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Abstract
1.	 The study of tree species coexistence is crucial to understand the assembly of 

forest communities. In this context, trees adjust their traits in response to the 
interactions with other trees and, specifically, as a result of the competition for 
resources. Further, mycorrhizal fungal diversity and associations are important 
drivers of ecosystem functioning in forests, but their role as drivers of intraspe-
cific trait variation has been disregarded. Here, we studied intraspecific trait vari-
ation of trees in response to tree and mycorrhizal fungal diversity.

2.	 We sampled 3200 leaves from 640 trees belonging to 10 native, deciduous spe-
cies in a tree diversity experiment in Central Germany. This experiment relies on 
the combination of gradients of tree richness and mycorrhizal associations. To 
handle large amounts of leaf samples, we acquired leaf-level spectral data and 
used deep learning to predict values for five leaf traits from the leaf economics 
spectrum (LES): specific leaf area, leaf dry matter content, carbon to nitrogen 
ratio, carbon content and phosphorus content. For every tree, we calculated the 
mean value for every trait and two multi-trait functional indices (functional rich-
ness and functional dispersion) based on values for individual leaves. Finally, we 
used sequencing-based data to assess the richness of mycorrhizal fungi associ-
ated with the trees.

3.	 We found that tree and mycorrhizal fungi richness had an effect on different leaf 
functional traits. Specifically, tree richness positively affected specific leaf area 
and, additionally, had a negative effect on the functional indicies, which revealed 
that the phenotypic diversity within the tree crown decreased with tree species 
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1  |  INTRODUC TION

Biotic interactions shape species diversity in local communities 
through processes of competition and facilitation among others 
(Brännström et al., 2012; Chesson, 2000; Ricklefs, 2010). Referring 
to classical coexistence theories, each species is characterized by a 
particular niche framed by abiotic and biotic factors, where it avoids 
to be outcompeted by other local species (Grinnell, 1917). As plants 
need a common base of resources, this suggests that competition is 
the main type of plant–plant interaction (Hughesdon, 1927; Wright 
et  al.,  2014), and similarities in the resource uptake pathways of 
plants lead to a strong niche overlap and consequently higher compe-
tition for resources (Adler et al., 2018). However, such explanations 
for plant species coexistence have been criticized for being too sim-
plistic (Escudero & Valladares, 2016), and there is growing demand 
to consider the variation within species when studying plant–plant 
interactions (Valladares et al., 2015). The reason behind is that spe-
cies are not static entities, but instead are flexible, and plants adjust 
their functional traits (i.e. morphological, physiological or phenolog-
ical characteristics that influence growth, reproduction or survival; 
Violle et al., 2007) via: (1) genetic adaptation (Baron et al., 2015) and 
(2) phenotypic plasticity, that is the ability of genotypes to express 
alternative phenotypic syndromes (Jump & Peñuelas,  2005; Stotz 
et al., 2022; Valladares et al., 2007). By adapting and shifting func-
tional traits, individuals are able to reduce competition for limiting 
resources (Burns & Strauss, 2012; Roscher et al., 2018).

Differences in resource-use strategies are reflected by the ex-
pression of dissimilar functional traits (Suding et al., 2003). Across 
all functional traits in plants, leaf traits can be reliable proxies for 
resource-use strategies as summarized by the leaf economics spec-
trum (LES; Wright et  al.,  2004). The LES reflects a trade-off be-
tween a leaf's lifespan and its maximum photosynthetic rate (Díaz 
et al., 2016; Wright et al., 2004). In general, leaves with high values 
for traits related to photosynthetic activity, like high specific leaf area 
and high nitrogen concentration, are typically associated with higher 
resource acquisition, faster growth rates, and a lower investment 

in leaf construction and protective tissues. Therefore, the LES de-
scribes the resource-use strategy of plants which range from an 
acquisitive, growth-related strategy to a long-lived, conservative 
strategy (Pietsch et al., 2014; Poorter et al., 2009; Reich et al., 1997, 
1999; Scheepens et al., 2010). Although the LES originally described 
differences between species, there is evidence that the gradient of 
the LES also occurs within species at the individual level (classically 
referenced as intraspecific trait variation; Fajardo & Siefert, 2018; 
Niinemets, 2015). It even reflects the diversity of alternative phe-
notypic syndromes within the same plant (Intraindividual trait vari-
ation; Herrera, 2017), and it can therefore be assumed that plants 
adjust their LES traits in order to mediate biotic interactions. This is 
especially true in the case of trees because, as a result of their lon-
gevity, it is crucial for them to adjust to local conditions within their 
lifespan instead of adapting through generation turnover like short-
lived plants as forbs and grasses (Trogisch et  al.,  2017). As an in-
creasing number of species in a community typically results in higher 
complementarity in the use of resources (Barry et al., 2019), trees in 
rich communities tend to show higher values for acquisitive-related 
traits compared to those in monospecific communities (Davrinche 
& Haider, 2021; Deschamps et al., 2023; Felix et al., 2023). Further, 
recent studies suggest that the extent of within-individual trait 
variation could help to cope with micro-environmental conditions 
(March-Salas et al., 2021; Møller et al., 2022) but also with biotic in-
teractions. Therefore, trees in monospecific communities have been 
suggested to display highly different leaf traits within their crown, 
probably to avoid competition with interacting conspecific neigh-
bours (Proß et al., 2021).

