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Abstract

In many real world domains, data is composed of multiple interrelated
streams. For example, an online retail store that keeps a customer ware-
house, where multiple streams consists of stream of customers, products
and the activities (that link a customer to the products he has purchased)
constitute multiple streams. Unlike, in the conventional stream mining
paradigm, where objects are observed, incorporated into the model and
then forgotten, objects such as customers and products may not be for-
gotten, for they may be referenced later. When mining is performed over
multiple streams, the stream, which is central to learning, is designated as
target stream. The target stream consists of perennial objects that may not be
forgotten, e.g., customers. It is fed by other streams other streams that may
contain either perennial objects (e.g., products) or ephemeral objects (those
that can be forgotten, e.g., stream of activities). Over time, more activities
are recorded for the customers, while new ones may arrive. As activities
accumulate, the customers may exhibit a change in their behaviour, e.g., a
customer may stop being trustworthy.

Perennial objects put forward many unique challenges for mining al-
gorithms, i.e., they 1) constitute a stream, 2) are multi-relational objects
that are linked to objects from other streams, 3) they may not be forgotten,
4) may evolve over time, and 5) may change their class labels. The exist-
ing stream mining algorithms are designed for simpler objects that do not
reappear and thus do not change their labels, a new solution is needed.

Our solution for mining perennial objects builds upon the conventional
mining methods and extends the stream mining paradigm. The first com-
ponent of our solution is a pre-processing method that combines multiple
streams into a single stream. This method also incorporates a cache-based
mechanism for handling perennial objects when resource constraints may
force some objects to be discarded from the main memory. The objects
to be discarded are spilled on the secondary storage and can be recalled
when needed again.

An incremental version of K-Means, which we adapted to handle the
dynamic nature of perennial objects, then operates over the proposition-
alised stream to discover homogeneous groups of perennial objects. We
have also developed a classification algorithm, TrIP, that learns a tree over
the labelled propositionalised stream. TrIP incorporates methods that can
update the induced tree by tracking evolution of perennial objects and de-
tecting concept drifts. We also enrich TrIP with classification rules that
can capture and record complex patterns for transformation, during pre-
processing phase.
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We have evaluated our solution on real and synthetic datasets. For gen-
erating the synthetic dataset, we also developed a multi-stream generator,
to create synthetic datasets. The experimental results uncovered impor-
tant aspects about the nature of the perennial objects. One of the key find-
ings of the evaluation was; the sizes of the caches maintained over peren-
nial streams had a direct impact on quality of the models. The usage of
complex patterns, based on classification rules, during the pre-processing
phase, leads to concise and robust models.
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Zussamenfassung

Daten aus vielen realen Domänen setzen sich aus mehreren verbunde-
nen Datenströmen zusammen; zum Beispiel ein Online-Verkaufsgeschäft
welches die Daten seiner Kunden speichert: hierbei existieren ein Kun-
denstrom, ein Strom der Produkte und ein Strom der Kundenaktivitäten
welche den Kunden und die Produkte, die er gekauft hat, verbinden. An-
ders als bei dem konventionellen Streamminingparadigma, wo Objekte
beobachtet, in das Modell integriert und dann vergessen werden, können
Objekte wie Kunden und Produkte nicht vergessen werden, da auf sie ref-
erenziert wird.

Bei der Anwendung von mehreren Strömen, wird einer von diesen
Strömen als Target Strom bezeichnet; dieser ist der Mittelpunkt des Ler-
nens. Der Target Strom beinhaltet Perennial Objekte, welche immer
wieder erscheinen und nicht vergessen werden dürfen, z.B. Kunden. Der
Target Strom wird von anderen Strömen, welche Ephemeral (z. B. ein
Strom von Aktivitäten) oder Perennial Objekte (z.B. Produkte) enthalten
können, beeinflusst.

Ãœber die Zeit werden viele Aktivitäten von bestehenden Käufern
gesammelt. Durch die gesammelten Informationen lassen sich Verän-
derungen im Verhalten der Kunden erkennen, beispielsweise kann das
Verhalten eines Kunden dazu führen, das dieser nicht mehr als ver-
trauenswürdig angesehen wird. Im Zusammenhang mit Perennial Ob-
jekten ergeben sich viele neue Herausforderungen für Data Mining-
Algorithmen, sie 1) bilden einen Strom, 2) sind Multirelationale Objekte,
verbunden mit Objekten aus anderen Strömen, 3) werden nicht vergessen,
4) können im Laufe der Zeit evolvieren und 5) können ihre Klasse verän-
deren. Die bestehenden Stream-Mining-Algorithmen sind für einfachere
Objekte, die nicht wieder erscheinen und somit nicht ihre Label verändern,
entwickelt.

Unser Ansatz für das Mining von Perennial Objekten orientiert sich
an den konventionellen Data Mining Methoden. Der erste Schritt ist
ein Vorverarbeitungsverfahren welcher mehrere Datenströme (mit Peren-
nial Objekten) in einen einzelnen Strom transformiert. Dieses Verfahren
beinhaltet auch einen Cache-Mechanismus zur Handhabung von Peren-
nial Objekten, welcher notwendig ist wenn nicht ausreichdend große
Rechner-Ressourcen zur Verfügung stehen d.h. Objekte welche nicht oft
erscheinen, befinden sich nicht im Hauptspeicher. Sie werden dagegen
im sekundären Speichersystem gehalten und können bei Bedarf wieder
abgerufen werden. Eine inkrementelle Version von K-Means, die wir
angepasst haben um die dynamische Natur der Perennial Objekten zu
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behandeln, arbeitet auf einem propositionalisiertem Strom um homogene
Gruppen von Perennial Objekte zu entdecken. Darüberhinaus haben wir
einen Klassifikationsalgorithmus, TrIP, entwickelt welcher einen Entschei-
dungsbaum über den annotierten propositionalierten Strom lernt. TrIP
umfasst Methoden, zum updaten des induzierten Baums, indem die
Entwicklung der Perennial Objekte über die Zeit verfolgt wird und
eventuelle Ãƒnderungen im Konzept der Objekte erkannt werden. Wir
haben TrIP mit klassifikations Regeln erweitert, die dazu dienen komplexe
Muster für die Transformation innerhalb der Vorverarbeitungsphase zu
erfassen.

Unsere Lösung haben wir auf echte und synthetische Datensätze aus-
gewertet. Um synthetische Datensätze zu erstellen, haben wir einen Mul-
tistreamgenerator MultiGen entwickelt. Einige der wichtigsten Ergeb-
nisse der Evaluierung waren: die Größe des Caches hatte einen direk-
ten Einfluss auf die Qualität der Modelle; die Verwendung von kom-
plexen Mustern für die Klassifikationsregeln, während der Vorverar-
beitung Phase, führt zu präziseren und robusten Modellen.
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Frail and evanescent, all miracles of ingenuity,
Transient, all temporal attainments;

Ephemeral, all worldly accomplishments.

Annihilation is the end of all beginnings;
Annihilation is the end of all ends.
Extinction, the fate of everything;
Hidden or manifest, old or new.

Yet in this very scenario,
indelible is the stamp of permanence
On the deeds of the good and godly.

Deeds of the godly radiate with Love,
The essence of life,

which death is forbidden to touch.

Fast and free flows the tide of time,
But Love itself is a tide that stems all tides.

In the chronicle of Love,
there are times other than the past,

the present and the future;
Times for which no names have yet been coined.
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CHAPTER 1

Introduction

In traditional stream mining there is only a single stream of incoming ob-
jects. As the objects enter the horizon of observation, information is ex-
tracted from them, the model is adapted according to this new informa-
tion and then the objects are discarded. This learning paradigm has been
motivated by the fact that it is practically impossible and pragmatically
unnecessary to remember each observed object. However, many applica-
tion domains contain multiple streams that are interrelated to each other.
One of them is the target stream, on which learning is performed. For this
mining task we introduce the term ’multi-relational stream mining’.

In multi-relational stream mining, the target stream consists of perennial
objects that appear repeatedly, hence, may not be forgotten. The target
stream is fed by other streams that may contain ephemeral objects (i.e., they
contain information of temporary nature, thus can be forgotten once the
information has been incorporated in the model) or perennial objects as
well.

Perennial objects occur in more applications than one might think at
first. Consider a hospital that maintains records for patients with a chronic
disease, a company that keeps a customer warehouse, or a group of scien-
tists that study a system of at least two stars, one of which are visible while
the others are perceived only through the seemingly aperiodic effects they
cause on the plasma, luminosity and trajectory of the visible one. The pa-
tients, the customers and the stars (of yet unknown number) are perennial
objects, for which activities are recorded. As more activities get recorded,
the more is captured in the model of the objects. At the same time, new
objects may arrive: new patients with the same disease are registered at
the hospital, new customers are recorded in the warehouse, while the ob-
servations on further star systems are recorded and can be exploited for
model learning. The perennial objects constitute themselves a stream. Ca-
pacity limitations may force the deletion of old activities and even of old
objects (e.g., customers that have attrited since long or patients that de-
ceased long ago), but their properties must be remembered by the model
for the case that similar objects might show up.

As a concrete example, consider an online retail store as shown in Fig-
ure 1.1, where customers visit the store’s website and buy the products
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Products Webpages

Customers

ClicksTransactions

Figure 1.1: Example: A multi-relational schema of an online retail store.
The target stream is ’Customers’. The streams ’Products’ and ’Webpages’
as well as ’Customers’, contain perennial objects, whereas the streams ’Tra-
nsactions’ and ’Clicks’ contain ephemeral objects

that are offered there. The stream of customers constitute target stream
and contains perennial objects: a customer cannot be forgotten or dis-
carded even if she is not currently active. Of the streams that feed the
target stream, ’Clicks’ and ’Transactions’ contain ephemeral objects. These
streams only reflect the temporal aspect of the customers and the objects
from them (i.e., clicks and transactions) can be discarded once they get
old. While the streams ’Products’ and ’Webpages’ also contain perennial
objects. Similarly to the stream of customers, the objects from the streams
Products’ and ’Webpages’ cannot be forgotten as well.

1.1 Thesis Motivation

The focus of this thesis is on mining „perennial objects from the target
stream”. In the following sections we elaborate on the characteristics of
the perennial objects and the implications that they introduce for the algo-
rithms that operate on them.
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1.1.1 Perennial Objects

In this section, we give a formal definition of perennial objects and elabo-
rate on their individual aspects, separately, in the subsequent sub-sections.

Perennial objects:

1. are members of a stream T .

2. are referenced from objects of one or more further streams S1, . . . , Sj .

3. may appear at multiple timepoints. For example, consider a peren-
nial object x and its two instances x(t), x(t′). This means that at
timepoints t, t′, there exist some non empty sets of objects Y =
matches(x, t)1, Y ′ = matches(x, t′) that arrive in a stream Sj and ref-
erences x.

4. do not change their intrinsic properties2, but their label may change
over time.

For the ease of notation, we will use the term perennial stream for a
stream that contains perennial objects and ephemeral stream for a stream
that contains ephemeral objects in the remainder of this thesis.

1.1.2 Challenges

Perennial objects are complex Perennial objects are relational by nature:
they are composed of simpler ephemeral objects, e.g., customers at an on-
line retail store, patients at a hospital, stars in a constellation, etc. and are
associated to further streams that contain objects of different kinds, trans-
actions, symptoms, etc. Depending on the type of relationship, i.e., 1-to-1,
1-to-m or m-to-1, with the other streams, a perennial object can be associ-
ated with one or more objects.

Conventional stream mining algorithms are designed to work primar-
ily with a single stream of incoming objects (see Figure 1.2). The objects
in the stream are mostly ephemeral in nature, i.e., objects arrive, get in-
corporated into the model and are forgotten as they get outdated. As a

1matches(x, t) is a simple query function that returns all the objects that reference x
from one or more further streams S1, . . . , Sj at timepoint t.

2In the customer example, intrinsic properties may be customer id, name and gender. In
some applications, the only known intrinsic properties is customer id. Presently, we do
not allow volatile properties like age; such properties can be often mapped to unchange-
able ones like birth year.
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result, these algorithms do not assume any explicit dependency between
the objects that arrive in the stream. For example, two transactions that
may belong to a same customer are assumed or get treated as two distinct
objects. The dependencies between the objects in the ephemeral stream of
transactions get established only when considering the stream of perennial
objects - the customers.

For the reasons discussed above, mining these perennial objects pre-
sents an enormous challenge because perennial objects violate both of the
assumptions, i.e., there exist more than one streams, and objects within
any of these streams may be interdependent.

Transactions Transactions Customers

incoming objects

t 1

t 2

t 3

t 1

t 2

t 3

Figure 1.2: Stream of transactions (left) without the perennial stream of
customers, i.e., conventional setting (right) with perennial stream of cus-
tomers. Different colours in the stream of customers depict different cus-
tomer objects, while the colours in the stream of transactions refer/tag a
transaction to the customer that performed that particular transaction.

Perennial objects are dynamic The target stream, which is also a peren-
nial stream, is fed by objects that arrive in the other streams. It is usually a
slow stream, i.e., a small number of new objects arrive at each timepoint.
The main load, however, comes from the ephemeral stream(s), which are
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usually in a 1-to-m relationship with the target stream. As stated earlier,
perennial objects from the target stream may appear at multiple timepoi-
nts. This means that as the multi-relational stream progresses, new objects
that arrive in the ephemeral stream(s), reference the perennial objects from
the target stream. These newer objects that arrive in the ephemeral stream
make more information available for the perennial objects from the target
stream. This new information may either reaffirm properties of the peren-
nial objects or change them. In other words, perennial objects (from the
target stream) are dynamic in nature.

For example, consider the blue customer in the Figure 1.2 that appears
at multiple timepoints. The customer has performed two transactions at
timepoint t1, that are [bread & butter] and [flour]. As he performs
the transaction [eggs & milk] at timepoint t2, there are more data avail-
able on him that reaffirm his preference for dairy products. His subse-
quent transaction, i.e., [jacket & gloves] at timepoint t3 reports a de-
viation from his current behaviour, i.e., he has also developed a preference
for winter products.

We propose a new stream mining framework which assumes a data
stream to be generated by a dynamic process and consist of objects that
are dynamic and independent of each other.

More formally, consider an instance x(t) of a perennial object x ∈ T at
timepoint t. The instance x(t) is referenced by a non-empty set of objects
Y = matach(x, t) from a stream Sj . At a later timepoint t′, when new
objects arrive in stream Sj that reference x, the set of objects referencing x
would change to Y ′ = matches(x, t). Hence, the information on x would
change its instance to x(t′). For any two instances x(t), x(t′) of x where,
t 6= t′, x(t) 6= x(t′). For any x with more than one instance, the one with
the higher t index replaces the old occurrence, i.e. if t′ > t, x(t′) replaces
x(t).

Perennial objects can change their labels In conventional stream clas-
sification, each object that arrives in the stream3 is associated with a static
class label, i.e., label remains unchanged. For example, a customer would
remain trustworthy (or untrustworthy) or an Alzheimer’s patient would
be exhibiting pacing (or not-pacing). Perennial objects on the other hand,
cause a concept drift of a very particular nature. As their properties change
over time (c.f. Section 1.1.2), they can also change their class labels. For ex-
ample, a customer who was trustworthy earlier, may stop being trustwor-
thy if he misses a payment or an Alzheimer’s patient may start to exhibit

3this stream is ephemeral in nature
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pacing from his earlier state of not pacing.
More formally, consider an instance x(t) of a perennial object x ∈ T

at timepoint t, where x is associated with a label l. As new information
appears for x in the other streams at timepoint t′, this additional informa-
tion would transform the old instance x(t) to x(t′) and it may come to be
associated with a new label l′. For any two occurrences of the labels l, l′ at
t, t′ for x, the one with the higher timepoint replaces the old occurrence,
i.e. if t′ > t, l′ replaces l for x.

1.2 List of Scientific Contributions

With this thesis we aim to develop methods that can discover patterns
over streams that are connected to each other and contain perennial and
ephemeral (transactions, activities, etc.) objects. To achieve this goal, we
studied methods from the field of multi-relational mining, conventional
stream clustering, classification and rule mining methods. This thesis
makes the following scientific contributions:

1. Introduces perennial objects and presents a framework for mining
perennial objects (Chapter 3).

2. Presents an incremental propositionalisation algorithm (Chapter 3)
that combines the stream of perennial objects and the streams of
ephemeral objects (transactions, activities and etc.) associated to
them into a multi-table stream upon which a learner can be applied.

3. Presents a clustering approach for mining over a propositionalised
stream (Chapter 3). The algorithm is a variant of K-Means, extended
to deal with perennial objects and able to incorporate any newer ob-
jects as they arrive.

4. Presents a new approach for classification over a propositionalised
stream of perennial objects (Chapter 5). The classifier is based on
CVFDT algorithm of Hulten et al. [Hulten et al., 2001]. It can ac-
commodate the objects as they change their definition and their class
labels.

5. Presents extensions to the incremental propositionalisation algorithm
(Chapter 6). These extensions aim at creating new attributes based
on association/classification rules. These attributes capture informa-
tion otherwise missed by the propositionalisation algorithm.
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6. Presents a multi-relational data generator (Chapter 7). We developed
the generator for two reasons. First, there is only a limited number
of publicly available multi-relational datasets. Second, the genera-
tor offers the possibility of making controlled experiments, which is
especially useful in our context. It makes it possible to see how the
propositionalisation and mining behaves if the underlying concept
changes.

1.3 Thesis Outline

In the current chapter, we have provided the problem definition. We have
elaborated on what perennial objects are and what are the challenges they
pose when mining is to be performed on a stream consisting of perennial
objects. We have also discussed the basics that are relevant for the under-
standing of the contribution of this thesis.

In Chapter 2, we provide a detailed survey of the current state-of-the-
art methods in KDD. As multi-relational mining on streams is relatively
a new field of study, the related work mostly comes from static relational
mining, stream data management and conventional stream mining.

In Chapter 3, we present the incremental propositionalisation algo-
rithm. The approach is based on the static algorithm RelAggs by Krögel
[Kroegel, 2003]. We accompany this algorithm by a strategy that updates
the caches and windows before model adaptation and heuristically min-
imizes information loss with respect to model learning. Chapter 3 also
presents a clustering algorithm based on K-Means that operates over the
propositionalised stream. The evaluation of the incremental proposition-
alisation algorithm is presented in Chapter 4, where we not only evaluate
the core algorithm, but also evaluate its constituent parts. Parts of these
works were published in the proceedings of the Scientific and Statistical
Database Management Conference 2009 [Siddiqui and Spiliopoulou, 2009a]
and Discovery Science 2009 [Siddiqui and Spiliopoulou, 2009b].

In Chapter 5, we present a classification algorithm for inducing a tree
over a stream of perennial objects. It is based on CVFDT and utilises
Hoeffding Bound for splitting the nodes [Hulten et al., 2001]. Addition-
ally, each node has an age counter associated, which is used to determine
its recency and validity. Parts of this work have been published in the
proceedings of the Scientific and Statistical Database Management Conference
2010 [Siddiqui and Spiliopoulou, 2010].

Chapter 6 presents attribute generation approaches to enhance the
propositionalisation algorithm. These extensions aim at efficiently han-
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dling the attributes whose domain is unknown apriori (i.e., categorical
or nominal attributes) and capturing information, i.e., attribute interac-
tion and ordering, which gets lost during the propositionalisation process.
Parts of this work have been published in the proceedings of the Interna-
tional Symposium on Rule Learning 2011 [Siddiqui and Spiliopoulou, 2011].

We continue with the detailed presentation of the multi-relational data
generator, which was used in the experiments of Chapter 3, Chapter 5,
and Chapter 6. This generator aims to simulate the activities of a user
who rates products/items. As the stream progresses, the users’ prefer-
ences change as well. Parts of this work have been published in the 2nd
Workshop on Mining Ubiquitous and Social Environments at ECML PKDD
2012 [Siddiqui et al., 2011].

In Chapter 8, we conclude with a summary and possible directions for
future research.
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CHAPTER 2

Related Work

Stream mining over multiple-interrelated streams of perennial objects is a
new problem. Most of the related work comes from the domain of learn-
ing on multiple tables on static data, as well as mining and management
of data in data streams, including windowing, object referencing, stream
sampling, etc. We also discuss relevant work from the domain of super-
vised and unsupervised stream based learning, i.e., clustering, classifica-
tion, and association and classification rule mining. These work provide
the context for the various extensions proposed for our base algorithm.

This chapter is organized as follows. Section 2.1 is on relational mining
on static data. Section 2.2 is on stream mining. Under Section 2.2, we dis-
cuss management of the streaming data in Section 2.2.1, stream clustering
in Section 2.2.2, stream classification in Section 2.2.3, rule mining over str-
eams in Section 2.2.4 and multi-relational stream mining in Section 2.2.5.

2.1 Multi-Relational Mining

Learning over multi-table data requires knowledge on the semantic rela-
tionships among the tables. These semantics are typically stored in the
database schema. Multi-relational mining methods exploit this schema to
deduce the order in which the tables/relations must be processed to build
the patterns. Most methods of such type are based on Inductive Logic
programming (ILP) [Muggleton and Raedt, 1994].

Since the core of our work emanates from multi-relational data mining,
we very briefly explain notations and basics of multi-relational mining,
quoting mainly the work of Dzeroski [Dzeroski, 2003], so as to establish a
link before we proceed.

2.1.1 Inductive Logic Programming and Terminology

The central concept of ILP is that of logic programs that consist of clauses.
Clauses can be perceived as first-order rules, whose conclusion (or conse-
quent) part is termed as the head of a clause and condition (or antecedent)
part is termed as the body of a clause.
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Target Background Knowledge
training examples labels
daughter(mary,ann) + parent (ann,mary) female(ann)
daughter(eve,tom) + parent (ann,tom) female(marry)
daughter(tom,ann) - parent (tom,eve) female(eve)
daughter(eve,ann) - parent (tom,ian)
daughter(ann,tom) -

Figure 2.1: ILP Example: Target and background predicates with labels
(taken from Dzeroski [2003])

For example, consider the following clause:

son(X,Y)← parent(Y,X) ∧ male(X)

The predicate son(X,Y) is the head while, the body is made of two pre-
dicates, i.e., parent(Y,X) and male(X) [Dzeroski, 2003]. It reads, if X is
male (male(X)) and X has a parent Y (parent(Y,X)), then X is a son of
Y.

ILP learning starts with an extensional definition of the so-called target
predicate (that forms the head of the clause) and learns a more concise in-
tentional definition (body or the conditional part), exploiting given back-
ground knowledge in the form of other predicates. In the example given
in Figure 2.1, the task is to learn the intentional definition of the target con-
cept daughter(X,Y) (it reads, a person X is daughter of a person Y), in
terms of background examples. ILP would take all of these examples and
by utilising the labels given for each of the target examples, it would come
up with the following clause:

daughter(X,Y)← parent(Y,X) ∧ female(X)

Some of the methods that use ILP include multi-relational association
rules [Dehaspe and Toivonen, 2001, 1999] multi-relational decision trees
[Blockeel and Raedt, 1998; Kramer and Widmer, 2001] and distance mea-
sures [Emde and Wettschereck, 1996] that can be used for clustering [Kirs-
ten et al., 2001].

For the purpose of mining over a perennial stream, multi-relational
learning techniques have two caveats. First, they are computationally very
expensive. Because of multiple-joins of varying length that exist between
different tables, the search space is exponential and multi-relational min-
ing algorithms suffer in terms of efficiency. It is often the case that even
testing a given relational pattern for validity is computationally expensive
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ProductTransactionUser

Transaction

trans_id

user_id

product_id

User

user_id

name

gender

age

Product

product_id

name

category

price

1 m 1m

Figure 2.2: Graphical representation of multi-relational schema. (Top) a
sample database schema comprising of three tables. The primary keys are
in bold face, while foreign keys are italicised. The edges are drawn from
foreign key to primary key. (Bottom) Graph based representation of the
sample schema. The target stream ’User’ is depicted with a shaded box.

[Dzeroski, 2003]. Second, multi-relational learning methods are dedicated
methods. Since there is a wealth of stream mining algorithms, it seems
reasonable to design a methodology that can exploit any of them rather
than devising new dedicated stream mining methods.

2.1.2 ILP and Relational Databases

In the context of relational databases, a database table corresponds to a
predicate in logic programming, where the attributes of the tables are the
arguments of the predicate and the tuples in the table are the ground facts
or training examples. Accordingly, we have the notion of target predicate
that corresponds to the target table. In the context of this thesis, the stream
of perennial objects, which is central to the learning is designated as target
stream. The notion of background predicate is synonymous with the further
streams that fed the target stream.

In this thesis, the schema of multi-relational streams is depicted us-
ing graphs. Each node in the graph represents a database relation or a
stream. The edges between the nodes represent the relationships that ex-
ist between the streams. Relationships in conventional databases are ex-
pressed through foreign key relationships. The edges point from the str-
eams that contain the foreign keys to the streams that contain the primary
keys. The node that depicts the target stream is shaded, whereas nodes
that depict other streams are shown as transparent boxes. An example of
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this convention is shown in Figure 2.21.

2.1.3 Propositionalisation

The propositionalisation methods described below alleviate this second cav-
eat for static data. They exploit the schema to transform the multi-table
data into a single table which preserves the original semantics and is ap-
propriate for conventional data mining.

The propositionalisation methods use the background knowledge pre-
dicates to derive a set of clauses for the target predicate [Dzeroski and
Lavrač, 1993; Lavrač and Flach, 2001; Knobbe et al., 2001; Kroegel, 2003;
Perlich and Provost, 2006; Anderson and Pfahringer, 2009; Alfred, 2011].
The target predicate is the head of each clause, while the body contains
background predicates that must conform to a given declarative or lan-
guage bias. The clause set forms the basis for propositionalisation.

In the context of databases, a tuple from the target table T must be ex-
panded with all relevant information before being processed. The main
challenge to be solved by propositionalisation methods is that data span-
ned across multiple tables are correlated and may stand in 1-to-n or m-to-n
relationships. Thus, the intuitive approach of joining all tables into a sin-
gle one is inappropriate. For example, consider the data in Fig. 2.3(a) and
assume that Customer is the target table: a customer tuple must be joined
with all transactions of this customer. There are three customers, who have
performed four, two and one transactions. If a natural join is computed
over this schema, the resulting table will have 7 tuples (see Fig. 2.3(b)).
Data mining algorithms assume that the rows of a table are independent
of each other. This assumption gets violated after a join is computed over
the tables. There are tuples in the new table that are not independent of
each others as they belong to the same customers. Propositionalisation
methods perform more than a simple joined based transformation. They
perform join and aggregation in order to transform data from multiple
tables data into a single table by turning rows to columns (see Fig. 2.3(c)).

Our work is based on the static multi-table propositionalisation met-
hod RelAggs [Kroegel, 2003]. In the subsequent sections, first, we briefly
explain RelAggs and then continue our discussion on other propositional-
isation methods.

1This convention has been adapted from RelAggsby Kroegel [Kroegel, 2003], which is
the basis propositionalisation algorithm that we build upon.
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TID CID PID CID Name Married Income TID CID NAME Married Income PID Price Category

1 2 1 1 David S 20000 1 2 Tom M 65000 1 100 Book

2 2 1 2 Tom M 65000 2 2 Tom M 65000 1 100 Book

3 2 1 3 Mark S 45000 3 2 Tom M 65000 1 100 Book

4 2 2 4 2 Tom M 65000 2 50 DVD

5 1 2 PID Price Category 5 1 David S 20000 2 50 DVD

6 1 1 1 100 Book 6 1 David S 20000 1 100 Book

7 3 1 2 50 DVD 7 3 Mark S 45000 1 100 Book

Natural JoinOriginal Schema
Transaction Customer

Product

CID NAME Married Income SUM_P AVG_P MIN_P MAX_P Count_C_Book Count_C_DVD

2 Tom M 65000 350 87.5 50 100 3 1

1 David S 20000 150 75 50 100 1 1

3 Mark S 45000 100 100 100 100 1 0

Propositionalised Table

Figure 2.3: First tuples of (a) a multi-table stream on customers, tra-
nsactions and products, (b) natural join of the Customer data with
Transaction and Product information and (c) propositionalised ver-
sion of the same target Customer

RelAggs for the Propositionalisation of Static Data

The propositionalisation algorithm RelAggs starts similarly to ILP meth-
ods. It derives a set of clauses from the database schema using foreign
key relationships [Krogel and Wrobel, 2002] between the target table and
background knowledge table.

A natural join covering all the tables in each remaining clause is sep-
arately computed. If the table S that feeds the target table T stands in
1-to-1 or 1-to-m relationship with the target table T , its tuples are simply
concatenated to the target tuples with help of the foreign key. If S stands
in m-to-1 relationship with T , then for each attribute A ∈ S, a group of
new features ϕ(A)2 are created to accommodate the aggregated contents
of S. If A is numeric, it is expanded into four attributes that accommodate
the average, sum, maximum and minimum of values seen thus far. If A is
nominal, it requires much more space, since each distinct value gets con-
verted in a new attribute, which stores the count for the number of times
the respective nominal value was observed. It also generates an additional
feature count once for each table. This feature records the number of tuples
on which the aggregation was performed.

2ϕ(A) is a function defined in [Kroegel, 2003] that generates new aggregate features
for the attribute A
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Other Propositionalisation Approaches

The early propositionalisation approach LINUS was developed for logic
programming and was a part of an ILP system [Dzeroski and Lavrač,
1993]. Later it was extended to include the handling of determinate clauses
[Lavrač and Flach, 2001]. The methods of Knobbe et al. [Knobbe et al.,
2001], Perlich and Provost [Perlich and Provost, 2003, 2006] and as well of
Kroegel [Kroegel, 2003] are examples of propositionalisation approaches
on databases. These approaches transform the tables from a relational
database into a single table with the help of the built-in functionalities of
databases for joining the relation and column aggregation.

Later propositionalisation approaches [Alfred, 2011; Anderson and Pf-
ahringer, 2008, 2007, 2009; Alfred, 2008a; Lachiche, 2005; Alfred, 2009; Al-
fred and Kazakov, 2007; Alfred, 2008b] adopt a more complex and sophis-
ticated approach towards relational transformation. Anderson et al. [An-
derson and Pfahringer, 2007, 2008, 2009] make use of Relational Random
Rules (RRR) to propositionalise the relational data. Their method for the
rule discovery is similar to FOIL3 as it also finds first-order rules. Unlike
FOIL, which is exhaustive in terms rule discovery, RRR adds the conjunc-
tive literals randomly. To validate the quality and the coverage of the dis-
covered rules they use stochastic discrimination [Kleinberg, 2000]. This rule
set is then used as the basis for their propositionalisation method RRR-P.
RRR-P first checks the rule set for the sufficiency of coverage for both the
negative and the positive classes, if not, it calls RRR to generate further
rules. RRR-P generates boolean attributes that are based on the rules from
the rule set. Each of the generated attribute records True, if the respective
rule is true for a given target example or False, otherwise.

The methods of Alfred et al. [Alfred and Kazakov, 2007; Alfred,
2008b,a, 2011, 2009] are similar to the RRR-P method in terms that the
propositionalisation process is driven by pattern-based aggregation. How-
ever, their notion of pattern is more elaborate than the one used by An-
derson et al. [Anderson and Pfahringer, 2007, 2008]. Their core method
is called Dynamic Aggregation of Relational Attributes (DARA). The patterns
that they discover are based on what they term as cross-aggregation. The
cross-aggregation is a combination of the vertical aggregation4 and the hori-
zontal aggregation5. Their method of finding patterns is explosive in terms

3FOIL is method from ILP for Rule Generation
4A vertical aggregation is similar to the column-based aggregation as used in Re-

lAggs[Kroegel, 2003] and Relational Concept Classes [Knobbe et al., 2001].
5A horizontal aggregation is similar to the rule-based aggregation used in RRR [An-

derson and Pfahringer, 2007, 2008, 2009].
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of number of seed attributes that it generates. To avoid the curse of dimen-
sionality, they compute the weight of each pattern-based attribute. This
computation is straight forward and is based on pf-irf score, where pf is
the pattern frequency and irf is the inverse record frequency. The seman-
tics of pf-irf are similar to that of tf-idf scores commonly used in the field
of information retrieval for document clustering.

In general, the propositionalisation overhead grows exponentially with
the number of attributes that are created to accommodate the rows of ta-
bles into a single propositionalised table [Dzeroski and Lavrač, 1993; Lav-
rač and Flach, 2001; Knobbe et al., 2001; Alfred, 2011; Lachiche, 2005; Al-
fred, 2009; Alfred and Kazakov, 2007; Alfred, 2008b]. The method of An-
derson et al. [Anderson and Pfahringer, 2008, 2007, 2009; Alfred, 2008a]
uses first-order rules whose expressiveness enables it to limit the number
of generated attributes. However, the complexity required for the vali-
dation of the discovered rules is exponential (noted in [Dzeroski, 2003]
as well) and is a significant drawback. On the other hand, the algorithm
RelAggs [Kroegel, 2003] achieves propositionalisation that is linear to the
number of generated attributes. This is important for our stream cluster-
ing task, so we opt for RelAggs as the basis of our stream propositionali-
sation.

