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"Eine neue wissenschaftliche Wahrheit pflegt sich nicht in der Weise durchzusetzen, dass ihre Gegner 

überzeugt werden und sich als belehrt erklären, sondern vielmehr dadurch, dass ihre Gegner 

allmählich aussterben und dass die heranwachsende Generation von vornherein mit der Wahrheit 

vertraut gemacht ist." 

- Max Plank -
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Summary 
Alzheimer’s disease is the most common cause of dementia and accompanied by vast socio-

economic problems. To meet these challenges, basic research makes great efforts to provide a better 

understanding and develop treatment strategies. However, the final success depends also on the 

quality and precision of the utilised disease models. To reproduce the disease state in animals, 

mutant human transgenes are overexpressed. Although most animals still express the endogenous 

variants, the potential interactions with transgenic proteins have rarely been addressed so far. 

This study was conducted to provide new insights on the impact of endogenous proteins on 

deposition of the corresponding transgenic proteins in animal models of neurodegenerative diseases. 

To do so, an established model of cortical amyloidosis expressing mutant human variants of amyloid 

precursor protein (APP) and presenilin 1 was crossed with an APP knockout strain to create a model 

that exclusively expresses human APP. The absence of murine APP led to an increased number of 

cortical plaques and higher levels of cerebral Aβ. In contrast, accumulation of amyloid in 

leptomeningeal blood vessels was diminished. Deficiency of murine APP further altered cellular 

response to amyloid deposition, as animals developed a pronounced, age-dependent astrogliosis and 

presented with significantly reduced microglial coverage of plaques. Neuronal density, caspase levels 

and expression of APP- and Aβ-processing enzymes were unchanged within the analysed period. 

Nevertheless, these mice are genetically modified and rather mimic the rare inherited form of the 

disease. The most promising model for the common sporadic variant is the South American rodent 

Octodon degus (degu). Degus are supposed to combine the general advantages of rodents with the 

natural development of plaques and tangles. The second part of the study investigates the age-

dependent histopathological changes in degus, to evaluate their suitability for serving as model of 

Alzheimer’s disease. Firstly, basic histological stains were performed, but revealed neither major 

deviations between young and aged degus and nor any signs for lesions, spatial displacement, 

neurodegeneration or neuronal loss. Silver impregnations, fluorescent and immunohistological stains 

unveiled no evidence for extracellular deposits. Astrocytes showed no indication for either activation 

or any age-dependent changes. Accordingly, resting microglia were evenly distributed in the cortex 

without any clustering. Finally, the staining of phosphorylated tau revealed reactivity in most cells 

throughout cortex and hippocampus, but neither spatially nor morphologically resembled tangles. 

The first part of the study showed that remaining expression of endogenous APP crucially altered the 

deposition of amyloid in transgenic mice. It therefore provides an opportunity for further improving 

current models and thereby enhance the transferability of results to the human system. Secondly, 

utilisation of degus as model of Alzheimer’s disease seems inadequate, as current analyses 

discovered exclusively normal aging. The presumed progressive aggregation of tau and amyloid was 

consistently absent and not even unspecific signs for degeneration or inflammation were present. 
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1 Introduction 

1.1 Neurodegenerative diseases and protein aggregation 

The term ‘neurodegeneration’ is collectively used for a large number of neurological disorders[1]. 

Neurodegenerative diseases (NDs) are characterised by progressive dysfunction and neuronal loss in 

specific regions of the central nervous system, which thereby determine course and clinical 

manifestation[2]. The vast majority of NDs occur sporadically[1] and are presumably provoked by a 

complex interaction of genetic, endogenous and environmental factors[3]. Age is the most consistent 

risk factor, especially for the most frequent, Alzheimer’s disease (AD) and Parkinson’s disease (PD)[1]. 

The increasing life expectancy is therefore accompanied by a growing incidence of NDs[4]. A small 

subset of those is hereditary and caused by known genetic mutations, related to only a few 

pathways[1, 2]. Although exceptional, heritable forms proved particularly valuable for understanding 

the basic pathogenetic mechanism of NDs[5]. Neurodegenerative diseases are therefore no longer 

divided by their predominant clinical features and primarily affected brain regions[1, 3], but are 

classified on the basis of the underlying genetic mechanisms and the major compounds of the 

generated deposits[2, 3]. 

Despite the heterogeneity of NDs, common pathogenic mechanisms have been identified[2, 3, 5], 

including (i) disturbed dynamics and aggregation of proteins (reviewed in[6]), (ii) mitochondrial 

dysfunction and oxidative stress (reviewed in[7]) and (iii) neuroinflammatory processes (reviewed 

in[4]). The pathologic extent of protein aggregation is a common feature of NDs (reviewed in[1, 3]) and 

includes for instance β-amyloid (Aβ) and tau in AD, α-synuclein in PD and huntingtin in Huntington's 

disease[3, 5]. Interestingly, the disease-causing mutations typically increase either aggregation 

propensity or cellular abundance of these proteins[5]. The characteristic localisation of protein 

aggregates in the most affected brain regions made them hallmarks of their corresponding 

disorder[5]. Although the deposits are prominent features of particular diseases, most protein 

aggregates are not disease-specific and occur in different disorders[5, 8]. Aggregated tau, for instance, 

appears in AD, frontotemporal dementia, Pick’s disease, progressive supranuclear palsy and many 

others (reviewed in[9]). The intracellular inclusion of α-synuclein is not only a renowned feature of PD, 

but was also detected in Lewy body dementia, multiple systems atrophy, amyotrophic lateral 

sclerosis and others (reviewed in[10]). There are further similarities at the molecular level, where the 

formation of β-sheet and β-strand structures is a common structural element of aggregating 

proteins[11]. 
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1.2 Alzheimer’s disease 

Since its first description in 1907[12], Alzheimer’s disease became the most frequently cited cause of 

dementing cerebral cortex pathology[13]. AD commonly progresses slowly and the first related 

changes already occur decades before the emergence of initial symptoms[14]. Clinically, the disease 

can be roughly divided into three stages. In the (i) early stage (mild AD), patients and their social 

environments recognise disturbances of short-time memory for the first time. The early stage 

symptoms further include difficulties in concentration, organisation and performance of complex 

tasks. The (ii) middle stage (moderate AD) is typically the longest phase and characterised by the 

increasing loss of autonomy. Difficulties to perform routine tasks (nutrition, hygiene and clothing) 

and deteriorated memory performance (spatial and temporal confusion) lead to an increasing 

dependency. Moreover, patients become emotional unstable and undergo personality and 

behavioural changes. Sleep patterns change and patients can become depressed and withdrawn or 

restless and irritable. Memory performance impairs progressively and patients have trouble in 

remembrance of personal history and recognising even near relatives. In the (iii) late stage (severe 

AD), patients require continuous assistance for daily activities. They lose physical abilities (walk, sit 

and eat) as well as the awareness of recent events and their environment. Patients finally depend on 

full-time care, become bedridden and vulnerable to infections[13], e.g. pneumonia, the leading cause 

of death in AD patients (reviewed in[15]). 

By 2001, 24.3 million people worldwide suffered from dementia[16], of which about 70% was 

attributed to AD[17]. Until 2040, the number of cases is predicted to double every 20 years[16]. But 

prevalence and incidence of AD are age-dependent and show regional differences[18]. They are 

highest in Western Europe, North and Latin America[16, 18], lower in Eastern Europe, China, Western 

Pacific, North Africa and the Middle East[16] and lowest in India, South Asia and Africa[16, 18]. In return, 

the proportional increase of demented between 2001 and 2040 is presumed strongest in Latin 

America (393%), North Africa and Middle East (385%) and in China and the developing western 

Pacific region (336%)[16]. 
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1.2.1 Molecular fundamentals 

In 1907, Alois Alzheimer reported two characteristic changes in the brain of his former patient 

Auguste Deter, which became the histopathological hallmarks of the disease. The intracellular 

formation of dense neurofibrillary bundles and the deposition of a peculiar substance in the cerebral 

cortex[12]. 

The extracellularly located plaques consist of aggregated β-amyloid[19]. It is generated by sequential 

enzymatic proteolysis of the amyloid precursor protein (APP)[20], a type I transmembrane protein[21, 

22] with various physiological functions in neuronal development and homeostasis (described more 

detailed in section 1.2.3). The Aβ sequence is located at the transition of the extracellular 

juxtamembrane region to the transmembrane helix[21]. The proteolytic processing of APP is 

principally realised by two divergent pathways (reviewed in[23]). 

The common, non-amyloidogenic pathway prevents the generation of Aβ by α-secretase cleavage 

within the Aβ-region[20] and produces a N-terminal, soluble APP fragment (sAPPα) and a membrane-

bound C-terminal fragment (αCTF)[23] (Figure 1-1). In the less frequent amyloidogenic pathway, 

β-secretase (β-site APP cleaving enzyme, BACE1) initially also generates a soluble, N-terminal APP 

fragment (sAPPβ) and a membrane-bound C-terminal fragment (βCTF)[23]. Both C-terminal fragments 

are further processed by γ-secretase, a complex of 4 essential subunits: presenilin (PS), 

nicastrin (NCT), anterior pharynx-defective 1 (APH1) and presenilin enhancer 2 (PEN2)(reviewed 

in[24]). The cleavage of αCTF thereby releases a 24 to 26 amino acid long peptide (p3) and the 

intracellular domain of APP (AICD)[25], while βCTF cleavage produces AICD and Aβ[23]. But the 

γ-secretase cleavage is inaccurate to a certain extent and generates a variety of Aβ species with 

different lengths, spanning from 34 to 50 amino acids (reviewed in[25]). The 40 amino acid long 

fragment (Aβ40) is the most abundant isoform and accounts for 90% of the generated Aβ[26]. Although 

being produced in a much lesser extent[26], Aβ42 is the crucial pathogenic isoform[26]. The increased 

hydrophobicity and aggregation propensity of Aβ42 trigger its toxicity[27] and make Aβ42 the major 

component of plaques[20]. The aggregation process of Aβ starts with the spontaneous formation of 

small oligomers, namely dimers and trimers, proceeds with the generation of larger oligomers and 

linear protofibrils and results in the generation of larger, insoluble fibrils and ultimately their 

deposition as plaques[28, 29]. 

Neurofibrillary tangles (NFTs) on the contrary, are intracellular bundles of paired helical 

filaments (PHFs), consisting of hyperphosphorylated species of the microtubule-binding, cytoskeletal 

protein tau[19]. Homologous to Aβ, tau filaments exhibited the same characteristic cross-β structure 

in the aggregated state[30]. Due to their exceptional stability, NFTs can remain in the extracellular 

space upon neuronal death[12, 31]. The microtubule binding of tau is controlled by phosphorylation 

and disrupted by hyperphosphorylation, which thereby initiates the aggregation of tau[32]. In the 
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disease state, the phosphate/tau ratio increases from physiologic 1.9 to 2.6 and even to 6 - 8 in 

PHFs[33]. 

The exact sequence of molecular events that lead to AD is still debated. Although β-amyloid and tau 

mediate toxicity through different pathways, they closely interact[34]. Several lines of evidence 

thereby assign tau a subsequent but not less crucial role in disease progression[35]. Accordingly and in 

contrast to APP, mutations of tau have only been implicated in the development of hereditary 

frontotemporal dementia[36] but not AD[37]. Furthermore, Aβ is sufficient to induce tau 

phosphorylation[38] and accelerates the formation of NFTs[39] in animal models. Finally, the 

combination of APP and tau transgenes in mice solely exacerbate tau pathology, while Aβ deposition 

is unchanged[40, 41]. But as β-amyloid basically drives tau pathology, its toxic effects are mediated, at 

least to a certain extent, by tau[35]. 

 

 
Figure 1-1: Proteolytic processing of the amyloid precursor protein. 
There are two general pathways of amyloid precursor protein (APP) cleavage. The non-amyloidogenic pathway (green) 
prevents Aβ generation by sequential α- and γ-secretase cleavage, producing sAPPα, p3 and AICD. In the amyloidongenic 
pathway (red), the initial β-secretase cleavage also generates two fragments, sAPPβ and βCTF. The subsequent γ-secretase 
cleavage then releases AICD and the aggregation-prone Aβ (blue). (Adapted from[42, 43]) 
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1.2.2 Pathology 

Alzheimer’s disease pathology enfolds a series of biochemical and morphological changes that 

clinically manifest as cognitive decline and dementia[27, 44]. The persistent neuronal death leads to 

brain atrophy, which progressively accelerates[44]. The volume loss particularly affects anterior frontal 

lobe, inferior and lateral temporal lobe, posterior and medial parietal lobe, precuneus[45] 

hippocampus[46] and cingulate gyrus and is accompanied by ventricular enlargement[45]. 

Histologically, the previously described extracellular plaques and intracellular neurofibrillary tangles 

are most characteristic, but their spatial and temporal development differs. The common 

histopathological staging of Alzheimer’s disease is based on the appearance of neurofibrillary 

tangles, which precede plaques. NFTs occur initially in the entorhinal cortex, subsequently in the 

limbic system and finally also in isocortical regions[47]. By contrast, plaques first appear in the basal 

proportions of frontal, temporal and occipital lobe. As the disease progresses, amyloid pathology 

continuously aggravates and affects isocortical association fields, while hippocampus is only mildly 

affected. Finally, amyloid deposits occur in all isocortical and even subcortical areas[48]. But Aβ is also 

deposited in media and adventitia of cerebral arteries and arterioles[49]. The cerebral amyloid 

angiopathy (CAA) first affects leptomeningeal vessels and continues in vessels of the neocortical grey 

matter and the olfactory cortex. Deposition starts thereafter in hippocampus and cerebellum and 

finally includes even vessels in the deep grey and white matter (reviewed in[49]). The sustained 

deposition of Aβ in vessel walls causes thickening and loss of smooth muscle cells. The affected 

vessels thereby become increasingly vulnerable, as they lose their ability to adapt to blood flow 

changes. The final stage of CAA is characterised by vessel fragmentation, fibrinoid necrosis and 

aneurysm formation and thereby sets the basis for haemorrhages (reviewed in[49]). Moreover, the 

accumulation of Aβ in vessel walls progressively impairs functionality and thereby impedes vascular 

elimination of Aβ[50]. 

The deposition of Aβ further leads to a sustained activation of microglia and astrocytes, which were 

long perceived to surround and closely associate with plaques in AD. Both cell types are complexly 

involved in pathogenesis and possess beneficial as well as detrimental effects (reviewed in[51]). 

The early recruitment of microglia promotes the neuroprotective clearance of Aβ[52] through 

extracellular and intracellular degradation[53]. Insulin-degrading enzyme (IDE) and neprilysin (NEP) are 

thereby the most important proteolytic enzymes and implicated in both pathways[53]. While 

extracellular degradation is accomplished by secreted and membrane-bound enzymes[53], the 

intracellular pathway depends on receptor-mediated endocytosis and subsequent targeting to the 

lysosomal pathway[53]. Microglial cells are able to clear soluble[54] and fibrillary[55] forms of Aβ. But as 

AD progresses, phagocytic and enzymatic capacity of microglial cells decreases and further 

accelerates deposition[52]. 
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On the other hand, microglial activation induces production and release of various proinflammatory 

and cytotoxic factors like reactive oxygen species[56], nitric oxide[57], tumor necrosis 

factor-α (TNF-α)[58], and different interleukins[51], which directly contribute to the pathogenesis and 

increase during disease progression. The importance of microglial cells is underlined by the 

identification of microglia-associated risk factors for AD, like CD33 polymorphism[51], mutations in 

TREM2 or TLR4[51], upregulation of TYROBP[59] and downregulation or deficiency of PGRN[60]. 

Together with microglia, activated hypertrophic astrocytes gather in the vicinity of amyloid 

plaques[61]. Upon Aβ exposure, astrocytes similarly release various cytokines and chemokines and 

thereby contribute to the neuroinflammatory response[51]. Thus, interference with inflammatory 

pathways ameliorated cognition and reduced plaque load[62]. But astrocytes also degrade Aβ[63] and 

upregulate IDE, NEP and different matrix metalloproteinases upon Aβ exposure[51]. Attenuation of 

the reactive gliosis therefore increased plaque load[64], while further activation of astrocytes 

promoted phagocytosis and decreased plaque load[65, 66]. In summary, astrocytes and microglial cells 

complexly respond to Aβ deposition. Their overall effect changes during disease progression from 

neuroprotective to destructive[52]. 

1.2.3 Molecular organisation and physiological functions of APP 

Although the amyloid precursor protein has a wide range of important physiological functions, it is 

almost exclusively perceived in the context of Alzheimer’s disease. Accordingly, the APP gene was 

discovered in 1987 as precursor of the β-amyloid protein from AD[67, 68] and not as trophic factor[69, 70]. 

APP is located at chromosome 21[67, 68], organised in 20 exons (Entrez Gene database[71, 72], Gene ID: 

350) and transcribed/spliced to 17 variants (Ensembl[73], ID: ENSG00000142192). There are three 

major isoforms (APP695, APP751, APP770) of which APP695 is the most abundant in human cortex[74]. 

These major APP variants are type I transmembrane glycoproteins[22], with a large ectodomain and a 

small intracellular domain[21] (Figure 1-2). APP is part of a small gene family, which further includes 

the two APP-like proteins APLP1 and APLP2[26, 75]. Evolutionary, APP-like proteins emerged 

simultaneous with early nervous systems and functional synapses and were preserved ever since[76]. 

The Aβ sequence, however, is not well conserved and exclusive to APP[26]. The amyloid precursor 

protein and its proteolytic products play important roles in various stages of neuronal development. 

They stimulate neural differentiation of embryonic stem cells[77] and proliferation of neural stem[70] 

and progenitor cells[78]. APP and sAPPα further regulate migration of neuronal progenitor cell and 

promote neurite outgrowth[78, 79]. Finally, an essential role for development and maintenance of 

peripheral and central synapses[80, 81] and dendritic spines[82] is assigned to APP. The sum of functions 

provided by APP gene family is literally vital. In Caenorhabditis elegans with a single APP-related 
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gene, a knock-out is lethal[78]. In higher organisms, the APP paralogues seem functionally redundant 

to a certain extent[76] and a single knockout of either APP, APLP1 or ALPL2 is not fatal[78]. 

1.2.4 Sporadic and inherited disease variants 

According to the amyloid hypothesis, Alzheimer’s disease is caused by the imbalance of Aβ 

production and clearance[83]. In sporadic AD, decreased clearance was found to be the major 

contributor, while production was unchanged[84]. Aβ clearance thereby refers to the sum of several 

elimination pathways, which can be attributed to two fundamental mechanisms, (i) proteolytic 

degradation or (ii) elimination by transport. As previously described, Aβ is extracellularly degraded by 

several secreted and membrane-bound proteases. Intracellularly, endocytosed Aβ is mainly 

degraded in endo- and lysosomes, while generated membrane-associated Aβ can additionally be 

degraded in endoplasmic reticulum, mitochondria and cytosol (reviewed in[85]). Degradation of Aβ 

physiogically operates at its functional capacity and decreases age-dependently[85]. Secondly, Aβ is 

eliminated by active and passive transport through the brain barriers for instance by the low density 

lipoprotein receptor-related protein 1 (LRP1)[86] and different ATP-binding cassette transporters like 

ABCB1[87] and ABCC1[88]. As Aβ removal decreases age-dependently, the activation of transport 

processes was suggested to reduce the cortical amyloid load[89]. This strategy has conceptionally 

already been proved for LRP1[90], ABCB1[90, 91] and ABCC1[88, 92]. 

Another and far less frequent cause for developing AD are inheritable mutations. Although their 

effects are heterogeneous, they generally affect either production or aggregation propensity of 

Aβ[93]. A sum of 231 disease-causing mutations has been identified so far[37]. These mutations affect 

only three genes, namely APP (33 mutations), PSEN1 (185 mutations) and PSEN2 (13 mutations)[37, 94]. 

As PS1 and PS2 are part of the γ-secretase complex (section 1.2.1), mutations either enhance Aβ 

production or increase the Aβ42/Aβ40 ratio (reviewed in[93, 94]). 

