

Optimizing
strongly restricted loading problems

with containers and pallets

Schriftliche Promotionsleistung
zur Erlangung des akademischen Grades

Doctor rerum politicarum

vorgelegt und angenommen
an der Fakultät für Wirtschaftswissenschaft

der Otto-von-Guericke-Universität Magdeburg

Verfasserin: Corinna S. Krebs
Geburtsdatum und -ort: 06.07.1993, Bietigheim-Bissingen
Arbeit eingereicht am: 27.07.2023

Gutachter der schriftlichen Promotionsleistung:
Prof. Dr. Jan Fabian Ehmke; Prof. Dr. Marlin Ulmer

Datum der Disputation: 26.10.2023

Modified template, original “PHDUIO – Article based thesis” is created by Martin Helsø and licensed under Creative
Commons CC BY 4.0.

https://de.overleaf.com/latex/templates/phduio-article-based-thesis/vnhkzpyyddvh
https://creativecommons.org/licenses/by/4.0/legalcode
https://creativecommons.org/licenses/by/4.0/legalcode

Abstract

The entire logistics world is changing: the value chain, from raw material extraction to recycling, is
experiencing a digital transformation that aims to increase data availability and simultaneously
improve the connectivity of operational processes. This offers new opportunities for better and
more realistic logistics planning that have yet to be investigated. This thesis concerns algorithms
for strongly restricted loading problems in the context of the container loading problem combined
with vehicle routing problems. Thus, new loading constraints are introduced as existing ones are
improved – prompting the question of its costs and associated benefits. The costs are reflected by
adapted objective functions. The benefits can be divided into three categories: 1) higher security
(for drivers, road users, parcels, and vehicles), 2) efficient processes, as well as 3) adherence to legal
requirements. The thesis comprises a total of six scientific works dealing with this topic.

Paper I1 describes various implementations of the Deepest-Bottom-Left-Fill algorithm, a widely
used algorithm to solve the container loading problem. It is combined with an adaptive large
neighborhood search heuristic to solve the vehicle routing problem. The computational experiments
evaluate the best implementation and the impact of various constraints on the objective function
and runtime.

Paper II2 introduces formulas for considering axle weights for different truck types, e.g., varying
axle configuration and trailer presence. It uses the same algorithms as the first paper. The
computational experiments show that including the axle weights constraints has only a minor
impact on the objective function but positive effects on the runtime. Therefore, the axle weights
should always be considered in models for security reasons.

Paper III3 focuses on analyzing complex loading constraints, presenting weaknesses of current
formulations for vertical stability and stacking constraints, and introducing new constraints. The
largest constraint set, consisting of geometry, orthogonality, rotation, vertical stability, stacking,
reachability, axle weights, and balanced load constraints, is analyzed in the computational
experiments. These constraints are evaluated independently concerning their impact on the
objective function and runtime. A central conclusion is that the combined constraints’ impact is
less than the sum of each constraint.

Paper IV4 introduces a new formulation based on the science of statics for the vertical stability
constraint, achieving the best results regarding impacts on the objective function and runtime
compared to other common formulations.

Paper V5 deals with calculating the manual effort for loading and unloading. This effort can
be time-wise evaluated using the Methods-Time-Measurement (MTM) approach. This can also
enable rearrangements of items so that the constraints dealing with fixed unloading sequences (e.g.,
LIFO) are replaced. The computational experiments show that this approach positively affects the
objective values and the runtime.

Paper VI6 introduces two tools for the combined optimization problem. The first one, “Solution

1Krebs, C. et al. (2023). “Effective loading in combined vehicle routing and container loading problems”. In:
Computers & Operations Research vol. 149, p. 105988. issn: 0305-0548. doi: https://doi.org/10.1016/j.cor.2022.
105988. url: https://www.sciencedirect.com/science/article/pii/S0305054822002258

2Krebs, C. and Ehmke, J. F. (2021a). “Axle Weights in combined Vehicle Routing and Container Loading
Problems”. In: EURO Journal on Transportation and Logistics vol. 10, p. 100043. issn: 2192-4376. doi:
10.1016/j.ejtl.2021.100043. url: https://www.sciencedirect.com/science/article/pii/S2192437621000157

3Krebs, C. et al. (2021). “Advanced loading constraints for 3D vehicle routing problems”. In: OR Spectrum.
issn: 1436-6304. doi: 10.1007/s00291-021-00645-w. url: https://doi.org/10.1007/s00291-021-00645-w

4Krebs, C. and Ehmke, J. F. (2021b). “Vertical Stability Constraints in Combined Vehicle Routing and 3D
Container Loading Problems”. In: Computational Logistics. Ed. by Mes, M. et al. Cham: Springer International
Publishing, pp. 442–455. isbn: 978-3-030-87672-2

5Krebs, C. (2023). "Manual Unloading in 3D Loading Vehicle Routing Problems. Submitted to EURO Journal
on Transportation and Logistics on 19.07.2023"

6Krebs, C. and Ehmke, J. F. (May 2023). “Solution validator and visualizer for (combined) vehicle routing and
container loading problems”. In: Annals of Operations Research. issn: 1572-9338. doi: 10.1007/s10479-023-05238-0.
url: https://doi.org/10.1007/s10479-023-05238-0

iii

https://doi.org/https://doi.org/10.1016/j.cor.2022.105988
https://doi.org/https://doi.org/10.1016/j.cor.2022.105988
https://www.sciencedirect.com/science/article/pii/S0305054822002258
https://doi.org/10.1016/j.ejtl.2021.100043
https://www.sciencedirect.com/science/article/pii/S2192437621000157
https://doi.org/10.1007/s00291-021-00645-w
https://doi.org/10.1007/s00291-021-00645-w
https://doi.org/10.1007/s10479-023-05238-0
https://doi.org/10.1007/s10479-023-05238-0

Validator”, can check solutions concerning modifiable constraint sets, whereby all constraints
evaluated in the previous papers are implemented. The second tool includes this Solution Validator
and can visualize solutions for the routes, including distances and travel times. In addition, the
container loading spaces, including the position of all boxes, are presented.

Overall, each paper represents a single piece from a broader puzzle, highlighting constraints from
different perspectives.

iv

Contents

Abstract iii

Contents v

List of Papers vii

List of Figures ix

List of Tables xi

List of Algorithms xiii

1 Introduction 1
1.1 Optimization Problem . 1
1.2 Thesis outline . 2
References . 4

Papers 6

I Effective Loading in Combined Vehicle Routing and Container Loading
Problems 7
1 Introduction . 8
2 Literature Review . 9
3 Problem Description . 10
4 Hybrid Solution Approach . 11
5 Computational Experiments . 18
6 Conclusion . 23
References . 24

II Axle Weights in combined Vehicle Routing and Container Loading Problems 41
1 Introduction . 42
2 Literature Review . 42
3 Problem Formulation . 44
4 Axle Weight Constraint . 45
5 Hybrid Solution Approach . 51
6 Computational Experiments . 56
7 Conclusion . 62
References . 62

III Advanced loading constraints for 3D vehicle routing problems 73
1 Introduction . 74
2 Literature Review . 75
3 Problem Formulation . 77
4 Definitions and Implementations of Loading Constraints 78
5 Hybrid Solution Approach . 85
6 Computational Studies . 90
7 Conclusions and Future Work . 96
References . 97

IV Vertical Stability Constraints in Combined Vehicle Routing and 3D
Container Loading Problems 103

v

Contents

1 Introduction . 104
2 Literature Review . 104
3 Problem Formulation . 105
4 Vertical Stability constraints . 106
5 Hybrid Algorithm . 110
6 Computational Studies . 111
7 Conclusion . 112
References . 113

V Manual Unloading in 3D Loading Vehicle Routing Problems 115
1 Introduction . 116
2 Literature Review . 117
3 Problem Formulation . 118
4 Unloading Effort . 120
5 Hybrid Solution Approach . 122
6 Computational Experiments . 129
7 Conclusion . 132
References . 133

VI Solution Validator and Visualizer for (Combined) Vehicle Routing and
Container Loading Problems 137
1 Introduction . 138
2 Literature Review . 139
3 Problem Formulation . 140
4 Open Source Tools . 143
5 Instances and Best Known Results . 148
6 Summary and Future Work . 150
References . 151

2 Conclusion 155
References . 159

vi

List of Papers

Paper I

Krebs, C. et al. (2023). “Effective loading in combined vehicle routing and container loading
problems”. In: Computers & Operations Research vol. 149, p. 105988. issn: 0305-0548. doi:
https://doi.org/10.1016/j.cor.2022.105988. url: https://www.sciencedirect.com/science/article/
pii/S0305054822002258

Paper II

Krebs, C. and Ehmke, J. F. (2021a). “Axle Weights in combined Vehicle Routing and Container
Loading Problems”. In: EURO Journal on Transportation and Logistics vol. 10, p. 100043. issn:
2192-4376. doi: 10.1016/j.ejtl.2021.100043. url: https://www.sciencedirect.com/science/article/
pii/S2192437621000157

Paper III

Krebs, C. et al. (2021a). “Advanced loading constraints for 3D vehicle routing problems”. In: OR
Spectrum. issn: 1436-6304. doi: 10.1007/s00291-021-00645-w. url: https://doi.org/10.1007/
s00291-021-00645-w

Paper IV

Krebs, C. and Ehmke, J. F. (2021b). “Vertical Stability Constraints in Combined Vehicle Routing
and 3D Container Loading Problems”. In: Computational Logistics. Ed. by Mes, M. et al. Cham:
Springer International Publishing, pp. 442–455. isbn: 978-3-030-87672-2

Paper V

Krebs, C. “Manual Unloading in 3D Loading Vehicle Routing Problems”. Submitted to EURO
Journal on Transportation and Logistics on 19.07.2023

Paper VI

Krebs, C. and Ehmke, J. F. (May 2023). “Solution validator and visualizer for (combined) vehicle
routing and container loading problems”. In: Annals of Operations Research. issn: 1572-9338. doi:
10.1007/s10479-023-05238-0. url: https://doi.org/10.1007/s10479-023-05238-0

vii

https://doi.org/https://doi.org/10.1016/j.cor.2022.105988
https://www.sciencedirect.com/science/article/pii/S0305054822002258
https://www.sciencedirect.com/science/article/pii/S0305054822002258
https://doi.org/10.1016/j.ejtl.2021.100043
https://www.sciencedirect.com/science/article/pii/S2192437621000157
https://www.sciencedirect.com/science/article/pii/S2192437621000157
https://doi.org/10.1007/s00291-021-00645-w
https://doi.org/10.1007/s00291-021-00645-w
https://doi.org/10.1007/s00291-021-00645-w
https://doi.org/10.1007/s10479-023-05238-0
https://doi.org/10.1007/s10479-023-05238-0

List of Figures
1.1 Relation between Papers . 2

I.1 Sliding item I5,1 based on current position . 14
I.2 Elements of set SP . 14
I.3 Front Space Creation . 15
I.4 Right and Top Space Creation . 16
I.5 Packed items in vehicle and created RTree . 17
I.6 Comparison of DBLF Results – Without Rotation 22
I.7 Comparison of DBLF Results – Without Load Capacity 22
I.8 Comparison of DBLF Results – Without LIFO . 23
I.9 Comparison of DBLF Results – Without Minimal Supporting Area 23
I.10 Comparison of DBLF Results – Without Fragility 24

II.1 Vehicle Data . 45
II.2 Examples for Resultant Axles replacing Axle Groups 46
II.3 Semi-Trailer Truck with Tridem Trailer Axle . 47
II.4 Forces and Moments for Semi-Trailer Trucks . 47
II.5 Vehicle’s and Items’ Dimensions . 49
II.6 Positions of items when checking the Axle Weight Constraint when all items have

been loaded . 50
II.7 Positions of items when checking the Axle Weight Constraint after each item’s

placement . 50
II.8 New Spaces based on I3,1 . 55

III.1 Difference between LIFO and MLIFO . 80
III.2 Unstable, feasible stack w.r.t. Minimal Supporting Area 80
III.3 Determination of planes for item I1,5 . 81
III.4 Implementation of Robust Stability – Top Overhanging 81
III.5 Infeasible item arrangement w.r.t. Fragility constraint 82
III.6 Mass Distribution according to Simplified Selection based on item I1,6 83
III.7 Mass Distribution according to Complete Selection based on item I1,6 83
III.8 Illustration of the Distance Search Space for I3,1 . 84
III.9 Vehicle Data . 84
III.10 Mass Distribution according to the position of Ii,k 85
III.11 New Spaces based on I3,1 . 89

IV.1 Feasible, but unstable stack . 107
IV.2 Creation of Levels for Support Area Calculation, exemplary for I1,5 107
IV.3 Example for a feasible stack applying Mack et al. (2004) 108
IV.4 Example for the Convex Hull Determination . 109
IV.5 Example for Consideration of Static Stability . 109

V.1 Rearrangement Corridors for Item I1,1 . 122
V.2 Space Creation . 126
V.3 Reachability of Items . 129
V.4 Comparison “only LIFO” and “allowing reloading” for instance no. 5 133

VI.1 Exemplary solution for instance “3l-cvrp01" . 138
VI.2 View of the Data Input Mask . 145
VI.3 View of the Vehicle Routing Problem . 146
VI.4 View of the Container Loading Problem . 147

ix

List of Figures

VI.5 MVP Design . 148
VI.6 Exemplary Instance File . 153
VI.7 Constraint File with Basic Constraint Set . 153
VI.8 Exemplary Solution File . 154

2.1 Comparison of Loading Constraints . 156

x

List of Tables
I.1 Comparison of DBLF approaches . 18
I.2 Algorithm Parameters . 19
I.3 Comparison of DBLF Algorithms with predefined routes 20
I.4 Results for DBLF Algorithms – all Constraints . 20
I.5 Results for DBLF with Points – All Constraints . 31
I.6 Results for DBLF with Points – w/o Rotation . 31
I.7 Results for DBLF with Points – w/o LIFO . 32
I.8 Results for DBLF with Points – w/o Minimal Supporting Area 32
I.9 Results for DBLF with Points – w/o Fragility . 33
I.10 Results for DBLF with Points – w/o Load Capacity 33
I.11 Results for DBLF with Spaces – All Constraints . 34
I.12 Results for DBLF with Spaces – w/o Rotation . 34
I.13 Results for DBLF with Spaces – w/o LIFO . 35
I.14 Results for DBLF with Spaces – w/o Minimal Supporting Area 35
I.15 Results for DBLF with Spaces – w/o Fragility . 36
I.16 Results for DBLF with Spaces – w/o Load Capacity 36
I.17 Results for DBLF with RTree – All Constraints . 37
I.18 Results for DBLF with RTree – w/o Rotation . 37
I.19 Results for DBLF with RTree – w/o LIFO . 38
I.20 Results for DBLF with RTree – w/o Minimal Supporting Area 38
I.21 Results for DBLF with RTree – w/o Fragility . 39
I.22 Results for DBLF with RTree – w/o Load Capacity 39
I.23 Results for Zhang et al. (2017) Instances . 40

II.1 Axle Weights for items’ positions in Fig. II.6 . 50
II.2 Axle Weights for items’ positions in Fig. II.7 . 51
II.3 Routing and Loading Parameters . 57
II.4 Overview of tested instances . 57
II.5 Problem classes for Pollaris et al. (2016, 2017) Instances 57
II.6 Summarized Best Results for Pollaris et al. (2016) Instance Set 58
II.7 Comparison of our results for Pollaris et al. (2016) instances 59
II.8 Summarized Best Results for Pollaris et al. (2017) Instance Set 60
II.9 Results for Gendreau et al. (2006) Instances . 61
II.10 Our Results for Semi-Truck Trailer Instances . 61
II.11 Pollaris et al. (2016) Instances with 10 customers 65
II.12 Pollaris et al. (2016) Instances with 15 customers 66
II.13 Pollaris et al. (2017) Instances with 100 customers 67
II.14 Pollaris et al. (2016) Instances with 25 customers 68
II.15 Pollaris et al. (2017) Instances with 50 customers 69
II.16 Pollaris et al. (2017) Instances with 75 customers 70
II.17 Pollaris et al. (2017) Instances with 100 customers 71

III.1 Summary and Overview of Approaches . 76
III.2 Summary and Overview over Loading Constraints 77
III.3 Overview of Loading Constraints . 79
III.4 Overview Removal Operators . 87
III.5 Overview Insertion Operators . 87
III.6 Routing and Loading Parameters . 91
III.7 Overview of Instance Sets . 92
III.8 Comparison best and average results for P1, our Instances 92

xi

List of Tables

III.9 Summarized Best Results for Instance Sets . 92
III.10 Overview of Constraints Sets . 93
III.11 Deviation to P1 per Constraint Set, Average Results 95
III.12 Results for Ceschia et al. (2013) instances . 99
III.13 Results for Moura and Oliveira (2009) instances . 99
III.14 Results for Zhang et al. (2017) instances . 100
III.15 Average Results per Constraint Set, Our Instances 101

IV.1 Comparison of Vertical Stability Constraints . 109
IV.2 Average Results per Vertical Stability constraint . 112

V.1 Extract of MTM-UAS Data Card . 121
V.2 Definition of corridors for accessing item Ip . 122
V.3 Routing and Loading Parameters . 130
V.4 Overview of Instance Sets . 130
V.5 Comparison with predefined routes . 131
V.6 Comparison of Average Results . 132
V.7 Overview Removal Operators . 135
V.8 Overview Insertion Operators . 135

VI.1 Overview of Instance Sets . 149
VI.2 BKS for Gendreau et al. (2006) instances . 149
VI.3 BKS for Tarantilis et al. (2009) instances . 149
VI.4 BKS for Zhang et al. (2017) Instances . 150
VI.5 BKS for Krebs et al. (2021b) Instances . 150

xii

List of Algorithms
I.1 Adaptive Large Neighbourhood Search . 12
I.2 Deepest-Bottom-Left-Fill with Points . 13
I.3 Deepest-Bottom-Left-Fill with Spaces . 15
I.4 Deepest-Bottom-Left-Fill with RTree . 18
II.1 Adaptive Large Neighbourhood Search . 51
II.2 Deepest-Bottom-Left-Fill with Spaces . 56
III.1 Adaptive Large Neighbourhood Search . 86
III.2 Deepest-Bottom-Left-Fill with Spaces . 89
IV.1 Hybrid Heuristic Algorithm . 110
IV.2 Deepest-Bottom-Left-Fill with Spaces . 111
V.1 Adaptive Large Neighbourhood Search . 123
V.2 Deepest-Bottom-Left-Fill Algorithm with Retry 125
V.3 Constraints Feasibility Check . 128

xiii

Chapter 1

Introduction

The global logistic sector is expected to grow significantly in the coming years: from 5.99 billion
euros in 2021 to 6.88 billion euros in just three years (2024)1, representing an increase of 14%. This
is particularly evident in the Courier, Express and Parcel (CEP) industry. In less than a decade,
the global parcel shipping volume has quadrupled, from 43 billion parcels sent in 2014 to over 159
billion in 2021. However, this is only the beginning of a rapidly growing, globally impactful scale.
In the next few years, the volume is expected to reach between 216 billion and 300 billion parcels
by 20272.
To meet these challenging future forecasts and to remain competitive, unprecedented investments
into the digital transformation of the supply chain management are necessary: A poll by McKinsey &
Company, Inc. 2021, for example, reveals that most surveyed companies have invested in technologies
to digitize the supply chain, independently of the industry sector. Visibility and specific planning
tools are thus the major factors for investments. Furthermore, a survey conducted by SCI Verkehr
GmbH 2022 with 200 companies in the German logistics industry on planned investments for
2021 confirms that investments will primarily flow into logistics software (69% of all participants).
Through these investments in digital transformation, more and more data concerning parcels and
vehicles becomes available. Accordingly, this data should be used to further improve the logistical
planning.
However, the question arises to what degree the additional data influences the costs compared to
the received benefits. To be more concrete, realistic planning leads to three effects (benefits): 1)
increased security, 2) adherence to legal requirements, and 3) more efficient operations. Higher
security (1) is ensured for the driver, road users, parcels and the vehicle. For example, vertical
stability constraints ensure stable packing and prevent items from falling onto other items or the
driver. In addition, balanced loads should be considered to avert that goods move inside the loading
space leading to vehicles tipping over and causing accidents. Legal requirements (2) can be obeyed
through the availability of data, e.g., enabling the calculation and adherence of the vehicle’s axle
weights directly in the planning phase. 3) More efficient operations are achieved by, e.g., ensuring
that parcels can be loaded or unloaded without obstructions leading to optimal process times.
In addition to the benefit side already shown before, there is the cost side represented by the impact
on the objective values (e.g., total travel distance and the number of used vehicles) leading to higher
costs, for example in terms of fuel consumption, driver costs, and fixed costs for additional vehicles.
Another aspect is the runtime’s influence depending on the algorithms’ complexity and constraints.
The evaluation of the cost-benefit ratio for different settings is the main objective of this thesis.

1.1 Optimization Problem

This thesis focuses on loading constraints in terms of new formulations, new approaches, and fixing
existing corner cases. It thus presents the costs and benefits of various loading constraints. This
is evaluated in the context of the vehicle routing problem, e.g., the impact on the total travel
distance. Therefore, the combined optimization problem consisting of the vehicle routing problem
and the 3D container loading problem (3L-CVRP) introduced by Gendreau et al. 2006 and the
extension with time windows (3L-VRPTW) are investigated. These optimization problems consist
in delivering 3D parcels (items) from a central depot to a set of customers by a fleet of homogeneous
vehicles while obeying routing and loading constraints. This topic is highly relevant as it mirrors
typical applications in practice, such as the parcel delivery industry or the delivery of groceries and
furniture. Typically, the following five loading constraints are considered: Geometry, Orthogonality,
Rotation, Last-In-First-Out (LIFO), Fragility, and Minimal Supporting Area. The Geometry
constraint ensures adherence to the dimensions of items and vehicles and prevents the overlapping

1see Transport Intelligence Ltd 2021
2see Pitney Bowes Inc. 2023

1

1.2 Thesis outline

of objects. The Orthogonality constraint requires that the edges of the items are parallel to the
vehicle walls. The rotation of items is only allowed along the length-width plane. LIFO means
that the unloading of items must be done by straight movements, parallel to the vehicle walls, and
without rearrangements or blocked by any obstacles. The Fragility constraint distributes items into
fragile and non-fragile ones so that non-fragile items can be placed only on top of other non-fragile
items. The Minimal Supporting Area constraint requires a specific supporting area for every item
provided by underlying items or the vehicle floor in relation to the basic area. Although dozens
of papers have investigated the 3L-CVRP and the 3L-VRPTW in the past 15 years, the number
dealing with new or improved loading constraints amounts to a mere handful. Therefore, this
dissertation fills this research gap by highlighting loading constraints.
As described above, several new loading constraints are introduced, or, in the case of corner cases,
existing formulations are improved. For example, new loading constraints ensuring vertical stability
are formulated as the current constraint in this field, the Minimal Supporting Area, which can
lead to unstable item stacks. Another example is the Fragility constraint which, so far, only
classifies items into fragile and non-fragile items. For more realistic modeling, the new Load Bearing
Strength constraint for considering the actual load acting on an item is introduced based on the
science of statics. In addition, constraints to ensure a balanced load along the vehicle halves
are also evaluated. Moreover, formulas for calculating axle weights for different vehicle types,
trailers, and configurations are introduced. In the case of manual loading and unloading, constraints
obeying the reachability of items and the possibility to lift items while handling (adaption of LIFO)
are analyzed. Another focus is examining the unloading effort for items and the possibility of
rearranging items that lead to an infeasible placement according to the LIFO constraint. Finally,
two tools are presented for validating and visualizing solutions and analyzing adherence to the
loading constraints.

1.2 Thesis outline

This thesis comprises six scientific papers in three sections, highlighting loading constraints from
different perspectives. The relationship between these papers is presented in Fig. 1.1. All papers deal
with the combined vehicle routing and container loading problem (3L-CVRP and/or 3L-VRPTW).

Figure 1.1: Relation between Papers

2

1.2 Thesis outline

Paper I builds the basis of further four papers. The paper focuses on two aspects: First, it presents and
evaluates three implementation variants of the Deepest-Bottom-Left-Fill algorithm initially
invented by Karabulut and İnceoğlu 2005, which differ in the representation of available
placement positions and the sliding technique of items. As a result, the Deepest-Bottom-Left-
Fill algorithm with Spaces is the best compared to the other variants; therefore, it is also
used in Papers II-V. In addition, the paper shows that every loading constraint has a different
degree of influence on the objective values and runtime. Consequently, further research is
relevant and worthwhile.

Paper II introduces simple yet adjustable formulas for considering the Axle Weight constraint based
on the science of statics. Considering axle weights is crucial, as overloaded axles lead to
higher braking distance and more severe accidents. The introduced formulas can be adapted
to various truck types that differ in axle configurations and the presence of trailers. For the
computational experiments, the algorithm introduced in Paper I is used. The evaluation
focuses on the impact of including axle weights in the combined problem. Interestingly, the
axle weight constraint has only small negative impacts on the objective values but clearly
decreases the runtime. Combined with the fact of increased security, it should always be
included in the models.

Paper III enhances the combined problem by several complex real-world loading constraints, which lead
to increased security, such as the reachability of items, the balanced load within the vehicle
loading space, and the distribution of items’ masses within a stack. Additionally, it presents
new definitions for vertical stability. Consequently, this paper currently considers the largest
constraint set. A new instance set is created to better evaluate the loading constraints, varying
in the number of customers, item types, and items. For instance sets from the literature,
additional parameters necessary for the loading constraints are added. All constraints are
evaluated concerning their impact on the objective values.

Paper IV demonstrates differences and corner cases of the well-known vertical stability formulations
in literature. Based on this and the science of statics, a new variant of the vertical stability
constraint is introduced. In the computational studies, the new formulation is compared with
various vertical stability constraints from the literature and those introduced in Paper III. It
performs best with regard to objective values and has a comparable runtime.

Paper V includes the effort for unloading an item in the objective function based on the well-
known Methods-Time Measurement (MTM) analysis. Moreover, in contrast to the previous
approaches, it accepts infeasible item positions according to the LIFO. For these infeasible
positions, the necessary reloading effort is calculated. This time-wise additional effort is also
added to the travel time. The paper shows that this approach is highly effective concerning
performance and runtime.

Paper VI introduces two open-source tools to support further research in this field and to increase the
transparency of solutions: One for the validation of the feasibility of solutions (“Solution
Validator”) and one for the visualization of solutions (“Visualizer”), which also integrates
the validation tool to highlight violated routing or loading constraints. Moreover, this paper
summarizes the currently best-known and validated solutions for various instance sets.

3

References

References

Gendreau, M., Iori, M., Laporte, G., and Martello, S. (2006). “A Tabu Search Algorithm for a
Routing and Container Loading Problem”. In: Transportation Science vol. 40, no. 3, pp. 342–350.
issn: 0041-1655. doi: 10.1287/trsc.1050.0145. url: http://pubsmisc.informs.org/doi/abs/10.
1287/trsc.1050.0145.

Karabulut, K. and İnceoğlu, M. M. (2005). “A Hybrid Genetic Algorithm for Packing in 3D with
Deepest Bottom Left with Fill Method”. In: Advances in Information Systems. Ed. by Yakhno,
T. Berlin, Heidelberg: Springer Berlin Heidelberg, pp. 441–450. isbn: 978-3-540-30198-1.

McKinsey & Company, Inc. (Nov. 2021). How COVID-19 is reshaping supply chains. url: https:
//www.mckinsey.com/business-functions/operations/our-insights/how-covid-19-is-reshaping-
supply-chains.

Pitney Bowes Inc. (Mar. 2023). Parcel Shipping Index 2022. url: https://www.pitneybowes.com/
content/dam/pitneybowes/us/en/shipping-index/22-pbcs-04529-2021-global-parcel-shipping-
index-ebook-web-002.pdf.

SCI Verkehr GmbH (Jan. 2022). Das SCI/Logistikbarometer. url: https://www.sci.de/fileadmin/
user_upload/logistikbarometer/pdf/SCI_LOGISTIKBAROMETER_Jan_2022.pdf.

Transport Intelligence Ltd (Jan. 2021). Total Logistics 2021. url: https://www.ti-insight.com/
press_releases/global-logistics-market-forecast-to-grow-by-a-cagr-of-4-7-to-2024.

4

https://doi.org/10.1287/trsc.1050.0145
http://pubsmisc.informs.org/doi/abs/10.1287/trsc.1050.0145
http://pubsmisc.informs.org/doi/abs/10.1287/trsc.1050.0145
https://www.mckinsey.com/business-functions/operations/our-insights/how-covid-19-is-reshaping-supply-chains
https://www.mckinsey.com/business-functions/operations/our-insights/how-covid-19-is-reshaping-supply-chains
https://www.mckinsey.com/business-functions/operations/our-insights/how-covid-19-is-reshaping-supply-chains
https://www.pitneybowes.com/content/dam/pitneybowes/us/en/shipping-index/22-pbcs-04529-2021-global-parcel-shipping-index-ebook-web-002.pdf
https://www.pitneybowes.com/content/dam/pitneybowes/us/en/shipping-index/22-pbcs-04529-2021-global-parcel-shipping-index-ebook-web-002.pdf
https://www.pitneybowes.com/content/dam/pitneybowes/us/en/shipping-index/22-pbcs-04529-2021-global-parcel-shipping-index-ebook-web-002.pdf
https://www.sci.de/fileadmin/user_upload/logistikbarometer/pdf/SCI_LOGISTIKBAROMETER_Jan_2022.pdf
https://www.sci.de/fileadmin/user_upload/logistikbarometer/pdf/SCI_LOGISTIKBAROMETER_Jan_2022.pdf
https://www.ti-insight.com/press_releases/global-logistics-market-forecast-to-grow-by-a-cagr-of-4-7-to-2024
https://www.ti-insight.com/press_releases/global-logistics-market-forecast-to-grow-by-a-cagr-of-4-7-to-2024

Papers

Paper I

Effective Loading in Combined Vehicle
Routing and Container Loading Problems

Corinna Krebs, Jan Fabian Ehmke, Henriette Koch
Published in Computers & Operations Research, Volume 149, January 2023, 105988

I

Abstract

This paper addresses more effective loading within the 3L-VRPTW, which is a combination of
the vehicle routing problem with time windows and 3D loading constraints. We use a hybrid
algorithm consisting of an outer Adaptive Large Neighborhood Search tackling the routing
problem in combination with an inner Deepest-Bottom-Left-Fill algorithm solving the container
loading problem. We propose and compare three new variants for the Deepest-Bottom-Left-Fill
algorithm which differ in the representation and storage of available possible placement positions
and the shift of items. The possible placement positions can be determined either by available
points so that (1) a non-overlapping check between the items is necessary, (2) by available free
spaces, or (3) by using a Rectangle Tree (RTree), where items and their positions are stored
in a tree. For computational studies, two well-known instance sets are used. The algorithms
are evaluated and compared concerning their solution quality and performance. Hereby, the
algorithm with free spaces receives the best results with the smallest runtime. Moreover,
the impact of different loading constraints is analyzed showing that the LIFO and minimal
supporting area constraints have significant effects on the total travel distance. Several new
best solutions were found. All results are validated and published at GitHub.

7

1 Introduction

Contents

1 Introduction . 8
2 Literature Review . 9
3 Problem Description . 10
4 Hybrid Solution Approach . 11
5 Computational Experiments . 18
6 Conclusion . 23
References . 24

1 Introduction

The efficient usage of loading space of containers is of great economic importance, especially in
the area of container ship loading, pallet loading, warehouse management, and aircraft freight
management. One approach solving this complex problem is the Deepest-Bottom-Left-Fill (DBLF)
algorithm introduced by Karabulut and İnceoğlu (2005). The DBLF algorithm is usually embedded
in the optimization of superior problems like container loading problems or the vehicle routing
problem (namely 3L-CVRP). It has even been adapted to the field of additive manufacturing
(Araújo et al. 2019). The advantages of the DBLF-algorithm are clear: it is simple and has a
good trade-off between runtime and solution quality. However, when the number of items becomes
large, DBLF shows its weakness: Whenever a current item is to be placed, a non-overlapping check
with all already placed items inside the loading space has to be carried out. This might need to
be repeated for several possible positions until a feasible position for the current item is found.
Consequently, the original non-overlapping check proposed by Karabulut and İnceoğlu (2005) has a
high computational complexity.
Being a subproblem of a superior optimization problem, the DBLF algorithm has to be implemented
as efficiently as possible. When combined with the vehicle routing problem with time-windows
(3L-VRPTW), Koch et al. (2019) showed that a combination of an Adaptive Large Neighborhood
Search (ALNS) for the routing problem and the DBLF algorithm for the load optimization is
competitive. We build on this solution framework in this paper and investigate the performance of
three new DBLF implementation variants in the context of the 3L-VRPTW. We do so by analyzing
a large number of different loading constraints sets. In particular, we investigate efficient ways of
the non-overlapping check (I); we evaluate the DBLF algorithm solely and in conjunction with the
combined container loading and vehicle routing problem with time windows (3L-VRPTW) (II),
and we analyze the impact of each loading constraint on the objective value (III) and we provide
new best-solutions for two well-known instance sets (IV).
Concerning (I), we implement three algorithms: one is inspired by current industry practice; one is
based on academic literature, namely Karabulut and İnceoğlu (2005); and one is a new variant
where a non-overlapping check is not necessary. In the first algorithm, coming from the industrial
environment, a Rectangle Tree (RTree) is used. RTree structures are common to evaluate spatial
data quickly, e.g. for data analysis or collision detection in the field of three-dimensional computer
graphics and game development. In an RTree, the objects and their positions are stored in a tree
structure enabling a fast check for non-overlapping of the current item with all already placed
items. The idea of using an RTree in the context of the DBLF algorithm was first proposed by
Allen et al. (2011) and is further developed in this paper by exploring more loading constraints.
The second one is based on Koch et al. (2019) and uses the non-overlapping check as proposed in
Karabulut and İnceoğlu (2005). In the last approach, free available spaces are determined so that a
non-overlapping check is not necessary to place items.
Concerning (II), we evaluate the three DBLF algorithm variants in the context of the 3L-VRPTW.
While in classical packing problems packing algorithms focus on the maximization of the volume,
combining packing and vehicle routing requires the quick provision of good solutions for a wide
variety of routes and customer sequences. Hence, our DBLF algorithm variants need to be evaluated
regarding effective interaction with routing algorithms, esp. with handling a large number of routes.
Concerning (III), we will present the results of three computational studies. In the first one, the
DBLF algorithm variants are called with predefined routes to enable comparison with the same
computing resources. In the second study, the combined problem is solved by a hybrid algorithm

8

2 Literature Review

as shown by Koch et al. (2018). The third study deals with a sensitivity analysis of the loading
constraints. For the second and the third study, an outer ALNS determines a set of routes. Then,
for this set of routes, one of the DBLF algorithm variants is called to create a feasible packing plan
for each route. The computational tests are conducted based on two well-known instance sets from
the literature. We compare each variant concerning the solution quality (total travel distance), the
runtime, and, in the case of the second study, also in the number of iterations. In the third study,
we analyze the impact of the loading constraints on the total travel distance, e.g. the LIFO policy,
the load capacity of vehicles, the consideration of support and fragility of items. To summarize,
this paper presents improving factors for the DBLF-algorithm and the impact of different loading
constraints.
The paper is organized as follows. In Section 2, the relevant literature is reviewed. The 3L-VRPTW
is formulated in Section 3. In Section 4, the hybrid algorithm and the three DBLF algorithm
variants are described. Section 5 presents computational experiments. Finally, conclusions are
drawn in Section 6.

2 Literature Review

This paper presents three variants of the DBLF algorithm. These are evaluated in the context of the
3L-VRPTW, which is a combination of the vehicle routing problem with time windows (VRPTW)
and 3D loading constraints. First, relevant literature for the DBLF algorithms is reviewed. Then,
research on the related 3L-VRPTW is discussed.

2.1 Deepest-Bottom-Left-Fill Algorithms

The DBLF algorithm has its origin in Baker et al. (1980), who developed the Bottom-Left algorithm
in the context of the 2D-strip packing problem. In this problem, two-dimensional items are packed
into a container where one dimension is unknown and must be minimized. Their idea is to place
items first into the lowest possible position and then move the items as left as possible along
their vertical position. Hopper and Turton (2001) use this approach to solve the 2D container
loading problem. To avoid large empty spaces, they modify the algorithm so that available holes
are filled (Bottom-Left-Fill). To cover 3D container loading problems, Karabulut and İnceoğlu
(2005) extend the Bottom-Left-Fill method and introduce the DBLF algorithm, which places items
first in the deepest position. As in Karabulut and İnceoğlu (2005), the DBLF principle has often
been implemented with genetic algorithms to solve 3D container loading problems (e.g. in Kang
et al. 2012, Moon and Nguyen 2013, Feng et al. 2015 and Jamrus and Chien 2016) or implemented
to solve 3D strip packing problems (e.g. Allen et al. 2011 and Wauters et al. 2013). The DBLF
principle has not only been used for 3D container loading problems, but also in combination with
vehicle routing problems (e.g. Ma et al. 2011, Zhu et al. 2012, Wu et al. 2013, Koch et al. 2018,
Koch et al. 2019, and Krebs et al. 2021). In this problem field, the objective is to minimize the
total travel distance so that the DBLF algorithms need to provide good solutions quickly rather
than maximizing the volume, for example. Concerning best practices in container loading problems,
we recommend Silva et al. (2019). In Araújo et al. (2019), the practicality of the DBLF principle is
even analyzed for the area of additive manufacturing.
The DBLF principle has been extended by several variants, e.g. by adding further loading
constraints. In Kang et al. (2012), the DBLF principle is embedded into a genetic algorithm and
used in the context of the 3D Bin Packing Problem. Hereby, the items are allowed to be rotated in
all ways. Moon and Nguyen (2013) tackle the 3D Bin Packing Problem by combining the DBLF
principle with a greedy heuristic and a genetic algorithm. Additionally, they ensure a balanced
loading w.r.t. the x- and y-axis of the loading space. Krebs and Ehmke (2021a) deal with the
modeling of axle weights for different vehicle types. Hereby, the DBLF principle is used with an
ALNS for solving the combined vehicle routing and container loading problem. The same algorithm
is applied in Krebs et al. (2021) for a comprehensive study of new loading constraints (e.g. the
reachability of items and realistic load distribution of stacked items). This algorithm is also used in
Krebs and Ehmke (2021b), who focus on vertical stability constraints and introduce a new approach
enabling stable packing. To extend the research of the impacts of loading constraints on objective
values, we evaluate this aspect for the basic loading constraints as introduced by Gendreau et al.

9

3 Problem Description

(2006) in this paper.
Another variant of the DBLF algorithm considers its complexity: In the implementation by
Karabulut and İnceoğlu (2005), the non-overlapping of items is ensured by checking the current
item with all already placed items. To reduce the complexity of the algorithm, Allen et al. (2011)
store the positions of the placed items in an RTree enabling an efficient non-overlapping check of
items. Their algorithm achieved several new best-known solutions. Therefore, the potential of
RTree representations is further explored in this paper (see “DBLF with RTree” algorithm) in the
context of more loading constraints.

2.2 3L-VRPTW

Gendreau et al. (2006) introduce the combination of the vehicle routing and 3D container loading
problem (namely 3L-CVRP). This problem involves the optimal planning of routes to deliver goods
to customers that are located in a depot. This is accomplished by a fleet of vehicles having a certain
load capacity. Gendreau et al. (2006) solve the vehicle routing problem (VRP) with an “outer"
tabu search, which determines the routes. The loading problem is tackled by an iteratively invoked
“inner" tabu search. The 3L-VRPTW is a problem variant of the 3L-CVRP, where the depot and
the customer locations have time windows. In Pace et al. (2015), a heuristic based on simulated
annealing and an iterated local search is proposed to solve the VRPTW. Since they examine the
distribution of fiber boards, a specialized loading heuristic and a balanced loading constraint are
necessary. The latter is also adopted by Mak-Hau et al. (2018), who develop a mixed-integer
linear program for a simplified version of the 3L-VRPTW and a heterogeneous fleet. Zhang et al.
(2017) solve the 3L-VRPTW with a hybrid approach where the routing heuristic is based on a
tabu search and an artificial bee colony algorithm. The loading heuristic is a combination of a
personification heuristic and simulated annealing. They combine two well-known instance sets
provided by Gendreau et al. (2006) and Solomon (1987).
As the combination of (meta-)heuristics has proven to be an efficient way to deal with the 3L-
VRPTW, in this paper, we use the approach by Krebs et al. (2021) to test the effectiveness of
different DBLF algorithm variants. In this hybrid algorithm, an outer ALNS combined with
Simulated Annealing solves the routing problem, while an inner DBLF algorithm generates a
packing plan for the created set of routes.

3 Problem Description

In the following, we present a problem description for the 3L-VRPTW, which we use to evaluate the
different DBLF algorithm variants proposed in this paper. A complete mathematical formulation
is provided in A. Adapting the convention by Koch et al. (2018), the 3L-VRPTW is specified as
follows: Let G = (N, E) be a complete, directed graph, where N is the set of n+1 nodes including
the depot (node 0) and n customers to be served (node 1 to n), and E is the edge set connecting
each pair of nodes. Each edge ei,j ∈ E (i ≠ j, i, j = 0, ..., n) has an associated routing distance di,j

(di,j > 0). The demand of customer i ∈ N \ {0} consists of ci cuboid items. Let m be the total
number of all demanded items. Moreover, time windows are defined thanks to the following three
times at each node i: the ready time RTi, which is the earliest possible start time of service, the
due date DDi, the latest possible start time, and the service time STi, which specifies the needed
time to (un-)load all ci items of a customer i.
Each item Ii,k (k = 1, ..., ci) is defined by mass mi,k, length li,k, width wi,k, and height hi,k. The
items are delivered by at most vmax available, homogeneous vehicles. Each vehicle has a maximum
load capacity D and a cuboid loading space defined by length L, width W and height H. It is
assumed that each vehicle has a constant speed of 1 distance unit per time unit. If a vehicle arrives
at an edge before its ready time, it has to wait until the ready time is reached.
Let vused be the number of used vehicles in a solution. A solution is a set of vused pairs of routes
Rv and packing plans PPv, whereby the route Rv (v = 1, ..., vused) represents an ordered sequence
of at least one customer, and PPv is a packing plan containing the position within the loading
space for each item included in the route.
A solution is feasible if

10

4 Hybrid Solution Approach

(S1) All routes Rv and packing plans PPv are feasible (see below);

(S2) The number of used vehicles vused does not exceed the number of available vehicles vmax;

(S3) Each customer is visited exactly once;

(S4) Each packing plan PPv contains all ci items of all customers i included in the corresponding
route (i ∈ Rv).

A route Rv must meet the following routing constraints:

(C1) Each route starts and terminates at the depot and visits at least one customer;

(C2) The vehicle does not arrive after the due date DDi of any location i.

Each packing plan PPv of a route Rv must obey the following loading constraints:

(L1) Geometry: The items must be packed within the vehicle ensuring non-overlapping;

(L2) Orthogonality: The items can only be placed orthogonally inside a vehicle;

(L3) Rotation: The items can be rotated 90◦ only on the width-length plane;

(L4) Load Capacity: The sum of masses of all included items of a vehicle does not exceed the
maximum load capacity D;

(L5) LIFO: No item is placed above or in front of item Ii,k, which belongs to a customer served
after customer i;

(L6) Minimal Supporting Area: Each item has a supporting area of at least a percentage α of its
base area;

(L7) Fragility: No non-fragile items are placed on top of fragile items.

The 3L-VRPTW aims at determining a feasible solution minimizing the total travel distance ttd
and meeting all above constraints.

4 Hybrid Solution Approach

To evaluate our DBLF algorithm variants in the context of the 3L-VRPTW, we employ a hybrid
solution approach consisting of a routing algorithm for creating feasible routes and an embedded
container loading algorithm, which generates feasible packing plans PPv for the generated set
of routes Rv. As a routing algorithm, we use the ALNS proposed by Koch et al. (2018). For
the packing algorithm, one of the three investigated DBLF algorithm variants is used, which are
presented in this section. We reference the line numbers of the algorithms in square brackets.
Generally, we consider a solution to be feasible if all loading and routing constraints are obeyed.

4.1 Routing Algorithm

As a routing algorithm, we employ the ALNS proposed by Koch et al. (2018) adapted to the
3L-VRPTW without backhauls. The algorithm is shown in Alg. I.1 and briefly described in the
following. For further details, we refer to the original paper.
Initially, a set of routes sinit is constructed [1] by the Savings Heuristic developed by Clarke and
Wright (1964). Hereby, routing and loading constraints must be ensured. Consequently, the DBLF
algorithm is called to check the loading feasibility.
The next feasible solution is determined by removing a randomized number of customers from
the routes using removal heuristics [5-6]. The removed customers are reinserted using insertion
heuristics [7-8]. The removal and insertion heuristics are described in detail in Koch et al. (2018).

11

4 Hybrid Solution Approach

Algorithm I.1 Adaptive Large Neighbourhood Search
Input: Instance data, parameters
Output: best feasible solution sbest

1: construct initial feasible solution sinit using Savings Heuristic
2: sbest := sinit

3: scurr := sinit

4: do
5: select removal operator rem
6: select number of customers to be removed nrem

7: select insertion operator inst
8: determine next feasible solution snext := inst(rem(scurr, ncurr))
9: for each route Rv in snext do

10: feasible := true
11: if Deepest-Bottom-Left-Fill(Rv) not feasible then
12: feasible := false
13: break
14: end if
15: end for
16: check acceptance of snext using Simulated Annealing
17: if feasible AND snext is accepted then
18: scurr := snext

19: if f(scurr) < f(sbest) then
20: sbest := snext

21: end if
22: end if
23: if itp reached then
24: update selection probabilities for insertion and removal heuristics
25: end if
26: while one stopping criterion is not met

The new set of routes is checked for whether it fulfills all routing constraints, and whether a feasible
packing plan can be created with the DBLF algorithm [9-15].
Infeasible solutions are always discarded. A feasible and superior solution (i.e. less total
travel distance) is always accepted as the current solution. An inferior feasible solution may
be accepted depending on the result of a Simulated Annealing Heuristic [16-17] developed by
Kirkpatrick et al. (1983). Hereby, a worse but feasible solution is accepted with the probability
e−(f ∗ (snext −f ∗ (s))/T). T represents the current temperature (T > 0). The starting temperature
is determined as proposed by Ropke and Pisinger (2006), i.e. a w% worse solution compared to
the initial solution would be accepted with a probability of 0.5. After each iteration, the new
temperature is calculated by multiplying the current temperature T by a cooling rate γ.
The current solution scurr is then used to generate the next solution [18]. The success of the
removal and insertion heuristics is evaluated after a defined number of iterations itp to update the
selection probabilities of these heuristics [23-25].
The algorithm stops if a time limit is reached or a total number of iterations is executed or the
solution does not improve within a defined number of iterations [26].

4.2 Packing Algorithm

In this section, three DBLF algorithm variants are presented, which are based on the DBLF
algorithm proposed by Karabulut and İnceoğlu (2005). The basic concept is to place the items as
far as possible to the back (first priority), to the bottom (second priority), and to the left (third
priority) of the loading space.
For all algorithms, we assume that the point of origin of a Cartesian coordinate system is located in
the deepest, bottommost, leftmost point of the loading space. The driver’s cab is located behind it
accordingly. The length, width, and height of the loading space are parallel to the x, y, and z-axis.
The position of an item Ii,k is defined by (xi,k, yi,k, zi,k) of the corner which is closest to the point
of origin. First, the items of each customer are sorted by means of the following priorities:

12

4 Hybrid Solution Approach

1. fragility flag fi,k (non-fragile first)

2. volume (larger volume first)

3. length li,k (longer first)

4. width wi,k (wider first).

Then, the items are added to the loading sequence IS reversed to the customer’s visiting order.
This sequence is used as an input parameter for the DBLF algorithm. Since each customer is
visited exactly once (S3), all items of a customer must be placed in the loading space. If no feasible
position for an item can be found, the route is revised, and a new one must be searched by the
ALNS.

4.2.1 Deepest-Bottom-Left-Fill with Points

The following DBLF algorithm variant is the same as in Koch et al. (2019). We formalize this
variant in Alg. I.2. The algorithm is rather close to the original proposed by Karabulut and İnceoğlu
(2005) with the difference that the rotation of items is allowed here. In the set SP , all possible
placement points for an item are stored. The first point in the set is the origin of the loading space
[2]. Then, for each item Ip of the packing sequence IS and for each allowed orientation, a feasible
position is searched [3-5]. For this purpose, the points of SP are successively tested as a possible
position for the current item Ip. Based on the position, the item Ip is tried to slide further to the
back, bottom, and left (see Fig I.1).

Algorithm I.2 Deepest-Bottom-Left-Fill with Points
Input: Instance data, smallest dimensions lmin, hmin

Output: Packing Plan PPv, feasibility of Rv

1: initialize sorted sequence of unpacked items IS
2: initialize set of unique available points SP
3: for each item Ip ∈ IS do
4: for each point po ∈ SP do
5: for each permitted rotation do
6: for each placed item Iq ∈ IS do
7: if Ip and Iq overlap then
8: continue with next orientation or point po
9: end if

10: end for
11: if position is feasible w.r.t. all loading constraints then
12: save placement for Ip

13: erase point po
14: create and include new points in SP
15: sort SP based on DBL
16: for each point pi ∈ SP do
17: if pi and Ip overlap then
18: erase point pi
19: end if
20: end for
21: break
22: end if
23: end for
24: end for
25: if no feasible position found then
26: return false
27: end if
28: end for

After sliding, for this current position for Ip, it is checked whether there is an intersection
with any already placed item [7-10]. If this is not the case and thus the Geometry constraint
(L1) is met, the position for item Ip is checked whether fulfilling the other loading constraints

13

4 Hybrid Solution Approach

(a) Point po for item I1,5 (b) Sliding item to new position

Figure I.1: Sliding item I5,1 based on current position

[11]. If the position is feasible, the position is saved for the item Ip [12], and the used point po is
removed from SP [13]. Then, three new points are created as new possible placement points [14]:
the bottom-right-back, the top-left-back, and the bottom-left-front points of the placed item (see
Fig. I.2).

(a) After first placed item I1,1 (b) After second placed item I2,1

Figure I.2: Elements of set SP

Only points are included in SP providing that any item of the instance could be placed there.
Thus, the shortest length or width lmin and smallest height hmin of any item of the instance are
searched once and the points are checked whether their distances to the loading space walls are
sufficient. After inserting the new points, the entire set SP is sorted based on the DBL policy [15].
In the last step, all possible points of SP are tested concerning whether they are covered by the
placed item Ip. In this case, the points are removed from the SP [16-20].

4.2.2 Deepest-Bottom-Left-Fill with Spaces

As the previous approach shows, each item must be checked for non-overlapping with all already
placed items. If there is an overlap, the next position for the current item is selected and the
non-overlapping check is executed again. Due to this high complexity, the idea of the DBLF with
Spaces was born. In this approach shown in Alg. I.3, the possible placement positions are stored as
available free spaces instead of possible points. Thus, the effort for checking the non-overlapping
between items and the vehicle is reduced.
Let S be the set of unique cuboids representing available free spaces for placing items. The general
procedure is comparable to the previous one: The set SP is initialized with the entire loading space
[2], sorted by the DBL-rule [11], and for each item Ip of the sequence IS, a possible position must
be found [3]. Thus, each space sp of the set and each allowed rotation are tested as possible item
positions until a feasible position is found, obeying all loading constraints [4-5]. In contrast to

14

4 Hybrid Solution Approach

DBLF with Points, the items are not further slid. Moreover, instead of three new points, up to six
spaces are created based on the current position of the placed item Ip.

Algorithm I.3 Deepest-Bottom-Left-Fill with Spaces
Input: Instance data
Output: Packing Plan PPv, feasibility of Rv

1: initialize sorted sequence of items IS
2: initialize set of unique available spaces SP
3: for each item Ip ∈ IS do
4: for each space sp ∈ SP do
5: for each permitted rotation do
6: if item Ip fits in space sp then
7: if position is feasible w.r.t. all loading constraints then
8: save placement for Ip

9: erase space sp
10: create and include new spaces
11: sort SP based on DBL
12: get lmin and hmin of unplaced items ∈ IS
13: for each space si ∈ SP do
14: update space si
15: if si too small then
16: erase space si
17: end if
18: break
19: end for
20: end if
21: end if
22: end for
23: end for
24: if no feasible position found then
25: return false
26: end if
27: end for

The first space is created by the front edge (Front Space) of item Ip. Starting from the front edge
(minimum x-value), the maximum x-value is determined by expanding the space along the x-axis
until reaching the vehicle door or another item. In the next step, the search for the minimum and
maximum z-values is carried out, which are determined by the vehicle (floor or ceiling) or other
items (underlying or overhanging ones). Then, the minimum and maximum y-values are searched
by extending to the vehicle wall or to an item (see Fig. I.3a,b). The order in which the dimensions
of the space are determined is decisive for the resulting space. For example, if the Front Space
would expand along the y-axis first, the Front Space in Fig. I.3c occurs which corresponds to the
Front Space of I2,1 applying the current definition.

(a) Front Space for I5,1 (b) Front Space for I5,1 (c) Front Space for I2,1

Figure I.3: Front Space Creation

15

4 Hybrid Solution Approach

The minimum y-value for the Right Space is defined by the item’s right edge (see Fig. I.4a). Then,
the maximum y-value is searched, which is defined either by an item or the vehicle wall. In the next
step, the minimum and maximum values for the z-axis and then for the x-axis are searched. For
the Top Space, the top edge determines the minimum z-value. Then, the minimum and maximum
values along the y-axis and x-axis are searched (see Fig. I.4b). In addition, further three spaces are
created if they are unique: (1) Another Front and (2) Right Space, where the minimum z-value
represents the bottom edge of item Ip; (3) another Top Space, where the minimum x-value is the
deepest edge of item Ip.

(a) Right Space for I4,1 (b) Top Space for I4,1

Figure I.4: Right and Top Space Creation

After the feasible placement of an item Ip, the used space sp is removed from the set [9], and
the new spaces are inserted in the set SP [10]. To ensure that the available spaces of the set
S represent empty volumes, the dimensions of all spaces are checked w.r.t. intersection with
item Ip. If one or more spaces intersect with item Ip, then, these spaces are decreased so that
no intersection occurs [14]. Therefore, if an item can be placed within an available space, it is
guaranteed that the item does not overlap with other items or with the vehicle’s walls (Geometry
constraint (L1)). In contrast to the approach by Karabulut and İnceoğlu (2005) and the previous
one, a non-overlapping check between each item is not necessary, which decreases the complexity.
As in the previous approach, the possible placements must not exceed minimum dimensions. In
contrast to the previous approach, the shortest length or width and height are not determined by
the smallest items of the instance but rather by the smallest dimensions of unplaced items of the
route. Therefore, the shortest length or width lmin and height hmin of any unplaced item of the
route are searched [12], and all spaces which have smaller dimensions than the minimum one are
removed [15-17].

4.2.3 Deepest-Bottom-Left-Fill with RTree

Regarding common approaches for collision-detection, e.g. in game development, tree structures are
the preferred choice. Thus, in this approach, we use a so-called RTree for the non-overlapping check
(Guttman 1984). Hereby, the tree contains geometric objects. The main idea is to group geometries
that are close to each other inside of the tree. At each level of the tree, there is a fixed number of
objects. Therefore, an RTree represents a balanced tree. At the leaf level, each geometry describes
a single object. In the next higher level of the tree, a minimum bounding geometry is defined by its
underlying objects. An RTree can be used to execute queries, e.g. to ensure non-overlapping of
geometries: Since all objects lie within the minimal bounding geometry, an object that does not
intersect with the bounding geometry can also not intersect with any of the contained underlying
objects.
In this third approach and also as proposed by Allen et al. (2011), an RTree is used to store items
and their positions and to check for non-overlapping of the current item with all already placed
items. In Fig. I.5, we show two examples for packed items in a vehicle and the corresponding RTree
representation. As described, the leaves of the RTree represent the already placed items while the

16

4 Hybrid Solution Approach

nodes are the minimum bounding rectangles of the underlying items. The number of objects per
node is here set to 4. As Fig. I.5b shows, the minimum bounding rectangles are allowed to overlap.

(a) Example 1

(b) Example 2

Figure I.5: Packed items in vehicle and created RTree

In this approach, we extended the DBLF algorithm by Allen et al. (2011) by considering the rotation
and fragility of items. Moreover, to speed up the algorithm, positions where an item cannot be
placed are removed (see below). The algorithm is summarized in Alg. I.4.
Similar to DBLF with Points, the possible placement points are stored in the set SP , and three
new points are created based on the currently placed item [11]. As in the previous two DBLF
algorithms, for each item Ip [3], every available placement position [4] and allowed rotation are
tested [5] until a feasible position for the current item Ip is found [7]. If the non-overlapping check
by the RTree is positive and also the other loading constraints are fulfilled, the placement of item
Ip is saved [8], and the item with its position is additionally stored in the RTree [9]. In contrast to
the other algorithms, no sliding techniques are used. After saving the feasible position of the item,
three new placement points are created based on the current item Ip (see DBLF with Points) and
added to the set SP [11]. The set is sorted according to the DBL order [12]. Then, the minimum
dimensions lmin and hmin of all unplaced items are searched as in DBLF with Spaces [13]. The
purpose of the minimum dimensions is to remove points whose distance to the vehicle walls is too
small to place any item [14-18].

4.2.4 Comparison

The differences between the DBLF algorithm variants are summarized in Table I.1. In DBLF with
Points, a non-overlapping check between a possible item position and all placed items is necessary.
In contrast to that, this is not necessary for DBLF with Spaces, since the dimensions of the space
represent empty volumes and are adapted after each item placement. In DBLF with RTree, the
items and their positions are stored in the tree, which is then used to ensure the non-overlapping

17

5 Computational Experiments

Algorithm I.4 Deepest-Bottom-Left-Fill with RTree
Input: Instance data
Output: Packing Plan PPv, feasibility of Rv

1: initialize sorted sequence of unpacked items IS
2: initialize set of unique available points SP
3: for each item Ip ∈ IS do
4: for each point po ∈ SP do
5: for each permitted rotation do
6: if Ip does not overlap (RTree Query) then
7: if position is feasible w.r.t. all loading constraints then
8: save placement for Ip

9: add item Ip in RTree
10: erase point sp
11: create and include new points in set SP
12: sort SP based on DBL
13: get lmin and hmin of unplaced items ∈ IS
14: for each point pi ∈ SP do
15: if pi too small then
16: erase space pi
17: end if
18: end for
19: break
20: end if
21: end if
22: end for
23: end for
24: if no feasible position found then
25: return false
26: end if
27: end for

condition. Moreover, in each algorithm, the smallest dimensions are searched to remove impossible
placement positions. In the case of DBLF with Spaces and with RTree, the dimensions of the
possible placement must be larger and higher than the smallest dimensions of all unplaced items
in the route. The dimensions are determined after each placement of an item. In the DBLF with
Points, the smallest dimensions are searched once in all items of the instance.

Table I.1: Comparison of DBLF approaches
DBLF with

Points Spaces RTree

Non-overlapping check Each item with all
placed items

Spaces ensure non-
overlapping

Using Tree

Sliding of items After selecting place-
ment point

While space creation None

Smallest Dimensions all items of Instance unplaced items unplaced items

5 Computational Experiments

This section presents the computational studies. In particular, we compare the three DBLF
algorithm variants concerning solution quality and performance. Moreover, the impact of the
loading constraints per DBLF algorithm variant is analyzed. Hereby, the instance sets by Zhang
et al. (2017) as well as our 3L-VRPTW instance set1 are used. Each instance and each constraint

1see http://open-science.ub.ovgu.de/xmlui/bitstream/handle/684882692/59/Overview.zip

18

http://open-science.ub.ovgu.de/xmlui/bitstream/handle/684882692/59/Overview.zip

5 Computational Experiments

set are tested 15 times. Out of these 15 runs per instance and constraint set, the best one is
determined (lowest total travel distance, then lowest runtime), and the average result is presented
as well. In B, we provide summarized result tables. Moreover, to ensure full transparency and
traceability, we published all results on GitHub2. These are additionally validated with our solution
validator3.
The algorithms are implemented in C++ as a single-core application and are compiled using the
VC++ 2019 version, v14.26 compiler. The experiments were executed on several i7-2600 quad-cores
with 3.4 GHz and 16 GB RAM. The operating system is Windows 10. The RTree is implemented
by using the well-known Boost library, 1.73 version4.

5.1 Parameters

The necessary parameters for the hybrid algorithm are listed in Table I.2. Regarding the parameters
for the routing heuristic, we performed a preliminary study to tune the parameters. As the
evaluation showed, the best results were obtained by the parameters as described in Koch et al.
(2018) and therefore, these parameters are kept. The Number of Leaves per Node was received
experimentally.

Table I.2: Algorithm Parameters
Category Description Value

Stopping Criterion Maximal number of iterations 25,000
Stopping Criterion Maximal number of iterations without improvement 8,000
Stopping Criterion Time limit [min] 60
ALNS Number of iterations for updating probabilities for removal

and insertion operators itp

100

ALNS, Simulated Annealing Cooling Rate γ 0.99975
ALNS, Simulated Annealing Start Temperature Parameter w 5%
RTree Number of Leaves per Node 16
Minimal Supporting Ratio α 0.75

5.2 Comparison of DBLF Algorithms

In the following, we evaluate the solution quality and the performance of the DBLF algorithm
variants. Two computational experiments are conducted. The first evaluates the algorithm variants
based on predefined routes with given volume ranges. In the second, the algorithms are tested in
the context of the hybrid algorithm.

5.2.1 Predefined Routes

For the following computational experiments, predefined routes for each instance of our instance
set are created. The corresponding volume of all dispatched items in the route is calculated and set
in relation to the vehicle loading space. Each route is tested once by each algorithm including all
loading constraints. In Table I.3, the results are presented, including the success rate, which is the
total number of successfully packed routes related to the total number of routes. Moreover, the
average runtime per volume range is presented.

As expected, the higher the volume utilization rate within the vehicle loading space, the lower
the success rate of the packing process. Surprisingly, the industrial approach (DBLF with RTree)
achieves the worse results. The overall highest success rate is achieved by DBLF with Spaces,
closely followed by DBLF with Points. However, the average runtime of the DBLF with Points is
around 2.4 times the average runtime of the DBLF with Spaces. This shows the lower complexity
(and thus the better concept of the non-overlapping check) of the DBLF with Spaces compared to
the traditional approach (DBLF with Points). The success rate is an indicator of the efficiency of

2see https://github.com/CorinnaKrebs/Results
3see https://github.com/CorinnaKrebs/SolutionValidator
4see https://www.boost.org/users/history/version_1_73_0.html

19

https://github.com/CorinnaKrebs/Results
https://github.com/CorinnaKrebs/SolutionValidator
https://www.boost.org/users/history/version_1_73_0.html

5 Computational Experiments

Table I.3: Comparison of DBLF Algorithms with predefined routes
Number of Success Rate [%] avg. time [s]

Routes DBLF with DBLF with
per Range Points Spaces RTree Points Spaces RTree

30-40 43.970 98.51 98.43 96.37 2.28 1.18 5.03
40-50 57.826 94.93 95.61 86.57 5.00 2.87 13.56
50-60 48.648 88.04 88.21 69.14 20.10 12.48 37.56
60-70 29.908 83.90 83.10 60.74 62.66 34.41 82.36
70-80 14.103 79.64 81.17 58.25 142.16 66.75 225.51
80-90 3.534 60.98 62.85 37.95 699.01 272.61 608.16
Total 197.989 84.33 84.90 68.17 155.20 65.05 162.03

sliding items: In DBLF with RTree, the items are not slid, and this approach achieves significantly
worse results than the other approaches containing sliding techniques. Concerning the performance
of the DBLF with RTree, the average runtime is almost 2.5 times the average runtime of DBLF
with Spaces. Further analysis shows that the tree must be adapted after each successful placement
of an item causing high runtimes. To conclude, the DBLF with Spaces achieves merely the highest
success rate per volume range along with the smallest runtime.

5.2.2 Combination with Vehicle Routing Problem

Table I.4 gives an overview of the results per instance set for each DBLF algorithm. All loading
constraints described in Sec. 3 are considered. Per instance set, we show the average total travel
distance (ttd), the average runtime in seconds (time), and the average number of iterations
(iterations) calculated based on all instances. Since each instance is tested 15 times, the results
are further grouped by best out of 15 runs and the calculated average of the 15 runs. Moreover, we
count the number of instances in which a DBLF algorithm was the only one to find the best result
along with the total number of best results found (# Best results found).

Table I.4: Results for DBLF Algorithms – all Constraints
DBLF with Benchmark

Points Spaces RTree

Results for our Instances
best ∅ ttd 1,167.34 1,158.36 1,263.25

∅ time [s] 2,174.97 2,133.41 2,963.55
∅ iterations 11,187.05 10,227.22 3,212.00

avg. ∅ ttd 1,195.68 1,172.33 1,288.66
∅ time [s] 2,182.33 2,136.27 2,970.96
∅ iterations 11,065.92 10,306.46 3,204.22

Best results found 94 / 363 230 / 497 5 / 180
Results for Zhang et al. (2017) Instances

best ∅ ttd 783.20 777.07 854.18 965.74
∅ time [s] 499.08 476.46 1,911.17
∅ iterations 17,399.59 17,176.70 7,161.26

avg. ∅ttd 788.41 781.51 869.51 971.35
∅ time [s] 501.28 468.89 1,946.59 1,163.16
∅ iterations 17,590.99 17,099.25 7,857.70

Best results found 5 / 7 19 / 20 1 / 2

Generally, the same findings as before can be drawn: DBLF with Spaces dominates the other
DBLF algorithms, which is reflected by the smaller total travel distance, better performance (smaller
runtime), and a higher number of best results found. This highlights the importance of the reduced
complexity of the non-overlapping check. Compared to DBLF with Spaces, the total travel distance
obtained with DBLF with Points is longer. In the case of our instance set, the total travel distance
increases by about 2%, while for Zhang et al. (2017) instances, it is < 1% on average. Therefore, it
can be concluded that sliding the possible placement positions during their creation (DBLF with

20

5 Computational Experiments

Spaces) leads to better results than choosing one position and sliding the items afterward (DBLF
with Points). In general, the solutions are achieved with an approximately 5% increase in runtime
when using DBLF with Points.
Surprisingly, the results for DBLF with RTree are generally worse. On average, the total travel
distance increases by up to 10% compared to DBLF with Spaces. In general, the runtime is also
significantly higher, e.g. for our instances, it is approx. 39%, and for Zhang et al. (2017), it is even
up to 3.2 times higher than with DBLF with Spaces. As explained before, the higher runtime is
caused by the necessary adaptions of the structure of the RTree after each successful placement of
an item. The check for overlap itself is much faster compared to the other algorithms. Due to these
adaptions of the RTree, the time per iteration is higher and thus, fewer iterations can be conducted
within the time limit. Another reason for the longer total travel distance lies in the missing sliding
techniques used to place items in the deepest, leftmost, bottommost position. Still, the DBLF with
RTree finds the best results for 182 of 627 instances (29%), and for 6 instances, DBLF with RTree
is the only algorithm finding the best solution at all. Consequently, this approach has potential
once the high runtime for adapting the tree structure is reduced. This could be achieved by other
tree structures in future work.
In comparison to the benchmark by Zhang et al. 2017, DBLF with Spaces achieves solutions that
save approximately 20% of total travel distance, on average, in 40% of the time. When comparing
the best results with the average results for DBLF with Spaces, the total travel distance increases
by up to 1.5%, on average, depending on the instance. Moreover, also the runtime varies by several
additional percent. Consequently, there is still room for improvement to make the algorithm more
stable in finding the best solutions. Nevertheless, DBLF with Spaces achieves the best results and
has the best performance.

