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Abstract: Branching processes as a mathematical concept has applications in various fields, including information 

technology. In information technology, branching processes can be used to model and analyze various 

scenarios, such as the propagation of data or information in a network, the growth of computer viruses, the 

spread of software bugs, and more. Branching processes are particularly useful for understanding the 

dynamics of systems where events can lead to multiple new events in a probabilistic manner. Overall, 

branching processes provide a valuable mathematical framework for modeling and analyzing various aspects 

of information technology, helping to make informed decisions and optimize IT systems and networks. We 

have studied transient phenomena for branching processes with an infinite number of types close to critical. 

The analytical apparatus for this study is Markov renewal theorems. Branched processes were used to evaluate 

the performance of IT systems and predict their behavior under different conditions. This is important for 

capacity planning and resource allocation. 

1 INTRODUCTION 

Branching processes are one of the most interesting 

sections of probability theory. The theory of 

branching processes has now become a much 

branched field of probability theory and a powerful 

research tool in various areas of mathematics, such as 

the theory of algorithms, queuing theory, random 

mapping theory, the theory of leakage, as well as in 

many branches of other sciences, which include, in 

particular, physics, chemistry, biology and 

information technology. 

The theory of branching random processes is an 

important method in the theory of Markov queuing 

models. Similar processes arise, in particular, in the 

description of queuing systems (for example, in 

multiprocessor or distributed computer processing of 

data). This apparatus is especially important in the 

theory of reliability, where it is used to describe 

failures in complex equipment (failure of one element 

gives rise to failures of other elements). 

Here are some ways branching processes can be 

applied in IT: 

1) Network Propagation: In the context of

computer networks and communication

systems, branching processes can model how

data packets or information propagate through

the network. This is useful for understanding

network congestion, data transfer rates, and the

spread of information in social networks [1-8].

2) Virus and Malware Propagation: Branching

processes can be used to model the spread of

computer viruses, malware, and other malicious

software within a network. This can help in

analyzing the potential impact of a malware

outbreak and developing strategies to

mitigate it [9-10].

3) Software Development and Bugs: In software

development, branching processes can be

applied to model the occurrence and

propagation of software bugs and issues. This

can aid in understanding the factors that

contribute to software quality and

reliability [11-13].

4) Fault Tolerance and Redundancy: In designing

fault-tolerant systems, branching processes can

be used to model the reliability of components

within a system. This helps in making informed
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decisions about redundancy and backup 

strategies [14-18]. 

5) Queuing Systems: In IT systems, queuing

models often involve branching processes to

analyze the flow of requests or tasks through a

system, such as in call centers, web servers, and

database management [19-21].

6) Social Media Engagement: In the context of

social media platforms and online communities,

branching processes can be used to model the

spread of content (e.g., viral videos, news

articles) and user engagement patterns, helping

to optimize content distribution strategies.

7) Performance Analysis: Branching processes can

be used to assess the performance of IT systems

and predict their behavior under different

conditions. This is valuable for capacity

planning and resource allocation [22-27].

2 TRANSIENT PHENOMENA OF 

MARKOV RENEWAL THEORY 

The basic statements of the classical renewal theory 
can be extended to the so-called Markov renewal 
equation 

 𝑓(𝑥, 𝑡) = 𝑔(𝑥, 𝑡) + 

+∫ ∫𝐺(𝑥, 𝑑𝑦 × 𝑑𝑢)

𝑡

0𝐸

𝑓(𝑦, 𝑡 − 𝑢), 𝑡 ≥ 0, 𝑥 ∈ 𝐸. 

where 𝐸 is a given phase space, 𝐺(𝑥, 𝑑𝑦 × 𝑑𝑢) is so-
called semi-Markov kernel, 𝑔(𝑥, 𝑡) is a given 
function of 𝑥 ∈ 𝐸, and 𝑡 ≥ 0, and 𝑓(𝑥, 𝑡) is the 
function to be found. Its solution is the convolution 

       𝑓(𝑥, 𝑡) = 𝑈 ∗ 𝑔(𝑥, 𝑡) = 

= ∫ ∫𝑈(𝑥, 𝑑𝑦 × 𝑑𝑢)

𝑡

0𝐸

𝑔(𝑦, 𝑡 − 𝑢), 𝑡 ≥ 0, 𝑥 ∈ 𝐸. 

where 𝑈(𝑥, 𝑑𝑦 × 𝑑𝑢) is the potential of the semi-
homogeneous kernel 𝐺(𝑥, 𝑑𝑦 × 𝑑𝑢). 