Apart from plant–plant interactions, organisms from other 
trophic levels which are directly interacting with trees may act as 
drivers of leaf trait expression and variation (Tedersoo et al., 2020). 
Among the different plant interactions with other guilds, mycorrhizal 
associations, which improve soil nutrient uptake, may be among the 
most important ones (Kaschuk et al., 2009; Smith & Smith, 2011). 
Due to the variety of different nutrient uptake processes, the di-
versity of mycorrhizal associations seems to increase resource 

richness. In addition, leaf carbon to nitrogen ratio decreased with increasing ar-
buscular mycorrhizal fungal richness in both arbuscular and ectomycorrhizal tree 
species. Finally, we did not find differences between arbuscular and ectomycor-
rhizal trees regarding their location within the LES.

4.	 Our results suggest that trees modify their strategy in response to local tree di-
versity, not only by shifting trait values but also by shifting the variability intrain-
dividually. In addition, higher mycorrhizal fungal diversity does not seem to lead 
to higher complementarity, but instead, tree and mycorrhizal fungi affect differ-
ent aspects of leaf traits.

K E Y W O R D S
arbuscular mycorrhiza, ectomycorrhiza, intraindividual trait variation, intraspecific trait 
variation, leaf economics spectrum, plant–plant interactions
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niche partitioning between plants (Bever et  al.,  2010; Hazard & 
Johnson, 2018; Klironomos et al., 2000; Wagg et al., 2015). Among 
all the different mycorrhizal types, there are two which are domi-
nant, especially in trees: (1) arbuscular mycorrhizal fungi (intracel-
lular symbioses dominated by Glomeromycota; AMF), which is the 
most abundant mycorrhizal type occurring in ca. 74% of angiosperm 
species (Trappe,  1987), and (2) ectomycorrhizal fungi (intercellular 
symbioses; EMF), which is a common type among temperate tree 
species. In the case of AMF, several studies suggested that more 
diverse AMF communities can improve nutrient uptake by provid-
ing plants access to different resource pools (Horsch et  al.,  2023; 
Jansa et al., 2005; Wagg et al., 2015) and, besides the fewer studies 
carried out, similar results have been found for EMF communities 
(Leake, 2001).

Even though trees can interact with different types of mycorrhi-
zal fungi simultaneously (Heklau et al., 2021, 2023), species have a 
preferred type of mycorrhizal partner (Brundrett & Tedersoo, 2018) 
and, thus, they are classified depending on the mycorrhizal host 
types as arbuscular mycorrhizal (AM) or ectomycorrhizal (EM) trees. 
In addition, due to evolutionary differences between host plant spe-
cies as well as differences in the strategy of the mycorrhizal fungal 
types, AM and EM trees show strong differences in their resource-
use strategy (Shi et al., 2020). Specifically, AM trees typically em-
ploy a more acquisitive strategy in terms of economic traits (Averill 
et al., 2019). Further, AM trees tend to show a greater extent of in-
traspecific variation in traits from the LES compared to EM trees 
(Shi et al., 2020), even though there are exceptions in the case of 
some EM trees (Niinemets, 2015). Therefore, this suggests that AM 
and EM trees could show dissimilarities in their response to plant 
and mycorrhizal fungal diversity described above, and it is expected 
that AM trees show higher intraspecific variation in response to the 
diversity of species (of both trees and fungi) compared to EM trees.

Tree diversity experiments manipulate the number of species 
while standardizing confounding factors like varying tree density 
or abiotic conditions (Bruelheide et  al.,  2014). Therefore, they are 
useful set-ups to examine intraspecific changes of functional traits 
in trees in response to species richness. To explore the effect of tree 
species richness, mycorrhizal fungal richness and mycorrhizal types 
on LES traits, we studied the trait values and intraindividual trait 
diversity from ca. 640 trees representing 10 native deciduous tree 
species, five of them known to be primarily associated with arbuscu-
lar mycorrhizal fungi and the other five with ectomycorrhizal fungi, 
in the MyDiv tree diversity experiment located in Central Germany 
(Ferlian et al., 2018). In contrast to other tree diversity experiments, 
here a treatment of species richness is combined with different plot 
compositions of tree species differing in their host mycorrhizal type 
(either AM or EM). We hypothesized that (1) as nutrient partitioning 
is expected to be enhanced by the richness of species (both tree and 
fungal), trees increase the mean values of acquisitive-related traits 
in response to tree and mycorrhizal fungal richness, and (2) intra-
individual trait diversity is highest in monocultures to accomplish 
niche differentiation between individual trees and decreases with 
increasing tree and mycorrhizal fungal richness. Due to the nature 

of AM plants, which seem to be more responsive with respect to in-
traspecific trait-environment responses, (3) these responses to tree 
and mycorrhizal fungal richness are expected to be stronger in AM 
than EM tree species.

