Gt is called {open, closed, compact}, if for all t ∈ R the sets Π (Γt)
are {open, closed, compact}.
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C Time-varying Sets

Time-varying sets in Rnx can be understood as point-wise in time projections of a
higher dimensional sets living in R×Rnx. Similar to the usual time-invariant sets—see
e.g. [Blanchini and Miani 2008]—one can define positive invariance of time-varying
sets as follows.

Definition C.2 (Positive invariance of time-varying sets).
A time-varying set Gt ⊂ Rnx defined for all t ≥ t0 is said to be positively invariant
w.r.t to (C.1), if every solution x(t, t0, x0) with x0 ∈ Gt0 is globally defined, and for all
t > t0 it holds that x(t, t0, x0) ∈ Gt.

To study the positive invariance of time-varying sets we want to exclude cases, where
the boundary ∂Gt does not evolve continuously with time. We adapt a definition,
which was provided in [Michel and Miller 1977, p. 64] for open sets Gt, such that it is
applicable to open and closed sets Γ ⊂ R× Rnx.

Definition C.3 (Property P of a time-varying set).
A time-varying set Gt ⊂ Rnx defined for all t ∈ [t0, t1] is said to have Property P, if
for all t ∈ [t0, t1] it holds

∂Π(Γt) = Π ((∂Γ)t) . (C.6)

Note that on the right side of the above equality we firstly apply the boundary oper-
ation, secondly we fix t, and finally we project from {t} × Rnx to Rnx. This order of
operations is crucial since ∂(Γt) = Γt ⊂ R× Rnx. An example of a set with Property
P is Γ1 = {(t, x) ∈ R× Rnx | ‖x‖ ≤ e−t}.

Example C.1 (Time-varying set without Property P).
To illustrate the difficulties which can arise from the time variance of sets consider

Γ2 = {[0, a]× {x ∈ R | 0 ≤ x ≤ b2}} ∪ {[a,∞)× {x ∈ R | 0 ≤ x ≤ b1}} (C.7)

for a > 0, b2 > b1 > 0. The set Γ2 is depicted in Figure C.1. Note the discontinuity at
t = a. On the one hand, we have (∂Γ2)t=a = {(t, x) | t = a, (x ∈ [b1, b2]) ∨ (x = 0)}.
This yields Π((∂Γ2)t=a) = {x | x ∈ [b1, b2]) ∨ (x = 0)}. On the other hand, Γ2

t=a =
{(t, x) | t = a, 0 ≤ x ≤ b2} and ∂Π(Γ2

t=a) = {0, b2} ⊂ R. We see that for this example
∂Π(Γ2

t=a) 6= Π((∂Γ2)t=a). Γ2 does not have Property P.

Clearly, one can ask for the reason to introduce Property P of a time-varying level
set. This setting is motivated by the need to study the invariance of time-varying
sets. Usually, positive invariance of time-invariant compact sets with respect to the
flow of a dynamical systems is verified via Nagumo’s Theorem [Blanchini and Miani
2008]. Under some technical assumptions this theorem states that the invariance of a
compact set S ⊂ Rnx under the dynamics ẋ = f(x) can be checked by evaluation of
f(x) for all boundary points x ∈ ∂S.
However, checking the positive invariance of general time-varying sets can be tricky.
This is illustrated by the following example.
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Figure C.1: Example set Γ2 which has not Property P.

Example C.2 (Positive invariance of time-varying sets).
Recall the set Γ2 from (C.7), which is depicted in Figure C.1. As shown in Example
C.1, this set does not have Property P. It is easy to check that for all t ∈ [0, a] the
time-varying boundary of Gt is ∂Gt = {0, b2}, and for all t ∈ (a,∞) : ∂Gt = {0, b1}.
Consider the trivial scalar dynamics

ẋ = 0, x(0) = x0

where b1 < x0 < b2. Clearly, x(t, t0, x0) = x0, and for all t ≤ a it holds that (t, x0) ∈ Γ2.
For t > a we have (t, x0) 6∈ Γ2. Consequently, for all t ≤ a it holds that (x0) ∈ Gt,
and for t > a : x0 6∈ Gt. This means that the set Gt is not positive invariant under the
considered dynamics. However, for all t ≥ 0 it holds that x(t) = x0 6∈ ∂Gt. In other
words, the trajectory x(t) = x0 never passes the time-varying boundary ∂Gt.