Mutations in the APP gene have different effects, depending on their specific localisation[93] (Figure 

1-2). The Swedish APP mutation [KN670/671ML] is a double substitution flanking the C-terminus of 

Aβ, which affects the β-secretase cleavage[95]. It increases Aβ production two to threefold[93] while 

leaving Aβ sequence and Aβ42/Aβ40 ratio unchanged[96, 97]. An extra copy of APP likewise increases Aβ 

levels and initiates the inevitable cascade of neuropathological changes in certain forms of familial 

AD[98, 99] and trisomy 21[100] (Down’s syndrome). APP mutations at the C-terminus of the Aβ sequence 

affect γ-secretase cleavage[93] and thus increase Aβ42 level and Aβ42/Aβ40 ratio[93]. Mutations within 

the Aβ sequence and a certain distance to cleavage sites elevate the Aβ accumulation rather by 

raising aggregation propensity than increasing amount or Aβ42/Aβ40 ratio[101]. Expedited aggregation 

is apparent in English [H677R][102, 103], Tottori [D678N][102, 103], Taiwanese [D678H][104, 105], 

Dutch [E692Q][106], Arctic [E693G][101], Osaka [E693∆][107], and Iowa [D694N][106] APP mutations. 



Analysis of animal models of neurodegenerative diseases with protein deposits 

- 8 - 

Nevertheless, changes in the Aβ sequence can also reduce cleavage and/or aggregation propensity. 

The A2V [A673V] substitution augments Aβ production and elevates aggregation propensity in 

homozygous carriers, inducing early-onset AD. In the heterozygous state, however, aggregation 

propensity is significantly reduced, preventing amyloidogenesis and neurotoxicity[108]. The 

A2T [A673T] variant of APP is even protective, as both, production and aggregation of Aβ are 

generally reduced[109, 110]. 

The described APP mutations clearly demonstrate that changes in either amount, ratio (Aβ42/Aβ40) or 

amino acid sequence of Aβ are sufficient to cause non-sporadic AD and further emphasise the critical 

role of multimeric Aβ in AD pathogenesis. Overall, inheritable AD mutations have been of paramount 

importance for our current understanding of the complex pathogenesis of AD. 

 

 
Figure 1-2: Mutation-based changes of the human amyloid precursor protein. 
The structure of the amyloid precursor protein is shown with the Aβ region highlighted in blue. Amino acid sequence of 
β-amyloid is presented together with secretase cleavage sites and flanking amino acids (grey). Mutations are presented 
below and are color-coded in accordance to their effects (green: protective, yellow: zygosity-dependent, red: increased 
aggregation, blue: increased production or Aβ42/Aβ40 ratio and black: unclear mechanism). (Adapted from[43, 93]). 
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1.3 Disease models 

The discovery of APP and the various mutations of APP, PSEN1 and PSEN2 not only inspired the 

development of the amyloid hypothesis but also created the prerequisites for the generation of 

animal disease models. Alzheimer’s disease is a complex disorder, virtually involving and influencing 

every aspect of the brain’s physiology. However, the methodological and temporal limitations of 

exploring aetiology and pathogenesis in humans made it necessary to develop appropriate animal 

disease models. These models largely drove understanding of the disease as well as the development 

of therapeutic strategies. Thus far, animal models are unable to reproduce the full spectrum of 

pathological changes observed in AD. The generated models are therefore commonly judged on 

reproducing the characteristic histopathological features (plaques, tangles, gliosis, neuronal loss) and 

the main symptom of memory loss[111]. Due to their many advantages, rodents are the most 

commonly used species in basic research[112]. Unfortunately, they naturally develop none of the 

characteristic changes of AD[113], a constraint that has been resolved by inducing pathology through 

genetic manipulation or injection of toxins[111]. 

1.3.1 Transgenic animals expressing wild-type APP 

After identifying the origin of Aβ in 1987[67, 68], first attempts to reproduce the cortical amyloidosis 

and related histopathological and cognitive characteristics in mice were published in 1991[114-117]. To 

resemble the differences in mRNA expression which have been reported for AD[118-120], human wild-

type APP751 was expressed by rat neuron-specific enolase (NSE) promoter in mice, creating an 

imbalance of the most abundant isoforms, APP695 and APP751
[114]. Although extracellular deposits 

were apparent[114, 121], modified Bielschowsky silver impregnation and thioflavin S (ThS) stains were 

rarely positive and Congo red positive aggregates were not present[121]. The deposits have been 

suspected unspecific[122], and animals have lately been described to develop diffuse[123, 124], 

preamyloid[124] deposits but no plaques[123]. 

Virtually simultaneously, a second murine model was presented, using the human APP promoter to 

express a sequence encoding the Aβ peptide[115]. The initially described amyloid-like deposits were 

later revealed unspecific, as they were also present in non-transgenic animals[122]. 

Based on the discovery, that the 100 C-terminal amino acids contain the Aβ sequence[125], C-terminal 

APP fragments were expressed in mice using either JC viral early region[116] or brain dystrophin[126] 

promoters. But despite higher expression of Aβ, mice did not show extracellular aggregates of   

Aβ[116, 126-128]. 

The first murine model that manifested with thioflavin S positive, dense-core amyloid plaques, 

neurofibrillary tangles and neuronal loss used a C-terminal APP fragment and the human Thy1-

promoter for expression[129]. These mice seemed a major breakthrough for the next four months, 
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until the study was retracted[130] as histopathological findings were not reproducible[131]. The 

expression of APP695 using the metallothionine IIA promoter also failed to induce plaque 

deposition[117, 128]. 

To better recreate the human situation in terms of spatial and temporal expression patterns and 

splice variants, the entire and unarranged human APP gene was introduced into mice[127, 132, 133]. 

Although mice expressed all of the most abundant human APP isoforms (APP695, APP751, APP770) at a 

level similar to endogenous murine transcripts[127, 132], plaque deposition was not evident[128]. 

In sum, none of these early models mimicked the characteristic features of AD[69, 122, 127, 128, 134] and 

the missing deposition of Aβ even indicated a certain physiologic protection against its aggregation. 

These drawbacks were mainly attributed to insufficient transgene expression and the genetic 

background of mice[128], but raised the question if mice are generally capable of reproducing an 

AD-like pathology[121]. 

1.3.2 Disease models expressing mutant transgenes 

The discovery of point mutations strongly associated with early onset AD[135] entailed the generation 

of animal models with mutant transgenes. In 1994, the first models were described[69] which 

expressed the London mutant [V717I][136, 137] variant of APP695 or APP751 under control of the rat NSE 

promoter[69]. Nevertheless, the neuronal overexpression of mutant APP did not provoke amyloid 

deposition or neurodegeneration[69]. 

In 1995, Games et al. presented the transgenic PDAPP mice[134]. Here, the platelet-derived growth 

factor-β (PDGF) promoter drives the expression of Indiana mutant [V717F][138] cDNA[134]of APP. The 

PDAPP mice exhibit thioflavin S positive plaques, astro- and microgliosis and synaptic loss[134]. 

Moreover, impairments in spatial memory (water maze[139]) working memory (radial arm maze[140]) 

and cognition (novel object recognition task[140]) preceded the appearance of plaques[139, 140]. 

A still very common strain was introduced in 1996 by Hsiao et. al.[141]. The Tg2576 mice fivefold 

overexpress Swedish mutant [KM670/671NL][142] APP695 under the control of the prion protein (PrP) 

promoter[141]. These mice display dense, thioflavin S and Congo red positive deposits[141], spine loss, 

hippocampal LTP impairment and a distinct astro- and microgliosis[143]. Tg2576 mice have deficits in 

learning and memory (water maze[141], Y-maze[141, 144] and passive avoidance task[144]) and cognition 

(novel object recognition task[145]). Disease progression is relatively slow in Tg2576 mice, as first 

memory deficits occur about six months of age[146] and amyloid plaques emerge between nine and 

twelve months[141, 146, 147]. To accelerate pathology and increase Aβ42 production[148], Tg2576 animals 

were crossed with mice expressing mutant PS1 (M146L)[147]. In these double transgenic mice, plaques 

and behavioural changes already appeared at an age of three to four months[147]. 
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In contrast to APP mutations, the expression of AD-causing, mutant presenilin failed to induce plaque 

deposition in mice (reviewed in[149]). But Aβ42 levels and Aβ42/Aβ40 ratios were consistently elevated 

in different mutant PS1 and PS2 transgenic mice[148, 149]. 

Interestingly, the second prominent histopathological hallmark of AD, intracellular neurofibrillary 

tangles, was not evident in any of the APP transgenic mice. Despite their joint appearance in AD, 

mutations of tau are only linked to frontotemporal dementia[36] but not to AD[37]. Consequently, 

expression of mutant tau, either alone[150-152] or in combination with PS1[153], was not sufficient to 

induce plaque deposition. 

To reproduce both pathological features in mice, 3xTg-AD mice were generated[153]. These mice 

express the Swedish APP695 variant [KM670/671NL] and mutant tau [P301L], both controlled by the 

Thy1.2-promoter[153] and mutant PS1 [M146V] by its endogenous promoter[154]. 3xTg-AD mice 

present with extracellular Aβ deposits at six and hippocampal tau pathology at twelve months of 

age[153]. Impairments in synaptic plasticity (LTP[153, 155]), spatial memory (Barnes maze[156], Morris 

water maze[155]) and working memory (8-arm radial maze[157]) are also apparent in 3xTg-AD mice. 

However, intracellular Aβ aggregation in 3xTg-AD mice has been questioned[158] by a controversial 

and already retracted[159] study. Moreover, one author of the initial study recently reported the 

phenotype was not complying with the initially described observations in males[160]. 

All these results demonstrate that high levels of the aggregation-prone human Aβ are necessary to 

induce deposition and associated symptoms in mice. Most of the current murine models therefore 

combine strong expression by specific promotors, mutant transgenes and vulnerable background 

strains. However, the heterogeneity of the utilised promoters, transgenes and background strains in 

these models make the originating phenotypes extremely variable. Overall, the PDGF-, Thy1- and 

PrP-promoters, the APP695 isoform with the Swedish double mutation, and the C57BL/6, 129, FVB/N 

and DBA strains are most commonly used for the generation of murine disease models[161]. Almost all 

of these ‘common’ AD mouse models simultaneously express the corresponding murine proteins. 

But, as overexpression of mutant human APP, PS1 and tau reliably provoke the desired phenotype, 

interactions between transgenic and endogenous proteins have rarely been addressed. 

1.3.3 Advanced and natural models 

To eliminate potential interactions with endogenous proteins, animals expressing human transgenes 

can be combined with appropriate knockout models. This approach has been previously described 

for tau[162], whereby human tau transgenic[163] and murine tau-deficient[164] mice were crossed to 

create a model exclusively expressing human tau[162]. These mice showed intracellular aggregates of 

tau[162, 165, 166] consisting of paired helical filaments[162], which are similar to the early ‘pre-tangle 

stage’ in humans[162]. The tau pathology was accompanied by impairments in learning and memory 
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(Morris water maze[165, 167], Y-maze[167]), cognition (novel object recognition task[165, 167]), synaptic 

plasticity (hippocampal LTP[165]) and even neuronal loss[167]. By contrast, these pathological signs were 

not apparent in mice that additionally expressed murine tau[162]. The cause of this aggregation-

preventing effect is still unclear[168]. Although murine tau is known to have a lower aggregation 

propensity[168], it was shown to co-aggregate with human tau[169]. 

Mice expressing human APP in the absence of endogenous murine APP have also been previously 

described and were generated by crossing transgenic and knockout mice[170, 171]. APP23 mice[170, 171] 

(expressing mutant [KM670/671NL] APP751 controlled by the Thy1-promoter[172]) and APP/PS1 

mice[171] (expressing mutant [KM670/671NL] APP751 and mutant PS1 [L166P] both controlled by the 

Thy1-promoter[173]) were used for providing the human APP transgenes. The elimination of murine 

APP in transgenic mice was initially described to affect neither Aβ deposition nor cerebral amyloid 

angiopathy (CAA)[170]. But that conclusion was very recently questioned by Mahler et al., who 

reported an increase in cortical plaque load and CAA by eliminating endogenous APP in certain 

transgenic models[171]. 

Animals that physiologically reproduce certain characteristics of AD are potential alternatives for 

transgenic models. Several mammalian species naturally develop histopathological changes, similar 

to those of AD patients. Amyloid β deposits have been described in primates (gray mouse lemur 

(Microcebus murinus)[174], rhesus monkey (Macaca mulatta)[175], hamadryas baboon (Papio 

hamadryas)[175]), carnivorans (dog (Canis lupus familiaris)[176, 177], polar bear (Ursus maritimus)[177], 

california sea lion (Zalophus californianus)[176], american black bear (Ursus americanus)[176], tsushima 

leopard cat (Prionailurus bengalensis euptilurus)[176], cheetah (Acinonyx jubatus)[176]), bovids (sheep 

(Ovis aries)[178]) and even-toed ungulates (Bactrian camel (Camelus bactrianus)[179]). Interestingly, 

what these animals have in common (so far sequenced), is the human identical Aβ segment in their 

APP gene[180] (see Table 7-1). But beyond the identical Aβ sequence, progression and characteristics 

significantly differ from the human disease. However, due to numerous impediments, these animals 

are not well suited for research. The main hindrances are their body size and the slow disease 

progression. 

Rodents, however, are an ideal research model as they combine the benefits of mammalian models 

in terms of anatomy, physiology and genetics with a short generation time and an accelerated 

lifespan. Since mice, as rodent archetype, do not naturally develop AD pathology[113], the same has 

been concluded for all rodents, regardless of the apparent differences. 

The small, South American rodent Octodon degus (degu) has recently been described to ‘naturally 

develop a full range of AD-like pathologies including Aβ plaques and neurofibrillary tangles’[181]. Thus, 

degus were the first rodents described developing amyloid plaques and NFTs without genetic 

modification. Two specific properties likely make degus particularly susceptible for developing 
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AD-like symptoms, (i) their high average lifespan of up to ten years in captivity, which is considered 

equivalent to 120 human years[182] and (ii) the high sequence homology to human APP, with only one 

amino acid variation in Aβ[182] (Figure 1-3). Degus manifest with a profound number of age-

dependent changes, including prominent intra- and extracellular, thioflavin S positive deposits of Aβ 

in entorhinal cortex, hippocampus and even frontal and parietal cortex[183]. Thioflavin S positive 

plaques rapidly develop and are already apparent at twelve months of age[183]. Aβ deposition was 

accompanied by intracellular aggregation of phosphorylated tau[182, 183] and pronounced 

astrogliosis[182]. Degus showed further age-dependent deficits in memory, cognition and synaptic 

plasticity (determined by LTP measurement, T-maze and novel object recognition task)[183]. The degu 

is a quite new model and first results were very promising, but studies employing degus are still rare 

and the obtained results are sparse and not consistent. Additional research is therefore urgently 

needed to elucidate the physiological processes during natural aging of degus. 

 

 
Figure 1-3: Species-dependent differences in the β-amyloid sequence. 
The alignment of human, degu and murine Aβ sequence reveals the species-dependent differences at the molecular level. 
While mice have three amino acid variations (positions 5, 10 and 13), degus possess only the histidine to arginine 
substitution at position 13. (Adapted from[43, 182]). 
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2 Motivation and aims 

Alzheimer’s disease is one of the greatest future socio-economic challenges with the demographic 

development as its major driving force. Various animal models have been generated to gain a better 

understanding and develop treatment strategies against this complex disease. The major 

breakthrough in resembling AD pathology in animals was achieved by expressing mutant APP and 

presenilin variants. Although they separately mimic only individual aspects, animal models have 

substantially contributed to the current understanding of Alzheimer’s disease. 

Virtually all of the utilised transgenic models still co-express the corresponding endogenous proteins. 

Potential interactions between endogenous and transgenic proteins have rarely been considered, as 

strong overexpression ensured the desired phenotype. Nevertheless, there are still many differences 

between AD and its reproduction in animal models, for instance the necessity of strong 

overexpression of Aβ to induce plaque deposition or the missing causal link between plaques and 

neurofibrillary tangles. Strategies for refinement of current models, to reproduce more 

comprehensive and physiologic phenotypes, would therefore be highly appreciated. 

This study was performed to elucidate the effects of murine APP co-expression in an established 

transgenic model of cortical amyloidosis. With special regard to Aβ deposition in brain parenchyma 

and blood vessels and cellular response, the following questions arose: 

 

I. Can endogenous murine APP relevantly affect the deposition of Aβ in transgenic models of 

AD and, if so, is additional co-expression deteriorating or ameliorating Aβ accumulation? 

II. Does murine APP influence general Aβ aggregation propensity and affect the balance 

between soluble and insoluble amyloid or parenchymal plaque deposition and cerebral 

amyloid angiopathy? 

III. Can murine APP expression alter the microglial and astrocytic response to Aβ deposition? 

 

The second part of this study dealt with the small rodent Octodon degus, ‘the new face of sporadic 

Alzheimer’s research?’[184]. A large variety of histological analyses was conducted to assess quality 

and quantity of neurodegenerative changes that naturally occur in aging degus. The central question 

was: 

 

IV. Are degus a convenient model of Alzheimer’s disease and which histopathological features of 

AD do they reproduce? 
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3 Material and methods 

3.1 Material 
3.1.1 Chemicals 

Substance Supplier Catalog number 
1 kB DNA ladder Bioron GmbH, Germany 305105 
100 bp plus DNA ladder Bioron GmbH, Germany 304105 
2-Mercaptoethanol Carl Roth GmbH & Co. KG, Germany 4227.3 
Acetic acid Carl Roth GmbH & Co. KG, Germany T179.1 
Acrylamid/Bisacrylamid-solution Carl Roth GmbH & Co. KG, Germany A124.2 
Ammonium nitrate (NH4NO3) Carl Roth GmbH & Co. KG, Germany X988.1 
Ammonium persulfate (APS) Carl Roth GmbH & Co. KG, Germany 9592.2 
Bond™ dewax solution Leica Biosystems Nussloch GmbH, Germany AR9222 
Bond™ primary antibody diluent Leica Biosystems Nussloch GmbH, Germany AR9352 
Bond™ wash solution 10X concentrate Leica Biosystems Nussloch GmbH, Germany AR9590 
Cresol red Sigma-Aldrich Co. LLC., USA 114472 
D(+)-Sucrose Carl Roth GmbH & Co. KG, Germany 4621.1 
Disodium hydrogen phosphate (Na2HPO4) Carl Roth GmbH & Co. KG, Germany P030.2 
EDTA Zentralapotheke, Universität Rostock, Germany 34070720 
Eosin Y Medite GmbH, Germany 41-5141-00 
Ethanol Zentralapotheke, Universität Rostock, Germany 23210271 
Ethidium bromide Carl Roth GmbH & Co. KG, Germany 2218.1 
Formaldehyde solution 37% Carl Roth GmbH & Co. KG, Germany 7398.1 
Glycine Zentralapotheke, Universität Rostock, Germany 34040290 
Guanidine hydrochloride Sigma-Aldrich Co. LLC., USA G4505 
Hematoxylin (Harris/Gill II) Medite GmbH, Germany 41-5136-00 
Hydrochloric acid (HCl) Merck KGaA, Germany 1003171000 
Igepal® CA-630 Sigma-Aldrich Co. LLC., USA I8896 
Kaiser's glycerol gelatine Merck KGaA, Germany 109242 
Magnesium chloride (MgCl2) Carl Roth GmbH & Co. KG, Germany 3532.1 
Methanol VWR International, USA 20903.368 
PageRuler Plus Prestained Protein Ladder Thermo Fisher Scientific Inc., USA 26620 
Paraformaldehyde Carl Roth GmbH & Co. KG, Germany 0335.4 
Pertex® mounting medium Leica Biosystems Nussloch GmbH, Germany 3808706E 
Potassium carbonate (K2CO3) Carl Roth GmbH & Co. KG, Germany P743.2 
Potassium chloride (KCl) Carl Roth GmbH & Co. KG, Germany P017.2 
Potassium dihydrogen phosphate (KH2PO4) Merck KGaA, Germany 3904.2 
Protease inhibitors (Complete-mini) Roche Diagnostics GmbH, Germany 11836153001 
Proteinase K solution AppliChem GmbH, Germany A4392 
Pyridine Carl Roth GmbH & Co. KG, Germany CP07.1 
RNAlater® Sigma-Aldrich Co. LLC., USA R0901 
Rockland blocking buffer Biomol GmbH, Germany MB-070-003 
Silver nitrate (AgNO3) Carl Roth GmbH & Co. KG, Germany 6207.1 
Sodium acetate (C2H3NaO2) Carl Roth GmbH & Co. KG, Germany 6773.2 
Sodium carbonate (Na2CO3) Carl Roth GmbH & Co. KG, Germany A135.2 
Sodium chloride (NaCl) Carl Roth GmbH & Co. KG, Germany 3957.1 
Sodium dodecyl sulfate (SDS) Carl Roth GmbH & Co. KG, Germany CN30.3 
Tetramethylethylenediamine (TEMED) Carl Roth GmbH & Co. KG, Germany 2367.3 
Thioflavin T Sigma-Aldrich Co. LLC., USA T3516-25G 
Tris Carl Roth GmbH & Co. KG, Germany 4855.1 
Tungstosilicic acid (H4[W12SiO40]) Merck KGaA, Germany 1006590025 
Tween 20 (polysorbate 20) Carl Roth GmbH & Co. KG, Germany 9127.2 
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3.1.2 Kits 