5.3 Impact of Loading Constraints

Above, each instance set was tested 15 times for each DBLF algorithm variant while all loading
constraints are fulfilled. In this section, we want to evaluate the sensitivity of the DBLF algorithm
variants concerning the loading constraints. Therefore, we analyze the impact of the loading
constraints for each variant by removing one loading constraint and testing each instance of our
instance set again 15 times. As before, we report results concerning the total travel distance (ttd),
the runtime (time), and the number of iterations. The relative deviation of the results where
one loading constraint is excluded to the results considering all constraints with the same DBLF
algorithm variant is calculated. These deviations are further visualized by boxplots showing the
minimum, 1st quartile (Q1), median, 3rd quartile (Q3), and maximum values of the relative results.
Each boxplot is overlapped by a swarm plot indicating the distribution of the data points.
In general, the number of performed iterations varies greatly for all results. On the one hand, since
the performance increases, more iterations can be carried out when disregarding one constraint.
Then, also the runtime increases while the total travel distance does not necessarily improve. On
the other hand, the number of performed iterations along with the runtime can decrease because the
solution space is larger and thus, a good solution can be found faster and the algorithm terminates
earlier.

Fig. I.6 visualizes the results for the instances when ignoring the rotation constraint (L3).
Consequently, the solution space is smaller without allowing the rotation of items. However,
for most instances, the total travel distance remains mostly the same independent of the DBLF
algorithm, as Q1 to the median are around zero. For one-quarter of the instances (Q3), the total
travel distance increases by several percent – especially for DBLF with Spaces by up to 2.6%.
In the case of DBLF with Spaces, the median runtime reduction is around 16%, in the case of
DBLF with Points even 32%. In the case of DBLF with RTree, the runtime remains unchanged.
Unlike as stated in Kang et al. (2012), who tackled the pure 3D container loading problem, we can
conclude that the rotation constraint has merely only small impacts on the objective value of the
3L-VRPTW.

In Fig. I.7, the results obtained without taking the load capacity (L4) into account are shown.
Since the range between median to Q3 is around zero, the constraint has merely no effect on the
total travel distance. For DBLF with Points, for one quarter (Q3), the total travel distance decreases
by up to 7.4%. In the case of DBLF with Spaces and DBLF with Points, the runtime decreases

21

5 Computational Experiments

ttd

40

20

0

20

40

De
vi

at
io

n
to

 se
t w

ith
 a

ll
co

ns
tra

in
ts

 [%
]

time iterations
150

100

50

0

50

100

150

Boxplot Datapoint
DBLF with Points DBLF with Spaces DBLF with RTree

Figure I.6: Comparison of DBLF Results – Without Rotation

ttd

40

20

0

20

40

De
vi

at
io

n
to

 se
t w

ith
 a

ll
co

ns
tra

in
ts

 [%
]

time iterations
150

100

50

0

50

100

150

Boxplot Datapoint
DBLF with Points DBLF with Spaces DBLF with RTree

Figure I.7: Comparison of DBLF Results – Without Load Capacity

significantly (Q1 up to -75%, Q3 = 0); for DBLF with RTree, the runtime remains similar. The
number of iterations varies widely for all algorithms (Q1 = -19%, Q3 = 43%). For our instances
with a high number of customers, items, and item types, the solutions are generated faster with
significantly fewer iterations. To conclude, the load capacity constraint has merely small impacts
on the objective values and highly positive effects on the runtime.

Fig. I.8 illustrates the results without considering the LIFO policy (L5). The total travel
distance improves significantly for almost every instance (Q3 = 0, Q1 up to -8.3%). The runtime
decreases significantly for DBLF with Points (Q1 ≈ −62%) and especially for DBLF with Spaces
(Q1 ≈ −68%). For the DBLF with RTree, there are only isolated improvements in runtime (Q1 to
Q3 = 0). To summarize, the LIFO constraint has a significant impact on the total travel distance
and the performance.

Fig. I.9 shows the impact of disregarding the minimal supporting area constraint (L6). The total
travel distance remains the same (median and Q3 are around zero) or decreases (Q1 ≈ −4.8%).
The runtime shows the same tendencies: Q1 is -56% for DBLF with Points and -54% for DBLF
with Spaces. Further analysis shows that improvements of the total travel distance are especially
achieved for instances with a high number of different item types since the constraint is more
restrictive for these instances than for instances with homogenous items.

22

6 Conclusion

ttd

40

20

0

20

40

De
vi

at
io

n
to

 se
t w

ith
 a

ll
co

ns
tra

in
ts

 [%
]

time iterations
150

100

50

0

50

100

150

Boxplot Datapoint
DBLF with Points DBLF with Spaces DBLF with RTree

Figure I.8: Comparison of DBLF Results – Without LIFO

ttd

40

20

0

20

40

De
vi

at
io

n
to

 se
t w

ith
 a

ll
co

ns
tra

in
ts

 [%
]

time iterations
150

100

50

0

50

100

150

Boxplot Datapoint
DBLF with Points DBLF with Spaces DBLF with RTree

Figure I.9: Comparison of DBLF Results – Without Minimal Supporting Area

Fig. I.10 visualizes the results without the consideration of an item’s fragility (L7). The total
travel distance remains unchanged for most instances or improves slightly (Q1 ≈ −2%, Q3 ≈ 0.4%).
The runtime decreases significantly (Q3 = 0, Q1 up to 56%) for DBLF with Points and DBLF with
Spaces. In the case of DBLF with RTree, there is no effect on the runtime.

In summary, disregarding the rotation of items and the fragility of items have rather small
impacts on the total travel distance. However, load capacity, minimal supporting area, and
the LIFO constraint show significant effects. When disregarding a constraint, the runtime for
DBLF with Points and with Spaces decreases significantly. To conclude, when designing loading
algorithms, the focus should be on the fulfillment of the LIFO policy and minimal supporting area
to improve the performance. For our future work, we plan to improve the DBLF with Spaces in
this respect.

6 Conclusion

The DBLF algorithm introduced by Karabulut and İnceoğlu (2005) is a widely-used loading
algorithm and the basis of this paper. In the context of the 3L-VRPTW, the DBLF algorithm

23

References

ttd

40

20

0

20

40

De
vi

at
io

n
to

 se
t w

ith
 a

ll
co

ns
tra

in
ts

 [%
]

time iterations
150

100

50

0

50

100

150

Boxplot Datapoint
DBLF with Points DBLF with Spaces DBLF with RTree

Figure I.10: Comparison of DBLF Results – Without Fragility

tackles the packing problem and finds feasible packing plans for a set of routes. Comparing the
effectiveness of the investigated DBLF algorithm variants in this paper, our experiments show
that DBLF with Spaces clearly finds superior results (shortest total travel distance) with the best
performance (smallest runtime). Moreover, it outperforms the current benchmark by Zhang et al.
(2017). Surprisingly, DBLF with RTree has a relatively high runtime caused by the necessary
frequent restructuring of the tree. Therefore, other tree structures in combination with sliding
techniques are worth to be examined further.
We also analyzed the impact of loading constraints per DBLF algorithm variant. The load capacity,
the LIFO policy, and the minimal supporting area influence the total travel distance strongly.
Therefore, based on the DBLF with Spaces variant, our future work will focus on the design
and implementation of loading algorithms which are specialized in the fast fulfillment of these
loading constraints. Despite the increased solution space, the results show that disregarding the
rotation of items improves the total travel distance only slightly for most instances. Although the
non-consideration of the fragility of items only has a minor impact on the total travel distance,
for security reasons, this should be investigated further. As future work, we want to extend the
problem w.r.t. a heterogeneous fleet.

Acknowledgements

This research did not receive any specific grant from funding agencies in the public, commercial, or
not-for-profit sectors.

References

Allen, S., Burke, E., and Kendall, G. (2011). “A hybrid placement strategy for the three-dimensional
strip packing problem”. In: European Journal of Operational Research vol. 209, no. 3, pp. 219–227.
issn: 0377-2217. doi: 10.1016/j.ejor.2010.09.023. url: https://doi.org/10.1016/j.ejor.2010.09.023.

Araújo, L. J., Panesar, A., Özcan, E., Atkin, J., Baumers, M., and Ashcroft, I. (2019). “An
experimental analysis of deepest bottom-left-fill packing methods for additive manufacturing”.
In: International Journal of Production Research vol. 0, no. 0, pp. 1–17. doi: 10.1080/00207543.
2019.1686187. url: https://doi.org/10.1080/00207543.2019.1686187.

Baker, B., Coffman, E., and Rivest, R. (1980). “Orthogonal Packings in Two Dimensions”. In:
SIAM Journal on Computing vol. 9, no. 4, pp. 846–855. doi: 10.1137/0209064.

Clarke, G. and Wright, J. W. (1964). “Scheduling of Vehicles from a Central Depot to a Number of
Delivery Points”. In: Operations Research vol. 12, no. 4, pp. 568–581. issn: 0030364X, 15265463.
doi: 10.1287/opre.12.4.568. url: http://www.jstor.org/stable/167703.

24

https://doi.org/10.1016/j.ejor.2010.09.023
https://doi.org/10.1016/j.ejor.2010.09.023
https://doi.org/10.1080/00207543.2019.1686187
https://doi.org/10.1080/00207543.2019.1686187
https://doi.org/10.1080/00207543.2019.1686187
https://doi.org/10.1137/0209064
https://doi.org/10.1287/opre.12.4.568
http://www.jstor.org/stable/167703

References

Feng, X., Moon, I., and Shin, J. (2015). “Hybrid genetic algorithms for the three-dimensional
multiple container packing problem”. In: Flexible Services and Manufacturing Journal vol. 27,
pp. 451–477. doi: 10.1007/s10696-013-9181-8.

Gendreau, M., Iori, M., Laporte, G., and Martello, S. (2006). “A Tabu Search Algorithm for a
Routing and Container Loading Problem”. In: Transportation Science vol. 40, no. 3, pp. 342–350.
issn: 0041-1655. doi: 10.1287/trsc.1050.0145. url: http://pubsmisc.informs.org/doi/abs/10.
1287/trsc.1050.0145.

Guttman, A. (June 1984). “R-Trees: A Dynamic Index Structure for Spatial Searching”. In: SIGMOD
Rec. vol. 14, no. 2, pp. 47–57. issn: 0163-5808. doi: 10.1145/971697.602266.

Hopper, E. and Turton, B. (2001). “An empirical investigation of meta-heuristic and heuristic
algorithms for a 2D packing problem”. In: European Journal of Operational Research vol. 128,
no. 1, pp. 34–57. issn: 0377-2217. doi: 10.1016/S0377-2217(99)00357-4. url: https://doi.org/
10.1016/S0377-2217(99)00357-4.

Jamrus, T. and Chien, C.-F. (2016). “Extended priority-based hybrid genetic algorithm for the less-
than-container loading problem”. In: Computers & Industrial Engineering vol. 96, pp. 227–236.
issn: 0360-8352. doi: https://doi.org/10.1016/j.cie.2016.03.030. url: http://www.sciencedirect.
com/science/article/pii/S036083521630105X.

Kang, K., Moon, I., and Wang, H. (2012). “A hybrid genetic algorithm with a new packing strategy
for the three-dimensional bin packing problem”. In: Applied Mathematics and Computation
vol. 219, no. 3, pp. 1287–1299. issn: 0096-3003. doi: 10 . 1016 / j . amc . 2012 . 07 . 036. url:
http://www.sciencedirect.com/science/article/pii/S0096300312007369.

Karabulut, K. and İnceoğlu, M. M. (2005). “A Hybrid Genetic Algorithm for Packing in 3D with
Deepest Bottom Left with Fill Method”. In: Advances in Information Systems. Ed. by Yakhno,
T. Berlin, Heidelberg: Springer Berlin Heidelberg, pp. 441–450. isbn: 978-3-540-30198-1.

Kirkpatrick, S., Gelatt, C. D., and Vecchi, M. P. (1983). “Optimization by simulated annealing.”
In: Science vol. 220 4598, pp. 671–80. doi: 10.1126/science.220.4598.671.

Koch, H. (2018). “Vehicle routing problems with three-dimensional loading constraints and
backhauls”. PhD thesis. Otto-von-Guericke-Universität Magdeburg. url: http : / / dx . doi .
org/10.25673/13615.

Koch, H., Bortfeldt, A., and Wäscher, G. (Feb. 2018). “A hybrid algorithm for the vehicle routing
problem with backhauls, time windows and three-dimensional loading constraints”. In: OR
Spectrum vol. 40. doi: 10.1007/s00291-018-0506-6.

Koch, H., Schlögell, M., and Bortfeldt, A. (Oct. 2019). “A hybrid algorithm for the vehicle routing
problem with three-dimensional loading constraints and mixed backhauls”. In: Journal of
Scheduling. doi: 10.1007/s10951-019-00625-7.

Krebs, C. and Ehmke, J. F. (2021a). “Axle Weights in combined Vehicle Routing and Container
Loading Problems”. In: EURO Journal on Transportation and Logistics vol. 10, p. 100043. issn:
2192-4376. doi: 10.1016/j.ejtl.2021.100043. url: https://www.sciencedirect.com/science/
article/pii/S2192437621000157.

— (2021b). “Vertical Stability Constraints in Combined Vehicle Routing and 3D Container Loading
Problems”. In: Computational Logistics. Ed. by Mes, M., Lalla-Ruiz, E., and Voß, S. Cham:
Springer International Publishing, pp. 442–455. isbn: 978-3-030-87672-2.

Krebs, C., Ehmke, J. F., and Koch, H. (Aug. 2021). “Advanced loading constraints for 3D vehicle
routing problems”. In: OR Spectrum. issn: 1436-6304. doi: 10.1007/s00291-021-00645-w. url:
https://doi.org/10.1007/s00291-021-00645-w.

Ma, H.-w., Zhu, W., and Xu, S. (2011). “Research on the Algorithm for 3L-CVRP with Considering
the Utilization Rate of Vehicles”. In: Intelligent Computing and Information Science. Ed. by
Chen, R. Berlin, Heidelberg: Springer Berlin Heidelberg, pp. 621–629. isbn: 978-3-642-18129-0.

Mak-Hau, V., Moser, I., and Aleti, A. (2018). “An Exact Algorithm for the Heterogeneous Fleet
Vehicle Routing Problem with Time Windows and Three-Dimensional Loading Constraints”.
In: Data and Decision Sciences in Action. Ed. by Sarker, R., Abbass, H. A., Dunstall, S.,
Kilby, P., Davis, R., and Young, L. Cham: Springer International Publishing, pp. 91–101. isbn:
978-3-319-55914-8. doi: 10.1007/978-3-319-55914-8.

Moon, I. and Nguyen, L. (Oct. 2013). “Container packing problem with balance constraints”. In:
OR Spectrum vol. 36. doi: 10.1007/s00291-013-0356-1.

25

https://doi.org/10.1007/s10696-013-9181-8
https://doi.org/10.1287/trsc.1050.0145
http://pubsmisc.informs.org/doi/abs/10.1287/trsc.1050.0145
http://pubsmisc.informs.org/doi/abs/10.1287/trsc.1050.0145
https://doi.org/10.1145/971697.602266
https://doi.org/10.1016/S0377-2217(99)00357-4
https://doi.org/10.1016/S0377-2217(99)00357-4
https://doi.org/10.1016/S0377-2217(99)00357-4
https://doi.org/https://doi.org/10.1016/j.cie.2016.03.030
http://www.sciencedirect.com/science/article/pii/S036083521630105X
http://www.sciencedirect.com/science/article/pii/S036083521630105X
https://doi.org/10.1016/j.amc.2012.07.036
http://www.sciencedirect.com/science/article/pii/S0096300312007369
https://doi.org/10.1126/science.220.4598.671
http://dx.doi.org/10.25673/13615
http://dx.doi.org/10.25673/13615
https://doi.org/10.1007/s00291-018-0506-6
https://doi.org/10.1007/s10951-019-00625-7
https://doi.org/10.1016/j.ejtl.2021.100043
https://www.sciencedirect.com/science/article/pii/S2192437621000157
https://www.sciencedirect.com/science/article/pii/S2192437621000157
https://doi.org/10.1007/s00291-021-00645-w
https://doi.org/10.1007/s00291-021-00645-w
https://doi.org/10.1007/978-3-319-55914-8
https://doi.org/10.1007/s00291-013-0356-1

References

Pace, S., Turky, A., Moser, I., and Aleti, A. (2015). “Distributing Fibre Boards: A Practical
Application of the Heterogeneous Fleet Vehicle Routing Problem with Time Windows and
Three-dimensional Loading Constraints”. In: Procedia Computer Science vol. 51. International
Conference On Computational Science, ICCS 2015, pp. 2257–2266. issn: 1877-0509. doi: 10.1016/
j.procs.2015.05.382. url: http://www.sciencedirect.com/science/article/pii/S1877050915011904.

Ropke, S. and Pisinger, D. (2006). “A unified heuristic for a large class of Vehicle Routing Problems
with Backhauls”. In: European Journal of Operational Research vol. 171, no. 3. Feature Cluster:
Heuristic and Stochastic Methods in Optimization Feature Cluster: New Opportunities for
Operations Research, pp. 750–775. issn: 0377-2217. doi: 10.1016/j.ejor.2004.09.004. url:
http://www.sciencedirect.com/science/article/pii/S0377221704005831.

Silva, E. F., Toffolo, T. A. M., and Wauters, T. (2019). “Exact methods for three-dimensional
cutting and packing: A comparative study concerning single container problems”. In: Computers
& Operations Research vol. 109, pp. 12–27. issn: 0305-0548. doi: https://doi.org/10.1016/j.cor.
2019.04.020. url: https://www.sciencedirect.com/science/article/pii/S0305054819301030.

Solomon, M. M. (1987). “Algorithms for the Vehicle Routing and Scheduling Problems with Time
Window Constraints”. In: Operations Research vol. 35, no. 2, pp. 254–265. doi: 10.1287/opre.
35.2.254.

Wauters, T., Verstichel, J., and Vanden Berghe, G. (2013). “An effective shaking procedure for 2D and
3D strip packing problems”. In: Computers & Operations Research vol. 40, no. 11, pp. 2662–2669.
issn: 0305-0548. doi: 10.1016/j.cor.2013.05.017. url: https://doi.org/10.1016/j.cor.2013.05.017.

Wu, B., Lin, J.-g., and Dong, M. (2013). “Artificial Bee Colony Algorithm for Three-Dimensional
Loading Capacitated Vehicle Routing Problem”. In: Proceedings of 20th International Conference
on Industrial Engineering and Engineering Management. Ed. by Qi, E., Shen, J., and Dou, R.
Berlin, Heidelberg: Springer Berlin Heidelberg, pp. 815–825. isbn: 978-3-642-40063-6.

Zhang, D., Cai, S., Ye, F., Si, Y.-W., and Nguyen, T. T. (2017). “A hybrid algorithm for a vehicle
routing problem with realistic constraints”. In: Information Sciences vol. 394-395, pp. 167–182.
issn: 0020-0255. doi: 10.1016/j.ins.2017.02.028.

Zhu, W., Qin, H., Lim, A., and Wang, L. (2012). “A two-stage tabu search algorithm with
enhanced packing heuristics for the 3L-CVRP and M3L-CVRP”. In: Computers & Operations
Research vol. 39, no. 9, pp. 2178–2195. issn: 0305-0548. doi: 10.1016/j.cor.2011.11.001. url:
https://doi.org/10.1016/j.cor.2011.11.001.

Appendix

A Mathematical Formulation

Based on Koch (2018), this section presents a mathematical formulation for the 3L-VRPTW. First,
we introduce the decision variables followed by the formulations for the vehicle routing problem.
The last subsection deals with the formulation of the loading constraints.

A.1 Decision Variables

There are four decision variables for the mathematical formulation. The first, shown in Eq. I.1,
represents the routing decision, i.e. that a vehicle v connects customer i with customer j in period
t. In period t, the vehicle v has left node i and has not yet reached the next node j. Consequently,
in period t = 0, the vehicle v has left the depot and drives to the first customer.

εt,v
i,j =

{
1, if vehicle v drives directly from node i to node j in period t,
0, otherwise

(I.1)

The next decision variable (Eq. I.2) represents the decision for a position (x, y, z) of an item Ii,k

demanded by customer i, placed inside of vehicle v in period t.

πi,k,t,v
x,y,z =

1, if the item Ii,k of customer i in period t inside of vehicle v
is placed with its minimal corner point at position (x, y, z),

0, otherwise
(I.2)

26

https://doi.org/10.1016/j.procs.2015.05.382
https://doi.org/10.1016/j.procs.2015.05.382
http://www.sciencedirect.com/science/article/pii/S1877050915011904
https://doi.org/10.1016/j.ejor.2004.09.004
http://www.sciencedirect.com/science/article/pii/S0377221704005831
https://doi.org/https://doi.org/10.1016/j.cor.2019.04.020
https://doi.org/https://doi.org/10.1016/j.cor.2019.04.020
https://www.sciencedirect.com/science/article/pii/S0305054819301030
https://doi.org/10.1287/opre.35.2.254
https://doi.org/10.1287/opre.35.2.254
https://doi.org/10.1016/j.cor.2013.05.017
https://doi.org/10.1016/j.cor.2013.05.017
https://doi.org/10.1016/j.ins.2017.02.028
https://doi.org/10.1016/j.cor.2011.11.001
https://doi.org/10.1016/j.cor.2011.11.001

References

The third decision variable, Eq. I.3, describes the decision for the rotation of item Ii,k along the
length-width plane (see rotation constraint (L3)).

σi,k =

1, if the item Ii,k is not rotated, e.g. the length li,k is parallel
to the x-axis,

0, otherwise
(I.3)

The last decision variable (Eq. I.4) determines whether a point (x, y, z) is occupied by an item Ii,k.
This is necessary for the formulation of several loading constraints.

ρi,k,v
x,y,z =

{
1, if an item Ii,k in vehicle v occupies the point (x, y, z)
0, otherwise

(I.4)

A.2 Vehicle Routing

This section deals with the mathematical formulation of the vehicle routing part. If applicable,
we link the formulas to the constraints introduced before. Note that constraint S1, ensuring the
feasibility of a solution, is guaranteed through the mathematical formulation as a whole.
The objective function is to minimize the total travel distance (ttd), see Eq. I.5.

min ttd =
∑
i∈N

∑
j∈N

∑
t∈N

vused∑
v=0

(di,j · εt,v
i,j) (I.5)

Eq. I.6 corresponds to the solution constraint S2, so that at least one vehicle and at most the
number of available vehicles (vmax) are dispatched.

vused ∈ [1, vmax] (I.6)

The next equations deal with the creation of routes. Eq. I.7 and the following equations ensure
that each customer is left exactly once, corresponding to S3. Eq. I.8 ensures the connectivity of
each route. Eq. I.9 prevents the situation in which the vehicle travels to the same node again after
leaving it. Each customer is visited and left by the same vehicle (Eq. I.10). The depot is left at most
once in period 0 (Eq. I.11) and not later (Eq. I.12) in every route. These equations cover constraint
C1, ensuring that each route starts and ends at the depot and visiting at least one customer.

∑
j∈N

∑
t∈N

vused∑
v=0

εt,v
i,j = 1 ∀i ∈ N \ {0} (I.7)

∑
j∈N

∑
t∈N\{0}

vused∑
v=0

(t · εt,v
i,j) −

∑
j∈N

∑
t∈N

vused∑
v=0

(t · εt,v
i,j) = 1 ∀i, t ∈ N \ {0} (I.8)

εt,v
i,i = 0 ∀i, t ∈ N, ∀v (I.9)∑

j∈N

εt+1,v
i,j −

∑
j∈N

εt,v
j,i = 0 ∀i ∈ N \ {0}, ∀t ∈ N \ {n}, ∀v (I.10)

∑
j∈N\{0}

ε0,v
0,j ≤ 1 ∀v (I.11)

εt,v
0,j = 0 ∀j ∈ N \ {0}, ∀t ∈ N \ {n}, ∀v (I.12)

The following equations ensure the consideration of the time windows. Hereby, startv
i is the

time when the vehicle v starts the unloading process at the customer i. M1 is a sufficiently large
number5. In Eq. I.13, the start time for each route is set to zero. Eq. I.14 ensures that the unloading

5e.g. M1 ≥ maxi∈N DDi + maxi∈N STi + maxi,j∈E ci,j − mini∈N RTi

27

References

of the items at customer i does not start before the arrival at the customer i. Eq. I.15 deals with
the waiting times, resulting when the vehicle v arrives at a customer i before its ready time RTi,
which are considered also in the following calculations. Eq. I.16 guarantees that the start of the
unloading process at customer i does not begin before the ready time RTi. Due to Eq. I.15, the
unloading process at customer i is not allowed to start after the due date DDi. This corresponds
to constraint C2.

d0,i − startv
i ≤ M1 · (1 − ε0,v

0,i) ∀i ∈ N \ {0}, ∀v (I.13)
startv

i + STi + di,j − startv
j ≤ M1 · (1 − εt,v

i,j)
∀i ∈ N \ {0}, ∀j ∈ N, ∀v, ∀t ∈ N \ {0} (I.14)

startv
j ≥ startv

i + STi + di,j ∀i ∈ N \ {0}, ∀j ∈ N, ∀v (I.15)
startv

i ≥ RTi ∀i ∈ N, ∀v (I.16)
startv

i ≤ DDi ∀i ∈ N, ∀v (I.17)

A.3 Container Loading

This section deals with the mathematical formulation for the container loading part. We first
introduce the required variables. After that, the formulation of the loading constraints follows.
Please note that we assume integer values for positions and dimensions. Moreover, note that an
item is positioned in its the rearmost, leftmost bottom corner point. These conditions guarantee
the orthogonal packing of items, as expected in the Orthogonality constraint (L2).
The following equations deal with the possible positions of an item Ii,k inside of a vehicle loading
space. To prevent overlapping, an item’s dimensions (length, width, height) reduces the possible
positions. Eq. I.18 represents the available positions along the x-axis for an item Ii,k. As the
rotation of an item Ii,k along the length-width plane is allowed, the possible placement x-coordinates
are reduced accordingly. The same applies to the possible y-coordinates, as stated in Eq. I.19. The
possible z-coordinates are only reduced by the item’s height hi,k (see Eq. I.20).

Xi,k = {0, 1, 2, ..., L − min(li,k, wi,k)} (I.18)
Yi,k = {0, 1, 2, ..., W − min(li,k, wi,k)} (I.19)
Zi,k = {0, 1, 2, ..., H − hi,k} (I.20)

Using the rotation decision variable (Eq. I.3), the length and width of an item Ii,k can be further
described as:

l′
i,k = σi,k · li,k + (1 − σi,k) · wi,k (I.21)

w′
i,k = (1 − σi,k) · li,k + σi,k · wi,k (I.22)

The placement position (xi,k, yi,k, zi,k,) of an item Ii,k can be determined by using the placement
decision variable as shown in Eq. I.23-I.25:

xi,k =
∑

t∈N\{n}

vused∑
v=0

∑
x∈Xi,k

∑
y∈Yi,k

∑
z∈Zi,k

x · πi,k,t,v
x,y,z (I.23)

yi,k =
∑

t∈N\{n}

vused∑
v=0

∑
x∈Xi,k

∑
y∈Yi,k

∑
z∈Zi,k

y · πi,k,t,v
x,y,z (I.24)

zi,k =
∑

t∈N\{n}

vused∑
v=0

∑
x∈Xi,k

∑
y∈Yi,k

∑
z∈Zi,k

z · πi,k,t,v
x,y,z (I.25)

The occupancy of a point (x’, y’, z’) by an item Ii,k placed in point (x, y, z) is determined in the
following way (see Eq. I.26):

28

References

ρi,k,v
x′,y′,z′ =

∑
t∈N\{n}

∑
{x∈Xi,k|x′−l′

i,k
+1≤x≤x′}∑

{y∈Yi,k|y′−w′
i,k

+1≤y≤y′}

∑
{z∈Zi,k|z′−hi,k+1≤z≤z′}

πi,k,t,v
x,y,z (I.26)

Eq. I.27 guarantees that for every item Ii,k of a customer i exactly one position is found inside of a
vehicle v. Through Eq. I.28, it is guaranteed that all items of customer i are packed in the vehicle
v. These two equations ensure the constraint S4.

ci∑
k=1

∑
t∈N\{n}

vused∑
v=0

∑
x∈Xi,k

∑
y∈Yi,k

∑
z∈Zi,k

πi,k,t,v
x,y,z = 1 ∀i ∈ N \ {0} (I.27)

ci∑
k=1

∑
x∈Xi,k

∑
y∈Yi,k

∑
z∈Zi,k

πi,k,t,v
x,y,z = ci ·

∑
i∈N

εt,v
i,j ∀i ∈ N \ {0}, ∀t ∈ N \ {n}, ∀v (I.28)

Eq. I.29 ensures the non-overlapping of items by excluding the position points based on the set
rotation.

∑
{x∈Xi,k|x>L−l′

i,k
}

∑
y∈Yi,k

πi,k,t,v
x,y,z +

∑
x∈Xi,k

∑
{y∈Yi,k|y>W −w′

i,k
}

πi,k,t,v
x,y,z = 0

∀i ∈ N \ {0}, ∀ci, ∀v, ∀t ∈ N \ {n}, ∀z ∈ Zi,k (I.29)

Eq. I.30 presents an alternative formulation for Eq. I.29 where each point inside of the vehicle
loading space is allowed to be occupied at most once. Combined with the previous definitions, this
ensures the Geometry constraint (L1).

∑
i∈N\{0}

ci∑
k

ρi,k,v
x,y,z ≤ 1 ∀v, ∀x ∈ Xi,k, ∀y ∈ Yi,k, ∀z ∈ Zi,k (I.30)

Eq. I.31 prevents exceeding of the vehicle loading space volume. To this end, the volumes of the
loads for each customer i and each item Ii,k are added up, and the sum must be smaller than the
available loading space volume of the vehicle v. Eq. I.32 corresponds to the load capacity constraint
L4, ensuring that the load capacity of vehicle v is not exceeded. Hereby, for each customer i and
each item Ii,k, the load mass is added up. The sum must be smaller than the load capacity of the
vehicle v.

∑
i∈N\{0}

ci∑
k=1

∑
j∈N

∑
t∈N\{0}

εt,v
i,j · li,k · wi,k · hi,k ≤ L · W · H ∀v (I.31)

∑
i∈N\{0}

ci∑
k=1

∑
j∈N

∑
t∈N\{0}

εt,v
i,j · mi,k ≤ D ∀v (I.32)

Eqs. I.33 and I.34 ensure the LIFO constraint (L5). The first one guarantees the LIFO policy along
the x-axis. It prevents positions where an item Ii,k, placed in point (x, y, z) and delivered in period
t, would be behind another item Ij,q placed in point (x’, y’, z’) and delivered in period u, a period
later than t (u > t). Consequently, Eq. I.33 sums the items Ij,q delivered later than period t and
being placed in front of item Ii,k delivered in period t. The sum must be smaller than a sufficiently
large number6 M3.

6e.g. M3 ≥
∑

i∈N\{0} ·ci

29

References

∑
j∈N\{0}

cj∑
q

∑
{u∈N |t<u<n}

∑
{x′∈Xj,q|x′≥x+l′

i,k
}

∑
{y′∈Yj,q|y−w′

j,q
+1≤y′≤y+w′

i,k
−1}∑

{z′∈Zj,q|z−hj,q+1≤z′≤z+hi,k−1}

·πj,q,u,v
x′,y′,z′ ≤ (1 − πi,k,t,v

x,y,z) · M3

∀i ∈ N \ {0}, ∀ci, ∀v, ∀t ∈ N \ {n}, ∀x ∈ Xi,k, ∀y ∈ Yi,k, ∀z ∈ Zi,k (I.33)

The same procedure as shown in Eq. I.33 applies for Eq. I.34 concerning the z-axis. Consequently,
it prevents placements where an item Ii,k placed in point (x, y, z) and delivered in period t is
underneath another item Ij,q placed in point (x’, y’, z’) and delivered in period u, a period later
than t (u > t).

∑
j∈N\{0}

cj∑
q

∑
{u∈N |t<u<n}

∑
{x′∈Xj,q|x−l′

j,q
+1≤x′≤x+l′

i,k
−1}∑

{y′∈Yj,q|y−w′
j,q

+1≤y′≤y+w′
i,k

−1}

∑
{z′∈Zj,q|z′≥z+hi,k}

·πj,q,u,v
x′,y′,z′ ≤ (1 − πi,k,t,v

x,y,z) · M3

∀i ∈ N \ {0}, ∀ci, ∀v, ∀t ∈ N \ {n}, ∀x ∈ Xi,k, ∀y ∈ Yi,k, ∀z ∈ Zi,k (I.34)

The minimal supporting area constraint (L6) is formulated in Eq. I.35. Hereby, the sum of all points
which lay directly underneath of item Ii,k and are occupied by another item is determined. This
sum must be equal or greater than the base area of item Ii,k multiplied by the support parameter
α.

∑
j∈N\{0}

cj∑
q

∑
{x′∈Xj,q|x≤x′≤x+l′

i,k
−1}

∑
{y′∈Yj,q|y≤y′≤y+w′

i,k
−1}

ρj,q,v
x′,y′,z−1

≥ α · li,k · wi,k · πi,k,t,v
x,y,z

∀i ∈ N \ {0}, ∀ci, ∀v, ∀t ∈ N \ {n}, ∀x ∈ Xi,k, ∀y ∈ Yi,k, ∀z ∈ Zi,k \ {0} (I.35)

Eq. I.36 corresponds to the fragility constraint (L7), where non-fragile items cannot be placed on
top of fragile items. However, fragile items are allowed to stack on top of every item. Note that
the fragility flag for fragile items is 1. Suppose that item Ii,k is placed on top of another item Ij,q.
Then, the top surface of item Ij,q touches the bottom of item Ii,k. The corresponding fragility flags
of the underlying items are added up. This is expressed by the left side of the equal sign. The
other side expresses the number of allowed fragile items placed underneath item Ii,k. If item Ii,k is
fragile, it is M2 (sufficient large number7). If item Ii,k is non-fragile, no fragile items are allowed to
be placed underneath of item Ii,k (= zero).

∑
j∈N\{0}

cj∑
q

∑
{u∈N |t≤u<n}

∑
{x′∈Xj,q|x−l′

j,q
+1≤x′≤x+l′

i,k
−1}∑

{y′∈Yj,q|y−w′
j,q

+1≤y′≤y+w′
i,k

−1}

fj,q · πj,q,u,v
x′,y′,z−hj,q

≤ (1 − (1 − fi,k) · πi,k,t,v
x,y,z) · M2

∀i ∈ N \ {0}, ∀ci, ∀v, ∀t ∈ N \ {n}, ∀x ∈ Xi,k, ∀y ∈ Yi,k, ∀z ∈ Zi,k \ {0} (I.36)

B Result Tables

7e.g. M2 ≥
∑

i∈N\{0} ·ci

30

References

Table I.5: Results for DBLF with Points – All Constraints

Instances ∅ttd ∅ time [s] ∅ iterations

n m item best avg. best avg. best avg.
types

20 200 3 408.62 409.13 589.39 592.61 7,844.40 7,937.79
10 417.03 417.88 1,804.29 1,804.56 5,215.70 5,264.47
100 422.22 422.61 1,805.44 1,828.12 7,482.55 7,482.71

400 3 440.27 443.71 2,071.40 2,096.03 5,626.25 5,703.95
10 459.59 466.71 2,464.40 2,471.42 3,589.65 3,697.46
100 482.60 489.77 2,678.65 2,674.07 3,746.65 4,061.67

60 200 3 1,004.94 1,014.13 1,525.79 1,540.68 15,011.75 14,440.42
10 1,030.97 1,055.00 1,654.37 1,665.33 13,653.45 13,415.70
100 1,069.41 1,097.51 1,615.52 1,628.51 14,002.48 13,892.59

400 3 1,341.82 1,367.85 1,957.30 1,962.52 11,383.23 10,963.66
10 1,355.07 1,404.86 2,372.11 2,381.11 10,748.58 11,044.82
100 1,473.33 1,496.02 2,893.46 2,903.03 10,405.80 10,332.49

100 200 3 1,194.90 1,207.99 2,164.28 2,162.31 15,070.53 14,427.46
10 1,271.18 1,297.21 2,265.07 2,270.37 14,603.18 14,534.88
100 1,358.49 1,388.50 2,109.06 2,109.28 15,031.83 14,604.46

400 3 1,628.59 1,668.93 2,672.88 2,683.39 10,368.45 9,981.93
10 1,726.92 1,793.91 2,830.23 2,831.52 11,148.18 11,043.06
100 1,739.25 1,818.47 2,857.75 2,863.59 9,625.73 10,233.30

average 1,167.34 1,195.68 2,174.97 2,182.33 11,187.05 11,065.92

Table I.6: Results for DBLF with Points – w/o Rotation

Instances ∅ttd ∅ time [s] ∅ iterations

n m item best avg. best avg. best avg.
types

20 200 3 408.91 409.16 467.79 465.98 8,068.85 8,104.62
10 417.60 418.24 1,803.15 1,803.36 5,285.35 5,328.53
100 422.22 423.37 948.70 977.51 7,951.25 8,002.39

400 3 442.50 447.04 1,942.43 1,955.39 5,339.65 5,525.85
10 463.51 470.18 2,409.62 2,398.18 3,586.60 3,616.47
100 486.00 492.11 2,262.74 2,271.69 3,967.65 4,084.61

60 200 3 1,010.53 1,027.45 1,012.94 1,020.00 14,247.93 14,318.14
10 1,035.79 1,069.02 1,110.80 1,117.08 14,100.85 13,604.02
100 1,078.05 1,112.55 913.13 919.39 14,172.00 13,603.87

400 3 1,375.90 1,398.23 1,560.48 1,557.57 10,968.15 11,355.55
10 1,396.63 1,461.18 1,232.17 1,236.06 10,673.05 10,638.23
100 1,492.83 1,584.12 1,249.35 1,254.54 9,807.60 9,829.57

100 200 3 1,201.26 1,213.04 1,828.87 1,841.72 14,844.18 15,025.90
10 1,267.13 1,286.97 1,993.51 2,005.06 16,028.05 15,163.26
100 1,350.88 1,374.65 1,880.68 1,895.77 16,103.13 16,258.16

400 3 1,654.60 1,695.88 2,100.85 2,104.17 10,762.50 10,885.11
10 1,734.00 1,806.92 2,080.25 2,083.28 12,169.68 11,688.64
100 1,744.42 1,832.04 2,115.35 2,121.38 10,841.28 10,981.78

average 1,177.49 1,212.81 1,599.71 1,606.14 11,454.54 11,378.90

31

References

Table I.7: Results for DBLF with Points – w/o LIFO

Instances ∅ttd ∅ time [s] ∅ iterations

n m item best avg. best avg. best avg.
types

20 200 3 408.21 408.49 369.68 377.67 7,970.65 8,078.55
10 413.89 414.39 1,446.72 1,478.37 5,393.75 5,274.66
100 419.71 420.49 786.30 795.92 6,811.95 6,939.82

400 3 436.60 437.60 1,076.99 1,089.22 5,740.00 5,735.48
10 445.59 447.90 2,258.86 2,270.90 3,613.65 3,612.29
100 461.28 465.67 2,256.39 2,260.58 3,951.80 3,849.71

60 200 3 989.50 997.84 917.76 926.67 13,610.85 14,036.38
10 975.26 1,007.24 1,022.84 1,039.90 12,728.98 12,780.77
100 1,002.12 1,036.89 786.19 812.06 14,241.28 13,886.50

400 3 1,326.42 1,338.36 1,508.52 1,535.82 10,937.93 11,288.85
10 1,289.83 1,335.88 1,446.92 1,454.15 10,145.23 10,558.46
100 1,387.14 1,454.60 1,202.02 1,209.00 10,169.03 10,461.06

100 200 3 1,178.14 1,187.66 1,716.21 1,721.82 14,832.25 14,630.52
10 1,209.19 1,226.96 1,908.55 1,905.60 15,465.08 14,883.87
100 1,279.41 1,301.27 1,794.60 1,811.47 15,813.83 15,527.56

400 3 1,597.43 1,631.16 2,102.26 2,112.30 10,625.73 10,646.79
10 1,641.24 1,705.68 2,227.68 2,237.08 10,877.38 10,823.70
100 1,617.09 1,693.67 2,233.12 2,238.92 9,911.18 9,525.06

average 1,119.03 1,147.63 1,530.94 1,542.74 11,073.31 11,052.98

Table I.8: Results for DBLF with Points – w/o Minimal Supporting Area

Instances ∅ttd ∅ time [s] ∅ iterations

n m item best avg. best avg. best avg.
types

20 200 3 408.81 409.39 515.87 516.96 7,986.95 8,079.97
10 416.85 417.59 1,692.97 1,700.14 5,355.60 5,405.89
100 420.15 421.47 365.73 381.90 7,562.85 7,675.31

400 3 439.78 443.21 1,831.21 1,851.53 5,425.75 4,959.65
10 455.23 461.09 2,425.73 2,430.72 3,652.40 3,598.25
100 469.13 473.62 2,257.86 2,263.88 4,029.20 3,884.22

60 200 3 998.22 1,010.48 1,039.74 1,054.92 13,874.70 13,725.37
10 992.12 1,020.05 1,062.12 1,071.11 13,505.08 13,594.86
100 1,013.58 1,041.18 836.14 826.08 15,485.28 14,444.97

400 3 1,325.77 1,351.19 1,568.54 1,582.66 11,164.83 10,931.38
10 1,307.44 1,354.69 1,394.26 1,401.98 10,140.78 10,652.61
100 1,378.41 1,437.85 1,214.58 1,218.45 11,356.30 10,524.39

100 200 3 1,184.56 1,196.98 1,838.95 1,840.67 15,812.93 14,968.25
10 1,226.99 1,248.10 1,954.39 1,971.51 14,817.60 14,577.91
100 1,292.19 1,311.62 1,647.78 1,691.51 16,394.00 16,253.25

400 3 1,612.72 1,649.00 2,094.65 2,100.07 10,799.80 10,445.15
10 1,659.36 1,717.74 2,140.47 2,144.94 11,507.38 11,435.09
100 1,631.82 1,699.09 2,181.10 2,189.20 9,621.73 10,236.14

average 1,128.54 1,156.74 1,567.83 1,577.71 11,432.45 11,239.40

32

References

Table I.9: Results for DBLF with Points – w/o Fragility

Instances ∅ttd ∅ time [s] ∅ iterations

n m item best avg. best avg. best avg.
types

20 200 3 408.78 409.15 475.00 489.61 8,067.60 8,297.08
10 416.90 417.53 1,701.20 1,707.18 5,397.30 5,402.51
100 420.52 422.51 475.05 502.02 8,003.25 7,819.21

400 3 439.78 443.47 1,776.81 1,792.58 5,340.65 5,576.86
10 457.73 464.42 2,419.38 2,422.82 3,725.75 3,619.69
100 475.95 480.84 2,320.47 2,332.22 4,205.45 4,342.82

60 200 3 1,003.60 1,021.28 982.46 992.24 13,325.60 13,826.13
10 1,014.12 1,046.33 1,103.21 1,116.92 13,990.50 13,863.84
100 1,052.08 1,085.80 839.47 846.12 14,271.80 13,931.99

400 3 1,332.43 1,356.79 1,554.15 1,567.07 11,188.58 10,968.21
10 1,337.50 1,402.06 1,302.63 1,309.05 10,768.55 10,501.32
100 1,440.80 1,524.92 1,148.59 1,155.42 10,370.58 10,101.56

100 200 3 1,186.87 1,198.90 1,858.05 1,869.46 15,294.35 14,697.74
10 1,248.84 1,269.29 2,053.31 2,053.75 15,392.05 15,459.34
100 1,321.72 1,345.33 1,818.43 1,824.73 15,991.73 16,102.71

400 3 1,620.74 1,663.94 2,113.01 2,129.61 11,210.15 10,619.06
10 1,696.96 1,764.17 2,154.56 2,154.60 11,632.85 11,561.21
100 1,686.34 1,772.67 2,215.36 2,213.42 10,776.08 10,560.68

average 1,150.12 1,184.70 1,581.81 1,590.37 11,438.85 11,314.86

Table I.10: Results for DBLF with Points – w/o Load Capacity

Instances ∅ttd ∅ time [s] ∅ iterations

n m item best avg. best avg. best avg.
types

20 200 3 406.97 409.69 567.68 568.90 7,213.55 7,127.09
10 416.99 417.86 1,452.03 1,452.44 5,416.75 5,405.27
100 422.22 423.87 1,237.98 1,241.07 7,689.45 7,208.60

400 3 439.77 441.31 1,826.25 1,839.18 3,963.70 3,861.44
10 459.42 465.21 2,474.89 2,484.19 3,421.30 2,999.56
100 481.63 487.48 2,697.56 2,686.80 3,029.95 2,645.97

60 200 3 995.66 999.06 1,172.50 1,174.24 13,933.75 13,537.70
10 1,013.66 1,022.58 1,322.13 1,323.84 14,631.98 14,582.10
100 1,049.25 1,056.89 1,488.99 1,482.64 15,312.65 15,034.73

400 3 1,338.54 1,348.82 1,860.44 1,860.67 9,351.63 8,966.77
10 1,355.94 1,370.59 2,039.40 2,043.99 11,258.18 11,056.39
100 1,477.76 1,494.71 2,340.28 2,348.89 11,541.08 11,169.88

100 200 3 1,180.56 1,186.65 1,471.07 1,476.04 14,569.43 14,232.62
10 1,250.06 1,258.45 1,745.19 1,748.69 15,638.30 15,661.47
100 1,337.27 1,347.34 1,710.06 1,704.67 16,601.08 16,115.42

400 3 1,626.05 1,647.85 2,546.67 2,552.41 9,204.53 9,110.51
10 1,732.93 1,755.37 2,640.72 2,643.01 10,400.23 10,108.76
100 1,735.57 1,765.63 2,637.99 2,631.00 9,477.10 9,964.76

average 1,160.45 1,171.78 1,873.58 1,875.09 11,152.48 10,944.34

33

References

Table I.11: Results for DBLF with Spaces – All Constraints

Instances ∅ttd ∅ time [s] ∅ iterations

n m item best avg. best avg. best avg.
types

20 200 3 408.37 408.71 570.65 572.66 7,831.90 7,624.40
10 416.65 417.69 1,801.83 1,801.96 4,581.00 4,837.80
100 421.79 422.36 1,711.44 1,728.29 5,777.45 5,678.51

400 3 441.07 442.01 1,928.87 1,948.83 4,968.50 5,031.05
10 459.86 463.82 2,971.65 2,956.95 2,996.15 2,892.58
100 484.24 487.10 3,147.70 3,164.31 2,505.60 2,369.15

60 200 3 994.88 999.09 1,196.22 1,200.62 13,226.43 13,479.38
10 1,012.49 1,018.56 1,852.71 1,836.65 13,072.60 13,059.84
100 1,044.51 1,050.06 1,854.31 1,846.06 14,036.33 13,790.60

400 3 1,334.01 1,342.53 1,997.95 2,013.29 10,258.13 10,420.38
10 1,348.19 1,373.07 2,389.56 2,377.26 9,676.28 9,558.20
100 1,471.60 1,487.80 2,702.07 2,698.91 9,433.98 9,324.15

100 200 3 1,184.89 1,193.46 1,542.37 1,578.03 14,592.98 14,883.33
10 1,254.88 1,268.18 2,169.92 2,168.66 13,863.38 14,688.41
100 1,336.98 1,351.89 2,070.42 2,068.13 15,547.10 15,463.70

400 3 1,623.81 1,649.47 2,585.43 2,591.33 8,961.93 9,340.71
10 1,722.33 1,760.55 2,751.19 2,755.60 9,140.43 9,027.38
100 1,730.86 1,769.52 2,822.94 2,822.98 7,268.48 7,344.16

average 1,158.36 1,172.33 2,133.41 2,136.27 10,227.22 10,306.46

Table I.12: Results for DBLF with Spaces – w/o Rotation

Instances ∅ttd ∅ time [s] ∅ iterations

n m item best avg. best avg. best avg.
types

20 200 3 408.72 408.90 452.12 458.25 7,743.55 7,606.63
10 417.73 418.43 1,600.41 1,621.40 5,154.85 4,903.65
100 422.22 423.99 581.24 601.45 6,076.55 6,145.43

400 3 441.99 444.38 1,829.69 1,846.42 4,644.60 4,944.77
10 463.15 468.81 2,930.18 2,950.96 2,825.00 2,779.67
100 486.25 490.85 3,097.23 3,107.85 2,595.85 2,640.54

60 200 3 1,007.42 1,024.58 788.50 785.25 14,231.63 14,045.66
10 1,034.21 1,065.49 947.70 955.44 14,259.68 13,465.95
100 1,072.97 1,107.22 794.92 803.29 14,048.58 14,293.42

400 3 1,367.66 1,389.25 1,385.63 1,402.57 10,867.20 10,759.32
10 1,391.70 1,455.47 1,177.77 1,180.26 9,961.60 9,745.82
100 1,487.46 1,575.47 1,169.42 1,177.72 10,185.63 9,462.70

100 200 3 1,195.44 1,204.05 1,437.06 1,446.24 15,351.18 15,266.00
10 1,260.62 1,273.53 1,943.74 1,957.20 15,131.15 14,856.15
100 1,343.13 1,357.84 1,864.35 1,874.03 15,846.53 15,761.38

400 3 1,648.48 1,690.96 1,799.21 1,798.69 10,590.55 10,681.94
10 1,736.23 1,803.30 1,901.75 1,906.36 10,466.95 10,608.23
100 1,742.13 1,823.30 2,005.08 2,015.79 8,572.33 8,650.50

average 1,173.83 1,206.54 1,497.37 1,506.40 10,935.55 10,807.16

34

References

Table I.13: Results for DBLF with Spaces – w/o LIFO

Instances ∅ttd ∅ time [s] ∅ iterations

n m item best avg. best avg. best avg.
types

20 200 3 408.21 408.48 329.31 330.97 7,506.25 7,648.59
10 413.95 414.63 856.68 870.78 5,099.60 5,100.00
100 419.98 420.81 535.98 545.40 5,097.40 5,247.48

400 3 436.58 436.84 1,233.23 1,246.37 5,269.55 5,371.57
10 444.93 447.24 2,437.06 2,444.79 2,970.10 3,041.40
100 461.97 466.56 2,548.12 2,563.00 2,606.25 2,656.50

60 200 3 988.53 996.97 575.95 588.24 13,838.25 13,490.59
10 972.46 1,004.84 807.19 813.71 13,136.53 13,296.18
100 1,001.45 1,035.51 598.99 614.22 13,959.30 13,516.68

400 3 1,320.57 1,330.34 1,206.76 1,234.29 10,539.65 10,470.26
10 1,285.76 1,332.08 1,366.33 1,367.25 10,105.55 10,155.68
100 1,388.06 1,453.33 1,139.85 1,136.29 10,238.88 9,819.24

100 200 3 1,173.70 1,180.70 1,259.46 1,269.14 14,282.20 14,273.39
10 1,207.79 1,218.37 1,678.45 1,687.20 15,030.15 14,455.12
100 1,277.65 1,292.84 1,539.75 1,551.51 16,147.00 15,636.21

400 3 1,593.60 1,629.46 1,595.55 1,603.93 10,873.03 10,807.45
10 1,642.82 1,707.21 1,783.92 1,792.05 10,738.83 10,623.41
100 1,618.75 1,696.49 2,108.03 2,108.13 8,539.70 8,479.40

average 1,117.60 1,145.03 1,308.70 1,317.78 10,780.24 10,637.09

Table I.14: Results for DBLF with Spaces – w/o Minimal Supporting Area

Instances ∅ttd ∅ time [s] ∅ iterations

n m item best avg. best avg. best avg.
types

20 200 3 408.65 409.39 437.47 441.51 7,529.15 7,557.73
10 416.33 417.51 1,520.85 1,559.53 5,134.50 4,970.59
100 420.34 421.34 228.30 245.78 5,689.30 5,730.79

400 3 440.58 441.25 2,002.58 2,012.66 3,926.50 3,949.37
10 458.05 462.06 2,879.00 2,901.52 3,108.95 2,831.01
100 471.97 475.01 2,601.71 2,608.84 2,653.40 2,489.50

60 200 3 995.29 1,008.50 819.68 824.65 14,436.88 14,013.88
10 989.98 1,016.94 967.64 972.97 12,824.20 12,990.43
100 1,010.01 1,035.21 721.39 730.13 14,302.30 13,939.84

400 3 1,322.57 1,345.48 1,481.23 1,506.78 10,727.40 10,417.03
10 1,302.24 1,350.97 1,342.05 1,355.23 10,526.20 10,382.11
100 1,378.11 1,433.78 1,161.19 1,164.13 10,451.55 10,227.31

100 200 3 1,177.41 1,186.67 1,513.40 1,512.08 15,165.43 14,610.00
10 1,226.13 1,236.55 1,902.86 1,913.58 14,862.10 14,648.62
100 1,287.70 1,301.14 1,691.43 1,690.43 15,522.55 15,801.54

400 3 1,605.99 1,644.84 1,813.54 1,824.48 10,526.28 10,321.45
10 1,663.03 1,716.63 1,921.66 1,924.27 10,701.13 10,610.26
100 1,633.08 1,696.28 2,084.52 2,101.14 8,536.35 8,554.64

average 1,126.63 1,152.42 1,483.70 1,493.65 10,840.22 10,685.44

35

References

Table I.15: Results for DBLF with Spaces – w/o Fragility

Instances ∅ttd ∅ time [s] ∅ iterations

n m item best avg. best avg. best avg.
types

20 200 3 408.56 410.11 419.81 422.88 7,293.25 7,758.01
10 416.89 417.44 1,499.46 1,524.56 4,809.90 5,010.31
100 421.21 422.61 269.33 285.52 5,968.30 5,881.23

400 3 440.05 441.23 1,751.98 1,765.15 5,387.20 5,341.13
10 459.32 464.01 2,806.26 2,817.79 2,973.35 2,989.39
100 476.45 480.99 2,918.19 2,929.88 3,014.30 2,787.38

60 200 3 1,000.50 1,016.45 715.47 724.41 14,121.63 14,104.52
10 1,011.92 1,042.87 844.95 844.39 13,806.13 13,398.73
100 1,046.86 1,076.19 696.98 695.86 14,420.10 14,311.00

400 3 1,327.26 1,348.91 1,454.52 1,453.03 10,668.05 10,753.20
10 1,334.51 1,394.52 1,207.79 1,213.79 9,325.65 9,257.27
100 1,438.99 1,517.72 1,096.30 1,099.78 9,474.13 9,479.32

100 200 3 1,181.27 1,191.09 1,375.64 1,377.47 14,913.50 14,943.72
10 1,245.55 1,256.90 1,920.51 1,931.45 15,433.88 14,995.97
100 1,318.60 1,332.38 1,775.83 1,778.25 16,679.58 16,142.49

400 3 1,614.25 1,658.45 1,761.90 1,769.93 11,119.53 10,730.44
10 1,691.75 1,757.89 1,948.17 1,942.49 10,705.50 10,627.61
100 1,685.57 1,761.36 2,037.85 2,050.86 8,690.75 8,650.82

average 1,147.22 1,178.19 1,444.56 1,450.31 10,938.77 10,818.59

Table I.16: Results for DBLF with Spaces – w/o Load Capacity

Instances ∅ttd ∅ time [s] ∅ iterations

n m item best avg. best avg. best avg.
types

20 200 3 406.08 409.12 446.32 446.63 7,412.45 7,401.08
10 416.80 417.77 1,449.79 1,450.19 5,280.60 5,038.72
100 422.40 423.89 1,299.14 1,300.57 5,947.80 6,019.43

400 3 437.21 440.89 1,946.63 1,944.76 3,811.80 4,061.39
10 460.34 465.80 2,667.39 2,672.47 3,143.75 3,048.27
100 484.64 488.58 3,118.45 3,121.29 2,711.60 2,776.69

60 200 3 993.82 996.09 919.31 923.67 14,213.73 13,495.38
10 1,010.14 1,018.80 1,366.22 1,368.87 13,807.43 13,671.16
100 1,043.73 1,053.38 1,292.82 1,293.85 14,825.48 14,343.13

400 3 1,331.68 1,338.69 1,870.96 1,874.00 9,689.85 9,531.50
10 1,350.31 1,363.80 2,081.61 2,101.58 10,670.30 10,801.72
100 1,473.23 1,489.41 2,398.97 2,394.19 11,181.73 10,997.51

100 200 3 1,173.16 1,179.29 1,170.69 1,181.61 14,161.98 14,151.12
10 1,242.86 1,253.01 1,539.73 1,547.17 15,963.08 15,836.05
100 1,332.48 1,341.65 1,722.82 1,714.17 15,706.48 15,489.47

400 3 1,621.09 1,638.17 2,550.46 2,551.55 8,972.85 8,454.31
10 1,720.00 1,747.77 2,647.00 2,642.66 8,751.63 8,474.87
100 1,729.44 1,763.16 2,610.94 2,607.27 7,972.75 8,259.76

average 1,155.71 1,167.08 1,842.36 1,844.57 10,671.42 10,511.92

36

References

Table I.17: Results for DBLF with RTree – All Constraints

Instances ∅ttd ∅ time [s] ∅ iterations

n m item best avg. best avg. best avg.
types

20 200 3 408.91 411.15 1,171.58 1,175.36 6,049.70 6,203.83
10 418.90 422.45 1,766.07 1,769.97 4,227.85 4,281.71
100 423.33 427.00 2,305.45 2,313.50 4,182.85 4,176.75

400 3 443.15 449.27 2,482.88 2,517.98 3,688.00 3,446.39
10 465.89 477.33 2,604.76 2,604.60 2,980.70 2,865.67
100 492.93 506.85 2,492.67 2,498.13 3,202.80 3,116.92

60 200 3 1,036.32 1,050.28 2,931.78 2,943.80 3,951.33 3,852.55
10 1,102.85 1,131.68 2,992.54 2,997.29 2,825.28 2,750.34
100 1,165.00 1,190.18 3,301.62 3,307.65 2,180.15 2,315.36

400 3 1,391.19 1,417.44 2,856.99 2,870.60 3,980.13 4,199.43
10 1,465.84 1,522.38 2,779.39 2,792.66 5,581.85 5,761.70
100 1,607.81 1,680.72 2,304.35 2,318.99 6,661.90 6,834.69

100 200 3 1,242.08 1,259.40 3,282.33 3,289.11 3,686.55 3,568.99
10 1,394.36 1,405.74 3,517.30 3,521.70 2,220.23 2,103.43
100 1,512.91 1,532.77 3,485.58 3,487.72 1,404.75 1,409.09

400 3 1,739.93 1,759.22 3,389.67 3,395.15 2,872.33 2,576.32
10 1,950.96 1,982.12 3,600.00 3,600.00 422.03 422.33
100 2,012.89 2,050.93 3,600.00 3,600.00 227.48 223.41

average 1,263.25 1,288.66 2,963.55 2,970.96 3,212.00 3,204.22

Table I.18: Results for DBLF with RTree – w/o Rotation

Instances ∅ttd ∅ time [s] ∅ iterations

n m item best avg. best avg. best avg.
types

20 200 3 408.85 409.70 1,205.88 1,215.16 5,159.90 5,366.50
10 420.34 424.29 1,811.27 1,811.84 4,127.05 4,159.02
100 424.16 428.91 1,787.82 1,796.72 3,611.10 3,749.56

400 3 446.10 453.04 2,584.06 2,602.60 1,500.95 1,542.49
10 472.71 480.51 2,632.29 2,642.64 989.45 987.88
100 494.58 507.82 2,567.03 2,560.71 713.15 712.91

60 200 3 1,043.12 1,063.39 1,854.86 1,860.17 3,851.10 3,898.28
10 1,115.25 1,143.96 1,949.03 1,953.80 3,019.58 2,863.58
100 1,165.34 1,198.22 1,950.89 1,952.51 2,656.65 2,661.63

400 3 1,425.22 1,451.14 2,953.36 2,969.49 2,194.63 1,701.78
10 1,497.34 1,554.39 2,818.67 2,825.45 4,175.38 4,406.43
100 1,613.93 1,696.99 2,310.29 2,313.46 6,270.70 6,026.75

100 200 3 1,252.47 1,280.29 3,356.19 3,360.01 110.38 111.84
10 1,386.87 1,414.46 3,549.66 3,551.13 92.85 93.56
100 1,517.46 1,543.80 3,520.80 3,521.71 98.00 97.92

400 3 1,766.55 1,789.38 3,332.02 3,333.50 3,171.93 2,753.72
10 1,976.12 2,003.44 3,600.00 3,600.00 451.03 457.74
100 2,025.83 2,071.39 3,600.00 3,600.00 256.63 257.68

average 1,274.59 1,304.20 2,739.33 2,743.74 2,293.31 2,239.34

37

References

Table I.19: Results for DBLF with RTree – w/o LIFO

Instances ∅ttd ∅ time [s] ∅ iterations

n m item best avg. best avg. best avg.
types

20 200 3 408.38 408.61 984.83 992.25 6,169.15 6,239.68
10 414.69 415.68 1,782.06 1,805.08 4,201.20 4,231.15
100 420.93 422.44 1,367.34 1,371.89 4,269.55 4,315.68

400 3 436.90 439.20 2,235.03 2,256.21 2,520.10 2,328.57
10 447.88 452.47 2,608.75 2,611.99 1,831.70 1,922.01
100 469.65 475.92 2,547.27 2,561.16 2,127.85 2,165.85

60 200 3 1,012.61 1,023.80 1,759.85 1,777.77 4,051.08 3,959.32
10 1,036.71 1,062.54 1,931.42 1,938.81 2,801.40 2,678.86
100 1,077.29 1,106.44 1,993.17 1,993.77 2,785.73 2,627.81

400 3 1,355.40 1,375.43 2,968.12 2,972.43 1,415.23 1,319.17
10 1,390.20 1,430.49 2,923.16 2,930.62 2,244.55 2,048.95
100 1,509.19 1,570.97 2,441.35 2,437.34 3,951.83 3,761.41

100 200 3 1,213.02 1,236.55 3,358.97 3,361.01 124.68 124.42
10 1,296.55 1,319.25 3,474.56 3,477.12 98.43 161.79
100 1,385.49 1,412.18 3,519.67 3,520.48 107.60 106.71

400 3 1,658.49 1,694.96 3,303.74 3,315.40 2,363.25 2,318.42
10 1,807.75 1,843.33 3,446.43 3,452.90 574.85 569.48
100 1,839.21 1,875.84 3,600.00 3,600.00 286.55 289.99

average 1,192.07 1,217.26 2,698.87 2,705.13 2,091.00 2,037.85

Table I.20: Results for DBLF with RTree – w/o Minimal Supporting Area

Instances ∅ttd ∅ time [s] ∅ iterations

n m item best avg. best avg. best avg.
types

20 200 3 409.02 411.93 1,217.62 1,221.52 5,653.15 5,459.69
10 418.78 422.33 1,811.86 1,812.65 4,151.65 4,140.28
100 422.05 424.68 1,662.07 1,679.56 3,950.30 3,873.98

400 3 442.26 448.75 2,600.08 2,592.97 1,500.20 1,493.55
10 465.88 473.27 2,633.38 2,638.83 1,075.75 1,139.83
100 478.64 484.34 2,565.56 2,570.81 1,312.30 1,230.11

60 200 3 1,024.66 1,046.45 1,937.71 1,938.96 3,568.85 3,440.33
10 1,067.60 1,098.87 1,972.29 1,974.16 2,572.03 2,508.18
100 1,106.67 1,135.34 2,073.62 2,073.06 2,520.93 2,513.09

400 3 1,389.93 1,413.70 2,954.96 2,972.97 1,064.75 1,243.63
10 1,422.27 1,465.33 2,998.13 2,996.04 2,555.25 2,676.65
100 1,512.42 1,571.53 2,440.92 2,439.39 3,224.65 3,796.01

100 200 3 1,241.36 1,271.63 3,355.11 3,358.37 109.15 107.84
10 1,355.34 1,377.03 3,550.76 3,551.14 93.03 91.66
100 1,449.49 1,472.96 3,522.94 3,519.58 100.75 98.55

400 3 1,721.49 1,754.70 3,402.28 3,407.15 1,672.33 1,651.29
10 1,874.06 1,912.97 3,600.00 3,600.00 310.43 308.31
100 1,904.12 1,932.25 3,600.00 3,600.00 161.18 159.53

average 1,225.85 1,252.36 2,776.93 2,779.27 1,785.00 1,817.59

38

References

Table I.21: Results for DBLF with RTree – w/o Fragility

Instances ∅ttd ∅ time [s] ∅ iterations

n m item best avg. best avg. best avg.
types

20 200 3 408.95 411.27 1,212.20 1,218.75 5,699.95 5,795.96
10 418.33 421.58 1,808.73 1,809.52 4,195.30 4,171.03
100 422.74 425.69 1,605.23 1,612.80 4,070.10 4,202.12

400 3 442.81 447.28 2,595.09 2,601.50 1,530.70 1,535.40
10 465.30 474.08 2,632.39 2,638.59 1,168.60 1,067.19
100 486.02 493.46 2,550.61 2,560.04 1,125.20 1,131.14

60 200 3 1,031.36 1,055.23 1,920.20 1,930.07 4,056.83 3,880.08
10 1,088.32 1,118.37 1,953.63 1,958.13 2,963.55 2,899.51
100 1,140.98 1,169.42 2,039.41 2,041.04 2,698.05 2,661.66

400 3 1,385.14 1,412.25 2,958.28 2,963.86 1,356.23 1,523.61
10 1,446.68 1,505.91 2,938.83 2,927.42 4,452.03 3,824.71
100 1,568.61 1,640.17 2,424.07 2,424.59 5,741.78 5,304.28

100 200 3 1,243.45 1,270.47 3,354.67 3,362.08 131.60 133.46
10 1,379.64 1,398.32 3,547.80 3,551.19 96.50 105.78
100 1,479.96 1,503.80 3,521.26 3,521.37 167.65 119.22

400 3 1,735.86 1,766.28 3,366.69 3,367.99 2,875.40 2,627.00
10 1,910.17 1,946.92 3,600.00 3,600.00 451.20 457.35
100 1,964.84 1,999.43 3,600.00 3,600.00 253.68 259.18

average 1,246.47 1,274.88 2,761.80 2,764.56 2,275.96 2,183.15

Table I.22: Results for DBLF with RTree – w/o Load Capacity

Instances ∅ttd ∅ time [s] ∅ iterations

n m item best avg. best avg. best avg.
types

20 200 3 407.17 410.38 1,122.76 1,123.53 6,353.60 5,735.38
10 419.02 421.77 1,621.74 1,621.82 4,372.05 4,417.89
100 424.27 426.92 2,016.84 2,018.54 4,467.60 4,506.84

400 3 440.77 446.19 2,369.67 2,375.68 2,166.85 2,580.01
10 466.56 474.48 2,632.50 2,639.59 1,942.75 1,990.15
100 491.67 501.74 2,558.14 2,567.58 1,895.55 1,987.62

60 200 3 1,034.36 1,045.17 2,812.16 2,809.04 3,131.78 3,229.33
10 1,095.67 1,115.99 2,816.16 2,816.85 2,660.38 2,571.07
100 1,152.61 1,174.51 2,790.89 2,795.01 2,320.85 2,342.47

400 3 1,392.88 1,413.55 2,572.47 2,580.20 2,182.58 2,257.93
10 1,467.76 1,493.34 2,385.76 2,400.64 1,639.05 1,688.41
100 1,606.68 1,629.68 2,144.16 2,153.80 944.90 925.72

100 200 3 1,229.01 1,244.98 2,845.52 2,844.13 4,037.95 3,899.78
10 1,384.05 1,396.98 2,984.17 2,983.59 2,524.25 2,439.00
100 1,495.08 1,516.26 3,247.58 3,248.27 1,698.25 1,704.71

400 3 1,739.13 1,761.02 3,111.58 3,113.11 3,029.63 2,693.61
10 1,952.74 1,981.10 3,589.12 3,587.19 603.68 601.40
100 2,013.95 2,044.17 3,600.00 3,600.00 319.30 317.77

average 1,259.24 1,277.17 2,737.36 2,740.35 2,379.45 2,352.01

39

References

Table I.23: Results for Zhang et al. (2017) Instances

A
lg

or
ith

m
co

ns
tr

ai
nt

se
t

∅
tt

d
∅

tim
e

[s
]

∅
ite

ra
tio

ns

be
st

av
g.

be
st

av
g.

be
st

av
g.

