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Abstract

The overall objective of the research presented in this doctoral thesis is to explore
and establish theories and methodologies for accurate representation and recogni-
tion of human actions in video data. For the methodological contributions of this
thesis, multiple approaches involving diverse conceptualizations are developed to
represent and recognize human actions from video sequences. Moreover, in Chapter
4, we investigate a variety of distinctive features (shape and motion features) for the
representation and recognition of human actions. For our first approach, we present
a new method for human action recognition based on interest point features. The
main contribution of this approach is twofold. First, a reliable neural model as a
classifier is employed for the task of action classification. Secondly, we unfold how
the temporal shape variations of actions can be accurately described using fuzzy
log-polar histogram descriptors. When tested on the KTH and Weizmann datasets,
the method recognizes actions with average recognition rates of 94.3% and 97.8%
respectively. These results compare very favorably with those of other investigators
reported in the literature. Furthermore, due to its low computational demands, the
approach can be integrated into real-time applications.

With the second approach, a Bayesian model for action recognition based on
multiple cues is introduced. In a nutshell, this approach proceeds as follows. First, a
series of silhouettes of moving body parts are extracted from a given video sequence
(i.e. action snippet). Next, each action snippet is divided into several time-slices
represented by fuzzy intervals. As shape features, a variety of shape descriptors
both boundary-based (e.g., Fourier descriptors, curvature features, etc.) and region-
based (e.g., moments invariants, moment-based features, etc.) are extracted from
the silhouettes. Finally, an NB (Naı̈ve Bayes) classifier is trained in the feature
space for action classification. The recognition results achieved on KTH dataset
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tie in with those well established in the literature. As for the third approach, an
efficient methodology for action recognition is presented based on chord-length
shape features. The contributions, in this work, are as follows. We first illustrate
how an effective shape descriptor is constructed using 1-D chord-length functions.
Second, we unfold how the process of feature reduction is performed by using
Gaussian membership functions. On KTH dataset, this approach has been shown
to produce recognition results which compare favorably to the state of the art.

In our practical approach towards action recognition in real-world video data,
on the basis of motion vector distribution characteristics, we propose an innovative
fuzzy framework to recognize actions in realistic videos. In this framework, a com-
pact and computationally efficient fuzzy descriptor is constructed based on fuzzy
directional features. For the training process, a set of one-vs.-all SVM classifiers
capable to discriminate between intra-subject features and inter-subjects features
is trained on the action descriptors to classify the action in the real-world scene.
Due to their simplicity and low computational requirements, the employed features
have proven to be amenable to real-time implementation. From a set of preliminary
experiments on our dataset, we found that the feature representation parameters
directly affect the recognition results. In addition, in terms of the holistic perfor-
mance of the framework, the larger values of these parameters provide the greatest
improvement in overall recognition rate. The best recognition accuracy achieved is
96.3%. This result can be regarded as ”encouraging“, when considering the real-
istic working environments, and it confirms the basic correctness of the approach.
However, realizing more comprehensive experimental studies on larger real-world
datasets is deemed to be necessary to validate the scalability and feasibility of the
approach in a broader scope.

Index Terms—Human activity recognition, motion analysis, log-polar histogram, mo-

ment invariants, chord-length function, fuzzy directional features, video interpretation.

—————— � ——————–
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Zusammenfassung

Das Ziel der in dieser Dissertationsschrift vorgestellten Forschungsarbeiten ist die
Erforschung und Etablierung einer Theorie und Methodik zur präzisen Repräsenta-
tion und automatischen Erkennung von menschlichen Bewegungsabläufen in Vide-
odaten. Der methodische Beitrag dieser Arbeit besteht in mehreren neu entwickelten
Ansätzen und diversen Konzepten zur Repräsentation und Erkennung von mensch-
lichen Aktionen in Videosequenzen. Weiterhin werden in Kapitel 4 eine Vielzahl
markanter visueller Merkmale (Form- und Bewegungsmerkmale) für die visuelle
Repräsentation und Erkennung von Menschlichen Bewegungsabläufen untersucht.
Als erster Ansatz wird eine neue Methode zur Erkennung von Bewegungsabläufen
vorgestellt, die auf der Detektion markanter Bildpunkte (Interest Point features)
basiert. Dieser Ansatz beinhaltet zwei wesentliche Beiträge. Zuerst wird ein robu-
stes neuronales Modell für die Klassifikation von Bewegungsabläufen angewendet.
Weiterhin wird dargestellt, wie zeitliche Formänderun-gen in Bewegungen mit
Hilfe von fuzzy logarithmisch-polaren Histogramm Deskriptoren präzise beschrieben
werden können. Anhand der KTH und Weizmann Bewegungsdatensätze konnte
mit den Methoden eine durchschnittliche Erkennungsrate von 94,3% bzw. 97,8%
nachgewiesen werden. Im direkten Vergleich zu anderen aus der Literatur bekann-
ten Forschungsergebnissen schneiden die hier vorgestellten Methoden sehr gut ab.
Desweiteren kann der Ansatz aufgrund seiner geringen Rechenanforderungen in
Echtzeitanwendungen integriert werden.

Im zweiten Ansatz wird ein auf mehreren Merkmalen basierendes Bayes’sches
Modell für die Klassifikation menschlicher Bewegungen vorgestellt. Hierbei wird
zunächst eine zeitliche Folge von Umrissen der bewegten Körperteile aus dem
Video extrahiert. Anschließend wird jedes Bewegungsvideo in Abschnitte mit un-
scharfen Intervallgrenzen zerteilt. Eine Vielzahl von Formdeskriptoren, die sowohl
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konturbasiert (z.B. Fourier-Deskriptoren, Krümmungsmerkmale) als auch regionen-
basiert (z.B. invariante Momente, momentenbasierte Merkmale) sind, werden aus
den Umrissen extrahiert. Abschließend wird ein naiver Bayes (NB) Klassifikator
für die Bewegungsklassifikation im Merkmalsraum trainiert. Die Erkennungser-
gebnisse auf dem KTH Datensatz sind vielversprechend und belegen die Wirksam-
keit dieses Ansatzes. Für den dritten Ansatz wurde eine effiziente Methodik zur
Erkennung von Bewegungsabläufen durch auf Sehnenlängen basierenden Form-
merkmalen entwickelt. Hier wurden die folgenden Beiträge geleistet: Zunächst
wird ein effektiver Formdeskriptor mit eindimensionalen Sehnenlängen Funktionen
konstruiert. Anschließend wird eine Merkmalsreduktion mithilfe von gauß’schen
Zugehörigkeitsfunktionen (Gaussian Membership Functions) durch geführt. Im
Vergleich zu anderen Methoden aus dem aktuellen Stand der Technik zeigt der
Ansatz bei Anwendung auf dem KTH-Testdatensatz gute Ergebnisse.

Als praxisorientierten Ansatz für die automatische Erkennung von Bewegungs-
abläufen in realen Videodaten schlagen wir desweiteren ein innovatives Fuzzy-
Framework vor. In diesem Framework werden unscharfe Richtungsmerkmale als
Deskriptoren verwendet, die kompakt und wenig rechenintensiv sind. Im Trainings-
vorgang werden diese Deskriptoren mit einem Satz von ”iner-gegen-Alle“ SVM
Klassifikatoren trainiert, die zwischen Intra- und Inter-Klassenmerkmalen unter-
scheiden können. Aufgrund ihrer Einfachheit und ihres geringen Rechenaufwands
sind sie für eine Echtzeitimplementation geeignet. Anhand von Voruntersuchungen
an unserem realen Datensatz konnte festgestellt werden, dass die Erkennungsraten
direkt von den Parametern für die Merkmalsrepräsentation abhängen. Im Sinne der
ganzheitlichen Leistungsfähigkeit unseres Erkennungssystems konnte weiterhin
gezeigt werden, dass mit höheren Parameterwerten die größten Verbesserungen
der Gesamt-Erkennungsrate erreicht werden. Mit diesem Ansatz konnten maximale
Erkennungsraten von 96,3% erzielt werden, die in Anbetracht der realen Arbeitsum-
gebung als vielversprechend eingeschätzt werden können, und die grundsätzliche
Richtigkeit des Ansatzes beweisen. Dennoch sind umfangreichere experimentelle
Studien auf größeren echten Datensätzen notwendig, um die Skalierbarkeit und
Realisierbarkeit in breiterem Rahmen zu validieren.
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CHAPTER 1

Statement of Problem

1.1 Preface

SINCE the very birth of human civilization and rational thinking, the under-
standing and explanation of the behavior of everything in the physical world
around the human being has been one of the most intractable long-studied

problems. In the first place, the focus of the attention was primarily upon the most
transcendent “physical phenomena” of the external world, such as the sun, the fire,
the sky, the air, the moon, the day and the night, the directions, the water, the land,
etc. Most of these phenomena were initially interpreted as divine actions. However,
with the lapse of time (over many centuries), the human civilization was being
highly evolved scientifically and technologically and the first and most rudimentary
“dogmatism” were taken out and dusted. Therefore natural sciences so-called “exact
sciences” (such as Physics and Mathematics) have been adopted as tools to explain,
analyze, and aid in better understanding of these phenomena occurring around
us. This not only enabled to solve many difficult problems with better and better
models, but also contributed to approach their solutions flexibly.

Regarding the inanimate objects so-called “non-living” objects, how they behave
inside the space and the consequences of their interactions have been understood
accurately thanks to the achievements of the minds of giants, such as Newton,
Euler, Einstein, among others. While on the contrary, the existence of emotions
and consciousness has contributed an additional level of challenge and complexity
to the process of understanding the actions of living beings. To contribute to this,
and in addition to the deep investigation and detailed analysis of their physical

1



1.2. Challenges & Obstacles 2

properties, serious efforts have been put into finding the inward electrical impulses
that make these beings behaving in certain determinate ways. As a point of fact, it
was found that the survival instincts most drive the “non-rational animals” (i.e., all
the living beings, excluding humans) and control their behaviors and movements.
Survival instinct, grossly and loosely speaking, is the most powerful instinct the
animals have; it contains a series of actions (constructed or designed as an internal
memory) that are responsible for how these animals feed, reproduce, and raise
young, and how they protect their survival.

It is now biologically established that, in light of Darwin’s theory of the evolution
of species and the subsequent history of Darwinism, most actions and biological
functions of animals have evolved over millions of years in both size and com-
plexity through natural selection and adaptation to best adapt to the bad survival
environment, maintaining life and continuing species. Additionally, throughout
their lives, animals gather and weigh information to decide upon alternative states.
For human beings, the cognitive capacity for the language communication, abstract
thinking, and action planning is unique to them and not shared with the rest of
animals. On one side, abstract thinking enables humans to think, conceive ideas,
and and act rationally. On the other, humans can plan ahead and consider the
long-term consequences of behaviors, choices, and preferences. Together, these
two features pose serious roadblocks to any advance toward recognizing and/or
predicting the behaviors that can be performed by human beings.

Recently, a new interdisciplinary field of study within computer science has
emerged, concerned with the theoretical and empirical investigation of many of
the previously mentioned capabilities. This new discipline comprises techniques
from various fields such as, image processing and analysis, computer graphics,
artificial intelligence, pattern recognition, robotics, etc. With this new field, an image
sequence concerning human-populated scene can be modeled accurately. The rapid
advances in the hardware technology of media capture, storage, and computation
power have contributed to impressive developments in image understanding tech-
niques and applications. Moreover, numerous technical contributions and software
implementations have been possible by the newly emerged capabilities.

1.2 Challenges & Obstacles

In this section we briefly review the main challenges and setbacks that we face when
dealing with human action recognition in video data which confront the design and
implementation of any successful action recognition model. Then, we show how
such challenges have a considerable impact on the ability of current recognition
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approaches to effectively recognize actions. We begin our discussion by stating
that, in fact, the problem of action recognition shares many challenges with other
problems, such as object detection and tracking, motion recognition, etc.

1.2.1 Common challenges on activity recognition

The main common challenges in human action recognition shared with other prob-
lems in computer vision include:

• Illumination conditions

• Occlusions

• Clutter in background

• Object deformations

• Intra/inter class variations

• Pose variations

• Camera point-of-view

The next paragraphs will briefly describe each one of these challenges and
setbacks to identify specific aspects of the task being tackled in the study. First,
changes in illumination conditions are one of the major difficulties that current
object detection/recognition and tracking techniques are confronted with. In other
words, it is a serious problem that affects both holistic techniques and methods
based on some spacial feature representation. This is due to the fact that the
same object is differently perceived under different illumination conditions. For
occlusion, it is a surprising capability of visual perception, still unmatched by
computer vision algorithms. Plainly speaking, occlusion means closer objects block
more distant objects from being viewed. Therefore object recognition and tracking
under occlusions is a “bottleneck” problem in computer vision, not yet fully solved.

Background clutter, like occlusion and changing illumination, is also a realistic
challenge for activity recognition and other pattern recognition tasks, that interferes
with the capture of the vital information. As a result, human activity recognition
in the presence of heavy background clutters seems to be a most difficult problem
indeed. In addition to that, the probable drastic change (deformation) in the shape
of object between two consecutive frames also provides additional challenge to
the task of developing a robust model for activity recognition. Large “intra-class”
variability arises when the visual differences amongst action instances belonging
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to the same class are quite significant. That makes correct classification of actions
appear more difficult to be achieved successfully. In this case, a good model for
activity recognition should have the ability to learn the features that allow the
different instances of action to be members of the same class.

In addition, a robust activity recognition model should be able to distinguish
amongst actions of different classes, when the visual differences between them are
very slight. In this case, the low “inter-class” variability arises, which makes classi-
fying actions correctly an arduous task, as well as the large intra-class variability
does. In relation to what has been stated before, pose variations provide also a sig-
nificant handicap for activity recognition. Thus an action recognition model should
be designed such that it can handle pose variations robustly as well as to other
challenges. The camera viewpoint where the scene is taken determines the parts of
body that will be visible. Furthermore, different viewpoints of the camera can cause
some portions of body to be visually occluded. Hence, a robust model for action
recognition should be designed to take into account different views. For deformable
objects (i.e., action poses), while they are arising from the relative position of their
own parts, their constitutive parts can cause occlusions to be originated. Add to
that, the different appearances of articulated objects make hard for shapes to be
learned correctly. In everyday visual experience, objects rarely exist in isolation.
Instead, they usually appear as part of multiple objects. This raises the challenge of
distinguishing the features of an object corresponding to the foreground from those
of other objects corresponding to the background.

1.2.2 Specific challenges on activity recognition

While human vision has an extraordinary ability to efficiently recognize human
actions from video data, with a high degree of accuracy, it is an arduous task for
the computer to do such a task in a very similar manner. First, the fact that the
same action is performed by different people at different velocity poses a quite
significant technical problem to automatic system to achieve activity recognition
task efficiently. Moreover, moving shadows generated by bad lighting conditions
can also degrade tracking the motion of human body parts. Some body parts can
be occluded owing to camera viewpoints that provides an additional difficulty
to the human activity recognition task. Added to that, small moving objects (i.e.,
distractors) in background are also another problematic issue for this work. For
example, in a scene of crowded street, trees swinging and/or shop advertisements
blinking in background are challenging issues for motion detection and tracking.
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FIG. 1.1. Sample video shots belonging to nine categories of human actions often seen in
movies; from left to right, and from top to bottom: Hugging; Exiting From A Car; Beating;
Playing Football; Shaking Hand; Kissing; Drinking; Answering A Phone; Smoking. These
samples were collected from various websites.

1.3 Motivations & Applications

In everyday life, one carries out successfully many high-level tasks, beginning with
object detection and motion recognition, ending with avtivity/event recognition
and scene interpretation. For example, as human beings and not other kind of
animals, we have the ability to find out where a favorite book or a pen is. When
we are on the street, we have the capacity to detect easily the where of traffic signs
or other signals of the police superintendent. It would be easy to argue that this
capability is not limited to finding (detecting) an object of interest (a target). It also
includes identifying that object. This would imply that we are able to decide which
car we own, from those parked in a parking lot. On top of that, we can discriminate
a close personal acquaintance from others within a large area crowded of people.
Further, using a small amount of examples, we are effortlessly able to learn new
categories of objects as well as new autonomous instances of them.
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Since the 1950’s, following consecutive advances in video technologies in both
hardware (e.g., affordability of low-cost cameras and high quality video webcams)
and software (e.g., video editing software), the amount of digital video data has
grown rapidly and immensely for various usages in many areas, such as advertising,
news video broadcasting, concerts and sporting events, personal video archive,
medical video data, etc. Owing to the recent publicity of the World Wide Web
(WWW) and other Internet services, immense video data are accessible online and
available for sharing. For example, five years later a large number of videos are
uploaded on YouTube every day, at a rate of more than 20h of video per minute.
In other words, it would take nearly a full day to watch all the video posted to
YouTube in a single minute. Interestingly, human actions represent the majority
part of these huge voluminous videos. Fig. 1.1 shows some examples for these
actions collected from different Web sites.

Recently, pose detection and human action recognition have gained more interest
among video processing community because they find various applications in
which the use of them could play a significantly beneficial role, both in term of
productivity and quality derived from new software engineering tools. Some
prominent examples of such potential applications include:

• Video search and indexing for browsing

• Human-computer interfaces

• Analysis of sport athletics and dance choreography

• Film and television archive analysis

• Real-time active object monitoring for video surveillance

• Telemonitoring of chronic patients and elderly people

• On-line pedestrian detection and tracking for smart vehicles

Examples for these applications are shown in Fig. 1.2. Current Web search
engines offer convenient ways to access and to retrieve huge amounts of video
data. Owing to the high complexity of video data, efficient content-based video
retrieval from a large database with respect to a specific user’s query calls at least
for: compact and effective video representations, efficient similarity metric, and
efficient indexing on the compact representations. For example, content-based
image retrieval (CBIR) from large databases for medical and civilian research, and
planning purposes has a broader technological impact on the society and the daily
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FIG. 1.2. Various compelling applications for automatic activity recognition, for instance in
the areas of automated security, financial management, robot learning and control, video
surveillance, healthcare, and user interface design.

life. Likewise, the ability of describing a scene through the objects involved in it is
very advantageous for manipulating and interpreting that scene in useful ways.

Also security surveillance (by installing surveillance cameras and red-light
signal violation cameras at various junctions) is other emerging application that
is employed to detect the presence of weapons and explosives in many strategic
places such as, airports, seaports, banks, railway stations, hospitals, and government
buildings. Access security systems that control access by applying an automated
Turing 1 test, are widely used to exclude people of vision impairments by presenting
them to a visual exam that they cannot pass. It is important to note that, for all
the systems mentioned so far, they have to be designed such that they meet the
requirements of robustness and real-time performance, since the performance is
critical and foremost in these applications.

However, the problems such as object modeling and motion recognition and
tracking that relate closely the problem of human activity recognition (i.e., the main
focus of this thesis), are still challenging and pose difficulties for general real-world
scenes, and thus much work remains before we will see the approaches proposed
for them in a mature stage. In other words, yet there are no definitive solutions that
achieve satisfactory results in order to overcome such difficulties. This suggests
that it is still necessary to find more efficient solutions to solve the issues that need

1Turing is an English mathematician whose works explored the possibility of computers and
raised fundamental questions about artificial intelligence.
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further research efforts to better understand problems and to develop better and
more appropriate methodologies. That is not to say that human activity recognition
is a solved problem, since most of the existing approaches only address one or a
few of the specific challenges or difficulties. This is why the problem is still an open
problem, and, to the best of our knowledge, research work involved in this topic is
still in its infancy or far from mature.

1.4 Human Action Recognition: An Overview

Human action recognition is one of the most extensively studied problems in com-
puter vision. However, the approaches to the problem are still far from satisfactory
and very specific to dataset at hand. Roughly speaking, there are three major steps
involved in any approach to solve this problem:

1. Segmentation: A simple approach (i.e., frame difference) to achieve this ob-
jective works as follows: First, the background is estimated to be the previous
frame. Then the estimated background is subtracted from the input frame. A
threshold is applied to the absolute difference to obtain the foreground mask.
Depending on the object structure, speed, frame rate and global threshold,
this approach may or may not be useful. For example, although such a tech-
nique does not need any knowledge about background and is very adaptive
to dynamic environments, it suffers from the so-called foreground aperture
problem due to homogeneous color of moving object [9]. Therefore it often
fails to detect all moving pixels. A reliable and robust background subtrac-
tion algorithm should handle: 1) sudden or gradual illumination changes; 2)
high frequency, repetitive motion in the background (e.g., tree leaves, flags,
waves,...); and 3) long-term scene changes (e.g., a car is parked for a month).

2. Feature selection and extraction: In this stage, the features of an activity and
how they change with time are obtained and then analyzed. First,The rep-
resentative descriptors of features are obtained from video sequence at each
time interval. The choice of the features that make up the feature vector is
an important design decision in the subsequent feature classification module
of entire solution. Thus, features should be chosen such that they are quite
representative of the objects of interest as well as the activity being recognized.
Furthermore their descriptors have to be a quite compact, accurate and effi-
cient way of extracting and representing these features. Regarding the features
extracted from video sequence, they could be low-level primitives with very
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Feature Selection &
Feature Extraction

Feature Classification

Segmentation

Feature descriptors

Foreground region

Action recognition

image 
sequence

FIG. 1.3. A general overview of activity recognition system. Each of the three major blocks
can in turn contain sub-blocks.

little descriptive characteristics, such as contour length, aspect ratio, etc. or
high-level descriptive features, such as the position of person’s hands/legs,
label of the object etc. In an effort to narrow the search for an activity in the
video sequence, as well as to improve the recognition accuracy of the actions
themselves, Some researchers opt for making use of non-visual features such
as closed caption text [10], and sound [11].

3. Feature classification: After doing feature extraction and selection, various
machine learning models could be applied to classify the features extracted
in the previous stage. Some of these models or classifiers include Neural
networks [12,13], Hidden Markov Models (HMM) [14,15], Belief networks [16],
or rule networks [17, 18]. It is worth mentioning here that the choice of which
classifier to use is a matter of personal discretion within the constraints of
computational tractability and the size of the dataset being worked on.

We would like to draw the reader’s attention that each of the steps outlined above
will be described and discussed in more detail in the following chapters. The overall
sketch of these steps is presented as a block diagram, shown in Fig. 1.3.
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1.4.1 Requirements

The current development of computer vision algorithms along with the rapid
advancements in hardware technologies make it possible for human activity recog-
nition to be achieved reliably and in real-time. However, many existing activity
recognition approaches have their own numerous inherent limitations, such as
accuracy, speed, robustness, etc. The prime motivation of this thesis is to contribute
to the state of the art in the development and improvement of vision-based model-
ing and recognition of human actions from video sequences. To achieve this goal,
three various approaches are presented for representing and recognizing human
actions in videos. With the presented approaches, we attempt to allow the following
assertions to be applied to the action recognition process.

• Reliability: In order to assess the high success rate and reliability of action
recognition performance, the evaluation results should confirm that a high
recognition rate can be achieved, while maintaining low false alarm rates.
This means that activities can be recognized more effectively and accurately
with least confusions between each two different activities. Furthermore, that
reliability or efficacy of the technique should be comparable to other well-
established state-of-the-art techniques in literature in terms of recognition rate
and number of false alarm properties.

• Real-time performance: For the real-time performance of automatic action
recognition, the different steps or tasks are required to be done in real-time or
near real-time. First, fast feature segmentation (i.e. background subtraction) is
done using Mixture of Gaussians (MoG). In addition, subsequent higher-level
tasks, such as feature extraction and/or selection, feature tracking, and classi-
fier fusion are also performed in real-time. It is worthwhile mentioning that a
real-time action recognition system is capable to provide latency guarantees
for real-time applications and embedded systems.

• Robustness: In practical use, it is desirable for action recognition systems to
be robust to illumination variations, partial occlusions, cluttered background,
and noisy silhouettes. An ideal action recognition algorithm should also
show tolerance to changes in scale, rotation, and viewpoint while being fast
to implement. Moreover, a technique for action modeling and recognition
should be able to robustly model various spatio-temporal variations .

• Scalability: Generally speaking, scalability of a recognition method implies
that the method has the potential to learn to recognize additional pattern
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vocabularies without decrement in performance. The presented approaches
for action recognition can demonstrate good scalability of recognition rate
with size of datasets. In addition, the ideal action recognition system should
be able to deal equally with large and small action vocabularies. As conditions
comes to be worse, the system performance begins to decrease gradually. The
simpler out of two systems performing equally well is better.

• Human-independence: The ideal action recognition system should have the
potential to model and recognize various human activities independently
of their agents. Such a system should also deal with human activities with
different shapes, trajectories and durations.

1.5 Goals and Contributions of Thesis

The main objective of this thesis is to contribute to the problem of human action
recognition in video data by developing a new approaches for recognizing human
actions from video sequences. Since the perceived meaning of some action highly
depends on cultural factors and the specific context, the main contribution of
the work is concentrated on recognizing actions from video sequences, rather
than the high-level semantics of these actions. The new approaches should be
robust enough for handling noisy video data which is the case of real-world data.
This consequently allows the proposed approaches to improve their qualifications
and ability to be most appropriate and feasible for a vast majority of real-world
applications, such as surveillance and public security systems, healthcare settings,
human-computer interfaces, intelligent vehicle control, etc. Furthermore, real-time
processing is also a major issue and very necessary to support applications with
real-time requirements. Broadly speaking, the approaches meet the following
constraints and/or performance characteristics:

• Real-time application: As will be detailed later in the subsequent chapters,
the implementations of the presented approaches are based on 2D image data,
rather than 3D world data. Therefore, they require much less computing
resources in processing time and memory usage than many other complicated
and sophisticated approaches in the literature. In other words, the proposed
approaches can provide timing guarantees to real-time applications.

• Stationary camera: In many video applications (such as such surveillance and
health-care systems), stationary cameras are typically used to monitor critical
areas to prevent access by unauthorized personnel or monitor activities in
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health care facilities. All experiments of this work were carried out using this
category of cameras that provides a good quality image with a low distortion.
Nevertheless, the approach is not restricted by this constraint. Therefore, with
an appropriate human detector, a portable camera can also be used.

• Mono-camera application: For realizing visual recognition and tracking of
people and their actions, a monocular camera can be enough. To avoid
redundancy (by installing various cameras), only one camera is manually
fixed in position to record a scene from a specific viewpoint.

For better usage of the approaches, the following hypotheses are also postulated:

• The proposed approaches can recognize actions of two publicly benchmark
datasets (i.e., KTH [7] and Weizmann datasets [19]). Examples of these actions
include, running, walking, jogging, hand waving, etc. Furthermore, the pre-
sented methods can theoretically be extended to recognize more challenging
realistic actions, such as Hollywood dataset [20].

• Based on the datasets of this study, in a scene, there is only one action per-
formed by a single person. But, it is possible to build a person detector to
detect all people in a scene. Then, a person tracker can be used to track all
persons in the scene. Once persons are set apart, recognition can be applied to
each person independently in the scene in order to detect relevant actions.

• The developed approaches can work well under a reasonable image resolution
and frame rate. Since 2D image data have been implemented, a minimal
frame-rate (e.g. 25 fps) is needed to capture most of motion. Also, the image
resolution should be taken in agreement with the distance of the targeted
person from the camera. Hence, the shape of body parts can be perceivable.

• The current research is focused on detecting actions performed by a single
person, and not interaction actions (e.g., handshake, kiss, hug, etc.). Neverthe-
less, it is possible to extend the proposed techniques to detect more complex
actions. Furthermore, regarding crowd scenes, once a robust person tracker is
available, the methods can handle such actions as well.

The contributions of this dissertation can be summarized as follows:

• Various vision-based theories and methodologies are attempted to accurately
represent and recognize human actions from video data.

• Multiple approaches based on diverse conceptualizations are suggested for
the vision-based representation and recognition of human actions in videos.
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• A variety of distinctive visual features are investigated and developed (i.e.,
shape features and motion features) for the vision-based representation and
recognition of human actions.

• An innovative fuzzy recognition framework is proposed to represent and
recognize human actions in real-world videos.

1.6 Overview of the Manuscript

This dissertation is structured around seven main chapters, excluding this introduc-
tory chapter, which are summarized as follows

• Chapter 2 aims mainly at providing an up-to-date state-of-the-art picture
on human action recognition techniques. The different representations and
models of activities are discussed. Depending on how human activities are
modeled and represented, recognition approaches are broadly categorized
into one of two types: (1) spatio-temporal approaches and (2) sequential ap-
proaches. Spatio-temporal approaches fall again into three sub-categories: (1)
volumes themselves, (2) trajectories, and (3) local interest-point descriptors.
On the other hand, according to their recognition methodologies, sequen-
tial approaches are categorized into two major types: (1) exemplar-based
approaches and (2) model-based approaches.

• Chapter 3 discusses the major approaches for segmenting image sequences
to objects that is regarded as a curial step in scene understanding and action
modeling. These approaches include: frame differencing, motion segmenta-
tion, and background estimation and subtraction (e.g., mixture of Gaussians).
This chapter is divided into two major parts. In the first part, we attempt to
provide an overall idea about image segmentation in general. Then, a new
method for image segmentation is presented based on the concept of the Rényi
entropy. The second part is devoted to the video segmentation process as a
main part in developing any object-based video recognition system in general,
and in developing the human action recognition system in particular.

• Chapter 4 details the process of the extraction of action descriptors. We
present a detailed description of various features and descriptors developed
in our works on action recognition. These features broadly include interest-
point based features, shape border based features, and chord-length function
features. A careful analysis/investigation of these features has suggested that
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they turned out to have the potential to provide a rich source of information
for the interpretation/analysis of human activities.

• Chapter 5 concerns the description of the learning-classification framework
for action recognition. We discussed three of the most widely used and most
influential machine learning algorithms (i.e, ANN, SVM and NB) that were
trained and tested separately for the action features described in Chapter
4. Moreover, an adaptive neural model (i.e., Multilevel Sigmoidal Neural
Network) is used, which is developed to relax the restriction of the traditional
neural model and to allow the neural units to generate multiple responses.

• Chapter 6 commences the discussion by providing an overview of two pub-
licly benchmark action datasets (i.e., KTH [7] and Weizmann [2]) on which
the outputs of this written research are based. Then, we illustrate how the
experiments were conducted in detail in this work. Finally, the obtained
results are compared with those of similar recent state-of-the-art methods.

• Chapter 7 begins with the description of our real-wold action dataset that we
use for this research, and, followed by giving some interesting characteristics
of this dataset. It proceeds to give a detailed description for our proposed
framework for action recognition in real-world video data. Then, the results
from a set of preliminary experiments conducted to evaluate the stability
of the recognition system and its effectiveness in recognizing actions are
reported. Finally, in the last section, implications of the results are discussed
and conclusions drawn.

• Chapter 8 is a short concluding chapter that contains two sections. In the
first section, the key contributions of the thesis are summed up, and some
conclusions from the preceding investigations and experiments are drawn.
In the light of the drawn conclusions, some possible directions for future
research within this area, either as an extension of the theory presented in this
thesis, or as an alternative are suggested in the second section.



CHAPTER 2

State of the Art

2.1 Introduction

IN this chapter, we aim to provide an overview of recent studies concerned with
human action recognition. The methodologies of both simple activities and
high-level activities are presented. To learn more about the advantages and

disadvantages of each of these methods, we have opted to use an “approach-based”
taxonomy in categorizing and displaying such methodologies. First, we present
various recognition methods developed to recognize simple activities performed by
a single person in video sequences. Both spatia-temporal volumetric approaches
and sequential approaches to recognize such simple actions are discussed. Then,
we present and discuss various hierarchical methodologies including syntactic,
description-based, and statistical approaches. Moreover, various approaches that
have been attempted to recognize group activities and human-object interactions
are mentioned. Finally, we also show some public action datasets that have been
used in the performance evaluations and comparisons of these methods.

Recognizing human actions in videos is an important area of computer vision
research today, but a challenging task that has gained a lot of attention during the
last decade [8]. Generally speaking, human action recognition aims at recognizing
or identifying automatically the action performed in a video sequence. In the case
where a video sequence includes only one action performed by a single person, the
foremost task here is to correctly classify which type of action the video exhibits. For
a more general case where a video clip contains continuous actions performed in
sequence, the start and end times of each occurring action in the video clip should

15
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be detected. It is very important to establish that the recognition of complex human
actions from video sequences would provide significant engineering potentials
for the many paramount applications. For example, the automatic recognition of
abnormal or suspected actions as opposed to normal actions is urgently needed by
surveillance systems located in densely populated places, such as airports, railway
stations, and government buildings. In all such cases, “suspected” actions, such
as ’someone putting a bag in a rubbish bin’ or ’someone leaving a suitcase behind’
should be detected by a security monitoring system in an airport. With successful
action recognition, the real-time monitoring of patients and elderly people that
represents a cornerstone of any successful treatment, would be practically achiev-
able or viable. In addition, efficient action recognition can support the design and
implementation of vision-based intelligent environments, and can also lead on step
ahead to more natural Human-Computer Interactions (HCIs).

Based on their complexity, human activities are conceptually divided into four
distinct categories: gestures, actions, interactions, and group activities. Basically, a
gesture is a primitive movement using the body or body part that conveys infor-
mation, such as “shaking a head around”, “shake a head back and forth”, “shrug
shoulders”, etc. An action is an activity composed of multiple temporally-organized
gestures. Typical examples of actions include “jugging”, “running”, “walking”,
etc. Human activities that comprise two or more persons and/or objects are called
“Interactions”. While “Two humans fighting” is an example for a human-human
interaction between two humans, “a person stealing a bag from another” is another
example for human-object interaction containing two humans and one object. Fi-
nally, human activities done or managed by conceptual groups containing multiple
humans and/or objects are termed “group activities”. An examples of these activi-
ties is “a group holding a meeting”. ln this context, it would not be irrelevant to
point out that in the thesis context from now on the term “activity” is used synony-
mously to the term “action”, as these two terms are frequently used generically and
interchangeably in activity (or action) recognition community.