Name Supplier Catalog number 
Bond Enzyme Pretreatment Kit Leica Biosystems Nussloch GmbH, Germany AR9551 
Bond Polymer Refine Detection Leica Biosystems Nussloch GmbH, Germany DS9800 
Bond Polymer Refine Red Detection Leica Biosystems Nussloch GmbH, Germany DS9390 
Bond™ Epitope Retrieval 1 Leica Biosystems Nussloch GmbH, Germany AR9961 
dNTP-Set Steinbrenner Laborsysteme GmbH, Germany SL-Set-M-dNTPs 
Pierce™ BCA protein assay Thermo Fisher Scientific Inc., USA 23225 
V-PLEX Aβ42 Peptide (4G8) Meso Scale Diagnostics, LLC., USA K150SLE-1 

3.1.3 Antibodies 

Name Supplier Catalog number 
Anti-ADAM10 Abcam plc., UK ab1997 
Anti-BACE1 Abcam plc., UK ab2077 
Anti-caspase-3 Cell Signaling Technology Inc., USA 9662 
Anti-caspase-9 Cell Signaling Technology Inc., USA  9504 
Anti-GFAP Dako Deutschland GmbH, Germany Z033401 
Anti-IBA1 Wako Chemicals, Germany 019-19741 
Anti-Insulin-degrading enzyme Abcam plc., UK ab32216 
Anti-NeuN Millipore, Germany MAB377 
Anti-tau AT100 Thermo Scientific, Germany MN1060 
Anti-tau AT180 Thermo Scientific, Germany MN1040 
Anti-tau AT8 Thermo Scientific, Germany MN1020 
Anti-β-actin, clone AC-15 Sigma-Aldrich Co. LLC., USA A1978 
Anti-β-Amyloid, clone 4G8 HISS-DX, Germany SIG-39220 
Anti-β-Amyloid, clone 6E10 Covance Inc., Germany SIG-39320 
Anti-β-Amyloid, clone 6F3D Dako Deutschland GmbH, Germany M0872 
IRDye® 680LT Goat anti-Mouse IgG (H + L) LI-COR Biosciences – GmbH, Germany 925-68020 
IRDye® 800CW Goat anti-Rabbit IgG (H + L) LI-COR Biosciences – GmbH, Germany 925-32211 

3.1.4 Primers 

Target Name Direction Sequence 

β-actin[185] 
N 278 forward 5’-CCT CAT GAA GAT CCT GAC CG-3’ 
N 279 reverse 5’-GCA CTG TGT TGG CAT AGA GG-3’ 

APP/PS1 transgene[173] 
N 205 forward 5’-GAA TTC CGA CAT GAC TCA GG-3’ 
N 206 reverse 5’-GTT CTG CTG CAT CTT GGA CA-3’ 

Murine APP[186] 
N 135 forward 5’-AGA GCA CCG GGA GCA GAG-3’ 
N 136 reverse 5’-AGC AGG AGC AGT GCC AAG-3’ 

Neomycin resistance gene[187] 
N 227 forward 5’-TGT CAA GAC CGA CCT GTC CG-3’ 
N 228 reverse 5’-TAT TCG GCA AGC AGG CAT CG-3’ 

3.1.5 Animal feed 

Name Supplier Catalog number 
M-Z Ereich ssniff Spezialdiäten GmbH, Germany V1185-0 
R/M-H ssniff Spezialdiäten GmbH, Germany V1535-0 
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3.1.6 Equipment 

Device Company 
Analytik scale Sartorius AG, Germany 
BOND-III autostainer Leica Microsystems GmbH, Germany 
Dewar vessel Karlsruher Glastechnisches Werk - Schieder GmbH, Germany 
Eppendorf Research® pipettes Eppendorf AG, Germany 
Eppendorf Research® plus pipettes Eppendorf AG, Germany 
EV231 power supply PEQLAB Biotechnologie GmbH, Germany 
Freezer -20 °C Gorenje Vertriebs GmbH, Germany 
Freezer -80 °C Kryotec-Kryosafe GmbH, Germany 
Histokinette STP 120 Microm International GmbH, Germany 
Leica EG 1160 embedding center Leica Microsystems GmbH, Germany 
Li-Cor Odyssey infrared imaging system LI-COR Biosciences – GmbH, Germany 
LSM 700 Carl Zeiss Imaging Solutions GmbH, Germany 
MESO QuickPlex SQ 120 Meso Scale Diagnostics, LLC., USA 
Pannoramic MIDI 3DHISTECH Ltd., Hungary 
Paradigm™ detection platform Molecular Devices, LLC., USA 
Refrigerator Liebherr-Hausgeräte GmbH, Germany 
RM 2155 microtome Leica Microsystems GmbH, Germany 
Scandrop spectrophotometer Analytik Jena AG, Germany 
SpeedMill PLUS homogenisator Analytik Jena AG, Germany 
Thermoshaker EuroClone S.p.A., Italy 
TPersonal thermocycler  Analytik Jena AG, Germany 
TProfessional thermocycler Analytik Jena AG, Germany 
Universal 320R centrifuge Andreas Hettich GmbH & Co.KG, Germany 
UVsolo TS Analytik Jena AG, Germany 
VTX-3000L Vortex LMS Consult GmbH & Co. KG, Germany 

 

3.1.7 Buffers and solutions 

12% polyacrylamid separation gel 
0.375 M Tris, 40% (v/v) acrylamid/bisacrylamid-solution (30 %; 29:1), 0.1% (w/v) SDS, 0.1% (w/v) APS, 
0.1% (v/v) TEMED 

4% buffered paraformaldehyde solution 
4% (w/v) paraformaldehyde, 137 mM NaCl, 10 mM Na2HPO4, 2.7 mM KCl, 1.8 mM KH2PO4, pH 6.9 

5 M guanidine buffer 
5 M guanidine hydrochloride, 50 mM Tris, pH 8.0 

5% polyacrylamid stacking gel 
0.125 M Tris, 16,7% (v/v) acrylamid/bisacrylamid-solution (30 %; 29:1), 0.1% (w/v) SDS, 0.1% (w/v) 
APS, 0.1% (v/v) TEMED 

8.2 M guanidine buffer 
8.2 M guanidine hydrochloride, 82 mM Tris, pH 8.0 

Acetate buffer 
33.6 mM sodium acetate, 14.4 mM acetic acid, pH 4.99 
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Carbonate buffer 
100 mM Na2CO3, 50 mM NaCl, protease inhibitors (1 tablet/10 mL), pH 11.5 

Citrit acid buffer pH 6.0 
10 mM citric acid, 0.05% (v/v) polysorbate 20, pH 6.0 

Developer solution 
236 mM Na2CO3, 12.5 mM NH4NO3, 5.9 mM AgNO3, 1.7 mM H4[W12SiO40], 0.87 mM formaldehyde 

DNA extraction buffer 
1 M KCl, 10 mM Tris, > 3.6 mAnsonU/mL proteinase K, 0.4% (v/v) Igepal® CA-630, 0.4% (v/v) 
polysorbate 20, pH 9.0 

EDTA buffer pH 9.0 
1 mM EDTA, 0.05% (v/v) polysorbate 20, pH 9.0 

Electrophoresis buffer 
192 mM glycine, 25 mM Tris, 0.1% (w/v) SDS 

PAGE transfer buffer 
192 mM glycine, 25 mM Tris, 20% (v/v) methanol 

Phosphate buffered saline (PBS) 
137 mM NaCl, 10 mM Na2HPO4, 2.7 mM KCl, 1.8 mM KH2PO4, pH 7.4 

Protein sample buffer 
200 mM Tris, 40% (v/v) glycerine, 16% (w/v) SDS, 4% (v/v) 2-mercaptoethanol 

RIPA buffer 
150 mM NaCl, 50 mM Tris, 1% (v/v) Igepal® CA-630, 1% (v/v) SDS, 0.5% (w/v) sodium deoxycholate, 
protease inhibitors (1 tablet/10 mL), pH 8.0 

Silver-pyridine-carbonate solution 
14% (v/v) pyridine, 0.49% (w/v) silver nitrate, 0.37% (w/v) potassium carbonate 

Taq PCR master mix 
100 mM KCl, 20 mM Tris, 1.5 mM MgCl2, 0.4 mM dATP, 0.4 mM dCTP, 0.4 mM dGTP, 0.4 mM dTTP, 
0.2 mM cresol red, 50 U/mL Taq DNA polymerase, 10% (w/v) sucrose, 0.08% (v/v) Igepal® CA-630, 
0.08% (v/v) polysorbate 20, pH 8.6 

Tris acetate EDTA buffer (TAE)  
40 mM Tris, 20 mM acetic acid, 1 mM EDTA, pH 8.4 

Tris buffered saline Tween20 (TBST) 
50 mM Tris, 150 mM NaCl, 1% (v/v) polysorbate 20, pH 7.5 

Tris buffered saline (TBS) 
50 mM Tris, 150 mM NaCl, pH 7.5 
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3.1.8 Software 

Name Developer 
AxioVision 4.8.1.0 Carl Zeiss Imaging Solutions GmbH, Germany 
Endnote X6 Thomson Reuters Corp., USA 
GraphPad Prism 6.01 GraphPad Software Inc., USA 
ImageJ 1.48v Wayne Rasband, National Institutes of Health, USA 
Microsoft Office 14.0 Microsoft Corporation, USA 
Pannoramic Viewer 1.15.4 3DHISTECH Ltd., Hungary 
Adobe Creative Suite Adobe Systems Inc., USA 
ITCN Plug-in Thomas Kuo and Jiyun Byun, University of California, USA 
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3.2 Methods 

3.2.1 Animal models 

Inbred C57BL/6J mice provided the genetic background of all analysed mice and were purchased 

from the Jackson Laboratory (C57BL/6J, #000664). 

3.2.1.1 APP-deficient mice 

APP knockout mice were purchased as congenic strain in the C57BL/6J genetic background from the 

Jackson Laboratory (B6.129S7-Apptm1Dbo/J, #004133). APP-deficiency was introduced by replacing 

the promoter and first exon of murine APP with a neomycin resistance cassette in AB2.1 ES cells[188]. 

3.2.1.2 APP/PS1 transgenic mice 

Transgenic C57BL/6J mice harbouring two mutant human transgenes, amyloid precursor protein 

[KM670/671NL] and presenilin 1 [L166P] both driven by the murine Thy1.2-promoter[173] (B6-

Tg(Thy1-APPswe; Thy1-PS1 L166P)) were used as model for cortical amyloidosis. Expression by 

Thy1.2-promoter starts postnatal[189] in various neuronal cells (reviewed in[190]) including cortical and 

hippocampal neurons[189, 191]. Mice are referred to as APP/PS1 and were kindly provided by M. Herzig, 

R. Radde and M. Jucker (University of Tübingen, Germany). As homozygous mice have a reduced 

viability due to excessive transgene expression, only heterogeneous APP/PS1 mice were used for 

experiments. For breeding, heterozygous males (APP/PS1+/0) were throughout mated with female 

C57BL/6J mice. APP/PS1 transgenic mice (APP/PS1+/0) naturally expressing the murine APP gene were 

used as controls for experiments and are referred to as mAPP+/+. 

3.2.1.3 Combined murine APP-deficient and APP/PS1 transgenic mice 

To induce cortical amyloidosis in APP-deficient mice (B6.129S7-Apptm1Dbo/J), homozygous females 

were mated with heterozygous male APP/PS1 mice. First generation male offspring with desired 

genotype (B6-Apptm1Dbo+/0-Tg(Thy1-APPswe; Thy1-PS1 L166P)+/0) were again mated with female 

homozygous APP-deficient mice. Second generation offspring males harbouring the required 

genotype (B6-Apptm1Dbo+/+-Tg(Thy1-APPswe; Thy1-PS1 L166P)+/0) were used for further breeding. 

Murine APP-deficient mice with human APP/PS1 transgene (B6-Apptm1Dbo+/+-Tg(Thy1-APPswe; 

Thy1-PS1 L166P)+/0) were used for experiments and are referred to as mAPP0/0. 

3.2.1.4 Degus 

Wild-type degus (Octodon degus) for the respective experiments were provided by A. K. Braun 

(Institute of biology, Otto von Guericke-University, Magdeburg). 
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3.2.2 Animal husbandry 

All mice were bred in the animal care facility of the Neurodegeneration Research Lab (Otto von 

Guericke-University, Magdeburg). Degus were bred at the animal care facility of the Institute of 

Biology (Otto von Guericke-University, Magdeburg). Animals were housed in a 12 h/12 h light/dark 

cycle at 22 °C with free access to food and water. All experiments were conducted according the 

European Union and state law of the government of Saxony-Anhalt and were approved by the local 

animal ethics committee. 

3.2.3 Genotyping 

Animals were genotyped, as far as necessary, to determine actual genetic status of transgenes and 

targeted mutations and to monitor breeding procedures. 

3.2.3.1 DNA extraction 

Samples for genotyping were obtained from mice upon 20 d of age. The tail tip was cut off and 

digested overnight in DNA extraction buffer at 55 °C under vigorous agitation. Proteinase K was then 

inactivated by incubation at 95 °C for 30 min. Samples were subsequently centrifuged (20,000 g, 

15 min, 4 °C) to remove debris and finally stored at 4 °C until further use. 

3.2.3.2 Polymerase chain reaction 

To determine genetic status, presence of indicative DNA sequences was qualitatively evaluated by 

amplification using polymerase chain reaction (PCR). Reaction was performed using DNA samples, 

Taq PCR master mix and the specific primers (see Table 3-1, Table 3-2). Amplification was achieved 

using a thermocycler (Table 3-3). 

 

Table 3-1: PCR reaction mix for detection of APP/PS1-transgene. 

 
Stock concentration 

in pmol/µl 
Final concentration 

in pmol/µl 
Volume in µl 

H2O   3.520 
Taq PCR master mix   5.500 
Primer N 205 10 0.450 0.495 
Primer N 206 10 0.450 0.495 
Primer N 278 10 0.450 0.495 
Primer N 279 10 0.450 0.495 
PCR master mix   11.00 
DNA   1.000 
Reaction mix   12.00 
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Table 3-2: PCR reaction mix for detection of murine APP knock-out. 

 Stock concentration 
in pmol/µl 

Final concentration 
in pmol/µl 

Volume in µl 

H2O   3.740 
Taq PCR master mix   5.500 

Primer N 135 10 0.40 0.440 
Primer N 136 10 0.40 0.440 
Primer N 227 10 0.40 0.440 
Primer N 228 10 0.40 0.440 

PCR master mix   11.00 
DNA   1.000 

Reaction mix   12.00 

 

Table 3-3: Thermocycler protocol for DNA amplification. 

Step Temperature Duration Number of cycles 
Initial denaturation  95 °C  5 min  

Denaturation  95 °C  45 s 
35 Annealing  62 °C  60 s 

Elongation  72 °C  90 s 
Final elongation  72 °C  5 min  

Storage  4 °C ∞  

 

3.2.3.3 Agarose gel electrophoresis 

10 µL amplificate were used for electrophoresis on an agarose gel (2% (w/v) agarose and 76.09 nM 

ethidium bromide in TAE buffer). After electrophoretic separation of DNA fragments, gels were 

evaluated and documented using ultra violet imaging system (UVsolo TS). 

3.2.4 Tissue preparation 

3.2.4.1 Mice 

Mice were sacrificed by cervical dislocation and transcardially perfused with PBS. The brain was 

removed and hemispheres were separated. One Hemisphere was immediately snap-frozen in liquid 

nitrogen and stored at −80 °C for biochemical analysis, the second hemisphere was stored in 

buffered 4% paraformaldehyde solution for paraffin-embedding and immunohistochemistry. 

3.2.4.2 Degus 

Degus were likewise sacrificed by cervical dislocation and transcardially perfused with PBS and 

subsequently with PFA. The brain was removed and stored in buffered 4% paraformaldehyde for 

paraffin-embedding and immunohistochemistry. 

3.2.5 Immunohistochemistry 

After removal, tissue was post-fixed in 4% buffered paraformaldehyde solution for 72 hours, 

dehydrated and embedded in paraffin (Table 3-4). 
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Table 3-4: Dehydration protocol for fixed hemispheres. 

Step Reagent Duration in min 
1 Buffered PFA 4% (w/v)  5 
2 Ethanol 70% (v/v)  180 
3 Ethanol 80% (v/v)  60 
4 Ethanol 80% (v/v)  120 
5 Ethanol 90% (v/v)  60 
6 Ethanol 90% (v/v)  60 
7 Ethanol absolute  120 
8 Ethanol absolute  120 
9 Xylene  120 

10 Xylene  120 
11 Paraffin wax 60 °C  240 
12 Paraffin wax 60 °C  240 

For immunostaining, tissue was cut into 4 µm thick coronal sections (~1.5 mm caudal of bregma) 

using a microtome and mounted on glass slides. Sections were then deparaffinised, rehydrated, 

peroxidase blocked and immunostained using BOND-III autostainer. Epitope retrieval was carried out 

as follows: 5 min in 95% (v/v) formic acid for 6F3D, 4G8 and 6E10; 20 min in EDTA buffer pH 9.0 for 

IBA1 and AT180; 10 min enzymatic digestion (Bond Enzyme Pretreatment Kit) for GFAP or 20 min in 

citric acid buffer pH 6.0 for NeuN, AT8 and AT100. Aβ was generally detected using anti-β-amyloid 

clone 6F3D (1:100, 15 min). Additional β-amyloid stains were conducted, where indicated, using 

clones 4G8 (1:2000, 15 min) and 6E10 (1:100, 15 min). Furthermore antibodies against ionised 

calcium-binding adapter molecule 1 (IBA1, 1:1000, 15 min), glial fibrillary acid protein (GFAP, 1:500, 

15 min), neuronal nuclear antigen (NeuN, 1:500, 15 min) and different epitopes of phosphorylated 

tau, clones AT8 (1:50, 30 min), AT100 (1:500, 30 min) and AT180 (1:50, 30 min) were used and 

detected with Bond Polymer Refine Detection kit (Leica). For double-stained slides, Aβ was stained 

on the same slide using anti-β-amyloid clone 6F3D (1:100, 15 min) and the Bond Polymer Refine Red 

Detection kit (Leica, Germany). All sections were finally counterstained with haematoxylin (5 min) 

subsequently dried and embedded using Pertex® mounting medium. 

3.2.6 Histochemistry 

For haematoxylin and eosin (H&E) slides, deparaffinised 4 µm thick sections were stained using 

haematoxylin (30 s, Harris/Gill 2), blued in water (30 s) and washed with distilled water. Sections 

were then stained using eosin Y (60 s), washed with distilled water, dehydrated and embedded using 

Pertex® mounting medium. 