2  |  MATERIAL S AND METHODS

2.1  |  Study site

This study was conducted in the MyDiv experiment, which is a biodi-
versity–ecosystem functioning (BEF) experiment located at the Bad 
Lauchstädt Experimental Research Station of the Helmholtz Centre 
for Environmental Research–UFZ in Saxony-Anhalt, Germany 
(51°23′ N, 11°53′ E; Figure 1a). The climate is temperate with a mean 
annual temperature of 8.8°C (monthly mean temperatures ranging 
from 0.8°C in January to 17.3°C in July) and mean annual precipi-
tation of 484 mm (data obtained from Altermann et  al.,  2005 and 
https://​www.​world​clim.​org/​). The soil type is described as haplic 
Chernozem, which is very fertile and characterized by a stable ag-
gregate structure, high water-retention and base saturation as well 
as high bioturbation rates (Altermann et al., 2005). The experiment 
was established in 2015 and is comprised by 80 plots (Figure 1b). It 
includes a set of 10 native deciduous angiosperm tree species, with 
five species each being primarily associated with arbuscular mycor-
rhizal fungi (AM; Acer pseudoplatanus L., Aesculus hippocastanum L., 
Fraxinus excelsior L., Prunus avium L. and Sorbus aucuparia L.) or with 
ectomycorrhizal fungi (EM; Betula pendula Roth., Carpinus betulus 
L., Fagus sylvatica L., Quercus petraea Liebl., Tilia platyphyllos Scop.) 
(Table S1; Ferlian et al., 2018). The design is based on the combina-
tion of different numbers of tree species and trees of the same or 
different host mycorrhizal types. Tree species were planted follow-
ing a tree species richness gradient from monospecific plots (one 
species) over two-species mixtures up to four-species mixtures 
(Ferlian et al., 2018). The two- and four-species mixtures comprised 
only AM- or only EM-associated tree species or a balanced combina-
tion of AM- and EM-associated species (Figure 1). Every level of tree 
richness and mixture of mycorrhizal host types was replicated 10 
times, thus allowing to have a comprehensive set of possible combi-
nations (see Ferlian et al., 2018 for details). In every plot, 140 trees 
were planted at a distance of 1 m in a regular grid to mix species to 
the greatest extent possible (Figure 1c). In order to avoid edge ef-
fects, every plot has a 1.5 m buffer area consisting of the outermost 
tree rows and a core area of 8 × 8 m. A plastic cover was placed on 
the ground to prevent the growth of understory vegetation.

2.2  |  Field sampling

As an extension of the tree-species pair design described in Trogisch 
et  al.  (2021) to study interactions among two directly neighbour-
ing trees, sampling followed the tree-species quadrats design, 
which aims to study the interaction between four trees (hereafter, 
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referenced as tree-species quadrat, TSQ; Figure 1d). In every plot, 
two TSQs were sampled, which resulted in 160 sampled TSQs con-
taining a total of 640 sampled trees.

Sampling took place from mid to late August 2021. From each 
tree, we collected leaves along the interaction line between the TSQ 
partners, that is the focal point where the joint interaction of the four 
individuals is expected to be maximal (Figure 1d). In order to cover the 
trait variation of the whole tree individual, we sampled at five differ-
ent heights. At each height, we cut one fully developed leaf free from 
mechanical or pathogen damage. This resulted in a total of 3200 col-
lected leaves. Immediately after collection, leaves were conserved in 
sealable plastic bags with a moistened tissue. The samples were trans-
ported in an isothermal bag equipped with cooling bags to prevent 
desiccation. In the laboratory, the samples were temporarily stored 
at 6–8°C. In addition to this sampling (hereafter, referred to as ‘reg-
ular’ sampling), we collected a so-called calibration set that we used 
to train models for leaf trait prediction based on spectroscopy. This 
independent calibration set included leaf samples from 20 trees of 
each of the 10 species, resulting in a total of 200 sampled individuals. 
The leaves were collected at random heights and orientations within 
the tree crown across all species richness and mycorrhizal host type 
combinations. To ensure sufficient material for the laboratory analy-
ses, a different number of leaves per tree was sampled, according to 
the size of the species-specific leaves (see Table S1).

2.3  |  Laboratory analyses

For the samples of the calibration set, we determined five morpho-
logical and chemical leaf traits, representing different dimensions 