Generally, the renewal theory has wide range of 
applications in mathematical practice. Markov 
renewal theorems are an analytical tool for studying 
the limiting behavior of Markov and related 
processes, including semi-Markov and regenerative 
processes.  

For example we can consider Crump-Mode-
Jagers branching process [31] with an arbitrary set of 
types (say 𝐸). Denote by 𝑀𝑡(𝑥, 𝐴) the conditional
mean number of particles at moment 𝑡 ≥ 0 whose 
types belong to set 𝐴 ⊂ 𝐸 under the condition that 
there was one new-born particle of type 𝑥 ∈ 𝐸 at the 
initial moment 𝑡0 = 0.

It is well-known that 𝑀𝑡(𝑥, 𝐴) as function of  𝑥 ∈
𝐸 and 𝑡 ≥ 0 satisfies the  

𝑀𝑡(𝑥, 𝐴) = 𝐿𝑡(𝑥, 𝐴) +

+∫ ∫𝐾(𝑥, 𝑑𝑦 × 𝑑𝑢)

𝑡

0𝐸

𝑀𝑡−𝑢(𝑦, 𝐴),

where, roughly speaking,  𝐾(𝑥, 𝑑𝑦 × 𝑑𝑢) is equal to 

the conditional mean number (under the same 

condition) of particles of type 𝑦 produced by the 

initial particle during an infinitely small interval 

[𝑢, 𝑢 + 𝑑𝑢), and 𝐿𝑡(𝑥, 𝐴) is equal to the conditional

probability ( under the above condition) that the type 

of the still existing initial particle belongs to the set 𝐴. 

W. Feller introduced the very important notion of

direct Riemann integrability. 

Namely, a Borel function 𝑔(𝑡), 𝑡 ≥  0, is called 

directly Riemann-integrable if 

∑ sup
𝑘≤𝑡≤𝑘+1

|𝑔(𝑡)| < ∞ ,        

∞

𝑘=0

 

and      

 𝛿∑ { sup
𝑘𝛿≤𝑡≤𝑘𝛿+𝛿

𝑔(𝑡) − inf
𝑘𝛿≤𝑡≤𝑘𝛿+𝛿

𝑔(𝑡)}
𝛿→0
→ 0.

∞

𝑘=0

Under conditions (1) and (2) the function 𝑔(𝑡) is 

absolutely integrable on [0,∞) and  

∫ 𝑔(𝑡)𝑑𝑡 = lim
𝛿→0

[𝛿∑𝑔(𝑡𝑘)

∞

𝑘=1

] ,

∞

0

 

where 𝑡𝑘 ∈ [𝑘𝛿, 𝑘𝛿 + 𝛿], in contrast to the usual

definition of the improper Riemann integral as a limit 

of integrals over finite intervals. 

That is why such a function 𝑔(𝑡) is called directly 

Riemann-integrable. 

In the theory of branching processes in the case of 

a finite phase space, the Markov renewal equations 

are often considered 

𝑓𝑖(𝑡) = 𝑔𝑖(𝑡) +∑∫𝑓𝑗(𝑡 − 𝑢)

𝑡

0

𝑑

𝑗=1

𝑑𝑀𝑖𝑗(𝑢),       

where the functions  𝑀𝑖𝑗(𝑢) do not decrease, have

bounded variation, and 𝑀𝑖𝑗(0) = 0.

The asymptotic properties of the solution to this 

equation are essentially determined by the maximum 

eigenvalue 𝜆 (the Perron root) of matrix 

𝑀(∞) = ‖𝑀𝑖𝑗(∞)‖𝑖,𝑗=1
𝑑

 . 