2.2 Literature Review

In this section, various types of methodologies in the state-of-the-art human action
recognition are reviewed. In this regard, different approaches that have been de-
veloped to recognize different levels of human actions, are also discussed. In [21],
Aggarwal et al. review several fundamental low-level constituents required for
understanding human motion ( i.e. body posture analysis and tracking). Their



2.2. Literature Review 17

review put a stress on the recognition and analysis of simple motions and ges-
tures. For detecting and recognizing the human activities of complex structures,
methodologies of motion analysis do not appear to be quite sufficient. Similar
to [21], methodologies of human action recognition are hierarchically categorized
into various levels. At first, action recognition methodologies fall into one of two
categories: (1) hierarchical approaches and (2) non-hierarchical approaches.

Regarding hierarchical approaches, depending on the recognition methodolo-
gies used, these approaches can be broadly divided into three categories, namely,
(1) statistical approaches, (2) syntactic approaches, (3) and description-based ap-
proaches. Statistical approaches attempt to recognize high-level activities by build-
ing statistical state-based models hierarchically composed of other models [22–27].
One widely publicized prominent example of such approaches is that developed
by Oliver et al. [28]. In a similar way, for modeling and recognizing sequential
human activities, syntactic approaches employ a grammar syntax (e.g., stochastic
context-free grammar (SCFG)) [29]. With these approaches, a high-level human
activity is essentially modeled by a sequence of other low-level activities [29–33]. In
a not altogether dissimilar way, ’description-based’ approaches attempt to model
high-level activities by defining them by their spatial, temporal, and logical relation-
ships [34,34–40]. On the other hand, non-hierarchical approaches have the potential
to directly represent and recognize activities based on image sequences. By their
nature, such approaches are most qualified and wellpositioned with the task of
recognizing short-term activities of sequential characteristics, such as gestures and
simple actions. Hierarchical approaches, on the other hand, have a layered struc-
ture where high-level activities are represented in terms of other simpler low-level
actions, so-called sub-events’. Due to their nature, activity recognition models of
multiple layers are well suited to analysis complex long-term activities.

In non-hierarchical approaches, activities are straightforwardly recognized from
input video sequences. Essentially, a human action is deemed by these approaches
to be as a specific category of image sequences. Thus the task of recognizing the
action from a given video sequence is the same as classifying the video sequence
into its category. Such approaches appear to be the most suitable choice when a
sequential pattern of an action can be extracted from training data. In addition,
single-layer approaches, due to their nature, have proved to be most appropriate
and effective for analyzing relatively simple “short-term” human motions (e.g.,
running and walking). To enable an activity recognition system to determine
reliably whether an activity is likely or unlikely to occur, multiple representation
and matching algorithms have been previously suggested. As for the recognition
from continuous video data, a sliding window technique is commonly adopted by
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most non-hierarchical approaches in order to categorize each likely sub-sequence.
Depending on how human activities are modeled and represented, all non-

hierarchical approaches are again categorized into one of two types: (1) spatio-
temporal approaches and (2) sequential approaches. While a given video is regarded
as a 3-D (XYT) volume by spatio-temporal approaches, it is considered as a sequence
of observations by sequential approaches. Based on which features are picked from
the 3-D spatio-temporal volumes, spatio-temporal approaches fall again into three
sub-categories: (1) volumes themselves, (2) trajectories, and (3) local interest point
descriptors. On the other hand, according to their recognition methodologies,
sequential approaches can be categorized into two main types: (1) exemplar-based
approaches and (2) model-based approaches.

Sequential approaches deem an action as a sequence of observations. For this
view, an activity is represented by a sequence of feature vectors picked up from
video data; thus by searching for such sequence, the activity can be recognized.
On the other hand, for the spatio-temporal approaches, an input video sequence
representing an activity is typically treated either as a 3-D spatio-temporal volume
or as a collection of features picked up from the volume. The spatio-temporal
volumes are created by the concatenation of consecutive frames along time line. The
following sections will be devoted to reviewing and discussing the non-hierarchical
approaches which are closely related and pertinent to the work presented in this
dissertation. Fig. 2.1 presents a schematic overview of these approaches.

2.3 Spatio-temporal Recognition Approaches

The pioneering work dates back to 1985 when Aldelson and Bergen [41] first pro-
posed the concept “spatio-temporal volume”, in which motion models are depen-
dent on energy and response to filters. Since then, the spatio-temporal volumes have
been predominantly exploited by a wide range of image processing algorithms, not
only for performing segmentation of dynamic scenes, but also as a cue for inferring
depth information of static scenes. When a 3-D (XYZ) real world scene is projected
onto a 2-D (XY) image plane, one dimension of scene information is lost. In this
case, 2-D spatial information of the scene, such as spatial layout, shadow, and shape,
are maintained. From computer vision point of view, a video sequence is viewed
as a collection of consecutive 2-D images. Therefor, by stacking 2-D (XY) images
along time axis (T), a specific 3-D (XYT) spatio-temporal volume can be constructed,
by which a human motion visually occurring within the video sequence can be
represented, and thus analyzed using a variety of strategies. The pivotal idea on
which the spatio-temporal approaches are originally founded is the analysis of 3-D
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FIG. 2.1. Synopsis of various approaches to human action recognition.

spatio-temporal volumes of actions. Strictly speaking, a spatio-temporal approach
for action recognition typically involves four main steps:

1. Given the video data as a training set of labeled action instances, a 3-D spatio-
temporal volume (i.e. activity model or template volume) for each activity is
constructed and maintained.

2. For each new unlabeled video provided, a 3-D spatio-temporal volume repre-
senting the action occurring within that video is also constructed.

3. At this time, the similarity between the action within the new video sample
and each existing action action category is calculated by computing any dis-
similarity measures (e.g., Euclidean distance, Pearson’s correlation coefficient,
etc.) between their representative template volumes.

4. The ultimate goal can now be fulfilled by assigning the action category with
the highest similarity value to the video involving the considered action.

Typically, the above scheme shows a spatio-temporal methodology for recog-
nizing human activities from videos based on the 3-D template volume and the
template matching algorithm. Example 3-D XYT volumes constructed from a “run-
ning” action are demonstrated in Fig. 2.2. As a matter of fact, there are several close
alternatives to the pure 3-D volume, that can be used in representing an action,
such as trajectories or a set of features extracted from the volume or the trajectory
of the action. For the first case, instead of representing an action with a volume, it
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FIG. 2.2. Spatio-temporal volume for a “run-jump” action: (a) original video sequence and
(b) 3-D XYT image volume.

can be represented by a set of features extracted from the volume itself. The key
idea behind that is that 3-D volumes can be treated as rigid objects, hence their
representations can quite be constructed by extracting general patterns from them.
For the second case, a human action is represented as a set of trajectories in a spatio-
temporal space or other spaces. When some feature points (e.g. estimated localities
of human joints), are conveniently trackable, a set of trajectories can be used to
effectively represent the occurring motion. In recent years, great efforts have been
devoted to develop various saptio-temporal recognition algorithms. Much of the
focus of these efforts have focused on developing approaches for matching trajecto-
ries, volumes, or a set of features extracted from each of them. Template matching is
a good example of such approaches, in which a volume (i.e. representative model)
for each action is created using training video sequences. An unseen action is
recognized by matching its volume with a known set of volumes for each possible
activity. One of the more widely used matching approaches is ’Neighbor-based
Matching’. In this approach, a set of volumes or trajectories describing an activity
is maintained. A new activity is recognized by matching its volume with all (or a
portion) of those volumes maintained beforehand. Eventually, several statistical
algorithms that specify an explicit probability distribution to model the activity
have recently been used successfully in the treatment of video matching.

2.3.1 Volume based action recognition

As stated so far, detecting spatio-temporal correlations among the spatio-temporal
patterns of activities is, indeed, the pivotal idea behind the action recognition from
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spatio-temporal volumes. A primary task here is that humans’ movements repre-
sented by saptio-temporal volumes are compared to determine how similar they
are. A large number of methodologies for spatio-temporal volume representation
and recognition identify these similarities correctly and efficiently, which have been
around for a long time, and are very common in computer vision.

In [42], an approaches to the action recognition problem based on the MACH
(maximum average correlation height) filters has been proposed. In that work, the
authors generalize the conventional 2-D MACH filter for 3-D spatio-temporal vol-
umes. A synthesized MACH filter for each action class is generated to approximate
an unseen 3-D volume. When an MACH filter of action is synthesized, similar
actions in an unseen video are recognized by applying the MACH filter to the
video. On two popular datasets (i.e., KTH [7] and Weizmann [2]), as well as their
own dataset including video clips from movie scenes, the authors performed the
experiments. Further, example of recognized actions include hitting and kissing.

In [43], a spatio-temporal correlation method that detect similarity between
video segments is proposed to recognize human actions. In this method, motion
flows are estimated from a 3-D spatio-temporal volume. The similarities between
an unseen video volume and maintained template volumes are measured by using
a 3-D spatio-temporal template correlation. The local motion flows is captured
by extracting small spatio-temporal patches around each point (x, y, t) of the 3-D
spatio-temporal volume. The overall correlation between an input video volume
and the template volume is obtained by all match scores which, in turn, are given
by the correlations between all patches in the video and all patches in a template.
When an unseen video is presented to the recognizer, it looks for all 3-D volume
patches localized at every point (x, y, t) which are best matches to the template.
Furthermore, that method showed an increasing ability to learn and recognize
multiple human actions, such as pool dives, waving, and ballet movements.

In [1], the authors present an approach to the representation and recognition
of human movement. In their work, a representation known as “temporal tem-
plates” are introduced to capture both motion and shape, represented as evolving
silhouettes. Two 2-D images (i.e. the motion energy images (MEI) and motion
history images (MHI)), instead of maintaining 3-D spatio-temporal volumes, are
employed as templates for action recognition. The two images that can essentially
be seen as a weighted projection of a 3-D spatio-temporal volume into 2-D XY plane,
are generated from a set of foreground images. A template matching algorithm is
then applied to the two image to recognize simple human actions (e.g. crouching,
arm waving, sitting ) from video sequences. Examples of MHIs for three actions
(sit-down, arms-raise, crouch-down) are shown in Fig. 2.3. Notice that the final
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(a) (b)

FIG. 2.3. Examples of MHIs for three actions (from up to down: crouch-down, sit-down,
and arms-raise): (a) original image sequences, (b) MHIs obtained by [1].

motion locations appear brighter in the MHIs. In [2, 19], the authors introduce an
action model using space-time shapes. These shapes are obtained from silhouette
information detected by some form of background subtraction. Various features
(i.e., action dynamics, local saliency, shape structure and orientation) are extracted
by using properties of the solution to the Poisson equation. A high-dimensional
feature vector is then used to represent chunks of 10 frames length that are matched
to space-time shapes in test sequences, in a sliding window fashion during classifi-
cation. Fig. 2.4 shows three examples of these shapes appeared in [2].

In addition, in [44], Ke et al. employed segmented space-time volumes to
model and recognize human actions. For finding volume segments of an action
and measuring their similarity to the action model, a hierarchical mean-shift is
applied to cluster similarly voxels. Support vector machines (SVMs) are then used
to classify videos based on both shapes and flows of the 3-D volumes. Similar
to many recognition approaches, actions are recognized by looking for a subset
of over-segmented space-time volumes that best matches the shape of the action
model. Experiments of that system were conducted on the popular KTH dataset [7]
as well as a new tennis action database [44].
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FIG. 2.4. Space-time volumes based on silhouette information presented in [2]
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2.3.2 Trajectory based action recognition

The central idea of trajectory-based approaches is to use a set of trajectories of joint
positions points on the human body to recognize actions from videos. In other
words, in these approaches, an action is seen as a collection of spatio-temporal
trajectories. Thus, the performer of an action can be modeled by a collection of
points in 2-D or 3-D space that correspond to the joint positions. When a person
performs an action, the changes in joint positions are recorded as spatio-temporal
trajectories, creating 3-D (XYT) or 4-D (XYZT) representations of the action. Example
trajectories are shown in Fig. 2.5. To extract the joint positions of a person, there
are many methodologies for human body part estimation ( e.g., the stick figure
modeling). In [45], it has been stated that tracking of joint positions is quite enough
for humans to visually identify actions in videos, and this paradigm has extensively
been explored [46, 47]. In the literature, there are several approaches making use of
trajectories to learn human motion patterns and generate some high-level semantic
description of such actions [48,49]. For example, in [49], a set of 4-D joint trajectories
are utilized to learn actions acquired by moving cameras. In [48], each action is
defined as a set consisting of 13 4-D joint trajectories. To measure the view-invariant
similarity between two sets of trajectories, an affine projection is performed to
obtain normalized trajectories of action.

Instead of maintaining trajectories themselves, in [50], meaningful curvature
patterns are extracted from the trajectories to represent human actions. After
detecting skin pixels, the authors tracked the location of a hand in 2-D space to
obtain a spatio-temporal curve. Actions are then represented as a set of peaks and
intervals between them. Such peak features have been verified to be view-invariant.
Several prototypes representing actions are constructed, which can be seen as action
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FIG. 2.5. Tracking trajectories of walk action from KTH action dataset [3].

templates. Finally, once templates are matched, actions can be easily recognized.
Simple actions from office environments that were recognized include ’Picking up
an object’ and ’opening a cabinet’.

2.3.3 Local feature based action recognition

The intuitive idea of the approaches discussed in this subsection is to represent
and recognize actions in terms of a a set of local features extracted from 3-D spatio-
temporal volumes. The fact that 3-D spatio-temporal volumes can be seen as
rigid 3-D objects is the main motivation behind the spatio-temporal local features
approaches. This means that once appropriate features that represent the character-
istics of 3-D volumes of an action are extracted, the recognition can successfully be
conducted by object matching. While, many of these approaches extract sparsely
distributed local features from 3-D volumes [4, 49, 51–53], we find some other
approaches adopt to detect interest points at every frame and combining them
temporally to describe the overall motion of human actions [2,54,55]. Fig. 2.6 shows
an example of such 3-D spatio-temporal local features extracted from a video of a
‘walking’ action using [4]. Due to their stability and robustness to noise, illumina-
tion changes, camera jitter, and background movements, these features have been
intensively used in many applications with encouraging results.

In [55], the authors present an approach that extracts spatio-temporal features
at multiple temporal scales to isolate and cluster actions. To deal with the speed
variations of actions, they analyze multiple temporally scaled video volumes. Then
local intensity gradients are estimated and normalized for all points within a 3-D
volume. For each video sequence, these spatio-temporal features of gradients are
histogramed without considering locations of the extracted features, and also a
histogram-based distance metric is generated, similar to [54]. To learn and recognize
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(a) (b)

FIG. 2.6. Spatio-temporal local features extracted from a video of a ‘walking’ action; (a) 3-D
plot of a leg pattern and the detected local features; (b) interest points overlaid on single
frames in the sequence [4].

actions, an arbitrary clustering algorithm is used on these histograms. The approach
is able to detect and recognize various actions, such as tennis and basketball plays.
Added to that, there are other approaches that utilize sparse local features extracted
from 3-D volumes, in order to describe and recognize actions. For example in [4],
sparse 3-D (XYT) interest points are extracted to represent and recognize human
actions in videos. For detecting the robust points in a 3-D volumes, the spatio-
temporal Harris detector [4] extends the widely-used Harris corner detector to
the time axis [56]. One advantage of this scale-invariant spatio-temporal detector
is that various types of motion patterns can be robustly captured. Such features
help in dealing with initially occluded backgrounds. Moreover, these features can
be combined with SVMs to classify multiple actions [7]. The recognition results
achieved confirmed the efficiency and applicability of these features.

A fact should be pointed out here that the paradigm of using sparse local fea-
tures extracted from spatio-temporal volumes for the action recognition has been
explored in depth previously in machine vision. As suggested in [4], due to the fact
that local motion can be efficiently described by such sparse features, they have
been intensively focused and will likely continue to focus not only on action recog-
nition, but also on other related domains. Furthermore, many object recognition
approaches utilizing sparse appearance local features (e.g., SIFT descriptors [57]
and HOG descriptors [58]) have demonstrated that higher descriptiveness and
robustness can be achieved by applying these descriptors to the image patches



2.3. Spatio-temporal Recognition Approaches 26

containing interest points. That in turn provides an extra motivation to the action
action recognition approaches. It might seem appropriate and cost-effective, from a
technical perspective, for these features to be extracted only at a shape change or
salient appearance in space-time volume. Similar to object recognition descriptors,
most of these local features have been shown to achieve invariance to scale changes,
rotation, affine transformation, and affine illumination changes. In [59], Niebles et al.
introduce an unsupervised classification methodology utilizing the feature detector
described in [51] to recognize actions. This method is regarded as a generative
approach that model each action category as a set of local features. To recognize
actions, the authors use a popular statistical technique, so-called probabilistic La-
tent Semantic Analysis (pLSA). Once the posterior probability is obtained for each
action class, classification is performed by assigning the feature to the action class
associated with the highest posterior probability.

Within this context, there are several approaches that attempt to develop and
improve local feature extractors. For example, in [60], a recognition approach that
detects sparse features (i.e. view-invariant action sketches) is presented. Also, like
the cuboid features presented in the work of Dollar et al. [51], Scovanner et al. [61]
propose an extension of the SIFT descriptor [57] to 3-D. In [62], a methodology for
feature selection, like that of [63], is presented, as well as an improved detector
for cuboid features. While only ’brightness’ cuboid features have previously been
used [4, 51], both color and motion information as cuboid features are utilized
by [64]. For the sake of extracting more distinct and meaningful features, a method
to prune cuboid features is presented in [65]. Due to their robustness to both noise
and illumination changes, spatio-temporal feature-based approaches have received
and still receives much interest by many researchers in computer vision and pattern
recognition. Add to that, action recognition based on these features very often calls
for neither background subtraction nor body-part modeling [52, 53]. Hence, such
approaches are quite computationally tractable. However, when applied to more
complex long-term human action recognition, these features become intractable and
highly prone to limitations in performance. View-invariance is a challenging prob-
lem in action recognition, which should be handled by feature-based approaches.
For a non-periodic motion, it has been shown that the relations among features are
crucial and should be taken into account. Even though, describing these relations is
not likely to be computationally efficient, several approaches have been developed
with the hope of overcoming some limitations [20, 53, 66, 67].
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2.4 Sequential Recognition Approaches

In sequential approaches, unlike most other approaches, recognition of a human
action is conducted using a sequence of features. With these approaches, a video
sequence containing an action is interpreted as an ordered set of observations.
Hence once a specific set representing a video is observed, a decision that an
action has occurred in the video can be responsibly made. To fulfill their goals,
sequential approaches proceed in three main steps: first, they extract the features
describing distinct temporal states (i.e. poses) of the action action contained in a
video sequence. Second a likelihood used to measure how likely the feature vectors
are given the probability distributions of the activity class. Eventually, when the
likelihood value between the activity sequence and the activity model is greater
than a given threshold, then a decision that the activity occurred is made.

Sequential recognition approaches can be generally subdivided into two major
classes: state model-based approaches and exemplar-based recognition approaches.
In state model-based recognition approaches, a action model is postulated, and then
trained to obtain a collection of features corresponding to each activity category.
Therefore, the activity recognition can be performed simply by computing the
likelihood that an input sequence is generated by each model of activity. On
the other hand, exemplar-based recognition approaches use training samples to
describe action categories. In other words, either a set of training sequences for each
activity or a representative sequence for each activity category is maintained. Then
a new sequence to be recognized is matched with each representative sequence and
the best match activity is considered as the most likely activity.

2.4.1 Exemplar-based recognition approaches

As stated previously, exemplar-based recognition approaches maintain either a set
of sample sequences or a template sequence of action profiles to represent human
actions. The basic workflow of a typical exemplar-based recognition approach
proceeds as follows. As soon as a new video is supplied, its sequence of feature
vectors is compared with the maintained sample sequences or template sequence.
If the similarity between the sequence of the input video and a template action
is above a certain threshold, then it is deduced that the input video most likely
contains the action. Since different people perform the same action differently, not
only in style, but also in timing, matching test and training activities is not a trivial
task that has to be of interest to action recognition algorithms.
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Dynamic time warping (DTW) algorithm [68], originally used in speech pro-
cessing, was first presented to measure the similarity of time series of different
length. In action recognition, various researchers have used the DTW algorithm to
measure the similarity of action sequences with variations [69–71]. The strength and
potential of the DTW-algorithm is that it can enable optimal nonlinear matching
of template sequences consisting of a variable number of items. In [71], a 3-D
model-based tracking method for action recognition is presented, in which an exten-
sion to the original DTW algorithm is developed. Human motion at each frame is
characterized by joint angles as features. The DTW matching algorithm is employed
to compare the angle sequences of an input video with a template sequence.

In [70], a DTW matching-based technique based on maintaining several models
(i.e. views) of an object (e.g. a hand) constructed in different conditions to represent
human dynamics. Similar to [71], DTW matching algorithm is used to match a
new video with the maintained templates. Further timing variations of action
performance are taken into account. In [72], Efros et al. introduce a method to
recognize distant actions, where each person is around 30 pixels tall. The 2-D
(XY) optical flows are detected by tracking moving person using temporal image
differences, similar to [73], which are essentially utilized to obtain the final motion
descriptors. For classifying the sequences of motion descriptors of actions, the basic
nearest neighbor algorithm is employed. Their Experiments were conducted on
three datasets (i.e., tennis plays, soccer plays, and ballet movements).

Similar to [73], in [69] a human action is represented as a time function that
describes parameter changes. The intra- and inter-personal changes of action is
explicitly modeled and considered in the matching of action sequences. Nonlinear
characteristics of activity timing changes are also learned. For considering time
warping when matching activity sequences, the original DTW algorithm was ex-
tended. In particular, the work of [74] models a human action as an LTI (Linear
Time Invariant) dynamical system and estimate its model parameters to recognize
activities in videos. In this work, two contour representations (i.e. Fourier de-
scriptors and silhouette width) are extracted from the silhouette sequences. After
transforming a new video to parameters of a LTI model, SVMs are used to classify
these parameters, and then recognize the action contained in the input video.

2.4.2 State model-based recognition approaches

The pivotal idea the state model-based recognition approaches is to construct
a statistical model composed of a set of states for each human action, which is
designed such that it generates a sequence of a specific probability. The likelihood
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between an observation and each action model can be obtained by computing the
probability of the model that produces the feature sequence of the observation. In
this regard, the classification of a given video sequence is performed by employing
any statistical inference, for example, Bayesian inference based on maximum a
posteriori probability (MAP) or maximum likelihood (ML). Hidden Markov models
(HMMs) [75] that are essentially a member of a wider family of models (i.e. dynamic
Bayesian networks (DBNs) [76]) are widely used for classifying sequential data.
Furthermore, they have been demonstrated to be a potent tool for modeling time-
dynamic sequences of variable lengths. HMMs (or DBNs) characterize an activity
as a sequence of hidden states, each describing a status (i.e. pose) of a person
performing the activity. The system then deterministically transitions to another
state. A Markov chain is completely characterized by the set of all states and
transition probabilities. Once all HMMs are trained, the observation probabilities
in each sequence of all activities are tied with a few probabilities. Thus, activity
recognition can be performed based on the computed probability of the input
sequence generated by a specific state-model.

To the best of our knowledge, [77] is the first work in literature where standard
HMMs is first applied on action recognitions. In this work, each binary foreground
image is first converted to a series of meshes from which the features are extracted.
After the HMMs are trained, activities are recognized by simply measuring the
likelihoods between the HMMs and a given video containing an action. It is perhaps
not irrelevant to mention that the authors have shown that HMMs have achieved a
high level of success in modeling feature changes. In [1], state models are used for
recognizing gestures. Each gesture is represented by a trajectory produced directly
from changes in hand positions; and each trajectory is decomposed into sequential
vectors. More importantly, to handle variations in speed and motion of the same
gesture, each state is allowed to be fuzzy in nature. For obtaining an optimal match
between an input and each prototype, a novel dynamic programming algorithm
was developed. Likewise, in [78], a framework for recognizing American Sign
Language (ASL) is presented using standard HMMs. In this method, the features
that describe positions and shapes of the tracked hands are extracted. Further, each
word (sign) of ASL, similar to [77], is modeled as an HMM that creates a sequence
of features. For computing the probabilities of observations, the well-known Viterbi
algorithm (VA) [79], is employed to approximate the likelihood distance efficiently.

However, the basic HMM suffers from being unable to model several interacting
and complex activities, because it originally is a sequential model and at one instant
in time only one state is active. In addition to the standard HMMs-based recogni-
tion methodologies discussed previously, variants of HMMs (e.g., coupled hidden
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Markov model (CHMM) [80]) have also been adopted by several researchers for the
modeling and recognition of human activities [81–84]. In a typical methodology
using variants of HMMs [77,78,85], each action being recognized has its own model
(HMM), similar to former standard HMMs-based methodologies. Visual extracted
features are utilized as observations directly generated by the model. It may be
pertinent to mention that with HMMs extensions, it is able to recognize and classify
more complex activities more efficiently. In [81], the coupled HMM (CHMM), as
a variant or extension of the standard HMM, is developed and used for modeling
interaction between two persons. As the name suggests, a coupled HMM is formed
from combining two or more basic HMMs, each describes only an agent’s motion.
In their work, two HMMs are joined for recognizing complex human interactions.
In [86], a view-invariant recognition system is proposed, where a CHMM-like
model called ’Action Net’ is built to connect 2-D key poses of actors to represent
3-D shapes for action recognition. In addition, in Natarajan and Nevatias work [83],
coupled hidden semi Markov models (CHSMMs) are introduced for modeling and
recognizing human interactions. In their work, a statistical model are built, which
could determine the characteristics of activities being recognized more effectively
and efficiently compared to CHMMs. Similar to [81], the method was validated on
various human-human interactions (HHIs).

2.5 Discussion and Conclusion

Automatically recognizing human activities in video sequences is increasingly
receiving research attentions due to its great potentials for many applications in
several contexts and domains. For example, robust action-based surveillance is
required and essential for success in a variety of today’s (and tomorrow’s) techno-
logically driven health care settings and many other settings. Likewise, action-based
HCI is probably one of the most widespread applications for human action recogni-
tion where no explicit actions (e.g., keystrokes and mouse clicks) are available to
capture user input; instead, interactions are more likely to occur through human
actions and/or gestures. In this chapter, we have presented an update overview
of the current state-of-the-art in human action modeling and recognition. The pre-
sented approaches are miscellaneous and usually provide a broader spectrum of
results. Within this review chapter, previous related works have been categorized
depending on which approach a particular methodology adopts. In this context,
there are two main categories of approaches: hierarchical approaches developed for
the analysis of high-level interactions and non-hierarchical approaches developed
for recognizing short-term human activities and gestures. While the main focus
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in this chapter has been upon the non-hierarchical approaches as they are imme-
diately relevant to the topic of this thesis, the hierarchical approaches have also
been referred to sparingly. Several types of methodologies developed for action
recognition have been described and discussed thoroughly.

It is worth mentioning here that while the early research into human motion
modeling and/or recognition dates back to the pioneering work of Johansson [45]
in the mid 1970s, research on human action recognition did not shift to the forefront
until the early 1990’s. About a decade later, by the end of the 1999s, research in
human action recognition has barely begun to get into its infancy [21]. It may
be interesting to state that the past ten years or so have witnessed an increasing
number of research efforts in human action recognition. However, the contributions
to improved human action recognition have been modest, as well as the off-the-shelf
technology solution space for human action recognition is still far form being quite
mature yet. The experimental systems of action recognition are now appearing at a
very limited number of locations (e.g., airports and other public places).

Noise and segmentation issues pose substantially larger burdens for the action
recognition system. Further, while motion tracking can be performed almost ef-
fortlessly by humans, it remains one of the most challenging research problems
in the fields of computer vision and image/video processing. When the tracking
algorithm fails to correctly track the object of interest due to noise, shades, occlusion,
etc., the activity recognition task becomes much more complicated. Hence, it seems
to be an extremely difficult task to build an activity recognition system able to
accurately compensate for such failures in those settings. Once such issues of action
recognition are appropriately addressed by careful design and implementation, it is
very likely that this will lead to improved recognition performance, and ultimately
to more and more such systems being deployed in various applications.





CHAPTER 3

Segmentation of Image/Video Data

3.1 Introduction

IN this chapter, we will discuss in detail how to detect Region-of-Interests (ROIs)
within the image/video which correspond to distinct foreground objects (i.e.,
moving human body or limbs being tracked) in the scene. These regions do,

indeed, carry much relevant information that is not only most crucial for the subse-
quent feature extraction and analysis, but also would affect the feature classification
task of the whole human activity recognition system. This chapter is generally
divided into two main parts. In the first part, first we show the overall process of
image segmentation, and then our method for image segmentation based on gener-
alized α−entropy is described. The second part is devoted to video segmentation
process as a main part in developing any object-based video recognition system in
general, and in developing the human activity recognition system in particular.

Conceptually speaking, the ultimate goal of image segmentation is to extract
meaningful objects from an image. In other words, image segmentation can be seen
as a clustering task where image pixels are split into salient regions correspond-
ing to natural objects or parts of objects. After this process finished successfully,
it is expected to obtain a set of disjoint regions with uniform and homogeneous
attributes such as color, intensity, texture, etc. which are meant to be semantic
equivalence categories. Indeed, image segmentation is potentially significant but
inherently challenging. It is frequently needed as a preliminary step for solving
various image analysis tasks. For instance, segmentation is a vital pre-processing
step in many applications, such as object recognition, image/video coding, video
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editing, content-based image/video retrieval and browsing, and so forth. Over the
past couple of decades or so, a significant number of segmentation methodologies
with different approaches, such as spatial-domain methods, graph-based meth-
ods, and feature-space methods have been developed, which have considerably
contributed to various ever evolving fields in computer vision, such as object and
activity recognition [87–90]. In computer vision and pattern recognition, scene
segmentation is a most fundamental and complex task. Although well posed, the
scene segmentation is recognized as an ill-posed problem and remains unsolved,
or at least did not receive a fully satisfactory solution. Further, despite the current
extensive literature of techniques and extensions for object segmentation, there is a
lack of a general-purpose approach able to handle the problem in its full generality.

3.2 Image Segmentation

Image segmentation is one of the fundamental and most studied problems in com-
puter vision and has found its application directly or indirectly in many tasks such
as object recognition, image coding, image understanding, etc. The terms image
segmentation, object isolation, and object extraction are often used interchangeably
or at least with potentially overlapping meanings in various contexts in computer
vision, since they perform the same function and yield equivalent results. It may be
worthwhile mentioning that segmentation is application dependent and its success
is always measured by the needs of the application. Therefore, direct segmentation
of an input image has to pragmatically consider semantic information about a
particular application. As seen from what mentioned previously, segmentation
methods are not universally applicable to all images.

Human vision always perceives a complex visual scene by decomposing it into
its components (i.e. objects). In other words, we humans see a visual scene as
a set of objects. As illustrated in [91], human visual system is able to perceive
the global structure of a set of elements. All ideas associated with the process
of visual grouping was first introduced and explained by the Gestalt theory of
perception [92], as a first step in the analysis of a visual scene. While, segmentation
is unconsciously achieved by the human vision system, it is still time-consuming
and quite challenging for machine vision system.

3.2.1 Brief overview

Broadly speaking, image segmentation is viewed as a process in which an image is
split into nonoverlapping constituent regions. These regions are homogeneous with
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respect to some visual properties like intensity, color, texture, shape, etc. Formally,
letR be the domain of a given image, then the segmentation problem is to determine
the sets {Rk, k = 1, 2, . . . , K}which satisfy the following condition:

R =
K⋃
k=1

Rk (3.1)

where Ri

⋂
Rj = ∅, i 6= j , and indeed each Ri is connected. Ideally, a segmentation

approach looks for the sets that correspond to distinct objects (or regions of interest)
in the image. Essentially, the segmented image is a 2d function s defined on the
same domain of the original image, I , but its range of values differs from one case
to another. The following three cases are well-known:

case 1: A binary segmentation (foreground and background):

s(x, y) = i, i ∈ {0, 1}

case 2: A multiclass segmentation (the case of C different segments):

s(x, y) = i, i ∈ {0, 1, 2, . . . , C}

case 3: A boundary image:
s(x, y) = i, i ∈ {0, 1}

where the value of 1 means that there is a boundary at the position (x, y), whereas
the value of 0 means that there is no boundary at that position. This case might
apparently seem to be very similar to the first one, or more correctly they are
variants to each other. The segmentation problem can be generally approached
in two steps. First the original image is transformed into a higher dimensional
feature space in which the boundaries between different classes are determined.
Then a unique class-label is assigned to each pixel such that all the pixels having the
same attribute are given the same label. Finally, the segmented image is produced.
Fig. 3.1 shows an example of this two-step segmentation process mentioned earlier.
As seen in this figure, an image of brain tissue basically consists of three major
regions: caudate, putamen, and thalamus.

The two-step segmentation procedure can be applied to segment the three
regions as follows: first the original image is transformed to the feature space,
where the boundaries between the three regions or classes are defined. Then a
unique class-label is now assigned to all pixels belonging to each class of these
three classes. Two basic questions arise here: first what the representative features



3.2. Image Segmentation 36

f1

f2

Original image

Segmented  image

Feature space

FIG. 3.1. An example for the two-step image segmentation procedure.

that can be used to efficiently characterize the relationship of the pixels belonging
to a specific class, and second how to distinguish such pixels from other pixels
belonging to another class. In most cases, the pixel similarity are measured based on
the consistency of some features, i.e., color, intensity, shape, texture, or combination
of those attributes. This implies that the feature vector of each pixel involves the
information of one or more of those attributes.