of plant growth strategy and being key components of the LES 
(Reich, 2014; Wright et al., 2004; Figure 2): specific leaf area (SLA; 
leaf area/leaf dry mass; Kazakou et al., 2006; Niinemets & Kull, 1994; 
Reich et al., 1992; Reich et al., 1997; Reich et al., 1999), leaf dry mat-
ter content (LDMC; leaf dry mass/leaf fresh mass; Niinemets, 1999; 
Niinemets, 2001; Poorter et al., 2009; Poorter & Bergkotte, 1992; 
Westoby et  al., 2002), carbon to nitrogen ratio (C:N; Niinemets 
et  al., 2007; Pérez-Harguindeguy et  al., 2003), carbon content (C) 
and phosphorus content (P; Hevia et  al., 1999; Raaimakers et  al., 
1995; Tuohy et al., 1991). Leaf trait selection was based on previ-
ous analyses on the identification of independent and orthogonal 
sources of leaf trait variation (Figure  S1) and the ability to obtain 
high-quality leaf trait predictions (see Section 2.5). Immediately after 
sampling, the fresh leaves of the calibration samples were weighed 
and scanned with a resolution of 300 dpi. The leaf area of the scans 
was analysed with the WinFOLIA software (Regent Instruments, 
Quebec, Canada). To determine the dry weight, we dried the leaves 
for 72 h at 60°C and weighed them again. Resulting from the leaf dry 
mass and the leaf fresh mass, both LDMC and SLA were calculated. 
Then, we grounded the dried leaves into a homogenous powder. To 
determine the P content, we used a spectrophotometric assay with 
the acid molybdate technique. We analysed C and N contents with 
an elemental analyser (Vario EL Cube, Elementar, Langenselbold, 
Germany) and calculated the C:N ratio.

2.4  |  Near-infrared reflectance spectroscopy

Current chemical analyses on single leaves are usually limited due 
to the lack of sufficient material from individual leaves. Thus, we 

F I G U R E  1  Location of (a) the MyDiv experiment in Germany, (b) plots in the experiment (adapted from Ferlian et al., 2018), (c, d) design of 
the tree species quadrats and (e) description of leaf sampling. As shown in (c), two tree species quadrats (TSQ) per plot were sampled in the 
inner part of the plots (light grey background) in order to avoid edge effects. Leaves from each individual within a TSQ were collected from 
the side pointing towards the focal line where trees interact (d, e). Five leaves were sampled from different heights of the tree, ranging from 
the lowest part of the crown to the top of the canopy.
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used visible–near infrared spectrometry (Vis-NIRS), a technique of 
massive-phenotyping, to predict individual leaf trait values based on 
calibration models (Escudero et al., 2021; Foley et al., 1998). As reflec-
tance depends on the size, density and shape of leaf tissues and their 
chemical compounds (Asner et  al.,  2014; Costa et  al., 2018; Serbin 
et al., 2014), Vis-NIRS can be used for estimating morphological traits 
and leaf nutrients. For all leaves (regular and calibration samples), we 
acquired reflectance spectra with a portable Vis-NIRS device (ASD 
“FieldSpec4” Wide-Res Field Spectroradiometer, Malvern Panalytical 
Ltd, Almelo, Netherlands) in the laboratory immediately after collec-
tion. Reflectance was measured across the full range of the solar radia-
tion spectrum (250–2500 nm), by taking three repeated measures on 
the adaxial side of each leaf while avoiding main veins. The equipment 
was optimized regularly with a calibration white panel (Spectralon, 
Labsphere, Durham, New Hampshire, USA). For each measurement, 
10 spectra were averaged internally to reduce noise. Outlier removal 
of spectral data was performed by using the Local Outlier Factor (LOF) 
method (Breunig et al., 2000) as in Li et al. (2023) and, additionally, a 
visual inspection of the spectra was performed (see Figure S2a).

2.5  |  Leaf traits prediction

Leaf traits prediction and consecutive statistical analyses were 
conducted in the R environment with R version 4.1.3 (R Core 

Team, 2021). As deep learning has recently emerged as a promising 
tool in trait-based ecology (Perry et al., 2022; Vasseur et al., 2022), 
we used a convolutional neural network (CNN) approach for leaf 
trait prediction based on the spectral data. First, input spectra were 
augmented from 2501 to 12,906 features by using transformations 
based on a combination of standard normal variates and Savitzky–
Golay derivatives (Figure S3; Passos & Mishra, 2021). Samples within 
the calibration set were split into a training and a test set which ac-
counted for a proportion of 70% and 30%, respectively. Then, a CNN 
composed of one convolutional layer followed by three dense lay-
ers was fitted to train the samples for every trait (see Figure  S3). 
In order to avoid overfitting, batch normalization was applied after 
the convolutional layer (Vasseur et al., 2022). Hyperparameter tun-
ing for every CNN was performed independently for every trait, by 
adjusting the number of filters, their size for the convolutional lay-
ers, and the number of nodes in the dense layers (see Table S2). For 
model optimization, an Adam algorithm and a loss function based on 
the mean squared error were used (Passos & Mishra, 2022). CNNs 
were trained using a Keras framework and a TensorFlow backend as 
implemented in the ‘Keras’ package (Kalinowski, 2023). We tested 
the predictive ability of the CNNs by assessing the coefficient of 
determination for the predicted and measured values in the test 
set (R2test) and in the whole calibration set (R2model). As technical 
problems occurred during the laboratory analysis of leaf phosphorus 
concentration, we only had a reduced number of calibration samples 