Such cases, where trajectories can leave a time-varying set without being in the time-
varying boundary ∂Gt for at least one time instance, are in general difficult to handle.
If a time-varying set has Property P, things are simplified. This is expressed in the
following lemma.

Lemma C.1.
Given an either closed or open set Γ ⊂ R × Rnx and a curve t ∈ [t1, t2] 7→ (t, p(t)) ∈
R × Rnx, whereby p(t) ∈ C0. Suppose the corresponding time-varying set Gt ⊂ Rnx

defined over [t1, t2] has Property P.
If (t1, p(t1))T ∈ int Γ and (t2, p(t2))T 6∈ Γ with t2 > t1, then there exists at least one
t̃ ∈ (t1, t2] such that p

(
t̃
)
∈ ∂Gt̃.

Proof. We have p(t) ∈ C0 and (t1, p(t1))T ∈ int Γ. Combined with (t2, p(t2))T 6∈ Γ
this implies that there exists at least one t̃ ∈ (t1, t2] such that (t̃, p(t̃)) ∈ ∂Γ. Hence
it follows (t̃, p(t̃)) ∈ (∂Γ)t̃. But since Gt ⊂ Rnx has Property P (C.6) we have that
∂Gt̃ = Π ((∂Γ)t̃). Projecting (t̃, p(t̃)) by Π from (C.2) we yield p(t̃) ∈ ∂Gt.
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C Time-varying Sets

Verifying whether or not a general time-varying set has Property P can be tricky. If a
time-varying set is an ellipsoid with time-varying shape, the following lemma holds.
Lemma C.2 (Property P of ellipsoidally time-varying sets).
Any set

Γ = {(t, x) | xTP (t)x− π2(t) ≤ 0} ⊂ R× Rnx, (C.8)

where P (t) ∈ BC+(Rnx × Rnx) and π(t) ∈ C0 has Property P.

Proof. On the one hand, the boundary of ∂Γ is ∂Γ = {(t, x) | xTP (t)x − π2(t) = 0}.
Fixing the time coordinate t we have (∂Γ)t which is an nx-dimensional ellipsoid. The
projection of the boundary set to the Rnx yields the outer surface of the ellipsoid
Π((∂Γ)t) = {x | xTP (t)x − π2(t) = 0}. On the other hand, Π(Γt) = {x | xTP (t)x −
π2(t) ≤ 0}. The boundary of this set is again the outer surface of the ellipsoid ∂Π(Γt) =
{x | xTP (t)x− π2(t) = 0}.

One can also ask for sufficient conditions on positive invariance of an ellipsoidally
time-varying set with respect to (C.1). To this end we denote the upper right hand
derivative of a function π(t) ∈ C0 as D+π(t), and the elementwise upper right hand
derivative of P (t) ∈ BC+(Rnx × Rnx) is written as D+P (t).
Lemma C.3 (Local positive invariance of ellipsoidally time-varying sets).
Consider system (C.1) and an ellipsoidally time-varying set Γ from (C.8) where P (t) ∈
BC+(Rnx ×Rnx), D+P (t) ∈ BC+(Rnx ×Rnx), and P (t), π(t) are absolutely continuous.
Assume that the solutions to (C.1) exist for all (t0, x0) ∈ Γ on the interval [t0, t1].
A solution x(t, t0, x0) with (t0, x0) ∈ Γ stays in Gt for all t ∈ [t0, t1], if

∀t ∈ [t0, t1],∀x ∈ ∂Gt : 2xTP (t)f(t, x) + xTD+P (t)x− 2π(t)D+π(t) ≤ 0. (C.9)

Proof. Consider
s(t) = x(t, t0, x0)TP (t)x(t, t0, x0)− π2(t).

By our assumptions this is an absolutely continuous function of t. Its value at time t1
is

s(t1) = s(t0) +
∫ t1

t0
D+s(τ) dτ.

Recall that Gt has Property P, hence we have to check only solutions starting at
time t0 at x0 ∈ ∂Gt0, thus s(t0) = 0. If condition (C.9) holds, we have for all t ∈
[t0, t1] : D+s(t) ≤ 0. Thus condition (C.9) is sufficient.