2.2 Stream Mining Paradigm

Streaming data or data streams are not a new phenomenon but we have
only recently started to investigate them. Data streams are often charac-
terised by high arrival rate, massive size and the notion that they are dy-
namic, e.g., in domains such as wireless network, sensor networks, science
and finance where data is produced continuously. Algorithms that operate
on data streams have to take into account that 1) data arrive continuously,
2) data is open ended and potentially infinite and cannot be accommo-
dated in the main memory, 3) data objects arrive in a specific order (with
system having no control to alter the ordering), and 4) the distribution
function that generates data is dynamic and can change over time.

These requirements put forward massive challenges for the algorithms
that operate over such data. Streaming algorithms must learn the model
from the incoming data and update it in an online fashion. Many algo-
rithms tackle the problem of open-ended nature of data by storing a frac-
tion of (most recent) data in memory buffers or the so called time windows.
Depending on the nature of the data, time windows can be landmark win-
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Figure 2.4: Different types of time windows.

dows, sliding windows6 or tilted-time windows (see Figure 2.4). A landmark
window defined over a stream of incoming data is accumulative, i.e., as
new data arrive, it is added to the window and the size of the window
grows. A sliding window holds a limited amount of data. As new data
arrive, it gets added to the window and at the same time, the old data is
forgotten. A tilted-time windows stores the complete data at multiple level
of granularity. The most recent data is stored at the highest resolution, i.e.,
every point is stored, while as the data gets older, it is stored in increas-
ingly concise summaries.

2.2.1 Stream Management

Sampling and window size adaptation are investigated in the context of
concept drift detection and adaptation. The simplest approach is to use a
sliding window of fixed length w. However, adaptation is needed if the
speed of the stream changes or other forms of concept drift occur. The
methods of [Gama et al., 2004; Widmer and Kubat, 1996] discard individ-
ual objects on the basis of their usefulness in terms of learning the concept.
ADWIN by Bifet et al. uses the notion of adaptive windowing where the
window grows during seemingly static scenarios and shrinks when the
data start to change [Bifet and Gavaldà, 2007]. Unlike other approaches it
is assumption-free in the sense that it adapts to the environment. The only
parameter is the confidence bound δ that indicates how confident users
want to be in the output provided by the algorithm.

6can be of a fixed size or can change depending on the nature of the distribution in the
data
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Most literature on sampling deals with sampling over static data and
individual streams, which is different from the problem that we address.
Chuang et al. [Chuang et al., 2009] point out that sampling over streams
has its basis on the two sampling methods, reservoir sampling [Vitter, 1985]
and sequential random sampling [Vitter, 1987]. Chaudhuri et al. point out
that it is inefficient to perform sampling on the output of query result
[Chaudhuri et al., 1999]. For a given query tree T , their method does not
sample at the root but rather pushes the sampling operator down to the
leaves.

Babcock et al.’s sampling algorithm priority sampling has been designed
for the sliding window and generates the sample sequentially [Babcock
et al., 2002]. However, the sampling is random and is done after the join
and on the result of the join between the two streams than over streams
individually. Johnson et al. propose a new stream sample operator that pro-
vides approximate answers [Johnson et al., 2005]. Or in other words, their
focus is more on aggregation aspect of sampling. Chaung et al. proposes
a novel sampling algorithm, feature-preserved sampling that can maintain
a quality sample, sequentially, for a given sample rate p [Chuang et al.,
2009]. They do so by preserving the distribution characteristics for each
attribute in the sample, as in the population.

Stream join algorithms incorporate a mechanism that discards old tu-
ples. PROB retains those tuples that are referenced many times [Das et al.,
2003], while LIFE discards the oldest ones [Das et al., 2003]. AGE assumes
that the benefit of storing a tuple is a function of its age, modelled as the
time that it remains within the sliding window [Srivastava and Widom,
2004]. Law and Zaniolo presents an algorithm for load shedding of tuples
across a join involving more than two streams [Law and Zaniolo, 2007].
Xie et al. distinguish between joins involving two streams and those in-
volving a stream and a static table [Xie et al., 2005]. The first operation
(i.e., a join involing two streams) is termed joining, while the second one
(i.e., a join involving a stream and a static table) caching.

Our window management algorithm presented in [Siddiqui and Spi-
liopoulou, 2009a] borrows the formulation from Xie et al. [Xie et al., 2005].
Our method distinguishes between tuples that can be forgotten and those
that cannot be forgotten. For the ones that can be forgotten it uses a sliding
window and for the ones that cannot be forgotten it uses caching as used
by Xie et al. [Xie et al., 2005]. It can perform load shedding across multi-
ple streams by utilising transitive references [Siddiqui and Spiliopoulou,
2009a].
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2.2.2 Stream Clustering

Clustering on data streams is an active research area. Most stream based
clustering algorithms process and then discard tuples. The method of
Bradley et al. [Bradley et al., 1998] is based on identifying regions that
must be maintained in memory and regions that are discardable. The al-
gorithm maintains a buffer of incoming tuples. K-Means7 is applied over
the filled buffer until convergence. The discardable regions are identified
and are replaced with a compressed tuple placed at the mean of a discard-
able region and is weighted with the cardinality of the discarded region.
The acquired space in the buffer is filled with next batch of tuples.

The clustering method presented by Farnstorm et al. [Farnstrom et al.,
2000] is based on the clustering method of [Bradley et al., 1998]. They
point out that data compression is an expensive strategy and does not nec-
essarily improve clustering. They remove all the expensive computations
needed to identify the regions that can be discarded and cannot be dis-
carded. Instead, their method treats each cluster as a discardable region.
Similarly to Bradley et al., each discarded region is replaced with the re-
gion’s mean and weighted with the cardinality of the discarded region.

Callaghan et al. maintain a buffer to store points into batches of m
points [O’Callaghan et al., 2001]. After the clustering on the buffer, it re-
tains the K centres along with statistics and discards the contents of the
buffer. The buffer is refilled with new data points and the process is re-
peated with all the points. Guha et al. maintain at each moment the m
most recent tuples and K medians that stand for K ×m tuples seen in the
past [Guha et al., 2003].

Aggarwal et al. [Aggarwal et al., 2003] pointed out that one pass algo-
rithm over a data stream can be dominated out dated data. They go on
to suggest that the exploration of the stream over different time windows
can provide the users with a much deeper understanding. They present a
micro-clustering approach, CluStream, that maintains clustering in multi-
ple snapshots of pyramidal time frame. TECNO-Stream method of Nas-
raoui et al. [Nasraoui et al., 2003] for clustering streaming is inspired from
the working of human immune systems. At the core of their method are
the DWB-cells, which are very similar to the micro-clusters of Aggarwal et
al. [Aggarwal et al., 2003]. DWB-cells operate in an online step to approx-
imate the incoming data. Similarly to Aggarwal et al. [Aggarwal et al.,
2003], the final clustering model is generated by applying a K-means algo-

7For the initial timepoint t0, k centres are randomly initialised. At every subsequent
timepoint ti, k centres are initialised with the centres from the previous timepoint, i.e.,
ti−1
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rithm over these DWB-cells. DenStream method of Cao et al. [Cao et al.,
2006] also uses the concept of micro-clusters to approximate the fast stre-
aming data. However, their micro-clustering structure is used as the basis
to learn a density-based clustering model [Ester et al., 1996].

All previous works learn a model on a single stream of objects that
are seen once and then forgotten. There are also studies on combining
multiple streams to learn a model, as discussed below. However, they still
consider objects (texts of news for example) that are seen once and then
are forgotten, rather than multiple streams of ephemeral objects that add
information to perennial objects.

Beringer and Hüllermeier present an elaborate method that aims at
clustering multiple data streams [Beringer and Huellermeier, 2006]: for
each individual stream they store data points into m blocks of v points
each that define a window w ofm×v most recent tuples. Before launching
k-means based incremental clustering, a pre-processing step incrementally
computes the distance between the streams using Discrete Fourier Trans-
formation. To track data evolution they also include a fuzzy-based ap-
proach for the dynamic updating of the optimal number of clusters.

The framework Clustering on Demand (COD) by Dai et al. [Dai et al.,
2006] clusters multiple data streams by performing an online and offline
step. The online step is used for statistics collection and summary gener-
ation from the raw incoming data. They describe two methods for sum-
mary generation; a wavelet-based and regression-based. The summaries
that they maintain are in pyramidal representation, where each level de-
notes a different level of approximation. The offline step operates over
these summaries for the generation of a clustering model. Their pyrami-
dal summary structure, makes it possible to learn a clustering model with
adaptive window sizes.

Another method for clustering over multiple streams is COMET-CORE
by Yeh et al. [Yeh et al., 2007]. Like the methods of Beringer and Hüller-
meier [Beringer and Huellermeier, 2006], and Dai et al. [Dai et al., 2006],
COMET-CORE also stores a summarised representation of the incoming
streams by using liner approximation8. They also use the linear approxima-
tion method to identify events that occur in the individual streams. Only
on the basis of these events they adjust the clustering model by splitting
and merging clusters.

Differently from the methods discussed thus far, the method of Wang et
al. [Wang et al., 2000] proposes a probabilistic framework to mine similar
topics from multiple asynchronous text streams. The main idea in their

8„The incoming streams are smoothed as sequences of end points” [Yeh et al., 2007]
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approach is to utilise the information on a certain topic from the multiple
text streams to build a combined reinforced model.

The methods that operate on multiple streams are not appropriate for
a stream of perennial objects, because they assume a fixed schema. Mining
methods that do deal with relational data are discussed in Section 2.2.5.

2.2.3 Stream Classification

One of the first works to address the issue of incremental tree induction
was the work of Schlimmer and Granger [Schlimmer and Granger, 1986].
Their proposed method ID4 is an extension to the ID3 method of Quinlan
[Quinlan, 1983]. It processes each example (tuple/object with its label) as
it arrives and learns the tree incrementally. All statistics needed to com-
pute the entropy of each attribute and choose the one with lowest entropy,
Xa, are stored at the nodes. At a later timepoint, if Xa no longer has the
lowest entropy, it is replaced by the one with lowest entropy. In doing
so ID4 also discards all the sub-trees below the node Xa. If the choice of
decision attributes changes often during training, then sub-trees will be
discarded repeatedly. This makes ID4 sensitive to the ordering of incom-
ing examples, rendering certain concepts unlearnable by the algorithm.

Utgoff proposed two methods for incremental construction of decision
trees, ID5 [Utgoff, 1988] and ID5R [Utgoff, 1989]. The basic idea of keep-
ing the statistics at the nodes is similar to [Schlimmer and Granger, 1986].
However, instead of keeping concise statistics, they store complete exam-
ples. The monitoring of entropy E(Xa) for a candidate attribute Xa is as in
[Schlimmer and Granger, 1986]. However, when another attribute Xb ex-
hibits the lowest entropy, ID5 re-structures the tree only to ensure that Xb

becomes the root; unlike the algorithm in [Schlimmer and Granger, 1986],
it keeps the original sub-trees without changing them. ID5R [Utgoff, 1989]
shifts Xb at the root, but then proceeds recursively with re-structuring be-
low the root node. Due to this, ID5 is unable to guarantee that the tree
would be similar to that of an ID3 algorithm given the same examples,
while ID5R does.

All of the above algorithms induce a decision tree by a greedy search
mechanism that requires restructuring the tree, if the selection for a spe-
cific split attribute Xa (the "split decision") needs to be revised. The met-
hod of Gratch induces a decision that is significantly different from the
greedy approaches [Gratch, 1996]. Gratch notes that the optimal split de-
cision cannot be achieved without a finite sample, so the proposed method
" selects an attribute that is within ε of the best with probability 1− δ, tak-
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ing as many examples as are sufficient to ensure a decision of this [given]
quality."

More recently, Domingos and Hulten presented their incremental de-
cision tree induction method VFDT [Domingos and Hulten, 2000]. They
note (with Catlett [Catlett, 1991]) that a small subset of training examples
is sufficient to select the best split attribute for a given node. They use the
so-called Hoeffding bound to determine the number of training examples
that are required. More formally, consider a real-valued random variable
r whose range is R. Suppose we have made n independent observations
of this variable and computed their mean r̄. The Hoeffding bound states
that, with probability 1− δ, the true mean of r is in [r̄ − ε, r̄ + ε], where

ε =
√
R2ln(1/δ)

2n (2.1)

At each timepoint, VFDT applies the Hoeffding bound upon the dif-
ference ∆G between the information gain of the best split attribute G(Xa)
and of the second best attribute G(Xb). In particular, assume that the two
attributes deliver (asymptotically) the same gain, i.e., they are interchange-
able. The true mean of their difference would then be zero and ∆G would
be less than 0 + ε, where ε is computed as in Eq.2.1 with n being the num-
ber of examples seen thus far. Hence, if ∆G is found to be larger than 0+ ε,
then the best split attribute Xa is significantly better than the second one,
and VFDT uses it as a new leaf node, growing the tree upon it. If ∆G is
less than ε, then VFDT postpones the split until a best split is found that is
significantly better than the second best.

Hulten et al. extended the VFDT to deal with concept drift: the CVFDT
updates the tree as soon as the learned concept starts to change [Hulten
et al., 2001]. They also introduce a notion of window that stores only the
most recent objects and removes the old ones, i.e., those that fall out of the
window.

The algorithm VFDTC of Gama et al. makes use of a minimal set of
statistics (they call them sufficient statistics9) calculated at the leaves [Gama
et al., 2003]. VFDTC is an extension of the original VFDT [Domingos and
Hulten, 2000] that employs Naïve Bayes at each leaf node to assign the
node’s members to the classes with help of these statistics. They show
that they achieve better performance and can also recognize concept drift

9Sufficient statistics store the information about the distribution of class labels with
respect to each attribute-value pairs. This information is maintained for each node in the
tree. For example, (att=forecast, val=rain) → [+ve=90, -ve=10]. It says, that of the 100
examples that satisfy (forecast=rain), 90 belong to the positive class while 10 belong to
the negative class.
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by detecting performance degradation. Their proposed system can also
handle numerical attributes.

Methods that learn a classifier on evolving relational data, like the
SRPT algorithm of McGovern et al. McGovern et al. [2008], are presented
in Section 2.2.5.

All aforementioned algorithms operate on a single stream of data and
under a fixed schema. As we explain in Chapter 1, a multi-relational str-
eam of perennial objects implies combining the individual streams at each
timepoint; this combination of streams incurs a change in the schema. Fur-
thermore, the stream classifiers assume that objects are seen only once,
whereas perennial objects are seen more than once and experience changes
- including changes in their label.

2.2.4 Rule Mining over Streams

Conventional classification rules have the form

A . . . B → l

where the antecedent A, . . . , B are any combination of (attribute,value)-
pairs and the consequent part l is a class label.

Among the first works on association rules for classification were CBA
[Liu et al., 1998] and ADT [Wang et al., 2000]. These methods discover
rules and then apply a selection procedure to choose the most predictive
ones.

Rule mining algorithms, in general, suffer from the problem of combi-
natorial explosion of the discovered patterns. The main challenge is how
to effectively mine, store and find interesting rules. Data streams with
their inherent properties and requirements bring newer challenges in the
rule mining domain. Yu and Chi [Yu and Chi, 2009] in their survey on
rule mining algorithms, distinguish between exact [Chi et al., 2004; Veloso
et al., 2002] and approximate [Hidber, 1999] rule miners over streams. In
the remainder of this sub-section, we discuss the relevant work from rule
mining with respect to above categorisation, i.e., of Yu and Chi [Yu and
Chi, 2009].

The methods IRIL [Aydin and Güvenir, 2004] and ICRIL [Aydin and
Güvenir, 2005] by Aydin and Güvenir, deal with classification rules over
streaming data. The objective of the proposed algorithms is to model inter-
estingness of the rules and not to build a classifier. The notion of interest-
ingness used by the algorithm is subjective and requires user interaction.
The algorithms assign an application-specific label to the rules, e.g., they
label rules on whether they are interesting to the user.

22



The work of Gupta et al. [Gupta et al., 2005] uses concept analysis
for discovering classification rules incrementally. The rules are defined as
concepts and are stored in one lattice per class. Each concept has an extent
A (number of tuples supporting it) and an intent B (attributes common
to A). For discovering rules, the algorithm simply traverses the lattice
and returns the rules with the label as consequent. As new tuples are
presented to lattice, it updates the existing concept in the lattice and if
some concept is missing, it is added to lattice. The algorithm can only
handle binary attributes. Moreover, it is not entirely clear how would the
algorithm behave if some concept exists in more than one lattice, i.e., in
lattice of other classes.

The method of Ferrer et al. FACIL [Ferrer-Troyano et al., 2005] is a clas-
sification rule mining algorithm for numerical data streams that focuses
on processing border examples. FACIL iterates over the examples multi-
ple times to discover rules by storing border-examples. As new examples
are added, FACIL computes the rule purity (i.e., the extent to which a rules
contains examples from a single class). When the purity threshold for a
certain rule goes above a user-defined threshold κ, the examples stored
inside are used to split the rule into purer rules. As new test examples
arrives, they get classified by consistent rules10 on the basis of coverage,
whereas inconsistent rules classify the examples using the nearest neigh-
bour classification.

Methods of Cheun et al. FUP [Cheung et al., 1996] and FUP2 [Cheung
et al., 1997] are batch update algorithms. FUP only considers insertion of
new transactions while FUP2 considers deletion as well. The algorithms
are similar to the Apriori algorithm of Agrawal and Srikant [Agrawal and
Srikant, 1994]. FUP and FUP2 discover itemsets L over a window of in-
coming transactions D. As a new transactions batch D+ arrives, it incre-
mentally updates L over the new window D ∪ D+. Only FUP2 considers
the deletion.

The algorithm of Thomas et al. is similar to FUP2 [Thomas et al., 1997].
Additional to the set of frequent itemsets L, it also keeps a so called nega-
tive border NBd(L). A negative border stores all those itemset that were part
of candidates for frequent itemset but their support were lower than the
threshold. As a result, whenever an itemset from negative border becomes
frequent, unlike FUP2, the algorithm of Thomas et al. has to mine the up-
dated window, i.e., D ∪D+, at most once. Thus, achieving a performance
improvement at the cost of slightly more memory.

ZigZag algorithm of Veloso et al. [Veloso et al., 2002] uses D+ to up-

10the ones that contain examples from a single class only
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date the support of the itemsets but not for finding new frequent itemsets.
To avoid combinatorial explosion, it maintains only the maximally frequent
itemsets which results in information loss and a database scan is required
to discover the support of all frequent itemsets.

Moment maintains only the closed frequent itemsets over a sliding win-
dow [Chi et al., 2006]; for these itemsets there is no information loss. The
authors use a tree-based data structure, closed enumeration tree (CET), to
store selected itemsets over the sliding window. The selected itemsets
must either be frequent themselves or their parents must be frequent. The
nodes inside the tree are characterised as infrequent, unpromising, interme-
diate and closed based on their support count and if there support count
is same as their child or parent. They define a boundary between closed
nodes and rest of the nodes. With the arrival of transactions, the support
counts of the nodes get updated and the boundary, defined between the
closed nodes and others, gets updated. The new itemsets are captured
through these boundary movements.

Unlike the methods that have been discussed previously, the method
of Hidber, CARMA [Hidber, 1999], is a one-pass approximate algorithm
that uses a lattice L, to store the frequent itemsets. As a new transaction
x arrives, CARMA adjusts the support of all the relevant itemsets in L. If
some itemset u appears x but is not in the lattice, i.e., u /∈ L, u is added to
the lattice if and only if all the subsets of u are already present in the lattice
and meet the minimum support requirement. Since a newly created item-
set may have missed some previously inserted tuples (an itemset cannot
be added before its subset), CARMA keeps a count on the number of tra-
nsactions that might have been missed and maintains support intervals for
each itemset in the form [sl, su]. If it is possible to retrieve the transactions
again, CARMA can calculate the exact support of u.

The Very Fast Decision Rules (VFDR) of Gama and Kosina [Gama and
Kosina, 2011] has some conceptual similarities to our classification rule
miner CRMPES (Chapter 6, [Siddiqui and Spiliopoulou, 2011]), which we
use as preprocessor to our relational stream classifier TrIP(Chapter 5). This
is a non-adaptive, single-pass method that is inspired from the VFDT met-
hod of Domingos and Hulten [Domingos and Hulten, 2000]. Similarly to
VFDT, it also maintains information in the form of sufficient statistics (cf.
Section 2.2.3). Similarly to VFDT whose selection for the best attribute
for splitting a leaf node is based on the hoeffding bound [Catlett, 1991],
VFDR’s decision for choosing the best literal for rule expansion is also
based on the hoeffding bound.

Our method for discovering the classification rules for perennial str-
eams, CRMPES (cf. Chapter 6, [Siddiqui and Spiliopoulou, 2011]) is a

24



single-pass algorithm that is inspired from CARMA [Hidber, 1999]. It
stores the rules in the form of a concept lattice and each element in the
lattice stores the sufficient statistics for lattice expansion [Domingos and
Hulten, 2000]. For expanding the lattice with more rules it also makes use
of the hoeffding bounding. To manage the number of discovered rules, it
stores only the closed itemsets as in Moment [Chi et al., 2006].

2.2.5 Relational Mining on Streams

The focus in this section is specifically on the multi-relational methods for
streams. The discussion on research advances mostly focus on classifica-
tion, summarisation and frequent pattern mining.

Relevant to our idea of stream mining upon multi-relational objects
is the SRPT algorithm proposed by McGovern et al. [McGovern et al.,
2008]: the algorithm operates upon spatio-temporal data of numerical na-
ture (e.g., time-series of meteorological phenomena like wind up-drafts),
accompanied by attributes that summarise the time-series or check condi-
tions upon them (e.g., whether the observed mean of a specific time-series
exceeds a specific threshold or whether some explicitly defined event has
been observed in the most recent timepoints)11. The SRPT induces a tree
using the greedy heuristic approach with a chi-squared (χ2) test. The ob-
jective of SRPT is to probabilistically assign each object (e.g., a storm) com-
posed of multiple time-series to a set of predefined classes (e.g., the classes
"positive", "negative" and "maybe" for storms). Since the time-series are
read incrementally12, SRPT can be interpreted as a stream mining algo-
rithm; since it operates on multiple streams, it is relational. Dissimilarly
to our problem specification (c.f. Chapter 1), though, SRPT does not deal
with nominal attributes. Since the products purchased by a customer or
the medical treatments of a patient cannot be transfered to time-series, and
since SRPT assumes only a priori defined nominal meta-data, SRPT does
not seem to transfer to the problem we want to solve.

SRRF (Spatio-temporal Relational Random Forests) [Supinie et al.,
2009] is an extension to their earlier work on SRPT [McGovern et al., 2008].
The approach is inspired from the random forests [Breiman, 2001] for static

11There is not much text in [McGovern et al., 2008] on what art of summarisation in-
formation should be used in the general case, how it is to be computed and updated
efficiently, nor about the space it consumes. The authors mention possible examples of
meta-information for an example application, though.

12It is not really incremental but it can take the order and time information into account.
Moreover, there are no methods provided for updating or altering the tree if some concept
drift occurs.
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data, where different C4.5 [Quinlan, 1986] are trained on different subsets
of the data with a different attribute set (selected randomly). Each subset
of the data is created through sampling and individual SRPT in SRRF uses
a greedy approach to induce the decision trees over the subset. The trees
are left unpruned.

In their introductory work on learning regression over evolving multi-
relational streams [Ikonomovska and Dzeroski, 2011], Ikonomovska and
Dzeroski have identified two potential solutions for relational regression
on evolving streams that are worth exploring further. First, is the syn-
chronisation of the streams. In multiple-interrelated streams, target objects
(the perennial objects from the target stream) and the objects that reference
them from other streams, do not all arrive at once and it is imperative that
the objects are stored for some amount of time. In this regard they have
proposed the use of sliding windows of varying sizes over each individual
stream [Ikonomovska et al., 2011] and only use most recent data. Their
second proposal deals with the computation of summaries or sketches
over the multi-relational streams. These summaries can then be efficiently
queried for building the regression model.

While work exists on summarising individual streams for approximate
query answering, summarisation of evolving relational streams is still a
new field. Unlike the relational stream mining methods discussed above,
work of Csernel et al. focus on the summarisation of the multi-relational
streams [Csernel et al., 2007]. Unlike propositionalisation, this method
does not summarise the streams for a propositional learner to be applied,
but simply generates a summary of the streams. In doing so, though, it
preserves as much information on the entities and their relationships as
possible. For this purpose, they use micro-cluster [Aggarwal et al., 2003]
and blooms filters13 [Bloom, 1970] to summarise the content of the individ-
ual entity stream. For summarising the relationship information between
different streams, they use cross-table summary structures. Their method
only considers the case where new data gets added to the individual str-
eams, i.e., they do not forget old information.

Discovery of relational patterns on streams is studied in [Fumarola
et al., 2009; Ceci et al., 2009]. Fumarola et al. [Fumarola et al., 2009] present
a sliding window algorithm for mining relational frequent patterns from
data streams. The relational patterns are discovered for each slide (unit
of sliding window). The relational patterns are stored using SE-Tree [Ry-
mon, 1993] and, once the patterns have been mined the slide is discarded.
Instead for maintaining a separate SE-Tree for each slide, each node (or

13Bloom filters are based on hash-coding
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pattern) in the SE-Tree keeps a w−sized sliding vector sv(w) that stores the
support of all patterns in each slide of the window separately. To deter-
mine if a pattern P is frequent, an approximate support is computed using
the local support values sv(w).

The work of Ceci et al. [Ceci et al., 2009] searches for novel relational
pattern over a sliding window. According to [Ceci et al., 2009] a pattern P
defines novelty if it has approximately the same support for all timepoints
within a window [ti, ti+w), except for the last timepoint ti+w, i.e.,

suppti(p) ≈ . . . ≈ suppti+w−1(p) 6= suppti+w
(p)

Their approach is made up of two steps. During the first step relational
patterns are discovered. In the second step only those are retained that are
consistent with the novelty criterion defined above.

2.3 Summary

In this chapter we have provided a concise and targeted survey of the
relevant works that set the contribution of this thesis within state-of-the-
art. We have discussed notable work from relational mining, especially,
the work on propositionalisation of relational databases. We have also
discussed important work from the domain of stream mining, which in-
cludes management of streaming data, stream clustering, stream classifi-
cation and rule discovery from data streams. Additionally, this chapter
also serves as a motivation and provides basics that are essential for un-
derstanding the contribution of this thesis, i.e., for solutions on managing
and mining over perennial objects, which are discussed in the subsequent
chapters.
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CHAPTER 3

Managing Perennial Objects

This chapter forms the core of this thesis. We start with an example in
Section 3.1, where we briefly outline our solution for handling perennial
objects from multiple-interrelated streams. In Section 3.2, we describe the
incremental propositionalisation algorithm and the sub-procedures that
are essential for the algorithm. In Section 3.3, we present an incremen-
tal clustering algorithm that operates over a propositionalised stream of
perennial objects. The terms and symbols that are used in this chapter are
given in Table 3.1.

3.1 Building Perennial Objects

Perennial objects are complex and dynamic (as already discussed in Sec-
tions 1.1.2), that are fed with objects from the neighbouring interrelated
streams. The algorithm first proceeds by determining a target stream T ,
which is central to learning. For example, stream of customers at an online
retail store and/or stream of patients at a hospital forms the target stream.
Depending on the type of relationship of the target stream with the other
streams 〈S1, . . . Sj〉, the algorithm concatenates the objects from other str-
eams directly (1-to-1 or m-to-1) or after the aggregation/summarisation
(1-to-m) of the objects from other streams.

The incremental propositionalisation algorithm operates at discrete ti-
mepoints 〈t1, . . . , ti, . . .〉. Unlike the stream mining paradigm of Guha et
al. [Guha et al., 2003], where ti is the arrival time of an object xi, in our
scenario, ti is defined as the end of some period, e.g. a week or year: this
is closer to the intuition of building models at regular intervals. In the re-
maining of the section, the incremental propositionalisation algorithm is
outlined informally, with the help of a running example. We explain it in
detail in Section 3.2.

The core idea of propositionalisation over static data is [Siddiqui and
Spiliopoulou, 2009a; Kroegel, 2003]:
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Table 3.1: List of used terms and symbols.
Symbol Notation
t1, ti initial and current timepoint, (model is learned at

discrete timepoints).
Schema and Streams
T Target stream of perennials: central to learning.
S=〈S0 . . . SJ〉 A set of multiple-interrelated streams, where S0 is

always the target stream, i.e., T = S0.
XB Base schema of multiple-interrelated streams.
X ∗ A star schema of XB with T at its centre.
Pi Propositionalised perennial stream at ti.
Memory Management
Cj
i ,W

j
i cache xor window associated with Sj at ti. CTi is

the cache associated with T . Alternatively, CS
i is

the cache associated with S. Alternate notation is
used for other symbols as well, e.g., NS , QS

i (x), etc.
Y j
i Y j

i stands for Cj
i xor W j

i .
ω Length of W j defined over ephemeral streams.
N=〈N0 . . . NJ〉 Set of cache sizes. N j is the size of Cj over Sj . If Sj

is ephemeral, then N j = ∅. NT is the size of CT .
Cache Mechanism
Qj
i (x) # references for a perennial object x ∈ Sj at ti.

Q̂j(x) composite counter for maintaining references for
x ∈ Sj .

M j,M j
soft Hard and soft limit on # counters Q̂ for Sj .

β ∈ [1,∞) Rate of decay. Used in conjunction with β−∆t.
Space Adjustment for Nominal Attributes
A An attribute from stream Sj .
domain(A, ti) Domain of an attribute A (nominal) at ti.
rA # count columns reserved for A (nominal).
Incremental Clustering
K Number of clusters to be discovered.
ζi Clustering model learned over Pi at ti.
ρmin User-defined threshold for change detection.

„Each object x of the target table (or stream) T is expanded
by joining it with all objects that refer to it (via external tar-
get identifiers). If x joins with more than one object, i.e., with
a set of objects matches(x) ← {y1, y2, . . . , yn}, then these ob-
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jects must be summarised into a single propositionalised ob-
ject. This is done by adding new summary attributes/features
to the schema of T for each distinct attribute that appears in
the set matches(x).”

TID CID PID Time CID Name Married Income TID CID Name Married Income PID Price Category Time

1 1 1 1 1 David S 20000 1 1 David S 20000 1 100 Book 1

2 1 1 1 2 Tom M 65000 2 1 David S 20000 1 100 Book 1

3 2 1 1 3 Harris M 90000 3 2 Tom M 65000 1 100 Book 1

4 2 2 1 4 2 Tom M 65000 2 50 DVD 1

5 1 2 2 PID Price Category 5 1 David S 20000 2 50 DVD 2

6 1 2 2 1 100 Book 6 1 David S 20000 2 50 DVD 2

7 2 1 2 2 50 DVD 7 2 Tom M 65000 1 100 Book 2

8 1 3 3 3 25 CD 8 1 David S 20000 3 25 CD 3

9 3 3 3 9 3 Harris M 90000 3 25 CD 3

Natural JoinOriginal Schema
Transaction Customer

Product

CID Name Married Income Count AVG_P MIN_P MAX_P Count_Book Count_DVD Time

1 David S 20000 2 100 100 100 2 0 1

2 Tom M 65000 2 75 50 100 1 1 1

1 David S 20000 4 75 50 100 2 2 2

2 Tom M 65000 3 83.333 50 100 2 1 2

1 David S 20000 3 41.667 25 50 1 2 3

3 Harris M 90000 1 25 25 25 1 0 3

Propositionalised Table

Figure 3.1: Incremental Propositionalisation of a perennial stream (a) con-
sisting of target stream Customer, which is fed by objects from the str-
eams Transaction and Products (blue arrows depict the sliding-window as
it moves across timepoints while lighter shades in the Customer and Prod-
uct stream represents the stream cache), (b) n-way join of the target stream
with other streams and (c) propositionalised stream.

The task of the incremental propositionalisation algorithm is to trans-
form multiple interrelated streams consisting of perennial objects, into a
single stream, a propositionalised stream. In Figure 3.1 we see multiple in-
terrelated streams arriving at different speeds. The ’Customer’ stream is
associated with the ’Product’ stream and the ’Transaction’ stream. We ob-
serve the Customer stream as the target stream, in the sense that this is the
stream on which we want to perform mining, exploiting also the infor-
mation from the other streams that feed it. It is obvious that the number
of products purchased by a customer changes over time and so is the in-
formation accumulated about each customer’s product preferences and
regularity of purchases. It is also obvious that a customer object must be
joined with all transactions of this account, and be thus kept for as long
as such transactions are expected; customer objects are perennial (and so

31



are products). On the other hand, the transactions themselves may be dis-
carded immediately after being read; they are ephemeral.