Presently, several segmentation algorithms exist in literature, these algorithms
are broadly categorized into: edge-based methods, looking explicitly for boundaries
between segments, and region oriented techniques, where some homogeneity crite-
rion is applied to each pixel within a specific segment. Within the popular region
based methodologies, there are two well-known approaches: the region growing
approaches in which the segmentation process begins from seed pixels, then pixels
are added to regions as long as homogeneity is adequately preserved. The region
merging approaches recursively merge adjacent regions that are similar enough.
In [93], segmentation algorithms are loosely divided into three categories: region-
based scheme, edge-based scheme, and pixel-based scheme, an extra category is
provided by [94] to include the techniques of texture segmentation.

In literature, there are several segmentation approaches based on different
methodologies, which try to segment an image by adaptively selecting proper
threshold values. In this case, the segmentation process involves the analysis of
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the grey-level histogram of the image. The Otsu method [95] is one of the most
popular global thresholding methods of image segmentation in literature, which
depends on statistical and spatial information and requires the histogram consists
of only Gaussian distributions. In Otsu method, the normalized histogram is a basic
concept, and the valley is searched for based on a statistical sense in order to select
threshold automatically. More formally speaking, the Otsu’s algorithm supposes
the image contains two classes of pixels (e.g., foreground and background), and
then attempts to find the optimum threshold separating these two classes, such that
their intra-class variance is minimal. This variance is defined as a weighted sum of
variances of these two classes [95]:

σ2
w = ω1(t)σ2

1(t) + ω2(t)σ2
2(t) (3.2)

where the weights ωi are the probabilities of the two classes separated by a threshold
t and σ2

i variances of such classes. It has been proved that minimizing the intra-class
variance is equivalent to maximizing the inter-class variance,

σ2
b = σ2 − σ2

w(t) = ω1(t)ω2(t)[µ1(t)− µ2(t)]2 (3.3)

which is expressed in terms of class probabilities µi and class means σi that in turn
can be updated iteratively. While the Otsu method considers only the information
of the image as a whole in all cases, it is distinguished by its good adaptation
and simple calculation, and by choosing an ideal threshold. In addition to that,
this method still serves as a reference method for comparing a large number of
segmentation and binarization techniques.

3.2.2 Image segmentation based on generalized α-entropy

Since the pioneering work by Shannon [96], entropy appears as an attention-
grabbing tool in many areas of data processing. In [97], Rènyi introduced a wider
class of entropies known as α-entropies. The functionalities of new α-entropies share
the major properties of traditional Shannon’s entropy. Furthermore, α-entropies
can be easily estimated using a kernel estimate that makes their use attractive in
many areas of image processing [98]. Within this section, our segmentation method
based on generalized Rènyi entropy is introduced.

Entropy of generalized distributions

Entropy first appeared in thermodynamics as an information theoretical concept,
which is intimately related to the internal energy of the system. Then, it has been
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applied across physics, information theory, mathematics and other branches of
science and engineering. When given a system whose description is not known
precisely, the entropy is defined as the expected amount of information required
to specify the state of the system. Formally, let P = {p1, p2, . . . , pn} be a finite
discrete probability distribution satisfying the conditions pk ≥ 0, k = 1, 2, . . . , n and∑n

k=1 pk = 1. The amount of uncertainty of the distribution P is called the entropy
of the distribution. Shannon entropy [96] of the distribution P , as a measure of
uncertainty and denoted by H(P ), is defined as

H(P ) = −
n∑
k=1

pk log2 pk (3.4)

Note that Shannon entropy defined by Eq. (3.4) is additive, i.e. it satisfies:

H(A+B) = H(A) +H(B) (3.5)

for any two distributions A and B. Eq. (3.5) states an important property of entropy,
namely, its additivity; the entropy of a combined experiment consisting of the
performance of two independent experiments is equal to the sum of the entropies
of these two experiments. The formalism defined by Eq. (3.4) has been shown
to be restricted to the Boltzmann-Gibbs-Shannon (BGS) statistics. However, for
nonextensive systems, some kind of extension appears to be necessary. Rènyi
entropy [97] that appropriately describes the nonextensive systems, is defined as:

Hα(P ) =
1

1− α
log2

(
n∑
k=1

pαk

)
(3.6)

where α ≥ 0 and α 6= 1. The real number α is called an entropic order that charac-
terizes the degree of nonextensivity. This expression reduces to Shannon entropy in
the limit α −→ 1. We shall see that in order to get the fine characterization of Rànyi
entropy, it is advantageous to extend the notion of a probability distribution, and
define entropy for the generalized distributions. The characterization of measures
of entropy (and information) becomes much simpler if we consider these quantities
as defined on the set of generalized probability distributions.

Suppose [Ω, P ] be a probability space that is, Ω an arbitrary nonempty set, called
the set of elementary events, and P a probability measure, that is, a nonnegative and
additive set function for which P (Ω). Let us call a function ξ = ξ(ω) which is defined
for ω ∈ Ω1 , where Ω1 ⊂ Ω. If P (Ω1) = 1 we call ξ an ordinary (or complete) random
variable, while if 0 < P (Ω1) ≤ 1 we call ξ an incomplete random variable. Evidently,
an incomplete random variable can be interpreted as a quantity describing the
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result of an experiment depending on chance which is not always observable, only
with probability P (Ω1) < 1. The distribution of a generalized random variable
is called a generalized probability distribution. Thus a finite discrete generalized
probability distribution is simply a sequence p1, p2, ..., pn of nonnegative numbers
such that setting P = {pk}nk=1 and taking

$(P ) =
n∑
k=1

pk (3.7)

where $(P ) is the weight of the distribution and 0 < $(P ) ≤ 1. A distribution that
has a weight less than 1 is termed an incomplete distribution. By using Eq. (3.6)
and Eq. (3.7), Rànyi entropy for the generalized distribution [87] can be written as

Hα(P ) =
1

1− α
log2

(∑n
k=1 p

α
k∑n

k=1 pk

)
(3.8)

Note that Rànyi entropy has a nonextensive property for statistical independent
systems, defined by the following pseudo additivity entropic formula:

Hα(A+B) = Hα(A) +Hα(B) + (α− 1) ·Hα(A) ·Hα(B) (3.9)

Segmentation procedure

Image segmentation problem is considered to be one of the most holy grail chal-
lenges of computer vision field especially when done for noisy images. Conse-
quently it has received considerable attention by many researchers in computer
vision community. There are many approach for image segmentation, however,
these approach are still inadequate. In this section, we propose an entropic method
that achieves the task of segmentation in a novel way. This method not only over-
comes image noise, but also utilizes time and memory optimally. This wisely
happens by the advantage of using the Rànyi entropy of generalized distributions
to measure the structural information of image and then locate the optimal thresh-
old depending on the postulation that the optimal threshold corresponds to the
segmentation with maximum structure (i.e., maximum information content of the
distribution). The working scheme of the proposed segmentation approach is
shown as a block diagram in Fig. 3.2. The following steps are involved.

1. Pre-processing Pre-processing ultimately aims at improving the image in
ways that increase the opportunity for success of the other ulterior processes.
In this step, we apply a Gaussian filter to the input image prior to any process
in order to reduce the amount of noise in an image.
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FIG. 3.2. Block diagram of the proposed segmentation approach.

2. Entropy calculation Let {pi}ni=1 be the probability distribution of intensity
in the image. By applying a threshold t, the distribution is divided into
two sub-distributions; one corresponding to the foreground objects (class
f ) and the other to the background (class b), and denoted P f = {pi}ti=1 and
P b = {pi}ni=t+1, respectively. Thus, the generalized Rànyi entropies for the two
distributions as functions of t can be written as:

Hf
α(t) =

1

α− 1
log2

(∑t
k=1 p

α
k∑t

k=1 pk

)
(3.10)

Hb
α(t) =

1

α− 1
log2

(∑n
k=t+1 p

α
k∑n

k=t+1 pk

)
(3.11)

3. Image thresholding Thresholding is the most often used technique to distin-
guish objects from background. In this step an input image is converted by
threshed into a binary image so that the objects in the input image can be
easily separated from the background. To get the desired optimum threshold
value t∗, we have to maximize the total entropy,Hf+b

α (t). When the function
Hf+b
α (t) is maximized, the value of parameter t that maximizes the function is

believed to be the optimum threshold value [99]. Mathematically, the problem
can be formulated as

t∗ = argmax[Hf+b
α (t)] = argmax[Hf

α(t)+Hb
α(t)+(1−α) ·Hf

α(t) ·Hb
α(t)] (3.12)

4. Morphological operations: In image processing, dilation, erosion, closing
and opening are all well-known as morphological operations. In this step we
aim at improving the results of the previous thresholding step. Due to the
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inconsistency within the color of objects, the resulting binary image perhaps
includes some holes inside. By applying the closing morphological operation,
we can get rid of the holes form the binary image. Furthermore Opening
operation with small structure element can be used to separate some objects
that are still connected in small number of pixels [100].

5. Overlapping cancelation: In this step we attempt to remove the overlapping
between objects that perhaps happened through extensively applying the
previous morphological operations. To perform this, we first get the Euclidean
Distance Transform (EDT) of the binary image. Then we apply the well-known
watershed algorithm [101] on the resulting EDT image. The EDT ultimately
converts the binary image into one where each pixel has a value equal to
its distance to the nearest foreground pixel. The distances are measured in
Euclidean distance metric. The peaks of the distance transform are assumed
to be in the centers of the objects. Then the overlapping objects can be yet
easily separated.

6. Non-objects removal: This step helps in removing incorrect objects according
to the object size. Sizes of objects are measured in comparison to the total
size of image. Each tiny noise object of size less than a predefined minimum
threshold can be discarded. Also each object whose size is greater than the
maximum threshold size can be removed as well. Note that thresholds of size
used herein are often dependent on the application, and so they are considered
as user-defined data.

Segmentation results

We began the experiments by using different histograms, each describes two classes
(objects and background). To investigate the influence of using generalized Rènyi
entropy on segmentation quality, other formula of entropy (Tsallis entropy [98])
was also attempted, which is defined by:

Hα =
1−

∑n
k=1 p

α
k

α− 1
(3.13)

The obtained results highlight the usefulness of the proposed approach and demon-
strate its capability, especially when generalized Rènyi entropy is used. Fig. 3.3
shows an example of segmentation results. As seen in the figure, an image of a
medical domain with a spatial background scattering noise is shown; a stained
brain cell shows branching of cell dendrites-fibers receiving input from other brain
cells. Several values of α were attempted, but best result were achieved at α = 0.9.
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FIG. 3.3. Entropic segmentation of a brain cell image with a spatial noise around.

Extension of the approach

In [87], the authors have presented an extension of the approach (described in the
previous subsection) via Fuzzification of the Rènyi entropy of generalized distri-
butions. The basic idea of the fuzzification of entropy at this juncture involves the
process of incorporating fuzzy memberships into the relations of entropy described
by (3.10) and (3.11). Therefore fuzzy image segmentation is basically based on
considering that how strongly an intensity (pixel value) belongs to the background
or the targets can be depicted by the fuzzy memberships. Indeed, the farther away
an intensity of a pixel is from a given threshold τ , the greater is its ability to belong
to a particular category. Consequently, for any pixel that is ` levels below or ` levels
above the threshold τ , the membership values are given by

µf (τ − `) =
1

2
+

∑`
i=0 p(τ − i)

2p(τ)
(3.14)

µb(τ + `) =
1

2
+

∑`
i=1 p(τ + i)

2(1− p(τ))
(3.15)

which measure the degrees of pixel’s belongingness to the class f and class b (i.e.,
foreground and background) respectively (see Fig. 3.4). The equations (3.14) and
(3.14) clearly show that the uncertainty associated with the belongingness of the
pixel to a specific class increases dramatically as its intensity value approaches
to the threshold, and it achieves its maximum when the intensity value becomes
equal to the threshold, and then µf (τ) = µb(τ) = 0.5. Now by considering the
membership functions given by equations (3.14) and (3.15) above, the entropic
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FIG. 3.4. Fuzzy membership as an indication of how strongly a pixel belongs to its region.

formulas in equations (3.10) and (3.11) can be written in a fuzzy form as follows

Hf
α(t) =

1

α− 1
log2

(∑t
k=1(µf (k))α∑t
k=1 µf (k)

)
(3.16)

Hb
α(t) =

1

α− 1
log2

(∑n
k=t+1(µb(k))α∑n
k=t+1 µb(k)

)
(3.17)

By virtue of the fact that the value of the parameter t that maximizes the total
entropy functional meets the optimum threshold, the optimum threshold t∗ can be
obtained by solving Eq. (3.12). For color image, Eq. (3.12) is rewritten as:

~t∗ = arg max
(
Hf
α(~t) +Hb

α(~t)− (1− α)Hf
α(~t)Hb

α(~t)
)

(3.18)

where ~t = (tR, tG, tB) and the absolute of the optimum threshold ~t∗ is given by

‖~t∗‖ =
√

(ωRtR)2 + ωGtG)2 + ωBtB)2 (3.19)

where ωR, ωG, and ωB are the weights of the components R, G, and B respectively,
which satisfy

ωR + ωG + ωB = 1 (3.20)

Thereafter, some post-processing operations similar to those of the main seg-
mentation algorithm described so far (e.g., blob analysis with morphological opera-
tors) need to be performed on the segmented image to refine the results of initial
segmentation. Some examples of image segmentation obtained by the proposed
segmentation technique are shown in Fig. 3.5.

3.2.3 Summary and conclusion

To sum up this section, we can draw the following conclusions. We have presented
an efficient method for image segmentation based on a generalized α-entropy.
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FIG. 3.5. Image segmentation examples; the top row shows the original source images,
while the bottom row presents the segmented images.

This method has achieved the task of segmentation in a novel way; it could yield
good results in many cases and perform well when applied to noisy images. The
segmentation results conform that using generalized Rènyi formalism of entropy is
more viable than using Tsallis counterpart in segmenting cell images. Important
advantages of the proposed method are its simplicity, computational efficiency, and
its relative immunity to noise.

In the second part of this section, an extension to the basic segmentation tech-
nique based on fuzzification of Rènyi entropy has been presented. It has been
found that the extended algorithm is able to suppress noise strongly within regions
while preserving luminance transitions (i.e. edges) between regions. Furthermore
the algorithm can perform well when applied to both grayscale and color images,
without the need for any a priori knowledge on the distortions, and any color
model can be used. The results obtained show clearly that using the formalism
of fuzzy Rènyi entropy is more viable than using the entropy alone in the image
segmentation task. It was also found that the proposed algorithm is fast and robust.
One last point worthy of mention here is that although the presented algorithm has
been applied to still images, it appears there are no technical or apparent theoretical
limitations that would prevent it to be applied to video sequences.
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3.3 Video Segmentation

The past two decades or so have witnessed a great explosion in the amount of
the distributed visual information by the explosive growth of the Internet and the
great advances in hardware technologies and software developments. This trend
is expected not only to continue in the future, but to grow very rapidly due to
the media fusion of television and several web services. This fact and the existing
and continuously emerging new applications strongly advocate the significant and
even urgent need for the development of a large number of new techniques for
distributing and processing the huge amount of available visual data.

3.3.1 Brief overview

Broadly speaking, video segmentation involves the process of partitioning video
into a set of spatial, temporal, or spatio-temporal regions that are homogeneous
and disjoint in some feature space. In this context, the task basically aims to isolate
those portions of a video sequence that constitute objects or regions of interest
(ROI) and separate them from the sequence. Indeed, the task is a preliminary and
crucial step in many high-level tasks in computer vision, such as object localization
and identification, tracking and recognition. Moreover, it plays a critical role as an
integral component of a variety of video-based applications, including:

1. Motion estimation in scenes of multiple moving objects

2. 2D dense motion/optical flow estimation

3. Video monitoring and interpretation

4. Advanced video coding and adaption

5. Video summarization, browsing and semantic indexing

6. Video editing and authoring

There are some leading factors that determine which segmentation methods are
most appropriate to be employed in a particular video-based application, such as

• Segmentation accuracy: In some cases, such as object-based video editing or
shape similarity matching, the estimated borders should quite align with
borders of actual object; a single pixel error in alignment will be visible. Hence
segmentation results must essentially be perfect. In other cases, for example
when segmentation is used in improving the compression efficiency or rate
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control, some misalignment between the estimated boundaries and borders of
actual object may be acceptable and tolerable, to certain degree of errors.

• Real-time efficiency: In case the application requires segmentation to be per-
formed in real-time (e.g., rate control in video-telephony), a simple fully
automatic segmentation algorithm are most appropriate to be employed. In
many offline applications, however, (e.g. video indexing or offline video
coding), semi-automatic segmentation algorithms are most able to work well.

• Scene complexity: Structurally speaking, the scene complexity is usually mea-
sured by the number of geometric primitives of which the scene is composed.
In fact, one can model video content complexity in terms of amount of camera
motion, motion smoothness of objects, contrast among objects, objects enter-
ing and leaving the scene, color and texture homogeneity inside objects, etc. In
more complex scenes, it appears clearly that more sophisticated segmentation
techniques would be necessary to get the most out of the contents.

Motion segmentation is strongly associated with two other tasks of equal interest,
namely, motion detection, and motion estimation. Essentially motion detection is a
binary labeling problem in which each pixel of the image at a time is attributed either
as moving or stationary. While, motion detection in the case of a static platform
has been studied intensively in the literature, and is considered as computationally
efficient, the same task for a moving camera that may require a specific type of global
or local motion estimation [102], still remains as computationally intractable. These
two cases of motion detection differ only in how to create the background model.
For example, in a stationary platform, all considerable variations of a given video
sequence are first estimated at the pixel level, and then statistical techniques can be
used to construct a background model for each pixel [103]. Such an approach can be
easily extended to moving cameras using motion compensated pixel differencing
before estimating the background model [104, 105].

In general, video segmentation can be achieved by three main approaches:
optical flow, frame (i.e. temporal) differencing and background subtraction. Optical
flow is considered to be one of the most robust techniques for video segmentation,
that is able to work well even in non-stationary camera platforms. However this
approach is relatively computationally demanding, and thus not always practical
for operation on embedded real-time systems. Temporal differencing technique
is a simplest background modeling technique, which not only is very adaptive to
dynamic environments, but also can be employed without any priori knowledge
about background [106]. However, temporal differencing scheme is prone to the
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serious aperture problem of foreground due to the color uniformity of moving
objects; this leads to inconsistent detections. Having perfect background modeling,
a background subtraction scheme can reliably detect all moving pixels. Though
background subtraction is very sensitive to scene changes due to changes in lighting
and movement of background objects.

3.3.2 Frame differencing

Frame differencing is one of the most common techniques for background seg-
mentation, which, as its name suggests, involves taking the difference between
two frames and using this difference to detect the moving objects in the scene.
Formally speaking, frame differencing can be explained as follows. First, let us
assume that f(x, y, t) represents the intensity value at pixel location (x, y), in frame
t. By comparing f(x, y, t) with f(x, y, t− z) and f(x, y, t+ z), a binary motion map
M(x, y, t) can be defined such that it is equal to 1 if and only if motion took place at
pixel location (x, y) in frame t, where z > 0 is an arbitrary integer. Then pixel-wise
AND operation is performed to determine the motion map M(x, y, t) as follows:

M(x, y, t) = d1(x, y, t)⊗ d2(x, y, t) (3.21)

where ⊗ denotes the pixel-wise AND operator, and the functions d1(x, y, t) and
d2(x, y, t) are determined, respectively, from the following two equations:

d1(x, y, t) =

{
1, |f(x, y, t)− f(x, y, t− z)| > τ

0, otherwise
(3.22)

d2(x, y, t) =

{
1, |f(x, y, t)− f(x, y, t+ z)| > τ

0, otherwise
(3.23)

where τ is an application-specific threshold. An optimal threshold determination
algorithm can be used to find out the optimum value of τ . One or more post-
processing steps are then employed to filter out the isolated labels that do not
correspond to actual moving objects in the scene. Such post-processing operations
may involve: (i) the use of smoothing filters (e.g., Gaussian smoothing, Mean or
Median filters), (ii) the use of morphological operations (e.g., openings, closings,
dilations, and erosions), and (iii) the removal of labels with less than a predefined
number of entries. As a consequence, false segmentations associated with the iso-
lated labels are more likely to be eliminated or substantially discouraged. Potential
advantages of such post-processing steps are that isolated labels will be removed
producing a smoother, less noisy segmentation results with smoother boundaries.
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Once post-processings mentioned before are successfully applied on M(x, y, t), the
largest connected component at each location (x, y) associated with M(x, y, t) = 1

can be identified by using connect component analysis. To ensure spatio-temporal
continuity of the changed regions, adding memory to motion detection seems be in-
trinsically advantageous for this purpose [107]. Temporal integration of luminance
values across multiple frames before thresholding might be one of the most straight-
forward methodologies to fulfill this objective, which can be described as follows.
The frame difference with memory is frequently treated as some variation of the
consecutive frame difference and normalized frame difference. This difference can
be derived from the difference between the current frame f(x, y, t) and a weighted
average of all previous frames f̃(x, y, t):

M̃(x, y, t) = f(x, y, t)− f̃(x, y, t) (3.24)

where,

f̃(x, y, t) =

{
αf(x, y, t) + (1− α)f̃(x, y, t− 1), t = 1, 2, . . .

0, t = 0
(3.25)

where α is an arbitrary filter constant (i.e., a weighting factor) which is a fraction
between 0 and 1. After processing a number of frames, the changed regions in
f̃(x, y, t) become blurred, while the unchanged regions preserve their sharpness
with a relatively low noise. As is the case in two-frame methods, a global or a
spatially adaptive threshold can be employed to M̃(x, y, t). It was found that the
major effect of the temporal integration is to make the likelihood getting rid of
spurious labels higher; consequently spatially contiguous regions are more likely to
be preferentially identified.

Generally speaking, in comparison with several state-of-the-art methods for
motion segmentation, frame differencing not only has lower computational re-
quirements, but also can yield a relatively substantial improvement in temporal
coherence. However, there are also some shortcomings. For example, a serious
problem facing frame differencing is the difficulty to update the background intelli-
gently and frequently without containing the foreground inside. In other words,
it shows a particular tendency to only highlight the the leading and trailing edges
of a moving object in the foreground, while interior pixels with uniform intensity
are not contained in the set of moving pixels, and there are also ghost pixels and
objects. Such problems might make the subsequent process of motion analysis more
difficult or even impossible to be achieved properly in some cases.
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3.3.3 Optical flow

Generally speaking, optical flow can be viewed as the distribution of apparent
velocities of motion of brightness patterns in a video sequence, which can emerge
from relative movement of objects and the observer. As a result, optical flow can
serve as a valuable source of voluminous and significant information not only about
the spatial arrangement of the observed objects but also about the rate of change of
such an arrangement [108]. Furthermore, the analysis of discontinuities of optical
flow can be a great aid to the segmentation of a video sequence into its distinct
regions corresponding to different moving objects inside the sequence. Optical
flow attempts to approximate the local image motion based on local derivatives
of a given image sequence. Particularly, it is to specify how much each pixel in
the sequence moves between adjacent images. It is presumed that the movements
of patterns cause some temporal changes in the image brightness, and all these
changes are due to motion only. This assumption (so-called brightness constancy)
is the central basis on which any estimation process of optical flow must be raised.
Brightness constancy assumption is generally true, with isolated exceptions.1

With optical flow estimators, the image derivatives are often calculated by
recursively applying a succession of low-pass and high-pass filters [109]. Hence the
estimation process of optical flow usually involves a two-step procedure:

1. Measuring the spatio-temporal brightness derivatives (i.e., equivalently the
same as measuring the velocities normal to the local intensity structures).

2. Integrating normal velocities into full velocities either locally via least squares
regression [110], or globally via a regularization [111]

In the literature, there are a variety of approaches to estimate optical flow, which
can be generally summarized in three categories, namely feature-based, correlation-
based, and gradient-based. Among them, due to their mathematical simplicity and
low computational demands, gradient-based algorithms have been rated as more
attractive, and thus they have received and continue to receive much attention by
many researchers in various fields and applications of computer vision.

1While the brightness constancy is often hypothesized by researchers, it may be violated in
some limited cases. In such cases, the resulting flow field would be most likely to be a very poor
approximation to the 2-D motion field. For instance, consider a uniform sphere rotating around its
own central axis with a stationary light source. In this case, the intensity remains constant (i.e., no
optical flow), so that no motion will be perceived. On the other hand, in a case of a static sphere with
a moving light source, drifting intensities will be produced, hence some flow field will erroneously
arise. The aforementioned example is visually depicted in Fig. 3.6.
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(a) (b)

FIG. 3.6. Optical flow differs from actual motion field: (a) intensity remains constant, so
that no motion is perceived; (b) no object motion exists, however moving light source
produces shading changes.

Optical flow estimation

The point here is to show how the estimation process of optical flow field of a given
video sequence can be modeled. First let E(x, y, t) be the brightness of an image
patch at location (x, y) in the image plane at time t. Let us again consider the patch
is allowed to move a distance δx in the x-direction and δy in the y-direction in time
δt (see Fig. 3.7). Based upon the hypothesize of brightness constancy, the brightness
of the patch will remain unchanged, thus

E(x, y, t) = E(x+ δx, y + δy, t+ δt) (3.26)

Expanding r.h.s. of Eq. (3.26) around (x, y, t) using first order Taylor’s series gives

E(x, y, t) = E(x, y, t) + δx
∂E

∂x
+ δy

∂E

∂y
+ δt

∂E

∂t
+ ε(δx, δy, δt) (3.27)

where ε(δx, δy, δt) is the remainder term of the Taylor expansion that indicates to
the neglected second and higher order terms. Now subtracting E(x, y, t) from both
sides and then dividing both sides by δt we have

δx

∂t

∂E

∂x
+
δy

∂t

∂E

∂y
+
∂E

∂t
+O(δt) = 0 (3.28)

where O(δt) is of order δt. It may be convenient, assuming that both δx and δy vary
as δt). Taking the limit as δt→ 0 yields

∂E

∂x

dx

dt
+
∂E

∂y

dy

dt
+
∂E

∂t
= 0 (3.29)
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FIG. 3.7. Brightness constancy assumption: the brightness at image location (x, y) at time t
is identical to that at location (x+ δx, y + δy) at time t+ δt.

Let us take the abbreviations: u = dx
dt
, v = dy

dt
, then it is obvious that we have a

single linear equation in the two unknown parameters:u and v,

Exu+ Eyv + Et = 0 (3.30)

where Ex, Ey, and Et are the partial derivatives of image brightness with respect to
x, y and t, respectively. The brightness invariance constraint expressed by Eq. (3.30)
is visually depicted in Fig. 3.8. This equation can be rewritten in vector form as:

~∇E · ~v = −Et (3.31)

where ~∇ = ( ∂
∂x
, ∂
∂y

) and ~v = (u, v). As it is followed from the last equation, the
component of motion in the direction of the brightness gradient is given by

−Et√
E2
x + E2

y

.

It can be seen clearly that the component of the movement in the direction of the iso-
brightness contours, at right angles to the brightness gradient cannot be determined.
Subsequently, introducing additional constraints appear to be necessary at this time
to calculate the flow velocity (u, v).

The smoothness constraint proposed by Horn and Schunck [111] is one of most
popularly used constraints imposed in the determination of optical flow. As the
name implies, this constraint forces flow vectors to vary smoothly. Mathematically,
the smoothness constraint is imposed in optical flow determination by minimizing
the square of the Laplacians of the x and y components of flow.

arg min
u,v

(∇2u+∇2v) = arg min
u,v

(
∂2u

∂x2
+
∂2u

∂y2
+
∂2v

∂x2
+
∂2v

∂y2
) (3.32)
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FIG. 3.8. Brightness invariance constraint.

To determine optical flow using the two previous constraints, first the partial
derivatives (Ex, Ey, and Et in Eq. (3.30)) and also the Laplacian of the (∇2u and
∇2v in Eq. (3.32)) are calculated. Then, a weighted sum of the errors in the two
constraints is minimized:

ε =

∫ ∫ (
(Exu+ Eyv + Et)

2 + α2(∇2u+∇2v)
)
dxdy (3.33)

where α is a weight between the two types of errors. Small values for α yield
smoother flow fields, while high value indicate that the values of flow (i.e. u and v)
are attracted strongly to the line (u, v) in Fig. 3.8, where probable solutions for the
smoothness constraint of Horn & Schunck are resided. Finally optical flow can be
calculated iteratively from the estimated derivatives and the average of the flow
velocity estimates using the Gauss-Seidel iteration method [112].

un+1 = ūn − Ex(Exūn + Eyv̄
n + Et)/(α

2 + E2
x + E2

y)

vn+1 = v̄n − Ey(Exūn + Eyv̄
n + Et)/(α

2 + E2
x + E2

y)
(3.34)

where n is the iteration number. It is worth mentioning that this method is catego-
rized as a global approach, which is known to be more susceptible to noise.

Unlike to Horn and Schunck method, Lucas and Kanade [110] presented a
non-iterative method that assumes a locally constant flow within a neighborhood
{qi}ni=1 of a fixed point p. Thus Eq. (3.30) can be assumed to hold for all pixels
within a window centered at p. Thereby, a constrained system of n equations can be
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established and written in matrix form as Av = b, where

A =


Ex(q1) Ey(q1)

Ex(q2) Ey(q2)
...

...

Ex(qn) Ey(qn)

 , v =

[
u

v

]
, b =


−Et(q1)

−Et(q2)
...

−Et(qn)


It appears clearly that this equation system is usually over-determined, as there
more equations than unknowns. Based on the least square principle, the Lucas-
Kanade algorithm obtains a compromise solution:

[
u

v

]
=

[ ∑
iwiEx(qi)

2 wi
∑

iEx(qi)Ey(qi)∑
iwiEx(qi)Ey(qi) wi

∑
iEy(qi)

2

]−1 [ ∑
iwiEx(qi)Et(qi)∑
iwiEy(qi)Et(qi)

]
(3.35)

where wi, i = 1 . . . n are the weights of the weighted version of the least squares
equation, which give more weight to the pixels that are closer to the central pixel;
each wi is usually set to a Gaussian function of the distance between qi and p.

In a traditional approach, a dense flow field is first estimated, and then the scene
is segmented based on the obtained motion information, where adjacent video
components are merged together to form semantically meaningful object or video
content of interest if they obey the same Hough or affine transformation motion
model. However, dense field motion vectors are known to be susceptible to noisy
data. Change detection is often used as a tool to exclude noisy optical flow; though
it may induce some holes in the uniform regions [113].

As in [114], we present a framework for a real-time automated traffic accident
detection system using the HOF (Histogram of Optical Flow). In their approach,
two major steps are performed. First, after estimating the flow fields based on the
algorithm of [111], HOF-based features are extracted from video shots. Second,
logistic regression is employed to develop a model for the probability of occurrence
of accidents by fitting data to a logistic curve. In a case of occurrence of an accident,
the trajectory of the vehicle by which this accident has been occasioned is deter-
mined. The presented HOF algorithm is structurally similar to that of the HOG
(Histogram of Oriented Gradient) that was first introduced by [58] and essentially
is a feature descriptor used for the purpose of pedestrian detection in static imagery,
but they differ in that the HOF runs locally on optical flow field in motion scenes.
Moreover, the HOF shows to be conceptually more simple and less time consuming
to derive the the feature descriptors than the corresponding HOG.
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3.3.4 Background modeling

For achieving highest sensitivity with lowest false alarms in the detection of moving
objects, the detection of unusual motion is always desirable. Background subtrac-
tion is a widely used approach for detecting the unusual motion in a scene, which
involves comparing each new frame to a designed model of the scene background.
In a fully stationary scene, it would be very reasonable to model the intensity value
of a pixel over time with a Gaussian distributionN(µ, σ2), assuming the image noise
is Gaussian mean zero N(0, σ2). Most often, the Gaussian distribution model of the
intensity value of a pixel constitutes the underlying model for many background
subtraction algorithms. For instance, a simple background subtraction technique
involves first computing an average image of the scene of no moving objects, then
subtracting each new frame from this image, and finally thresholding the result.

One major challenge that is commonly faced in many visual surveillance and
monitoring applications dealing with outdoor scenes is that the background of
the scene often contains many non-static noisy objects. The source of such a noise
in the background could be the swaying of trees and the movement of grass due
to the breeze of the wind in the scene. This would make the values of the pixel
intensity change significantly over time. For instance, one pixel can be image of
tree leaf at one frame, tree branch at another frame, the sky on a third frame and
some mixture subsequently; that exhibits totally different color properties in each
situation. Fig. 3.9 illustrates how the gray level of a vegetation pixel from a soccer
scene changes over a short period of time (200 -frames).