This result is a generalization of Theorem 3.2 from Chapter 3, since xTP (t)x is not
necessarily a Lyapunov function.
In this Appendix we briefly introduced a notion of time-varying sets as point-wise in
time projections from an augmented space Rnx × R to the state space Rnx. We have
seen that Property P is helpful to investigate the positive invariance of time-varying
sets.
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D Riccati Differential Equations

The purpose of this appendix is to collect several results on the existence of (symmetric
non-negative definite) solutions to Riccati differential equations (RDE), which arise
from optimal control problems of linear systems subject to quadratic cost functionals.
Consider an LTV system

ẋ = A(t)x+B(t)u, x(0) = x0, (D.1)

where A(t) ∈ BC(Rnx×nx) and B(t) ∈ BC(Rnx×nu). The Riccati differential equation
associated to this system is

Ṗ (t) = P (t)B(t)R−1(t)BT (t)P (t)−Q(t)− P (t)A(t)− AT (t)P (t), (D.2)

where Q(t) ∈ BC+
0 (Rnx×nx) and R(t) ∈ BC+(Rnu×nu). Conditions guaranteeing the

existence of symmetric positive semi-definite solutions to the RDE are of great interest,
since

i) one can easily define a time-varying state feedback u(t) = −R−1(t)BT (t)P (t)x
which is optimal with respect to the cost functional

J(x0, x(·), u(·)) =
∫ T

0
x(τ)TQ(τ)x(τ) + u(τ)TR(τ)u(τ) dτ ;

ii) if the solution P (t) is positive definite a natural candidate of a time-varying
Lyapunov function is V (t, x) = xTP (t)x.

One way to guarantee the existence of symmetric non-negative definite solutions to
the RDE (D.2) is to rely on stabilizability-like properties of the LTV system (D.1).
The next definition and the subsequent lemma can be found in [Phat and Jeyakumar
2010].

Definition D.1 (Q-stabilizability, [Phat and Jeyakumar 2010]).
Consider the LTV system (D.1) and a matrix Q(t) ∈ BC+

0 (Rnx×nx). We denote such a
system as Q-stabilizable if for any initial condition x0 there exists a control u(t) ∈ L2

such that the functional

JQ(x0, x(·), u(·)) =
∫ ∞

0
‖u(τ)‖2 + x(τ)TQ(τ)x(τ) dτ, (D.3)

is bounded.
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D Riccati Differential Equations

Lemma D.1 (Existence of positive semi-definite RDE solutions).
If the LTV system (D.1) is Q-stabilizable for some Q(t) ∈ BC+

0 (Rnx×nx), then for all
t ≥ 0 the Riccati differential equation (D.2) with R(t) = I has a solution P (t) ∈
BC+

0 (Rnx×nx).

As the term Q-stabilizability implies the existence of symmetric positive semi-definite
solutions to the RDE depends on the stabilizability or controllability properties of
the considered LTV system. Of particular importance for the existence of symmetric
positive strictly definite solutions to the RDE is the following property which dates
back to [Anderson and Moore 1969; Kalman 1960].

Definition D.2 (Uniform complete controllability).
The LTV system (D.1) is denoted as uniformly completely controllable if for some
σ > 0 any two of the subsequent conditions hold

α1I ≤ G(s, s+ σ) ≤ α2I, (D.4a)
α3I ≤ Φ(s, s+ σ)G(s, s+ σ)ΦT (s, s+ σ) ≤ α4I, (D.4b)

‖Φ(s, ω)‖ ≤ α5(|s− ω|) (D.4c)

where
G(s, s+ σ) =

∫ s+σ

s
Φ(s, τ)B(τ)BT (τ)ΦT (s, τ) dτ

is the controllability Grammian and Φ(·) denotes the flow of (D.1). Furthermore,
αi, i ∈ {1, 2, 3, 4} are positive constants, and α5(·) maps R onto R and is bounded on
bounded intervals.

The next existence result is a slight reformulation of a very early result presented in
[Kalman 1960].

Lemma D.2 (Existence of symmetric strictly positive definite RDE solutions).
If the LTV system (D.1) is completely uniformly controllable, and the weight ma-
trices Q(t) ∈ BC+(Rnx×nx) and R(t) ∈ BC+(Rnu×nu) are strictly positive definite and
bounded, then the RDE (D.2) has a unique strictly positive definite solution P (t) which
is defined for all t ≥ 0.