F I G U R E  2 Leaf traits included in our study, ecological function of each trait and literature describing them. Yellow and red colour indicate that 
a trait is indicator of a conservative or an acquisitive strategy, respectively (according to the leaf economics spectrum LES; Wright et al., 2004).
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for this trait. Therefore, to ensure the training of the CNN for this 
trait, we used additional and comparable samples from four decidu-
ous species (Fagus sylvatica, Fraxinus excelsior, Quercus robur, Tilia 
cordata) collected by Proß et al. (2023) in the nearby Kreinitz experi-
ment. This addition of samples aimed to represent the broadest trait 
space possible, in order to better reflect possible variation in our 
samples, as recommended in Burnett et al. (2021). Mean R2model 
of the trained CNNs for each trait was 0.83 ± 0.10 (mean ± standard 
deviation), with a maximum R2model for SLA (0.94) and minimum 
for phosphorus (0.71; see Figure S4). Eventually, these trained CNNs 
were used for predicting trait values of leaves from the regular set 
of samples. After leaf trait prediction, we excluded ca. 175 predicted 
trait values for every trait as they were lying outside a 95% confi-
dence interval around the predicted values' distribution (Figure S2b).

2.6  |  Mycorrhizal fungal richness

In order to quantify mycorrhiza fungal richness associated to the 
trees, we used the metrics of arbuscular mycorrhizal and ecto-
mycorrhizal fungi abundance measured in Ferlian et al.  (2021; see 
Figure S5). To assess AMF and EMF richness, 200 root samples, one 
per plot and tree species, were taken in November 2019. In total, 
Ferlian et  al.  (2021) collected root samples from all species in all 
plots (excluding 12 samples that could not be assigned reliably to the 
correct tree species and, therefore, were excluded). They collected 
rootlets for every sampled tree and harvested those rootlets with 
10 EM root tips in the case of EM trees or 10 lateral roots in the 
case of AM trees. Fungal species were identified by using Illumina 
sequencing (see Ferlian et al. (2021) for details). Based on these data, 
for every tree occurring in a plot, we calculated rarefied richness of 
AMF and EMF (hereafter, referenced as AMF and EMF richness) as 
implemented in the ‘vegan’ package. AMF and EMF reads per sample 
were rarefied to the minimum number of reads in every mycorrhi-
zal type (Figure S5). Additionally, to avoid potential collinearity be-
tween predictors in further analyses, AMF and EMF richness where 
rescaled between 0 and 1 for every tree species, with 0 being the 
minimum richness of a specific fungal type (AMF or EMF) associated 
to a specific tree species, and 1 the highest richness of the same 
fungal type associated to the tree species.

2.7  |  Statistical analyses

In order to identity the main sources of trait variation, differences 
between mycorrhizal types, and to better understand changes in 
trait variation in further analyses, we first performed a principal 
component analyses of the predicted traits in every leaf. We used 
the prcomp function from the ‘stats’ package.

To characterize changes in the resource-use strategy of individ-
ual trees, we calculated the mean value of every trait in every tree. 
We tested the interacting effect of species richness, mycorrhizal fun-
gal richness (AMF richness and EMF richness), and host type (either 

AM or EM trees) on mean trait values per tree by performing linear 
mixed-effects models. The models included the mean trait value as 
response variable, and the interaction effect of the log2-transformed 
species richness with both AMF and EMF richness and with the host 
type (AM or EM tree species) as fixed effects. Tree species identity 
as well as TSQ nested in plot, in turn nested in species composition 
were added as crossed random effects. We first fitted a “beyond 
optimal” model, which included all the fixed effects. By including 
subsets of the predictors, all possible models that varied in their 
fixed effects (including the intercept only model) were fitted using 
a maximum likelihood estimator. For all these models, the Akaike in-
formation criterion corrected for small sample sizes (hereafter refer-
enced as AICc) was calculated. We selected all models with ΔAICc 
lower than 2 as competing models holding similar information, and 
followed the principle of parsimony to prioritize the simplest model 
with the smallest number of predictors among all competing mod-
els (Burnham & Anderson, 2004; Richards et al., 2011). Finally, we 
assessed the significance of factors by comparing models with and 
without each factor selected in each model using a likelihood ratio 
test (Zuur et al., 2009). We used diagnostic plots of the residuals to 
study the assumptions of normality, homoscedasticity and linearity 
in our models: residuals versus fitted values plots, histograms of the 
residuals, and Q-Q plots for the deviance of the residuals (Figure S7). 
In order to avoid biases in the estimation of mean trait values, for 
every trait, only trees for which there was information available for 
the five leaves were considered for the analyses. Therefore, the final 
number of trees ranged between 499 and 521, depending on the 
trait considered (Table S3).

In order to assess the trait diversity for each tree, we used 
two functional indices which reveal complementary indices in the 
functional hypervolume: (1) functional richness (FRic) and (2) func-
tional dispersion (FDis). FRic aims at detecting reductions of the 
niche space occupied by individuals (Botta-Dukát & Czúcz,  2016; 
Cornwell et al., 2006), while FDis describes whether the distribution 
of leaves in a trait space of a tree is clustered or dispersed (Laliberte 
& Legendre,  2010). To calculate these indices, we first obtained a 
leaf-by-leaf trait distance matrix per tree by using Euclidean dis-
tance and, next, for every tree we computed both indices through 
a principal coordinate analysis (PCoA) based on this distance ma-
trix. In order to test the interacting effect of species richness, AMF 
richness, EMF richness and host mycorrhizal type (either AM or EM 
trees) on the functional indices, we followed the same approach as 
described above for the mean trait values. We also checked the nor-
mality, linearity and homoscedasticity of the residuals by using diag-
nostic plots (Figure S8). Again, to avoid biases in the assessment of 
the functional indices, for the analyses we only used trees for which 
there were less than four missing values across all leaves and traits.