The incremental propositionalisation algorithm assigns a cache and a
secondary storage for long-term maintenance to each stream of perennial
objects, and a sliding window to each stream of ephemeral objects. In the
example of Figure 3.1, a sliding window of two time units (depicted by
dotted arrows) is specified for the ’Transaction’ stream and caches are de-
fined for the ’Customer’ and the ’Product’ stream; each of the caches can
accommodate two objects.

Propositionalisation is performed incrementally at each timepoint ti on
the contents of the caches and windows. It starts with a semi-join be-
tween the contents of the cache for the target perennial stream T and the
cache/window of each stream Sj associated to T . Hence, for each stream
Sj that is in 1-to-m or m-to-n relationship to T , each object x ∈ T is asso-
ciated with the set of matching objects matches(x) ⊂ Sj .

Then, the incremental propositionalisation algorithm summarises the
objects in this set into a single sub-object. To summarise the values of each
numerical attribute A in matches(x), the algorithm generates four attribu-
tes: the min, max, sum, and average of A’s values seen in matches(x). To
summarise each nominal attribute A, we generate as many columns(rA)
for A as there are distinct values in

⋃
xmatches(x) at t1. The domain of

A may change after t1, in the sense that previously unseen values emerge,
while old values are no more referenced. If the domain grows larger than a
user provided threshold rA, then values are grouped into K = rA clusters.
At the end of the propositionalisation phase, each object of the (perennial)
target stream T is expanded by summarised attribute values from each
stream Sj associated with it.

3.2 Inceremental Propositionalisation Algo-
rithm

The incremental propositionalisation algorithm is explained in detail in
the following sections. First, we describe each individual component and
then explain the final algorithm at the end.

3.2.1 Memory Management

The incremental propositional algorithm operates at discrete timepoints.
Because streams are by definition infinite, only a small portion of the stre-
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aming data, arriving at timepoint ti, can be maintained in the main mem-
ory. This data is used to built the model ζi at ti. In this section, the memory
management strategies for handling perennial and ephemeral objects are
discussed, which explain how we update memory structures to prepare
for adapting the model ζi+1 at ti+1.

A perennial object is fed by objects from neighbouring streams which
can be ephemeral or perennial. In the running example (cf. Figure 1.1),
the streams ’Customers’, ’Products’ and ’Webpages’ are perennial by na-
ture and the objects from these streams may not be forgotten. On the other
hand, the stream of ’Transactions’ and ’Clicks’ are ephemeral; as individ-
ual transaction (or click) objects get older, they have less and less influence
on the model ζi at ti. These different properties require different mecha-
nisms of memory management. We employ a caching strategy coupled
with the secondary storage for perennial streams, and a sliding window
of fixed-size for ephemeral streams. The sizes of the individual caches de-
fined over perennial streams may vary from one stream to the other. The
size of the sliding window ω is uniform for all ephemeral streams.

Cache Management For Perennial Objects

We associate each stream of perennial objects Sj (same for target stream
T ) that may not be forgotten with a fixed-size cache CSj . Because of the
finite size of the cache, only a limited number of the objects can be main-
tained, while the rest are kept in the secondary storage. The contents of
the cache CSj

i get updated at each discrete timepoint ti, as new data ar-
rive. The objects to be stored inside the cache are chosen on the basis of
their importance. The importance of an object for the caching purpose can
be calculated in various ways, e.g., most frequently referenced, most re-
cently referenced.

If an object that is not already in the cache, is referenced by an object
from another stream, then this object must be fetched from the secondary
storage; then, some objects must be put back to secondary storage to make
space. The process of cache maintenance is depicted in Figure 3.2. In the
example, the size of the cache is three and the objects to be cached are
chosen on basis of how frequently they are referenced. At timepoint ti,
the cached objects are X, P and Z. With the arrival of new data at a later
timepoint ti+1, the reference count for object D becomes greater. Based on
its score, object D is brought into the cache while object Z is spilled onto
the secondary storage.

The mechanisms determining which objects should be retained in the
cache are presented in the following.
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Figure 3.2: Cache maintenance for perennial objects. The cache mainte-
nance involves keeping track of the perennial objects as they arrive in the
streams and then keeping the ones that are important; an example func-
tion is G() (cf. Equation 3.1); alternate importance functions are discussed
below.

Cache Mechanism 1 The basic cache update mechanism is presented in
Algorithm 1: CacheUpdate. It operates over each stream (including the
target stream T ) that has a cache associated with it, at the end of each
timepoint (Lines 2 & 5). For an object x ∈ S that gets referenced during
ti, the algorithm counts the number of times x was referenced by an object
y from another stream S ′ (such that S 1−to−mS ′). CacheUpdate calculates
the number of times an object x was referenced and found in the cache CS

i ,
denoted as H(x) (the hits), and the number of times x was referenced and
not found in CS

i , denoted as M(x) (the misses). As can be seen in Line 4,
the importance of an object x at ti is computed as the number of references
to it, thereby assigning a higher weight (1 + ε) to hits, i.e., to the objects
already residing in the cache.

GS(x) =
i∑

u=i−ω
QS
u(x)× decay(tu, ti) (3.1)

After the calculation of hits and misses for all the perennial objects,
CacheUpdate updates the caches for all streams. The computation of im-
portance G(x) (cf. Equation 3.1) to be achieved by caching an object x ∈ S
is computed by considering the number of references to xwithin the whole
sliding window of length ω (Lines 10-12). To reduce the influence of old
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statistics, we use the decay function depicted in Equation 3.21, which low-
ers the weight of old data exponentially. The referenced objects are sorted
(Line 13) and the topNT positions are brought into the cache CT (Line 14).

Algorithm 1: CacheUpdate
Input : ti,S,N , ω, β, ε

1 T ← S0 ∈ S
2 foreach stream S ∈ S with NS > 0 do /* Each S with a cache */

3 foreach referenced tuple x ∈ S do
4 QS

i (x) = (1 + ε)H(x) + M(x) /* Count references */

5 foreach stream S ∈ S with NS > 0 do /* Each S with a cache */

6 foreach referenced tuple x ∈ S do
7 if S 6= T then
8 QS

i (x)+= H(x) + (1 + ε)M(x)
9 QS

i (x)+= PropInfo(x, S ′, ti)2

10 GS(x) = 0
11 foreach u = i− ω to i do /* Compute importance */

12 GS(x)+ = QS
u(x)× decay(tu, ti)

13 sort GS [desc]
14 CS

i ← top-NS objects of GS

The computation of the importanceG() (Lines 10-12) aims to maximize
the number of objects contributing to the model. It thus favours objects
that are expected to produce more output when they are joined with the
neighbouring streams. This corresponds to the MAX-Subset error measure
proposed in [Das et al., 2003] for sliding-window joins.

decay(t, t′) =
{

1 ∆t = 0
β−∆t otherwise

(3.2)

The updating of the caches starts at the target stream T and then to the
streams that are in direct relationship with T and so on. The traversal or-
der of the streams is depicted in Figure 3.3. The Lines 6-9 are invoked for
all the streams that feed the target stream but are ignored when the cache
CT is to be updated. Cache updating is an iterative process, as depicted

1In Equation 3.2 ∆t = |t− t′|.
2S′ is in relationship with S such that S′ is further away from T than S.
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Transaction Product Category

Customer

Clicks Webpages

Figure 3.3: The dotted line depicts the traversal order of the streams. The
traversal always starts from the target streams (depicted as shaded box).

in CacheUpdate: a cache is updated by removing objects from it and in-
serting new ones; this affects the hits H(x) and misses M(x) for objects
referenced by them.

t i

t i1

t ik

...

...

S1 S 2 S k

y y ' y ' '

C1

C 2

C k

cached y at t i

cached y ' at t i1

cached y ' ' at t ik

Figure 3.4: A chain of relationships among different streams.

To explain the effects and side-effects of cache updating, we first con-
sider three streams S1, S2 and S3 from XB that use caches and constitute
a chain of relationships S1m−to−1S2 and S2m−to−1S3 (c.f. Figure 3.4). At
timepoint ti, let an object y ∈ S1 reference an object y′ ∈ S2, i.e., y → y′.
Assume that during cache updating at ti, object y′ is fetched and cached
in C2

i+1. If y′ → y′′ for some y′′ ∈ S3, then y′ contains a possibly dangling
reference; the need to fetch y′′ became known after y′ was cached. Indeed,
y′′ can only be fetched to the cache C3

i+2 at the timepoint ti+2. For a chain
of m−to−1 relations S1, S2, . . . , Sk of arbitrary, it will take k timepoints to
amend a cache miss for an object x ∈ S1 that propagates through to Sk. In
other words, only after k timepoints, it would be possible to reconstruct
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the complete perennial object x, assuming (optimistically) that all objects
needed are still cached at ti+k.

To load all objects with their references, the caches are updated itera-
tively. Once the first cache has been updated, we calculate the references
to the objects of the remaining streams anew for the next cache update
(Line 8). This time we assign a higher weight (1 + ε) to the misses, making
referenced objects outside the cache more likely candidates for caching.

Line 9 of the CacheUpdate algorithm deals with a problem of transi-
tivity across a chain of relationships between individual streams. We first
explain the notion of transitivity and then explain the mechanism working
behind Line 9.

25 28 2 3 5 3 2 2S i

S i1

S i2

y3y2 y4 y5 y6 y7 y8

x1 x2 x3 x4

y1

Figure 3.5: Transitive references.

Transitive References In a relational database, streams that are not
directly connected can reference each other indirectly. Assume three str-
eams S1, S2 and S3, such that S1 and S3 are not directly related to each
other. However, S1, S2 and S2, S3 are in relationships with each other.
Then, streams S1 and S3 are said to have a transitive relationship. This no-
tation of transitivity extends to the individual objects within the streams
as well. For example, for objects (x1, x2, x3) ∈ (S1, S2, S3), respectively, x1
makes a transitive reference to x3, if x1 → x2 and x2 → x3. The Cache-
Update maintains the objects from individual streams using only the di-
rect references. We propose an improvement to CacheUpdate that utilises
the transitive references as well.

Consider the example in Figure 3.5, where all streams are associated
with caches and each stream is in m-to-1 relationship with the next one,
as shown in Figure 3.4. Assume that the object x3, x4 ∈ Sj are referenced
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more from Sj−1 than any other object, so they would be preferred over
objects x1, x2. This is consistent with the MAX-subset error measure that
promotes objects resulting in larger output. Now consider the 3-way join
between Sj, Sj−1, Sj−2. Objects x3 and x4 would be again preferred over x1
and x2, and this will be inconsistent under the MAX-subset error measure
[Das et al., 2003], because x1, x2 are going to produce more output objects
(c.f. Figure 3.5). The reason for the inconsistency are the objects referenced
by x1, x2, . . . , x4. Object referencing is transitive; we exploit this property
in that we add transitive references to the hits (respectively, misses) of
a object x (Line 9). The responsible function PropInfo() is depicted in
Equation 3.3.

PropInfo(x, Su, ti) =
∑

y∈Su∧x→y

Qu
i (y) + PropInfo(y, Su′ , ti)

D
(3.3)

This function takes as input an object x and a stream Su from a chain of
streams, such that Sum−to−1Su

′ . It computes the references of x to Su and
invokes itself again for each object y referenced by x. At each invocation,
it uses an information decay parameter D. This parameter ensures that
the impact of those additionally counted references drops as we navigate
down the chain of inter-linked streams.

After the execution of Lines 8 & 9 for the streams other than T , the
caches are updated similarly to that of CT .

CacheUpdate in its basic variant is very resource intensive. It requires
an infinite amount of space to store the cache statistics for the perennial
objects. Its space complexity is O(n × t), where n are the total number of
users seen in the perennial stream and t is the total number of timepoi-
nts observed, which is possibly infinite. In the next section, we present
an improvement for the CacheUpdate called SmallCache. The improve-
ments in SmallCache have been inspired from the space saving algorithm
of Metwally et al. [Metwally et al., 2005, 2006].

Small Cache The space saving algorithm [Metwally et al., 2005, 2006]
computes the top-N items from a data stream under limited space. It is
a very simple and straightforward algorithm. It is a counter-based algo-
rithm, where counters are maintained for a limited number of individual
objects. For an object, the algorithm maintains an observed count ctro and
an upper bound on the number of missed instances ctrb. Incoming objects
update the counters and fill up the space reserved for the counters (at most
M counters can be maintained in the main memory). If an object x that
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Figure 3.6: Updating of the small cache. The right most block stores the
upper bound for the missed instances. When the counters have to be up-
dated, the minimum upper bound also gets updated.

does not have a counter arrives, and the counter space is already filled,
the space saving algorithm selects the counter ctry associated with an ob-
ject y that has the smallest count and replaces its counters with counters
for x: ctrox = 1 and the upper bound is approximated as ctrbx = ctroy + ctrby.

Similarly, for an object x from stream Sj , SmallCache maintains a com-
posite counter Q̂j(x), i.e., Q̂j(x) consists of Q̂j

o(x) for the observed counts
and Q̂j

b(x) for maintaining an upper bound on the number of missed ob-
jects. The counter Q̂j

o(x) is updated incrementally as new objects arrive.
At each new timepoint, the counters are also subjected to decay β−1.3

SmallCache maintains only a fraction of the observed objects in the
main memory. Unlike the space saving algorithm, where at most M coun-
ters can be maintained, SmallCache puts a soft limit on the number of
counters that can be maintained. Soft limit implies that SmallCache has
fractionally more space while updating the counters than its storage space.
For example, for a hard counter limit of M , as a new object arrives, the al-
gorithm adds one more counter making the total number counter to be
M +1. The algorithm keeps on adding new counters until it reaches Msoft.
When Msoft is reached, it stores the count value for the counter value with
minimum number of hits, then proceeds to remove all the excess coun-
ters and retains only the top-M counters. This process is depicted in Fig-
ure 3.6. Doing this also helps in keeping the bound on missed instances

3β−1 is the same decay function as β−∆t in Equation 3.2. Since the computations for
SmallCache are incremental and are adjusted from one timepoint to the next, ∆t = 1.
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Algorithm 2: TargetIdPropagation
Input : XB,S, CT , Y 1 . . . Y J

Result: X ∗

1 if X ∗ doesn’t exist then
2 Initialise X ∗

3 tree = GenerateSchemaTree(XB, T , S1 . . . SJ)
4 foreach S, S ′ ∈ tree do /* S′ is child and S is parent */

5 if S ′ doesn’t contain targetId then
6 if star(S ′) doesn’t exist then
7 Create star(S ′)
8 INSERT INTO (star(S ′))

SELECT Y.targetId, Y ′.∗
FROM Y, Y ′

9 Update X ∗ ← star(S ′)

10 Return X ∗

lower, which in space saving algorithm [Metwally et al., 2006] increases at
a very rapid rate.

3.2.2 Propagation of Target Identifiers

After the cache updating, the objects in the caches and windows of each
individual stream are combined into a single propositionalised stream P .
This process is done by first performing a join on the caches, or sliding
windows, of the streams that are related to each other, and then aggre-
gating the objects that are maintained in these windows and caches. Ex-
ecuting a join over streams S is a complex operation. The complexity in-
creases in relation to the depth of join. That is, for a join between streams
S1 on S2 on . . . Sm, the complexity is O(nm), where N is the maximum of
the number of objects inside the cache/window of each individual stream.
In a streaming environment where incoming data are infinite and arrive at
fast speed, it is essential for the algorithm to have a low computational
complexity.

In order to achieve low complexity, Krögel proposed to replace com-
plex multi-relational joins with binary joins [Kroegel, 2003] and devised a
procedure, TargetIdPropagation. The process of aggregation is anchored
on the perennial objects from the target stream T . A stream that is in direct
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Figure 3.7: Schema transformation: (top) Base schema into (bottom) ’a star
schema’.

relationship4 with the target stream T , has the target identifier as a foreign
key, and in turn has the information as to on which attribute the aggrega-
tion should be performed. For a stream S ′, that is not directly linked with
T , i.e. T on . . . on S ′, this information is missing and aggregation can only
be achieved via a deep join. The procedure makes this information explicit
for the streams, such as S ′, by propagating the target identifier from T to
the streams with which T is not directly connected. Once the target identi-
fier information has been propagated, every stream can be joined directly
with the target stream, thus, avoiding deep joins. This process changes
the schema into a star like formation and is referred as a star schema5, X ∗.
In Figure 3.7 we see the base schema at the top and at the bottom of the
same figure its transformation into ’a star schema’. The target stream ’Cus-
tomer’ is at its centre, and all other streams are directly connected to it.

We have modified the procedure for target identifier propagation of
Krögel for the streaming case Kroegel [2003]. The algorithm for this task
is depicted in the Algorithm 2: TargetIdPropagation. It takes as input all
the streams and the base schema XB, which has the information on rela-
tionships between each individual stream. The algorithm first transforms

4i.e., S 1−to−1T , S 1−to−mT , or Sm−to−1T
5In data warehousing, a similar notion, star schema, is used, albeit with a different

meaning. In ’a star schema’ of Krögel [Kroegel, 2003], each table is directly connected to
the central table, where as the tables in the star schema of data warehousing are recur-
sively folded with onto their parent tables until they are at a maximum depth of 1 from
the central table.
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the base schema XB into a tree that has T at its root and the streams ref-
erencing it as its children (Line 3). The tree edges are the foreign key re-
lationships, across which the identifiers of T are propagated towards the
leaf nodes. The traversal order is same as depicted in Figure 3.3.

Initially, S = T with S ′ as T ’s leftmost child (Y, Y ′ are their caches xor
windows, respectively). If the corresponding star table star(S ′) of S ′ ∈
XB doesn’t exist in X ∗, first it gets created (Line 7). The target identifier
propagation is then performed using the insert query operation on the
contents of Y, Y ′ (caches xor windows for S, S ′, respectively) in Line 8.

3.2.3 Transforming the Multi-Table Streams

To aggregate all objects into the propositionalised streamPi at timepoint ti,
after the target identifier propagation, we propose Algorithm 3: Incremen-
talPropositionalisation. For Algorithm 3, we extend the propositionalisa-
tion algorithm RelAggs (c.f. Section 2.1.3) for static data [Kroegel, 2003].
We reference the Algorithm 3 as we explain the process in the following.

At the current timepoint ti, the contents of T in the cache CTi must be
"propositionalised" to accommodate the information of each cache or win-
dow Y Sj

i of stream Sj . This process requires the computation of the joins
between cache or window Y Sj

i . To reduce the overhead of the complex
join operations, IncrementalPropositionalisation starts by propagating the
target identifier information to all streams (Line 2).

After the target id propagation, the algorithm iterates over all streams
that feed the target stream. It performs a semi-join between the cache CTi
of the target stream T and the cache or window Y Sj

i of each stream Sj

that is in 1-to-1 or 1-to-m relationship with T . Accordingly, it expands or
concatenates x ∈ CTi with the matching object y ∈ Y Sj

i , i.e., x := x + +y
(Line 5). At some later timepoint, if x is already expanded with some (old)
object of Y Sj

i , this old expanded object is replaced by the new one. This
initially unintuitive approach is best explained by an example: consider a
stream of ’customers’ (the target stream) and a stream of their ’addresses
(home)’. The streams have 1-to-1 relationship with each other, i.e., a cus-
tomer can only live at one address. When a customer changes his address,
his new address must replace the previous one.

For each Sj that is in 1-to-m relationship with the target stream T
(Line 6), IncrementalPropositionalisation associates each object x ∈ CTi
with the set of matching objects matches(x) ⊆ Y Sj

i . The objects in this set
must be summarised into a single propositionalised object.

For the summarisation of the values of each numerical attribute A
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Algorithm 3: IncrementalPropositionalisation
Input : XB,S,N , ω, rA, β, ε
Output: Propositionalised stream Pi

1 T ← S0 ∈ S
2 X ∗ ←TargetIdPropagation( XB,S, CT , Y 1 . . . Y J)

3 for j ← 1 to |S| do

4 if T and Sj are in 1-to-1 or m-to-1 relationship then
5 Pi ← Concatenate objects of Y Sj

i and Y Ti

6 else if T and Sj are in 1-to-m relationship then
7 foreach attribute A ∈ Y j

i do
8 if A is numerical then
9 aggA ← Compute avg(A), sum(A), min(A), max(A)

10 Pi ← Add computed aggregates aggA
11 else if A is nominal then
12 cntA ← Compute counts for known nom values in A
13 Pi ← Concatenate (adjust cntA in rA columns)

14 CacheUpdate( ti,S,N , ω, β, ε)
15 NominalSpaceAdjustment( ti,S, rA)
16 Return Pi

among thematches(x), the algorithm generates four attributes and accom-
modates in them the min, max, sum and average of the A values seen in
matches(x) (Line 9) and adds this aggregated information to the proposi-
tionalised stream Pi (Line 10). In the example in Figure 3.1 the customer
David has purchased two products; the attribute price is numeric and the
values in attribute price for the bought products are summarised in the
columns maxP, minP, avgP, sumP. Differently from example above about
customers and their addresses, as the customer does more transactions,
the four generated attributes are updated for each object x.

For summarisation of each nominal attribute, IncrementalPropositional-
isation counts the observed frequency of each distinct nominal value in
matches(x) (Line 12). IncrementalPropositionalisation generates rA amount
of columns for a nominal attribute A in the propositionalised stream Pi.
The observed frequency of the distinct nominal values are recorded in
these generated columns (Line 13). In the example in Figure 3.1, the at-
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tribute category in ’Product’ stream takes the values Book and DVD. Two
count columns are assigned for it, where the observed frequency of the
values Book and DVD gets recorded.

In the static scenario, or at timepoint t1, this is trivial, as one knows
the number of distinct nominal values for A and the required number of
count columns to be generated. In a streaming scenario, for ti, i > 1 the
number of values forA to be accommodated may increase, e.g., if the com-
pany decides to introduce the categories eBook and CD. The schema of Pi
can neither be expanded arbitrarily (memory is finite) nor can each value
ever seen be retained perpetually in it (memory must be used efficiently).
Hence, the algorithm must adjust the available space to the demand. For
this, we propose two space adjustment methods for accommodating previ-
ously unseen nominal values in the schema of Pi+1, for the next timepoint
ti+1. We explain these space adjustment methods in Section 3.2.4.

Once the multi-relational stream of perennial objects has been proposi-
tionalised, the algorithm prepares for the next timepoint. It invokes Algo-
rithm 1 to update all caches on basis of references observed at the current
timepoint ti for the perennial objects (Line 14). Before returning the propo-
sitionalised stream Pi, it invokes Algorithm 4 to update the space reserved
for the nominal attributes (Line 15).

3.2.4 Space Adjustment for Nominal Attributes

Consider a nominal attribute A from a stream Sj that was assigned rA
number of columns at the initial timepoint t1. Each of these columns
records the number of times a particular nominal value was observed. At
timepoint t1, the cardinality of its domain domain(A, t1) was less than or
equal to the number of assigned columns rA, i.e., domain(A, t1) ≤ rA. As-
sume that the domain of A changes at some later timepoint ti, such that
|domain(A, t1)| < |domain(A, ti)|. This means that there are newer val-
ues that have been observed and need to be adjusted in the schema of
the propositionalised stream Pi, i.e., they need to be assigned columns in
order for their counts to be recorded in Pi+1 for the next timepoint.

The procedure of adjustment is depicted in Algorithm 4: Nominal-
SpaceAdjustment. It is invoked from the Algorithm 3 (Line 15), at the
end of each timepoint. It monitors all the nominal attributes from the str-
eams that are in 1 − to − m relationship with the target stream T . If no
new nominal values have been observed for an attribute A, it performs
no adjustment (Line 5). The arrival of previously unseen nominal val-
ues in the domain of a nominal attribute A at timepoint ti can lead to two
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Algorithm 4: NominalSpaceAdjustment
Input : ti,S, rA

1 T ← S0 ∈ S
2 foreach stream S ∈ S such that S 6= T do
3 if T 1−to−mS then
4 foreach nominal attribute A ∈ S do
5 if domain(A, ti) ⊆ domain(A, ti−1) then
6 No adjustment

7 else
8 if |domain(A, ti)| ≤ rA then
9 Perform soft adjustment.

10 else
11 Perform hard adjustment.

cases, either 1) the cardinality of the domain is still less than or equal to the
number of assigned columns, i.e., |domain(A, ti)| ≤ rA (Line 8), or 2) the
cardinality of the domain is greater than the number of assigned columns,
i.e., |domain(A, ti)| > rA (Line 10). The algorithm handles the first case by
using a simple procedure called soft adjustment, while the second case is
handled by employing hard adjustment, which is a clustering-based proce-
dure to combine nominal values into homogeneous groups.

Soft Adjustment

If |domain(A, ti)| ≤ rA, it means that the cardinality of the domain has not
yet exceeded the number of assigned columns rA. This leads to cases:

1. If the domain of A at timepoint ti−1 is a subset of the domain at
ti, i.e., domain(A, ti−1) ⊂ domain(A, ti), it implies that all nominal
values from the previous timepoint are still active, and the new
nominal values can be accommodated in the remaining columns
rA − |domain(A, ti−1)| assigned for the nominal attribute A.

2. If domain(A, ti−1) ⊂ domain(A, ti), then some positions must be
freed to accommodate the values in domain(A, ti) by deleting the ex-
pired values from domain(A, ti−1), and replacing them with the new
nominal values from domain(A, ti). This means that the columns that
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have been replaced, acquire new semantics in the propositionalised
stream Pi+1 at timepoint ti+1.

The soft adjustment heuristic de-allocates6 the columns assigned pre-
viously for domain(A, ti−1) \ domain(A, ti) and allocates them for the
newly observed nominal values, i.e., domain(A, ti) \ domain(A, ti−1).

Hard Adjustment

If the cardinality of the domain for the nominal attribute A exceeds the
number of assigned columns, i.e., |domain(A, ti)| > rA, then we perform
the hard adjustment to accommodate the previously unseen values.

Transaction Id Quantity Price Category Timepoint
1 10 500 Book 1
2 500 40 Book 1
3 8000 5 DVD 1
4 2000 10 DVD 1
5 700 50 eBook 2
6 300 20 CD 2

Figure 3.8: Domain of nominal value changes over time.

Consider the example shown in Figure 3.8. Assume that, at the initial
timepoint t1, two columns were assigned for the nominal attributeAcategory

for only two nominal values were observed for it, i.e., domain(Acategory, t1)
= [Book,DVD]. At timepoint t2, two previously unseen nominal values,
i.e., [eBook,CD] were observed for Acategory. Since new count columns
for the new values [eBook,CD] cannot be added to the propositionalised
stream P , we cluster the values in domain(Acategory, t2) into K = rAcategory

homogeneous groups. With the homogeneous grouping we imply that
the nominal values that appear in the same cluster/group become indis-
tinguishable and are accommodated in a single count column.

Clustering is based on semantic similarity among the objects. In order
to establish the notion of similarity, or closeness, between the values of a
nominal attribute, we use a simple heuristic that asserts that two values are
similar if the objects containing them are similar. However, a nominal value
may be contained in one or more objects, e.g., in Figure 3.8, the nominal
value Book is contained in two transaction objects with ids 1 & 2. This im-
plies that there exists a 1− to−m relationship between the nominal values

6Currently, the columns to be de-allocated are selected at random, but more sophisti-
cated options are possible, e.g., eliminating the oldest values.
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Category Quantity Price
Min Max Avg Sum Min Max Avg Sum

Book 10 500 255 510 40 500 270 540
DVD 2000 8000 5000 10,000 5 10 7.5 15
eBook 700 700 700 700 50 50 50 50

CD 300 300 300 300 20 20 20 20

Figure 3.9: Feature vectors of nominal values for performing hard adjust-
ment.

and objects they are contained in. Thus, similarly to the propositionali-
sation solution of summarising perennial objects into a single object, we
aggregate the objects based on the nominal values they contain, into one
large object. The resulting objects represent feature vectors for the nom-
inal values. The feature vectors for the example in Figure 3.8 are shown
in Figure 3.9. These feature vectors for the nominal values are then used
to define similarity between the nominal values. We use Hierarchical Flat
Clustering [Mierswa et al., 2006] with cosine similarity to cluster the nom-
inal values into K = rA homogeneous groups.

3.3 Clustering Perennial Objects

In the previous section we presented the method for the update and main-
tenance of perennial objects. Ideally, we would employ any clustering al-
gorithm on them. However, conventional algorithms for learning over
streams, e.g., the methods of Guha et al. and Aggarwal et al. [Guha et al.,
2003; Aggarwal et al., 2003], assume that the schema of the objects does not
change. Hence, we propose a dedicated IncrementalKMeans for perennial
objects from a multi-relational stream.

Our algorithm is inspired by the OnlineKMeans for clustering parallel
data streams [Beringer and Huellermeier, 2006]. The pseudo-code of In-
crementalKMeans is shown in Algorithm 5.

At timepoint ti, as the data arrives in the perennial streams, it is first
transformed from a multi-table stream into a single propositionalised str-
eam Pi by invoking the Algorithm 3: IncrementalPropositionalisation. It
is important to stress here that IncrementalPropositionalisation prefers ob-
jects that are frequently referenced over those that are not. The underlying
assumption (enforced through MAX-subset measure for stream joins) is
that the perennial objects that have more references for other streams are
likely to carry more information. Hence, these objects are likely to be more
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Algorithm 5: IncrementalKMeans
Input : 〈 XB,S,N , ω, rA, β, ε 〉, 〈 K, ρmin 〉

1 for i = 1 to STREAM_END do
2 Pi ←IncrementalPropositionalisation(ti, XB,S,N , ω, rA, β, ε)
3 if ζi−1 is ∅ then
4 ζ1 ← Perform clustering with K centroids over P1

5 else
6 ζi ← Update the clustering model ζi−1 using Pi
7 ρ← Compute jaccard similarity between ζi, ζi−1

8 if ρ < ρmin then /* ρ is the similarity between ζi, ζi−1 */

9 ζi ← Perform re-clustering with K centroids over Pi

mature or grown. Thus, they are likely to result in a better and a stable clus-
tering. The objects that have fewer references are treated as noise and are
kept away until they mature.

At Line 3, the algorithm checks if there already exists the clustering
model ζi−1 from the previous timepoint. For the first iteration of the stre-
aming loop7, i.e., at timepoint t1, the previous clustering model would be
null. In this case, the algorithm would learn the initial clustering model
ζ1 over the first batch of the propositionalised perennial objects P1 with K
centroids.

At each subsequent timepoint, there always exist a model from the pre-
vious timepoint. For learning the new clustering model ζi, IncrementalK-
Means takes the clustering model ζi−1 (i.e., vectors of the centroids and
cluster membership information) from the previous timepoint ti−1 as the
initialisation. The newly arrived data from the propositionalised streamPi
is then used to incremental update the model ζi for the current timepoint
(Line 6).

After each iteration, the clustering model ζi at ti is compared with the
model ζi−1 from the previous timepoint ti−1 (Line 7). For the comparison,
we use the Jaccard Coefficient [Tan et al., 2004]. Jaccard Coefficient calcu-
lates the degree of similarity between the two models and returns a value
close to 1 if the models are similar and close to zero if they are different.

JaccardCoefficient(ζ, ζ ′) = f11

f01 + f10 + f11

7Line 1 simulates the open-ended nature of stream
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where f11 is number of objects that are in the same cluster in both ζ, ζ ′;
f01 is the number of objects that are in different clusters, in model ζ and in
the same cluster in model ζ ′; and f10 is the number of objects that are in
same cluster in model ζ , and in different clusters in model ζ ′.

The comparison is done to check if the clustering model learned over
the new data, i.e., newly propositionalised perennial objects from Pi, is
still valid or not. If the clustering model across the consecutive timepoints
differs more than the user-specified threshold, i.e., the calculated value
of Jaccard Coefficient ρ is less than the user-provided threshold ρmin, the
current clustering is discarded and a re-clustering is performed over Pi.

As we have already mentioned, our method is inspired by OnlineK-
Means [Beringer and Huellermeier, 2006]. However, OnlineKMeans
works with multiple univariate time-series, while our method considers
only the latest version of each object, not the whole series. Moreover, our
method is designed to work with complex perennial objects from multi-
ple interrelated streams. OnlineKMeans is designed to work with a fixed
number of time-series objects, while IncrementalKMeans allows for the
addition of new and the deletion of the old objects. This addition is done
smoothly by the IncrementalPropositionalisation as the caching mecha-
nism employed by it prefers objects that are likely to hold more informa-
tion, over those that do not (cf. Algorithm 3: Line 14). OnlineKMeans
can dynamically update the number of clusters over time, whereas Incre-
mentalKMeans relies on quality comparison of the clustering ζi at ti with
that of ζi−1 at ti−1 and performs re-clustering when required.