(1) 

(2) 

(3)
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Equations (3) is called supercritical if 𝜆 > 1, 

critical, if 𝜆 = 1, and subcritical, if 𝜆 < 1. Critical 

equations with indecomposable matrix 𝑀(∞) simply 

reduce to the equations of Markov renewal. If the 

Perron root of an indecomposable matrix 𝑀(∞)  is 

equal to one, then it has left and right invariant vectors 

𝑣 = (𝑣1, 𝑣2, … , 𝑣𝑑) and 𝑢 = (𝑢1, 𝑢2, … , 𝑢𝑑)
respectively with positive coordinates, i.e. 

∑𝑀𝑖𝑗(∞)𝑢𝑗 = 𝑢𝑖 ,

𝑗

  ∑𝑣𝑖𝑀𝑖𝑗(∞) = 𝑣𝑗 . 

𝑖

In the case when the criticality parameter 𝜆 of (3) is 

close to one, but possibly not equal to it, then the 

problem of transient phenomena arises. One of the 

exact formulations of this problem is as follows.  Let 

𝑀(𝑛)(𝑡) = ‖𝑀𝑖𝑗
(𝑛)
(𝑡)‖

𝑖,𝑗=1

𝑑
, 𝑛 = 1,2, …, is a sequence 

𝑑 × 𝑑 matrices, whose elements are non-decreasing 

functions of bounded variation with 𝑀𝑖𝑗
(𝑛)(0) = 0. Let

also for all 𝑖, 𝑗 = 1,2, … , 𝑑 the sequence 

𝑀𝑖𝑗
(𝑛)(𝑡), 𝑛 = 1,2, …, converges to 𝑀𝑖𝑗(𝑡)  at the

points of continuity of the limit function, and the 

matrix 𝑀(∞) = ‖𝑀𝑖𝑗(∞)‖𝑖,𝑗=1
𝑑

is indecomposable 

and its Perron root is equal to one. This assumption 

allows, without loss of generality, to assume that the 

matrices 𝑀(𝑛)(∞)  are also not decomposable, and 

that their Perron roots 𝜆𝑛  converge as 𝑛 → ∞  to one,

and the right and left eigenvectors 𝑢(𝑛) and 𝑣(𝑛)  
converge respectively to the right-left invariant 

vectors 𝑢 = (𝑢1, 𝑢2, … , 𝑢𝑑) and 𝑣 = (𝑣1, 𝑣2, … , 𝑣𝑑)
of the matrix  𝑀(∞). 

Let  𝑓𝑖
(𝑛)(𝑡) at each 𝑛 = 1,2, …  be a solution of

the      

𝑓𝑖
(𝑛)(𝑡) = 𝑔𝑖

(𝑛)(𝑡) +∑∫𝑓𝑗
(𝑛)(𝑡 − 𝑢)

𝑡

0

𝑑

𝑗=1

𝑑𝑀𝑖𝑗
(𝑛)(𝑢),

functions sequence 𝑔𝑖
(𝑛)(𝑡), 𝑛 = 1,2, …,  is uniformly

directly Riemann integrable on [0,∞). Then if 

sup
𝑛≥1

∫ 𝑠𝑑𝑀𝑖𝑗
(𝑛)(𝑠)

∞

𝑡
𝑡→∞
→ 0,

and the matrix  𝑀(𝑡) is nonlattice, then  

𝑓𝑖
(𝑛)(𝑡) −

𝑢𝑖
𝑚
𝑒𝑐/𝑚∑𝑣𝑗∫ 𝑔𝑗

(𝑛)(𝑢)𝑑𝑢 → 0,

∞

0𝑗

as  𝑡 → ∞, 𝑛 → ∞, 𝑡(𝜆𝑛 − 1) → 𝑐,  where

𝑚 =∑𝑣𝑖∫ 𝑡𝑑𝑀𝑖𝑗(𝑡)𝑢𝑗 ,   ∑𝑣𝑗𝑢𝑗 = 1.

