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Abstract

The main focus of this thesis lies on elementary steps of Optimal Experi-

mental Design (OED). In general, OED aims to determine operating con-

ditions which are expected to provide informative measurement data. Here,

the term informative depends on the intended task. In case of parameter

identification problems, informative data correlate with precise parameter

estimates and reliable simulation results, respectively. On the other hand,

another objective in the framework of modelling is to select the most plau-

sible model candidate from a pool of various model candidates/hypotheses.

In this field, informative data are associated with measurements which fa-

cilitate the actual model selection process.

Indeed, these two strategies might be different in their outcomes, but both

depend critically on the credibility of the applied algorithm for uncertain-

ty propagation. Therefore, the Unscented Transformation (UT) approach

as an alternative to standard approaches of uncertainty propagation is re-

viewed in detail. It is demonstrated that the UT method outperforms the

linearisation concept in precision while utilising a low level of computatio-

nal load compared to Monte Carlo simulations. In practice, when applied

to OED problems for parameter identification the UT approach contributes

to the overall performance beneficially.

Moreover, in case of model selection issues the UT method as part of the

Unscented Kalman Filter enables an online model selection routine. That

means, in parallel to the experimental run the operating conditions are op-

timised simultaneously. In doing so, the process of model selection becomes

more robust against a potential poor initial guess of initial conditions and/or

estimates of model parameters.

Finally, the concept of the flat input based parameter identification is in-

troduced. It is shown, that by evaluating cost functions based on flat in-

puts instead of simulation results the parameter identification routine can



be speeded up significantly. This effect is achieved by replacing the cpu-

intensive numerical integration algorithms for solving the underlying model

equations by a less computationally cumbersome differentiation of surrogate

functions. By analysing the associated cost functions it is illustrated that

the flat input based expressions are likely to be more suitable candidates

for a proper parameter identification, i.e., they may possess less local mi-

nima in comparison to the standard approach and, additionally, they are

independent of the initial conditions. The general relation of the flat input

concept to OED is given by a closer look at parameter sensitivities.



Kurzfassung

In der vorliegenden Arbeit werden wesentliche Aspekte aus dem Bereich

der sogenannten Optimalen Versuchsplanung betrachtet und weiterentwi-

ckelt. Im Allgemeinen zielt die Optimale Versuchsplanung darauf ab, expe-

rimentelle Operationsbedingungen zu bestimmen, von denen man erwartet,

informative Messdaten zu erzeugen. Hierbei lassen sich folgende Fälle un-

terscheiden. Im Bereich der Parameterbestimmung werden Messdaten als

informativ angesehen, wenn sie möglichst präzise Parameterschätzungen

ermöglichen. Auf der anderen Seite kann die Optimale Versuchsplanung

auch darauf abzielen, den geeignetsten Modellkandidaten aus einem ganzen

Satz möglicher Modellansätze/-hypothesen zu wählen. Folglich werden ge-

wonnene Messdaten als informativ betrachtet, wenn sie die Modellselektion

erleichtern.

Die Ziele als auch die ermittelten Operationsbedingungen beider Varian-

ten sind somit durchaus verschieden. Beiden Ansätzen ist jedoch gemein,

dass der Erfolg der Optimierung maßgeblich von der zuverlässigen Beschrei-

bung und dem genauen Propagieren von (Mess)Unsicherheiten abhängt. Um

dieser Anforderung gerecht zu werden, wurde das Konzept der “Unscented

Transformation” (UT) auf ihre Eignung für die Optimalen Versuchsplanung

geprüft. Es wird gezeigt, dass der UT Ansatz dem Standardkonzept basie-

rend auf Linearisierung in puncto Genauigkeit überlegen ist. Weiterhin wird

demonstriert, dass der UT Ansatz im Vergleich zur Monte Carlo Simulati-

on mit einem geringeren Rechenaufwand auskommt. Somit liefert die UT

Methode im Bereich der Optimalen Versuchsplanung eine praktikable als

auch genauere Berücksichtigung von (Mess)Unsicherheiten. Die resultieren-

den Optimalen Versuchsplanungen sind somit eher in der Lage, informative

Messdaten zu generieren.

Darüber hinaus wird aufgezeigt, wie der UT Ansatz als integraler Bestand-

teil des Unscented Kalman Filters genutzt werden kann, um einen online-

fähigen Algorithmus zur Modellselektion zu implementieren. In der Praxis



bedeutet dies, dass parallel zur eigentlichen Versuchsdurchführung die Ope-

rationsbedingungen optimiert werden. Hierdurch wird der Selektionsprozess

robuster gegenüber ungenauen Anfangsbedingungen bzw. schlecht bestimm-

ten Modellparametern.

Des Weiteren wird das Konzept der sogenannten flachen Eingänge zum

Zweck der Parameterbestimmung implementiert. Gütefunktionale, welche

mit geeigneten Parameteroptimierungsverfahren ausgewertet werden, sind

hierbei Funktionen der flachen Eingänge. Im Vergleich zu dem Standardan-

satz, d.h. dem Auswerten des Gütefunktionals basierend auf Simulations-

ergebnissen, kann eine deutliche Rechenzeitreduktion festgestellt werden,

da der rechenaufwendige Integrationsschritt der Modellgleichungen durch

einen weniger aufwendigen Differentiationsschritt von Ersatzfunktionen er-

setzt wird. Eine genauere Analyse der Gütefunktionale zeigt darüber hinaus,

dass der vorgestellte Ansatz im Bereich der Parameteridentifizierung weitere

vorteilhafte Eigenschaften liefert. So ist an einem Beispiel verdeutlicht, dass

die Auswertung des Gütefunktionals basierend auf den flachen Eingängen

im Vergleich zum Standardansatz zu weniger lokalen Minima führen kann.

Den Zusammenhang zwischen der Verwendung von flachen Eingängen und

der Optimalen Versuchsplanung wird anhand von Parametersensitivitäten

demonstriert.



Acknowledgements

Above all I want to thank my supervisor Prof. Dr. Michael Mangold. He

has taught me to get not lost in the vast, (for me) unexplored ocean of

scientific literature in the field of optimal experimental design. His guid-

ance, understanding, well considered ideas, and patience during my time as

a research assistant at the Max Planck Institute for Dynamics of Complex

Technical Systems in Magdeburg are the essentials for finishing my thesis

successfully. He has been a true mentor - not only for my professional life.

I am also very grateful to Prof. Dr. Achim Kienle who cordially welcomed

me as a member in his group, Process Synthesis and Process Dynamics,

at the MPI. He has proved a recipe for the excellent working conditions

at the MPI as well as for the fruitful connection to the Otto-von-Guericke-

University Magdeburg.

I owe a very important debt to Prof. Dr. Rudibert King for acting as a

referee for this thesis. The thesis greatly benefited from his detailed com-

ments.

Moreover, many people have contributed to my personal and professional

time at the MPI. Here, I would like to specially thank André Franz, Katha-
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1

Introduction

1.1 Research Motivation

The utilisation of mathematical models to analyse complex systems is quite common

in various research fields. One essential step in the process of model development is the

parameter identification (PI) routine, i.e., the determination of unknown model param-

eters by minimising the difference between simulation results and measurement data.

However, even by assuming the quite unrealistic case of perfect measurement data,

i.e., the measurements are provided continuously without any measurement noise, the

actual parameter identification process might be challenging. For example, different

parameter configurations may result in similar simulation outcomes. That is, a unique

set of parameter estimates cannot be warranted in principle. In this case, the under-

lying parameter identification problem is ill-posed and may only be solved properly by

model reformulation or by adding different measurement quantities. In literature, this

problem is known as theoretical/structural parameter identifiability analysis [WP97].

The situation gets worse by addressing measurement imperfections. In practice, mea-

surement data are limited to discrete sample time points and, additionally, the data

are corrupted by measurement noise. Indeed, these flaws might be compensated for by

sophisticated measurement devices - but not entirely:

“Because I had worked in the closest possible way with physicists and engi-

neers, I knew that our data can never be precise.

Norbert Wiener (November 26, 1894 - March 18, 1964) [Lev66] ”
Hence, the measurement data samples have to be treated as random variables instead

of deterministic quantities. In consequence, the uncertainty about the measurement

data has a serious impact on the identified model parameters. In the worst case, the
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parameter identification routine may strongly amplify the uncertainty of the measure-

ment data to some parameter estimates. Thus, even in case that the parameters are

identifiable in principle the estimates might be useless due to an extreme parameter

uncertainty. A resulting mathematical model may suffer in prediction. That means,

although the model captures the essential features of the measurement data which have

been applied to the parameter identification step, the parametrised model diverges at

operating conditions which have not been part of the preceding parameter identification

step. In short, the parametrised model cannot be generalised credibly.

The situation gets worse additionally by taking into account the model structure uncer-

tainty. In general, any model imitates the described process approximately by modelling

the most essential steps of interest but ignoring unimportant details. The universal

dilemma in modelling can be summarised by the quotation given below.

“Since all models are wrong the scientist cannot obtain a “correct” one by

excessive elaboration. On the contrary following William of Occam he should

seek an economical description of natural phenomena.

George E. P. Box (October 18, 1919 - March 28, 2013) [Box76] ”
By reading the previous sentences one might get the impression that modelling is not

worth worrying about, because any derived model will be just a crude approximation

of the real process and potential simulation results are likely to suffer in precision,

too. Nonetheless, in practice the last decades have shown: Modelling pays! Here, the

rapidly evolving research field of system biology confirms this statement impressively.

In spite of the potential pitfalls in modelling, mathematical models have demonstrated

to be a versatile tool in modern biology. The following research achievement is se-

lected to demonstrate the success of model-based systems biology substitutionally. In

[CCFCO12], a dynamical model has revealed a plausible explanation to the so-called

TGF-β paradox. The TGF-β, a cell process regulator, is known to be a tumour suppres-

sor in mammalian cells. Measurement data analyses, however, have indicated a strong

correlation between the severity of cancer and an increased level of TGF-β, i.e., cancer

patients with the worst prognosis have the highest level of TGF-β. Thus, TGF-β has

been considered as a potential cause of cancer, i.e., to be a tumour promoter in cancer

cells - an obvious contradiction to its tumour suppressor role. The derived dynamical

model reveals a more plausible explanation: tumour cells become gradually insensitive

to TGF-β. To “steer” a cancer cell, therefore, needs an increased level of TGF-β. By
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implication, TGF-β is not the cause but an effect of cancer - a conclusion which can

be hardly drawn by pure data analysis. The result of this study can be generalised as

follows: the dynamic interplay of essential elements in living systems can be captured

at best by the use of dynamic models.

As a consequence, advanced branches of systems biology, e.g., synthetic biology [GvO09,

CL12, RMS12] and systems medicine [WAJ+13, CS13], employ mathematical models to

a large extend, too. Thus, to ensure meaningful model-based inferences the imperfect

measurement data have to be utilised in the most efficient way. An experimental run

has to be performed at operating conditions which provide the most informative data by

evaluating Optimal Experimental Design strategies. In doing so, there is a fair chance

that the uncertainty of model parameters and simulation results can be reduced to a

reasonable level. In conclusion, Optimal Experimental Design is an essential component

in the framework of model development and the major topic of this thesis.

1.2 Optimal Experimental Design

In the field of systems biology mathematics is of vital importance. For instance, math-

ematical algorithms are put in operation to prepare raw measurement data (data pre-

processing), to test different hypotheses statistically, or to describe/explain analysed

processes by dynamical models. Thus, mathematical concepts aim to enrich our un-

derstanding of real world phenomena:

“People who wish to analyze nature without using mathematics must settle

for a reduced understanding.

Richard P. Feynman (May 11, 1918 - February 15, 1988) [Fey13] ”
In this thesis, the focus is on dynamical models solely. In detail, models based on

ordinary differential equations (ODEs) are evaluated. In systems biology literature,

ODEs are widely applied to extend or to confirm our knowledge of metabolic, genetic,

and/or signalling processes in biological systems. Clearly, model-based inferences are

only meaningful in case of predictive models. Thus, the overall credibility of simulation

results has to be assessed systematically, and has to be improved by Optimal Experi-

mental Design (OED) in case of need. Generally, one distinguishes between OED for

parameter identification and OED for model selection. Both strategies are explained

in more detail below.
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1.2.1 OED for Parameter Identification

In practice, measurement data are affected by measurement noise which leads to some

uncertainty of parameter estimates [WP97]. This fact has a strong impact on the model

quality, because only parameter estimates with small variances are likely to ensure sim-

ulation results with a highly predictive power, see Fig. 1.1 for illustration purposes.

Therefore, to avoid non-predictive / non-meaningful models, informative measurement

data have to be utilised in the process of parameter identification. Here, Optimal Ex-

perimental Design (OED) comes into play. OED for parameter identification aims to

identify operating conditions of experiments which are expected to ensure the most in-

formative data. The general basics of OED in the field of system biology can be found

in [PP07, Pro08, FM08, KT09, AWWT10] and references therein.

In general terms, OED consists of two sequential steps: (i) to determine the statistics

of parameter estimates which are the result of a parameter identification algorithm by

evaluating available experimental data, and (ii) to provide strategies to minimise these

parameter uncertainty. That is, to adapt future experiments for the purpose of infor-

mative data. These steps have to be reiterated until a sufficient parameter accuracy

is achieved. The overall OED performance depends on the quality of the determined

parameter statistics. For instance, a frequently applied method in parameter statistics

is based on the inverse of the Fisher Information Matrix (FIM) and the Cramer-Raó

inequality [Kay93, Pro08, FM08]. In case of Gaussian noise and linear model parame-

ters the FIM provides correct results of the parameter variances [Kay93]. Most applied

models in systems biology, however, are non-linear in their parameters. This, in turn,

can cause that the FIM may lead to poor approximations of the parameter statis-

tics. To overcome this limitation, various methods have been developed to improve the

calculation of the associated parameter uncertainties. In the majority of cases these

approaches are based on Monte Carlo simulations [JSMK06]. This kind of implementa-

tion, however, has an increased computational load, which tends to prohibit their use

in an iterative process like OED. That is, the parameter statistics has to be determined

several times as sub-part of an optimisation routine. In the field of OED there is a

strong need of reliable uncertainty approximation approaches which ensure a manage-

able computational load additionally. For this purpose, the Unscented Transformation

(UT) is presented as a promising and versatile alternative. Additionally, it is demon-

strated how the UT approach can be applied for the purpose of a parameter sensitivity

analysis. That is, to figure out those parameters which have the strongest impact to
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simulation results. Moreover, the UT method is put in operation to determine the

uncertainty of simulation results explicitly. In doing so, the simulation uncertainties

can be incorporated in OED in a more credible fashion.
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Figure 1.1: Suboptimal Experimental Design vs. Optimal Experimental Design. From
top to the bottom, the flowchart of model parametrisation is illustrated according to: (a)
the generation of measurement data by experimental runs, (b) the parameter identification
step, and (c) the associated simulation results. In (a) the uncertainty of measurements is
obvious. For example, experimental runs for a Suboptimal Experimental Design provide
slightly different measurement data samples. The same is true for the Optimal Experimen-
tal Design. At suboptimal operating conditions, however, the data uncertainty is strongly
amplified to the parameter estimates (b) as indicated by the large confidence interval box.
Subsequently, the parameter uncertainty may result in a severe variation of simulation
results (c) at operating conditions that have not been part of the former parameter iden-
tification step. In case of optimal operating conditions, the amplification of uncertainties
can be reduced to an acceptable level. That is, measurement data provide the most pre-
cise parameter estimates for those parameter candidates which have the strongest impact
to simulation results. In general, there is no need to identify all parameters at the same
accuracy, see the (b)-row of the Optimal Experimental Design column.
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1.2.2 OED for Model Selection

Due to the complexity of the analysed processes mathematical models capture only

the essential features of interest. This approximate representation, which is usually

combined with a vague knowledge of basic processes, leads in many cases to a variety

of potential model candidates which describe the real process almost equally well. To

determine the most plausible model candidate is the objective of model selection or

model discrimination methods. If at given operating conditions, however, no sufficient

discrimination can be achieved, Optimal Experimental Designs (OED) for model selec-

tion may provide a remedy.

In detail, OED for the purpose of model selection searches for operating conditions

which facilitate the overall selection process. Frequently, the underlying algorithms of

OED are based on statistics and/or information theory [LBS94, BA02, MC04, KFG+04,

DBMM+11]. These approaches have in common that the measurement data are evalu-

ated in a batch mode. Thus, the measurement data are only processed after the entire

experimental run has been finished. From the perspective of robust OED strategy,

however, the immediate utilisation of measurement data might be desirable [KAG09].

To address this issue, an online model selection framework is presented in this thesis.

Here, the Unscented Kalman Filter (UKF) provides statistical information which is

used to assign probability values to every model candidate. These probability values

are immediately updated as soon as new measurement data become available. More-

over, during the experimental run the process is steered in a fashion which maximises

the differences in these candidates by evaluating a suitable cost function in real time.