D
B

LF
w

ith
Po

in
ts

A
ll

C
on

st
ra

in
ts

78
4.

50
78

8.
53

50
0.

52
50

3.
75

17
,1

60
.6

7
17

,7
49

.5
6

w
/o

R
ot

at
io

n
79

0.
17

79
7.

09
29

9.
02

29
7.

49
17

,4
17

.5
9

17
,4

68
.4

0
w

/o
LI

FO
72

8.
22

73
3.

14
29

4.
48

29
3.

31
16

,5
12

.8
9

15
,7

40
.8

1
w

/o
M

in
im

al
S.

A
re

a
74

1.
43

74
6.

89
28

1.
62

28
2.

15
18

,1
27

.5
6

17
,0

35
.4

3
w

/o
Fr

ag
ili

ty
76

9.
22

77
6.

54
27

4.
02

27
8.

05
17

,0
87

.7
0

17
,0

37
.2

4
w

/o
Lo

ad
C

ap
ac

ity
74

6.
34

75
0.

87
28

4.
17

28
1.

21
17

,2
71

.4
8

17
,4

88
.0

7
av

er
ag

e
75

9.
98

76
5.

51
32

2.
30

32
2.

66
17

,2
62

.9
8

17
,0

86
.5

9

D
B

LF
w

ith
Sp

ac
es

A
ll

C
on

st
ra

in
ts

77
8.

19
78

2.
43

47
6.

40
46

7.
67

17
,2

76
.3

7
17

,3
38

.4
5

w
/o

R
ot

at
io

n
78

6.
36

79
1.

10
25

5.
27

25
3.

55
17

,9
69

.1
1

17
,0

31
.3

0
w

/o
LI

FO
72

3.
02

72
8.

62
29

4.
41

28
4.

69
17

,4
59

.6
3

16
,3

42
.4

7
w

/o
M

in
im

al
S.

A
re

a
73

4.
72

73
9.

33
24

7.
04

24
4.

50
16

,6
45

.5
2

16
,3

73
.5

8
w

/o
Fr

ag
ili

ty
76

3.
95

76
6.

22
26

8.
38

27
1.

03
17

,3
33

.5
9

16
,7

33
.0

5
w

/o
Lo

ad
C

ap
ac

ity
73

8.
42

74
3.

78
28

8.
18

29
2.

40
17

,6
15

.3
7

17
,1

19
.9

9
av

er
ag

e
75

4.
11

75
8.

58
30

4.
95

30
2.

31
17

,3
83

.2
7

16
,8

23
.1

4

D
B

LF
w

ith
RT

re
e

A
ll

C
on

st
ra

in
ts

87
4.

95
87

4.
91

1,
96

2.
35

1,
94

7.
49

7,
66

8.
78

7,
77

2.
15

w
/o

R
ot

at
io

n
86

9.
32

88
0.

53
2,

07
7.

42
2,

08
0.

08
7,

96
0.

70
7,

45
4.

01
w

/o
LI

FO
78

5.
39

79
7.

30
2,

06
7.

01
2,

07
4.

40
7,

22
7.

78
6,

92
9.

02
w

/o
M

in
im

al
S.

A
re

a
82

3.
46

84
1.

06
2,

07
9.

90
2,

08
5.

14
7,

56
7.

52
7,

24
4.

15
w

/o
Fr

ag
ili

ty
85

2.
32

85
7.

95
2,

06
6.

63
2,

07
6.

38
8,

09
5.

26
7,

94
5.

50
w

/o
Lo

ad
C

ap
ac

ity
82

6.
78

84
0.

67
2,

12
3.

77
2,

12
2.

91
5,

42
3.

78
5,

27
6.

93
av

er
ag

e
83

8.
70

84
8.

74
2,

06
2.

85
2,

06
4.

40
7,

32
3.

97
7,

10
3.

63

40

Paper II

Axle Weights in combined Vehicle Routing
and Container Loading Problems

Corinna Krebs, Jan Fabian Ehmke
Published in EURO Journal on Transportation and Logistics, June 2021, volume 10, pp. 123–456.
DOI: 10.1016/j.ejtl.2021.100043.

II

Abstract

Overloaded axles not only lead to increased erosion on the road surface, but also to an increased
braking distance and more serious accidents due to higher impact energy. Therefore, the load
on axles should be already considered during the planning phase and thus before loading the
truck in order to prevent overloading. Hereby, a detailed 2D or 3D planning of the vehicle cargo
space is required. We model the Axle Weight Constraint for trucks with and without trailers
based on the Science of Statics and provide flexible formulas for different axle configurations
of trucks. We include the Axle Weight Constraint into the combined Vehicle Routing and
Container Loading Problem (“2L-CVRP" and “3L-CVRP"). A hybrid heuristic approach is
used where an outer Adaptive Large Neighbourhood Search tackles the routing problem and
an inner Deepest-Bottom-Left-Fill algorithm solves the packing problem. Moreover, to ensure
feasibility, we show that the Axle Weight Constraint must be checked after each placement of
an item. The impact of the Axle Weight Constraint is also evaluated.

41

https://doi.org/10.1016/j.ejtl.2021.100043

1 Introduction

Contents

1 Introduction . 42
2 Literature Review . 42
3 Problem Formulation . 44
4 Axle Weight Constraint . 45
5 Hybrid Solution Approach . 51
6 Computational Experiments . 56
7 Conclusion . 62
References . 62

1 Introduction

A survey by Blower and Woodrooffe (2012) of the University of Michigan analysed the status of
truck safety for four countries: Australia, Brazil, China and the United States. The overloading of
trucks is a major problem especially for China and Brazil. According to reports in China, 70–90%
of truck accidents are related to overloaded and oversized trucks. In Brazil, 60% of the trucks
in crashes have been revealed to be overloaded and 20% of registered trucks exceeding the gross
mass. The overloading of axles can result in an overheating and failing of tyres and brakes. If the
permissible axle weight of a steering axle is exceeded, the steering is more cumbersome and it is
possible to loose control of the vehicle. There are also economic effects: A study by Pais et al.
(2013) showed that the increased erosion of roads raises the pavement costs by more than 100%.
For these reasons, it is essential to consider the load on the axles of trucks directly in the planning
of routes.
In the majority of previous research on the Vehicle Routing Problem (VRP), customer demand
was simply expressed as the total mass or volume. This is not sufficient to take axle weights into
account, as a detailed 2D or 3D planning of the vehicle cargo space is required. In this paper, we
present simple, yet effective formulas for considering the axle weights suitable for all 2D and 3D
Container Loading Problems. We include our approach in the combinations of Vehicle Routing and
Container Loading Problems, such as the 2L-CVRP and 3L-CVRP. Moreover, we propose 80 new
instances dealing with Semi-Truck Trailers varying systematically in the number of customers, item
types and items. To ensure transparency, we have published online all results in detail including
the packing plans with the exact positions of the items.
This paper considers two aspects for the first time: I) We formulate a flexible, adjustable approach
to consider axle weights for trucks with or without trailers for all axles and II) we include the Axle
Weight Constraint in the 3L-CVRP. Moreover, we show with a detailed real example that it is
necessary to check the Axle Weight Constraint after each placement of an item, since the mass of
items can act on an axle, but it can also relieve an axle. Therefore, also unloading an item can lead
to an overloading of one or several axles.
We use a hybrid heuristic algorithm for tackling the Vehicle Routing and the Container Loading
Problem. The routing heuristic is based on the Adaptive Large Neighbourhood Search (ALNS)
by Koch et al. (2018) calling for each route a modified packing heuristic based on the Deepest-
Bottom-Left-Fill (DBLF) algorithm proposed by Karabulut and İnceoğlu (2005). Both heuristics
are described in detail in the following subsections. For the computational tests, we use a new
instance set and well-known instances from the literature.
The related literature is reviewed in Section 2. The considered problems (2L- and 3L-CVRP) are
formulated in Section 3. In Section 4, the Axle Weight Constraint is described in detail. The hybrid
solution approach is explained in Section 5. Section 6 presents computational results, analysing
the impact of the Axle Weight Constraint on VRP solutions. Finally, conclusions are drawn in
Section 7.

2 Literature Review

In this section, the literature considering the Axle Weight Constraint with their vehicle models is
reviewed. To the best of our knowledge, the following overview represents all papers considering
axle weights. First, the papers dealing with the Container Loading Problem or a variant of this

42

2 Literature Review

problem are regarded since this represents a subproblem of the problems considered in this paper.
Then, papers are summarized that include the Axle Weight Constraint into the combined Container
Loading and Vehicle Routing Problem.

2.1 Container Loading Problem

Although Container Loading Problems have been investigated for several decades, the axle weights
of vehicles have so far only been considered in the following three papers. In the 3D Single Container
Loading Problem, a number of three-dimensional boxes must be packed into one three-dimensional
container while minimizing the total volume utilization. In this context, the Axle Weight Constraint
was first considered in a paper by Lim et al. (2013). They examine the general rules of the California
Vehicle Code. They simplify the rules by formulating three semi-trailer truck models with three
limits each: One limit for the front axle group, one for the rear axle group and one for the gross
vehicle weight. Then, a Greedy Randomized Adaptive Search Procedure Wall-Building Algorithm
packs the boxes, and the Axle Weight Constraint is checked. For this, the ideal mass center of the
container is calculated. Then, the deviation between the ideal mass center and the current mass
center of the container is minimized by rearranging the walls of loaded boxes.
The Multi Container Loading Problem is an extension of the Single Container Loading Problem,
where a set of items needs to be packed into multiple containers while minimizing the number of used
containers. For the 2D problem variant, the Axle Weight Constraint is included in mathematical
models by Alonso et al. (2017). The Axle Weight Constraint is considered for trucks with two axles
and is included in the model by formulating the equilibrium for the moments and forces. In Alonso
et al. (2019), this model is extended by further constraints such as dynamic stability constraints.

2.2 Combined Vehicle Routing and Container Loading Problem

The VRP is one of the most studied optimization problems in logistics. This problem involves
the optimal planning of routes to deliver goods to customers that are located in a depot. This is
accomplished by a fleet of vehicles having a certain capacity. Since a detailed 2D and 3D planning of
the cargo space is required to take axle weights into account, the Axle Weight Constraint has rarely
been taken into account so far. In Iori et al. (2007), the combination of the 2D Container Loading
Problem with the Capacitated Vehicle Routing Problem (2L-CVRP) is introduced. The objective is
to minimize the total travel cost (distance). The Axle Weight Constraint was first considered in the
2L-CVRP by Pollaris et al. (2016). The problem is solved by a mixed integer linear programming
formulation. In their model, a truck with a trailer is considered. The axle weights are calculated
only for the trailer axle group and the driving axle. The separated examination of axle weights of the
steering and driving axle of the tractor is not considered. The axle weights are calculated by means
of equilibrium of forces and moments. Since in their model the pallets are packed alternately in two
rows, the formulas for calculating the axle loads are fixed to these positions. Pollaris et al. (2016)
proposed 128 instances varying in the number of customers, the number of pallets per customer
and the masses of the pallets. The instances are tested with CPLEX, but for some instances, no
feasible solution can be found after two hours of runtime. To solve larger instances, in Pollaris
et al. (2017), an Iterated Local Search approach with Sequence-Based Pallet Loading is developed.
In this framework, the same assumptions are used for the axle weight calculation and the vehicle
model. Additional 96 instances were created with up to 100 customers, which can be solved by the
proposed metaheuristic.
The Three-Dimensional Loading Capacitated Vehicle Routing Problem (3L-CVRP) is an extension
of the 2L-CVRP combining 3D Container Loading with the Capacitated Vehicle Routing Problem
introduced by Gendreau et al. (2006). The 3L-CVRP has been studied intensively in the recent
years so that the results for this benchmark have been improved repeatedly by researchers (e.g.
Tarantilis et al. (2009), Fuellerer et al. (2010), Bortfeldt (2012) and Wei et al. (2014)). However, the
Axle Weight Constraint has not been included in the 3L-CVRP yet. To the best of our knowledge,
this paper considers for the first time the Axle Weight Constraint in the 3L-CVRP. Moreover, we
provide a flexible approach, where the feasibility of an arbitrary position of an item can be checked
with respect to axle weights. This approach is adaptable to various vehicle types.

43

3 Problem Formulation

3 Problem Formulation

To model the 2L-CVRP and 3L-CVRP, we follow the convention by Bortfeldt (2012). Let G = (N, E)
be a complete, directed graph, where N is the set of n+1 nodes including the depot (node 0) and n
customers to be served (node 1 to n), and E is the edge set connecting each pair of nodes. Let
the euclidean distance coi,j (coi,j > 0) be assigned to each edge ei,j ∈ E (i ̸= j, i, j = 0, ..., n). The
demand of customer i ∈ N \ {0} consists of ci items. Each item Ii,k (k = 1, ..., ci) is defined by
mass mi,k, length li,k, width wi,k and height hi,k. The total demanded mass for a customer i is
given by mci. The items are delivered by at most vmax available, homogenous and capacitated
vehicles. Each vehicle has a maximum load capacity D and a cuboid cargo space defined by length
L, width W and height H.
Let vused be the number of used vehicles in a solution. A solution is a set of vused pairs of routes
Rv and packing plans PPv, whereby the route Rv (v = 1, ..., vused) is an ordered sequence of at
least one customer and PPv is a packing plan containing the position within the cargo space for
each item included in the route.

A solution is feasible if

(S1) All routes Rv and packing plans PPv (v = 1, ..., vused) are feasible (see below);

(S2) The number of used vehicles vused does not exceed the number of available vehicles vmax;

(S3) Each packing plan PPv contains all ci items of all customers i included in the corresponding
route (i ∈ Rv).

A route Rv must meet the following routing constraints:

(R1) Each route starts and terminates at the depot and visits at least one customer;

(R2) Each customer is visited exactly once.

Each packing plan must obey the following loading constraint set P :

(C1) Geometry: The items must be packed without overlapping and within the vehicle (e.g. obeying
the maximum length, width and height of the vehicle);

(C2) Orthogonality: The items can only be placed orthogonally inside a vehicle;

(C3) Load Capacity: The sum of masses of all included items of a vehicle does not exceed the
maximum load capacity D;

(C4) LIFO: No item is placed above or in front of item Ii,k, which belongs to a customer served
after customer i.

For the 3L-CVRP, the following loading constraints must be additionally respected:

(C5) Rotation: The items can be rotated 90◦ only on the width-length plane;

(C6) Minimal Supporting Area: Each item has a supporting area of at least a percentage α of its
base area;

(C7) Fragility: No non-fragile items are placed on top of fragile items.

Moreover, the Axle Weight Constraint is considered.

(C8) Axle Weight: The load on the axles do not exceed the permissible axle weights.

The 2L-CVRP and 3L-CVRP consist of determining a feasible solution minimizing the total travel
distance (ttd) and obeying all above constraints.

44

4 Axle Weight Constraint

4 Axle Weight Constraint

This section details our approaches for the consideration of axle weights in the problem at hand.
Based on the Science of Statics, the formulas for calculating the axle weights for a box truck are
derived. Then, resultant axles for replacing axle groups are introduced. Afterwards, the formulas
for calculating the axle weights for trucks with trailers are shown. Then, we demonstrate that the
Axle Weight Constraint must be checked after each placement of an item. The following formulas
are used to check if the position (xi,k, yi,k, zi,k) of an item Ii,k is feasible according to the Axle
Weight Constraint. If an axle weight limit is exceeded, another position for the item must be found.
This flexible approach makes it easy to check the feasibility of an item position.

4.1 Approach for Box Trucks

The following formulas are suitable for the axle weight calculation of box trucks and box vans.
These are vehicles with a cuboid-shaped cargo area without any kind of trailer. For implementation,
additional specifications of the vehicle are needed. In practice, those are given by the manufacturers.
Let FAperm be the maximum load the vehicle’s front axle can bear and RAperm be the maximum
load for the rear axle, respectively. Both limits are given in the unit of mass. The parameter
Lf describes the distance between the front axle and the cargo area. The wheelbase WB is the
distance between the front and the rear axle (see Fig. II.1).

wheelbase (WB)
FFA FRA

x

z

li,k

Ii,k

LF xi,k

li,k
2
Fi,k

Figure II.1: Vehicle Data

An object on the surface of the earth experiences a force caused by the gravitational attraction
of the earth. This force is calculated as the mass of the object times the acceleration of gravity g
(g ≈ 9.81 m

s2). Therefore, each item Ii,k acts a force Fi,k on the vehicle, which is

Fi,k = mi,k · g. (II.1)

The point of the force Fi,k is located in the center of mass for each item. If the mass of an item
is homogeneously distributed, the center of mass and the geometric center are at the same point.
Each axle counteracts these forces, whereby FF A is the force representing the front axle and FRA

the force for the rear axle.
Moreover, each force creates a moment, which can be determined to any point in the system. It
is expedient to determine the moments to an unknown force, such as the force of the front axle
FF A. Each moment is calculated by the force multiplied by the distance r from the front axle to
the force. Thus, each item’s force creates a moment Mi,k. Supposing that the mass of an item
is homogeneously distributed, resulting that the point of force lays in the geometric center, the
distance ri,k to the point of the front axle force FF A is

ri,k = Lf + xi,k + li,k/2. (II.2)

The moment Mi,k created by item Ii,k is:

Mi,k = Fi,k · ri,k (II.3)

45

4 Axle Weight Constraint

or rather
Mi,k = Fi,k · (Lf + xi,k + li,k/2). (II.3b)

When rotating an item, li,k and wi,k are swapped. The force from the rear axle FRA creates another
moment, which is FRA multiplied by the wheelbase WB.
In the Science of Statics, the forces and moments are in static equilibrium with their environment.
Thus, the summation of forces F and of moments M are zero. Considering the direction of the
forces and moments, the following formulas can be applied for a vehicle v.

Equilibrium of forces:
n∑

i=1|i∈Rv

ci∑
k=1

Fi,k − FRA − FF A = 0, (II.4)

which can be transformed to FF A:

FF A =
n∑

i=1|i∈Rv

ci∑
k=1

Fi,k − FRA. (II.4b)

The summation of moments must be zero and is:

n∑
i=1|i∈Rv

ci∑
k=1

Mi,k − FRA · WB = 0, (II.5)

which can be transformed to FRA:

FRA = 1
WB

· (
n∑

i=1|i∈Rv

ci∑
k=1

Mi,k). (II.5b)

As the position (xi,k, yi,k, zi,k) of an item Ii,k is checked w.r.t. feasibility, all values are known in
Equation II.5b and the result for FRA can be calculated and inserted in Equation II.4b to receive
FF A. The acting forces for the front and the rear axles must be below the permissible ones:

FF A ≤ FAperm · g (II.6)

and
FRA ≤ RAperm · g. (II.7)

4.2 Axle Group and Resultant Axle

The formulas shown in Section 4.1 are suitable for trucks with one front and rear axle each. Trucks
as well as trailers can have axle groups consisting of two consecutive axles ("tandem-axle") or three
consecutive axles ("tridem-axle"). For these axle groups, a so-called "resultant axle" replaces the
axle group. The resultant axle is located in the center of the axle group and its value is the sum of
each consecutive axle. Thus, as shown in Fig II.2, for a tandem-axle, the resultant axle is between
the two rear axles. For a tridem-axle, the resultant axle lays in the middle axle of the three axles.

(a) One Axle (b) Tandem-Axle (c) Tridem-Axle

Figure II.2: Examples for Resultant Axles replacing Axle Groups

46

4 Axle Weight Constraint

4.3 Approach for Semi-Trailer Trucks

The calculation of the load on the axles shown in Section 4.1 is suitable for trucks without a trailer.
Semi-trailer trucks, as shown in Fig. II.3, have at least three axles, for which the loads must be
determined: The load on the front axle and the rear axle of the tractor unit (truck) and the load
on the axle group of the trailer. Their permissible load on these axles are FAperm for the front
axle, RAperm for the rear axle and TAperm for the trailer axle. Due to the three axles, the above
formulas must be adapted. The Science of Statics is also applied to the following formulas.

Figure II.3: Semi-Trailer Truck with Tridem Trailer Axle

Since the load on the axles of the tractor unit depends on the trailer, the forces and moments of
the tractor unit and the trailer are examined separately. The kingpin on the semi-trailer connects
the trailer with the tractor unit. In Fig.II.4 the distances, forces and moments are illustrated.

(a) Tractor Unit (b) Trailer

Figure II.4: Forces and Moments for Semi-Trailer Trucks

In the first step, the forces and moments of the trailer are determined. As shown in Section 4.2,
a resultant trailer axle can be used instead of the tridem-axle. All moments of the trailer are
calculated to the center of the resultant axle. Therefore, all distances from each force to this point
must be determined. Let lT A be the distance between the cargo area to the resultant trailer axle.
The distance between the kingpin and the resultant axle of the trailer is denoted by lK|T A. The
distance ri,k between the item Ii,k to the resultant trailer axle is

ri,k = lT A − xi,k − li,k
2 . (II.8)

The force of the kingpin and the force of the resultant trailer axle act against the item forces.
As demonstrated before, the summation of forces is zero in the Science of Statics. Therefore, the
following must apply for the trailer:

FT A + FK −
n∑

i=1|i∈Rv

ci∑
k=1

Fi,k = 0. (II.9)

This can be transformed to FT A:

FT A =
n∑

i=1|i∈Rv

ci∑
k=1

Fi,k − FK . (II.9b)

47

4 Axle Weight Constraint

Similarly, the summation of the moments must be zero, so that it is

FK · lK|T A −
n∑

i=1|i∈Rv

ci∑
k=1

Fi,k · ri,k = 0, (II.10)

and transformed to FK , one gets:

FK = 1
lK|T A

· (
n∑

i=1|i∈Rv

ci∑
k=1

Fi,k · ri,k). (II.10b)

Since all values in Equation II.10b are known, the force FK can be calculated and inserted in
Equation II.9b to receive FT A. In the next step, the force and moment equilibriums are described
for the tractor unit. The load on the tractor unit is carried by two axles. The front axle force FF A

and the rear axle force FRA work against the force in the kingpin FK . The summation of forces
must be zero and is

FF A + FRA − FK = 0. (II.11)
This can be transformed to FRA:

FRA = FK − FF A. (II.11b)
The moments are calculated in the center of the rear axle. Let WB be the wheelbase between the
front and the rear axle of the tractor unit and lK|RA be the distance between the rear axle and the
kingpin. Then, the summation of the following moments must be zero:

FF A · WB − FK · lK|RA = 0. (II.12)

The force FK was calculated before. Thus, the force FF A can be determined:

FF A = 1
WB

· FK · lK|RA. (II.12b)

The result for FF A is then inserted in Equation II.11b, to receive FRA. The current load on the
axles must not exceed the permissible ones:

FF A ≤ FAperm · g, (II.13)

FRA ≤ RAperm · g, (II.14)

FT A ≤ TAperm · g. (II.15)

4.4 Consideration of Vehicle’s and Trailer’s Masses

The value of the permissible axle weights may be without the consideration of vehicle mass (mtruck).
In this case, the mass must be respected in the formulas. The mass is added as additional force in
Equation II.4b:

FF A =
n∑

i=1|i∈Rv

ci∑
k=1

Fi,k + mtruck · g − FRA. (II.4c)

Moreover, the mass creates a moment in the center of mass of the truck. The distance (rtruck)
between the front axle and the center of mass of the truck must be given by the manufacturer.
Thus, Equation II.5b needs to be updated as follows:

FRA = 1
WB

· (
n∑

i=1|i∈Rv

ci∑
k=1

Mi,k + mtruck · g · rtruck). (II.5c)

In the case of semi-truck trailers, the masses of the tractor unit (mtractor) and of the trailer (mtrailer)
do not have to be included. In that case, the masses are added as forces in the Equations II.9b and
II.11b, so that

48

4 Axle Weight Constraint

FT A =
n∑

i=1|i∈Rv

ci∑
k=1

Fi,k + mtrailer · g − FK . (II.9c)

and

FRA = FK + mtractor · g − FF A. (II.11c)
The mass of the trailer and the tractor unit creates also a moment in their center of mass. The
distance rtractor between the rear axle and the center of mass and the distance rtrailer between
the trailer axle and the center of mass must be also given by the manufacturer. The moments are
added in the Equations II.10b and II.12b, resulting in

FK = 1
lK|T A

· (
n∑

i=1|i∈Rv

ci∑
k=1

Fi,k · ri,k + mtrailer · g · rtrailer) (II.10c)

and

FF A = 1
WB

· (FK · lK|RA + mtractor · g · rtractor). (II.12c)

Other masses, such as the mass of the driver, the fuel, etc., may be added in the same way, provided
that distances and masses are known.

4.5 Check Frequency

In the following, the check frequency for the Axle Weight Constraint is examined. According to
Pollaris et al. (2016), by placing an item, the mass of the item cannot only act on an axle, but it
can also relieve an axle. Therefore, when unloading an item, the load on the axles can exceed the
permissible ones. Thus, it must be checked whether the constraint is fulfilled after each placement
of an item. In the following, we will demonstrate this with a realistic example. The demand of
four customers consists of one item each. We assume the truck is the model ML150E28FP of the
manufacturer IVECO. The dimensions of the truck and of the items are shown in Fig. II.5. The
load capacity D is 10,100 kg and the permissible load on the axles is FAperm = 5,300 kg for the
front axle and RAperm = 10,700 kg for the rear axle.

Figure II.5: Vehicle’s and Items’ Dimensions

The customer visiting order for the route is R1 = {1, 2, 3, 4}. Due to the height of the items, it
is not possible to stack them. The load capacity D is complied with since the sum of the items’
masses is equal to the load capacity D. Respecting the LIFO (C4) constraint, the items of the
customers are unloaded in the reversed order (order = {I4,1; I3,1; I2,1; I1,1}).

To pack the items, the proposed DBLF algorithm is used (see Section 5.2). The items’ po-
sitions, shown in Fig. II.6, would result if the Axle Weight Constraint would be checked once after
loading all items of the route R1.

49

4 Axle Weight Constraint

Item mi,k li,k xi,k ri,k Fi,k Mi,k

[kg] [m] [m] [m] [N] [Nm]

I4,1 4,100 1.00 0.00 1.10 40,221 44,243

I3,1 3,000 1.00 0.00 1.10 29,430 32,373

I2,1 1,000 3.50 1.00 3.35 9,810 32,864

I1,1 2,000 1.00 4.50 5.60 19,620 109,872

front axle

x

y

rear axle

I4,1

I2,1

I3,1

I1,1

Figure II.6: Positions of items when checking the Axle Weight Constraint when all items have been
loaded

The corresponding axle weights are shown in Table II.1. The load on the axles are below the
permissible ones after loading all items into the vehicle’s cargo space. Thus, the Axle Weight
Constraint seems to be fulfilled. However, when unloading the item I1,1, the front axle gets
overloaded because the item I1,1 relieves the front axle. The front axle is even overloaded after
unloading item I2,1. Consequently, the Axle Weight Constraint is not fulfilled for the current items’
positions, shown in Fig. II.6.

Table II.1: Axle Weights for items’ positions in Fig. II.6
Loaded items Current Forces Permissible Forces

FFA FRA FAperm ·g RAperm ·g
[N] [N] [N] [N]

I4,1 ; I3,1 ; I2,1 ; I1,1 49,844 49,237

51,993 104,967I4,1 ; I3,1 ; I2,1 54,886 24,575
I4,1 ; I3,1 52,453 17,198
I4,1 30,290 9,931

When checking the Axle Weight Constraint after each placement of an item, the items’ positions
shown in Fig. II.7 would result. The item I4,1 would be still placed in the origin. The first position
for item I3,1 leads to an overload of the front axle as shown in Fig. II.6. Due to the check of the
Axle Weight Constraint, this position would be rejected and the next possible position according to
the DBLF approach would be tested, which is in front of item I4,1. For this position, the front axle
is not overloaded and the position is feasible.

Item mi,k li,k xi,k ri,k Fi,k Mi,k

[kg] [m] [m] [m] [N] [Nm]

I4,1 4,100 1.00 0.00 1.10 40,221 44,243

I3,1 3,000 1.00 1.00 2.10 29,430 61,803

I2,1 1,000 3.50 1.00 3.35 9,810 32,864

I1,1 2,000 1.00 4.50 5.60 19,620 109,872

front axle

x

rear axle

I4,1

I2,1

I3,1

y

I1,1

Figure II.7: Positions of items when checking the Axle Weight Constraint after each item’s placement

Table II.2 shows the calculated axle weights for the items’ positions in Fig. II.7. Since the Axle
Weight Constraint is fulfilled after each item has been unloaded, the axles are not overloaded at
any point in the route.
To summarize, it is necessary to check the Axle Weight Constraint after each placement of an item,
although the complexity of the algorithm increases.

50

5 Hybrid Solution Approach

Table II.2: Axle Weights for items’ positions in Fig. II.7
Loaded items Current Forces Permissible Forces

FFA FRA FAperm ·g RAperm ·g
[N] [N] [N] [N]

I4,1 ; I3,1 ; I2,1 ; I1,1 43,238 55,843

51,993 104,967I4,1 ; I3,1 ; I2,1 48,280 31,181
I4,1 ; I3,1 45,847 23,804
I4,1 30,290 9,931

5 Hybrid Solution Approach

Since the 3L-CVRP can be interpreted as a combination of the Capacitated Vehicle Routing
Problem (CVRP) and the 3D Container Loading Problem, we decompose the problem and use a
separate algorithm for each subproblem. First, a set of routes is created which takes the routing
constraints (R1, R2) into account. For each feasible route, the packing algorithm is then called,
which tries to create a feasible packing plan considering the loading constraints. If no feasible
packing plan can be created for a route, a new set of routes must be found. Both algorithms are
described in detail in the following subsections, suitable line numbers are given in square brackets.

5.1 Routing Heuristic

The heuristic for solving the routing problem is based on the paper by Koch et al. (2018) modifying
the Adaptive Large Neighborhood Search (ALNS) proposed by Ropke and Pisinger (2006b) and
Ropke and Pisinger (2006a). The general framework and the modifications are described below.
The algorithm is shown in Alg. II.1.

Algorithm II.1 Adaptive Large Neighbourhood Search
Input: Instance Data, parameters
Output: best feasible solution sbest

1: construct initial solution sinit

2: sbest := sinit

3: scurr := sinit

4: do
5: select number of customers to be removed nrem

6: select destroy operator dest
7: select repair operator rep
8: determine next solution snext := rep(dest(scurr, nrem))
9: check acceptance of snext

10: if snext is accepted then
11: scurr := snext

12: if f(scurr) < f(sbest) then
13: sbest := snext

14: end if
15: end if
16: if itp reached then
17: update selection probabilities for destroy and repair operators
18: end if
19: while one stopping criterion is not met

5.1.1 Initial Solution

The initial solution sinit is constructed [1] by means of the Savings Heuristic developed by Clarke
and Wright (1964), where one route is created for each customer first. Then, the savings for
merging routes are calculated. Starting with the highest savings, all feasible merges are carried out
while respecting all constraints. Based on this initial solution, the ALNS determines other feasible
improved solutions.

51

5 Hybrid Solution Approach

5.1.2 Stopping Criteria

Starting with the initial solution received by the Savings Heuristic, the ALNS tries to improve the
current solution as long as not one of the following stopping criteria is met [19]:

• number of total iterations itermax;

• number of iterations without improvement iterimpr;

• runtime limit tmax.

5.1.3 Iteration

A new solution snext is generated by choosing randomly one destroy [6] and one repair operator
[7] in each iteration. The destroy operator removes a number of customers nrem from the current
solution and the repair operator reinserts them [8]. The number of customers to be removed nrem

(nmin ≤ nrem ≤ nmax) is determined randomly. The generated solution is checked with respect to
meeting the routing constraints. The packing procedure (see Section 5.2) is called here for each
route of the solution.

5.1.4 Destroy and Repair Operators

In the following, we give a short overview over the used destroy and repair operators. All operators
are described in more detail in the references.

Shaw Destroy Operator The idea of this operator is to exclude related customers from a solution
since it is easier to exchange related customers (see Shaw (1997)). The relatedness rlti,j between a
customer i and customer j is evaluated by means of the distance coi,j , the demanded volume of the
customers and, as shown by Demir et al. (2012), also the assignment to tours (ass = 1 if in same
tour, −1 else). Each parameter is weighted by means of coefficients:

rlti,j = ωco · coi,j + ωvol · |
ci∑

k=1
(li,k · wi,k · hi,k) −

cj∑
k=1

(lj,k · wj,k · hj,k)| + ωst · sti,j (II.16)

The smaller the value of rlti,j , the more related the customers are. The first customer i to be
removed is determined randomly, while in the next iterations, randomly a customer i is chosen
out of a set containing all removed customers. Then the relatedness between the customer i and
every not yet removed customer j is calculated and saved in a list, which is sorted in ascending
order w.r.t. the relatedness. The most related customer is not necessarily selected from this list, as
a determinism parameter dp (dp ≥ 1) provides a degree of randomness (see Ropke and Pisinger
(2006b)). The procedure is repeated until nrem customers are excluded.

Random Destroy Operator As introduced in Ropke and Pisinger (2006b), the operator randomly
removes customers out of the solution until nrem customers have been removed in total.

Worst Destroy Operator In this approach proposed by Ropke and Pisinger (2006b), the cost of
each customer is determined, which is the difference between the total travel distance of the current
solution and the total travel distance of the solution if the customer would be completely removed.
Then, the nrem customers are removed which deteriorate the total travel distance of the solution
the most.

Cluster Destroy Operator The first route is selected randomly. This route is then divided into
two connected clusters (trees) by using a modified algorithm of Kruskal (1956) (see Koch et al.
(2018)). One of the generated clusters is chosen randomly and its customers are removed. If nrem is
not reached, one already removed customer is selected. Based on this customer, its closest customer
which is not included in an already removed route is searched. The procedure is repeated with this
route until (at least) nrem customers have been removed.

52

5 Hybrid Solution Approach

Neighbour Graph Destroy Operator As shown in Ropke and Pisinger (2006a), this operator
is used to remove customers whose position in a tour seems to be “inappropriate". Thereby, the
customers to be removed are selected by using historical information, which is stored in a complete,
directed, weighted graph (neighbor graph). Each node represents one customer. The arc (i, j) is
assigned the total travel distance of the best solution in which customer i is visited just before
customer j. Initially, the arc weights are set sufficiently high. Whenever a new solution is found,
the arc weights in the graph are updated if necessary.
For the selection of the customers to be removed, a score is calculated for each customer in the
current solution. The score is determined by summing the arc weights in the neighbor graph
corresponding to the neighbor configuration in the current solution. High scores indicate rather
misplaced customers. As in the Shaw Destroy Operator, the parameter dp influences the process so
that the customer with the highest score is not always selected.

Overlap Destroy Operator As proposed in Koch et al. (2018), for each tour, a bounding box is
determined based on the minimum and maximum x- and y- coordinates of the customer locations.
If two bounding boxes overlap, then the overlapping area is determined. Within the overlapping
area, all intersecting edges between the tours are stored. Randomly, one pair of these intersecting
edges is selected. All corresponding customers which also lay within the overlapping area are
removed from the solution.

Inner Route Destroy Operator This operator is introduced in Koch et al. (2018) and checks
if one tour is completely surrounded by another tour. Hereby, the bounding box for each tour is
determined as described in the Overlap Destroy Operator. If one of these boxes lies completely
within another one, then the inner tour is removed from the current solution. The outer tour is
separated into two new tours, so that one tour contains the first half of the customers and the other
tour contains the rest.

Intersection Destroy Operator This operator is proposed by Koch et al. (2018). For each tour,
all intersecting edges are determined. Then, one intersecting pair is randomly selected and all four
customers of this pair of edges are removed. This operator is repeated until nrem customers are
removed.

Tour Pair Destroy Operator As in the Overlap Destroy Operator, intersecting pairs of tours
are first determined. Then, all customers of a randomly selected pair of tours are removed. The
operator is introduced in Koch et al. (2018).

Greedy Repair Operator For each removed customer and each position in every tour, the insertion
costs are determined (see Ropke and Pisinger (2006b). The customer is then inserted at the position
in the tour causing the smallest increase in the total travel distance. Only feasible insertions obeying
all constraints are considered.

Regret-2 and Regret-3 Repair Operators As proposed in Ropke and Pisinger (2006b), in each
iteration and for each removed customer, a regret value is calculated, which is the change in the
objective value when inserting the customer into the second best position of one tour and the
best position of another tour (regret-2). In the case of regret-3, the regret value corresponds to
the regret value received for regret-2 plus the difference between the total travel distance of the
third best and the best insertion. Then, the customer with the largest regret value is selected and
inserted. This is repeated until all customers have been tried for insertion.

Customers who cannot be inserted into a route due to the violation of a constraint are stored in a
list and cause a penalization of the objective value as shown in Sec. 5.1.6. The selection probabilities
for the destroy and repair operators are adjusted according to the improvement of the solution after
a defined number of iterations itp [16-18].

53

5 Hybrid Solution Approach

5.1.5 Operator Selection and Probability Adaption

The selection of the operators is accomplished by means of the roulette wheel selection principle.
Hereby, the probability to select one operator op is defined by its weight wgop. Initially, all operators
have the same selection probability (wgop = 1).

The number of iterations is counted, in which the operator op

• is selected (counterop),

• is selected and led to a new best solution (iterbestop
),

• is selected and improved the current solution (iterimprop
),

• is selected and led to a worse but not yet accepted solution or a solution as good as the
current solution (itereop

).

After a certain number of iterations iterp, the success of the operator is evaluated and described by
scoreop, which is calculated as follows:

scoreop = iterbestop · ωbest + iterimprop · ωimpr + itereop · ωe. (II.17)

Hereby, ωbest, ωimpr and ωe are coefficients. Then, the updated weighting wgop can be calculated.
A reaction factor r regulates the influence of the adaptions:

wgop = wgop · (1 − r) + r · scoreop

counterop
(II.18)

Moreover, counterop, iterbestop
, iterimprop

and itereop
are reset to zero.

5.1.6 Objective Function

A solution s is evaluated with objective function f giving total routing costs in order to lead the
further search. It considers the number of used vehicles vused as well as the total travel distance
ttd(s):

f(s) = ttd(s) + penv · max(0, vused − vmax) + penmiss · nmiss. (II.19)
vmax is the number of maximal available vehicles and nmiss the number of customers that have not
been dispatched yet. The purpose of the penalty term penv is to create a solution using at most
vmax available vehicles. The purpose of the penalty term penmiss is to lead the search to decrease
the number of not dispatched customers (nmiss).

5.1.7 Solution Acceptance

The smaller the objective function value, the better the solution. If the generated solution snext is
feasible according to all constraints and better than the current best-known sbest one, it is always
accepted as current solution scurr. A worse solution may be accepted depending on a Simulated
Annealing Framework based on Kirkpatrick et al. (1983) [9]. The acceptance probability is adapted
to the annealing process with a geometric cooling schedule. The best solution sbest is updated if its
objective function value is higher than of the current solution scurr [12-14].

5.2 Packing Heuristic

The packing heuristic is called by the routing heuristic for each route of a solution. It is based on
the DBLF algorithm proposed by Karabulut and İnceoğlu (2005). The basic concept is to place the
items as far as possible to the back (first priority), to the bottom (second priority) and to the left
(third priority) of the cargo space. The available free spaces in the cargo space are saved in a list.
In the following, the point of origin of a Cartesian coordinate system is located in the deepest,
bottom, leftmost point of the cargo space. The driver’s cab is located behind it accordingly. The
length, width and height of the cargo space are parallel to the x-, y- and z-axes. The placement of
an item Ii,k is defined by (xi,k, yi,k, zi,k) of the corner, which is closest to the point of origin.
In the first step of the packing heuristic, the items of each customer are stored in the set IS in a
sorted order observing the following priorities:

54

5 Hybrid Solution Approach

1. fragility flag fi,k (non-fragile first)

2. volume (larger volume first)

3. length li,k (longer first)

4. width wi,k (wider first).

The algorithm is shown in Alg. II.2. The order of the items in the packing sequence IS are reversed
to the customer’s visiting order [1].
Let S be a set containing unique cuboids representing the available free spaces in the cargo space
after placing an item. Initially, this set consists of one space representing the total cargo space
[2]. Consequently, the first item of the packing sequence IS is placed in the origin. The potential
spaces of the set S are always sorted based on the DBL rule [10]. Thus, an item is placed in the
deepest, bottom, leftmost point of a selected space. Each space sp of the set is tested as possible
item position until a feasible position is found obeying all loading constraints [7]. In comparison to
Karabulut and İnceoğlu (2005), the set S contains not all available spaces inside the cargo space.
Rather, three new spaces (Front, Right, Top), based on the feasible item placement, are created [9].

(a) Front Space (b) Right Space (c) Top Space

Figure II.8: New Spaces based on I3,1

The Front Space is defined by the item’s front edge (minimum x-value) and either the cargo space
door or the nearest item in front of the item (maximum x-value). Then, the minimum and maximum
values for the y-axis are determined by the cargo space or other items. After that, the minimum
and maximum values for the z-axis are searched in the same way (see Fig. II.8a).
The Right Space is bounded along the y-axis by the left side of the item (minimum y-value) and
either by the cargo space wall or by the rightmost item (maximum y-value). Based on these
limitations, the minimum and maximum values for the x-axis are determined, then for the z-axis
(see Fig. II.8b).
The Top Space is defined by the item’s top surface and either the cargo space ceiling or an item
overhanging over the current item Ip. In the next step, the minimum and maximum values for the
y-axis and z-axis determined by the cargo space or other items (see Fig. II.8c). The three new
spaces (Front, Right, Top) are included in the set S considering the DBL order.

If a feasible position is found for item Ip, all remaining free spaces are checked w.r.t an intersection
with item Ip. If there are one or more intersections with item Ip, then the minimum and maximum
values for the x-, y- and z-axis are decreased so that no intersection with item Ip occurs any more
[14]. Due to this procedure, it is guaranteed that the item does not overlap with other items or
with the cargo space walls (C1). Therefore, if an item can be placed within an available space
according to the loading constraints C2-C8, an extra overlapping check for the Geometry constraint
(C1) is not necessary. This is in contrast to the approach by Karabulut and İnceoğlu (2005), where
an overlapping check between each item is performed.
The space sp, in which the item Ip is placed, is removed from the set [11]. Only spaces which are
large and high enough for the smallest dimensions of any item among all items of the route IS, are
inserted in the set S. Therefore, the shortest length or width lmin and height hmin of any unplaced
item of the route IS are searched [12]. Due to the permitted rotations, only the two measures lmin

and hmin are relevant. If the length or height of any space in the set is smaller than lmin or hmin,
the space is removed from the set [15-17]. Then, a placement for the next item is searched [18].

55

6 Computational Experiments

Algorithm II.2 Deepest-Bottom-Left-Fill with Spaces
Input: Instance Data
Output: Feasible placements for items

1: initialize sorted sequence of items IS
2: initialize set of unique available spaces S
3: for each item Ip ∈ IS do
4: for each space sp ∈ S do
5: for each permitted orientation do
6: if item Ip fits in space sp then
7: if placement is feasible w.r.t. loading constraints then
8: save placement for Ip

9: create new spaces
10: sort spaces based on DBL
11: erase space sp
12: get smallest dimensions lmin and hmin of unplaced items ∈ IS
13: for each space si ∈ S do
14: update space si
15: if si too small w.r.t. lmin and hmin then
16: erase space si
17: end if
18: end for
19: break
20: end if
21: end if
22: end for
23: end for
24: if no feasible position found then
25: return false
26: end if
27: end for
28: return true

If all spaces are checked and no feasible position for item Ip was found [24], the route is not feasible
and is rejected. Thus, a new set of routes must be generated by the ALNS.

6 Computational Experiments

In this section, the impact of the Axle Weight Constraint on 2L-CVRP and 3L-CVRP instances
is evaluated as well as the efficiency of the hybrid algorithm. This is done by testing instance
sets from the literature with and without the Axle Weight Constraint (C8) and comparing the
results with the benchmarks. The hybrid heuristic algorithm is implemented in C++ as single-core,
x64-application and is compiled using the GCC version 4.8.3 compiler. The experiments were
executed on a High Performance Cluster, Haswell-16-Core with 2.6 GHz.

6.1 Parameters

The ALNS for solving the routing problem and the loading constraints are parameterized as shown
in Table II.3. The parameters for the routing heuristic are adopted from Koch et al. (2018).

56

6 Computational Experiments

Table II.3: Routing and Loading Parameters
Parameter Usage Description Value
itermax ALNS Maximal number of iterations 25,000
iterimpr ALNS Maximal number of iterations without improve-

ment
8,000

iterp ALNS Number of iterations for updating probabilities
for destroy and repair operators

100

ωco ALNS Coefficient for Shaw Destroy 6
ωvol ALNS Coefficient for Shaw Destroy 3
ωst ALNS Coefficient for Shaw Destroy 6
dp ALNS Determinism Parameter 6
ωbest ALNS Coefficient for determination of the operator score 50
ωimpr ALNS Coefficient for determination of the operator score 10
ωe ALNS Coefficient for determination of the operator score 5
r ALNS Reaction factor 0.8
tmax ALNS Time limit [min] 60
nmin ALNS Number of minimal customers to be removed from

a route
0.04n

nmax ALNS Number of maximal customers to be removed from
a route

0.4n

comax Objective Function Maximal distance between two customers in
instance

maxi,j∈N coi,j

penv Objective Function Penalty term for each surplus vehicle 10 · comax

penmiss Objective Function Penalty term for missing customers 10 · comax

α Vertical Stability Minimal support ratio 0.75

6.2 Instances

We have tested our approach on four instance sets (see Table II.4). The first instance set comes
from Pollaris et al. (2016) and consists of 128 2L-CVRP instances, varying the number of customers
in the network (10, 15, 20 and 25). The second instance set was created by Pollaris et al.
(2017) and also deals with the 2L-CVRP. This set contains 96 instances with 50, 75 or 100
customers. The third instance set concerns the 3L-CVRP and was proposed by Gendreau et al.
(2006). The number of customers is ranging between 15 and 100. Moreover, we have created
a new instance set considering Axle Weights of Semi-Truck Trailers, which can be found here:
https://doi.org/10.24352/UB.OVGU-2021-023. All instances are tested five times.

Table II.4: Overview of tested instances
authors number of

instances
problem number of cus-

tomers
Pollaris et al. (2016) 128 2L-CVRP [10, 15, 20, 25]
Pollaris et al. 2017 96 2L-CVRP [50, 75, 100]
Gendreau et al. (2006) 27 3L-CVRP [15-100]
Our Instance set 80 3L-CVRP [30, 60, 90, 120]

For both 2L-CVRP instance sets, four different problem classes are created for each network
by varying the number of items per customer (ci) and the mass of demanded items (mci) (see
Table II.5). There is a low (4 ≤ ci ≤ 7) and a high (1 ≤ ci ≤ 15) variation in the number of
items per customer i. The mass of demanded items per customer i is categorized in heavy pallets
(1, 000 ≤ mci

ci
≤ 1, 500) and a mix of heavy and light pallets (100 ≤ mci

ci
≤ 500).

Table II.5: Problem classes for Pollaris et al. (2016, 2017) Instances
composition of demand:

heavy pallets heavy and light pallets

demand variation: low class 1 class 3
high class 2 class 4

57

https://doi.org/10.24352/UB.OVGU-2021-023

6 Computational Experiments

As shown in Section 3, the 2L-CVRP considers the loading constraints Geometry (C1), Orthogonality
(C2), Load Capacity (C3), LIFO (C4) and the Axle Weight Constraint (C8), whereas in the 3L-
CVRP, the Rotation (C5), the Minimal Supporting Area (C6) and the Fragility (C7) are additionally
taken into account.
There were no values for the axle weights assigned to the vehicles in the instances by Gendreau
et al. (2006). Thus, the two-axle truck ML180E by the manufacturer IVECO was chosen. The
proportion factor was calculated from the truck cargo load and the load capacity D of the instance.
Then, the axle weights were proportionally scaled in order to receive a realistic proportion between
vehicle load capacity and axle weights.
The newly created instance set deals with Axle Weights for Semi-Truck Trailers. The number of
customers is either 30, 60, 90 or 120, the number of items either 200 or 400 and the number of
item types either 10 or 100. The Semi-Truck Trailer values take into account the directives EU
96/53/EC and EU 1230/2012. Under maximum load and maximum utilisation of the load volume,
the average density is 0.25 kg

dm3 . Therefore, the densities of the item types vary between 0.1 and
0.5 kg

dm3 .

6.3 Results

In the following, we compare the results of our hybrid heuristic algorithm with instances from
the literature and our instance set. Moreover, we show the impact of the Axle Weight Constraint
on the total travel distance. Note again that the objective is to minimize the total travel
distance. All results are published online via http://www.github.com/CorinnaKrebs/Results.
In addition, we provide a solution validator to check the feasibility of packing plans concerning
the Axle Weight Constraint. The solution validator is available in Java and C++ via http:
//www.github.com/CorinnaKrebs/SolutionValidator.

6.3.1 Results for the Pollaris et al. (2016) Instances

In Pollaris et al. (2016), the 2L-CVRP with the Axle Weight Constraint is investigated so that no
stacking or vertical stability constraint is required. The pallets must be alternately packed in two
rows without rotation. We have adapted our packing algorithm accordingly. Another additional
constraint is that the driving axle carries at least 25% of the current load. Pollaris et al. (2016)
use CPLEX for solving the problem with a time limit of 2 hours, within which not all instances
could be solved. For the instances without a solution, our corresponding results are excluded from
the difference calculation to enable fair comparison. The detailed results are in the Appendix.
Table II.6 shows the summarized best results for each network and each class.

Table II.6: Summarized Best Results for Pollaris et al. (2016) Instance Set
without Axle Weight Constraint with Axle Weight Constraint

Pollaris et al. (2016) ALNSxDBLF Pollaris et al. (2016) ALNSxDBLF
n Class ttd time [s] ttd diff. ttd time [s] diff. time ttd time [s] ttd diff. ttd time [s] diff. time

10
1 342.40 2.75 342.42 0.01% 0.18 -93.50% 354.30 52.13 360.41 1.72% 0.18 -99.65%
2 397.00 7.56 396.98 0.00% 0.19 -97.45% 418.90 26.13 423.37 1.07% 0.49 -98.11%
3 330.20 2.44 330.16 -0.01% 0.16 -93.38% 333.10 7.06 335.64 0.76% 0.18 -97.45%
4 407.00 2.19 406.90 -0.02% 0.19 -91.31% 413.70 9.25 420.11 1.55% 0.57 -93.80%

15
1 355.60 75.50 355.70 0.03% 0.35 -99.53% 366.30 1,514.50 373.38 1.93% 0.34 -99.98%
2 372.20 391.33 372.18 -0.01% 0.47 -99.88% 394.80 467.17 394.36 -0.11% 0.95 -99.80%
3 437.80 76.75 437.97 0.04% 0.30 -99.61% 441.00 255.63 438.29 -0.61% 0.32 -99.87%
4 594.60 63.00 594.58 0.00% 0.48 -99.24% 610.40 73.00 625.58 2.49% 1.02 -98.60%

20
1 215.80 121.67 215.80 0.00% 0.58 -99.52% 216.00 682.33 220.37 2.02% 0.61 -99.91%
2 474.10 633.00 474.07 -0.01% 0.99 -99.84% 485.40 2,505.60 545.69 12.42% 2.44 -99.90%
3 487.90 1,388.14 487.91 0.00% 0.67 -99.95% 488.00 3,088.71 489.58 0.32% 0.67 -99.98%
4 581.00 268.00 581.01 0.00% 0.85 -99.68% 593.50 947.33 617.38 4.02% 1.94 -99.80%

Total 4,995.60 233.25 4,995.67 0.00% 0.41 -99.82% 5,115.40 705.62 5,244.14 2.52% 0.74 -99.89%

The total travel distance is given in column ttd. The runtime in seconds is displayed in column
time [s]. The relative differences between the benchmark results and the results received by our
hybrid algorithm are calculated in diff. ttd. The column diff. time shows the difference for the
average runtime.
Regarding the results without the Axle Weight Constraint, our hybrid algorithm receives the

58

http://www.github.com/CorinnaKrebs/Results
http://www.github.com/CorinnaKrebs/SolutionValidator
http://www.github.com/CorinnaKrebs/SolutionValidator

6 Computational Experiments

same results as the benchmark. The small deviations are due to rounding inaccuracies and the
necessary classical multidimensional scaling, where the distance matrix is recalculated to customer
coordinates. The disregard of the axle weights leads to overloaded trucks in nearly every instance.
Therefore, the total travel distance increases compared to the results without the Axle Weight
Constraint. Compared to the benchmark, our hybrid algorithm does not achieve the same results
when considering the Axle Weight Constraint. On average, the total travel distance increases by
2.52% compared to the benchmark. In Pollaris et al. (2016), the results found without the Axle
Weight Constraint are checked whether fulfilling the Axle Weight Constraint (lazy constraint). The
best results are then presented as results with Axle Weight Constraint. Therefore, the results with
the Axle Weight Constraint are not necessarily the optimal results. For some instances, our hybrid
algorithm finds better results. Furthermore, our hybrid heuristic algorithm achieves all results with
a runtime saving of 99.8% on average.

The following Table II.7 illustrates a comparison of our results in order to evaluate the demand
variation and the demand weight.

Table II.7: Comparison of our results for Pollaris et al. (2016) instances

Without Axle Weight Constraint With Axle Weight Constraint
best avg. best avg.

n Class ttd ttd ttd diff. ttd diff.
10

1 342.42 342.43 360.41 5.25% 360.41 5.25%
2 396.98 396.99 423.37 6.65% 423.37 6.65%
3 330.16 330.14 335.64 1.66% 335.83 1.72%
4 406.90 406.90 420.11 3.25% 420.10 3.24%

15
1 355.70 355.71 373.38 4.97% 373.38 4.97%
2 372.18 372.18 394.36 5.96% 394.36 5.96%
3 437.97 437.96 438.29 0.07% 438.29 0.08%
4 594.58 594.58 625.58 5.21% 625.59 5.22%

20
1 215.80 215.80 220.37 2.12% 220.53 2.19%
2 474.07 474.06 545.69 15.11% 546.79 15.34%
3 487.91 487.91 489.58 0.34% 489.58 0.34%
4 581.01 581.01 617.38 6.26% 617.38 6.26%

Total 4,995.67 4,995.67 5,244.14 4.97% 5,245.61 5.00%

Generally, there is no deviation between the best and the average of five runs for the results without
considering the axle weights. Consequently, the hybrid algorithm always finds the best solution. If
the axle weights are taken into account, the difference between the best and the average result is
only 0.3% points. On average, considering the Axle Weight Constraint leads to an increase of the
total travel distance of around 5%.
The instances of class 2 are the most difficult to solve since the customers demand a large number of
heavy pallets. Especially, for instances with a number of 20 customers, the total distance increases
by 15.34% on average. The easiest class to solve is class 3. For these instances, the Axle Weight
Constraint influences the results in a minor way so that the total travel distance increases by less
than one percent on average.
The impact of the variation of the number of items on the objective value can be evaluated by
comparing the results of classes 1 with 2 and of classes 3 with 4. The impact of heavy pallets on
the objective value can be examined by comparing the classes 1 with 3 and classes 2 with 4. As
the results show, the mass of items influences the Axle Weight Constraint more than the demand
variation (on average several percent points) and has therefore a higher impact on the total travel
distance.
For instances with 25 customers, the approach of Pollaris et al. (2016) finds no solutions within the
2 hours time limit. Moreover, two instances were not tested: In instance with 20 customers, class
1, no. 2, the demanded mass per customer is not given, and in instance with 15 customers, class 2,
no 2, the distance matrix is not consistent.

59

6 Computational Experiments

6.3.2 Results for the Pollaris et al. (2017) Instances

In Pollaris et al. (2017), the 2L-CVRP is solved by means of an Iterated Local Search approach
with Sequence-Based Pallet Loading. It also applies to this instance set that the pallets are packed
alternately and the driving axle must carry 25% of the current load. In Table II.8, the best results
received by Pollaris et al. (2017) including the Axle Weight Constraints are compared with the
results obtained by our hybrid heuristic algorithm. The detailed results are in the Appendix.

Table II.8: Summarized Best Results for Pollaris et al. (2017) Instance Set
without Axle Weight Constraint with Axle Weight Constraint

Pollaris et al. (2017) ALNSxDBLF Pollaris et al. (2017) ALNSxDBLF
n Class ttd ttd diff. ttd time [s] ttd time [s] ttd diff. ttd time [s]

50
1 1,186.30 1,185.91 -0.03% 9.72 1,215.40 68.38 1,240.47 2.06% 13.57
2 1,478.20 1,478.78 0.04% 5.86 1,513.00 55.88 1,790.09 18.31% 15.98
3 1,171.80 1,172.38 0.05% 8.61 1,176.00 97.13 1,177.68 0.14% 9.92
4 1,614.60 1,614.25 -0.02% 6.09 1,649.30 55.38 1,768.51 7.23% 12.15

75
1 1,645.90 1,643.97 -0.12% 32.92 1,684.70 213.13 1,705.02 1.21% 48.10
2 2,335.90 2,332.95 -0.13% 22.89 2,387.50 303.00 2,728.22 14.27% 38.45
3 1,665.30 1,664.86 -0.03% 33.63 1,677.90 212.75 1,666.72 -0.67% 38.16
4 2,426.80 2,426.20 -0.02% 20.07 2,457.40 309.88 2,592.33 5.49% 31.25

100
1 2,158.90 2,158.35 -0.03% 70.54 2,237.80 285.13 2,272.93 1.57% 103.28
2 2,945.50 2,943.44 -0.07% 48.40 3,002.20 379.63 3,545.08 18.08% 98.07
3 2,106.10 2,095.47 -0.50% 74.02 2,137.40 270.63 2,103.57 -1.58% 80.35
4 3,068.20 3,066.23 -0.06% 50.23 3,143.60 399.38 3,430.63 9.13% 67.09

Total 23,803.50 23,782.79 -0.09% 31.91 24,282.20 220.85 26,021.23 7.16% 46.36

Again, our hybrid algorithm achieves the same or even slightly better results if the Axle Weight
Constraint is not included. When considering the constraint, the total travel distance increases
by 7.16% compared to the benchmark. This is mainly due to instances of class 2, where the total
travel distance increases by up to 18.31% compared to the benchmark. The results of Pollaris et al.
(2017) were achieved with an average runtime of 220.65 seconds. Our algorithm only needed 46.46
seconds for the results (-78.95%).
Concerning the impact of the classes on the total travel distance when including the Axle Weight
Constraint, findings similar to those above made for Pollaris et al. (2016) can be drawn.

6.3.3 Results for the Gendreau et al. (2006) Instances

In Table II.9, the results for the tested 3L-CVRP instances developed by Gendreau et al. (2006) are
shown. Since this paper considers the Axle Weight Constraint for the first time in the 3L-CVRP,
the comparison with the benchmark is based on the results without including this constraint.
For the comparison of the results without the Axle Weight Constraint, we use the best known
results as listed in Escobar-Falcón et al. (2015). Our hybrid heuristic algorithm finds in 3 of 27
instances the best results. On average, the total travel distance increases by 5.91%.

Our analysis shows that without considering the axle weights, at least one of the axles would
be overloaded for 25% instances. When considering the Axle Weight Constraint, the total travel
distance rises only by 2.09% on average. In 2 out of 27 instances, the hybrid algorithm finds even
better results when considering the Axle Weight Constraint, which is possibly due to the random
parameters in the ALNS (e.g. random selection of operators). Moreover, the runtime decreases by
17.06% on average. The reason is that the load on the axles can be calculated relatively quickly, so
that infeasible positions for items are detected faster and the ALNS can terminate earlier.

6.3.4 Results for Semi-Truck Trailer Instances

As this new instance set varies systematically in the number of customers, item types and items,
the following Table II.10 presents the results for each group.
The difference between the best results and the average results is generally rather small (around
1%). When comparing the results with and without the Axle Weight Constraint, then the total
travel distance increases by 5.31% on average. If the Axle Weight Constraint is not included, the
runtime is 3600 seconds for all results. In contrast, when including the constraint, the runtime is

60

6 Computational Experiments

Table II.9: Results for Gendreau et al. (2006) Instances
without Axle Weight C. with Axle Weight C. Deviation due to

Best Known ALNSxDBLF ALNSxDBLF Axle Weights
no. ttd ttd diff. ttd time ttd time ttd time

1 302.02 302.02 0.00% 3.39 327.15 1.76 8.32% -48.08%
2 334.96 334.96 0.00% 0.32 336.52 0.44 0.47% 37.50%
3 381.37 410.39 7.61% 24.03 403.07 5.36 -1.78% -77.69%
4 437.19 440.68 0.80% 1.66 465.25 0.74 5.58% -55.42%
5 436.48 454.14 4.05% 9.95 465.79 7.84 2.57% -21.21%
6 498.16 498.32 0.03% 3.15 512.64 1.28 2.87% -59.37%
7 767.46 788.46 2.74% 15.78 800.29 10.98 1.50% -30.42%
8 804.75 845.51 5.06% 24.86 848.01 21.57 0.30% -13.23%
9 630.13 658.43 4.49% 3.15 706.33 3.38 7.27% 7.30%

10 820.35 843.08 2.77% 118.34 865.73 83.84 2.69% -29.15%
11 772.85 800.99 3.64% 94.66 829.77 82.20 3.59% -13.16%
12 614.59 630.72 2.62% 10.19 653.05 6.25 3.54% -38.67%
13 2,608.70 2,735.06 4.84% 128.38 2,767.62 93.86 1.19% -26.89%
14 1,368.40 1,464.80 7.04% 138.41 1,514.53 101.57 3.40% -26.62%
15 1,341.10 1,377.22 2.69% 150.67 1,429.03 100.04 3.76% -33.60%
16 698.61 708.65 1.44% 4.91 719.24 6.16 1.49% 25.46%
17 866.40 866.40 0.00% 10.63 897.89 10.00 3.63% -5.93%
18 1,207.70 1,283.87 6.31% 538.38 1,333.53 638.19 3.87% 18.54%
19 741.74 823.38 11.01% 612.78 838.16 470.68 1.80% -23.19%
20 587.95 622.23 5.83% 2,200.53 631.15 1,894.11 1.43% -13.92%
21 1,086.20 1,168.13 7.54% 2,970.01 1,177.80 2,173.63 0.83% -26.81%
22 1,147.80 1,267.76 10.45% 2,515.36 1,295.21 1,491.06 2.17% -40.72%
23 1,127.90 1,214.88 7.71% 2,849.25 1,235.07 1,673.42 1.66% -41.27%
24 1,114.10 1,231.14 10.51% 1,546.01 1,265.30 870.15 2.77% -43.72%
25 1,407.40 1,524.14 8.29% 3,600.00 1,553.06 3,600.00 1.90% 0.00%
26 1,585.50 1,720.73 8.53% 3,600.00 1,721.82 3,600.00 0.06% 0.00%
27 1,529.90 1,695.06 10.80% 3,600.00 1,676.22 3,600.00 -1.11% 0.00%

Total 934.06 989.30 5.91% 917.59 1,009.97 761.06 2.09% -17.06%

Table II.10: Our Results for Semi-Truck Trailer Instances
without Axle Weight Constraint with Axle Weight Constraint

best avg. best avg.
n ttd ttd time [s] ttd diff. ttd time [s] diff. time ttd diff. ttd time [s] diff. time

30 10,568.04 10,663.91 3,600.00 11,739.73 11.09% 417.89 -88.39% 11,743.87 10.13% 452.15 -87.44%
60 13,552.04 13,698.01 3,600.00 14,677.82 8.31% 3,005.83 -16.50% 14,701.15 7.32% 3,018.14 -16.16%
90 15,088.21 15,306.96 3,600.00 15,941.51 5.66% 3,541.41 -1.63% 16,039.74 4.79% 3,554.99 -1.25%

120 16,394.39 16,766.47 3,600.00 16,791.14 2.42% 3,600.00 0.00% 16,946.13 1.07% 3,600.00 0.00%
m

200 23,719.11 24,078.26 3,600.00 24,536.00 3.44% 2,464.86 -31.53% 24,621.66 2.26% 2,487.75 -30.90%
400 31,883.57 32,357.09 3,600.00 34,614.20 8.56% 2,817.70 -21.73% 34,809.23 7.58% 2,824.89 -21.53%

types
10 27,334.14 27,738.60 3,600.00 29,441.28 7.71% 2,579.94 -28.34% 29,566.67 6.59% 2,584.66 -28.20%

100 28,268.54 28,696.75 3,600.00 29,708.91 5.10% 2,702.62 -24.93% 29,864.22 4.07% 2,727.98 -24.22%
Total 55,602.68 56,435.35 3,600.00 59,150.20 6.38% 2,641.28 -26.63% 59,430.89 5.31% 2,656.32 -26.21%

around 2650 seconds on average and therefore reduced by 26.21%. As shown before, due to the
limitation of the solution space, the ALNS terminates earlier than without the constraint.
Furthermore, the impact of the Axle Weight Constraint on the total travel distance tends to
decrease by around 3% points per 30 customers as the number of customers increases (see avg.
or best results with Axle Weight Constraint, column diff. ttd). The reason is that with a lower
number of customers, the number of demanded items per customer is higher. Therefore, it is more
difficult to pack all demanded items of one customer into one vehicle. Also the runtime increases
along with the number of customers. Remarkable is the runtime reduction due to the Axle Weight
Constraint for instances with 30 customers, which is 87.44% on average.
Moreover, with increasing number of items, the impact of the Axle Weight Constraint on the
total travel distance increases noticeably by around 5% points and the runtime by 10% points.
Interestingly, the results show that rather homogeneous items (less item types) have a slight
negative impact on the total travel distance (around 2.5%) and the runtime (around 4%). We
assume that the total used volume of the cargo space is higher in the case of homogeneous items so
that a higher load is acting on the axles.