3.4 Summary

In this chapter we presented the core ideas of our approach on building
perennial objects. Unlike conventional mining, where old data gets dis-
carded, perennial objects may not be forgotten. Keeping this restriction
under consideration, we have developed caching techniques to maintain
only the most important perennial objects inside the memory. The ones
that are deemed not important, are spilled on to the secondary storage
from where they can be recalled as needed.

We have also presented a propositionalisation-based method to build
perennial objects incrementally, with the help of efficient joins and ag-
gregation of the other streams. The propositionalisation method can also
adapt to the changes in the domain of nominal attributes. The final con-
tribution of this chapter is an incremental variant of K-Means that was
developed to evaluate the method for building perennial objects. The in-
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cremental K-means operates on the propositionalised stream of perennial
objects and can handle their dynamic nature. The evaluation of these met-
hods is presented in the following chapter (Chapter 4).
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CHAPTER 4

Evaluating Incremental
Propositionalisation

In this we are going to evaluate the algorithm IncrementalPropositional-
isation. The complete IncrementalPropositionalisation is made of several
components, i.e., algorithms for the maintenance of the cache over perennial
objects, algorithms for the space adjustment of the previously unseen values
of a nominal attribute, and the transformation of multiple interrelated streams.
To evaluate the complete algorithm we have used IncrementalKMeans (cf.
Section 3.3).

Each component’s evaluation is done under a separate section, where
we describe the objectives of the evaluation, explain the evaluation mea-
sures used and a discussion on the results. Before moving onto evaluation,
we first describe the datasets that we have used.

4.1 The Datasets

In this section, we provide the description of the datasets that were used
in the evaluation. The description includes the name of the dataset, its
schema and cardinality, number of concept drifts and their timepoints, and
the availability of the dataset.

4.1.1 Synthetic Dataset: Synthetic Small

The is a rather small dataset. This dataset simulates the multiple occur-
rences of perennials. There are a total of 26 objects (alphabets from a to z).
The learning task is to approximate the top-NT to be cached for the next
timepoint. The objects arrive repeatedly across 40 timepoints, i.e. t1 to t40.
The concept drifts occur at timepoints t3, t17 and t35 timepoints.

4.1.2 Synthetic Dataset: Zipf Dataset

This is a simple synthetic dataset which was generated according to zipf
distribution. This dataset simulates the real world environments where
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observance frequency of objects in a stream often follows zipf distribu-
tion. For example, number of purchases of the customers, number of items
rated by the user and etc., often follow zipf distribution. The learning in
this dataset is to evaluate the caching mechanisms (cf. Section 3.2.1) on
how well the proposed mechanisms manage the perennial objects inside
limited space.

The dataset is generated using the zipf module in the numpy1 package
of Python language. This module accepts only one parameter for generat-
ing the data distribution. The head of the data generated by the distribution
lies at 0.

For generating a synthetic data stream with drifts, we generate the data
by varying the shape parameter and then we manually alter the generated
data (for details cf. Appendix A.1) in order to impute concept drifts. The
dataset consists of 4704 unique numbers (which serve as the identifiers
of perennial objects) with a combined total of 400,000 occurrences. Aver-
age occurrence frequency of a number is approximately 87. The data is
distributed across 40 timepoints, i.e., t1 to t40. The concept drifts occur at
timepoints t11, t21 and t31.

4.1.3 Synthetic Dataset: Ratings Dataset

This is a multi-relational dataset which was generated using the generator
for multiple interrelated streams, Multi-Gen. We describe the generated
dataset here, the details on Multi-Gen can be found in Chapter 7).

The dataset incorporates the characteristics that are exhibited by a (tar-
get) stream of perennial objects and the streams that feed it. The dataset
consists of three streams, ’Users’, ’Items’ and ’Ratings’. ’Users’ and ’Items’
are perennial streams while ’Ratings’ is ephemeral. ’Users’ also serve as
the target stream. The schema of the generated streams is shown in Fig-
ure 4.1. The learning task in this dataset is to predict each user’s profile,
on basis of the items that she has rated thus far, at each timepoint.

The core idea of the dataset is as follows: Each user adhere to a certain
user profile. A user profile determines the affinity of a user for an item. A
generated rating for an item depends on the user’s affinity for the item’s
cluster, as set in her profile. A user may change from one user profile to
another.

The ratings dataset has around 600 users. The number of transactions
made by the users, vary according to zipf distribution. There were five

1numerical python
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user profiles and 20 item profiles. The data is distributed across 20 time-
points, i.e., t1 to t20. The user profiles under go drift at timepoint t11.

For the evaluation of nominal space adjustment, we use a different ver-
sion of the dataset from the generator called ’Ratings2 Dataset’, where we
use only the ’Ratings’ streams. The data consists of 40 timepoints, i.e., t1
to t40. The concept drifts occur at timepoints t11, t21 and t31.

Full specification of the dataset, i.e., the parametric settings for the gen-
erator are given in Appendix A.2.

ItemsRatingsUsers
m m1 1

Figure 4.1: Schema of the streams in Ratings dataset (generated by the
Synthetic Generator).

4.1.4 Movie Lens Dataset

The hetrec2011-movielens-2k2 dataset contains data from an online movie
website where users provide ratings to the movies based on their viewing
experience. This is a multi-relational dataset. Our learning task in this
dataset is to evaluate the caching mechanisms (cf. Section 3.2.1)3.

The dataset contains 2113 users, approximately 10,000 movies and ap-
proximately 850,000 ratings provided by the users. The dataset contains
the daily ratings data from 09/1997 to 01/2009. We have distributed the
dataset into 140 timepoints, where each timepoint corresponds to a month.

The dataset follows zipf distribution for both the number of ratings
provided by the users and how many ratings are associated with a partic-
ular movie (see Figure 4.2). Additionally with the dataset the information
about each movie (i.e., genre, cast, location, and etc.) is provided in sepa-
rate tables.

4.1.5 Financial Dataset

The Financial dataset of the PKDD 1999 Challenge contains data on bank
customers. This is a multi-relational dataset and the tables in the Finan-
cial dataset depict the activities of bank customers who have been granted

2http://www.grouplens.org/node/73
3The original learning task was to predict the ratings of the movies and recommend

them to the users.
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Figure 4.2: Statitics for Movie Lens Dataset (a) Ratings for users, (b) no of
ratings for movies

a loan and are paying it back in the period 01/1993 to 12/1998. The data
are labelled and time-stamped. The schema of the tables from the finan-
cial dataset is shown in Figure 4.3, while basic statistics are depicted in
Table 4.1.

Account

Client

Card

Loan OrderDistrict

Transactions
1

m

m

1

1

1

m

1

m

Disp
m

1

1

Figure 4.3: Schema of the tables from Financial dataset.

The learning task is to predict whether a customer (represented by her
account) will default in paying back her loan. A loan is associated with
an account which in turn may belong to one or more clients. The type of
credit cards and orders made through each account are recorded, however
the main load comes from the transaction stream. Already during PKDD
Challenge classes A, C and B, D were merged into loan-trusted and loan-
risk, respectively. We do the same.

This dataset puts forwards a difficult learning problem. The class dis-
tributions are not only very skewed to begin with; they also reflect the state
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Table/Stream Cardinality A & C B & D
C Accounts 682 606 76

Districts 77
Clients 827
Disp 827
Orders 1513
Cards 170

W Transactions 191,556

Table 4.1: Dataset statistics from Financial dataset. In the first column, C
stands for streams associated with a cache, W stands for window, rest are
used as static tables.

of accounts only when they have matured, i.e., class labels become appli-
cable at a much later timepoint than when the objects were introduced.

4.1.6 Gazelle Dataset

The Gazelle dataset contains the data from an online retail store. It records
the activities of the users as the browse the website. Each individual ac-
tivity is request/visit to a webpage of a certain product. These requests
are then grouped as sessions. Most the sessions in the dataset are done by
anonymous users and only a fraction of users are the actual customers of
the retail store. These activities are recorded over a period of 02-05/2000.
In Table 4.2 we depict the tables of each gazelle dataset while its schema is
given in Figure 4.4.

The learning task in this set is to separate session of users into groups
of similar session. The original learning task in the dataset was to predict
for each session whether a user would make a purchase in excess of 12 $.

ContentRequestSession

Product Category

m

m

m

m1 1

1

1

Figure 4.4: Schema of the tables from Gazelle dataset.
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Table/Stream Cardinality
W Sessions 18113

Customers 3336
W Request 213,101
C Products 376
C Contents 77

Table 4.2: Dataset statistics from the Gazelle dataset. In the first column, C
stands for streams associated with a cache, W stands for window, rest are
used as static tables.

4.2 Evaluating Space Adjustment

In this section we evaluate Algorithm 4: NominalSpaceAdjustment (cf. Sec-
tion 3.2.4) that accommodates previously unseen nominal values into pre-
defined number of columns rA. In order to do this, we first define a no-
tion of similarity between the nominal values (cf. Section 3.2.4) and then
nominal values are clustered to achieve groups of nominal values that will
share a column. For clustering we use Hierarchical Flat Clustering where
number of clusters to be discovered is set to K = rA. We evaluate the algo-
rithm on basis how well it can separate groups of similar nominal values.
We describe the framework to evaluate the quality of discovered groups
in the next section.

ID Att1 Att2 Att3 ID Att1 Att2 Att3
1 71 12 19 → 1 Bin35 12 19
2 24 37 42 → 2 Bin12 37 42
3 66 89 61 → 3 Bin33 89 61
4 70 89 61 → 4 Bin35 89 61

Figure 4.5: Numerical Value Discretization.

4.2.1 Evaluation Framework

We discretize the numerical attributes in our datasets into bins. The pro-
cess of discretization is shown in Figure 4.5. This process converts the
attributes into ordinal ones. For example, Att1 with range (0,100] is dis-
cretized into 50 bins of length 2, i.e., [Bin1=0-2, Bin2=2-4, . . . , Bin50=98-
100]. We then perform propositionalisation and heirarchical clustering to
cluster these nominal/ordinal bins.
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Table 4.3: Experimental settings for clustering of noimnal values and dis-
cretization of the numerical attributes

Dataset Parameters Values

Ratings2 Dataset
number of bins 100

K = rA 25, 15, 10
ω 1, 2, 4, 8

The experimental settings are given in the Table 4.3. Dataset is com-
posed of varying of number of timepoints (t ∈ [20, 30, 40]) with drift oc-
curring at timepoints that are multiple of 10, i.e., at t10, t20, . . . etc. One
attribute from the dataset is discretised according to the specifications
given in Table 4.3. We compare the strategies with a varying window size
ω = 1, 2, 4, 8.
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Figure 4.6: Various measures for evaluating the clusters of nominal
values for a cluster containing indexes: (left) {0, 1, 2, . . . , i} and (right)
{0, 2, 4, . . . , i}

Evaluation Measures To evaluate the quality of the clustering of dis-
cretized numerical values we proceed as follows: We assume that if a
cluster contains bins from consecutive intervals, it is cohesive, i.e., it con-
tains discretised values that are similar to each other. Since an interval
corresponds to a bin, we use the index number of the bins to check for
proximity.

In order to compute the cohesiveness of an individual cluster we ex-
perimented with the following measures:

Let e, e′ be two values such that e 6= e′. We define dist(e, e′) using some
distance function.
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Figure 4.7: Various measures for evaluating the clusters of nominal values
for a cluster containing indexes: (left) {0, 1, 2, . . . , i} & {2i, 2i + 1, . . . , 3i}
and (right) {0, 1, 2, . . . , i} & {3i, 3i+ 1, . . . , 4i}

Minimum Measure: It computes average of minimum distance be-
tween all the bins inside the clusters.

MinMeasure (C) =
∑
e∈C mine′∈C\{e} dist(e− e′)

|C|
(4.1)

where C is the cluster of discretized bins, e ∈ C and e′ ∈ C are the indexes
of the bins from C such that e 6= e′.

Average Measure It computes average of average distance between
all the bins inside the clusters.

AvgMeasure (C) =
∑
e∈C

∑
e′ dist(e−e

′)
|C|−1

|C|
(4.2)

Maximum Measure It computes average of maximum distance be-
tween all the bins inside the clusters.

MaxMeasure (C) =
∑
e∈C maxe′∈C\{e} dist(e− e′)

|C|
(4.3)

To get the aggregated measure for the whole clustering of different
measures, we take the weighted average of the individual measures over
all the clusters:

FinalXMeasure (ζ) =
∑
C∈ζ

|C|
|ζ|

XMeasure (C) (4.4)

58



0 10 20 30 40 50
i

0

5

10

15

20

25

30

M
ea

su
re

 V
al

ue
s

[0,1,2, ,10] +[10i,10i+1, ,10i+10]

Min Measure
Avg Measure
Max Measure

0 10 20 30 40 50
i

0

5

10

15

20

25

M
ea

su
re

 V
al

ue
s

[0,1,2, ,100] +[100i,100i+1, ,100i+100]

Min Measure
Avg Measure
Max Measure

Figure 4.8: Various measures for evaluating the clusters of nominal values
for a cluster containing indexes: (left) [0, 1, 2, . . . , 10]+[10i, 10i+1, . . . , 10i+
10] and (right) [0, 1, 2, . . . , 100] + [100i, 100i+ 1, . . . , 100i+ 100]

In Figures 4.6-4.9, we plot the values for each measure when the in-
dexes of the bins inside the clusters vary in order to select/choose the appro-
priate measure from among them for evaluating the nominal value clus-
ters.

In Figure 4.6, we show the plots for each measure for a cluster that
contains bins with equal distance between them. When the distance be-
tween the bins is increased from one (see left of Figure 4.6) to two (see
right of Figure 4.6), all measures report an increase. As the number of bins
inside a cluster, the MaxMeasure and AvgMeasure measures converge.
We expect the measure functions to monotonically converge, where as the
AvgMeasure does not show strictly monotonic behaviour.

In Figure 4.7, we show the plots for each measure for a cluster that
contains continuous bins with a gap between them. We expect the measure
functions to return larger values when the gap between the continuous
bins is increased. However, MinMeasure stays constant even when gap
between the continuous values is increased from i on left of the Figure 4.7
to 2i on right of the Figure 4.7. This effect is more visible in Figure 4.8
whereMinMeasure remains unchanged when the gap between the values
changes.

In the left of Figure 4.9, we show the plots for each measure for a cluster
that contains bins with exponential indexing. All measures show increase
as the number of bins are increased inside the cluster with MaxMeasure
being the most sensitive. In the left of Figure 4.9 the plots are show for bins
with exponential indexing and the next consecutive bin. MinMeasure is
completely insensitive of the distance between the bins in such a cluster.

Based on the above experiments, we choose MaxMeasure for evaluat-
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Figure 4.9: Various measures for evaluating the clusters of nominal val-
ues for a cluster containing indexes: (left) {0, 21, 22, . . . , 2i} and (right)
{0, 21, 21 + 1, . . . , 2i, 2i + 1}

ing the quality of the clusters of numerical bins as its sensitive, stable and
shows monotonic change.

We have conducted the experiments not only evaluate the quality of
the clustering of the numerical bins, but also how stable are the group-
ings over time, i.e., whether the nominal bins constantly switch between
the clusters or do they stabalise. If the clustering is not stable across time
points, the discovered nominal groupings would be off little use as the
propositionalised attributes that are constructed over these nominal clus-
ters would change their definition too often to be of any utility. We use
Jaccard Coefficient to check the stability of clusters of nominal bins across
consecutive timepoints.

Jaccard Coefficient Jaccard Coefficient [Tan et al., 2004] assumes two
clusterings ζ, ζ ′. Let f11 be the number of records for which ζ, ζ ′ agree that
they should be in the same cluster. Let f10 be the number of records that
were put in the same cluster by ζ but in distinct clusters by ζ ′ (disagree-
ment), and let f01 be the number of records put in the same cluster by ζ ′

but in distinct clusters by ζ (disagreement). Then, the Jaccard Coefficient
is:

JaccardCoeff(ζ, ζ ′) = f11
f11 + f01 + f10

4.2.2 Experimental Results

In Figure 4.10, we plot the results of nominal clustering with varying win-
dow sizes ω = 1, 2, 4, 8 over the synthetic dataset. The dataset consists of
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Figure 4.10: Synthetic Generator: Max Measure with nbins=100 (left) K=10
(middle) K=15 and (right) K=25.

four attributes out of which we have discretised one attribute into 100 bins.
The different sub-figures we have varied the number of nominal clusters
K = 10, 15, 25.

As indicated by the plots for MaxMeasure, the clusters from all the
experiments are generally compact, i.e., they contains bins, which are in
close proximity of each other. When drift happens, all the strategies regis-
ter a drop in compactness (indicated by peaks in MaxMeasure). After the
drift the clustering quality for the smaller window sizes recovers first. The
quality for the ω = 8 recovers the last just in time for the next drift.

In the plots, only two drift points are visible, i.e., at timepoints t10 and
t30. All the strategies seem to missed the second drift which occurs at
timepoint t30. Only examining the dataset, we discovered that although
there was indeed a drift at timepoint t20 but the clustering from the before
the drift was valid for the new data, as well.
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Figure 4.11: Synthetic Generator: Jaccard with nbins=100 (left) K=10 (mid-
dle) K=15 and (right) K=25.

The clustering quality is marginally better for larger K values. One
obvious reason can be the data compression. Compression is responsi-
ble in part for this. In a data streams we often come across skewed data
distributions, where certain nominal values have higher frequency of oc-
currence than the others. We encounter something similar with our bins
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where certain bins occur more often. When the bins are propositionalised,
the ones with lower counts tend to act as noise. At larger values of, the
flat hierarchical clustering isolates them into separate clusters and they do
not disturb the quality that much. Smaller K values forces the clusterer
to merge nominal bins together and while merging it merges these noisy
values which are seemingly far apart.

In Figure 4.11 we plot the values from of Jaccard Coefficient. The strate-
gies with larger window sizes are generally more stable than those that
have a smaller window sizes. The stability of clustering decreases as the
number of clusters is increased. When the Jaccard plots with K = 25
(see right of Figure 4.11) are juxtaposed with the MaxMeasure plots (see
right of Figure 4.10), it becomes apparent that the marginally better per-
formance of the strategies with larger K = 25 are at a cost of stability.

4.3 Comparing Different Caching Strategies

In this section we evaluate the methods that keep a cache of perennial
objects under limited space. We provide our experimental settings and
the measures that we have used in the following.

Table 4.4: Description of caching strategies
Name Symbol Description
Baseline B infinite memory

knows future
CacheUpdate R1 infinite memory

does not know future
SmallCache R2 limited memory

does not know future
SpaceSaving+ SS limited memory

does not know future

4.3.1 Evaluation Framework

To evaluate the different mechanisms (cf. Section 3.2.1) for caching peren-
nial objects, we have devised an extensive framework. We evaluate the
algorithms on how well they can manage memory and time limitations
and maintain a good sample of objects from the perennial stream. In order
to do that we have devised various strategies and compared them against
each other. The strategies are described in Table 4.4.
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Strategy Baseline is our reference strategy. It has infinite storage capac-
ity and can anticipate which objects are going to arrive next. CacheUpdate
is our cache update algorithm which operates without knowing the future
(cf. Section 3.2.1). However, it has infinite resources and can store the ex-
act number of references an object receives. SmallCache is an improvement
on CacheUpdate strategy (cf. Section 3.2.1). It tries the perennial objects
that will be referenced and caches them. SpaceSaving+ is a variant of the
"space saving" by Metwally et. al. [Metwally et al., 2006]. Its primary pur-
pose is to keep approximate counts of objects seen thus far in the stream
and maintain the top-N objects seen thus far. Unlike the original "space
saving" algorithm, we apply decay on the counters maintained by Space-
Saving+ at the end of each timepoint.

Table 4.5: Parameters for caching strategies
Dataset Parameters Values
SytheticSmall NT [3, 5, 7]

M [6, 10, 14]
β [1, 1.1, 1.2, 1.5, 2, 5]

Zipf Dataset NT [50, 100, 200]
M [125, 200, 300]
β [1, 1.2, 1.5, 5]

MovieLens Dataset NT 100, 500
M 200, 100
β 1, 2

Financial Dataset NT 50, 100, 200
M 100, 200, 400
β 1.2, 2

In Table 4.5 we present the experimental settings for experiments that
we have conducted for evaluating the cache mechanism. N is the size of
the cache over the perennial stream. The parameter M is size of the coun-
ters maintained to approximate the N objects to be cached. This param-
eter is only applicable for the strategies SmallCache and SpaceSaving+,
whereas the strategies Baseline and CacheUpdate have infinite resources.
SmallCache uses an additional parameter Msoft. For all the experiments,
Msoft = 1.5×M .

We have used the commonly used evaluation measures which are; ac-
curacy, hits, runtime and memory. We list these measure in Table 4.6. The
accuracy in our experiments means how well strategies can approximate
the top-NT objects for the next timepoint. The accuracy of the top-N sets
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of objects is measured against the baseline because it has the knowledge of
future and knows the exact top-N objects to be cached. Therefore, we do
not plot the accuracy for the baseline. It is explicitly assumed to be 100%.

Table 4.6: Evaluation measures for caching strategies
Measure Description
Accuracy The accuracy of top-N objects of a strategy wrt. to the

Baseline
avg(Accuracy) For the aggregated experiments, we compute the av-

erage of the accuracies across all the timepoints.
Hits The number hits recorded by a strategy for the cached

objects, i.e., top-N objects.
sum(Hits) For the aggregated experiments, we compute the sum

of the hits across all timepoints, i.e., total number of
hits recorded by a strategy in a single run of an exper-
iment.

Runtime The execution time of a strategy.
sum(Runtime) For the aggregated experiments, we compute the sum

of the runtimes across all the timepoints.
Memory Units of memory used by a strategy.

max(Memory) For the aggregated experiments, we compute the max
memory consumed by a strategy at any in a single run.

In Table 4.5 regarding the experimental settings, the parametric values
within parenthesis imply that we have also conducted aggregated experi-
ments. For such an experiment, we vary the value of one parameter while
others are kept constant. Unlike, the single run experiments, where we
show the values of a measure as a line plotted against time on X-axis, the
results of these experiments are depicted as bar charts. On X-axis, we
show the different values for a parameter and the bars are the aggregate
values of the individual measures across all timepoints (see Table 4.6 for
aggregation specification for each measure). All aggregated experiments
are aggregated over 10 runs for each parameter setting (unless stated oth-
erwise). The randomisation in the experiments is achieved by shuffling
the order of incoming objects with a timepoint.

4.3.2 Experimental Results

Here, we present the results of our experiments for each dataset. The ag-
gregate runs for the dataset are presented after the individual runs.
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Figure 4.12: Plots for SmallDataset: NT =5, M=10, β=1

In Figure 4.12 we present the individual run over the SytheticSmall
dataset with the parameters NT = 5,M = 10, decay = 1. Even when the
decay is set to 1 (i.e., no forgetting), all the strategies are able to recover,
albeit slowly (Hits count in Figure 4.12). For strategies R2 and SS recovery
is relatively faster than that of R1. This is primarily due to the fact that R2
and SS maintain an approximation on the number of objects missed so far.
Whenever a new object arrives, they associate the number of misses with
the arriving object. In other words, they both are optimistic strategies that
initialises a previously unseen object with an upper bound of the number
of objects missed thus far. Therefore, when the drift occurs, new objects
get slightly inflated counts and strategies recover. R1 on the other hand
maintains only the exact counts. Whenever a new object arrives, unlike
R2 and SS it is initialised with a count of zero. In order for the new object
to brought into the cache (or among top-NT objects) and has to wait until
the accumulated counts of the new object become greater than the counts
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Figure 4.13: Plots for SmallDataset: NT =5, M=10, β=2

of those that are already in the cache4. It is the last to recover from the
drifts at t3 and t17. For the last drift moment, no strategy is able to recover
because there are not enough any more.

One peculiarity in Figure 4.12 is that although SS is the first one to re-
cover after the drifts at t3 and t20 (see Hits and Accuracy in Figure 4.12)
but other strategies are able to catch up with it. R2 in particular, catches
up with SS at t10 and even surpasses it at t22. The optimistic behaviour
of SS works well when the data is volatile after the drift but during sta-
ble phases, it over estimates the counts for even incoming noise and thus
suffers.

In Figure 4.13 we change the parameter value for decay to β = 2. We
observe a speed-up in recovery time for all the strategies after the drift.
This validates our earlier claim that the slowly recovery of R1was primar-
ily due to its remembrance of old accumulated counts for the objects which

4R1 or CacheUpdate weigh the importance G() of each perennial object based on the
number of references it receives and then caches the top-NT objects.
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makes the recovery hard. Setting a higher value for the decay makes it
possible for the strategies in general and R1 in particular to forget the his-
torical counts quickly.

Another notable change is the noticeable reduction in the run times for
the strategy SS. The strategy SS reports the reduction in the run times be-
cause in the presence of decay, the old objects get outdated quickly rather
SS doing approximations to overcome their counts. For strategy R2, re-
sults in slightly less memory usage. However, we will explore this further
for R2.
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Figure 4.14: Agg. Plots for SmallDataset: NT =5, M=10 and varying β

In Figure 4.14 we present the aggregated experiments where we vary
the decay parameter with values β = 1, 1.1, 1.2, 1.5, 2, 5. We can see that the
average accuracy for SS strategy rises as we increase the decay till β = 1.5
and then becomes stable. The run times for the strategy SS also decreases
with an increase in the decay. For R1 and R2 the mean accuracy keeps
dropping as the decay is increased. On the other hand, the hits gradu-
ally increase as the decay is increased for all the strategies. The best hit
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counts are obtained for strategy R2 with decay value of β = 5.0. R2 also
reports the best average accuracy for the same decay value. Although R2
has slightly higher memory requirements, but it has the ability to adjust its
space requirements and is suitable for scenarios where resource awareness
is important. Its run times are several times lower compared to SS while
their complexity is the same. R2 benefits from its ability to use the addi-
tional memory provided by Msoft (cf. Section 3.2.1), which greatly reduces
its computational overhead.
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Figure 4.15: Agg. Plots for SmallDataset: M=10, β=2 and varying NT

In Figure 4.15 we plot the results for the experiments by varying the
parameter NT = 3, 5, 7. In these experiments we have set the decay at
β = 2. We have already seen in Figure 4.14 a decay greater than 1 benefits
all the strategies in terms of number of hits. In a streaming environment
setting up a decay is always desirable. With a varying NT (NT is the size
for the object cache) all strategies report a drop in accuracy but the number
of hits registered by each is increased.

In Figure 4.16 we plot the results for the experiments by varying the
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Figure 4.16: Agg. Plots for SmallDataset: NT =5, β=2 and varying M

parameter M = 6, 10, 14. Varying the parameter M doesn’t have any ef-
fect on the space requirement strategies B and R1 as they have infinite
space. The accuracy for strategies R2 and SS increases as more memory
is made available to them and both also report a noticeable drop in their
run times. Additional experiments with individual runs are attached in
the Appendix A.3.

In Figure 4.17 we present results for the dataset Zipf Distribution with
the following parameters: NT = 100, m = 200 and β = 5. As stated
earlier we have imputed 4 concept drifts in the dataset (cf. Section 4.1.2),
which occur at timepoints t0 − t9, t10 − t19, t20 − t29 and t30 − t39. Number
of new objects that appear at each drift moments are approximately 800,
1300, 1000 and 1700.

All the strategies report a drop in performance when the drift occurs.
However, because of a stronger decay, i.e., β = 5, all react and recover
quickly with almost similar speeds. The strategy R1 reports the best per-
formance in comparison with the baseline both in terms of accuracy and
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Figure 4.17: Plots for Zipf: NT =100, M=200, β=5

number of hits achieved. It is followed by the strategy R2 and the strategy
SS ranks last.

One important observation one can draw (from Figure 4.17) is that SS
performance grows competitive towards R2 when the overall number of
objects in the drift moments is low, i.e., at the first drift moment when
there are around 800 unique objects and at the third drift moment when
there are around 1000 unique objects. For second and fourth drift mo-
ment when number of objects increases to 1300 and 1700, respectively, the
performance of SS is visibly inferior. A similar effect can also be noted
from the run times for SS, where for the second and fourth drift moment
it requires more time for computation than at the first and third drift mo-
ments. R2 apparently does not show any such tendency, its performance
is independent of the number of the objects.

R2 shows the best run times, even better than the strategies with un-
limited space. We have investigated this more in Figure 4.18 to check if it
can be explained or is it just an artefact.
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Figure 4.18: Agg. Plots for Zipf: NT =100, M=200 and varying β

In Figure 4.18 we plot the aggregated experiments for the parameters
NT = 100,M = 200, while the decay was varied with the following values:
β = 1, 1.2, 1.5, 5. Continuing from last observation, we find out that the
better run times for the strategy R2 in the experiment in Figure 4.17 is not
an artefact. We consistently get better run times for R2. Moreover, the run
times for the strategies B and R1 gradually increase as the value for decay
is increased. There is nothing in the data that might suggest this behaviour
except that there are a large number of objects. At the end of each time,
all the strategies make one pass over the objects stored in the memory to
enforce decaying. For the strategies B and R1, with their infinite memory,
it requires a lot of effort, which is one of the reason for their high run times.
Moreover, with a high value for the parameter β, the objects towards the
tail part, i.e., the ones with low counts become too fragile. Because of this
fragility, the change in order becomes very frequent, which explains why
they report higher run times.

The effect of varying the decay parameter β is similar to what we have
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observed in the experiments with small dataset (see Figure 4.14). The run
times for SS are inversely proportional to the decay. With a higher de-
cay, the accuracy of the strategies for top-NT cached objects towards the
baseline B becomes consistent with the number of hits that are generated
by them. With higher decay values, the strategies also generate far more
hits than those generated for lower values. Additional experiments with
individual runs for the decay for the Zipf dataset are attached in the Ap-
pendix A.3.
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Figure 4.19: Agg. Plots for Zipf: M=200, β=5 and varying NT

In Figure 4.19, we present the aggregated experiments for the Zipf
dataset with varying values for the parameter NT . For a smaller value
of NT , the strategies R2 and SS report high accuracy. But their accuracy
gradually decreases as isNT increased while the number of hits generated
by them increases as they can accommodate more objects.

The previous observation suggest that the strategies R2 and SS are tai-
lored to approximate the "head" part of Zipf distribution, where the differ-
ence with respect to the tail is maximum. When the are forced to accom-
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Figure 4.20: Agg. Plots for Zipf: NT =100, β=5 and varying M

modate objects that are further down the head, they run into problems
because of their over optimistic behaviour and SS suffers more of the two.

In Figure 4.20, we plot the results of the aggregated experiments for
the Zipf dataset with varying values for the parameter M . As more re-
sources are made available for the strategies with limited space (i.e., R2
and SS), their approximation for top-NT objects increase as indicated by
their increasing accuracy and number of hits. They grow increasing com-
petitive towards the strategy R1 both in terms of accuracy and the number
of generated hits and demonstrate their ability to make an efficient use of
the limited space available to them. Both R2 and SS also report decrease
in their run times, which are noticeable for only SS in the Figure 4.20. R2
shows a marginally better performance in terms of accuracy and number
of hits, while its are many fold faster than those for the strategy SS.
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Figure 4.21: Plots for Movie Lens: NT =100, M=200, β=1
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Figure 4.22: Plots for Movie Lens: NT =100, M=200, β=2

74



In Figure 4.21, we plot the results for the movie lens dataset with pa-
rameters NT = 100, M = 200 and β = 1. The accuracy for the limited
space strategies R2 and SS completely breaks down after timepoint t80 in
relation to the strategy R1. Whereas the number of hits generated by R2
and SS are higher during this break down period. That means they are
able to recover because of their optimistic approximation behaviour. This
is a clear indication of the presence of the drift in the data.

In Figure 4.22, we set the decay parameter β = 2. We immediately see
visible improvements in terms of accuracy. The number of hits increase
but not so much. Even after setting the β = 5, the improvements were
minimal.
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Figure 4.23: Plots for Movie Lens: NT =500, M=1000, β=2

One possible reason for such a low accuracy and so few number of hits
is that the size of the cache NT we have use is too small for the strategies
to make a good approximation. In Figure 4.23, we increased the size of the
cache to NT = 500 and keeping β = 2. The accuracy increases for all the
strategies but the number of hits merely doubles in response to a five-fold
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increase in the size of the cache. In comparison the strategy B registers
more than the double amount of hits.

On exploring the dataset, we found the reason for such an erratic be-
haviour of the strategies R1, R2 and SS. In the dataset there are almost
600 users who appear only once and makes approximately 68K ratings.
Moreover, there are 600 additional users who appear for two to five time-
points. The number of ratings generated by them are approximately 150K
and these too are concentrated in one or two timepoints which may be far
apart. For any strategy that has no knowledge of the future, it is extremely
difficult to register hits for users with such skewed appearance and im-
possible for users with only a single appearance. This explains the low
number of recorded hits.