Gaussian models have been widely applied for solving estimation problems in a
variety of application areas [115]. It is a remarkable fact that Gaussian distributions
remain Gaussian distributions after any linear transformation. This might serve
as an explanation for why such models are important, and justify their success
in many applications. Gaussian models are commonly used with many adaptive
systems. For example, in surveillance applications, a Gaussian distribution is
assumed to allow the system to be adaptive to different perturbations and changes,
such as illumination changes, color inconsistencies, etc. It is worth mentioning
that Gaussian mixture models are an example of a larger class of density models
that have several functions as additive components [115]. A Gaussian mixture is
essentially a Point Distribution Function (PDF), which can be normally expressed
as a weighted sum of Gaussian densities. Let Xt be a pixel in the current frame It,
where t is the frame index, and K is the number of distributions. Thus, each pixel
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FIG. 3.9. Temporal variation in the gray level of a vegetation pixel in a soccer scene: (a)
a soccer video sequence where the center of the red circle is the location of the pixel of
interest, (b) a plot for the intensity value of the pixel over time.

can be modeled separately by a mixture of K Gaussians as follows,

P (Xt) =
K∑
i=1

ωi,tη(Xt;µi,t,Σi,t) (3.36)

where µi,t and Σi,t are the ith mean and covariance at time t, respectively, and ωi,t is
an estimate of the weight of the ith Gaussian in the mixture at time t, where

K∑
i=1

ωi,t = 1 (3.37)

η denotes a Gaussian probability density function that is given by:

η(Xt;µ,Σ) =
1

(2π)
n
2 |Σ| 12

e−
1
2

(Xt−µ)TΣ−1(Xt−µ) (3.38)

All the functions previously mentioned are joined together to create a combined
density function, which is then employed to model colors of a dynamic scene or
object. During constructing the model, all probabilities are evaluated for each pixel.
The overall mean of the mixture is given by

µt =
K∑
i=1

ωi,tµi,t (3.39)

which is the weighted sum of the means of the component densities of the mix-
ture. For example, in [116–118] Gaussian mixture models are used as a basis to
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model background distribution. In [118], the authors adopt a number of Gaussian
functions as an approximation of a multimodel distribution in color space. While
conditional probabilities are evaluated for all color pixels, probability densities
are estimated from the background colors, clothing, heads, hands, etc. In their
approach, two assumptions are proposed by the model. The first one states that a
spatially contiguous region in the image plane is assumed to be generated by an
object of interest. The second assumes that the set of colors for either the foreground
or the background are relatively distinct. This implies that the pixels belonging to
the foreground objects can be handle as a statistical distribution in the image plane.

In addition, in [119], an adaptive technique using Gaussian mixture model is
proposed to build the tracker of a surveillance system. In this technique, each
background pixel is modeled as a mixture of Gaussians. To determine which
Gaussians are most likely to be portion of the background process, simple heuristics
are used to approximate the Gaussians. Specifically, each pixel is modeled by a
mixture of K Gaussians as stated previously in Eq. (3.36), where K is the number of
distributions. In practice, the parameter K is normally chosen to be 3, 4 or 5. Before
the foreground is detected, the background is updated, as follows: The value of
each new pixel Xt is compared with all existing K Gaussian distributions. If Xt

matches component i (i.e., Xt is within λ standard deviations of µi,t), where λ is a
parameter often chosen to be 2 or 2.5, the ith component is then updated as follows:

ωi,t = (1− α)ωi,t−1 + α

µi,t = (1− ρ)µi,t−1 + ρXt

σ2
i,t = (1− ρ)σ2

i,t−1 + ρ(Xt − µi,t)T(Xt − µi,t)

 (3.40)

where ρ = Pr(Xt|µi,t−1,Σi,t−1). α is a predefined learning parameter and σ2
i,t is the

variance of the ith Gaussian in the mixture at time t. On the other hand, for the
remaining unmatched distributions, the parameters leave unchanged; however the
corresponding weights ωi,t are only updated as follows

ωi,t = (1− α)ωi,t−1 (3.41)

IfXt matches none of theK components, then the least probable component (i.e., the
component with the lowest weight) is replaced with a new one that has µi,t = XtΣi,t

large, and ωi,t low [118]. After the updates, the weights ωi,t are normalized. Strictly
speaking, Gaussian distributions that have the most supporting evidence and the
least variance can be specified to solve the background estimation problem. Since,
the moving pixels generally have a higher variance than background pixels, the
Gaussians are first ranked in decreasing order based on the value of ωi,t/‖Σi,t‖ in
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(a) (b)

FIG. 3.10. Background estimation using MoG model with K = 5, τ = 0.5: (a) An example
snapshot from an original image sequence of a soccer scene, (b) Extracted foreground objects
are shown in red.

order to represent background processes. By applying a threshold τ , the background
distribution remains on top with the lowest variance, where

B = arg min
b

(∑b
i=1 ωi,t∑K
i=1 ωi,t

> τ

)
(3.42)

In a case of proper normalization, the denominator in Eq. (3.42) is expected to tend
to 1. Finally, all pixels Xt that match none of the components are best candidates
to be marked as foreground. An example of the results of background estimation
using MoG model with K = 5 and τ = 0.5 is shown in Fig. 3.10. Finally, it may be
worthwhile mentioning here that there is widespread agreement among researchers
that flexibility is one of the comparative merits of the background estimation models
based on mixture of Gaussians (MoG). It is claimed to be most advantageous for
handling various variations in the background.

3.3.5 Summary and conclusion

In the second part of this chapter, we have discussed three main approaches for
segmenting video sequences to objects which is the first step towards scene un-
derstanding and activity modeling. Frame differencing is one of the simplest and
most convenient techniques for finding movement as a change between successive
frames in a series of images. Computationally, it involves subtracting each incoming
frame from background motion compensated previous frame and then thresholding
the result. Even though frame differencing may possess some serious drawbacks,
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such as its high sensitivity to noise, its often tendency to extract undesired regions
from the background, and its low capability in detecting the inner parts of large
objects, it is most robust to illumination changes.

On the other hand, The motion segmentation methods based on optical flow
can provide valuable information not only about the size and locations of moving
objects, but also about the velocities and directions. In addition, with these meth-
ods, substantial degree of precision can be achieved by applying an appropriate
acceleration or velocity threshold to exclude the insignificant motions occurring
in the background, such as moving trees/brush that are not interesting for the
tracking or monitoring process. However, the motion segmentation methods based
on optical flow are relatively imprecise and consume too much processing power
as the neighborhood for each pixel should be sought to calculate the movement
vector. Moreover, these methods tend to be quite sensitive to occlusion due to its
dependence on brightness smooth changes.

The third category of the motion segmentation methods we have discussed
previously are those that are based on background estimation and subtraction that
play gigantic role in activity recognition and may affect the quality of the recognition
outcome. Essentially, background estimation and subtraction is a critical step in
moving object segmentation for video understanding and activity interpretation
in which each pixel in a static scene is classified either as a part of the background
or foreground, with the aim of distinguishing moving objects in the scene. Such
techniques are based on maintaining a model for the background that models each
pixel as a mixture of Gaussians. This model must be initialized and updated where
a good initialization is crucial and a prerequisite for a correct segmentation. For
example, small values for the update parameters may lead to integration of the
moving objects that are inactive or no longer necessary for a while as a part of the
background, while large values for the update parameters would create a need
for a relatively long period of time for a stable estimation of the background and
might explicitly account for failure in adaptation to sudden changes in illumination.
This suggests that the update parameters and the initial background should be set
carefully before running the updating process and for every new scene. The motion
detection techniques that are based on maintaining a background model (e.g., MoG
techniques) have the potential to learn the multimodal backgrounds automatically
and adaptively and yield promising results in terms of adaptation and precision.
Moreover, these techniques are independent of the velocity of moving objects and
not prone to the common foreground aperture problem, but they are likely to be
sensitive to dynamic scene changes due to lighting and extrinsic events.



CHAPTER 4

Features for Activity Recognition

4.1 Introduction

THE, ultimate goal of this current research is the recognition of human activ-
ities form video sequences. While this task appears intuitively as a trivial
task for humans, yet it still remains very challenging for computers that

usually fail to reach the accuracy of humans although this task has been tackled
by numerous researchers during the past two decades or so. The main difficulty
associated with activity recognition may lie in how to accurately determine proper
tractable features that can reliably describe activities. The other common difficulty
inherent in such a task is attributed to changes in pose, scale, orientation, location,
imaging and lighting conditions, occlusions, and within-class shape variations.
Feature extraction is a crucial step and important task in activity recognition to
achieve the desired recognition performance, since subsequent classification and
analysis processes depend greatly on the detected features.

Different researchers use different methods to extract robust features for the
recognition of human activities and/or gestures in video sequences. Most of these
methods often depend on using distinct features, such as shape and motion features
that can be robustly extracted from human detection and tracking. In most cases,
these features are extracted on shape and/or texture of segmented objects or based
on a 3-D model constructed for each activity class, thus they depend heavily on
the quality of the segmentation process, certain geometric constraints, and other
heuristics. One of the major difficulties facing most of these methods of feature
extraction is that it would be very difficult or almost impossible to achieve an

59



4.2. Interest Point-based Action Features 60

optimal segmentation of images that is still a complicated and error-prone problem.
In addition, errors by a mismatched model or constraint can contribute to the
malfunction or failure of the whole recognition system.

Unlike to the approaches mentioned above, appearance-based approaches (e.g.,
principal component analysis (PCA) and linear discriminant analysis (LDA)) use
the whole image as features instead of considering local features. These approaches
are very attractive and impressive in their ability to cope with real objects in real
images, as they do not need image features or geometric primitives to be detected
and matched. However, a major inherent limitation of these approaches lies in that
they are essentially global approaches and thus can neither handle local variations
nor deal robustly with partial occlusion, changes in illumination, and extraneous
noise. In the subsequent sections of this chapter, the features that are covered by
our approaches in this research will be explained and discussed in detail.

4.2 Interest Point-based Action Features

Due to their high compactness representation of video data and robustness to occlu-
sions, background clutter, significant scale changes, and high activity irregularities,
local features based on salient interest points have been successfully used for a wide
variety of recognition tasks [7,51,59,120]. In in [8], we detect salient spatio-temporal
interest points based on Harris detector [56]. Then a fuzzy log-polar histogram that
comprises of the distribution of the interest points is constructed at each time slice.
A similarity matrix reflecting the temporal similarities of the fuzzy histograms is
constructed for each video clip (i.e., action snippet).

4.2.1 Space-time interest point detection

The process of detecting space-time interest points is basically built on the idea of
the space interest point operators of Harris and Förstner [56]. Space-time Local
structures in image where the image values have significant local variations in
both space and time are detected. Hence, maximizing a normalized space-time
Laplacian operator over space and time scales would allow the space-time extents
of the detected events to be detected.

4.2.1.1 Interest points in space domain

Harris interest point detector [56] still retains superior performance to that of many
competitors [121], whose pivotal idea is that the interest points are found at spatial
locations where the appearance of a given image f(x, y) changes significantly and
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abruptly in both directions. Formally, let an image f : R2 → R be modeled by its
linear scale-space representation L : R2 ×R+ → R, as:

L(x, y;σ2
l ) = g(x, y;σ2

l ) ∗ f(x, y) (4.1)

where ∗ denotes the convolution operator and g(x, y;σl) are Gaussian kernels of
variance σ2

l and given by

g(x, y;σ2
l ) =

1

2πσ2
l

exp(−(x2 + y2)/2σ2
l ) (4.2)

Consequently, for a given scale of observation σ2
i , the second moment matrix identi-

fying these points can be written as:

µ(·;σ2
l , σ

2
i ) = g(.;σ2

i ) ∗ ((∇L(.;σ2
l ))(∇L(.;σ2

l ))
T )

= g(.;σ2
i ) ∗

(
L2
x(·;σ2

l ) Lx(·;σ2
l )Ly(·;σ2

l )

Ly(·;σ2
l )Lx(·;σ2

l ) L2
y(·;σ2

l )

)
(4.3)

where σi is a variance of a Gaussian window over which the second moment matrix
is integrated and Lx and Ly are the partial derivatives of L(.;σl) with respect to
x and y directions, respectively. The local derivatives are computed at local scale
using Gaussian kernels as follows,

Lx(.;σ
2
l ) = ∂x(g(x, y;σ2

l ) ∗ f(x, y))

Ly(.;σ
2
l ) = ∂y(g(x, y;σ2

l ) ∗ f(x, y))
(4.4)

The second moment descriptor can be viewed as the covariance matrix of a 2-D
distribution of image orientations within the local neighborhood around a point.
Therefore, the eigenvalues λ1, λ2, (λ1 ≤ λ2) of the matrix µ(·;σ2

l , σ
2
i ) can be used to

describe the variations in f(x, y) along both directions of image (see Fig. 4.1). Specif-
ically, the sufficiently large values of the eigenvalues λ1, λ2 indicate the presence
of an interest point. Clearly the larger the values of λ1 and λ2, the more likely of a
point to be interest point. To detect such points, positive maxima of the cornerness
functional Ω at each point in the given image is examined:

Ω = det(µ(·;σl, σi))− α trace2(µ(·;σl, σi))

= λ1λ2 − α(λ1 + λ2)2
(4.5)

1 where α is a tunable parameter that is commonly set to 0.04 in literature. Interest
points are generally located at positive local maxima of Ω in a 3× 3 neighborhood.

1In linear algebra, the trace (or character) of a square matrix is defined as the sum of the elements
along the main diagonal.
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FIG. 4.1. The eigenvalues λ1, λ2 are proportional to the principal curvature.

Hence, it is easy to see that the ratio r = λ2
λ1

should be high at the locations where
interest points reside. Further, Eq. (4.5) suggests that the ratio r must satisfy α ≤
r/(1 + r)2 for the positive local maxima of Ω. In this case, the positive maxima of
Ω only agrees with ideally isotropic interest points with λ1 = λ2 (i.e., α = 0.25).
Consequently, low values of α would lead to the detection of interest points with
more lengthened shape. Additionally it seems reasonable to get rid of unstable
and weak maxima points. Hence only the maxima points of values greater than
predetermined threshold are eligible to be nominated for being interest points.

4.2.1.2 Interest points in space-time domain

The idea of developing an operator responding to temporal dynamics in video
sequences at specific locations was initially proposed by Laptev and Lindeberg [4],
which is mainly based on extending the traditional notion of spatial interest points to
include large variations along the time direction. Such points of these properties will
match interest points in space domain with distinct locations in time that correspond
to local space-time neighborhoods with non-stationary motion. Formally speaking,
let us assume that for a given image sequence f st : R2 × R → R its linear scale-
space representation Lst : R2 ×R×R2

+ → R is constructed by convolving f with a
Gaussian kernel with distinct space variance σ2

l and time variance τ 2
l :

Lst(x, y, t;σ2
l , τ

2
l ) = gst(x, y, t;σ2

l , τ
2
l ) ∗ f(x, y, t) (4.6)

where the space-time separable Gaussian kernel is given by

gst(.;σ2
l , τ

2
l ) =

1√
(2π)3σ4

l τ
2
l

exp(−(x2 + y2)/2σ2
l − t2/2τ 2

l ) (4.7)
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The space and time domains are generally independent that might explain why
a sperate scale parameter τ 2

l is used for the time domain. Furthermore, the de-
pendence of the events detected by this type of points on both the space and time
scales of observation justifies the need for a sperate treatment of such parameters σ2

l

and τ 2
l . In the space-time domain, the second-moment matrix that is 3-by-3 matrix

composed of first-order space-time derivatives of Lst(.;σ2
l , τ

2
l ) is given by

µ = gst(.;σ2
i , τ

2
i ) ∗


(Lstx )2 Lstx L

st
y Lstx L

st
t

Lstx L
st
y (Lsty )2 Lsty L

st
t

Lstx L
st
t Lsty L

st
t (Lstt )2

 (4.8)

where gst(.;σ2
i , τ

2
i ) is a Gaussian weighting function with the integration scales σ2

i

and τ 2
i that relate to the previous local scales by these linear relations: σ2

i = sσ2
l

and τ 2
i = sτ 2

l , where s is an arbitrary constant. Similar to the space domain, the
first-order partial derivatives are given by:

Lstx (.;σ2
l , τ

2
l ) = ∂x(g

st ∗ f)

Lsty (.;σ2
l , τ

2
l ) = ∂y(g

st ∗ f)

Lstt (.;σ2
l , τ

2
l ) = ∂t(g

st ∗ f)

(4.9)

To detect the space-time interest points, similar to spatial domain, regions in f

that have considerable eigenvalues λ1, λ2, λ3 of µ are searched for. One direct way
to achieve this is to extend the Harris corner function given in Eq. (4.5) to the
space-time domain as follows:

Ωst = det(µ)− αtrace3(µ)

= λ1λ2λ3 − α(λ1 + λ2 + λ3)3
(4.10)

Yet, it is fairly easy to see that points with large values of λ1, λ2, λ3(λ1 ≤ λ2 ≤ λ3)

correspond to positive local maxima of Ωst. Hence, the finding of local positive
space-time maxima of Ωst would ensure the detection of space-time interest points
of f . Fig. 4.2 provides an example for space-time interest point detection in a sample
image sequence that shows a person performing “drinking” action.

The primary contribution of our work in [8] has been the proposal of an effec-
tive fuzzy approach that is mainly based on the structural information of spatio-
temporal interest points. It is highly expected that the distribution of the interest
points to be very compact and representative features for a particular action and
thus for action recognition. Therefore, the shapes of such points are most likely
to be very similar for actions belonging to the same class and they able to distin-
guish these actions from other actions of different classes. Nevertheless, the 3-D
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FIG. 4.2. Example space-time interest point detection. The image sequence shows a human
subject performing “drinking” action.

distributions of interest points often appears to be not sufficiently discriminative
to distinguish actions clearly due to the high inter-action similarity and the high
intra-action variability. The projection of point clusters to a number of planes of
lower dimensional can offer a simple and efficient solution to resolve these types
of interference issues, which enables us to clearly explain the ambiguity between
different types of actions. It is expected that this would lead to the achievement of
more discriminative motion representation that can handle different viewpoints.

In several applications of object recognition, for simplicity, three perpendicular
planes (e.g., x-y plane, t-x plane, and t-y plane) are frequently used to which the
detected 3-D (x-y-t) interest points can be projected. For example, a 3-D (x-y-t)
scatter plot for the point clusters of the image sequence of the drinking person given
in Fig. 4.2 is visually shown in the top row of Fig. 4.3, while the projections of these
point clusters to x-y plane, y-t plane, and y-t plane are shown in the second row of
this figure (form left to right in order). As can be seen in the figure, after projection
the shapes of the interest points of action are more clearly defined in 2-D than in
3-D; accordingly, the structural relations among these points would enable to get
the feature representing space-time structure of action shapes form the information
of projected points. The shape context algorithm [122] is then applied on each
projection plane regraded as a 2-D image. In the original shape context approach, a
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FIG. 4.3. Space-time interest point distribution in x-y-t space (top row) of the sequence of
“drinking” action given in Fig. 4.2 and its projections (bottom row) to (a) x-y plane, (b) t-x
plane, and (c) t-y plane.

discrete set of detected edge points is used for representing an object shape. For
each edge point, a shape context descriptor is calculated on the remaining points.

In our work of [8], the original concept of shape context is fuzzified based on
so-called fuzzy log-polar histograms. In contract to the original shape context, the
new fuzzy version of shape context is applied on the detected interest points rather
than on the edge points. Then each fuzzy histogram at each temporal state of action
is flattened to be a feature vector representing the action pose at this state. This
method highlights the information of temporal shape variations that intuitively
appear to provide a crucial cue for action modeling and recognition.

4.2.2 Fuzzy log-polar histogram

As stated before, the key idea of a fuzzy log-polar histogram is essentially ground
on the division of a given video clip (i.e., action snippet) into several time-slices.
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These slices are defined by fuzzy intervals. Gaussian membership functions appear
to be most appropriate to represent such intervals, which can be given as

Gj(t; εj, σ, γ) = e
− 1

2

∣∣∣ t−εjσ ∣∣∣γ
, j = 1, 2, . . . ,m (4.11)

where εj , σ, and γ are the center, width, and fuzzification factor of time slice, re-
spectively, while m is the total number of all time slices. The membership functions
defined above are chosen to be of identical shape on condition that their sum is
equal to one at any instance of time. In this approach, it is expected that the use of
such fuzzy membership functions would lead not only to a most reduced perfor-
mance decline resulting from time warping effects, but also to efficient extraction of
local features of action shape. To extract the local features of the shape representing
action at an instance of time, temporal localized shape context is developed, in-
spired by the original idea of shape context. Compared with the shape context [122],
this localized shape context differs in meaningful ways. The key idea behind such a
modified shape context is based on computing rich descriptors form fewer interest
points (i.e., keypoints). The shape descriptors presented here calculate the log-polar
histograms on condition that they are invariant to simple transforms like scaling,
rotation and translation. The histograms are normalized for all affine transforms
as well. Furthermore the shape context is reasonably extended by combining local
descriptors with fuzzy memberships functions.

An human action can be distinctly viewed to be composed of a series of body
poses over time. Reasonable estimate of a pose can be constructed using a small set
of keypoints. Ideally, such points are distinctive, persist across minor variation of
shapes, robust to occlusion, and do not require segmentation. Let S be a set of n
detected keypoints that represents the status of a given action at an instance time:

S = {pi = (xi, yi) ∈ R2|i = 1, 2, . . . , n} (4.12)

Then, for each keypoint pi ∈ S , the log-polar coordinates (i.e. radial distance ρi and
angle ηi) are, respectively, given by

ρi = log
(√

(xi − gx)2 + (yi − gy)2
)

ηi = arctan
(
yi−gy
xi−gx

) (4.13)

where gx and gy are the two spatial components of the center of mass (i.e., centroid)
of the keypoint set S, which are simply given by

gx =
1

n

n∑
i=1

xi, gy =
1

n

n∑
i=1

yi (4.14)
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FIG. 4.4. A log-polar histogram with 4 and 12 bins for orientation and magnitude.

Fig. 4.4 shows an example of a log-polar histogram with 32 bins in total (12 bins
for orientation, 4 bins for magnitude), which is centered at the centroid of the set
S. It is pertinent to mention here that the centroid of the point set is invariant to
linear transformations, including translation, scaling, and rotation. For this, the
angle ηi is computed with respect to a horizontal line passing through the center of
mass. Now, in order to compute a modified version of shape context, a log-polar
histogram is overlaid on the keypoint set S that represent the action shape. Thus
the fuzzy log-polar 2-D histograms for the modified shape context of action can be
constructed at each time-slice j as follows,

~j(k1, k2) =
∑

ρi∈bin(k1),
ηi∈bin(k2)

µj(ti), j = 1, 2, . . . ,m (4.15)

where k1 and k2 are two indices for the point magnitude and orientation respectively
and ti is the frame number to which the point belong. For better comparison
purposes, the previous 2-D histograms are then converted into 1-D histograms by
applying a simple linear transformation on the histogram indices k1 and k2:

hj(k) = ~j(k1dη + k2), k = 0, 1, . . . , dρdη − 1 (4.16)

where dρ and dη are the total number of bins for magnitude and orientation, re-
spectively. Fig. 4.5 presents a visual depiction of the temporal division of a snippet
of a running action (into m time-slices) and its corresponding fuzzy log-polar his-
tograms, one corresponding to each time-slice. The resulting 1-D histograms are
then normalized to achieve robustness to scale variations. These normalized his-
tograms are used as shape contextual information for classification and matching.
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FIG. 4.5. Illustrative visualization for temporal slicing of a video sequence of running
action and the corresponding log-polar histograms representing the spatio-temporal shape
contextual information of that action.

Finally, the normalized histograms are concatenated to to obtain one descriptor per
video. Subsequently, any classification algorithm, such as ANNs, SVMs, HMMs,
etc. can be trained on the final descriptors in order to learn and recognize actions.

4.3 Invariant Shape-based Features

As stated previously, the process of feature extraction and selection is deemed to be
a core component of any activity recognition system, but is also very challenging
and time consuming. Interestingly, shape cues tend to be extracted more efficiently
and are more robust to appearance variations, so that shape-based features have
shown to be very successful for many recognition tasks such as object and scene
recognition. It may seem obvious that using a variety or combination of distinct
shape features helps in ensuring robust human pose estimation and thus leads to
distinguish between different action categories best. This would definitely affect
the overall performance of any proposed human action recognition system. In
particular, in [123, 124], we have utilized the shape features that can be extracted
from the segmented silhouettes of moving human body parts in order to represent
the action poses. Such shape features have the potential to provide a rich source of
information for the interpretation/analysis of human motion.
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FIG. 4.6. An example of a membership function used to represent the temporal interval,
with α = 5, β = 6, and γ = 10.

Moreover, the motion information that can be extracted by following the trajec-
tory of the motion centroid can be integrated with shape features, as will described
later by end of this chapter. Such a combination between these two types of infor-
mation can significantly increase the discriminative power for action recognition.
Before starting the feature extraction procedure, we first temporally split each video
snippet into several time-slices. Similarly to what done in the previous section,
these time-slices are defined by fuzzy intervals. Each of these intervals is described
by a fuzzy membership function defined as follows:

f(t;α, β, γ) =
1

1 + (| t−α
β
|)γ

(4.17)

where α, β, and γ are the center, width, and fuzzification factor of the interval,
respectively as shown in Fig. 4.6. We have opted to allow all the membership
functions to be of identical shape on condition that their sum is equal to one at any
instance of time t. It is experimentally observed that using this type of functions
allows not only the probable degradation in recognition performance caused by
time warping effects much more tolerable, but also could enable local shape features
to be extracted more reliably. Regarding shape features, we consider here a variety
of invariant descriptors, such as Fourier descriptors, curvature features, invariant
shape moments, etc. In the subsequent subsections, we illustrate in a little more
detail how these features and descriptors are defined and extracted.

4.3.1 Fourier descriptors

The application capabilities of Fourier Descriptors (FDs) for object recognition
have been successfully demonstrated through a number of case study examples.
For example, several studies based on FDs have been successfully conducted to
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FIG. 4.7. Fourier analysis to show how an arbitrary periodic function f(t) can be written in
terms of a linear combination of sinusoids with different frequencies and amplitudes.

recognize different types of marine life, product deformations, tree leaves, etc. The
pivotal idea of FDs is to use the Fourier transformed outline as the shape feature.
Further, the idea of Fourier transforms is, in turn, viewed as a natural extension of
the concept of Fourier series that involves expressing any waveform f(t) in terms
of a linear combination of simpler functions (i.e., sinusoids) of different frequencies
and amplitudes (see Fig. 4.7):

f(t) =
a0

2
+
∞∑
n=1

an sin(nωt) + bn cos(nωt) (4.18)

where ω = 2π/τ ; τ is the period of the waveform. The coefficients a0, an, and bn

are called trigonometric coefficients. Such simple functions are often thought of as
building blocks. Using the well-known Euler’s equality: exp(iφ) = cos(φ) + i sin(φ),
it is not difficult to derive the exponential or the complex form of the Fourier series
from Eq. (4.18) as follows,

f(t) =
∞∑

n=−∞

cn exp(inωt), i =
√
−1 (4.19)

The last equation that is seen as a much shorter formula for Fourier series relates
directly to the sinusoidal form; however the new coefficients cn are complex in
general and can easily be determined by the following equation:

cn =
1

2τ

∫ τ

−τ
f(t) exp(−inωt)dt (4.20)

The above equation provides a conceptual base on which FDs as a metric char-
acterizing the boundary shape of object of interest can be established. In essence,
FDs depend on the notion of the shape signature that is one dimensional function
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derived from the shape function [125, 126]. More formally, given a shape whose
outline (i.e., shape contour C) is defined by a periodic complex function as follows,

C = {zn ∈ C : zn = xn + iyn, 0 ≤ n < N} (4.21)

where C is the set complex number and xn, yn ∈ R are the spatial coordinates of
the outline points of the shape. Hence, one simple shape signature (i.e., centroid
distance function) derived from the complex coordinates of the outline points of
shape can be defined as follows,

rn = |zn − z̃|, 0 ≤ n < N (4.22)

where z̃ = x̃+ iỹ is the centroid of the shape whose coordinates are given by

x̃ = 1
6A

∑N−1
n=0 (xn + xn+1)(xnyn+1 − xn+1yn)

ỹ = 1
6A

∑N−1
n=0 (yn + yn+1)(xnyn+1 − xn+1yn)

(4.23)

where A denotes the total shape’s area defined by:

A =
1

2

∣∣∣∣∣
N−1∑
n=0

(xnyn+1 − xn+1yn)

∣∣∣∣∣ (4.24)

The location of the shape centroid is deemed to be fixed with different points
distribution on a contour (i.e., this location is fixed no matter how the distribution
of boundary points is). It is pertinent to mention that other examples of shape
signatures widely used for shape representation and recognition may include:
complex coordinates, tangent angle, curvature, area, arc length, etc. The most
exciting prospect of shape signature is its potential ability to capture the most
perceptual feature of the shape [127]. To obtain FDs for a given shape, first the
shape is represented by a shape signature that is a 1-D function derived from the
outline coordinates of the shape. Then, discrete Fourier transform is applied to the
signature to obtain Fourier transformed coefficients. More formally, the coefficients
ck, 0 ≤ k < N of the discrete Fourier transform can be calculated as follows,

ck =
1

N

N−1∑
n=0

rn exp

(
−2πi

N
nk

)
, 0 ≤ k < N (4.25)

where rn, 0 ≤ n < N is a shape signature at the n-th boundary point, which
is defined by Eq. (4.22). Perhaps, one of the crucial inherent traits of Fourier
series analysis is that the original signal (i.e., shape signature) can be perfectly
reconstructed using the inverse discrete Fourier transform:

rn =
1

N

N−1∑
k=0

ck exp

(
2πi

N
nk

)
, 0 ≤ n < N (4.26)
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What would be interesting to point out here is the fact that FDs obtained using
different shape signatures are likely to vary significantly in terms of their overall
performance. For instance, in [125, 128], it has argued that FDs obtained using the
centroid distance function are superior to those obtained using other shape signa-
tures in their overall performance and their relative accuracy on shape recognition.
As the centroid distance function rn defined by Eq. (4.22) is just invariant under
rotation and translation, hence the Fourier coefficients given in Eq. (4.25) should
be further normalized in order to be also invariant under scaling and change of
the starting point on the contour. Strictly speaking, based on Fourier transform
theory, shape descriptors can be derived from Fourier coefficients as follows. The
first two coefficients (i.e., c0 and c1) are first truncated from the Fourier coefficients
cn. The phase information are then ignored and only magnitude of the remaining
coefficients are used after dividing each of them by c1. To summarize, the Fourier
shape descriptors are formally written as:

FD =

{
dn =

|cn+1|
|c1|

, 0 < n < N − 1

}
(4.27)

where | · | is the modulus operator. It is easy to verify that such a choice of the coeffi-
cients ensures that the resulting shape descriptors are invariant to shape translation,
rotation and scaling, and they are independent of the choice of the starting point on
the contour. Fig. 4.8 shows bar plots visualizing the FDs based features extracted
from the motion shapes for six different sequences of running, jogging, walking,
boxing, waving, and clapping actions from top to bottom, respectively. As a final
remark here, it is perhaps interesting to mention that FDs possess several desirable
properties (e.g., simple derivation, simple normalization, simple to do matching,
and their robustness to noise). All the aforementioned advantages allowed these
descriptors to be very popular in both scientific and the industrial societies with
high potential for many applications. Furthermore, as convincingly argued in [128],
for efficient shape retrieval, 10 Fourier coefficients have been shown to suffice to
describe adequately the shape information of detected features.

4.3.2 Moment invariants

In many applications, image objects can be efficiently recognized from imagery
independently of their scale, position, and orientation by representing each of
these objects of interest with a set of measurable descriptors. For efficient object
representation and comparison, such descriptors are typically defined by invariant
features extracted from various imagery types and any a priori knowledge available.
There is a rich literature of various feature recognition techniques that utilize spatial
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FIG. 4.8. FDs for motion shape description: (a) original sequences with motion shapes for
six different actions of running, jogging, walking, boxing, waving and clapping from top to
bottom respectively; the green circle within each shape locates the shape centroid, (b) the
corresponding FDs obtained for the shapes shown in (a).

moments to construct such invariant features [129–131]. Many of these techniques
are essentially based on the general moment theory widely known and applied in
research in several areas of statistics and mechanics.