For further details on this subject the reader is refered to the monographs [Abou-
Kandil et al. 2003; Anderson and Moore 1990; Bensoussan et al. 1993; Bittanti et al.
1991; Kwakernaak and Sivan 1972b] and to [Anderson and Moore 1969; Kalman 1960;
Phat and Jeyakumar 2010]. Details on the numerical solution to Riccati differential
equations can be found in [Dieci and Eirola 1994, 1996; Varga 2008].
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E Existence of Optimal Controls

In this appendix we recall a specific result on existence of optimal solutions to optimal
control problems. This result is needed to prove Theorem 4.3 in Chapter 4. The result
and its proof can be found in [Lee and Markus 1967, Thm. 4, p. 259]. Similar results
and extensions to relaxed controls can be found in [Berkovitz 1974; Bryson and Ho
1969].
Consider a cost functional

J (t0, t1, x(·), u(·)) =
∫ t1

t0
F (t, x(t), u(t)) dt+ E (t1, x(t1)) , (E.1)

and an optimal control problem to be solved:

minimize
t0, t1, u(·)

J (t0, t1, x(·), u(·)) (E.2a)

subject to

x(t) = f(t, x(t), u(t)) (E.2b)
∀t ∈ [t0, t1] : x(t) ∈ X (E.2c)
∀t ∈ [t0, t1] : u(t) ∈ U ⊆ Rnu (E.2d)

x(t0) ∈ X0 ⊆ Rnx (E.2e)
x(t1) ∈ X1 ⊆ Rnx. (E.2f)

Note that the start and end time may vary within the fixed compact interval τ0 ≤ t0 ≤
t1 ≤ τ1. We assume that the problem data are as follows:

1. The sets X0 and X1 are nonempty and compact.
2. The input constraint set U is nonempty and compact.
3. The state constraints X are described by a finite or infinite family of continuous

functions hi : Rnx → R such that X = {x ∈ Rnx | hi(x) ≤ 0, i = 1, . . . , imax}.
4. The family F of admissible controllers consists of all measurable functions u :

[t0, t1]→ U , defined on various time intervals [t0, t1] ⊆ [τ0, τ1], such that
• each u(·) has a response x(t, t0, x0|u(·)) steering x(t0) ∈ X0 to
x(t1, t0, x0|u(·)) ∈ X1;

• for all t ∈ [t0, t1] : u(t) ∈ U ;
• and for all i = 1, . . . , imax it holds that hi(x(t, t0, x0|u(·))) ≤ 0.

5. The cost F : R× Rnx × Rnu → R is C1 and E : Rnx → R is continuous.
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E Existence of Optimal Controls

The following result states sufficient conditions for the existence of optimal controls.

Theorem E.1 (Lee and Markus 1967).
Given OCP (E.2). Assume

i) The family F of admissible controllers is not empty.
ii) There exists a uniform bound ‖x(t, t0, x0|u(·))‖ < ∞ on t0 ≤ t ≤ t1 for all

solutions x(t, t0, x0|u(·)) driven by admissible u(·) ∈ F .
iii) The extended velocity set

S :=
{
s ∈ Rnx+1 | u ∈ U 7→ (F (t, x, u), f(t, x, u))T

}
is convex in Rnx+1 for fixed (t, x).

Then there exists an optimal control u?(·) ∈ F on t?0 ≤ t ≤ t?1.
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F Terminal Region and End Penalty for the
Robot Example

In this appendix we derive a terminal region and an end penalty for the 2-DoF robot
from Section 5.2.2. Our goal is to compute these objects such that the fulfill the con-
ditions of Theorem 5.2. Our main idea is to exploit the exact feedback linearizability
of the robot dynamics. We proceed in four steps:

1. We rewrite the problem in a feedback linearized transversal normal form.
2. We design a local controller and a terminal region for the path parameter dy-

namics, which are the internal dynamics of the normal form.
3. We design a locally stabilizing controller for the transversal states. A terminal

region is obtained as a level set of local Lyapunov function.
4. Finally, we derive an end penalty such that the conditions of Theorem 5.2 are

fulfilled.
Step 1: Recall the augmented system description of the path-following problem (5.24)

ẋ =
 x2
B−1(x1) (u− C(x1, x2)x2 − g(x1))


ż =

0 1
0 0

 z +
0

1

 v
e = x1 − p(z1)
θ = z1.