For Campbell-Switzer staining deparaffinised 4 µm thick sections were stirred in ammonium 

hydroxide (5 min) and washed twice in distilled water (60 s). Sections were then incubated in silver-

pyridine-carbonate solution (40 min) followed by citric acid (3 min) and afterwards washed in acetate 

buffer. Slides were processed in developer solution under a light source for about 6 min and 



Analysis of animal models of neurodegenerative diseases with protein deposits 

- 26 - 

subsequently washed three times in acetate buffer (30 s) and then once in distilled water (30 s). 

Slides were finally placed in 0.5% (w/v) sodium thiosulfate solution (45 s), washed twice in distilled 

water, dehydrated and finally embedded using Pertex® mounting medium. 

For thioflavin T staining, deparaffinised 8 µm thick sections were stained in 1% (w/v) thioflavin T 

solution for 30 min and subsequently washed with 96% (v/v) ethanol for 5 min. Slides were then 

washed with distilled water and mounted using Kaiser's glycerol gelatine. 

3.2.7 Analysis of microscopic slides 

Slides were digitised using Pannoramic MIDI digital slide scanner at a resolution of < 0.23 µm/pixel 

for further analysis. 

3.2.7.1 Semi-automatic analysis 

Scanned slides were processed using Pannoramic Viewer and neocortical areas were analysed under 

blinded conditions, computer-assisted using either AxioVision (Aβ, GFAP, IBA1 and IBA1/Aβ double 

stains) or ImageJ (NeuN stains) and the ITCN plugin[192]. 

3.2.7.2 Manual Analysis 

Cerebral amyloid angiopathy (CAA) was analysed manually using digitised slides. To evaluate severity 

of CAA, leptomeningeal vessels were divided in five categories. Unaffected vessels were assigned to 

group 0. Affected vessels were categorised depending on percentage of labelled circumference as 

follows: group I: ≤ 25%, group II: 26 – 50%, group III: 51 – 75%, group IV: > 75%. 

3.2.8 Protein biochemistry 

3.2.8.1 Preparation of protein samples 

Frozen hemispheres (-80 °C) were slowly thawed in 500 µl RNAlater® for one hour on ice at 300 rpm. 

Access liquid was removed and hemisphere was homogenised using metal beads for 30 s in 

SpeedMill PLUS homogeniser. Samples were centrifuged (20,000 g, 2 min, 4 °C) and stored at -80 °C 

until further use. 

For western blot analysis, 20 mg of brain homogenate were mixed with 500 µL RIPA buffer for 30 s 

using a metal bead and the SpeedMill PLUS homogeniser. Samples were centrifuged (20,000 g, 5 min, 

4 °C) and supernatant was transferred to new tube and stored at -20 °C until further use. 

For immunoassays, 20 mg brain homogenate were mixed with 400 µL carbonate buffer for 30 s using 

a metal bead and the SpeedMill PLUS homogeniser. Homogenate was centrifuged (20,000 g, 20 min, 

4 °C). Supernatant (carbonate soluble fraction) and pellet (for guanidine extractionn) were further 

processed separately. Carbonate soluble fraction was mixed with 8.2 M guanidine buffer 

(610 µL/mL), rigorously vortexed and centrifuged (20,000 g, 20 min, 4 °C). Supernatant was stored at 

-20 °C until further use. Pellet for guanidine extraction was mixed with 5 M guanidine buffer 
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(8 µL/µg protein) for 3 h (1,500 rpm at room temperature). Samples were then centrifuged (20,000 g, 

20 min, 4 °C) and supernatants (guanidine-soluble fraction) were stored at -20 °C until use. 

3.2.8.2 Spectrophotometric protein quantification 

Protein concentration of samples for immunoassays was measured using ScanDrop® 

spectrophotometer according to the manufacturer’s instructions using appropriate dilutions. 

Absorption at 280 nm (protein content) and 320 nm (background correction) was measured in 

parallel at 0.1 and 1 mm path length for each sample against appropriate reference. Dark signal and 

background corrected protein concentrations were automatically calculated. 

3.2.8.3 Biochemical protein quantification 

Protein concentration of samples for western blot was determined using Pierce™ BCA protein assay, 

according to the manufacturer’s instructions using appropriate dilutions. Absorption at 562 nm was 

measured using Paradigm™ detection platform. Concentrations were calculated using the 

corresponding BSA calibration curve (linear regression). 

3.2.8.4 Polyacrylamide gel electrophoresis and western blot 

Samples for western blot analyses were mixed with protein sample buffer (0.25 µL/µL) and 

denatured for 5 min at 95 °C. 25 µg protein of each sample was loaded on a polyacrylamide gel (5% 

stacking gel, 12% separation gel). Electric field was applied to the gel (80 V for 30 min and 

subsequently 120 V for 2 h) to separate proteins which were afterwards blotted (50 V, 2 h) onto a 

PVDF membrane in PAGE transfer buffer. The blot was then blocked using Rockland blocking buffer 

for 1 h at room temperature and subsequently probed using either anti-ADAM10 (1:500), BACE1 

(1:1,000), anti-caspase-3 (1:1,000), anti-caspase-9 (1:1,000) or anti-Insulin-degrading enzyme (1:50) 

and anti-β-actin (1:30,000). Primary antibodies were diluted in Rockland blocking buffer and 

incubated overnight with gentle agitation at 4 °C. IRDye®-labeled anti-mouse and anti-rabbit 

antibodies (diluted 1:15,000 in Rockland blocking buffer) were used for detection and incubated for 

1 h at room temperature with gentle agitation. Blots were visualised using the Odyssey infrared 

imaging system. 
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3.2.8.5 Electrochemiluminescence immunoassays 

Immunoassays were used to determine Aβ42 concentration in buffer- and guanidine-soluble fractions 

V-PLEX Aβ42 Kits were used according the manufacturer’s instructions using appropriate dilutions. 

Assays were read with a MESO QuickPlex SQ 120 and concentrations were calculated using the 

corresponding calibration curve. Calibration curve was generated using 5-parameter logistic 

regression (equation 3.1) and fitted using sum of weighted squared errors (equation 3.2)[193]. 

𝑦 = 𝑓(𝑥; 𝑎, 𝑏, 𝑐,𝑑,𝑔) = 𝑑 +
(𝑎 − 𝑑)

�1 + �𝑥𝑐�
𝑔
�
𝑒 3.1 

�
1

(𝑦𝑖)2

𝑛

𝑖=1

 (𝑦𝑖 − 𝑦�𝑖)2 3.2 

3.2.9 Statistics 

Results of immunohistochemistry and immunoassays were, in general, statistically analysed using 

unpaired t test with Welch's correction in GraphPad Prism and considered significant for p ≤ 0.05. 

Furthermore, the two-way analysis of variance (two-way ANOVA, GraphPad Prism) was additionally 

performed, where appropriate. Data are presented as arithmetic mean with corresponding standard 

error of the mean (SEM). 
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4 Results 

4.1 Murine APP-deficient mice 

To explore the effect of endogenous APP expression on Aβ aggregation in transgenic mice, murine 

APP-deficient mice expressing mutant human APP and PENS1 transgenes were utilised (mAPP0/0; 

hAPPswe
+/0; PS1L166P

+/0, referred to as mAPP0/0). APP/PS1 transgenic mice with natural expression of 

murine APP served as control (mAPP+/+; hAPPswe
+/0; PS1L166P

+/0, referred to as mAPP+/+). Animals were 

first analysed at an age of 50 d, when first plaques occur, until an age of 200 d. Neocortical plaque 

deposition was thereby studied in short intervals of 25 d to accurately portray the aggregation 

process. Additionally, intracerebral amyloid load was biochemically quantified to verify results and to 

screen for differences in soluble and deposited fractions of Aβ. To detect changes in generation or 

degradation of Aβ, expression levels of the most important enzymes were determined. Microglia and 

astrocytes were examined to characterise the cellular response to Aβ deposition in the altered 

environment. At last, neuronal density and expression of caspases were determined to detect 

developmental changes and signs for enhanced apoptosis. 

4.1.1 Plaque deposition is diminished by murine APP expression 

To analyse cortical deposition of transgenic human Aβ, brain sections were immunostained using the 

human-specific anti-β-amyloid antibody clone 6F3D. First plaques occurred similarly about the age of 

50 d in both, mAPP0/0 and mAPP+/+ mice (Figure 4-1, Figure 4-2A and Table 7-2). The number of 

plaques rapidly rose upon an age of 100 d and continued afterwards in a slower fashion. The 

knockout of murine APP thereby led to a considerably faster formation of plaques (Table 7-2) and 

mAPP0/0 mice possessed significantly more cortical deposits at all analysed ages (Table 7-3). At 200 d, 

mice lacking murine APP displayed about 50% more plaques (Figure 4-1, Figure 4-2). The two-way 

analysis of variance (two-way ANOVA) confirmed the significance of age and murine APP expression 

as mainsprings of amyloid deposition (Table 7-4). The average size of plaques, however, strongly 

increased only until about 100 to 125 d of age and remained rather constant thereafter in both 

strains (Figure 4-2). Although the mean size of plaques was generally higher in mAPP0/0 (two-way 

ANOVA, Table 7-4), the actual differences at specific ages were low and only reach significance at 

100 d and 200 d (unpaired t-test with Welch's correction, Table 7-3). As a result of plaque number 

and size, the cortical plaque coverage (percentage of cortex covered by plaques) was also 

significantly higher in mAPP0/0 mice compared to the mAPP+/+ mice at all ages (Figure 4-2, Table 7-3). 

To further analyse aggregation, all plaques were classified according to their size. Plaques smaller 

than 400 µm2 were defined ‘small’, between 400 and 700 µm2 ‘medium’ and above 700 µm2 ‘large’. 

In absolute terms, mAPP0/0 mice displayed throughout more plaques of all magnitudes (Figure 4-2, 

Table 7-4 and Table 7-5). The amount of ‘small’ plaques increased more rapidly in mAPP0/0 mice, 
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which had significantly more ‘small’ deposits at young ages (50 d, 75 d and 100 d). Beyond 100 d of 

age, the number of ‘small’ plaques rose in a similar fashion in both groups. 

In contrast, ‘medium’ and ‘large’ plaques emerged later. At the earliest time point (50 d), only few 

animals already displayed deposits larger than 400 µm2, but they occurred more frequently in 

mAPP0/0 mice. Upon 75 d, all analysed mice had ‘medium’ sized plaques. Their number was again 

consistently higher in mAPP0/0 animals and reached significance upon 100 d of age (Figure 4-2, Table 

7-5). ‘Large’ plaques were found in all animals older than 125 d. The amount of ‘large’ plaques was 

constantly rising in both groups and the amount was again significantly larger in mAPP0/0 mice upon 

100 d of age (Figure 4-2, Table 7-5). 
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Figure 4-1: Progression of cortical amyloidosis in mAPP0/0 and mAPP+/+ mice. 
Representative brain sections of 50 - 200 d old mice illustrate the differences in plaque deposition between mAPP0/0 and 
mAPP+/+ mice. Sections were immunostained for human Aβ and contrasted using haematoxylin. Deposition of Aβ (brown) 
started at an age of about 50 d with few small plaques in both strains (A, B). At the age of 100 d, a distinct number of 
plaques was visible and mAPP0/0 mice already presented with considerably more deposits than mAPP+/+ mice (C, D). The 
amyloidosis progressed continuously with age in both strains, and APP-deficient mice (E, G) manifested constantly with 
higher numbers of cortical plaques compared to mAPP+/+ controls (F, H). (Scale bars: 500 µm).  
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Figure 4-2: Cortical amyloidosis is exacerbated in murine APP-deficient mice. 
(A) The amount of plaques continuously rose in mAPP0/0 and mAPP+/+ mice. The increase was stronger in mAPP0/0 mice, 
which possessed significantly more plaques at all ages. (B) The mean size of plaques rose sharply until 100 d of age and 
remains rather stable thereafter. Nevertheless, mean size was generally slightly higher in mAPP0/0 mice. (C) The cortical 
coverage with plaques was also significantly higher in mAPP0/0 mice at all ages. Individual analysis of (D) ‘small’ (< 400 µm2), 
(E) ‘medium’ (400-700 µm2) and (F) ‘large’ (> 700 µm2) deposits confirmed the previous results, as increase and absolute 
number of plaques were higher in mAPP0/0 mice for all magnitudes. (Statistical analysis: unpaired t-test with Welch's 
correction for individual time points, * p < 0.05, ** p < 0.01, *** p < 0.001, **** p < 0.0001; two-way ANOVA for 
comparison of strains, # p < 0.05, #### p < 0.0001). 
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4.1.2 Knockout of murine APP elevates intracerebral Aβ42 levels 

Quantitative measurements of Aβ42 levels were performed using sandwich immunoassays. The 

assays employed the well-established anti-Aβ antibody clone 4G8 for detection, which recognises 

both, human and murine Aβ. Two different fractions were generated (buffer- and guanidine-soluble) 

and individually analysed, to discriminate between soluble and deposited β-amyloid. 

The amount of insoluble Aβ42 (guanidine-soluble fraction) steadily rose with age in both, mAPP0/0 and 

mAPP+/+ mice (Figure 4-3). The increase was thereby more rapid in mAPP0/0 mice, which also 

presented with higher amounts of cerebral Aβ42 at all ages. The difference between the groups was 

finally about 40% (200 d of age, Table 7-11). In mAPP+/+ mice, the rise in Aβ42 levels slowed down 

upon 150 d, while it continued unabatedly in mAPP0/0 mice. Overall, levels of insoluble Aβ42 were 

highly variable and differences at individual time points reached significance only at 75 and 100 d. 

However, analysis of all ages using two-way ANOVA showed that missing murine APP expression 

significantly increased the cerebral deposition of Aβ42 (Table 7-4). In comparison to deposited 

amyloid, soluble Aβ42 had an essentially lower concentration. The amount of soluble amyloid 

increased rapidly until 100 d to 125 d of age, whereby the accumulation was more pronounced in 

mAPP0/0. Upon 125 d of age, the amount of soluble Aβ42 decreased in both groups and mAPP0/0 mice 

finally demonstrated even lower levels of soluble Aβ42 than mAPP+/+ animals (Figure 4-3, Table 7-11). 

The levels of total Aβ42 (calculated sum of buffer- and guanidine-soluble fraction) showed a 

continuous increase with a tendency to slow age-dependently down. The total Aβ42 levels were again 

constantly higher in mAPP0/0 mice. Statistical analysis showed that co-expression of murine APP 

significantly decreased total levels of cerebral Aβ (two-way ANOVA, Table 7-4). 
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Figure 4-3: Influence of endogenous APP on cerebral Aβ42 levels in transgenic mice. 
Concentrations of (A) guanidine- and (B) buffer-soluble Aβ42 in brain homogenates were measured using immunoassays. 
(A) The levels of deposited (guanidine-soluble) Aβ42 constantly increased with age in both strains. However, mAPP0/0 mice 
presented consistently with higher concentrations of insoluble Aβ42. (B) The amount of soluble Aβ42 (buffer-soluble) initially 
rose until 100 – 125 d of age and subsequently decreased in both strains. The murine APP-deficient mice displayed higher 
levels of soluble Aβ42 only until 125 d, thereafter mAPP+/+ mice had higher levels of soluble Aβ42. Nevertheless, (C) total Aβ42 
levels (calculated sum of guanidine- and buffer-soluble fraction) were again consistently higher in mAPP0/0 mice at all ages. 
(Statistical analysis: unpaired t-test with Welch's correction for individual time points, * p < 0.05; two-way ANOVA for 
comparison of strains, # p < 0.05, ## p < 0.01). 
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4.1.3 Murine APP-deficiency does not affect APP processing 

Generation and degradation of Aβ are controlled by different proteases. To assess whether the 

different progression of Aβ deposition was caused by an altered cleavage, the expression levels of 

the most important proteases were determined by western blot. ADAM10 (A disintegrin and 

metalloproteinase domain-containing protein 10) is the primary neuronal α-secretase and prevents 

the generation of β-amyloid by cleavage within the Aβ-sequence. Expression levels of ADAM10 

revealed neither age- nor strain-specific differences until 200 d of age (Figure 4-4). The cerebral 

levels of BACE1, which initiates the production of Aβ, were likewise unchanged. 

Once generated, Aβ can also be eliminated by enzymatic degradation. The insulin-degrading enzyme 

(IDE) is one of the most important enzymes for proteolytic degradation of Aβ. However, expression 

levels were independent of age and endogenous APP expression in the analysed and age range. 

 

 
Figure 4-4: Expression of APP- and Aβ-cleaving enzymes. 
Western blots of ADAM10 (α-secretase) and BACE1 (β-secretase) showed that their expression was independent of age and 
murine APP expression between 50 and 200 d of age in the utilised model. Blots of the insulin-degrading enzyme (IDE) 
revealed no evidence for enhanced expression as well. (β-actin was used as loading control). 
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4.1.4 Co-expression of murine APP accelerates vascular deposition of Aβ 

Deposition of Aβ in leptomeningeal and cortical vessel is a common pathological feature of 

Alzheimer’s disease. To analyse the effect of murine APP on cerebral amyloid angiopathy (CAA) in 

transgenic mice, leptomeningeal vessels were categorised depending on Aβ deposition (Figure 4-5A). 

At 50 d of age, only a small proportion of vessels was already affected (Table 7-6). With increasing 

age, vascular deposition of Aβ became more frequent and severe. CAA progressed thereby faster in 

mice that still expressed murine APP. Accordingly, the proportion of affected blood vessels was 

overall significantly higher in mAPP0/0 mice (two-way ANOVA, Table 7-4). Upon 100 – 125 d of age, 

the proportion of affected vessels reached a rather stable level in both groups and the severity 

equalised with age as well. In general, CAA was primarily observed in meningeal vessels and only 

rarely in cortical vessels. 

 

 

Figure 4-5: Frequency and severity of cerebral amyloid angiopathy. 
Brain sections, immunostained for Aβ and contrasted by haematoxylin show deposition of Aβ in leptomeningeal blood 
vessels. Severity of cortical amyloid angiopathy was defined based on deposited Aβ as follows: 0: no Aβ deposition; I: ≤ 25% 
of circumference labelled; II: 26 – 50 % of circumference labelled; III: 51 – 75% of circumference labelled; IV: > 75% of 
circumference labelled. The proportion of affected vessels (I - IV) increased age-dependently (A), whereby the knockout of 
murine APP decelerated the deposition of Aβ in vessel walls. Severity of CAA is exemplarily shown for 100 d old mice (B), 
where mAPP0/0 mice exhibited significantly more unaffected vessel. The majority of labelled vessels was only mildly affected 
(< 25%) at this time point. (Scale bar: 50 µm; statistical analysis: unpaired t-test with Welch's correction for individual time 
points and severity, * p < 0.05, ** p < 0.01; two-way ANOVA for comparison of strains, # p < 0.05).  
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4.1.5 Microglial response is reduced in upon murine APP knockout 

Microglial cells are activated by high Aβ concentrations in the vicinity of amyloid plaques and 

interfere with further deposition thereafter. To assess their impact in transgenic, murine APP-

deficient mice, microglial presence was determined using IBA1 (ionised calcium-binding adapter 

molecule 1) as marker. Initially, microglial reaction and corresponding cortical coverage were 

analysed at 150 d. This specific age was chosen, because cortical amyloidosis was pronounced and 

plaque load already significantly different between the two groups, while microglial response was 

still in its acute phase. The cortical density of IBA1+ cells was not notably changed between mAPP0/0 

and mAPP+/+ mice (Figure 4-6). Microglial cells frequently appeared in clusters of several cells and 

presented characteristically with enlarged cell bodies and short, sparsely ramified processes. Semi-

automatic evaluation of digitised slides revealed that the total area covered by IBA1+ cells was 

identical in both groups (Figure 4-6C, Table 7-7). 