In particular, geometric moments have vast practical applications in many area
of computer vision and invariant pattern recognition, ranging from lower-level
recognition such as pose estimation to higher-level recognition such as activity
recognition and analysis. When applied to images, they were identified to be most
descriptive of the image contents (i.e., intensity distribution) with respect to its
axes. Once such moments are properly defined, both global and detailed geometric
information of image contents can be reasonably expected to be detected robustly.
In such a scenario, moments would be able to characterize various image objects
such that the properties with analogies in statistics or mechanics are extracted, and
thus the shape of all objects of interest can be described well. Formally speaking,
in continuous domain, an image is viewed as a 2-D Cartesian density distribution
function f(x, y). Under such a continuity assumption, the general form of the
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geometric moments of order (p + q) for the function f(x, y), evaluated over the
entire plane Ω is defined by the following double integrals:

Mpq =

∫ ∫
Ω

ψpq(x, y)f(x, y)dxdy, p, q = 0, 1, 2, . . .∞ (4.28)

where ψpq is a basis function or weighting kernel by which a weighted description
for the image function f(x, y) across the entire plane Ω is generated. Several ad-
vantageous properties of the basis functions are expected to be provided to the
moments, which can potentially enable extracted features and descriptions to be
invariant to image scaling, translation, and rotation, and partially invariant to
illumination changes. Now, to apply this concept of moments to digital images,
Eq. (4.28) needs to be transformed to the discrete domain. Note that the probability
density function f(x, y) (of a continuous distribution) is different from that of the
probability of a discrete distribution. For convenience, it seems intuitively plausible,
assuming that the plane ξ is partitioned into small squared regions of size 1 × 1

pixels, with fixed intensity I(x, y) over each squared region. So if we let that Pxy is
a discrete pixel value at a spatial location (x, y), then we can write:

Pxy = I(x, y)4A (4.29)

where 4A denotes to the region area (that is equal to unity in this case). Hence,
analyzing over the entire discrete intensity plane of image would eventually yield
the following discrete form for Eq. (4.28):

Mpq =
∑
y

∑
x

ψpq(x, y)I(x, y), p, q = 0, 1, 2, . . .∞ (4.30)

It is perhaps worthwhile to point out here that the choice of above basis functions
ψpq greatly depends on the application of use, and on the invariant properties
desired. Furthermore, it is expected that choosing a specific basis function results
in some constraints, such as to restrict the range of the image coordinates, x and
y, enable the image and its descriptors to be translated to other coordinates (e.g.,
polar coordinates), etc. In [129, 132], Hu stated that the 2-D Cartesian moment of
order (p + q) for an m × n discretized image, I(x, y) can be defined by taking the
basis function in Eq. (4.30) as a monomial of power p+ q (product of powers of the
variables x and y, i.e., ψpq(x, y) = xpyq) as follows,

Mpq =
n−1∑
y=0

m−1∑
x=0

xpyqI(x, y), p, q = 0, 1, 2, . . .∞ (4.31)

The full moment set of order k that includes all moments, Mpq, such that p+ q ≥ k

compromises of exactly 1
2
(k + 1)(k + 2) elements. Ever since the pioneering work
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of Hu [129] on moment functions that has explored quite thoroughly the use of
moments for image analysis and object representation, a broad range of new appli-
cations utilizing moment invariants in image analysis and pattern recognition fields
has started to evolve. It is clear that the Cartesian moments given by Eq. (4.31) are
not invariant to geometric transformations. To achieve invariance under translation,
these moments are calculated with respect the center of mass as follows,

µpq =
n−1∑
y=0

m−1∑
x=0

(x− x̄)p(y − ȳ)qI(x, y), p, q = 0, 1, 2, . . .∞ (4.32)

where x̄ and ȳ are the coordinates of the centroid and given by:

x̄ =
M10

M00

, ȳ =
M01

M00

(4.33)

After a bit tedious but straightforward manipulation, equations (4.32) and (4.31)
lead to the following relation between the Cartesian and centralized moments

µpq =

p∑
i

q∑
j

(
p

i

)(
q

j

)
(−x̄)p−i(−ȳ)q−jMij (4.34)

However, it should be emphasized that the expression in Eq. (4.32) suggests that the
centralized moments are only invariant to translation. To enable invariance under
scale changes, the 2-D centralized moments µpq need to be normalized to obtain
scale-normalized centralized moments ηpq as follows,

ηpq =
µpq
µγ00

(4.35)

where the exponent γ is given in terms of p and q as follows,

γ =
p+ q

2
+ 1, p+ q ≥ 2

On the basis of what has been stated before the non-orthogonal centralized moments
are translation invariant, and it was easy to normalize them to changes in scale.
However, to consider them appropriately as features for action recognition, they also
need to be calculated irrespective to rotation variances. To enable these moments to
be rotation-invariant, they has to be reformulated. Strictly speaking, two methods
are used to allow the scale-normalized centralized moments to be rotation-invariant.
The first one depends mainly on so-called principle axes, which has been shown
to be most prone to serious stability problems, especially when applied to images
lacking unique principle axes (i.e., rotationally symmetric images). The second
one is that of absolute moment invariants. In this latter method, the derivation of
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expressions are made from applying algebraic invariants to the moment function
under a rotation transformation. As a result, a collection of nonlinear expressions
of centralized moments can be found, which generates a family of sets of absolute
moment invariants. As an example, a set of moment invariants [129], can be derived
based on the following nonlinear expressions of centralized moments:

φr = |Ip−r,r|2, r = 1, 2, . . . , p− 2r (4.36)

where,

Ip−r,r =
r∑
l=0

(−j)l
(
p− 2l

l

) r∑
k=0

(
r

k

)
µp−2k−l,2k+l (4.37)

where p− 2r > 0, j =
√
−1. In a simple experiment of invariant object recognition,

this set has proven to be able to efficiently recognize several typed characters.

4.3.3 Moment-based features

Besides the moment invariants discussed above, a set of other features derived
from the moments of second order can also be extracted and added to the final
feature vector [124]. The existent analogy between image moments and mechanical
moments would contribute to a deeper understanding of the central moments of
second order, i.e. {µ20, µ11, µ02}, known as the moments of inertia. The features
extracted here can be derived from the covariance matrix defined as:

J =

[
µ′20 µ′11

µ′11 µ′02

]
(4.38)

where the matrix elements are explicitly given by:

µ′20 =
µ′20

µ′00

, µ′11 =
µ′11

µ′00

, µ′02 =
µ′02

µ′00

From the covariance matrix of moments given above, several features can be de-
rived from the central moments of second order. First, the principal axes can be
determined by calculating the eigenvalues of the covariance matrix as follows,

λ1,2 =
1

2

[
µ′20 + µ′02 ±

√
4(µ′11)2 + (µ′20 − µ′02)2

]
(4.39)

Notably the covariance matrix that corresponds to the inertial tensor defines an
inertially equivalent approximation of the considered object, referred to as the
image ellipse. This ellipse is a constant intensity elliptical disk with the same mass
as the original image, which is defined with semi-major axis, λ1 along the x-axis
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FIG. 4.9. Image ellipse as an approximation of the considered object.

and semi-minor axis, λ2, along the y-axis, as shown in Fig. 4.9. The orientation of
the object defined as the tilt angle between the x-axis and the x′-axis (semi-major
axis) around which the object can be rotated with minimal inertia is calculated by:

φ =
1

2
arctan

(
2µ′11

µ′20 − µ′02

)
(4.40)

where the angle φ is picked such that −π
4
≤ φ ≤ π

4
. In addition, other parameters

such as the roundness κ and eccentricity ε appear to be very closely related to
our task, because both can provide rich information about the shape of the object
of interest. Formally, given the area A and the perimeter p of an object, then the
roundness κ of the object can be determined by simply dividing the square of the
perimeter by the area of the object. As for the simple geometric fact that the circle
has the maximum area for a given perimeter, then κ can be scaled and given by:

κ =
p2

4πA
(4.41)

It is perhaps worth noting that κ = 1 for a circle, while for other objects κ >

1. Furthermore, using the eigenvalues λ1 and λ2 of the covariance matrix, the
eccentricity ε can be calculated by:

ε =

√
1− λ2

λ1

(4.42)

Another approach to compute the eccentricity ε involves directly using the central
moments of second order as follows,

ε =
(µ′20 − µ′02)2 − 4(µ′11)2

(µ′20 + µ′02)2
(4.43)

From Eq. (4.43), it can be seen apparently that the value of eccentricity always lies
within the unit interval, i.e. ε ∈ [0, 1]. For a perfectly round object, this value is equal
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FIG. 4.10. Temporal variation in radii of gyration: (a) the person’s silhouette sequence of a
running action, (b) a plot reflects that the temporal changes in the radii of gyration, (i.e.,Rx,
Ry andRo) of the silhouette sequence given in (a).

to zero, while it tends to one for a line shaped object. Due to such a clearly defined
range, eccentricity can be compared much better than roundness. Consequently, as
a measure, the eccentricity is often seen to be more appropriate than the roundness
for shape matching and comparison.

Radii of gyration are another important feature that can be derived from the
second order moments of an object. Technically speaking, the radius of gyration is a
purely geometric parameter that is defined as the radial distance from a given axis
at which the mass of an object could be concentrated without altering the second
moment (i.e.rotational inertia) of the object about that axis. More formally, in terms
of Cartesian moments, the values of the radii of gyration Rx and Ry about the x
and y axes respectively are given by:

Rx =

√
M20

M00

, Ry =

√
M02

M00

(4.44)

Similarly, the radius of gyration about the origin Ro is defined as the radius of a
circle centered at the origin where all the mass may be concentrated without change
to the moments about the origin. Hereby, the value of Ro is given, in terms of
central moments of second order by:

Ro =

√
µ20 + µ02

µ00

(4.45)

It is pertinent to mention here that its property of being inherently invariant to
orientation might explain whyRo is frequently employed as a rotationally invariant
feature for many object representation and detection tasks. Fig. 4.10 is an example
that shows different temporal variations in the radii of gyration of a running action.
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4.3.4 Curvature features

In a way similar to the extraction of the Mel Frequency Cepstral Coefficients (MFCC)
features from voice signals [133], a set of other shape descriptors based on the
cepstrum of the shape curvature can be also extracted. It may be worthwhile to
mention that the name “cepstrum” was originally derived by reversing the first
four letters of “spectrum”. Briefly described, the scheme used for extracting such
features works as follows. First, the curvature of a given shape is encoded by using
a chain coding scheme. The cepstrum of the curvature signal (i.e., spectrum) is then
obtained based on discrete Fourier transform. Finally, as shape features, a specific
number of the largest coefficients can be chosen to be added to the final feature
vector. In a little bit more details, the basic chain code that was first proposed
in [134] by Freeman is essentially used to describe the motion on a sequence of
boundary points (i.e., a digital curve). A numbering scheme is used to encode the
movement direction between contiguous points along the shape border as follows,

{n |n = 0, 1, 2, . . . , N − 1} (4.46)

Technically, there are basically, at least, two numbering schemes widely used in the
literature, namely the 4-connectivity and the 8-connectivity for which the value of
N is equal to 4 and 8 respectively. Thus, each coding number n will correspond to a
contraclockwise angle of π

2
n or π

4
n (for the case of 4- or 8-connectivity, respectively)

that is measured with respect to the positive x-axis, as shown in Fig. 4.11.
Now, let s(t), t = 0, 1, . . . , τ−1 be the signal or spectrum formed by a numbering

scheme (4- or 8-connectivity). There are various types of cepstrums widely used in
practice (e.g., real, complex, power, and phase cepstrum) that can be obtained for a
given spectrum of shape. For simplicity and convenience, we show here how to
extract the power cepstrum of the signal s(t) by simply taking the Fourier transform
(FT) of the log spectrum. Strictly speaking, the power cepstrum of a given signal
s(t) can be verbally defined as the square of the magnitude of the Fourier transform
of the logarithm of the squared magnitude of the Fourier transform of the signal.
Formally, the functional of the power cepstrum of s(t) is defined by:

C{s(t)} =
∣∣F{log(|F{s(t)}|2)}

∣∣2 (4.47)

where F(·) denotes the Fourier transform operator. A finite number of the cepstral
coefficients directly calculated using Eq. (4.47) can be efficiently used as features to
quantitatively model an object’s shape for recognition and classification. Fig. 4.12
provides example result of the cepstrum coefficients extraction. As can be seen
in the figure, six video sequences of different persons performing six types of
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FIG. 4.11. Basic chain code direction: (a) 4-connectivity; (b) 8-connectivity.

actions (i.e., walking, jogging, running, boxing, waving, and clapping from top to
bottom, respectively) are shown in Fig. 4.12(a), while the corresponding cepstral
coefficients extracted from the motion shapes of these sequences are illustrated by
bar plots in Fig. 4.12(b). In continuation of the above, it is important to point out
that the experiments revealed that a small set of cepstrum coefficients are able to
sufficiently approximate the signal, and also to reconstruct its curvature function,
with a compression ratio of up to 10:1 in the original signal length [123].

The shape border-based features (described in detail in this section) including
Fourier descriptors, Moments invariants, Moment-based features, and curvature
features are eventually concatenated to form the feature vector of a given action at
a time instance. All the feature vectors of an action snippet are then normalized to
fit a zero-mean and a unit variance distribution. The normalized vectors obtained
can be used as shape contextual information for classification and matching. Many
approaches in various object recognition applications directly combine these vectors
to get one final vector per video and classify it using any classification algorithm.
It is worth mentioning that concatenating all the feature vectors extracted from all
frames of an action snippet would result in a very large feature vector that might
be less likely to be classified correctly. To resolve this problem and to reduce the
dimensionality of the resulting vector, all feature vectors of a given action snippet
at a time-slice can be weighted and averaged as follows,

~µ =
1

τ

τ∑
t=1

wt~xt (4.48)

where wt = f(t;α, β, γ) is the weighting factor and τ is the number of the feature
vectors at the time-slice. Then all the vectors resulting at each of the time-slices are
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FIG. 4.12. Extraction of cepstral coefficients: (a) sample sequences of different actions; (b)
bar plots for the cepstral coefficients extracted from the sequences in (a).

catenated to yield the final feature vector for a specific action snippet.

4.4 Chord-Length Features

Despite their stability and compactness, chord-length shape features have received
relatively very little attention in human activity recognition literature. In this section,
we first show how the chord-length functions are defined. Then, we describe how a
compact computationally-efficient shape descriptor; the chord-length shape features
is constructed using 1D chord-length functions.
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FIG. 4.13. Chord-length functions (CLFs) obtained through the division of a shape border
into a finite number of arcs of equal length.

4.4.1 Chord Length Functions

A shape border, i.e. contour, is an inalienable property of every object and can be
defined as a simply-connected sequence consisting of n 2D points:

C = {zi ∈ R2, 0 ≤ i < n} (4.49)

where zi+n = zi, as C is closed. The diameter ` of the shape is given by:

` =
n−1
max
i,j=0
‖zi − zj‖, i 6= j (4.50)

where ‖ · ‖ is defined as the Euclidean distance between two points zi and zj .
Taking as an initial point zi ∈ C, let the contour C be traversed anti-clockwisely
and partitioned into k > 1 arc segments, i.e., ẑip1, p̂1p2, . . . , p̂k−1zi of equal length,
where pj is the jth division point and j = 1, 2, . . . , k− 1. Thus, we have k− 1 chords
zip1, zip2, . . . , zipk−1, and k − 1 lengths λ(i)

1 , λ
(i)
2 , . . . , λ

(i)
k−1, where λ(i)

j is the length of
the chord zipj measured as the Euclidean distance between the two points pj and zi
as shown in Fig. 4.13.

Let us now show that while the point zi travels along the contour, then the
chord lengths λ(i)

j will vary accordingly. This implies that λ(i)
j is a function of zi.

Such a function is called the Chord-Length Function (CLF), and shortly denoted as
λj . Therefore we can obtain k − 1 CLFs, i.e., λ1, λ2, . . . , λk−1. Since these functions
are obtained from splitting the contour evenly and from moving the initial point
zi, along the contour, so that they guarantee to be invariant to translation and
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rotation. However, the chord length itself is not scale invariant, but it can be made
to be invariant to scale by normalization using the contour diameter `. Now, it is
apparently that CLFs meet all requirements for being good shape descriptors (see
Fig. 4.14), including invariance to scale, translation, and rotation .CLFs might need
to be scaled to be within the same range (e.g., [0, 1]). By their definition, CLFs are
derived by segmenting the contour evenly, so that it is easy to deduce that only
half of the CLFs, λ1, λ2, . . . , λk/2 are enough to describe the shape adequately. It
is germane to point to the fact that both global and local features of shape can be
captured by using chord-lengths of different level. The local features are likely to be
captured by the CLFs of the partition points closer to the initial point zi, while the
global features are captured by those of farther points. This is viewed as a distinct
competitive advantage of the CLF-based descriptor over other shape descriptors.

4.4.2 Chord-length shape features

As described previously in Section 4.4.1, given a shape border (i.e., contour), k/2
chord-length functions can be defined by dividing the shape border into k arcs of
equal length. These functions are shown to be invariant with respect to translation,
rotation, and scaling. Nevertheless, as other shape descriptors, these descriptors
appear to be not compact enough. In addition, they may constantly depend on a
reference point whereby the shape border is parameterized. This dependence is
simply because the contour is closed and any point on the contour can be used as
a reference point, so that the chord-length functions may be changed. In order to
avoid such problems and for convenience, the mean µj and variance σj of chord-
length functions λj, j = 1, 2, . . . , k

2
, are adopted, which are given by

µj =
1

n

n−1∑
i=0

λ
(i)
j , σj =

1

n− 1

n−1∑
i=0

(λ
(i)
j − µj)2 (4.51)

Therefore, the chord-length features that are used as a shape descriptor can be
arranged in a 2D matrix of size k

2
× 2 as follows,

F =


µ1 σ1

µ2 σ2

...
...

µ k
2

σ k
2

 (4.52)

It should be noted that the prior formation of the chord-length features can be easily
converted into a 1D feature vector simply by ”row-scanning”, i.e., concatenating
the rows to obtain the feature vector of length k.
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FIG. 4.14. Plots of chord-length functions (CLFs) for sample shape borders (normalized
to 128 points) extracted from actions of walking, jogging, running, boxing, waving, and
clapping, from top to bottom, respectively.

Now, to obtain the final chord-length features of a given human action, we have
to first obtain the chord-length features of all poses of that action. Since each action
snippet was temporally divided into a number of fuzzy states, each represents a
pose of the action, then the chord-length features of an action pose is obtained by:

Pj =
1

nj

nj∑
t=1

Gj(t)Ft, j = 1, 2, . . . ,m (4.53)

where Gj is the fuzzy membership function that defines the temporal slice j, nj is
the total number of the chord-length feature vectors of the pose j, and m is the
total number of time-slices. Note that Eq. (4.53) implies that the final chord-length
features of an action pose is approximated as the averaged weighted sum of all
features of that pose. The weight factor here is the Gaussian membership function
(Gj ∈ [0, 1]) defined previously at the beginning of this chapter. At least this time,
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we have all the chord-length descriptors of the poses that an action has. Next, the
resulting feature vectors are normalized to the integral value of unity to achieve
robustness to scale variations and to reduce the influence of illumination. The
normalized feature vectors obtained can now be exploited as shape descriptors for
action classification and recognition.

Generally, the normalized vectors can be directly combined to obtain the re-
sultant feature vector per video clip that in turn can be classified by any machine
learning algorithm (such as, SVM, ANN, NB, decision trees, etc.). Accordingly,
the final feature vector of a given action can be constructed by catenating all the
descriptors of its temporal poses, and given as:

~Faction =
m⋃
j=1

~Pj = [~P1, ~P2, . . . , ~Pm] (4.54)

where
⋃

is the catenation operator and m is the number of poses. As seen from
Eq. (4.54), the temporal information of action are retained.

4.5 Discussion and Conclusion

In this chapter, we have presented a detailed description of various features and
descriptors developed in our works on activity recognition, that broadly include
interest-point based features, shape border based features, and chord-length fea-
tures. At the beginning of the chapter, the features extracted based on spatio-
temporal salient interest-points have been detailed. Such features are characterized
by their high compactness representation of video data and robustness to occlusions,
background clutter, significant scale changes, and high activity irregularities, so
that they have been successfully employed for a wide variety of recognition tasks.
In addition, the extraction of these features is relatively straightforward, rather
computationally efficient, and more importantly eliminates the requirement for any
prior segmentation or other pre-processing steps.

Thereafter, we have shown a set of other features that could be extracted from the
segmented silhouettes (or their boundaries) of moving human body parts in order to
represent action poses. These features include both local and global properties, such
as Fourier descriptors, moment invariants, moment-based features, and cepstrum
descriptors. A careful analysis/investigation of such features has suggested that
they turned out to have the potential to provide a rich source of information for the
interpretation/analysis of human activities.

Finally, at the end of the chapter, we have shown how the chord-length functions
are defined form a finite set of boundary points of a shape. Then, we have described
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how a compact computationally-efficient shape descriptor; the chord-length shape
features could be constructed using 1D chord-length functions. Despite their stabil-
ity and compactness, these features have received little attention in the literature.
One distinct competitive advantage of the chord-length descriptors over other shape
descriptors is that both global and local features of shape can be captured by using
chord-lengths of different level. The local features are expected to be extracted by
the chord-length functions of partition points closer to the initial point, while the
global features are extracted by those of farther points.





CHAPTER 5

ML Models for Activity Feature Classification

5.1 Introduction

ROUGHLY speaking, feature classification is viewed as a crucial step in various
image/video analysis applications such as, higher-level image understand-
ing, scene interpretation, event retrieval and activity modeling. The task

of feature classification that has been successfully tackled by multi-label learning
algorithms is still a subject of intense research effort the machine learning and
computer vision communities, where having effective feature extraction is of ex-
treme importance for reliable classification. More specifically, in current action
recognition, such a task involves the attempt to correctly categorize different types
of unknown human actions through a machine learning process involving training
some machine learning method (e.g., ANN, SVM, HMM, decision tree, etc.) on
known instances of action features. In this chapter, we illustrate how the action fea-
tures described in Chapter 4 can be classified. Within the scope of this dissertation,
three machine learning (ML) models (i.e., ANN, SVM, and Bayesian network) have
been employed in this task of feature classification.

In essence, Artificial Neural Network (ANN) or simply neural network [135]
is an information processing paradigm inspired by the way biological nervous
systems, e.g. the brain, process information. To the best of our knowledge, an ANN
model has many useful characteristics over conventional modeling techniques in
some aspects, including strong self-adaptive, robustness, fault tolerance and storage
memory capabilities. Furthermore, it has been found to yield good results, partic-
ulary when the response variable is highly nonlinear. Hence, ANNs have found
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(and still find) their wide range of applications in many areas, such as image/video
representation, pattern recognition, fault diagnosis, etc. However, an ANN model
is likely to suffer from a number of limitations regarding generalization capabilities,
such as over-fitting, fixed topology and slow convergence, and further the choice of
the network parameters (e.g., hidden layer size, learning rate, momentum, etc.) is
fully found on the experience or knowledge of researcher [136].

Support Vector Machine (SVM) [137] originally developed as an alternative
to the ANN paradigm is a relatively new ML paradigm based on the statistical
learning theory framework. The pivotal idea of SVM is to generalize data sets of
limited size efficiently by implementing the structural risk minimization induc-
tive principle. In more simple words, an SVM model tries to apply a nonlinear
mapping to the feature space, and then use a linear model to form the decision
boundary. Due to their several distinguished characteristics, including powerful
model generalization capability, strong nonlinear processing ability and usefulness
in convex optimization problem, SVMs have been successfully applied (and still
being applied) to various problems of pattern recognition and machine learning,
such as speaker identification, face detection, and text recognition. However, the
SVM paradigm essentially is a hard-margin classifier, so that it is unlikely to admit
vague outputs that are a very desirable property in a wide range of practical appli-
cations. Moreover, such a paradigm has an intrinsic limitation that it can be hardly
applied to very large training datasets due to the high computational time involved
in solving the quadratic programming (QP) problem that is at least quadratic to
the number of training samples. Therefore, unlike some other machine learning
paradigms (e.g., decision trees and neural networks), SVMs have not impressed
with the high rate of adoption by communities working with huge datasets [138].

Naı̈ve Bayesian (NB) [139] is one of the earliest content-based machine learning
models, which has achieved wide popularity as a simple yet consistently perform-
ing probabilistic paradigm based on the theory of Bayesian networks and built
on the assumption of conditional independence between the attributes given the
class. It is designated ‘naı̈ve’ due to the assumption of independence among fea-
tures. Due to its high efficiency in handling a large number of features that other
machine learning models cannot, NB is still competitive, even though it ignores
dependencies between features. In addition, in many classification tasks, an NB
classifier turned out to be highly scalable, easy to implement, relatively robust, and
able to achieve considerable accuracy. However, since the traditional NB classifier
essentially operates under the independence assumption, so that it is expected that
its performance suffers in domains involving correlated features, unlike other well-
known classifiers (e.g., SVM and k-nearest neighbor). But, using compound-risk
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FIG. 5.1. ANN for human activity recognition.

factors is very likely to be able to tackle these problems effectively and thus allow
classification results to be more accurate than those of the traditional NB. Each of
the machine learning paradigms briefly mentioned above that we have employed
for features classification in the work of this thesis will be described in greater detail
in subsequent sections of this chapter.

5.2 Artificial Neural Network

Artificial Neural Networks (ANNs) have been defined in a wide spectrum of ways.
For instance, in relation to their biological origins, ANNs are said to be relatively
crude electronic models established on the neural structure of the brain that ba-
sically learns from experience. The typical architecture of ANN model (i.e., very
similar to feedforward model) that we have used in this study for the task of ac-
tivity classification constitutes three distinct types of layers of neurons (or nodes)
connected in a layer-to-layer manner, as shown in Fig. 5.1. As seen in the figure,
the neurons are arranged in layers, each layer having full interconnection to the
next layer. Links between nodes are going in only one direction from input layer
through hidden layers to output layer. It is pertinent to point out that the choice of
a specific architecture usually depends on the properties of the architecture and also
the unique requirements of the application being developed. The model should
be configured such that the application of a set of input feature vectors of actions
produces the desired set of action categories. In literature, there are several ap-
proaches and techniques which we can use to set the strengths of the connections of
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the neural network. One approach that we have pursued in one component of this
study is to train the neural model by feeding it, teaching activities and allowing it
alter its weights according to some learning rule.

5.2.1 Training and learning of ANN

Like any supervised ML classifier, the neural classifier needs to be trained on a train-
ing set of manually labeled activities before it can be used for activity recognition.
This process involves adjusting the weights of each unit in such a manner that the
error between the actual category of an activity and the desired output is minimized.
To achieve this purpose, the popular Back Propagation (BP) algorithm is employed
to iteratively adjust the link weights using the steepest descent technique, in which
the global error is backward propagated to the networks units, and the weights
are modified proportional to their contribution. More specifically, the error is first
defined as the difference between target and actual outputs, and then the mean
square error is used as the training error to be minimized:

E =
1

2

∑
j

(tj − oj)2 (5.1)

where oj and tj is the actual and target outputs of node j, respectively. However,
in the BP algorithm, it is the rate of change of error which is the most important
feedback through the network:

∆wij = −η δE
δwij

(5.2)

Now the objective is to compute the quantity δE
δwij

for all wij (i.e. weights form
node i to node j). This process involves computing how fast error changes as
each of these four factors is varied (i.e., output of node j, total input to node j,
weight wij coming into node j, and output of node i in previous layer). The overall
structure of the learning algorithm used to construct the classifier to learn activities
is given by Algorithm 5.1. It is worthy to mention that the weight update loop
may be iterated thousands of times in our application, so that choice of termination
condition seems to be of overwhelming importance as too few iterations can fail
to reduce error sufficiently. Further, too many iterations can lead to overfitting the
training dataset. The termination criteria can be either a fixed number of iterations
(epochs) or until the error falls below some predetermined threshold. In addition, it
has been shown that adding momentum α to the original weight update rule for the
learning algorithm would help to escape a small local minima in the error in error
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Algorithm 5.1: Outline of network training algorithm.
Input: Feedforward neural network with nin inputs, nhid units in hidden

layers, and nout output units and learning rate η.
Output: Updated network weights wij ∀i, j
Initialize all weights wij to small random numbers;
while convergence criterion not reached do

foreach training action example do
Fed the training example into the network and compute the outputs;
foreach output unit k do

δk ← ok(1− ok)(tk − ok);

foreach hidden unit h do
δh ← oh(1− oh)

∑
k

whkδk;

Update each network weight wij :
∆wij = ηδjxij ;
wij ← wij + ∆wij ;

surface and also speeds up the convergence. Hence, the modified weight update
rule can be redefined as:

∆wij ← ηδixij + α∆wij, 0 < α < 1 (5.3)

As stated previously, the learning process has to terminate at the point where the
error E(~w) is minimum. Here, we argue that in general it is found that the error
squared versus the weight graph is a paraboloid in higher dimensional space, and
the vertex of this paraboloid represents the point where the error is minimized, i.e.,
there is only one global minimum point. The weight vector that corresponds to this
point is then the ideal weight vector, ~wopt.

5.2.2 Multi-level neural networks

The ANN classifier offers several advantages over other competitive ML classifiers.
Some of these advantages include the high rapidity, easiness of training, realistic
generalization capability, high selectivity, and great capability to create arbitrary
partitions of feature space. However, the neural model, in the standard form,
may have low classification accuracy and poor generalization properties because
its neural units usually employ a standard bi-level function that results in only
two values (i.e., binary responses) [140]. To relax this restriction and allow the
neural units to generate multiple responses, a new functional extension for the
standard sigmoidal functions should be developed [8]. This extension is termed
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FIG. 5.2. Standard sigmoidal function and its Multi-level versions:(a) Sigmoidal function;
(b) Multi-level function for r = 3; (c) Multi-level function for r = 5.

Multilevel Activation Function (MAF), and therefore the neural model employing
this functional extension is termed ‘Multilevel Sigmoidal Neural Network’, or
simply MSNN. There are several multi-level versions corresponding to several
standard activation functions. It is straightforward to derive a multi-level version
from a given bi-level standard sigmoidal activation function. Formally, let the
general form of a standard sigmoidal function f(x) (in Fig. 5.2(a)) is given as,

f(x) =
1

1 + e−βx
(5.4)

where β > 0 is an arbitrary constant, known as steepness factor. The multilevel
version of activation functions are straightforwardly derived from Eq.(5.4) as:

ϕr(x)← f(x) + (λ− 1)f(c) (5.5)

where λ is an index running from 1 to r − 1; r is the number of levels, and c is an
arbitrary constant. Multi-level sigmoidal functions for r = 3 and 5 are depicted in
Fig. 5.2(b) and Fig. 5.2(c), respectively. As a final comment here, it is noteworthy
that, in [141], the authors have experimentally reported that the neural classifier
employing multilevel activation functions exhibits a superior performance over its
neural counterpart employing conventional sigmoidal activation functions.

5.3 Support Vector Machines (SVMs)

In this section, we describe Support Vector Machines (SVMs) as an activity classifier
we used in most of the experimental work presented in this thesis. SVMs are seen as
a relatively new supervised ML methodology developed by Cortes & Vapnik [142],
which were first applied as an alternative to multi-layer neural networks. The
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FIG. 5.3. Large-Margin linear decision boundary.

standard SVM was originally designed for binary classification, but recently several
variants of SVMs based on the same principles have been introduced to extend
the original version of SVM into multi-class problems. SVMs are based upon the
principle of structural risk minimization, i.e., they depend on the maximum-margin
principle of maximizing the margin between the decision hyperplane and the closest
training examples, and also support nonlinear separation.

Let us first consider the simplest case of a linearly separable binary classification
problem. To obtain the optimum decision boundary, SVM attempts to maximize
the minimal distance from the decision boundary to the labeled data. Once this
decision boundary is decided, a given unseen activity can be checked on which
side of the decision boundary it lies. Formally, let S = {xi ∈ Rd| i = 1, . . . , n} be
the training samples (i.e., feature vectors of actions), and yi ∈ {+1,−1} be the class
label of xi, thus two parallel separating hyperplanes can be formed such that:

yi =

{
+1, w>xi + b ≥ 1

−1, w>xi + b ≤ −1
(5.6)

where > denotes the transpose operator, w is a perpendicular vector to the two
hyperplanes and b is the bias, as shown in Fig. 5.3). Thus, the separating decision
boundary (i.e. the optimal hyperplane) that maximizes the margin between the two
classes is created by solving the following constrained optimization problem:

Minimize : 1
2
‖w‖2

subject to yi(w
>xi + b) ≥ 1 ∀i

(5.7)

By Lagrange duality, after some lengthy but straightforward calculations, the dual
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problem of the primal problem in Eq.(5.7) is given as:

Maximize : W(α) =
∑n

i=1 αi −
1
2

∑n
i,j=1 αiαjyiyjx

>
i xj

subject to αi ≥ 0,
∑n

i=1 αiyi = 0
(5.8)

where αi ≥ 0 are the lagrangian multipliers. Since Eq. (5.8) describes a QP problem,
and a global maximum always exists for αi, w can be deduced as:

w =
n∑
i=1

αiyixi (5.9)

An interesting characteristic of this solution of the dual problem in Eq. (5.9) is that
many of αi are zero. The feature vectors xi corresponding to αi > 0 are termed
support vectors that lay on the hyperplanes, hence the decision boundary can be
adequately determined by them alone. Formally, let tj(j = 1, . . . , `) be the indices
of ` support vectors, then Eq. (5.9) can be rewritten as follows,

w =
∑̀
j=1

αtjytjxtj (5.10)

For testing with a feature vector z of an unknown activity, we first evaluate this
function: f(z) = w>z+b =

∑`
j=1 αtjytj(x

>
tj
z)+b. It is then decided that z belongs to

the first activity class if f(z) > 0 and to the second activity class otherwise. It may be
pertinent to mention here that the QP problem has long been the focus of attention
by many scientific communities and come under extensive investigation [143].
Accordingly, for solving QP problems numerically, recently there is a wide range
of software packages (e.g., CPLEX, LINDO, LOQO, MINQ, etc.) implementing
different approaches [144]. For SVM, the sequential minimal optimization (SMO)
approach is frequently adopted for training, in which initially the simple case of
the original QP problem containing only two variables is solved. Then, in each
subsequent iteration, a pair of (αi, αj) is picked and used to solve the original QP
problem. This iteration process continues until a convergence criteria is met.

5.3.1 Soft-Margin classification

To enable SVM to handle nonlinearly separably classification problems, it has
been shown [142] that this type of problems is effectively approached by allowing
some examples to violate the margin constraints (see Fig. 5.4). These potential
violations can be formulated using some positive slack variables ξi and a penalty
parameter C ≥ 0 that penalize the margin violations. The slack variables that
approximate the number of misclassified examples basically depend on the output
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of the discriminant function w>x+ b. Formally, the optimization problem, in this
case, can be written as:

Minimize : 1
2
‖w‖2 + C

∑n
i=1 ξi

subject to yi(w
>xi + b) ≥ 1− ξi, ξi ≥ 0

(5.11)

After tedious but elementary calculations very similar to those performed for the
linearly separable case, we obtain the dual constrained optimization problem as:

Maximize : W(α) =
∑n

i=1 αi −
1
2

∑n
i,j=1 αiαjyiyjx

>
i xj

subject to 0 ≤ αi ≤ C,
∑n

i=1 αiyi = 0
(5.12)

The dual optimization problem in (5.12) is very similar to that of the linear separable
case, but here there is an upper bound C on the coefficients αi. Likewise, by using
the same formula in (5.10), the weight vectorw can be recovered. Once more, the
coefficients αi can be obtained by using any QP solver. The solution algorithm
attempts to keep ξ null, while maximizing the margin. It does not minimize the
number of misclassifications, but minimizes the sum of distances from the margin
hyperplanes. When C increases, the number of error decreases and the number of
support vectors drops; further as C tends to∞, the number of errors tends to 0.