To overcome limitations caused by parameter uncertainties the most sensitive model

parameters are simultaneously estimated in the course of the model selection frame-

work. The combined application of the online framework and the joint estimation of

sensitive model parameters provides an optimal usage of measurement data , i.e., the

overall number of experiments might be reduced significantly.

1.3 Structure of the Thesis

The structure of the remaining chapters of the thesis is outlined as follows, see Fig. 1.2

for the illustration of the main topics.
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Chapter 2 - Quantification and Propagation of Uncertainty

The general problem of uncertainty quantification and propagation is introduced. A

short review about the most frequently applied uncertainty propagation methods is

the starting point for a detailed look on the Unscented Transformation. That means,

the origin of Unscented Transformation, its mathematical basics, as well as the associ-

ated assets and drawbacks for the intended task of Optimal Experimental Design are

reviewed.

Chapter 3 - Optimal Experimental Design for Parameter Identification

First, the basics about Optimal Experimental Design for the purpose of parameter

identification are summarised. It is stressed that the overall OED performance depends

on the uncertainty approximation of the quantity of interest, e.g., model parameter

and simulation results. Thus, the focus is on the influence of approximation errors on

OED results. In this context, the Unscented Transformation approach demonstrates

its superior approximation power while keeping the computation demand on a feasible

level.

Chapter 4 - Optimal Experimental Design for Model Selection

The challenging problem of model selection is addressed. Statistics about simulation

results are of essential relevance, too. Thus, the Unscented Transformation has a key

role for the proposed model selection algorithm. Moreover, the measurement data

samples are processed in a online fashion. That is, in parallel to the experimental

run the operating conditions are optimised simultaneously. In doing so, the overall

framework of model selection becomes more robust against a potential poor initial guess

of initial conditions and/or estimates of model parameters. In cases where no online

measurements can be provided, the Overlap approach is presented as an alternative.

Here, too, the Unscented Transformation is a primary ingredient.

Chapter 5 - Flatness Approach for Parameter Identification

Some serious shortcomings of the traditional parameter identification philosophy are

discussed. For example, by providing simulation results for any parameter combination

which is explored by the parameter optimisation algorithm turns the actual parameter

identification step into a computational demanding process. Thus, the concept of flat

inputs is introduced to overcome potential flaws of the traditional approach - at least
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to a certain extent. On that account, a short recall about the basics of differential flat-

ness is given which provides the link to the concept of flat inputs and their merits for

parameter identification issues. Moreover, a comprehensive literature review demon-

strates the similarity, as well as the differences to parameter identification approaches

which have been derived over the last few decades. The general relation to OED is

given by a closer look on the parameter sensitivities. It is shown, that by applying the

flatness based approach, there is a change in the spectrum of parameter sensitivities.

That is, although the same measurement data - as provided for the traditional approach

- are utilised there is a chance that previously insensitive parameters become sensitive

by evaluating the flatness concept.

Chapter 6 - Conclusion and Future Work

Chapter 6 provides a summary of the work presented in the thesis and outlines the

conclusions that can be drawn, with ideas for future work also being presented.
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Figure 1.2: The figure shows different aspects of Optimal Experimental Design addressed
in this thesis.

1.4 Publications

A part of the work contained in this thesis has already been published in the peer-

reviewed literature and presented at numerous conferences. Here is a list of those

publications:
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2

Quantification and Propagation

of Uncertainties

Mathematical models are the workhorse in systems biology. In what follows, ordinary

differential equation (ODE) systems are of current interest. In its generic form ODE

systems can be expressed by

ẋ(t) = f(x(t), u(t), θ) ;x ∈ Rn , u ∈ Rs , θ ∈ Rl (2.1)

ysim(t) = h(x(t)) ; ysim ∈ Rm (2.2)

x(t = 0) = x0 ;x0 ∈ Rn, (2.3)

where x(t) is the state vector, u(t) is the input vector, θ is the parameter vector, ysim

the output vector, and x0 the initial conditions. The two vector functions, f(·) and

h(·), are known as the state and the output function, respectively. At the very first

step in model building a feasible model structure as well as model parameters have to

be derived with the help of measurement data, ydata(tk). Thus, all potential benefits

of model-based approaches are likely to fail in the light of non-informative data. To

provide predictive models the available measurement data sets have to be utilised in the

most informative way. In the absence of informative data at all, it might be necessary

to run new optimally designed experiments.

Naturally, the question comes up how to quantify the information content of measure-

ment data properly. Starting from a pure data analysis perspective the signal to noise

ratio is of crucial interest, i.e., at best the measurement data should be corrupted by a

minimum of measurement noise. Generally, the signal to noise ratio is determined by

the measurement equipment, i.e., the measurement principle as well as the measure-

ment range might influence the quality of measurement data.
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In the context of modelling, however, the measurement data are the driving force of

model parametrisation. That means, the data, ydata(tk), are not of primary interest but

the identified model parameters, θ̂. Obviously, a low signal to noise ration of measure-

ment data does not automatically ensure informative data for the purpose of parameter

identification. Thus, data which provide precise parameter estimates are considered as

informative.

As modelling aims to provide reliable inferences, even model parameters are not the

ultimate goal. Generally, simulation results are of primary interest and have to be

predictive as in any way possible. Consequently, by assuming a proper model structure

measurement data are labelled as informative if they ensure a low uncertainty of sim-

ulation results.

For the sake of completeness, in some model-based applications even the simulation

results are not analysed in detail. For instance, one might be interested in an over-

all performance measure of the process at hand. Thus, a so-called key performance

index (KPI) might be of primary interest. In this particular case, measurement data

are considered as informative if these data provide a low uncertainty about the KPI

[KAGSW08].

In summary, after a first quantification of the present uncertainty about measurement

data, this uncertainty is propagated sequentially up to the quantity of interest as il-

lustrated in Fig. 2.1. For this purpose, probability theory provides a comprehensive

framework which, however, may suffer in practicability and/or precision in the presence

of non-linearity. Thus, in the following subsections suitable methods of uncertainty

quantification, as well as propagation are presented and applied to overcome urgent

problems in uncertainty analysis of non-linear systems. The proper use and interpreta-

tion of the resulting statistical quantities cannot be addressed comprehensively in this

work. Therefore, the reader is referred to [SG01, CF05, Lan05] and references therein.

2.1 Quantification of Data Uncertainty

To a certain extent, variability is present in almost all physical systems. The quantifi-

cation of this uncertainty, as well as its proper representation might be challenging by

itself [OO04b]. When focusing on measurement data, ydata(tk), by way of example, ex-

act values of measured quantities cannot be derived in practice, because of limitations

in the measurement equipment or because of the inherent variability (process noise)
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Figure 2.1: Quantification and Propagation of Uncertainties: By starting with the mea-
surement data the associated measurement uncertainty, U(ydata), is sequentially propa-

gated ( ) to the model parameters, U(θ̂), the simulation results, U(ysim), and the key
performance index, U(KPI). A credible quantification of these uncertainties is mandatory
for the success of succeeding OED strategies, as the determined uncertainties give feedback,
( ), for new informative measurement data.

[Ste94] of the system under study. Consequently, the uncertainty in measurements has

to be addressed explicitly and its effect to the estimated model parameters, θ̂, and/or

simulation results, ysim(t), has to be investigated adequately. Hence, a measurement

data sample is not treated as a deterministic scalar value, but considered as a random

variable instead. In this case, the variability of the measurement data can be described

by a probability density function (PDF). In what follows, the probabilistic description

of uncertainty is exclusively applied. Alternative techniques such as interval mathemat-

ics or fuzzy set theory are not subject of this work, but might be an alternative in case

of missing descriptive PDFs. The presented methods of uncertainty propagation, how-

ever, are applicable in hybrid approaches as well, i.e., the joined analysis of probability

distributions in combination with so-called possibility distributions [BD06, BPZ+11]

can be addressed in principle.

The immediate incorporation of the statistical information given by associated PDFs

leads to meaningful results in modelling from the very first beginning [RvdSHV07]. In

doing so, uncertainty analysis becomes an integral part in the modelling framework

ensuring...
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“...that uncertainty assessment is not just something to be added after the

completion of the modelling work. Instead uncertainty should be seen as a

red thread throughout the modelling study starting from the very beginning.

J. C. Refsgaard [RvdSHV07] ”
Thus, a main objective of this thesis is devoted to provide a general approach of un-

certainty analysis. But before starting with the problem of uncertainty propagation,

the question has to be addressed, how the probability density function of the measure-

ment data can be derived. For the sake of simplicity, additive normally distributed

uncorrelated noise is assumed at first. That means, the Gaussian probability density

function describes the uncertainty of a measurement data sample by its two parame-

ters uniquely, i.e., the mean value, ȳdata(tk), and its associated variance, σ2
ydata

(tk), are

utilised according to

ydata(tk) ∼ N(ȳdata(tk), σ
2
ydata(tk)) (2.4)

In addition, the uncertainty of sets of data samples is considered as identical and

independent. Thus, the uncertainty analysis is limited to independent and identically

distributed (iid) random variables. The extension to more general random variables

is presented in Sec. 2.2.3.2 separately. In practice, for a credible quantification of

ȳdata(tk) and σ2
ydata

(tk) several measurement data sets have to be generated, i.e., an

experiment has to be repeated several times at the same operating condition. By

taking monetary and time limitations into account the number of experimental runs

has to be low. Therefore, re-sampling approaches such as the jackknife method or the

bootstrap approach [Efr82, ET94] provide an alternative in comparison to an increased

number of costly experimental reruns.

The actual identification of ȳdata(tk) and σ2
ydata

(tk), however, is not subject of this work.

In what follows, artificial measurement data are used instead, i.e., the Gaussian PDF

of measurement data is known by definition. Thus, after the measurement uncertainty

is given, the emphasis is much more on the propagation of uncertainty to the estimated

model parameters, θ̂, and/or to simulation results, ysim(t), as presented in the next

subsection.

2.2 Mapping of Uncertainty

This section aims to provide an overview of methods which are frequently applied in

uncertainty propagation. To be more specific, the applicability of different approaches
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for the intended task of Optimal Experimental Design is assessed. In doing so, it is

assumed that a plausible model structure, Ŝ, has already been derived, i.e., there is

no uncertainty about the model structure itself. Thus, the uncertainty analysis is per-

formed on noisy measurement data, ydata(tk), which induce variability in the estimated

model parameters, θ̂, and in simulation results, ysim(t), respectively. Hence, θ̂ and

ysim(t) can be considered as random variables as well [Bre70], i.e., the problem of un-

certainty propagation exclusively acts in the probabilistic framework.

Consequently, there is a keen demand in a reliable determination of PDFs which are

associated to model parameters, pdfθ, and/or simulations results, pdfysim . Moreover,

as an inherent part of OED and for that reason part of an optimisation routine, the

applied methods have to be low in computational cost. In general, the approaches of

uncertainty propagation can be distinguished in analytical and in approximate meth-

ods, respectively. Though the analytical approach might be suitable to illustrate the

general problem of uncertainty propagation for well chosen problems, it suffers from

practical applicability. Thus, efficient as well as reliable approximate methods are of

vital importance in OED as illustrated in Sec. 3. Firstly, however, the focus is solely

on uncertainty propagation.

2.2.1 Analytical Expressions

In general, the uncertainty propagation describes how a random variable, ξ, is trans-

ferred by a (non)linear function, g(·), to the quantity of interest, η, according to

η = g(ξ) (2.5)

One possible way to represent the uncertainty about η consists in calculating the as-

sociated probability density function, pdfη. Assuming a monotonic function, g(·), an

analytical solution of the resulting PDF can be derived immediately [Bre70, HMGB03b]

pdfη = pdfξ
(
g−1(η)

) ∣∣∣∣dg−1(η)

dη

∣∣∣∣ (2.6)

Any non-monotonic function has to be split up into monotonic sub-parts that are

transferred separately [Bre70, HMGB03b].

Another point of interest might be in characteristic quantities of the associated PDF, i.e,

statistical moments of pdfη can be used as an alternative to characterise the induced

uncertainty about η [Kay93, HMGB03b]. For instance, the mean, E [g(ξ)] , and the
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related variance, σ2
η, are frequently analysed and can be determined by

E [g(ξ)] =

∫
Ω
g(ξ)pdfξdξ (2.7)

σ2
η =

∫
Ω

(g(ξ)− E [g(ξ)])2 pdfξdξ (2.8)

Here, Ω represents the integration domain, i.e., in case of probability theory it is equiv-

alent to the sample space [MK10]. Throughout this work, also higher central moments

are applied, e.g., the skewness, µ3, and the kurtosis, µ4, are considered as well and

expressed by

µ3 =

∫
Ω

(g(ξ)− E [g(ξ)])3 pdfξdξ (2.9)

µ4 =

∫
Ω

(g(ξ)− E [g(ξ)])4 pdfξdξ (2.10)

At this point it has to be stressed that the presented analytical solutions of the PDF

and/or central moments of η can be solved only for a very limited number of uncertainty

propagation problems [Bre70, HMGB03b]. In most practical cases, however, approxi-

mate methods based on Taylor series expansion, Gaussian quadrature, or Monte Carlo

simulations are implemented and reviewed subsequently.

2.2.2 Basic Approaches in Approximate Methods

Commonly, the complexity of g(·) - if at all available explicitly - prohibits results in

closed-form. Thus, the approximate methods aim: (1) to replace g(·) by handy surro-

gates, ĝ(·), which facilitate closed-form solutions of Eq. (2.6)-(2.10). Or alternatively

(2), to solve these integral expressions by numerical routines approximately. In litera-

ture a vast number of approximate methods exist. Here, by being aware of the intended

application in OED the merits and flaws of frequently used approaches are highlighted.

2.2.2.1 Taylor Series Expansion

To solve equations similar to Eq. (2.6)-(2.10) in closed-form the mapping function, g(·),
is approximated by a surrogate function, ĝ(·), first. Here, the most common approach

is known as the Taylor series expansion. Under the assumption that g(·) is sufficiently

differentiable, the uncertainty propagation function can be expressed by a superposition

of Taylor terms:

η ≈ ĝ(ξ) =

N∑
i=0

∂ig

∂ξi

∣∣∣∣
ξ=E[ξ]

(ξ − E[ξ])i

i!
(2.11)
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2.2 Mapping of Uncertainty

Generally, this sum is limited to a certain extent, N << ∞, which may introduce

an approximation error but ensures a speedy computation. In the field of uncertainty

propagation, therefore, the first-order Taylor expansion is applied as a standard ap-

proach. For instance, first-order Taylor principles are part of the Fisher-Information

matrix (FIM) in the field of parameter statistics, as well as an inherent element in

the Extended Kalman Filter (EKF) approach performing state reconstruction. Details

about FIM as well as EKF are given later on. Firstly, however, the general calculation

of statistical moments via the Taylor series is addressed.

According to Eq. (2.5), the first-order Taylor series approximation is expanded at

ξ = E[ξ] as shown below

η ≈ η̂ = g(ξ) +
∂g

∂ξ

∣∣∣∣
ξ=ξ

(ξ − ξ) (2.12)

Here, the resulting function, η̂, acts as a surrogate of the original function, η. Now, by

evaluating η̂ instead of η, the determination of statistical moments can be performed

easily. For instance, the resulting mean E[η̂] is expressed by

E[η̂] = g(E[ξ]) (2.13)

In addition, still assuming that ξ represents a Gaussian random variable, the expec-

tation of the squared difference of Eqs. (2.12) and (2.13) results into the variance

expression of η̂ according to

σ2
η̂ =

(
∂g

∂ξ

∣∣∣∣
ξ=ξ

)2

σ2
ξ (2.14)

Obviously, the statistics about η is approximated by a linearisation scheme. Thus, the

following question comes up naturally: When are these approximations good ones? In

[Bre70] this question is addressed qualitatively by the statement given below.

“The Taylor series will be a good approximation if g(·) is not too far from

linear within the region that is within one standard deviation of the mean.

A. M. Breipohl [Bre70] ”
Consequently, as commonly known, the approximation quality depends strongly on two

factors: (i) on the non-linearity of g(·) and (ii) on the scatter of ξ. Nevertheless, even un-

der the assumption that the dispersion of ξ is known, the degree of non-linearity about
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2. QUANTIFICATION AND PROPAGATION OF UNCERTAINTIES

g(·), however, is rarely considered in most practical applications. Here, frequently, one

just trusts that the linearised function represents the actual problem adequately. In

many cases, therefore, strong deviating results are produced, which may lead to a sub-

optimal performance of OED. Any approach which exceeds the linearisation concept in

precision is of vital interests in the field of uncertainty propagation and OED, respec-

tively.

Naturally, the utilisation of higher-order terms in the Taylor series expansion improves

the accuracy gradually. For instance, it has been shown that even an incorporation of a

moderate number of higher-order terms leads to a significant improvement in accuracy

[XM12]. The determination of these higher-order terms, however, is accompanied by the

calculation of an increased number of partial derivatives. Therefore, applying higher-

order approaches is faced with the following dilemma.

“Linearisation is widely recognised to be inadequate, but the alternatives incur

substantial costs in terms of derivation and computational complexity.

S. J. Julier & J. K. Uhlmann [JU04] ”
This might be one reason, that higher-order approaches are still in the minority in the

framework of uncertainty propagation which is confirmed by the quotation given below.