𝑗

∞

0𝑖𝑗

In the infinite-dimensional case, let 𝑓𝜀(𝑥, 𝑡) at

every 𝜀 > 0 be a solution of the Markov renewal 

equation 

 𝑓𝜀(𝑥, 𝑡) = 𝑔𝜀(𝑥, 𝑡) +

+∫ ∫𝐺𝜀(𝑥, 𝑑𝑦 × 𝑑𝑢)

𝑡

0𝐸

𝑓𝜀(𝑦, 𝑡 − 𝑢), 𝑡 ≥ 0, 𝑥 ∈ 𝐸. 

Transient phenomena for the solution of the 

Markov renewal equation 

 𝑓𝜀(𝑥, 𝑡) = 𝑈𝜀 ∗ 𝑔𝜀(𝑥, 𝑡) =

= ∫ ∫𝑈𝜀(𝑥, 𝑑𝑦 × 𝑑𝑢)

𝑡

0𝐸

𝑔𝜀(𝑦, 𝑡 − 𝑢), 𝑡 ≥ 0, 𝑥 ∈ 𝐸, 

as  𝑡 → ∞, 𝜀 → 0, 𝑡(1 − 𝜆𝜀)/𝑚 → 𝑐, where 𝜆𝜀 is the

Perron root of the basis 𝐺𝜀(𝑥, 𝑑𝑦) of the kernel

𝐺𝜀(𝑥, 𝑑𝑦 × 𝑑𝑡),

𝑚 = ∫ ∫ ∫ 𝑙(𝑑𝑥)𝐺(𝑥, 𝑑𝑦 × 𝑑𝑡)ℎ(𝑦)𝑡,

∞

0𝐸𝐸

 

∫ 𝑙(𝑑𝑥)ℎ(𝑥) = 1,

𝐸

 

ℎ and 𝑙 are eigenfunction and eigenmeasure 
respectively of the basis of the limit semi-
homogeneous kernel 𝐺(𝑥, 𝑑𝑦 × 𝑑𝑡), were 
investigate [28].  

We denote 𝛾𝜀 = (1 − 𝜆𝜀)/𝑚.  In [28] it was

proved,  if 
1) the basis 𝐺(𝑥, 𝑑𝑦) of the kernel    𝐺(𝑥, 𝑑𝑦 × 𝑑𝑡),

that is 𝐺(𝑥, 𝑑𝑦) = 𝐺(𝑥, 𝑑𝑦 × [0,∞)),  is
conservative [32], and its Perron root equals 1,

2) there exists a Borel function 𝑔(𝑡) such that

∫ |𝑔(𝑡) − ∫ 𝑙(𝑑𝑥)𝑔𝜀(𝑥, 𝑡)

𝐸

|

∞

0

𝑑𝑡
𝜀→0
→ 0,

then 

lim
𝜀→0
𝑡→∞
𝛾𝜀𝑡→𝑐

𝑈𝜀 ∗ 𝑔𝜀(𝑥, 𝑡) = 𝑒
−𝑐
ℎ(𝑥)

𝑚
∫ 𝑔(𝑠)𝑑𝑠

∞

0

, 

uniformly in 𝑥 ∈ 𝐸. 
The another polar case is the degeneracy of the 

basis of the limit kernel. The asymptotics of the 

solution of the Markov renewal equation when the 
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basis 𝐺𝜀(𝑥, 𝑑𝑦) = 𝐺𝜀(𝑥, 𝑑𝑦 × [0,∞)) of the kernel

𝐺𝜀(𝑥, 𝑑𝑦 × 𝑑𝑡) close to the singular kernel 𝐼(𝑥, 𝑑𝑦)
on a given measurable phase space (𝐸,𝔅) was 

studied in [29].The main result of that study was 

formulated in the form of a theorems.  

The formal definition of branching processes with 

an arbitrary number of types of particles, the 

transformations of which may depend on their age, is 

rather cumbersome. By contrast, a descriptive 

description is simple and short.  Any such branching 

process is associated with the following evolving 

population, consisting of particles of several types: 

each of the particles existing at a given time, 

regardless of its origin and the presence of other 

particles, after the expiration of its existence, turns 

into a certain (possibly empty) set of newborn 

particles. The progeny of a particle depends only on 

its type and the age at which the transformation took 

place. 