5.3.2 Extension to non-linear decision boundary

Yet, only large-margin SVM with a linear decision boundary has been discussed. In
order to be able to generalize SVM from linear to nonlinear case, the key idea is to
use a mapping function φ(·) that transforms all data points xi from the input space
X into a high dimensional feature space F , as shown in Fig. 5.5. With such a proper
transformation, a linear operation in the feature space is equivalent to a nonlinear
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FIG. 5.5. A nonlinear mapping from input space to feature space [5].

operation in the input space. This, in turn, makes the classification problem easier
to handle and ultimately solve, as the original nonlinearly separable problem will
become linearly separable. It is important to note that, in practice, the feature space
has a higher dimensionality than that of the input space, so that the computational
requirements in the feature space are expected to be substantially higher than those
in the input space. This is where the so-called ‘kernel trick’ comes to rescue; it is to
replace all costly computations in the feature space by inexpensive computations in
the input space that give the same results. In other words, evaluating the so-called
kernel function will allow all expensive computations in the feature space to be
achieved implicitly. Recalling the expression for the SVM optimization problem
given by Eq. (5.8), we can see that the data points only appear as inner product
(i.e., x>i xj). Hence, the kernel function is defined such that it calculates the inner
product in the feature space. Such a definition is given as:

K(xi,xj) = φ(xi)
>φ(xj) (5.13)

It is really fascinating to observe that the definition of the kernel function in Eq. (5.13)
eliminates the necessity of knowing the mapping function φ(·) explicitly. This use
of the kernel function to avoid carrying out φ(·) explicitly is famously known as
the kernel trick. More generally, given a mapping: ϕ : X → F , then a kernel can be
defined as the inner product of the elements of the input space, as follows

K(x,y)←
∑
i

ϕ(xi)ϕ(yi) ∀x,y ∈X (5.14)

Note that it is required that the kernel function fulfills the Mercer’s condition [145]:

∀g(x) such that
∫
g2(x)dx ≥ 0⇒

∫∫
K(x,y)g(x)g(y)dxdy ≥ 0 (5.15)
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Now, by substituting every occurrence of the inner product in Eq. (5.8) with the
kernel function K(xi,xj), the dual problem is rewritten as:

Maximize : W(α) =
∑n

i=1 αi −
1
2

∑n
i,j=1 αiαjyiyjK(xi,xj)

subject to 0 ≤ αi ≤ C,
∑n

i=1 αiyi = 0
(5.16)

For testing a given activity z, the following function is evaluated:

f(z) = 〈w,φ(z)〉+ b =
∑
xi∈S

αiyiK(xi, z) + b (5.17)

where S is the set of support vectors. Likewise, as said before, it is decided that the
activity z belongs to the first class if f(x) ≥ 0 and to the second class otherwise. It
is worthwhile to point out that the dependence of the training process of SVM only
on the value of the kernel function implies that there is no restriction imposed upon
the form of the data points (i.e., xi can be a sequence or a tree, instead of a feature
vector). In practice, there are several commonly used kernel functions, such as:

• Polynomial kernel of degree d:

K(x,y) = (x>y + 1)d

• Radial Basis Function (RBF) kernel (Gaussian kernel) with width σ:

K(x,y) = exp(−‖x− y‖2/2σ2)

• Sigmoidal kernel with parameters κ and θ:

K(x,y) = tanh(κx>y + θ)

Note that the sigmoid kernel only satisfies the Mercer’s condition for certain values
of κ and θ. Finding the optimal parameters for the kernel function represents one
of the most computationally challenging problems in SVM design, which requires
extensive training before the SVM classifier can be set up. The proper choice of
a kernel function is very crucial, but often the trickiest part in building up SVM,
as the kernel function creates the kernel matrix by which all data are summarized.
In practice, an RBF kernel with a reasonable width or a lower degree polynomial
kernel is a good initial try. As a final note on this point, it may be worth pointing out
that SVM models with RBF kernel is closely associated with RBF neural networks,
with the centers of the radial basis functions automatically chosen for SVM.
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5.3.3 SVM multi-class classification

As stated at the outset of this section, SVM originally is a typical binary classifier,
which can only separate two classes. However, in the current application of activity
recognition, data set contains more than two classes (e.g. six class of activities). The
important question that poses itself at this juncture is: how can SVM be extended to
the general case of multi-class classification problems? Unfortunately, this question
is still an open issue, being a hot research subject. A direct solution based on a
single SVM formulation for multi-class classification problems is considered to be
computationally intractable and usually avoided due to several complexities associ-
ated with objective functions, constraints, and the QP formulation. Nevertheless, a
few attempts have been made to generalize SVM to deal with multiclass problems.
In these attempts, the pivotal idea is to use a combination of several binary SVMs
to solve a given multi-class classification problem. Loosely speaking, there are two
popular strategies for achieving this task of multi-class classification. One is the
‘one-versus-all’ (or one-vs.-rest) strategy, where each SVM is trained to distinguish
one class from the rest of the classes, while the other is the ‘one-vs.-one’ strategy
in which all possible combinations of pairs of classes are considered; there is a
single SVM to classify each pair. However, in our view, the optimal technique of
extending binary SVMs to the multi-class classification problem is still an open
question requiring much further investigation by machine learning community.

One-vs-all SVM for activity classification

To construct an m class SVM classifier (m = 6 in our experiments) using the one-vs.-
all strategy, a set of m binary SVMs:{

f (1), f (2), . . . , f (m), f (j) = sgn(g(j)), g(j) : X → R
}

is constructed, each trained to separate one activity class from the remaining (m−1)

classes. To perform the multi-class classification task, these binary classifiers are
put together according to the maximal output before applying the sign function:

arg max
j=1...m

g(j)(x), where g(j)(x) =
n∑
i=1

α
(j)
i yiK(xi,x) + b(j) (5.18)

Note that the signed real-valued value produced by the function g(j)(x) is seen as
the distance from the separation hyperplane to the activity x. This value can also
be considered as a ‘confidence’ value. The higher the value, the more confident
the class label that the activity x belongs to the positive class. Consequently, the
activity x is assigned to the specific class with the highest confidence value.
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One-vs.-one SVM for activity classification

Analogous to the one-vs.-all SVM approach, to construct an m class SVM classifier
using the one-vs.-one scheme, we also require a set of binary SVMs, but the number
of SVMs required in this case is larger (i.e., exactly equal to ` =

(
m
2

)
= m(m−1)

2
). An

SVM is then trained for each possible pair of classes ignoring the activity examples
that do not belong to the classes in question. To classify an unknown activity z, all
discriminant functions of the ` learned SVMs are applied:

f j(z) =
n∑
i=1

αjiyiK(xi, z) + bj, j = 1, 2 . . . , ` (5.19)

Finally, we count the number of times the activity z was assigned to each class label.
The activity is simply assigned to the class whose label has the highest count.

5.4 Naı̈ve Bayes (NB) Classifier

Generally speaking, there are three approaches whereby a classifier can be estab-
lished. The first is to construct a classification rule directly (e.g., SVMs, K-NN,
decision trees, perceptron, etc.). The second is to create a probability model for the
class memberships from the training data (e.g., MLP with cross-entropy cost), while
the third one attempts to build a probabilistic model of data within each class. The
classifier that is generated by either of the first two approaches is referred to as a
‘discriminative’ classifier, while that generated by the third approach is so-called
a ‘generative’ classifier. Additionally, the last two approaches are seen as typical
instances of probabilistic classification. Naı̈ve Bayesian (NB) [146] is a simple prob-
abilistic model based on Bayes’ theorem [147] with strong (naı̈ve) independence
assumptions, or more specifically, independent feature model.

Probabilistic classifiers, such as Naı̈ve Bayes, basically depend upon turning
data into probabilities for classification. As an illustrative example, in Fig. (5.6), the
measurements of some feature x for two classes ω1 and ω2 are depicted. As can be
seen, the members of the first class show a clear tendency to have larger values than
those of the second class; however some overlap between the classes exists. While,
at extremes of the range, it is a straightforward task to predict the correct class for a
value of the feature x, performing the same task in the middle of the range seems
to be challenging or problematic. Statistically speaking, let D be a training activity
dataset containing pre-classified examples:

D = {(x, y) ∈ Rn × {ω1, . . . , ωm}}
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FIG. 5.6. Feature values (x) along with their probabilities for two classes [6].

where x and y is a feature vector of a specific activity and its associate class, respec-
tively. In a simple setting of classification learning, the ultimate goal is to assign the
activity represented by the feature vector x = (x1, . . . , xn)>, to the most probable of
the available classes ω = {ω1, . . . , ωm}, where xi is the value of the i-th attribute. In
general, the classification error can be minimized by computing the Maximum A
posterior (MAP) corresponding to the optimal class:

ω∗MAP ≡ arg max
ωj∈ω

p(ωj|x) (5.20)

The MAP classification rule above shows that the feature vector x is assigned to
class ω∗ where p(ω∗|x) > p(ωj|x), ωj 6= ω∗ ∈ ω. To identify this class, we need to
estimate the conditional probabilities p(ωj|x). Bayes’ theorem states that:

p(ω|x) =
p(x|ω)p(ω)

p(x)
(5.21)

where the previous probabilities are defined as follows
p(ω) : independent probability of ω (i.e. prior probability)
p(x) : independent probability of x (i.e. evidence)
p(x|ω) : conditional probability of x given ω (i.e. likelihood)
p(ω|x) : conditional probability of ω given x (i.e. posterior probability)
Based on Bayes theorem, the MAP class in (5.20) can be computed as follows,

ω∗MAP ≡ arg max
ωj∈ω

p(ωj|x)

= arg max
ωj∈ω

p(x|ωj)p(ωj)
p(x)

(5.22)

= arg max
ωj∈ω

p(x|ωj)p(ωj)
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Note that the quantity p(x) is eliminated from the denominator in (5.22), as the
probability of the data is constant and independent of the class label. Our main
interest is in the optimal class given observed training data x. Assuming a uniform
prior, that is all classes are equally probable a priori, i.e. p(ωj) = p(ωk) ∀ωj, ωk ∈ ω,
then the computation of the posterior is simplified and given by:

ω∗ML = arg max
ωj∈ω

p(x|ωj) (5.23)

In this case, we obtain the so-called the Maximum Likelihood (ML) estimate of the
most probable class, which maximizes the likelihood of obtaining the training data.
Recalling the MAP rule in (5.22), we see that Bayes classification depends on the
joint probability (i.e. likelihood) and the prior probability:

p(ω|x) ∝ p(x|ω)p(ω) = p(x1, . . . , xn|ω)p(ω) (5.24)

Intuitively, the inherent difficulty arising here lies in learning the joint probability
p(x1, . . . , xn|ω). In order to circumvent this difficulty and make the computations
more tractable, the so-called “Naive Bayes independence assumption” that assumes
the probabilities of each attribute value are conditionally independent given the
class is employed. Hence, the joint probability can be computed efficiently as a
sequential product of conditional probabilities:

p(x1, . . . , xn|ω) = p(x1|x2, . . . , xn;ω)p(x2 . . . , xn|ω)

= p(x1|x2, . . . , xn;ω)p(x2|x3, . . . , xn;ω)p(x3, . . . , xn|ω)

=
...

= p(x1|x2, . . . , xn;ω)p(x2|x3, . . . , xn;ω) . . . p(xn−1|xn;ω)p(xn|ω)

≈ p(x1|ω)p(x2|ω) . . . p(xn−1|ω)p(xn|ω)

=
n∏
i=1

p(xi|ω) (5.25)

It should be emphasized here that the conditional independence assumption is al-
most always violated in practice; however NB classifier often performs surprisingly
well anyway, even when the assumption of attribute independence does not strictly
hold. Upon the substitution of the joint probability from Eq. (5.25) in Eq. (5.22),
Naı̈ve Bayes model, depicted in Fig. 5.7, is defined by:

ωNB = arg max
ωj∈ω

(
p(ωj)

n∏
i=1

p(xi|ωj)

)
(5.26)
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P(x1|ω) P(xn|ω)
P(x2|ω)

FIG. 5.7. Naı̈ve Bayes model with the assumption of conditional independence.

Estimating probabilities:

Conditional probabilities can be estimated directly as relative frequencies (i.e., by
the fraction of times the event is observed to nc occur over the total number of
opportunities n). This way may provide poor estimates even when nc is very small.
To get around this problem, conditional probabilities can be estimated by:

P̂ (xi|ωj) =
nc +mα

n+m
(5.27)

where nc is the number of examples for which ω = ωj and x = xi, while n is the
number of training examples for which ω = ωj . The parameter α is a prior estimate
(usually, α = 1

t
for t possible values of xi), and m ≥ 1 is a weight given to prior. And

as to concerns about the priori probabilities of classes p(ωj), they can be directly
estimated by their relative frequencies in the training dataset:

P̂ (ωj) =
#(ωj)∑
j

#(ωj)
(5.28)

where # denotes the count (or frequency) with which the bracketed class occurs in
the training dataset. Consequently, the naı̈ve MAP decision rule can be written as:

ωNB = arg max
ωj∈ω

(
P̂ (ωj)

n∏
i=1

P̂ (xi|ωj)

)
(5.29)

In the case of continuous-valued real features (i.e. numberless values for feature
attributes), the class-conditional probabilities p(x|ω) can be appropriately modeled
by the normal (Gaussian) distribution (Fig. 5.8) N (µ, σ2):

P̂ (xi|ωj) =
1√

2πσij
e
− 1

2

(
xi−µij
σij

)2

(5.30)
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FIG. 5.8. Class-conditional probability distributions of features.

where µij and σ2
ij are the mean (average) and variance of the feature value xi of

activity instance associated with the class ωj , respectively. Note that, in general,
both the mean and the variation of distributions depend on class. Conversely, If
we allow the same variance for all classes, the classification rule would be easier.
According to above analysis and derivations, the main steps involved in the NB
classification algorithm can be simplified as listed in Algorithm 5.2 bellow.

Algorithm 5.2: Naı̈ve Bayes classification algorithm
1. Naı̈ve Bayes Learn(action examples):
foreach target value ωj of action instances do

P̂ (ωj)← estimate p(ωj);
foreach feature value xi of a feature x do

P̂ (xi|ωj)← estimate p(xi|ωj);

2. classify new activity(z)

ωNB = arg max
ωj∈ω

P̂ (ωj)
∏
zi∈z

P̂ (zi|ωj)

Regarding the parameter dimensionality of the NB model, it is not hard to see that
given N data points (i.e. feature vectors of activities) and a model with r parameters
for the probabilities p(xi), the NB model would have a set of mrN + (m − 1)

parameters, where m is the total number of classes.

5.5 Discussion and Conclusion

In this chapter, we have presented and discussed three of the most widely used and
most influential machine learning algorithms (i.e, ANN, SVM and NB) that were
trained and tested separately for the activity features presented in the previous
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chapter. Among the other traditional machine learning models, ANN has been
argued to offer not only a computing schema, but also a conceptual model for non-
parametric modeling of data in human activity recognition and in a variety of other
contexts in which the output and the inputs are related by a non-linear function.
However, the ANN model in its standard form, suffers from a serious inherent
limitation that severely reduces its classification accuracy and its generalization
properties, as its neural units usually employ a standard bi-level function that
produces only two values (i.e. binary responses). The MSNN (Multilevel Sigmoidal
Neural Network) model has been developed to relax this restriction and to allow
the neural units to generate multiple responses. Nevertheless ANN, as a classifier,
generally still has some restrictions, such as the over-fitting phenomena, local
minima, relatively slow convergence during training and the network structure and
parameters are very likely to be problem dependent.

As a relatively new alternative to the existing linear and non-linear machine
learning paradigms, SVM that is based on structural risk minimization of statistical
learning theory has a more rigorous theoretical and mathematical foundation and
there is no local minimum problem. Unlike a lot of traditional ML algorithms,
SVM has been found to possess several prominent characteristics including high
generalization capability, excellent properties in learning limited samples and small
training error; and further it can potentially avoid over-fitting phenomena. How-
ever, when working with large datasets, the learning algorithm tends to be more
complex and quite demanding in terms of computational and memory resources
required to solve the QP problem. In addition, extending SVM to directly handle
the multi-class setting remains an ongoing research goal in machine learning.

An NB is a simple probabilistic classifier based upon applying Bayes theorem
with strong naive independence assumptions and turned out to be an appropriate
choice, especially when the dimensionality of the input space is sufficiently large,
or the amount of data available for training is limited or incomplete. Some of
the strengths of NB (i.e., the main reasons for its popularity) are: it is rapid, sort
of robust to irrelevant features, efficient for applications with numerous equally
important features, and most importantly, it has been shown to be theoretically
optimal when the independence assumptions hold. While NB is presumed to suffer
from poor performance when its basic independence assumption is violated, it was
empirically found that its performance remains favorably comparable to that of its
counterparts, even with the violation of the independence assumption.



CHAPTER 6

Datasets and Experiments

6.1 Introduction

VIDEO datasets for the evaluation of systems of vision-based human activity
recognition consist of a large collection of videos (or video clips) about
the activities of interest. Each video sequence includes an individual

performing a single action or a series of successive actions. All video sequences
belonging to the same action category can be annotated with a categorical label
describing the type of the activity performed within them. As observed from
the literature, researchers have generally taken different perspectives about the
dataset used to evaluate recognition systems. At the very beginning, each research
group has been interested in creating its own datasets for the evaluation of its
techniques and methods. The major problem that arises here is that the comparison
of results obtained with different datasets can be difficult. For this reason and
to avoid this problem, many other researchers [7, 51, 67, 120, 148–150], including
us [8, 123, 124, 151, 152], have preferred to use some common datasets to evaluate
their systems effectiveness. In this case, the comparison with other recognition
methods turns out to be very meaningful and just fair, as all techniques use the
same public dataset and the same experimental settings.

In the literature, there is a variety of benchmark datasets (e.g., KTH [7], Weiz-
mann [2], etc.) commonly used to evaluate activity recognition algorithms. These
datasets differ notably from one to another in many aspects (e.g., the number of
action categories, the number of actions per category, the number of subjects per-
forming actions, camera viewpoints, illumination, occlusion, etc.). In the course of
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this chapter, we will proceed with the experiments based upon the theory from the
preceding chapters, particularly the last three chapters. After this short introduc-
tion, it is appropriate to commence our discussion in the forthcoming section by
providing an overview of two of the most popular action datasets (i.e. KTH [7] and
Weizmann [2]) on which the outputs of this written research are based. Thereafter,
we will explain how the experiments were conducted in details in this work.

6.2 Human Activity Recognition Datasets

An increasing number of datasets are now being made available for object recogni-
tion research with an open licence [153, 154], while the situation for action recog-
nition appears to be slightly different. Unfortunately these datasets are chiefly
designed to be specialized to some extent and focused upon a specific recognition
objective (e.g., the Tulips1 dataset [155] for visual speech recognition and Georgia-
Tech dataset [156] for gait recognition, where scenes involve actions performed by a
total of 20 individuals in different environments). One more example is the CMU
Mobo dataset [157] for gait recognition that contains 25 persons performing four
types of walking action captured from different viewpoints.

6.2.1 KTH action dataset

For testing efficacy of the proposed approaches, we made a decision to use two
of action datasets (i.e., KTH and Weizmann datasets) publicly available free of
restrictions on use for action recognition research. For KTH1 action dataset, it
was first provided by Schuldt et al. [7] in 2004 and has been frequently cited as
one of the most largest datasets in human action recognition literature, so that
it has intensively been used by many authors for the purpose of evaluation and
comparison of their own recognition algorithms [8, 44, 51, 59, 123, 151]. There are
a total of six classes of actions involved in KTH dataset; three “leg actions ” (i.e.,
walking, jogging and running) and three arm actions (i.e., boxing, hand-waving,
and hand-clapping). All videos were taken over homogeneous backgrounds (as
close to homogeneous as possible) with a static camera at a 25fps rate. Each action
is performed by 25 subjects under four different scenarios including:

1KTH is an acronym for the Swedish expression “Kungliga Tekniska Högskolan”; the Royal
Institute of Technology in Stockholm, Sweden and is one of the top engineering schools in Europe.



6.2. Human Activity Recognition Datasets 111

s1 – Outdoors

All outdoor sequences were captured at the Östermalms IP sports-field and the
gravelly field served as a homogeneous background.

s2 – Outdoors with scale variation

In videos involving locomotor activities (i.e., walking, jogging and running), scale
variation was presented by allowing the action subject to begin at a distance and
move diagonally closer toward the camera. By means of camera zooming, the
same effect was created in videos containing non-locomotor activities (i.e., boxing,
hand-waving and hand-clapping).

s3 – Outdoors with different clothes

This effect was produced by asking the action actors to wear a variety of clothing
items, such as a long coat, a backpack, or a scarf fluttering at the back of action
subject. This effect is expected to make recognizing actions more challenging.

s4 – Indoors

In indoor sequences, a bright monochromatic wall was set to be background. All
sequences (in all scenarios) were typically acquired by a 3CCD DV-camera, and then
downsampled to a resolution of 160× 120 pixels represented in 256 grayscale levels.
The authors [158] of the KTH dataset have argued that this low resolution may
be sufficient to reduce the high impact of the camera artifacts on the recognition
results, since the data are internally stored in a lossy MPEG-format by their camera.
All sequences are short and of slightly different length; the average length of a
sequence is approximately four second.

As there are 25 subjects performing six types of activities under four scenarios
and each combination of subject-action-condition was acquired such that to produce
four sequences, numerically a total of 2400 sequences are expected to be produced.
However, the authors have shown that due to several reasons, some sequences
were lost, causing the total number of video sequences to decline to 2391. At this
point, it is worth mentioning that the KTH dataset, to the best of our knowledge,
is considered to be one of the largest datasets in action recognition, which has an
advantage of acquiring action sequences over multiple scenarios. An illustrative
example for each action performed under four different scenarios is given by Fig. 6.1.
As shown in this figure, some variations can be notably observed in each condition,
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Walking Jogging Running Boxing Waving Clapping 

FIG. 6.1. Examples from the KTH action recognition dataset [7].

such as apparent footprints of the action subject in wet conditions, or moving
shadows on the ground in sunny conditions.

6.2.2 Weizmann action dataset

As one of the most widely used activity video dataset, the Weizmann dataset
presented by Blank et al. [2] has emerged in 2005 and then was made publicly
available to activity recognition researchers without a restriction or other access
charge. Weizmann dataset contains relatively simple action-level activities; each
scene involves a single subject performing only one action. This dataset includes 10
different action categories, namely ‘walk’, ‘run’, ‘jump-forward-on-two-legs’ (or shortly
‘jump’), ‘jumping-in-place-on-two-legs’ (or ‘p-jump’), jumping-jack (or ‘jack’), ‘gallop-
sideways’ (or ‘side’), ‘bend’, ‘skip’, ‘wave-one-hand’ (or ‘wave1’) and ‘wave-two-hands’
(or ‘wave2’). Each of these categories is performed by nine subjects, that results in a
total of 90 sequences (or video clips) contained in the dataset. The sequences were
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Bend Jack Jump P-jump Run

Side Walk Wave1 Wave2 Skip

FIG. 6.2. Sample frames form action sequences in the Weizmann dataset [2].

acquired with static camera over static background at a rate of 25 frames/sec (fps),
with a spatial resolution of 180 × 144 pixels, 24 bits per pixel. The sequences are
very short; each lasts only about couple seconds. Fig. 6.2 shows a sample frame for
each action involved in the Weizmann2 action recognition dataset.

6.3 Experiments and Results

Over the course of the forthcoming sections of this chapter, we will describe in
detail a set of experiments conducted using different action representation methods
(i.e. features) described earlier in Chapter 4, with a special emphasis on the obtained
results to confirm the performance of the developed approaches. In all of these

2The Weizmann Institute of Science, one of the worlds leading multidisciplinary research centers,
is a university and research institute located in Rehovot, Israel, which offers only graduate and post-
graduate studies in the sciences (i.e., mathematics, computer science, physics, chemistry, biological
chemistry and biology) [159].
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FIG. 6.3. Main components of the human action recognition framework [8].

experiments, the learning sequences from the action dataset were randomly divided
into two independent subsets, namely, a training set and a test set. The former set
was used to train the classifier, while the latter set was used to test the classifier and
to obtain recognition results. Furthermore, in order to demonstrate the efficiency of
the developed approaches, the results obtained were compared with those of other
similar state-of-the-art methods in the literature.

6.3.1 Activity recognition using fuzzy log-polar histograms and
temporal self-similarities

In this section, we provide description of the implementation and experimental re-
sults of our recognition approach based on fuzzy log-polar histograms and temporal
self-similarities [8] for feature extraction. The working principle of this approach is
schematically described in Fig. 6.3. As shown from the block diagram, the process of
recognition systematically runs as follows. For each action snippet, spatio-temporal
interest points (i.e. keypoints) are first detected using the modified Harris detector
described in Chapter 4. Fig. 6.4 shows an example of spatio-temporal keypoints
detected from different sequences, each showing a person performing a specific
action. To make the recognition process more robust, action snippets are divided
into a number of time-slices defined by Gaussian membership functions. Local
features are then extracted based on fuzzy log-polar histograms. Since motion
features tend to be relevant to the current recognition task, they are integrated into
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the final feature vector fed into the MSNN classifier [160].

6.3.1.1 Pre-processing and keypoint detection

Preprocessing generally aims to prepare the representative features desirable for
knowledge generation. The frames of each video clip containing a certain action
are smoothed by Gaussian convolution with a kernel of size 3 × 3 and variance
σ = 0.5 to wipe off noise and weaken image distortion. A set of spatio-temporal
keypoints is then detected from the video clip using the adaptive Harris detector
(cf. Chapter 4). The obtained keypoints are thereafter filtered such that under
a certain amount of additive noise only stable and more localized keypoints are
retained. This is done in two steps: first low contrast keypoints are discarded, and
second isolated keypoints not satisfying the spatial constraints of feature points are
excluded (as they are out of the spatial scope of a target object).

6.3.1.2 Extracted local features

In this section, the features based on log-polar histograms (discussed in detail in
the first part of Chapter 4) are used to describe the local spatio-temporal shape
characteristics of actions. Initially, each video sequence is partitioned into several
time-slices. These slices are defined by linguistic intervals. Gaussian membership
functions (see Fig. 6.5) are used to describe such intervals. To extract the local
features representing action at an instance of time, the basic idea of the shape
context [122] is modified. The idea behind a modified shape context is based on
computing rich descriptors for fewer keypoints. As described in Chapter 4), to
compute the modified shape context of action pose, a log-polar histogram is overlaid
on the shape of action, as shown in Fig. 6.6. Thus, the fuzzy log-polar histogram
representing action at a time-slice j can be constructed using membership functions:

hj(k1, k2) =
∑

ρi∈bin(k1),
θi∈bin(k2)

µj(ti), j = 1, 2, . . . ,m (6.1)

Each of these histograms is a 2d array of dρ × dη dimensional, where dρ and dη

are the radial and angular dimensions, respectively. By applying a simple linear
transformation on the indices k1 and k2, the 2d histograms can be converted into
one dimensional. The resulting histograms are then normalized to the integral
value of unity to achieve robustness to scale variations. The normalized histograms
can be used as shape contextual information for classification (see Fig. 6.7). Now,
we can directly concatenate these normalized histograms to obtain one feature
vector per video clip. In contrast, in this work, we aim to enrich these histograms
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FIG. 6.4. Sparse feature points (marked in red) extracted form sample sequences containing
actions of running, jogging, walking, boxing, waving and clapping, from top to bottom
respectively; the green cross in each sequence locates the centroid of the extracted points.
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FIG. 6.5. Gaussian membership functions3used to represent the temporal intervals, with
εj = {0, 4, 8, . . .}, σ = 2, and γ = 3.

with the self-similarity analysis after using a suitable distance function to measure
similarity (more precisely dissimilarity) between each pair of these histograms. This
is significant to trim down the dimensionality of feature vectors.

Similarity measure

Video analysis is seldom carried out directly on row video data. Instead feature
vectors extracted from small portions of video (i.e., so-called frames) are used.
Thus the similarity between two video segments is measured by the similarity
between their corresponding feature vectors. For comparing the similarity between
two vectors, one can use several metrics such as Euclidean metric, Cosine metric,
Mahalanobis metric, etc. Whilst such metrics may have some intrinsic merit, they
have some limitations to be used with our approach because we might care more
about the overall shape of expression profiles rather than the actual magnitudes,
which is of main concern in applications such as action recognition. Therefore, we
use a different similarity metric in which the relative changes are considered. Such
a metric is based on Pearson Linear Correlation (PLC), and given by:

ρ(~u,~v) =

∑K
i=1(ui − ū)(vi − v̄)√∑K

i=1(ui − ū)2
∑K

i=1(vi − v̄)2

(6.2)

where ū = 1
K

∑K
i=1 ui and v̄ = 1

K

∑K
i=1 vi are the means of ~u and ~v respectively.

The expression profiles are shifted down (by subtracting the means) and scaled by
the standard deviations (i.e., the data have µ = 0 and σ = 1). Note that Pearson
linear correlation (PLC) is a measure that is invariant to scaling and shifting of the
expression values. The value of PLC is constrained between −1 and +1 (perfectly
anti-correlated and perfectly correlated). This is a similarity measure, but it can be

3Note that in Fig. 6.5, each membership function representing a temporal interval is plotted in a
different color to enable visual discrimination.
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FIG. 6.6. Log-polar histogram representing shape contextual information of actions.

easily enforced to be a dissimilarity measure by:

s(~u,~v) =
1− ρ(~u,~v)

2
(6.3)

Temporal self-similarities

To reveal the inner structure of a human action in a video clip, second statistical
moments (i.e., mean and variance) are not enough. Instead, self-similarity analysis
seems to be a much more appropriate paradigm, which can formally formulated as
follows. Given a histogram series H = 〈~1, ~2, . . . , ~m〉 representing m time-slices of
an action, then the self-similarity matrix is defined by:

S = [sij]
m
i,j=1 =


0 s12 · · · s1m

s21 0 · · · s2m

...
... . . . ...

sm1 sm2 · · · 0

 (6.4)

where sij = s(~i, ~j). The diagonal entries are zero, as s(~i, ~i) = 0. In addition,
since sij = sji, S is a symmetric matrix.

6.3.1.3 Fusing motion information

It follows from the previous sections that the local features extracted based on using
fuzzy log-polar histograms have been emphasized. The use of motion information
has proven to be very beneficial in many applications of object recognition. This
may motivate us to fuse motion information and local features to form the final
MSNN classifier. The motion features extracted here are based on calculating the
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FIG. 6.7. Fuzzy log-polar histograms for motion description: (a) sample sequences with
dense detected interest points for six different actions of running, jogging, walking, boxing,
waving and clapping from top to bottom respectively, (b) the corresponding Fuzzy log-polar
histograms obtained for the actions in (a).

centroid ~c(t) that delivers the center of motion (see Fig. 6.8). Therefore, the features
~υ(t) describing the general distribution of motion are given by

~υ(t) =
δ~c(t)

δt
(6.5)

where the spatial coordinates of ~c(t) are given by:

cx = 1
6λ

∑n
i=1(xi + xi+1)(xiyi+1 − xi+1yi)

cy = 1
6λ

∑n
i=1(yi + yi+1)(xiyi+1 − xi+1yi)

(6.6)

where λ = 1
2
|
∑n

i=1(xiyi+1 − xi+1yi)|. Such features have profound implications, not
only about the type of motion (e.g., translational or oscillatory), but also about the
rate of motion (i.e. velocity). With these features, it would be able to distinguish,
for example, between an action where motion occurs over a relatively large area
(e.g., running) and an action localized in a smaller region, where only small parts
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FIG. 6.8. Center of gravity (marked in red) delivering the center of motion in various video
sequences containing actions of running, walking, siding, waving, bending, and p-jumping
form top to bottom, respectively; the green line in each sequence is to visualize the trajectory
of motion centroid over time.
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of the body are in motion (e.g., boxing). It is worth mentioning that fusing motion
information with regular local features consistently boosts action recognition (i.e.,
leads to an overall increase in recognition rates).

6.3.1.4 MSNN action classification

In order to learn human actions, action recognition is modeled as a multi-class
classification task where there is one class for each action, and the goal is to assign
an action to an individual. There are various supervised learning algorithms by
which the action recognizer can be trained. The MSNN classifier described in
detail in Chapter 5 is used for the current classification task due to its outstanding
generalization capability and reputation of a highly accurate paradigm. The basic
model of MSNN is a multi-layer feedforward network with two hidden layers of 20
neurons each, which is most similar to the traditional MLP network structure but
with improving in the hidden-unit adaptive activation functions (i.e., Multi-level
Activation Functions, see Fig. 5.2 in Chapter 5). In the experiments, six categories
of actions are defined and the objective is to classify each of these actions into
one of the categories. Before the training phase, the classifier begins with random
weights at the connections between the neurons. The learning procedure followed
by the MSNN classifier is very similar to the popular backpropagation procedure
presented in Chapter 5. During the learning stage, the classifier is trained using the
features extracted from the action snippets in the training dataset. The up diagonal
elements of the similarity matrix representing the local features are first transformed
into plain vectors, and then concatenated with the global features of motion. All
feature vectors are finally fed into the MSNN classifier to distinguish all action
classes. After the learning stage is finished, the system is able to recognize and
identify unseen actions. In fact, the MSNN classifier produces a real value between
0 and 1 that can be easily binarized by using a specific threshold.

6.3.1.5 Recognition results on KTH dataset

In this experiment, the proposed approach for action recognition is evaluated on
the KTH dataset. To illustrate the effectiveness of our recognition approach, the
obtained results are compared with those of other similar state-of-the-art methods
in the literature. In order to prepare the simulation and to provide an unbiased
estimation of the generalization abilities of the classification process, the sequences,
for each action, were divided into a training set (two thirds) and a test set (one third).
This was done such that both sets contained actions form all persons. The MSNN
classifier is trained on the training set, while the evaluation of the recognition
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Table 6.1. Confusion matrix obtained on KTH dataset.