3  |  RESULTS

The first three axes of the PCA explained more than 80% of the 
total variation in our dataset (35% explained by the first axis, 25% 
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explained by the second axis, and 21% explained by the third axis; 
see Figure 3). The first axis was strongly related to LDMC, leaf C, and 
SLA (with loadings 0.66, 0.54, and −0.46, respectively). The second 
axis was mainly related to leaf C:N, followed by SLA and leaf C (with 
loadings 0.70, −0.54, and −0.42 respectively). Finally, the third axis 
of the PCA was related to leaf P and C:N (with loadings 0.82 and 
−0.47, respectively). In this PCA, AM and EM trees were clearly sep-
arated along the second axis, with AM trees displaying higher values 
for leaf C:N. In contrast, the two groups were not divided along the 
first and third PCA axes.

Changes in mean values were found for SLA, C:N and C in the 
simplest models (Figure  4), although the drivers of these changes 
were different in every case (Figure S9a, c, d; Table S4). In the case of 
SLA, there was a significant effect of tree richness (p = 0.01; Table 1), 
suggesting that there was an increase in mean SLA with tree richness 
(Figure 4a). The simplest model for C:N suggests that AMF richness 
had a significant negative effect on mean C:N (p = 0.04; Figure 4b). 
In addition, we found that AM trees had higher values of C:N com-
pared to EM trees (p < 0.01). Accordingly, the results for C revealed 
that EM trees displayed higher values of this trait compared to AM 
trees (p = 0.02; Figure 4c). Finally, among our results we did not find 
any effect of our predictors on mean LDMC and P in the simplest 
models.

For both functional indices, we found an effect of species rich-
ness (Figure S10; Table S5) with a significant decrease in different 
properties of the hypervolume along the tree richness gradient 
(p < 0.01 and p = 0.04 for FRic and FDis, respectively; Figure 5).

4  |  DISCUSSION

By using five traits of the LES from 485 to 514 tree individuals, 
depending on the trait, in a tree diversity experiment in Central 
Germany, we investigated how mean trait values and intraindividual 
trait diversity of AM and EM trees vary in response to the interacting 
effect of tree and mycorrhizal fungal richness. We found a consist-
ent decrease of trait diversity within the canopy with increasing tree 
richness, whereas tree richness only had an effect on trees' mean 
SLA. Moreover, a key result was that aboveground traits, such as 
C:N, can also be affected by soil fungal richness.

Assuming that niche differentiation is determined by both tree 
richness and mycorrhizal fungal richness, we expected that both 
components interacted in driving intraspecific responses in our ex-
periment. However, we found that tree and mycorrhiza diversity 
acted on different leaf traits. First, effects of tree richness on the 
growth strategy of trees were observed for SLA, which is related 
to the photosynthetic rate of the tree and, therefore, is one of the 
main proxies for a fast growth strategy (Reich et  al.,  1997; Wright 
et al., 2004). The increase of SLA in response to plant diversity has 
been described before and seems to respond to the complementar-
ity in the use of resources (Felix et al., 2023). Thus, the decrease in 
competition for resources in mixtures would allow trees to show a 
more acquisitive strategy. Despite the lack of significant effects for 
other traits, we observed negative trends of LDMC in response to 
tree diversity (see Figure S9b), which also seem to be aligned with the 
changes from a conservative to an acquisitive strategy as a result of 

F I G U R E  3  Main axes of a principal component analyses (PCA) for five leaf functional traits, including plots for (a) the first against the 
second component, (b) the first against the third component and (c) the second against the third component. Based on the loadings of 
every PCA axis, the first axis represents the variation in growth strategy, the second the variation in nitrogen content and the third one the 
variation in P content. The size of every plot is proportional to the portion of the variance explained by every combination of two axes (60% 
for the first and the second component, 55% for the first and the third component, and 45% for the second and the third component). The 
colour of the symbols represents the host mycorrhizal type (green: AM trees, blue: EM trees). Density plots for the distribution of the two 
mycorrhizal types in the main axes of the PCA are included in the margins of the PCA plots with the percentage of shared area between 
density distributions indicated on them.
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increasing complementarity in mixtures (Davrinche & Haider, 2021). 
Also, in the specific case of trees, SLA is strongly dependent on the 
availability of the light within the canopies. Therefore, a higher can-
opy stratification can lead trees to maximize photosynthesis in light-
limited environments by decreasing leaf toughness and increasing 
SLA (Roberts & Paul, 2006; Williams et al., 2020). Indeed, in the case 
of our experimental site, the higher levels tree diversity are associated 
to a higher stratification that may contribute to explain the changes 

in SLA observed here (Ray et al., 2023). In addition, the decrease of 
C:N in response to AMF richness could be related to a better supply 
of nitrogen to the tree when the richness of these fungi is high as 
suggested by Powell and Rillig (2018). As AMF are efficient in nutrient 
uptake in dry soils (Querejeta et al., 2003) this effect could be espe-
cially noticeable in our study site where the precipitation is rather low 
(mean annual precipitation of 484 mm). However, this remains specu-
lative as we are lacking empirical evidence regarding the improvement 