Critical processes have the most interesting 

asymptotic properties. However, the question of the 

criticality of the actually observed branching process 

is not simple and it is not always possible to give an 

unambiguous answer to it. From this point of view, it 

is very important to study the asymptotic of branching 

processes, when over time the criticality parameter 

(in this case, the Perron root) tends to one. The 

resulting phenomena are called transient. 

This article studies transient phenomena for 

branching processes with an infinite number of types 

close to critical.  The analytical apparatus for this 

study is Markov renewal theorems. The asymptotic 

properties of the solution of the Markov renewal 

equation were studied in [32]. 

3 A BRANCHING PROCESS 

WITH AN INFINITE SET OF 

TYPES 

First, we describe a model for the evolution of a 

population with an infinite number of types.  

Let be 𝐸 - abstract set, which we will call the set 

of types. 

Suppose that on the set 𝐸  is distinguished a 𝜎-

algebra of its subsets 𝔅 which contains all one-point 

sets and, moreover, is generated by a countable 

number of its elements. 

A population is considered, which consists of a 

certain number of particles, for each of which a 

certain type is assigned, that is, an element of the 

set 𝐸. The law of population evolution is as follows.  

A newborn particle of type 𝑥, regardless of the 

presence of other particles and the previous history of 

the development of the population, lives a random 

time  𝜏(𝑥) > 0, at the end of which it turns into some 

(possibly empty) set of newborn particles of different 

types. 

Let us denote  (,, ℙ) - the basic probability 

space; 𝜁𝑡(𝑥) - is the type of particle at the end of 𝑡
units of its lifetime, 𝜁0(𝑥) = 𝑥, 0 ≤ 𝑡 <
𝜏(𝑥);  𝜂(𝑥, 𝑆) - is the number of immediate 

descendants with types from the set 𝑆 ∈ 𝔅 of one 

particle that had type 𝑥, 𝜉𝑡(𝑥, 𝑆, 𝑣) - is the number of

particles formed during time 𝑡 from one newborn 

particle of the type 𝑥 whose age is at least  𝑣  and 

whose types belong to the set  𝑆 ∈ 𝔅 . 
Suppose that all introduced characteristics depend 

measurably on the set of variables 

𝑥 ∈ 𝐸, 𝑡 ≥ 0,𝜔 ∈ . 

Let us fix the number  𝑣 > 0,  bounded non-

negative  𝔅 - measurable function 𝜑  and put  

𝑓(𝑥, 𝑡) = 𝐴(𝑥, 𝑡) =  𝔼∫ 𝜉𝑡(𝑥, 𝑑𝑦, 𝑣)𝜑(𝑦),

𝐸

𝑔(𝑥, 𝑡) = 0 𝑎𝑡 0 ≤ 𝑡 < 𝑣, 

𝑔(𝑥, 𝑡) = 𝔼 [𝜑(𝜁𝑡(𝑥))𝐼{𝑡<𝜏(𝑥)}]  𝑎𝑡  𝑡 ≥ 𝑣,

𝐺(𝑥, 𝑑𝑦 × 𝑑𝑢) = 𝔼 [𝜂(𝑥, 𝑑𝑦)𝐼{𝜏(𝑥)∈𝑑𝑢}].

Here and in what follows, the symbol ℙ is denoted 

the main probability measure and the symbol 𝔼 

denoted corresponding mathematical expectation. 

By slightly modifying the thinking from [30], we 

can show that the function 𝐴(𝑥, 𝑡)  satisfies the 

Markov renewal type equation  

𝐴(𝑥, 𝑡) = 𝑔(𝑥, 𝑡) + ∫ ∫𝐺(𝑥, 𝑑𝑦 × 𝑑𝑢)

𝑡

0𝐸

𝐴(𝑦, 𝑡 − 𝑢). 

According to the total probability formula, we 

have     

𝐴(𝑥, 𝑡) = 𝔼 [𝜑(𝜁𝑡(𝑥))𝐼{𝑡<𝜏(𝑥)}] +

+∫𝔼 [∫ 𝜉𝑡(𝑥, 𝑑𝑧, 𝑣)𝜑(𝑧)𝐼{𝜏(𝑥)∈𝑑𝑢}
𝐸

] .