However, in all the experiments on the movie lens dataset (cf. Fig-
ures 4.21-4.23), the strategy R2 registers similar performance in terms of
accuracy, hits and run times in comparison to SS, with only marginally
higher resource requirements.
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Figure 4.24: Plots for Financial: NT =100, M=200, β=1
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In Figure 4.24, we plot the results for Financial dataset with the param-
eters, NT = 100, M = 200, β = 1. All the strategies start promisingly. But
after t10 the performance gradually degrades. This indicates a very strong
presence of drift and no strategy apart from B is able to capture it.
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Figure 4.25: Plots for Financial: NT =100, M=200, β=2

In Figure 4.25, we increase the decay to β = 2. The only visible change
is in the performance of R1. R2 registers slight improvement but after t45
it deteriorates as well. Even setting a decay value of β = 5 or increasing
the size of NT ,M = 150, 300 show no meaningful improvments in for R2
and SS (see Figures A.4 & A.5 in Appendix A.3).

On exploring the dataset further, we discovered that nature of the dis-
tribution for the number of references that an account receives in Financial
per timepoint is Gaussian. In Figure 4.26 we plot the some of the statistics.
On the left, we plot the cumulative references for an accounts objects re-
ceive from the timepoint it is first observed through to t72. The plot on the
right shows the average number of references an account objects registers
at each timepoint after its arrival.
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The main advantage that R2 and SS draw comes from their ability to
separate highly referenced objects from those that receive only few refer-
ences. In financial dataset, this phenomenon is non existent, thus they are
unable post good performance.

In Appendix A.3, we report some more experiments on the Financial
dataset. We modified the baseline slightly so that it still knows one time-
point into future, but rather than utilising that knowledge of future di-
rectly, it should utilise it via the counts it maintains for each object, i.e., it
first updates its counters from the data at ti+1 and then decides on basis of
those counts what to store in the cache. Under these conditions, even the
baseline suffers performance degradation.
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Figure 4.26: Statistics for # references for perennial accounts in Financial
dataset. (left) Each line represents the accumulating references for an ac-
count over time, i.e., from the timepoint it first appeared through to the
last timepoint (plotted with a sample size of 170). (right) Average number
of references recorded for an account (we ignore the timepoints where an
account did not appear).

4.4 Evaluating Incremental Propositionalisation

In the previous section we evaluated various components of Incremental-
Propositionalisation, individually. In this section we present our experi-
ments for the complete algorithm. For the experiments we are going to
use three datasets: Ratings dataset, Gazelle dataset and Financial dataset,
which we have already explained, earlier in Section 4.1.

IncrementalPropositionalisation first transforms the target stream of
perennials into a propositionalised stream (cf. Algorithm 3, Section 3.2.3).
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Acronym REF G1 G2 G3 G4 G5
Products ∞ 5 25 75 150 200
Contents ∞ 5 15 40 60 70
r ∞ 7 7 7 7 14

Table 4.7: Experimental settings for Gazelle Dataset.

The clustering algorithm IncrementalKMeans (cf. Algorithm 5, Sec-
tion 3.3) than operates over this transformed data to discover groups of
similar objects. We describe our evaluation framework next.

4.4.1 Evaluation Framework

Our hypothesis is that the amount of information remembered from the
multi-relational stream overtime, has an impact upon the quality of the
clustering results. The remembered information is affected by the cache
sizes NT , N1...J , the size of the window ω over ephemeral streams and by
the number of columns rA reserved for each nominal attribute A. We have
thus varied these values for the streams ’Accounts’, ’Districts’ of Financial
dataset and the streams ’Products’, ’Contents’ for Gazelle dataset. The
specification of cache sizes, i.e., NT , N1...J , and reserved columns rA is a
"cache strategy". The strategies that we use for Gazelle dataset are shown
in Table 4.7 and the ones for Financial dataset are shown in Table 4.8. For
example, strategy FIN2 uses a cache of 200 accounts and 40 districts objects
and reserves 3 columns for storing nominal values of each attribute.

Acronym REF FIN1 FIN2 FIN3
Accounts ∞ 100 200 300
District ∞ 20 40 50
r ∞ 3 3 3

Table 4.8: Experimental settings for Financial Dataset.

Evaluation Measures

At timepoint ti, the incremental clustering algorithm adjusts the clusters
of model ζi−1 into model ζi. If the quality of ζi is lower than that of ζi−1
below a threshold ρmin = 0.7, then the data are re-clustered.

We use following quality measures: Jaccard coefficient (cf. Section 4.2
and/or [Tan et al., 2004] for details) to compare clusterings at different ti-
mepoints and for comparing different strategies (for the Gazelle dataset);
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entropy to evaluate a clustering against explicit class labels (for the Finan-
cial dataset and the Ratings dataset).

The entropy measures the degree to which a cluster contains objects
belonging to a single class. Let ζ be a clustering and ξ be the set of classes
describing the data. For each Cu ∈ ζ and Lv ∈ ξ, the probability that an
object in C belongs to Lv is puv = |Cu∩Lv |

|Cu| . The entropy of Cu is e(Cu, ξ) =∑
Lv∈ξ puvlog2puv. The entropy of ζ is then

entropy(ζ, ξ) =
∑
Cu∈ζ |Cu|e(Cu)
| ∪Cv∈ζ Cv|

For entropy, lower values are better.

4.4.2 Experimental Results

Gazelle dataset

In the Gazelle dataset, we build user profiles on products inspected by
each user (user “request”) during each session, so sessions without prod-
uct requests are dropped. There has been no information about re-visits
of users, so a user corresponds to a session, and Sessions is the target.
The contents of a session may be of several types, depicted in the table
Content.

The Gazelle dataset has no ground truth, so we study the performance
of our strategies towards the reference. We also mark the timepoints of
re-clustering.

In the left side of Figure 4.27 we see the behaviour of each strategy for a
sliding window of 14 units, where a unit is 75 propositionalised sessions.
All strategies are initially comparable to the reference, but their perfor-
mance deteriorates as records are forgotten. The large-cache strategies G4
and G5 have inferior performance than small-cache strategies. This in-
dicates a tendency for new products and contents, in which small-cache
strategies adapt fast.

A concept shift occurs soon after timepoint 40, whereupon the refer-
ence and some of the cache strategies experience re-clustering. The time-
point fits with a TV advertisement for Gazelle, which is known to have
led to an increase in the site traffic. All strategies are slow in adapting to
this concept shift, but the large-cache strategy G5 is the first to show an
upward trend. This indicates that the range of products flowing into user
profiles by that time is large.
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Figure 4.27: Gazelle Dataset: Jaccard for (a) ω = 14 and (b) ω = 21

The next concept shift occurs just before timepoint 70. After this shift,
the large-cache strategies perform closer to the reference, while small-
cache strategies do not perform well and re-cluster around timepoint 125.
Two more shifts cause re-clustering of the reference a little earlier; they
were both accompanied by a performance degradation for the large-cache
strategies. It is remarkable that the strategy G4 has been close to the ref-
erence, although it did not re-cluster itself. This indicates that the clus-
ters under this strategy were adapted adequately to the changes in the
population. This also holds at the last shift around timepoint 135: the
performance of the large-cache strategies deteriorates, but G4 experiences
re-clustering only once. This indicates that a smaller cache leads to a
better adaptation during that period. This claim is further supported
by the small-cache strategies, whose performance improves without re-
clustering. We interpret this as a tendency of the users to concentrate on
few products.

On the right side of Figure 4.27, we see the behaviour of the strategies
for a window size ω = 21. We can observe the same phenomena, i.e. shifts
and re-clustering, although the first shift is captured much later than for
ω = 14. Small-cache strategies show a steeper performance deterioration
in early timepoints but improve in late timepoints and become more com-
petitive. Until timepoint 175, G4 performs better than G5, which uses an
even larger cache. At that timepoint, G4 shows very poor performance but
improves a bit after re-clustering, although its quality is inferior to that of
the small-cache strategies.

These results indicate that multi-table stream clustering allows for ad-
aptation to shifts. Small-cache strategies adapt without need of quality
monitoring and perform better when the data are very volatile. Large-
cache strategies have higher performance when there is some stability in
the data, but require quality monitoring to respond to concept shifts. As
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for many phenomena on streams, the selection of a proper window size
is of crucial importance. However, cache strategies allow for the incorpo-
ration of influence from data that do not belong to the target table, while
softening the impact of the window size selection. As we have seen, even
with a larger window size, caching allows for the adaptation to shifts, al-
though these shifts are recognized with some delay.

Financial Dataset

In the Financial dataset, we use a cache for the stream Accounts; at each
timepoint it accommodates a set of accounts and, after propositionalisa-
tion, of the transactions on them. Each account arrives with zero trans-
actions and evolves into either "loan-trusted" or "loan-risk" class as more
and more transactions are recorded for it. To avoid learning our models
on data that arrive early but are not relevant (and would thus blur our
results in an undisciplined way), we have trained a classifier (J4.8 Witten
and Frank [2005]) on it, identified the subset of predictive attributes and
then projected the remaining attributes away to reduce the noise. We var-
ied the number of columns reserved for each nominal attribute: r = 3 and
r = 7, but we found that the results were almost identical, except for some
slight variations between timepoints t30 and t40. Therefore, we report the
results of r = 3 only.
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Figure 4.28: Financial Dataset: Entropy for ω = 30 (left) K = 9 and (right)
K = 3

With the strategies defined for Financial dataset in Section 4.4.1, we re-
port experiments with two different settings. In the first set of experiments
(the two plots shown in Figure 4.28), we consider the whole of transaction
stream and use a window size of ω = 30 for K = 3, 9. In the second set
(shown in Figure 4.29 and Figure 4.30), instead of considering the whole of
transaction streams, we consider the transactions from last 30 timepoints
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only and repeat the selected transactions ≈ 4 times. We vary the window
size ω = 24, 18 and value of ρmin = 0.7, 0.85 for these experiments.

In the left side of Figure 4.28, drawn for K = 9 clusters, we show the
entropy values when comparing each cache strategy against the ground
truth. At the beginning, all strategies have an entropy value of zero, be-
cause the first accounts belong all to the same class. As soon as accounts
from the other class arrive, the entropy rises sharply.

It must be stressed here that accounts are perennial in nature, they ma-
ture and evolve over time. When accounts are introduced, the clusterer
is only aware of their initial intrinsic properties e.g. the information about
the owner(s) and types of card they hold, the district they were created
in and etc. There is little or no transaction information associated with
them, so they are initially grouped into clusters on the basis of these static
properties. On the other hand, the class label reflects their final state, after
many transactions have accumulated on them. This is the reason that all
strategies perform poorly at the beginning.

Around timepoint t10, the entropy of FIN1 (the strategy with the small-
est cache) starts dropping. By this time, more than 100 accounts have ar-
rived, and the CacheUpdate algorithm (Section 3.2.1) prefers those that
have performed more transactions. For FIN1 with its small cache, this
means that accounts with few transactions are not in the cache. All other
strategies, including the reference strategy, have larger caches and store
these accounts, which cannot be easily classified as loan-risk vs loan-
trusted, and thus result in bad performance. At later timepoints, i.e. after
t23 for FIN2 and after t30 for FIN3, these strategies also drift away from
the reference strategy: as they reach their cache size limit, they keep only
mature accounts inside the cache, so their performance increases.

From timepoint t32 until t55, the reference strategy with its infinite cache
shows the worst performance. The lesson learned is that in stream min-
ing it is not always desirable to remember all the data. For the Financial
dataset, oblivion is best: FIN1 that has the smallest cache size outperforms
all other strategies.

After timepoint t55, only very few new accounts arrive, the last one at
t60. For the next 12 timepoints, all accounts keep evolving as new trans-
actions arrive for them. The performance of the reference strategy also
improves towards the end since there are no noisy accounts to perturb it.
It outperforms all strategies as there is no information loss due to memory
limitations.

In the right side of Figure 4.28, we show the cache strategies for K = 3
clusters. We chose a small K to test whether the objects of the majority
class A/C are better accommodated in few large clusters. K = 3 turned
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Figure 4.29: Financial Dataset: Entropy for K = 9, ρmin = 0.7 (ω = 24

out to be not a good choice for the data with a very skewed distribution of
classes and very little separation between the data points. Before t32 when
information about accounts is very little, all the strategies perform very
poorly. Its performance starts getting better as information the accounts
mature. However, it should be noted that all the strategies were able to
separate a large number loan-risk accounts into one cluster but the cluster
also contained almost the same amount (or even more at some timepoints)
of loan-trusted accounts while the other two clusters were mostly clean.
This explains the relatively low entropy for the strategies with K = 3.
Whereas several small clusters with K = 9 achieved separation by discov-
ering clusters that contained only the loan-risk accounts.

In Figure 4.29, drawn for K = 9, ω = 24 and ρmin = 0.70, we show
the entropy for each cache strategy. As we have mentioned earlier that
for this dataset we repeat the transaction from last 30 months/timepoints.
Because of the large window size, i.e., ω = 24, almost all of the available
information gets enveloped. As the transactions accumulate, FIN1 and
FIN2 are the first to show improvement. However, after timepoint t12 they
are over taken by REF. From t1 to t12 about 400 accounts are active. The
main advantage that the smaller strategies draw comes from their abil-
ity to prefer objects that have grown substantially and are likely to carry
more information. Due to the richness of information in the subset of tra-
nsactions (i.e. last 30 timepoints), almost all of these accounts are growing
simultaneously by the timepoint t15. Therefore the reference strategy that
can cache all objects shows best performance.

By timepoint t30 all accounts mature. As the transactions repeat, the
reference strategy shows a strong periodic behaviour with lowest entropy.
FIN2 is the second most competitive strategy during timepoints t30 . . . t60.
FIN1 also has a periodic behaviour and shows improved performance as
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Figure 4.30: Financial Dataset: Entropy for K = 9, (left) ω = 18, ρmin = 0.7
and (right) ω = 24, ρmin = 0.85

the transaction data are repeated.
In the left side of Figure 4.30, we show the entropy of cache strategies

drawn for K = 9, ω = 18 and ρmin = 0.70. Till timepoint t18 performance
is similar to that for ω = 24. The reference strategy shows best. As the
window size is reached at t18, the reference stabilises and does not show
any significant improvement after that. By timepoint t30 all strategies have
somewhat comparable performance. As the transactions are repeated, the
performance of FIN1 starts improving. As we have pointed out earlier, the
cache strategies draw advantage by focussing on objects that are more ma-
ture than others. Because of the smaller window size, accounts with less
transactions and contain less information are dropped. FIN1 improves
its performance by focusing on the accounts that have done more trans-
actions and shows the best performance as the stream gets repeated over
and over.

In the right side of Figure 4.30, we show the entropy of cache strategies
drawn for K = 9, ω = 24 and ρmin = 0.85. The graph is comparable
to Figure 4.30(right), however is a bit more fragile because it re-clusters
more due to higher value of ρmin = 0.85. The strategies, specially the
reference, show slightly better performance at various timepoint due to
stricter threshold.

Ratings Dataset

In the experiments with the Ratings dataset we use a cache for stream
’User’ while use a window over the stream Rating. We have varied both
the parameters and studied its effect on the learned clustering model.
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Figure 4.31: Result on Varying the sliding window on Ratings DatasetK =
5 and NT = 50 (left) Entropy and (right) Jaccard Co-efficient. The points
on the plot lines represent the moments where the clustering algorithm
performed re-clustering.
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Figure 4.32: Result on Varying the sliding window on Ratings DatasetK =
5 and NT = 100 (left) Entropy and (right) Jaccard Co-efficient. The points
on the plot lines represent the moments where the clustering algorithm
performed re-clustering.

In Figure 4.31 we set the cache size over the stream User for all the
strategies to be 50 and vary the amount of information they can retain from
the ratings stream. The effect of varying the parameter ω are predictable.
All strategies undergo performance degradation at timepoint t12. The ones
with the larger window sizes react late towards the drift and their recovery
is slow as well. Their late reaction is identified by the ’dots’ on the plot
lines. These dots represent the timepoints when re-clustering was done
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by the algorithm. However, once they are stable (i.e., timepoints t4 − tt10
and t14 onwards), their performance are better than the ones that relatively
smaller to them. Both in terms of entropy and stability (depicted using the
Jaccard values on the left of the Figure 4.31).
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Figure 4.33: Result on Varying the sliding window on Ratings DatasetK =
5 and NT = 150 (left) Entropy and (right) Jaccard Co-efficient. The points
on the plot lines represent the moments where the clustering algorithm
performed re-clustering.

The same affect can be seen in the Figures 4.32-4.34 when we vary the
cache size. However, when we juxtapose the figures with varying cache
size over each other we observe that performance of the strategies im-
proves and not deteriorates with the increasing cache size. This effect of
the caches is exactly opposite to the one that we have see earlier in the
experiments with Gazelle and Financial datasets, where performance ac-
tually improves.

Upon investigating the dataset, we discovered that there is a slight
difference in the nature of these datasets. In Financial dataset, there are
perennial objects with very few transactions, and also those with large
number of transactions. This holds for the Ratings dataset as well. How-
ever, in Financial dataset new objects arrive gradually, all the time, while
for Ratings dataset all the objects arrive at once. Hence, in the Ratings
dataset, when we increase the cache size, the strategies accommodates ob-
jects that have done a large number of transactions but do not include
completely immature objects For this reason the entropy for the learned
model decreases. Where as, in Financial dataset strategies have to wait
until the cache gets filled by mature objects and only after that moment,
their performance starts to increase.
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Figure 4.34: Result on Varying the sliding window on Ratings DatasetK =
5 and NT = 600 (left) Entropy and (right) Jaccard Co-efficient. The points
on the plot lines represent the moments where the clustering algorithm
performed re-clustering.

However, when we increase the cache to encompass all the objects seen
thus far in the Ratings dataset (see Figure 4.34), i.e., ones with low number
of transactions and the ones with large number of transactions, we see a
drop in the performance of the all the strategies in relation to the ones with
smaller cache sizes. Not only their entropy increases, but their Jaccard
values are lower (which means that they change much with regards to the
model from the previous timepoint) and they re-cluster more as well.

4.5 Conclusion

In this chapter we have presented a lengthy evaluation of Incremental-
Propositionalisation, which include the evaluation of the algorithm for
nominal space adjustment (NominalSpaceAdjustment, cf. Section 3.2.4),
the different caching mechanisms (CacheUpdate and SmallCache, cf. Sec-
tion 3.2.1) and the incremental propositionalisation of multiple interre-
lated streams of perennial objects.

Different cache strategies proposed in this thesis, cater well if the un-
derlying distributions for the number of perennial objects is Zipf distribu-
tion. Our caching strategies generally performs well, especially R2 which
not only shows competitive performance towards in comparison with R1
(with infinite resources) under stable conditions5 but its recovery time is

5When there is no concept drift.
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also competitive with respect to SS. The main reason for its competitive
performance is its tighter and more realistic approximation on the num-
ber of missed objects.

The evaluation performed regarding caching strategies, also laid bare
some important characteristics about perennial objects. These character-
istics also depend on the context in which perennial objects are found.
For example, in the financial dataset from banking domain, perennial ob-
jects do not arrive all at once, but gradually. Once they are seen for first
time, all of them reappear regularly with the number of references for each
object at each timepoint following a normal distribution (as depicted in
Figure 4.26). In contrast, the appearance and re-appearance of perennial
objects in the MovieLens dataset from the recommendation is irregular or
consider the online auction sites, such as eBay, where an auction receives
the most bids when it is about to be closed. This calls for more elaborate
caching strategies, that can also take the domain of the considered prob-
lem into account.

In the last section of this chapter we evaluated IncrementalProposition-
alisationas a whole (with all its sub procedures). Another important aspect
that we discovered about the perennial is that the maturity of a perennial
objects has a direct effect on the quality of the learned clustering model.
From stream mining we know that a model that remembers everything is
not always the best one. In IncrementalPropositionalisationdue the size of
the cache, perennial objects that are less mature get filtered out implicitly.
The algorithm prefers those objects that have more references (and more
information as well), which contribute towards the quality of the learned
model.
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CHAPTER 5

Classifying Perennial Objects

Traditional classification algorithms designed for the analysis of stream
data assume that objects (along with their class label) enter the horizon of
observation, are processed to the effect of learning and adapting the model
(e.g., a decision tree), and are then forgotten when they get old. This has
been inspired by the stream mining paradigm that has been motivated by
the obvious fact that it is practically impossible and pragmatically unnec-
essary to maintain each data point (e.g., registered by a sensor or recorded
in a server log) for longer time than needed to update the underlying
model. However, many applications require learning over perennial ob-
jects like patients or customers. As we discussed earlier (cf. Chapter 1)
perennial objects are complex objects that (a) may not be forgotten, (b)
may evolve over time, (c) may change their class labels and (d) constitute
themselves a stream. Stream classification over perennial objects is a new
problem for which conventional techniques for model learning and adap-
tation must be reconsidered. In this chapter we build upon our solution
on building perennial objects through propositionalisation (cf. Chapter 3)
and propose a solution for the task of decision tree induction over a stream
of perennial objects.

Among the four challenges mentioned above, particularly important
for stream classification is the issue of label change (challenge c), because
it corresponds to a new kind of concept drift. Contrast that in conventional
classification in conventional classification, an object has a given label, e.g.,
a customer is trustworthy or not, an Alzheimer patient either exhibits pac-
ing or does not; the label of a perennial object may change though, i.e.,
the customer may stop being trustworthy, while the patient may start ex-
hibiting pacing (by the nature of the Alzheimer illness). Such drifts must
be captured by the model, while retaining the circumstances (data) before
and after the drift for use upon further similar objects. This calls for a
new kind of model adaptation. Finally, as mentioned before, even if some
perennial objects must be moved out of storage, their contribution in the
model should be retained, at least for some (application-specific) time pe-
riod.

In this chapter, we propose a new approach for classification over a
stream of perennial objects, taking account of the above challenges. We
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Table 5.1: List of used terms and symbols.
Notation Description

ψ attributes from the propositionalised stream P .
R root node of the tree induced by TrIP
Ω a node of the induction tree
QΩ
ti

accuracy of the sub-tree with root Ω at ti
varΩ

ti
variance in the accuracy of the children Ω at ti

ageΩ
ti

age of node Ω at ti
sΩ
ti

support of node Ω at ti: number of objects in Ω at ti

coefficients supportCoeff(Ω, ti): support coefficient of a node Ω at ti
qualityCoeff(Ω, ti): quality coefficient of a node Ω at ti

δ confidence threshold for the Hoeffding Bound
τ used for resolving ties in split decisions
n min #objects that must be in a leaf node before it is

checked whether the node can be split; used to compute
the Hoeffding Bound

f min #objects to check for concept drift
lmin min #objects that must be in a leaf node after a split
smin support [0, 1] below which a leaf starts to age

build upon our earlier work on multi-relational stream mining to combine
the stream of perennial objects and the streams of simpler objects (trans-
actions, activities and similar) associated to them into a “multi-table str-
eam” upon which a classifier can be applied. We then extend the incre-
mental tree induction algorithm CVFDT proposed by Hulten et al. [Hul-
ten et al., 2001] for a conventional data stream into an adaptive learner
for a stream of perennial objects. The extensions are twofold: the new al-
gorithm can deal with the fact that the objects are perennial, hence their
contribution to the model may not be forgotten, and with the concept drift
incurring as some perennial objects change their label.

5.1 Tree Induction over a Stream of Perennial
Objects

Our Tree Induction algorithm for Perennial objects (TrIP) has several com-
ponents. First, the IncrementalPropositionalisation algorithm (cf. Algo-
rithm 3 in Chapter 3) that combines the stream of perennial objects with
further streams (of perennial or ephemeral objects) transforming them into
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Algorithm 6: TrIP
Input : XB,S,N , ω, rA, β, ε , ω, n, f, lmin, smin, δ, τ
Output: Ω

1 Create root nodeR0.
2 Initialise sufficient statistics.
3 for ti = t1 to STREAM_END do
4 Pi ← IncrementalPropositionalisation(

XB,S,N , ω, rA, β, ε)
5 Ri ← TrIPCore(ti,Ri−1, Pi, ω, n, f, lmin, smin, δ, τ)

Algorithm 7: TrIPCore
Input : ti,R, Pi, ω, n, f, lmin, smin, δ, τ
Output: Ω

1 foreach x ∈ Pi do
2 if x.id ∈ (Pi−ω,Pi−1] then
3 RecursivelyForget(R, x)
4 PresentExample(R, x)
5 foreach n objects do
6 R ← GrowNAdaptSubtree(R, n, f, lmin, smin, δ, τ)

7 foreach x ∈ Pj | j = i− ω do
8 RecursivelyForget(R, x)
9 ReturnR

a single stream for mining. This component is coupled with a sliding win-
dow mechanism that replaces outdated perennial objects with their up to
date version and forgets those that are not needed for the current version
of the model. The tree induction and adaptation with help of alternate
trees is based on CVFDT [Hulten et al., 2001], but this component has been
extended to cover the particularities of perennial objects, including a new
form of concept drift. We present each component in turn in the follow-
ing subsections. The basic notations and symbols are same as that from
the last chapter (c.f. Table 3.1). Additional notation and parameters are
presented in Table 5.1.

For a target stream T that receives ephemeral objects from streams
S1, S2 . . . SJ , TrIP grows a decision tree incrementally. For simplicity and
the ease of invocation, we present TrIP in two parts: The first part, de-
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picted in Algorithm 6, provides a high level overview of the algorithm.
It first initialises the root node R (Line 1) and the sufficient statistics (cf.
Chapter 2, also discussed in the next subsection). Then, as new data arrive
in the multiple interrelated streams at each timepoint, it summarizes them
into a single propositionalised stream Pi (Line 4) and the invokes the core
functionality of TrIP (depicted in Algorithm 7: TrIPCore) to update the tree
model Ri−1 from the previous timepoint by incorporating new data from
Pi (Line 5).

The core functionality of TrIP is wrapped inside Algorithm 7: TrIPCore.
At each timepoint, it recursively presents each perennial object x from Pi
to all the nodes in the tree, starting fromR (Line 4). When at least n objects
have been presented, TrIPCore expands the tree by splitting the leaf nodes
(Line 6). Periodically, TrIPCore updates and forgets outdated perennial
objects (Line 3 & 8).

In the remainder of this thesis, we would refer to the Algorithms 6 & 7
as TrIP.

5.1.1 Maintaining Sufficient Statistics

We have briefly discussed the notion of sufficient statistics in the context of
tree induction algorithms in Chapter 2. We describe it again in detail. Str-
eam based tree induction algorithms [Domingos and Hulten, 2000; Hulten
et al., 2001; Gama et al., 2003] stores the information about the distribution
of class labels with respect to each attribute-value pairs. This information
is maintained for each node in the tree. For example,

(att=forecast, val=rain)→ [+ve=90, -ve=10]

It reads, that of the 100 examples that satisfy (forecast=rain), 90 belong
to the positive class while 10 belong to the negative class.

Maintenance of sufficient statistics for nominal attributes is straightfor-
ward. For maintaining sufficient statistics for numerical attributes, we use
an approach which is similar to the binning method employed in VFML
[Holmes et al., 2005]. For every new value that we observe, we create
a new bin. New bins are added until a pre-defined number of bins is
reached, after which the observed range is sub-divided into z bins of equal
length. For example,

(att=temperature, val=bin[22.5,25.0))→ [+ve=40, -ve=10]
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Algorithm 8: RecursivelyForget
Input : Ω, x

1 if x.tp ≥ Ω.tp ∧ x.ID ≥ Ω.f irstID then
2 Decrease sufficient statistics according to x.
3 Ωc ← FindChildConsistentWithExample(x)
4 RecursivelyForget(Ωc, x)

5 foreach Ωalt ∈ GetAltTrees(Ω) do
6 RecursivelyForget(Ωalt, x)

It reads, that of the 100 examples that where the value for tempera-
ture is between 22.5 to 25.0 or fall inside bin[22.5,25.0), 40 belong to the posi-
tive class while 10 belong to the negative class. The split decisions over
numerical attributes are binary, e.g., att=temperature>22.5. For check-
ing/employing binary splits, the boundaries of the numerical bins serve
as potential split points.

The bin-based approach to store the numerical values is an expensive
approach as also observed in [Holmes et al., 2005]. There exist other more
sophisticated approaches for maintaining sufficient statistics over numer-
ical attributes [Gama et al., 2003, 2004; Jin and Agrawal, 2003].

5.1.2 Dealing with Outdated Perennial Objects

The stream of perennial objects cannot be propositionalised once and for-
ever: as new perennial or ephemeral objects arrive, the target schema
needs to be updated – adding, modifying and deleting columns, as ex-
plained in Chapter 3, as well as the perennial objects seen thus far. Hence,
TrIP employs a sliding window of length ω timepoints: at timepoint ti the
newest block of objects from the caches and windows of T , S1 . . . SJ is
read and propositionalised into Pi. Then, outdated perennial objects must
be forgotten. We distinguish two cases, as described below.

Perennial objects are kept up-to-date by the arriving ephemeral objects
that reference them. If for a perennial object x, no ephemeral object has
been observed for last ω timepoints, then x carries no new information and
is unlikely to influence the current model. Hence, we remove such objects
from the model. Obviously, the objects themselves are not eliminated from
secondary storage.

The second case of outdated perennial objects concerns object replace-
ment. In particular, let x ∈ T be a perennial object from the target stream
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Algorithm 9: PresentExample
Input : Ω, x
Output: None (Updates the node Ω only)

1 Update sufficient statistics for Ω according to x.
2 if Ω is not leaf then
3 Ωc ← FindChildConsistentWithExample(x)
4 PresentExample(Ωc, x)

5 foreach Ωalt ∈ GetAltTrees(Ω) do
6 PresentExample(Ωalt, x)

and xi its content at timepoint ti, composed of the data in T and the propo-
sitionalised data frommatches(x) from the other streams. If a new instance
xi′ arrives at ti′ > ti, then xi′ replaces the old instance xi.

The process of forgetting the impact of outdated perennial objects is
undertaken by Algorithm 8: RecursivelyForget. To do so, it maintains for
each node Ω the timepoint tp at which it was created, as well as the iden-
tifier firstID of the first object placed in this node. Then, at a timepoint
t > tp, the function ignores all objects that have appeared before tp for
the last time and those that have identifiers less than firstID and have
not been seen within the last ω timepoints. The sufficient statistics on the
contents of node Ω and its sub-trees are updated accordingly.

5.1.3 Growing a Decision Tree on a Propositionalised Str-
eam

TrIP starts building the decision tree from the rootR, which is initially the
only node in the tree and is also a leaf. For each node, the sufficient statis-
tics are maintained separately. When an object x arrives, it is recursively
presented to the tree, starting from the root node R. The process is un-
dertaken by Algorithm 9: PresentExample. When x is presented to a node
Ω, first, the sufficient statistics for Ω gets updated (Line 1) and then x is
passed down to the relevant child node Ωc (Lines 3 & 4).

Once n objects have been presented to a leaf node Ω, TrIP considers Ω
as a candidate for split and expands the tree. This process is undertaken
by Algorithm 10: GrowNAdaptSubtree and is invoked recursively from
TrIP.

Algorithm 10: GrowNAdaptSubtree first checks if the node Ω is leaf
or not (Line 1). If Ω is a leaf node, it attempts to split the node (Line 2).
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Algorithm 10: GrowNAdaptSubtree
Input : n, f, lmin, smin, δ, τ
Output: Ω

1 if Ω is leaf then
2 child_list← Split Ω using the best attribute ψa.
3 if child_list is not empty then
4 Add newly created child nodes from listchild to Ω .

5 else
6 AgeTree(Ω)
7 Ω← ReplaceWithAltTree(Ω)
8 for every f objects seen do
9 ValidateSplit(Ω)

10 forall the Ωc ∈ GetChildren(Ω) do
11 Ωc ← GrowNAdaptSubtree(Ωc, n, f, lmin, smin, δ, τ)

12 forall the Ωalt ∈ GetAltTrees(Ω) do
13 Ωalt ← GrowNAdaptSubtree(Ωalt, n, f, lmin, smin, δ, τ)

14 Return Ω

Before a node can be split, the information gain G(ψ) is computed for
every attribute ψ ∈ Pi. Based on the value of G(), it selects the best
and second best split attributes ψa and ψb, respectively. It the calculates
∆G = G(ψa) − G(ψb) and computes the Hoeffding bound ε on the true
mean of ∆G with confidence δ (cf. Equation 2.1). As explained in Chap-
ter 2, if ∆G > ε, then Ω is split on ψa, otherwise the split decision is post-
poned and further objects are read and processed.

As a node sees more and more objects, n increases and ε decreases (cf.
Equation 2.1). As long as ∆G remains less than ε, no split can be per-
formed. To avoid spending time on attributes with very close gain, TrI-
Puses the tie breaking mechanism from CVFDT [Hulten et al., 2001]: once
the value of ε drops below a threshold τ , the algorithm is forced to make a
split on the current best attribute.