“In practice, even the second order approximation is not commonly used and

higher order approximations are almost never used.

U. N. Lerner [Ler02] ”
So far, the precision of the Taylor series has been the subject of consideration. For

the purpose of practical applicability, however, it is also important that an approxi-

mate method has to be easy in implementation, and that the method copes well for a

broad class of problems. As stated above, to increase the precision of the Taylor series

more complex formulas have to be involved. The same is true, in case of non-Gaussian

distributions and/or correlated random variables, respectively [Kay93, Zha06, MV08,

And11, MALF12].

Additionally, the Taylor series is limited to problems of differentiable transfer functions,

g(·). At first, that means, the transfer function has to be known explicitly. Therefore,

black-box type functions cannot be addressed immediately. Secondly, even in case of
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2.2 Mapping of Uncertainty

explicit expressions, functions might be non-differential at all, e.g, the maximum func-

tion belongs to those terms. Hence, the Taylor series is likely to suffer in precision as

well as in applicability. There is a strong need for alternatives.

2.2.2.2 Gaussian Quadrature

Instead of using surrogates of the original transfer function, g(·), to calculate the mean

and the variance of η, an alternative is to solve the underlying integration problem

numerically. In doing so, different approaches can be found in literature. For instance,

the Gaussian quadrature might be put in operation to approximate the integral equa-

tions by discrete function evaluations and associated weights. For the 1-dimensional

case, Ω ⊂ R, the approximation reads

∫
Ω
pdfξg(ξ)dξ ≈

lgq∑
i=1

wig(ξi) (2.15)

The basic idea is to choose lgq points, ξi, and associated weights, wi, in a way that the

approximation is exact for polynomials of degree 2lgq − 1 or less [DR07]. In general,

a non-linear equation system can be derived which is solved for an appropriate set of

sample points and weights, S(ξi, wi), respectively. Subsequently, the transfer function,

g(·), is evaluated at these discrete points. In the final step, the resulting function eval-

uations, g(ξi), are summed up according to the weights, wi. Obviously, in the Gaussian

quadrature framework there is no need of time derivatives at all. Thus, even black-box

type, as well as non-differentiable functions can be tackled natively.

If the original function, however, differs substantially in comparison to a general poly-

nomial of degree 2lgq−1, this approximate method suffers in precision, too. Obviously,

the accuracy can be improved technically by evaluating an increased number of sample

points, ξi. Due to the related computational load, only a low sample number is fre-

quently used in practice, lgq ≤ 5. But even in this case, when applied to n-dimensional

integration problems, the computational load increases exponentially. Gaussian quadra-

ture, therefore, is subject of the curse of dimensionality [Bel66]. In detail, the set of

points and weights, S(ξi, wi), which has been derived for the one-dimensional problem,

is extended to n dimensions, Rn, by tensor products

S⊗n = S ⊗ S ⊗ . . .⊗ S︸ ︷︷ ︸
n times

(2.16)
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2. QUANTIFICATION AND PROPAGATION OF UNCERTAINTIES

In consequence, the function g(·) has to be evaluated for a total number of lngq points.

Therefore, the native Gaussian quadrature approach becomes prohibitive for many

practical multi-dimension integration problems, including OED as well. Here, a remedy

might be to apply partial tensor products, e.g., (adaptive) sparse grid methods, instead

of the full tensor products. In doing so, the need of evaluation points can be reduced

considerably. Usually, however, the resulting sample number is still too high for an

efficient and general application in the field of OED [DBR10b].

2.2.2.3 Monte Carlo Simulation

Monte Carlo (MC) simulations are frequently applied as an approximate method. Sim-

ilarly to Gaussian quadrature, discrete samples, ξi, are used to solve n-dimensional

integration problems, e.g., Eq. (2.6)-(2.10). On the other side, MC differs in the

sample generation fundamentally. According to the associated PDF of the random

variable, ξ, under study, MC is based on random sampling. Subsequently, the resulting

N realisations, ξi, are applied to the transfer function, g(·). Finally, the produced set

of function evaluations, ηi, is utilised to determine the statistics of the random output

variable, η, approximately. For instance, the mean, EMC [η], and the variance, σ2
MC(η),

can be calculated via

EMC [η] =
1

N

N∑
i=1

ηi (2.17)

σ2
MC(η) =

1

N − 1

N∑
i=1

(ηi − EMC [η])2 (2.18)

The popularity of MC is based on its easy handling, i.e., the basics are readily un-

derstandable and straightforward in implementation. Additionally, MC does not suffer

from the curse of dimensionality. The overall sample number, N , is not related to the

dimension of the integration problem. Thus, this approach is tailor-made to address

problems involving a large number of random input variables.

On the other side, however, the total sample number of realisations, N , has to suf-

ficiently large to ensure reliable results. In fact, the convergence rate of estimates

correlates to N1/2 [Jam80]. That means, to achieve a noticeable improvement in the

precision a substantial increased number of samples points has to be evaluated. There-

fore, the computational load of the native MC approach is prohibitive in many real-life

applications. Improved sampling strategies are available in order to accelerate the sta-

tistical convergence of MC, e.g., quasi-Monte Carlo methods or Latin hypercube. In
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2.2 Mapping of Uncertainty

general, these concepts aim to avoid undesired clustering effects which may show up in

the native MC implementation, see Fig. 2.2 for illustration. Usually, however, even an

improved MC approach remains prohibitively expensive in the field of OED [JSMK06].

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

ξ[i]

ξ[
j]

(a) Random sampling

0 0.2 0.4 0.6 0.8 1

ξ[i]

(b) Latin hypercube sampling

Figure 2.2: Random vs. Latin hypercube sampling: In the native MC approach sample
points, , are generated randomly. Therefore, sample points might be produced which are

very close to each other as indicated in sub-figure (a) by . This phenomena is known
as clustering and reduces the performance of MC, because nearly the same information is
provided by clustered points. Alternatively, performing Latin hypercube sampling avoids
undesired clustering effects by combining random and grid point principles, see (b).

2.2.2.4 Polynomial Chaos Expansion

In uncertainty analysis, the concept of Polynomial Chaos Expansion (PCE) has become

quite popular in the last two decades. Thus, for the purpose of completeness, the basics

of PCE are presented in what follows. To represent the random variable, η, correctly, a

weighted superposition of an infinity number of basis functions, Ψi(·), is needed [MK10]

η = g(ξ) =
∞∑
i=0

aiΨi(ξ) (2.19)

Similar to the Taylor series, however, one has to account for computational feasibility.

Therefore, the expansion in Eq. (2.19) has to be implemented in a truncated form

η̂ =

lpce∑
i=0

aiΨi(ξ) (2.20)

By a proper choice of basis functions, Ψi(·), the determination of the unknown coeffi-

cients, ai, can be simplified. In particular, different sets of orthogonal basis functions are

applied depending on the associated PDF of the random input variable, ξ. For instance,
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2. QUANTIFICATION AND PROPAGATION OF UNCERTAINTIES

Hermite polynomials are utilised in case of a Gaussian distribution. In literature, dif-

ferent approaches are known to determine the coefficients, ai, see [Tem09, MK10] and

references therein. Here, the focus is on the least-square approach solely. In prac-

tical implementation, a residual, r(ξ), emerges due to the truncation of PCE terms,

lpce <<∞,

r(ξ) = g(ξ)−
lpce∑
i=0

aiΨi(ξ) (2.21)

Now, the expected sum of squared errors can be defined as a suitable cost function

JPCE =

∫
Ω

[r(ξ)]2pdfξdξ (2.22)

The additivity of the expectation operator enables the following reordering

JPCE =

∫
Ω
g(ξ)2pdfξdξ − 2

∫
Ω
g(ξ)

lpce∑
i=0

aiΨi(ξ)pdfξdξ +

∫
Ω

 lpce∑
i=0

aiΨi(ξ)

2

pdfξdξ

(2.23)

The minimum of this cost function can be found by differentiation of Eq. (2.23) with

respect to ai, and by setting the resulting derivative equal to zero. Here, due the

orthogonality of Ψi the mathematical expression results in

∂JPCE
∂ai

= −2

∫
Ω
g(ξ)Ψi(ξ)pdfξdξ + 2ai

∫
Ω
Ψi(ξ)

2pdfξdξ
!

= 0 (2.24)

Therefore, the ith coefficient can be calculated according to

ai =

∫
Ω g(ξ) Ψi pdfξ dξ∫
Ω Ψi(ξ)2 pdfξ dξ

(2.25)

In case of Hermite polynomials (still assuming a standard normal distribution, pdfξ),

the denominator can be determined immediately, see [MK10], via∫
Ω
Ψi(ξ)

2 pdfξ dξ = i! (2.26)

The numerator of Eq. (2.25), however, has to be derived numerically. Obviously,

instead of solving one of the original integrals, Eq. (2.6)-(2.10), a modified integration

problem has to be tackled. First of all, the quantification of the coefficients, ai, ensures

a parametrisation of PCE, Eq. (2.20). Subsequently, associated moments of η̂ can be
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2.2 Mapping of Uncertainty

calculated analytically, e.g., the mean and the variance are determined by

E[η̂] = a0 (2.27)

σ2
η̂ =

lpce∑
i=1

a2
i

∫
Ω
Ψi(ξ)

2pdfξdξ =

lpce∑
i=1

a2
i · i! (2.28)

In addition, a PDF approximation of η̂ can be derived in combination with Monte Carlo

simulations (Sec. 2.2.2.3) and standard Kernel density estimation algorithm which are

available in standard computation/statistic tools, e.g., routines available in MATLABr

or in R!. Please bear in mind that η̂ is an algebraic expression of ξ, Eq. (2.20). There-

fore, MC simulations based on η̂ can be performed at low computational costs. In

summary, PCE benefits from its versatility and its good convergence behaviour, see

[MK10] for additional details.

In case of OED, however, there is no special need of PDF approximations, because a

very limited order of moments is sufficient as demonstrated in Sec. 3. Hence poten-

tial shortcomings of PCE may dominate in situations of an exclusive approximation

of statistical moments. In general, the determined coefficients, ai, are the result of

an approximation of an approximation, i.e., the truncation error follows a numerical

integration error, subsequently. Obviously, the incorporation of higher order terms in

Eq. (2.20) increases the non-linearity of the integrand gradually, see Fig. 2.3. Thus,

it is likely that the numerical error of coefficients, ai, which are associated to higher

order terms increases as well. Therefore, a balance of truncation and numerical in-

tegration error has to be found, which might be challenging. Additionally, the total

number of coefficients, #(ai), in n-dimensional problems increases rapidly as stated by

the following expression which can be found in [MK10]

#(ai) =
(n+ lpce)!

n!lpce!
− 1 (2.29)

For instance, assuming an input dimension of n = 15 and a order of PCE equal to

lpce = 3 (lpce = 5) the overall number of unknown coefficients, ai, is 816 (15504).

Therefore, the versatility of PCE is paid by an increased computational load which

might be prohibitive in the field of OED.
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Figure 2.3: The first six Hermite Polynomials are shown: Ψ0 = 1; Ψ1 = ξ;
Ψ2 = ξ2 − 1; Ψ3 = ξ3 − 3ξ; Ψ4 = ξ4 − 6ξ2 + 3; Ψ5 = ξ5 − 10ξ3 + 15ξ.

Obviously, in higher order terms the degree of non-linearity increases gradually. Thus, as
part of an integrand, proper/robust numerical integration routines have to put in operation
to ensure reliable results of the related integration problem.

2.2.3 Unscented Transformation

Here, similar to Gaussian quadrature methods (Sec. 2.2.2.2) and Monte Carlo simu-

lations (Sec. 2.2.2.3) one is interested in generating sample points, ξi, and associated

weights, wi, which are used to solve an n-dimensional integration problem approxi-

mately. The essential differences are: (i) the sample points are not chosen randomly

but deterministically, and (ii) these points are generated directly in Rn instead of

“tensoring” sample points which are chosen in R1. But before starting with the math-

ematical details, a short historical review of the Unscented Transformation is given.

The method of Unscented Transformation (UT), which has been introduced by Julier

and Uhlmann in 1994 [JU94], has become quite popular in non-linear filter theory over

the last two decades. Applied as an inherent part of the Unscented Kalman Filter

(UKF) it has gradually superseded the standard approach in non-linear filtering, the

Extended Kalman Filter (EKF). The guiding theme of UT has been the notion that

“... it is easier to approximate a probability distribution than it is to approx-

imate an arbitrary nonlinear function or transformation.

S. J. Julier & J. K. Uhlmann [JU04] ”
The mathematical basics of UT, however, date back approximately 60 years in time

[Tyl53]. At this time, the focus had been on efficient numerical integration routines for

multi-dimensional integration problems. In detail, formulas had been derived which are

intended to solve integration problems over symmetrical regions. Due to this symmetry,

24
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numerical integration techniques have been developed which at best scale linearly to

an n-dimensional integration problem.

After the first considered symmetric functions had no specific meaning, these func-

tions have been associated to symmetric probability distributions shortly afterwards.

In doing so, these formulas have been successfully applied to solve problems in uncer-

tainty analysis where they are commonly known as Point Estimate Methods (PEMs).

Here, the very first articles had been devoted to statistical tolerance calculation [Eva67,

Eva74], i.e., tolerances of industrially manufactured products had been quantified.

In the following years, however, PEMs have been implemented to uncertainty anal-

ysis in various disciplines ranging from complex technical systems up to environmen-

tal/biochemical modelling, see [MWL02, TF05, MPR07, FTM12, PK12, LL13] and

references therein.

Naturally, the Point Estimate Methods have been subject of ongoing research for the

last 50 years. In particular the increased computational power has enabled to im-

plement less restrictive methods. That means, approaches that scale polynomially

to n-dimensional integration problems have become applicable resulting in more pre-

cise calculation [Ler02]. Additionally, also asymmetric distributions have been become

practical in the framework of PEM [Li92]. The general basics, however, are unchanged

and shortly summarised in what follows based on the notations given in [Eva67, Ler02].

In Point Estimate Methods, the fundamental idea is to choose sample points, ξi, and

associated weights, wi, in relation to the first raw moments of the random input variable,

ξ. Here, the so-called Generator Function, GF [·], [Tyl53, Ler02] is of vital importance.

A GF describes how sample points are directly determined in Rn by permutation and

the change of sign-combinations. According to that, the first three GFs operate in the

following way: (i) GF [0] changes no element of a given vector, (ii) GF [±ϑ] permutes one

element of a given vector to all potential combinations, and (iii) GF [±ϑ,±ϑ] permutes

two elements of a given vector to all potential combinations. For instance, the proposed

Generator Functions are illustrated with a problem in R2:

GF [0] = {(0, 0)T } (2.30)

GF [±ϑ] = {(ϑ, 0)T , (−ϑ, 0)T , (0, ϑ)T , (0,−ϑ)T } (2.31)
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GF [±ϑ,±ϑ] = {(ϑ, ϑ)T , (−ϑ,−ϑ)T , (ϑ,−ϑ)T , (−ϑ, ϑ)T } (2.32)

Here, the scalar parameter, ϑ, controls the spread of the sample points, ξi, in Rn.

Generally, for the purpose of solving an n-dimensional integration problem, the idea

is to use a weighted superposition of function evaluations at GF-based sample points,

g(ξi), according to∫
Ω
g(ξ)pdfξdξ ≈ w0g(GF [0]) + w1

∑
g(GF [±ϑ]) + w2

∑
g(GF [±ϑ,±ϑ]) (2.33)

As only a finite number of raw moments of the input random variable, ξ, is considered,

the transfer function, g(·), is approximated by monomials of finite degree [Eva67, Ler02].

For instance, by taking account for the first two non-zero raw moments of ξ, the re-

lated monomials of the transfer function, g(·), are g(ξ) = 1 and g(ξ) = ξ[i]2 (any

i ∈ {1, . . . , n} might be used due to symmetry). Thus, the transfer function is approxi-

mated exactly for monomials of order three. The Unscented Transformation in relation

to monomials of precision 3 is labelled as UT3. Remember that any odd power term is

zero in association to Gaussian distributions. In this particular case, only the first two

Generator Functions, GF [0] ∩ GF [±ϑ], can be parametrised by solving the following

equation system

w0 + 2nw1 =

∫
Ω

1pdfξdξ = 1 (2.34)

2w1ϑ
2 =

∫
Ω
ξ[i]2pdfξdξ = 1 (2.35)

In consequence, for ϑ 6= 0, the related weights can be calculated via

w0 = 1− n

ϑ2
(2.36)

w1 =
1

2ϑ2
(2.37)

As shown in [JU04] higher-order moments of the analysed PDF can be used for the

quantification of ϑ additionally. For instance, considering the 4’th raw moment of the

standard Gaussian distribution leads to

2w1ϑ
4 =

∫
Ω
ξ[i]4pdfξdξ = 3 (2.38)

Therefore, applying ϑ =
√

3 might be an optimal choice in case that the probability

distribution of η is close to the normal distribution . . .
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“ . . ., but in general different values of ϑ can lead to better or worse approxi-

mations depending on the function g(·).
U. N. Lerner [Ler02] ”

Obviously, there is some uncertainty about ϑ which might be expressed by an associated

probability distribution, pdfϑ. To compensate for this uncertainty Generator Functions

can be averaged in principle via ∫
Ω

(GF [±ϑ]pdfϑdϑ (2.39)

Here, too, the resulting 1-dimensional integration problem can be solved with one of

the previously presented approaches. For instance, a nested UT approach might be

implemented. That means, points and weights related to pdfϑ are generated at first.