𝑡

0

 

Further at 𝑢 < 𝑡 we have 

𝔼 [∫ 𝜉𝑡(𝑥, 𝑑𝑧, 𝑣)𝜑(𝑧)𝐼{𝜏(𝑥)∈𝑑𝑢}
𝐸

] = 
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= 𝔼 [∫ 𝜉𝜏(𝑥)+𝑡−𝑢(𝑥, 𝑑𝑧, 𝑣)𝜑(𝑧)𝐼{𝜏(𝑥)∈𝑑𝑢}
𝐸

] = 

= ∫ 𝔼 [𝜂(𝑥, 𝑑𝑦)𝐼{𝜏(𝑥)∈𝑑𝑢}]

𝐸

𝔼∫ 𝜉𝑡−𝑢(𝑦, 𝑑𝑧, 𝑣)𝜑(𝑧)

𝐸

=∫ 𝐺(𝑥, 𝑑𝑦 × 𝑑𝑢)𝐴(𝑦, 𝑡 − 𝑢).

𝐸

 

That's why 

 𝐴(𝑥, 𝑡) = ∫ ∫𝑈(𝑥, 𝑑𝑦 × 𝑑𝑢)

𝑡

0𝐸

𝑔(𝑦, 𝑡 − 𝑢),    

where 

𝑈(𝑥, 𝑑𝑦 × 𝑑𝑢) =∑𝐺𝑘∗(𝑥, 𝑑𝑦 × 𝑑𝑢)

∞

𝑘=1

 

is recovery kernel that matches the kernel 

𝐺(𝑥, 𝑑𝑦 × 𝑑𝑢) = 𝔼 [𝜂(𝑥, 𝑑𝑦)𝐼{𝜏(𝑥)∈𝑑𝑢}].

The representation (4) allows one to give (by the 

same methods as in [30] a complete description 

limiting behavior of the mean 𝐴(𝑥, 𝑡) as 𝑡 → ∞ under 

the assumption that the kernel  𝐺(𝑥, 𝑑𝑦) = 𝐺(𝑥, 𝑑𝑦 ×
[0,∞)) is critical and conservative (in [30] such 

kernels called critical and recurrent). 

4 TRANSIENT PHENOMENA 

FOR BRANCHING PROCESSES 

WITH AN INFINITE SET OF 

TYPES CLOSE TO CRITICAL 

We will assume that all introduced random variables 

depend on the small parameter 𝜀 > 0.  Accordingly, 

we denote 

𝜁𝑡(𝑥) = 𝜁𝑡
𝜀(𝑥), 𝜂(𝑥, 𝑆) =  𝜂𝜀(𝑥, 𝑆),

𝜉𝑡(𝑥, 𝑆, 𝑣) = 𝜉𝑡
𝜀(𝑥, 𝑆, 𝑣),

𝜏(𝑥) = 𝜏𝜀(𝑥), 𝑥 ∈ 𝐸, 𝑡 ≥ 0. 

We fix a number 𝑣 > 0, a bounded non-negative 

𝔅 - measurable function  𝜑  and put         

𝑓𝜀(𝑥, 𝑡) = 𝐴𝜀(𝑥, 𝑡) =  𝔼∫ 𝜉𝑡
𝜀(𝑥, 𝑑𝑦, 𝑣)𝜑(𝑦),

𝐸

𝑔𝜀(𝑥, 𝑡) = 0 𝑎𝑡 0 ≤ 𝑡 < 𝑣, 

𝑔𝜀(𝑥, 𝑡) = 𝔼 [𝜑(𝜁𝑡
𝜀(𝑥))𝐼{𝑡<𝜏𝜀(𝑥)}]  𝑎𝑡  𝑡 ≥ 𝑣.