ACTION Walking Running Jogging Waving Clapping Boxing

Walking 0.99 0.00 0.01 0.00 0.00 0.00

Running 0.00 0.96 0.04 0.00 0.00 0.00

Jogging 0.07 0.06 0.87 0.00 0.00 0.00

Waving 0.00 0.00 0.00 0.95 0.00 0.05

Clapping 0.00 0.00 0.00 0.00 0.94 0.06

Boxing 0.00 0.00 0.00 0.00 0.02 0.98

performance is performed on the test set. The confusion matrix depicting the
results of action recognition obtained with this method and the comparison of our
results with those of other related studies in the literature are shown in Table 6.1
and Table 6.2 respectively. As follows from the figures tabulated above, most of
actions are correctly classified. Furthermore there is a high distinction between
arm actions and leg actions. Most of the mistakes where confusions occur are
between ”jogging” and ”running” actions and between ”boxing” and ”clapping”
actions. This is intuitively plausible due to the fact of high similarity between
each pair of these actions. From the comparison in Table 6.2, it turns out that the

Table 6.2. Comparison with other state-of-the-art methods on KTH dataset.

Method Recognition rate

Our method 93.6%
Ke et al. [161] 63.0%
Dollár et al. [51] 81.2%
Rapantzikos et al. [64] 88.3%
Rodriguez et al. [42] 88.6%
Jhuang et al. [148] 91.7%
Wang et al. [162] 92.5%
Liu et al. [65] 92.8%
Kim et al. [163] 95.3%

proposed method performs competitively with state-of-the-art methods and its
results compare favorably to those reported in the literature. Notably, the methods
we compare with use similar experimental setups, except the method of Kim et
al. [163] that achieved an impressive accuracy and the spatio-temporal alignment
of video sequences was manually carried out. Hence, the comparison seems to be
fair. Furthermore, using self-similarity analysis trims down the dimensionality of
features, which enables the method to be applicable in real-time implementation.
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Table 6.3. Confusion matrix obtained on Weizmann dataset

ACTION wave2 wave1 walk skip side run pjump jump jack bend

wave2 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

wave1 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

walk 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

skip 0.00 0.00 0.00 0.89 0.00 0.00 0.00 0.11 0.00 0.00

side 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00

run 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00

pjump 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00

jump 0.00 0.00 0.00 0.00 0.00 0.11 0.00 0.89 0.00 0.00

jack 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00

bend 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00

6.3.1.6 Recognition results on Weizmann dataset

We conducted this second experiment was on the popular benchmark Weizmann
action dataset [2]. Again, in order to provide an unbiased estimate of the general-
ization abilities of the method, the leave-one-out cross-validation technique was
used in the validation process. As the name suggests, this involves using a group
of sequences from a single subject in the original dataset as the testing data, and
the remaining sequences as the training data. This is repeated such that each group
of sequences in the dataset is used once as the validation. More specifically, the
sequences of 8 subjects were used for training and the sequences of the remaining
subject were used for validation data. Then the SVM classifiers with Gaussian radial
basis function kernel are trained on the training set, while the evaluation of the
recognition performance is performed on the test set. In Table 6.3, the recognition
results obtained on the Weizmann dataset are summarized in a confusion matrix,
where correct responses define the main diagonal.

From the figures in the matrix, a number of points can be drawn. The majority
of actions are correctly classified. An average recognition rate of 97.8% is achieved
with our proposed method. What is more, there is a clear distinction between arm
actions and leg actions. The mistakes where confusions occur are only between skip
and jump actions and between jump and run actions. This is also due to the high
closeness or similarity among the actions in each pair of these actions. Once more,
in order to quantify the effectiveness of the proposed method, the obtained results
are compared qualitatively with those obtained previously by other investigators.
The outcome of this comparison is presented in Table 6.4.

In light of this comparison, one can see that the proposed method is competitive
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Table 6.4. Comparison with other similar methods on Weizmann dataset

Method Recognition rate

Our method 97.8%
Kläser et al. [149] 84.3%
Dollár et al. [51] 85.2%
Niebles et al. [59] 90.0%
Zhang et al. [164] 92.8%
Bregonzio et al. [62] 96.6%
Fathi et al. [165] 100%

with other state-of-the-art methods. It is worthwhile to mention that all the methods
[51,59,62,149,164] with which our method is compared, except the method proposed
in [165], used similar experimental setups, thus the comparison seems to be most fair.
A final remark concerns the computational burden of the approach that determines
whether or not the proposed method has a potential for real-time application. In
both experiments, the action recognizer comfortably runs at 22 fps on average in
Microsoft Visual Studio 2008 and OpenCV Library (using a 2.8 GHz Intel dual core
machine with 4 GB of RAM, running Microsoft Windows 7 Professional). This
might lend support to the expectation that the method would be viable in real
world settings and amenable to working with real-time applications.

6.3.2 Activity recognition using multiple cues

In this section, we first describe briefly our second approach developed for human
action recognition. Then the experimental design details and the evaluation results
of this approaches are presented. A schematic block diagram depicting the major
components of the approach is shown Fig. 6.9. As shown in the block diagram,
the backgrounds are first subtracted form each video clip by using a Gaussian
mixture background model to extract the silhouettes of the moving human body
parts. For this method to be more robust against time warping effects, action
snippets are temporally divided into a number of overlapping segments defined by
fuzzy membership functions. Then local features are extracted from each temporal
segment based on a variety of shape descriptors. As the motion features intuitively
appear to be more relevant and appropriate to the current action recognition task,
the final features fed into classifiers are constructed using both shape and motion
features. These steps are explained in more detail below.
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FIG. 6.9. Overview of the proposed approach for action recognition.

6.3.2.1 Preprocessing and background subtraction

As well-known, foreground segmentation (or background subtraction) is prone to
noise. Therefore, before segmentation, preprocessing should be done to smooth
action sequences and to get rid of impulse noise and irrelevant data from each
frame of the action sequence. In this work, as a preprocessing stage, a Gaussian
smoothing is used for blurring. Specifically, we use a 3 × 3 Gaussian filter with
σ = 1.4 to reduce noise within each frame of input sequence. The basic principle of
background subtraction in image sequences involves initializing and maintaining
a statistical model to estimate the background of the scene. Moving objects (often
called foreground objects) in the scene are then detected by checking the pixels in
the scene that deviate significantly from the estimated background model [119].
Due to variation in lighting condition, multiple surfaces often appear in the view of
a particular pixel (Fig. 6.10). Therefore, the mixture of gaussians is regarded as the
most sufficient approximation to practical pixel process [166].

In this approach, we use Gaussian mixture model (GMM) to model background.
In this model, each pixel in the scene is modeled using a mixture of K (usually
3-5) Gaussian distributions; we used K = 3 in our experiments. The persistence
and the variance of each gaussian of the mixture are used to determine which
Gaussian probably corresponds to background colors. Pixels whose color values do
not fit the background distributions are detected as foreground or moving object.
More formally, let {X1, . . . , Xt} be the history associated with a pixel at time t,
where Xi(i = 1, . . . , t) are measurements of the RGB values at time i. The recent
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FIG. 6.10. Multi-modal distributions caused by illumination variations over time. Left:
original sequence with two pixels circled in red and blue. Right: scatter plot for color
distributions of the two pixels.

history of each pixel can be modeled reasonably well with a mixture of K Gaussian
distributions. Thus the probability of observing the current pixel value is given by

P (Xt) =
K∑
i=0

ωi,t η(Xt, µi,t,Σi,t) (6.7)

where ωi,t, t. µi,t and Σi,t are an estimate of the weight, the mean value, and the
covariance matrix of the i-th gaussian in the mixture at time t, respectively. η is a
Gaussian probability density function:

η(Xt, µ,Σ) =
1

(2π)
n
2 |Σ| 12

e−
1
2

(Xt−µt)TΣ−1(Xt−µt) (6.8)

Assuming the independence of the color channels, Σi,t can be expressed as: Σi,t =

σ2
i ·I . Thereafter, an on-line approximation is used to update the model in an iterative

manner as follows. At each pixels all parameters of the most matched Gaussian are
updated via an on-line K-means approximation, while only the weight parameters of
others are updated while their means and variances remain unchanged (for further
details, refer to Chapter 3). Sample results of applying the GMM background
subtraction technique to various video sequences of different persons performing
actions of walking, jogging, and running are shown in Fig. 6.11. From the sequences
provided in the figure, one can observe that the GMM background learning model
can be applied to scenes with backgrounds of different luminances.

6.3.2.2 Feature extraction

In this approach, a variety of features are used to describe the segmented silhouettes
of moving human body parts. Such features are thought to play a primary role
regarding the interpretation of human motion and labeling of human actions. Fur-
thermore, the information of motion are also used, which are extracted by following
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FIG. 6.11. Example silhouette sequences resulted from applying GMM to three sequences
including actions of walking, jogging, and running from top to bottom, respectively.

the trajectory of the motion centroid, as described by end of this section. As in the
first approach, before starting the feature extraction process, all action snippets are
temporally split into several time-slices. The time-slices are defined by linguistic
intervals. A Fuzzy membership function is used to describe each of these intervals
(refer to Fig. 4.6 in Chapter 4). All the membership functions are chosen to be of
identical shape on condition that their sum is equal to one at any instance of time t.
For shape features, we consider a variety of invariant descriptors such as Fourier
descriptors, curvature features, invariant shape moments, etc. Below we describe
in more detail how such features are defined and extracted.

Fourier descriptors:

In this work, Fourier descriptors for action silhouettes are obtained based on the
notion of the shape signature zi (cf. Chapter 4) as follows:

ck =
|ak+2|
|a1|

, k = 0, 1, . . . , n− 3 (6.9)

where n is the number of the points of the shape boundary and Fourier transform
coefficients {ak}n−1

k=0 are given by

ak =
1

n

n−1∑
i=0

zi exp(−j2πik
n

), k = 0, 1, . . . , n− 1 (6.10)
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From Eq. (6.9), it can be verified that this choice of coefficients guarantees that the
resulting shape descriptors are invariant to shape translation, rotation and scaling,
and they are independent of the choice of the starting point on the contour.

Moment invariants:

As discussed earlier in Chapter 4, relative and absolute combinations of moments
which are invariant with respect to translation, rotation, and scaling changes are
derived based on the theory of algebraic invariants. Rigorously speaking, the set
of absolute moment invariants contains a set of nonlinear combinations of central
moments invariant under rotation. Specifically, in this work, the following set of
functions that is invariant with respect to object scale, translation and rotation are
chosen as shape feature candidates:

φ1 = µ20 + µ02

φ2 = (µ20 − µ02)2 + (2µ11)2

φ3 = (µ30 − 3µ12)2 + (3µ03 − µ21)2

φ4 = (µ30 + µ12)2 + (µ03 + µ21)2

φ5 = (µ30 − 3µ12)(µ30 + µ12)[(µ30 + µ12)2 − 3(µ03 + µ21)2]

+(3µ21 − µ03)(µ21 + µ03)[3(µ30 + µ12)2 − (µ03 + µ21)2]

φ6 = (µ20 − µ02)[(µ30 + µ12)2 − (µ03 + µ21)2] + 4µ11(µ30 + µ12)(µ03 + µ21)

φ7 = (3µ21 − µ03)(µ30 + µ12)[(µ30 + µ12)2 − 3(µ03 + µ21)2]

+(µ30 − 3µ12)(µ03 + µ21)[3(µ30 + µ12)2 − (µ03 + µ21)2] (6.11)

It should be noted that the above functions can be implicitly deduced by normaliz-
ing central moments up to order three. It is not difficult to verify that the functions
φ1 through φ6 are invariant with respect to rotation and refection, while φ7 changes
sign under refection. In Fig. 6.12, the moment invariants {φi, i = 1, 2, 3, 4, 5, 7} for
actions of walking, jogging, running, waving, clapping are shown.

Curvature features:

In a way similar to the extraction of the Mel Frequency Cepstral Coefficients (MFCC)
features from voice signals, a set of other shape descriptors based on the cepstrum
of the shape curvature can be also extracted. The mechanism works as follows.
First we extract the shape curvature by using Freeman chain code [134]. Then,
the cepstrum of the curvature signal is obtained, and finally a certain number (e.g.
n = 10) of the largest coefficients can be chosen to be added to the feature vector.
These steps have been described in detail in Chapter 4.
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FIG. 6.12. Moment invariants values for different actions (i.e., walking, jogging, running,
boxing, waving, and clapping).

Moment-based features:

Besides the moment invariants, a set of other features can be derived from the
central moments. More specifically, given the central moments of second order
µ11, µ02 and µ20, the covariance matrix (corresponding to inertial tensor, refer to
Chapter 4) containing information about the object’s orientation is defined as

Σ =

[
µ́20 −µ́11

µ́11 µ́02

]
(6.12)

where µ́20 = µ20
µ00
, µ́02 = µ02

µ00
, and µ́11 = µ11

µ00
. Thus, the eigenvalues of the covariance

matrix proportional to the squared length of the eigenvector axes is given by

λ1,2 =
µ́02 + µ́20 ±

√
4µ́2

11 + (µ́02 − µ́20)2

2
(6.13)
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In this way, the orientation can be determined from the angle of the eigenvector
associated with the largest eigenvalue:

φ =
1

2
arctan

(
2µ́11

µ́20−µ́02

)
(6.14)

Other parameters such as the roundness κ and eccentricity ε seem to be very close.
The scaled roundness κ can be determined by

κ =
`2

4πΛ
(6.15)

where Λ and ` denote the area and perimeter of the shape, respectively. ε can be
readily calculated from the second-order central moments (or eigenvalues) using:

ε =
(µ́20 − µ́02)2 − 4µ́2

11

(µ́20 + µ́02)2
=

√
1− λ2

λ1

(6.16)

where λ1 > λ2. The variation of orientation ϕ, roundness κ, and eccentricity ε along
time for different actions are shown in Fig. 6.13 form top to bottom, respectively.

Thereafter, the feature values of each action snippet are normalized to fit a
zero-mean and a unit variance distribution. The normalized vectors obtained can
now be used as shape contextual information for classification and matching. Many
approaches in various object recognition applications directly combine these vectors
to get one final vector per video and classify it using any classification algorithm.
It is worth mentioning that concatenating all the feature vectors extracted from all
frames of one action snippet would result in a very large feature vector that might
be less likely to be classified correctly. To circumvent this problem and to reduce
the dimensionality of extracted feature vectors, the feature vectors of each action
snippet in a time-slice are weighted and averaged:

~µ =
1

τ

τ∑
t=1

wt~xt (6.17)

where wt = f(t;α, β, γ) is the weighting factor, f(.) is Gaussian membership func-
tion, and τ is the number of the feature vectors in the time-slice. Finally, the feature
vectors resulting at each of the time-slices are concatenated to yield the final feature
vector for the action snippet.

6.3.2.3 Motion features

From the discussion in the previous subsections, it follows that the local shape
features obtained at each time-slice are emphasized. In the other hand, motion
information have proven to be powerful cues for recognition in many applications
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FIG. 6.13. Moment-based features for different categories of actions
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FIG. 6.14. Results for motion features: magnitude ρ (top row) and phase θ) (bottom row)
extracted from action sequences.

of object recognition. This motivate us to enrich the shape features by fusing the
motion information to form the final action vector fed to the NB classifier. All
the motion features extracted here are based on calculating the center of mass
~z that delivers the center of motion. Thus, the temporal features describing the
distribution of motion are given from:

~υ = lim
∆t→∞

∆~z(t)

∆t
(6.18)

where ~z = ( 1
n

∑n
i=1 xi,

1
n

∑n
i=1 yi, ) and n is the total number of moving pixels in

the frame. Alternatively, by using spatial moments, ~υ = (M10/M00,M01/M00), as
described in detail in Chapter 4. These features are very informative not only
about the type of motion (e.g., translational or oscillatory), but also about the rate
of motion (i.e., velocity). With these features, it would be able to distinguish, for
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FIG. 6.15. Class-conditional probability density functions (pdfs).

example, between an action in which motion occurs over a relatively large area (e.g.,
running) and an action localized in a smaller region, where only small parts are in
motion (e.g., boxing). Hence significant improvements in recognition performance
are expected to be achieved by fusing shape and motion features. Fig. 6.14 shows
sample results for motion features extracted from several action sequences, namely
walking, jogging, running, boxing, waving, and clapping.

6.3.2.4 Naı̈ve Bayes classification

In order to classify human actions, the task of action recognition is formulated as a
multi-class learning problem where there is one class for each action and the main
goal is to assign an action to an individual in each video sequence. There are various
supervised learning algorithms by which an action recognizer can be trained. With
this approach, Naı̈ve Bayesian (NB) classifier is used.

As stated in Chapter 5, the main advantage of the NB classifier is that it requires
a relatively small amount of training data to estimate the parameters (means and
variances of the variables) necessary for classification. In spite of its naive design
and apparently over-simplified assumptions, NB classifier has been shown to work
quite well in many complex real-world situations [167]. Roughly speaking, given
a final feature vector x extracted from an action sequence, posteriori probabilities
can be calculated directly from training action snippets by using Bayes rule. Strictly
speaking, Bayes’ rule is a fundamental formula in decision theory, which is deduced
straightforwardly from the definition of conditional probability:

p(ωi|x) =
p(x|ωi)p(ωi)

p(x)
(6.19)

where p(x) =
∑K

i=1 p(x|ωi)p(ωi). p(ωi|x) is the posteriori probability of observing
the class ωi given the feature vector x. p(ωi) is the priori probability of observing the
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Table 6.5. Confusion matrix of the recognition results

ACTION Walking Jogging Running Boxing Waving Clapping

Walking 0.99 0.01 0.00 0.00 0.00 0.00
Jogging 0.07 0.80 0.13 0.00 0.00 0.00
Running 0.01 0.08 0.91 0.00 0.00 0.00
Boxing 0.00 0.00 0.00 0.94 0.01 0.05
Waving 0.00 0.00 0.00 0.00 0.99 0.01
Clapping 0.00 0.00 0.00 0.02 0.00 0.98

class ωi, p(xi|ωi) is the conditional density and K is the total number of classes. For
this recognition task, it is assumed that each action snippet is uniquely described
by the value of its a posteriori probability. Furthermore, all the priori probabili-
ties are assumed to be equal, and thus find the density functions for each of the
classes, where each class refers to an action. Thus, K such densities are found,
corresponding to the K different actions. Having obtained these K values for each
of the classes, the most likely action is given by

P = max[p1, p2, . . . , pK ] (6.20)

where P is the probability of the most likely class and p1, p2, . . . , pK are the probabil-
ities of K different action categories (i.e., K = 6 in this experiment). As a simple but
concrete illustrating example, Fig. 6.15 shows two hypothetical probability density
functions (pdfs) depicting the probability density of measuring a particular feature
value x given the video sequence is in action class ωi. The two curves in the Fig.
describe the difference in x of populations of two types of action.

6.3.2.5 Numerical results and comparison with competitors

This approach has been experimentally evaluated on KTH benchmark action dataset.
To assess the reliability of the approach, the obtained results were also compared
with those reported in the literature [42, 51, 64, 65, 148, 161, 162]. In order to prepare
the experimentation and to provide an unbiased estimation of the generalization
abilities of the action classification process, the action sequences were divided with
respect to the subjects into a training set and a test set. This was done such that
both sets contained actions form all persons. The NB classifier was trained on the
training set, while the evaluation of the recognition performance was performed
on the test set. The confusion matrix depicting the results of action recognition
achieved by the proposed method is shown in Table 6.5.

From the figures in this Table, a number of points can be drawn. The majority
of actions are correctly classified. Additionally, there is a clear distinction between
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Table 6.6. Comparison with some well-known studies in the literature.

Method Recognition rates
Our method 93.5%
Liu et al. [65] 92.8%
Wang et al. [162] 92.5%
Jhuang et al. [148] 91.7%
Rapantzikos et al. [64] 88.3%
Dollár et al. [51] 81.2%
Rodriguez et al. [42] 88.6%
Ke et al. [161] 63.0%

arm actions and leg actions. Most of the mistakes where confusions occur are
between ”jogging” and ”running” actions and between ”boxing” and ”clapping”
actions. This is intuitively plausible due to the fact of high similarity between
each pair of these actions. To assess the efficiency of the proposed method, the
obtained results have been compared with those of other previously published
studies in the literature, as shown in Table 6.6. From this comparison, it turns out
that our approach performs competitively with other state-of-the-art approaches
and its results compare favorably with previously published results. Notably all
the methods that we compared our method with have used similar experimental
setups, thus the comparison is meaningful.

6.3.3 Action recognition from chord-length-function features

The schematic diagram of the proposed approach for action recognition based on
chord-length function features is shown in Fig. 6.16, while the details of the inner
workings of each rectangle in that figure are given in the subsequent subsections.

6.3.3.1 Preprocessing and background subtraction

For later successful feature extraction and classification, the reliable features need
to be emphasized. To assist in achieving this goal and to obtain accurate and
representative features suitable for recognition and analysis, video sequences are
initially preprocessed to reduce noise and prepare them for further processing (e.g.,
segmentation). More specifically, upon receipt of action sequences, the frames of
each sequence are first smoothed with a 2D Gaussian filter of size 3×3 and standard
deviation equal to 0.5 to reduce noise and weaken image artifacts. For background
substraction, in a manner similar to that described in the previous approach, a
Gaussian mixture model (GMM) is used to estimate the background.
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FIG. 6.16. Workflow of the proposed approach for action recognition.

6.3.3.2 Finding shape border

A shape border (or contour) is simply an outline representing or bounding the
shape of object of interest. Therefore, the ability of extracting contours out of
segmented body parts (i.e., silhouettes) plays a key role in the process of tracking
pose features and recognizing human motion, action, and events in video sequences.
This subsection is to briefly describe the method we used for the extraction and
further manipulation of shape borders. Broadly speaking, let F = {fij} be a
silhouette segmented out of a sequence of action. Initially, set NBD to 1, where NBD
stands for the sequential number of the current shape border). Then, the silhouette
is scanned with a TV raster and the steps given as pseudocode in Algorithm 6.1 [168]
are performed for each pixel such that fij 6= 0. Each time a new row in the silhouette
is scanned, we reset LNBD4 to 1. Fig. 6.18 shows sample shape borders (shown in
red) extracted from action sequences.

6.3.3.3 Feature extraction

Similarly to the approaches described before, the feature extraction is initialized by
dividing each video sequence into several time stages in order to reduce feature
dimensionality. These states are defined by vague, linguistic intervals. Gaussian
membership functions (see Fig. 6.5) are used to describe the temporal intervals.
Note that the membership functions are chosen to be of identical shape on condition
that their sum is equal to one at any instance of time. By using such fuzzy functions,

4In Algorithm 6.1, the LNBD stands for the sequential number of the shape border encountered
most recently and pixels with densities 0 is called the 0-pixel.
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Algorithm 6.1: Finding shape border algorithm.
Input :A binary picture (or silhouette) F = {fij}.
Output :A set of shape borders (or contours) of the silhouette.
while bottom-right corner of the silhouette not reached do

if fij = 1 and fi,j−1 = 0 then
decide the pixel (i, j) ∈ OB (outer border);
NBD← NBD +1;
(i2, j2)← (i, j − 1);

else
if fij = 0 and fi,j+l = 0 then

decide (i, j) ∈ HB (hole border);
NBD← NBD +1;
(i2, j2)← (i, j + 1);
if (fij > 1) then

LNBD← fij ;

Go to L;
From (i2, j2), search clockwise for a nonzero pixel in N4(i, j) or N8(i, j) (see
Fig. 6.17);
if nonzero pixel found then

(i1, j1)← first found nonzero pixel;
else

fij ← − NBD;
Go to L2;

(i2, j2)← (i1, j1);
(i3, j3)← (i, j);

L1: From the next element of (i2, j2), look counterclockwise for a nonzero pixel
in N4(i3, j3) or N8(i3, j3);
if nonzero pixel found then

(i4, j4)← 1st nonzero pixel;

if (i3, j3 + 1) is 0-pixel then
fi3,j3 ← −NBD;

else
if (i3, j3 + 1) is not 0-pixel and fi3,j3 = 0 then

fi3,j3 ← NBD;

if (i4, j4) = (i, j) and (i3, j3 + 1) = (i1, j1) then
Go to L2;

else
(i2, j2)← (i3, j3);
(i3, j3)← (i4, j4);
Go back to L1;

L2: if fij 6= 1 then
LNBD← |fij|;
Resume the raster scan form (i, j + 1);
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FIG. 6.17. Pixel connectivity. Left:4-Neighborhood, Right: 8-Neighborhood.

not only can temporal information be easily extracted, the performance decline
due to time warping effects can also be nullified. As discussed in Chapter 4, given
a shape, k/2 CLFs (i.e. chord-length-functions) can be defined by dividing the
shape border into k arcs. These functions are invariant to translation, rotation, and
scaling. However, like other shape descriptors, these descriptors are not sufficiently
compact. In addition, they depend constantly on a reference point whereby the
shape border is parameterized. This dependence is simply because the contour is
closed and any point on the contour can be used as a reference point, thus the CLFs
might be changed. In order to avoid these problems and for convenience, the mean
µr and variance σr of the CLFs are used

µr =
1

n

n−1∑
i=0

λ(i)
r σr =

1

n− 1

n−1∑
i=0

(λ(i)
r − µr)2 (6.21)

As an example the CLFs based features (as a shape descriptor) obtained form several
video sequences of persons performing different actions are shown in Fig. 6.19. The
CLF descriptor of shape (at time t) can be written as

Ft = 〈µ1, σ1, µ1, σ1, . . . , µ k
2
, σ k

2
〉 (6.22)

To obtain the CLFs descriptor of an action, we first obtain the CLFs descriptor for all
poses of the action. As each action snippet was divided into a number of time-slices.
Thus, the CLFs descriptor of an action pose is given by:

pj =
1

τ

τ∑
t=1

Gj(t)Ft, j = 1, 2, . . . ,m (6.23)

where τ is the length of temporal state. Accordingly the final CLFs descriptor of a
given action can be constructed by catenating all the CLFs descriptors of its temporal
poses. The resulting feature vectors (i.e., CLFs descriptors) are then normalized
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FIG. 6.18. Sample shape border (outlined in red) used in the experiments; the yellow cross
within each shape indicates the centroid of the shape border.

to the integral value of unity. The normalized feature vectors can be exploited as
shape descriptors for classification and matching.

6.3.3.4 Adding motion features

Global features of motion have proven to be advantageous in many applications of
object recognition. This encourage us to extend the idea and fuse motion features
and CLFs features to form the final SVM model. The motion features are based
on calculating the center of of gravity (i.e., centroid) that delivers the center of
motion and is given by Eq. (6.18). It has experimentally been established that the
motion features provide significant information not only about the type of motion,
but also about the rate of motion (i.e., velocity). With these features, it would be
able to distinguish, for example, between an action in which motion occurs over
a relatively large area (e.g., running) and an action localized in a smaller region,
where only small parts of the body are in motion (e.g., boxing).

6.3.3.5 Action classification using SVM

In this section, we formulate the action recognition task as a multi-class learning
problem, where there is one class for each action, and the goal is to assign an action
to an individual in each video sequence. There are various supervised learning
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FIG. 6.19. Chord-length functions (CLFs) descriptors: (a) sample video sequences of
persons performing different actions; (b) CLFs descriptors obtained for the sequences in (a).

algorithms by which an action recognizer can be trained. Support Vector Machines
(SVMs) [137] are used in our framework due to their outstanding generalization
capability and reputation of a highly accurate paradigm.

In this approach, six classes of actions are defined. Several one-vs-all SVM clas-
sifiers are trained using the features extracted from action snippets in the training
dataset. The up diagonal elements of the temporal similarity matrix representing
the shape features are first transformed into plain vectors based on the element
scan order. The motion feature vectors are then catenated with the shape features
vectors to generate the hybrid feature vectors. Finally, the final feature vectors are
fed into SVM classifiers for the final decision.
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Table 6.7. Confusion matrix of the proposed method

ACTION walking running jogging boxing waving clapping

walking 0.95 0.01 0.04 0.00 0.00 0.00

running 0.00 0.96 0.04 0.00 0.00 0.00

jogging 0.03 0.08 0.89 0.00 0.00 0.00

boxing 0.00 0.00 0.00 0.93 0.03 0.04

waving 0.00 0.00 0.00 0.01 0.96 0.03

clapping 0.00 0.00 0.00 0.00 0.03 0.97

6.3.3.6 Numerical results and comparison with the state-of-art

The proposed method has been evaluated on the KTH dataset. To illustrate the
effectiveness of this approach, the obtained results have been compared with those
of other similar state-of-the-art methods. In order to prepare the experiments and
to provide an unbiased estimation of the generalization abilities of the classification
process, the sequences for each action, were divided into two subsets viz. training
set (two thirds) and test subset (one third). The training subset is used to train
the SVM classifier, while the test subset is used to evaluate the performance and
generalization ability of the classifier in the activity recognition task. The confusion
matrix showing the recognition results achieved by the proposed method is given
in Table 6.7, while the comparison of the obtained results with those obtained by
other widely quoted methods in the literature is shown in Table 6.8.

Table 6.8. Comparison with state-of-the-art methods

Method Recognition rates
Our method [169] 94.3%
Liu et al. [65] 92.8%
Wang et al. [162] 92.5%
Jhuang et al. [148] 91.7%
Rodriguez et al. [42] 88.6%
Rapantzikos et al. [64] 88.3%
Dollár et al. [51] 81.2%
Ke et al. [161] 63.0%

As follows from the figures tabulated in Table 6.7, most actions are correctly
classified. Most of the mistakes where confusions occur are between ”jogging” and
”running” actions and between ”boxing” and ”clapping” actions. This is intuitively
plausible due to the fact of high similarity between each pair of these actions.
From the comparison given by Table 6.8, it turns out that our method performs
competitively with other state-of-the-art methods and its results compare favorably
with previously published results. It may not be irrelevant to mention here that the
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state-of-the-art methods with which we compare our method have used the same
dataset and the same experimental conditions, therefore the comparison seems to
be quite fair. Finally, the experiments were performed utilizing a 2.8 GHz Intel dual
core machine with 4 GB of RAM.

6.4 Discussion and Conclusion

In this chapter, two publicly benchmark action recognition datasets (i.e., KTH
and Weizmann datasets) have first been described. The first one includes video
sequences of 25 subjects performing six different actions under four different sce-
narios, while the second one consists of a total of 90 video sequences showing
nine different persons, each performing 10 actions. These datasets have been used
for the evaluation of all the proposed approaches for activity recognition, whose
results have been presented in the later sections of this chapter. The obtained re-
sults on these datasets have shown that the presented approaches achieve good
performances with respect to the state-of-the-art methods. Consequently, it may be
concluded that the approaches are likely to be practicable to achieve the goal of this
research. In the first approach, a fuzzy framework for representing and recognizing
human activities in video sequences has been introduced. Temporal shape vari-
ations are accurately captured based on fuzzy log-polar histograms. In addition,
a reliable neural model, the MSNN (Multi-level Sigmoidal Neural Network) as a
classifier is used for the task of activity recognition. On the KTH and Weizmann
action datasets, this approach could retrieve activities with average recognition
rates of 94.3% and 97.8% respectively.

As a second approach, we have developed a method for human activity recog-
nition based on multiple cues. As shape features, a variety of shape descriptors
both boundary-based (e.g., Fourier descriptors, curvature features, etc.) and region-
based (e.g., invariant Moments, Moment-based features, etc.) have been employed.
The well-known NB (Naı̈ve Bayes) classifier has been trained automatically in the
feature space for activity classification. The simplicity and computational efficiency
of the employed features allow this approach to be more amenable for real-time
implementation. On the basis of the third approach, a new methodology for human
activity recognition has been introduced, based on chord-length shape features. In
this work, a compact and computationally efficient shape descriptor; the chord-
length shape features is constructed using 1-D chord-length functions. The results
obtained with this approach have also compared favorably with the best reported
in the literature, while maintaining real-time guarantees.





CHAPTER 7

Towards Recognizing Actions in Real-world Videos

7.1 Introduction

IN the action recognition literature, there is a variety of benchmark datasets
that have been created for the purpose of experimentation and evaluation. As
mentioned in the previous chapter, most of these datasets are chiefly designed

to be specialized to some extent and focused upon a specific recognition objective,
such as, Tulips1 dataset [155] for visual speech recognition, Georgia-Tech [156] and
CMU Mobo [157] datasets for gait recognition, and KTH [7] and Weizmann [2]
datasets for action recognition described in detail in the previous chapter.

Recognizing human actions in unconstrained settings is a longstanding and
extremely challenging problem in computer vision and many of its related appli-
cations, due to a variety of challenging real-world conditions, including partial
occlusion, substantial background clutter, drastic illumination variation, large intra-
class variability within each class, extreme pose variation, and changes in scale,
viewpoint, and appearance. Specifically, this chapter focuses on the recognition
of human actions in real-world scenarios which is an important but challenging
problem with prosperous applicability into human-computer interactions and secu-
rity industry. Real-world datasets for the evaluation of human action recognition
systems generally consist of a large collection of real-world video streams (or video
clips) about the actions of interest. Each video stream includes an individual (i.e.
action subject) performing a single action or a series of successive actions. All
videos belonging to the same action category can be annotated with a categorical
label describing the type of action performed within them.

147
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In this chapter, we are interested in creating our own dataset for the purposes of
experimentation and evaluation. It is very important to keep in mind that in this
case a direct literature-based comparison of our results reported here with those of
other action recognition approaches turns out to be not possible, due to difference
in employed action datasets and experimental settings. During the course of the
chapter, we will also proceed with our experiments based upon the theories and
concepts presented in previous chapters (particularly Chapters 4 and 5).