These quantities are applied in a second step to the original approximation scheme

given in Eq. (2.33). The total cost of the modified approach correlates to 3 · (2n + 1)

points which have to be evaluated by g(·), i.e., the computational effort still scales

linearly to the dimension, n, of the original integration problem.

After a proper selection of points, ηi = g(ξi), and associated weights, w0 & w1, the

mean and the (co)variance of η can be determined by approximation according to

E[η] ≈ η = w0η0 + w1

2n∑
i=1

ηi (2.40)

σ2(η) ≈ w0(η0 − η)(η0 − η)T + w1

2n∑
i=1

(ηi − η)(ηi − η)T (2.41)

As shown in [JU04] the incorporation of a (co)variance correction term, β, can improve

the precision of σ2(η) by

σ2(η) ≈ (w0 + β)(η0 − η)(η0 − η)T + w1

2n∑
i=1

(ηi − η)(ηi − η)T (2.42)

Similar to the previous quantification of ϑ, different values of β provide better or worse

approximations depending on the function g(·). Some general comments about the

precision of σ2(η) are given in Sec. 2.2.3.1. At this point, however, it is stressed that

in the particular case of a linear mapping, η = c1ξ + c0, the correction term, β, does

not influence the outcome of σ2(η). Remember that a linear mapping of a Gaussian
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distribution is bias-free, η0 − η = 0. Therefore, the (co)variance of the resulting Gaus-

sian distribution of η is still determined correctly.

In the same manner also higher order moments of η can be approximated according to

µ3 ≈ w0(η0 − η)(η0 − η)T (η0 − η) + w1

2n∑
i=1

(ηi − η)(ηi − η)T (η0 − η) (2.43)

µ4 ≈ w0(η0 − η)(η0 − η)T (η0 − η)(η0 − η)T+

w1

2n∑
i=1

(ηi − η)(ηi − η)T (η0 − η)(η0 − η)T
(2.44)

Here, too, additional correction factors might be applied to improve the accuracy.

Naturally, the general precision of the UT approach can be increased gradually by

considering higher order raw moments of ξ. For instance, an approximation scheme

can be applied which represents monomials of g(·) correctly up to the precision of 5 via

E[g(ξ)] =

∫
Ω
g(ξ)pdfξdξ ≈ w0g(GF [0]) + w1g(GF [±ϑ]) + w2g(GF [±ϑ,±ϑ]) (2.45)

The Unscented Transformation in relation to monomials of precision 5 is labelled as

UT5. In this case, the number of generated sample points, ξi, correlates to 2n2 + 1 for

an n-dimensional integration problem. Here, for the purpose of parametrisation of wi

and ϑ an equation system can be derived taking into account monomials of degree 5 or

less

w0 + 2nw1 + 2n(n− 1)w2 =
∫

1pdfξdξ = 1 (2.46)

2w1ϑ
2 + 4(n− 1)w2ϑ

2 =
∫
ξ[i]2pdfξdξ = 1 (2.47)

2w1ϑ
4 + 4(n− 1)w2ϑ

4 =
∫
ξ[i]4pdfξdξ = 3 (2.48)

4w2ϑ
4 =

∫
ξ[i]2ξ[j 6= i]2pdfξdξ = 1 (2.49)

Therefore, the four unknowns can be uniquely determined by the previous equation
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system as

ϑ =
√

3 (2.50)

w0 = 1 +
n2 − 7n

18
(2.51)

w1 =
4− n

18
(2.52)

w2 =
1

36
(2.53)

2.2.3.1 Computational Effort and Approximation Power

In the previous section, it is shown how the number of applied sample points, ξi,

correlates to the precision power of the Unscented Transformation. For instance, the

application of 2n + 1 or 2n2 + 1 sample points ensures a correct approximation of

monomials of precision 3 and 5 respectively. Therefore, the computational load scales

linearly or quadratically in relation to the n-dimensions. In comparison to the Gaussian

quadrature approach of Sec. 2.2.2.2, this might be a dramatic reduction in the total

number of necessary sample points as shown in Fig. 2.4.
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Figure 2.4: Benchmark of computational effort: Unscented Transformation (UT3),
Unscented Transformation (UT5), Gaussian quadrature

On the other side, however, the precision of the UT is very sensitive to input interac-

tions. Due the inherent relation to monomials of low degree, only low order interaction

can be approximated appropriately [Ler02]. Consequently, higher order input interac-

tions lead to a poor approximation performance of UT. For instance, by implementing

UT for monomials of precision 5,
∏n
i=1 ξ[i]

ai , the summation of the coefficients, ai, is

limited to 5 or less,
∑n

i=1 ai ≤ 5. That means, expressions similar to g(ξ) = ξ[1]2 · ξ[2]2
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Figure 2.5: The exact approximation of E[η] = g(ξ) = ξ[1]a1 · ξ[2]a2 is illustrated for
the proposed approximate methods. In detail, monomials of precision 5 (UT5), , in
relation to alternative approaches, , is shown. Obviously, the first-order Taylor series
approach causes approximation errors as soon as nonlinear terms show up, a1 + a2 > 1.
UT3 and UT5 ensure correct results for a1 + a2 ≤ 3 and a1 + a2 ≤ 5, respectively. The
superior approximation power of the Gaussian Quadrature is accompanied by an excessive
computational load for real-life applications. UT3 and UT5 provide a fair compromise on
an adequate approximation power and low computational costs.
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can be approximated correctly, whereas g(ξ) = ξ[1]2 · ξ[2]2 · ξ[3]2 causes already an

approximation error. In this case, the Gaussian quadrature benefits from the tensor

product. If the 1-dimensional Gaussian quadrature approach is of precision l, any prod-

uct equal to
∏n
i=1 ξ[i]

ai , where ai ≤ l, is approximated correctly. The approximation

power of different approaches is illustrated in Fig. 2.5.

Generally, there seems to be some obscurities in literature about the approximation

performance of the UT approach. Here, the following problem is discussed to overcome

common misinterpretations: Why determines the UT3 approach the variance, σ2
η, about

g(ξ) = ξ2
1 correctly but fails in case of g(ξ) = ξ[1]2+ξ[2]2 ? Associated numerical results

are presented in Sec. 2.2.3.3. Here, the theoretical framework is given. In doing so, the

Eq. (2.41) is reformulated according to

σ2
η ≈

(
w0g(ξ0)2 + w1

2n∑
i=1

g(ξi)
2

)
− g(ξ)2 (2.54)

σ2
η ≈ g(ξ)2 − g(ξ)2 (2.55)

Obviously, by calculating the variance, σ2
η, the UT approach has to be not only a good

approximation of g(·) but also of g(·)2, too. In general, the same is true for Gaussian

quadrature methods as well as for Monte Carlo simulations. In relation to the previous

examples, the expressions g(ξ)2 = ξ[1]4 and g(ξ)2 = ξ[1]4 + 2ξ[1]2ξ[2]2 + ξ[2]4, respec-

tively, have to be approximated properly. In both cases, monomials of order 4 show up.

Thus, the application of UT3, which is correct up to monomials of order 3, should suffer

in precision in either case, i.e., an approximation error is expected to emerge. But why,

this being the case, determines the UT3 approach the variance about g(ξ) = ξ2; ξ ∈ R1

exactly?

Here, for the special case of 1-dimensional integration problems, the UT3 approach,

the UT5 version, as well as the Gaussian quadrature of precision 5 ensure the same

accuracy. In detail, all three methods are perfect approximation schemes for monomials

of degree 5 or less. This might be one reason why the performance of UT3 is frequently

overrated in literature as it is done in [JU94, JU04, vdM04] to name but a few.

As shown in Sec. 2.2.2.1, the overall performance of the Taylor series approach de-

pends on the precision of the resulting surrogate transfer function, ĝ(ξ). That means,

in case that the transfer function, g(·), is represented exactly by the surrogate, the

mean, E[η], and the variance, σ2
η, are calculated correctly as well. Hence, there is no
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need to approximate the squared transfer function, g(·)2, directly as it is done by the

UT approach. Therefore, to ensure that UT has the same accuracy as the second-order

Taylor series approach, monomials of order 4 and less have to be represented correctly.

Consequently, in case of the variance, σ2
η, only the UT5 approach outperforms the

second-order Taylor series in precision.

Nevertheless, the UT3 leads in many practical applications to a significant improvement

in the determined statistical quantities in comparison to the standard approach which

is based on linearisation [Ler02, vdM04, Sim06]. Therefore, UT3 fills the gap of low

computational demands and accuracy. In consequence, the UT3 approach is applied to

a great extent in what follows.

2.2.3.2 Incorporation of General Probability Density Functions

Up to this point, the uncertainty about input variables, ξ, has been assumed to follow

independent standard Gaussian distributions. According to this assumption the previ-

ous algorithms of uncertainty propagation have been explored. In most applications,

however, quite different kinds of PDFs appear and have to be handled appropriately.

In general, the previously presented methods of uncertainty propagation can be adapted

to non-Gaussian distributions immediately. For instance, there is a generalised Poly-

nomial Chaos Expansion (gPCE) approach in literature which is applicable to a wide

range of different distributions. In gPCE the essential idea is to apply specific types

of orthogonal polynomials depending on the PDF under study. In detail, the Askey-

scheme [MK10] provides a set of orthogonal polynomials which are optimal in relation

to certain distributions [XK02].

Following the same basic idea, the Unscented Transformation method can be generalised

by an appropriate incorporation of distribution-specific raw moments into the equation

system given above, Eq. (2.36)-(2.38). In the framework of UT, however, one is limited

to symmetric distributions, i.e., the odd statistical moments have to be zero [BD87,

KK00, HMGB03b]. Nonetheless, a various number of distributions can be treated under

this restriction. To name but a few this includes the following distributions:

• General Gaussian distribution

• Student’s t-distribution

• Uniform distribution

• Laplace distribution
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• Symmetric Triangle distribution • Logistic distribution

Generally, the propagation of asymmetric distributions can be performed in an ex-

tended framework of Point Estimate Methods. Different algorithms can be found in

literature for this purpose. For instance, the sampling scheme introduced in [Li92]

might be applied. By assuming an asymmetric distribution asymmetric weights have

to be evaluated. In this case, however, the overall number of sample points, ξi, corre-

lates to (n2 + 3n + 2)/2 for an n-dimensional problem. Clearly, the gain in flexibility,

which means here the propagation of non-Gaussian distributions, has to get paid by an

increased number of function evaluations.

In most practical applications, however, one is usually interested in an easy to imple-

ment, robust, as well as efficient algorithm. Therefore, a more practicable framework

might be desirable for the purpose of general uncertainty propagation. Alternatively,

instead of adapting the weights, wi, and sample points, ξi, according to the distribu-

tion at hand, pdfξ′ , one can derive a (non)linear transfer function, q(·), which renders

a standard Gaussian distribution into the desired distribution, ξ′ = q(ξ). In detail,

by utilising the inverse Rosenblatt transformation [LC07] given PDFs associated to ξ′

are transformed into a set of independent random variables of standard Gaussian dis-

tributions. For instance, the transformation applied to the 1-dimensional problem is

expressed by

ξ′ = q(ξ) = F−1 (Φ(ξ)) (2.56)

Here, F−1(·) represents the inverse of the cumulative distribution function (CDF) of

the desired random variable ξ′, and Φ(·) denotes the CDF of the standard Gaussian

random variable ξ. In the same manner even correlated random variables can be trans-

formed into independent standard Gaussian representatives [MB12]. In conclusion,

the Unscented Transformation becomes applicable for correlated non-Gaussian random

variables, too. For example, in Tab. 2.1 some resulting transformation functions are

given for frequently used PDFs. Additional transformation formulas can be found in

[Isu99].

Obviously, in most cases, the transformation function, q(·), is a non-linear expression.

Hence, as an inherent part of the original uncertainty propagation problem, η = g(q(ξ)),

the overall non-linearity may become more severe. That means, the PEM/UT methods

may suffer in precision to a certain extent. In many practical applications, however,

this precision flaw might be acceptable in the light of the easiness in implementation.
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Type of pdfξ′ Transformation: q(ξ) =

Normal(µ, σ) µ+ σξ

Uniform(a, b) a+ (b− a)
(

1
2 + 1

2erf(ξ
√

2)
)

Log-normal(µ, σ) exp(µ+ σξ)

Gamma(a, b) ab
(
ξ
√

1
9a + 1− 1

9a

)3

Exponential(λ) − 1
λ log

(
1
2 + 1

2erf
(

ξ√
2

))
Table 2.1: Probability density function transformation formulas extracted and adapted
from [Isu99]. Here, the term erf means the error function.

Moreover, numerical results in Sec. 2.2.3.3 confirm the usefulness of the transformation

approach additionally.

As shown above, the framework of the Unscented Transformation can be extended to

deal with different distribution types of random input vectors, ξ, properly. In addition,

the problem of an adequate representation of the resulting output uncertainty is ad-

dressed in what follows. According to Eq. (2.40)-(2.41) approximations of the mean,

E[η], and the (co)variance, σ2
η, are determined by UT, respectively. Usually, these two

quantities are associated to a Gaussian distribution as well. For example, a related

PDF might be parametrised or confidence intervals are determined. In cases, however,

where the actual distribution of η diverges strongly in comparison to a Gaussian dis-

tribution misleading inferences are likely. Here, the additional information of higher

order moments about η, e.g. the skewness and the kurtosis, might be used as correction

factors. As demonstrated, the UT approach enables a straightforward calculation of

these higher moments, see Eq. (2.43) and (2.44). Thus, one of the following concepts

might be put in operation to take account for non-Gaussian output distributions:

(a) Instead to parametrise a Gaussian PDF via E[η] and σ2
η, alternative PDFs might

be parametrised as well. In a subsequent step, the approximations about higher-

order moments are utilised to select the most plausible PDF candidate, see Sec.

2.2.3.3 for illustration.

(b) A similar idea in comparison to the first point but performed more systematically,

is to apply the Pearson system [AKM05]. Here, the Pearson system encompasses

different types of distributions, e.g., Gaussian distribution, the beta distribution,

the exponential distribution, and the uniform distribution. In detail, the first four

statistical moments obtained for η, determine which of the enclosed distribution

type is selected.
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(c) Alternatively, the Gaussian distribution might be reshaped by correction factors

which are correlated to the skewness and the kurtosis of η. In literature, different

correction schemes can be found. For example, the Cornish-Fisher expansion

[SA11] might be applied.

(d) Finally, the Unscented Transformation approach can be applied to approximate

the integration expression of the Polynomial Chaos Expansion which has been

presented in Sec. 2.2.2.4.

(e) Moreover, the UT concept in combination with a Gaussian Mixture density ap-

proximation strategy may perform well for non-Gaussian problems, too, but de-

mands an increased sample number [RHK10].

2.2.3.3 Practical Implementation

This sub-section aims to present the most frequently applied algorithm of the Unscented

Transformation in relation to monomials of precision 3 (UT3). In this framework,

the Generator Function as well as the transformation step to any desired Gaussian

distribution are performed inherently, see [JU94, JU04] for details. The generation of

sample points is performed according to

ξ0 = 0 (2.57)

ξi = +
√

(n+ λ)
(√

σ2
ξ

)
i

; i = 1, . . . , n (2.58)

ξi = −
√

(n+ λ)
(√

σ2
ξ

)
i

; i = n+ 1, . . . , 2n (2.59)

where
(√

σ2
ξ

)
i

is the ith column of the matrix square root and λ = α2 · (n+ κ)− n.

Now, every sample point, ξi, is evaluated by the transfer function

ηi = g(ξi); ∀i = 1, . . . , (2 · n+ 1) (2.60)

The resulting set of transformed points, ηi, is used subsequently to determine an approx-

imation of the mean, E[η], and the (co)variance matrix, σ2
η, by the following weighted
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superposition

E[η] =

2·n∑
i=0

wmi ηi (2.61)

σ2
η =

2·n∑
i=0

wci (ηi − η)(ηi − η)T , (2.62)

Here, the associated weights, wi, are given by

wm0 =
λ

n+ λ
(2.63)

wc0 =
λ

n+ λ
+ 1− α2 + β (2.64)

wmi = wci =
1

2 · (n+ λ)
; ∀i = 1, . . . , 2n. (2.65)

In comparison to the presented Point Estimate Method in Sec. 2.2.3, a modified no-

tation is used and an additional tuning parameter, α, is introduced for the purpose

of numerical robustness [JU04]. However, both approaches coincide for the following

setting, α = 1, κ = 3− n, and β = 0.