 

Figure 4-6: Similar sized microglial populations in 150 d old mice. 
Representative brain sections, immunostained for microglial marker IBA1 and contrasted using haematoxylin, showed 
clustering of IBA1+ cells in cortices of (A) mAPP0/0 and (B) mAPP+/+ mice. Microglia thereby presented with short, barely 
branched processes and enlarged cell bodies (A1, A2, B1, B2). Semi-automatic evaluation of slides demonstrated similar 
cortical coverage by microglial cells (C) in both groups. (Scale bars: 250 µm in overviews; 50 µm in enlarged insets, unpaired 
t-test with Welch's correction revealed no significant difference for cortical microglia coverage). 
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To explore potential differences in microglia-plaque interaction between mAPP0/0 and mAPP+/+ mice, 

plaques and microglia were stained consecutively on the same sections (double staining). In both 

groups, microglial cells appeared frequently in close proximity of amyloid plaques (Figure 4-7). At 

100 d of age, amyloid deposits were notably covered by microglial cells, which presented with an 

activated phenotype. The mean microglial coverage of plaques was thereby remarkably lower in 

mAPP0/0 mice (Figure 4-7, Table 7-7). With advancing age and thus higher plaque load, microglial 

coverages increased as well. At 150 d of age, the microglial coverage of plaques was again 

significantly lower in mAPP0/0 mice. At the last analysed time point (200 d), microglial coverage of 

plaques sharply dropped in both groups. The same course was apparent when ‘small’, ‘medium’ and 

‘large’ plaques were analysed separately (Table 7-7). Statistical analysis confirmed the significant 

influence of murine APP expression on microglial coverage of plaques (two-way ANOVA, Table 7-4). 

Plotting individual size of plaques and their corresponding microglial coverage revealed a general 

distribution pattern (Figure 4-8). On average, microglial coverage of plaques was highest in ‘small’ 

plaques and declined with increasing size of deposits. To further analyse the relation of plaque size 

and microglial coverage, plaques were separated using the established categories ‘small’ (< 400 µm2), 

‘medium’ (400 – 700 µm2) and ‘large’ (> 700 µm2). The size-separated analysis of microglial coverage 

was in line with the previous observation, that microglia coverage was lower in mAPP0/0 and 

decreased size-dependently (Figure 4-8, Table 7-7). 

To evaluate whether these changes in microglial coverage of plaques were exclusively caused by 

different density of amyloid deposits, the total area of plaque-associated microglia was determined. 

This area was consistently lower in mAPP0/0 mice (Figure 4-8). Although differences did not reach 

significance at individual time points (unpaired t-test with Welch’s correction, Table 7-7), in general, 

murine APP-deficiency significantly lowered the total area of plaque-associated microglia (two-way 

ANOVA, Table 7-4). 
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Figure 4-7: Microglial response is decreased in murine APP-deficient mice. 
Representative cortical micrographs of immunostained brain sections and corresponding enlargements of ‘small’ and ‘large’ 
plaques (red) and microglia (brown) indicate a decreased microglial response in mAPP0/0 mice. Microglial reaction is visible 
at 100 d (A, B) and strongly increased at 150 d (C, D). As individual plaques grow further (E, F) proportional microglial 
coverage declines. In general, coverage of plaques by microglial cells was consistently lower in mAPP0/0 mice (G). (Scale 
bars: 250 µm in overviews; 50 µm in enlarged insets; statistical analysis: unpaired t-test with Welch's correction for 
individual time points, ** p < 0.01; two-way ANOVA for comparison of strains, #### p < 0.0001).  
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Figure 4-8: Plaque size and corresponding microglial coverage follow a distinct pattern. 
Exemplary diagrams show the general distribution pattern of plaque size and corresponding microglial coverage in 
mAPP0/0 (A, C) and mAPP+/+ (B, D) mice at 150 d. The size categories of plaques are highlighted in green (‘small’, < 400 µm2), 
yellow (‘medium’, 400 – 700 µm2) and red (‘large’, > 700 µm2). The logarithmic representation (C, D) displays a lowered 
mean coverage of plaques by microglia in mAPP0/0 mice as vertical shift of the point cloud (the centroid as additional 
indicator is plotted in orange). (E) Microglial coverage was significantly lower for all sizes of plaques in mAPP0/0 mice, 
exemplarily shown at 150 d of age. (F) The total area of plaque-associated microglial cells was as well consistently reduced 
in mAPP0/0 mice. (Statistical analysis: unpaired t-test with Welch's correction for microglial coverage of different plaque 
sizes, * p < 0.05; two-way ANOVA for comparison of strains, ## p < 0.01). 
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4.1.6 Pronounced gliosis in aged, murine APP-deficient mice 

Beside microglial cells, activated astrocytes encircle amyloid plaques. They initially interfere with 

further Aβ deposition, but as activation prolongs, detrimental effects prevail. To characterise 

astrocyte reaction in mAPP0/0 and mAPP+/+ mice, brain sections were stained using specific antibodies 

against the glial fibrillary acidic protein (GFAP) as astrocytic marker. To detect potential differences in 

astrocyte populations, total astrocyte area was determined using semi-automatic analysis of digitised 

slides. Mice were analysed at an early (100 d) and an advanced stage (200 d) to further reveal age-

dependent changes. At 100 d of age, GFAP+ astrocytes were present in all cortical layers with a 

tendency to form clusters. Neither spatial distribution nor amount of GFAP+ cells differed between 

mAPP0/0 and mAPP+/+ controls at 100 d of age (Figure 4-9). While astrocyte coverage and spatial 

distribution remained similar in older mAPP+/+ mice (200 d), a pronounced astrogliosis developed in 

mAPP0/0 mice. Semi-automatic analysis of digitised slides revealed no age-dependent changes for 

GFAP+ area in mAPP+/+ mice, while it was increased about 60% in 200 d old mAPP0/0 mice (Figure 4-9, 

Table 7-9, Table 7-10). Statistical analysis confirmed the strong impact of murine APP expression on 

severity of astrogliosis, while age had a comparably low influence (two-way ANOVA, Table 7-4). 
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Figure 4-9: Pronounced astrogliosis in aged mAPP0/0 but not mAPP+/+ mice. 
Brain sections immunostained for GFAP revealed no differences between mAPP0/0 and mAPP+/+ mice at 100 d (A, B). With 
advancing age, a notably stronger gliosis evolved in mAPP0/0 mice (C), whereas abundance of astrocytes remained 
unchanged in mAPP+/+ mice (D). Semi-automatic evaluation of slides confirmed the significant increase of GFAP+ area in 
mAPP0/0 mice (E). (Scale bar: 250 µm; statistical analysis: unpaired t-test with Welch's correction for individual time points, 
* p < 0.05, **** p < 0.0001; two-way ANOVA for comparison of strains, # p < 0.05). 
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4.1.7 Neuronal density was not affected in murine APP-deficient mice 

Progressive neuronal loss and consequential brain atrophy are characteristics of Alzheimer’s disease 

that occur comparatively late in the pathogenesis of the disease. The synaptic and neuronal loss is 

thereby strongly driven by accumulation of amyloid in their vicinity. To estimate the effect murine 

APP-deficiency on neuronal density in APP/PS1 transgenic mice, brain sections of 150 d old mice 

were stained using a specific antibody against neuronal nuclei (NeuN). The number of cortical 

neurons in layers II to VI was determined by semi-automatic evaluation of digitised slides. However, 

the neuronal density was not significantly changed between mAPP0/0 and mAPP+/+ mice at 150 d of 

age (Figure 4-10, Table 7-8). 

 

 

Figure 4-10: Neuronal density is unchanged in murine APP-deficient mice. 
Brain sections of 150 d old mAPP0/0 (A) and mAPP+/+ mice (B) were immunostained for neuronal nuclei, but revealed no 
obvious changes in neuronal density. However, the spatial displacement by amyloid deposits (arrowheads) was clearly 
visible in both groups. Semi-automatic evaluation of digitised slides confirmed the similar density of neurons in both 
groups (C). (Scale bar: 250 µm, unpaired t-test with Welch's correction revealed no significant difference between mAPP0/0 
and mAPP+/+ mice).  
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4.1.8 Caspase expression illustrates unchanged apoptosis 

Apoptosis is a relatively late event in the pathogenesis of Alzheimer’s disease, which has been 

recurrently described. The centre of interest includes inter alia caspase-3 and -9. The latter is an 

initiator caspase, triggering the apoptotic cascade by proteolytic activation of effector procaspase-3 

and -7, which then cleave different target proteins within the cell. Expression levels of caspases were 

determined by western blot, to screen for signs of enhanced apoptosis. However, the blots 

demonstrated no age or strain-specific differences until 200 d of age (Figure 4-11). 

 

 
Figure 4-11: Expression levels of major caspases remain unchanged in mAPP0/0 mice. 
Western blots of caspase-3 and -9 revealed neither strain- nor age-dependent changes of expression levels in mAPP0/0 or 
mAPP+/+ mice. (β-actin served as loading control). 

4.1.9 Correlating results 

To collectively analyse the obtained parameters, nonparametric Spearman correlation coefficients 

were calculated (Table 7-12, Table 7-13). The first obvious and logical observation was that insoluble 

Aβ42 correlates generally more with plaque size and number than did soluble Aβ42. 

As previously observed, the microglial coverage of plaque strongly depends on the amount of cortical 

plaques. Accordingly, the higher the amount of amyloid deposits was, the smaller the average 

microglial coverage of plaques became. 

The most prominent differences between correlation coefficients involved astrocytes. It was 

particular striking, that insoluble Aβ42 showed a moderate positive correlation with astrocytic 

coverage in mAPP0/0 mice (rs = 0.64), whereas it correlated negatively in mAPP+/+ mice (rs = -0.54). 

Furthermore, microglial and astrocyte coverage correlated positively in mAPP+/+ mice (rs = 0.60) and 

negatively in mAPP0/0 mice (rs = -0.78). 
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4.2 Octodon degus 

To determine the adequacy of using the South American rodent Octodon degus (degu) as model of 

sporadic AD, cortices and hippocampi of young (1-year-old) and aged (5-year-old) animals were 

histologically analysed. Basic stains were used for the general comparison of young and aged brains. 

To detect histopathological hallmarks of AD, unspecific stains were performed to provide first 

evidence for neurodegeneration in aging animals. Immunohistochemical stains were further utilised 

to specifically identify aggregates of Aβ and phosphorylated tau. The cellular responses to potential 

protein aggregation and neurodegeneration were finally estimated by analysing the age-dependent 

changes in spatial distribution and abundance of astrocytes and microglial cells. 

4.2.1 Absence of unspecific signs of neuropathological changes 

Principal histologic staining with haematoxylin and eosin (H&E) provided a general overview of age-

dependent changes in the degu brain. However, H&E stains showed no prominent deviations 

between young and aged animals. Unspecific signs for lesions, neurodegeneration, pronounced 

neuronal loss or spatial displacement were not apparent (Figure 4-12). To screen more specifically for 

extracellular plaques and intracellular tangles, Campbell-Switzer silver impregnation was performed. 

But even intense staining unravelled neither plaques nor tangles in cortices and hippocampi of young 

or aged animals (Figure 4-12). The fluorescent amyloid-binding dye thioflavin T (ThT) was also utilised 

to expose amyloid deposits, but no specific fluorescence was apparent in cortices or hippocampi 

(Figure 4-12). 

GFAP was used as astrocytic marker, to evaluate their abundance and spatial distribution. In young 

degus, GFAP+ cells were comparatively rare in cortices and mainly located in the superficial region of 

lamina I and the vicinity of blood vessels (Figure 4-13). In the hippocampus, GFAP+ cells were mainly 

located in alveus, stratum lacunosum-moleculare and the vicinity of blood vessels of the 

hippocampal fissure. GFAP+ astrocytes without a visible link to a blood vessel were rarely found in 

cortical laminae II - VI or hippocampal stratum oriens and stratum radiatum. In aged animals, neither 

abundance nor spatial distribution was notably changed compared to young degus (Figure 4-13). 

IBA1 was used as marker, to screen for age-dependent changes in microglial phenotype, abundance 

and spatial distribution. Stained sections demonstrated an even distribution of microglial cells in 

cortex and hippocampus of young and aged animals, without any local clustering (Figure 4-13). 

Phenotypically, small cell bodies and long branched processes were characteristic. To compare the 

neuronal density, brain sections were immunostained for neuronal marker NeuN, but no obvious 

differences were evident between young and aged animals. 

The digitised slides stained for GFAP, IBA1 and NeuN were finally semi-automatically evaluated. 

However, no significant differences were apparent between young and aged animals (Table 7-14). 
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The astrocytic and microglial area even tended to be lower in aged animals and the neuronal density 

was likewise unchanged between young and aged degus (Figure 4-13). 

 

 
Figure 4-12: Basic histological stains provide no evidence for any neurodegeneration in degus. 
Representative haematoxylin and eosin (H&E) stained sections revealed no signs for specific lesion, generalised neuronal 
loss or degeneration in cortex (A, B) or hippocampal CA1-region (G, H) of degus. Campbell Switzer silver impregnation 
displayed neither extracellular deposits nor intracellular tangles in young (C, I) or aged (D, J) animals. Accordingly, no 
specific cortical (E, F) or hippocampal (K, L) fluorescence could be detected in thioflavin T stained sections. (Scale 
bars = 100 µm). 
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Figure 4-13: Absence of age-dependent astrocytic, microglial and neuronal changes in degus. 
Representative cortical (A – H) and hippocampal (I – N) sections of young and aged degus demonstrate the lack of specific, 
age-dependent alterations. Astrocytes (GFAP+) were mainly located in cortical lamina I (A, B) and the proximity of blood 
vessels (A, B, I, J). Their spatial distribution and abundance (O) did not change with age. Microglia (IBA1+) were evenly 
distributed in cortices (C, D) and hippocampi (K, L) without any clustering and presented with long, branched processes and 
small cell bodies (G, H). The cortical area covered by microglial cells did not significantly change with age, but rather tended 
to decrease (P). Neuronal density (NeuN+) was likewise not notably changed in cortices (E, F) and hippocampi (M, N) of 
young and aged animals. Computer-assisted evaluation of slides confirmed this observation and indicated a similar 
neuronal density in young and aged degus (Q). (Scale bars = 100 µm, unpaired t-test with Welch's correction was used for 
statistical analysis). 
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4.2.2 Lack of amyloid deposition in degus 

Immunohistochemical methods are more sensitive and preferably used for detection of Aβ. 

Commonly employed and well-established antibodies against three different epitopes of Aβ were 

used for detection of potential deposits. The epitope of anti-β-amyloid clone 6E10 (amino acids 3 - 8) 

is located N-terminally of the H13R substitution in degu Aβ. Usage of clone 6E10 resulted in similar 

levels of unspecific background staining and further showed limited intracellular reactivity in cortices 

and hippocampi of all young and aged animals (Figure 4-14). However, extracellular reactivity (e.g. 

plaques) was not apparent. 

The epitope of clone 6F3D includes the region of the H13R substitution (amino acids 8 - 17), but the 

corresponding slides indicated neither intra nor extracellular deposition of amyloid (Figure 4-14). The 

epitope of the third antibody (clone 4G8) is located C-terminally of position 13 (amino acids 18 - 22). 

Likewise, no aggregates could be detected in cortices and hippocampi of young or aged animals 

(Figure 4-14). 
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Figure 4-14: Degus display no signs of extracellular β-amyloid deposition. 
Representative micrographs of Aβ-stained cortical (A - F) and hippocampal (CA1-region, G - L) sections of young and aged 
degus. Anti-β-amyloid antibody clone 6E10 revealed sparse intracellular reactivity, but no extracellular deposits in 
young (A, G) and aged (B, H) animals. By contrast, neither 6F3D nor 4G8 demonstrated any intra- or extracellular reactivity 
in young (C, I, E, K) or aged (D, J, F, L) degus. (Scale bars = 100 µm). 
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4.2.3 Age-independent tau pathology in wild-type degus 

Three antibodies directed against particular phosphoepitopes of tau were used to screen for 

neurofibrillary tangles in degus. Despite the overall differences between human and degu tau, the 

phosphorylation sites and adjacent amino acids are identical (Table 7-1). The anti-tau antibody clone 

AT8 recognises the phosphorylation of residues Ser202/Thr205 and labelled cortical and hippocampal 

neurons with a similar intensity in young and aged animals (Figure 4-15). Hippocampal reactivity was 

thereby more pronounced in CA3-region and mossy fibres. Although AT100 (Thr212/Ser214) showed 

mainly nuclear localised reactivity in cortex and hippocampus, the particular reactivity against the 

mossy fibres in CA3-region was preserved. AT180 (Thr231) showed again intracellular reactivity in 

cortical and hippocampal neurons and a slight accentuation of hippocampal mossy fibres (Figure 

4-15). 

In sum, phospho-tau reactivity was not restricted to specific regions, but appeared in cerebral cortex, 

hippocampus, thalamus, hypothalamus, brainstem and cerebellum. Intensity was consistently higher 

in hippocampal CA3-region compared to CA1- and cortical regions. Furthermore, neither intensity 

nor spatial distribution of labelled epitopes was notably changed between young and aged animals. 

Finally, the intracellular reactivity of cortical and hippocampal neurons seen in AT8 and AT180 

stained sections did neither spatially nor morphologically resemble the characteristics of 

neurofibrillary tangles. 
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Figure 4-15: Degus lack age-dependent tau pathology. 
Sections were stained using phosphoepitope specific antibodies against tau. Representative micrographs of cortices (A - F) 
and hippocampi (CA1-region: G - L, CA3-region: M - R), revealed no obvious differences between young and aged animals. 
AT8 labelled cortical (A, B) and hippocampal (G, H, M, N) neurons with similar spatial distribution and intensity in young and 
aged animals. AT8-reactivity was thereby more pronounced in CA3-region and mossy fibres (M, N). AT100 stain resulted in 
strong background and nuclear localised reactivity in cortex (C, D) and hippocampus (I, J, O, P), mossy fibres of hippocampal 
CA3-region were again specifically labeled (O, P). Stains using AT180 showed an analogical intracellular reactivity in 
young (E, K, Q) and aged (F, L, R) degus with visible but yet diminished accentuation of mossy fibres (Q, R). (Scale 
bars = 100 µm). 

 



Discussion 

- 53 - 

5 Discussion 

Extracellular plaques and intracellular neurofibrillary tangles are the major histopathological 

hallmarks of Alzheimer’s disease. The importance of β-amyloid deposits was already very early 

hypothesised[194], and later on supported by inherited mutations[136, 137] which increased production 

or enhanced aggregation propensity of Aβ [93]. These disease-causing mutations are constrained to 

the amyloid precursor protein and its proteases[37]. Even the only protective mutation known so far 

affects APP[109, 110]. But the causal role of plaques was questioned when evidence emerged showing 

that disease progression correlates better with soluble than with aggregated Aβ[195]. Today, small 

soluble oligomers are mainly considered the primary toxic species[27]. 

To elucidate causes, influential factors and to develop therapeutic strategies, a broad range of 

different and most commonly murine disease models is utilised for research. The obstacle that mice 

not physiologically develop amyloid deposits was quickly overcome by overexpression of mutant 

human transgenes. The characteristic manifestation and especially the extent of Aβ deposition in 

these disease models depends strongly on the introduced promoter and APP variant. The herein 

used model is quite representative, as the promotor, transgenes, mutations and genetic background 

are very frequently utilised for the creation of AD models. The mice express APPswe and PS1L166P 

transgenes postnatally in neurons of the neocortex, hippocampus and brain stem and less 

pronounced the striatum and thalamus by Thy1-promoter[173]. As in nearly all other models, the 

transgenes are expressed in addition to endogenous murine variants. The ratio of endogenous 

murine and transgenic human APP is about 1:3 in the analysed model[173]. Despite their potential 

importance, interactions between murine and human APP have rarely been addressed so far. 

Considering transgenic models as a decisive indicator for further research and therapeutic strategies, 

the precise reproduction of the aggregation process in the utilised models is of paramount 

importance. The present study therefore aimed for deciphering and estimating the effects of 

endogenous murine APP in transgenic models of Alzheimer’s disease. 

Although the utilised animal models of Alzheimer’s disease are constantly refined and replaced, most 

of them are still based on overexpression of mutant human proteins. Despite all accompanied 

successes, the overexpressed proteins introduce only a limited number of AD associated symptoms. 

Furthermore, they pathogenetically rather mimic the rare inherited variants than the generally 

occurring sporadic form. Suitable models of the sporadic disease are therefore urgently required. 