61

7 Conclusion

To summarize the presented results, the Axle Weight Constraint leads in general to only a
slight increase of the total travel distance. In some cases, even better results can be achieved and
the constraint can lead to a significant reduction of the runtime. Since the results without the
consideration of the Axle Weight Constraint can lead to overloaded axles, the constraint should be
an elementary part of container loading problems.

7 Conclusion

In this paper, we introduced two flexible approaches based on the Science of Statics for the
consideration of axle weights of trucks with and without trailers. We showed with an example
the necessity of checking the Axle Weight Constraint after each item placement. Computational
experiments based on instances from the literature show that without the consideration of the Axle
Weight Constraint, an overload of at least one axle would mostly result. The examination of the
2L-CVRP instances showed that the total travel distance increases significantly when the customers
demand heavy pallets. When taking the Axle Weight Constraint into account, the deterioration
of the total travel distance is small (on average: between 2% and 7%), depending on the instance
set. In the case of 3L-CVRP instance sets, there are even significant positive effects on the average
runtime leading to a decrease of up to 26%. With regard to the negative consequences of an
overloaded axle (increased road surface erosion and extended braking distance), the mostly small
decline of the objective value, the shorter runtime and the easy implementation, we recommend
the consideration of axle weights in future approaches for the Container Loading Problems. For
future work, we plan to integrate the Axle Weight Constraint directly in the packing algorithm to
improve the selection process for the items’ positions. In addition, items with high densities will be
considered.

Conflict of interest

The authors declare that they have no conflict of interest.

References

Alonso, M., Alvarez-Valdes, R., Iori, M., and Parreño, F. (2019). “Mathematical models for
Multi Container Loading Problems with practical constraints”. In: Computers and Industrial
Engineering vol. 127, pp. 722–733. issn: 0360-8352. doi: https://doi.org/10.1016/j.cie.2018.11.
012. url: http://www.sciencedirect.com/science/article/pii/S0360835218305527.

Alonso, M., Alvarez-Valdes, R., Iori, M., Parreño, F., and Tamarit, J. (2017). “Mathematical models
for multicontainer loading problems”. In: Omega vol. 66, pp. 106–117. issn: 0305-0483. doi:
https://doi.org/10.1016/j.omega.2016.02.002. url: http://www.sciencedirect.com/science/
article/pii/S0305048316000335.

Blower, D. and Woodrooffe, J. (2012). “Survey of the status of truck safety: Brazil, China, Australia,
and the United States”. In.

Bortfeldt, A. (2012). “A hybrid algorithm for the capacitated vehicle routing problem with three-
dimensional loading constraints”. In: Computers and Operations Research vol. 39, no. 9, pp. 2248–
2257. issn: 03050548. doi: 10.1016/j.cor.2011.11.008. url: http://dx.doi.org/10.1016/j.cor.2011.
11.008.

Clarke, G. and Wright, J. W. (1964). “Scheduling of Vehicles from a Central Depot to a Number of
Delivery Points”. In: Operations Research vol. 12, no. 4, pp. 568–581. issn: 0030364X, 15265463.
doi: 10.1287/opre.12.4.568. url: http://www.jstor.org/stable/167703.

Demir, E., Bektaş, T., and Laporte, G. (2012). “An adaptive large neighborhood search heuristic
for the Pollution-Routing Problem”. In: European Journal of Operational Research vol. 223,
no. 2, pp. 346–359. issn: 0377-2217. doi: https://doi.org/10.1016/j.ejor.2012.06.044. url:
https://www.sciencedirect.com/science/article/pii/S0377221712004997.

62

https://doi.org/https://doi.org/10.1016/j.cie.2018.11.012
https://doi.org/https://doi.org/10.1016/j.cie.2018.11.012
http://www.sciencedirect.com/science/article/pii/S0360835218305527
https://doi.org/https://doi.org/10.1016/j.omega.2016.02.002
http://www.sciencedirect.com/science/article/pii/S0305048316000335
http://www.sciencedirect.com/science/article/pii/S0305048316000335
https://doi.org/10.1016/j.cor.2011.11.008
http://dx.doi.org/10.1016/j.cor.2011.11.008
http://dx.doi.org/10.1016/j.cor.2011.11.008
https://doi.org/10.1287/opre.12.4.568
http://www.jstor.org/stable/167703
https://doi.org/https://doi.org/10.1016/j.ejor.2012.06.044
https://www.sciencedirect.com/science/article/pii/S0377221712004997

References

Escobar-Falcón, L. M., Álvarez-Martínez, D., Granada-Echeverri, M., Escobar-Velásquez, J. W.,
and Romero-Lázaro, R. A. (2015). “A matheuristic algorithm for the three-dimensional loading
capacitated vehicle routing problem (3L-CVRP)”. In: Revista Facultad De Ingenieria-universidad
De Antioquia, pp. 9–20.

Fuellerer, G., Doerner, K. F., Hartl, R. F., and Iori, M. (2010). “Metaheuristics for vehicle routing
problems with three-dimensional loading constraints”. In: European Journal of Operational
Research vol. 201, no. 3, pp. 751–759. issn: 0377-2217. doi: https://doi.org/10.1016/j.ejor.2009.
03.046. url: http://www.sciencedirect.com/science/article/pii/S0377221709002252.

Gendreau, M., Iori, M., Laporte, G., and Martello, S. (2006). “A Tabu Search Algorithm for a
Routing and Container Loading Problem”. In: Transportation Science vol. 40, no. 3, pp. 342–350.
issn: 0041-1655. doi: 10.1287/trsc.1050.0145. url: http://pubsmisc.informs.org/doi/abs/10.
1287/trsc.1050.0145.

Iori, M., Salazar González, J. J., and Vigo, D. (May 2007). “An Exact Approach for the Vehicle
Routing Problem with Two-Dimensional Loading Constraints”. In: Transportation Science
vol. 41, pp. 253–264. doi: 10.1287/trsc.1060.0165.

Karabulut, K. and İnceoğlu, M. M. (2005). “A Hybrid Genetic Algorithm for Packing in 3D with
Deepest Bottom Left with Fill Method”. In: Advances in Information Systems. Ed. by Yakhno,
T. Berlin, Heidelberg: Springer Berlin Heidelberg, pp. 441–450. isbn: 978-3-540-30198-1.

Kirkpatrick, S., Gelatt, C. D., and Vecchi, M. P. (1983). “Optimization by simulated annealing.”
In: Science vol. 220 4598, pp. 671–80. doi: 10.1126/science.220.4598.671.

Koch, H., Bortfeldt, A., and Wäscher, G. (Feb. 2018). “A hybrid algorithm for the vehicle routing
problem with backhauls, time windows and three-dimensional loading constraints”. In: OR
Spectrum vol. 40. doi: 10.1007/s00291-018-0506-6.

Kruskal, J. B. (1956). “On the Shortest Spanning Subtree of a Graph and the Traveling Salesman
Problem”. In: Proceedings of the American Mathematical Society vol. 7, no. 1, pp. 48–50. issn:
00029939, 10886826. url: http://www.jstor.org/stable/2033241.

Lim, A., Ma, H., Qiu, C., and Zhu, W. (2013). “The single container loading problem with
axle weight constraints”. In: International Journal of Production Economics vol. 144, no. 1,
pp. 358–369. issn: 0925-5273. doi: https : / / doi . org / 10 . 1016 / j . ijpe . 2013 . 03 . 001. url:
http://www.sciencedirect.com/science/article/pii/S0925527313001084.

Pais, J., I. R. Amorim, S., and Minhoto, M. (Sept. 2013). “Impact of Traffic Overload on Road
Pavement Performance”. In: Journal of Transportation Engineering vol. 139, pp. 873–879. doi:
10.1061/(ASCE)TE.1943-5436.0000571.

Pollaris, H., Braekers, K., Caris, A., Janssens, G., and Limbourg, S. (Mar. 2017). “Iterated local
search for the capacitated vehicle routing problem with sequence-based pallet loading and axle
weight constraints”. In: Networks vol. 69, pp. 304–316. doi: 10.1002/net.21738.

Pollaris, H., Braekers, K., Caris, A., Janssens, G. K., and Limbourg, S. (June 2016). “Capacitated
vehicle routing problem with sequence-based pallet loading and axle weight constraints”. In:
EURO Journal on Transportation and Logistics vol. 5, no. 2, pp. 231–255. issn: 2192-4384. doi:
10.1007/s13676-014-0064-2. url: https://doi.org/10.1007/s13676-014-0064-2.

Ropke, S. and Pisinger, D. (2006a). “A unified heuristic for a large class of Vehicle Routing Problems
with Backhauls”. In: European Journal of Operational Research vol. 171, no. 3. Feature Cluster:
Heuristic and Stochastic Methods in Optimization Feature Cluster: New Opportunities for
Operations Research, pp. 750–775. issn: 0377-2217. doi: https://doi.org/10.1016/j.ejor.2004.09.
004. url: http://www.sciencedirect.com/science/article/pii/S0377221704005831.

— (2006b). “An Adaptive Large Neighborhood Search Heuristic for the Pickup and Delivery
Problem with Time Windows”. In: Transportation Science vol. 40, no. 4, pp. 455–472. doi:
10.1287/trsc.1050.0135. url: https://doi.org/10.1287/trsc.1050.0135.

Shaw, P. (1997). A New Local Search Algorithm Providing High Quality Solutions to Vehicle Routing
Problems.

Tarantilis, C. D., Zachariadis, E. E., and Kiranoudis, C. T. (June 2009). “A Hybrid Metaheuristic
Algorithm for the Integrated Vehicle Routing and Three-Dimensional Container-Loading
Problem”. In: IEEE Transactions on Intelligent Transportation Systems vol. 10, no. 2, pp. 255–
271. issn: 1524-9050. doi: 10.1109/TITS.2009.2020187.

Wei, L., Zhang, Z., and Lim, A. (Nov. 2014). “An Adaptive Variable Neighborhood Search for a
Heterogeneous Fleet Vehicle Routing Problem with Three-Dimensional Loading Constraints”.

63

https://doi.org/https://doi.org/10.1016/j.ejor.2009.03.046
https://doi.org/https://doi.org/10.1016/j.ejor.2009.03.046
http://www.sciencedirect.com/science/article/pii/S0377221709002252
https://doi.org/10.1287/trsc.1050.0145
http://pubsmisc.informs.org/doi/abs/10.1287/trsc.1050.0145
http://pubsmisc.informs.org/doi/abs/10.1287/trsc.1050.0145
https://doi.org/10.1287/trsc.1060.0165
https://doi.org/10.1126/science.220.4598.671
https://doi.org/10.1007/s00291-018-0506-6
http://www.jstor.org/stable/2033241
https://doi.org/https://doi.org/10.1016/j.ijpe.2013.03.001
http://www.sciencedirect.com/science/article/pii/S0925527313001084
https://doi.org/10.1061/(ASCE)TE.1943-5436.0000571
https://doi.org/10.1002/net.21738
https://doi.org/10.1007/s13676-014-0064-2
https://doi.org/10.1007/s13676-014-0064-2
https://doi.org/https://doi.org/10.1016/j.ejor.2004.09.004
https://doi.org/https://doi.org/10.1016/j.ejor.2004.09.004
http://www.sciencedirect.com/science/article/pii/S0377221704005831
https://doi.org/10.1287/trsc.1050.0135
https://doi.org/10.1287/trsc.1050.0135
https://doi.org/10.1109/TITS.2009.2020187

References

In: IEEE Computational Intelligence Magazine vol. 9, no. 4, pp. 18–30. issn: 1556-603X. doi:
10.1109/MCI.2014.2350933.

Appendix

64

https://doi.org/10.1109/MCI.2014.2350933

References

Table II.11: Pollaris et al. (2016) Instances with 10 customers

w
it

ho
ut

A
xl

e
W

ei
gh

t
C

on
st

ra
in

t
w

it
ho

ut
A

xl
e

W
ei

gh
t

C
on

st
ra

in
t

be
st

av
g.

be
st

av
g.

P
ol

la
ri

s
et

al
.

(2
01

6)
A

LN
Sx

D
B

LF
A

LN
Sx

D
B

LF
P

ol
la

ri
s

et
al

.
(2

01
6)

A
LN

Sx
D

B
LF

A
LN

Sx
D

B
LF

C
la

ss
N

o
tt

d
ti

m
e

[s
]

tt
d

di
ff.

tt
d

ti
m

e
[s

]
tt

d
ti

m
e

[s
]

tt
d

ti
m

e
[s

]
tt

d
di

ff.
tt

d
ti

m
e

[s
]

tt
d

ti
m

e
[s

]
1

1
38

.4
0

1.
00

38
.4

3
0.

08
%

0.
19

38
.4

3
0.

20
45

.2
0

25
0.

00
45

.1
7

-0
.0

7%
0.

26
45

.1
7

0.
37

2
38

.5
0

1.
00

38
.4

9
-0

.0
3%

0.
14

38
.4

9
0.

16
38

.5
0

3.
00

38
.4

9
-0

.0
3%

0.
15

38
.4

9
0.

17
3

39
.3

0
6.

00
39

.3
5

0.
13

%
0.

20
39

.3
5

0.
22

39
.5

0
8.

00
40

.1
9

1.
74

%
0.

18
40

.1
9

0.
24

4
41

.9
0

2.
00

41
.8

5
-0

.1
2%

0.
23

41
.8

5
0.

31
45

.7
0

97
.0

0
48

.4
9

6.
11

%
0.

19
48

.4
9

0.
27

5
51

.7
0

4.
00

51
.7

1
0.

01
%

0.
16

51
.7

1
0.

18
51

.7
0

6.
00

53
.7

2
3.

90
%

0.
18

53
.7

2
0.

20
6

43
.4

0
4.

00
43

.4
2

0.
05

%
0.

22
43

.4
2

0.
26

44
.2

0
36

.0
0

44
.2

4
0.

09
%

0.
18

44
.2

4
0.

24
7

45
.2

0
3.

00
45

.2
2

0.
05

%
0.

15
45

.2
2

0.
20

45
.2

0
8.

00
45

.8
6

1.
47

%
0.

16
45

.8
6

0.
19

8
44

.0
0

1.
00

43
.9

6
-0

.1
0%

0.
14

43
.9

6
0.

22
44

.3
0

9.
00

44
.2

5
-0

.1
1%

0.
17

44
.2

5
0.

22
2

1
41

.2
0

7.
00

41
.1

9
-0

.0
1%

0.
15

41
.1

9
0.

23
44

.3
0

77
.0

0
44

.3
4

0.
09

%
0.

19
44

.3
4

0.
28

2
44

.7
0

1.
00

44
.7

2
0.

04
%

0.
23

44
.7

2
0.

24
51

.3
0

30
.0

0
55

.0
5

7.
31

%
1.

40
55

.0
5

1.
56

3
56

.3
0

5.
00

56
.3

2
0.

03
%

0.
14

56
.3

2
0.

16
56

.8
0

18
.0

0
58

.4
1

2.
83

%
0.

24
58

.4
1

0.
29

4
50

.3
0

2.
00

50
.2

6
-0

.0
8%

0.
17

50
.2

6
0.

26
50

.7
0

6.
00

50
.6

6
-0

.0
7%

0.
18

50
.6

6
0.

23
5

49
.9

0
43

.0
0

49
.9

3
0.

06
%

0.
17

49
.9

3
0.

24
53

.8
0

38
.0

0
57

.4
1

6.
71

%
0.

87
57

.4
1

1.
01

6
49

.5
0

1.
00

49
.5

2
0.

03
%

0.
19

49
.5

2
0.

34
53

.3
0

11
.0

0
52

.0
8

-2
.2

9%
0.

50
52

.0
8

0.
56

7
64

.6
0

1.
00

64
.5

7
-0

.0
4%

0.
25

64
.5

7
0.

33
68

.2
0

26
.0

0
64

.5
7

-5
.3

2%
0.

33
64

.5
7

0.
50

8
40

.5
0

0.
50

40
.4

8
-0

.0
6%

0.
24

40
.4

8
0.

33
40

.5
0

3.
00

40
.8

5
0.

88
%

0.
23

40
.8

5
0.

27
3

1
37

.4
0

1.
00

37
.4

5
0.

13
%

0.
19

37
.4

5
0.

22
37

.4
0

0.
50

37
.4

5
0.

13
%

0.
17

37
.4

5
0.

19
2

37
.4

0
5.

00
37

.3
8

-0
.0

4%
0.

15
37

.3
8

0.
18

38
.3

0
15

.0
0

37
.6

1
-1

.8
1%

0.
18

37
.6

1
0.

24
3

41
.0

0
4.

00
40

.9
6

-0
.0

9%
0.

19
40

.9
6

0.
25

41
.0

0
5.

00
40

.9
6

-0
.0

9%
0.

19
40

.9
6

0.
27

4
43

.4
0

3.
00

43
.3

7
-0

.0
8%

0.
20

43
.3

7
0.

25
43

.4
0

13
.0

0
43

.3
7

-0
.0

8%
0.

18
43

.3
7

0.
23

5
38

.8
0

0.
50

38
.7

9
-0

.0
2%

0.
14

38
.7

9
0.

17
40

.8
0

5.
00

43
.4

6
6.

53
%

0.
24

43
.6

6
0.

24
6

41
.3

0
2.

00
41

.3
3

0.
08

%
0.

15
41

.3
3

0.
21

41
.3

0
5.

00
41

.3
3

0.
08

%
0.

18
41

.3
3

0.
22

7
44

.4
0

2.
00

44
.3

8
-0

.0
4%

0.
14

44
.3

8
0.

17
44

.4
0

6.
00

44
.9

7
1.

28
%

0.
15

44
.9

7
0.

18
8

46
.5

0
2.

00
46

.4
8

-0
.0

3%
0.

13
46

.4
8

0.
17

46
.5

0
7.

00
46

.4
8

-0
.0

3%
0.

15
46

.4
8

0.
24

4
1

57
.3

0
2.

00
57

.2
7

-0
.0

6%
0.

18
57

.2
7

0.
21

57
.3

0
2.

00
61

.2
2

6.
84

%
0.

38
61

.2
2

0.
43

2
47

.3
0

3.
00

47
.2

6
-0

.0
8%

0.
27

47
.2

6
0.

32
49

.3
0

29
.0

0
49

.9
7

1.
36

%
0.

86
49

.9
7

0.
98

3
46

.9
0

0.
50

46
.9

0
0.

00
%

0.
15

46
.9

0
0.

19
46

.9
0

1.
00

46
.9

0
0.

00
%

0.
16

46
.9

0
0.

20
4

53
.3

0
0.

50
53

.3
4

0.
07

%
0.

18
53

.3
4

0.
21

53
.3

0
1.

00
53

.3
4

0.
07

%
0.

15
53

.3
4

0.
18

5
44

.7
0

7.
00

44
.7

0
0.

00
%

0.
19

44
.7

0
0.

21
44

.7
0

9.
00

48
.7

7
9.

12
%

1.
24

48
.7

7
1.

29
6

50
.2

0
3.

00
50

.2
1

0.
02

%
0.

15
50

.2
1

0.
18

52
.2

0
30

.0
0

52
.2

2
0.

04
%

0.
25

52
.2

2
0.

33
7

57
.2

0
0.

50
57

.1
5

-0
.0

9%
0.

25
57

.1
5

0.
28

59
.9

0
1.

00
57

.6
1

-3
.8

2%
1.

39
57

.6
1

1.
48

8
50

.1
0

1.
00

50
.0

7
-0

.0
6%

0.
15

50
.0

7
0.

21
50

.1
0

1.
00

50
.0

7
-0

.0
6%

0.
16

50
.0

7
0.

24
T

ot
al

1,
47

6.
60

3.
73

1,
47

6.
46

-0
.0

1%
0.

18
1,

47
6.

46
0.

23
1,

52
0.

00
23

.6
4

1,
53

9.
53

1.
28

%
0.

36
1,

53
9.

71
0.

42

65

References

Table II.12: Pollaris et al. (2016) Instances with 15 customers

w
it

ho
ut

A
xl

e
W

ei
gh

t
C

on
st

ra
in

t
w

it
h

A
xl

e
W

ei
gh

t
C

on
st

ra
in

t
be

st
av

g.
be

st
av

g.
P

ol
la

ri
s

et
al

.
(2

01
6)

A
LN

Sx
D

B
LF

A
LN

Sx
D

B
LF

P
ol

la
ri

s
et

al
.

(2
01

6)
A

LN
Sx

D
B

LF
A

LN
Sx

D
B

LF
C

la
ss

N
o

tt
d

ti
m

e
[s

]
tt

d
di

ff.
tt

d
ti

m
e

[s
]

tt
d

ti
m

e
[s

]
tt

d
ti

m
e

[s
]

tt
d

di
ff.

tt
d

ti
m

e
[s

]
tt

d
ti

m
e

[s
]

1
1

59
.3

0
30

.0
0

59
.2

5
-0

.0
8%

0.
38

59
.2

5
0.

44
69

.4
1

0.
77

69
.5

0
0.

61
2

54
.6

0
5.

00
54

.5
7

-0
.0

6%
0.

22
54

.5
7

0.
30

75
.1

6
0.

43
75

.1
6

0.
51

3
62

.1
0

12
5.

00
62

.1
5

0.
07

%
0.

32
62

.1
5

0.
44

62
.1

0
48

1.
00

62
.9

2
1.

32
%

0.
35

62
.9

2
0.

43
4

54
.1

0
97

.0
0

54
.1

1
0.

02
%

0.
29

54
.1

1
0.

42
55

.1
0

1,
25

2.
00

55
.1

6
0.

12
%

0.
29

55
.1

6
0.

35
5

56
.6

0
19

.0
0

56
.6

3
0.

05
%

0.
27

56
.6

3
0.

40
58

.4
0

96
.0

0
59

.8
8

2.
53

%
0.

36
59

.8
8

0.
43

6
64

.1
0

56
.0

0
64

.0
8

-0
.0

4%
0.

37
64

.0
8

0.
48

68
.5

0
4,

73
5.

00
73

.2
2

6.
89

%
0.

27
73

.2
2

0.
39

7
62

.5
0

14
4.

00
62

.5
4

0.
06

%
0.

36
62

.5
4

0.
45

63
.6

0
1,

72
3.

00
63

.5
8

-0
.0

4%
0.

40
63

.5
8

0.
45

8
56

.2
0

12
.0

0
56

.2
0

0.
00

%
0.

50
56

.2
0

0.
55

58
.6

0
80

0.
00

58
.6

2
0.

03
%

0.
35

58
.6

2
0.

46
2

1
56

.6
0

10
.0

0
56

.5
7

-0
.0

5%
0.

55
56

.5
7

0.
62

59
.7

0
23

0.
00

62
.2

8
4.

33
%

0.
49

62
.2

8
0.

57
3

60
.3

0
97

.0
0

60
.3

2
0.

03
%

0.
34

60
.3

2
0.

42
64

.0
0

66
4.

00
62

.7
6

-1
.9

4%
1.

80
62

.7
6

1.
93

4
58

.7
0

16
.0

0
58

.7
0

0.
00

%
0.

28
58

.7
0

0.
36

58
.7

0
28

.0
0

64
.1

1
9.

21
%

0.
48

64
.1

1
0.

56
5

62
.0

0
15

.0
0

62
.0

2
0.

03
%

0.
60

62
.0

2
0.

63
75

.4
0

56
.0

0
63

.7
3

-1
5.

47
%

1.
59

63
.7

3
1.

69
6

59
.5

0
94

.0
0

59
.4

5
-0

.0
8%

0.
37

59
.4

5
0.

48
63

.6
7

1.
46

63
.6

7
1.

59
7

68
.8

0
1,

93
0.

00
68

.7
7

-0
.0

4%
0.

49
68

.7
7

0.
65

68
.8

0
1,

63
2.

00
70

.0
1

1.
75

%
0.

61
70

.0
1

0.
68

8
65

.8
0

28
0.

00
65

.8
0

0.
00

%
0.

53
65

.8
0

0.
57

68
.2

0
19

3.
00

71
.4

7
4.

79
%

0.
70

71
.4

7
0.

77
3

1
56

.2
0

28
0.

00
56

.2
0

0.
00

%
0.

34
56

.2
0

0.
38

56
.2

0
72

6.
00

56
.2

0
0.

00
%

0.
39

56
.2

0
0.

43
2

51
.5

0
83

.0
0

51
.5

2
0.

05
%

0.
27

51
.5

2
0.

32
51

.5
0

31
6.

00
51

.8
5

0.
67

%
0.

27
51

.8
5

0.
30

3
53

.3
0

29
.0

0
53

.3
1

0.
02

%
0.

28
53

.3
1

0.
40

54
.7

0
26

5.
00

53
.3

1
-2

.5
4%

0.
34

53
.3

1
0.

40
4

57
.8

0
15

.0
0

57
.8

3
0.

05
%

0.
33

57
.8

3
0.

36
57

.8
0

23
.0

0
57

.8
3

0.
05

%
0.

35
57

.8
3

0.
54

5
55

.6
0

20
.0

0
55

.6
2

0.
04

%
0.

30
55

.6
2

0.
38

56
.7

0
52

.0
0

55
.6

2
-1

.9
0%

0.
33

55
.6

2
0.

41
6

58
.0

0
89

.0
0

58
.0

0
0.

00
%

0.
29

58
.0

0
0.

33
58

.0
0

21
3.

00
58

.0
0

0.
00

%
0.

28
58

.0
0

0.
33

7
59

.0
0

58
.0

0
59

.0
4

0.
06

%
0.

32
59

.0
4

0.
34

59
.0

0
70

.0
0

59
.0

4
0.

06
%

0.
31

59
.0

4
0.

34
8

46
.4

0
40

.0
0

46
.4

4
0.

09
%

0.
26

46
.4

4
0.

28
47

.1
0

38
0.

00
46

.4
4

-1
.4

0%
0.

31
46

.4
4

0.
39

4
1

81
.7

0
6.

00
81

.6
8

-0
.0

2%
0.

46
81

.6
8

0.
49

93
.2

0
62

.0
0

91
.7

4
-1

.5
7%

1.
51

91
.7

4
1.

62
2

79
.7

0
66

.0
0

79
.7

0
0.

01
%

0.
57

79
.7

0
0.

60
83

.4
0

12
5.

00
90

.4
1

8.
40

%
1.

87
90

.4
1

1.
99

3
77

.9
0

56
.0

0
77

.8
6

-0
.0

5%
0.

53
77

.8
6

0.
58

78
.4

0
84

.0
0

80
.9

6
3.

26
%

1.
16

80
.9

6
1.

37
4

88
.0

0
54

.0
0

87
.9

9
-0

.0
1%

0.
64

87
.9

9
0.

78
88

.0
0

23
.0

0
87

.9
9

-0
.0

1%
0.

50
87

.9
9

0.
61

5
65

.4
0

46
.0

0
65

.3
6

-0
.0

7%
0.

47
65

.3
6

0.
55

65
.4

0
55

.0
0

66
.1

2
1.

09
%

0.
60

66
.1

2
0.

71
6

74
.7

0
32

.0
0

74
.7

1
0.

01
%

0.
31

74
.7

1
0.

41
74

.7
0

23
.0

0
79

.9
9

7.
09

%
1.

58
79

.9
9

1.
66

7
63

.9
0

20
6.

00
63

.9
4

0.
07

%
0.

41
63

.9
4

0.
52

64
.0

0
13

2.
00

64
.7

9
1.

23
%

0.
55

64
.7

9
0.

62
8

63
.3

0
38

.0
0

63
.3

4
0.

06
%

0.
46

63
.3

4
0.

55
63

.3
0

80
.0

0
63

.5
9

0.
45

%
0.

40
63

.5
9

0.
45

T
ot

al
1,

76
0.

20
13

9.
96

1,
76

0.
43

0.
01

%
0.

40
1,

76
0.

43
0.

47
1,

81
2.

50
51

8.
54

1,
83

1.
61

1.
05

%
0.

66
1,

83
1.

62
0.

75

66

References

Table II.13: Pollaris et al. (2017) Instances with 100 customers

w
it

ho
ut

A
xl

e
W

ei
gh

t
C

on
st

ra
in

t
w

it
h

A
xl

e
W

ei
gh

t
C

on
st

ra
in

t
be

st
av

g.
be

st
av

g.
P

ol
la

ri
s

et
al

.
(2

01
6)

A
LN

Sx
D

B
LF

A
LN

Sx
D

B
LF

P
ol

la
ri

s
et

al
.

(2
01

6)
A

LN
Sx

D
B

LF
A

LN
Sx

D
B

LF
C

la
ss

N
o

tt
d

ti
m

e
[s

]
tt

d
di

ff.
tt

d
ti

m
e

[s
]

tt
d

ti
m

e
[s

]
tt

d
ti

m
e

[s
]

tt
d

di
ff.

tt
d

ti
m

e
[s

]
tt

d
ti

m
e

[s
]

1
1

74
.0

0
29

.0
0

73
.9

9
-0

.0
2%

0.
63

73
.9

9
0.

64
74

.2
0

34
5.

00
78

.5
6

5.
87

%
0.

74
78

.7
2

0.
90

3
72

.6
0

73
1.

00
72

.5
7

-0
.0

4%
0.

66
72

.5
7

0.
82

75
.5

3
0.

63
75

.5
3

0.
73

4
72

.0
0

31
1.

00
72

.0
1

0.
01

%
0.

58
72

.0
1

0.
69

72
.0

0
1,

64
7.

00
72

.0
1

0.
01

%
0.

56
72

.0
1

0.
60

5
70

.8
0

5,
91

7.
00

70
.7

6
-0

.0
6%

0.
73

70
.7

6
0.

84
75

.4
5

0.
81

75
.4

5
0.

91
6

61
.7

0
21

.0
0

61
.7

5
0.

08
%

0.
57

61
.7

5
0.

66
64

.3
5

0.
51

64
.3

5
0.

66
7

69
.8

0
25

.0
0

69
.8

0
0.

00
%

0.
53

69
.8

0
0.

58
69

.8
0

55
.0

0
69

.8
0

0.
00

%
0.

53
69

.8
0

0.
65

8
68

.5
0

2,
16

5.
00

68
.5

0
-0

.0
1%

0.
70

68
.5

0
0.

74
76

.6
8

0.
94

76
.6

8
1.

10
2

1
91

.7
0

72
8.

00
91

.6
7

-0
.0

4%
0.

84
91

.6
7

1.
01

97
.5

9
0.

86
97

.5
9

0.
90

2
87

.8
0

74
9.

00
87

.7
7

-0
.0

3%
1.

19
87

.7
7

1.
29

87
.8

0
1,

61
3.

00
89

.2
2

1.
61

%
0.

74
89

.2
2

0.
78

3
11

3.
00

92
.0

0
11

3.
04

0.
03

%
1.

30
11

3.
04

1.
62

13
9.

11
3.

64
13

9.
11

3.
89

4
99

.5
0

30
8.

00
99

.5
4

0.
04

%
0.

85
99

.5
4

1.
03

10
1.

40
1,

11
6.

00
11

6.
78

15
.1

6%
3.

11
11

6.
78

3.
27

5
94

.4
0

28
1.

00
94

.4
4

0.
04

%
1.

26
94

.4
4

1.
33

10
5.

41
2.

98
10

5.
41

3.
05

6
10

4.
60

1,
42

0.
00

10
4.

60
0.

00
%

1.
03

10
4.

60
1.

11
11

1.
30

4,
42

1.
00

13
3.

39
19

.8
5%

3.
64

13
3.

39
4.

14
7

90
.8

0
64

.0
0

90
.8

0
0.

00
%

0.
90

90
.8

0
1.

04
93

.5
0

1,
30

5.
00

96
.7

8
3.

51
%

2.
14

97
.8

7
2.

52
8

91
.4

0
62

4.
00

91
.3

5
-0

.0
5%

1.
00

91
.3

5
1.

11
91

.4
0

4,
07

3.
00

10
9.

53
19

.8
3%

2.
57

10
9.

53
2.

83
3

1
67

.3
0

21
3.

00
67

.3
0

0.
01

%
0.

58
67

.3
0

0.
82

67
.3

0
89

8.
00

67
.7

1
0.

61
%

0.
65

67
.7

1
0.

67
2

68
.5

0
66

8.
00

68
.5

2
0.

03
%

0.
65

68
.5

2
0.

79
68

.5
0

1,
55

3.
00

68
.5

2
0.

03
%

0.
63

68
.5

2
0.

66
3

78
.7

0
1,

13
9.

00
78

.7
2

0.
03

%
0.

67
78

.7
2

0.
75

78
.8

0
4,

35
3.

00
79

.8
5

1.
33

%
0.

65
79

.8
5

0.
67

4
63

.1
0

5,
45

8.
00

63
.0

5
-0

.0
8%

0.
62

63
.0

5
0.

68
63

.1
0

2,
36

0.
00

63
.0

5
-0

.0
8%

0.
64

63
.0

5
0.

72
5

68
.3

0
1,

00
0.

00
68

.2
8

-0
.0

3%
0.

69
68

.2
8

0.
83

68
.3

0
6,

93
6.

00
68

.2
8

-0
.0

3%
0.

75
68

.2
8

0.
90

6
78

.4
0

1,
03

5.
00

78
.4

2
0.

02
%

0.
63

78
.4

2
0.

74
78

.4
0

1,
45

0.
00

78
.5

5
0.

20
%

0.
59

78
.5

5
0.

66
7

63
.6

0
20

4.
00

63
.6

2
0.

02
%

0.
86

63
.6

2
0.

91
63

.6
0

4,
07

1.
00

63
.6

2
0.

02
%

0.
80

63
.6

2
0.

83
8

67
.0

0
2,

55
5.

00
66

.9
7

-0
.0

5%
0.

63
66

.9
7

0.
85

66
.9

7
0.

76
66

.9
7

0.
87

4
1

80
.9

0
3,

06
5.

00
80

.8
8

-0
.0

2%
0.

58
80

.8
8

0.
64

84
.1

4
0.

64
84

.1
4

0.
77

2
59

.5
0

34
8.

00
59

.5
3

0.
05

%
0.

73
59

.5
3

0.
80

60
.8

0
0.

91
60

.8
0

1.
01

3
88

.9
0

98
7.

00
88

.9
2

0.
02

%
0.

79
88

.9
2

0.
82

88
.9

0
1,

41
6.

00
89

.1
6

0.
29

%
0.

66
89

.1
6

0.
73

4
86

.6
0

90
.0

0
86

.6
1

0.
01

%
1.

06
86

.6
1

1.
15

89
.3

0
36

5.
00

91
.9

3
2.

95
%

2.
73

91
.9

3
2.

94
5

10
0.

30
21

6.
00

10
0.

34
0.

04
%

1.
18

10
0.

34
1.

39
10

0.
30

1,
32

2.
00

10
2.

91
2.

60
%

0.
91

10
2.

91
1.

07
6

12
2.

70
12

9.
00

12
2.

65
-0

.0
4%

0.
63

12
2.

65
0.

72
12

7.
60

66
0.

00
13

0.
99

2.
66

%
3.

58
13

0.
99

3.
77

7
92

.6
0

14
9.

00
92

.6
5

0.
05

%
0.

79
92

.6
5

0.
88

97
.5

0
1,

83
8.

00
10

3.
67

6.
33

%
1.

13
10

3.
67

1.
33

8
89

.9
0

37
.0

0
89

.8
4

-0
.0

6%
0.

62
89

.8
4

0.
83

89
.9

0
83

.0
0

98
.7

2
9.

81
%

2.
61

98
.7

2
2.

71
T

ot
al

2,
53

8.
90

99
2.

19
2,

53
8.

87
0.

00
%

0.
79

2,
53

8.
89

0.
91

1,
78

2.
90

1,
99

4.
29

2,
71

9.
05

52
.5

1%
1.

39
2,

72
0.

31
1.

52

67

References

Table II.14: Pollaris et al. (2016) Instances with 25 customers
without Axle Weight Constraint with Axle Weight Constraint

best avg. best avg.
ALNSxDBLF ALNSxDBLF ALNSxDBLF ALNSxDBLF

Class No ttd time [s] ttd time [s] ttd time [s] ttd time [s]
1

1 84.55 1.00 84.55 1.19 90.71 1.66 90.96 1.79
2 78.23 1.07 78.23 1.12 90.49 2.70 91.16 2.91
3 77.98 0.75 77.98 0.91 84.04 1.56 84.04 1.81
4 90.03 1.01 90.03 1.25 92.81 1.32 92.81 1.53
5 85.80 1.09 85.80 1.35 107.00 2.24 107.36 2.59
6 93.42 1.17 93.42 1.32 100.43 1.14 100.43 1.24
7 83.05 1.23 83.05 1.29 104.06 3.59 106.88 2.71
8 81.57 0.95 81.57 1.01 86.26 1.14 86.26 1.20

2
1 122.41 1.60 122.41 1.72 163.62 4.64 163.62 4.91
2 111.38 1.53 111.38 2.16 130.39 4.79 130.39 4.88
3 90.00 1.38 90.00 1.64 122.51 5.14 122.51 5.35
4 168.44 1.82 168.44 1.97 172.04 4.66 172.04 4.85
5 114.44 1.36 114.44 1.42 138.95 4.78 138.95 5.02
6 101.66 1.22 101.66 1.34 119.05 4.56 119.05 4.73
7 120.18 1.18 120.18 1.34 146.59 2.89 146.59 4.22
8 109.27 1.60 109.27 1.77 124.92 2.39 124.92 3.09

3
1 90.22 1.13 90.22 1.48 91.82 1.54 91.82 1.69
2 73.45 1.28 73.45 1.63 73.69 1.26 73.69 1.37
3 79.42 1.08 79.42 1.09 79.42 0.98 79.42 1.09
4 79.92 1.03 79.92 1.10 80.48 1.30 80.48 1.48
5 82.47 1.15 82.47 1.22 82.47 1.10 82.47 1.23
6 83.65 1.01 83.65 1.20 85.47 1.28 85.47 1.43
7 81.68 1.24 81.68 1.32 82.79 1.43 82.79 1.68
8 83.48 1.06 83.48 1.24 83.48 1.07 83.48 1.30

4
1 125.07 1.49 125.07 1.72 136.12 4.14 136.12 4.40
2 85.68 1.44 85.68 1.53 99.47 2.76 99.75 3.35
3 120.76 2.71 120.76 2.85 132.12 4.01 132.12 4.30
4 115.85 1.67 115.85 1.87 120.66 4.40 120.66 4.48
5 104.86 1.59 104.86 1.66 104.88 1.07 104.88 1.22
6 99.64 1.78 99.64 2.08 122.03 5.09 122.03 5.22
7 120.78 1.65 120.78 1.86 132.77 5.39 132.77 5.44
8 102.74 1.90 102.74 1.96 109.36 4.42 109.36 4.56

Total 3,142.09 1.35 3,142.08 1.52 3,490.88 2.83 3,495.28 3.03

68

References

Table II.15: Pollaris et al. (2017) Instances with 50 customers

w
it

ho
ut

A
xl

e
W

ei
gh

t
C

on
st

ra
in

t
w

it
h

A
xl

e
W

ei
gh

t
C

on
st

ra
in

t
be

st
av

g.
be

st
av

g.
IL

S
A

LN
Sx

D
B

LF
IL

S
A

LN
Sx

D
B

LF
IL

S
A

LN
Sx

D
B

LF
IL

S
A

LN
Sx

D
B

LF
C

la
ss

N
o

tt
d

tt
d

di
ff.

tt
d

ti
m

e
[s

]
tt

d
tt

d
di

ff.
tt

d
ti

m
e

[s
]

tt
d

tt
d

di
ff.

tt
d

ti
m

e
[s

]
tt

d
tt

d
di

ff.
tt

d
ti

m
e

[s
]

1
1

15
2.

20
15

2.
22

0.
01

%
9.

61
15

2.
60

15
2.

58
-0

.0
1%

10
.4

5
15

4.
10

15
8.

13
2.

61
%

12
.0

7
15

4.
60

15
8.

13
2.

28
%

13
.1

5
2

13
3.

80
13

3.
82

0.
02

%
11

.0
1

13
4.

10
13

4.
34

0.
18

%
10

.7
9

14
3.

30
14

6.
60

2.
30

%
16

.2
6

14
5.

30
14

6.
99

1.
16

%
15

.9
9

3
14

5.
40

14
5.

26
-0

.1
0%

12
.1

8
14

5.
60

14
5.

39
-0

.1
4%

10
.5

4
14

7.
70

14
8.

47
0.

52
%

12
.8

5
14

8.
00

14
8.

81
0.

55
%

13
.1

0
4

15
0.

80
15

0.
79

-0
.0

1%
10

.0
0

15
0.

90
15

0.
79

-0
.0

7%
10

.5
0

15
2.

10
15

6.
21

2.
70

%
15

.6
7

15
4.

60
15

8.
29

2.
39

%
14

.1
4

5
16

6.
10

16
6.

07
-0

.0
2%

6.
41

16
6.

20
16

6.
07

-0
.0

8%
7.

31
16

8.
20

17
0.

04
1.

09
%

10
.5

9
17

0.
20

17
0.

38
0.

11
%

11
.7

1
6

15
3.

20
15

3.
23

0.
02

%
6.

22
15

3.
30

15
3.

23
-0

.0
5%

7.
92

15
6.

20
15

9.
43

2.
07

%
13

.1
9

15
6.

70
15

9.
74

1.
94

%
13

.5
9

7
14

2.
50

14
2.

21
-0

.2
0%

14
.7

1
14

3.
40

14
2.

79
-0

.4
3%

10
.7

9
14

6.
30

14
7.

33
0.

70
%

16
.3

5
14

8.
20

14
8.

62
0.

28
%

15
.8

6
8

14
2.

30
14

2.
31

0.
01

%
7.

63
14

5.
30

14
2.

64
-1

.8
3%

9.
58

14
7.

50
15

4.
27

4.
59

%
11

.5
5

14
9.

10
15

4.
48

3.
61

%
12

.1
9

2
1

17
0.

30
17

0.
32

0.
01

%
5.

52
17

0.
30

17
0.

32
0.

01
%

6.
81

17
7.

50
22

2.
06

25
.1

0%
17

.4
7

17
8.

60
22

2.
06

24
.3

3%
17

.6
8

2
20

0.
50

20
0.

52
0.

01
%

5.
39

20
0.

70
20

0.
52

-0
.0

9%
6.

67
20

3.
80

25
6.

53
25

.8
8%

17
.8

5
20

7.
30

25
6.

53
23

.7
5%

17
.9

9
3

18
8.

40
18

8.
44

0.
02

%
6.

04
18

8.
90

18
8.

44
-0

.2
4%

8.
35

19
2.

80
23

1.
23

19
.9

3%
18

.7
7

19
7.

30
23

1.
23

17
.2

0%
18

.8
8

4
18

3.
00

18
3.

55
0.

30
%

6.
42

18
3.

30
18

3.
55

0.
14

%
7.

70
18

7.
00

22
2.

76
19

.1
3%

14
.4

6
18

8.
80

22
2.

76
17

.9
9%

15
.1

3
5

19
0.

90
19

0.
86

-0
.0

2%
6.

29
19

1.
50

19
1.

09
-0

.2
1%

7.
40

19
4.

50
20

6.
50

6.
17

%
11

.4
1

19
6.

50
20

6.
50

5.
09

%
11

.6
7

6
16

8.
40

16
8.

37
-0

.0
2%

5.
41

16
8.

40
16

8.
37

-0
.0

2%
6.

01
16

8.
40

17
6.

19
4.

63
%

15
.5

7
16

9.
50

17
6.

61
4.

19
%

15
.4

8
7

18
4.

20
18

4.
23

0.
02

%
5.

87
18

4.
40

18
4.

23
-0

.0
9%

7.
00

18
9.

40
22

9.
49

21
.1

7%
18

.0
3

19
5.

30
22

9.
49

17
.5

1%
18

.6
4

8
19

2.
50

19
2.

48
-0

.0
1%

5.
94

19
2.

70
19

2.
48

-0
.1

1%
6.

78
19

9.
60

24
5.

32
22

.9
1%

14
.2

5
20

3.
00

24
5.

32
20

.8
5%

15
.3

3
3

1
14

3.
90

14
3.

91
0.

00
%

6.
99

14
4.

10
14

3.
91

-0
.1

3%
8.

01
14

4.
30

14
4.

26
-0

.0
2%

8.
13

14
4.

80
14

4.
26

-0
.3

7%
9.

36
2

15
6.

90
15

6.
92

0.
01

%
8.

12
15

7.
10

15
6.

92
-0

.1
1%

9.
70

15
7.

30
15

7.
59

0.
18

%
8.

54
15

8.
40

15
7.

59
-0

.5
1%

10
.2

0
3

14
3.

80
14

3.
84

0.
03

%
7.

39
14

4.
00

14
3.

84
-0

.1
1%

8.
30

14
4.

30
14

4.
25

-0
.0

3%
10

.3
4

14
6.

70
14

4.
25

-1
.6

7%
10

.9
1

4
14

9.
10

14
9.

41
0.

21
%

9.
66

14
9.

20
14

9.
41

0.
14

%
11

.0
4

14
9.

10
14

9.
73

0.
42

%
12

.5
0

15
0.

40
14

9.
81

-0
.3

9%
13

.2
3

5
15

8.
30

15
8.

35
0.

03
%

8.
94

15
8.

50
15

8.
35

-0
.0

9%
9.

76
15

9.
80

16
0.

37
0.

36
%

10
.4

9
16

0.
80

16
0.

39
-0

.2
5%

11
.2

5
6

14
3.

30
14

3.
30

0.
00

%
9.

00
14

3.
90

14
3.

29
-0

.4
2%

9.
65

14
4.

30
14

3.
61

-0
.4

8%
9.

64
14

5.
10

14
3.

61
-1

.0
3%

10
.9

3
7

14
6.

50
14

6.
71

0.
14

%
7.

97
14

7.
30

14
6.

71
-0

.4
0%

8.
98

14
6.

60
14

7.
72

0.
76

%
10

.8
3

14
8.

00
14

7.
85

-0
.1

0%
11

.6
5

8
13

0.
00

12
9.

96
-0

.0
3%

10
.8

1
13

0.
00

13
0.

30
0.

23
%

12
.1

8
13

0.
30

13
0.

14
-0

.1
3%

8.
89

13
1.

20
13

0.
19

-0
.7

7%
10

.4
1

4
1

18
1.

40
18

1.
36

-0
.0

2%
7.

23
18

2.
30

18
1.

36
-0

.5
2%

8.
62

18
4.

60
21

2.
03

14
.8

6%
15

.4
0

18
5.

50
21

2.
03

14
.3

0%
15

.7
3

2
21

0.
00

20
9.

98
-0

.0
1%

5.
64

21
0.

10
20

9.
98

-0
.0

6%
6.

38
21

0.
70

24
4.

79
16

.1
8%

13
.2

3
21

0.
80

24
4.

79
16

.1
2%

13
.3

3
3

19
7.

50
19

7.
32

-0
.0

9%
6.

12
19

8.
70

19
7.

38
-0

.6
6%

7.
79

19
9.

00
20

7.
54

4.
29

%
12

.4
1

20
2.

00
21

0.
44

4.
18

%
12

.6
0

4
19

3.
70

19
3.

66
-0

.0
2%

5.
43

19
3.

70
19

3.
66

-0
.0

2%
6.

21
19

9.
50

21
0.

79
5.

66
%

13
.0

3
20

0.
40

21
2.

62
6.

10
%

11
.1

4
5

19
8.

10
19

8.
10

0.
00

%
5.

06
19

9.
10

19
8.

10
-0

.5
0%

5.
97

20
5.

50
21

5.
68

4.
95

%
11

.5
4

20
9.

00
21

5.
68

3.
20

%
11

.8
0

6
21

2.
50

21
2.

45
-0

.0
2%

10
.1

3
21

2.
90

21
2.

75
-0

.0
7%

8.
15

21
2.

80
21

5.
24

1.
15

%
9.

31
21

3.
40

21
6.

21
1.

32
%

9.
16

7
19

9.
40

19
9.

41
0.

01
%

5.
48

19
9.

50
19

9.
41

-0
.0

5%
6.

42
20

2.
90

21
5.

09
6.

01
%

9.
92

20
3.

60
21

5.
08

5.
64

%
12

.4
0

8
22

2.
00

22
1.

97
-0

.0
1%

3.
65

22
2.

00
22

1.
97

-0
.0

1%
5.

67
23

4.
30

24
7.

36
5.

57
%

12
.3

3
23

7.
20

24
7.

35
4.

28
%

12
.4

9
T

ot
al

5,
45

0.
90

5,
45

1.
33

0.
01

%
7.

57
5,

46
4.

00
5,

45
4.

17
-0

.1
8%

8.
36

5,
55

3.
70

5,
97

6.
75

7.
62

%
12

.9
0

5,
61

0.
30

5,
98

8.
09

6.
73

%
13

.3
5

69

References

Table II.16: Pollaris et al. (2017) Instances with 75 customers

w
it

ho
ut

A
xl

e
W

ei
gh

t
C

on
st

ra
in

t
w

it
ho

ut
A

xl
e

W
ei

gh
t

C
on

st
ra

in
t

be
st

av
g.

be
st

av
g.

IL
S

A
LN

Sx
D

B
LF

IL
S

A
LN

Sx
D

B
LF

IL
S

A
LN

Sx
D

B
LF

IL
S

A
LN

Sx
D

B
LF

C
la

ss
N

o
tt

d
tt

d
di

ff.
tt

d
ti

m
e

[s
]

tt
d

tt
d

di
ff.

tt
d

ti
m

e
[s

]
tt

d
tt

d
di

ff.
tt

d
ti

m
e

[s
]

tt
d

tt
d

di
ff.

tt
d

ti
m

e
[s

]
1

1
20

1.
10

20
1.

36
0.

13
%

37
.2

3
20

1.
70

20
1.

77
0.

03
%

35
.6

8
20

3.
60

20
5.

40
0.

88
%

33
.3

1
20

7.
90

20
5.

54
-1

.1
4%

39
.4

5
2

20
6.

30
20

6.
32

0.
01

%
32

.2
0

20
8.

00
20

6.
39

-0
.7

7%
32

.3
7

21
3.

60
21

6.
77

1.
48

%
45

.4
7

21
6.

20
21

8.
31

0.
98

%
46

.8
3

3
20

7.
80

20
7.

82
0.

01
%

26
.8

0
20

8.
10

20
7.

82
-0

.1
3%

28
.5

9
21

3.
30

21
8.

40
2.

39
%

49
.6

9
21

5.
90

22
2.

16
2.

90
%

44
.3

0
4

21
2.

70
21

1.
12

-0
.7

4%
36

.8
2

21
3.

00
21

2.
45

-0
.2

6%
32

.7
6

21
7.

50
21

6.
42

-0
.4

9%
50

.9
6

21
9.

50
21

7.
74

-0
.8

0%
48

.8
5

5
19

9.
70

19
8.

89
-0

.4
1%

32
.9

7
20

0.
20

19
8.

98
-0

.6
1%

32
.6

5
20

1.
80

20
5.

52
1.

84
%

49
.7

8
20

5.
40

20
6.

27
0.

42
%

45
.5

3
6

19
8.

70
19

8.
68

-0
.0

1%
28

.8
8

20
0.

00
19

8.
96

-0
.5

2%
31

.3
3

20
2.

80
20

3.
29

0.
24

%
52

.4
7

20
8.

30
20

4.
97

-1
.6

0%
47

.9
6

7
21

3.
20

21
3.

39
0.

09
%

40
.0

3
21

3.
90

21
3.

45
-0

.2
1%

31
.7

6
21

9.
70

22
1.

30
0.

73
%

53
.0

4
22

3.
60

22
2.

31
-0

.5
8%

51
.3

8
8

20
6.

40
20

6.
40

0.
00

%
28

.4
1

20
7.

30
20

6.
59

-0
.3

4%
31

.1
6

21
2.

40
21

7.
92

2.
60

%
50

.1
0

21
5.

00
22

1.
59

3.
07

%
47

.9
5

2
1

27
3.

80
27

3.
75

-0
.0

2%
15

.7
0

27
3.

80
27

3.
75

-0
.0

2%
20

.3
0

28
3.

50
34

1.
93

20
.6

1%
37

.1
6

28
8.

40
34

1.
93

18
.5

6%
38

.2
3

2
26

0.
80

26
0.

82
0.

01
%

21
.7

4
26

0.
90

26
0.

82
-0

.0
3%

22
.6

3
26

2.
80

27
9.

70
6.

43
%

36
.0

2
26

6.
60

28
2.

06
5.

80
%

37
.6

5
3

29
8.

90
29

7.
58

-0
.4

4%
25

.1
6

30
0.

00
29

8.
72

-0
.4

3%
24

.2
3

30
8.

20
38

4.
06

24
.6

1%
42

.1
7

31
2.

80
38

4.
06

22
.7

8%
42

.6
1

4
27

5.
10

27
4.

50
-0

.2
2%

25
.5

0
27

5.
80

27
5.

08
-0

.2
6%

25
.9

5
28

2.
50

31
9.

97
13

.2
6%

38
.9

6
28

5.
80

31
9.

97
11

.9
6%

39
.8

7
5

32
3.

70
32

3.
72

0.
01

%
16

.1
4

32
3.

90
32

3.
72

-0
.0

6%
19

.1
5

32
9.

20
35

1.
02

6.
63

%
30

.9
9

33
2.

50
35

1.
02

5.
57

%
31

.6
9

6
26

2.
80

26
2.

00
-0

.3
0%

35
.2

5
26

3.
20

26
2.

30
-0

.3
4%

30
.2

3
26

4.
30

28
9.

13
9.

40
%

45
.8

1
26

7.
20

29
0.

70
8.

79
%

44
.0

5
7

31
4.

90
31

4.
82

-0
.0

2%
24

.4
3

31
5.

30
31

4.
89

-0
.1

3%
24

.9
7

32
3.

70
39

6.
39

22
.4

6%
40

.1
7

32
7.

90
39

6.
39

20
.8

9%
40

.3
8

8
32

5.
90

32
5.

75
-0

.0
5%

19
.1

6
32

6.
10

32
5.

95
-0

.0
5%

23
.2

7
33

3.
30

36
6.

01
9.

81
%

36
.3

5
33

4.
70

36
6.

01
9.

35
%

36
.5

1
3

1
22

0.
20

22
0.

81
0.

28
%

36
.7

1
22

1.
90

22
1.

15
-0

.3
4%

37
.5

3
22

3.
70

22
1.

09
-1

.1
6%

44
.7

7
22

5.
50

22
2.

02
-1

.5
4%

41
.3

2
2

19
4.

50
19

4.
50

0.
00

%
35

.5
9

19
5.

30
19

4.
84

-0
.2

4%
36

.8
1

19
6.

00
19

4.
53

-0
.7

5%
37

.9
3

19
8.

10
19

5.
76

-1
.1

8%
36

.5
0

3
20

1.
40

20
1.

41
0.

01
%

24
.6

3
20

1.
50

20
1.

49
0.

00
%

26
.5

0
20

3.
30

20
2.

86
-0

.2
2%

33
.7

4
20

6.
60

20
2.

99
-1

.7
5%

36
.9

0
4

20
3.

70
20

3.
65

-0
.0

2%
35

.7
6

20
4.

80
20

3.
87

-0
.4

5%
35

.0
0

20
4.

80
20

3.
68

-0
.5

5%
36

.5
2

20
9.

10
20

3.
88

-2
.5

0%
33

.5
3

5
20

4.
30

20
4.

28
-0

.0
1%

26
.2

9
20

5.
00

20
4.

40
-0

.2
9%

29
.4

1
20

5.
60

20
4.

76
-0

.4
1%

37
.7

8
20

7.
80

20
5.

05
-1

.3
2%

37
.8

2
6

22
9.

60
22

8.
44

-0
.5

1%
40

.5
3

22
9.

80
22

9.
61

-0
.0

8%
32

.8
7

23
0.

00
22

8.
44

-0
.6

8%
35

.3
6

23
2.

20
22

9.
53

-1
.1

5%
35

.4
6

7
20

2.
00

20
2.

33
0.

16
%

29
.5

2
20

6.
60

20
2.

43
-2

.0
2%

30
.3

6
20

2.
00

20
1.

57
-0

.2
1%

36
.2

1
20

4.
60

20
2.

26
-1

.1
4%

36
.2

9
8

20
9.

60
20

9.
44

-0
.0

7%
39

.9
7

21
1.

60
21

0.
66

-0
.4

4%
34

.8
0

21
2.

50
20

9.
78

-1
.2

8%
42

.9
4

21
5.

40
21

0.
85

-2
.1

1%
39

.3
2

4
1

33
7.

30
33

7.
19

-0
.0

3%
22

.0
6

33
7.

80
33

7.
25

-0
.1

6%
23

.3
9

34
0.

60
37

4.
14

9.
85

%
31

.8
8

34
2.

30
37

4.
14

9.
30

%
32

.3
0

2
32

6.
70

32
6.

67
-0

.0
1%

19
.9

2
32

6.
80

32
6.

67
-0

.0
4%

23
.7

5
33

1.
90

34
9.

15
5.

20
%

30
.1

0
33

5.
40

34
9.

15
4.

10
%

30
.8

6
3

32
7.

00
32

7.
00

0.
00

%
13

.7
1

32
8.

20
32

7.
00

-0
.3

7%
17

.6
1

33
2.

60
35

5.
82

6.
98

%
28

.4
4

33
4.

20
35

5.
82

6.
47

%
29

.4
4

4
32

2.
50

32
2.

13
-0

.1
2%

24
.8

6
32

5.
10

32
2.

13
-0

.9
1%

26
.9

8
32

6.
80

35
2.

94
8.

00
%

33
.5

6
33

0.
90

35
2.

94
6.

66
%

35
.4

3
5

27
0.

50
27

0.
52

0.
01

%
20

.1
2

27
1.

60
27

0.
52

-0
.4

0%
25

.9
2

27
1.

70
27

6.
78

1.
87

%
32

.5
3

27
4.

30
27

6.
91

0.
95

%
33

.3
6

6
28

6.
40

28
6.

42
0.

01
%

17
.5

4
28

7.
00

28
6.

89
-0

.0
4%

22
.8

8
28

7.
80

28
8.

84
0.

36
%

26
.4

7
29

0.
10

28
9.

02
-0

.3
7%

29
.8

7
7

28
7.

80
28

7.
81

0.
00

%
20

.3
9

28
8.

20
28

7.
89

-0
.1

1%
20

.8
6

29
5.

70
32

2.
81

9.
17

%
32

.1
3

29
7.

80
32

3.
93

8.
77

%
30

.3
8

8
26

8.
60

26
8.

46
-0

.0
5%

21
.9

7
26

9.
20

26
8.

57
-0

.2
3%

20
.8

5
27

0.
30

27
1.

84
0.

57
%

34
.9

0
27

3.
50

27
4.

89
0.

51
%

31
.0

1
T

ot
al

8,
07

3.
90

8,
06

7.
98

-0
.0

7%
27

.3
7

8,
10

1.
60

8,
07

7.
01

-0
.3

0%
27

.8
9

8,
20

7.
50

8,
69

2.
28

5.
91

%
38

.9
9

8,
30

5.
50

8,
72

0.
17

4.
99

%
38

.5
3

70

References

Table II.17: Pollaris et al. (2017) Instances with 100 customers

w
it

ho
ut

A
xl

e
W

ei
gh

t
C

on
st

ra
in

t
w

it
h

A
xl

e
W

ei
gh

t
C

on
st

ra
in

t
be

st
av

g.
be

st
av

g.
IL

S
A

LN
Sx

D
B

LF
IL

S
A

LN
Sx

D
B

LF
IL

S
A

LN
Sx

D
B

LF
IL

S
A

LN
Sx

D
B

LF
C

la
ss

N
o

tt
d

tt
d

di
ff.

tt
d

ti
m

e
[s

]
tt

d
tt

d
di

ff.
tt

d
ti

m
e

[s
]

tt
d

tt
d

di
ff.

tt
d

ti
m

e
[s

]
tt

d
tt

d
di

ff.
tt

d
ti

m
e

[s
]

1
1

27
1.

00
27

0.
54

-0
.1

7%
71

.5
2

27
2.

70
27

1.
40

-0
.4

8%
72

.1
5

27
8.

00
28

1.
76

1.
35

%
10

9.
49

28
2.

60
28

4.
05

0.
51

%
10

7.
48

2
28

0.
60

28
2.

17
0.

56
%

56
.1

0
28

2.
20

28
2.

21
0.

00
%

68
.2

9
28

9.
10

29
4.

02
1.

70
%

11
2.

94
29

2.
90

29
5.

59
0.

92
%

97
.7

4
3

25
4.

30
25

3.
69

-0
.2

4%
65

.4
8

25
6.

60
25

3.
71

-1
.1

3%
74

.3
1

26
5.

00
26

6.
23

0.
46

%
12

3.
68

26
8.

50
27

0.
70

0.
82

%
11

2.
24

4
27

3.
10

27
3.

13
0.

01
%

84
.5

0
27

5.
30

27
3.

49
-0

.6
6%

80
.4

6
28

5.
80

29
9.

60
4.

83
%

91
.8

4
29

1.
80

30
0.

83
3.

09
%

10
0.

46
5

26
0.

10
25

9.
92

-0
.0

7%
78

.7
3

26
0.

90
26

0.
00

-0
.3

4%
80

.3
7

26
6.

40
26

8.
71

0.
87

%
10

1.
61

27
2.

20
27

2.
55

0.
13

%
88

.3
1

6
27

4.
40

27
3.

49
-0

.3
3%

80
.7

2
27

5.
30

27
4.

09
-0

.4
4%

74
.1

7
28

5.
40

29
0.

14
1.

66
%

91
.1

2
28

9.
40

29
3.

59
1.

45
%

89
.7

4
7

27
4.

20
27

4.
16

-0
.0

2%
66

.5
3

27
5.

10
27

4.
25

-0
.3

1%
71

.5
8

28
7.

60
29

4.
26

2.
31

%
84

.8
0

29
2.

50
29

9.
33

2.
34

%
95

.4
1

8
27

1.
20

27
1.

25
0.

02
%

60
.7

0
27

2.
20

27
1.

35
-0

.3
1%

66
.0

7
28

0.
50

27
8.

22
-0

.8
1%

11
0.

77
28

7.
00

27
9.

09
-2

.7
6%

10
9.

59
2

1
38

7.
70

38
6.

47
-0

.3
2%

43
.7

7
38

8.
60

38
6.

69
-0

.4
9%

49
.3

0
39

7.
30

45
9.

00
15

.5
3%

86
.4

7
40

2.
20

45
9.

00
14

.1
2%

88
.3

2
2

36
0.

30
36

0.
35

0.
01

%
48

.6
9

36
2.

30
36

0.
99

-0
.3

6%
54

.5
1

36
5.

70
41

3.
13

12
.9

7%
80

.6
5

36
9.

90
41

3.
13

11
.6

9%
81

.9
4

3
35

5.
40

35
4.

77
-0

.1
8%

44
.7

2
35

5.
90

35
4.

78
-0

.3
1%

49
.8

2
36

3.
90

41
3.

58
13

.6
5%

94
.3

5
37

1.
50

41
3.

58
11

.3
3%

96
.2

2
4

38
2.

30
38

2.
35

0.
01

%
46

.5
1

38
3.

80
38

2.
45

-0
.3

5%
55

.4
5

38
8.

90
47

8.
07

22
.9

3%
99

.0
1

39
7.

30
47

8.
07

20
.3

3%
99

.7
2

5
36

4.
00

36
3.

95
-0

.0
1%

53
.1

5
36

4.
90

36
3.

95
-0

.2
6%

55
.2

9
37

0.
80

45
7.

28
23

.3
2%

11
2.

74
37

7.
90

45
7.

28
21

.0
1%

11
4.

05
6

33
1.

30
33

1.
31

0.
00

%
48

.5
3

33
2.

80
33

1.
34

-0
.4

4%
51

.2
4

33
7.

70
42

6.
30

26
.2

4%
11

0.
43

34
1.

40
42

6.
30

24
.8

7%
11

1.
60

7
38

1.
50

38
1.

45
-0

.0
1%

45
.3

6
38

2.
30

38
1.

62
-0

.1
8%

53
.5

4
39

0.
30

47
7.

58
22

.3
6%

10
6.

54
39

7.
40

47
7.

58
20

.1
8%

10
8.

00
8

38
3.

00
38

2.
80

-0
.0

5%
56

.4
9

38
4.

20
38

2.
95

-0
.3

3%
54

.4
0

38
7.

60
42

0.
13

8.
39

%
94

.3
9

39
3.

50
42

9.
86

9.
24

%
92

.2
7

3
1

24
8.

30
24

6.
06

-0
.9

0%
76

.9
5

24
9.

50
24

6.
73

-1
.1

1%
75

.9
9

25
3.

50
24

8.
24

-2
.0

7%
77

.2
1

25
8.

90
24

8.
58

-3
.9

9%
89

.1
4

2
26

6.
40

26
4.

68
-0

.6
4%

76
.5

4
26

7.
30

26
5.

28
-0

.7
6%

77
.9

1
27

0.
30

26
5.

71
-1

.7
0%

78
.8

6
27

4.
30

26
5.

97
-3

.0
4%

86
.1

4
3

27
0.

80
27

0.
61

-0
.0

7%
83

.2
0

27
3.

40
27

1.
22

-0
.8

0%
77

.4
7

27
7.