In this work, the Unscented Transformation is applied to various non-linear uncertainty

propagation problems that are given in the following.

a) relation between measurement noise and Akaike weights, W(Ŝi)

• ξ is the vector of all available measurement data. If K is the number of measure-

ment time points, ξ has the dimension n = m ·K and is given by:

ξ = [y1(t1), . . . , y1(tK), . . . , ym(t1), . . . , ym(tK)]T .

• g(·) stands for the determination of Akaike weights, W(Si), i.e., the complete

parameter identification process, as well as the calculation of AICc (Eq. (4.6))

are part of the transformation process.

• η is the resulting Akaike weight, W(Ŝi), of model candidate Ŝi, i.e., η = W(Ŝi).

b) relation between state vector, x(tk), and the next time instance, x(tk+1)

• ξ is the vector of all states, i.e., quantities that are described by the ODE system

at time point tk, i.e., ξ = x(tk).
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• g(·) stands for the simulation process, i.e., the numerical solution of the underlying

ODE system in the time interval ∆t = tk+1 − tk.

• η is the resulting vector of states at time point tk+1, i.e., η = x(tk+1).

c) relation between parameter perturbation and the simulation results

• ξ is the vector of all imprecisely known model parameters, ξ = θ.

• g(·) stands for the simulation process, i.e., the numerical solution of the underlying

ODE system.

• η is the resulting vector of the output function at a certain time point, i.e.,

η(tk) = h(tk).

The last application is an essential part in the field of Global Sensitivity Analysis that

is described in more detail in the next subsection.

2.2.4 Global Sensitivity Analysis

Especially for models in systems biology, the influence of model parameters, θ, on the

model output varies strongly. On the one hand there are parameters, θl ⊂ θ, that can

be changed by orders of magnitude without notable influence on the dynamic behaviour

and on the other hand a slight change of certain parameters, θh ⊂ θ, leads to a strong

output variation. Evidently, in the framework of parameter identification it is much

more easier to identify the latter parameter subset, θh.

To determine the influence of model parameters θ on ysim(t) related parameter sensi-

tivities have to be calculated. If identified parameters provide tight confidence regions,

i.e., their values are almost certainly known, then the sensitivities can be determined

by a local approach evaluating the Sensitivity Matrix (SM)

SM(tk) =
∂ysim(tk)

∂θ

∣∣∣∣
θ

(2.66)

Usually, this is not the case and global methods taking parameter uncertainties explic-

itly into account have to be applied. These requirements are automatically fulfilled by

variance-based approaches. Treating parameters, θ, and the output, ysim(t), as random

variables, the amount of variance that each parameter, θ[i], contributes to the variance

of the output, σ2(ysim(t)), is determined.

The ranking of a parameter θ[i] is done by the amount of output variance that would

vanish, if this parameter θ[i] is assumed to be known. Formally, for every assumed
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known parameter θ[i] a conditional variance, σ
−i

2(ysim|θ[i]), can be determined. The

subscript −i indicates that the variance is taken over all parameters other than θ[i]. As

θ[i] itself is a random variable in reality, the expected value of the conditional variance

E
i

[
σ
−i

2(ysim|θ[i])
]

has to be determined, where the subscript E
i

indicates that the ex-

pected value is only taken over the parameter θ[i]. Now, the output variance, σ2(ysim),

can be separated [SRTC05] into the following two additive terms.

σ2(ysim) = σ
i

2(E
−i

[ysim|θ[i]]) + E
i
[σ
−i

2(ysim|θ[i])] (2.67)

The variance of the conditional expectation, σ
i

2(E
−i

[ysim|θ[i]]), represents the contribu-

tion of parameter θ[i] to the variance σ2(ysim) indicating the importance of this pa-

rameter. The normalised expression in Eq. 2.68 is known as the first order sensitivity

index [Sob93] and is used in the following for parameter sensitivity analysis.

Syi =
σ
i

2(E
−i

[ysim|θ[i]])

σ2(ysim)
(2.68)

Usually, the integrals associated to σ2(ysim), E
−i

[ysim|θ[i]], and σ2(ysim|θ[i])) are evalu-

ated by Monte Carlo simulations [Sob01], which have been presented in Sec. 2.2.2.3. As

previously stated, MC correlates with a high computational effort. Thus, to reduce the

computation load the Unscented Transformation is put in operation instead. Firstly,

the overall variance, σ2(ysim), is determined by the Unscented Transformation related

to monomials of precision 5. A total number of 2n2 + 1 sample points have to be evalu-

ated and analysed. Subsequently, the evaluated samples can be reused to calculate the

variance of the conditional expectation, σ
i

2(E
−i

[ysim|θ[i]]), immediately. That means, the

total number of function evaluations correlates to 2n2 + 1. In comparison to standard

Monte Carlos methods, this indicates are significant reduction in computational load

for many practical applications. By implementing the proposed strategy, precision de-

mands are fulfilled automatically, i.e., determined variances are related to monomials

of precision 5, whereas the expectations are associated to monomials of precision 3.

Details can be found in App. A.2.

In summary, the Unscented Transformation renders the Global Sensitivity Analysis

into a feasible approach which can be applied with manageable computational effort

in many cases. Thus, the Global Sensitivity Analysis can be implemented not only

for parameter ranking but also for more general approaches as well. For example,
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Global Sensitivity Analysis might be used for model reduction purposes [QDSM11] or

to provide a better insight into (bio)chemical processes [RWL+12].

2.2.5 Numerical Results

This section aims to demonstrate the proposed methods of uncertainty propagation.

Starting with a single input single output problem the complexity is increased grad-

ually up to multi-input multi-output expressions. In general, the performance of the

Unscented Transformation is analysed in detail.

2.2.5.1 Sigmoid Function

Here, a sigmoid transfer function is reviewed, which transfers the variability about one

random variable, ξ, to another one, η, according to

η =
1

1 + e−ξ
(2.69)

As illustrated in Fig. 2.6, the uncertainty propagation is subject of non-linearity. The

proposed transfer function, even thought to represent an academic example, corre-

lates to essential problems in modelling as well. For instance, a constrained parameter

identification problem shows a similar behaviour. In this case, ξ represents some mea-

surement data, ydata, and η is thought as an unknown parameter, θ, which has lower

and upper constraints. Hence, the uncertainty propagation step describes a non-linear

mapping of the uncertain data sample to the unknown parameter by an optimisation

routine which has incorporated some penalty terms [Yen05] to account for the param-

eter constraints. Another important effect, especially in systems biology, is known as

ultra sensitivity [HF96, Kho00]. That means, there is a tiny interval at which a vari-

ation of a factor, θ, leads to a strong variation in a related output, ysim. Beyond this

interval, an additional variation of θ has almost no impact on ysim, i.e., a saturation

emerges. In relation to the expression of Eq. (2.69), the random variable ξ correlates

to θ, whereas ysim is associated to η.

In a first step, the precision of the Unscented Transformation (UT5) is analysed in

comparison to results based on linearisation as well as Monte Carlo simulation. The

mean, E[η], and variance, σ2
η, are determined at different levels of uncertainty about ξ.

As demonstrated in Tab. 2.2, the Unscented Transformation outperforms the Taylor

series approach in precision while utilising a minimum number of sample points in

comparison to Monte Carlo simulations.
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Figure 2.6: Illustration of the test case study: a sigmoid function

Linearisation UT5 (3 Samples) MC (105 Samples)
ξ ∼ E[η] σ2

η E[η] σ2
η E[η] σ2

η

N(0, 0.50) 0.50 1.56 · 10−2 0.50 1.39 · 10−2 0.50 1.40 · 10−2

N(0, 1.50) 0.50 1.41 · 10−1 0.50 0.62 · 10−1 0.50 0.73 · 10−1

N(0, 2.00) 0.50 2.50 · 10−1 0.50 0.74 · 10−1 0.50 0.98 · 10−1

N(1, 1.25) 0.73 6.04 · 10−2 0.69 4.73 · 10−2 0.68 4.76 · 10−2

Table 2.2: Benchmark study of approximation methods: Linearisation vs. Unscented
Transformation at different input uncertainty configurations, ξ. Monte Carlo simulations
are used for assessment purposes. Obviously, the Unscented Transformation (UT5) pro-
vides credible results by evaluating a very low sample number.

Obviously, the mean and variance of η can be determined satisfactorily. A Gaussian

distribution based on these two quantities, η ∼ N(E[η], σ2
η), might be poor represen-

tative of the actual distribution, see Fig. 2.7(a)-(d). Here, different types of PDF

which are parametrised by E[η] and σ2
η are more suitable candidates. As previously

mentioned, the approximated skewness and kurtosis might be used to select the most

plausible PDF candidate.

Naturally, the assumption of a Gaussian distribution in relation to η is likely to in-

troduce errors in confidence intervals, too. In the particular case of Eq. (2.69), η is

limited to η ∈ [0 1] by definition. Therefore, any plausible confidence interval should

not exceed these bounds. The assumption of a Gaussian distribution, however, leads

to a confidence interval of CI = (0.03, 1.34) for ξ ∼ N(1, 1.25). As an alternative,

the Cornish-Fisher expansion [SA11] is applied to account for the approximately de-

termined skewness and kurtosis. In doing so, the confidence interval is corrected to

CI = (0.10, 0.95), which is in much better agreement to the PDF shown in Fig. 2.7(d).
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(a) ξ ∼ N(0, 0.50)
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(b) ξ ∼ N(0, 1.50)
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(c) ξ ∼ N(0, 2.00)
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(d) ξ ∼ N(1, 1.25)

Figure 2.7: Illustration example of an UT-based PDF approximation: For different input
configurations, ξ ∼ N(E[ξ], σξ), the UT3 approach is applied to propagate the associated
mean and variance, respectively. Subsequently, different PDF candidates are parametrised
by these two statistical quantities, i.e., ( ) Normal PDF, ( ) Uniform PDF, and
( ) Beta PDF. The true PDF is given by ( ).
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a0 a1 a2 a3

UT5 0.6869 0.2084 -0.0883 0.0000
MC 0.6834 0.2133 -0.0640 -0.0581

UT5−MC
MC 0.51% -1.37 % 37.96% -100%

Table 2.3: Precision of the determined PCE coefficients: Unscented Transformation
(UT5) vs. Monte Carlo simulation (MC).

In cases, however, where the primary interest is in good approximation of pdfη exclu-

sively, one might implement the framework of Polynomial Chaos Expansion directly.

As shown in Sec. 2.2.2.4, the most crucial part in PCE is to derive reliable coefficients,

ai, via numerical integration routines. Assuming lpce = 3, an overall number of four

integral expressions according to Eq. (2.25) have to be determined. Hence, the UT5

approach can be put in operation for this purpose as well. In Tab. 2.3, the outcome of

this procedure is given. The accuracy of the determined coefficients, ai, decreases for

coefficients of increasing order gradually, because the nonlinear characteristic increases

as well. Nevertheless, the associated surrogate function based on PCE provides a good

approximation of the actual PDF as shown in Fig. 2.8.
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Figure 2.8: Probability density approximation via the PCE approach: Once the PCE-
based surrogate function is determined it can be “cheaply” evaluated by Monte Carlo
simulations resulting in the shown histogram (a). Subsequently, Kernel-based approaches
might be put in operation to determine the associated probability density function, pdfη.
In (b), the resulting PDF ( ) is shown in relation to true PDF ( ).
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2.2.5.2 An n-Dimensional Input Problem

In this subsection, a test case example which has been presented in [GH12] is revisited.

In detail, the following non-linear mapping is analysed

η = g(ξ) = ξT ξ, ξ ∼ N(0n, In×n) (2.70)

Here, In×n represents the identity matrix. Thus, η is defined as a superposition of n

squared standard Gaussian random variables. In this particular case, the statics about

η follows a χ2-distribution [HMGB03b]. Thus, the mean, E[η], and the variance, σ2
η,

can be determined analytically [HMGB03b] in accordance to

E[η] = n (2.71)

σ2
η = 2n (2.72)

As shown in Sec. 2.2.3, for the purpose of calculating the variance, σ2
η, via sample based

approaches also g(ξ)2 has to be approximated properly. In doing so, monomials up to

order 4 have to be addressed correctly. Thus, applying the UT3 approach leads to an

approximation error about σ2
η, whereas the mean, E[η], is determined correctly, because

only monomials of order 2 are involved. To ensure a correct result of the variance, too,

the UT5 approach has to be put in operation as demonstrated in Tab. 2.4.

True TS1 TS2 UT3(β = 0) UT3(β = 2) UT3(β = 1) UT5

E[η] n 0 n n n n n
σ2
η 2n 0 2n 3n− n2 3n+ n2 3n 2n

Table 2.4: Analytical results about E[η] and σ2
η, respectively, for different approximation

schemes.

By comparing different correction factors, β, it is obvious that the approximation error

of UT3 can be reduced significantly. For example, by applying no correction factor,

β = 0, or alternatively β = 2 as recommended in [JU04] the approximation error

scales quadratically in relation to the dimension n, see App. A.1 for more details. By

implementing β = 1, however, a good approximation performance can be achieved even

for UT3 as shown in Fig. 2.9. Thus, a proper choice of β is an essential component to

ensure reliable results in the calculation of variances by the UT3 approach.
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Figure 2.9: Variance of χ2(n) for an increased number of dimension, n: The associated
variances, σ2(χ2(n)), are approximated via ( ) UT3, ( ) UT3e, and ( ) UT5.
Here, the UT5 approach provides the correct result.

2.2.5.3 Gompertz Function

The intention of this example is to demonstrate the performance of the Unscented

Transformation approach in the presence of non-Gaussian distributions. As stated

in Sec. 2.2.3, distribution-specific transfer functions, q(ξ), might be utilised for this

purpose. Here, the induced uncertainty about the time-dependent outcome of the so-

called Gompertz function is analysed

η(ξ′, t) = ξ′[1]e−ξ
′[2]e−ξ

′[3]t
(2.73)

The elements of the random vector, ξ′ ∈ R3, are associated to a non-standard Gaussian,

a Uniform, and Log-normal distribution, respectively. The detailed specifications of the

applied distributions are given by

ξ′[1] ∼ N(1, 0.05) (2.74)

ξ′[2] ∼ U(3, 9) (2.75)

ξ′[3] ∼ lnN(0.05, 0.3) (2.76)

In a subsequent step, the UT3 approach in combination with the appropriate transfer

function, q(ξ), given in Tab. 2.1 are applied to determine the mean, E[η(t)], and the

variance, σ2
η(t). The numerical results are illustrated in Fig. 2.10. In comparison

to Monte Carlo simulations, the proposed concept provides working results, i.e, the

uncertainty about η(t) is approximated properly by a minimum of computational load.
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Figure 2.10: Uncertainty about the Gompertz function: In the first row, (a)-(c), the
independent distributions of elements of the random vector, ξ, are presented. In (d) the
simulation result is shown. Here, ( ) relates to the deterministic outcome given by
η(ξ′, t). More adequate inferences can be done taking the dispersion of ξ′ into account ex-
plicitly as demonstrate by the mean, E[η], and the associated 99%-confidence interval (CI).
In detail, MC results are related to: EMC [η] ( ) and CIMC ( ). Where quantities
determined by UT3 are indicated by: EUT3[η] ( ) and CIUT3 ( ), respectively.
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2.2.5.4 Case Study of the Global Sensitivity Analysis

Finally, the usefulness of the Unscented Transformation in the framework of Global

Sensitivity Analysis is presented. For this purpose the so-called O’Hagan & Oakley

function is implemented according to

η = aT1 ξ + aT2 cos(ξ) + aT3 sin(ξ) + ξTMξ, ξ ∈ R15 (2.77)

The numerical values associated to the parameter vectors, ai, as well as to the matrix M

are given in App. A.2. In addition, the elements of the random vector, ξ, are assumed

to be independent and to follow a standard Gaussian distribution, ξ ∼ N(015, I15×15).

The O’Hagan & Oakley function is frequently used as a benchmark problem for meth-

ods in global sensitivity analysis, because the Sobol’ indices can be derived analytically

[OO04a]. Moreover, this function imitates a behaviour which can be found in vari-

ous models in the field of systems biology, namely the sloppiness of model parameters

[GWC+07]. This feature characterises the omnipresence of three different groups of

parameter sensitivities, i.e., one can find a group of parameters with low (ξ[1] − ξ[5]),

medium (ξ[6]− ξ[10]), and high (ξ[11]− ξ[15]) sensitivity, respectively. To ensure pre-

dictive simulations, parameters of high sensitivity are of special interest in parameter

identification. Therefore, any helpful method in sensitivity analysis has to classify the

model parameters into the mentioned groups reliably, whereas the exact numerical value

of an individual sensitivity index might be of less importance. As demonstrated in Fig.