Note that x1 = (q1, q2)T and x2 = (q̇1, q̇2)T are the vector of joint positions and the
vector of joint velocities, respectively. Subsequently, we derive a continuous feedback
to solve the path-following problem. In contrast to Example 4.2 the path parameter
dynamics are chosen as an integrator chain of length two. Since we derive continuous
feedbacks this causes no difficulties, cf. Remark 4.3. Clearly, the control ulin : R4 ×
R2 → R2

ulin(x,w) = C(x1, x2)x2 + g(x1) +B(x1)w (F.1)

achieves exact static feedback linearization of the augmented system. The variable
w ∈ R2 is the input of the feedback linearized system. Application of ulin leads to

(
ẋ1, ẋ2, ż1, ż2

)T =
(
x2, w, z2, v

)T
,

e
θ

 =
x1 − p(z1)

z1

 .
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F Terminal Region and End Penalty for the Robot Example

We map these augmented dynamics into a transversal normal. We use ξ1 = e ∈
R2, ξ2 = ė ∈ R2, η1 = z1, η2 = z2, and obtain

ξ̇1
ξ̇2
η̇1
η̇2

 =
 Aξ 04×2

02×4 Aη



ξ1
ξ2
η1
η2

 +
 Bξ 04×1

02×2 Bη

w − p̈(η1(t))
v

 (F.2a)

e
θ

 =
 ξ1
z1

 . (F.2b)

The system matrices are given by

Aξ =
 02×2 I2×2

02×2 02×2

 , Bξ =
0 0 1 1

0 0 1 1

T , Aη =
0 1

0 0

 , Bη =
0

1

 .
Step 2: Now, we are ready to design constraint consistent feedbacks which will lead
to terminal regions. Note that the η-dynamics are not influenced by the ξ-dynamics.
Thus we begin the feedback design with the path parameter dynamics. Recall that
the state constraints for η = z are given by the set

Z = {η ∈ R2 | η1 ∈ [θ0, 0], η2 ∈ [0,∞)}.

Subsequently, we construct a feedback vE = Kηη such that the closed loop driven by
Aη + BηKη is asymptotically stable, and a closed-loop solution with η0 ∈ Eη ⊂ Z
satisfies the state constraints for all times. In the phase plane of the η-dynamics
the state constraints Z require to design a feedback such that the 2nd quadrant is
positively invariant. In other words, we have to design a feedback which guarantees
convergence to the origin of the η1–η2 plane while η2 ≥ 0 holds, cf. Figure F.1.
It is easy to see that for the double integrator η̇ = Aηη + Bηv we cannot render the
complete 2nd quadrant positively invariant with a continuous asymptotically stabiliz-
ing feedback v = Kηη. The reasons for this are as follows: Consider the cases where
Aη + BηKη is asymptotically stable with conjugate complex eigenvalues. This case
has to be ruled out, since it leads to solutions with convergent oscillations around the
origin. Also the case of non-asymptotic stability is not helpful, since solutions starting
in Z should converge to the origin. So it remains to choose Kη such that we obtain
two stable and real eigenvalues. This is achieved if the coefficients Kη = (k1, k2) satisfy
k1, k2 < 0 and k2

2 > −4k1. Such a feedback leads to the situation depicted in Figure
F.1. We have two stable eigenspaces (blue lines) in the 2nd and 4th quadrant. The
fact that the eigenspaces cannot lie in the 1st and 3rd quadrant is easily verified by
calculation of the eigenvectors for k1, k2 ≤ 0. A solution of η̇ = (Aη +BηKη)η starting
anywhere in the cone spanned by the eigenspaces in the 2nd quadrant converges to
the origin with η2 = θ̇ ≥ 0.
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Figure F.1: Terminal region for the path parameter dynamics.

Consider the case that a solution starts on the negative η1-axis. We have

η̇ =
 0 1
k1 k2

−α
0

 =
 0
−αk1

 , α ≥ 0.

Thus k1 ≥ 0 implies that such a solution converges to the origin with θ̇ ≥ 0. However,
if the solution starts on the positive η2-axis, we have

η̇ =
 0 1
k1 k2

0
α

 =
 α

αk2

 , α ≥ 0.