20
27

1.
80

-1
.9

5%
97

.4
8

28
0.

20
27

2.
45

-2
.7

7%
91

.0
9

4
25

2.
90

25
1.

54
-0

.5
4%

65
.0

1
25

3.
90

25
1.

58
-0

.9
1%

72
.4

6
25

9.
20

25
1.

94
-2

.8
0%

77
.3

3
26

1.
20

25
2.

64
-3

.2
8%

92
.2

6
5

26
6.

00
26

3.
94

-0
.7

8%
73

.7
4

26
6.

80
26

6.
46

-0
.1

3%
64

.7
4

26
6.

70
26

6.
11

-0
.2

2%
71

.1
3

27
1.

50
26

8.
55

-1
.0

9%
52

.0
9

6
27

6.
50

27
5.

60
-0

.3
3%

73
.7

4
27

7.
90

27
6.

55
-0

.4
9%

80
.1

6
28

1.
10

27
5.

79
-1

.8
9%

83
.1

0
28

5.
10

27
6.

69
-2

.9
5%

82
.2

5
7

25
9.

80
25

7.
73

-0
.8

0%
68

.0
8

26
1.

50
25

8.
15

-1
.2

8%
71

.8
2

26
3.

10
25

8.
65

-1
.6

9%
72

.0
6

26
8.

30
25

9.
59

-3
.2

5%
77

.0
4

8
26

5.
40

26
5.

32
-0

.0
3%

74
.9

0
26

6.
50

26
5.

33
-0

.4
4%

73
.9

8
26

6.
30

26
5.

34
-0

.3
6%

85
.6

5
27

1.
10

26
5.

48
-2

.0
7%

96
.9

3
4

1
39

1.
40

39
1.

34
-0

.0
2%

58
.5

8
39

3.
30

39
1.

68
-0

.4
1%

58
.3

1
39

8.
30

45
1.

42
13

.3
4%

75
.3

5
40

1.
90

45
1.

42
12

.3
2%

75
.9

6
2

41
0.

50
41

0.
54

0.
01

%
45

.0
8

41
2.

00
41

0.
65

-0
.3

3%
51

.8
4

42
1.

50
46

0.
57

9.
27

%
64

.2
0

42
6.

10
46

0.
57

8.
09

%
65

.7
9

3
42

9.
40

42
9.

40
0.

00
%

34
.6

9
43

1.
20

42
9.

61
-0

.3
7%

38
.7

1
43

7.
00

45
0.

19
3.

02
%

55
.2

9
44

3.
80

45
2.

85
2.

04
%

59
.7

4
4

35
4.

90
35

4.
89

0.
00

%
52

.6
5

35
7.

20
35

5.
18

-0
.5

7%
52

.0
6

36
3.

80
39

8.
14

9.
44

%
74

.8
2

36
8.

00
40

1.
09

8.
99

%
68

.7
2

5
35

3.
30

35
3.

31
0.

00
%

50
.4

4
35

4.
20

35
3.

37
-0

.2
3%

53
.3

6
36

1.
70

38
8.

05
7.

28
%

68
.8

4
36

6.
70

38
8.

05
5.

82
%

69
.5

5
6

36
3.

20
36

2.
10

-0
.3

0%
56

.5
2

36
4.

20
36

2.
33

-0
.5

1%
56

.9
1

37
5.

40
41

1.
23

9.
54

%
72

.6
6

37
9.

30
41

1.
23

8.
42

%
73

.4
2

7
39

0.
80

39
0.

44
-0

.0
9%

61
.9

5
39

2.
60

39
1.

12
-0

.3
8%

59
.0

8
40

1.
20

44
6.

68
11

.3
4%

70
.0

7
40

5.
70

44
6.

68
10

.1
0%

70
.3

9
8

37
4.

70
37

4.
20

-0
.1

3%
41

.9
4

37
5.

10
37

4.
55

-0
.1

5%
41

.9
4

38
4.

70
42

4.
35

10
.3

1%
55

.5
2

39
0.

90
42

4.
35

8.
56

%
57

.7
1

T
ot

al
10

,2
78

.7
0

10
,2

63
.4

8
-0

.1
5%

60
.8

0
10

,3
21

.7
0

10
,2

75
.0

6
-0

.4
5%

63
.0

5
10

,5
21

.0
0

11
,3

52
.2

0
7.

90
%

87
.2

0
10

,6
81

.0
0

11
,3

96
.7

2
6.

70
%

87
.5

4

71

Paper III

Advanced loading constraints for 3D
vehicle routing problems

Corinna Krebs, Jan Fabian Ehmke, Henriette Koch
Published in OR Spectrum, August 2021, DOI: 10.1007/s00291-021-00645-w.

III

Abstract

Given automated order systems, detailed characteristics of items and vehicles enable the
detailed planning of deliveries including more efficient and safer loading of distribution vehicles.
Many vehicle routing approaches ignore complex loading constraints. This paper focuses on
the comprehensive evaluation of loading constraints in the context of combined Capacitated
Vehicle Routing Problem and 3D Loading (3L-CVRP) and its extension with time windows
(3L-VRPTW). To the best of our knowledge, this paper considers the currently largest number
of loading constraints meeting real-world requirements and reducing unnecessary loading efforts
for both problem variants. We introduce an approach for the load bearing strength of items
ensuring a realistic load distribution between items. Moreover, we provide a new variant for
the robust stability constraint enabling better performance and higher stability. In addition,
we consider axle weights of vehicles to prevent overloaded axles for the first time for the
3L-VRPTW. Additionally, the reachability of items, balanced loading and manual unloading
of items are taken into account.
All loading constraints are implemented in a Deepest-Bottom-Left-Fill algorithm, which is
embedded in an outer Adaptive Large Neighbourhood Search tackling the Vehicle Routing
Problem. A new set of 600 instances is created, published and used to evaluate all loading
constraints in terms of solution quality and performance. The efficiency of the hybrid algorithm
is evaluated by three well-known instance sets. We outperform the benchmarks for most
instance sets from literature. Detailed results and the implementation of loading constraints
are published online.

73

https://doi.org/10.1007/s00291-021-00645-w

1 Introduction

Contents

1 Introduction . 74
2 Literature Review . 75
3 Problem Formulation . 77
4 Definitions and Implementations of Loading Constraints 78
5 Hybrid Solution Approach . 85
6 Computational Studies . 90
7 Conclusions and Future Work . 96
References . 97

1 Introduction

In recent years, sales in online trading have risen steadily. Forecasts for the coming years predict
significant growth. Therefore, efficient logistics operations are more important than ever. Through
many years of research in the field of Vehicle Routing Problems (VRP), (near-) optimal tour plans
can be found for many use cases. Hereby, the demand of a customer is often simplified by using
a total mass or volume for the items to be delivered. In practice, solutions might be infeasible
since a vehicle cannot be feasibly packed because of unbalanced loading and/or unsafe placement
of items. As more and more information on items becomes available for detailed planning, the
realistic planning of transportation and of packing processes could become the key factor for cost
reduction and safety, leading to an increasing interest in combined routing and loading problems.
The combined problem at hand is the Three-Dimensional Loading Capacitated Vehicle Routing
Problem (3L-CVRP). It was first introduced by Gendreau et al. (2006), and assumes delivery of
cuboid items laying at the depot. A homogeneous fleet of vehicles is available for transporting
the items to a number of customers. Each vehicle must be equipped with a feasible packing plan
considering several loading constraints. The depot and the customers have specific time windows,
in which the delivery must take place. This problem variant is known as the Three-Dimensional
Loading Vehicle Routing Problem with Time Windows (3L-VRPTW).
The focus of this paper is on the comprehensive examination of loading constraints. Although the
consideration of different complex loading constraints leads to more realistic models, it is mainly
neglected in work dealing with the 3L-CVRP problem or its variants so far. The reason is that
modelling and evaluation of loading constraints is complex and requires new solution approaches.
We tackle this problem and integrate the current largest constraint set so far. We introduce a
new variant for the robust stability constraint, which increases the stability and the performance.
Moreover, we develop an approach based on the Science of Statics so that for the first time, the
acting load on an item is distributed through the entire stack, which ensures realistic and stable
packing plans. In addition, this paper considers aspects for manual unloading, reachability, the
axle weights of vehicles and a balanced loading. For the latter, we introduce formulas to illustrate
our implementation approach. In case of manual unloading, the items are unloaded without lifting.
The reachability constraint avoids unnecessary rearrangements of items. Detailed modelling of
axle weights and balanced loading prevents overloaded axles and tipping over of vehicles. The
implementation of all loading constraints is published online within a solution validator written in
C++ as well as in Java. The validator can be used to check the feasibility of solutions for different
loading constraint sets.
All constraints are integrated in a hybrid algorithm. The hybrid algorithm consists of an inner
Deepest-Bottom-Left-Fill algorithm which solves the Loading Problem and is embedded in an outer
Adaptive Large Neighbourhood Search tackling the Vehicle Routing Problem. The efficiency of the
hybrid algorithm is shown by using the instance sets by Ceschia et al. (2013), Moura and Oliveira
(2009) and Zhang et al. (2017). Experiments show that the hybrid algorithm performs better than
the benchmark for most instance sets.
Moreover, we have created and published an instance set consisting of 600 new instances varying
systematically in the number of customers, of item types and of items. For the first time, every
complex loading constraint is evaluated concerning its impact on the objective values (number of
used vehicles and total travel distance) grouped by number of item types, items and customers.
Our evaluations consists of over 30’000 results and we provide all results online and in detail (e.g.

74

2 Literature Review

routing and packing plans with the position of all items) to ensure extraordinary transparency. On
this basis, we give recommendations about which constraints are reasonable based on their impact
on algorithmic performance and solution quality.

The paper is organized as follows. In Section 2, relevant literature is reviewed. The 3L-CVRP
and the 3L-VRPTW are formulated in Section 3. In Section 4, the new definitions and the
implementation variants of the loading constraints are presented. In Section 5, the hybrid algorithm
is described, and Section 6 deals with the testing of the constraints. Finally, conclusions are drawn
in Section 7.

2 Literature Review

This paper considers the Three-Dimensional Loading Capacitated Vehicle Routing Problem (3L-
CVRP) and its extension with Time Windows (3L-VRPTW), which represent a combination of
the Vehicle Routing Problem (VRP) and 3D Loading constraints. As shown in Table III.2, the
consideration of multiple loading constraints is currently sparely researched. Thus, this paper
examines the impact of different loading constraints on the results for the 3L-CVRP and the
3L-VRPTW. The current state of modelling loading constraints for both problems is analysed in
the following.

2.1 3L-CVRP

Gendreau et al. (2006) introduced the combined Vehicle Routing and 3D Loading Problem, namely
3L-CVRP. They solve the VRP using an "outer" Tabu Search, which determines customer sequences.
An iteratively invoked "inner" Tabu Search defines the item sequence for the routes. The loading
algorithms are based on the touching parameter algorithm by Lodi et al. (1999) and the bottom-
left-algorithm by Baker et al. (1980). The items are packed orthogonally into the vehicle loading
space (Orthogonality constraint) without overlapping and respecting their dimensions (Geometry).
The rotation of the items is only allowed along the width-length plane (Rotation constraint). Each
item has a mass and the vehicle has a maximum capacity (Load Capacity). Moreover, a fragility flag
is assigned to each item to prevent stacking fragile items on top of each other (Fragility constraint).
When stacking items, they must be supported by other items with a certain percentage (Minimal
Supporting Area constraint). When unloading items, it should be done by direct movements parallel
to the length of the vehicle (LIFO constraint). Since the constraints Orthogonality, Geometry,
Rotation, Load Capacity, Fragility, Minimal Supporting Area and LIFO are commonly considered
in researches on the 3L-CVRP and its variants, this set is here defined as basic constraint set. For
testing, Gendreau et al. (2006) developed 27 instances.
The 3L-CVRP has been studied intensively in recent years so that the results for this benchmark
have been improved repeatedly (e.g. Tarantilis et al. (2009), Fuellerer et al. (2010), Bortfeldt (2012)
and Wei et al. (2014)). Tarantilis et al. (2009) used a combination of Tabu Search and Guided
Local Search to build the routes. For the Loading Problem, successively six packing heuristics
are called until a feasible solution is found. They also present a new variant – the Capacitated
Vehicle Routing Problem with Manual 3D Loading Constraints (M3L-CVRP). This variant deals
with the manual handling of items, e.g. the items are small and of low mass. Therefore, the LIFO
constraint is modified so that it is allowed that one item hangs over another one. This adaption
of the LIFO policy, which is in this paper referred to as MLIFO, is also examined in a paper
by Ceschia et al. (2013). Ceschia et al. propose a Local Search approach combining Simulated
Annealing and Large Neighborhood Search to solve the VRP. To handle the Loading Problem, one
out of nine loading heuristics based on the Bottom-Left-Algorithm and the Touching Perimeter
Algorithm is selected. Besides the MLIFO constraint, they consider the reachability of an item for
the first time within the 3L-CVRP. In the context of the Three-Dimensional Bin Packing Problem,
this constraint was developed by Junqueira et al. (2013) to avoid the driver standing on items to
reach other items for unloading or arranging operations. Ceschia et al. (2013) also include the
item’s load bearing strength (lbs), which was first mentioned by Bischoff and Ratcliff 1995 and
examined in Bischoff (2003) for the Three-Dimensional Bin Packing Problem. Thus, to the best of

75

2 Literature Review

our knowledge, Ceschia et al. currently combine the most loading constraints. Krebs and Ehmke
(2021) consider detailed modelling of axle weights of vehicles for the first time for the 3L-CVRP.

2.2 3L-VRPTW

In Moura (2008) and Moura and Oliveira (2009) the VRTWLP is introduced, which corresponds
to the 3L-VRPTW without the consideration of masses and stacking constraints (e.g. Fragility
and Load Capacity) and with higher Stability requirements (full support) and with more rotation
possibilities. Moura (2008) proposes a Multi-Objective Genetic Algorithm to generate routes
(VRP). If a customer is inserted in a route, a wall-building heuristic is called to tackle the Loading
Problem. This packing heuristic is also used in Moura and Oliveira (2009), where a hierarchical
and a sequential approach are combined. The hierarchical one solves primarily the VRP, while the
sequential one handles the VRPTW and the bin packing. 46 instances are created. The current
best-known results for these instances are received by Reil et al. (2018), who solve the packing
problem through a Tabu Search algorithm. Then, a Multi-Start Evolutionary Search minimizes the
number of used vehicles while another Tabu Search algorithm minimizes the total travel distance.
Pace et al. (2015) propose a heuristic based on Simulated Annealing and an Iterated Local Search
for the routing phase. Since they examine the distribution of fibre boards, a specialized loading
heuristic based on a Depth-First Tree Search and a balanced loading constraint are necessary. The
latter is also adopted by Mak-Hau et al. (2018), who develop a mixed-integer linear program model
of the 3L-VRPTW with a heterogeneous fleet. Zhang et al. (2017) solve the 3L-VRPTW with a
hybrid approach, consisting of a new loading heuristic and a routing heuristic based on a Tabu
Search and an Artificial Bee Colony algorithm. They include the basic constraint set and combine
the two well-known instance sets provided by Gendreau et al. (2006) and Solomon (1987).
In this paper, we use the approach by Koch et al. (2018) proposed for the 3L-VRPTW with
Backhauls, which is also used for the 3L-CVRP in Krebs and Ehmke (2021). The following
Table III.1 summarizes the approaches.

Table III.1: Summary and Overview of Approaches

Author Problem Routing Approach Loading Approach Stopping criterion New
Instances

Gendreau et al. (2006) 3L-CVRP Tabu Search Touching Perimeter Algorithm,
Bottom-Left Algorithm Time Limit 27

Tarantilis et al. (2009) 3L-CVRP Tabu Search,
Guided Local Search Six Heuristics Iterations without Improvement 12

Fuellerer et al. (2010) 3L-CVRP Savings-based ACO algorithm Touching Perimeter Algorithm,
Bottom-Left Algorithm Maximum Iterations

Bortfeldt (2012) 3L-CVRP Tabu Search Tree Search Time Limit,
Maximum Iterations

Wei et al. (2014) 3L-CVRP,
3L-HFVRP

Adaptive Variable
Neighborhood Search Extreme Point Based First Fit Time Limit 36

Ceschia et al. (2013) 3L-CVRP Large-Neighborhood Search,
Simulated Annealing

Nine Heuristics based on
Touching Perimeter Algorithm,
Bottom-Left Algorithm,
Wall-Building Heuristic

Time Limit,
Maximum Iterations 13

Moura (2008) VRTWLP Multi-objective Genetic Algorithm Wall-Building heuristic Iterations without Improvement

Moura and Oliveira (2009) VRTWLP Heuristic with Hierarchical
and Sequential Approaches Wall-Building heuristic Iterations without Improvement 46

Pace et al. (2015) 3L-VRPTW Iterated Local Search,
Simulated Annealing Depth-First Tree Search Maximum Iterations

Zhang et al. (2017) 3L-VRPTW Tabu Search,
Artificial Bee Colony algorithm New Loading Heuristic Maximum Iterations 27

Mak-Hau et al. (2018) 3L-VRPTW,
Split Delivery Mixed-Integer Linear Program Model Time Limit

Reil et al. (2018) VRTWLP Multi-Start Evolutionary Search,
Tabu Search Tabu Search Time Limit,

Iterations without Improvement

Krebs and Ehmke (2021) 3L-CVRP ALNS DBLF
Time Limit,
Iterations without Improvement,
Maximum Iterations

Table III.2 summarizes the related literature and highlights our contribution. As demonstrated in
Table III.2, this paper deals with the largest constraints set and combines the Robust Stability (C6b),
Load Bearing Strength (C7b) and Reachability (C8) with Axle Weights (C9) and the Balanced
Loading (C10) constraints. Moreover, we distribute the loads for the first time through the entire
stack in the Load Bearing Strength constraint.

76

3 Problem Formulation

Table III.2: Summary and Overview over Loading Constraints

G
eo

m
et

ry

O
rt

ho
go

na
lit

y

R
ot

at
io

n

Lo
ad

C
ap

ac
ity

LI
FO

M
LI

FO

M
in

im
al

Su
pp

or
tin

g
A

re
a

R
ob

us
t

St
ab

ili
ty

Fr
ag

ili
ty

Lo
ad

Be
ar

in
g

St
re

ng
th

R
ea

ch
ab

ili
ty

A
xl

e
W

ei
gh

ts

Ba
la

nc
ed

Lo
ad

in
g

References sorted by year C1 C2 C3 C4 C5a C5b C6a C6b C7a C7b C8 C9 C10
Gendreau et al. (2006) ✓ ✓ ✓ ✓ ✓ ✓ ✓
Moura (2008) ✓ ✓ ✓ ✓ ✓
Moura and Oliveira (2009) ✓ ✓ ✓ ✓ ✓
Tarantilis et al. (2009) ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
Fuellerer et al. (2009) ✓ ✓ ✓ ✓ ✓ ✓ ✓
Bortfeldt (2012) ✓ ✓ ✓ ✓ ✓ ✓ ✓
Ceschia et al. (2013) ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ (✓) ✓
Pace et al. (2015) ✓ ✓ ✓ ✓ ✓ ✓ ✓
Zhang et al. (2017) ✓ ✓ ✓ ✓ ✓ ✓ ✓
Mak-Hau et al. (2018) ✓ ✓ ✓ ✓ ✓
Koch et al. (2018) ✓ ✓ ✓ ✓ ✓ ✓ ✓
Reil et al. (2018) ✓ ✓ ✓ ✓ ✓ ✓ ✓
Krebs and Ehmke (2021) ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
This paper ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

3 Problem Formulation

Following the convention by Koch et al. (2018), the 3L-VRPTW is described as follows: Let
G = (N, E) be a complete, directed graph, where N is the set of n+1 nodes including the depot
(node 0) and n customers to be served (node 1 to n), and E is the edge set connecting each pair of
nodes. Each edge ei,j ∈ E (i ̸= j, i, j = 0, ..., n) has an associated routing distance di,j (di,j > 0).
The demand of customer i ∈ N \ {0} consists of ci cuboid items. Let m be the total number of all
demanded items. Moreover, time windows are considered by assigning three times to each node
i: the ready time RTi, which is the earliest possible start time of service, the due date DDi, the
latest possible start time, and the service time STi, which specifies the needed time to (un-)load all
ci items of a customer i.
Each item Ii,k (k = 1, ..., ci) is defined by mass mi,k, length li,k, width wi,k and height hi,k. The
items are delivered by at most vmax available, homogenous vehicles. Each vehicle has a maximum
load capacity D and a cuboid loading space defined by length L, width W and height H. It is
assumed that each vehicle has a constant speed of 1 distance unit per time unit. If a vehicle arrives
at an edge before its ready time, it has to wait until the ready time is reached.
Let vused be the number of used vehicles in a solution. A solution is a set of vused pairs of routes
Rv and packing plans PPv, whereby the route Rv (v = 1, ..., vused) is an ordered sequence of at
least one customer and PPv is a packing plan containing the position within the loading space for
each item included in the route.

A solution is feasible if

(S1) All routes Rv and packing plans PPv are feasible (see below);

(S2) Each customer is visited exactly once;

(S3) The number of used vehicles vused does not exceed the number of available vehicles vmax;

(S4) Each packing plan PPv contains all ci items of all customers i included in the corresponding
route (i ∈ Rv).

77

4 Definitions and Implementations of Loading Constraints

A route Rv must meet the following routing constraints:

(R1) Each route starts and terminates at the depot and visits at least one customer;

(R2) The vehicle does not arrive after the due date DDi of any location i.

Each packing plan must obey a loading set P defining a subset of the following loading constraints,
which are described in detail in the next Section 4.

(C1) Geometry: The items must be packed within the vehicle without overlapping;

(C2) Orthogonality: The items can only be placed orthogonally inside a vehicle;

(C3) Rotation: The items can be rotated 90◦ only on the width-length plane;

(C4) Load Capacity: The sum of masses of all included items of a vehicle does not exceed the
maximum load capacity D.

(C5a) LIFO: No item is placed above or in front of item Ii,k, which belongs to a customer served
after customer i;

(C5b) MLIFO: No item is placed on or in front of item Ii,k, which belongs to a customer served
after customer i;

(C6a) Minimal Supporting Area: Each item has a supporting area of at least a percentage α of its
base area;

(C6b) Robust Stability: Each item has a supporting area of at least a percentage α of its base area
at any height;

(C7a) Fragility: No non-fragile items are placed on top of fragile items;

(C7b) Load Bearing Strength: The load bearing strength lbsi,k is the maximal load per area unit an
item can bear. It must not be exceeded anywhere on the top face of an item;

(C8) Reachability: The distance between an item and the driver must be less or equal than a
certain length λ;

(C9) Axle Weights: The loads for the front and the rear axle do not exceed the permissible axle
weights FAperm and RAperm;

(C10) Balanced Loading: The load of one vehicle half does not exceed a certain percentage p of D.

The 3L-CVRP and 3L-VRPTW aim at determining a feasible solution minimizing the objective
values, e.g. number of used vehicles vused and the total travel distance ttd, and meeting all
corresponding constraints.

4 Definitions and Implementations of Loading Constraints

This section discusses the implementation details and challenges of the considered loading
constraints. We introduce new realizations and implementation variants. Detailed algorithms
are provided and explained in a solution validator, written in Java and C++, available via
http://github.com/CorinnaKrebs/SolutionValidator.

78

http://github.com/CorinnaKrebs/SolutionValidator

4 Definitions and Implementations of Loading Constraints

Table III.3: Overview of Loading Constraints
Abbr. Constraint Definition Variant
C1 Geometry
C2 Orthogonality
C3 Rotation
C4 Load Capacity
C5a Unloading Sequence LIFO
C5b Unloading Sequence MLIFO
C6a Vertical Stability Minimal Supporting Area
C6b1 Vertical Stability Robust Stability Multiple Overhanging
C6b2 Vertical Stability Robust Stability Top Overhanging
C7a Stacking Fragility
C7b1 Stacking Load Bearing Strength Simplified Selection
C7b2 Stacking Load Bearing Strength Complete Selection
C8 Reachability
C9 Axle Weights
C10 Balanced Loading

Table III.3 gives an overview of the considered loading constraints. The loading constraints C1-C4,
C5a, C6a and C7a are used as described in Gendreau et al. (2006). In Table III.3, we have
highlighted new developed loading constraints in bold and constraints examined for the first time
for the 3L-VRPTW in italics.

4.1 Unloading Sequence (C5)

The Unloading Sequence constraints define the order in which the items of the customers of one
route should be unloaded. The purpose is to prevent costly reloading processes of items during the
unloading process. In the following, two definitions, namely LIFO (C5a) and MLIFO (C5b), are
shown.

4.1.1 LIFO (C5a)

As shown in Gendreau et al. (2006), the Last-in-First-Out (LIFO) constraint treats the unloading
sequence in the way that all items ci of a customer i are loaded and unloaded by movements parallel
to the front-rear axis (x-axis) of the vehicle without moving other items. Forklifts are mostly used
for this purpose, which may need to lift an item during the unloading process (cf. Ceschia et al.
(2013)). Therefore, no item demanded by a customer that is delivered later can be placed over Ii,k

or between Ii,k and the rear of the vehicle.

4.1.2 MLIFO (C5b)

In the Manual LIFO constraint (MLIFO) introduced by Tarantilis et al. (2009), the items are
(un-)loaded by manual operations without the usage of e.g. forklifts. Consequently, the items can
be (un-)loaded without lifting them. Therefore, an item demanded by a customer that is served
later than customer i can hang over the item Ii,k without touching its surface and without being
placed between Ii,k and the rear of the vehicle.

The differences between the LIFO and the MLIFO constraint are visualized in Fig. III.1. For both
variants, it is not allowed to place an item directly on top of another item that is delivered earlier
(see Fig. III.1a). In contrast to the LIFO constraint, it is allowed that one item hangs over another
item that is delivered earlier (see Fig. III.1b).

4.2 Vertical Stability (C6)

The Vertical Stability constraints prevent stacked items from falling on the ground. For this
purpose, we show that the current definition is not sufficient and formulate the new Robust Stability
constraint.

79

4 Definitions and Implementations of Loading Constraints

(a) infeasible placements (b) feasible placement for MLIFO,
infeasible placement for LIFO

Figure III.1: Difference between LIFO and MLIFO

4.2.1 Minimal Supporting Area (C6a)

The Minimal Supporting Area constraint ensures that a certain ratio α of the base of a stacked item
is supported by the upper surface of the directly underlying items (see Gendreau et al. (2006)).
As shown in Fig. III.2, this formulation can lead to unstable, but still feasible item arrangements:
When stacking several items with same density, whereby the length or width of each item enlarge
by 1

α , an overhanging stack of items is created.

Figure III.2: Unstable, feasible stack w.r.t. Minimal Supporting Area

This arrangement is in accordance with the Minimal Supporting Area constraint (C6a) because
for the calculation of the support for one item, only the directly underlying items are considered.
According to the Science of Statics, this stack is not stable, because the x-value of the centre of
gravity (CG) lays outside of the dimensions of the first item. Therefore, the stack would topple.

4.2.2 Robust Stability (C6b)

As shown above, the Minimal Supporting Area can lead to unstable stacks, since in the calculation
of the item’s support only the directly underlying items are considered. Therefore, we formulate the
Robust Stability constraint as follows: For each item, the relative support of at least a percentage
of α needs to be guaranteed at any height from the vehicle ground to the item’s bottom edge.

Multiple Overhanging (C6b1): This constraint was first introduced by Ceschia et al. (2013).
As the name suggests, all items of a stack are allowed to overhang. When placing an item, the
Minimal Supporting Area is checked for all underlying items: Let U be the set which includes all
placed items supporting directly or indirectly the item Ii,k. An item Iu supports Ii,k directly if the
top area of item Iu has direct contact with the base area of item Ii,k. An item Iu supports Ii,k

indirectly if Iu directly supports any placed item which directly supports Ii,k. Each coordinate for
the top surface of item Ia ∈ U defines a plane. Another item Ib ∈ U counts to this plane if the
top surface of Ib is at the same level as of the plane (see items I1,2 and I1,3 in Fig. III.3b) or if
the top surface of Ib is above the plane and the base area of Ib is below the plane (see item I1,3

80

4 Definitions and Implementations of Loading Constraints

in Fig. III.3c). Each plane must obey the Minimal Supporting Area constraint. Otherwise, the
constraint is violated and the placement of item Ii,k is rejected.

(a) item stack (b) plane 1 (c) plane 2

Figure III.3: Determination of planes for item I1,5

Top Overhanging (C6b2): In this paper, we want to introduce another variant for the Robust
Stability, namely the “Top Overhanging" constraint. In contrast to the previous approach, here, only
the topmost item of a stack is allowed to hang over other items. Hence, all items of a stack must be
completely supported by other items except the topmost item, which can hang over considering the
Minimal Supporting Area constraint (C6a) (see Fig. III.4b). This is appropriate for high stability
requirements.
Top Overhanging is implemented in the following way: Let distanceceiling be the distance between
the topmost item of a stack and the ceiling (see Fig. III.4a). Let hmin be the smallest height of any
unplaced item Imin of the route and Ii,k be the item which should be placed on top of the stack.
When stacking items, two cases can occur:

1. If distanceceiling + hi,k ≥ hmin, then item Ii,k as well as Imin can be placed on the stack. In
this case, the item Ii,k must be fully supported, since Imin could be placed on top of Ii,k, so
that Ii,k is not the topmost item of the stack.

2. If distanceceiling + hi,k < hmin, then no unplaced item can be stacked on top of the stack.
Thus, the item Ii,k is the topmost item and must therefore obey the Minimal Supporting
Area constraint (C6a).

(a) Determination distanceceiling (b) Feasible Placement

Figure III.4: Implementation of Robust Stability – Top Overhanging

4.3 Stacking (C7)

The Stacking constraints focus on the ability of items to bear other items. In the following, different
approaches are shown. The Fragility constraint (C7a) as shown in Gendreau et al. (2006) is the
standard approach. The Load Bearing Strength (C7b) is proposed by Bischoff (2003) for the
Container Loading Problem, where each item has an additional parameter indicating the maximum
load it can bear. For this Load Bearing Strength constraint, two implementation variants are
described below. The first one (C7b1) is proposed by Bischoff (2003), while another approach is
developed and introduced in this paper and is based on the Science of Statics (C7b2).

81

4 Definitions and Implementations of Loading Constraints

4.3.1 Fragility (C7a)

As shown in Gendreau et al. (2006), a fragility flag fi,k is assigned to each item to divide them into
fragile items (fi,k = 1) and non-fragile ones (fi,k = 0). On top of a fragile item, only another fragile
item can be stacked, whereas both fragile and non-fragile items can be stacked on a non-fragile
item. As demonstrated in Ceschia et al. (2013), the Fragility constraint (C7a) has weaknesses: It is
supposed that a non-fragile item lies mostly on another non-fragile item and a very small part on a
fragile one (see Fig. III.5). Even if the non-fragile part on top of the fragile item would be infinitely
small, the arrangement remains infeasible.

Figure III.5: Infeasible item arrangement w.r.t. Fragility constraint

4.3.2 Load Bearing Strength (C7b)

To handle the issue described before, the actual load on the items should be considered. Therefore,
the Load Bearing Strength (LBS) is introduced: Each item Ii,k can support a maximum load per
area described by the parameter lbsi,k. It must not be exceeded anywhere on the top face of an
item. A small lbsi,k value corresponds to fragile items.

If an item Ic is stacked on top of another item Iu, then, a load caused by Ic acts on the underlying
item Iu (loadc,u). For its calculation, the percentage of support for item Ic (supportc) provided
by all directly underlying items must be first determined. Then, all area units (supportAreac,u)
between Item Ic and Iu must be identified.
Based on that, the support share of Iu on Ic is:

supportc,u = supportAreac,u

lc · wc
. (III.1)

Since the item Ic could overhang, but the load must be distributed in total, the support share is
increased proportionally:

supportprop = supportc,u

supportc
. (III.2)

The load acting on item Iu is

loadc,u = supportprop · loadc, (III.3)

where loadc is the load which has to be distributed due to item Ic. Its value is explained below.

When placing an item on top of another, then the load must be distributed to underlying items.
There are two ways to select these items: the simplified and the complete selection.

Simplified Selection (C7b1): The approach proposed by Bischoff (2003) selects all items which
are underneath the base area (e.g. the footprint) of an item Ic. When placing an item Ic on top
of a stack, then all items which are underneath the base area and which directly or indirectly
support item Ic are considered. In this case, not all items of the stack may contribute to the mass
distribution (see item I1,3 in Fig. III.6). In this approach, loadc in Eq. III.3 corresponds to the

82

4 Definitions and Implementations of Loading Constraints

mass of Ic. The example in Fig. III.6 shows the resulting loads for the underlying items caused
only by item I1,6.

x

z

L

H

I1,2

I1,6

I1,1 I1,3

I1,4 I1,5

(a) Distribution

x

z

L

H

2/31/3 0

5/6 1/6

(b) Support between under-
lying items and I1,6

x

z

L

H

4

m1,6 = 6

2 0

5 1

(c) Resulting load

Figure III.6: Mass Distribution according to Simplified Selection based on item I1,6

Complete Selection (C7b2): The following approach is based on the Science of Statics. When
placing an item Ic on top of other items, all items are investigated that are located directly below
item Ic. Therefore, the mass of Ic is distributed as loadc to the directly underlying items. Then, for
each of these items, the received loadc is further adopted and distributed to the directly underlying
items again. This is recursively repeated until the items on the ground are reached. Fig. III.7 shows
the same exemplary situation as Fig. III.6.

x

z

L

H

I1,2

I1,6

I1,1 I1,3

I1,4 I1,5

(a) Distribution

x

z

L

H

1/2 | 1/21/2 1/2

5/6 1/6

(b) Support between direct
underlying items

x

z

L

H

2,5 | 0,5

m1,6 = 6

2,5 0,5

5 1

(c) Resulting load

Figure III.7: Mass Distribution according to Complete Selection based on item I1,6

In this approach, all items of a stack contribute to the mass distribution. The resulting loads caused
by item I1,4 and item I1,5 are calculated in the same way.

4.4 Reachability (C8)

When an item is (un-)loaded, then it should be guaranteed that the working equipment or the
driver can reach the item when standing as close as possible to the item (cf. Junqueira et al.
(2013)). For this purpose, the distance ri,k of an item Ii,k should be equal or less than a certain
length λ, which represent the driver’s arm length, for example.
In this paper, for the reachability of an item Ii,k, all items of customers which are served after
customer i and placed above or beneath item Ii,k, are considered (see Fig. III.8a). The distance
ri,k is defined by the front of the item which is the closest to the door (MaxFront) and the front
of item Ii,k.
If the distance is larger than λ and thus the item is not reachable, then it is tried to shift the item
along the x-axis. This is achieved by searching for the maximum x-value of already placed items
on the same layer (MaxShift). The new placement must obey the DBL policy. Therefore, the
item Ii,k is shifted until the Reachability constraint is just fulfilled, which means the new distance
is defined by MaxFront − λ (see Fig. III.8b). Additionally, the new placement is tested w.r.t.
the loading constraint set. If the item is not reachable and it cannot be shifted, the placement is
rejected.

4.5 Axle Weights (C9)

The exceedance of the maximum axle weights of one or more axles leads to far-reaching consequences
with regard to vehicle safety: It increases the braking distance and, in the event of a collision, the

83

4 Definitions and Implementations of Loading Constraints

(a) Distance Search Space for I3,1 (b) Shiftment of I3,1

Figure III.8: Illustration of the Distance Search Space for I3,1

consequences are more severe due to the increased impact energy. Therefore, the Axle Weights
constraint respects the permissible axle weights for the front and rear axles of a vehicle. Let FAperm

be the maximum load the vehicle’s front axle can bear and RAperm be the maximum load for the
rear axle, respectively. Both limits are given in mass units. Let Lf be the length between the front
axle and the loading space (see Fig. III.9). The wheelbase WB is the distance between the front
and the rear axle. For each placed item Ii,k at the x-position xi,k, the distance si,k between the
mass centre of Ii,k and the front axle must be determined.

Figure III.9: Vehicle Data

According to the approach by Krebs and Ehmke (2021), the following formulas can be applied for a
vehicle v to calculate the acting forces for the front FF A and the rear FRA axle. Hereby, g is the
constant for acceleration of gravity (g ≈ 9.81 m

s2).

si,k = Lf + xi,k + li,k/2, (III.4)

1
WB

·
n∑

i=1|i∈Rv

ci∑
k=1

(mi,k · g · si,k) = FRA (III.5)

and
n∑

i=1|i∈Rv

ci∑
k=1

(mi,k · g) − FRA = FF A. (III.6)

The acting forces must be below the permissible ones, but also greater than zero to avoid uplifting:

FF A ≤ FAperm · g, (III.7)

FRA ≤ RAperm · g, (III.8)

84

5 Hybrid Solution Approach

FF A ≥ 0, (III.9)

and
FRA ≥ 0. (III.10)

As demonstrated in Krebs and Ehmke 2021, the constraint must be checked after each placement
of an item since, an axle may become overloaded after unloading items.

4.6 Balanced Loading (C10)

To prevent a reduction in vehicle stability, the load per vehicle half should be examined. Therefore,
Pace et al. (2015) suggest that a percentage p of the vehicle capacity D is not exceeded. In the
following, we introduce formulas for this approach.

(a) Left Side (b) Right Side (c) Distributed

Figure III.10: Mass Distribution according to the position of Ii,k

In our implementation, the item’s mass mi,k is assigned to the vehicle sides depending on its
y-position (yi,k). If an item lays entirely on the left side of the vehicle (see Fig. III.10a), its
total mass is assigned to the left vehicle side. The same is true for the opposite right side (see
Fig. III.10b). Otherwise, the mass of the item is distributed proportionally to the vehicle sides (see
Fig. III.10c). The sum of all assigned masses must not exceed a certain percentage p of the load
capacity D. Consequently, the following must apply:

f(t) =
{

t t > 0
0 else

(III.11)

n∑
i=1|i∈Rv

ci∑
k=1

mi,k

li,k
·
[
f

(
W

2 − yi,k

)
− f

(
W

2 − (yi,k + wi,k

)]
≤ D · p (III.12)

n∑
i=1|i∈Rv

ci∑
k=1

mi,k

li,k
·
[
f

(
(yi,k + wi,k) − W

2

)
− f

(
yi,k − W

2

)]
≤ D · p (III.13)

Formula III.11 restricts the range to positive real values. It is used to assign the masses to the
corresponding vehicle sides. The constraint for the left vehicle side is checked in Formula III.12 and
in III.13 for the right one, respectively. Inside of the large square brackets, the position of the item
with respect to the corresponding vehicle side is determined in order to assign the proportional
mass.

5 Hybrid Solution Approach

We propose a hybrid solution approach consisting of a routing heuristic (Adaptive Large
Neighbourhood Search) for creating routes and an embedded packing heuristic (Deepest-Bottom-
Left-Fill algorithm), which optimizes the loading of the items of all customers of a route into the

85

5 Hybrid Solution Approach

loading space of a vehicle. The packing heuristic generates feasible packing plans for the generated
routes. This packing plan is created following a loading constraint set P , which determines the
included loading constraints.

5.1 Routing Heuristic

We use the routing algorithm as described in Koch et al. (2018), who modified the Adaptive
Large Neighbourhood Search (ALNS) proposed by Ropke and Pisinger (2006). The algorithm by
Koch et al. (2018) was developed for the 3L-VRPTW with Backhauls and is applied to the pure
3L-VRPTW in this paper, considering additional constraints. The general framework is shown
in Alg. III.1. The corresponding line number of the algorithms are given in square brackets. In
general, a solution is feasible if all loading and routing constraints are obeyed except S3 so that the
used vehicles could exceed the number of available vehicles.

Algorithm III.1 Adaptive Large Neighbourhood Search
Input: Instance data, parameters
Output: best feasible solution sbest

1: construct initial solution sinit

2: sbest := sinit

3: scurr := sinit

4: do
5: select removal operator rem
6: select insertion operator inst
7: select number of customers to be removed nrem

8: determine next solution snext := inst(rem(scurr, nrem))
9: check acceptance of snext

10: if snext is accepted then
11: scurr := snext

12: if f(scurr) < f(sbest) then
13: sbest := snext

14: end if
15: end if
16: if iterp reached then
17: update selection probabilities for insertion and removal heuristics
18: end if
19: while one stopping criterion is not met

5.1.1 Initial Solution

The initial solution sinit is constructed [1] with the Savings Heuristic developed by Clarke and
Wright (1964). Hereby, all routing (except S3) and loading constraints are obeyed. Based on this
feasible initial set of routes, the ALNS determines other feasible improved solutions.

5.1.2 Iteration

In each iteration of the ALNS, one removal rem and one insertion operator inst are randomly
chosen [5-6]. These are used to generate the next solution snext by removing a number of customers
nrem from the solution and reinserting them again [8]. The number of customers to be removed
nrem (nmin ≤ nrem ≤ nmax) is determined randomly [7]. Then, it is checked whether the generated
solution meets the routing constraints [9] described in Section 3. The packing procedure shown in
the next subsection is called here.

5.1.3 Evaluation Function

In order to evaluate different solutions and to lead the search, the following internal evaluation
function is defined. The evaluation function f for a solution s giving total routing costs is described

86

5 Hybrid Solution Approach

as follows:

f(s) = ttd(s) + penv · max(0, vused + |Nmiss| − vmax) +
Nmiss∑

i∈Nmiss

(c0,i + ci,0), (III.14)

where Nmiss is a set containing all customers that have not been dispatched yet, vmax is the
maximal number of available vehicles and vused the number of used vehicles. Each customer i,
which is not yet dispatched (i ∈ Nmiss), is assigned to one vehicle (round-trip) even if this leads to
an exceedence of the number of used vehicles. The penalty term penv is used to achieve a reduction
of used vehicles vused. Additionally, the total travel distance ttd(s) for a solution s is respected.

5.1.4 Solution Acceptance

A solution is regarded better the smaller its evaluation function value is. A better and feasible
solution is always accepted. A worse solution may be accepted [9] according to an acceptance
probability which depends on a Simulated Annealing Heuristic proposed by Kirkpatrick et al. (1983).
In particular, the acceptance probability is adapted to the annealing process with a geometric
cooling schedule. The best solution sbest is updated [13] if it has a superior evaluation function
value relative to the current solution scurr [12].

5.1.5 Removal and Insertion Operators

Table III.4 shows nine removal operators and Table III.5 summarises the three insertion approaches
used in this paper. We use the removal and insertion operators as described and evaluated in Koch
et al. (2018).

Table III.4: Overview Removal Operators
Neighborhood Operators Description
Shaw Removes related customers w.r.t. distance, demand, time windows
Random Removes random customers
Worst Removes customers increasing the total routing costs the most
Cluster Divides a random tour into two clusters and randomly removes one of

the cluster
Neighbour graph Removes customers increasing the average distance of a tour
Overlap Removes customers leading to intersection of two tours
Inner Route Removes a tour which is completely surrounded by another and splits

the surrounding tour into two
Intersection Removes customers leading to intersections within a tour
Tour Pair Removes two intersecting tours

Table III.5: Overview Insertion Operators
Neighborhood Operators Description
Greedy Inserts customers iteratively so that an increase of routing costs is

minimal
Regret-2 Inserts customers iteratively so that the maximal difference of routing

costs for the best and the second best insertion in different tours is
achieved.

Regret-3 Inserts customers iteratively so that the sum of two differences of routing
costs is maximal. The first difference is the routing cost for the best and
the second best insertion in different tours, while the second difference
results from the best and the third best insertion in different tours

After a defined number of iterations iterp, the selection probabilities for the removal and insertion
operators are adjusted [16-18] according to their improvement of the solution. This is described in
detail in the following section.

87

5 Hybrid Solution Approach

5.1.6 Operator Selection and Probability Adaption

The selection of the operators is accomplished by means of the roulette wheel selection principle.
Hereby, the probability to select one operator op is defined by their weighting wgop. Initially, all
operators have the same selection probability (wgop = 1).

The number of iterations is counted, in which the operator op

• is selected (counterop),

• is selected and led to a new best solution (iterbestop
),

• is selected and improved the current solution (iterimprop),

• is selected and led to a worse but not yet accepted solution or a solution as good as the
current solution (itereop

).

After a certain number of iterations iterp, the success of the operator is evaluated and described by
scoreop, which is calculated as follows:

scoreop = iterbestop
· ωbest + iterimprop

· ωimpr + itereop
· ωe. (III.15)

Hereby, ωbest, ωimpr and ωe are coefficients.
Then, the new weighting wgop can be calculated. A reaction factor r regulates the influence of the
adaptions:

wgop = wgop · (1 − r) + r · scoreop

counterop
(III.16)

Moreover, counterop, iterbestop
, iterimprop

and itereop
are reset to zero.

5.1.7 Stopping Criteria

If one of the following stopping criteria is met [19], the heuristic terminates, and the current best
known solution is given:

• number of total iterations itermax;

• number of iterations without improvement iterwimpr;

• calculation time limit tmax.

5.2 Packing Heuristic

As packing heuristic, we use the same approach as in Krebs and Ehmke (2021), which is based on
the Deepest-Bottom-Left-Fill (DBLF) algorithm proposed by Karabulut and İnceoğlu (2005). The
algorithm is detailed in Alg. III.2. The basic concept is to place the items as far as possible to the
back (first priority), to the bottom (second priority) and to the left (third priority) of the loading
space. The available free spaces in the vehicle’s loading space are stored in a list.
In the following, the point of origin of a Cartesian coordinate system is assumed to be located
in the deepest, bottom, leftmost point of the loading space. The driver’s cab is located behind
it accordingly. The length, width and height of the loading space are parallel to the x-, y- and
z-axes. The placement of an item Ii,k is defined by (xi,k, yi,k, zi,k) of the corner which is closest to
the point of origin.
Before starting the packing process, the items of each customer are sorted by means of the following
priorities:

1. fragility flag fi,k (non-fragile first)

2. volume (larger volume first)

3. length li,k (longer first)

4. width wi,k (wider first).

88

5 Hybrid Solution Approach

Algorithm III.2 Deepest-Bottom-Left-Fill with Spaces
Input: Instance data
Output: Feasibility, Packing Plan PPv

1: initialize sorted sequence of items IS
2: initialize set of unique available spaces S
3: for each item Ic ∈ IS do
4: for each space sp ∈ S do
5: for each permitted orientation do
6: if item Ic fits in space sp then
7: if placement is feasible w.r.t. the constraint set P then
8: save placement for Ic

9: create new spaces
10: sort spaces based on DBL
11: erase space sp
12: get smallest dimensions lmin and hmin of unplaced items ∈ IS
13: for each space si ∈ S do
14: update space si
15: if si too small then
16: erase space si
17: end if
18: end for
19: break
20: end if
21: end if
22: end for
23: end for
24: if no feasible position found then
25: return false
26: end if
27: end for
28: return true

Then, the items are added to the packing sequence IS reversed to the customer’s visiting order [1].
Let S be the set of unique cuboids representing available free spaces for placing items. Initially, the
set consists of one potential space, which corresponds to the entire loading space [2]. Therefore,
the first item of the packing sequence is placed in the origin. The potential spaces of the set S are
always sorted based on the DBL-rule [10]. Thus, an item is placed in the deepest, bottom, leftmost
point of the space. For each item Ic (c = 1, ..., |IS|), a feasible placement is determined [3]. For
this purpose, each space sp of the set is tested as possible item position [5] until a feasible position
is found obeying all loading constraints of the loading set P [7-8]. In comparison to Karabulut
and İnceoğlu (2005), the set S does not contain all available placements inside the loading space.
Rather, three new spaces (front, right, top) are created based on the feasible item placement [9].

(a) Front Space (b) Right Space (c) Top Space

Figure III.11: New Spaces based on I3,1

The front (right, top) space is defined by the item’s front (right, top) edge and either the door
(wall, ceiling) or the nearest item in front (rightmost, topmost) of the item. Then, the minimum

89

6 Computational Studies

and maximum values for the y-(x, y) and z-axis (z, x) limited by the loading space or other items
are searched. Fig. III.11 shows these three created spaces exemplary based on item I3,1. Additional
three spaces are created if they are unique: Another front and right space, where the minimum
z-value represents the bottom edge of item Ic, and another top space, where the minimum x-value
is the deepest edge of item Ic. The new spaces (front, right, top) are included in the set.
After each feasible placement of an item Ic, the available spaces are updated [13-14], which means
that all available spaces are checked w.r.t. an intersection with item Ic. If one or more spaces
intersect with item Ic, then these spaces are decreased so that no intersection occurs. Therefore, if
an item can be placed within an available space, it is guaranteed that the item does not overlap
with other items or with the vehicle’s walls (Geometry constraint (C1)). In contrast to the approach
by Karabulut and İnceoğlu (2005), an overlapping check between each item is not necessary for this
approach, which improves the performance.
The used space is removed from the set [11]. To increase the efficiency of the packing heuristic and
to reduce the number of spaces in the set, only spaces which are large and high enough for the
smallest dimensions of any unplaced item of the route are inserted in the set S. Therefore, the
shortest length or width lmin and height hmin of any unplaced item of the route are searched [12].
Due to the permitted rotations, only the two measures lmin and hmin are relevant. If the length
or height of any space in the set is smaller than lmin or hmin, the space is removed from the set
[15-17]. Then, a placement for the next item is searched [19].
If no feasible position for the item can be found, the route is revised, and a new one must be
searched by the ALNS [24-26].

6 Computational Studies

In this section, we investigate the solution quality and the performance of the hybrid algorithm in the
context of advanced loading constraints. We use well-known instance sets and investigate the impact
of the proposed loading constraints on the objective values by means of a new instance set. All re-
sults along with detailed packing plans are available via https://github.com/CorinnaKrebs/Results.

The hybrid algorithm is implemented in C++ as single-core, x64-application and is compiled using
the GCC version 4.8.3, compiler. The experiments were executed on a High Performance Cluster,
Haswell-16-Core with 2.6 GHz.

6.1 Parameters

The parameters for the loading constraints (see Section 4) and for the routing heuristic (see
Section 5) are listed in Table III.6. Regarding the parameters for the routing heuristic, we
performed a preliminary study to tune the parameters. As the evaluation showed, the best results
were obtained by the parameters as described in Koch et al. (2018) and therefore, these parameters
were set. The parameters for the loading constraints are those used in the literature so far.

6.2 Instances

For our computational study, we use the instance sets by Moura and Oliveira (2009), Ceschia et al.
(2013) and Zhang et al. (2017). Moreover, a new instance set consisting of 600 instances is created.
The characteristics of the instance sets are shown in Table III.7. Our new instance set is available
via https://doi.org/10.24352/UB.OVGU-2020-139.
The instances vary in the number of customers, items and item types. They either have 20, 60
or 100 customers, which demand either 200 or 400 items in total. These items differ in their
homogeneity: Either there are only three item types (very homogeneous), 10 item types or 100
different item types (very heterogeneous). For realistic item masses, we analysed 12.000 products
from a Swedish furniture company which offers products of different categories among other
housewares, decorative articles and groceries. The densities of these products vary mainly between
0.5 and 1.5 kg/dm3. So the densities for the items are assigned by choosing a value randomly
within this interval. Thereby, it is considered that the total mass for one customer is less than the

90

https://github.com/CorinnaKrebs/Results
 https://doi.org/10.24352/UB.OVGU-2020-139

6 Computational Studies

Table III.6: Routing and Loading Parameters

Parameter Usage Description Value
itermax Stopping Criterion Maximal number of iterations 25,000
iterwimpr Stopping Criterion Maximal number of iterations

without improvement
8,000

tmax Stopping Criterion Time limit [min] 60
iterp ALNS Number of iterations for up-

dating probabilities for re-
moval and insertion operators

100

ωbest ALNS Coefficient for determination
of the operator score, weight-
ing the influence of finding new
best solutions

50

ωimpr ALNS Coefficient for determination
of the operator score, weight-
ing the influence of finding im-
proved solutions

10

ωe ALNS Coefficient for determination
of the operator score, weight-
ing the influence of finding
worse, not yet accepted solu-
tions or solutions as good as
the current solution

5

r ALNS Reaction factor 0.8
nmin ALNS Number of minimal customers

to be removed from a route
0.04n

nmax ALNS Number of maximal customers
to be removed from a route

0.4n

dmax Evaluation Function Maximal distance between two
customers in instance

maxi,j∈N di,j

penv Evaluation Function Penalty term for each surplus
vehicle

10 · dmax

α Vertical Stability Minimal supporting ratio 0.75, 1.00
λ Reachability Minimal distance to reach an

item [dm]
5

p Balanced Loading Maximal mass ratio of vehi-
cle’s capacity for one vehicle
side

0.7

vehicle load capacity D, since a customer can only be served by a vehicle (see constraints S1 and C4).

The fragility flag is set randomly to the items, where approx. 30% are fragile. To define the
parameters for the load bearing strength, the formula by Ratcliff, S. M. W., and Bischoff, E.
E. (1998) is used. For each item, a value r is determined depending on the fragility flag: If an
item is fragile, then the value r is randomly chosen in the interval [1.0, 2.0]. Otherwise, r lays in
the interval [1.0, 5.0]. Then, over all items, the value max

mi,k

mi,k·li,k
is searched and for each item

multiplied by r.
To ensure a realistic proportion between vehicle load capacity and axle weights, parameters from
the two-axle truck ML180 by IVECO were chosen, which has a maximum payload of 12.595 kg.

91

6 Computational Studies

Table III.7: Overview of Instance Sets
author Problem # n m
Ceschia et al. (2013) 3L-CVRP 13 [13, 129] [254, 8060]
Moura and Oliveira (2009) 3L-VRPTW 46 25 1050, 1550
Zhang et al. (2017) 3L-VRPTW 27 [15, 100] [26, 199]
This paper 3L-VRPTW 600 20, 60, 100 200, 400

Then, a proportional factor pr was calculated on the basis of the vehicle load capacity D of an
instance and the maximum payload of the IVECO truck. Thus, the following applies: pr = D

12595 .
The axle weights for the front and the rear axle were then proportionally scaled on the basis of pr.

6.3 Evaluation of Hybrid Algorithm

This section deals with the evaluation of the hybrid algorithm concerning its solution quality and
performance. Hereby, we use our instance set and the benchmark instances by Ceschia et al. (2013),
Zhang et al. (2017), and Moura and Oliveira (2009). Every instance is tested five times. We present
summarized results. The more detailed results are presented in the appendix and are available via
https://github.com/CorinnaKrebs/Results. Note again that smaller objective values (vused and
ttd) represent better results.

Table III.8: Comparison best and average results for P1, our Instances
best average Difference

sum vused sum ttd avg. time sum vused sum ttd avg. time vused ttd time
n

20 503.00 52,742.06 2,023.92 505.80 52,837.07 2,035.13 0.56% 0.18% 0.55%
60 3,506.00 291,080.57 2,003.48 3,548.40 292,496.96 1,996.96 1.21% 0.49% -0.33%
100 4,007.00 364,642.68 2,331.85 4,075.60 366,081.91 2,328.51 1.71% 0.39% -0.14%

m
200 3,052.00 300,443.12 1,702.83 3,089.60 301,415.49 1,699.53 1.23% 0.32% -0.19%
400 4,964.00 408,022.19 2,575.00 5,040.20 410,000.45 2,574.90 1.54% 0.48% 0.00%

item
types 3 2,523.00 225,549.08 1,725.60 2,550.00 226,265.32 1,729.26 1.07% 0.32% 0.21%

10 2,671.00 236,649.38 2,311.98 2,717.00 237,720.68 2,304.15 1.72% 0.45% -0.34%
100 2,822.00 246,266.85 2,379.17 2,862.80 247,429.94 2,378.23 1.45% 0.47% -0.04%

Total 8,016.00 708,465.31 2,138.92 8,129.80 711,415.94 2,137.22 1.42% 0.42% -0.08%

In Table III.8, we compare the received best and average results based on the basic constraint
set used in Gendreau et al. (2006). On average, the difference between best and average for
the number of vehicles is 1.42%, for the total travel distance only 0.42%. The results show a
tendency that the more difficult the instances are (more customers or items), the higher the
deviation between best and average results for the objective values. Therefore, we see poten-
tial for improvement as the hybrid algorithm should achieve an average deviation of only 1% at most.

The following Table III.9 presents the best results per instance set.

Table III.9: Summarized Best Results for Instance Sets
Benchmark Results Our best Results
sum vused sum ttd sum vused sum ttd avg. time[s] diff. vused diff. ttd

Ceschia et al. (2013) 150 122,678.60 121 108,110.62 3,600.00 -19.33% -11.87%
Zhang et al. (2017) 383 26,074.94 294 21,039.00 469.70 -23.24% -19.31%

sum vused avg. ttd sum vused avg. ttd avg. time [s] diff. vused diff. ttd
Moura and Oliveira
(2009)

247 548.5 297 536.66 3,258.14 20.24% -2.16%

Concerning the Ceschia et al. (2013) instances, some of the instances require split delivery or
feature a heterogeneous vehicle fleet. Excluding these instances, seven instances remain. Ceschia
et al. (2013) have a maximum time limit varying between 300 and 10000 seconds. In contrast, the
calculation time limit for our computational tests is only 3600 seconds. The results are based on

92

https://github.com/CorinnaKrebs/Results

6 Computational Studies

the basic constraint set. The hybrid algorithm achieves clearly better results than the benchmark
for nearly all instances (except SD-CSS04). On average, 19.33% less vehicles are used and the total
travel distance decreases by 11.87%. Moreover, a shorter calculation time is required.
For the Zhang et al. (2017) instances tested with the basic constraint set, the hybrid algorithm
achieves a reduction of 23.24% used vehicles and a reduction of the total travel distance by 19.31%,
on average. Moreover, the presented hybrid algorithm achieves the results with half of the calculation
times compared to the benchmark. In case of the Moura and Oliveira (2009) instances, the instances
do not provide any item masses, vehicle load capacities or fragility flags. Moreover, fully support of
items is required (α = 1) and we only rotate the items along the length-width plane. The currently
best-known results are received by Reil et al. (2018). In comparison to the benchmark, the number
of used vehicles increases by 20.24%, while the total travel distance decreases by 2.16%. The reason
for these results is that we cannot use all rotation possibilities and only a small amount of iterations
are conducted due to the high number of items per vehicle. We see potential for improvements of
our hybrid algorithm to be able to compete with these instances.
To summarize, the hybrid algorithm finds new best results for two of three benchmark
instances. In case of a high number of items per vehicle, the hybrid algorithm is not competitive
so that we need to address this in our further research.

6.4 Evaluation of Loading Constraints

The following subsections analyse the impact of the different loading constraints on the objective
values.

6.4.1 Constraint Sets

In order to evaluate the impact of the new loading constraints in a systematical way, one new
constraint is either replaced or added based on the basic constraint set P1. The last constraint
set is a combination of the most restrictive ones. Table III.10 shows the loading constraints as
considered in each set. Details are as follows:

1. Replacing: The constraint sets P2–P6 are created by replacing one definition or implementation
variant with another.

2. Adding: The constraint sets P7–P9 are generated by adding further loading constraints to P1.

3. Combination: The constraint set P10 is a combination of replacing and adding of loading
constraints.

Table III.10: Overview of Constraints Sets
Constraints Constraints Sets P

basic Replacing Adding Com.
1 2 3 4 5 6 7 8 9 10

C1 Geometry ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
C2 Orthogonality ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
C3 Rotation ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
C4 Load Capacity ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
C5a LIFO ✓ 2 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
C5b MLIFO 2�
C6a Minimal Supporting Area ✓ ✓ 2 2 ✓ ✓ ✓ ✓ ✓ 2
C6b1 Multiple Overhanging 2�
C6b2 Top Overhanging 2� 2�
C7a Fragility ✓ ✓ ✓ ✓ 2 2 ✓ ✓ ✓ 2
C7b1 LBS – Simplified Selection 2�
C7b2 LBS – Complete Selection 2� 2�
C8 Reachability 2� 2�
C9 Axle Weights 2� 2�
C10 Balanced Loading 2� 2�

✓: included in P1; □: removed compared to P1; 2�: additional compared to P1

93

6 Computational Studies

6.4.2 Results

For the analysis of the loading constraints, we use our new instance set to enable comparison
concerning the number of customers (n), items (m) and item types. Every instance is tested five
times for each constraint set. In sum, our analysis is based on 30’000 results (600 instances, 10
constraint sets, 5 runs). In the following Table III.11, we report the average results and calculate
the percentage difference to the basic constraint set P1. Note again that smaller objective values
(vused and ttd) represent better results.

The impact of the MLIFO constraint (C5b) is evaluated by set P2. Compared to the LIFO
constraint (C5a), on average, the objective values decrease slightly by around 0.2%. The solution
space of the MLIFO constraint (C5b) is larger; contrasting our expectations, a significant influence
of an increasing number of customers, items or item types on the objective values is not evident,
though. To be more flexible in the handling of items, we recommend to rely further on
the LIFO (C5a) constraint.

The Robust Stability (sets P3 and P4) reduces the solution space due to its more stable definition
in comparison to the Minimal Supporting Area definition. Thus, the constraints lead to a notable
increase of the objective values and the calculation time. In case of Multiple Overhanging, the
number of used vehicles rise by 10.80%, the total travel distance by 8.27%, on average. Since the
Top Overhanging is more restrictive, the number of used vehicles increases by additional 4.16%
points, the total travel distance by 2.66% points, on average. For both variants, the calculation
time increases by around 60%. Moreover, the more heterogeneous the items are (more item types),
the more the objective values rise, since homogeneous item stacks items do not overhang and
therefore, the constraint is fulfilled. Another aspect is the calculation time. In case of instances
with 200 items, the calculation time increases by around 97%. In contrast, the increase for instances
with 400 items is only around 37%. The explanation is as follows: In general, the higher the
number of items, the higher the calculation time and the smaller the difference to the maximum
calculation time. In case of the Robust Stability, the maximum calculation time is exploited for
most instances and therefore also for those, which had a small calculation time for the basic set P1.
We recommend using the Top Overhanging constraint since its more stable definition.

The constraint sets P5 and P6 deal with the impact of the Load Bearing Strength constraint. In
general, the Simplified and the Complete Selection variants lead to comparable objective values.
On average, the number of used vehicles increases by approx. 3.2% (vused), the total travel distance
by approx. 2.6% for both approaches. The objective values of some instances are even smaller
since the Fragility constraint (C7a) is more restrictive than the Load Bearing Strength in this case.
Since the load of items is calculated for the entire stack starting from the last placed item to the
vehicle floor, the calculation time increases rapidly due to the algorithmic complexity (on average
by around 29%) and also the objective values increase with the number of items. Interestingly,
the objective values decrease with the number of customers. An explanation could be that with a
lower number of customers, a higher number of items per customer is demanded. Since all items
of a customer have to be packed into a vehicle, more items are stacked on top of each other, so
that the limit values for the LBS are reached. Furthermore, our results show that a higher number
of item types has a positive effect on the objective values. The reason is that with homogeneous
item stacks, the load is distributed over fewer items. Since both variants lead to similar
results and due to the fact that the Complete Selection variant is more realistic, we
recommend using the Complete Selection.

The Reachability constraint (C8), evaluated by set P7, leads to an increase of the number of used
vehicles by 4.06% and the total travel distance by 2.80%, on average. However, the constraint has
almost no effect on the objective values for half of the instances. A higher number of items or
item types leads to an increase of the objective values by some percent points, because in case of
heterogeneous items or of overall more items, it is more likely that the items block the way. As the
constraint has rather small impacts and avoids unnecessary rearrangements of items
during unloading, it is recommended to take it into account in practically-oriented

94

6 Computational Studies

Table III.11: Deviation to P1 per Constraint Set, Average Results

n
m

it
em

ty
pe

s
T

ot
al

20
60

10
0

20
0

40
0

3
10

10
0

P
1

–
su

m
v u

s
e
d

50
5.

80
3,

54
8.

40
4,

07
5.

60
3,

08
9.

60
5,

04
0.

20
2,

55
0.

00
2,

71
7.

00
2,

86
2.

80
8,

12
9.

80
B

as
ic

su
m

tt
d

52
,8

37
.0

7
29

2,
49

6.
96

36
6,

08
1.

91
30

1,
41

5.
49

41
0,

00
0.

45
22

6,
26

5.
32

23
7,

72
0.

68
24

7,
42

9.
94

71
1,

41
5.

94
av

g.
ti

m
e

[s]
2,

03
5.

13
1,

99
6.

96
2,

32
8.

51
1,

69
9.

53
2,

57
4.

90
1,

72
9.

26
2,

30
4.

15
2,

37
8.

23
2,

13
7.

22

P
2

–
di

ff.
v u

s
e
d

0.
24

%
-0

.3
2%

-0
.2

0%
-0

.2
8%

-0
.1

9%
-0

.1
9%

-0
.2

2%
-0

.2
6%

-0
.2

2%
M

LI
FO

di
ff.

tt
d

0.
14

%
-0

.2
2%

-0
.0

1%
-0

.0
8%

-0
.0

9%
0.

05
%

-0
.1

7%
-0

.1
3%

-0
.0

9%
di

ff.
ti

m
e

[s]
0.

70
%

1.
76

%
0.

32
%

1.
80

%
0.

36
%

1.
11

%
0.

20
%

1.
51

%
0.

93
%

P
3

–
di

ff.
v u

s
e
d

1.
70

%
9.

10
%

13
.4

0%
12

.3
3%

9.
86

%
6.

60
%

11
.6

5%
13

.7
3%

10
.8

0%
M

ul
ti

pl
e

di
ff.

tt
d

1.
64

%
8.

40
%

9.
13

%
8.

97
%

7.
76

%
5.

47
%

8.
65

%
10

.4
7%

8.
27

%
O

ve
rh

an
gi

ng
di

ff.
ti

m
e

[s]
41

.8
3%

78
.2

4%
54

.6
1%

96
.9

3%
37

.2
9%

96
.7

8%
47

.1
3%

48
.4

4%
61

.0
1%

P
4

–
di

ff.
v u

s
e
d

7.
55

%
13

.4
3%

17
.2

1%
15

.5
6%

14
.6

0%
7.

24
%

14
.6

5%
22

.1
4%

14
.9

6%
T

op
di

ff.
tt

d
4.

01
%

11
.2

0%
11

.7
1%

10
.8

6%
10

.9
8%

5.
79

%
10

.9
6%

15
.6

0%
10

.9
3%

O
ve

rh
an

gi
ng

di
ff.

ti
m

e
[s]

44
.0

0%
78

.1
6%

54
.4

8%
97

.8
6%

37
.2

2%
96

.9
4%

47
.0

7%
49

.2
5%

61
.3

3%

P
5

–
di

ff.
v u

s
e
d

8.
19

%
2.

90
%

3.
15

%
2.

50
%

3.
88

%
6.

64
%

3.
26

%
0.

52
%

3.
35

%
LB

S
di

ff.
tt

d
4.