The South American rodent Octodon degus has been the most promising rodent candidate model of 

sporadic AD. Degus have a long lifespan and their Aβ is very similar to the human variant, differing in 

only one amino acid. Initial analyses of degus supposed, that aged animals ‘naturally develop a full 

range of AD-like pathologies including Aβ plaques and neurofibrillary tangles’[181]. These results were 
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enthusiastically noticed[184] and degus attracted increasing attention. However, analyses of the 

neurodegenerative changes in degus are still rare and not consistent. To determine the adequacy of 

employing degus as ‘natural model’ of Alzheimer’s disease, the second part of this study intensively 

analysed histopathological changes in aging degus. 
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5.1 Murine APP-deficient mice 

Although APP-deficient mice are viable and fertile, they display a number of abnormalities that 

should be kept in mind for the evaluation of the results. Animals present with a reduced body 

weight[188, 196-198], weakened forelimb grip strength[188, 196, 198], diminished locomotor activity[188, 196, 198] 

and reduced brain weight[199]. Interestingly, the impact of an APP knockout strongly depends on the 

genetic background[199]. The developmental consequences (size reduction of ventral hippocampal 

commissure and corpus callosum) were substantially reduced by the C57BL/6 genetic background 

compared to 129/Sv and 129/Ola strains[199]. APP-deficient mice further develop a marked and age-

dependent cortical[188, 196] and hippocampal gliosis[200] with variable onset and progression. At the 

cellular level, dendrites were shown to be shorter, less branched and possess a reduced density of 

dendritic spines[82, 201]. Hence, long-term potentiation was age-dependently[201] impaired[196]. 

Branching and number of dendritic spines was partially rescued by sAPPα but not sAPPβ 

treatment[201]. In striatal GABAergic neurons, an absence of APP lead to dysregulation of calcium 

channels (namely upregulation of Cav1.2)[202]. The cellular abnormalities entailed behavioural 

changes, as spatial learning (water maze[196, 197]) and memory (passive avoidance[198]) were impaired. 

No differences were seen in thermal nociception[196], motoric functions (visible platform water maze 

and rotarod test[196]) and exploratory behaviour[198]. At the neuromuscular junction, APP is necessary 

in both, motor neurons and muscle cells, for proper formation and function of the neuromuscular 

junction[81]. Together with its role in regulating voltage-dependent calcium channels[203], this explains 

the lower grip strength in APP knockout mice. Beside the focused role in the central nervous system, 

APP and its metabolites have additional functions various organs (reviewed in[204]). It is interesting to 

note that despite the functional overlap of APP paralogues, there is no evidence for a compensatory 

upregulation of either APLP1 or APLP2 in APP-deficient mice[188]. Although these phenotypic 

alterations are comparatively mild, especially in the C57BL/6 strain, they considerably restrict the 

spectrum of reasonable experiments. 

As the APP-deficient mice in this study expressed high levels of human APP, a partial compensation 

of the missing endogenous APP can be speculated. But the mitigation of the described symptoms 

would likely be restricted by the Thy1-promoter, expressing transgenes only postnatally in neuronal 

cells[173]. However, from the aforementioned abnormalities, the reported astrogliosis was the most 

critical factor for the conducted experiments in this particular study. 

5.1.1 Impact of murine APP expression on plaque and amyloid load 

Overall, murine APP-deficiency significantly altered the cortical deposition of β-amyloid. The onset of 

the amyloidosis was not substantially changed in mAPP0/0 mice because Aβ deposition starts rapidly 

upon activation of the utilised Thy1[173]. Due to the missing expression of endogenous APP, the total 
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amount of APP is generally lowered about one-fourth in mAPP0/0 mice[171, 173]. But despite decreased 

total APP, deposition of Aβ was accelerated in murine APP-deficient mice, especially upon its onset in 

young animals. This is surprising because murine Aβ was so far assumed to contribute to plaque 

deposition[171], as plaques of transgenic mice consist of both, human and about 5% endogenous 

murine Aβ[171, 205]. An alteration of the general aggregation propensity would be a possible 

explanation for the evidently increased deposition of β-amyloid in mAPP0/0 mice. As murine Aβ does 

not aggregate under physiological conditions[113, 206], it could impede the aggregation of 

overexpressed human Aβ to a certain extent. A similar effect was observed in heterozygous carriers 

of a rare human APP mutation. The A2V-mutated form of Aβ slowed the aggregation process of wild-

type Aβ and generated aggregates were far more unstable[108]. The human A2T variant of Aβ likewise 

increases solubility, when mixed with wild-type Aβ40 at certain ratios[207]. 

Surprisingly, in vitro generated mixed fibres of murine and human Aβ were reported to be more 

stable than fibres consisting only of human Aβ[208]. This is completely contradictious to in vivo results, 

showing that plaques generated in various transgenic mouse strains (APP/PS1[113], APP23[209] or 

Tg2576[205, 210]) are generally by far more soluble than those of AD patients. The additional 

overexpression of murine APP in transgenic APP/PS1 mice accordingly further increased the solubility 

of generated deposits, but neither accelerated nor increased deposition of human Aβ[113]. Despite its 

presence in the generated deposits and thus contribution to plaque load, a promoting role of murine 

Aβ is therefore unlikely. The present study showed that mean size and growth of individual plaques 

hardly depend on murine APP expression (section 4.1.1). Hence, murine Aβ did not critically 

influence aggregation speed at the level of a single plaque. But as the lack of endogenous murine 

APP led to the generation of vastly more plaques, the initiation of aggregation may be a depositional 

bottleneck in transgenic animals where murine Aβ interferes. This conclusion is in line with previous 

results, showing that a conformational change during the intermediate aggregation phase of Aβ 

renders the process relatively independent of the initial concentration[29]. It is conceivable that 

murine Aβ interferes at this point, as primary and secondary structure is of crucial importance for the 

conformational change and the subsequent oligomerisation[29]. 

However, additional processes related to production, degradation and removal might also contribute 

to the increased Aβ deposition to a certain extent. Firstly, an enhanced transgene expression would 

be possible, though unlikely explanation, because no APP-dependent regulation is known for the 

utilised Thy1.2-promoter[211, 212] and Thy1-immunoreactivity even decreases in AD[213]. The generation 

of Aβ is controlled by different proteases, but western blot analysis showed that the expression of 

the most important proteases is unchanged. Furthermore, utilised mice principally overexpress 

mutated human presenilin 1, which already expedites the generation of Aβ. Although APP gene dosis 
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is generally of crucial importance[214], the missing competition of murine and human Aβ for cleavage 

enzymes most likely facilitates Aβ deposition to a certain extent[215, 216]. 

Immunoassays confirmed the significant influence of endogenous APP expression on the amount of 

total and deposited (guanidine soluble) cortical Aβ. Interestingly the levels of soluble Aβ42 (buffer-

soluble) initially rose slightly stronger in mAPP0/0 mice, indicating an altered Aβ metabolism 

(production/elimination). After reaching a peak at 100 to 125 d of age, levels of soluble Aβ42 

decreased again and were finally even lower in mAPP0/0 mice, underlining the overall enhanced 

solubility of Aβ. When comparing plaque load (immunohistochemically determined; section 4.1.1) 

and amyloid load (biochemically determined; section 4.1.2), it is striking that the difference between 

mAPP0/0 and mAPP+/+ mice is more pronounced for plaque than for amyloid load (66% increase in 

plaque load vs. 27% in amyloid load at 200 d of age, Table 7-3, Table 7-11). The smaller difference in 

amyloid load can be at least partially explained by the utilised antibodies. While the anti-Aβ clone 

6F3D used for immunohistochemical stains is human-specific, the clone 4G8 from the immunoassays 

recognises both, human and murine Aβ. On the contrary, murine Aβ contributes little to deposits in 

transgenic animals[171, 205]. Nevertheless, murine APP-deficiency increased levels of insoluble and 

decreased levels of soluble Aβ42 in old mice (e.g. +40% soluble and -45% insoluble Aβ42 at 200 d, 

Table 7-11). These observations plead for the hypothesis of a generally enhanced solubility of Aβ by 

simultaneous expression of murine APP in transgenic mice. 

Similar observations were made for other proteins that accumulate and aggregate in 

neurodegenerative diseases. Although endogenous murine tau only sparsely contributes to 

aggregates in tau transgenic mice[217], wild-type human tau accumulates solely in the absence of 

murine tau (in 8c[163] genetic background)[162, 166]. Despite the high expression of human tau in 8c 

mice, no pathological signs were apparent in the presence of murine tau[162, 163]. Accordingly, the 

knockout of murine tau facilitated aggregation of mutated human tau and accelerated mortality[217] 

in Tg30[218] mice. The aggregation of α-synuclein, which is implicated in Parkinson’s disease[219] and 

dementia with Lewy bodies[220], is inhibited by highly similar β-synuclein[221]. Another example is the 

single amino acid substitution in the prion protein found in Fore from Papua New Guinea, which 

makes them resistant to kuru and classical Creutzfeldt–Jakob disease[222]. 

5.1.2 Increased amyloid solubility exacerbates cortical amyloid angiopathy 

The expression of murine APP in APP/PS1 transgenic mice expedited the deposition of Aβ in the walls 

of leptomeningeal blood vessels (section 4.1.2). Despite the lower amount of Aβ, young mAPP0/0 

mice showed a faster developing cerebral amyloid angiopathy, which is thereby opposed to cortical 

deposition of amyloid. As Aβ solubility is increased by murine APP expression[113], generated Aβ is 

increasingly subjected to clearance and degradation, including active transport across the blood-
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brain barrier. The aggravated CAA might therefore be a result of an overcharged vascular clearance 

of Aβ. A similar exacerbation of CAA appeared, when activity or expression of Aβ transporting 

proteins like LRP1[223] or ABCC1[88] was diminished. Although the used mouse model generally 

displays only moderate cerebral amyloid angiopathy[173], the effect of murine APP expression on CAA 

was clearly evident. The conclusion of an increased solubility as cause of the aggravated CAA is also 

supported by previous results. In APP/PS1 transgenic mice, the additional overexpression of murine 

APP further increased Aβ solubility and enhanced its deposition in vessel walls[113]. 

5.1.3 Impact of cellular amyloid clearance 

In AD, amyloid plaques are surrounded by astrocytes and microglial cells[20]. Although this has been 

long perceived, their role was long debated due to their complex actions. Microglia are nowadays 

thought to play a changing role during disease progression. They participate in amyloid clearance and 

eliminate soluble[54] and fibrillary[55] forms of Aβ. However, microglial cells also contribute to 

neuronal death, as their chronic activation in AD leads to the release of reactive oxygen species[56], 

tumor necrosis factor-α[224] and nitric oxide[57]. 

The pool of cortical microglial cells seemed unchanged upon knockout of murine APP as the total 

cortical area covered by microglia was similar in mAPP0/0 and mAPP+/+ mice. With beginning 

aggregation of Aβ, plaques became increasingly surrounded by microglial cells. Microglial plaque 

coverage strongly progressed with age in young animals. But after reaching a peak at 150 d of age, 

the relative coverage decreased. This general course of microglial plaque coverage has been 

previously described for the utilised model[225] and might be the results of an exhausted microglial 

capacity, while amyloid deposition continues unabatedly. Furthermore, total microglial area typically 

decreases age-dependently, a process which is dramatically accelerated in AD-models[226]. 

Methodically, the results of double-stained slides strongly depend on the intensity ratio of individual 

stains and fluctuations would heavily affect the results. Although sections were collectively stained 

fully automated in large batches and the general course of microglial plaque coverage is similar in 

both groups, a certain influence of staining intensity cannot completely be excluded. 

The lack of murine APP expression consistently decreased the microglial coverage of plaques at all 

ages. The cause for this reduction can only be speculated, because different explanations are 

reasonable and various factors likely interact. Firstly, the higher number of plaques contributes at 

least to a certain extent to the lower coverage, since the limited number of microglia distributes to 

an increased number of plaques in mAPP0/0 mice. But despite the similar size of the microglial 

populations, the proportion of plaque-associated microglial cells is lower in mAPP0/0 mice at all ages. 

The elevated number of plaques is therefore unlikely the only reason for the decreased coverage. 
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As microglia are able to clear Aβ, a reduced number or an impaired activation could directly diminish 

clearance and cause the enhanced deposition. However, the actual extent of microglial contribution 

in AD pathogenesis is constantly debated. A beneficial role in AD is exemplified by progranulin 

(PGRN), as reduced expression lowered phagocytic activity and increased amyloid burden in AD 

mouse models[60]. Although knockout of microglial fractalkine receptor (CX3CR1) likewise 

exacerbated AD-related deficits, plaque load was unchanged[227]. The chronic inflammatory response 

that accompanies the persistent microglial activation is, on the other hand, primarily considered 

aggravating and even affects amyloid levels. The interruption of the interleukin-12/interleukin-23 

pathway, which is activated in microglia in response to Aβ, decreased the amyloid burden in 

transgenic AD mice[228]. The immunosuppressant rapamycin reduced microglial activation but 

simultaneously enhanced autophagy and degradation of Aβ and thus reduced amyloid burden and 

prevented memory decline[229]. Epidemiologic studies also supported negative effects of 

inflammation, as the use of nonsteroidal anti-inflammatory drugs (NSAIDs) decreases the incidence 

of AD[230]. The near-complete ablation of microglia in transgenic APP/PS1 mice stressed their janus-

faced character in AD, as their absence generally affected neither plaque deposition nor neuritic 

dystrophy[231]. Overall, beneficial and deteriorating effects of microglia seem therefore balanced. 

Although the consequences of the altered microglial reaction can be hardly estimated in the utilised 

model, they are unlikely the main cause of enhanced Aβ deposition, especially with regard to 

decreased CAA. 

Finally, microglia and astrocytes are shown to interact and influence each other[232]. The release of 

ApoE by astrocytes[233], for instance, is crucial for microglial clearance of fibrillar Aβ[234]. In APP/PS1 

mice, activated astrocytes were shown to suppress the recruitment and activation of microglia[64]. 

Thus, attenuation of reactive gliosis increased the abundance of microglial cells in the vicinity plaques 

and elevated cortical expression of microglial markers CD11b and IBA1[64]. The knockout of APP has 

been repeatedly described to induced reactive gliosis in mice[188, 196, 200]. Despite the expression of 

human APP, the mAPP0/0 mice displayed a significant age-related gliosis (section 4.1.6). Diminished 

recruitment and decreased elimination of Aβ by microglia would therefore be a conceivable result. 

The correlations of the results (section 4.1.9) underpinned the dysregulation of astrocytes in mAPP0/0 

mice. Cortical astrocyte coverage correlated positively with microglial plaque coverage in mAPP+/+ 

mice, indicating a mutual inflammatory recruitment. Whereas the negative correlation in mAPP0/0 

mice demonstrated, that the pronounced astrogliosis was accompanied by a diminished microglial 

plaque coverage. 

A reactive gliosis is also a frequent histopathological feature in AD[61]. Analogous to microglia, 

astrocytes thereby not only surround amyloid plaques but ApoE dependently[235] bind and degrade 

Aβ[63]. Attenuated reactive gliosis by knockout of GFAP and vimentin (Vim) thus increased plaque 
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load in APP/PS1 mice[64]. As GFAP0/0/Vim0/0 astrocytes were barely found near plaques, the direct 

interaction of astrocytes and plaques was hypothesised of fundamental importance for astrocyte 

dependent amyloid clearance[64]. Activation of astrocytes by overexpression of murine 

interleukin-6[65] or interferon-γ[66] in APP transgenic mice induced a pronounced gliosis, promoted 

microglial phagocytosis and thus decreased plaque load. The distinct gliosis in murine APP-deficient 

mice might therefore not necessarily promote the deposition of Aβ. 

As previously described, Aβ is actively cleared from the brain at the BBB[88] and astrocytes 

substantially contribute to induction and maintenance of basal BBB properties (reviewed in[236]). 

Astrocytes cover capillaries with their endfeet[237] and induce expression of tight junctions[238] and 

ABC-transporters[239]. Astrocyte-dependent disturbances at the BBB might therefore also contribute 

to the increased plaque load in murine APP-deficient mice. In summary, due to their various 

functions and high abundancy[240, 241] even slight dysregulation or subtle changes in astrocytes could 

strongly influence Aβ accumulation. 

5.1.4 Neuronal density and apoptosis 

The amyloid precursor protein has important developmental and maintenance functions in the brain, 

e.g. promoting proliferation[70], differentiation[77] and migration[79]. The APP/PS1 transgenic mice 

lacking murine APP may suffer from the dual effect of missing beneficial APP functions in neuronal 

development, complemented by negative effects of the age-dependent Aβ aggregation. 

However, the density of cortical neurons was not significantly altered in APP-deficient mice. 

Additionally, the expression of capase-3 and -9 was neither genotype- nor age-dependently changed, 

emphasising the absence of enhanced apoptosis in mAPP0/0 mice at the analysed ages. This is in 

accordance with the previous results, showing that neuronal loss is not evident until eight months of 

age in the utilised mouse model[173]. 

5.1.5 Perspective and implications for research 

For the treatment of Alzheimer’s disease five symptomatic[242] medications have been so far 

approved by the FDA[243]. These are acetylcholinesterase inhibitors (donepezil, rivastigmine and 

galantamine), a NMDA receptor antagonist (memantine) and, since recently, a combination of both 

(donezepil and memantine)[243]. Causal therapeutics are still in development and have not been 

approved so far[242]. Most of the causal therapeutic strategies are directed against amyloid and can 

be divided by three general mechanisms of action: (i) inhibition of production, (ii) prevention of 

aggregation and (iii) promotion of clearance[244]. The latter two thereby exceptionally depend on the 

exact reproduction of the aggregation process in the utilised models. A decreased aggregation 

propensity not only restricts amyloid accumulation, but makes Aβ more available for degradation[207] 
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and therefore promotes elimination. The extent of aggregation interference[245, 246], peripheral[247] 

and central[248] degradation or efflux by LRP1[86] and different ABC-transporters[87, 88] might therefore 

been estimated inaccurately. Because murine APP and its products could interference with Aβ 

deposition and decisively influence the obtained results, the co-expression of endogenous APP 

impedes transferability between species and spreads uncertainty. 

The logical alternative would be the use of Aβ-humanised mice as background for transgenic models. 

Although the mutagenesis of murine APP has already been reported a long time ago[206, 249], it 

attracted only little interest so far. The humanisation of APP at the three sites differing between 

murine and human Aβ (positions 5, 10 and 13) increased the production Aβ to the level of the human 

sequence[206]. In the TgAPPSwe-KI[249] model, humanisation of the three amino acids is complemented 

by the Swedish APP mutation [KM670/671NL]. That’s why these mice express normal levels of 

human APP in absence of murine and already produce increased amounts of Aβ40 and Aβ42 without 

deposition[250]. However, already the additional mutagenesis of murine PS1 [P264L] induced plaque 

formation by further elevating Aβ level and Aβ42/Aβ40 ratio and without any overexpression[250-252]. 

This approach has the major advantage, that by keeping APP in its chromosomal position with the 

natural promoter, the developmental, cell- and tissue-specific expression pattern is preserved[249].  
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5.2 Octodon degus 

The degu (Octodon degus) is a small, diurnal, herbivorous rodent from central Chile[253]. The high 

average lifespan (up to ten years) in captivity and the particular similarity to human Aβ (97.5% 

identical)[182] made degus an interesting model for age-related diseases. Degus were subjected to AD 

research in recent years, whereby prominent intra- and extracellular Aβ deposits were described in 

cortices and hippocampi of wild type animals[182, 254] upon two years of age[254]. Thus, degus were the 

first rodents described depositing Aβ without any genetic modification. However, the knowledge on 

neurodegeneration in degus is so far sparse and the recent results are conflicting. To further 

elucidate the processes during natural aging in degus, this study histologically analysed degus with 

defined age, namely young (1-year-old) and aged (5-year-old) animals. 

5.2.1 Natural aging without development of marked neurodegeneration 

Basic histological H&E stains of degus revealed no obvious age-related changes, specific lesions or 

degeneration in any of the analysed brain regions. Such conflicting results have been previously 

described. Groen et al. reported the absence of specific neuronal differences between 3- and 6-year-

old degus in Nissl-stained sections and a stable density of blood vessels[255]. 