F I G U R E  4  Main effects obtained in the 
simplest models for the mean values of (a) 
SLA, (b) C:N and (c) C content for AM and 
EM trees (in green and blue, respectively). 
Shaded areas in (a) and (b) represent the 
confidence intervals at 95%. Density 
plot (b) and raincloud plot in (c) indicate 
differences between AM and EM trees in 
terms of C:N and C, respectively. Large 
dots in (b) and (c) indicate the mean values 
of AM (green) and EM (blue) trees.
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of soil nitrogen uptake by AMF in our experimental site. Further, it is 
remarkable that this pattern for C:N was encountered both for AM 
and EM tree species, which suggests that, despite the higher host-
specificity of AMF in our study site (Ferlian et al., 2021), EM trees are 
not only linked to AMF through dual mycorrhization (see Figure S12; 
Heklau et al., 2021; Teste et al., 2019), but may also benefit from AMF 
richness. For instance, the dual mycorrhization of EM trees might be 
especially beneficial during dry periods (Querejeta et al., 2009), which 
might explain the advantage of these trees during droughts shown in 
Sachsenmaier et al. (2024) for our study site. Last, EMF richness did 
not have any significant effect on the traits studied, which suggest that 
even though EMF diversity can affect the uptake of nutrients (Khokon 
& Meier, 2023), this does not necessarily have an effect on the leaf 
strategy of the tree. All these changes in leaf functional traits, even 
though seem to be rather small and not significant for all traits, could 
have an effect on ecosystem functioning. First, while our approach 
of leaf trait prediction allows processing large sample sizes, it might 
underestimate the responses of leaf traits. Indeed, this may be the 
case of C and P, for which the higher impreciseness of the prediction 
(R2 test is 0.65 and 0.66, respectively) might fail to detect a correlation 
with the predictors (Burnett et al., 2021). Further, intraspecific shifts 
in leaf traits, as the ones detected for SLA and N, may have an effect 
on different facets of ecosystem functioning (e.g. leaf herbivory, light 
capture) even if the variation within species is small compared to the 
variability found among them (Chacón-Labella et al., 2023; Williams 
et  al.,  2020). That is why, the effects of intraspecific trait variation 
on ecosystem functioning deserve further attention to better under-
stand diversity effects in forests.

Recent studies have shown that the ability of plants to display 
different trait syndromes in repeated organs of the same individ-
ual may have important ecological and evolutionary implications 
(Herrera, 2017; Sobral, 2023; Sobral & Sampedro, 2022). Indeed, our 
approach, which suggests that for evaluating the growth strategy of 
trees not only shifts in mean trait values should be considered but 
also the changes in the phenotypic variability of leaves within the 
canopy (Escribano-Rocafort et al., 2017; Proß et al., 2021), reveals 
that the intraindividual diversity of leaf traits changes as a result of 
tree-tree interactions. Also, these changes in intraindividual diver-
sity rarely act on single traits, but occur in different dimensions of 
the trait space (see Figure S11). Our results suggest that higher in-
traindividual diversity could be of great importance in monospecific 
communities where only intraspecific interactions are present. As 
an explanation for this, we propose that intraindividual trait diver-
sity may help to reduce niche overlap between conspecific neigh-
bours that directly interact (Castro Sánchez-Bermejo et al., 2023). 
Additionally, in the case of species-rich communities and as an ex-
tension of the framework proposed for intraspecific trait variation 
(Helsen et al., 2017), the reduced intraindividual trait diversity may 
contribute to niche packing (i.e. high phenotypic similarity between 
conspecifics from the same population; Violle et al., 2012), which is 
an adaptative strategy to reduce niche overlap between heterospe-
cific neighbours. Even though we suggest that our results explain 
the importance of intraindividual trait variation for avoiding niche TA
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overlap, we should also consider two complementary hypotheses 
to explain our results, which are: (1) intraindividual trait diversity in 
leaves may improve plant performance in intraspecific interactions 
by, for example, improving light capture (Møller et  al.,  2022), and 
(2) intraindividual trait diversity could be a mechanism to cope with 
unpredictability of the environment (March-Salas et  al.,  2021) in 
monospecific communities, as these tend to show less environmen-
tal stability (Mori et al., 2017).