17
%

2.
39

%
2.

73
%

1.
90

%
3.

28
%

4.
67

%
2.

48
%

1.
09

%
2.

69
%

Si
m

pl
e

di
ff.

ti
m

e
[s]

33
.6

8%
35

.5
0%

23
.0

2%
39

.2
3%

23
.4

3%
51

.9
4%

22
.2

6%
20

.7
7%

29
.7

1%

P
6

–
di

ff.
v u

s
e
d

6.
84

%
2.

69
%

3.
05

%
2.

30
%

3.
63

%
6.

20
%

2.
89

%
0.

62
%

3.
13

%
LB

S
di

ff.
tt

d
3.

92
%

2.
14

%
2.

52
%

1.
76

%
2.

98
%

4.
43

%
2.

19
%

0.
93

%
2.

47
%

C
om

pl
et

e
di

ff.
ti

m
e

[s]
33

.8
8%

35
.8

2%
22

.7
4%

38
.6

8%
23

.8
6%

52
.2

8%
22

.0
2%

20
.8

6%
29

.7
5%

P
7

–
di

ff.
v u

s
e
d

1.
86

%
4.

74
%

3.
73

%
3.

35
%

4.
49

%
2.

66
%

4.
22

%
5.

15
%

4.
06

%
R

ea
ch

ab
ili

ty
di

ff.
tt

d
1.

21
%

3.
17

%
2.

73
%

2.
14

%
3.

28
%

1.
91

%
2.

88
%

3.
53

%
2.

80
%

di
ff.

ti
m

e
[s]

7.
26

%
7.

48
%

5.
04

%
9.

89
%

4.
06

%
6.

93
%

3.
87

%
8.

40
%

6.
38

%

P
8

–
di

ff.
v u

s
e
d

1.
23

%
4.

08
%

2.
05

%
2.

80
%

2.
93

%
2.

79
%

2.
94

%
2.

91
%

2.
88

%
A

xl
e

W
ei

gh
ts

di
ff.

tt
d

0.
61

%
2.

95
%

1.
18

%
1.

90
%

1.
84

%
1.

88
%

1.
89

%
1.

84
%

1.
87

%
di

ff.
ti

m
e

[s]
-4

2.
53

%
-2

4.
94

%
-7

.8
3%

-3
1.

01
%

-1
4.

11
%

-2
3.

71
%

-2
0.

65
%

-1
8.

92
%

-2
0.

83
%

P
9

–
di

ff.
v u

s
e
d

1.
23

%
4.

22
%

2.
08

%
3.

05
%

2.
90

%
2.

87
%

2.
80

%
3.

19
%

2.
96

%
B

al
an

ce
d

di
ff.

tt
d

0.
61

%
2.

78
%

1.
11

%
1.

86
%

1.
68

%
1.

88
%

1.
56

%
1.

83
%

1.
76

%
Lo

ad
di

ff.
ti

m
e

[s]
-4

2.
86

%
-2

4.
08

%
-6

.6
1%

-2
9.

43
%

-1
3.

85
%

-2
5.

13
%

-1
8.

74
%

-1
7.

61
%

-2
0.

04
%

P
10

–
di

ff.
v u

s
e
d

23
.1

3%
23

.8
3%

25
.1

0%
23

.8
0%

24
.8

0%
20

.9
3%

23
.6

7%
28

.2
4%

24
.4

2%
C

om
bi

na
ti

on
di

ff.
tt

d
10

.5
2%

17
.9

9%
17

.4
3%

15
.5

0%
18

.3
6%

14
.4

4%
16

.8
8%

19
.8

8%
17

.1
5%

di
ff.

ti
m

e
[s]

54
.2

3%
77

.6
7%

54
.4

5%
10

1.
39

%
37

.8
0%

99
.2

9%
50

.3
5%

49
.1

0%
63

.0
8%

95

7 Conclusions and Future Work

VRP computations.

The sets P8 and P9 deal with the effects of distributed masses. The Axle Weights constraint (C9)
distributes the masses in the vehicle along the x-axis, while the load is balanced along the y-axis in
the Balanced Loading constraint (C10). For the majority of instances, the objective values remain
unchanged or increase by only a few percent. On average, the number of used vehicles increase
by around 2.9%, the total travel distance by approx. 1.8%. Moreover, there is a positive effect
on the calculation time, which is reduced by around 20%. A correlation between objective values
and the number of customers, items and item types is not apparent. Due to the small impact
on the objective values, the positive effects on the calculation time and the great
safety relevance in traffic, considering both constraints makes sense if the appropriate
information is available.

Since P10 contains all new complex constraints, the objective values clearly deteriorate, whereby
the number of used vehicles increases more (24.42%) than the total travel distance (17.15%), on
average. A comparison with the previous results reveals that a combination of several loading
constraints leads to a deterioration of the objective values but not to the extent that the sum of
the deteriorations would result from individually investigated constraints. The same applies for the
calculation time.

Finally, regarding the results of all loading constraints, a correlation between an increasing number
of customers or items and the objective values is not evident. However, an increase of the number
of item types and therefore an increase of the degree of heterogeneity tends to be correlated with
an increase of the objective values except for the Load Bearing Strength constraints, where the
load can be better distributed along heterogeneous items.

7 Conclusions and Future Work

This paper continues the research on the combined Vehicle Routing Problem and 3D Loading
(3L-CVRP) introduced by Gendreau et al. (2006) and the extended problem with the consideration
of Time Windows (3L-VRPTW). In our implementation, the possible placement of items is
represented by free spaces inside the vehicle’s loading space improving the performance of the
algorithm. For a more realistic modelling, new loading constraints are introduced. Since the common
definition of stability leads to unstable stacks, the Robust Stability is investigated by means of two
implementation variants. In the first one, items of a stack are allowed to overhang when respecting
a minimal supporting area at any height (Multiple Overhanging). In the second variant, only the
topmost item of a stack is allowed to overhang (Top Overhanging). Moreover, instead of a simple
fragility flag grouping items in fragile and non-fragile ones, the load per area unit for each item is
considered. For this Load Bearing Strength constraint, also two implementation variants (simplified
and complete) are investigated. Additionally, constraints regarding the reachability of items, the
axle weights and the balanced loading inside the vehicle are considered as well as the Manual LIFO
by Tarantilis et al. (2009). The solution quality and the performance of our hybrid algorithm is
evaluated by using well-known instances by Moura and Oliveira (2009), Ceschia et al. (2013) and
Zhang et al. (2017). For the latter two instance sets, the presented algorithm performs better than
the benchmarks.
The impact of the loading constraints on the objective values (number of used vehicles and total
travel distance) is tested by 600 new instances varying in the number of customers, items and
item types. In most cases, the Manual LIFO constraint has no influence on the objective values.
Both variants for the Load Bearing Strength constraint lead to comparable results. Therefore, the
usage of the realistic “complete" variant instead of the simplified one is recommended. In case of
the Robust Stability, we recommend using the Top Overhanging variant since it achieves higher
stability of the stacks. The axle weights and the balanced loading constraints only lead to small
increases of the objective values and even decrease the calculation time. Since they increase the
vehicle stability and thus the safety, we recommend to investigate these further in future research.
The same applies to the reachability constraint, which prevents unnecessary rearrangements during
unloading. Furthermore, our investigations showed that when combining complex constraints,

96

References

the results deteriorate, but not to the extent that the sum of the deterioration would result from
individually investigated constraints. As future work, we suggest to improve the performance of
the hybrid algorithm and of the complex loading constraints. Furthermore, we plan to determine
the influence of the individual neighborhood operators on the results as well as impact of instance
features on the packing algorithm.

Conflict of interest

The authors declare that they have no conflict of interest.

References

Baker, B., Coffman, E., and Rivest, R. (1980). “Orthogonal Packings in Two Dimensions”. In:
SIAM Journal on Computing vol. 9, no. 4, pp. 846–855. doi: 10.1137/0209064.

Bischoff, E. E. (2003). “Dealing with Load Bearing Strength Considerations in Container Loading
Problems”. In.

Bischoff, E. E. and Ratcliff, M. S. W. (1995). “Issues in the development of approaches to container
loading”. In: Omega vol. 23, no. 4, pp. 377–390. issn: 03050483. doi: 10.1016/0305-0483(95)00015-
G.

Bortfeldt, A. (2012). “A hybrid algorithm for the capacitated vehicle routing problem with three-
dimensional loading constraints”. In: Computers and Operations Research vol. 39, no. 9, pp. 2248–
2257. issn: 03050548. doi: 10.1016/j.cor.2011.11.008. url: http://dx.doi.org/10.1016/j.cor.2011.
11.008.

Ceschia, S., Schaerf, A., and Stützle, T. (2013). “Local search techniques for a routing-packing
problem”. In: Computers and Industrial Engineering vol. 66, no. 4, pp. 1138–1149. issn: 0360-
8352. doi: https://doi.org/10.1016/j.cie.2013.07.025. url: http://www.sciencedirect.com/
science/article/pii/S0360835213002404.

Clarke, G. and Wright, J. W. (1964). “Scheduling of Vehicles from a Central Depot to a Number of
Delivery Points”. In: Operations Research vol. 12, no. 4, pp. 568–581. issn: 0030364X, 15265463.
doi: 10.1287/opre.12.4.568. url: http://www.jstor.org/stable/167703.

Fuellerer, G., Doerner, K. F., Hartl, R. F., and Iori, M. (2009). “Ant colony optimization for the
two-dimensional loading vehicle routing problem”. In: Computers and Operations Research
vol. 36, no. 3, pp. 655–673. issn: 03050548. doi: 10.1016/j.cor.2007.10.021.

— (2010). “Metaheuristics for vehicle routing problems with three-dimensional loading constraints”.
In: European Journal of Operational Research vol. 201, no. 3, pp. 751–759. issn: 0377-2217. doi:
https://doi.org/10.1016/j.ejor.2009.03.046. url: http://www.sciencedirect.com/science/article/
pii/S0377221709002252.

Gendreau, M., Iori, M., Laporte, G., and Martello, S. (2006). “A Tabu Search Algorithm for a
Routing and Container Loading Problem”. In: Transportation Science vol. 40, no. 3, pp. 342–350.
issn: 0041-1655. doi: 10.1287/trsc.1050.0145. url: http://pubsmisc.informs.org/doi/abs/10.
1287/trsc.1050.0145.

Junqueira, L., Oliveira, J. F., Carravilla, M. A., and Morabito, R. (2013). “An optimization
model for the vehicle routing problem with practical three-dimensional loading constraints”.
In: International Transactions in Operational Research vol. 20, no. 5, pp. 645–666. doi: https:
//doi.org/10.1111/j.1475-3995.2012.00872.x. eprint: https://onlinelibrary.wiley.com/doi/pdf/10.
1111/j.1475-3995.2012.00872.x. url: https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1475-
3995.2012.00872.x.

Karabulut, K. and İnceoğlu, M. M. (2005). “A Hybrid Genetic Algorithm for Packing in 3D with
Deepest Bottom Left with Fill Method”. In: Advances in Information Systems. Ed. by Yakhno,
T. Berlin, Heidelberg: Springer Berlin Heidelberg, pp. 441–450. isbn: 978-3-540-30198-1.

Kirkpatrick, S., Gelatt, C. D., and Vecchi, M. P. (1983). “Optimization by simulated annealing.”
In: Science vol. 220 4598, pp. 671–80. doi: 10.1126/science.220.4598.671.

Koch, H., Bortfeldt, A., and Wäscher, G. (Feb. 2018). “A hybrid algorithm for the vehicle routing
problem with backhauls, time windows and three-dimensional loading constraints”. In: OR
Spectrum vol. 40. doi: 10.1007/s00291-018-0506-6.

97

https://doi.org/10.1137/0209064
https://doi.org/10.1016/0305-0483(95)00015-G
https://doi.org/10.1016/0305-0483(95)00015-G
https://doi.org/10.1016/j.cor.2011.11.008
http://dx.doi.org/10.1016/j.cor.2011.11.008
http://dx.doi.org/10.1016/j.cor.2011.11.008
https://doi.org/https://doi.org/10.1016/j.cie.2013.07.025
http://www.sciencedirect.com/science/article/pii/S0360835213002404
http://www.sciencedirect.com/science/article/pii/S0360835213002404
https://doi.org/10.1287/opre.12.4.568
http://www.jstor.org/stable/167703
https://doi.org/10.1016/j.cor.2007.10.021
https://doi.org/https://doi.org/10.1016/j.ejor.2009.03.046
http://www.sciencedirect.com/science/article/pii/S0377221709002252
http://www.sciencedirect.com/science/article/pii/S0377221709002252
https://doi.org/10.1287/trsc.1050.0145
http://pubsmisc.informs.org/doi/abs/10.1287/trsc.1050.0145
http://pubsmisc.informs.org/doi/abs/10.1287/trsc.1050.0145
https://doi.org/https://doi.org/10.1111/j.1475-3995.2012.00872.x
https://doi.org/https://doi.org/10.1111/j.1475-3995.2012.00872.x
https://onlinelibrary.wiley.com/doi/pdf/10.1111/j.1475-3995.2012.00872.x
https://onlinelibrary.wiley.com/doi/pdf/10.1111/j.1475-3995.2012.00872.x
https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1475-3995.2012.00872.x
https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1475-3995.2012.00872.x
https://doi.org/10.1126/science.220.4598.671
https://doi.org/10.1007/s00291-018-0506-6

References

Krebs, C. and Ehmke, J. F. (2021). “Axle Weights in combined Vehicle Routing and Container
Loading Problems”. In: EURO Journal on Transportation and Logistics vol. 10, p. 100043. issn:
2192–4376. doi: https://doi.org/10.1016/j.ejtl.2021.100043. url: https://www.sciencedirect.
com/science/article/pii/S2192437621000157.

Lodi, A., Martello, S., and Vigo, D. (Nov. 1999). “Heuristic and Metaheuristic Approaches for a
Class of Two-Dimensional Bin Packing Problems”. In: INFORMS Journal on Computing vol. 11,
no. 4, pp. 345–357. doi: 10.1287/ijoc.11.4.345. url: https://ideas.repec.org/a/inm/orijoc/
v11y1999i4p345-357.html.

Mak-Hau, V., Moser, I., and Aleti, A. (2018). “An Exact Algorithm for the Heterogeneous Fleet
Vehicle Routing Problem with Time Windows and Three-Dimensional Loading Constraints”.
In: Data and Decision Sciences in Action. Ed. by Sarker, R., Abbass, H. A., Dunstall, S.,
Kilby, P., Davis, R., and Young, L. Cham: Springer International Publishing, pp. 91–101. isbn:
978-3-319-55914-8. doi: 10.1007/978-3-319-55914-8.

Moura, A. (2008). “A Multi-Objective Genetic Algorithm for the Vehicle Routing with Time
Windows and Loading Problem”. In: Intelligent Decision Support: Current Challenges and
Approaches. Ed. by Bortfeldt, A., Homberger, J., Kopfer, H., Pankratz, G., and Strangmeier, R.
Wiesbaden: Gabler, pp. 187–201. isbn: 978-3-8349-9777-7. doi: 10.1007/978-3-8349-9777-7.
url: https://doi.org/10.1007/978-3-8349-9777-7.

Moura, A. and Oliveira, J. F. (Oct. 2009). “An integrated approach to the vehicle routing and
container loading problems”. In: OR Spectrum vol. 31, no. 4, pp. 775–800. issn: 1436-6304. doi:
10.1007/s00291-008-0129-4. url: https://doi.org/10.1007/s00291-008-0129-4.

Pace, S., Turky, A., Moser, I., and Aleti, A. (2015). “Distributing Fibre Boards: A Practical
Application of the Heterogeneous Fleet Vehicle Routing Problem with Time Windows and
Three-dimensional Loading Constraints”. In: Procedia Computer Science vol. 51. International
Conference On Computational Science, ICCS 2015, pp. 2257–2266. issn: 1877-0509. doi: 10.1016/
j.procs.2015.05.382. url: http://www.sciencedirect.com/science/article/pii/S1877050915011904.

Ratcliff, S. M. W., and Bischoff, E. E. (Feb. 1998). “Allowing for weight considerations in container
loading”. In: OR Spectrum vol. 20, pp. 65–71. doi: 10.1007/s002910050053.

Reil, S., Bortfeldt, A., and Mönch, L. (2018). “Heuristics for vehicle routing problems with backhauls,
time windows, and 3D loading constraints”. In: European Journal of Operational Research
vol. 266, no. 3, pp. 877–894. issn: 0377-2217. doi: https://doi.org/10.1016/j.ejor.2017.10.029.
url: http://www.sciencedirect.com/science/article/pii/S0377221717309426.

Ropke, S. and Pisinger, D. (2006). “A unified heuristic for a large class of Vehicle Routing Problems
with Backhauls”. In: European Journal of Operational Research vol. 171, no. 3. Feature Cluster:
Heuristic and Stochastic Methods in Optimization Feature Cluster: New Opportunities for
Operations Research, pp. 750–775. issn: 0377-2217. doi: 10.1016/j.ejor.2004.09.004. url:
http://www.sciencedirect.com/science/article/pii/S0377221704005831.

Solomon, M. M. (1987). “Algorithms for the Vehicle Routing and Scheduling Problems with Time
Window Constraints”. In: Operations Research vol. 35, no. 2, pp. 254–265. doi: 10.1287/opre.
35.2.254.

Tarantilis, C. D., Zachariadis, E. E., and Kiranoudis, C. T. (June 2009). “A Hybrid Metaheuristic
Algorithm for the Integrated Vehicle Routing and Three-Dimensional Container-Loading
Problem”. In: IEEE Transactions on Intelligent Transportation Systems vol. 10, no. 2, pp. 255–
271. issn: 1524-9050. doi: 10.1109/TITS.2009.2020187.

Wei, L., Zhang, Z., and Lim, A. (Nov. 2014). “An Adaptive Variable Neighborhood Search for a
Heterogeneous Fleet Vehicle Routing Problem with Three-Dimensional Loading Constraints”.
In: IEEE Computational Intelligence Magazine vol. 9, no. 4, pp. 18–30. issn: 1556-603X. doi:
10.1109/MCI.2014.2350933.

Zhang, D., Cai, S., Ye, F., Si, Y.-W., and Nguyen, T. T. (2017). “A hybrid algorithm for a vehicle
routing problem with realistic constraints”. In: Information Sciences vol. 394-395, pp. 167–182.
issn: 0020-0255. doi: 10.1016/j.ins.2017.02.028.

Appendix

98

https://doi.org/https://doi.org/10.1016/j.ejtl.2021.100043
https://www.sciencedirect.com/science/article/pii/S2192437621000157
https://www.sciencedirect.com/science/article/pii/S2192437621000157
https://doi.org/10.1287/ijoc.11.4.345
https://ideas.repec.org/a/inm/orijoc/v11y1999i4p345-357.html
https://ideas.repec.org/a/inm/orijoc/v11y1999i4p345-357.html
https://doi.org/10.1007/978-3-319-55914-8
https://doi.org/10.1007/978-3-8349-9777-7
https://doi.org/10.1007/978-3-8349-9777-7
https://doi.org/10.1007/s00291-008-0129-4
https://doi.org/10.1007/s00291-008-0129-4
https://doi.org/10.1016/j.procs.2015.05.382
https://doi.org/10.1016/j.procs.2015.05.382
http://www.sciencedirect.com/science/article/pii/S1877050915011904
https://doi.org/10.1007/s002910050053
https://doi.org/https://doi.org/10.1016/j.ejor.2017.10.029
http://www.sciencedirect.com/science/article/pii/S0377221717309426
https://doi.org/10.1016/j.ejor.2004.09.004
http://www.sciencedirect.com/science/article/pii/S0377221704005831
https://doi.org/10.1287/opre.35.2.254
https://doi.org/10.1287/opre.35.2.254
https://doi.org/10.1109/TITS.2009.2020187
https://doi.org/10.1109/MCI.2014.2350933
https://doi.org/10.1016/j.ins.2017.02.028

References

Table III.12: Results for Ceschia et al. (2013) instances
Instance Ceschia et al. (2013) Our Results

best best average
vused ttd vused ttd time [s] vused ttd time [s]

SD-CSS1 5 5,708.60 5 5,152.2 3,600 5 5,152.2 3,600
SD-CSS2 13 12,033.2 13 11,865.7 3,600 13 11,866.8 3,600
SD-CSS4 12 11,398.6 12 11,470.4 3,600 12 11,794.8 3,600
SD-CSS9 23 17,724.8 17 13,789.5 3,600 17 13,891.5 3,600
SD-CSS10 18 12,945.9 9 10,103.9 3,600 9 10,269.5 3,600
SD-CSS12 48 34,807.3 45 37,458.4 3,600 46.8 37,274.6 3,600
SD-CSS13 31 28,060.2 20 18,270.5 3,600 20 18,346.1 3,600
Total 150 122,678.6 121 108,110.6 25,200 122.8 108,595.6 25,200

Table III.13: Results for Moura and Oliveira (2009) instances
Reil et al. (2018) Our Results
best best average
sum vused avg. ttd sum vused avg. ttd avg. time [s] sum vused avg. ttd avg. time [s]

GI
I1 62 545.3 70 536.28 2,847.94 72.8 537.72 2,870.75
I2 44 525.0 56 498.73 3,600.00 58.6 503.45 3,600.00

GII
I1 75 577.9 93 573.17 3,041.59 93 573.57 3,063.70
I2 66 543.5 78 535.19 3,600.00 78 535.69 3,600.00

Total 247 548.5 297 536.66 3,258.14 302.4 538.39 3,269.86

99

References

Table III.14: Results for Zhang et al. (2017) instances

Z
ha

ng
et

al
.

(2
01

7)
O

ur
R

es
ul

ts
be

st
av

er
ag

e
be

st
av

er
ag

e
In

st
an

ce
v u

s
e
d

tt
d

v u
s
e
d

tt
d

ti
m

e
[s]

v u
s
e
d

tt
d

ti
m

e
[s]

v u
s
e
d

tt
d

ti
m

e
[s]

V
R

PT
W

P0
1

5
32

3.
33

5
32

2.
33

35
2.

10
4

24
5.

44
3.

95
4

24
5.

44
4.

13
V

R
PT

W
P0

2
5

29
5.

29
5

29
9.

89
23

2.
28

5
27

6.
64

0.
49

5
27

6.
64

0.
56

V
R

PT
W

P0
3

5
30

3.
60

5
30

3.
60

43
0.

27
4

27
4.

55
30

.0
1

4.
4

28
6.

23
19

.9
2

V
R

PT
W

P0
4

6
38

0.
19

6
38

0.
80

37
1.

88
6

33
6.

79
3.

22
6

33
6.

79
3.

28
V

R
PT

W
P0

5
7

41
6.

35
7

41
7.

66
54

5.
72

6
34

5.
89

17
.8

1
6

34
6.

63
14

.7
8

V
R

PT
W

P0
6

7
40

8.
99

7
40

9.
09

30
6.

38
6

37
4.

22
2.

29
6

37
4.

81
2.

15
V

R
PT

W
P0

7
7

40
7.

91
7

40
9.

89
60

4.
70

5
32

4.
29

22
.0

6
5

32
4.

29
23

.8
7

V
R

PT
W

P0
8

7
42

5.
90

8
42

5.
90

63
7.

32
6

32
0.

75
20

.8
0

6
32

0.
75

23
.4

2
V

R
PT

W
P0

9
8

53
0.

50
10

53
2.

63
54

9.
60

8
47

6.
80

10
.0

8
8

47
6.

80
12

.9
8

V
R

PT
W

P1
0

10
66

8.
74

11
66

9.
11

95
6.

40
7

48
7.

60
58

.5
0

7
50

2.
98

56
.8

5
V

R
PT

W
P1

1
11

61
9.

34
9

62
6.

27
1,

03
2.

98
7

49
3.

58
11

4.
46

7
49

5.
04

11
3.

10
V

R
PT

W
P1

2
9

68
8.

60
10

.4
69

0.
10

67
1.

37
9

57
5.

04
14

.7
6

9
57

5.
04

15
.4

5
V

R
PT

W
P1

3
11

62
6.

72
8.

4
63

0.
43

1,
34

7.
24

6
45

2.
05

46
7.

32
6

45
5.

65
46

6.
71

V
R

PT
W

P1
4

8
76

5.
37

12
76

6.
78

1,
22

1.
68

8
55

0.
16

89
.0

8
8

55
0.

16
11

2.
32

V
R

PT
W

P1
5

12
71

3.
23

10
.6

71
5.

72
1,

09
1.

86
8

52
7.

62
98

.7
8

8
53

4.
01

11
9.

26
V

R
PT

W
P1

6
11

74
6.

67
11

.8
74

8.
15

42
9.

32
11

69
3.

92
8.

49
11

69
3.

92
9.

08
V

R
PT

W
P1

7
15

99
4.

28
15

.2
99

7.
27

48
4.

99
14

95
1.

11
17

.3
1

14
95

3.
94

17
.8

2
V

R
PT

W
P1

8
18

1,
20

6.
51

18
1,

20
7.

60
63

6.
18

11
1,

05
2.

43
31

.6
3

11
.4

1,
02

8.
11

31
.1

7
V

R
PT

W
P1

9
16

1,
21

1.
99

15
.6

1,
21

7.
63

78
3.

59
12

97
1.

43
12

7.
27

12
97

2.
59

12
2.

97
V

R
PT

W
P2

0
24

1,
64

4.
56

23
.2

1,
65

2.
96

1,
51

2.
11

17
1,

31
1.

32
76

5.
60

17
1,

32
2.

19
76

9.
84

V
R

PT
W

P2
1

23
1,

60
3.

88
22

1,
61

2.
42

2,
17

4.
74

16
1,

18
9.

80
1,

94
3.

54
16

.2
1,

20
3.

65
1,

88
7.

20
V

R
PT

W
P2

2
26

1,
81

1.
19

26
.2

1,
81

7.
75

2,
17

0.
98

18
1,

46
6.

27
30

5.
06

18
1,

46
8.

57
30

3.
27

V
R

PT
W

P2
3

24
1,

65
4.

13
24

1,
67

5.
25

1,
95

0.
79

17
1,

32
5.

73
69

0.
63

17
1,

33
9.

59
68

7.
80

V
R

PT
W

P2
4

21
1,

64
4.

55
21

.4
1,

64
9.

61
1,

74
5.

54
16

1,
28

9.
15

70
8.

50
16

1,
30

7.
07

70
4.

16
V

R
PT

W
P2

5
27

1,
83

6.
02

26
.8

1,
85

6.
52

2,
87

7.
48

20
1,

44
1.

59
3,

60
0.

00
20

.4
1,

44
2.

39
3,

60
0.

00
V

R
PT

W
P2

6
32

2,
14

4.
47

32
2,

16
0.

37
3,

25
0.

49
24

1,
64

2.
74

1,
45

5.
63

24
1,

65
0.

85
1,

38
0.

11
V

R
PT

W
P2

7
28

2,
00

2.
63

29
.6

2,
03

0.
71

3,
03

7.
26

23
1,

64
2.

09
2,

07
4.

60
23

1,
65

6.
40

2,
09

7.
34

T
ot

al
38

3
26

,0
74

.9
4

38
7.

2
26

,2
26

.4
4

31
,4

05
.2

5
29

4
21

,0
39

.0
0

12
,6

81
.8

7
29

5.
4

21
,1

40
.5

3
12

,5
99

.5
4

100

References

Table III.15: Average Results per Constraint Set, Our Instances

n
m

ty
pe

s
T

ot
al

20
60

10
0

20
0

40
0

3
10

10
0

P
1

–
su

m
v u

s
e
d

50
5.

80
3,

54
8.

40
4,

07
5.

60
3,

08
9.

60
5,

04
0.

20
2,

55
0.

00
2,

71
7.

00
2,

86
2.

80
8,

12
9.

80
B

as
ic

su
m

tt
d

52
,8

37
.0

7
29

2,
49

6.
96

36
6,

08
1.

91
30

1,
41

5.
49

41
0,

00
0.

45
22

6,
26

5.
32

23
7,

72
0.

68
24

7,
42

9.
94

71
1,

41
5.

94
av

g.
ti

m
e

[s]
2,

03
5.

13
1,

99
6.

96
2,

32
8.

51
1,

69
9.

53
2,

57
4.

90
1,

72
9.

26
2,

30
4.

15
2,

37
8.

23
2,

13
7.

22

P
2

–
su

m
v u

s
e
d

50
7.

00
3,

53
7.

00
4,

06
7.

60
3,

08
0.

80
5,

03
0.

80
2,

54
5.

20
2,

71
1.

00
2,

85
5.

40
8,

11
1.

60
M

LI
FO

su
m

tt
d

52
,9

09
.3

3
29

1,
84

5.
45

36
6,

03
6.

92
30

1,
16

6.
90

40
9,

62
4.

80
22

6,
36

9.
84

23
7,

30
7.

44
24

7,
11

4.
42

71
0,

79
1.

70
av

g.
ti

m
e

[s]
2,

04
9.

45
2,

03
2.

05
2,

33
6.

01
1,

73
0.

12
2,

58
4.

11
1,

74
8.

50
2,

30
8.

73
2,

41
4.

11
2,

15
7.

11

P
3

–
su

m
v u

s
e
d

51
4.

40
3,

87
1.

40
4,

62
1.

80
3,

47
0.

60
5,

53
7.

00
2,

71
8.

40
3,

03
3.

40
3,

25
5.

80
9,

00
7.

60
M

ul
ti

pl
e

su
m

tt
d

53
,7

04
.0

1
31

7,
06

6.
12

39
9,

49
4.

94
32

8,
46

5.
00

44
1,

80
0.

07
23

8,
63

4.
45

25
8,

29
4.

10
27

3,
33

6.
52

77
0,

26
5.

07
O

ve
rh

an
gi

ng
av

g.
ti

m
e

[s]
2,

88
6.

44
3,

55
9.

43
3,

60
0.

00
3,

34
6.

92
3,

53
5.

20
3,

40
2.

80
3,

39
0.

13
3,

53
0.

24
3,

44
1.

06

P
4

–
su

m
v u

s
e
d

54
4.

00
4,

02
5.

00
4,

77
7.

20
3,

57
0.

20
5,

77
6.

00
2,

73
4.

60
3,

11
5.

00
3,

49
6.

60
9,

34
6.

20
T

op
su

m
tt

d
54

,9
57

.8
7

32
5,

26
4.

91
40

8,
94

4.
34

33
4,

13
7.

46
45

5,
02

9.
66

23
9,

36
4.

16
26

3,
77

7.
37

28
6,

02
5.

59
78

9,
16

7.
12

O
ve

rh
an

gi
ng

av
g.

ti
m

e
[s]

2,
93

0.
55

3,
55

7.
69

3,
59

7.
05

3,
36

2.
72

3,
53

3.
29

3,
40

5.
64

3,
38

8.
80

3,
54

9.
58

3,
44

8.
01

P
5

–
su

m
v u

s
e
d

54
7.

20
3,

65
1.

20
4,

20
4.

00
3,

16
6.

80
5,

23
5.

60
2,

71
9.

20
2,

80
5.

60
2,

87
7.

60
8,

40
2.

40
LB

S
su

m
tt

d
55

,0
39

.1
1

29
9,

47
3.

10
37

6,
06

4.
06

30
7,

13
0.

34
42

3,
44

5.
93

23
6,

83
9.

91
24

3,
61

7.
19

25
0,

11
9.

17
73

0,
57

6.
27

Si
m

pl
e

av
g.

ti
m

e
[s]

2,
72

0.
65

2,
70

5.
81

2,
86

4.
45

2,
36

6.
26

3,
17

8.
21

2,
62

7.
47

2,
81

6.
95

2,
87

2.
28

2,
77

2.
23

P
6

–
su

m
v u

s
e
d

54
0.

40
3,

64
3.

80
4,

19
9.

80
3,

16
0.

60
5,

22
3.

40
2,

70
8.

00
2,

79
5.

40
2,

88
0.

60
8,

38
4.

00
LB

S
su

m
tt

d
54

,9
06

.6
7

29
8,

74
9.

57
37

5,
31

4.
07

30
6,

73
2.

75
42

2,
23

7.
56

23
6,

29
7.

09
24

2,
93

6.
01

24
9,

73
7.

21
72

8,
97

0.
31

C
om

pl
et

e
av

g.
ti

m
e

[s]
2,

72
4.

63
2,

71
2.

28
2,

85
8.

05
2,

35
6.

86
3,

18
9.

25
2,

63
3.

30
2,

81
1.

51
2,

87
4.

37
2,

77
3.

06

P
7

–
su

m
v u

s
e
d

51
5.

20
3,

71
6.

60
4,

22
7.

80
3,

19
3.

20
5,

26
6.

40
2,

61
7.

80
2,

83
1.

60
3,

01
0.

20
8,

45
9.

60
R

ea
ch

ab
ili

ty
su

m
tt

d
53

,4
78

.9
3

30
1,

76
5.

06
37

6,
07

9.
01

30
7,

86
2.

47
42

3,
46

0.
53

23
0,

58
3.

85
24

4,
56

4.
20

25
6,

17
4.

95
73

1,
32

3.
00

av
g.

ti
m

e
[s]

2,
18

2.
89

2,
14

6.
41

2,
44

5.
83

1,
86

7.
57

2,
67

9.
38

1,
84

9.
18

2,
39

3.
33

2,
57

7.
91

2,
27

3.
47

P
8

–
su

m
v u

s
e
d

51
2.

00
3,

69
3.

00
4,

15
9.

00
3,

17
6.

20
5,

18
7.

80
2,

62
1.

20
2,

79
6.

80
2,

94
6.

00
8,

36
4.

00
A

xl
e

W
ei

gh
ts

su
m

tt
d

53
,1

58
.6

0
30

1,
12

0.
47

37
0,

41
6.

22
30

7,
14

3.
14

41
7,

55
2.

15
23

0,
52

1.
79

24
2,

20
2.

78
25

1,
97

0.
72

72
4,

69
5.

29
av

g.
ti

m
e

[s]
1,

16
9.

59
1,

49
8.

99
2,

14
6.

13
1,

17
2.

43
2,

21
1.

49
1,

31
9.

30
1,

82
8.

31
1,

92
8.

28
1,

69
1.

96

P
9

–
su

m
v u

s
e
d

51
2.

00
3,

69
8.

20
4,

16
0.

20
3,

18
3.

80
5,

18
6.

60
2,

62
3.

20
2,

79
3.

00
2,

95
4.

20
8,

37
0.

40
B

al
an

ce
d

su
m

tt
d

53
,1

57
.7

3
30

0,
63

2.
32

37
0,

12
7.

48
30

7,
02

7.
11

41
6,

89
0.

42
23

0,
52

7.
69

24
1,

42
5.

81
25

1,
96

4.
03

72
3,

91
7.

53
Lo

ad
av

g.
ti

m
e

[s]
1,

16
2.

88
1,

51
5.

99
2,

17
4.

62
1,

19
9.

33
2,

21
8.

32
1,

29
4.

69
1,

87
2.

34
1,

95
9.

43
1,

70
8.

82

P
10

–
su

m
v u

s
e
d

62
2.

80
4,

39
4.

00
5,

09
8.

40
3,

82
4.

80
6,

29
0.

40
3,

08
3.

80
3,

36
0.

20
3,

67
1.

20
10

,1
15

.2
0

C
om

bi
na

ti
on

su
m

tt
d

58
,3

93
.4

6
34

5,
11

7.
59

42
9,

89
6.

70
34

8,
13

5.
14

48
5,

27
2.

61
25

8,
94

8.
62

27
7,

84
9.

61
29

6,
60

9.
52

83
3,

40
7.

75
av

g.
ti

m
e

[s]
3,

13
8.

68
3,

54
7.

99
3,

59
6.

32
3,

42
2.

74
3,

54
8.

19
3,

44
6.

21
3,

46
4.

22
3,

54
5.

96
3,

48
5.

46

101

Paper IV

Vertical Stability Constraints in Combined
Vehicle Routing and 3D Container Loading
Problems

Corinna Krebs, Jan Fabian Ehmke
Published in Computational Logistics, 12th International Conference, ICCL 2021 Enschede, The
Netherlands, September 27–29, 2021 Proceedings DOI: 10.1007/978-3-030-87672-2_29.

IV

Abstract

The vertical stability of the cargo is one of the most important loading constraints, since it
ensures parcels from falling on the ground. However, frequently considered constraints either
lead to unstable positions, are too restrictive or have high complexity. This paper focuses on
the evaluation of different vertical stability constraints, analyses corner cases and introduces
a new improved constraint. For the first time, constraints based on the science of statics
are considered in the context of combined Capacitated Vehicle Routing Problem with Time
Windows and 3D Loading (3L-VRPTW). All constraints are embedded in an established hybrid
heuristic approach, where an outer Adaptive Large Neighbourhood Search tackles the routing
problem and an inner Deepest-Bottom-Left-Fill algorithm solves the packing problem. For
the computational tests, we use a well-known instance set enabling a comparison w.r.t. the
number of customers, the number of items and the number of item types. Based on the impact
on the objective values and on the performance, we give recommendations for future work.

103

https://doi.org/10.1007/978-3-030-87672-2_29

1 Introduction

Contents

1 Introduction . 104
2 Literature Review . 104
3 Problem Formulation . 105
4 Vertical Stability constraints . 106
5 Hybrid Algorithm . 110
6 Computational Studies . 111
7 Conclusion . 112
References . 113

1 Introduction

Fueled by the Corona pandemic, the number of shipped parcels worldwide has increased significantly.
In 2019, the worldwide parcel volume exceeded the mark of 100 billion parcels for the first time.
However, it is estimated to be even between 115 and 132 billion parcels worldwide in 2021. High
growth rates are also forecasted for the coming years. Within the next six years, the parcel
volume could double (220 to 262 billion) according to PitneyBowes (2020). Along with this, the
daily challenges of packing parcels into cargo spaces are intensifying. As a result, the number
of conciliation applications to the Bundesnetzagentur (Federal Network Agency for Electricity,
Gas, Telecommunications, Post and Railway) in Germany increased by 28% to 1.861 applications
in the year 2020 (see BNetzA (2020)). Thereby, 25.3% of applications accounted for damaged
consignments. Consequently, the stable loading of parcels is still a major challenge in the planning
process and will continue to be an important constraint in the future.
This paper evaluates vertical stability constraints in the field of the 3L-VRPTW, which is a
combination of the Vehicle Routing with Time Windows and the 3D Container Loading Problem.
In practice, high stability requirements are met by forbidding the parcels to overhang (Full Base
Support). Due to this restrictive constraint, other solutions that also achieve stable positions and
incur less costs are excluded. For ensuring vertical stability, most approaches require the support of
a certain ratio of the base area by directly underlying items. As stated in Ceschia et al. (2013) and
in Krebs and Ehmke (2021), this requirement can lead to unstable stacks so that two new vertical
stability constraints are regarded. Hence, this paper compares five vertical stability approaches
from the literature, which are based on the support of the base area and/or on the science of statics.
The latter is evaluated for the first time in the context of the 3L-VRPTW. By indicating common
weaknesses and corner cases, we introduce a new vertical stability constraint which enlarges the
solution space and is based on the support ratio of the base area and on the science of statics.
We use an established hybrid heuristic for tackling the Vehicle Routing and the Container Loading
Problem. The routing heuristic is based on the Adaptive Large Neighbourhood Search (ALNS)
by Koch et al. (2018) calling for each route a modified packing heuristic based on the Deepest-
Bottom-Left-Fill (DBLF) algorithm proposed by Krebs and Ehmke (2021). For the computational
tests, we use a well-known instance set from the literature, where the number of items, item types
and customers varies systematically, and evaluate the received results in terms of performance and
solution quality in comparison to the established Full Base Support constraint.
The related literature is reviewed in Sec. 2. The considered problem (3L-VRPTW) is formulated
in Sec. 3. In Sec. 4, the vertical stability constraints are described in detail. The hybrid heuristic
is briefly explained in Sec. 5. Sec. 6 presents computational results analysing the impact of the
vertical stability approaches on the 3L-VRPTW. Finally, conclusions are drawn in Sec. 7.

2 Literature Review

In this section, we provide a brief literature overview over different constraints dealing with vertical
stability. First, we show the relevant literature in the context of the 3D Container Loading Problem
(3D CLP). Then, we present the literature for its combination with the Vehicle Routing Problem
(3L-CVRP).

104

3 Problem Formulation

2.1 3D Container Loading Problem

Vertical stability constraints prevent items from falling down on the ground, on top of other items or
at the operator while (un-)loading. Various approaches have been formulated in the 3D Container
Loading Problem, where a set of items has to be arranged within a container. Most approaches
consider the support of the base area, which must be supported either with a defined ratio (Partial
Base Support) or completely (Full Base Support) by directly underlying items. This support ratio
ranges between 0.55 (Mack et al. (2004)) and 1.0 (Full Base Support, e.g. Ngoi et al. (1994),
Fanslau and Bortfeldt (2010), Ceschia and Schaerf (2010)). Since these constraints can lead to
either unstable stacks (Partial Base Support) or are too restrictive (Full Base Support), other
constraints based on the science of statics have been introduced, where in general the center of
gravity of an item or a stack must be supported (e.g. in De Castro Silva et al. (2003), Lin et al.
(2006) and Ramos (2015)). Mack et al. (2004) use a combination of the support of the center of
gravity and of the item base area w.r.t. items laying at the ground. However, the support of the
center of gravity does not guarantee highly stable item stacks as will be demonstrated in Sec. 4.

2.2 3L-CVRP and extensions

When introducing the combined Vehicle Routing and the 3D Container Loading Problem (namely
“3L-CVRP"), Gendreau et al. (2006) use the Minimal Supporting Area (aka Partial Base Support)
constraint to ensure stable item positions with a support ratio of 0.75. Therefore, this constraint
is the most established one in the 3L-CVRP and its extensions. However, Ceschia et al. (2013)
show that unstable item stacks can occur when using the Minimal Supporting Area constraint and
propose therefore the Multiple Overhanging constraint. In Krebs and Ehmke (2021), several vertical
stability constraints, such as the Minimal Supporting Area and the Multiple Overhanging, are
examined, and the Top Overhanging constraint is introduced. So far, vertical stability constraints
based on the science of statics have not been considered yet in this problem field. Hence, this paper
is intended to fill this area.

3 Problem Formulation

Following the formulation as used in Krebs and Ehmke (2021), the 3L-VRPTW is described as
follows: Let G = (N, E) be a complete, directed graph, where N is the set of n + 1 nodes including
the depot (node 0) and n customers to be served (node 1 to n), and E is the edge set connecting
each pair of nodes. Each edge ei,j ∈ E (i ≠ j, i, j = 0, ..., n) has an associated routing distance di,j

(di,j > 0). The demand of customer i ∈ N \ {0} consists of ci cuboid items. Let m be the total
number of all demanded items. Moreover, time windows are considered by assigning three times to
each node i: the ready time RTi, which is the earliest possible start time of service, the due date
DDi, the latest possible start time, and the service time STi, which specifies the needed time to
(un-)load all ci items of a customer i.
Each item Ii,k (k = 1, ..., ci) is defined by mass mi,k, length li,k, width wi,k and height hi,k. Each
item has a fragility flag fgi,k, grouping items into fragile items (fgi,k = 1) or not fragile items. The
items are delivered by at most vmax available, homogenous vehicles. Each vehicle has a maximum
load capacity D and a cuboid loading space defined by length L, width W and height H.
The point of origin of a Cartesian coordinate system is assumed to be located in the deepest,
bottom, leftmost point of the loading space. The driver’s cab is located behind it accordingly. The
length, width and height of the loading space are parallel to the x-, y- and z-axes. The placement
of an item Ii,k is defined by (xi,k, yi,k, zi,k) of the corner which is closest to the point of origin.
It is assumed that each vehicle has a constant speed of 1 distance unit per time unit. If a vehicle
arrives at a node before its ready time, it has to wait until the ready time is reached.
Let vused be the number of used vehicles in a solution. A solution is a set of vused pairs of routes
Rv and packing plans PPv, whereby the route Rv (v = 1, ..., vused) is an ordered sequence of at
least one customer and PPv is a packing plan containing the position within the loading space for
each item included in the route. The total number of items in a route Rv is described by tv.
A solution is feasible if

(S1) All routes Rv and packing plans PPv are feasible (see below);

105

4 Vertical Stability constraints

(S2) Each customer is visited exactly once;

(S3) The number of used vehicles vused does not exceed the number of available vehicles vmax;

(S4) Each packing plan PPv contains all tv items.

A route Rv must meet the following routing constraints:

(R1) Each route starts and terminates at the depot and visits at least one customer;

(R2) The vehicle does not arrive after the due date DDi of any location i.

Each packing plan must the following loading constraints.

(C1) Geometry: The items must be packed within the vehicle without overlapping;

(C2) Orthogonality: The items can only be placed orthogonally inside a vehicle;

(C3) Rotation: The items can be rotated 90◦ only on the width-length plane;

(C4) Load Capacity: The sum of masses of all included items tv of a vehicle does not exceed the
maximum load capacity D.

(C5) LIFO: No item is placed above or in front of item Ii,k, which belongs to a customer served
after customer i;

(C6) Vertical Stability: Each item is placed stable either on the vehicle ground or on top of other
items.

(C7) Fragility: No non-fragile items are placed on top of fragile items;

The 3L-VRPTW aims at determining a feasible solution minimizing the objective values, e.g.
number of used vehicles vused and the total travel distance ttd, and meeting all constraints.

4 Vertical Stability constraints

In this section, we first explain the calculation of the center of gravity and then, we summarize six
constraints for the consideration of vertical stability and present the new Static Stability constraint.
Each constraint has been implemented in our solution validator, which can check the feasibility of
solutions1. The implementation for Ramos (2015) is available here2.

4.1 Calculation of Center of Gravity

For the approaches based on the science of statics, the center of gravity of an item (CGi,k) must be
calculated. It is supposed that the mass of an item is homogeneously distributed so that the center
of gravity corresponds to the center of volume. Therefore:

CGi,k = (xi,k + li,k
2 , yi,k + wi,k

2 , zi,k + hi,k

2). (IV.1)

Moreover, the center of gravity of a group of items can be calculated. Let G be a set of items
belonging to a group. The center of gravity of the group of items is calculated by weighting the
center of gravity of each item r (r ∈ G). The equation is as follows:

CGgroup = (
∑

r∈G(xCGr
· mr)∑

r∈G(mr) ,

∑
r∈G(yCGr

· mr)∑
r∈G(mr) ,

∑
r∈G(zCGr

· mr)∑
r∈G(mr)). (IV.2)

1see https://github.com/CorinnaKrebs/SolutionValidator
2see https://github.com/CorinnaKrebs/StaticStabilityRamos

106

https://github.com/CorinnaKrebs/SolutionValidator
https://github.com/CorinnaKrebs/StaticStabilityRamos

4 Vertical Stability constraints

4.2 Minimal Supporting Area

The Minimal Supporting Area (aka Partial Base Support) constraint is one of the most considered
vertical stability constraints in the field of the combined Vehicle Routing and 3D Container Loading
Problem (3L-CVRP), since it is included in the original problem formulation by Gendreau et al.
(2006). For the Minimal Supporting Area constraint, a certain ratio α of the base area of an item
must be supported by the upper surface of the directly underlying items. The parameter α is set to
0.75 in the field of the 3L-CVRP.

Figure IV.1: Feasible, but unstable stack

However, corner cases can occur leading to theoretically feasible, but actually unstable item
arrangements, since it is assumed that all items have the same density. From one level to another,
the item’s length (or width) is enlarged by 1

α . This may lead to an item stack as visualized in
Fig. IV.1. Since the support is calculated based on the directly underlying items, the stack is
feasible. However, when calculating the centre of gravity of the stack (see Eq. IV.2), the dimensions
lay outside of the first item. Therefore, the stack would topple.

4.3 Full Base Support

As the name suggests, the base area of each item must be fully supported in this constraint.
Consequently, overhanging items are not allowed. The approach is the same as for the Minimal
Supporting Area though the support parameter α must be one (α = 1.0). Apparently, this constraint
is the most restrictive one.

4.4 Multiple Overhanging

This constraint has been introduced in Ceschia et al. (2013) and is described in more detail in Krebs
and Ehmke (2021). Hereby, all items of a stack are allowed to overhang. However, the Minimal
Supporting Area must be obeyed at each level of the stack.

Let Ii,k be an item for which the constraint should be checked. First, it is necessary to determine
all items which directly or indirectly support item Ii,k and store them in set U . An item Iu supports
Ii,k directly if the upper surface of item Iu has direct contact with the base area of item Ii,k. An
item Iu supports Ii,k indirectly if Iu directly supports any placed item which directly supports Ii,k.
Based on the set U , the levels are created. Each upper surface of an item Ia (Ia ∈ U) defines a
level (see Fig. IV.2b). Another item Ib (Ib ∈ U, Ia ̸= Ib) counts to the level if the upper surface of
Ib is at the same level as of the level or if the upper surface of Ib is above the level and the base
area of Ib is below the level (see Fig. IV.2c). The supporting area units of each level are summed to
calculate the total support for item Ii,k for each level. Then, it can be checked if each level obeys
the Minimal Supporting Area constraint.

(a) Situation (b) First Level (c) Second Level

Figure IV.2: Creation of Levels for Support Area Calculation, exemplary for I1,5

107

4 Vertical Stability constraints

4.5 Top Overhanging

This constraint proposed in Krebs and Ehmke (2021) combines the Full Base Support and the
Minimal Supporting Area constraint: For all items except the topmost item of a stack, the Full Base
Support constraint is applied, while for the topmost item, the Minimal Supporting Area constraint
must be obeyed. Consequently, only the topmost item of a stack is allowed to overhang.
The implementation is rather simple: when placing an item Ii,k on top of another one, the distance
between the upper surface of the last placed item and the vehicle ceiling is calculated. Then, the
item with the smallest height of all items not packed yet is determined. If the distance to the ceiling
is smaller than the smallest height, it is not possible to pack another item on top of that stack.
Therefore, the item Ii,k is allowed to overhang obeying the Minimal Supporting Area constraint.
Otherwise, another item could be stacked on top of item Ii,k and therefore, Ii,k must fulfil the Full
Base Support constraint.

4.6 Static Stability by Mack et al. (2004)

In the Static Stability constraint introduced by Mack et al. (2004), the centre of gravity of each
item is calculated according to Eq. IV.1 and must be supported by the directly underlying items.
Moreover, it is required that a certain ratio of the base area of an item is supported indirectly by
the items laying on the ground.

Figure IV.3: Example for a feasible stack applying Mack et al. (2004)

Fig. IV.3 indicates that the item supporting the centre of gravity could be infinitesimally small.
This leads to theoretically feasible, but rather unstable stacks. The extreme case where the centre
of gravity is only supported by an edge is called the “unstable equilibrium" in the science of statics.

4.7 Static Stability by Ramos (2015)

Ramos (2015) introduces a Static Stability constraint based on the science of statics. In contrast to
the Static Stability constraint by Mack et al. (2004), the mass of all items placed above the current
placed item Ii,k is considered, which can shift the centre of gravity. This new acting point can be
calculated as shown in Eq. IV.2.
Then, two cases can occur: If the acting point is supported by directly underlying items, then the
position of item Ii,k is stable. If the acting point is not supported, then all supporting edges between
the item Ii,k and its directly underlying items are determined and stored in set T . Based on set
T , a convex hull representing the support polygon is calculated. This enables a point-in-polygon
to check if the application point lies within the support polygon indicating a stable position for
item Ii,k. If item Ii,k is stable according to one of the two cases, the check of the Static Stability
constraint is recursively repeated starting from all items directly supporting item Ii,k to the items
placed on the ground.
Similarly to the constraint by Mack et al. (2004), relatively small items lead to rather unstable
stacks.

4.8 New Static Stability

In this paper, we want to introduce a new Static Stability constraint. It is inspired by encountered
corner cases in the Minimal Supporting Area constraint, science of statics based approaches, and by
the Multiple Overhanging constraint. The main idea is that the centre of gravity of an item must
be supported at each level of the stack. A level is created in the same way as described in Sec. 4.4.
For each level, the minimum and maximum edges of the level are determined. In particular, the

108

4 Vertical Stability constraints

(a) Situation (b) Convex Hull

Figure IV.4: Example for the Convex Hull Determination

rightest edge, the leftest edge, the foremost edge and the rearmost edge of all items belonging to
the level are searched. Then, it is checked whether the centre of gravity is within the frame spanned
by the edges (see Fig. IV.5). Therefore, it is not required that the centre of gravity is directly
supported as shown in Fig. IV.5c, Level 1. Due to the support of the centre of gravity at each level,
item stacks as in Fig. IV.1 are prevented.

(a) Situation (b) Infeasible (c) Feasible

Figure IV.5: Example for Consideration of Static Stability

As shown before, the sole support of the centre of gravity does not ensure highly stable stacks.
Therefore, the Minimal Supporting Area constraint with α = 0.75 must also be obeyed. This
prevents arrangements as shown in Fig. IV.3.

4.9 Summary

The following Table IV.1 gives an overview over the worst-case complexity of the constraints, the
role of the support area and the use of the science of statics. Note that tv corresponds to the
number of items in route Rv. As the table indicates, the complexity of the constraints ranges
between O(tv

2) and O(tv
3). However, the restrictiveness and thus the impact on the objective

values for each constraint must be determined by means of computational experiments.

Table IV.1: Comparison of Vertical Stability Constraints
Worst Case Consideration of Corner
Complexity Support Area Science of statics Cases

Minimal Supporting Area O(tv
2) ✓ ✓

Full Base Support O(tv
2) ✓

Multiple Overhanging O(tv
3) ✓

Top Overhanging O(tv
2) ✓

Static Stability by Ramos (2015) O(tv
2 log(tv)) ✓ ✓

Static Stability by Mack et al. (2004) O(tv
2) ✓ ✓ ✓

New Static Stability O(tv
2) ✓ ✓

tv = total number of items in Rv

109

5 Hybrid Algorithm

5 Hybrid Algorithm

We implement the previously described vertical stability constraints in a hybrid heuristic approach,
which is described in detail in Krebs and Ehmke (2021) and in Koch et al. (2018). In the following,
we briefly describe the algorithm and focus on the extensions required.
Since the 3L-VRPTW is a combination of the Capacitated Vehicle Routing Problem with Time
Windows (VRPTW) and the 3D Container Loading Problem, the problem is decomposed and
separate algorithms are used to solve each subproblem. The routing part is tackled with an Adaptive
Large Neighbourhood Search as proposed in Krebs and Ehmke (2021) and in Koch et al. (2018),
which is a modification of the heuristic by Ropke and Pisinger (2006a) and by Ropke and Pisinger
(2006b). The algorithm is shown in Alg. IV.1.

Algorithm IV.1 Hybrid Heuristic Algorithm
Input: Instance Data, parameters
Output: best feasible solution sbest

1: construct sinit by Savings Heuristic
2: sbest := scurr := sinit

3: do
4: select number of customers to be removed nrem

5: select destroy operator dest and repair operator rep
6: determine next feasible3 solution snext := rep(dest(scurr, nrem))
7: for each route Rv in snext do
8: feasible := true
9: if Deepest-Bottom-Left-Fill(Rv) not feasible then

10: feasible := false
11: break
12: end if
13: end for
14: if feasible AND Simulated Annealing (snext) then
15: scurr := snext

16: update sbest

17: end if
18: update selection probabilities of operators after defined number of iterations
19: while no Stopping Criterion reached
20: return sbest

The initial solution is constructed by using the Savings Heuristic proposed by Clarke and Wright
(1964). In every iteration, it is tried to improve the current solution. Hereby, a set of vused routes
is created. The set of routes is feasible if the routing constraints as described in Sec. 3 are obeyed.
Each feasible set of routes is evaluated concerning the objective values, whereby the minimization
of the number of used vehicles has the highest priority, the total travel distance the second highest
priority. A Simulated Annealing approach as proposed by Kirkpatrick et al. (1983) enables the
acceptance of inferior feasible solutions in order to enlarge the search.

For each feasible route, the packing algorithm (Deepest-Bottom-Left-Fill algorithm) is called,
which is shown in Alg. IV.2. As the name suggests, the items are placed in the deepest, bottommost,
leftmost position. Hereby, a list of possible placement spaces is sorted according to the DBL policy.
Then, for every item of the route, it is tried to find a feasible position by checking every space of
the list until a feasible position is found. A position is feasible if all loading constraints are obeyed.
If no feasible position can be found, the Adaptive Large Neighbourhood Search must find a new set
of routes in the next iteration. If feasible positions for every item of the set of routes can be found,
the feasible solution is stored. The entire algorithm stops either when reaching a defined run time
limit, after conducting a defined number of total iterations, or after a total number of iterations
without improvement (Stopping Criteria). In the end, the overall best solution is presented.

3according to Routing Constraints, see Sec. 3

110

6 Computational Studies

Algorithm IV.2 Deepest-Bottom-Left-Fill with Spaces
Input: Instance data
Output: Feasibility, Packing Plan PPv

1: initialize sorted sequence of items IS
2: initialize set of unique available spaces S
3: for each item Ic ∈ IS do
4: for each space sp ∈ S do
5: for each permitted orientation do
6: if item Ic fits in space sp AND placement is feasible then
7: save placement for Ic

8: create new spaces
9: sort spaces based on DBL

10: erase space sp and too small spaces
11: continue with next item
12: end if
13: end for
14: end for
15: if no feasible position found then return false
16: end for
17: return true

6 Computational Studies

In this section, we evaluate the impact of the vertical stability constraints and show their perfor-
mance in comparison. Hereby, we use our instance set4 enabling the evaluation w.r.t. the number
of customers, items and item types. The instances have either 20, 60 or 100 customers, which
demand either 200 or 400 items in total. These items differ in their homogeneity: Either there
are only three item types (very homogeneous), 10 item types or 100 different item types (very
heterogeneous). Each instance is tested five times and we present the average results. All results
along with detailed packing plans are available via Github5.
The hybrid algorithm is implemented in C++ as single-core, x64-application and is compiled using
the GCC version 4.8.3 compiler. The experiments were executed on a High Performance Cluster,
Haswell-16-Core with 2.6 GHz. In terms of the routing parameters, the same are used as described
in Koch et al. (2018). The loading parameters are set according to the values used in the literature.

As shown before, the Full Base Support constraint is the most restrictive one but ensures stable
arrangements. The target of this paper is to find a vertical stability constraint that guarantees
highly stable positions of items and is less restrictive. Therefore, we exclude approaches where the
unstable equilibrium can occur. Consequently, the impact of the constraints Full Base Support,
Multiple Overhanging, Top Overhanging and the new Static Stability is investigated. The following
Table IV.2 shows the impact of these constraints w.r.t. to the average number of used vehicles
(vused), total travel distance ttd and run time in comparison to the Full Base Support constraint.
Nevertheless, we tested all approaches described in in Sec. 4 and provide the results online.

As expected, the enlargement of the solution space leads to better objective values (lower number
of used vehicles and the total travel distance) for all constraints. Regarding the total level of
restrictiveness (impact on the objective values), the following descending order occurs: Full Base
Support, Top Overhanging, Multiple Overhanging and Static Stability. Hereby, the Static Stability
constraint creates route plans with 8% fewer vehicles and a shorter total travel distance by 5.5% on
average. However, compared to the Full Base Support constraint, the Static Stability constraint
causes an increase of the run time by 18.56% on average.

Regarding the number of customers or items, the correlations between these instance features
and the impact on the objective values are not evident. However, the Static Stability constraint

4see https://doi.org/10.24352/UB.OVGU-2020-139
5see https://github.com/CorinnaKrebs/Results

111

see https://doi.org/10.24352/UB.OVGU-2020-139
https://github.com/CorinnaKrebs/Results

7 Conclusion

Table IV.2: Average Results per Vertical Stability constraint
n m item types Total

20 60 100 200 400 3 10 100
Full sum vused 549.20 4,392.40 4,713.60 3,449.40 6,205.80 2,677.40 3,186.40 3,791.40 9,655.20
Base sum ttd 54,956.51 340,558.21 406,434.31 326,656.33 475,292.70 233,987.06 267,122.94 300,839.03 801,949.03
Support avg. time [s] 1,809.61 1,435.49 2,559.26 1,658.60 2,261.04 1,680.67 2,103.83 2,094.97 1,959.82

Multiple diff. vused -6.34% -11.86% -1.95% 0.61% -10.78% 1.53% -4.80% -14.13% -6.71%
Over- diff. ttd -2.28% -6.90% -1.71% 0.55% -7.05% 1.99% -3.31% -9.14% -3.95%
hanging diff. time 59.51% 147.96% 40.67% 101.79% 56.35% 102.47% 61.14% 68.51% 75.58%

Top Over- diff. vused -0.95% -8.36% 1.35% 3.50% -6.93% 2.14% -2.24% -7.78% -3.20%
hanging diff. ttd 0.00% -4.49% 0.62% 2.29% -4.26% 2.30% -1.25% -4.92% -1.59%

diff. time 61.94% 147.84% 40.55% 102.74% 56.27% 102.64% 61.08% 69.43% 75.93%

Static diff. vused -5.79% -9.05% -7.29% -4.91% -9.73% -0.63% -6.20% -14.73% -8.01%
Stability diff. ttd -2.07% -6.31% -5.31% -3.60% -6.83% -0.48% -4.65% -10.20% -5.51%

diff. time 24.81% 25.06% 12.71% 24.08% 14.52% 31.94% 14.74% 11.67% 18.56%

shows significantly smaller fluctuations than the Multiple Overhanging and the Top Overhanging
constraint.

Concerning the number of item types, the Top Overhanging and the Multiple Overhanging
constraints lead to an increase in the number of used vehicles and total travel distance by around 2%
for instances with three item types. This is due to the fact that the constraints enable overhanging
and therefore prevent homogeneous item stacks at the same time. Therefore, gaps between items
can occur. Consequently, more vehicles are needed, which also results in a longer total travel
distance. As the Static Stability constraint is less restrictive than the Top Overhanging and the
Multiple Overhanging constraint, gaps are more likely to be filled. However, as the number of item
types increases, the reduction of the objective values is achieved by all constraints. In terms of the
Multiple Overhanging constraint, 14.13% fewer vehicles are used, the Top Overhanging shows a
decline of 7.78%, the Static Stability of even 14.73%.

All constraints have in common that the average run time increases significantly compared to
the Full Base Support constraint. On average, the Multiple Overhanging and the Top Overhanging
constraints lead to an increase of the run time of around 75%; for the Static Stability constraint,
the increase is only 18.5%. In general, the higher the number of customers or items, the higher
the run time. However, according to the results, this is not the case (see n = 100 or m = 400).
The reason is that at the same time, the difference to the maximum run time gets smaller or is
exploited.

Based on the described effects, we generally recommend using the Static Stability constraint.
However, for time critical or highest stability requirements, the Full Base Support constraint should
be used.

7 Conclusion

In this paper, we compared six vertical stability constraints and introduced a new one (Static
Stability) in the context of combined Vehicle Routing Problem with Time Windows and 3D
Container Loading (3L-VRPTW). The constraints from the literature are based on a defined
support ratio of the base area and/or on the support of the center of gravity of each item. We
showed that most approaches can lead to unstable item stacks for specific corner cases. Therefore,
we introduced a new approach in this paper, which covers common corner cases. This constraint
is based on the science of statics and on the support ratio of the base area of an item. As the
computational experiments show, the new Static Stability constraint is less restrictive than most of
the other approaches and therefore achieves a reduction of the number of used vehicles by 8% and
the total travel distance by 5.5% on average, compared to the most restrictive constraint – the Full
Base Support. However, the run time increases by almost 19%. Therefore, we recommend the new
Static Stability constraint if the reduction of the objective values is of first priority. If the run time
or a high stability of items is more important, the Full Base Support constraint should be used.

112

References

References

BNetzA (Feb. 2020). Tätigkeitsbericht Schlichtungsstelle Post 2020. Tech. rep. Tulpenfeld 4, 53113
Bonn: Bundesnetzagentur für Elektrizität, Gas, Telekommunikation, Post und Eisenbahnen.

Ceschia, S. and Schaerf, A. (Jan. 2010). “Local Search for a Multi-Drop Multi-Container Loading
Problem”. In: Journal of Heuristics vol. 19. doi: 10.1007/s10732-011-9162-6.

Ceschia, S., Schaerf, A., and Stützle, T. (2013). “Local search techniques for a routing-packing
problem”. In: Computers and Industrial Engineering vol. 66, no. 4, pp. 1138–1149. issn: 0360-
8352. doi: https://doi.org/10.1016/j.cie.2013.07.025. url: http://www.sciencedirect.com/
science/article/pii/S0360835213002404.

Clarke, G. and Wright, J. W. (1964). “Scheduling of Vehicles from a Central Depot to a Number of
Delivery Points”. In: Operations Research vol. 12, no. 4, pp. 568–581. issn: 0030364X, 15265463.
doi: 10.1287/opre.12.4.568. url: http://www.jstor.org/stable/167703.

De Castro Silva, J. L., Soma, N. Y., and Maculan, N. (2003). “A greedy search for the three-
dimensional bin packing problem: the packing static stability case”. In: International Transactions
in Operational Research vol. 10, no. 2, pp. 141–153. doi: 10.1111/1475-3995.00400.

Fanslau, T. and Bortfeldt, A. (May 2010). “A Tree Search Algorithm for Solving the Container
Loading Problem”. In: INFORMS Journal on Computing vol. 22, pp. 222–235. doi: 10.1287/
ijoc.1090.0338.

Gendreau, M., Iori, M., Laporte, G., and Martello, S. (2006). “A Tabu Search Algorithm for a
Routing and Container Loading Problem”. In: Transportation Science vol. 40, no. 3, pp. 342–350.
issn: 0041-1655. doi: 10.1287/trsc.1050.0145. url: http://pubsmisc.informs.org/doi/abs/10.
1287/trsc.1050.0145.

Kirkpatrick, S., Gelatt, C. D., and Vecchi, M. P. (1983). “Optimization by simulated annealing.”
In: Science vol. 220 4598, pp. 671–80. doi: 10.1126/science.220.4598.671.

Koch, H., Bortfeldt, A., and Wäscher, G. (Feb. 2018). “A hybrid algorithm for the vehicle routing
problem with backhauls, time windows and three-dimensional loading constraints”. In: OR
Spectrum vol. 40. doi: 10.1007/s00291-018-0506-6.

Krebs, C. and Ehmke, J. F. (2021). “Axle Weights in combined Vehicle Routing and Container
Loading Problems”. In: EURO Journal on Transportation and Logistics vol. 10, p. 100043. issn:
2192–4376. doi: https://doi.org/10.1016/j.ejtl.2021.100043. url: https://www.sciencedirect.
com/science/article/pii/S2192437621000157.

Lin, J., Chang, C., and Yang, J. (2006). “A Study of Optimal System for Multiple-Constraint
Multiple-Container Packing Problems”. In: Advances in Applied Artificial Intelligence. Ed. by
Ali, M. and Dapoigny, R. Berlin, Heidelberg: Springer Berlin Heidelberg, pp. 1200–1210. doi:
10.1007/11779568_127.