2.11 the proposed concept of Sec. 2.2.4 fulfils this desired property satisfactorily, i.e.,

the elements of ξ a correctly grouped. Moreover, the determined Sobol’ indices are

in good agreement in comparison to the analytical results. In detail, the utilisation

of a total number of 2 · 152 + 1 = 451 sample points provides a good approximation

while keeping the computation load to a minimum level. For example, generally more

than 1000 sample points are applied in the native Monte-Carlo simulation framework

to determine the Sobol’ indices of first order for only one input factor. Therefore, the

total number of function evaluations exceeds the value 15,000 in this particular case

easily. In conclusion, this academic example demonstrates impressively that the Un-

scented Transformation is a promising approach to increase the applicability of Global

Sensitivity Analysis. Thus, GSA might become more competitive in comparison to the

standard approach of local sensitivity analysis which is based on linearisation, but still

dominating the sensitivity analysis in systems biology [DBR10a].
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Figure 2.11: The approximated Sobol’ indices, Syi , are compared to the exact results.
Different approximation schemes are used: In (a), σ2(ysim) by UT3, σ

i

2(·) by UT5, and

E
−i

[ysim|θ[i]] by UT3. In (b), σ2(ysim) by UT5, σ
i

2(·) by UT5, and E
−i

[ysim|θ[i]] by UT3. In

(c), σ2(ysim) by UT5, σ
i

2(·) by UT5, and E
−i

[ysim|θ[i]] by UT5. Thus, the configuration of

(b) shows the best ratio of approximation power and computational load.
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2.3 Chapter Summary

In this chapter, the problem of uncertainty quantification as well as propagation is

addressed. The focus is on various methods of uncertainty propagation techniques,

including standard approximate concepts, e.g., Taylor series, Gaussian quadrature,

Monte Carlos simulation, and Polynomial Chaos expansion. Additionally, the Un-

scented Transformation approach for the purpose of uncertainty propagation is exam-

ined in more detail.

It is demonstrated, how to incorporate non-Gaussian and/or dependent distributions

in the framework of UT. Here the transformation concept, i.e., the introduction of an

additional transfer function which maps a standard Gaussian distribution to any de-

sired distribution, is a versatile tool for a broad class of real-life problems.

For the purpose of demonstration, comparative studies are performed using illustrative

examples. Although a limited number of examples is analysed, some general conclu-

sions can be given. It is obvious that UT provides good approximations in comparison

to Taylor series of first order, but utilising a minimum level of computation load in

relation to Monte Carlo simulations or Gaussian quadrature. Therefore, the Unscented

Transformation is likely to fill the gap of accuracy demands and computational effi-

ciency in a number of practical applications.

Apart from the mathematical details and benchmark studies, some comments about the

origin of the Unscented Transformation are given. Here the so-called Point Estimated

Methods are the direct precursors of the Unscented Transformation, but rarely or never

addressed in recent works. As a consequence, some redundancy can be found in the

literature, i.e., results well known in the field of PEMs are rediscovered in the field of

UT. Thus, a proper renaming of UT might be considered even though this involves a

great loss to the figurative language:

“For nonlinear filtering problems where the nonlinearity is severe compared

to the prior state information, the classical extended Kalman filter (EKF)

“stinks” compared to the unscented Kalman filter (UKF), which has been

concluded in a large number of application.

F. Gustafsson & G. Hendeby [GH12] ”
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3

OED for Parameter Identification

After the uncertainty of a quantity of interest has been determined appropriately, the

Optimal Experimental Design (OED) for parameter identification aims to minimise this

uncertainty in case of need, i.e., when the associated uncertainty prohibits any mean-

ingful inferences. The origin of OED dates back to the pioneer work of R. A. Fisher

[Fis35]. At the very first beginning of OED the focus had been on empirical models,

i.e., data-driven model concepts had been subject of research. In recent decades the

principles of OED have been applied for mechanistic model approaches as well. For

example, in the field of systems biology a vast number OED applications can be found

[BSSR94, BCRFB07, FM08, KT09, DBI10]. In most cases, however, OED applied for

nonlinear problems is based on linearisation without any proof of credibility. Thus, the

focus in this thesis is on the influence of approximation errors to OED results. Before

test case studies are presented some basics about OED are given below.

First of all, the term “experimental design” may need some explanation:

“A schedule of experimental conditions is referred to as an experimental design.

G. E. P. Box & N. R. Draper [BD87] ”
Hence the schedule may cover measurement specifications:

• When to measure?

• What to measure?

• Where to measure?

• How to measure?,

and general operating conditions as well:
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3. OED FOR PARAMETER IDENTIFICATION

• How to choose initial conditions? • How to steer the system?

To give appropriate answers to these problems, a proper cost function has to be defined.

Generally, this cost function represents the uncertainty about the quantity of interest.

In this context, the experimental condition which provides the lowest value of the cost

function is labelled as the “optimal experimental design”. In conclusion, a suitable cost

function is a key element in OED and needs some more detailed examination.

3.1 Definition of Cost Functions

In most practical cases, the Fisher Information Matrix (FIM) is put in operation to

quantify the uncertainty about estimated model parameters, θ̂ ∈ Rl. For a set of mea-

surement sample time points, ydata(tk), ∀k = 1, . . . ,K, and the associated measurement

(co)variance matrix, Cy(tk), the FIM is defined by

FIM =

K∑
tk

SMT
tk
· C−1

y(tk) · SMtk (3.1)

Here, the sensitivity matrix, SMtk , reads

SMtk =



∂y1(tk)
∂θ1

∣∣∣
θ̂1

∂y1(tk)
∂θ2

∣∣∣
θ̂2

· · · ∂y1(tk)
∂θl

∣∣∣
θ̂l

∂y2(tk)
∂θ1

∣∣∣
θ̂1

∂y2(tk)
∂θ2

∣∣∣
θ̂2

· · ·
...

...
...

. . .
...

∂ym(tk)
∂θ1

∣∣∣
θ̂1

· · · ∂ym(tk)
∂θl−1

∣∣∣
θ̂l−1

∂ym(tk)
∂θl

∣∣∣
θ̂l


(3.2)

In case of ODEs, a matrix differential equation system for the sensitivities has to be

solved in parallel to the original model

˙SM =
∂f

∂y
· SM +

∂f

∂θ
; SM(0) = 0m×l (3.3)

Subsequently, the inverse of FIM in relation to the Cramer-Raó inequality [Kay93]

provides a lower bound of the parameter covariance matrix, Cθ̂, according to

Cθ̂ ≥
∂g (θ)

∂θ
FIM−1∂g (θ)T

∂θ
, (3.4)

where g (θ) = θ +Bi(θ̂). Here, the bias term, Bi(θ̂) = E[θ̂]− θ, describes a systematic

deviation of the estimated to the true parameter values. The equality only holds, if

(i) the measurement errors are additive, and (ii) the model is linear in its parameters.
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Moreover, the FIM does not give any information on E[θ̂]. Therefore, in many cases it

is additionally assumed that (iii) the estimates are unbiased, E[θ̂] = θ → Bi(θ̂) = 0.

Consequently, the parameter covariance matrix is approximated by

Cθ̂ ≈ FIM
−1 (3.5)

In practical applications, however, the FIM approach may lead to poor approximations

of Cθ̂. Obviously, the Fisher Information Matrix is based on the same linearisation

principles as shown in Sec. 2.2.2.1. Here, too, linear surrogates of non-linear problems

might be poor representatives, i.e., results which are based on linearisation are likely

to fail. Moreover, the derivatives in FIM have to be evaluated at parameter values,

θ, which are actually unknown. A remedy might be the following procedure which is

frequently implemented in practice:

“... a prior guess θ̂0 for θ is used to design the experiment, with the hope

that the local optimal design for θ̂0 will be close to the optimal one for

the unknown θ. When the alternation of estimation and design phases is

possible, sequential design permits to progressively adapt the experiment to

an estimated value of θ that (hopefully) converges to its unknown true value.

A. Pázman & L. Pronzato [PP07] ”
To avoid, or at least to reduce, costly reiterations of parameter estimation and design

phases, robust OED strategies based on min-max optimisation principles have been

derived [KKBS04, TLDI12a, TLDI12b]. Here the parameter uncertainty is addressed

explicitly, i.e., the parameters are characterised by confidence intervals. Hence, the

FIM is not evaluated at a single parameter vector of estimates exclusively. Instead,

a bounded parameters space is explored in parallel searching for parameter values at

which OED has the worst performance in spite of optimal operating conditions. That

means, the worst-case scenario in relation to the unknown model parameters, θ ∈ Θ, is

solved for OED.

In the particular case of FIM-based OED, however, even a proper choice of model pa-

rameters is no guarantee of optimally designed experiments for non-linear problems.

As shown in Sec. 3.2, the approximation error due to linearisation may provide sub-

optimal results as well, see [BW04, JSMK06, VG07] for confirming references. Thus,

an improvement in the approximation accuracy is likely to provide more suitable op-

erating conditions, i.e., to provide more informative data. Nevertheless, in the field of
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3. OED FOR PARAMETER IDENTIFICATION

systems biology, even today, the implementation of the Fisher Information Matrix is

state-of-the-art in OED.

Obviously, the Unscented Transformation approach is an appropriate alternative to

determine the uncertainty about the estimated model parameters, θ̂. As demonstrated

in Sec. 2.2.3, the UT method provides approximations about the mean, E[θ̂], and

the covariance matrix, Cθ̂, respectively. Thus, the mean square error matrix of the

estimated parameters, MSEθ̂ [Kay93], can be determined via

MSEθ̂ = E[(θ̂ − θ)(θ̂ − θ)T ] ≈ Cθ̂ +Bi(θ̂)Bi(θ̂)T (3.6)

Consequently, instead of analysing the covariance matrix exclusively, MSEθ̂ is pro-

cessed in OED. But independently of the analysed uncertainty matrix, Cθ̂ or MSEθ̂,

numerical optimisation routines require an adequate representation of these matrices.

Thus, for the purpose of numerical implementation, a scalar utility function of the ap-

proximated parameter uncertainty matrix has to be derived. Instead of solving a multi-

objective optimisation problem which aims to minimise every element of Cθ̂ or MSEθ̂,

respectively, a one-dimensional compromise function is used. Therefore, well known

optimality criteria exist in literature and are frequently applied in practice [WP97],

e.g.,

A− optimal design ΦA(Cθ̂) = trace(Cθ̂) (3.7)

D − optimal design ΦD(Cθ̂) = det(Cθ̂) (3.8)

E∗ − optimal design ΦE∗(Cθ̂) =
λmax(Cθ̂)

λmin(Cθ̂)
(3.9)

with λmax (λmin) as the maximum (minimum) eigenvalue of Cθ̂. Please note that Cθ̂

might be replaced by MSEθ̂ in case of the UT approach. In general, however, the

choice of the design criterion influences the outcome of OED and it is not clear in

advance which criterion will produce the best result, i.e., which criterion will produce

the most precise parameter estimates. Naturally, at this point, it raises the question

whether it is really necessary to identify all model parameters with the same accuracy.

As stated previously, the objective of most mathematical models is to provide reliable

simulation results, i.e., to provide meaningful model-based inferences. Therefore, a cost

function which is based on the parameter precision exclusively is usually not an ideal
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3.2 Demonstration of FIM-based OED Inaccuracy

option for non-linear models. Admittedly, in the special case of linear problems there

might be no differences between these two objectives. Both are equivalent objectives

under stringent conditions, see [KW60, Won94, Won95] and references therein. For

non-linear problems, however, this equivalence is not any longer a valid assumption

[BHC+04, GWC+07]. Only a subset of the unknown model parameters and combina-

tions thereof determine the qualitative behaviour of the model. Thus, when the main

interest lies in obtaining a predictive model but not in identifying certain parameter

values, it is not necessary to reduce all parameter uncertainties by the same amount.

In consequence, OED should provide models with tight confidence intervals of simula-

tion results, which are indirectly influenced by the imperfect parameter identification

process. Here, the universal concept of the UT method provides also an appropriate

and elegant way to take these considerations into account, see Sec. 2.2.3.3. In detail,

the UT approach provides the mean and the (co)variance matrix of the states of the

simulated time interval. A suitable cost function taking the uncertainty about x(t) into

account is

ΦUT
MSEx = trace

 tend∫
t0

MSE(x(t, θ̂, u))dt

 . (3.10)

Here, the mean square error matrix of the states is approximated according to

MSE(x(t, θ̂, u)) = E[(x(t, θ̂, u)−x(t, θ, u))(x(t, θ̂, u)−x(t, θ, u))T ] ≈ CUTx̂(t)+Bix̂(t)Bi
T
x̂(t)

(3.11)

In doing so, the MSE(x(t, θ̂, u)) is evaluated at validation conditions, i.e., conditions

which have not been part of a former parameter identification process. Hence, by

minimising ΦUT
MSEx

the uncertainty about the most sensitive parameters and param-

eter combinations is reduced automatically. The correlation of global parameter sen-

sitivities and the mean square error of prediction has been analysed empirically in

[LML+09, LMM10].

3.2 Demonstration of FIM-based OED Inaccuracy

The following academic example demonstrates potential pitfalls of the Fisher Infor-

mation Matrix in the field of Optimal Experimental Design. In detail, the test case
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3. OED FOR PARAMETER IDENTIFICATION

problem is defined as

g1(ξ) = a · ξ3 (3.12)

g2(ξ) = b · ξ (3.13)

η(ξ) = w · g1(ξ) + (1− w) · g2(ξ) (3.14)

Hence, the function of interest, η(ξ), is a weighted combination of a nonlinear function,

g1(ξ), and a linear function, g2(ξ), respectively, see Fig. 3.1.
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Figure 3.1: Illustration of the test case function, η(ξ) = w ·g1(ξ)+(1−w)·g2(ξ), separated
in its nonlinear (a) and its linear (b) component, respectively.

Additionally, it is assumed that the random input variable, ξ, follows a standard Gaus-

sian distribution. As mentioned previously, OED aims to minimise the uncertainty

about, η(ξ), by an optimal choice of available design variables, ζ. Applied to the ex-

ample given in Eq. (3.14) the objective of OED is to find the most appropriate value

of the weighting factor, w, which provides the lowest uncertainty about η(ξ), i.e., to

figure out the optimal design value, ζ = w ∈ [0 1], which minimises the variance, σ2
η.

Therefore, an optimisation problem is defined according to

arg min
ζ

σ2
η(ζ); 0 ≤ ζ ≤ 1 (3.15)

Naturally, the outcome of this optimisation problem depends on the precision of the ap-

proximated variance, σ2
η, critically. A worse approximation of the variance, σ2

η, might

cause sub-optimal or even adverse optimisation results. For the purpose of demon-

stration, the optimisation problem of Eq. (3.15) is solved for different approximate

methods, i.e., the Fisher Information Matrix, the Unscented Transformation, as well as

Monte Carlo simulations are put in operation. In addition, different test case scenarios

are analysed. In detail, the function parameters, a & b, are modified to provide a low,
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3.2 Demonstration of FIM-based OED Inaccuracy

a medium, and a significant impact of the nonlinearity to η(ξ), respectively.

The correlation of the variance, σ2
η, and the design variable, ζ, at the three different

scenarios are illustrated in Fig. 3.2. Obviously, in all three test cases the optimisa-

tion problem has an unique optimal solution, which should be detected by the applied

approximate methods, too. In Tab. 3.1 the results of this benchmark study are sum-

0 0.2 0.4 0.6 0.8 1
0

10

20

30

ζ

σ
2 η

(a)

0 0.2 0.4 0.6 0.8 1
13

13.5

14

14.5

15

ζ

(b)

0 0.2 0.4 0.6 0.8 1
0

5

10

15

ζ

(c)

Figure 3.2: Outcome of the benchmark study: range of weighting/design factors, ζ, in
comparison to the resulting variance, σ2

η. Here, the lowest entry of σ2
η corresponds to the

optimal choice of ζ. Three different scenarios are illustrated: In (a) the linear behaviour
is dominating (a = 0.10, b = 5.00). In (b) the nonlinear impact is slightly increased
(a = 1.00, b = 3.85). Finally, the nonlinearity dominates in (c) (a = 1.00, b = 0.10).

marised. For a low level of nonlinearity all three methods provide the same optimal

value, ζ = 1. In case of an increased nonlinear impact, the FIM which is based on

linearisation principles, fails completely. That means, suboptimal/adverse design vari-

ables are calculated. The Unscented Transformation, however, provides for all cases

suitable design variables with a minimum effort in computational load compared with

the Monte Carlo approach which is applied as a reference method.