Silver impregnations and thioflavin T stains were performed in this study to reveal neuronal 

destruction and potential amyloidosis. But extended degeneration and extracellular aggregates were 

neither apparent in any of the analysed degus. More sensitive immunohistochemically stained 

sections of young and aged animals showed similarly sparse intracellular but no extracellular 

reactivity. Groen and colleagues likewise found no evidence for neuronal degeneration or significant 

age-dependent differences in degus[255]. However, these results are completely contradictious to the 

initial description by Inestrosa et al., which found aggregates ubiquitously in all cortical layers and 

large thioflavin S positive plaques in frontal, parietal and entorhinal cortex and hippocampus upon 

three years of age[182]. A most recent publication of Inestrosa’s group reported a similar 

manifestation of ThS positive plaques even upon 24 months[254], unfortunately, using the identical 

images initially published as ‘over 3-year-old’ degus[182]. Finally, plaque deposition was proclaimed to 

start even earlier, as already twelve months old animals presented with several ThS positive 

plaques[183]. Altogether, the generation of plaques in degus during normal aging is still questionable, 

as actually only one group was able to detect the deposits. To cap it all, aged degus were shown to 

generate large amounts of the heavily doubted[256] dodecameric Aβ*56[183]. 

Although degus have a higher degree of homology to humans in terms of Aβ than mice or rats, the 

distinct physiological aggregation previously described is surprising and contradicts a large body of 

conclusive data. The histidine at position 13 (His13), which is changed to arginine in degus[182], is 

thought to be of crucial importance for aggregation and toxicity[257, 258]. In human Aβ, His13 is involved 
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in early N-terminal β-sheet formation[259] and thus its substitution by arginine [H13R] diminishes 

aggregation propensity and cytotoxicity[260]. The [H13G] substitution further significantly lowered 

neuronal binding and related toxicity[261]. 

The role of histidine 13 is well established regarding general[29, 257] but also pH-[262] and metal ion-[263] 

dependent aggregation of Aβ. Coordination of metal ions such as nickel[264], copper[265], and zinc[264] 

by β-amyloid requires His13. Interestingly, regions with zinc-enriched neurons are the primary sites 

for amyloid deposition[266]. Accordingly, zinc was found to trigger aggregation of Aβ[267] and become 

enriched in plaques[268]. In many rodents, Aβ has a significantly lower affinity for zinc and thus a 

lower aggregation propensity[264], which is merely reproduced by the H13R substitution[264, 265, 269]. 

The significance of zinc-induced aggregation is further highlighted by zinc transporter 3 (ZnT3), which 

loads Zn2+ to synaptic vesicles[270]. The knockout of ZnT3 resulted in reduced Aβ deposition in cortices 

of Tg2576 mice[271]. Copper is likewise enriched in plaques[268] and promotes Aβ aggregation[267, 272] by 

formation of high-affinity complexes[273]. As His13 is crucial for Cu2+-binding[265], H13R substitution[274] 

or methylation of imidazole side chains[258, 275] alter Aβ’s affinity for copper and thereby reduce its 

toxicity. The H13R substitution in degus thereby substantially reduces Aβ’s aggregation propensity 

compared to human Aβ. 

The histidine-residues further regulate the redox activity[276], as Aβ functionally binds metal ions at a 

superoxide dismutase-like binding site[277] and subsequently generates toxic H2O2 by reduction of 

Cu2+[277-279] or Fe3+[279]. The generation of H2O2 and accompanied cytotoxicity of Aβ was prevented by 

either Cu2+ chelators[277] or platinum complexes, which coordinate Aβ’s histidine residues[280]. 

Because of its crucial importance for aggregation, His13 is a constant target for treatment strategies. 

A range of platinum[280-282] iridium[282, 283] and ruthenium[282, 284, 285] based complexes have been 

developed, which interact with His13 and thus inhibit aggregation. The Zn2+/Cu2+-chelator clioquinol, 

which halved Aβ deposition in Tg2576 mice[286], even reached phase IIb trial in 2004[287, 288]. Clioquinol 

was afterwards abandoned due to the emergence of toxic by-products during synthesis. It was 

‘replaced’ by second generation hydroxyquinoline, which entered phase IIa trials in 2006 for 

Alzheimer’s disease[289, 290] and in 2012 for Huntington’s disease[291]. 

These results further detail the crucial importance of histidine at position 13 of human Aβ. The 

substitution of histidine by arginine, which appears in most rodents, thereby interferes with various 

mechanisms of aggregation and cytotoxicity involved in AD pathogenesis. 

It is therefore not surprising that the naked mole rat (Heterocephalus glaber), which has the same Aβ 

sequence as degus, does not develop plaques[292]. Although, young naked mole rats naturally exhibit 

pronounced oxidative stress[293] and high levels of Aβ, similar to those of 3xTg-AD mice[292, 293]. 

However, the H13R substitution in their Aβ protects naked mole rats, because it significantly lowers 

the aggregation propensity of Aβ[292]. Even guinea pigs (Cavia porcellus), which have long been used 
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as research models[294], have human identic Aβ[295] and a very similar APP processing[296], do not 

develop dense amyloid deposits[297]. In that light, plaque deposition in degus appears highly 

questionable. 

5.2.2 Phosphorylation of cytoskeletal tau 

The intracellular formation of neurofibrillary tangles, a hallmark of AD, was already part of the initial 

report on AD-like pathology in degus[182]. At first glance, tangle formation in degus seems not 

unreasonable, because the tau-sequence is similar to the human variant. Degus further exhibit the 

‘VQIVYK’ motif (Table 7-1), which is necessary for tau aggregation[298] and only 2 deviations in the 

assembly domain of tau, compared to the human sequence ([A239T], [K257R], Table 7-1). 

To unveil intracellular accumulation of hyperphosphorylated tau, sections were immunostained for 

phosphorylation of different tau epitopes. Beside a high background staining, intracellular reactivity 

was apparent in most cortical and hippocampal neurons of young and aged degus. But the labelled 

phospho-tau did neither morphologically resembled neurofibrillary tangles nor increased or 

intensified age-dependently. While tangles primarily affect entorhinal cortex or hippocampal 

CA1-region are in AD[19], degus showed strongest reactivity against phospho-tau in hippocampal 

CA3-region and mossy fibres. Furthermore, reactivity appeared consistently throughout the brain 

including in cerebral cortex, hippocampus, thalamus, hypothalamus, brainstem and cerebellum. A 

previous study by Groen et al. found only punctual tau accumulation in hippocampal axons of old (six 

years) animals, but likewise no tangles[255]. By contrast, degus were initially described with 

intracellular aggregates of tau and ubiquitin in cortical and hippocampal areas upon three years of 

age[182, 183]. 

However, it is important to note that tau phosphorylation in general is not specific for AD, but occurs 

also physiologically[299] with important implications for development[300] and plasticity[301]. In naked 

mole rats which are closely related to degus, large amounts of phosphorylated tau are present 

without accumulation or generation of tangles[302]. The high intracellular levels of phosphorylated tau 

therefore not necessarily constitute tangles or lead to their generation. Just like reported in this 

study for degus, the highest levels of phosphorylated tau in naked mole rats were located in 

hippocampal CA3-region (mossy fibres) and not in CA1-region or cortex[302]. The particular 

phosphorylation of tau in CA3-region is contradictorily discussed[303], as it rarely appears in animal 

disease models[153]. 
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5.2.3 Cellular clearance, molecular markers and cognitive defects 

In AD, microglia and astrocytes gather in the vicinity of amyloid deposits. This clustering of activated 

cells is an early but unspecific sign of pathology. While a recent paper questioned the emergence of a 

cortical gliosis in degus[304], they were originally described with an age-related increase of abundance 

and activation of hippocampal microglia[255, 304] and an extended cortical and hippocampal 

astrogliosis[182, 255]. Although astro- and microgliosis are unspecific signs for neurodegeneration that 

also appear in lesions of different genesis, they principally accompany the deposition of amyloid. 

In the current study, microglial marker IBA1 revealed homologous populations of resting microglia in 

young and aged degus without any clustering. Astrocytes (GFAP+) were mainly located in cortical 

layer I and the vicinity of blood vessels. Age-dependent alterations in phenotype, density or spatial 

distribution, pinpointing to an inflammatory process, could not be detected for microglia or 

astrocytes. The lack of an age-dependent astro- or microgliosis in the analysed animals is thereby in 

line with the absence of other signs for related neuropathological changes. 

5.2.4 Degus as model for natural aging 

A further series of age-dependent and AD-linked changes has been reported for degus. 

Nucleoporin 62, a marker for AD, was reported to increase by more than 60% in old degus 

(> 4 year)[304]. However, levels of nucleoporin 62 actually decrease in AD[305] and elevated levels are 

considered protective[306]. Furthermore, markers for reactive oxygen (4-Hydroxynonenal[307]) and 

nitrogen species (nitrotyrosine[308]) were increased in aged degus[304]. Hippocampal levels of 

caspase-3 increased age-dependently in degus and indicated enhanced apoptosis[304]. Long-term 

potentiation (LTP) and long-term depression (LTD) were also impaired in hippocampal neurons (CA1 -

 CA3-region) in 3 to 5 year old degus. Behavioural tests (T-maze and novel object recognition task) 

finally illustrated the age-dependent decline in memory performance[183]. 

While this sounds plausible in connection with amyloid and tau pathology, it is of paramount 

importance to consider the specificity of the previously described changes of AD-linked markers in 

the particular experimental context. Although these characteristics occur in AD, they not only overlap 

with other neurodegenerative diseases, but also physiologically emerge in normal aging. Because 

young degus served as ‘healthy’ control for the aged animals with ‘AD-like’ symptoms, characteristics 

of normal aging should not be misinterpreted to model AD. Well established and frequently used 

behavioural tests (Morris water maze[309-312], Barnes maze[313] and Novel object recognition task[310, 

314]) revealed significant, age-dependent impairments in learning and cognition of aged, wild-type 

mice. Old mice further present with decreased performance in hippocampal LTP (CA1-region)[309, 310, 

313], increased frequency of apoptosis and higher levels of caspase-3[309, 315]. The aforementioned 

markers for reactive oxygen and nitrogen species Hydroxynonenal[316] and nitrotyrosine[317] likewise 
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increase age-dependently. Interestingly, even levels of APP and sAPPβ and the Aβ42/Aβ40 ratio 

elevate with normal aging in wild-type mice[315]. The described examples clearly show that these 

frequently applied tests and markers are only reasonable and significant if used in combination with 

appropriate controls. The previous approaches of using young animals as ‘healthy’ controls are 

problematic and questionable, as by definition, physiological aging is neglected and all alterations are 

regarded as disease symptoms. 

5.2.5 Conclusion 

The present study contributes basic knowledge and new insights on animal disease models with 

pathological aggregation of proteins. In mice, as the most important model species, the remaining 

expression of murine APP significantly changed the aggregation of transgenic human Aβ. The 

knockout of endogenous APP markedly increased the number of plaques, whereas vascular 

deposition of amyloid was simultaneously delayed. The levels of cortical Aβ42 were also generally 

higher in mAPP0/0 animals, but the difference was less pronounced. At the cellular level, murine 

APP-deficient animals presented with a notable, age-dependent gliosis and diminished microglial 

coverage of plaques. However, apoptosis markers and neuronal density were not significantly 

changed. Overall, the co-expression of endogenous APP in transgenic models was shown to 

decisively influence disease characteristics and therefore impedes the transferability of results to the 

human system. This study thereby not only demonstrated the necessity of re-evaluating and refining 

currently used models, but already presents a starting point for improvements. 

The second part of the study focused on the small rodent Octodon degus, which was made a 

promising model as it was presumed to ‘naturally’ resemble the full pathological spectrum of 

Alzheimer’s disease. In this study, comprehensive histological analyses revealed no signs for 

extracellular aggregation of amyloid, the histopathological hallmark of the disease. Unspecific signs 

like astrogliosis, clustering of activated microglia or increased neuronal death were likewise non-

existent. In sum, the present results indicate rather physiological aging than distinct 

neurodegeneration and therefore preclude the utilisation of degus as model of Alzheimer’s disease 

under the described conditions. 
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Table 7-1: Accession numbers of compared proteins. 
Protein sequences were gathered using NCBI protein database (http://www.ncbi.nlm.nih.gov/protein) and protein 
alignments were performed using BLASTP 2.2.30+[318, 319]. 

Protein Species Accession number 

Amyloid precursor protein 

 Homo sapiens sapiens  P05067.3 
 Microcebus murinus  XP_012619906.1 
 Macaca mulatta  AFI33610.1 
 Canis lupus familiaris  NP_001006601.2 
 Ursus maritimus  XP_008699989.1 
 Ovis aries  XP_004002849.1 
 Camelus bactrianus  XP_010954929.1 
 Octodon degus  EHB11615.1 
 Heterocephalus glaber  XP_004898345.1 
 Cavia porcellus  XP_003467233.1 

Tau 
 Homo sapiens sapiens  NP_058519.3 
 Octodon degus  XP_004630049.1 
 Heterocephalus glaber  EHB10652.1 

 

Table 7-2: Linear regression analysis of plaque number. 
All values of each time point were used for linear regression analysis (R2 of mean values is ≥ 0.965). 

Age  mAPP0/0 mAPP+/+ 

50 d 
to 

100 d 

Slope (95% confidence interval)  5.861 ( 5.064 to 6.658)  3.462 ( 2.723 to 4.201) 
Y-intercept (95% confidence interval)  -282.0 ( -346.0 to -218.1)  -164.9 (-224.7 to -105.2) 
X-intercept (95% confidence interval)  48.12 ( 42.60 to 52.53)  47.64 ( 37.97 to 54.40) 

R2 0.8609 0.7464 

125 d 
to 

200 d 

Slope (95% confidence interval)  3.526 ( 2.783 to 4.270)  2.153 ( 1.445 to 2.861) 
Y-intercept (95% confidence interval)  -113.8 ( -237.4 to 9.737)  -22.04 (-138.9 to 94.81) 
X-intercept (95% confidence interval)  32.28 ( -3.486 to 55.82)  10.24 (-65.29 to 48.78) 

R2 0.6965 0.4793 
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Table 7-3: Statistical analysis of plaque number, size and cortical coverage. 

 Age mAPP0/0 mAPP+/+ P value 
Ratio of 
means 

Number of cortical 
plaques in n/10 mm2 

± SEM 

 50 d  18.40 ± 2.203 (n= 11)  8.406 ± 2.035 (n= 10)  0.0035 2.1889 
 75 d  144.0 ± 8.565 (n= 12)  94.19 ± 8.568 (n= 9)  0.0006 1.5286 
 100 d  309.5 ± 18.93 (n= 15)  181.4 ± 17.25 (n= 14)  < 0.0001 1.7058 
 125 d  347.8 ± 15.25 (n= 10)  255.1 ± 21.75 (n= 10)  0.0030 1.3633 
 150 d  392.9 ± 20.71 (n= 11)  286.8 ± 8.765 (n= 11)  0.0004 1.3700 
 175 d  488.0 ± 24.50 (n= 9)  360.6 ± 21.33 (n= 12)  0.0011 1.3533 
 200 d  605.9 ± 21.07 (n= 12)  409.1 ± 22.46 (n= 10)  < 0.0001 1.4810 

Plaque size in µm2 ± 
SEM 

 50 d  247.5 ± 13.50 (n= 11)  241.2 ± 25.51 (n= 10)  0.8289 1.0264 
 75 d  386.9 ± 22.15 (n= 12)  404.7 ± 17.92 (n= 9)  0.5395 0.9560 
 100 d  650.7 ± 37.06 (n= 15)  538.8 ± 33.19 (n= 14)  0.0328 1.2078 
 125 d  679.5 ± 22.12 (n= 10)  651.8 ± 54.57 (n= 10)  0.6466 1.0425 
 150 d  656.9 ± 30.94 (n= 11)  645.9 ± 37.22 (n= 11)  0.8236 1.0169 
 175 d  709.7 ± 17.86 (n= 9)  698.8 ± 27.51 (n= 12)  0.7437 1.0156 
 200 d  734.0 ± 25.52 (n= 12)  654.6 ± 17.40 (n= 10)  0.0189 1.1213 

Cortical coverage in % 
± SEM 

 50 d  0.047 ± 0.007 (n= 11)  0.020 ± 0.005 (n= 10)  0.0053 2.3500 
 75 d  0.567 ± 0.056 (n= 12)  0.390 ± 0.048 (n= 9)  0.0262 1.4538 
 100 d  2.091 ± 0.235 (n= 15)  1.024 ± 0.140 (n=14)  0.0007 2.0420 
 125 d  2.379 ± 0.159 (n= 10)  1.689 ± 0.220 (n= 10)  0.0214 1.4085 
 150 d  2.621 ± 0.237 (n= 11)  1.831 ± 0.081 (n= 11)  0.0080 1.4315 
 175 d  3.463 ± 0.202 (n= 9)  2.555 ± 0.222 (n= 12)  0.0069 1.3554 
 200 d  4.476 ± 0.270 (n= 12)  2.702 ± 0.214 (n= 10)  < 0.0001 1.6566 

 

Table 7-4: Two-way analysis of variance (ANOVA) of the obtained parameters. 

 % of total variation P value 
Parameter Interaction Age Genotype Interaction Age Genotype 
Number of cortical plaques 2.456 79.50 8.208 < 0.0001 < 0.0001 < 0.0001 
Size of plaques 1.229 72.09 0.729  0.3533 < 0.0001  0.0477 
Cortical plaque coverage 3.675 71.22 7.655  0.0001 < 0.0001 < 0.0001 
Amount of ‘small’ plaques (< 400 µm2) 1.125 67.34 7.544  0.3596 < 0.0001 < 0.0001 
Amount of ‘medium’ plaques (400 – 700 µm2) 2.715 81.69 7.306 < 0.0001 < 0.0001 < 0.0001 
Amount of ‘large’ Plaques (> 700 µm²) 3.664 67.74 7.343  0.0008 < 0.0001 < 0.0001 
Cerebral amyloid angiopathy (affected vessels) 3.766 49.55 2.002  0.0702 < 0.0001  0.0128 
Cerebral amyloid angiopathy (severity) 2.130 43.90 1.376  0.4557 < 0.0001  0.0559 
Microglial plaque coverage 3.775 48.32 13.09  0.0688 < 0.0001 < 0.0001 
Plaque-associated microglia 0.049 20.78 10.16  0.9817  0.0011  0.0078 
Cortical astrogliosis 10.44 8.861 10.59  0.0178  0.0281  0.0170 
Guanidine-soluble cerebral Aβ42 level 1.218 48.96 3.068  0.8364 < 0.0001  0.0096 
Buffer-soluble cerebral Aβ42 level 7.079 38.56 0.033  0.0396 < 0.0001  0.7988 
Total cerebral Aβ42 level 0.478 51.05 2.804  0.9804 < 0.0001  0.0122 
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Table 7-5: Separate analysis of ‘small’, medium and ‘large’ plaques in mAPP0/0 and mAPP+/+ mice. 