Next to the leaf node splitting (Lines 2-4), Algorithm 10: GrowNAdapt-
Subtree is responsible for the adaptation of a node to concept drift (Lines 6-
9). We elaborate on these steps hereafter.
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Figure 5.1: Example: Tree losing support as objects change their label

5.1.4 Tree Ageing and Generation of Alternate Trees

Similarly to CVFDT, TrIP maintains alternate trees as means for fast adap-
tation to concept drift. However, concept drift upon a stream of perennial
objects occurs in two ways: (1) some perennial objects change their label as
time passes; (2) the number of objects associated with each label changes
as time passes. The second type is the conventional concept drift. The first
type occurs only upon perennial objects because of their very nature, and
is independent of the second type. For both types of drift, we must take
account of the fact that changes in the number of objects having a given
label may be of temporary nature only. We explain this by means of an
example.

Assume a partner matching site, in which a set of persons are regis-
tered. The objective is to learn the concept "get a spouse". Assume that
the tree Ω shown in Figure 5.1 to be the one learned till timepoint ti. The
current best split attribute is "HasJob" with both left and right sub-tree ac-
commodating a sufficient number of objects. At a later timepoint tj , some
objects currently in the left sub-tree get a job and then a partner. This
means that the number of objects in the left sub-tree decreases and the
gain for the attribute "HasJob" may drop as well. This renders the current
split suboptimal and forces the algorithm to choose a new split attribute
and start growing an alternate sub-tree under it.

However, the original concept may well re-appear and the number of
objects in the left subtree may start growing again. When new objects that
are consistent with the replaced sub-tree start arriving again, it would take
some time before the algorithm re-learns the discarded concept. Hulten
et al. also identified re-learning of a discarded periodical concept as a
direction for future work [Hulten et al., 2001].

TrIP checks for concept drift every f objects seen during maintenance
(Algorithm 10, Line 9). TrIP inspects each node Ω if the current split at-
tribute ψa′ is still the best split decision or not. In case the current split
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attribute is not the best split attribute any more, i.e., ψa′ 6= ψa, TrIP checks
if an improved split can be installed at Ω using ψa. If a new split is possi-
ble, it initializes an alternate sub-tree Ωalt (rooted at parent(Ω)) with ψa as
the new split attribute, separately. To avoid excessive alternate tree gener-
ation, tie breaking condition is made tighter, i.e., ∆G ≤ ε < τ

2 . Hulten et
al. points out that a simple approach would be to replace Ω as soon as an
alternate tree Ωalt with a split anchored at ψa is generated [Hulten et al.,
2001]. This would ensure that the induced tree, rooted at R, is always
as accurate as possible. However, it would force Ωalt (with 2 leaves only)
to do the job that was earlier done by a whole sub-tree. Similarly to the
CVFDT, TrIP waits for the accuracy of alternate tree Ωalt to be greater than
Ω and then replaces Ω with Ωalt (Algorithm 10, Line 7). However, due
to the dynamic nature of the perennial objects, TrIP employs a different
method for the adaptation.

To deal with the pitfalls of accepting a short-lived concept, TrIP checks
(a) whether the accuracy of the tree deteriorates, (b) whether each node
of the tree still represents, i.e., "is supported by", an adequate number of
perennial objects, and ( c) for how long the tree has (or has not) received
support. This corresponds to monitoring for each subtree (a) the quality
of the concept in it, (b) the support, i.e., the number of objects accommo-
dated in it and (c) its age as the time elapsed since quality deterioration
has started in it. By this, a tree of good quality is not aging, even if its
support drops.

More formally, TrIP calculates for each node Ω two coefficients, sup-
portCoeff and qualityCoeff that take a tree node Ω and a timepoint ti as
parameters. The support coefficient calculates the penalty for the children
of Ω with support less that the threshold smin (cf. Table 5.1). The formula
for support penalty for child c is shown in Equation 5.1, where, sΩc,max is
maximum observed support for child node Ωc prior ti:

sΩc,max = max(sΩc
t1 , . . . , s

Ωc
ti−1

)

sΩc
ti is the current support at ti.

supportCoeff(Ω, ti) =
∑

Ωc∈child(Ω)


sΩc,max−sΩc

ti

sΩc,max if sΩc
ti < smin × sΩc,max

0 if sΩc
ti ≥ smin × sΩc,max

(5.1)
The quality coefficient calculates the change in the classification accu-

racy of a node at timepoint ti from that in ti−1.The formula for calculating
the quality coefficient is shown in Equation 5.2
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qualityCoeff(Ω, ti) =
{

(1− varΩ
ti

)∆QΩ if ∆QΩ > (1− δ)
QΩ
ti
− 0.5 otherwise

(5.2)

where ∆QΩ = QΩ
ti
− QΩ

ti−1
and QΩ

ti
and QΩ

ti−1
are the classification accuracy

of tree Ω at ti and ti−1 respectively and varΩ
ti

is the variance in the classi-
fication accuracy of the children of Ω (cf. Table 5.1). The variance among
the children of Ω is used to capture the case where one child/sub-tree c has
much lower quality than the other: then, the quality coefficient of Ω itself
is not affected, thus preventing a premature ageing of the whole sub-tree
under Ω. The quality coefficient of c itself will be low, hence c will age
faster.

Then, the age of an internal node at timepoint ti is computed upon the
age of the node at the previous timepoint, and the node’s support and
quality coefficients:

ageΩ
ti

= ageΩ
ti−1

+ supportCoeff(Ω, ti)− qualityCoeff(Ω, ti) (5.3)

The maintenance procedure is recursively invoked at each tree node Ω.
At node Ω, TrIP checks if the attribute ψa′ originally used to split the node
is still the best split decision (cf. Algorithm 10, Line 9). If not, i.e., another
attribute ψa provides a split of higher gain, then TrIP starts growing an
alternate (sub-)tree Ωalt and split using ψa.

Similarly to CVFDT, TrIP replaces Ω with Ωalt only if (and after) the
accuracy of Ω has dropped below that of Ωalt (cf. Algorithm 10, Line 7).
Dissimilarly to CVFDT, TrIP may retain Ω even if its accuracy dropped
lower than that of Ωalt. Ω is discarded only if its age exceeds a certain
threshold, which is expected to capture background knowledge about pe-
riodicity in the application. At each timepoint ti the age ageΩ,ti of node Ω
is computed as a function of its support and quality and is updated incre-
mentally (Line 6). If the threshold is not exceeded, Ω is available and its
quality is checked at each timepoint: if its quality improves, it rejuvenates,
i.e., its age decreases, as can be seen in Equation 5.3.

5.2 Experiments

In this section we evaluate TrIPwith synthetic and real datasets. Our objec-
tive is to study the performance of our methods over a stream of perennial
objects. To this purpose, we designed a variety of experiments that deal
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with the effect of window size and tree ageing on quality. First we describe
the datasets and the evaluation measures and then present our findings on
the dataset.

5.2.1 Datasets

Synthetic: Marriage Dataset

It is a small dataset with 3 features and 200 data instances that was created
to test specific aspects of TrIP. The objects in the dataset are dynamic. They
represent people, labelled on whether they are likely to find a match or
not on the basis of their age, income and marital status. They grow old,
their income changes from year to year and their marital status changes as
well. The underlying data generating process remains unchanged until t30,
where we have imputed a concept drift for the last 5 timepoints. However,
the objects can change their properties and their class labels any time.

Synthetic: Ratings Dataset

The dataset that we have used here is identical to the one that we have
used in the increment propositionalisation experiments in Chapter 3. The
Ratings dataset has around 600 users. The number of transactions made
by them vary with a zipf distribution. There were five user profiles and
20 item profiles. The data is distributed across 20 timepoints, i.e., t1 to t20.
The user profiles undergo drift at timepoint t11.1

Financial Dataset

We have already described the financial dataset in Section 4.1 of Chapter 4.
We briefly describe it again. Financial dataset is a multi-relational dataset.
The tables represent the activities (transaction and loans request etc.) of
bank customers.

This dataset puts forwards a difficult learning problem. The class dis-
tributions are not only very skewed to begin with; they also reflect the state
of accounts only when they have matured, i.e., class labels become appli-
cable at a much later timepoint than when the objects were introduced.

1Full specification of the dataset, i.e., the parametric settings for the generator are
given in Appendix A.2.
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Acronym ω ageMAX δ τ n f
QR

5,7
0

0.9 0.1 4 8DR 4
NR ∞

Table 5.2: Strategies on Marriage Dataset

5.2.2 Evaluation Framework

In this section we describe our framework for evaluation. First. we de-
scribe the experimental settings and the strategies that we use and describe
the evaluation measure to for those strategies.

Experimental Settings

Trip Variants for the Synthetic Datasets For the marriage dataset, as
there are no multiple streams, we use ω = 5, 7 timepoints and vary ageMAX

= 0, 4,∞. The parameter ω controls how past data is to be incorporated
within the model, while ageMAX is that threshold for the replacing a tree
with its alternate tree. When ageMAX = 0, a sub-tree rooted at Ω that no
longer has best split decision at its root can be immediately replaced once
the accuracy of alternate tree Ωalt becomes better. When ageMAX = 4, Ω
can be replaced by Ωalt only if aT,i >= ageMAX . When ageMAX = ∞, Ω
never gets replaced by Ωalt as it never really reaches ageMAX . We name
the strategies as Quick (QR), Deferred (DR) and No Replacement (NR),
respectively. The other tree parameters are: n = 4, f = 8, δ = 0.9, τ = 0.1,
smin = 0.1. The experimental settings and the strategies are depicted in
Table 5.2.

Users Ratings r ageMAX δ τ n f

50

ω =2,4,8 3 0 0.95 0.05

10 50
100 20 100
150 30 150
∞ ∞ 300 600

Table 5.3: Strategies on Ratings Dataset

The experimental settings for the Ratings dataset are given in Table 5.3.
The different strategies for Ratings dataset are the different sizes of the
sliding window, i.e., ω = 2, 4, 8.
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Acronym Accounts District Transaction r ageMAX δ τ n f

FIN1-DR 100 20
ω = 30 3 5 0.95 0.2

200 400
FIN2-DR 200 40 200 400
FIN3-DR 300 50 300 600
REF-DR ∞ ∞ ω = 30 ∞ 5 0.95 0.2 400 800

Table 5.4: Strategies on Financial dataset

Trip Variants for Financial Dataset For the Financial dataset, the
amount of information that becomes available as the multi-table stream
progresses has an impact upon the quality of the classification results. This
remembered information is affected by the size of the cache and the slid-
ing window over individual streams. We have thus varied these values
for the streams Accounts, District and Transaction.

The strategies we use are depicted in Table 5.4. Strategy FIN2-DR uses
a cache of size 200 for the stream Account and of size 40 for the districts, a
sliding window of size ω = 30 months for Transaction stream, 3 columns to
store nominal values (c.f. Section 3.2.4), ageMAX = 5 to perform deferred
replacement, update tree every n = 200 objects, check for concept drift
every f = 400 objects etc. We test these strategies against our reference
strategy that has unlimited storage and knows the future.

Due to large number of moving Account objects, the window size
ω = 30 used by TrIP to forget outdated objects (c.f. Section 5.1.2) has little
impact. Most objects are frequently updated and never become obsolete.
We conducted experiments with ageMAX = 0, 5, 10. However, we report
results for ageMAX = 5 as only two strategies (i.e., FIN1-DR and FIN3-DR)
experience change in performance after timepoint t60.

Evaluation Measure

Our evaluation measure is the "Area under the ROC curve" (AUC), a mea-
sure derived from the Receiver Operating Characteristic, commonly known
as the ROC curve. As the name implies, the ROC curve is a plot: it com-
bines two curves that measure the performance of a binary classifier. In
particular, let Cp, Cn be the number of positive, respectively negative ex-
amples, let Tp be the number of positive examples recognized as such by
the classifier, and let Tn be the number of negative examples recognized as
such by the classifier.

Following Bradley [Bradley, 1997], a classifier’s sensitivity is defined
as P (Tp) = Tp

Cp
, while its specificity is P (Tn) = Tn

Cn
, i.e., the complement of

the so-called “α-error” 1 − P (Tn). The ROC curve consists of the sensi-
tivity curve and the α-error curve, when the decision threshold is varied.
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Figure 5.2: The performance of strategies (left) ω = 5, (right) ω = 7 time-
points

The AUC is the area under those two meeting curves; Bradley provides
a formula for the computation of this are (Equation 7, page 2 of [Bradley,
1997]). The AUC is equal to the probability that a classifier will rank a ran-
domly chosen positive instance higher than a randomly chosen negative
one.

5.2.3 Experimental Results

In the following, first we report on the experiments on the two synthetic
dataset and then the financial dataset, under separate subsections.

Results on Marriage Dataset

In the left part of Figure 5.2 we show the accuracy of strategies QR, DR and
NR for ω = 5. From timepoint t1 to t10 all the strategies are in a learning
phase: they perform similarly and have identical trees. Until t6 the main
split attribute at the root was MaritalStatus and anyone already married
was deemed as unsuitable to find a match. By timepoint t6 the arriving
objects are singles, while most of the old ones have become single again.
This renders the previous split decision invalid. Strategies QR and DR
start growing alternate trees. It needs to be stressed here that the conven-
tional CVFDT would try to forget the concept; however, it is important to
keep the concept for the objects that would come in the future and turn to
be consistent with this old concept.

At timepoint t10 strategy QR replaces the subtree with invalid split de-
cision by the alternate tree with better accuracy. The alternate tree for
strategy DR, although it has better accuracy, does not replace the origi-
nal subtree as it has not yet reached ageMAX = 4. To adapt to the new
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data, strategy DR as well as NR are forced to expand their trees by further
split decisions.

From t10 to t20 all trees stabilize because the objects that arrive are
mostly consistent with them. Married individuals cause a fluctuation in
the accuracy for strategy NR.

Around t22 the new objects cause a drop in accuracy for all strategies.
The strategies QR and DR replace their subtrees: it is quite obvious that
QR would do a tree replacement; DR is forced to replace the tree because of
aging for one of its decision nodes. The drop in accuracy has greater effect
than the loss in support (c.f. Equation 5.2). As a result the tree with low
accuracy ages faster. And by the time the original tree in DR is overtaken
by its alternate tree in terms of accuracy, it reaches ageMAX and thus, is
replaced.

Around t25 objects with MaritalStatus=true start arriving again. Strate-
gies DR and NR that have maintained the trees from earlier timepoints
show no drop in performance. However, these objects result in drop in
accuracy for strategy QR as it had replaced its tree at t10. It starts growing
the alternate tree again but it takes time before the outdated information
can be replaced.

As new objects with a different concept are introduced around t30,
strategy NR’s performance deteriorates. While strategies QR and NR re-
cover by replacing their tree with the alternate ones. We expected strategy
NR to show the worst performance during this period but even this one
recovers. On closely inspecting the results, it became apparent, that the
due to an already expanded tree, it is able to manage the incoming data in
its leaves. Although the split decision w.r.t. to gain criteria are not valid
any more, it still has competent accuracy but is more sensitive due to over
fitting.

In the left of Figure 5.2, we show the performance for ω = 7. The
strategies behave similarly to ω = 5, except strategy QR whose perfor-
mance does not deteriorate much during t20 to t30. This is probably due to
the larger ω as it is able to make better informed split decision based on
MaritalStatus than in ω = 5.

Results on Ratings Dataset

In the Figure 5.3, we plot the AUC performance for the strategies on Rat-
ings dataset for cache size of 600 and 100 objects. We have varied the win-
dow size and kept the size of the cache constant across the experiments.
The experimental results for the Ratings dataset are slightly different from
the results for incremental clustering (cf. subsubsection Ratings Dataset
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Figure 5.3: Ratings Datset: AUC for the strategies with (left) NT = 600,
(right) NT = 100

in Section 4.4.2). During incremental clustering the clustering algorithm
utilised all the attributes for learning the model while TrIP only selects a
subset of the predictive attributes with the help of information gain and
Hoeffding bound. We would get back to this point at the end of this sec-
tion.

In the left of the Figure 5.3 for cache of 600 objects, the strategies start
learn quickly as there are more data available to them then the ones with
cache of size 100 (see right of Figure 5.3). The strategies with smaller win-
dow sizes have lower performances before the drift occurs at t11.

When the drift happens at timepoint t11, all the strategies report a drop
in performance. The strategy with window ω = 4 recovers the fastest
around t14 (at ω = 4, the oldest data would be from t11, which means that
the strategy recovers only after it has forgotten everything that arrived
before the drift). One would expect for ω = 2 to recover fastest however,
for ω = 2 perennial objects are more fragile and change their values often
and quickly. Strategies for ω = 8 and ω = 4 with their large window
sizes are more stable as they have more data available to them and the
aggregates from propositionalisation change gradually. The strategy ω = 8
starts to recover around t16 and by t18 recovers completely.

For cache size of 100, the strategies show better overall performance
once they have learned the concept. However, because of lesser amount
to data available to them, their recovery gets slightly slower, not only af-
ter the drift but also at the beginning, where they start building after t4,
whereas for cache size of 600, the strategies already have a small tree at t4
with a good AUC value. This observation stands in counter to our earlier
findings with IncrementalKMeans, where strategies having smaller cache

106



sizes were better and faster (cf. Section 4.4.2 and Section 4.5). The main
reason for this is how TrIP induces the decision tree. It relies on Hoeffding
bounds (and the tie-breaker τ ) to ensure good splits. The value of Hoeffd-
ing bound is a decreasing function in terms of number of objects seen. This
means that for larger caches with more objects, the split decisions (either
through Hoeffding splits or Tie-breaker splits) are easier and quicker to
achieve, while the smaller caches with lesser objects suffer2. In contrast,
IncrementalKMeans doesn’t need to observe a large number of objects to
partition them into K clusters.

Financial Dataset

In the Financial dataset, the stream Account contains perennial objects; a
cache (c.f. Section 3.2.1) is used to accommodate the most active accounts
and the ephemeral transactions on them. Initially, all accounts are empty.
As transactions are recorded for an account, it becomes either “loan-risk”
or “loan-trusted” class.

Kroegel pointed out that identifiers of the objects from other streams
may be useful in some learning tasks [Kroegel, 2003]. In a stream scenario,
this may be more likely than in a static scenario, especially if identifiers
are generated sequentially. For example, the dataset of KDD Cup 2008
[Perlich et al., 2008] contained identifiers that indicated the class of the pa-
tient. Although such correlations must be suppressed in most real-world
scenarios, there are scenarios where the proximity of identifier numbers
indicate exploitable correlations, e.g. similar age of people or addresses in
the same region. Therefore, we report on two experiments for the finan-
cial dataset. In one we exploit the identifiers of the ephemeral objects like
transactions and bank cards that reference the accounts, while ignore the
identifiers from these objects in the other.

In Figure 5.4 we depict the performance of each strategy on the finan-
cial dataset with ω = 30. In the left side of the figure, we show the AUC
values for strategies with varying cache sizes, when the identifiers from
the ephemeral objects not exploited. Initially, the AUC values are zero as
TrIP only gathers sufficient statistics about the incoming objects and does
not grow the tree.

Around t10, first splits are performed almost simultaneously for all
strategies. It must be stressed here that accounts are perennial objects de-
fined by their transactions. Initially there is only static information avail-

2For a more insightful discussion about the nature of splits and their quality via Ho-
effding bound and Tie-breaking, we refer the work of Holmes et al. [Holmes et al., 2005].
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Figure 5.4: Performance of different strategies over financial dataset (left)
without IDs (right) with IDs

able about the accounts, e.g., the information about the owner(s) and types
of card they hold etc. There is little or no information on transaction.
Moreover, the class labels attributed to the accounts reflect their state af-
ter many transactions have accumulated on them, i.e., they indicate their
final states, which is unknown at early timepoints. For this reason almost
all the strategies perform poorly at the beginning.

At the beginning, the arrival of accounts is rather slow. As the stream
progress and information accumulates, subsequent splits are performed
faster. The first strategy to experience a rise in AUC is FIN1-DR around
timepoint t25. FIN1-DR is also the strategy with the smallest cache of 100
accounts. By this time more than 100 accounts have arrived. The proposi-
tionalisation algorithm (c.f Section 3.2) keeps those objects inside the cache
that are referenced most often, i.e., they have most ephemeral objects as-
sociated with them. For FIN1-DR with its small cache size, this means that
accounts with fewer transactions and less information are not considered
for propositionalisation. It focuses on the informative accounts and shows
large AUC. All other strategies have larger caches and store less informa-
tive accounts as well. These account cannot be easily classified and result
in bad performance. At later timepoints, (i.e., around t30) the strategies
FIN2-DR and FIN3-DR also register improvements in their AUCs. They
reach their cache size limits and start focusing on mature accounts.

Unlike other strategies, the performance of the Reference (with its in-
finite cache size), deteriorates between timepoints t25 and t50. During this
time many accounts with very little information arrive, the Reference strat-
egy remembers all of them.

Although, the strategies with smaller cache sizes (i.e., FIN1-DR and
FIN2-DR) show good AUCs during the middle time period, they are also
the most unstable ones. Strategies with larger caches (i.e., FIN3-DR and
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Reference) have a more stable performance. A possible reason is that
due to their smaller sizes, even a single misclassification for FIN1-DR and
FIN2-DR gets severely punished by the AUC measure as class distribu-
tions are fairly skewed.

After timepoint t55, only very few new accounts arrive, the last one at
t60. For the next 12 timepoints, all accounts keep evolving as new trans-
actions arrive for them. The AUC for the Reference strategy also registers
a rise towards the end since there are no immature accounts to perturb it.
It outperforms all strategies as there is very little information loss.

In the right-side of the Figure 5.4 we depict the performance of the
strategies with the same parameter settings but with exploiting the iden-
tifiers. By contrasting the results to those at the left side of the Fig 5.4
we see that identifiers from the referring ephemeral objects carry valu-
able implicit information and all the strategies get a boost in their AUC
values. The identifier attribute that conveys most information is the Max-
imum Transaction ID from among the set of transactions performed by an
account while other identifiers are also utilized at some timepoint or the
other. The relative performance of the strategies with and without iden-
tifier are quite similar. The strategies that benefit most are the ones with
small caches, i.e., FIN1-DR and FIN2-DR, during t35 to t45 and t20 to t35,
respectively. At late timepoints, the Reference strategy again has best per-
formance.

5.3 Conclusion

In this chapter we presented a tree-based classification algorithm, TrIP,
which induces a tree over perennial objects. The tree is learned incremen-
tally, where decision to split a node is taken on the basis of Hoeffding
bound. TrIP can handle the dynamic nature of the perennial objects. TrIP
keeps track perennial objects as they evolve over times. It incorporates
method that age a node based on its support and quality and assists it in
updating the tree when concept drift occurs.

TrIP was evaluated on synthetic and real datasets. In one set of ex-
periments we experimented with different strategies. The strategies were
based on their ability to replace an outdated tree as soon as possible, with
a delay controlled through the ageing of the tree and not replace at all. The
results showed that in situations when concept recurs and learning hori-
zon (size of sliding) is small, strategy that replaces a tree with showed
promising results. The results on the strategies with different sizes of
caches for maintaining perennial objects, generally agreed with our earlier
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findings (cf. Section 4.4.2 and Section 4.5), where cache size had a direct
impact on the quality of the learned model, i.e., strategies with smaller
caches had a quick response time and better quality when the data was
volatile3. The set of experiments, where this observation did not hold,
it was discovered to be the peculiarity of the Hoeffding bound induced
splits.

3when concept drift occurs
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CHAPTER 6

Using Classification Rules for
Mining Perennial Objects

IncrementalPropositionalisation turns attributes from the streams feeding
the perennial stream, into summarised attributes. In doing so, it ignores
the correlations that may exist between the original attributes. If these
correlations can be identified during the data preparation phase, we can
use them for mining. To this purpose we propose classification rule min-
ing over ephemeral streams in the preparation phase. It is shown in the
experiments that the new method produces more compact trees.

When a target stream containing perennial objects is transformed into
a single stream, the perennial objects are expanded with propositionalised
information from the streams that feed the target stream. Incremental-
Propositionalisation (cf. Algorithm 3, Chapter 3) summarises each at-
tribute from the other streams, S1 . . . SJ , separately. It assumes that each
attribute contribute individually towards the class label. Such a transfor-
mation would be able to preserve a part of overall information, however,
the information or the patterns that span more than one attribute, irrevo-
cably get lost.

Name Course Discipline Course ID Grade Short-listed

John
Economics EC-101 3.3

-Maths MT-109 1.0
History HT-209 1.3

Doe
Economics EC-101 1.0

+Maths MT-211 1.3
History HT-209 3.3

Mary
Economics EC-101 1.7

+Economics EC-309 1.7
History MT-209 4.0

Figure 6.1: Example: Applicants and their undergraduate examination
records. Grading scale is from 1.0 to 4.0, with 1.0 being the best grade.

More concretely, consider an automated graduate admission process
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at a university. The process short lists the promising applicants for an
economics graduate course. The short listing criteria requires an applicant
to have achieved good grades (at most 2.0 or lower) in their undergraduate
economics courses. The applicants and their respective grades are shown
in Figure 6.1.

The applicants have a 1-to-m relationship with the courses that the
have attended. The propositionalised representation of the applicants is
shown in Figure 6.2. Such transformation is able to preserve the general
information about the applicants, i.e., what type of courses did they at-
tend and what was their overall performance during their study period
but details on how an individual fared in each course gets lost. The propo-
sitionalised vectors of Doe and John are identical, even though former is a
short list candidate while the latter is not. There is not enough information
available for the automated process to separate the applicants.

Name Category Grade Short-listed
ceco cmath chist Min Max Avg Sum

John 1 1 1 1.0 3.3 1.9 5.6 -
Doe 1 1 1 1.0 3.3 1.9 5.6 +

Mary 2 1 0 1.7 4.0 2.5 7.4 +

Figure 6.2: Propositionalised representation of the applicants’ data from
Figure 6.1 (where, cv is the frequency of a value v observed for a certain).

In the next sections, we propose the generation of new attributes th-
rough classification rule mining for the ephemeral or fast stream. These
attributes encompass patterns that span across more than one attribute
and have potentially high predictive power. We enhance TrIP to exploit
these attributes during learning.

6.1 Challenges of Rule Mining over Streams

As discussed in Chapter 2 (Section 2.2.4), there are many algorithms on
classification rule mining over streams. Since the number of rules to be
discovered is exponential to the number of attributes in the stream, all
these algorithms encompass solutions to the problem of space demand.
Several techniques have been used in the literature to reduce number of
itemsets discovered from the data without sacrificing quality.

Setting an optimal value for support threshold is important for limit-
ing the number of the discovered itemsets, however, it is not trivial. Sev-
eral techniques have been proposed in the literature that uses a concise
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Figure 6.3: A set of discovered itemsets. The numbers depict the support
count for each itemset and support threshold is 10. The frequent itemset
are shown as shaded boxes.

representation of the itemsets, instead of relying on the optimal value for
support. Veloso et al. [Veloso et al., 2002] stores only the maximally frequent
itemsets, while Pasquier et al., Zaki and Hsiao and Chi et al. [Pasquier
et al., 1999; Zaki and Hsiao, 2005; Chi et al., 2006] uses the notion of closed
itemsets in order to achieve a concise representation. In Figure 6.3, a set of
frequent itemset is depicted and in Figure 6.4 we show their concise rep-
resentation. In the context of approximate stream mining, the method of
Boettcher et al. [Boettcher et al., 2009] extends the notion of closedness to
approximately closed and temporally closed.
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Figure 6.4: Concise representation of the frequent itemset from Figure 6.3,
(left) maximally frequent itemsets and (right) closed itemsets.

6.2 Overview

Our objective is to learn a classifier over a stream T of perennial objects.
We propose the Classification Rule Miner for a stream of Perennial Objects,
CRMPES that learns a lattice L of classification rules over the streams
S1, . . . , SJ incrementally, derives predictive attributes for the class labels
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Table 6.1: List of used terms and symbols.
Notation Description
C set of class labels {l1, l2, . . . , lo}
I classification rule X → [p1, p2, . . . , po]: X is the antecedent

(a set of (attribute,value)-pairs), and pu is the number of tu-
ples with antecedent X and label lu, i.e. the "contribution"
of I to lu (u = 1, . . . , o)

L lattice of classification rules
F set of features extracted from the lattice L for the classifi-

cation of the stream T , where a feature F ∈ F is the an-
tecedent of a classification rule

g maximum number of features to be extracted from L.
σmin minimum support a rule must have, before adding a tenta-

tive rule below it to L
e(I) entropy of I,:

∑o
u=1 ρulogρu, where ρu = pu∑o

l=1 pl

d(I) d-score of I as its un-interestingness
dmin minimum permitted d-score of a rule
δ confidence threshold for significance computations

C in T and delivers them to the tree classifier TrIP (cf. Algorithm 6 in
Chapter 5).

CRMPES operate as follows. At each timepoint ti, the labels C from
T are propagated to the arriving objects of the other streams S1, . . . , SJ ,
and the rules in the lattice are updated, as described in Subsection 6.3.
The lattice is grown incrementally, thereby removing uninteresting rules,
as explained in Subsection 6.4. Next, attributes are generated from the
learned lattice, as discussed in Subsection 6.5. IncrementalPropositionali-
sation is invoked next to generate the propositionalised attributes for the
stream classification algorithm. This input, together with the classification
rules discovered at ti are considered for stream classification, as explained
in Subsection 6.6. The basic notations and symbols are same as that from
Chapter 3 and Chapter 5 (c.f. Table 3.1 and Table 5.1). Additional symbols
and parameters are presented in Table 6.1.

6.3 Aligning the Ephemeral Streams

Let T be the stream of perennial objects, and let S1, . . . , SJ be the streams
feeding it. The label of each object x ∈ T is propagated to all the objects
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that reference x from the streams S1, . . . , SJ , i.e., matches(x). Similarly to
the propagation of the target identifiers (cf. Section 3.2.2), propagation of
the target labels has often been used in the literature to discover patterns
from the other streams [Srivastava and Gore, 2008; Yin and Han, 2005; Yin
et al., 2006].

For example, assume that we classify customers by lifetime value into
classes A, B, C, D; let customer x at timepoint ti belong to class B: B be-
comes the label of all transactions performed by x that are inside the slid-
ing window.

A classification rule I has the form X → [p1, p2, . . . , po], where X is
the antecedent of the rule and contains is a set of literals based on (at-
tribute, value)-pairs in accordance to the schema of an ephemeral str-
eam, and pu is the number of objects supporting X and having the label
lu ∈ C = {l1, . . . , lo}. The generation of literals or (attribute, value) -pairs
for nominal attributes is straight forward. For learning the literals of nu-
merical attributes we use the same approach as presented for maintaining
the sufficient statistics of numerical attributes (cf. Section 5.1.1). We build
a lattice L of classification rules incrementally as described in the next sub-
section.

The operation of stream alignment, i.e., target label propagation and
lattice updating, is depicted in Algorithm 11: AlignStreams takes as input
the currently observed object y, the cache of perennial objects Ti and the
current state of the lattice L. Intuitively, the algorithm reads the label of
the perennial object x referenced by y (Line 1), finds all classification rules
supported by object y and, for each such rule I, it update the support pu
for the label lu by factor cnt (Line 6). Variable cnt can take either of the
two values from [1,−1]. In Section 6.4, we explain how the value for cnt is
determined and what tentative rules are.

6.4 Building a Lattice of Classification Rules

The core of our Classification Rule Miner, CRMPES_Core (cf. Algorithm
12), grows the lattice L of classification rules incrementally. At timepoint
ti, CRMPES_Core considers the objects in ∪j=1S

j
i . Some of these objects

will be forgotten later, i.e. they exit the sliding window, while new ones,
yet unseen in ti, will enter the sliding window. Let OLDi be the objects to
be forgotten at ti, and NEWi be the new objects at ti.

CRMPES_Core takes as input (1) the objects in OLDi and NEWi, (2)
the objects Ti referenced by these objects, (3) the lattice L built thus far,
and (4) thresholds σmin on the support of classification rules, dmin on their
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Algorithm 11: AlignStreams
Input : y, cnt, Ti,L
Output: L

1 x← perennial object in Ti that is referenced by y
2 lu ← label of x
3 foreach I ∈ L do
4 if y supports I then
5 if I is not "tentative" then
6 I.pu ← I.pu + cnt

7 return L

interestingness, and δ on the confidence in estimating rules’ redundancy1.
CRMPES_Core traverses L from the root downwards, grows it by adding
rules and shrinks it by removing rare, uninteresting and redundant ones,
as we explain below.

6.4.1 Update Lattice with new objects

(Line 1) CRMPES_Core starts processing L by first updating the sup-
ports of the rules in it. It invokes AlignStreams for each new object y,
whereupon the label of y is identified (cf. Algorithm 11, Line 1), and the
contribution of each rule supported by y to this label is increased by +1
(cf. invocation of AlignStreams in Algorithm 12, Line 1).

6.4.2 Grow Lattice with new rules

(Lines 2-7) Arriving objects inNEWi may give raise to new rules that are
not yet in the lattice. CRMPES_Core grows the lattice pro-actively. First, it
identifies all classification rules that have no children and are supported
by at least σmin objects thus far (Lines 6) and then expands them (Line 7) by
tentative rules (Line 8).