The rest of the chapter is organized as follows. Section 7.2 introduces the new
dataset that we use for this research, and present some interesting characteristics
of this dataset. In Section 7.3, a detailed description for our proposed framework
for action recognition in real-world streams is provided, and the results of some
preliminary experiments conducted to evaluate the stability of the recognition
system and its effectiveness in recognizing actions are presented and discussed.
Finally, in Section 7.4, we summarize our results and draw conclusions.

7.2 Dataset

After the brief introduction above, it is time now to commence our discussion,
in this section, with a description of the action dataset on which the experiments
reported in this chapter are conducted. Thereafter, in the forthcoming sections, we
present detailed descriptions of how the experiments were carried out and what
their results show. To evaluate the performance of the proposed approach for action
recognition in real world scenarios, we decided to crate our own realistic action
recognition dataset (hereinafter called as IIKT1 action dataset) which is going to
be publicly available free of restrictions on use for action recognition research on
the Web very soon. Analogous to the KTH [7] action dataset, a total of six action
categories are contained in the IIKT action dataset; three “leg actions” (i.e., walking,
jogging, and running) and three “arm actions” (i.e., boxing, hand-waving, and
hand-clapping). The video sequences were typically acquired by a Canon IXUS
65 digital camera and stored in a resolution of 640× 480 pixels represented in 256
grayscale levels. We believe that this resolution will likely be sufficient to reduce
the high impact of the camera artifacts on the recognition results, since the data
are internally stored in a lossy MPEG-format by the camera. Contrary to the KTH
dataset, the sequences in IIKT dataset were taken over various non-homogeneous
backgrounds at 30 fps frame rate. Within the sequences, actions are performed

1IIKT is an acronym for the German expression: “Institut für Informations-und
Kommunikationstechnik”; the Institute for Information Technology and Communications at OvG
University Magdeburg, Germany and is one of the largest engineering schools in Germany.
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by six subjects, each subject was asked to wear a different clothing item. This
is expected to make recognizing actions slightly more challenging. Each action
sequence was then segmented into shorter video clips of 53sec duration which we
termed ’action snippets’. Fig. 7.1 shows example frames from action sequences of
different categories represented in the IIKT dataset.

7.3 Action Recognition via Fuzzy Directional Features

In this section, we present a new approach for action recognition, based on a modi-
fied fuzzy version of HOF (Histogram of Optical Flow), so-called fuzzy histogram
of optical flow as a new motion descriptor to model action in a realistic scene as
a time-series of fuzzy directional features. A set of one-vs.-all SVM classifiers are
trained on these features for the action classification. This approach was evaluated
on our dataset which incorporates a collection of real-world video data.

7.3.1 Motion estimation

To detect moving objects (i.e., action subjects), we use an algorithm that works based
on the same principles as the two-frame motion estimation algorithm presented by
Farnebäck in [170] that computes the optical flow based on polynomial expansion.
The key idea of the algorithm is to approximate a neighborhood of each pixel in a
frame by a quadratic polynomial:

f(x) ∼ p(x) = x>Ax + b>x + c (7.1)

where A,b, and c are the expansion coefficients that are determined using a
Gaussian-weighted least-squares fitting of the signal f by the polynomial p. The
new frame can be thus constructed from the previous one by a global translation d:

f̃(x) ∼ p(x− d)

= (x− d)>A(x− d) + b>(x− d) + c

= x>Ãx + b̃>x + c̃ (7.2)

It is easy to see that these two sets of expansion coefficients are related by

Ã = A,

b̃ = b− 2Ad,

c̃ = c+ d>Ad− b>d. (7.3)
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FIG. 7.1. Sample frames from the action sequences in IIKT action dataset.
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Looking at Eq. (7.3), one realizes that a solution for the translation d exists only if

d =
1

2
A−1(b̃− b) (7.4)

For practical considerations, the global polynomial in Eq. (7.4) are replaced with
local polynomial approximations. Thus, giving two sets of expansion coefficients
{A1(x),b1(x), c1(x)} and {A2(x),b2(x), c2(x)} for the first and second image frames
respectively, it is possible to do a polynomial expansion of both frames. Ideally, this
yields A1 = A2, however, in practice one is forced to settle for the approximation:

A(x) =
A1(x) + A2(x)

2
(7.5)

and further the following assumption

∆b(x) = −1

2
(b2(x) + b1(x)) (7.6)

is made, which leads to the primary constraint

A(x)d(x) = ∆b(x) (7.7)

where d(x) implies that the global displacement in Eq. (7.2) is replaced with a
spatially varying displacement field. Under the assumption that the displacement
field is only slowly varying, information over a neighborhood Ω of each pixel can
be integrated. Consequently, d(x) satisfying Eq. (7.7) and minimizing∑

∆x∈Ω

w(∆x)‖A(x + ∆x)d(x)−∆b(x + ∆x)‖2 (7.8)

can be found, where w(∆x) is a Gaussian weight function. Therefore, the minimum
value is given by

e(x) =
(∑

w∆b>∆b
)
− d(x)>

∑
w∆A>∆b, (7.9)

which is obtained for

d(x) =
(∑

w∆A>∆A
)−1∑

wA>∆b (7.10)

It was shown, in [170], that in many cases it might be advantageous to introduce a
certainty weight c(x + ∆x) to equation (7.8) that can be most conveniently achieved
by scaling A and ∆b. Now, to detect moving objects, particularly people (i.e.,
action subjects), the displacement field should be parameterized according to some
motion model (e.g., affine motion model or eight-parameter model). For the eight-
parameter model in 2D, the motion field can be expressed as,

d = Sp (7.11)
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where,

S =

(
1 x y 0 0 0 x2 xy

0 0 0 1 x y xy y2

)
,

p = ( a1 a2 a3 a4 a5 a6 a7 a8 )> (7.12)

Substituting from Eq. (7.11) into Eq. (7.8) yields the weighted least squares problem:∑
i

wi‖AiSi −∆bi‖2 (7.13)

which in turn has the solution

p =

(∑
i

wiS
>
i A>i AiSi

)−1∑
i

wiS
>
i A>i ∆bi (7.14)

The actual solution involves the accumulation of the coefficients of the 8× 8 system
of equations (7.14) over all points and then solving for the parameters. To improve
the chances for a better displacement estimate in the algorithm, it is crucial to
exploit some a priori knowledge about the displacement field that allow comparing
the polynomial at x in the first signal to the polynomial at x + d̃(x) in the second
signal, where d̃(x) is the a priori displacement field. In this case, A(x) and ∆b(x)

introduced in Eq. (7.5) and Eq. (7.6) are substituted by

A(x) =
A1(x) + A2(x̃)

2
(7.15)

∆b(x) = −1

2
(b2(x̃) + b1(x)) + A(x)d̃(x) (7.16)

where x̃ = x + d̃(x).

7.3.2 Optical flow pruning

It has to be admitted that despite over two decades of intensive research, most
existing methods for the extraction of optical flow still lack robustness, and optical
flow estimates are relatively inaccurate, particularly with respect to flow magnitude.
This might be attributed to the large residual error in solving the equations for
optical flow. Therefore, pruning of computed flow values appears to be a clue to
accurate flow fields which in turn allows for better motion estimation. To tackle this
problem, we introduce a particular kind of filter that straightens up noisy vectors in
the flow field, while maintaining significant ones.

In our work, we perform this type of pruning stepwise. In other words, it
involves two passes, each based on the magnitude (Euclidean length) of optical
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FIG. 7.2. Sample pruning results for a setup with λ = 0.25`; the vectors labeled in yellow
are accepted as valid flow components, while the vectors labeled in green are considered as
noisy flow components and thus filtered out.

flow vectors to separate relevant from irrelevant flow vectors. In the first pass, we
attempt to remove all flow vectors whose magnitudes are either relatively very
small or very large. For this purpose, two predefined thresholds (i.e., minimum
and maximum thresholds) are used that control the filtering of flow vectors in this
step. Formally speaking, given two thresholds ρ1 and ρ2, a flow vector ~υ = [x, y]>

is only accepted as valid if it satisfies the validity constraint: ρ1 < ‖~υ‖ < ρ2, where
‖ · ‖ denotes the magnitude of the flow vector with respect to the Euclidean metric;
otherwise it is assumed to be a noisy flow component and thus removed. In our
experiments, when ρ1 and ρ2 are given 5 and 20 respectively, satisfactory results can
be achieved. We go then with a second pass of our pruning based on the Euclidean
distance between the centroid (center of mass) of flow field and the flow points.
Therefore, in this pass of pruning, a vector ~v is treated as a valid flow component if
the Euclidean distance between the center of flow and the vector being analyzed
does not exceed a specific threshold λ. Formally, this is expressed as:

‖~v − ~c‖ < λ (7.17)

where ~c is motion regions’s centroid. From our experiments, we see that setting the
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value of λ at 25% of the average of image width and height, ` = (w + h)/2 gives an
overall good pruning performance (see Fig. 7.2 for visual examples).

7.3.3 Directional feature extraction

As demonstrated in the literature review in Chapter 2, several existing theoretical
approaches to action recognition tend to put much more emphasis on providing
practical methods which are consistently applicable only to various joint angles
acquired from motion capture data. However, when applying these approaches
to video data, we are regularly faced with the complex problem of segmenting
and tracking of human joints. This problem is considerably more challenging and
error-prone, particularly in dynamically complex environments where the tracking
objects frequently undergo large changes in pose, scale, and lighting conditions.

Motivated by the potential benefits in performance of histogram of features
(e.g. HOG [58]) for object recognition, in this work, we propose to compute a new
motion-related descriptor based on optical flow analysis. However, most optical
flow computations turn out to be most sensitive to background noise, and changes
in scale and/or directionality of motion. Furthermore, the number of moving pixels
is subject to change with time. Due to these restrictions, raw values of optical flow
would likely be less suitable or unsuitable as features for motion analysis. In order
to overcome these difficulties, we can here use the characteristics of distribution
of optical flow as features to describe motion. As a matter of fact, one can see that
the motion activity of an individual moving in a scene with a static background
can be characterized fully by its own self-induced optical flow profile. In Fig. 7.3,
sample optical flow patterns for a sequence showing a person performing actions
of walking, jogging, running, boxing, waving, and clapping are shown.

The main thrust of our work is to develop a new descriptor based on improved
optical flow measurements over a spatio-temporal volume centered on a human
figure to represent actions. An SVM classifier is trained on these descriptors to
classify actions. To generate a robust and discriminative motion descriptor invariant
to pose variation and directionality of motion, two aspects should be kept in mind,
one referring to the dependency of the observed flow profile on the scale of motion
activity, the other relating to the dependency of the orientation of optical flow on
the directionality of motion. Moving from these considerations and requirements,
we propose here the FHOF (Fuzzy Histogram of Optical Flow). A formal definition
and implementation scheme of this descriptor are as follows. Given an estimate
for optical flow field at each frame, the magnitude and the orientation of each flow
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FIG. 7.3. Optical flow estimation results for a real-world video sequence showing a single
person performing various actions, i.e. walking, jogging, running, boxing, waving, and
clapping from left to right and top to bottom, respectively.

vector ~v = [x, y]> are specially defined2 as follows,

ρ =
√
x2 + y2

ϕ = atan2(y, |x|) (7.18)

where | · | denotes the ordinary absolute value, and −π
2
< ϕ ≤ π

2
that gives the

smallest angle between the x-axis and ~v axis, as shown in Fig. 7.4. It should be
noted that the orientation angle ϕ in Eq. (7.18) has been defined so as to allow our
histogram representation to be independent of the directionality of movement.

2The two-argument function atan2 is a variation of the arctangent function, which is defined as
atan2(y, x) = arctan((

√
x2 + y2 − x)/y).
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FIG. 7.4. An example for orientation histogram with four bins (K = 4).

Now a histogram at each frame can be built by binning the flow vectors into a
fixed number of bins based on their primary angles and magnitudes. Formally, the
histogram is created where each flow vector ~v with direction ϕ in the range:

− π

2
+ π

k − 1

K
≤ ϕ < −π

2
+ π

k

K
(7.19)

gives a contribution proportional to ρ to its corresponding bin k, 1 ≤ k ≤ K where
K is the number of bins. As seen in Fig. 7.4, the resulting histogram representation
is invariant to direction of motion. To achieve invariance to scale changes, the
histogram is normalized by the overall magnitude of flow vectors, so that the
bins integrate to unity. Moreover, as flow vectors contribute to the histogram
proportionally to their magnitudes, the resulting descriptor would be more robust
to noisy optical flow measurements. An example of visualization of our descriptor
for the applied features is given in Fig. 7.5. From a close inspective look at the plots
in the figure, one can see that there is a remarkable similarity in feature structure
(leading to similar color values in the Figure) among sequences of walk, jog, and
run actions, and between sequences of wave and clap actions. Intuitively, this is
due to the fact of high closeness of similar types of actions.

7.3.4 Fuzzy feature selection

In this section, we describe our method for feature selection based on temporally
adaptive decomposition of action sequences into a finite number of time slices in a
fuzzy way, which is targeted at the removal of irrelevance and redundancy in the
features set, so that not only does the reduced set of features speed up the action
classification process by removing class irrelevant features, but it also provides at
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FIG. 7.5. Visualization of the proposed descriptor (with K = 32) for HOF features extracted
from sample sequences of walk, jog, run, box, wave, and clap actions.

least the same quality of action classification as the original one. Eventually, this
enables the proposed approach to achieve better feature reduction ratios without
losses in recognition accuracy. As discussed in the previous section, a normalized
histogram based on HOG features can be constructed at each instance of time t:

ht = (ht;1, ht;2, . . . , ht;K)> (7.20)

where K (the number of histogram bins) is a parameter of choice, which has a direct
influence on the eventual performance of the recognition system. Since the flow
features in Eq. (7.20) can be computed at each instant time of a given sequence
(i.e., action snippet), the action snippet can be represented as a time series of these
features: A = {ht}τ−1

t=0 which provides us an attractive and rigorous approach to
classify and recognize actions. To obtain the final feature vector for each action
snippet, each action snippet is split into several time-slices defined by linguistic
intervals [123]. A Gaussian fuzzy membership function is used to describe each of
these intervals. The general forms of these membership functions is given by

Gj(t;α, β, γ) = e−|
t−α
β |

γ

(7.21)

where α, β, andγ are three scalar parameters of the fuzzy function; i.e., the center,
width, and the fuzzification factor which is a weighting exponent on each fuzzy
membership, respectively. Therefore, a feature vector for a time-slice can be gen-
erated by calculating the weighted average feature vector of all frames within the
time-slice. More formally, the directional feature vector for time-slice j is given by,

Hj =
1

∆t

∑
t∈slicej

Gj(t)ht, j = 1, 2, . . . ,m (7.22)

where Gj(t) is the Gaussian membership function representing the j-th time slice, ∆t

is the duration of the time slice in frames, and m is the total number of time slices
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into which the action snippet is divided. Accordingly, the full feature vector for
an action snippet can be straightforwardly derived by concatenating all m feature
vectors of its time slices as follows,

A = H1 ⊕H2 ⊕ · · · ⊕ Hm (7.23)

where ⊕ is the concatenation operator. From the above mentioned, it follows
that the process of slicing action snippets into a finite number of temporal steps
would achieve the primary goal of effective feature dimensionality reduction and
de-correlation by removing probable redundancy in the features set, while retaining
the information essential for effective recognition of actions. For this purpose, each
action sequence is treated as a time series composed of low-dimensional feature
vectors corresponding to decomposition of the sequence into several time slices.
More specifically, we keep only m multidimensional feature vectors corresponding
to the m time slices, instead of taking all the feature vectors of all the frames in the
action sequence. These m vectors form the feature space for action representation
and classification.

It bears mentioning that m is a parameter of choice, where m � n, n is the
number of frames in the action sequence. To investigate whether and how the
overall recognition results are affected by different values for m, in our experiments,
different values of the parameter m were tried, each lies in the range of 1 to 5. The
value that generates the highest average recognition accuracy over all runs would
be selected. As a final note here it should also to be mentioned that the directional
features are efficiently computed using fuzzy histograms that enables real-time
implementation of the proposed action recognition method.

7.3.5 SVM based action classification

In this section, our goal is to classify actions according to the fuzzy descriptors
mentioned previously. Human action recognition can be modeled as a multi-
dimensional classification problem having one class for each action, and the goal is
to assign a class label to a given action. For this purpose, we use one-vs.-rest SVMs
(Support Vector Machines) with RBF (Radial Basis Function) kernels. For SVMs, the
one-vs.-rest approach is widely adopted for handling the multi-class problem by
constructing the decision rule based on multiple binary classification tasks.

Generally speaking, there are various supervised learning algorithms by which
an action recognizer can be trained to recognize patterns of motion over time. In
this work, we propose to employ SVMs in our framework due to their outstanding
generalization capability and reputation of a highly accurate paradigm. SVMs [137]
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FIG. 7.6. Generalized optimal separating hyperplane.

are based on the Structure Risk Minimization principle from computational theory,
and are a solution to data overfitting in neural networks. Originally, SVMs were
designed to handle dichotomic classes in a higher dimensional space where a
maximal separating hyperplane is created. On each side of this hyperplane, two
parallel hyperplanes are conducted. Then SVM attempts to find the separating
hyperplane that maximizes the distance between the two parallel hyperplanes (see
Fig. 7.6). Intuitively, a good separation is achieved by the hyperplane having the
largest distance. Hence the larger the margin the lower the generalization error of
the classifier. More formally, let D = {(xi, yi) |xi ∈ Rd, yi ∈ {−1,+1}} be a training
set, Coretes and Vapnik [137] have argued that this problem is best approached
by allowing some examples to violate the margin constraints . These potential
violations can be formulated using some positive slack variables ξi and a penalty
parameter C ≥ 0 that penalize the margin violations. Thus the optimal separating
hyperplane is determined by solving the following QP problem:

min
β,β0

1

2
‖β‖2 + C

∑
i

ξi (7.24)

subject to (yi(〈xi,β〉+ β0) ≥ 1− ξi ∀i) ∧ (ξi ≥ 0 ∀i).

Geometrically, β ∈ Rd is a vector going through the origin point and perpendicular
to the separating hyperplane. The offset parameter β0 is added to allow the margin
to increase, and to not force the hyperplane to pass through the origin that restricts
the solution. For computational purposes it is more convenient to solve SVM in its
dual formulation. This can be accomplished by forming the Lagrangian and then
optimizing over the Lagrange multiplier α. The resulting decision function has
weight vector β =

∑
i αixiyi, 0 ≤ αi ≤ C. The instances xi with αi > 0 are termed

support vectors, as they uniquely define the maximum margin hyperplane.
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FIG. 7.7. An example for nonlinear RBF kernel3.

For the proposed approach, several classes of actions are defined and hence
several one-vs.-all SVM classifiers are trained on the fuzzy directional features
extracted from the action sequences in the training dataset. The feature vectors of
the training set are fed into SVM classifiers in order to learn the differences among
the features of each action class. In this work, we used one of the most popular and
successful kernels, the RBF (or exponential) kernel, defined as

κ(x,y) = exp(‖x− y‖2/(2σ2)) (7.25)

where σ is the kernel width, which can be regarded as a tuning parameter. It is
noteworthy to mention here that the SVMs with RBF have evolved as a flexible
and powerful tool which is potentially able to create models that handle non-
linearly separable data by mapping original features of the training data to a higher
dimensional feature space to enable linear separation for classification. In this higher
dimensional space, linear functions (or separators) can be constructed, which is
potentially able to produce non-linear boundaries (see Fig. 7.7 above) when mapped
back to the original input feature space. Another important point to underscore
here is that, for RBF kernel, there is a set of parameters (e.g, c and γ) for which
several tests were carried out in order to establish their optimum values.

7.3.6 Experiments and discussion

In this section, we present the experimental results and discussion of the proposed
framework for human action recognition in real-world video sequences. The re-
ported results here are based on our feature extraction technique described in detail
in Section 7.3.3 and 7.3.4 (i.e., fuzzy HOF-based features) and obtained with the
IIKT action recognition dataset introduced at the beginning of this chapter that

3The plot is generated by Bell SVM applet.
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we created for the purpose of recognizing human actions in realistic scenarios. In
this study, first of all, the experiments have been conducted to gauge the potential
recognition capabilities of the proposed recognition system. The chapter refers
also to the results of a series of experiments performed to quantify the effect on
recognition performance of altering the feature description parameters (i.e., K and
m) in order to establish the optimum recognition rate.

As there was no control over the video capturing process, the action sequences
used in our experiments exhibit some degree of variation in the actors, scale, pose,
camera views, appearance inside the same action category, coupled with cluttered
background and different illumination conditions. Considering that most pre-
vious research experiments were conducted in controlled or partially controlled
environments (e.g., KTH and Weizmann datasets), we intuitively expect that the
experimental results using this dataset will be more realistic. As mentioned previ-
ously, this action dataset contains a total of six categories of interest to be recognized,
namely walking, jogging, running, boxing, hand waving and hand clapping, per-
formed several times by nine subjects. The test data used in experiments consists
of a total of 300 action snippets derived from the video sequences recorded in the
dataset. These streams were saved in AVI format with a resolution of 640×480-pixel
frame dimensions with 24-bit color depth at 30 fps frame rate. An additional total
of 480 action streams are utilized to train the six-action SVM model.

A series of experiments with different feature description parameters (K and m)
was run to assess the effectiveness of the proposed technique for action recognition
in realistic settings. We extracted about 360 directional features (for the case K = 18)
from each action video, and then applied our fuzzy approach for feature selection
described in Section 7.3.4 to reduce the dimension of the fuzzy feature descriptor to
90. Fig. 7.8 shows an example of visualization of the proposed fuzzy descriptor for
the directional features extracted from different action categories. By inspecting the
figure, one can observe that the descriptor reflects the actual similarity/dissimilarity
between different categories of actions at each temporal step. Thus, to quantify the
degree of similarity or dissimilarity between two actions, a measure of similarity
can be reliably computed based on a distance (e.g. Euclidean distance) between
these descriptors. One more interesting observation is that the descriptor remains
constant or slightly changes with time; this suggests that a relatively few number
of time slices will suffice to construct such a descriptor. With the eventual goal
of developing a high performance action recognition system, we investigate the
recognition performance of the proposed recognition framework under the values
of the feature description parameters (K and m) varying. Towards this goal, we
compute such descriptors a total of 20 times for all samples in training set (i.e., the
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FIG. 7.8. An example of visualization of the proposed descriptor for directional features
extracted from different action categories at five temporal steps m = 5.
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number of all possible combinations of values of the parameters m and K, where
m ∈ {1, 2, 3, 4, 5} and K ∈ {4, 8, 12, 18}). Therefore, m fuzzy membership functions
should be defined to represent different time slices of a given action sequence, as
shown in Fig. 7.9. Note that for the sake of visualization, each fuzzy membership
function in the Figure is plotted in a unique color.

To evaluate qualitatively and quantitatively the system’s performance, the ex-
periments were performed for all possible combinations of values of the feature
parameters. To facilitate the visualization of the system’s performance, the confu-
sion matrices that tabulate the correct and incorrect classifications are calculated
through majority voting. The classification performance of the system for test
dataset can be presented directly in the form of confusion tables. Instead, for the
sake of clarity, we graphically represent these confusion tables through a series of
3D bar plots (see Fig. 7.10). In this figure, we see a series of 3D plots that visualizes
the confusion in recognition results for each action category, each corresponding to
a combination of feature representation parameters. By inspecting all plots shown
in the figure, it is explicitly observed, as expected, that the feature representation
parameters K and m are both significant and directly affect the recognition results.

Furthermore, the overall accuracy (or correct recognition rate) metric is em-
ployed to gauge the holistic performance of the proposed recognition scheme. The
dependency of the overall recognition rate on the feature parameters has a shape
similar to shown in Fig. 7.11. Having a closer look at the figure, one can see that in
terms of recognition rate, the larger values of both parameters provide the greatest
improvement in performance, and generally are the most important. In other words,
the larger the values of feature parameters are, the better the holistic performance
is. For the sake of brevity, as a final remark in this section, we only mention that
in our computational experiments, all the routines considered in this study were
coded in Visual Studio 2008 and executed on a PC equipped with an Intel Core 2
processor operating at 2.8 GHz with 8 MB of cache and 4 GB of SDRAM.

Action Localization:

In this subsection, we describes the results of a final simple experiment conducted
with the purpose of localizing the moving objects as motion regions of interest (ROI)
identified by motion information. The analysis of the spatial location distribution
of the flow features generated by our proposed fuzzy framework can efficiently
contribute to a fast and accurate estimation of the 2D position of the centroid of
these features based on the average of the coordinates of all feature points in motion
ROI. More formally, the centroid of an action, at each time instant, is calculated
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FIG. 7.9. Fuzzy Gaussian membership functions used to represent temporal steps.
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FIG. 7.10. 3D bar plots visualizing the confusion in the action recognition results, each
corresponding to different values of the feature parameters K and m.

according to the following expression:

µx =
1

n

n∑
i=1

xi, µy =
1

n

n∑
i=1

yi (7.26)

where (µx, µy) denote 2D coordinates of the centroid of the features. This centroid
coincides with the estimated center of mass of the moving ROI (i.e. action actor
here). In a similar vein, the dimensions of the moving object are estimated by

σx = 2
√

3ηxx, σy = 2
√

3ηyy (7.27)

where ηxx and ηyy are the central moments of the corresponding centroid. In prac-
tice, this approach has proved to be significantly more efficient for scenes with a
relatively stable background, even with very high levels of noise. In Fig. 7.12, some
results of action localization are depicted following this approach.
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FIG. 7.11. Overall action recognition performance of the proposed framework as a two-
dimensional function of the feature parameters K and m.

7.4 Summary and Conclusion

In this chapter, in the beginning, we described the dataset (IIKT action dataset) that
we used in this work, and then we presented the details of our proposed approach
for action recognition in real-world scenes and the experiments designed to evaluate
this approach. This dataset includes realistic video streams of nine different persons,
each performing six actions: ’walking’, ’jogging’, ’running’, ’boxing’, ’hand waving’
and ’hand clapping’. On the basis of the proposed approach towards action recogni-
tion in realistic scenarios, a new fuzzy framework for representing and recognizing
human actions in real-world video sequences has been presented. In this work,
a compact and computationally-efficient descriptor; the fuzzy motion descriptor
is constructed based on directional features of optical flow and fuzzy temporal
slicing. The one-vs.-rest SVM classifiers have been trained automatically in the
feature space for activity classification. The simplicity and computational efficiency
of the employed features allow this approach to be more amenable for real-time
implementation. It is noteworthy to point out here that the presented experiments
conducted so far have demonstrated two points of considerable interest. First, the
feature representation parameters K and m are both significant and directly affect
the recognition results. Secondly, in terms of holistic performance, the larger values
of both parameters provide the greatest improvement in overall recognition rate,
and generally are the most important. In other words, the larger the values of the
feature parameters are, the better the overall recognition performance is. Finally, for
the sake of brevity here, we only affirm that the best overall recognition accuracy
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FIG. 7.12. Some results of action localization and recognition in our dataset.
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(corresponding to K = 18 and m = 5) achieved by the proposed approach is 96.3 %
which can be regarded as ”encouraging“, and confirm the basic correctness of the
approach, considering the realistic working environments. However, some further
investigations on larger realistic datasets may be necessary to enable us to discuss
the substantive correctness, robustness, and large-scale feasibility of the approach.





CHAPTER 8

Conclusions & Future Perspectives

IN the framework of this doctoral dissertation, the problem of vision-based rep-
resentation and recognition of human actions in video data has thoroughly
been investigated. The research performed for this thesis has led to the several

contributions to the area of automatic human action recognition. This short con-
cluding chapter contains two sections. In Section 8.1, the key contributions of the
thesis are summed up, and some conclusions from the preceding investigations and
experiments are also drawn. In the light of the drawn conclusions, some possible
directions for future research within this area, either as an extension of the theory
presented in this thesis, or as an alternative are suggested in Section 8.2).

8.1 Summary of the Thesis

Due to its great practical application particularly in human-computer interaction
and intelligent systems, the problem of human action recognition in video data has
received increasing attention recently from computer vision and pattern recognition
community. The overall objective of the work contained in this thesis was to
investigate and propose suitable methodologies for developing efficient action
models for better visual analysis and interpretation of video data. As discussed
earlier, initial chapters have been devoted to tackle the problem of recognizing the
observed human actions from video data. In addition, the focus of research has
been toward the investigation of a variety of distinctive visual features (i.e., shape
features and motion features) for the vision-based representation and recognition
of human actions. In Chapter 4, various types of features have been explored

173
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and presented for action recognition. The tentative conclusion drawn from our
experimental results is that the careful choice of visual features has a significant
impact on an automatic action recognition system, and that several visual feature
sets do not seem to serve the recognition performances. This can be regarded as an
evaluation of the features with respect to recognition of specific actions.

To fulfill the overall objective of the thesis, several approaches were developed
and used to achieve robust action recognition. In the following paragraphs, we
briefly outline these approaches. As for the first approach, a new framework for
action recognition has been presented, based on log-polar histogram features. The
main contribution of this approach is twofold. On the one hand, a reliable neural
model as a classifier is used for the task of action recognition. On the other hand, we
unfold how the temporal shape variations can be accurately described using a time
series of fuzzy log-polar histograms. Preliminary results on KTH and Weizmann
action datasets have shown that, with this approach, actions can be recognized with
overall recognition rates of 94.3% and 97.8%, respectively. These results compare
favorably with those of other investigators published in the literature.

With the second approach, a Bayesian model for human action recognition
based on multiple cues has been developed. In a nutshell, this approach proceeds
as follows. First, a series of temporal silhouettes of the moving human body
parts are extracted from an action clip. Next, each action clip is split into several
time-slices represented by fuzzy intervals. As shape features, a variety of shape
descriptors both boundary-based (e.g., Fourier descriptors, curvature features, etc.)
and region-based (e.g., invariant moments, moment-based features, etc.) are then
extracted from the silhouettes. Finally, an NB (Naı̈ve Bayes) classifier is learned in
the feature space for action classification. Our preliminary results with KTH action
dataset are promising and show and effectiveness and robustness of the approach.
Despite their stability and compactness, chord-length shape features have received
relatively little attention in the human activity recognition literature. In the third
approach, a new methodology for action recognition has been proposed, based
on chord-length shape features. In this work, the most interesting contributions
can be summarized as follows. We first show how a compact and computationally
efficient shape descriptor; the chord-length shape features is constructed using
1-D chord-length functions. Second, we unfold how to use Gaussian membership
functions to partition action videos into a number of temporal states to reduce
the dimensionality of extracted features. On the KTH action dataset, through this
approach, encouraging results have been achieved, which compare favorably with
those reported in the literature, while maintaining real-time guarantees.

As for our empirical approach towards action recognition in real-world video
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data, an innovative fuzzy framework for representing and recognizing actions in re-
alistic videos has been proposed, based on motion vector distribution characteristics.
Within this framework, a compact and computationally-efficient fuzzy descriptor is
constructed based on fuzzy directional features. Then, several one-vs.-rest SVMs are
trained in the feature space for action classification. The computational complexity
of the employed features is relatively low, which guarantees their efficient calcula-
tion at real-time. In a set of preliminary experiments on our real-world dataset, we
observed that the feature representation parameters directly affect the recognition
results. In addition, in terms of the holistic performance, the larger values of the fea-
ture parameters provide the greatest improvement in overall recognition rate. The
highest overall recognition accuracy achieved using this approach is 96.3% which
can be regarded as ”promising“, considering the realistic working environments,
and confirm the basic correctness of the approach. However, more comprehensive
experimental studies on larger realistic datasets appear to be necessary to to validate
the applicability and scalability of the approach.

8.2 Future Perspectives

In the course of this dissertation’s work, the focus was mainly directed towards
investigating a variety of distinctive visual features for modeling human actions
in video data. In order to achieve this goal, several contributions have been made
through the research in this study. In the following few paragraphs, we sketch
possible future research directions into which the presented work of this thesis can
be continued and extended. Strictly speaking, our future work will be organized
along three different lines. As a first line of future work, we plan to investigate
extensions to the proposed techniques to recognition of unconstrained real-life
human actions, since it is a point of great importance to explore the empirical
validation of the proposed approaches on large scale realistic and more complex
datasets presenting many technical challenges in data handling, such as object
articulation, occlusion, and significant background clutter. These key issues merit
to be explored more fully in our future work.

Throughout the course of this dissertation, the focus of action recognition has
been drawn to the case where there is only a single person in the scene performing
a specific action. However, the recognition of more complex activities (i.e. inter-
actions) involving more than one subject (e.g., kissing, hugging, holding-hands,
etc.) in the scene performing the action of the interest seems obviously to be of
potential application to the design of more efficient human-computer interaction
and intelligent systems. Therefore, another significant topic to be investigated
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extensively in our future work is the question of how the presented approaches can
be adapted or extended in order to deal with such more complex activities.

As is well known, there are tow major types of learning models. For the work
described in this thesis, supervised learning has been adopted, whereby the training
data (i.e. action features and class labels) are given to train the classifier (e.g., SVM,
ANN, and NB). Then, given a set of features extracted from a new observation
(i.e. video sequence), the learned classifier can assign the new observation with a
proper action. However, unsupervised learning is also feasible and valuable for the
analysis of human actions. Therefore, a third line of study that we intend to pursue
in our future work is concerned with semi-supervised and unsupervised action
recognition. Unsupervised methods for learning human actions are largely based
on clustering feature space. Another aspect that would also be of interest to our
future work is modeling and analysis of long-term activities (e.g., ”Eating“, ”Going
Shopping“, ”Preparing Meal“, etc.) that have tremendous potential to support
pervasive applications, especially in the home care and healthcare domains.
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