That means that such a solution leaves the 2nd quadrant, no matter how the coeffi-
cients k1, k2 are chosen. From these observations we conclude that only a subset of the
2nd quadrant can be used as terminal region for the η-dynamics.
We use as a feedback

vE = Kηη, Kη = (k1, k2), k1, k2 < 0, k2
2 > −4k1, k2 ≤ −k1θ0

( ¯̇θ
)−1

< 0. (F.3)

The additional condition k2 ≤ −k1θ0/
¯̇θ ensures that a closed-loop solution starting

anywhere on the line η = (α, ¯̇θ), α ∈ [θ0, 0] points towards the η1-axis. Based on this
feedback we choose the terminal region for the η-dynamics as

Eη :=
{
η ∈ R2 | η1 ∈ [θ0, 0], η2 ∈

[
0, ¯̇θ

]
, n1 · η ≥ 0

}
⊂ Z. (F.4)

Here, n1 is the normal vector corresponding to the upper eigenspace of Aη + BηKη.
The terminal region is sketched in green color in Figure F.1. The verification of
positive invariance of Eη with respect to η̇ = (Aη + BηKη)η follows directly from the
considerations above. The boundary 0 ≤ η2 ≤ ¯̇θ is introduced to Eη in order to simplify
the design of a terminal region for the ξ-dynamics.
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F Terminal Region and End Penalty for the Robot Example

Step 3: We proceed with the design of a suitable feedback for the ξ-part of the
transversal dynamics (F.2a). We consider the control

w = Kξξ + p̈(η1(t)) = Kξξ + ∂2p

∂η2
1
η2

2 + ∂p

∂η1
v.

The first part is a feedback to stabilize the zero-path-error manifold. The second part
can be understood as a feedforward control. If this feedback is applied, the ξ part of
the dynamics is governed by ξ̇ = (Aξ + BξKξ)ξ. W.l.o.g. we assume that we have
designed a stabilizing gain matrix Kξ, and that

V (ξ) = ξTPξξ, Pξ > 0 (F.5)

is a corresponding Lyapunov function. To derive a terminal region we substitute the
feedback from above into the exact linearizing feedback (F.1). This yields

uE(x, z) = C(x1, x2)x2 + g(x1) +B(x1) (Kxξ + p̈(η1(t))) . (F.6)

Note that the transversal states ξ depend on x and z. We want to compute a terminal
region Eξ ⊂ R4 such that for all ξ(x, z) inside the region uE(x, z) ∈ U , x ∈ X and
z ∈ Z. The main idea is to upper bound the feedback (F.6), and to obtain a terminal
region as a level set of V (ξ). The terms B : R2 → R2×2, C : R2 × R2 → R2×2 and
g : R2 → R2 from (5.21d-f) can be upper bounded by

∀x ∈ X : ‖B(x1)‖ ≤ B̄, ‖C(x1, x2)‖ ≤ C̄, ‖g(x1)‖ ≤ ḡ.

To upperbound p̈(z1(t)) ∈ R2 we restrict ourselves to the set Eη from (F.4). Since the
path parametrization p is smooth and Eη is compact, we obtain

∀η ∈ Eη : ‖p̈(η1(t))‖ ≤
∥∥∥∥∥∂

2p

∂η2
1
η2

2 + ∂p

∂η1
v

∥∥∥∥∥ ≤
∥∥∥∥∥∂

2p

∂η2
1

∥∥∥∥∥
( ¯̇θ
)2

+
∥∥∥∥∥ ∂p∂η1

∥∥∥∥∥
∥∥∥∥k1θ0 + k2

¯̇θ
∥∥∥∥ = ¯̈p.

Here, we have used that in the set Eη the η-dynamics are controlled via v = Kηη. To
simplify the further considerations we work with tightened constraints Ū ⊂ U , X̄ ⊂ X

Ū =
{
u ∈ R2 | ‖u‖ ≤ ū

}
(F.7a)

X̄ =
{
x = (x1, x2) ∈ R4 | ‖x2‖ = ‖(q̇1, q̇2)‖ ≤ ¯̇q

}
(F.7b)

where in comparison to (5.22) the 2-norm is used instead of ‖ · ‖∞.
We apply the bounds from above to the feedback u : R4 × R2 → R2 from (F.6)

∀(x, z)T ∈ X̄ × Eη : ‖uE(x, z)‖ ≤ C̄ ¯̇q + ḡ + B̄
(
¯̈p+ ‖Kξξ(x, z)‖

)
.
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Reordering the last inequality leads to

‖uE(x, z)‖ − C̄ ¯̇q − ḡ
B̄

− ¯̈p ≤ ‖Kξ‖ · ‖ξ(x, z)‖.