 Age mAPP0/0 mAPP+/+ P value 

‘small’ plaques in n/10 mm2 ± SEM 

 50 d  16.12 ± 1.826 (n= 11)  8.006 ± 2.016 (n= 10)  0.0078 
 75 d  86.99 ± 5.747 (n= 12)  53.82 ± 3.985 (n= 9)  0.0002 
 100 d  105.8 ± 5.907 (n= 15)  74.31 ± 6.403 (n= 14)  0.0013 
 125 d  103.1 ± 5.651 (n= 10)  82.15 ± 10.50 (n= 10)  0.1008 
 150 d  124.1 ± 7.284 (n= 11)  99.23 ± 12.91 (n= 9)  0.1175 
 175 d  134.1 ± 11.97 (n= 9)  109.8 ± 9.158 (n= 12)  0.1268 
 200 d  179.6 ± 9.022 (n= 12)  134.3 ± 9.611 (n= 10)  0.0027 

‘medium’ sized plaques in 
n/10 mm2 ± SEM 

 50 d  1.253 ± 0.649 (n=3/11)  0.180 ± 0.180 (n=1/10)  0.1380 
 75 d  41.91 ± 4.167 (n= 12)  29.90 ± 3.968 (n= 9)  0.0507 
 100 d  87.99 ± 2.737 (n= 15)  55.34 ± 4.232 (n= 14) < 0.0001 
 125 d  102.6 ± 4.550 (n= 10)  79.87 ± 6.915 (n= 10)  0.0146 
 150 d  115.1 ± 5.800 (n= 11)  91.32 ± 3.708 (n= 11)  0.0030 
 175 d  148.7 ± 9.781 (n= 9)  97.52 ± 3.919 (n= 12)  0.0006 
 200 d  162.5 ± 4.027 (n= 12)  116.4 ± 3.403 (n= 10) < 0.0001 

‘large’ plaques in n/10 mm2 ± SEM 

 50 d     (n=0/11)     (n=0/10) - 
 75 d  14.13 ± 3.949 (n=9/11)  6.628 ± 2.640 (n=6/9)  0.1329 
 100 d  113.8 ± 15.82 (n= 15)  46.32 ± 10.54 (n=12/14)  0.0016 
 125 d  140.6 ± 11.82 (n= 10)  89.44 ± 15.26 (n= 10)  0.0168 
 150 d  150.4 ± 18.34 (n= 11)  101.6 ± 8.829 (n= 11)  0.0306 
 175 d  202.9 ± 11.93 (n= 9)  149.7 ± 15.23 (n= 12)  0.0127 
 200 d  261.1 ± 17.43 (n= 12)  153.9 ± 13.59 (n= 10)  0.0001 

 

Table 7-6: Comparison of cortical amyloid angiopathy in mAPP0/0 and mAPP+/+ mice. 

 Age mAPP0/0 mAPP+/+ P value 

Affected vessels in % ± SEM 

 50 d  9.059 ± 3.194 (n= 11)  10.46 ± 2.445 (n= 10)  0.7324 
 75 d  29.47 ± 5.812 (n= 12)  44.22 ± 5.653 (n= 9)  0.0849 
 100 d  35.59 ± 6.415 (n= 14)  62.26 ± 8.095 (n= 11)  0.0177 
 125 d  55.14 ± 6.046 (n= 10)  64.22 ± 3.813 (n= 11)  0.2227 
 150 d  57.95 ± 4.866 (n= 11)  61.55 ± 5.683 (n= 11)  0.6362 
 175 d  61.90 ± 4.157 (n= 9)  62.35 ± 4.172 (n= 12)  0.9397 
 200 d  63.80 ± 5.265 (n= 12)  59.34 ± 5.566 (n= 7)  0.5692 

Mean severity score ± SEM 

 50 d  0.094 ± 0.031 (n= 11)  0.1092 ± 0.0237 (n= 10)  0.7042 
 75 d  0.338 ± 0.085 (n= 12)  0.5478 ± 0.1070 (n= 9)  0.1432 
 100 d  0.520 ± 0.124 (n= 14)  0.9360 ± 0.1686 (n= 11)  0.0609 
 125 d  0.855 ± 0.137 (n= 10)  1.015 ± 0.0946 (n= 11)  0.3485 
 150 d  0.948 ± 0.115 (n= 11)  1.112 ± 0.1526 (n= 11)  0.4021 
 175 d  1.046 ± 0.090 (n= 9)  1.066 ± 0.0941 (n= 12)  0.8823 
 200 d  1.106 ± 0.145 (n= 12)  1.035 ± 0.1585 (n= 7)  0.7464 
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Table 7-7: Statistical analysis of microglia response in mAPP0/0 and mAPP+/+ mice. 

 age mAPP0/0 mAPP+/+ P value 
mean cortical coverage in % ± SEM  150 d  13.24 ± 0.790 (n= 10)  13.36 ± 0.892 (n= 10)  0.9216 

Plaque 
coverage 
in % ± SEM 

all plaques 
 100 d  21.06 ± 2.792 (n= 10)  34.82 ± 6.412 (n= 9)  0.0317 
 150 d  31.15 ± 1.808 (n= 11)  55.37 ± 5.481 (n= 11)  0.0012 
 200 d  6.735 ± 1.260 (n= 10)  12.02 ± 2.936 (n= 7)  0.1360 

‘small’ plaques 
 100 d  30.98 ± 3.712 (n= 10)  53.19 ± 12.84 (n= 9)  0.1297 
 150 d  53.76 ± 4.261 (n= 11)  91.17 ± 13.32 (n= 11)  0.0202 
 200 d  14.14 ± 2.407 (n= 10)  27.43 ± 7.583 (n= 7)  0.1372 

‘medium’ 
plaques 

 100 d  17.82 ± 2.357 (n= 10)  30.63 ± 5.565 (n= 9)  0.0579 
 150 d  27.84 ± 1.518 (n= 11)  44.16 ± 5.818 (n= 11)  0.0196 
 200 d  6.543 ± 1.199 (n= 10)  13.35 ± 3.364 (n= 7)  0.0952 

‘large’ plaques 
 100 d  11.39 ± 1.861 (n= 10)  20.41 ± 4.309 (n= 9)  0.0811 
 150 d  17.71 ± 1.025 (n= 11)  26.75 ± 2.884 (n= 11)  0.0116 
 200 d  3.266 ± 0.610 (n= 10)  6.405 ± 1.525 (n= 7)  0.0927 

Plaque-associated microglial area 
per 10 mm2 in % ± SEM 

 100 d  0.233 ± 0.029 (n= 10)  0.409 ± 0.084 (n= 9)  0.0762 
 150 d  0.478 ± 0.047 (n= 11)  0.636 ± 0.117 (n= 11)  0.2369 
 200 d  0.181 ± 0.027 (n= 10)  0.367 ± 0.105 (n= 7)  0.1299 

 

Table 7-8: Neuronal density in mAPP0/0 and mAPP+/+ mice. 

 mAPP0/0 mAPP+/+ P value 
Neuronal density in n/mm2 ± SEM  2016 ± 53.67 (n= 10)  2114 ± 61.46 (n= 12)  0.2458 

 

Table 7-9: Cortical astrocyte coverage in mAPP0/0 and mAPP+/+ mice. 

 Age mAPP0/0 mAPP+/+ P value 

Cortical GFAP+ area in % ± SEM 
 100 d  8.355 ± 0.748 (n =15)  8.336 ± 1.116 (n= 12)  0.9886 
 200 d  13.56 ± 0.677 (n= 11)  8.123 ± 2.078 (n= 7)  0.0405 

 

Table 7-10: Statistical analysis of age-dependent astrogliosis in mAPP0/0 and mAPP+/+ mice. 

 Strain P value 

100 d vs. 200 d 
mAPP0/0 < 0.0001 
mAPP+/+  0.9301 
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Table 7-11: Cortical levels of soluble and insoluble Aβ42 in mAPP0/0 and mAPP+/+ mice. 

 mAPP0/0 mAPP+/+ P value 
Ratio of 
means 

Guanidine-soluble 
Aβ42 in pg/mg protein 

± SEM 

 50 d  4771 ± 471.9 (n= 10)  3845 ± 883.3 (n= 8)  0.3750  1.2408 
 75 d  7049 ± 881.9 (n= 10)  4657 ± 569.6 (n= 10)  0.0373  1.5136 
 100 d  13117 ± 852.5 (n= 9)  10498 ± 753.0 (n= 10)  0.0347  1.2495 
 125 d  15322 ± 1525 (n= 8)  14085 ± 1925 (n= 8)  0.6227  1.0878 
 150 d  21715 ± 3596 (n= 9)  17370 ± 1229 (n= 8)  0.2799  1.2501 
 175 d  23128 ± 4735 (n= 7)  18686 ± 3607 (n= 9)  0.4700  1.2377 
 200 d  26120 ± 5768 (n= 7)  18618 ± 1912 (n= 7)  0.2552  1.4029 

Buffer-soluble Aβ42 in 
pg/mg protein ± SEM 

 50 d  654.5 ± 93.17 (n= 10)  660.1 ± 160.4 (n= 8)  0.9766  0.9915 
 75 d  3052 ± 347.8 (n= 10)  2116 ± 362.6 (n= 10)  0.0792  1.4423 
 100 d  5540 ± 592.3 (n= 9)  5283 ± 796.1 (n= 10)  0.7987  1.0486 
 125 d  7865 ± 1232 (n= 8)  4710 ± 1616 (n= 8)  0.1444  1.6699 
 150 d  3271 ± 486.3 (n= 9)  3917 ± 618.5 (n= 8)  0.4253  0.8351 
 175 d  2230 ± 659.1 (n= 7)  3675 ± 967.3 (n= 9)  0.2384  0.6068 
 200 d  1898 ± 377.2 (n= 7)  3428 ± 948.4 (n= 7)  0.1729  0.5537 

Aβ42 in pg/mg protein 
± SEM 

 50 d  5426 ± 558.8 (n= 10)  4505 ± 1018 (n= 8)  0.4445  1.2044 
 75 d  10101 ± 975.1 (n= 10)  6774 ± 748.0 (n= 10)  0.0150  1.4911 
 100 d  18657 ± 1263 (n= 9)  15781 ± 1135 (n= 10)  0.1090  1.1822 
 125 d  23187 ± 1649 (n= 8)  18795 ± 2272 (n= 8)  0.1421  1.2337 
 150 d  24986 ± 3815 (n= 9)  21287 ± 1492 (n= 8)  0.3870  1.1738 
 175 d  25358 ± 4993 (n= 7)  22361 ± 3837 (n= 9)  0.6427  1.1340 
 200 d  28018 ± 5542 (n= 7)  22046 ± 2528 (n= 7)  0.3543  1.2709 

 

Table 7-12: Nonparametric Spearman correlation coefficients in mAPP0/0 mice. 
Correlation coefficients with p > 0.05 were excluded. 
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insoluble Aβ42           
soluble Aβ42 0.363          
Plaque size 0.723 0.401         

Cortical plaque coverage 0.753 0.319 0.899        
Plaque number /10 mm² 0.759 0.314 0.835 0.987       

Plaques <400 µm² 0.622 0.315 0.546 0.798 0.862      
Plaques 400-700 µm² 0.650  0.582 0.867 0.928 0.799     

Plaques >700 µm² 0.494  0.869 0.988 0.946 0.585 0.777    
Astrocyte coverage 0.635 -0.541 0.510 0.683 0.651 0.406 0.523 0.702   

Microglial plaque coverage    -0.494 -0.514 -0.488 -0.447 -0.512 -0.777  
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Table 7-13: Nonparametric Spearman correlation coefficients in mAPP+/+ mice. 
Correlation coefficients with p > 0.05 were excluded. 
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soluble Aβ42 0.440           
Plaque size 0.776           

Cortical plaque coverage 0.798  0.902         
Plaque number /10 mm² 0.768  0.762 0.951        

Plaques <400 µm²   0.409 0.702 0.864       
Plaques 400-700 µm² 0.776  0.600 0.843 0.940 0.805      

Plaques >700 µm² 0.722  0.893 0.989 0.881 0.515 0.748     
Astrocyte coverage            

Microglial plaque coverage      -0.488   0.600   
Neuronal density      -0.886      

 

Table 7-14: Semi-automatic evaluation of cortical microglia, astrocytes and neurons in degus. 

 Young Aged P value 
Cortical coverage by GFAP+ cells ± SEM  5.925 ± 0.457 (n= 4)  5.385 ± 0.581 (n= 4)  0.4943 
Cortical coverage by IBA1+ cells ± SEM  5.194 ± 0.683 (n= 4)  4.112 ± 0.172 (n= 4)  0.2120 

Neuronal density in n/mm2 ± SEM  1487 ± 33.57 (n= 4)  1351 ± 115.6 (n= 4)  0.3295 

 



Appendix 

- 87 - 

8 Appendix 

8.1 Declaration / Erklärung 

 

Johannes Steffen 

Einsteinstraße 12 

39104 Magdeburg 

 

Erklärung 

Hiermit erkläre ich, dass ich die von mir eingereichte Dissertation zu dem Thema 

 

Analysis of animal models of neurodegenerative diseases with protein deposits 
 

selbstständig verfasst, nicht schon als Dissertation verwendet habe und die benutzten Hilfsmittel und 

Quellen vollständig angegeben wurden. 

Weiterhin erkläre ich, dass ich weder diese noch eine andere Arbeit zur Erlangung des akademischen 

Grades doctor rerum naturalium (Dr. rer. nat.) an anderen Einrichtungen eingereicht habe. 

 

 

 

Magdeburg, 25.08.2015 



Appendix 

- 89 - 

8.2 Curriculum vitae 

Personal Information 

Name: Johannes Steffen 

Address: Einsteinstraße 12 

 39104 Magdeburg 

Date of Birth: 01.06.1986 

Place of Birth: Wismar, Germany 

Nationality: German 

Email: Johannes.Steffen@t-online.de 

 

Education 

10/2012 – 08/2015 Otto von Guericke-University, Magdeburg 

 Dissertation 

 

10/2009 – 09/2011 University of Rostock 

 Studies of medical biotechnology 

 Degree: Master of Science (M.Sc.) 

10/2006 – 09/2009 University of Rostock 

 Studies of medical biotechnology 

 Degree: Bachelor of Science (B. Sc.) 

08/1997 – 07/2006 Gerhart-Hauptmann-Gymnasium Wismar 

 Secondary education 

 

 

 

Magdeburg, 25.08.2015 



Appendix 

- 91 - 

8.3 List of publications 

1. Frohlich, C.*, K. Paarmann*, J. Steffen*, J. Stenzel*, M. Krohn, H. J. Heinze and J. Pahnke 

(2013). "Genomic background-related activation of microglia and reduced beta-amyloidosis 

in a mouse model of Alzheimer's disease." Eur J Microbiol Immunol (Bp) 3(1): 21-27. 

2. Schumacher, T., M. Krohn, J. Hofrichter, C. Lange, J. Stenzel, J. Steffen, T. Dunkelmann, K. 

Paarmann, C. Frohlich, A. Uecker, A. S. Plath, A. Sommer, T. Bruning, H. J. Heinze and J. 

Pahnke (2012). "ABC transporters B1, C1 and G2 differentially regulate neuroregeneration in 

mice." PLoS One 7(4): e35613. 

3. Krohn, M., C. Lange, J. Hofrichter, K. Scheffler, J. Stenzel, J. Steffen, T. Schumacher, T. 

Bruning, A. S. Plath, F. Alfen, A. Schmidt, F. Winter, K. Rateitschak, A. Wree, J. Gsponer, L. C. 

Walker and J. Pahnke (2011). "Cerebral amyloid-beta proteostasis is regulated by the 

membrane transport protein ABCC1 in mice." J Clin Invest 121(10): 3924-3931. 

 

 

*equal contribution 



Appendix 

- 93 - 

8.4 Acknowledgements 

First, I want to thank my supervisor Prof. Jens Pahnke not only for providing the research project and 

the necessary resources but also for the scientific inspiration, the continuing support and the worldly 

wisdom. I would also like to thank all my colleagues from the NRL: PAHJ, KROM, BRUT, TURC, FROC, 

PAAK, SOMA, SHIP, SEVA and ERST for the good collaboration and the fun we had together. It was a 

great and exciting time. Additionally, I thank Prof. Pahnke, Toni, Claudia and Christina for their critical 

comments on the manuscript. 

I want to thank Rainer, Gisela, Heinrich, Mrs Walter, Mrs Albrecht, Mr Scheewe, Mr Koppe and Prof. 

Pahnke for arousing and strengthening my interest in natural sciences and imparting the necessary 

basic and advanced knowledge. 

Finally, I am most grateful for the patience, forbearance, trust and support of Rainer, Gisela, Heinrich 

and especially Amelie and Anne and I want to thank them with all my heart. 


	Abbreviations
	List of tables
	List of figures
	Summary
	1 Introduction
	1.1 Neurodegenerative diseases and protein aggregation
	1.2 Alzheimer’s disease
	1.2.1 Molecular fundamentals
	1.2.2 Pathology
	1.2.3 Molecular organisation and physiological functions of APP
	1.2.4 Sporadic and inherited disease variants

	1.3 Disease models
	1.3.1 Transgenic animals expressing wild-type APP
	1.3.2 Disease models expressing mutant transgenes
	1.3.3 Advanced and natural models


	2 Motivation and aims
	3 Material and methods
	3.1 Material
	3.1.1 Chemicals
	3.1.2 Kits
	3.1.3 Antibodies
	3.1.4 Primers
	3.1.5 Animal feed
	3.1.6 Equipment
	3.1.7 Buffers and solutions
	12% polyacrylamid separation gel
	4% buffered paraformaldehyde solution
	5 M guanidine buffer
	5% polyacrylamid stacking gel
	8.2 M guanidine buffer
	Acetate buffer
	Carbonate buffer
	Citrit acid buffer pH 6.0
	Developer solution
	DNA extraction buffer
	EDTA buffer pH 9.0
	Electrophoresis buffer
	PAGE transfer buffer
	Phosphate buffered saline (PBS)
	Protein sample buffer
	RIPA buffer
	Silver-pyridine-carbonate solution
	Taq PCR master mix
	Tris acetate EDTA buffer (TAE)
	Tris buffered saline Tween20 (TBST)
	Tris buffered saline (TBS)

	3.1.8 Software

	3.2  Methods
	3.2.1 Animal models
	3.2.1.1 APP-deficient mice
	3.2.1.2 APP/PS1 transgenic mice
	3.2.1.3 Combined murine APP-deficient and APP/PS1 transgenic mice
	3.2.1.4 Degus

	3.2.2 Animal husbandry
	3.2.3 Genotyping
	3.2.3.1 DNA extraction
	3.2.3.2 Polymerase chain reaction
	3.2.3.3 Agarose gel electrophoresis

	3.2.4 Tissue preparation
	3.2.4.1 Mice
	3.2.4.2 Degus

	3.2.5 Immunohistochemistry
	3.2.6 Histochemistry
	3.2.7 Analysis of microscopic slides
	3.2.7.1 Semi-automatic analysis
	3.2.7.2 Manual Analysis

	3.2.8 Protein biochemistry
	3.2.8.1 Preparation of protein samples
	3.2.8.2 Spectrophotometric protein quantification
	3.2.8.3 Biochemical protein quantification
	3.2.8.4 Polyacrylamide gel electrophoresis and western blot
	3.2.8.5 Electrochemiluminescence immunoassays

	3.2.9 Statistics


	4 Results
	4.1 Murine APP-deficient mice
	4.1.1 Plaque deposition is diminished by murine APP expression
	4.1.2 Knockout of murine APP elevates intracerebral Aβ42 levels
	4.1.3 Murine APP-deficiency does not affect APP processing
	4.1.4 Co-expression of murine APP accelerates vascular deposition of Aβ
	4.1.5 Microglial response is reduced in upon murine APP knockout
	4.1.6 Pronounced gliosis in aged, murine APP-deficient mice
	4.1.7 Neuronal density was not affected in murine APP-deficient mice
	4.1.8 Caspase expression illustrates unchanged apoptosis
	4.1.9 Correlating results

	4.2 Octodon degus
	4.2.1 Absence of unspecific signs of neuropathological changes
	4.2.2 Lack of amyloid deposition in degus
	4.2.3 Age-independent tau pathology in wild-type degus


	5 Discussion
	5.1 Murine APP-deficient mice
	5.1.1 Impact of murine APP expression on plaque and amyloid load
	5.1.2 Increased amyloid solubility exacerbates cortical amyloid angiopathy
	5.1.3 Impact of cellular amyloid clearance
	5.1.4 Neuronal density and apoptosis
	5.1.5 Perspective and implications for research

	5.2 Octodon degus
	5.2.1 Natural aging without development of marked neurodegeneration
	5.2.2 Phosphorylation of cytoskeletal tau
	5.2.3 Cellular clearance, molecular markers and cognitive defects
	5.2.4 Degus as model for natural aging
	5.2.5 Conclusion


	6 References
	7 Supplement
	8 Appendix
	8.1 Declaration / Erklärung
	8.2 Curriculum vitae
	8.3 List of publications
	8.4 Acknowledgements