The function 𝐴𝜀(𝑥, 𝑡)  satisfies the Markov 

renewal type equation 

 𝐴𝜀(𝑥, 𝑡) = 𝑔𝜀(𝑥, 𝑡) +

+∫ ∫𝐺𝜀(𝑥, 𝑑𝑦 × 𝑑𝑢)

𝑡

0𝐸

𝐴𝜀(𝑦, 𝑡 − 𝑢),      

where 

𝐺𝜀(𝑥, 𝑑𝑦 × 𝑑𝑢) = 𝔼 [𝜂
𝜀(𝑥, 𝑑𝑦)𝐼{𝜏𝜀(𝑥)∈𝑑𝑢}],

 𝑥 ∈ 𝐸, 𝑡 ≥ 0. 

Thus, it can be argued that the solution of the 

equation (5) has the form 

𝐴𝜀(𝑥, 𝑡) = ∫ ∫𝑈𝜀(𝑥, 𝑑𝑦 × 𝑑𝑢)

𝑡

0𝐸

𝑔𝜀(𝑦, 𝑡 − 𝑢),

where 𝑈𝜀(𝑥, 𝑑𝑦 × 𝑑𝑢) - the potential of the kernel

𝐺𝜀(𝑥, 𝑑𝑦 × 𝑑𝑢).
We will be interested in the asymptotic behavior 

𝐴𝜀(𝑥, 𝑡)  at large values 𝑡 ≥ 0  and small values

 𝜀 > 0. 

We impose a number of the following conditions. 

Let the random process 𝜁𝑡
𝜀(𝑥) converges to the

random process 𝜁𝑡
0(𝑥)  with life time 𝜏0(𝑥) particles

with type 𝑥  in that sense 

lim
𝜀→0
 ℙ{ 𝜁𝑡1

𝜀 (𝑥) ∈ 𝐴1, … , 𝜁𝑡𝑛
𝜀 (𝑥) ∈ 𝐴𝑛, 𝑡1, 𝑡2, … , 𝑡𝑛 <

𝜏𝜀(𝑥)} = ℙ{ 𝜁𝑡1
0 (𝑥) ∈ 𝐴1, … , 𝜁𝑡𝑛

0 (𝑥) ∈

𝐴𝑛, 𝑡1, 𝑡2, … , 𝑡𝑛 < 𝜏
0(𝑥)}    (6) 

at points of continuity 𝑡1, … , 𝑡𝑛 limiting probability

distribution, 𝑛 = 1,2, … , 𝐴𝑖 ∈ 𝔅, 𝑖 = 1,2, … , 𝑛,
uniformly on 𝑥 ∈ 𝐸. 

We denote 

𝐺𝜀(𝑥, 𝐴) = 𝔼 [𝜂
𝜀(𝑥, 𝐴)]

and suppose that   

 sup
𝑥∈𝐸

sup
𝐴∈𝔅 

 |𝐺𝜀(𝑥, 𝐴) − 𝐺(𝑥, 𝐴)|
𝜀→0
→ 0,

where 

𝐺(𝑥, 𝑑𝑦) = 𝔼 [𝜂0(𝑥, 𝑑𝑦)]. 

We will assume that the kernel 𝐺(𝑥, 𝑑𝑦) is 

conservative and its Perron root is equal to one (the 

kernel is critical). This guarantees the existence of a 

non-trivial 𝜎 - finite measure 𝑙 and a positive  
𝔅 - measurable 𝑙 - almost everywhere finite function 

ℎ such that   

∫ 𝑙(𝑑𝑥)𝐺(𝑥, 𝐴) = 𝑙(𝐴),   𝐴 ∈

𝐸

 𝔅, 

(5) 

(7) 

(4)
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∫ 𝐺(𝑥, 𝑑𝑦)ℎ(𝑦) = ℎ(𝑥),   𝑥 ∈

𝐸

𝐸. 

Let be 

0 < inf
𝑥∈𝐸
ℎ(𝑥) < sup

𝑥∈𝐸
ℎ(𝑥) < ∞. 