Mack, D., Bortfeldt, A., and Gehring, H. (2004). “A parallel hybrid local search algorithm for the
container loading problem”. In: International Transactions in Operational Research vol. 11,
no. 5, pp. 511–533. doi: 10.1111/j.1475-3995.2004.00474.x.

Ngoi, B. K. A., Tay, M. L., and Chua, E. S. (1994). “Applying spatial representation techniques to
the container packing problem”. In: International Journal of Production Research vol. 32, no. 1,
pp. 111–123. doi: 10.1080/00207549408956919.

PitneyBowes (Oct. 2020). “Pitney Bowes Parcel Shipping Index reports continued growth as global
parcel volume exceeds 100 billion for first time ever”. In: Pitney Bowes Parcel Shipping Index.
url: https://www.pitneybowes.com/au/newsroom/press- releases/pitney- bowes- parcel-
shipping-index-reports-continued-growth-as-global-parcel.html.

Ramos, A. G. (2015). “Analysis of cargo stability in container transportation”. In.
Ropke, S. and Pisinger, D. (2006a). “A unified heuristic for a large class of Vehicle Routing Problems

with Backhauls”. In: European Journal of Operational Research vol. 171, no. 3. Feature Cluster:
Heuristic and Stochastic Methods in Optimization Feature Cluster: New Opportunities for
Operations Research, pp. 750–775. issn: 0377-2217. doi: https://doi.org/10.1016/j.ejor.2004.09.
004. url: http://www.sciencedirect.com/science/article/pii/S0377221704005831.

— (2006b). “An Adaptive Large Neighborhood Search Heuristic for the Pickup and Delivery
Problem with Time Windows”. In: Transportation Science vol. 40, no. 4, pp. 455–472. doi:
10.1287/trsc.1050.0135. url: https://doi.org/10.1287/trsc.1050.0135.

113

https://doi.org/10.1007/s10732-011-9162-6
https://doi.org/https://doi.org/10.1016/j.cie.2013.07.025
http://www.sciencedirect.com/science/article/pii/S0360835213002404
http://www.sciencedirect.com/science/article/pii/S0360835213002404
https://doi.org/10.1287/opre.12.4.568
http://www.jstor.org/stable/167703
https://doi.org/10.1111/1475-3995.00400
https://doi.org/10.1287/ijoc.1090.0338
https://doi.org/10.1287/ijoc.1090.0338
https://doi.org/10.1287/trsc.1050.0145
http://pubsmisc.informs.org/doi/abs/10.1287/trsc.1050.0145
http://pubsmisc.informs.org/doi/abs/10.1287/trsc.1050.0145
https://doi.org/10.1126/science.220.4598.671
https://doi.org/10.1007/s00291-018-0506-6
https://doi.org/https://doi.org/10.1016/j.ejtl.2021.100043
https://www.sciencedirect.com/science/article/pii/S2192437621000157
https://www.sciencedirect.com/science/article/pii/S2192437621000157
https://doi.org/10.1007/11779568_127
https://doi.org/10.1111/j.1475-3995.2004.00474.x
https://doi.org/10.1080/00207549408956919
https://www.pitneybowes.com/au/newsroom/press-releases/pitney-bowes-parcel-shipping-index-reports-continued-growth-as-global-parcel.html
https://www.pitneybowes.com/au/newsroom/press-releases/pitney-bowes-parcel-shipping-index-reports-continued-growth-as-global-parcel.html
https://doi.org/https://doi.org/10.1016/j.ejor.2004.09.004
https://doi.org/https://doi.org/10.1016/j.ejor.2004.09.004
http://www.sciencedirect.com/science/article/pii/S0377221704005831
https://doi.org/10.1287/trsc.1050.0135
https://doi.org/10.1287/trsc.1050.0135

Paper V

Manual Unloading in 3D Loading Vehicle
Routing Problems

Corinna Krebs
Submitted to EURO Journal on Transportation and Logistics on 19.07.2023

V

Abstract

Unloading an item from a delivery vehicle costs time. When modeling loading problems, this
time is usually not considered. Rather, feasible unloading is ensured by a simple Last-In-First-
Out (LIFO) constraint. The LIFO constraint states that an item is not allowed to be placed
on top or in front of items belonging to customers served later. Thus, an item can be unloaded
by movements parallel to the vehicle’s length.
Following the complexity of real-world applications, this paper relaxes the LIFO constraint
by allowing positions of items that block an item from being unloaded. The blocking items
must be unloaded and reloaded, causing additional temporal effort. For the first time, this
reloading effort is calculated in detail and included in the objective function. In particular,
the Methods-Time-Measurement (MTM) approach, a common method for evaluating manual
processes in the industrial environment, is employed within 3D Loading Vehicle Routing
Problems with Time Windows (3L-VRPTW).
For the computational experiments, the approach is tested in the context of the 3L-VRPTW,
which combines the vehicle routing problem with time windows and the 3D container loading.
A hybrid heuristic approach is used where an outer Adaptive Large Neighborhood Search
tackles the routing problem, and an inner Extreme-Point-Based algorithm solves the packing
problem. As the items must have certain properties for enabling manual unloading, a new set
of 120 instances is created and used to evaluate the MTM-based approach regarding solution
quality and performance.

115

1 Introduction

Contents

1 Introduction . 116
2 Literature Review . 117
3 Problem Formulation . 118
4 Unloading Effort . 120
5 Hybrid Solution Approach . 122
6 Computational Experiments . 129
7 Conclusion . 132
References . 133

1 Introduction

Whenever an item is loaded into or unloaded from a delivery vehicle, the correct item must be
identified, lifted, carried, and put down. These actions cost time and depend on the item properties
(e.g., dimensions, masses) and the position within the loading space. However, in the literature
for container loading and vehicle routing (VRP), this effort was either not been considered (e.g.,
container loading) or it has been included just as a fixed time component (e.g., service times or
handling times in the VRP). Moreover, the unloading process has been simplified so far by applying
the Last-In-First-Out (LIFO) constraint. As a result, it is assumed that an item cannot be placed
on top or in front of items belonging to customers served later. The intention is that straight
movements toward the door accomplish the unloading of items without any obstacles. Hence, the
LIFO constraint guarantees a smooth unloading process without any rearrangements of items.
However, as a study by Krebs et al. (2023) shows, the LIFO constraint significantly influences the
objective values and performance. Therefore, if it was allowed to reload items that block other
items during unloading, the solution space could become larger, leading to better objective values
and more relevant solutions for logistics practice. In this case, the items which block an item that
needs to be unloaded must be unloaded and reloaded. This process costs additional time.
This paper presents an approach for calculating the effort to manually unload items from delivery
vehicles. This approach can also be used to relax the LIFO constraint. When items that block others
are allowed to be unloaded and reloaded to get access to the desired item, the additional reloading
effort can be calculated and included in the objective function. The Methods-Time-Measurement
(MTM) is applied to calculate the manual effort. MTM is an approach for analyzing work processes
and determining target times (see MTM Association e.V. (2020)). It is used mainly in the industrial
environment to plan repeated manual work processes and their estimated duration. MTM can
be applied before the manual work is implemented, which supports defining and planning future
processes. There are different MTM systems for different industrial applications. One is the MTM
Universal Analysis System (MTM-UAS), the most used globally and intended for series production.
MTM-UAS is also applied in this paper. It consists of several blocks which combine elementary
operations of other MTM systems (e.g., MTM-1). Time values are assigned to the blocks, which
depend on various time-influencing factors. These blocks can be summed up to represent the total
time-effort of a process, such as unloading and reloading items from and into a delivery vehicle.
This paper aims to investigate whether relaxing the LIFO constraint by allowing
reloading of blocking items is worthwhile compared to the additional efforts as indicated
by the MTM system. This paper contributes in four aspects:

1. For the first time, the MTM approach is customized for the individual calculation of the
manual unloading effort of items in delivery vehicles;

2. The LIFO constraint is treated as a soft constraint so that reloading of items is allowed;

3. The effort of unloading and reloading items is calculated and becomes part of the objective
function to optimize solutions in this regard;

4. A new instance set respecting manual unloading is created, and the impact of the unloading
effort is evaluated in computational experiments.

116

2 Literature Review

For the computational tests, the MTM approach is included in the combined 3D loading and vehicle
routing problem with time windows (3L-VRPTW), solved through a hybrid algorithm. Specifically,
the approach by Krebs et al. (2023) using a hybrid algorithm approach is implemented, containing
the Adaptive-Large-Neighborhood Search for solving the routing problem and the Deepest-Bottom-
Left-Fill algorithm as a packing algorithm. The objective function is thereby adapted to consider
the total travel time with unloading efforts. Furthermore, the packing algorithm is adapted using
efficient aspects of the packing algorithm by Gajda et al. (2022), which considered the number of
blocking items in the objective function.
The paper is organized as follows: In Section 2, the relevant literature is reviewed. The 3L-VRPTW
is formulated in Section 3. In Section 4, the MTM approach and the corresponding calculations are
presented. Section 5 describes a hybrid solution algorithm, and Section 6 contains the computational
experiments. Finally, Section 7 outlines the paper’s conclusions.

2 Literature Review

This section presents the literature relevant to this paper. First, an overview of investigated
algorithms and constraints in the context of the 3L-VRPTW is given. This is followed by relevant
literature concerning the constraints that deal with the unloading process and which offer avenues
for additional research.

2.1 3L-VRPTW

In this paper, the unloading and loading of vehicles are analyzed in the context of the 3L-VRPTW,
as its objective function can be adapted to consider the unloading effort. The 3L-VRPTW is an
extension of the 3L-CVRP. The latter variant without time windows was introduced by Gendreau
et al. (2006). The same loading constraints are considered in both optimization problems: items
are orthogonally packed into the vehicle loading space (Orthogonality constraint) considering non-
overlapping and their dimensions (Geometry). Items can be rotated only along the width-length
plane (Rotation constraint). Each item has a mass, and the vehicle has a maximum capacity (Load
Capacity). Items are grouped into fragile and non-fragile items to prevent stacking fragile items
on top of each other (Fragility constraint). Each item must have a specific support percentage
according to its base area (Minimal Supporting Area constraint). When unloading items, this
should be done by direct movements parallel to the length of the vehicle without rearranging other
items (LIFO constraint).

Moura (2008) and Moura and Oliveira (2009) introduce the Vehicle Routing with Time
Windows and Loading Problem (VRTWLP). This problem represents the 3L-VRPTW without
the consideration of item masses and the fragility of items, the requirement of higher stability
requirements (full support), and more rotation options. A Multi-Objective Genetic Algorithm is
suggested by Moura (2008) to generate routes. In addition, a wall-building heuristic is invoked
to address the loading problem whenever a customer is added to a route. In Moura and Oliveira
(2009), which combines a hierarchical and sequential method, this packing heuristic is also applied.
While the sequential method tackles the VRPTW and bin packing, the hierarchical one primarily
solves the VRP. Finally, an instance set of 46 instances is introduced and tested for computational
experiments.

In Reil et al. (2018), a Tabu Search algorithm addresses the packing problem. A Multi-Start
Evolutionary Search reduces the number of used vehicles, and a different Tabu Search reduces
the total travel distance. This algorithm currently obtains the best-known results for the set of
instances from Moura and Oliveira (2009). Zhang et al. (2017) introduce the 3L-VRPTW and
also published an instance set. They solve the problem with a hybrid algorithm, which uses a new
loading heuristic and a routing heuristic based on a Tabu Search and an Artificial Bee Colony
algorithm. Krebs et al. (2021) present new best-known results for the 3L-VRPTW. They focus on
the introduction of new complex loading constraints and their evaluation. For the computational
tests, a hybrid algorithm is used, consisting of the Adaptive Large Neighborhood Search proposed
by Koch et al. (2018) for solving the routing problem and the Deepest-Bottom-Left-Fill algorithm
shown in Krebs et al. (2023).

117

3 Problem Formulation

This paper uses the hybrid algorithm proposed by Krebs et al. (2023) with an adapted objective
function to include the unloading effort. Moreover, it incorporates more loading constraints (e.g.,
Axle Weights, Balanced Load, and Reachability) as described in Krebs et al. (2021).

2.2 Unloading Constraints

The LIFO constraint, also known as the Sequential Loading and Multi-Drop constraint (Bischoff
and Ratcliff 1995), requires that the requested items be available at each customer location without
rearranging the others. Thus, items are loaded such that they can be unloaded through straight
movements parallel to the length of the vehicle. Therefore, no item demanded by a later-visited
customer may be placed over or between the item to be unloaded first or near the vehicle’s rear
(Gendreau et al. 2006).

As the LIFO constraint is rather restrictive, Tarantilis et al. (2009) propose a relaxation by
allowing an item to hang over other items served later. The idea is that items that are unloaded
manually can be pulled out and must not be lifted by lifting equipment. They introduce the new
variant “Capacitated Vehicle Routing Problem with Manual 3D Loading Constraints" (M3L-CVRP).
As a hybrid algorithm, they use a combination of Tabu Search and Guided Local Search to build
the routes. Six packing heuristics are called successively for the Loading Problem until a feasible
solution has been found. The adapted LIFO constraint is also integrated with a paper by Ceschia
et al. (2013) and evaluated by Krebs et al. (2021). Although the solution space is larger by allowing
item overhanging, the objective values do not improve. Consequently, this adaption of the LIFO
constraint is not effective.

Another constraint dealing with the unloading process is the Reachability constraint. In the
context of the Three-Dimensional Bin Packing Problem, Junqueira et al. 2013 develop this constraint
to ensure items remain reachable during unloading or arranging operations to avoid the driver
standing on items. In addition, this constraint is included in Ceschia et al. (2013); its impact is
tested in Krebs et al. (2021). The latter evaluation shows that the Reachability constraint increases
the total travel distance by around 3% on average. Therefore, in this paper, the Reachability
constraint is adapted and included in the model.

Gajda et al. (2022) focus on a variant of the 3D Single Knapsack Problem (3DSKP) where
a number of items is available and must be selected and packed into a single container. They
consider the loading constraints as in the 3L-VRPTW and consider axle weights of vehicles, the
balanced load of the cargo, items with different priorities, as well as dangerous items which must
be placed next to an unloading point. In their paper, the LIFO constraint is treated as a soft
constraint, allowing rearrangements of obstacles and making the obstacle number relevant. Their
multi-objective function consists of three components: 1) to maximize the taxability (taxable
weight), defined as the maximum between the total cargo weight and the volume multiplied by
a constant; 2) to minimize the number of obstacles; and 3) to maximize the cumulative item
priorities. To solve the problem, they propose a randomized constructive heuristic that consists
of several iterative phases: pre-processing procedure for combining items, the item-sorting phase,
randomization for partially perturbing the sorting, and the conduction of the packing.

However, in contrast to Gajda et al. (2022), where the number of obstacles is included in the
objective function, this paper considers the obstacles by calculating the time-wise effort and adding
it to the objective function. Instead, the objective is evaluated in the context of a combined 3D
loading and routing problem with time windows (3L-VRPTW), as introduced by Zhang et al.
(2017). Moreover, in addition to the constraints considered in Zhang et al. (2017), the axle weights
and the balanced load as in Krebs et al. (2021), and the Reachability constraint as proposed by
Ceschia et al. (2013), are included.

3 Problem Formulation

This section deals with the problem formulation of the 3L-VRPTW, used to demonstrate the
impact of the relaxed LIFO constraint. First, for this problem, the unloading and reloading effort
is calculated and evaluated. Then, following the convention by Koch et al. (2018), the 3L-VRPTW
is described as follows.

118

3 Problem Formulation

Suppose that G = (N, E) is a complete, directed graph, where N is the set of n + 1 nodes,
including the depot (node 0) and the n customers to be served (nodes 1 to n). Let E be the set of
edges linking each pair of nodes. Each edge ei,j ∈ E (i ̸= j, i, j = 0, ..., n) has an associated routing
distance di,j with di,j > 0. The demand of customer i ∈ N \ {0} is represented by ci cuboid items.
Let the sum of all the demanded items be m. In addition, three times are assigned to each node i
to account for time windows: the ready time RTi, which is the earliest possible start time; the due
date DDi representing the latest possible start time, and the service time STi specifies a required
fixed time to start the unloading process for a customer i. A vehicle must wait until the ready time
is reached if it arrives at an edge before that time. Each item Ii,k (k = 1, ..., ci) is described by
its four properties: length li,k, width wi,k, height hi,k, mass mi,k, and a fragility flag fi,k (fragile:
fi,k = 1). A vmax homogeneous vehicle fleet is available for item delivery. Each vehicle v has a
maximum payload D and a cuboid loading area with dimensions of L, W , and H. The speed of
each vehicle is one distance unit per time unit. The number of used vehicles in a solution is given
by vused. A solution is represented through a set of vused routes Rv (v = 1, ..., vused) and packing
plans PPv, where Rv is an ordered sequence of at least one customer, and Pv is a packing plan
that specifies where each item is placed inside the loading space.

A solution is feasible if

(S1) All routes Rv and packing plans PPv are feasible (see below);

(S2) Each customer is visited exactly once;

(S3) The number of used vehicles vused does not exceed the number of available vehicles vmax;

(S4) Each packing plan PPv contains all ci items of all customers i included in the corresponding
route (i ∈ Rv).

A route Rv must meet the following routing constraints:

(R1) Each route starts and terminates at the depot and visits at least one customer;

(R2) The vehicle does not arrive after the due date DDi of any location i.

Each packing plan must fulfill the following loading constraints:

(C1) Geometry: The items must be packed within the vehicle without overlapping;

(C2) Orthogonality: The items can only be placed orthogonally inside a vehicle;

(C3) Rotation: The items can be rotated 90◦ only on the width-length plane;

(C4) Load Capacity: The sum of masses of all included items of a vehicle does not exceed the
maximum load capacity D;

(C5) Fragility: No non-fragile items are placed on top of fragile items;

(C6) LIFO: No item is placed above or in front of item Ii,k, which belongs to a customer served
after customer i;

(C7) Minimal Supporting Area: Each item has a supporting area of at least a percentage α of its
base area;

(C8) Reachability: The distance between an item and the operator must be less than or equal to a
certain length λ;

119

4 Unloading Effort

(C9) Axle Weights: The loads for the front and the rear axle do not exceed the permissible axle
weights FAperm and RAperm;

(C10) Balanced Loading: The load of one vehicle half does not exceed a certain percentage p of D.

The 3L-VRPTW consists of determining a feasible solution minimizing the total travel time (ttt)
and obeying all the above constraints. For the calculation of the total travel time, the traveled
time based on the total travel distance, the waiting times in case of arrival before ready time, and
the service time are included. Additionally, this paper considers the unloading effort for items,
which is also respected in the total travel time. Accordingly, the following section outlines how this
unloading effort is modeled.

4 Unloading Effort

This section introduces the MTM approach to calculate the unloading effort. Specifically, the
details concerning the unloading processed and the formula for calculating the unloading effort per
item are described and discussed, respectively. In addition, the implementation of the relaxed LIFO
constraint is presented in the following.

4.1 Methods-Time-Measurement

In the last 20 years, the design of work systems and organizations has continually changed,
particularly in reducing the cycle times of lines (primarily in the automobile sector and its suppliers).
Per the above changes, modern human labor is characterized by cyclical repetition in numerous
tasks. For a realistic evaluation of the work processes, predetermined motion time systems have
been developed. For example, the MTM system, developed by the MTM Association (MTMA),
introduced several block-building systems. These systems share the conceptualization that several
blocks representing movements are linked to time values. These times depend on several factors,
e.g., the mass of an object, the movement length, and the position accuracy. Consequently, several
time values per object and movement property exist. An associated code is given to identify the
selected block and property (MTM code). The time values are in Time Measurement Unit (TMU),
where 1 TMU corresponds to 0.0006 min. All data is available on data cards.
The MTM system MTM-1 forms the basis of other MTM building block systems. MTM-1 contains
five basic motion elements: Reach, Move, Grasp, Release, and Position. Combining these basic
elements makes it possible to describe 85% of all activities involved in the manual assembly context
(Rückert et al. 2021). MTM-UAS is based on MTM-1 and was developed by statistically combining
data from the MTM-1’s basic elements. For example, MTM-UAS has a block named “Get and
Place", which consists of MTM-1 basic motions of Reach, Grasp, Move, Position, and Release. This
paper uses the MTM-UAS data card to calculate the unloading effort, an approach presented in
the next section.

4.2 Calculation of Unloading Effort

This section describes the necessary steps to compute the effort for unloading and reloading an
item with MTM. In particular, we assume that the process of unloading and reloading consists of
the following five steps:

1. Visual Control: The correct item must be identified. Therefore, the operator must check
the item visually (e.g., by reading the address label).

2. Get: After identifying the correct item, it must be lifted and pulled out. The operator now
has control over it.

3. Movement: The operator now holds the item. It must be carried to the door of the vehicle
loading space. The walking distance corresponds to the distance between the position of the
item and the door.

120

4 Unloading Effort

4. Place: After reaching the door of the vehicle loading space, the item is put down. An exact
position is not necessary; an approximate placement is sufficient.

5. Movement: The operator walks back into the vehicle loading space.

After this description of the unloading process, it is necessary to find the equivalent blocks in the
MTM-UAS data card.1

Table V.1: Extract of MTM-UAS Data Card
Action Detail MTM Code TMU
Visual Control VA 15

Get and Place >1 kg to ≤ 8 kg AH 55
>8 kg to ≤ 22 kg AL 115

Body Movement Walk per m KA 25

Table V.1 shows an extract of the necessary values from the MTM-UAS data card, matching the
described actions. The “Get and Place" MTM block combines the previously described actions #2
and #4. Its time depends on three properties: The item’s mass, motion length, and positioning
accuracy. Concerning the first aspect, the item’s mass is classified into two ranges: between 1 and
8 kg or 8 and 22 kg. There are several ranges for the motion length. Here, the highest class (> 50
to ≤ 80 cm) is always chosen due to the consideration of the item’s dimensions and the operator’s
arm length. The last aspect considers positioning accuracy because exact positioning costs more
time. However, for this use case, such a precise positioning is not necessary. Consequently, the
unloading effort for an item Ip placed at position (xp, yp, zd) is as follows:

effortd = Visual Control + 2 · Walk · (L − xp) + Get and Place(md) (V.1)

The same equation can be used to calculate the loading effort.

4.3 Implementation of Reloading

The previous section described the calculation of the unloading effort for one item. For every item,
the unloading effort must be calculated at least once. However, in the case of the relaxation of the
LIFO constraint, blocking items are intended to be unloaded and reloaded. Hence, this section
describes the prerequisites for reloading and the selection of items for reloading.

As a short recap, the LIFO constraint’s inclusion ensures an unloading process without obstacles
in the related literature. The constraint states that an item should not be placed on top or in front
of items belonging to customers served later. However, this constraint greatly impacts the objective
values (see Krebs et al. (2023)). In this paper, items are allowed to block other items during the
unloading process. The idea is that the blocking items are temporarily unloaded to access the item
that needs to be unloaded Ip. After unloading the item for delivery Ip, the blocking items are
reloaded again.

The first prerequisite for unloading is that the position of Ip is infeasible according to the LIFO
constraint. If this is the case, then the applicability of reloading is examined; if not, the examination
does not occur. The second prerequisite is that Ip is not placed underneath other items. Otherwise,
the items placed on top of Ip would need to fly after unloading Ip as its base is missing, or another
position for each of these items must be found, leading to a decrease in performance.

If these two prerequisites are given, the reloading approach is considered. The unloading and
reloading effort can be calculated using the previously introduced Eq. V.1. However, it is an open
question about which items must be reloaded. This is described in the following. In general, the
number of reloading items should be minimized. For example, when an item Ip should be unloaded
for delivery, it can be accessed from three sides: From the left side, the front side, and the right

1The complete MTM-UAS data card can be downloaded here: https://mtm.org/fileadmin/mtm_upload/
Download/MTM-UAS_data_card_EN.pdf

121

https://mtm.org/fileadmin/mtm_upload/Download/MTM-UAS_data_card_EN.pdf
https://mtm.org/fileadmin/mtm_upload/Download/MTM-UAS_data_card_EN.pdf

5 Hybrid Solution Approach

side. Consequently, three straight corridors from the door to Ip are available. This corridor must
provide a minimal width c so the operator and item can fit through. Therefore, the operator’s
width (60 cm) or the item’s width wd (if wider) are utilized to determine the width of the corridor
c:

c = max(wp, 60). (V.2)

Thus, there are three corridors (left, front, right), which have to obey the minimal width c to access
the item Ip for delivery. Table V.2, as follows, shows the corridor dimensions based on the item Ip.
All corner points must lay inside the vehicle loading space.

Table V.2: Definition of corridors for accessing item Ip

Corridor Minimal Corner Maximal Corner
Left (0, yp − c, 0) (L, yp, H)
Front (0, yp, 0) (L, yp + c, H)
Right (0, yp + wp, 0) (L, yp + wp + c, H)

Based on these three corridors, the items lying within these can be determined. Here, three aspects
must be considered: the point in time of unloading (1), the vertical support of the unloaded
item Ip (2), and the reachability (3). Concerning the point in time, all items unloaded before
the intended item Ip are irrelevant. The same applies to items already considered for reloading
at this point in time. Concerning 2 – vertical support, items that contribute to the support of
Ip to more than 50% are also excluded from the reloading option as these items are crucial for
the vertical stability of Ip. Lastly, a corridor can be excluded from the investigation if one of
its items blocks the item Ip so that it is not reachable, thus violating the Reachability constraint (C8).

Fig. V.1 shows an example of the definition of corridors in this context. The item which must
be accessed for delivery is I1,1. All items are unloaded later than I1,1. The left corridor contains
three items: I3,1, I3,2, I3,3; the right corridor contains only I2,1. In addition, the front corridor
contains I3,1 and I3,2. The item I4,1 is excluded from the corridors, as it fully supports item I1,1,
thus contributing to more than 50% of the support of item I1,1. Consequently, for this situation,
the right corridor should be selected to access item I1,1, as it has the fewest number of items.

(a) I1,1 to be unloaded (b) Three Corridors

Figure V.1: Rearrangement Corridors for Item I1,1

After selecting the corridor, the effort according to Eq. V.1 is applied to each item within the
corridor twice: once for unloading and once for reloading. This procedure gives the total effort for
unloading Ip at its delivery time.

5 Hybrid Solution Approach

This section describes the hybrid algorithm for solving the 3L-VRPTW. Since the 3L-VRPTW
combines the Capacitated VRP (CVRP) and the 3D Container Loading Problem, the hybrid

122

5 Hybrid Solution Approach

algorithm consists of two separate algorithms targeting each subproblem. The algorithm is based
on the hybrid heuristic described in Krebs et al. (2023). The calculation of the unloading effort
is implemented within the packing heuristic. However, to understand the entire framework, the
connection between the routing and the packing algorithm is described roughly in the following
and detail in the subsections.

First, a set of routes is created by the routing algorithm. It takes the routing constraints (R1,
R2) into account. For each feasible route, the packing algorithm is then called, which tries to create
a feasible packing plan considering the loading constraints. In this part, the relaxation of the LIFO
constraint also takes place. If no feasible packing plan can be created for a route, a new set of
routes must be found.

The following three algorithms are described in detail: the routing heuristic, the packing
heuristic, and the loading constraints feasibility check. The suitable line numbers are given in
square brackets.

5.1 Routing Heuristic

For solving the VRP, the modified Adaptive Large Neighbourhood Search (ALNS), described in
detail in Koch et al. (2018), is used. Initially, the algorithm was developed to solve the VRPTW
with Backhauls, and the objective function optimizes the total travel distance. Both aspects are
adapted to meet the problem formulation described before. The general framework is shown in
Alg. V.1; the corresponding line number of the algorithms is given in square brackets. Further
details are described in the original paper.

Algorithm V.1 Adaptive Large Neighbourhood Search
Input: Instance data, parameters
Output: best feasible solution sbest

1: construct initial solution sinit

2: sbest := sinit

3: scurr := sinit

4: do
5: select removal operator rem
6: select insertion operator inst
7: select number of customers to be removed nrem

8: determine next solution snext := inst(rem(scurr, nrem))
9: check acceptance of snext

10: if snext is accepted then
11: scurr := snext

12: if f(scurr) < f(sbest) then
13: sbest := snext

14: end if
15: end if
16: if iterp reached then
17: update selection probabilities for insertion and removal heuristics
18: end if
19: while one stopping criterion is not met

5.1.1 Initial Solution

The Savings Heuristic developed by Clarke and Wright (1964) is used to construct the initial
solution sinit [1]. This first solution complies with all loading and routing constraints (except S3).
Then, the ALNS determines additional feasible and better solutions based on this initial feasible
set of routes.

5.1.2 Iteration

One removal operator (rem) and one insertion operator (inst) are randomly selected for each ALNS
iteration [5–6]. By removing and then re-inserting a number of customers from the solution, the

123

5 Hybrid Solution Approach

operators are used to construct the next solution snext [8]. The number of customers to be removed
nrem (nmin ≤ nrem ≤ nmax) is picked randomly [7]. The removal and insertion operators are
described in the belonging Appendix. The resulting solution is then tested to verify that it complies
with the routing constraints [9] listed in Section 3. Moreover, the packing algorithm, described in
the next section, is invoked.

5.1.3 Evaluation Function

The evaluation function leads the search by enabling the comparison of feasible and infeasible
solutions; it additionally provides the total routing costs. The evaluation is mainly based on the
objective function, e.g., minimizing total travel time. As described before, the total travel time
includes the total travel distance, waiting times, service times, and unloading effort. Based on
this, penalties are added for customers that have yet to be dispatched Nmiss and for exceeding the
number of used vehicles (vmax −vused). Each customer i which has yet to be dispatched (i ∈ Nmiss)
is assigned to one vehicle (round trip), even if this leads to exceeding the number of used vehicles.
The penalty term penv is used to achieve a reduction of the used vehicles vused. The evaluation
function for a solution s is as follows:

f(s) = ttt(s) + penv · max(0, vused + |Nmiss| − vmax)
+

∑Nmiss

i∈Nmiss
(max(d0,i, RTi) + di,0 + STi).

(V.3)

5.1.4 Solution Acceptance

The smaller a solution’s evaluation function value, the better it is rated. A better and more feasible
solution is always accepted, while a worse solution may be accepted [9] depending on a Simulated
Annealing Heuristic proposed by Kirkpatrick et al. (1983). The acceptance probability is thereby
adapted to the annealing process with a geometric cooling schedule. The best solution sbest is
updated [13] if it has a superior evaluation function value relative to the current solution scurr [12].
After a defined number of iterations iterp, the selection probabilities for the removal and insertion
operators are adjusted [16-18] according to their improvement of the solution.

5.1.5 Stopping Criteria

If one of the following stopping criteria is met [19], the heuristic terminates, and the current
best-known solution is given:

• number of total iterations itermax;

• number of iterations without improvement iterwimpr;

• runtime limit tmax.

5.2 Packing Heuristic

This section describes the packing heuristic. It combines two algorithms: The main basis is
the Deepest-Bottom-Left-Fill algorithm, as proposed by Krebs et al. (2023), supplemented with
elements of the Extreme-Point-Based algorithm shown in Gajda et al. (2022). Before describing the
packing algorithm, information concerning the vehicle loading space is relevant. In this regard, the
origin of a Cartesian coordinate system is positioned in the cargo space’s deepest, leftmost corner,
with the driver’s cab placed behind it. The cargo space is parallel to the x, y, and z axes in length,
width, and height. The placement of an item Ii,k is defined by (xi,k, yi,k, zi,k) of the corner closest
to the origin.

The algorithm is shown in Alg. V.2. It is called by the routing heuristic for each route of a solution.
The packing algorithm’s first step [1] is to create the set of items to be packed IS. The items are
sorted observing the following priorities:

1. fragility flag fi,k (non-fragile first)

124

5 Hybrid Solution Approach

2. volume (larger volume first)

3. length li,k (longer first)

4. width wi,k (wider first).

If the reloading approach is not allowed and thus, the LIFO constraint is treated as a hard
constraint, the item sequence IS equals demanded items in the reversed customer’s visiting order.

Algorithm V.2 Deepest-Bottom-Left-Fill Algorithm with Retry
Input: Instance Data
Output: Feasible placements for items (PPv)

1: initialize sorted sequence of items IS
2: initialize set of unique available spaces S
3: for each item Ip ∈ IS do
4: sort spaces
5: for each space sp ∈ S do
6: if support of space sp for Ip < α then continue
7: for each permitted orientation do
8: if item Ip fits in space sp then
9: if ConstraintsFeasibilityCheck(placement Ip) = true then

10: save placement for Ip

11: create new spaces
12: erase space sp
13: get smallest dimensions lmin and hmin of unplaced items ∈ IS
14: for each space si ∈ S do
15: update space si
16: if si too small w.r.t. lmin and hmin then
17: erase space si
18: end if
19: end for
20: break
21: end if
22: end if
23: end for
24: end for
25: if no feasible position found then
26: if first trial then
27: move Ip to end of S
28: else
29: return false
30: end if
31: end if
32: end for
33: return true, P Pv

Concerning the placement positions, available free spaces in the vehicle loading space are used. Let
S be a set containing unique cuboids representing these spaces. Initially, this set consists of one
space representing the total cargo space [2]. As a result, the first item in the packing sequence IS
is assigned to the origin.
Each space sp of the set is tested as a possible item position [9] w.r.t. to the other loading
constraints. This part is presented in more detail in Alg. V.3. If a feasible position is found, the
position is stored for the item [10]. Fig. V.2 visualizes the spaces for an item Ip, which are created
as follows [11]:
First, the Front Space is defined by the item’s front edge (minimum x-value) and either the cargo
space door or the nearest item in front of the item (maximum x-value). Then, the minimum and
maximum values for the y-axis are determined by the cargo space or other items; the minimum
and maximum values for the z-axis are searched similarly (see Fig. V.2b). Next, the Right Space

125

5 Hybrid Solution Approach

(a) Positions in Loading Space (b) Front Spaces for I3,1

(c) Right Spaces for I3,1 (d) Top Spaces for I3,1

Figure V.2: Space Creation

is bounded along the y-axis by the left side of the item (minimum y-value) and either by the
cargo space wall or by the rightmost item (maximum y-value). Based on these limitations, the
minimum and maximum values for the x-axis are determined, then for the z-axis (see Fig. V.2c).
Finally, the Top Space is defined by the item’s top surface and either the cargo space ceiling or
an item overhanging over the current item Ip. In the next step, the minimum and maximum
values for the y-axis and z-axis are determined by the cargo space or other items (see Fig. V.2d).
Besides that, three additional spaces are created if they are unique: another Front and Right Space,
where the minimum z-value represents the bottom edge of item Ip and another Top Space, where
the minimum x-value is the deepest edge of item Ip. These additional spaces are also presented
in Fig. V.2 for the Right and Top Spaces; for the Front Space specifically, the additional space
corresponds to the previous one and is thus not unique. The definition and determination of the
placement positions have two comparable aspects as in the algorithm by Gajda et al. (2022): First,
the algorithm by Gajda et al. (2022) is based on extreme points, which means that items are placed
next to the extreme points—the DBLF algorithm uses the same principle. Second, when creating
the Left and Front Spaces, the spaces are extended along the z-axis as described before. This
accords with the projection approach by Gajda et al. (2022).

If a possible position for item Ip has been identified, the corresponding space sp, wherein the
item Ip is placed, is removed from the set S [12]. To increase the performance, only spaces whose
length and height are large enough for the smallest dimensions of any item among all items of the
route IS are included in the set S. Therefore, the shortest length or width lmin and height hmin of
any unplaced item of the route IS are searched [17]. Due to the permitted rotations, only the two
measures lmin and hmin are relevant. If the length or height of any space in the set is smaller than
lmin or hmin, the space is removed from the set [13-18]. At the same time, all spaces are evaluated
regarding their intersection with item Ip. In the case of intersection, the minimum and maximum
values for the x-, y-, and z-axis are decreased [15]. This process ensures that when placing an item
within a space, this item does not overlap with other items or the vehicle walls (C1). Therefore, an

126

5 Hybrid Solution Approach

additional overlapping check for the Geometry constraint (C1) is not required.
If a feasible position for Ip was found, the position for the following item is searched [32]. If all
spaces are checked once and no feasible position for item Ip is found [24], the item is moved to the
end of the set IS to retry this item once again [25-27]. This retry list is also proposed by Gajda
et al. (2022). After all of the items have been considered (i.e., the first loop), those that could not
be placed initially are tried. The idea is that more spaces will be available, potentially leading to a
feasible position. According to Gajda et al. (2022), who found that the benefit of multiple retries is
usually negligible, this single additional retry is sufficient. If no position can be found for an item
on the second attempt [28-30], the route is considered unpackable and thus rejected. If this occurs,
the ALNS must generate a new set of routes.

5.3 Constraints Feasibility Check

This part deals with the Constraints Feasibility Check, where the position of item Ip is checked
w.r.t to the feasibility of the loading constraints as described in Section 3. The following algorithm
Alg. V.3 is called in the previously presented packing algorithm Alg. V.2 (see line 9). Four
constraints are obeyed indirectly before calling this algorithm:

1. Geometry (C1) prevents items from overlapping with each other or the vehicle wall. This
constraint is obeyed by creating spaces where the dimensions are directly adapted.

2. Orthogonality (C2) deals with placing items only orthogonal to the vehicle walls. This is also
obeyed through the definition of the spaces that are parallel to the vehicle walls.

3. Rotation (C3) constraint allows the rotation of items only along the width-length plane. This
is enabled in Alg. V.2, line 7.

4. Load Capacity (C4) checks that the sum of masses per tour does not exceed the capacity
limit D. This is checked during the next solution creation process (Alg. V.1, line 8)), along
with all routing constraints.

Consequently, the constraints Fragility, Minimal Supporting Area, LIFO, Reachability, Axle Weights,
and Balanced Load must still be checked. These constraint checks are sorted according to the
algorithmic complexity, determined by Alg. V.3. Therefore, it starts with the feasibility check for
Axle Weights [1] and the Balanced Load constraint [2]. The implementation of both constraints is
described in detail in Krebs et al. (2021). After that, the Fragility and the Minimal Supporting
Area constraint checks are executed. As the LIFO constraint is relaxed, a deep-dive of this check
follows.

First, it is necessary to initialize the corridor sets (Left Corridor LC, Right Corridor RC, Front
Corridor FC) [4]; these will contain the items of the corridor [5]. Then, the reachability flags are
initialized [6]. These flags indicate whether a corridor can be reached (true) or an item blocks the
corridor, making the item Ip is not reachable (false). Consequently, there are three flags—one per
corridor. In the next step, the width of the corridor c is determined [7]. The LIFO constraint is
checked for the position of item Ip [8]. Then, if the position is feasible regarding LIFO, the item’s
reachability is checked [17]. The implementation details can also be found in Krebs et al. (2021).
If the position is not feasible w.r.t. LIFO and reloading is allowed, then the reloading approach
starts. For every already placed item, It is checked regarding whether it lays within a corridor [13,
19, 25]. Thus, items unloaded before the item Ip [11] or are already rearranged for when Ip should
be unloaded [12] are ignored. After that, three similar blocks [13-18, 19-24, 56-30] follow – one for
each corridor (Left, Front, Right). Each block starts with defining the corridors [13, 19, 25], as
previously presented in Section 4.3, and checking if an item is inside the corridor.

If an item lays inside a corridor, the support of the item on the item Ip is examined: if the
support for item Ip is more than 50%, the item It cannot be rearranged as this item is crucial for
the vertical stability of Ip, preventing it from falling on to the ground. Thus, as item It is within
the corridor but cannot be rearranged for stability reasons, it is necessary to determine if item Ip is
reachable despite it blocking item It. The reachability check depends on the corridor—thus, on the
side of item Ip—being accessible: For the front corridor, the distance between the front edges is
determined and must be below λ, the parameter representing the maximum distance. Then, the

127

5 Hybrid Solution Approach

Algorithm V.3 Constraints Feasibility Check
Input: Instance Data, item Ip

Output: Feasibility placement for item Ip, Unloading Effort
1: if Axle Weights Constraint Check(Ip) = false return false
2: if Balanced Load Constraint Check(Ip) = false return false
3: if Fragility Constraint Check(Ip) = false return false
4: if Minimal Support Constraint Check(Ip) = false return false
5: LC, RC, FC := Ø ▷ Initialize Corridor Sets
6: rLC , rRC , rF C := true ▷ Reachable flags for Corridor Sets
7: c := max(60, wp)
8: if placement for Ip not feasible w.r.t LIFO then
9: if reloading is not allowed then return false

10: for placed item It ∈ IS do
11: if It unloaded before Ip then continue
12: if It is already rearranged when unloading Ip’s customer then continue
13: if It in area (xp, yp − c, 0) to (L, yp, H) then ▷ Left Corridor
14: if It supports Ip < 50% then
15: LC := LC ∪ It

16: else if yp − yt ≥ λ then rLC := false
17: end if
18: end if
19: if It in area (xp, yp, 0) to (L, yp + c, H) then ▷ Front Corridor
20: if It supports Ip < 50% then
21: F C := F C ∪ It

22: else if (xt + lt) − (xp + lp) ≤ λ then rF C := false
23: end if
24: end if
25: if It in area (xp, yp + wp, 0) to (L, yp + wp + c, H) then ▷ Right Corridor
26: if It supports Ip < 50% then
27: RC := RC ∪ It

28: else if (yt + wt) − (yp + wp) < λ then rRC := false
29: end if
30: end if
31: end for
32: if rLC = false and rF C = false and rRC = false then return false
33: MS := min{|LC|, |RC|, |F C|} with corresponding reachability flag = true
34: sumeffort := 0
35: for each item Is ∈ MS do
36: sumeffort += 2· unloading effort for Is

37: flag Is as reloaded when unloading Ip’s customer
38: end for
39: elseif Reachability Constraint Check(Ip) then return false
40: end if
41: return true, sumeffort

left and right edges must be compared for the left and right corridors, respectively. This is also
visualized in Fig. V.3.

If the item Ip is not reachable, the corridor is excluded from further consideration by setting the
reachability flag [16, 22, 28]. In contrast, if the item It can be reloaded, it is added to the corridor
set [15, 21, 27]. The next step is to select the best corridor, i.e., the one that is reachable and
contains the fewest elements [33]. Finally, this best set is stored in the minimal set MS. Then, the
unloading effort for every item of the set MS is calculated, and the unloading flag is set to true.
This flag has the effect that the unloading effort at the time of Ip’s customer is only calculated
once [40-43]. Finally, the unloading effort and the position’s feasibility are returned [46].

128

6 Computational Experiments

Figure V.3: Reachability of Items

6 Computational Experiments

This section investigates the solution quality, the performance of the hybrid algorithm, and
the reloading effort’s impact. All results and detailed packing plans are available via https:
//github.com/CorinnaKrebs/Results. The hybrid algorithm was implemented in C++ as a single-
core x64-application and was compiled using the GCC compiler, version 4.8.3. The experiments
were executed on a high-performance cluster 32-Core with 2.9 GHz.

6.1 Computational Setup

This section deals with the computational setup. It contains details concerning the objective
function, computational parameters, and instance sets.

6.1.1 Unloading Effort in Objective Function

The unloading effort is given in time units. To include the unloading effort into the objective
function, a more specific declaration of the speed of a vehicle is necessary to determine the total
travel time. The 3L-VRPTW reflects last-mile deliveries, which is a combination of extra-urban
trips (average speed is 90 km/h) and intra-urban trips (average speed is 30 km/h, see Statista
(2009)). Therefore, the average speed for a vehicle v is set to 60 km/h or 1 km per minute.
Consequently, the time values are given in minutes.

6.1.2 Parameters

The parameters for the loading constraints and the routing heuristic are listed in Table V.3. A
preliminary study was conducted to tune the parameters for the routing heuristic. As the evaluation
showed, the best results were obtained by the parameters described in Koch et al. (2018); therefore,
these parameters are used for the following experiments. In addition, the parameters for the loading
constraints are those established in recent literature.

6.1.3 Instances

Currently, there are three instance sets for the 3L-VRPTW: the instance sets by Moura and Oliveira
(2009), Zhang et al. (2017), and Krebs et al. (2021). The characteristics of the instance sets are
shown in Table V.4. However, not all instance sets are suitable for pure manual unloading as the
items exceed the allowed maximum of some dimensions. For instance, the shipping conditions
of DHL, one of the leading parcel delivery companies worldwide, restrict the dimensions of daily
parcels to a maximal length of 120 cm and mass of 32 kg. The available instance sets all contain
items exceeding these limits. Therefore, this paper presents a new instance set, accessible via
https://github.com/CorinnaKrebs/Instances/Krebs_MTM.

129

https://github.com/CorinnaKrebs/Results
https://github.com/CorinnaKrebs/Results
https://github.com/CorinnaKrebs/Instances/Krebs_MTM

6 Computational Experiments

Table V.3: Routing and Loading Parameters
Parameter Usage Description Value
itermax Stopping Criterion Maximal number of itera-

tions
25,000

iterwimpr Stopping Criterion Maximal number of itera-
tions without improvement

8,000

tmax Stopping Criterion Time limit [min] 60
iterp ALNS Number of iterations for

updating probabilities for
removal and insertion oper-
ators

100

ωbest ALNS Coefficient for determina-
tion of the operator score,
weighting the influence of
finding new best solutions

50

ωimpr ALNS Coefficient for determina-
tion of the operator score,
weighting the influence of
finding improved solutions

10

ωe ALNS Coefficient for determina-
tion of the operator score,
weighting the influence of
finding worse, not yet ac-
cepted solutions or solu-
tions as good as the current
solution

5

r ALNS Reaction factor 0.8
nmin ALNS Number of minimal cus-

tomers to be removed from
a route

0.04n

nmax ALNS Number of maximal cus-
tomers to be removed from
a route

0.4n

dmax Evaluation Function Maximal distance between
two customers in instance

maxi,j∈N di,j

penv Evaluation Function Penalty term for each sur-
plus vehicle

10 · dmax

α Vertical Stability Minimal supporting ratio 0.75
λ Reachability Minimal distance to reach

an item [cm]
50

This instance set systematically varies the number of customers, items, and item types. The number
of customers is between 50 and 200 in steps of 50. The customers are positioned rather close to
each other to represent an urban situation. The total number of items ranges between 100 and
400 in steps of 100, thus accounting for the requirement that the number of items exceeds the
number of customers. There are either 10 rather homogeneous instances or 100 item types (rather
heterogeneous). For each property, there are six instances. In total, the instance set consists of 120
instances.
The vehicle parameters are based on the box truck Daily 35 by IVECO. The dimensions for the

Table V.4: Overview of Instance Sets
author MTM # n m

applicable
Moura and Oliveira (2009) x 46 25 1050, 1550
Zhang et al. (2017) x 27 [15, 100] [26, 199]
Krebs et al. (2021) x 600 20, 60, 100 200, 400
This paper ✓ 120 [50, 250] [100, 400]

130

6 Computational Experiments

items are [20, 120] cm length, [20, 60] cm width, [10, 60] cm height, and they have a maximum
weight of 22 kg, as MTM is not applicable for higher weights. The fragility flag is assigned randomly
to the items, where approx. 10% are fragile.

6.2 Computational Results

This section evaluates the unloading effort—specifically concerning its impact on the objective
value and performance. Thus, the new instance set is used. Two computational experiments are
conducted: The first evaluates the algorithm variants based on predefined routes with given volume
ranges. In the second, the algorithms are tested in the context of the 3L-VRPTW with the hybrid
algorithm. In the following, summarized results are presented. All packing plans are available via
https://github.com/CorinnaKrebs/Results. The impact of the unloading effect is determined by
comparing the results with the hard LIFO constraint and when allowing reloadings (relaxed LIFO
constraint) using the MTM approach.

6.2.1 Predefined Routes

This computational experiment assesses the effectiveness of the hard LIFO constraint compared
to the relaxed approach, including reloadings. Therefore, predefined routes for each instance of
the new instance set are created. The corresponding volume of all included items in the route is
calculated and set according to the vehicle loading space. Each route is packed twice: one time with
hard LIFO constraint (“only LIFO”) and one time with allowing reloadings (“with reloading”). In
Table V.5, the results are presented. The “Interval” column shows the used volume relative to the
vehicle loading space in percent. Moreover, the total number of routes that could be packed at
least once is shown, followed by a column presenting the absolute number of feasible packed routes
per configuration. The column “Success Rate” gives the total number of successfully packed routes
related to the total number of routes. Finally, the average runtime per volume range is presented.
Routes that could not be packed at least once were excluded from this analysis.

Table V.5: Comparison with predefined routes

Volume Interval total number
of routes number of feasible packed routes success rate [%] avg. runtime [s]

per interval only LIFO with Reloading only LIFO with Reloading only LIFO with Reloading
40-45 50,626 47,694 50,631 94.2 99.9 1.30 1.38
45-50 60,824 50,947 60,823 83.8 99.9 1.45 1.58
50-55 59,539 39,058 58,970 65.6 99.0 1.74 1.95
55-60 51,672 24,186 48,957 46.8 94.7 1.87 2.41
60-65 33,946 11,721 30,266 34.5 89.2 1.75 2.94
65-70 17,462 3,969 15,599 22.7 89.3 1.69 3.31
70-75 7,257 707 6,747 9.7 92.9 1.69 3.76
75-80 2,735 47 2,691 1.7 98.4 1.43 4.37
80-85 838 2 835 0.2 99.6 1.22 5.13
total 284,905 178,331 281,205 39.9 95.9 1.56 2.11

The results demonstrate that allowing reloadings leads to a significantly higher success rate (1.5
times on average). This is especially true the higher the volume utilization is: While the deviation
of the success rate between the hard LIFO constraint and allowing reloading is 5.7% points in the
interval “40-45”, it is 99.4% points in the interval “80-85”. Concurrently, however, the average
runtime increases due to allowing reloadings. Regarding the overall average, the runtime is 1.4 times
higher when allowing reloadings than without (hard LIFO). Surprisingly, the trend of “the higher
the volume utilization, the lower the success rate” only applies to the hard LIFO configuration.
On the contrary, when allowing reloading, the lowest success rate is for the interval “65-70.”. The
reason for this effect lies in the varying number of total routes per interval and the difficulty of the
predefined routes (e.g. the number of customers and the number of items).

6.2.2 Combination with Vehicle Routing

The following Table V.6 presents the average results out of 25 runs for two configurations: when
the LIFO constraint is a hard constraint (“only LIFO”) and when reloading is included (“with
Reloading”). The deviation between both configurations is also provided. According to these
results, the sum of the number of used vehicles (vused), the total travel distance (ttd), the total

131

https://github.com/CorinnaKrebs/Results

7 Conclusion

travel time (ttt), the unloading effort (“effort”) and the average runtime in seconds (“runtime”) are
shown. In addition, the new instance set enables comparisons between the number of customers
(n), items (m), and item types.

Table V.6: Comparison of Average Results
n m Item types Total

50 100 150 200 100 200 300 400 10 100
only LIFO

sum vused 223 212 209 172 27 153 281 355 399 417 816
sum ttd 3,987.66 4,172.94 4,692.24 3,694.58 713.51 3,437.59 5,793.17 6,603.13 8,136.54 8,410.87 16,547.41
sum ttt 16,973.32 21,859.62 29,532.23 25,508.56 3,406.48 19,902.56 34,100.38 36,464.30 46,687.29 47,186.43 93,873.72
sum effort 1,390.76 1,249.87 1,242.19 969.25 141.98 844.41 1,666.88 2,198.81 2,420.57 2,431.50 4,852.07
avg. runtime [s] 3,594.50 3,600.00 3,600.00 3,600.00 3,578.00 3,600.00 3,600.00 3,600.00 3,596.33 3,600.00 3,598.17

with Reloading
sum vused 196 184 173 147 21 130 240 309 342 358 700
sum ttd 3,504.99 3,550.28 4,023.99 3,181.45 659.28 3,007.39 4,981.12 5,612.93 7,030.39 7,230.33 14,260.71
sum ttt 15,782.55 20,606.85 28,268.68 24,590.35 3,303.34 19,089.00 32,442.79 34,413.32 44,330.12 44,918.33 89,248.45
sum effort 1,302.49 1,179.08 1,164.60 918.49 133.80 798.90 1,569.22 2,062.74 2,249.76 2,314.90 4,564.66
avg. runtime [s] 3,459.36 3,600.00 3,600.00 3,600.00 3,037.44 3,600.00 3,600.00 3,600.00 3,539.31 3,566.93 3,553.12

diff. vused -12.11% -13.21% -17.22% -14.53% -22.22% -15.03% -14.59% -12.96% -14.29% -14.15% -14.22%
diff. ttd -12.10% -14.92% -14.24% -13.89% -7.60% -12.51% -14.02% -15.00% -13.59% -14.04% -13.82%
diff. ttt -7.02% -5.73% -4.28% -3.60% -3.03% -4.09% -4.86% -5.62% -5.05% -4.81% -4.93%
diff. effort -6.35% -5.66% -6.25% -5.24% -5.76% -5.39% -5.86% -6.19% -7.06% -4.80% -5.92%
diff. runtime -3.76% 0.00% 0.00% 0.00% -15.11% 0.00% 0.00% 0.00% -1.59% -0.92% -1.25%

As before, the results evidence that the objective values improve significantly by allowing
reloading. The additional effort caused by reloading is less than the savings from finding a shorter
total travel distance. Both the total number of used vehicles and the total travel distance decrease
by about 14%, on average. Concerning the total travel time, including the reloading effort, the
saving is 5%. Moreover, the solutions can also be found more quickly; on average, the running
time is reduced by almost 1.25%. Due to the larger solution space, more and better solutions are
available so that the ALNS can terminate earlier.

Two clear trends can be identified in the difference between “only LIFO” and “allowing reloading.”
First, the effectiveness of reloading decreases with the number of customers: For every 50 additional
customers, the difference in the total travel time decreases by about 1.5 percentage points. One
reason for this tendency is that with a higher number of customers, there is an accordingly higher
number of items that might be unloaded later and block other items. The actual number of items
per customer is less relevant. Another correlation can be identified with the number of items. The
difference in the total travel time increases along with the number of items. This is a sign of the
effectiveness of reloading. The reason is that the LIFO constraint correlates negatively with the
number of items; thus, the benefits of reloading increase with the number of items. For every 100
items, the difference increases by about 0.8 percentage points. The number of item types and, thus,
the heterogeneity of the items have almost no influence on the total time.
One concrete example of a solution is presented in Fig. V.4, which displays a comparison of solutions
for “only LIFO” and when “allowing reloading” for instance no. 5. In this case, the objective
values decrease significantly: the total travel time decreases by 3%, the number of used vehicles is
halved, and even the total travel distance is 10% shorter when “allowing reloading.” In addition,
the solution is received 40% faster.

To summarize, allowing for reloading to relax the LIFO constraint reduces the objective values
significantly and lowers the runtime.

7 Conclusion

This paper presents an approach for considering the manual unloading effort in the context of the
combined 3D loading and container loading problem with time windows (3L-VRPTW). For this
purpose, a standard method to evaluate manual work in the industrial environment is applied:
Methods-Time-Measurement (MTM). Thus, for every item, the necessary effort for its unloading is
calculated and integrated into the objective function, which aims at minimizing the total travel
distance. Additionally, the MTM approach is used to relax the LIFO constraint. The LIFO
constraint is rather strict, as no item is allowed to be placed in front of items which are unloaded
later or placed on top of them. In this situation, relaxation is achieved by allowing for items that
block items. For these items, the effort of unloading and reloading is calculated and integrated into

132

References

(a) Solution for “only LIFO” (b) Vehicle 1 (c) Vehicle 2

(d) Solution for “allowing reloading” (e) Vehicle 1

Figure V.4: Comparison “only LIFO” and “allowing reloading” for instance no. 5

the objective function. Two computational experiments are conducted: One evaluates the success
rate for predefined routes, and one determines the impact within 3L-VRPTW through the hybrid
algorithm. For this purpose, a new instance set tailored for urban deliveries is generated, varying in
the number of customers, items, and item types. The comparison is based on the results received
with the hard LIFO constraint, disallowing reloadings, and the relaxed LIFO constraint, allowing
reloadings. The results clearly show that the latter approach improves the results significantly,
expressed by a decrease of 5% for the total travel time, on average, compared to the results with the
hard LIFO constraint. Moreover, by allowing reloadings, solutions are found faster by an average
of 1.25%.
To summarize, including the unloading effort into the objective function reflects the reality and
allows to include reloadings, which significantly improves the solution quality and runtime.
As future work, the rearrangement of items could be improved: In this paper, blocking items are
entirely unloaded and reloaded. An improved approach could be that the current packing plan
inside the vehicle loading space is analyzed and the blocking item placed in a different position.

Acknowledgements. The author declares that she has no conflict of interest.

References

Bischoff, E. E. and Ratcliff, M. S. W. (1995). “Issues in the development of approaches to container
loading”. In: Omega vol. 23, no. 4, pp. 377–390. issn: 03050483. doi: 10.1016/0305-0483(95)00015-
G.

Ceschia, S., Schaerf, A., and Stützle, T. (2013). “Local search techniques for a routing-packing
problem”. In: Computers and Industrial Engineering vol. 66, no. 4, pp. 1138–1149. issn: 0360-
8352. doi: https://doi.org/10.1016/j.cie.2013.07.025. url: http://www.sciencedirect.com/
science/article/pii/S0360835213002404.

Clarke, G. and Wright, J. W. (1964). “Scheduling of Vehicles from a Central Depot to a Number of
Delivery Points”. In: Operations Research vol. 12, no. 4, pp. 568–581. issn: 0030364X, 15265463.
doi: 10.1287/opre.12.4.568. url: http://www.jstor.org/stable/167703.

133

https://doi.org/10.1016/0305-0483(95)00015-G
https://doi.org/10.1016/0305-0483(95)00015-G
https://doi.org/https://doi.org/10.1016/j.cie.2013.07.025
http://www.sciencedirect.com/science/article/pii/S0360835213002404
http://www.sciencedirect.com/science/article/pii/S0360835213002404
https://doi.org/10.1287/opre.12.4.568
http://www.jstor.org/stable/167703

References

Gajda, M., Trivella, A., Mansini, R., and Pisinger, D. (2022). “An optimization approach for a
complex real-life container loading problem”. In: Omega vol. 107, p. 102559. issn: 0305-0483.
doi: https://doi.org/10.1016/j.omega.2021.102559. url: https://www.sciencedirect.com/
science/article/pii/S0305048321001687.

Gendreau, M., Iori, M., Laporte, G., and Martello, S. (2006). “A Tabu Search Algorithm for a
Routing and Container Loading Problem”. In: Transportation Science vol. 40, no. 3, pp. 342–350.
issn: 0041-1655. doi: 10.1287/trsc.1050.0145. url: http://pubsmisc.informs.org/doi/abs/10.
1287/trsc.1050.0145.

Junqueira, L., Oliveira, J. F., Carravilla, M. A., and Morabito, R. (2013). “An optimization
model for the vehicle routing problem with practical three-dimensional loading constraints”.
In: International Transactions in Operational Research vol. 20, no. 5, pp. 645–666. doi: https:
//doi.org/10.1111/j.1475-3995.2012.00872.x. eprint: https://onlinelibrary.wiley.com/doi/pdf/10.
1111/j.1475-3995.2012.00872.x. url: https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1475-
3995.2012.00872.x.

Kirkpatrick, S., Gelatt, C. D., and Vecchi, M. P. (1983). “Optimization by simulated annealing.”
In: Science vol. 220 4598, pp. 671–80. doi: 10.1126/science.220.4598.671.

Koch, H., Bortfeldt, A., and Wäscher, G. (Feb. 2018). “A hybrid algorithm for the vehicle routing
problem with backhauls, time windows and three-dimensional loading constraints”. In: OR
Spectrum vol. 40. doi: 10.1007/s00291-018-0506-6.

Krebs, C., Ehmke, J. F., and Koch, H. (2021). “Advanced loading constraints for 3D vehicle
routing problems”. In: OR Spectrum. issn: 1436-6304. doi: 10.1007/s00291-021-00645-w. url:
https://doi.org/10.1007/s00291-021-00645-w.

— (2023). “Effective loading in combined vehicle routing and container loading problems”. In:
Computers & Operations Research vol. 149, p. 105988. issn: 0305-0548. doi: https://doi.
org/10.1016/j.cor.2022.105988. url: https://www.sciencedirect.com/science/article/pii/
S0305054822002258.

Moura, A. (2008). “A Multi-Objective Genetic Algorithm for the Vehicle Routing with Time
Windows and Loading Problem”. In: Intelligent Decision Support: Current Challenges and
Approaches. Ed. by Bortfeldt, A., Homberger, J., Kopfer, H., Pankratz, G., and Strangmeier, R.
Wiesbaden: Gabler, pp. 187–201. isbn: 978-3-8349-9777-7. doi: 10.1007/978-3-8349-9777-7.
url: https://doi.org/10.1007/978-3-8349-9777-7.

Moura, A. and Oliveira, J. F. (Oct. 2009). “An integrated approach to the vehicle routing and
container loading problems”. In: OR Spectrum vol. 31, no. 4, pp. 775–800. issn: 1436-6304. doi:
10.1007/s00291-008-0129-4. url: https://doi.org/10.1007/s00291-008-0129-4.

MTM Association e.V. (2020). url: https://mtm.org/en/brands/brand-history.
Reil, S., Bortfeldt, A., and Mönch, L. (2018). “Heuristics for vehicle routing problems with backhauls,

time windows, and 3D loading constraints”. In: European Journal of Operational Research
vol. 266, no. 3, pp. 877–894. issn: 0377-2217. doi: https://doi.org/10.1016/j.ejor.2017.10.029.
url: http://www.sciencedirect.com/science/article/pii/S0377221717309426.

Rückert, P., Papenberg, B., and Tracht, K. (2021). “Classification of assembly operations using
machine learning algorithms based on visual sensor data”. In: Procedia CIRP vol. 97. 8th
CIRP Conference of Assembly Technology and Systems, pp. 110–116. issn: 2212-8271. doi:
https://doi.org/10.1016/j.procir.2020.05.211. url: https://www.sciencedirect.com/science/
article/pii/S2212827120314311.

Statista (2009). url: https : / / de . statista . com / statistik / daten / studie / 37200 / umfrage /
durchschnittsgeschwindigkeit-in-den-15-groessten-staedten-der-welt-2009/.

Tarantilis, C. D., Zachariadis, E. E., and Kiranoudis, C. T. (June 2009). “A Hybrid Metaheuristic
Algorithm for the Integrated Vehicle Routing and Three-Dimensional Container-Loading
Problem”. In: IEEE Transactions on Intelligent Transportation Systems vol. 10, no. 2, pp. 255–
271. issn: 1524-9050. doi: 10.1109/TITS.2009.2020187.

Zhang, D., Cai, S., Ye, F., Si, Y.-W., and Nguyen, T. T. (2017). “A hybrid algorithm for a vehicle
routing problem with realistic constraints”. In: Information Sciences vol. 394-395, pp. 167–182.
issn: 0020-0255. doi: 10.1016/j.ins.2017.02.028.

134

https://doi.org/https://doi.org/10.1016/j.omega.2021.102559
https://www.sciencedirect.com/science/article/pii/S0305048321001687
https://www.sciencedirect.com/science/article/pii/S0305048321001687
https://doi.org/10.1287/trsc.1050.0145
http://pubsmisc.informs.org/doi/abs/10.1287/trsc.1050.0145
http://pubsmisc.informs.org/doi/abs/10.1287/trsc.1050.0145
https://doi.org/https://doi.org/10.1111/j.1475-3995.2012.00872.x
https://doi.org/https://doi.org/10.1111/j.1475-3995.2012.00872.x
https://onlinelibrary.wiley.com/doi/pdf/10.1111/j.1475-3995.2012.00872.x
https://onlinelibrary.wiley.com/doi/pdf/10.1111/j.1475-3995.2012.00872.x
https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1475-3995.2012.00872.x
https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1475-3995.2012.00872.x
https://doi.org/10.1126/science.220.4598.671
https://doi.org/10.1007/s00291-018-0506-6
https://doi.org/10.1007/s00291-021-00645-w
https://doi.org/10.1007/s00291-021-00645-w
https://doi.org/https://doi.org/10.1016/j.cor.2022.105988
https://doi.org/https://doi.org/10.1016/j.cor.2022.105988
https://www.sciencedirect.com/science/article/pii/S0305054822002258
https://www.sciencedirect.com/science/article/pii/S0305054822002258
https://doi.org/10.1007/978-3-8349-9777-7
https://doi.org/10.1007/978-3-8349-9777-7
https://doi.org/10.1007/s00291-008-0129-4
https://doi.org/10.1007/s00291-008-0129-4
https://mtm.org/en/brands/brand-history
https://doi.org/https://doi.org/10.1016/j.ejor.2017.10.029
http://www.sciencedirect.com/science/article/pii/S0377221717309426
https://doi.org/https://doi.org/10.1016/j.procir.2020.05.211
https://www.sciencedirect.com/science/article/pii/S2212827120314311
https://www.sciencedirect.com/science/article/pii/S2212827120314311
https://de.statista.com/statistik/daten/studie/37200/umfrage/durchschnittsgeschwindigkeit-in-den-15-groessten-staedten-der-welt-2009/
https://de.statista.com/statistik/daten/studie/37200/umfrage/durchschnittsgeschwindigkeit-in-den-15-groessten-staedten-der-welt-2009/
https://doi.org/10.1109/TITS.2009.2020187
https://doi.org/10.1016/j.ins.2017.02.028

References

Appendix

A Removal and Insertion Operators

Table V.7 shows nine removal operators, and Table V.8 summarises the three insertion approaches
used in this paper. This paper uses the removal and insertion operators described and evaluated in
Koch et al. (2018).

Table V.7: Overview Removal Operators
Neighborhood Operators Description
Shaw Removes related customers w.r.t. distance, demand, time windows
Random Removes random customers
Worst Removes customers increasing the total routing costs the most
Cluster Divides a random tour into two clusters and randomly removes one of

them
Neighbour graph Removes customers, increasing the average distance of a tour
Overlap Removes customers, leading to the intersection of two tours
Inner Route Removes a tour surrounded by another, splits the surrounding tour into

two
Intersection Removes customers, leading to intersections within a tour
Tour Pair Removes two intersecting tours

Table V.8: Overview Insertion Operators
Neighborhood Operators Description
Greedy Inserts customers iteratively so that an increase in routing costs is

minimal
Regret-2 Inserts customers iteratively so that the maximal difference of routing

costs for the best and second-best insertion in different tours is achieved
Regret-3 Inserts customers iteratively so that the sum of two differences in routing

costs is maximal. The first difference is the routing cost for the best and
the second best insertion in different tours, while the second difference
results from the best and the third best insertion in different tours

135

Paper VI

Solution Validator and Visualizer for
(Combined) Vehicle Routing and Container
Loading Problems

Corinna Krebs, Jan Fabian Ehmke
Published in Annals of Operations Research, May 2023, volume 326, pp. 561–579. DOI:
10.1007/s10479-023-05238-0.