We use the constant ū as upper bound on the left side, and solve for ‖ξ‖. Thus

∀(x, z)T ∈ X̄ × Eη : ‖ξ(x, z)‖ ≤ ū− C̄ ¯̇q − ḡ − B̄ ¯̈p
B̄‖Kξ‖

⇒ u(x, z) ∈ Ū ⊂ U . (F.8)

Subsequently, we derive Eξ as a suitable level set of the Lyapunov function V (ξ) from
(F.5). In general, the level set is

Lc :=
{
ξ ∈ R4 | ξTPξξ ≤ c2

}
.

The constant c can be computed as follows

maximize
c>0

c (F.9a)

subject to

∀ξ ∈ Lc : ‖ξ‖ ≤ ū− C̄ ¯̇q − ḡ − B̄ ¯̈p
B̄‖Kξ‖

(F.9b)

∀ξ ∈ Lc : ‖ξ2‖ ≤ ¯̇q − ¯̇p. (F.9c)

Here ¯̇p is a bound on ṗ(η1(t)) which can be obtained for η ∈ Eη in a similar fashion as
¯̈p. Given Kξ and Pξ this is a simplified version of the (convex) problem to compute
a maximum volume ellipsoid contained in a convex set, cf. [Boyd and Vandenberghe
2004]. This problem has a solution c? > 0, if ¯̇q − ¯̇p > 0 and the constant on the
right side of (F.9b) is positive. This means that the input bounds ū and ¯̇q have to be
sufficiently large.
We use the model data from Table 5.1 and the path (5.23). The bound on η2 is set
to ¯̇θ = 0.4, and the feedback matrix for the η-dynamics is Kη = (−0.1,−1.33). This
leads to the terminal constraint for η

Eη =
{
η ∈ R2 | η1 ∈ [−5.3, 0], η2 ∈ [0, 0.4], (−0.78, −0.63)η ≥ 0

}
.

The Lyapunov function and the feedback matrix for the ξ-dynamics

V (ξ) = ξT


1.73 0 1 0

0 1.73 0 1
1 0 1.73 0
0 1 0 1.73

 ξ, Kξ =
1 0 1.73 0

0 1 0 1.73

 .
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F Terminal Region and End Penalty for the Robot Example

are computed via an LQR controller with Qξ = I4×4, Rξ = I2×2. Solving (F.9) with
these values leads to c = 1.59. Thus the terminal region for the ξ-dynamics is

Eξ =
{
ξ ∈ R4 | ξTPξξ ≤ 2.53

}
.

Recall that e = x1 − p(z1) and ė = x2 − ∂p
∂z1
z2. Rewriting the terminal constraints in

(x, z) coordinates leads to

E =
{
(x, z) ∈ R6 | (e, ė)TPξ(e, ė) ≤ 2.53), z ∈ Eη

}
⊂ X × Z. (F.10)

Step 4: It remains to derive an end penalty such that the conditions of Theorem 5.2
are satisfied. Recall condition (5.20), which expresses a relation between the cost F
and the end penalty E. For the MPFC controller we use a cost function according to
Remark 5.2

F (e, ė, θ, u, v) = ‖(e, ė, θ)‖2
Q + ‖(u− ũ, v)‖2

R,

Q = diag(105, 105, 10, 10, 5), R = diag(10−6, 10−6, 10−4).

This means we penalize the path error as well as its time derivative. The offset

ũ = (263.0,−262.5)T = g(p(0))

corresponds to the torque required to keep the robot at the final path point p(0).
We derive an end penalty as follows: Firstly, we derive exponential convergence bounds
on the states ξ, η. Secondly, we use this bounds to derive bounds on the terminal
control laws (F.3) and (F.6). Finally, we apply all these bounds to derive convergence
of the cost function F on E if the system is controlled via (F.3) and (F.6).
It is easy to see that on Eξ ×Eη system (F.2a) controlled via (F.6) admits a quadratic
Lyapunov function

V (ξ, η) = ξTPξξ + ηTPηη.