MC UT5 FIM
(a, b) ζ σ2

η ζ σ2
η ζ σ2

η

(0.10, 5.00) 1.00 0.15 1.00 0.15 1.00 0.15
(1.00, 3.85) 0.51 13.28 0.62 13.42 1.00 15.11
(1.00, 0.10) 0.00 0.01 0.00 0.01 1.00 14.82

Table 3.1: Outcome of the benchmark study : optimal weighting/design factor, ζ, in
comparison to the resulting variance, σ2

η.
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3.3 Single-Substrate Uptake Model1

In this study a single-substrate uptake model is of special interest. In detail, the growth

of biomass, cB[gl−1], which is induced by a substrate uptake, cS [gl−1], is simulated for

a continuous stirred tank bio-reactor. By assuming that the inlet flow, qin[lh−1], and

the outlet flow, qout[lh
−1], of the reactor are equal, (qin = qout =: q[lh−1]), the following

ODE system can be derived

ċB = µ · cB −D · cB (3.16)

ċS = − 1

YB|S
· µ · cB + (cs,in − cS) ·D (3.17)

Here, the dilution rate is defined as D = q
V [h−1], and the specific growth rate, µ, is

determined by a Monod kinetics as

µ =
µm · cS
Ks + cS

. (3.18)

The simplicity of this unstructured growth model does not provide a significant insight

into biological mechanisms, but it seems appropriate to demonstrate characteristic

problems in determining and minimising the parameter covariance matrix for models

that are non-linear in their parameters. Obviously, the model has three parameters:

(i) YB|S - the yield factor describes how much biomass is produced by the uptake

of a certain amount of substrate, (ii) µm - the maximum growth rate is the upper

limit of the growth rate µ, and (iii) Ks - the substrate affinity constant represents

the substrate concentration at which the specific growth rate is half its maximum

value. For reasons of simplification, the following assumptions are made: (i) only the

concentration of biomass is measurable y(tk) = cB(tk), and (ii) YB|S is known from

literature, consequently only the parameters of the Monod kinetics, µm and Ks, have

to be identified, which results in a two-dimensional parameter space.

3.3.1 Parameter Identifiability

Before starting the parameter identification, it seems reasonable to check whether the

unknown parameters can be determined in principle for perfect measurement informa-

tion, i.e., measurement data are continuous in time and not effected by measurement

noise, respectively. In this very special case, the measurement data at time point zero,

1A large majority of results contained in this section have already been published in the peer-
reviewed literature, [SKM09b].
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3.3 Single-Substrate Uptake Model

ydata(0), as well as associated time derivatives, ẏdata(0), ÿdata(0), . . ., up to some arbi-

trary order are available in theory [WP97]. Hence, by assuming ydata(0) = cx(0) the

following equation system can be derived in relation to Eq. (3.16) & (3.17)

ydata(0) = cx(0) (3.19)

ẏdata(0) = ċB(0) = (µ−D) · cx0 = (µ−D) · ydata(0) (3.20)

ÿdata(0) = (µ−D)ẏdata(0) +
dµ

dcS
· ċS(0) · ydata(0) (3.21)

=
ẏdata(0)2

ydata(0)
+ ydata(0)

dµ

dcS

(
− 1

YB|S
· µ · ydata(0) +D(cs,in − cS)

)
(3.22)

In addition, it is assumed that the initial substrate concentration, cS(0), is known.

Hence, Eq. (3.20) and (3.22) can be rearranged to

µ|t=0 = D +
ẏdata(0)

ydata(0)

dµ

dcS

∣∣∣∣
t=0

=
ÿdata(0)− ẏdata(0)2

ydata(0)

ydata(0)
(
− 1
YB|S

· (D · ydata(0) + ẏdata(0)) +D(cs,in − cS(0))
) =: µ′(0)

Obviously, it is possible to express µ|t=0 and dµ
dcS

∣∣∣
t=0

by the known quantities, y(0),

ẏ(0), ÿ(0), and cS(0), analytically. Thus, from the definition of µ it follows that also

Ks and µm can be expressed uniquely in the following way

Ks =
cS(0)2

µ(0)
µ′(0) − cS(0)

(3.23)

µm =
µ(0) · (Ks + cS(0))

cS(0)
(3.24)

Therefore, at least in principle, it is possible to identify the unknown parameters, Ks

and µm, by biomass measurements.

3.3.2 Optimal Experimental Design

Here, a benchmark study compares the outcome of the FIM-based OED in relation

to Unscented Transformation method. Therefore, the following assumptions are made

concerning the single-substrate uptake model:

• the measurement of the biomass concentration is taken at three time points tk =

[0.5 1.0 1.5]h;
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• artificial measurement data are used, i.e., data are obtained from a reference

simulation and are corrupted by an artificial Gaussian noise additionally.

The reference values of the parameters are Ks = 2 and µm = 5. Moreover, the variance

of the measurement noise is set to Cy = 10−4[g2l−2]. Here, the small measurement

error is chosen deliberately to demonstrate that the applied methods for OED provide

different results in spite of small measurement errors. The computation is done in MAT-

LAB, i.e., the ODE-solver ode15s and the optimiser lsqnonlin (Levenberg-Marquardt

algorithm) are put in operation, respectively.

The OED problem can be solved numerically by using one of the above mentioned

optimality criteria. As the correlation of µm and KS complicates a proper identifica-

tion, the E∗-criterion (Eq. (3.9)) is used. In doing so, the correlation of the param-

eters is addressed appropriately. The theoretical minimum of ΦE∗(Cθ) is 1 in case of

λmax(Cθ) = λmin(Cθ), where λ(·) means the corresponding eigenvalues. Moreover, for

the purpose of OED, the inlet flow, q(t), is defined as the design variable, ζ. That

means, OED aims to find an optimal trajectory of q(t) which maximises the mea-

surement information content and minimises the parameter uncertainty, respectively.

Usually, optimally determined simple inlet profiles are good candidates to reduce the

parameter uncertainty [BSSR94]. Therefore, the inlet flow is restricted to follow a

practicable profile equal to

q(t) =

{
a, t < c
a+ b(t− c), t ≥ c (3.25)

Thus, the OED problem consists in the optimal choice of the parameters a, b, and c,

which minimises the associated objective function ΦE∗(Cθ). By running the benchmark

study, the covariance matrix, Cθ, is computed either from the inverse of the FIM or

directly by the UT approach. Because the (co)variances computed by FIM and UT

differ, the two methods provide different optimal operating conditions, too, see Tab.

(3.2). Thus, the inlet flow, qin(t), and the corresponding growth rate, µ(t), differ as

well, see Fig. (3.3) for details. Here, the most obvious deviation concerns the slope

parameter, b. The UT approach suggests an earlier and steeper increase of the inlet

flow, q(t), which may allow a more precise estimation of the substrate limiting constant,

Ks. To assess which of the two experiments, the FIM as well as the UT based design,

provides the most informative data, a Monte-Carlo simulation is performed at both

operating conditions. The resulting scatter plot in Fig. (3.4) with 2,000 samples per
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3.3 Single-Substrate Uptake Model

newly designed experiment shows that the UT approach generates a smaller and more

roundish point cloud of the parameter estimates, θ̂. Obviously, the UT approach results

into a reduction of the parameter uncertainties and their correlation in comparison to

the FIM-based design. Especially the variance of KS in the UT-based experiment is

smaller than in the FIM-based experiment. The main reason for this seems to be

that the FIM-based covariance underestimates the variance of Ks significantly. That

means, in the FIM-based OED a too high accuracy of Ks is assumed erroneously. In

consequence, no adequate effort is made to increase the associated uncertainty properly.

Moreover, the scatter plot provides characteristic values of the parameter statistics

which confirm the usefulness of UT in the field of OED, see Tab. (3.3).

a b c

OED(FIM) 0.925 1.257 0.992
OED(UT3) 0.666 3.089 0.867

Table 3.2: Parameters of the optimal inlet flow function, q(t), associated to the FIM-based
and UT-based OED, respectively.
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Figure 3.3: Outcome of OED for the single substrate model associated to FIM approach
( ) and the UT method ( ), respectively. The inlet flow, qin, is shown in (a). The
corresponding growth rate, µ, is given in (b) additionally.

σ2
Ks

σ2
µm E[Ks] E[µm] ρ

OED(FIM) 0.9891× 10−3 0.0611× 10−3 2.0020 5.0005 0.9971
OED(UT3) 0.2130× 10−5 0.0452× 10−5 1.9999 4.9999 0.8584

Table 3.3: Resulting parameter statistics corresponding to the FIM-based and UT-based
OED, respectively. Here, ρ represents the correlation of the two parameters, Ks and µm.
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Figure 3.4: Scatter plot of the parameter estimates associated to OED: Results based on
the FIM approach ( ) show a strong correlation of the two model parameters, KS and µm.
In comparison to the UT method ( ) also the final parameter uncertainty is increased, i.e.,
the FIM-based estimates are wider scattered.

3.4 Two-Substrate Uptake Model1

In this subsection it is demonstrated how the computational cost of Unscented Trans-

formation based OED can be reduced by utilising interpolation techniques in parallel.

Instead of evaluating the original cost function during the process of OED a surrogate

cost function based on Kriging interpolation (see App. A.3) is explored. The general

procedure is demonstrated by a two-substrate uptake model. Here, the carbohydrate

uptake of the micro-organism Escherichia coli (E.coli) is of particular interest. The

considered process mimics the uptake of glucose (Glc) and glucose 6-phosphate (G6p),

where the latter is preferred by E.coli., i.e., the uptake of glucose starts only when no

G6p is at hand. Thus, in contrast to the so called “glucose effect” [TKA00] glucose

is not able to inhibit the uptake of G6p when a mixture of these two substrates is

available.

The associated mathematical model encompasses 9 ordinary differential equations and

more then 30 model parameters, θ. As previously stated, the model addresses the

growth of biomass B, the substrate uptake of G6p and Glc, the evaluation of related

uptake enzymes EG6p and EGlc, essential components of the glycolysis pathway, and

EIIAP as an element of the bacterial phosphotransferase system (PTS). A detailed

explanation of this model can be found in [KBG07]. In this thesis, however, the focus

is on the identification of four related model parameters, K1, Kg6p, K2, and Keiiap. As

these parameters are part of the uptake- and enzyme synthesis rates, just the directly

1A large majority of results contained in this section have already been published in the peer-
reviewed literature, [SKM12].
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3.4 Two-Substrate Uptake Model

involved ODEs are shown. The complete set of ODEs is given in App. A.4.

Ḃ = u ·B (3.26)

˙G6p = −mwg6p · rupg6p ·B (3.27)

Ġlc = −mwglc · rupglc ·B (3.28)

ĖG6p = rsyng6p − (kd+ u) · EG6p (3.29)

ĖGlc = rsynglc − (kd+ u) · EGlc (3.30)

Here, the related uptake rates are

rupg6p =
1.5 · kg6p · (EG6p ·G6p)

Kg6p +G6p
(3.31)

rupglc =
kptsup · EIIAP · (EGlc ·Glc)

(Kglc +G6p) ·Keiiap · x0 + EIIAP · (Kglc +Glc)
(3.32)

The associated enzyme synthesis rates are defined as stated below

rsyng6p = k1 ·
kb+ ksyn · EIIAP 6

EIIAP
6 +K6

· rupg6p
K1 + rupg6p

(3.33)

rsynglc = k2 ·
KI

EG6p +KI
· kb+ ksyn · EIIAP 6

EIIAP
6 +K6

·
rupglc

K2 + rupglc
(3.34)

Obviously, K1 and Kg6p determine the uptake of G6p, whereas K2 in combination with

Keiiap influences the consumption of Glc. Thus, with the knowledge of the rate ex-

pressions, a statement about the parameter estimates to be expected is possible: K1

and Kg6p as well as K2 and Keiiap are correlated, which makes a parameter identi-

fication difficult. A first parameter estimation is done with intuitively chosen initial

concentrations, G6pini=2.00 µmol/gDW and Glcini=2.00 µmol/gDW. The measure-

ment information is gathered by the following setting: samples of biomass, glucose

6-phosphate and glucose (m = 3) are taken at seven time points (K = 7), between 0h

and 8h ([0.2 1.2 2.45 3.7 4.95 6.2 7.45]h). Here artificial (simulated) measurements with

a constant variance, Cy,ii=0.12 [gDW 2,µmol2/gDW 2], are applied. The MATLAB op-

timiser fminsearch is used to minimise the squared difference between the simulation,

ysim, and measurements, ydata, weighted by the inverse of the measurement covari-

ance matrix, Cy. This has to be done for each of the 43 measurement sample vectors

(2 · m · K + 1), see Sec. 2.2.3.3. The resulting set of 43 parameter vectors are used

to approximate the mean square error matrix of the estimates, MSEθ̂. In contrast to

standard sample based approaches it is a tremendous reduction of computational effort,

e.g., for a Monte Carlo approach hundreds or thousands of measurement samples are
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3. OED FOR PARAMETER IDENTIFICATION

usually used.

Almost estimated parameters exhibit a percentage bias over 1% (Tab. 3.4) even for

small measurement noise indicating a non negligible non-linearity of the model with

respect to its parameters [Rat83]. (Please note that the evaluated bias is based on UT

as it outperforms the more traditional Box-bias concept, see App. A.5.) With this

in mind it seems natural that the frequently used Fisher Information matrix (based

on linearisation) might be insufficient to provide a proper quantification of parameter

uncertainties.√
Cy 0.01 0.05 0.1 0.15 0.2 0.25

%BiK1 0.04 1.09 4.34 9.77 17.36 27.13

%BiK2 2.72 67.97 271.88 611.73 1087.52 1699.25

%BiKg6p 0.20 4.88 19.53 43.93 78.10 122.04

%BiKeiiap 0.72 18.00 72.01 162.01 288.07 450.04

Table 3.4: Percentage Bias (Eq. A.18) related to an increased measurement error for
fixed initial concentrations of G6pini=2.00µmol/gDW and Glcini=2.00µmol/gDW.

The batch process possesses only few degrees of freedom for OED: the initial conditions

and the time points of measurements are potential design variables. Here, the initial

concentrations of the two carbohydrates (G6pini and Glcini) are optimised to reduce

the uncertainties of the parameters and the states, respectively.

E[K1]
K1

LK1

E[K2]
K2

LK2

E[KG6p]
KG6p

LKG6p

Worst Case 13.50 133.60 86.81 899.11 0.39 50.99

Initial Point 1.04 2.51 3.71 33.12 0.68 9.83

Optimum 1.14 3.85 3.61 31.40 0.50 29.10
E[Keiiap]
Keiiap

LKeiiap

Φ
ΦOpt

Worst Case 8.61 82.37 520.08

Initial Point 1.71 10.26 1.38

Optimum 1.21 5.34 1.00

Table 3.5: Statistics of estimated parameters at the three different design points. Here,
L(·) represents the length of the associated 99%-Confidence Interval.

The universal concept of the UT method is applied to evaluate the design criterion for

the purpose of OED. The UT method in combination with the Kriging interpolation

is put in operation for the special case of the carbohydrate uptake model in order to
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3.4 Two-Substrate Uptake Model

find optimal initial concentrations of the two carbohydrates, glucose and glucose 6-

phosphate. Hence 50 sample points of the two dimensional design space are chosen by

Latin Hypercube Sampling, see Sec. 2.2.2.3. These samples are evaluated by the UT

approach to determine the uncertainty about simulation results at a validation point

of G6pini=2.50 µmol/gDW and Glcini=2.50 µmol/gDW. The summed up MSE’s of

the model states B, G6p, and Glc (Eq. 3.10) at the 50 sample points are used as the

collocation points for the Kriging interpolation. The resulting surrogate cost function

can be seen in Fig. 3.5. Obviously, the intuitive choice of G6pini and Glcini is not the

worst case but also not an optimal point of the design space. Furthermore, the worst

case for the parameter identification is determined by the absence of any substrate,

i.e., no information on the uptake dynamics is available. As an experiment under this

condition is meaningless an alternative point with a high cost function value in the

presence of glucose and glucose 6-phosphate (G6pini=0.45 µmol/gDW and Glcini=0.94

µmol/gDW) is labelled as the Worst Case. Moreover, the surrogate cost function in

Fig. 3.5 indicates that the initial concentration of both substrates should not drop

below 2 µmol/gDW. In addition, the concentrations of G6pini=3.47 µmol/gDW and

Glcini=4.36 µmol/gDW can be identified as optimal design values.

To assess the potential of the OED, the statistics of the estimated parameters are

analysed at the three different points of the design space (see Tab. 3.5). Indeed the

parameters identified under the Worst Case condition provide the highest uncertainties,

i.e., the 99%-Confidence Intervals are large and the expected values deviate from the

true values significantly. At the Initial Point the uncertainties are smaller but still

unsatisfactory. Even the Optimum Point does not lead to credible estimates. The

uncertainties are still high, but compared to the Worst Case they are reduced by order

of magnitudes.

As described, the cost function is based on uncertainties of the states and not directly

on parameter statistics. With this in mind, the Confidence Intervals of the model states

are visualised in Fig. 3.6. A model calibrated with the measurement information at

the Worst Case is not able to describe the uptake process in a sufficient manner. The

Confidence Intervals of simulation results, which are related to parameter uncertainties

at the Initial Point and at the Optimum could be reduced, but are still too high for

meaningful inferences. Additional optimally designed experiments or more accurate

measurements are necessary to guarantee models with an increased predictive power.

To offer an explanation for the benefit of OED, simulations of the biomass, glucose and
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3. OED FOR PARAMETER IDENTIFICATION

glucose 6-phosphate with their measurement samples are shown in Fig. 3.7. Under

the condition of the Worst Case, i.e., low initial concentrations of the two substrates,

the transient to the steady state settles more quickly than in the optimal case. In

the Worst Case the last three measurements are taken at the steady state, hence the

last measurements hardly bring new information. In the Optimal Case the amount of

G6pini and Glcini is sufficiently high that the transient behaviour covers the complete

experimental time horizon and all measurements are taken at different system dynamics.