VI

Abstract

The optimization of cargo loading and transportation are two highly considered optimization
problems (namely “3L-CVRP"). The combination of both has attracted increasing interest in
the past decades. Hereby, 2D or 3D items have to be transported from one depot to a given
set of customers using a homogeneous fleet of vehicles. Each route must be provided with a
feasible packing plan taking various constraints into account. Combining the two optimization
problems increases the complexity of the solution approaches, leading to a higher difficulty to
check the results for correctness.

To support the research progress and to enable transparency of solution structures, this
paper provides an overview of recent literature, problem formulations, and best-known solutions.
Furthermore, we introduce two open-source tools: The “Solution Validator" checks the feasibility
of solutions in terms of considered constraints. The “Visualizer" provides two views and
visualizes solutions. In the vehicle routing view, the tour plan and the corresponding schedule
are displayed. In the loading view, the position of each item in the cargo space is demonstrated.
In both views, it is possible to check the feasibility of the solution and highlight violated items.
Besides the combined problem, the tool can be used also for one optimization problem (e.g.
vehicle routing problem or container loading). The source codes for both tools are available at
GitHub in C++ and Java and can be easily integrated into other researchers’ code.

137

https://doi.org/10.1007/s10479-023-05238-0

1 Introduction

Contents

1 Introduction . 138
2 Literature Review . 139
3 Problem Formulation . 140
4 Open Source Tools . 143
5 Instances and Best Known Results . 148
6 Summary and Future Work . 150
References . 151

1 Introduction

Since its introduction by Gendreau et al. (2006), the combined Vehicle Routing (VRP) and
Container Loading Problems (CLP) have consistently challenged researchers worldwide. The
3L-CVRP assumes the delivery of 3D cuboid items laying at the depot. A homogeneous fleet of
vehicles is available for transporting the items to a number of customers. Each vehicle must be
equipped with a feasible packing plan considering a specific set of loading constraints. An exemplary
solution for a 3L-CVRP instance is provided in Fig. VI.1.

Figure VI.1: Exemplary solution for instance “3l-cvrp01"

An extension of the 3L-CVRP is the 3L-VRPTW, in which time windows at the depot and
at the delivery are considered. Through the combination of the VRP with 3D CLP, the solution
approaches are more complex but also more practicable. However, at the same time, the difficulty
of ensuring the solution feasibility increases. This is also due to new formulations of advanced
loading constraints in the latest research. These include, but are not limited to, the consideration
of axle weights of vehicles (see Krebs and Ehmke 2021a), the unloading sequence, the reachability
(see Ceschia et al. 2013), and load-bearing strength of items (see Krebs et al. (2021)).
This paper introduces two open-source tools to support the research for VRP, CLP, and its combined

138

2 Literature Review

problems1. The source codes of both tools are published online at GitHub and have been coded
in Java and C++. The first tool, called “Solution Validator", reports the feasibility of solutions.
Hereby, several constraints, especially loading constraints, can be checked concerning feasibility. In
the case of infeasible solutions, every violated constraint is shown. The second tool “Visualizer"
visualizes, as the name implies, the solutions. It provides two views, showing the execution of
the tours and giving a detailed schedule indicating travel, waiting, and handling times. In the
second view, the position of each item inside the vehicle loading space is presented. Besides that,
the “Visualizer" contains an interface to the “Solution Validator" and can check the feasibility of
solutions. In the case of infeasibility, the tool highlights the violated elements.

These tools support the transparency of solution structures on the one hand and further research
on the other. Regarding the transparency of solution structures, during our research concerning
best-known solutions, we faced several challenges: Firstly, in most papers, published results often
report only the objective function value but not the vehicle tours or the coordinates of the items
inside the trucks so that the correctness of the solutions cannot be guaranteed. Secondly, in rare
cases, we found detailed solutions. Then, some of the solutions were either infeasible or the objective
value of the solution differed from the objective value published in the research paper. Therefore,
the publication of full solutions should be standard. This guarantees the correct comparison of
solutions and decreases frustration caused by incorrect benchmarks.

Regarding supporting further research, first, the tool can be integrated directly into the
programming code as the source code is fully published in C++ and Java. Consequently, it is not
necessary to program the constraint checks. Therefore, the effort of programming new algorithms is
decreased. Secondly, it is possible to visualize each processing step of a new algorithm by integrating
the tools. This enables a better understanding of the algorithm so that improvements can be found
and implemented. Thirdly, the “Solution Validator" checks the correctness of the solutions, which
can help to detect errors in algorithms. Lastly, through visualizing the final solutions, further
improvement potentials can be identified. This helps improve the solution quality (the total travel
distance and/or the total time).

The paper is structured as follows: Relevant literature is reviewed in Sec. 2. To introduce
the 3L-CVRP and show the covered features, the problems are formulated in Sec. 3. In Sec. 4
both tools are introduced and their application is explained. In Sec. 5, we present an overview of
available instance sets, their properties, and the best-known solutions in the literature. Finally,
Sec. 6 provides a summary and avenues for future work.

2 Literature Review

In the following, relevant literature with a focus on constraints for the combined vehicle routing and
container loading problem is presented. In Iori et al. (2007), the Vehicle Routing Problem with Two-
Dimensional Loading Constraints (2L-CVRP), a combination of the Capacitated Vehicle Routing
Problem and the 2D Container Loading Problem, is introduced. To solve the optimization problem,
an exact approach, based on a branch-and-cut algorithm, is provided. The three-dimensional variant,
namely 3L-CVRP, is introduced by Gendreau et al. (2006). The presented solution algorithm
consists of several parts: The customer sequence is determined by an “outer" Tabu Search. Then,
an “inner" Tabu Search deals with the item sequence. The loading algorithms are based on the
touching parameter algorithm by Lodi et al. (1999) and the bottom-left-algorithm by Baker et al.
(1980). As loading constraints, the following are considered: items are packed orthogonally into
the vehicle loading space (Orthogonality constraint) without overlapping through respecting their
dimensions (Geometry); rotation of items only along the width-length plane (Rotation constraint);
respecting the maximum vehicle’s capacity (Load Capacity); considering the fragility of items;
stacking stably through requiring the support of a certain percentage of the base area (Minimal
Supporting Area constraint) and unloading done by direct movements parallel to the length of
the vehicle (LIFO constraint). This constraint set is here defined as a basic constraint set as it is
commonly considered in related research. For testing, Gendreau et al. (2006) developed 27 instances.

1The tools are suitable for e.g. CVRP, VRPTW, SDVRP, 2L-CVRP, 3L-CVRP, 2L-VRPTW, 3L-VRPTW,
2D-CLP, 3D-CLP, SDVRP, 2D-SDVRP and 3D-SDVRP.

139

3 Problem Formulation

The 3L-CVRP has been studied intensively in recent years so that the solutions for this instance
set have been improved repeatedly (e.g. Tarantilis et al. (2009), Fuellerer et al. (2010), Bortfeldt
(2012), Escobar-Falcon et al. (2016) and Z. Zhang et al. (2015)). In Fuellerer et al. (2010), an
extended instance set for the 3L-CVRP is generated. Tarantilis et al. (2009) present a new variant
– the Capacitated Vehicle Routing Problem with Manual 3D Loading Constraints (M3L-CVRP). In
contrast to the LIFO policy, it is here allowed that items hang over others (MLIFO). This adaption
is also examined in a paper by Ceschia et al. (2013). Furthermore, they consider the reachability
of an item. The reachability constraint was initially developed by Junqueira et al. (2013) in the
context of the Three-Dimensional Bin Packing Problem, to avoid the driver standing on items
to reach other items for unloading operations. Moreover, Ceschia et al. (2013) consider a robust
stacking of items and the Load Bearing Strength constraint, which was first mentioned by Bischoff
and Ratcliff 1995 and examined in Bischoff (2003) for the Three-Dimensional Bin Packing Problem.
The Split Delivery Vehicle Routing Problem with three-dimensional loading constraints (3L-SDVRP)
is included in Ceschia et al. (2013). It enables the possibility to split the demand of customers over
two or more tours is, i.e. a customer can be visited several times. This problem variant is further
investigated in Bortfeldt and Yi (2020), where among others the instance set by Ceschia et al.
(2013) is used. D. Zhang et al. (2017) introduce the 3L-VRPTW with a hybrid approach, consisting
of a new loading heuristic and a routing heuristic based on a Tabu Search and an Artificial Bee
Colony algorithm. They include the basic constraint set and combine the two well-known instance
sets provided by Gendreau et al. (2006) and Solomon (1987). In Moura (2008) and Moura and
Oliveira (2009) the VRTWLP is introduced. This problem variant is the 3L-VRPTW without the
consideration of masses (Load Capacity constraint), without the Fragility constraint, with higher
Stability requirements (full support) and with more rotation possibilities. Pace et al. (2015) examine
the distribution of fibre boards. For this purpose, a 70%-30% left/right balance should be obeyed.
This constraint is further examined in Krebs et al. (2021). Other approaches for ensuring balanced
loading within the loading space are integrated in the algorithm itself. In Ramos et al. (2017), the
algorithm includes vehicle specific Load Distribution Diagrams (LDDs) that define the feasibility
domain for the location of the center of gravity of the cargo. It is based on multi-population biased
random-key genetic algorithm with a specialized fitness function.
Formulas for the consideration of axle weights are introduced in Krebs and Ehmke (2021a) and
examined for the 2L- and 3L-CVRP. In Krebs et al. (2021), various loading constraints are analyzed
and combined for the 3L-VRPTW. Moreover, new formulations are introduced: a new variant for
robust stacking of items, the consideration of load-bearing strength based on the science of statics,
and balanced loading inside the loading space. Further formulations for stable stacking based on
the science of statics are evaluated in Krebs and Ehmke (2021b). All mentioned loading constraints
can be tested w.r.t. feasibility in the “Solution Validator" tool.

3 Problem Formulation

To provide an introduction to the problem and to demonstrate the scope of the tools, the 3L-CVRP
and its extension, the 3L-VRPTW, are formulated in the following by adapting the convention as
presented by Koch et al. (2018). All constraints covered by the tools are briefly presented. The
loading constraints are described in detail in Krebs et al. (2021) and Krebs and Ehmke (2021b).

3.1 3L-CVRP

Let G = (N, E) be a complete, directed graph, where N is the set of n+1 nodes including one
depot (node 0) and n customers to be served (node 1 to n), and E is the edge set connecting each
pair of nodes. Each edge ei,j ∈ E (i ̸= j, i, j = 0, ..., n) has an associated routing distance di,j

(di,j > 0). The demand of customer i ∈ N \ {0} consists of ci cuboid items.
Each item Ii,k (k = 1, ..., ci) is defined by mass mi,k, length li,k, width wi,k and height hi,k.
Depending on the constraints (see below), additional parameters are necessary. The items are
delivered by vmax available, homogeneous vehicles. Each vehicle has a maximum load capacity D
and a cuboid loading space defined by length L, width W and height H.

140

3 Problem Formulation

The number of used vehicles in a solution is described by vused (vused ≤ vmax). A solution is a
set of vused pairs of routes Rv and packing plans PPv (v = 1, ..., vused). Hereby, the route Rv is
an ordered sequence of at least one customer, and PPv is a packing plan containing the position
within the loading space for each item included in the route. The 3L-CVRP aims at determining a
feasible solution minimizing the total travel distance ttd, and meeting all included constraints.

3.2 3L-VRPTW

In the extension with time windows (“3L-VRPTW"), three times are assigned to each node i: the
ready time RTi, which is the earliest possible start time of service, the due date DDi, the latest
possible start time, and the service time STi, which specifies the needed time to (un-)load all ci

items of a customer i. It is assumed that each vehicle has a constant speed of 1 distance unit
per time unit. If a vehicle arrives at an edge before its ready time, it has to wait until the ready
time is reached. The objective function is either the minimization of the total travel distance or a
combination of minimizing the number of used vehicles (vused) first and total travel distance second
(see e.g. Moura (2008)).

3.3 Constraints

The following constraints are categorized in solution constraints (S), in routing constraints (R), and
loading constraints (C). In terms of the loading constraints, there are several alternative constraint
formulations for the Unloading Sequence, Vertical Stability, and Stacking. This means, only one of
these alternative constraint formulations can be included into the model. All described constraints
are covered in the “Solution Validator" tool.
A solution is feasible if

(S1) All routes Rv and packing plans PPv are feasible (see below);

(S2) The number of used vehicles vused does not exceed the number of available vehicles vmax;

(S3) Each solution contains all demanded items once and all customers.

A route Rv must meet at least the following routing constraint:
(R1) Each route starts and terminates at the depot and visits at least one customer.

In case of split deliveries are not allowed, the following routing constraints must be obeyed:
(R2) Each customer is visited exactly once;

(R3) Each packing plan PPv contains all ci items of all customers i included in the corresponding
route (i ∈ Rv).

In terms of the 3L-VRPTW, an additional routing constraint must apply:
(R4) The vehicle does not arrive after the due date DDi of any location i.

Each packing plan must obey a loading set P defining a subset of the following loading constraints.
As described before, if several formulations for a loading constraint are available (e.g. Unloading
Sequence), then only one formulation can be included into the optimization problem. For constraints
differing from the basic constraint set by Gendreau et al. (2006), we provide the corresponding
reference.

(C1) Geometry: The items must be packed within the vehicle without overlapping;

(C2) Orthogonality: The items can only be placed orthogonally inside a vehicle;

(C3) Rotation: The item can be rotated.

141

3 Problem Formulation

(a) Length-Width: The items can be rotated 90◦ only on the width-length plane;
(b) All Rotations: The items can be rotated along all planes.

(C4) Load Capacity: The sum of masses of all included items of a vehicle does not exceed the
maximum load capacity D.

(C5) Unloading Sequence: The items can be unloaded by movements parallel to the x-axis.

(a) LIFO: No item is placed above or in front of item Ii,k, which belongs to a customer
served after customer i;

(b) MLIFO by Tarantilis et al. (2009): No item is placed on or in front of item Ii,k, which
belongs to a customer served after customer i;

(C6) Vertical Stability: The items are stable packed and cannot topple.

(a) Minimal Supporting Area: Each item has a supporting area of at least a percentage α of
its base area;

(b) Top Overhanging by Krebs et al. (2021): Only the topmost item of a stack is allowed to
overhang obeying the Minimal Supporting Area;

(c) Multiple Overhanging by Ceschia et al. (2013): The Minimal Supporting Area must be
obeyed at each level of a stack;

(d) New Static Stability by Krebs and Ehmke (2021b): The center of gravity of each item
must be supported at each level of the stack and the Minimal Supporting Area must be
obeyed;

(e) Static Stability by Mack et al. (2004): The center of gravity of each item must be
supported by the directly underlying items and the Minimal Supporting Area must be
obeyed between each item and the indirectly supporting items laying on the ground;

(C7) Stacking: The items are stacked respecting their bearing capacities.

(a) Fragility: A fragility flag fi,k is assigned to each item Ii,k to divide them into fragile
items (fi,k = 1) and non-fragile ones (fi,k = 0). No non-fragile items are placed on top
of fragile items;

(b) Load Bearing Strength – Simplified Selection by Bischoff and Ratcliff (1995): Each item
Ii,k can support a maximum load per area described by parameter lbsi,k. It must not
be exceeded anywhere on the top face of an item. For the load distribution all items
underneath the bottom surface are used;

(c) Load Bearing Strength – Complete Selection by Krebs et al. (2021): As before, each item
is assigned the lbsi,k parameter. The load of an item Ii,k is distributed recursively from
its bottom surface to its directly underlying items;

(C8) Reachability by Junqueira et al. (2013): The distance between the front side of an item and
the nearest possible position of the operator must be less or equal than a certain length λ;

(C9) Axle Weights by Krebs and Ehmke (2021a): Each vehicle is assigned the wheelbase WB
(distance between two axles), the length between the front axle and the loading space (Lf),
and permissible axle weights FAperm and RAperm, which are not allowed to be exceeded;

(C10) Balanced Loading by Pace et al. (2015): The mass of an item is proportional distributed to
the horizontal vehicle halves according to its position. The load of one vehicle half must not
exceed a certain percentage p of D.

142

4 Open Source Tools

4 Open Source Tools

Both “Solution Validator" and “Visualizer" are open source and published online via GitHub
repositories. Moreover, the tools are written in Java, requiring at least version 10. For the “Solution
Validator", the code is additionally available in C++ (min. version C++11). For the C++ code,
no additional libraries are required. In terms of Java code, several dependencies must be provided.
Therefore, Apache Maven is used to simplify the building process. The necessary pom file is
available online along with the source code. The “Visualizer" requires the JavaFX Framework,
which must be downloaded and linked separately. In the following, the necessary data format and
the application are shown.

4.1 Data Format

To provide the necessary data for the tools, three files are required: An Instance, a Solution, and a
Constraint File. All three files are explained and shown in the following. Example files are provided
in the appendix.

4.1.1 Instance File

The Instance File contains all relevant data as described in Sec. 3. Consequently, it has information
about the problem (3L-CVRP or 3L-VRPTW), nodes (coordinates, demanded items), vehicle
(number of available vehicles, dimensions, parameters), and items (dimensions, parameters).
An exemplary, shortened file is shown in Fig. VI.6 in the appendix. For common benchmarks,
Instance Files are available via https://github.com/CorinnaKrebs/Instances. Moreover, the Solution
Validator contains a "Write" class to create your own Instance Files. Another option is to use the
class constructors to provide the necessary data within the program.

4.1.2 Constraint File

The Constraint File defines all included loading constraints and their necessary parameters (see
Sec. 3.3). A complete Constraint File defining the basic constraint set by Gendreau et al. (2006)
is presented in Fig. VI.7 in the appendix. Further constraint sets are published along with the
solutions via https://github.com/CorinnaKrebs/Results. For own files, the “Solution Validator"
provides a “Write" class, or alternatively, class constructors can be used to define the necessary
data for the program.

4.1.3 Solution File

The Solution File contains the Routing Rv and the Packing Plans PPv for each vehicle v. It shows
the sequence of each visited customer and the exact position of each item inside the loading space.
An exemplary, shortened file is shown in the appendix in Fig. VI.8. The results of our previous
work are available via https://github.com/CorinnaKrebs/Results. As before, the Solution Validator
includes a “Write" class that may be used to build custom Solution Files. Another way is to input
the necessary data within the program using the class constructors.

4.2 Solution Validator

As the name implies, the Solution Validator validates the feasibility of solutions w.r.t. the
observance of constraints. It is available via https://github.com/CorinnaKrebs/SolutionValidator.
In the following, the scope and application are described.

4.2.1 Scope

The Solution Validator is created to check the feasibility of solutions for the combined VRP and
CLP (“3L-CVRP" and “3L-VRPTW"). It checks the observance of routing and loading constraints
in each step of each tour. Hereby, a subset of loading constraints (as described in the Problem
Formulation in Sec. 3) can be used for the feasibility check.
The Solution Validator can also be adapted to check the feasibility for solely the VRP or CLP

143

https://github.com/CorinnaKrebs/Instances
https://github.com/CorinnaKrebs/Results
https://github.com/CorinnaKrebs/Results
https://github.com/CorinnaKrebs/SolutionValidator

4 Open Source Tools

as shown below. The Problem Formulation in Sec. 3 defines the features of this tool: In terms
of the VRP, this tool can deal with one depot where the demand is delivered by a homogeneous
fleet without a split of the delivery. Time Windows at the depot and at customer locations can be
obeyed optionally. Regarding the CLP, it is also possible to adapt it for the 2D case by setting the
height of each item to the cargo loading space height H.

4.2.2 Application

In the following Code 1, the Java Program is presented. The code is structured in three parts:
reading data from files, a feasibility check, and notification about the feasibility check. The C++
Code is structured in a similar way. In lines 2 to 4, the Instance, Constraint, and the Solution File are
read. Hereby, the necessary paths (pathToInstanceFile, pathToConstraintFile, pathToSolutionFile)
to the files must be provided as strings. Instead of fixed strings for the definition of the file paths,
one can adapt lines 2 to 4 so that the program arguments (args) can be used to inject the file paths
which is shown in Code 2. In the next part (feasibility check), the solution is checked w.r.t. routing
constraints (line 5) and loading constraints (line 6). Internally, only the activated constraints as
specified in the Constraint File, are checked. In the last part, a message is printed depending on
the feasibility and the program exits returning an exit code indicating the feasibility status.

Code 1 Original Java Solution Validator Program

1 public static void main(String[] args) {
2 Instance instance = Read.readInstanceFile(pathToInstanceFile);
3 ConstraintSet constraintSet =

Read.readConstraintFile(pathToConstraintFile);↪→

4 Solution solution = Read.readSolutionFile(pathToSolutionFile,
instance);↪→

5 if (checkRoutingConstraints(solution, constraintSet, instance, true)
6 && checkLoadingConstraints(solution, constraintSet, instance,

true)) {↪→

7 System.out.println("All Constraints checked. Solution is
feasible.");↪→

8 System.exit(1);
9 }

10 System.err.println("Solution is not feasible. Please check error hints
above.");↪→

11 System.exit(-1);
12 }

Code 2 Java Solution Validator Program using Program Arguments

1 public static void main(String[] args) {
2 Instance instance = Read.readInstanceFile(args[0]);
3 ConstraintSet constraintSet = Read.readConstraintFile(args[1]);
4 Solution solution = Read.readSolutionFile(args[2], instance);
5 ...

The Solution Validator can be adapted to checking only the VRP by removing the Loading
Constraints Check in line 6. For the check of the CLP, the Routing Constraints Check in line 5
must be removed respectively. Further adaption can be implemented easily as the entire source
code is structured and well documented.

144

4 Open Source Tools

4.3 Visualizer

The “Visualizer" creates interactive views of the 3L-CVRP and 3L-VRPTW solutions. The tool is
published online via https://github.com/CorinnaKrebs/Visualizer. In the following, the tool is
presented in more detail.

4.3.1 Scope

The Visualizer displays the solution of Vehicle Routing and Container Loading Problems in separated
views. It has the same limitations as the Solution Validator (see Problem Formulation, Sec. 3).
The tool enables further analysis of solutions: In terms of the VRP, the tool shows the resulting
tours including their distances and the total time per tour. Thus, improvement potentials can
be identified. Regarding the CLP, the loading space and the loading sequence are visualized.
This assists in understanding the loading process and determining weaknesses of placements (e.g.
unbalanced or unstable). Moreover, the Visualizer has an interface to the Solution Validator so
that the feasibility of each solution can be checked. Infeasible elements (tours or items) are directly
highlighted. This is beneficial e.g. to trace errors in the solution approach.

4.3.2 Application

The Visualizer has three main views: one for the data input, one for the VRP, and one for the
CLP. The application of each view is described in the following.

After executing the Visualizer, a welcome view appears. By clicking on the Start menu on File
Open, one reaches the data input view (see Fig. VI.2).

Figure VI.2: View of the Data Input Mask

In the following, the areas shown in Fig. VI.2 are described in more detail:

145

 https://github.com/CorinnaKrebs/Visualizer

4 Open Source Tools

VI.2.1 In the left column, the problem is defined and the views are activated or deactivated
accordingly. In the right column, one can (de-)activate the constraints check and therefore,
the interface to the Solution Validator.

VI.2.2 The next field is to provide the Instance File. It is possible to Drag & Drop the file directly
over the dotted field. Alternatively, one can select the file via a File Browser. After providing
the Instance File, the field changes as in the next item. Then, the path to the file is shown.

VI.2.3 In this area, the Solution File can be provided. As the Solution File is already selected, the
path is shown. The field can be reset by clicking on the cross button.

VI.2.4 In the center area of this view, additional routing constraints for the feasibility check can be
included.

VI.2.5 In the bottom area of this view, it is possible to define the subset of the loading constraints
for the feasibility check. If one loading constraint has several formulations as described in
Sec. 3, a drop-down list for the selection appears.

VI.2.6 If the necessary data is provided, the start button can be clicked. The current view is then
closed and the Solution views (CLP and/or VRP) are opened. This might take some time
due to the feasibility check.

The VRP view is exemplarily shown in Fig. VI.3. Directly after opening, an animation starts
showing the complete routing process.

Figure VI.3: View of the Vehicle Routing Problem

Regarding Fig. VI.3, the areas describe the following:

VI.3.1 In the center of the view, the depot and the customer locations are displayed. Starting from
the depot, the tours are shown. The vehicle is indicated as a blue circle. Each customer has
its unique color. Its corresponding items use the same color in the CLP view. Within this
area, it is possible to zoom in or out via the mouse wheel in order to see further details.

VI.3.2 In this field, general information about the solution is provided, such as the total number
of used vehicles, the total travel distance, and the total time. Moreover, if activated, the
feasibility of the routes is shown.

146

4 Open Source Tools

VI.3.3 Through the slider, it is possible to jump to each step of the routing process (0 to total time).
Consequently, it enables tracking the position and status of each vehicle within the tour at
each timestamp. The play button starts the animation which automatically goes through
each step of the routing process.

VI.3.4 The underlying Gantt chart displays the current vehicle status per tour and per timestamp.
Hereby, three vehicle statuses exist: The traveling time, the service time (unloading time),
and the waiting time that occurs when the vehicle has to wait until the start time. As the
waiting time is not value-adding in the process, the tool helps to identify and then minimize
waiting times.

VI.3.5 This tree enables changing the visibility of tours. This might be helpful in case of hidden
details.

VI.3.6 As in the previous item, this tree changes the visibility of the customer pins.

VI.3.7 Through the download button, it is possible to download the currently displayed area for
further research purposes.

In Fig. VI.4, the CLP view is presented. Similar to the VRP view, an animation showing the
loading process starts directly after opening the view.

Figure VI.4: View of the Container Loading Problem

As shown in Fig. VI.4, there are six areas in the CLP view:

VI.4.1 In the center, the loading space of the first tour is displayed. It shows the position of each
item inside the loading space. The loading space can be completely rotated and scaled to
analyze the positions effectively. When double-clicking on an item, the corresponding row in
the table gets highlighted.

VI.4.2 Through the drop-down menu, it is possible to switch the tours and consequently, to change
the loading space in the center.

VI.4.3 In the underlying table, the information about the items is presented. The visibility of each
item can be changed in the first column. An invisible item is shown via its borders in the
loading space. By clicking on the header, the table can be sorted according to the clicked
column.

147

5 Instances and Best Known Results

VI.4.4 The last three columns indicate the feasibility of the item position. If the position of an item
is not feasible, its color changes from the customer’s color to red. The feasibility status is
indicated in the column “Feasible" through green for feasible and red for infeasible. In the
last column, an error text describes the violated constraint.

VI.4.5 As in the VRP view, there is also a slider to visualize the loading process per each loaded
item. This enables the possibility to analyze the sequence of the loading processes and identify
inefficient item positions. Through the play button, the animation can be started showing
the loading of items step by step.

VI.4.6 The download button enables downloading a picture of the displayed loading space with its
current loading step.

4.3.3 Code Structure

If it becomes necessary to modify the source code, it is beneficial to understand the structure of
the code. Hereby, the Model-View-Presenter (MVP) design as proposed by Potel (1996) is used
(see Fig. VI.5).

Figure VI.5: MVP Design

The code is distributed in three parts: The model, the view, and the presenter. The model
contains all the necessary data. The view is responsible to display the data via components. It
has no direct link to the model. The presenter connects the model and the view. It updates the
components of the view in case of data changes in the model, and it updates also the model according
to user inputs in the view. The presenter is informed through internal events to trigger updates
if needed. For each view (Main view, CLP view, VRP view) the MVP design is implemented.
Moreover, it is also applied to layout components within the views (e.g. text fields).

5 Instances and Best Known Results

In this section, we first present common instance sets for the 3L-CVRP and the 3L-VRPTW with
their main properties. Then, we show the current best-known solutions (BKS) for each instance.

Table VI.1 presents an overview of common instance sets for the 3L-CVRP and 3L-VRPTW.
Hereby, the most relevant parameters are the number of customers (n) and the number of items
(m). The most common instance set for the 3L-CVRP is created by Gendreau et al. (2006), which
is extended by Tarantilis et al. (2009) with 12 more difficult instances. The 3L-VRPTW instance
set by D. Zhang et al. (2017) is created by combining the two well-known instance sets provided by
Gendreau et al. (2006) and Solomon (1987). Concerning the instances by Krebs et al. (2021), the
instances vary systematically in the number of customers, items, and item types to enable detailed
analysis of influencing parameters. Moreover, for all instance sets, axle weights were added based
on realistic parameters. All instance sets are published at GitHub2.

In terms of the instance set by Gendreau et al. (2006) shown in Table VI.2, the algorithm
proposed in Z. Zhang et al. (2015) receives currently the best overall solutions indicated by the
lowest average total travel distance. Therefore, most BKS are found by this algorithm. As detailed

2https://github.com/CorinnaKrebs/Instances

148

https://github.com/CorinnaKrebs/Instances

5 Instances and Best Known Results

Table VI.1: Overview of Instance Sets
author Problem # n m
Gendreau et al. (2006) 3L-CVRP 27 [15, 100] [26, 199]
Fuellerer et al. (2010) 3L-CVRP 12 [50, 125] [73, 379]
D. Zhang et al. (2017) 3L-VRPTW 27 [15, 100] [26, 199]
Krebs et al. (2021) 3L-VRPTW 600 20, 60, 100 200, 400

results for Z. Zhang et al. (2015) are available3, we validated all results with the Solution Validator.
However, some of the best solutions within the published data differ from the values described
in Z. Zhang et al. (2015). Therefore, we report only the best-known results that were actually
found in the data set. These validated and best-known results are published via GitHub4. The
used algorithm shows its strength for instances with more than 32 customers (see instances 14-27).
For instances with less customers, the algorithms by Escobar-Falcon et al. (2016), Tao and Wang
(2015) and Bortfeldt (2012) find better solutions. However, for these solutions, validation was not
possible due to summarized results.

Table VI.2: BKS for Gendreau et al. (2006) instances

no ttd reference no ttd reference
1 300.69 Escobar-Falcon et al. (2016) 15 1338.22 Z. Zhang et al. (2015)
2 334.96 Z. Zhang et al. (2015) 16 698.61 Z. Zhang et al. (2015)
3 374.81 Escobar-Falcon et al. (2016) 17 866.40 Z. Zhang et al. (2015)
4 430.88 Escobar-Falcon et al. (2016) 18 1207.70 Bortfeldt (2012)
5 436.48 Tao and Wang (2015) 19 741.74 Bortfeldt (2012)
6 498.16 Bortfeldt (2012) 20 576.88 Z. Zhang et al. (2015)
7 767.46 Tao and Wang (2015) 21 1067.70 Z. Zhang et al. (2015)
8 804.75 Tao and Wang (2015) 22 1147.80 Bortfeldt (2012)
9 630.13 Z. Zhang et al. (2015) 23 1103.44 Z. Zhang et al. (2015)
10 820.35 Bortfeldt (2012) 24 1102.14 Z. Zhang et al. (2015)
11 772.85 Tao and Wang (2015) 25 1370.34 Z. Zhang et al. (2015)
12 610.23 Z. Zhang et al. (2015) 26 1557.15 Z. Zhang et al. (2015)
13 2608.68 Tao and Wang (2015) 27 1496.28 D. Zhang et al. (2017)
14 1368.40 Bortfeldt (2012) avg 927.15

In Table VI.3, the BKS for the instance set by Tarantilis et al. (2009) are presented. As for the
other 3L-CVRP instance set, most of the BKS are found by Z. Zhang et al. (2015). As detailed
results are available, these solutions are checked with the Solution Validator and are published via
GitHub4, except for instance no 34, where a feasible solution could not be found.

Table VI.3: BKS for Tarantilis et al. (2009) instances

no ttd reference no ttd reference
28 1417.88 Z. Zhang et al. (2015) 34 2595.22 Bortfeldt (2012)
29 2189.27 Z. Zhang et al. (2015) 35 4163.02 Z. Zhang et al. (2015)
30 1713.82 Z. Zhang et al. (2015) 36 3400 Z. Zhang et al. (2015)
31 2010.58 Z. Zhang et al. (2015) 37 3159.15 Z. Zhang et al. (2015)
32 2971.58 Z. Zhang et al. (2015) 38 5315.97 Z. Zhang et al. (2015)
33 2339.3 Z. Zhang et al. (2015) 39 4031.62 Z. Zhang et al. (2015)

avg 2942.28

3see https://alim.algorithmexchange.com/orlib/topic/3L-FCVRP/;jsessionid=
BE16D2007BD713BBFCCE3A5926C6EFC0#Zhang2015

4https://github.com/CorinnaKrebs/BestKnownResults

149

https://alim.algorithmexchange.com/orlib/topic/3L-FCVRP/;jsessionid=BE16D2007BD713BBFCCE3A5926C6EFC0#Zhang2015
https://alim.algorithmexchange.com/orlib/topic/3L-FCVRP/;jsessionid=BE16D2007BD713BBFCCE3A5926C6EFC0#Zhang2015
https://github.com/CorinnaKrebs/BestKnownResults

6 Summary and Future Work

Concerning the 3L-VRPTW instances by D. Zhang et al. (2017), the BKS are presented in
Table VI.4. All solutions are found by the algorithms described in Krebs et al. (2023). As before,
the validated results are published via Github4.

Table VI.4: BKS for D. Zhang et al. (2017) Instances

Name vused ttd time Name vused ttd time

VRPTWP01 4 245.44 3.95 VRPTWP15 8 527.62 98.78
VRPTWP02 5 276.64 1.39 VRPTWP16 11 693.92 5.72
VRPTWP03 4 274.55 30.01 VRPTWP17 14 951.11 17.31
VRPTWP04 6 336.79 2.39 VRPTWP18 12 979.93 33.89
VRPTWP05 6 345.89 17.81 VRPTWP19 12 971.43 127.27
VRPTWP06 6 374.22 2.83 VRPTWP20 17 1,311.32 765.60
VRPTWP07 5 324.29 22.06 VRPTWP21 16 1,189.80 1,943.54
VRPTWP08 6 320.75 21.19 VRPTWP22 18 1,466.27 305.06
VRPTWP09 9 458.32 19.40 VRPTWP23 17 1,325.73 690.63
VRPTWP10 7 487.60 58.50 VRPTWP24 16 1,289.15 708.50
VRPTWP11 7 493.58 114.46 VRPTWP25 20 1,432.66 3,600.00
VRPTWP12 9 575.04 14.76 VRPTWP26 24 1,642.74 1,455.63
VRPTWP13 6 452.05 467.32 VRPTWP27 22 1,597.13 2,111.58
VRPTWP14 8 550.16 89.08

Total 295 20,894.11 12,728.66

Table VI.5 presents the best-known results for the instance set by Krebs et al. (2021). As before,
all solutions are found by the hybrid algorithms presented in Krebs et al. (2023). The detailed
results are published via GitHub4.

Table VI.5: BKS for Krebs et al. (2021) Instances
sum sum avg

n m types vused ttd time

20 200 3 73 8,163.90 767.16
10 71 8,351.98 1,804.59
100 73 8,444.32 1,817.26

400 3 88 8,834.64 2,340.33
10 95 9,215.81 2,673.61
100 106 9,694.34 3,172.97

60 200 3 430 39,940.64 1,563.98
10 448 40,562.89 2,027.61
100 464 41,765.02 2,163.44

400 3 693 53,718.93 2,287.25
10 719 55,179.40 2,563.58
100 782 59,381.69 2,964.56

100 200 3 465 47,770.81 2,024.01
10 510 50,906.28 2,330.88
100 548 54,124.17 2,146.65

400 3 797 66,799.70 2,702.32
10 865 71,842.97 2,937.54
100 878 72,187.87 2,967.32

Total 8,105 706,885.36 2,331.14

6 Summary and Future Work

In this paper, two open-source tools are presented for the combined Vehicle Routing and Container
Loading Problem (alias “3L-CVRP" and “3L-VRPTW"). The Solution Validator checks the
feasibility of solutions in terms of considered constraints. The Visualizer displays the solutions
in separated views. Both tools are also suitable for the usage of each optimization problem.

150

References

In the paper, all necessary data, the access, the requirements, and the usage of the tools are
demonstrated. Using these tools can be beneficial for further research: Through the Solution
Validator, the feasibility of solutions can be ensured and the results can be published online to
increase transparency. Moreover, solutions can be checked concerning different loading constraints
and various formulations which gives insights into the restrictiveness and usage of loading constraints.
The Visualizer provides information about the solution and visualizes the entire routing and loading
process step by step. Further analysis can reveal weaknesses and therefore lead to improvements in
the solution approaches. The tools are fully adaptable as the source code is well documented and
published online. As future work, the tools are improved by including new features or removing
currently unknown bugs.

Conflict of interest

The authors declare that they have no conflict of interest.

References

Baker, B., Coffman, E., and Rivest, R. (1980). “Orthogonal Packings in Two Dimensions”. In:
SIAM Journal on Computing vol. 9, no. 4, pp. 846–855. doi: 10.1137/0209064.

Bischoff, E. E. (2003). “Dealing with Load Bearing Strength Considerations in Container Loading
Problems”. In.

Bischoff, E. E. and Ratcliff, M. S. W. (1995). “Issues in the development of approaches to container
loading”. In: Omega vol. 23, no. 4, pp. 377–390. issn: 03050483. doi: 10.1016/0305-0483(95)00015-
G.

Bortfeldt, A. (2012). “A hybrid algorithm for the capacitated vehicle routing problem with three-
dimensional loading constraints”. In: Computers & Operations Research vol. 39, no. 9, pp. 2248–
2257. issn: 0305-0548. doi: https://doi.org/10.1016/j.cor.2011.11.008.

Bortfeldt, A. and Yi, J. (2020). “The Split Delivery Vehicle Routing Problem with three-dimensional
loading constraints”. In: European Journal of Operational Research vol. 282, no. 2, pp. 545–558.
issn: 0377-2217. doi: https ://doi .org/10 .1016/j . ejor .2019 .09 .024. url: https ://www.
sciencedirect.com/science/article/pii/S0377221719307647.

Ceschia, S., Schaerf, A., and Stützle, T. (2013). “Local search techniques for a routing-packing
problem”. In: Computers and Industrial Engineering vol. 66, no. 4, pp. 1138–1149. issn: 0360-
8352. doi: https://doi.org/10.1016/j.cie.2013.07.025. url: http://www.sciencedirect.com/
science/article/pii/S0360835213002404.

Escobar-Falcon, L. M., Ãlvarez-Martinez, D., Granada-Echeverri, M., Escobar, J. W., and Romero-
LÃ¡zaro, R. A. (Mar. 2016). “A matheuristic algorithm for the three-dimensional loading
capacitated vehicle routing problem (3L-CVRP)”. en. In: Revista Facultad de IngenierÃa
Universidad de Antioquia, pp. 09–20. issn: 0120-6230. url: http://www.scielo.org.co/scielo.
php?script=sci_arttext&pid=S0120-62302016000100002&nrm=iso.

Fuellerer, G., Doerner, K. F., Hartl, R. F., and Iori, M. (2010). “Metaheuristics for vehicle routing
problems with three-dimensional loading constraints”. In: European Journal of Operational
Research vol. 201, no. 3, pp. 751–759. issn: 0377-2217. doi: https://doi.org/10.1016/j.ejor.2009.
03.046. url: http://www.sciencedirect.com/science/article/pii/S0377221709002252.

Gendreau, M., Iori, M., Laporte, G., and Martello, S. (2006). “A Tabu Search Algorithm for a
Routing and Container Loading Problem”. In: Transportation Science vol. 40, no. 3, pp. 342–350.
issn: 0041-1655. doi: 10.1287/trsc.1050.0145. url: http://pubsmisc.informs.org/doi/abs/10.
1287/trsc.1050.0145.

Iori, M., Salazar González, J. J., and Vigo, D. (May 2007). “An Exact Approach for the Vehicle
Routing Problem with Two-Dimensional Loading Constraints”. In: Transportation Science
vol. 41, pp. 253–264. doi: 10.1287/trsc.1060.0165.

Junqueira, L., Oliveira, J. F., Carravilla, M. A., and Morabito, R. (2013). “An optimization
model for the vehicle routing problem with practical three-dimensional loading constraints”.
In: International Transactions in Operational Research vol. 20, no. 5, pp. 645–666. doi: https:
//doi.org/10.1111/j.1475-3995.2012.00872.x. eprint: https://onlinelibrary.wiley.com/doi/pdf/10.

151

https://doi.org/10.1137/0209064
https://doi.org/10.1016/0305-0483(95)00015-G
https://doi.org/10.1016/0305-0483(95)00015-G
https://doi.org/https://doi.org/10.1016/j.cor.2011.11.008
https://doi.org/https://doi.org/10.1016/j.ejor.2019.09.024
https://www.sciencedirect.com/science/article/pii/S0377221719307647
https://www.sciencedirect.com/science/article/pii/S0377221719307647
https://doi.org/https://doi.org/10.1016/j.cie.2013.07.025
http://www.sciencedirect.com/science/article/pii/S0360835213002404
http://www.sciencedirect.com/science/article/pii/S0360835213002404
http://www.scielo.org.co/scielo.php?script=sci_arttext&pid=S0120-62302016000100002&nrm=iso
http://www.scielo.org.co/scielo.php?script=sci_arttext&pid=S0120-62302016000100002&nrm=iso
https://doi.org/https://doi.org/10.1016/j.ejor.2009.03.046
https://doi.org/https://doi.org/10.1016/j.ejor.2009.03.046
http://www.sciencedirect.com/science/article/pii/S0377221709002252
https://doi.org/10.1287/trsc.1050.0145
http://pubsmisc.informs.org/doi/abs/10.1287/trsc.1050.0145
http://pubsmisc.informs.org/doi/abs/10.1287/trsc.1050.0145
https://doi.org/10.1287/trsc.1060.0165
https://doi.org/https://doi.org/10.1111/j.1475-3995.2012.00872.x
https://doi.org/https://doi.org/10.1111/j.1475-3995.2012.00872.x
https://onlinelibrary.wiley.com/doi/pdf/10.1111/j.1475-3995.2012.00872.x
https://onlinelibrary.wiley.com/doi/pdf/10.1111/j.1475-3995.2012.00872.x
https://onlinelibrary.wiley.com/doi/pdf/10.1111/j.1475-3995.2012.00872.x

References

1111/j.1475-3995.2012.00872.x. url: https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1475-
3995.2012.00872.x.

Koch, H., Bortfeldt, A., and Wäscher, G. (Feb. 2018). “A hybrid algorithm for the vehicle routing
problem with backhauls, time windows and three-dimensional loading constraints”. In: OR
Spectrum vol. 40. doi: 10.1007/s00291-018-0506-6.

Krebs, C. and Ehmke, J. F. (2021a). “Axle Weights in combined Vehicle Routing and Container
Loading Problems”. In: EURO Journal on Transportation and Logistics vol. 10, p. 100043. issn:
2192-4376. doi: 10.1016/j.ejtl.2021.100043. url: https://www.sciencedirect.com/science/
article/pii/S2192437621000157.

— (2021b). “Vertical Stability Constraints in Combined Vehicle Routing and 3D Container Loading
Problems”. In: Computational Logistics. Ed. by Mes, M., Lalla-Ruiz, E., and Voß, S. Cham:
Springer International Publishing, pp. 442–455. isbn: 978-3-030-87672-2.

Krebs, C., Ehmke, J. F., and Koch, H. (Aug. 2021). “Advanced loading constraints for 3D vehicle
routing problems”. In: OR Spectrum. issn: 1436-6304. doi: 10.1007/s00291-021-00645-w. url:
https://doi.org/10.1007/s00291-021-00645-w.

— (2023). “Effective loading in combined vehicle routing and container loading problems”. In:
Computers & Operations Research vol. 149, p. 105988. issn: 0305-0548. doi: https://doi.
org/10.1016/j.cor.2022.105988. url: https://www.sciencedirect.com/science/article/pii/
S0305054822002258.

Lodi, A., Martello, S., and Vigo, D. (Nov. 1999). “Heuristic and Metaheuristic Approaches for a
Class of Two-Dimensional Bin Packing Problems”. In: INFORMS Journal on Computing vol. 11,
no. 4, pp. 345–357. doi: 10.1287/ijoc.11.4.345. url: https://ideas.repec.org/a/inm/orijoc/
v11y1999i4p345-357.html.

Mack, D., Bortfeldt, A., and Gehring, H. (2004). “A parallel hybrid local search algorithm for the
container loading problem”. In: International Transactions in Operational Research vol. 11,
no. 5, pp. 511–533. doi: 10.1111/j.1475-3995.2004.00474.x.

Moura, A. (2008). “A Multi-Objective Genetic Algorithm for the Vehicle Routing with Time
Windows and Loading Problem”. In: Intelligent Decision Support: Current Challenges and
Approaches. Ed. by Bortfeldt, A., Homberger, J., Kopfer, H., Pankratz, G., and Strangmeier, R.
Wiesbaden: Gabler, pp. 187–201. isbn: 978-3-8349-9777-7. doi: 10.1007/978-3-8349-9777-7.
url: https://doi.org/10.1007/978-3-8349-9777-7.

Moura, A. and Oliveira, J. F. (Oct. 2009). “An integrated approach to the vehicle routing and
container loading problems”. In: OR Spectrum vol. 31, no. 4, pp. 775–800. issn: 1436-6304. doi:
10.1007/s00291-008-0129-4. url: https://doi.org/10.1007/s00291-008-0129-4.

Pace, S., Turky, A., Moser, I., and Aleti, A. (2015). “Distributing Fibre Boards: A Practical
Application of the Heterogeneous Fleet Vehicle Routing Problem with Time Windows and
Three-dimensional Loading Constraints”. In: Procedia Computer Science vol. 51. International
Conference On Computational Science, ICCS 2015, pp. 2257–2266. issn: 1877-0509. doi: 10.1016/
j.procs.2015.05.382. url: http://www.sciencedirect.com/science/article/pii/S1877050915011904.

Potel, M. (1996). “MVP: Model-View-Presenter The Taligent Programming Model for C++ and
Java”. In.

Ramos, A., Silva, E., and Oliveira, J. (Oct. 2017). “A new Load Balance Methodology for Container
Loading Problem in Road Transportation”. In: European Journal of Operational Research
vol. 266. doi: 10.1016/j.ejor.2017.10.050.

Solomon, M. M. (1987). “Algorithms for the Vehicle Routing and Scheduling Problems with Time
Window Constraints”. In: Operations Research vol. 35, no. 2, pp. 254–265. doi: 10.1287/opre.
35.2.254.

Tao, Y. and Wang, F. (2015). “An effective tabu search approach with improved loading algorithms
for the 3L-CVRP”. In: Computers & Operations Research vol. 55, pp. 127–140. issn: 0305-0548.
doi: https://doi.org/10.1016/j.cor.2013.10.017. url: https://www.sciencedirect.com/science/
article/pii/S0305054813003122.

Tarantilis, C. D., Zachariadis, E. E., and Kiranoudis, C. T. (June 2009). “A Hybrid Metaheuristic
Algorithm for the Integrated Vehicle Routing and Three-Dimensional Container-Loading
Problem”. In: IEEE Transactions on Intelligent Transportation Systems vol. 10, no. 2, pp. 255–
271. issn: 1524-9050. doi: 10.1109/TITS.2009.2020187.

152

https://onlinelibrary.wiley.com/doi/pdf/10.1111/j.1475-3995.2012.00872.x
https://onlinelibrary.wiley.com/doi/pdf/10.1111/j.1475-3995.2012.00872.x
https://onlinelibrary.wiley.com/doi/pdf/10.1111/j.1475-3995.2012.00872.x
https://onlinelibrary.wiley.com/doi/pdf/10.1111/j.1475-3995.2012.00872.x
https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1475-3995.2012.00872.x
https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1475-3995.2012.00872.x
https://doi.org/10.1007/s00291-018-0506-6
https://doi.org/10.1016/j.ejtl.2021.100043
https://www.sciencedirect.com/science/article/pii/S2192437621000157
https://www.sciencedirect.com/science/article/pii/S2192437621000157
https://doi.org/10.1007/s00291-021-00645-w
https://doi.org/10.1007/s00291-021-00645-w
https://doi.org/https://doi.org/10.1016/j.cor.2022.105988
https://doi.org/https://doi.org/10.1016/j.cor.2022.105988
https://www.sciencedirect.com/science/article/pii/S0305054822002258
https://www.sciencedirect.com/science/article/pii/S0305054822002258
https://doi.org/10.1287/ijoc.11.4.345
https://ideas.repec.org/a/inm/orijoc/v11y1999i4p345-357.html
https://ideas.repec.org/a/inm/orijoc/v11y1999i4p345-357.html
https://doi.org/10.1111/j.1475-3995.2004.00474.x
https://doi.org/10.1007/978-3-8349-9777-7
https://doi.org/10.1007/978-3-8349-9777-7
https://doi.org/10.1007/s00291-008-0129-4
https://doi.org/10.1007/s00291-008-0129-4
https://doi.org/10.1016/j.procs.2015.05.382
https://doi.org/10.1016/j.procs.2015.05.382
http://www.sciencedirect.com/science/article/pii/S1877050915011904
https://doi.org/10.1016/j.ejor.2017.10.050
https://doi.org/10.1287/opre.35.2.254
https://doi.org/10.1287/opre.35.2.254
https://doi.org/https://doi.org/10.1016/j.cor.2013.10.017
https://www.sciencedirect.com/science/article/pii/S0305054813003122
https://www.sciencedirect.com/science/article/pii/S0305054813003122
https://doi.org/10.1109/TITS.2009.2020187

References

Zhang, D., Cai, S., Ye, F., Si, Y.-W., and Nguyen, T. T. (2017). “A hybrid algorithm for a vehicle
routing problem with realistic constraints”. In: Information Sciences vol. 394-395, pp. 167–182.
issn: 0020-0255. doi: 10.1016/j.ins.2017.02.028.

Zhang, Z., Wei, L., and Lim, A. (2015). “An evolutionary local search for the capacitated vehicle
routing problem minimizing fuel consumption under three-dimensional loading constraints”.
In: Transportation Research Part B: Methodological vol. 82, pp. 20–35. issn: 0191-2615. doi:
https://doi.org/10.1016/j.trb.2015.10.001.

Appendix

Figure VI.6: Exemplary Instance File

Figure VI.7: Constraint File with Basic Constraint Set

153

https://doi.org/10.1016/j.ins.2017.02.028
https://doi.org/https://doi.org/10.1016/j.trb.2015.10.001

References

Figure VI.8: Exemplary Solution File

154

Chapter 2

Conclusion
This thesis focuses on new loading constraints’ design and introduction, the improvement of existing
formulations, and new approaches for the combined vehicle and 3D container loading problem
introduced by Gendreau et al. 2006, 3L-CVRP, and the extension 3L-VRPTW. Both optimization
problems deal with a number of customers, each with a demand represented by a number of 3D
parcels lying at the depot. A fleet of heterogeneous vehicles must fulfill this demand. Moreover,
various routing and loading constraints must be obeyed. The extension 3L-VRPTW considers
additional time windows in which the delivery must take place.

In the basic version of the problem, six loading constraints (basic set) are obeyed: Geometry,
Orthogonality, Rotation, LIFO, Minimal Supporting Area, and Fragility. Although dozens of papers
deal with the 3L-CVRP and variants, few deviate from the basic set. The loading constraints are
embedded in a hybrid algorithm, which is necessary to solve the combined problem. Therefore, the
hybrid algorithm by Koch et al. 2018 is used. It consists of a modified Adaptive Large Neighborhood
Search originally introduced by Ropke and Pisinger 2006 for solving the routing part. The loading
part is solved using a Deepest-Bottom-Left-Fill algorithm initially implemented by Karabulut and
İnceoğlu 2005. The idea is to place items as far rearwards, bottom-wards, and leftwards inside of
the vehicle loading space as possible. The available placement positions for the items are stored as
points. Whenever a placement position for an item is selected, the position is checked regarding its
feasibility according to loading constraints.

This thesis’s first achievement is its improved implementation of the Deepest-Bottom-Left-Fill
variant: The available placement positions are represented by free spaces, reducing the complexity
of checking items that overlap with other items or vehicle walls (Geometry constraint). Moreover,
the items are slid to fill free spaces. As a result, the total travel distance decreases by around 3%
and the runtime by around 5%, on average, compared to the original algorithm by Koch et al. 2018.

Moreover, computational experiments are conducted for well-known loading constraints from
literature, and new formulated or improved loading constraints are introduced in the papers. In
the following, all loading constraints are briefly described and their impact on the objective value
and the runtime is presented. To enable a fair comparison, the computational results are evaluated
based on one common objective function, i.e. minimizing the total travel distance and expressed as
a deviation to the basic set. The average of all computational results is used which are received for
the instance set by Krebs et al. 2021. The impact for loading constraints, which are included in the
basic set, i.e. Rotation, Minimal Supporting Area, Fragility, and LIFO, is measured by the reversed
impact when excluding from the model. In terms of the “Reloading Effort“ constraint, the instance
set is not applicable because not all items of the instance set can be handled manually. Therefore,
its impact is based on a specific instance set and these values are shown.

• Rotation
This constraint allows for items to be rotated along the length-width plane. As the computational
experiments show, the increase of the solution space through the possibility of rotating items is
also reflected in the objective function. If the rotation of items is not allowed, the total travel
distance increases by 1.76% on average, while the runtime decreases by almost 30%. The usage
of this constraint depends on the overall target: If solutions should be received fast, then the
rotation constraint should not be included. If the objective value is more relevant, the constraint
has a positive impact.

• Unloading Sequence
This category deals with the unloading sequence of the items and specific requirements. The

155

Figure 2.1: Comparison of Loading Constraints

purpose is to ensure the smooth loading and unloading of items. The recommendation of which
constraint to choose depends on the dimensions of the items: If items can be handled manually,
the constraint ”Reloading Effort” instead of the LIFO constraint should be used as it achieves
the best results. If equipment for unloading is required, the LIFO constraint is the better choice
as it enables higher flexibility for the equipment compared to MLIFO.

– LIFO
The items are unloaded through straight movements toward the back door. Thus, items
that are delivered later are not allowed to hang over those that are delivered earlier. The
results show that, when disregarding the LIFO constraint, the total travel distance improves
for half of the instances. On average, the total travel distance decreases by 3.43%. In the
case of the runtime, it decreases on average by almost 40%.

– Manual LIFO
As in LIFO, the items are unloaded through straight movements. In contrast to the LIFO
constraint, earlier-delivered items can hang over those delivered later. The computational
experiments show that the Manual LIFO constraint has merely no effect on the total travel
distance (on average: -0.09%). The same applies to the runtime with even an average
increase of 0.93%.

– Reloading Effort1

This approach deals with the reloading effort of items when loading or unloading. This
enables that items can block other items during unloading. Therefore, it can replace the
LIFO constraint. This time-wise effort is calculated using the well-known “Methods Time
Measurement” (MTM) and is added to the objective value. The constraint leads to a
decrease of 13.82% in the total travel distance and -1.25% in the runtime, on average,
based on a specific newly-introduced instance set.

• Vertical Stability
These constraints deal with vertical stability to prevent objects from falling on the ground, on
top of other items, or even on the driver. The vertical stability constraints thus significantly
impact the total travel distance and the runtime. Here, the recommendation is to use the ”Static
Stability” constraint as it ensures high stability of item stacks with less impact on the total
1Introduced in this thesis.

156

travel distance and runtime compared to constraints with higher stability guarantee (i.e. ”Full
Base Support” or ”Top Overhanging”).

– Minimal Supporting Area
This formulation requires that the base area of a stacked item is covered by a certain
percentage α by other direct underlying items. However, as further analysis shows, the
constraint does not ensure feasible stacks of items. To measure the impact on the total travel
distance based on the basic set, it must be excluded from the model for the computational
experiments. Thus, if there is no vertical stability requirement, the total travel distance
improves by 2.81% and the runtime by 30% on average.

– Full Base Support
In contrast to other vertical stability formulations, the full base support prevents items
from hanging over others. As this formulation has the highest restrictiveness among vertical
stability constraints, the total travel distance shows the highest increases with 12.73%, on
average. However, the runtime decreases by 8.3%.

– Multiple Overhanging
This constraint is based on the Minimal Supporting Area constraint and is aimed to
improve the formulation to ensure stable stacks. It states that the Minimal Supporting
Area is obeyed at any height. This formulation has a significant impact on the total travel
distance. Almost every instance shows an increase in the total travel distance. On average,
it is 8.27%; the runtime increases by 61.01%, on average.

– Top Overhanging1

The thesis introduces the Top Overhanging constraint. In this concept, all items must be
fully supported by direct underlying items except the last one of a stack. The idea is to
reduce the computational complexity compared to the Multiple Overhanging constraint and
to ensure stable stacks in contrast to the Minimal Supporting Area constraint. However,
due to the restrictiveness of this constraint, the total travel distance increases by 10.93%
on average, and the runtime by 61.33%.

– Static Stability1

Based on existing corner cases and the science of statics, another constraint in the vertical
stability category has been developed in this thesis. Thus, the Minimum Supporting Area
must be obeyed, and an item’s center of gravity must lie inside all levels at any height.
Each level is determined by the minimum and maximum edges of items at the same height.
As the computational experiments show, the Static Stability constraint performs the best
regarding the runtime and the objective values compared to other constraints, ensuring
stable stacking in Vertical Stability: On average, the total travel distance increases by
6.51% and the runtime by 8.72%.

• Stacking
This category ensures that one item is not damaged when placed under another. The stacking
constraints have rather a high impact on the total travel distance and the runtime. Since
the Load Bearing Strength – Complete constraint best reflects real stacking situations and
load distributions, the recommendation is to use this constraint rather than other stacking
constraints.

– Fragility
In this constraint, the items are classified as fragile and non-fragile items. Non-fragile
items can only be placed on top of other non-fragile items to prevent items from being
smashed by other items. If the constraint is excluded from the constraint set, the total travel
distance rather does not improve (on average: -0.63%). In contrast, the total travel distance
increases by 2% despite the increased solution space. At least, the runtime decreases by
32.14% on average.

157

– Load Bearing Strength – Simplified
As more information regarding the items becomes available, detailed data on the masses
of the items and the maximum bearing load exist. The idea of load-bearing strength
constraints is to use this data to calculate the acting load on the surface of an item caused
by stacking. The simplified approach distributes the acting load to all items underneath
an item’s base area. The total travel distance increases by 2.69% on average, while the
constraint has a high impact on runtime, increasing it by 29.71%.

– Load Bearing Strength – Complete1

Compared to the previous constraint (the Load Bearing Strength – Simplified), this
constraint distributes loads based on the science of statics, as introduced in this thesis.
First, the load acting on an item is distributed to the directly underlying items. Then,
their load is further distributed until the items are on the ground. The computational
results are rather similar to the other approach: The total travel distance increases by
2.47% and the runtime by 29.75% on average. However, as this approach is more realistic,
this should be used instead of the simplified one.

• Mass Distribution
These constraints influence the items’ position within the vehicle’s loading space, emphasizing
mass distribution. The constraints have relatively small negative effects on the total travel
distance but high positive effects on the runtime. In terms of Axle Weights and Balanced Load
constraints, they also improve the security of vehicles. Therefore, all of these constraints should
be included in the model.

– Load Capacity
Normally, each item has a defined mass and the vehicle has a maximum load capacity
D. Computational experiments show that when excluding the load capacity (i.e., setting
the item’s masses to zero) the total travel distance improves only slightly (-1.57%), while
the runtime shows higher positive effects (-13.69%). As the Load Capacity constraint is
required for the following constraints (Axle Weighs and Balanced Load) and is a widely-used
constraint, it should be kept in the model.

– Axle Weights1

In this thesis, formulas for the calculation of axle weights for various types of vehicles
are presented. These formulas are based on the science of statics and can be adapted to
trucks with or without trailers and different axle configurations. The consideration of this
constraint shows relatively small effects on the total travel distance with an increase of
1.87%, on average. However, the runtime even decreases by 20.83%, on average. Since axle
weights are a legal requirement, the slight increase of the objective value, and the positive
effect on the runtime, the recommendation is to include this constraint in the model.

– Balanced Load
This constraint requires that the sum of item masses per vehicle half does not exceed a
certain percentage of the load capacity of a vehicle. It aims at preventing the vehicle from
tipping over due to unbalanced loads. The constraint shows the same tendencies as the
axle weight constraint: It has relatively minor effects on the total travel distance with
only 1.76%, on average. Moreover, the runtime decreases by 20.04%, on average. As this
constraint has positive effects on the runtime, negligible effects on the objective value, and
increases the security of the vehicle, items, and road users, this constraint should always
be included.

• Reachability
Items might be blocked by or on top of different items, making them unreachable. To avoid
these situations, the constraint guarantees that the item is reachable according to a certain
length. The evaluation of the computational experiments shows that the constraint has a small

158

References

impact on the total travel distance with an average increase of 2.8% while the runtime increases
by 6.38%, on averge. Because this constraint guarantees security for the items and the driver,
who might need to stand on top of other items, the recommendation is to include this constraint
in the model.

To summarize, the different loading constraints highly differ in the impact on the objective value
and the runtime. Vertical stability constraints have the most significant effect, followed by stacking
constraints (Fragility and Load Bearing Strength) and the Unloading Sequence (LIFO). Previous
evaluations focused on the impact of one loading constraint. Therefore, another analysis deals with
the effect of the current largest constraint set (Rotation, LIFO, Top Overhanging, Load Bearing
Strength – Complete, Reachability, Axle Weights, and Balanced Load). Its results show that the
total travel distance increases (on average 17.15%) and the runtime by 63.08%, but not as much as
the sum of the individual constraints.

As the last part of the thesis, two tools have been created to support further research. The first
tool, “Solution Validator,” checks provided solutions for their correctness and feasibility according
to routing and loading constraints. For this purpose, all constraints are implemented and well
documented. The tool outputs a report indicating the feasibility, and in case of infeasibility, it
presents violated constraints together with the corresponding vehicle, customer, or item. The second
tool, “Visualizer,” visualizes the solution through two views: One for the routing part showing the
tours and the corresponding schedule with driving, waiting, and service times, with the second
representing the loading plan with all the items and their positions within the vehicle loading space.
All necessary data regarding the items and their feasibility are presented in a table. Both the tour
and loading processes can be performed step by step.

Outlook

There are several aspects for future research. First, the recommendation is to develop specialized
algorithms adapted to the properties of items and the most critical loading constraint. For example,
for items with very high density, an algorithm focusing on the observance of the axle loads and the
balanced load would be an interesting pathway for future research.
Second, relaxing routing constraints enables new possibilities for new research topics. When allowing
multiple visits per customer (split delivery), the impact on the objective values can be analyzed.
Furthermore, new loading constraints are possible in the context of split delivery, e.g., the necessity
that specific items cannot be loaded in the same vehicle loading space. This constraint is applied
when transporting chemicals or conflicting animals.
To conclude, this thesis covers numerous real-world loading constraints. Nevertheless, several
further modifications and extensions have not yet been considered, providing intriguing research
questions for future projects.

References

Gendreau, M., Iori, M., Laporte, G., and Martello, S. (2006). “A Tabu Search Algorithm for a
Routing and Container Loading Problem”. In: Transportation Science vol. 40, no. 3, pp. 342–350.
issn: 0041-1655. doi: 10.1287/trsc.1050.0145. url: http://pubsmisc.informs.org/doi/abs/10.
1287/trsc.1050.0145.

Karabulut, K. and İnceoğlu, M. M. (2005). “A Hybrid Genetic Algorithm for Packing in 3D with
Deepest Bottom Left with Fill Method”. In: Advances in Information Systems. Ed. by Yakhno,
T. Berlin, Heidelberg: Springer Berlin Heidelberg, pp. 441–450. isbn: 978-3-540-30198-1.

Koch, H., Bortfeldt, A., and Wäscher, G. (Feb. 2018). “A hybrid algorithm for the vehicle routing
problem with backhauls, time windows and three-dimensional loading constraints”. In: OR
Spectrum vol. 40. doi: 10.1007/s00291-018-0506-6.

Krebs, C., Ehmke, J. F., and Koch, H. (Aug. 2021). “Advanced loading constraints for 3D vehicle
routing problems”. In: OR Spectrum. issn: 1436-6304. doi: 10.1007/s00291-021-00645-w. url:
https://doi.org/10.1007/s00291-021-00645-w.

159

https://doi.org/10.1287/trsc.1050.0145
http://pubsmisc.informs.org/doi/abs/10.1287/trsc.1050.0145
http://pubsmisc.informs.org/doi/abs/10.1287/trsc.1050.0145
https://doi.org/10.1007/s00291-018-0506-6
https://doi.org/10.1007/s00291-021-00645-w
https://doi.org/10.1007/s00291-021-00645-w

References

Ropke, S. and Pisinger, D. (2006). “A unified heuristic for a large class of Vehicle Routing Problems
with Backhauls”. In: European Journal of Operational Research vol. 171, no. 3. Feature Cluster:
Heuristic and Stochastic Methods in Optimization Feature Cluster: New Opportunities for
Operations Research, pp. 750–775. issn: 0377-2217. doi: 10.1016/j.ejor.2004.09.004. url:
http://www.sciencedirect.com/science/article/pii/S0377221704005831.

160

https://doi.org/10.1016/j.ejor.2004.09.004
http://www.sciencedirect.com/science/article/pii/S0377221704005831

	Abstract
	Contents
	List of Papers
	List of Figures
	List of Tables
	List of Algorithms
	Introduction
	Optimization Problem
	Thesis outline
	References

	Papers
	Effective Loading in Combined Vehicle Routing and Container Loading Problems
	Introduction
	Literature Review
	Problem Description
	Hybrid Solution Approach
	Computational Experiments
	Conclusion
	References

	Axle Weights in combined Vehicle Routing and Container Loading Problems
	Introduction
	Literature Review
	Problem Formulation
	Axle Weight Constraint
	Hybrid Solution Approach
	Computational Experiments
	Conclusion
	References

	Advanced loading constraints for 3D vehicle routing problems
	Introduction
	Literature Review
	Problem Formulation
	Definitions and Implementations of Loading Constraints
	Hybrid Solution Approach
	Computational Studies
	Conclusions and Future Work
	References

	Vertical Stability Constraints in Combined Vehicle Routing and 3D Container Loading Problems
	Introduction
	Literature Review
	Problem Formulation
	Vertical Stability constraints
	Hybrid Algorithm
	Computational Studies
	Conclusion
	References

	Manual Unloading in 3D Loading Vehicle Routing Problems
	Introduction
	Literature Review
	Problem Formulation
	Unloading Effort
	Hybrid Solution Approach
	Computational Experiments
	Conclusion
	References

	Solution Validator and Visualizer for (Combined) Vehicle Routing and Container Loading Problems
	Introduction
	Literature Review
	Problem Formulation
	Open Source Tools
	Instances and Best Known Results
	Summary and Future Work
	References

	Conclusion
	References