The existence of such a function implies that on Eξ × Eη the states ξ and η converge
exponentially, cf. Lemma B.3. Hence the application of (F.6) and vE = Kηη ensure
that path-following error e and its time derivative ė converge exponentially. Thus we
have exponential bounds on ξ = (e, ė), η and vE = Kηη. Recall that ṗ = ∂p

∂η1
η2 and

p̈ = ∂2p
∂η2

1
(η2)2 + ∂p

∂θvE , thus we also have exponential bounds on ṗ, p̈ and x2 = ξ2 + ṗ1:

∀(ξ, η) ∈ E : ‖η‖ ≤ αηe
−βηt, ‖vE‖ ≤ ‖Kη‖αηe−βηt (F.11a)

‖ξ‖ ≤ αξe
−βξt (F.11b)

‖ṗ‖ ≤ αṗe
−βṗt, ‖p̈‖ ≤ αp̈e

−βp̈t (F.11c)
‖x2‖ ≤ αx2e

−βx2t. (F.11d)
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The constants αi, βi in these bounds are strictly positive. Now, we consider solutions to
the augmented dynamics (F.2a) which are controlled via the terminal feedbacks (F.3)
and (F.6). In other words, we restrict ourselves to solutions ξ(t, ξ0|uE(·)), η(t, η0|uE(·))
with (ξ0, η0) ∈ E . Using the bounds on ξ, η and vE we obtain that along these solutions

‖uE(x(t), z(t))−ũ‖ ≤ ‖C(x1, x2)x2‖︸ ︷︷ ︸
≤ C̄αx2e

−βx2 t

+ ‖B(x1) (Kxξ + p̈(η1(t))) ‖︸ ︷︷ ︸
≤ B̄(‖Kη‖αηe−βηt+αp̈e−βp̈t)

+ ‖g(x1)− g(p(0))‖︸ ︷︷ ︸
≤ αge−βgt

The bounds on the first two terms are straightforward. The estimate from above on
g(x1) − g(p(0)) is more complicated. Note that x1 = ξ + p(η1). For p : [θ0, 0] → R2

from (5.23) one can show that exponential convergence of η to 0 implies exponential
convergence of p(η1) to p(0). Using this we see that for t → ∞ also the state x1
converges exponentially to p(0) since x1 = ξ+p(η1). Finally, we use that in g : R2 → R2

from (5.21f) only cos-functions appear, and conclude that g(x1) − g(p(0)) converges
exponentially to 0. Summarizing the last considerations, we have seen that along the
solutions generated by the terminal control laws

∀t ≥ 0 : ‖uE(x(t), z(t))− ũ‖ ≤ αue
−βut, αu > 0. (F.11e)

We proceed by deriving a bound on the cost function inside the terminal region E . E
is compact. F and the terminal feedbacks uE(x, z), vE(z) are continuous. Hence there
exists a finite constant F̂ such that

∀(x, z) ∈ E : 0 ≤ F (e, ė, uE(x, z), vE(z)) ≤ F̂ .

Recall that ξ = (e, ė)T . We apply the exponential bounds (F.11) to estimate from
above the behavior of F on E along the trajectories ξ(t, ξ0|uE(·)) and η(t, η0|uE(·)). It
follows

∀t ≥ 0 : F (e(t), ė(t), uE(t), vE(t)) ≤ F̂ e−βF t

with βF > 0. Now, one can apply a simliar reasoning as in Remark 3.5 and conclude
that purely time dependent end penalties E(t) which satisfy the conditions of Theorem
5.2 exist.1 For example, a suitable choice is E(t) = F̂

βF
e−βF t. Recall that we have seen in

the proof of Lemma 3.6 that such an end penalty can be dropped during optimization.
Thus we use E(x, z) = 0.
Finally, we conclude that terminal regions and terminal penalties, which satisfy the
conditions of Theorem 5.2, can be derived. However, one needs to mention that it is
not straightforward to generalize this approach. We used the global static feedback
linearizability of the robot dynamics and its specific structure to obtain bounds on the
linearizing feedback.

1To be precise the time-dependent end penalty would satisfy an immediate extension of Theorem 5.2 to
time-varying end penalties E(t, x, z). To avoid technicalities we do not investigate this further.
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