Lattice expansion is only possible for rules that have no common child
yet, and whose antecedents differ by only one attribute. For each such a
pair of rules, with antecedents XB and XD respectively, a common child
with antecedent XBD is created and marked as "tentative". From this
moment on, the contribution of XBD to the label of each arriving object y

1check for rule redundancy is synonymous with check closedness of an itemset (see
right of Figure 6.4).
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Algorithm 12: CRMPES_Core
Input : OLDi, NEWi, Ti,L, σmin, dmin, δ
Output: L

1 foreach y ∈ NEWi do AlignStreams(y,+1, Ti,L) ; /* UPDATE */

2 E ← ∅
3 foreach I ∈ L do /* GROW */
4 if I has no children ∧ not tentative ∧ not locked then
5 if

∑o
u=1 I.pu ≥ σmin then

6 add I to E

7 Expand L by creating new rules as children of the rules in E.
8 Mark the new rules as tentative.

9 foreach y ∈ OLDi do AlignStreams(y,−1, Ti,L) ; /* UPDATE */

10 foreach I ∈ L do /* SHRINK */
11 let I ′ be the child of I
12 if I is "redundant" towards I ′ then
13 mark I as locked
14 redirect accesses to I towards I ′

15 else if
∑o
u=1 I.pu < σmin OR e(I)− e(I ′) < ε then

16 mark I as locked
17 remove all children of I from L
18 unmark all locked rules that are redirecting towards I
19 else umark I
20 return L

is increased whenever AlignStreams is invoked (cf. Algorithm 11, Line 6).
However, the lattice cannot grow below a tentative rule (cf. Algorithm
12, Line 4), i.e. a tentative rule cannot acquire a child until it stops being
"tentative" (cf. Line 19). We explain the treatment of tentative rules in
sequel.

6.4.3 Update Lattice with old objects

(Line 8) When an object exits the sliding window, the rules it supports
must be modified: CRMPES_Core invokes AlignStreams for each object
y ∈ OLDi with a count value of −1, so that the support of the rules is
decreased (cf. Algorithm 11, Line 6). An exception is made for tentative
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rules whose support is not decreased.
The reason for this exception lays in the behaviour of the sliding win-

dow. Let ti be the timepoint of creating a new tentative rule IXBD. To
compute its support, all ∪j=1S

j
i objects should be considered. However,

CRMPES_Core processes only the objects that arrive new at ti (cf. Line 1),
while those that have already been seen are not reconsidered – although
they are still inside the sliding window. Since the objects that are getting
removed have no contribution towards the support of the tentative rule,
its support is not decreased. Once all such objects have exited the win-
dow, tentative rules are unmarked, provided of course that they are worth
retaining in the lattice: CRMPES_Core uses several criteria to shrink the
lattice by eliminating useless rules.

6.4.4 Shrink Lattice by removing useless rules

(Lines 9-17) CRMPES_Core uses three criteria to assess the usefulness
of a rule: the rule’s support, the rule’s predictive power, and the rule’s
redundancy with respect to its children. Because of the fact that number
of rules that can be discovered from stream of ephemeral objects is very
large, we use these criteria to limit the size of lattice L.

A rule I ′ is redundant if it is parent of a rule I and its support (or class
distribution) is not significantly higher than of I. Then, the parent rule I ′
is marked as "locked" (Line 13), and all accesses to it are redirected to I
(Line 14). For the significance test, we use χ2 = ∑o

u=1 (p′u − pu)
2/pu (with

critical value χ2
1−δ), where pu, p′u are the contributions of I, I ′, respectively,

to label lu, u = 1 . . . o.
If the support of a rule I remains/drops below the threshold σmin, then

the rule is also marked as "locked" (Line 16). This means that the lattice
cannot grow below it (Line 7). Further, all existing rules below I (i.e. being
more specific and thus having no higher support than I) are removed from
L (Line 17). In contrast, rules that were earlier "locked" and redirecting to
the now locked rule I are themselves unlocked (Line 18).

A rule I may have adequate support but its predictive power might
not be significantly better than its parent I ′. Such rules are also marked
as locked. The computation is based on the entropy of a rule I: e(I) =∑
u ρulogρu, where ρu = pu/

∑
l pl. The significance test is done using the

Hoeffding bound [Catlett, 1991; Domingos and Hulten, 2000]. It states
that, if e(I) − e(I ′) < ε for some threshold ε, then the rule I is not signifi-
cantly better than I ′.

Classification rules that have high support and predictive power are re-
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tained in the lattice. If they were marked earlier (as "tentative" or "locked"),
they are unmarked (Line 19). Retaining them in the lattice may turn other
rules redundant though: it is possible that a small number of rules suffices
for distinguishing among the classes, while the rest are redundant.

We also model the interestingness of a rule I by combining the rule’s
support and entropy e(I) (cf. Table 6.1).

We define:
d(I) =

∑o
u=1 pu
w

× (1− e(I)) (6.1)

where a rule is more interesting, the higher its d()-score is.
CRMPES_Core uses the score d() to rank and to eliminate the rules

with scores lower than dmin from L. Uninteresting rules are treated simi-
larly to those with very low support. The weight of a rule’s support ratio
inside the sliding window with the 1-complement of the rule’s entropy is
intended to prevent rare rules with possibly low entropy from acquiring
high d() scores.

6.5 Generating Features from the Rules’ Lattice

The lattice of classification rules built and maintained by CRMPES_Core is
used to generate additional features for the learning task over the stream
of perennial objects T . A feature f is not a single attribute but rather the
antecedent X of some classification rule I in the lattice L, i.e. a set of
(attribute,value)-pairs, as specified in Table 6.1.

Feature generation takes place at each timepoint ti. The Feature Gen-
eration algorithm CRMPES_FGen (cf. Algorithm 13) takes as input the
lattice L built by CRMPES_Core thus far, and it incrementally builds a set
of generated features F of cardinality g.

First, CRMPES_FGen ranks the classification rules in L on their inter-
estingness d()-score, as defined in Eq. 6.1, thereby skipping closed and
tentative rules (Line 1). Let R be an ordered list of ranked rules (Line 2), so
that R[k] is the rule at position k with k = 1, . . . , |R|, and R[k].antecedent is
this rule’s antecedent. At the first iteration, CRMPES_FGen selects the an-
tecedent of the top-ranked classification rule (Line 3) and removes it from
R (Line 5). At the mth iteration, the rule of highest rank is chosen among
those that have an empty intersection of (attribute, value)-pairs to the set
SF , i.e., to the set of (attribute,value)-pairs already in F (Line 7). Then, the
sets and the list R are updated accordingly (Lines 8-10).

In fact, the selection of the mth rule is slightly more general than de-
picted in Line 7. If CRMPES_FGen finds no rule with empty intersection
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Algorithm 13: CRMPES_FGen
Input : L, g
Output: F

1 L′ ← {I ∈ L|I is not "closed" and not "tentative"}
2 R← rank L′ on d()-score descending
3 F ← {R[1].antecedent}
4 SF ← R[1].antecedent
5 remove(R,R[1])
6 for m = 2, . . . , g do
7 I ← argminm{R[k]antecedent ∩ SF = ∅}
8 F ← F ∪ {I.antecedent}
9 SF ← SF ∪ I.antecedent

10 remove(R, I)

11 return F

to SF , it considers rules in R that have minimal intersection. This implies
additional scans over the list R. However, the additional cost is low, since
R becomes smaller at each iteration (Lines 5, 10).

6.6 Enhancing TrIP with Rule-based Features

The algorithm TrIP receives as input a propositionalised stream P , the
schema of which is a large set of derived attributes (Chapter 3). With
CRMPES, we deliver an additional set of features, derived from classifi-
cation rules of high predictive power. We thus enhance TrIP by allowing
it to choose from a larger list attributes for learning.

The new algorithm, as invoked at each timepoint ti is outlined in Al-
gorithm 14. At each timepoint, it determines the set of new objects NEWi

that arrive at ti and old objects OLDi that leave the sliding window, i.e.,
the ones that arrived at timepoint ti−ω (Line 4). It invokes CRMPES_Core
to get the lattice of the discovered rules L (Line 5). The lattice L is then
passed to CRMPES_FGen, which derives the set of predictive features F
(Line 6). To get the basic propositionalised features, IncrementalProposi-
tionalisation is invoked (Line 7). The propositionalised data and the data
from the derived set of features is concatenated and together and TrIP is
invoked over this concatenated data (Line 8). R is the model learned and
adapted by TrIPfrom one timepoint to the next.
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Algorithm 14: CRMPES_TrIP
Input : 〈 XB,S,N , ω, rA, β, ε 〉, 〈 ω, n, f, lmin, smin, δ, τ 〉, σmin, dmin, g
Output: ζ

1 L0 ← ∅
2 T ← S0

3 foreach timepoint ti do
4 Compute OLDi, NEWi using ω from S1 . . . SJ

5 Li ←CRMPES_Core(OLDi, NEWi, Ti,Li−1, σ
min, dmin, δ)

6 Fi ←CRMPES_FGen(Li, g)
7 Pi ←IncrementalPropositionalisation(ti, XB,S,N , ω, rA, β, ε )
8 Ri ← TrIPCore(ti,Ri−1,Pi ⊕Fi, ω, n, f, lmin, smin, δ, τ )

6.7 Experiments

In the experiments we study the quality of the rules discovered by CRM-
PES and the effect of the derived attributes on the quality of the final str-
eam classifier.

6.7.1 Datasets

For the evaluation we have uses synthetic datasets and a real dataset on
learning user profiles. The synthetic datasets have been generated from
the Multi-Gen generator (Chapter 7). Multi-Gen creates a stream of users
and adjoint streams of items and user ratings. Each user in the streams of
users adheres to a user profile. A user profile determines the affinity of a
user for an item descriptor: a generated rating for an item depends on the
user’s affinity for an item, as set in her profile. A user may change from a
profile to another (drift). The learning task in these datasets is to predict
each user’s profile at each moment, given the ratings thus far.

We specified 6 user profiles and 8 item descriptors described by 5 nu-

Table 6.2: Description of Synthetic Datasets
Name Description Drift
Ratings 1500r 1000 users, 800 items, 1500 transaction

timepoint
No Drift

Ratings 6500r 1000 users, 800 items, 6500 transaction
timepoint

No Drift
Drift 150u 150 users, 800 items @ t30
Drif 1000u 1000 users, 800 items @ t50
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merical attributes for all the datasets. We grouped the profiles into two
classes (á three profiles). The short description of the dataset is given in Ta-
ble 6.2. The complete parameters’ specifications for the synthetic datasets
are provided in Appendix A.2.

The real dataset is Financial dataset from PKDD 1999 Challenge on pre-
dicting defaults in bank loans. We have described the dataset in Section 4.1
of Chapter 4.

6.7.2 Evaluation Framework

For the experiments we have used three strategies: P uses only attribu-
tes generated by the incremental propositionalisation, while R uses only
rule-based attributes delivered by CRMPES, and PR uses both. Essentially,
strategy P corresponds to TrIP, as proposed in Chapter 5 and is our base-
line. The strategies are listed in Table 6.3.

Table 6.3: Evaluation Strategies
Strategy Description

R CRMPES+ TrIP
P IncrementalPropositionalisation + TrIP

PR IncrementalPropositionalisation + CRMPES + TrIP

The complete list of parametric values for all datasets is provided in
Table 6.4.

We evaluate the strategies using the Area under the Curve (AUC) mea-
sure (cf. Section 5.2.2). We use prequential evaluation to evaluate the
strategies in all experiments except for the Figure 6.5, where we use a hold
out part of data stream for the evaluation.

Table 6.4: Experimental settings for synthetic and real datasets.
Datasets ω σmin dmin δ τ n f g r

Ratings 1500r

30 0.05 0.4 0.95, 0.99 0.01 500 1000
8 ∅Ratings 6500r

Drif 1000u
Drift 150u 75 150
Financial 0.01 0.1 0.95 0.2 200 400 3
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6.7.3 Experimental Results

In this section we first present the results on synthetic datasets and then
on real dataset.

Learning User Profiles on Synthetic Data

R PRP
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Figure 6.5: AUC plots for (left) Ratings 6500r and (right) Ratings 1500r
datasets.

In Figure 6.5 we plot the AUC for the strategies P, R and PR for the
datasets Ratings 1500r and Ratings 6500r. Both the datasets do not under
go any form of concept drift. The nature of both the datasets is different
(see Appendix A.2 for details). In the dataset Ratings 6500r the attributes
are correlated towards the profiles or class labels. PR shows a good a per-
formance for both the datasets. On the other hand, R and P experiences a
drop in performance for the datasets Ratings 1500r and Ratings 6500r, re-
spectively. The better performance of PR for both the datasets is mainly
due to the advantage that it draws from utilising the rich feature space,
i.e., attributes from IncrementalPropositionalisation and CRMPES feature
generation. Strategies P and R utilise only one set of attributes (either from
IncrementalPropositionalisationor from CRMPES, respectively) and show
a relatively lower performance when the concept becomes complex. Strat-
egy PR although has competitive performance for both the datasets, but its
performance during t10 and t20 is inferior to strategy P. The main reason is
the availability of a large number of attributes for PR (i.e., from CRMPES
and IncrementalPropositionalisation). Large number of attributes makes
it harder for PR to reach split decisions quickly because of the presence of
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ties in the split. However, the final resulting tree of PR was shorter than
that of P. We explore this further in the next experiments.

R PRP

0 20 40 60 80

0

0.25

0.5

0.75

1

AUC

0 20 40 60 80

0

10

20

30

40

Tree Size

Figure 6.6: AUC and Tree size plots for Drift 150u dataset.

In Figure 6.6, we plot the AUC values and the tree size of results on
Drift 150u dataset. At the beginning, all the strategies show good per-
formance, since the classes are rather easy to learn (cf. AUC plot in Fig-
ure 6.6). At timepoint 30 we have imputed concept drift, which causes
a drop in performance for all the strategies. After the drift, strategy R
shows the fastest recovery. Strategy PR takes sometime to start growing
its tree after the concept drift, when it does around timepoint t56, it shows
the best performance. During this time, the other strategies show a com-
paratively unstable behaviour (cf. Tree size plot in Figure 6.6). Usage of
attribute from CRMPES alone, results in very large trees for R, more so
after the concept changes at timepoint 30. The tree learned by P is con-
sistently much larger than the tree learned by TrIPupon PR. Hence, PR
achieves comparable or better predictive performance than the baseline,
while learning smaller and less volatile trees, where as, P and R constantly
split their leaf nodes in order to improve their quality but are unable to do
so.

In Figure 6.7, we plot the AUC values and the tree size of results on
Drift 1000u dataset. with 1000 users. Here, the drift occurs around t50 and
is the only place where PR’s tree grows to adjust to the drift. Strategy R is
unable to learn the concept before the drift and shows a volatile behaviour
after. Strategy P overtakes PR during t50− t70, but it is more of over-fitting
than better performance as its tree is big and is forced to adjust in the
subsequent time points.
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Figure 6.7: AUC and Tree size plots for Drift 1000u dataset

Predicting Defaults in Bank Loans

The dataset "Financial" of the PKDD 1999 Challenge contains data on bank
customers, the transactions of their bank accounts and static data on the
districts they come from. The data are timestamped, so we can trans-
form them into the dataset District, the stream Transaction and the
slower stream Account, which contain the customer data is the target str-
eam. The learning task is to predict whether a customer (represented by
her Account) will default in paying back her loan. The originally 4 classes
were already merged into two (loan-trusted and loan-risk) during the 1999
Challenge.

In Section 4.1 Chapter 4, we have stressed that the "Financial" dataset
exhibits a difficult learning problem: the class distributions reflect the state
of the accounts only when they have matured. Hence, labels become ap-
plicable at a much later timepoint than when the objects are introduced.
So, we expect low performance at the first timepoints. We also point out
that the amount of data cached per stream affects performance. We exper-
imented with similar settings.

We used only the baseline P and strategy PR. We see in Figure 6.8
that they perform similarly. Inspection of the CRMPES output showed
that there are some useful rules, e.g. balance within [-600, 600]
AND penalty imposed → loan-risk, but they were not very fre-
quent and were not utilised by TrIP. An explanation is also the nature of
the dataset: the labels are predictable only when the accounts mature, i.e.
rather late. Further, the Financial dataset contains many nominal attri-
butes that can be exploited directly by TrIP; numerical attributes, as in the
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Figure 6.8: AUC and Tree size plots for Financial dataset with ω = 30, size
of Account Naccount=200 and size of District Ndistrict=40

synthetic dataset, are more difficult to exploit in a decision tree, so CRM-
PES brings higher advantage.

6.8 Conclusion

In this chapter we have presented an improvement to the basic Incremen-
talPropositionalisation. IncrementalPropositionalisation in its basic vari-
ant, uses simple SQL2 aggregates to generate the propositionalised attri-
butes, e.g., sum, avg, min, max. We enrich it with attributes that are based
on classification rules that can capture complex information from the data.
We have presented a classification rule algorithm CRMPES that operates
on the ephemeral streams that feeds the target stream T . The labels for
the ephemeral objects come from the perennial objects that they reference.
CRMPES learns rule incrementally and maintain them in a lattice. The
lattice is maintained in a compressed form. CRMPES_FGen then selects g
rules to be used as feature during propositionalisation.

In the results, we experimented with different strategies that utilised
different sets of attributes: propositionalised attributes, rule based attribu-
tes and both. The strategy that utilised attributes both propositionalised
and rule based attributes showed competitive performance over all the
experiments. It was more stable and learned the shortest trees. This was
expected as splits based on complex patterns (rule-based attributes) carry

2Structure Query Language
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more information and provide better information gain.
For numerical attributes, the literals they add to the antecedent part

of the rules are based on numerical bins that we compute using first 100
values seen for numerical attributes. We don’t use binary splitting for the
literals of nominal attributes but use the generated bins. An improved
handling of the numerical attributes as proposed in [Gama et al., 2003,
2004], coupled with binary splits, would lead to the discovery of more
informative rules and would likely result in even better results.
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CHAPTER 7

Multi-Relational Data Generator
for Streams

Overview

In this chapter we present the generator of ’user profiles’, which we used
in Chapter 4, Chapter 5 and Chapter 6. We call it Multi-Gen: it is a genera-
tor of multiple interrelated streams, appropriate for testing classification and
clustering algorithms on concept discovery and on adaptation to concept
drift, both for mobile and web applications. The number of concepts in
the data can be specified as parameter to the generator; the same holds for
the membership of an instance to a class. Hence, the generator can also
create data sets with overlapping concepts (classes or clusters). Although
Multi-Gen is mainly designed to learn concepts of the temporal objects, as
they drift with the streams of transactions, it can also be used to learn a
model of the conventional transaction stream itself.

7.1 Introduction

Most of the data stored in databases, archives and resource repositories
are not static collections: they accumulate over time, and sometimes they
cannot (or should not) even be stored permanently - they are observed
and then forgotten. Many incremental learners and stream mining algo-
rithms have been proposed in the last years, accompanied by methods for
evaluating them [Gama et al., 2009; Bifet et al., 2009]. However, modern
applications ask for more sophisticated stream learners than can currently
be evaluated on synthetically generated data. In this work, we propose
Multi-Gen, a generator for complex stream data that adhere to multiple
concepts and exhibit drift. Multi-Gen can be used for the evaluation of
(multi-class) stream classifiers, stream clustering algorithms over high-
dimensional data and relational learners on streams.

Multi-Gen is inspired by recommendation engines [Symeonidis et al.,
2008; Adomavicius and Tuzhilin, 2005], where data are essentially a com-
bination of perennial objects and adjoint streams: people rank items - the
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rankings constitute a fast stream of ephemeral objects; new items show
up, while old items are removed from the user’s portfolio - the items con-
stitute a slow stream of perennial objects; new users show up, while old
users re-appear and rank items again, possibly exhibiting different prefer-
ences as before - users also constitute a slow stream of perennial objects.
Recommender systems propose items to users based on different types of
information (i.e. users’ friendships, their comments on items, their rat-
ings on items, their tags on items etc.), which evolve over time. There are
several web sites such as Amazon or Netflix, which allow users to rate,
tag and comment on items. Recognizing the patterns that govern these
multi-streams data as they evolve, enables us to better understand users’
behaviour.

The idea of data generation and drift imputation in Multi-Gen is as
follows. Multi-Gen generates three streams: the stream of Users, which
is also the Target Stream, the stream of Rankings and the stream of Items
(perennial) feed the target stream. The preference of a user towards some
item(s) defines its behaviour. Multiple users’ exhibiting similar behaviour
can be grouped/categorised together as a single user profile. Conversely
to learning task where these profiles are learned from among a group of
users, Multi-Gen first creates these user profiles which serve as prototypes.
These profiles are then used to generate individual user data according to
the item preferences stored in them. Noise can be imputed to the data by
forcing a user to rank in discordance to her profile with some probability.
Drift is imputed to the data by allowing a profile to exist only for some
timepoints and then forcing it to mutate to one or more profiles with some
probability.

7.2 Related Work

Our generator is inspired by the demands of a recommendation engine,
a prominent one is learning under drift. We build on a generator for rec-
ommenders proposed by Symeonidis et al. [Symeonidis et al., 2010] for
a static concept. Concept drift is intensively studied in the context of str-
eam mining. We discuss generators that simulate a drifting stream, after
describing the static-concept generator of [Symeonidis et al., 2010].

7.2.1 Generating a Static Concept for Recommendations

The generator of [Symeonidis et al., 2010] produces a unipartite user-user
(friendship) network and a bipartite user-item rating network. In contrast
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to purely random (i.e., Erdos-Renyi) graphs, where the connections among
nodes are completely independent random events, the synthetic model en-
sures dependency among the connections of nodes, by characterizing each
node with a m-dimensional vector with each element a randomly selected
real number in the interval [-1,1]. This vector represents the initial user
profile used for the construction of the friendships and ratings profiles,
which are generated as follows:

• For the construction of the friendship network, two nodes are con-
sidered to be similar and thus of high probability to connect to each
other if they share many close attributes in their initial user profile.
Given a network size N and a mean degree k of all nodes, the gener-
ator starts with an empty network with N nodes. At each time step,
a node with the smallest degree is randomly selected (there is more
than one node having the smallest degree). Among all other nodes
whose degrees are smaller than k, this selected node will connect
to the most similar node with probability 1 − p, while a randomly
chosen one with probability p. The parameter p ∈ [0, 1] represents
the strength of randomness in generating links, which can be under-
stood as noise or irrationality that exists in almost every real system.

• For the construction of the user-item rating network, the generator
follows a similar procedure. It uses the following additional parame-
ters as well: (i) the ratings range, (ii) the mean number of rated items
by all users. Notice that each user can rate different items from oth-
ers and has in his profile a different number of rated items, following
the power law distribution.

7.2.2 Generating Social Data with Concept Drift

Faloutsos et al. [Du et al., 2010] classify graph generators models into
emergent and generative. In the emergent graph models, such as the
small-world model [Du et al., 2010], the macro network properties emerge
from the micro interactions of nodes over time. On the other hand, gen-
erative graph models facilitate a utility function that performs recursive
iterations, until the generated networks meet real networks properties.
Previous research works have studied the patterns that follow particular
features of the network such as the link weights, in order to map the evo-
lution of the network and build network generators. For example, Nan Du
et al. [Du et al., 2009] have proposed a utility-driven generator that models
the way in which humans decide when and whom to communicate with.
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xSocial is a multi-modal graph generator that mimics real social net-
working sites in their way of producing simultaneously a network of fri-
ends and a network of their co-participation [Du et al., 2010]. In particular,
xSocial consists of a network with N nodes, each of which has a prefer-
ence value calfi. At each time, every node performs three independent
actions (write a message, add a friend and comment on a message). A
node chooses his friends either by their popularity of by the number of
messages on which they have commented together, which is determined
by his preference calfi. A node can also follow the updated status of his
friends by putting comments on the corresponding new messages.

Fei Yan et al. [Yan et al., 2011] designed a graph generator that simu-
lates how social links among actors of affiliation networks (e.g. research
paper co-authorship) emerge, based on the events they co-participate in
and the clique superposition evolution process. Their model generates
undirected weighted time evolving graphs, using an actor-projection of
the actor-event affiliation network. Specifically, the generator includes two
basic graph evolution steps, node and edge evolution. At each time, a
probability parameter pnode determines whether a node or an edge evo-
lution step occurs. In a node evolution step, a newcomer node joins the
graph. In an edge evolution step, a node is randomly selected as a new-
comer and connects with all members of an event. If there are members of
the event1 who are already connected, then the weight increases.

The generator of Symeonidis et al., [Symeonidis et al., 2010] uses both
structural (friendship network) & content-based information (item-rating
network) for making recommendations to the users. However, it is only
suitable for static learning. xSocial, on the other hand, simulates the
stream-based problem but it only uses the structural information (i.e., net-
works of friends and their interactions) for making recommendations to
the users. Different from [Symeonidis et al., 2010], our generator aims
to alleviate the problem of static recommendations by making use of the
dynamic ratings profile (i.e., a user’s rating preferences may change over-
time), and unlike xSocial [Du et al., 2010] its primary focus is on content-
based recommendations.

7.2.3 Generating Arbitrary Streams with Concept Drift

The data generators of [Symeonidis et al., 2010; Du et al., 2010] are in-
tended for specific applications, and simulate the properties of the data in
these applications. Research on stream mining demands artificial datasets

1affiliated item
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that exhibit particular properties of the data, such as overlapping concepts
or correlations among the features, or particular forms of drift. In their
seminal work on the evaluation of stream learning algorithms [Gama et al.,
2009], Gama et al. bring forward several issues on how to design eval-
uation experiments, and propose evaluation metrics for stream learners.
They make apparent that it is essential to control several properties of the
stream, not least the moments and nature of drift. The objective of stream
data generators is essentially to provide control over the stream properties
in a transparent way that allows proper experiment design.

In [Bifet et al., 2010], Bifet et al. report on the MOA stream mining
framework and discuss a number of data generators that have been con-
tributed to MOA until the moment of writing (2010). These generators
are for a single, conventional stream, and are not appropriate for learning
a model on temporal objects that are referenced again and again by the
stream.

The core idea of MOA in modeling concept drift is that "a concept drift
event as a weighted combination of two pure distributions that character-
izes the target concepts before and after the drift" [Bifet et al., 2010] (section
3.1), whereupon a sigmoid function is used to define the probability of an
instance belonging to the new concept after the drift. The idea of com-
bining two distributions is very appealing, but rather restrictive for the
simulation of evolving temporal objects, each of which is associated with
its own substream of instances/observations.

Ikonomovska et al. study relational learning over multiple streams
[Ikonomovska et al., 2011]. Their learning scenario is in accordance to
our perennial objects paradigm, hence the method they use to generate
synthetic data for evaluation purposes are also relevant here. In partic-
ular, one of their data generators simulates the problem of discovering
"individuals that would be suitable targets for viral marketing" [Ikono-
movska et al., 2011] (Section V, page 702) by generating three streams on
posts, comments and friends of a user. The generator takes a predefined
relational regression tree as input to create the artificial data. This is an
appealing idea, but it is rather limited to the evaluation of algorithms that
learn trees gradually, and does not give any controls on the forms of drift
that may occur.

Closest to Multi-Gen is the generator of evolving high-dimensional
trajectories used to evaluate the online clustering algorithm TRACER in
[Krempl et al., 2011]. A "trajectory" reflects the movement of an object
in a multi-dimensional feature space, and the objective of the algorithm
TRACER is to find clusters of objects that move in a similar way. De-
spite the geospatial connotation of the term "trajectory" (e.g. migratory
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birds that travel in flocks), the clustes found by TRACER consist of ob-
jects that evolve similarly: people whose preferences change in the same
way as they grow older, patients with chronic diseases respond similarly
to certain medications etc. One of the most appealing characteristics of
TRACER is its parsimonious nature: it requires as little as two observa-
tions per perennial object to learn and adapt to concept drift. Its data
generator, which we term Parsimonious Generator hereafter, takes as pa-
rameter the size of the feature space, the number of clusters K (which is
fixed over time), the individuals to be traced, the total number of obser-
vations to be generated and several parameters for tuning the suddenness
of concept shift, the state-to-signal noise etc [Krempl et al., 2011]. Quot-
ing [Krempl et al., 2011] (section 4.1), the data generator "uses a mixture
model with K components. For each component a multivariate Gaussian
density function is used to generate observations. The component centres
are themselves functions of time. For the initial state, the position, speed
and acceleration as well as possible higher derivatives are generated at
random. Subsequent states are calculates using a state-transition-matrix
as described above, and adding random state-transition noise. Further-
more, sudden shift occurs at a given point in time, offsetting the cluster
centres by a random vector."

A major advantage of the Parsimonious Generator [Krempl et al., 2011]
is its ability to capture complex forms of drift with a relatively small num-
ber of parameters in a transparent way. A disadvantage is that the mixture
model assigns objects to clusters probabilistically. This may be restrictive
for the evaluation of crisp classifiers and clustering algorithms.

7.3 Multi-Gen for the Generation of Profiles and
Transactions

Our generator takes as input the parameters depicted in Table 7.1, and
described in sequel. It generates: item profiles and from them items; user
profiles and from them users; and ratings of users for items at each time-
point. A user profile may live at most Lma§ timepoints before it mutates.

7.3.1 Generation of Item Profiles and of Items

Item profiles are described by vi synthetic variables. Multi-Gen creates a
set P i with N i item profiles and stores for each one the mean and variance
of each of the vi variables. Next, each of these item profiles is used as
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Table 7.1: Parameters of Multi-Gen.

Param Description
u user
i item
P i set of item profiles; N i = |P i|
P u set of user profiles; Nu = |P u|
ni number of items per item profile
nu number of users per user profile
vi number of synthetic variables that describe an item profile
vu number of synthetic variables that describe a user profile
τd number of drift moments across the time axis
Ad set of active user profiles at drift moment d
Ld number of timepoints at drift moment d; upper boundary

is Lmax
βud number of items a user u can rank at drift moment d
αut number of items a user u can rank at timepoint t
R max. number of items rated by a user at any timepoint
s, v parameters to control the shape of ZipF distribution for

generating user ratings data in conjunction with R, which
is the main parameter of the distribution

φU→I the probability of a user profile U selecting an item from
item profile I for rating.

UP2IP This variable is used to control the assignment of degree of
affinity between user profiles and item profiles

PKS This variable is used to control the position of the item pro-
files.

prototype for the generation of ni items, producing ni ×N i items in total.
Items also adhere to the vi variables; the value of each variable in an item
adhering to profile I ∈ P i is determined by the mean and variance of
this variable in the profile I. An example of item profiles with vi = 4 is
depicted in Figure 7.1. To control the position of the item, variable PKS
is used. When the value of PKS is close to 0, item profiles are generated
randomly and when the value is close to 1, items profiles evenly get spread
out to the extreme edges of the feature space. Two consecutive profiles are
spread out to the opposite corners, e.g., assume a feature space with two
dimension Dimx and Dimy. Both dimension can take values from 0 to
100. If 4 item profiles are to be generated, then profile 1 would be spread
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towards the corner (0,0) and profile 2 towards the corner (100,100). Profile
3 would be spread towards (0,100) and profile 4 towards (100,0).

The number of items considered (rated) at some timepoint may vary
from one timepoint to the next, but there is no bias towards items of some
specific profile(s). Hence, item profiles are not exhibiting concept drift.

Item Profiles Var 1 Var 2 Var 3 Var 4
IP1 23 +4 52 +9 97 +2 8 +9
IP2 2 +9 1 +7 46 +3 91 +6
IP3 72 +7 71 +3 26 +2 52 +1
IP4 3 +4 2 +4 27 +5 25 +3

Figure 7.1: Sample item profiles with vi = 4 synthetic variables. The mean
and variance associated with each variable are used to generate items ac-
cording to the normal distribution.

7.3.2 Generation and Transition of User profiles

User profiles are described by a set of parameters vu. These are synthetic
variables. Multi-Gen creates a set P u with Nu user profiles and stores for
each one the mean and variance of each variable in vu. User profiles serve
as templates for the generation of users, in much the same way as item pro-
files are used to generate items. However, there are two main differences.
First, user profiles are subject to transition, and not all of them are active
at each drift level d = 1, . . . , τd. Second, a user profile exhibits affinity to-
wards some item profiles, expressed through the probabilities between the
item profile and the user profile. An example of user profiles with vu = 3
is depicted in Figure 7.2.

The affinity of user profiles towards item profiles manifests itself in the
user ratings: a generated user adheres to some user profile and rates items
belonging to the item profile(s) preferred by her user profile. The affinity
φU→I is defined as the probability of a user profile U selecting an item from
item profile I for rating. This probability is controlled by a user-defined
global parameter UP2IP ∈ [0, 1]. If UP2IP is close to zero, user profiles
show strong affinity towards a certain item profile, while if the value is
closer to 1, the probabilities are initialised randomly.