Previous literature supports that AM and EM tree species differ 
in their strategy for resource acquisition and suggest that AM trees 

have a fast and acquisitive strategy, while EM trees show a slow 
conservative strategy (Deng et al., 2023; Shi et al., 2020; Tedersoo 
et  al.,  2020; Tedersoo & Bahram,  2019). Specifically, it has been 
suggested that the higher acquisitiveness of AM trees could rely on 
the better mobilization and use of nutrients in their inorganic form 
(Averill et al., 2019; Phillips et al., 2013). Nevertheless, our results 
provide limited support to such general assumptions, and only for 
leaf C content, we found a significant difference which suggests 
that EM species invested more in leaf support. Rather, among the 
species included in the experiment, it seems that growth strategies 
are species-specific within the host mycorrhizal types, and there are 
AM trees with more acquisitive strategies (e.g. Fraxinus excelsior; see 
Figure S13), while others have a conservative strategy (e.g. Sorbus 
aucuparia). The same applies to EM species (Tilia platyphyllos, as an 
example, has an acquisitive strategy, while Fagus sylvatica has a more 
conservative strategy). Instead, as reflected by the PCA, host mycor-
rhizal types seem to mainly differ in C:N. Thus, EM trees seem to be 
more efficient in capturing nitrogen (Fellbaum et al., 2012; Tedersoo 
& Bahram, 2019), which explains the higher nitrogen content in the 
leaves resulting in the lower C:N ratio in EM as compared to AM 
trees (see Figure S14). While the main differences found between 
AM and EM trees suggest differences in N uptake, our results give 
only limited support to the differences in leaf P. However, we had 
expected differences in leaf P between the two host mycorrhizal 
types, because AM trees are described as efficient P capturers as 
a result of the symbiosis with AMF (Rosling et al., 2016). A possible 
explanation for the absence of this relationship in our study might be 
the soil type at the MyDiv experimental site, which was a nutrient-
rich Chernozem, and the former land use, which was intensive ag-
ricultural use with high P fertilizer application (Ferlian et al., 2018). 
Finally, contrary to other studies on AM and EM trees, our exper-
imental design did not include any gymnosperm species, which are 
EM trees in most cases (Averill et al., 2019) and show a conservative 
strategy in their leaf strategy (Díaz et al., 2016). Thus, our study sug-
gests that the common belief in ecology of EM trees being more 
conservative than AM trees is not necessarily true, and, in the case 
of the temperate forests of central Europe, the higher conservative-
ness of EM trees could arise from the differences between gymno-
sperms and angiosperms instead of the mycorrhizal type.

5  |  CONCLUSIONS

Our work has novel implications to understand the assembly of for-
ests and, specifically, how trees modify their resource-use strategy 
in response to biotic interactions, not only by shifting their trait val-
ues, but also the diversity of phenotypic syndromes within individual 
trees. In addition, we found little empirical support for our hypoth-
eses, which related trees' resource-use strategy to the interactive 
effect of tree and mycorrhizal fungal richness via complementarity 
in the use of resources (Barry et  al.,  2019). In contrast, our study 
shows that tree and mycorrhizal diversity act on different traits and, 
therefore, suggest that tree diversity is not enough to explain all 

F I G U R E  5  Main effects obtained in the simplest models for (a) 
functional richness (FRic) and (b) functional dispersion (FDis) of 
individual trees. Grey areas represent the confidence intervals at 
95% and symbols the observed values for the two host mycorrhizal 
types (green: AM trees, blue: EM trees).
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intraspecific responses in forests but better knowledge on the tree-
mycorrhiza interactions is needed to more comprehensively under-
stand how trees respond to biotic interactions.
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Figure S1. Principal component analyses and correlations between 
nine leaf functional traits.
Figure S2. Data cleaning process for the spectral and predicted trait 
data.
Figure S3. Analytical framework used to generate convolutional 
neural networks (CNNs) to predict leaf traits from spectral data 
based on the calibration set.
Figure S4. Correlation between predicted and measured traits 
values to test the quality of convolutional neural networks (CNNs) 
to predict leaf traits from spectral data.
Figure S5. Violin plots for AMF richness and EMF richness in the 
different mycorrhiza treatments in the MyDiv experiment.
Figure S6. Rarefaction of arbuscular mycorrhizal fungal (AMF) and 
ectomycorrhizal fungal (EMF) richness.
Figure S7. Diagnostic plots for assumptions of normality, 
homoscedasticity and linearity in the linear mixed-effects models 
for the mean values of traits.
Figure S8. Diagnostic plots for assumptions of normality, 
homoscedasticity and linearity in the linear mixed-effects models 
for functional richness (FRic) and functional dispersion (FDis).
Figure S9. Competing models for the drivers of the mean value of 
SLA, LDMC, C:N, C, and P.
Figure S10. Competing models for the drivers of indices of 
intraindividual trait diversity.
Figure S11. Results for the drivers of the variance of SLA, LDMC, 
C:N, C and P.
Figure S12. Boxplots for the AMF and EMF richness associated with 
every tree species.

Figure S13. Two main axes of a principal component analyses (PCA) 
for five leaf functional traits for 10 tree species.
Figure S14. Results for the drivers of the mean of nitrogen leaf 
content.
Table S1. Tree species in the MyDiv experiment and their mycorrhizal 
type.
Table  S2. Layers and hyperparameters used for building a 
convolutional neural network for every trait.
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