From (6), (7)  the existence of a set of measures 𝑙𝜀
on (𝐸,𝔅)  and functions ℎ𝜀(𝑥)  is follows, such that

∫ 𝑙𝜀(𝑑𝑥)𝐺𝜀(𝑥, 𝐴) = 𝜆𝜀𝑙𝜀(𝐴),   𝐴 ∈

𝐸

 𝔅, 

∫ 𝑙𝜀(𝑑𝑥)ℎ𝜀(𝑥) = 1,

𝐸

sup
𝐴∈𝔅 

|𝑙𝜀(𝐴) − 𝑙(𝐴)|
𝜀→0
→ 0,  ℎ𝜀

𝜀→0
→ ℎ,

where 𝜆𝜀 - is the Perron root of the kernel 𝐺𝜀(𝑥, 𝑑𝑦),
𝜆𝜀

𝜀→0
→ 1.

Suppose the condition                

 0 < 𝑚 = ∫ ∫ ∫ 𝑙(𝑑𝑥)𝐺(𝑥, 𝑑𝑦 × 𝑑𝑡)ℎ(𝑦)𝑡 < ∞.

∞

0𝐸𝐸

     

Applying the Markov renewal theorem [28], we 

obtain the following statement. 

Theorem.  Let in (6) - (9) the kernel 𝐺(𝑥, 𝑑𝑦) is 

critical and conservative, the kernel 

𝐺(𝑥, 𝑑𝑦 × 𝑑𝑢) = 𝔼 [𝜂0(𝑥, 𝑑𝑦)𝐼{𝜏0(𝑥)∈𝑑𝑢}] is non-

lattice and a random process 𝜑(𝜁𝑡
𝜀(𝑥)) at  𝑡 < 𝜏𝜀(𝑥),

stochastically continuous  uniformly on 𝜀 > 0,
𝑥 ∈ 𝐸, that is 

  sup
𝜀>0
sup
𝑥∈𝐸
 ℙ{|𝜑(𝜁𝑡

𝜀(𝑥)) − 𝜑(𝜁𝑢
𝜀(𝑥))| > 𝛿, 𝑡, 𝑢 <

𝜏𝜀(𝑥)}
𝑡−𝑢→0
→ 0

for all δ>0,  then, if     

sup
𝜀>0

∫ ∫ ∫ 𝑙(𝑑𝑥)𝐺𝜀(𝑥, 𝑑𝑦 × 𝑑𝑡)ℎ(𝑦)𝑡
𝑇→∞
→ 0.

∞

𝑇𝐸𝐸

sup
𝜀>0

sup
𝑥∈𝐸

sup
𝑡≥0
𝐴𝜀(𝑥, 𝑡) < ∞,∫ 𝑙(𝑑𝑥)

𝐸

𝔼 𝜏0(𝑥) < ∞, 

lim
𝜀→0
∫ 𝑙(𝑑𝑥)∫ 𝔼 [𝜑(𝜁𝑡

𝜀(𝑥))𝐼{𝑡<𝜏𝜀(𝑥)}]𝑑𝑡 =

∞

𝑣𝐸

= ∫ 𝑙(𝑑𝑥)∫ 𝔼 [𝜑(𝜁𝑡
0(𝑥))𝐼{𝑡<𝜏0(𝑥)}] 𝑑𝑡 =

∞

𝑣𝐸

𝑙𝑣(𝜑),

then 

lim
𝜀→0
𝑡→∞
𝛾𝜀𝑡→𝑐

𝐴𝜀(𝑥, 𝑡) = 𝑒
−𝑐
ℎ(𝑥)

𝑚
𝑙𝑣(𝜑),

uniformly on 𝑥 ∈ 𝐸. 

5 CONCLUSIONS 

In branching processes, random variables are 

typically used to represent the number of offspring 

generated by each event, and the process can be 

analyzed using probability theory and stochastic 

processes. This allows IT professionals and 

researchers to make probabilistic predictions and 

decisions regarding system behavior and 

performance. 

Overall, branching processes provide a valuable 

mathematical framework for modeling and analyzing 

various aspects of information technology, helping to 

make informed decisions and optimize IT systems 

and networks. 

We have studied transient phenomena for 

branching processes with an infinite number of types 

close to critical. The analytical apparatus for this 

study is Markov renewal theorems. 

Branched processes were used to evaluate the 

performance of service-oriented information 

technology to solve problems of sustainable 

environmental management and uniform information 

platform for the national automated ecological 

information and analytical system.  

This is important for capacity planning and 

resource allocation.  
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