At each drift level d = 1, . . . , τd, only a subset of user profiles Ad ⊆
P u are active2. The active profiles at each drift level is determined at the

2the number of active profiles at each drift moment d is an integer and calculated using
Nu

d and is similar for each drift level
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User Profiles Var 1 Var 2 Var 3 Item Profile Probabilities

UP1 13 +0 22 +5 51 +1
IP1 IP2 IP3 IP4
0.1 0.6 0.25 0.05

20 +5 50 +8 80 +9 29 +1

UP2 34 +4 55 +0 68 +9
IP1 IP2 IP3 IP4
0.7 0.1 0.1 0.1

90 +2 25 +5 93 +4 9 +1

UP3 21 +5 98 +4 1 +5
IP1 IP2 IP3 IP4
0.2 0.5 0.1 0.2

42 +2 95 +2 10 +0 12 +5

Figure 7.2: Sample user profiles with mean and variance for synthetic
variables with probabilities of selecting an item from a certain item pro-
file (row 1) and mean and variance of the rating that item (row 2), where
vu = 3.

beginning. For drift moment d > 1, Multi-Gen maps the profiles Ad−1
of moment d − 1, to the new profiles Ad of moment d on similarity, i.e.
the transition probability from an old to a new profile is a function of the
similarity between the two profiles. The result is a profile transition graph,
an example of which is depicted in Figure 7.3.

The coupling of profile transition to the profile similarity function en-
sures that profile mutation corresponds to a gradual drift rather than an
abrupt shift. The extent of profile mutation is further controlled by a user-
defined global variable ∈ [0, 1] that determines the true preference of an old
user profile for a new user profile. A value close to zero means that the
most similar new profile will always be preferred. Larger values allow for
a weaker preferential attachment, while a value close to 1 means that the
new profile is chosen randomly, and the transition is essentially a concept
shift rather than a drift (a "drift" is a change of gradual nature, e.g. when
a profile mutates into a similar one; while a "shift" is a more drastic and
abrupt change, e.g. a profile being replaced by another one). The similarity
between two user profiles U and U ′ is defined in Equation 7.1.

sim(U ,U ′) =
√ ∑
I∈P i

(φU→I − φU ′→I) (7.1)

where φU→I is the probability of rating an item from profile I for U , U ∈
Ad−1 and U ′ ∈ Ad.

Affinity of user profiles towards each other is also affected by profile
transitions. Once a user profile U mutates to U ′, all its users adhere to the
U ′ profile: they prefer the item profiles to which U ′ shows affinity, and rate
items adhering to these item profiles.
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Figure 7.3: Graph for the transition of user profiles; each column corre-
sponds to a timepoint, indicating that the number of profiles/classes may
change from one timepoint to the next (transition probabilities between
level 2 and level 3 have been omitted)

7.3.3 Generation of Users

For each user profile U ∈ P u, Multi-Gen creates nu users. As for items,
users adhere to the set of parameters vu as user profiles; the value of each
parameter in a user adhering to profile U is determined by the mean and
variance of this variable in the profile U . The profiles of each drift level
d exists for at most Lmax timepoints, before profile transition occurs; the
lifetime of a profile is equal to the number of timepoints Ld ≤ Lmax at drift
moment d.

Generation of Ratings

For each timepoint, Multi-Gen creates ratings for all users in each active
profile. At each timepoint a user can rank βud items per drift moment.
Then, for each user profile U and user u adhering to U , an item i adhering
to I is randomly chosen based on the probability φU→I . A rating value
for item i is generated based on the normal distribution with mean and
variance parameter from the user profile U for the item profile I (see Fig-
ure 7.2).

The number of rated items by a user follows a power-law 3 distribution,

3discrete Zipf
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generated using the rejection-inversion method described in [Hörmann
and Derflinger, 1996]. Using this approach to the Zipf distribution, we im-
plemented an algorithm that is at least twice as fast as the standard meth-
ods, following the technical details of [Hörmann and Derflinger, 1996].

The Zipf distribution (also called Riemann zeta or Pareto distribution)
has been selected, as it frequently appears in real data (ratings, linguistics,
social events, etc.) [Johnson et al., 2005; Dagpunar, 1988], and also is used
in simulators.

We implemented the two parameter generalization of the discrete Zipf
distribution as defined in [Dagpunar, 1988] with unnormalized pdf4:

pk = 1
(v + k)s (k = 0, 1, ...)

where s > 1 and v > 0 are the two parameters of the distribution. k
parameter is synonymous with parameter R. The mono-parametric case
is derived with a default value of v = 1:

pk = 1
(1 + k)s (k = 0, 1, ...)

7.3.4 Algorithm: Multi-Gen

The complete algorithm for generating a perennial stream of ratings is
given in Algorithm 15. The algorithm starts by creating a set of user pro-
files P u and items profiles P i (Lines 1-2). It then computes the set active
user profiles Ad for each drift moment d (Line 3). The computation in-
volves distributing the user profiles equally across all drift moments. Us-
ing Ad, the algorithms computes the profiles transition graph using the
active profiles from consecutive drift moments, i.e., between Ad−1 and Ad
(Line 4). The creation of nu users and ni items, concludes the initialisation
of Multi-Gen (Lines 5-6).

The algorithm, then iterates over the defined drift moments. At the be-
ginning, a user u is assigned a random user profile U . For the first drift
moment, it uses U to generate the data. For the subsequent drift moments,
when the drift moment changes, the U gets mutated into U ′ by the profile
transition graph (Lines 10-11) and the mutated profile U ′ is used for gener-
ating further data. Then for each user, the power law distribution is used

4probability function
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to generate ratings at a drift moment (Line 13).

Algorithm 15: Multi-Gen
Input : N i, Nu, ni, nu, vi, vu, τd,L, R,
Output: P i, P u, profile transition graph and perennial stream of

ratings

/* INITIALISE GENERATOR */

1 Generate a set of item profiles P i with vi number of attributes.
2 Generate a set of user profiles P u with vu number of attributes.
3 Select the active profiles Ad for each drift moment d.
4 Compute profile transition graph using Ad.
5 Generate ni items per item profile in P i.
6 Generate nu users per user profile in P u.

/* DATA GENERATION */

7 for d = 1→ τd do
8 foreach user u do
9 U ← profile of user u

10 if d > 1 then
11 Mutate user profile U using profile transition graph.

12 Generate data for u using user profile U
13 βud ← PowerLaw(R, sR)

14 Ld ← Uniform(0,L) /* #timepoints for drift moment d */

15 for t = 1→ Ld do
16 foreach user u do
17 U ← profile of user u
18 αut ← Uniform(0,βud)
19 βud ← βud − αut
20 for j = 1→ αut do
21 Select an item based on φU→I & rate it wrt. to U .

A drift moment d contains multiple timepoints (Line 14) and the rat-
ings are generated at individual time points. The number of ratings to be
generated for a user u at timepoint t, αud , is calculated using the uniform
distribution, whose lower limit is 0 while upper limit is βud (Line 18). Once
αud is calculated, the same amount is also subtracted from βud to ensure that
u’s rating don’t exceed more than βud items (Line 19)5. The individual rat-

5For the last timepoint t′ of drift moment d, αu
t′ ← βu

d . This ensures that there are
outstanding items to be rated.
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ings are generated using the specifications based on the affinities of user
profile U towards the different item profiles.

The list of Multi-Gen components are as follows:

MultiGenerator ItemGenerator
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Figure 7.4: Components of Multi-Gen.

• MultiGenerator This is the main component of the generator. Man-
ages users, userprofiles and also manages items and their profiles
using the ItemsGenerator.

• ItemsGenerator Generates items profiles, which are then used to cre-
ate the items.

• ItemProfile & Item Item profile stores the prototypes for creating
items, i.e., mean and variance. While items only contain the gener-
ated vals.

• UserProfile & Users The main aspect of these are similar to ItemPro-
file and Item.

• ItemRating Is part of the user object and contains information about
how user rated a particular item.

• NextProfileTransition Additionally, each profile also holds the infor-
mation about possible transition to the profile in the next level. As
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already discussed in Section 7.3.2, each transition has a probability
being made. This transition information managed through NextPro-
fileTransition. Each user profile maintains a list of next level profile
usint NextProfileTransition and selects one of them whem prompted.

• ItemProfileProbability Each user profile also maintains the informa-
tion about the groups of item the user is associated with and how he
rates them. As items are generated using profiles, we also use these
profiles to divide items into groups. Each group/profile is assigned
a certain probability of being rated. During user rating process, a
random item is picked from the group, its rating is acquired and is
then associated with the user.
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Figure 7.5: Statistics of the MovieLens dataset. On the left, we see the
number ratings given by each user (x-axis) and on the right the number
ratings given for each item (x-axis), both sorted in descending values of
the number of ratings and plotted on a logarithmic scale.

7.4 Experiments with Multi-Gen

In this section, we show that Multi-Gen is capable of simulating the prop-
erties of a real world dataset, namely the dataset hetrec2011-movielens-2k
described below. In this section we provide the empirical analysis of our
generator6. In the experiments, we first vary the main parameter s of the
distribution (skewness parameter) by keeping v = 1 (cf. Table 7.1) and we
vary the parameter v and the maximum number items rated by a user, by
keeping the value of s equal to 3.

6The data generator along with further results can be downloaded from
http://omen.cs.uni-magdeburg.de/itikmd/mitarbeiter/zaigham-faraz-siddiqui.html
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Figure 7.6: Comparison of the dataset from Multi-Gen and hetrec2011-
movielens-2k dataset. (Left) distribution of the number of ratings pro-
vided the user (right) number of ratings an item has

7.4.1 Quantitative Results

Datasets from the MovieLens are widely used for testing of the algorithms.
From the various datasets available at the GroupLens web site7, we chose
hetrec2011-movielens-2k. It has 2113 users, approximately 10,000 movies
and approximately 0.85 million ratings provided by the users. Addition-
ally with the dataset the information about each movie, i.e., genre, cast,
location is also provided. We treat this as our baseline and compare the
results of Multi-Gen against it.

In Figure 7.5 we plot the distribution of user (left) and item ratings
(right) from the MovieLens dataset. We see that the distributions are sim-

7http://www.grouplens.org/node/73
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Figure 7.8: Effect of changing various parameters of the Zipf distribution
on the user’s rating behaviour (left) variable s, (middle) variable v and
(right) variable R

ilar, but the left one ends abruptly. This is because the data provider has
removed all the users who have less than 20 ratings. This made it slightly
difficult to estimate the correct parameter for the Zipf distribution.

7.4.2 Validation Measures

Common measures used for parameter calibrations and validation are the
Mean Absolute Error (MAE) and the Root Mean Square Deviation (RMSD).
Especially RMSD is a good measure of the accuracy [Wikipedia, 2012a,b].

For two separate samples, both of cardinality N : A = {a1, ..., aN}, B =
{b1, ..., bN}, MAE and RMSD are defined as follows:

MAE = 1
n

n∑
i=1
|ai − bi|

RMSD =
√√√√ 1
n

n∑
i=1

(ai − bi)2
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Figure 7.9: Effect of changing various parameters of the Zipf distribution
on the how items get rated (left) variable s, (middle) variable v and (right)
variable R
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Figure 7.10: Effect of changing the parameter nu on the no of ratings dis-
tribution for user and item

We have N = 2113 users, ai is the number of ratings in hetrec2011-
movielens-2k for the user i, (i = 1, ..., n), and bi are the corresponding
number of ratings for the user i in the generated dataset.

7.4.3 Results

After a lot of experimentation and calculations we found that the best fit
holds when s = 21.5, v = 10000, R = 3000. In the Figure 7.6 we com-
pare the distributions from the MovieLens dataset and the dataset gen-
erated by Multi-GenṪhe discovered parameter settings minimize both er-
rors: MAE = 105.13, RMSD = 142.57. However, these parameter settings
can still be further improved as seen in the figure, especially in terms of
which items get rated more and how much (see left of Figure 7.6). The
skewed effect on the items rating is more clearly visible in Figure 7.7. Cur-
rently, we use random variable for generating the number of ratings by a
customer only and the same random number is used implicitly for select-
ing an item. For this reason, it is easier to predict the effect of parametric
changes on the number of ratings by the customers but not on the items.

In Figures 7.8-7.11 we show the effects of parametric change on how
the ratings for the items get affected.

7.5 Conclusion

In this chapter we presented a multi-stream generator that has been in-
spired from the domain of recommendation system. It generates ratings
data for users according to user profiles. With time the profiles mutates
into newer ones. The mutation can be adjusted to simulate drastic shifts
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Figure 7.11: Effect of changing the parameter ni on the no of ratings distri-
bution for user and item

as well more gradual drifts. The generator can be used for evaluating su-
pervised and unsupervised learning task for discovering and adaptation
to concept drift.

We allow the user profiles to mutate over time, however, the items re-
main static. In real world the item profiles under go change as well, e.g.,
comedy movies have gradually gotten more and more anarchic or with the
advances in technology the sci-fi genre have gradually changed its out-
look. While the mutation of user profiles represents sudden shift in the
distribution of the data, by incorporating the dynamics of change for item
profiles, more gradual shift can be incorporated into the dataset. Such a
generator would also be beneficial trajectory-based stream methods. An-
other change that we plan to work on is to use an independent random
variable for the items rating to make the generator more closer to the real
world phenomenon.
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CHAPTER 8

Conclusion and Future Work

In this chapter, we first present concise summary of the work that was
undertaken in this thesis. Here we also mention some of the important
findings and then discuss possible directions for future research.

8.1 Summary

In this thesis, we have introduced the problem of mining over a stream
of perennial objects. Perennial objects come from a multiple interrelated
streams. The stream that is the focus of the learning task, is designated
as the target stream. This stream consists of perennial objects and is fed
from other streams, which may contain perennial or ephemeral objects.
The properties of perennial objects pose several challenges for the mining
algorithms which are:

1. perennial objects constitute a stream,

2. are multi-relational objects that are linked to objects from other str-
eams,

3. they may not be forgotten,

4. may evolve over time, and

5. may change their class labels.

In order to perform mining over a stream of perennial objects, an al-
gorithm is required to have the following properties: 1) the capability to
handle streaming multi-relational data, 2) a mechanism that can recall old
objects instead of discarding them forever, 3) the capability to handle dy-
namic nature of perennial objects, and 4) the capability to update the clas-
sifier when perennial objects change their labels.

Our solution for mining over a stream of perennial objects is made up
of several components. In order to process the multi-relational structure of
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perennial objects and learn models, we developed an incremental proposi-
tionalisation algorithm1 that transforms multi-relational perennial objects
into propositional objects. The transformation process operates over the
multi-relational stream. For each stream that is in 1-to-1 or 1-to-m relation-
ship with the target stream of perennials, it is concatenated to the target
stream. For a stream that is in m-to-1 relationship, the objects in the str-
eam are first summarised using simple aggregates and then concatenated
to the respective perennial objects.

To maintain short-lived ephemeral objects inside limited memory, we
use a sliding window to store only the most recent ones. For maintaining
perennial objects that may not be forgotten, we use a cache to store most
important ones, while remaining ones are kept inside a secondary storage
and can be recalled when needed. In the experiments, we observed that
the storage of only the most important objects in the caches, facilitates the
creation of better and robust models.

We also developed an incremental K-Means algorithm to learn groups
of homogeneous perennial objects. The algorithm incorporates procedures
to handle the evolving nature of perennial objects2 and can adapt the clus-
tering model.

Another implication of the evolving nature of perennial objects is that
they can change their class label. For example, a customer who were ear-
lier trustworthy, may evolve to become an untrustworthy customer. For
learning a classification model over a labelled stream of perennial we de-
veloped a tree induction algorithm3. The tree-based model is learned in-
crementally. As perennial objects evolve, the algorithm forgets their earlier
contribution and updates the model with their new state. For model ad-
aptation, the algorithm maintains alternate trees and chooses among them
on the grounds of their accuracy, support and age.

The propositionalisation algorithm uses simple aggregates that capture
only simple patterns from the neighbouring streams. This leads to cre-
ation of tress that are large and unstable. We enrich the process of propo-
sitionalisation, for labelled perennial objects, by using classification rules
to capture complex patterns. For this purpose, we developed a classifica-
tion rule mining algorithm for ephemeral streams. The rules are stored in
compressed form and the predictive ones are chosen to be used as attribu-
tes during propositionalisation. The experiments showed that the usage
of rule-based attribute leads to smaller trees and robust performance.

1based on RelAggs by Krögel [Kroegel, 2003]
2We haven’t formalised the notion of age and size in the context of evolution for a

perennial object. We will elaborate on it in the outlook section (cf. Section 8.2)
3based on CVFDT by Hulten et al. [Hulten et al., 2001]
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We also presented a multi-stream generator. We have used the gener-
ator to create synthetic datasets that we have used in this thesis. It has
been inspired from the domain of recommendation system and generates
ratings data for users according to user profiles. With time the user pro-
files mutates or undergo concept drift, which changes the behaviour of the
users that adhere to them. This drift imputation is adjustable and can be
used to simulate from sudden shifts to more gradual drifts.

8.2 Directions for Future Research

Mining over a stream of perennial objects is a new problem. We have pre-
sented the first solutions in this regard, which expands the existing stream
mining paradigm. However, this new problem raises many unanswered
questions.

Propositionalisation alleviates some of the limitations of relational met-
hods, but introduces several of its own. One of them is its assumption
about the attributes’ independence 4. Several solutions for the static case
have been proposed in this regard but they either generate far too many
attributes [Alfred, 2008a] or are limited by high computational cost [An-
derson and Pfahringer, 2009]. Our solution for handling this particular
problem (cf. Chapter 6) maintains a concise representation of the discov-
ered rules but still suffers from the generation of enormous amount of re-
dundant. With a wealth of stream clustering methods in the literature, one
possible direction is the usage of clusters for pattern-based aggregation,
for they neither suffer from explosive number of patterns nor redundancy.
The development of such a framework is one of the topic of our undergo-
ing research.

In this thesis, we have focussed more on the perennial objects and how
to store them efficiently. However, the main load in the relational stream
comes from the streams of ephemeral objects. These streams may under
go change in speed 5, the rate at which the concept changes may vary[Bifet
and Gavaldà, 2007]. This asks for either a size reassignment as proposed
in [Ikonomovska et al., 2011] or incorporation of a mechanism to discard
useless or redundant tuples. A possible solution in this regard may be
the use of sampling to reduce the load. However, sampling in a relational
stream, where objects are inter-linked is a difficult problem on its own and
usage of caches from which objects move in and out makes it even more
challenging. This is also a topic of our on going research.

4We have formulated this problem in Chapter 6
5frequency of objects arriving at each timepoint
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During the experiments we encountered perennial objects that were of
varying sizes (i.e., the amount of objects that feed them) and ages (i.e., the
amount of time for which they have been active). In financial dataset, we
experienced this phenomenon: new customers arrive regularly and the
difference in cumulative number of transactions done by the older and the
newer ones is big. Distance functions simply return a value based on the
current states of the objects to be compared and overlook their ages, sizes
and the evolution that these objects may have gone through overtime. So-
lutions to these (i.e., implications introduced by ages and sizes) would
not only result in better models but they may be helpful in a situation,
where prediction of next state of an object is required, e.g., in bankruptcy
prediction or prediction of some disease outbreak. We have already de-
veloped two preliminary frameworks in this regard; one uses Kalman fil-
ters [Krempl et al., 2011], while the other uses a combination of clustering
and a mixture of Markov Chains [Siddiqui et al., 2012] for tracking objects
and predicting their next states. This problem setting can also be adopted
for the supervised case, where the true labels for the objects arrive with a
significant delay. For example, the financial standing of a customer or a
company is evaluated yearly. Prediction can be used in predicting the true
label for such an object as data arrives for it in the other streams.

150



Bibliography

Adomavicius, G. and A. Tuzhilin (2005). Toward the next generation of
recommender systems: A survey of the state-of-the-art and possible ex-
tensions. IEEE Transactions on Knowledge and Data Engineering 17(6), 734–
749.

Aggarwal, C., J. Han, J. Wang, and P. Yu (2003). A framework for cluster-
ing evolving data streams. In J. C. Freytag, P. C. Lockemann, S. Abite-
boul, M. J. Carey, P. G. Selinger, and A. Heuer (Eds.), Proceedings of the
29th International Conference on Very Large Data Bases, VLDB 2003. VLDB
Endowment.

Agrawal, R. and R. Srikant (1994). Fast algorithms for mining association
rules in large databases. In J. B. Bocca, M. Jarke, and C. Zaniolo (Eds.),
Proceedings of the 20th International Conference on Very Large Data Bases,
VLDB 1994, San Francisco, CA, USA, pp. 487–499. Morgan Kaufmann
Publishers Inc.

Alfred, R. (2008a). Dara: Data summarisation with feature construction.
In Proceedings of the Asia International Conference on Modelling and Simula-
tion,, AICMS 2008, pp. 830–835. IEEE Computer Society.

Alfred, R. (2008b). Dynamic aggregation of relational attributes based on
feature construction. In P. Atzeni, A. Caplinskas, and H. Jaakkola (Eds.),
Advances in Databases and Information Systems, 12th East European Confer-
ence, ADBIS 2008, Proceedings, Volume 5207 of Lecture Notes in Computer
Science, pp. 2–13. Springer-Verlag.

Alfred, R. (2009). Discovering knowledge from multi-relational data based
on information retrieval theory. In R. Huang, Q. Yang, J. Pei, J. Gama,
X. Meng, and X. Li (Eds.), Proceedings of the 5th International Conference
Advanced Data Mining and Applications, Volume 5678 of ADMA 2009, pp.
409–416. Springer.

Alfred, R. (2011). Feature transformation: A genetic-based feature
construction method for data summarization. Computational Intelli-
gence 27(3), 315–335.

Alfred, R. and D. Kazakov (2007). Discretization numbers for multiple-
instances problem in relational database. In Y. E. Ioannidis, B. Novikov,

151



and B. Rachev (Eds.), Advances in Databases and Information Systems, 11th
East European Conference, ADBIS 2007, Proceedings, Volume 4690 of Lec-
ture Notes in Computer Science, pp. 55–65. Springer.

Anderson, G. and B. Pfahringer (2007). Clustering relational data based
on randomized propositionalization. In H. Blockeel, J. Ramon, J. W.
Shavlik, and P. Tadepalli (Eds.), Proceedings of the International Confer-
ence on Inductive Logic Programming, Volume 4894 of ILP 2007, pp. 39–48.
Springer.

Anderson, G. and B. Pfahringer (2008). Exploiting propositionalization
based on random relational rules for semi-supervised learning. In
T. Washio, E. Suzuki, K. M. Ting, and A. Inokuchi (Eds.), Proceedings
of the 12th European Conference on Principles of Data Mining and Knowl-
edge Discovery, PAKDD 2008, Volume 5012 of Lecture Notes in Computer
Science, pp. 494–502. Springer-Verlag.

Anderson, G. and B. Pfahringer (2009). Relational random forests based
on random relational rules. In C. Boutilier (Ed.), Proceedings of the Inter-
national Joint Conference on Artificial Intelligence, IJCAI 2009, pp. 986–991.

Aydin, T. and H. A. Güvenir (2004). Learning interestingness of streaming
classification rules. ISCIS 2004, pp. 62–71. Springer-Verlag.

Aydin, T. and H. A. Güvenir (2005). Modeling interestingness of streaming
classification rules as a classification problem. In F. A. Savaci (Ed.), Ar-
tificial Intelligence and Neural Networks, 14th Turkish Symposium, TAINN
2005. Revised Selected Papers, Volume 3949 of Lecture Notes in Computer
Science, pp. 168–176. Springer.

Babcock, B., M. Datar, and R. Motwani (2002). Sampling from a moving
window over streaming data. In Proceedings of the 13th Annual ACM
SIAM Symposium on Discrete Algorithms, SODA 2002, Philadelphia, PA,
USA, pp. 633–634. ACM Press.

Beringer, J. and E. Huellermeier (2006). Online clustering of parallel data
streams. Data and Knowledge Engineering 58(2), 180–204.

Bifet, A. and R. Gavaldà (2007). Learning from time-changing data with
adaptive windowing. In Proceeding of the SIAM International Conference
on Data Mining, SDM 2007. ACM Press.

Bifet, A., G. Holmes, B. Pfahringer, R. Kirkby, and R. Gavaldà (2009). New
ensemble methods for evolving data streams. In Proceedings of the 15th

152



ACM SIGKDD International Conference on Knowledge Discovery and Data
Mining, KDD 2009, pp. 139–148. ACM Press.

Bifet, A., G. Holmes, B. Pfahringer, P. Kranen, H. Kremer, T. Jansen, and
T. Seidl (2010, September). MOA: massive online analysis, a framework
for stream classification and clustering. In Proceedings of International
Workshop on ’Handling Concept Drift in Adaptive Information Systems’ at
ECML PKDD 2010, HACDAIS 2010, Barcelona, Spain.

Blockeel, H. and L. D. Raedt (1998). Top-down induction of first-order
logical decision trees. Journal of Artificial Intelligence 101(1-2), 285–297.

Bloom, B. H. (1970, July). Space/time trade-offs in hash coding with al-
lowable errors. ACM Communications 13(7), 422–426.

Boettcher, M., M. Spott, and R. Kruse (2009). A condensed representation
of itemsets for analyzing their evolution over time. In W. L. Buntine,
M. Grobelnik, D. Mladenic, and J. Shawe-Taylor (Eds.), Proceedings of
the European Conference on Machine Learning and Principles of Knowledge
Discovery, ECML PKDD 2009, Volume 5781 of Lecture Notes in Computer
Science, Berlin, Heidelberg, pp. 163–178. Springer-Verlag.

Bradley, A. P. (1997). The use of the area under the ROC curve in the
evaluation of machine learning algorithms. Pattern Recognition 30(7),
1145–1159.

Bradley, P. S., U. M. Fayyad, and C. Reina (1998). Scaling clustering algo-
rithms to large databases. In R. Agrawal, P. E. Stolorz, and G. Piatetsky-
Shapiro (Eds.), Proceedings of the 4th ACM SIGKDD International Confer-
ence on Knowledge discovery and data mining, KDD 1998, pp. 9–15. ACM
Press.

Breiman, L. (2001, October). Random forests. Machine Learning 45(1), 5–32.

Cao, F., M. Ester, W. Qian, and A. Zhou (2006). Density-based clustering
over an evolving data stream with noise. In Proceeding of the SIAM Inter-
national Conference on Data MiningSDM 2006, pp. 328–339. ACM Press.

Catlett, J. (1991). Megainduction: Machine Learning on Very Large Databases.
Ph. D. thesis, University of Sydney, Sydney, Australia.

Ceci, M., A. Appice, C. Loglisci, C. Caruso, F. Fumarola, C. Valente, and
D. Malerba (2009). Relational frequent patterns mining for novelty de-
tection from data streams. In P. Perner (Ed.), Machine Learning and Data

153



Mining in Pattern Recognition, 6th International Conference, MLDM 2009.
Proceedings, Volume 5632 of MLDM 2009, pp. 427–439. Springer.

Chaudhuri, S., R. Motwani, and V. Narasayya (1999). On random sam-
pling over joins. In Proceedings of the 1999 ACM International Conference
on Management of Data, SIGMOD 1999, New York, NY, USA, pp. 263–274.
ACM Press.

Cheung, D. W.-L., J. Han, V. Ng, and C. Y. Wong (1996). Maintenance of
discovered association rules in large databases: An incremental updat-
ing technique. In Proceedings of the 12th IEEE International Conference on
Data Engineering, ICDE 1996, Washington, DC, USA, pp. 106–114. IEEE
Computer Society.

Cheung, D. W.-L., S. D. Lee, and B. Kao (1997). A general incremental
technique for maintaining discovered association rules. In Proceedings of
the Fifth International Conference on Database Systems for Advanced Appli-
cations, DASFAA 1997, pp. 185–194. World Scientific Press.

Chi, Y., H. Wang, P. S. Yu, and R. Muntz (2004). Moment: Maintaining
closed frequent itemsets over a stream sliding window. In Proceedings
of the 4th IEEE International Conference on Data Mining, ICDM 2004. IEEE
Computer Society.

Chi, Y., H. Wang, P. S. Yu, and R. R. Muntz (2006, October). Catch the mo-
ment: maintaining closed frequent itemsets over a data stream sliding
window. Knowledge Information System 10(3), 265–294.

Chuang, K.-T., H.-L. Chen, and M.-S. Chen (2009, January). Feature-
preserved sampling over streaming data. ACM Transactions on Knowl-
edge Discovery from Data 2(4), 15:1–15:45.

Csernel, B., F. Clerot, and G. Hbrail (2007). Summarizing a 3 way rela-
tional data stream. In Workshop on Data Stream Analysis, WDSA 2007.
Wikipedia.

Dagpunar, J. (1988). Principles of random variate generation. Oxford Science
Publications. Clarendon Press.

Dai, B.-R., J.-W. Huang, M.-Y. Yeh, and M.-S. Chen (2006). Adaptive clus-
tering for multiple evolving streams. IEEE Transactions on Knowledge and
Data Engineering 18(9), 1166–1180.

154



Das, A., J. Gehrke, and M. Riedewald (2003). Approximate join processing
over data streams. In Proceedings of the 2003 ACM International Conference
on Management of Data, SIGMOD 2003. ACM Press.

Dehaspe, L. and H. Toivonen (1999). Discovery of frequent datalog pat-
terns. Data Mining and Knowledge Discovery 3(1), 7–36.

Dehaspe, L. and H. Toivonen (2001). Discovery of relational association
rules. In S. Dzeroski and N. Lavrac (Eds.), Relational Data Mining, pp.
189–212. Springer-Verlag.

Domingos, P. and G. Hulten (2000). Mining high-speed data streams. In
R. Ramakrishnan, S. J. Stolfo, R. J. Bayardo, and I. Parsa (Eds.), Proceed-
ings of the 6th ACM SIGKDD international conference on Knowledge discov-
ery and data mining, KDD 2000, New York, New York, USA, pp. 71–80.
ACM Press.

Du, N., C. Faloutsos, B. Wang, and L. Akoglu (2009). Large human com-
munication networks: patterns and a utility-driven generator. In Pro-
ceedings of the 15th ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, KDD 2009, pp. 269–278. ACM Press.

Du, N., H. Wang, and C. Faloutsos (2010). Analysis of large multi-modal
social networks: Patterns and a generator. In J. L. Balcázar, F. Bonchi,
A. Gionis, and M. Sebag (Eds.), Proceedings of the European Conference
on Machine Learning and Principles of Knowledge Discovery, ECML PKDD
2010, Volume 6321 of Lecture Notes in Computer Science, Barcelona, Spain,
pp. 393–408. Springer-Verlag.

Dzeroski, S. (2003, July). Multi-relational data mining: an introduction.
SIGKDD Explorer Newsletter 5(1), 1–16.
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APPENDIX A

Additional Material

A.1 Generating Zipf Distribution using Python

def generateZipFan2(n=100, drift=5, b=50):
# drift: no of drifts
# n: no of vals in each drifts
# b: no of batches
import random

n=n*4
stream = []
for i in range(drift):

a = 1.01
s = generateZipFan(a,n)
s = np.array(s)

max_v = int(100000*a)
s = s[s<max_v]
max_v = int((np.random.uniform()+1)*1000000)%max_v
min_v = int(max_v*0.98)
for j in range(len(s)):

s[j] = max_v-s[j]

s = s[s>min_v]
if (i%2==0):

for j in range(len(s)):
s[j] = s[j]+(s[j]%(1))*10000

s = list(s)
random.shuffle(s)
stream.extend(s[:n/4])

return stream
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A.2 Generating Dataset with Multi-Gen

In Table A.1 the complete parameters for generating the synthetic datasets
used in the main section of the thesis.

A.3 Experiment with Caching Strategies

In this section we report some further experiments, which we could not
place in the main section of this thesis.

A.3.1 Financial Dataset with an Adjusted Baseline

We report some more experiments on the Financial dataset. We have mod-
ified the baseline slightly so that it still knows one timepoint into future,
but rather than utilising that knowledge of future directly, it utilises it via
the counts it maintains for each object, i.e., it first updates its counters from
the data at ti+1 and then decides on basis of those counts what to store in
the cache. Under these conditions, even the baseline suffers performance
degradation. These experiments are reported in Figures A.1 to A.3.
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Figure A.1: Plots with an Adjusted Baseline for Financial Dataset: NT =50,
M=100, β=1
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Figure A.2: Plots with an Adjusted Baseline for Financial Dataset: NT =50,
M=100, β=2
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Figure A.3: Plots with an Adjusted Baseline for Financial Dataset: NT =100,
M=200, β=2
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Figure A.4: Plots for Financial Dataset: NT =100, M=200, β=5
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Figure A.5: Plots for Financial Dataset: NT =150, M=300, β=5
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