At the determined optimum the values of the parameters and especially of the model

states possess reduced uncertainties. Consequently, the UT approach and Kriging In-

terpolation are beneficial in the framework of OED.
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Figure 3.5: Contour plot of the logarithm of the cost function: 50 sample points are
used as an input set for the Kriging interpolation. The resulting surrogate cost function
can be easily evaluated by optimisation routines. Informative regions are shown dark grey
to black, whereas non-informative regions are shown light grey to white. Hence, for a

pre-defined reference point, R , the optimal initial substrate concentrations are given at

O .

3.5 Chapter Summary

Compared to the Fisher Information Matrix and the Monte Carlo simulation, the Un-

scented Transformation approach has a number of advantages that make it highly

attractive for Optimal Experimental Design:

• One does not only obtain a lower bound of Cθ as provided by FIM, but an

approximation that is sufficiently accurate as long the measurement noise is not

too large or the non-linearity is not too severe.
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• While the FIM postulates an unbiased parameter estimator, the UT method also

gives reliable information on the estimated mean values, E[θ̂]. Therefore, in the

framework of OED it becomes possible not only to minimise the covariance but

also the bias of the estimated parameters.

• The UT approach does not assume some idealised parameter identification pro-

cedure, but works with the numerical method that is actually applied to the

identification problem. Therefore, all kinds of imperfections and special proper-

ties of the numerical optimiser are taken into account.

• In contrast to the FIM, the UT method does not require the calculation of gradi-

ents or Jacobians for the sensitivities. Therefore, it is applicable to a broad class

of models, including e.g. black-box like models [HKK08].

• The implementation of the UT framework is very easy, the parallelization is

straight-forward.

• The sample points in UT are not chosen randomly but deliberately. Therefore,

the number of required samples will usually be much smaller than for the MC

simulation. In addition, the necessary number of samples is clearly defined and

not a matter of guessing, as it is to some extent for the MC simulation.

Thus, the Unscented Transformation for OED is a versatile concept which may help to

overcome a long-lasting problem in non-linear OED:

“In a nonlinear problem, the statistician can say to the experimenter: “You tell

me the value of θ and I promise to design the best experiment for estimating

θ.” If the experimenter replies, “Who needs you?,” this is natural but not

helpful.

W. G. Cochran [Coc73] ”

65



3. OED FOR PARAMETER IDENTIFICATION

0 2 4 6 8

−4

−2

0

2

4

G6p

0 2 4 6 8
−500

0

500

1,000

G6p

0 2 4 6 8
−1,000

−500

0

500

1,000

W
o
rs

t
C

as
e

Biomass

0 2 4 6 8

−1,000

0

1,000

2,000
Glc

0 2 4 6 8
−20

−10

0

10

20
Glc

0 2 4 6 8
−20

−10

0

10

20

time [h]

Glc

0 2 4 6 8

−4

−2

0

2

4

time [h]

G6p

0 2 4 6 8
−20

−10

0

10

20

In
it

ia
l

P
oi

n
t

Biomass

0 2 4 6 8
−20

−10

0

10

20

time [h]

O
p

ti
m

u
m

Biomass

Figure 3.6: Statistics of a subset of model states. Here, the dashed lines, , represent
the 95% confidence intervals of biomass, glucose, and glucose 6-phosphate. All simula-
tion results, , are performed at reference conditions, G6pini=2.50 µmol/gDW and
Glcini=2.50 µmol/gDW.
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Figure 3.7: Simulation results of the two substrate model at three different operating
conditions: (i) the initial substrate concentration, , (ii) the optimised substrate con-
centration, , and (iii) the worst case scenario, . Obviously, the measurements at
pre-defined time points (vertical dotted lines, ) are only efficiently used in the case of
the optimised initial substrate concentrations, .
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4

OED for Model Selection

4.1 State-of-the-Art in Model Selection1

As mentioned previously, essential processes in cell biology, e.g., signalling or metabolic

processes, can be described and analysed using deterministic models. Hence, expert

knowledge has to be transferred into a suitable model structure, Ŝ, which represents

the interaction of model components. Depending on the intended use, the resulting

mathematical model may help to explore unknown mechanisms in living systems or

to validate competing hypotheses of elementary processes. As shown in the previous

section, Sec.3, even with a correct model structure, the identification of related model

parameters, θ ∈ Θ ⊂ Rl, might be challenging. Moreover, the situation changes

for the worse if there are uncertainties about the model structure itself and the kind

of interplay of model components, e.g., kinetics. The generation of a whole bank of

model candidates which represent competing hypotheses of the same basic processes,

but describing measurement data, ydata(t), similarly well, is a quite common situation

in systems biology. Generally, suitable model candidates, Ŝi; ∀i = 1, . . . ,M , as well

as associated model parameters, θ(Ŝi), are determined by minimising the mismatch

between simulation results, ysim(Ŝi, t), and measurement data, ydata(t). In the field

of systems biology, however, one has to accomplish the feat to figure out the most

plausible model structure, Ŝi, in conjunction with a large number of unknown model

parameters, θ(Ŝi), from sparse data. Here, sparse data means that only a small subset

of model components can be measured directly at a limited number of discrete time

points, tk, ∀k = 1, . . . ,K.

Various methods have been developed which are intended to support the modeller

1A large majority of results contained in this chapter has already been published in the peer-
reviewed literature, [SKM09a, SM13].
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in identifying the most likely or plausible model candidate. Usually, those methods

are based on statistics and/or information theory [LBS94, BA02, MC04, KFG+04,

DBMM+11]. In general, these two concepts might be different in their origin, as well

as in their quality of results, but they share common features, too [LBS94]. For in-

stance, measurement data, ydata(tk), are processed in a batch mode, i.e., data are

collected until the experiment is finished and the whole set of data samples is subse-

quently used for the purpose of model validation/selection. Furthermore, parameter

uncertainties are usually not explicitly considered in the framework of model selec-

tion. These shortcomings, however, might influence the result of the selection process

strongly. In addition, there is no guarantee at all that the model candidates can be

distinguished properly at given operating conditions by applying one of these methods.

Here, Optimal Experimental Design (OED) comes into play [KT09, MSM10, SL10].

In detail, OED searches for operating conditions which are expected to facilitate the

overall selection process. Subsequently, after the determination of suitable operating

conditions by OED a new experiment has to be conducted, which is likely to provide

new informative data. Unfortunately, optimally designed experiments are usually non-

standard experiments, i.e., for the lab assistants those experiments are non-routine jobs

and prone to error in consequence. Thus, in combination with some inherent uncer-

tainties, e.g., uncertainties about initial conditions, environmental conditions, and/or

model parameters, previously optimally designed experiments may become suboptimal

in practice [ATE+08, KAG09]. An online approach which aims to compensate for these

uncertainties is presented in what follows.

4.1.1 Preliminaries

Similarly to the previous sections, the considered mathematical models are given as a

system of ordinary differential equations (ODEs) according to

ẋ(t) = f(x(t), θ, u) ;x ∈ Rn , θ ∈ Rl , u ∈ Rs (4.1)

ysim(t) = h(x(t)), θ ; ysim ∈ Rm (4.2)

Here, the states, x(t), describe the temporal evolution of the quantities of interest,

e.g., concentration of enzymes. The output function, h(·), pinpoints the states, x(t),

which are directly or indirectly measurable. For the purpose of readability, the proposed
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methodologies are introduced without loss of generality for 1-dimensional problems, i.e.,

ysim ∈ R1. Generally, an online model selection strategy calls for outputs which can be

measured online in parallel to the experimental run. In the field of systems biology, this

might be a difficult task to undertake, but, an increased number of advanced sensor

technologies are at hand in the field of (bio)chemical process monitoring, which includes

the subsequently analysed MAP kinase as well [FdVN+10]. On the other side, for a

flexible OED operation there is a need to excite the analysed system in a desired way

by a feasible system stimulus. In the particular case of the MAP kinase such a stimulus

might be physically put in operation by ionising radiation [CAR+98, NK04].

4.1.2 How to Separate the Wheat from the Chaff

Generally, in systems biology the analysed processes are quite complex and suffer in

validated assumptions about (bio)chemical principles. Therefore, any inference which

is based on a mathematical model has to be handled with utmost caution. For in-

stance, it might be that the sum of squared errors, SSE (Eq. (4.3)), can be minimised

satisfactorily although unrealistic interactions of model components are part of the

model.

SSE =

K∑
k=1

(ydata(tk)− ysim(tk))
2 (4.3)

Naturally, this effect becomes more likely if (i) the dimension of the model parame-

ter vector, Rl, is high, (ii) the number of data points, K, is limited, and (iii) these

data are disturbed by measurement noise. Here, too, it is assumed that the measure-

ment noise, ε(tk), is additive and that ε(tk) is described by a Gaussian distribution,

ε(tk) ∼ N(0, σ2
ydatak

), leading to the following data generating function

ydata(tk) = h(x(tk)) + ε(tk) (4.4)

An essential part in modelling is to figure out the most plausible model, Ŝi, from a

pool/bank of M potential model candidates. A performance index, JGC , which assesses

each individual candidate, has to take at least two properties into account

JGC = Ψ(Goodness of Fit, Complexity) (4.5)
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In detail, these are the goodness of fit, i.e., agreement of model output and measure-

ment data (Eq. (4.3)), as well as the model complexity, which is to some extent related

to the dimension of the parameter dimension, θ ∈ Rl [BA02].

For example, in statistics, the problem of model selection is frequently reformulated as

a test of hypotheses [Fis71, BA02, MC04, HMGB03a]. By assuming two model candi-

dates the simplest model is considered as the so called null hypothesis, H0, whereas the

second candidate is treated as the alternative hypothesis, H1. Now, the measurement

data, ydata(tk), are applied to reject H0 with a certain probability. Thus, there are two

possible outcomes of such a statistical approach, the given data fail to reject H0, i.e.,

the simpler model is selected. Or else the data succeeds to reject H0, that means the

more complicated model (the alternative hypothesis, H1) is the favourite. In its original

version only two model candidates can be compared. Furthermore, the outcome of this

test is a binary decision, i.e., H0 fails or it does not fail, but there is no hint how clearly

it fails or how well it is accepted.

A more flexible approach of model selection was derived in information theory. Here, no

hypotheses are tested, but models are ranked explicitly by a trade-off of the goodness

of fit and model complexity in accordance to Eq. (4.5). For instance, the Akaike

Information Criterion (AIC) is the most widely used basic formula in this field of

application [BA02, MC04]. Throughout this section, the so-called “corrected Akaike

Information Criterion” (AICc) formula is used

AICc = K · ln
(
SSE

m ·K

)
+ 2(l + 1) +

2(l + 1)(l + 2)

m ·K − l
(4.6)

Remember, K is the number of measurement time points, and m indicates the number

of measured quantities, ydata(tk) ∈ Rm.

As an individual AICc value is difficult to interpret, the AICc differences, ∆i (Eq.

(4.7)), are more appropriate for the purpose of model selection. Hence, all individual

AICci values are compared to the least complex candidate, AICcmin, i.e., the model

with the lowest number of parameters.

∆i = AICci −AICcmin (4.7)
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By using these difference values, ∆i, the associated likelihood of a model can be ex-

pressed by Akaike weights

W(Ŝi) =
exp

(
−1

2∆i

)
m∑
r=1

exp
(
−1

2∆r

) (4.8)

Furthermore, the Akaike weights, W(Ŝi), are equivalent to probabilities values, Πi, of

the potential model candidates and sum up to one

M∑
i=1

W(Ŝi) =

M∑
i=1

Π(Ŝi) = 1 (4.9)

Naturally, the most desired outcome of model selection is to assign one model candidate

with a probability value close to one, whereas the remaining candidates are assigned

with probability values close to zero. Therefore, a proper distribution of these probabili-

ties is essential in model selection and would be a suitable cost function for the purpose

of OED as shown in the subsequent section. In comparison to the hypotheses test,

this approach can be easily extended to a large number of potential model candidates.

Moreover, all of these candidates are assessed qualitatively, i.e., the selection of the

very best model is based on probability values instead of a binary rejection-acceptance

decision [MC04]. Nevertheless, at this point it has to be stressed that the outcome

of any model assessment strategy has to be handled with care. For instance, due to

measurement imperfections calculated results may be affected by large uncertainties

which prohibit any meaningful inferences as shown below, e.g., see Fig. 4.11.

4.1.3 Optimal Experimental Design for Model Selection

In the previous section, different approaches for model selection have been proposed.

Ideally, by applying one of these methods the most plausible model candidate is se-

lected for a given set of measurement data. In practice, however, one measurement

data set derived from a single experiment might be insufficient to discriminate rival

model candidates properly. More informative data have to be gathered in addition

by new experimental runs. To save time and money these new experiments should

be conducted at deliberate operating conditions that were previously determined by

a model-based Optimal Experimental Design (OED) strategy. As stated previously,

73



4. OED FOR MODEL SELECTION

potential operating conditions which can be adjusted in principle are (i) initial condi-

tions, x(t = 0), (ii) the stimulus of the system, u(t), and (iii) measurement sample time

points, tk. In what follows, only the stimulus, u(t), is optimised.

Firstly, for the purpose of defining feasible operating conditions, a cost function, JD,

for OED has to take the differences of the analysed model candidates into account. For

instance, a suitable measure of the expected model differences is based on the Kullback-

Leibler distance (KLD) (Eq. (4.10)) which is closely related to AIC [BH67, BA02].

Originally, KLD determines the differences in probability density functions, pdf(Ŝi),

of the associated model candidates. By assuming Gaussian probability distributions

(σ2
Ŝi

= σ2
Ŝj

= c) the KLD given in Eq. (4.10) simplifies to Eq. (4.11), details can be

found in [BH67, RP02].

JKLDD (pdf(Ŝi), pdf(Ŝj), y) =

(∫
pdf(Ŝi)ln

pdf(Ŝi)

pdf(Ŝj)
dy

)
(4.10)

JKLDsD =
1

c

K∑
k=1

(y(Ŝj , tk, u)− y(Ŝi, tk, u))2 (4.11)

Based on the mathematical models, an optimal stimulus, uopt, is chosen which is ex-

pected to maximise JKLDsD . Subsequently, after solving the optimisation problem posed

in Eq. (4.12) a new experimental run has to be conducted utilising uopt.

uopt = arg max
u

JKLDsD (Ŝi, Ŝj , u) (4.12)

The resultant data, ydataopt (tk), are incorporated for a further model assessment cycle, e.g.,

to rerun an hypotheses test or to evaluate Eq. (4.8). The steps of model assessment,

determination of informative operating conditions, and conducting new experiments

are reiterated until the best model can be selected properly. Usually, the total number

of reiterations is considerably high. One major reason of this high number of reitera-

tions is imperfections [GBB09, BAGW10], i.e., the optimally designed experiments are

based on imprecise assumptions which are addressed in more detail in what follows.

Up to this point, uncertainties about estimated model parameters, θ̂, and operating

conditions are neglected. In general, these main sources of uncertainty are likely to

influence the outcome of optimal design and model selection strongly. It is well known

that measurement noise, ε(tk), leads to some scatter about identified parameters, θ̂,

see Sec. 3. Consequently, the evaluation of the cost function, JKLDsD , at a single point
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in the parameter space, θ ∈ Rl, might be misleading. In the best case, this effect is

compensated for by the previously mentioned reiteration of experimental design and ex-

perimental (re)run, i.e., newly generated measurement data, ydataopt (tk), are used to refine

parameter estimates before any assessment of the model candidates is done. Whenever

this cycle is performed several times, the negative effect of parameter uncertainties can

be reduced iteratively. The actual rerun of optimally designed experiments, however,

comprises inherent uncertainties, too. That means, the implementation of an experi-

ment at previously determined operating conditions is usually not free of errors, e.g.,

certain operating conditions may not be precisely controllable. Taking into account the

fact that most of the treated models are non-linear in their operating conditions, minor

deviations of uopt may influence the outcome of an experiment critically. Further on,

optimally model-based designed experiments are non-standard experiments, i.e., for the

lab assistants those designed experiments are non-routine jobs and prone to error. In

conclusion, an optimally designed experiment is likely to become suboptimal in practice.

Consequently, an obvious remedy might be the robustification of OED. That means,

to make the process of model selection and OED robust against non-avoidable uncer-

tainties. Although several concepts for this purpose exist in literature, they usually

fail to treat uncertainties about parameters, as well as about operating conditions in

equal measure. Furthermore, a rerun of experiments is still necessary for these stan-

dard approaches. An alternative approach which copes with uncertainties about model

parameters and about operating conditions is presented in the next subsection. The es-

sential idea is to perform OED in parallel to the experimental run in a fully automated

fashion.

4.2 Online Model Selection Framework

As mentioned previously, the assessment of model candidates by probability values,

Π(Ŝi), is of practical interest. Assuming some statistical information about the model

candidates as well as measurement data these probabilities can be determined directly

from Bayes’ theorem. That means, immediately after a new measurement data sam-

ple, ydata(tk), becomes available the conditioned model probabilities are determined
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according to

Π(Ŝj |ydatak ) =
pdf(ydatak |Ŝj)Π(Ŝj |ydatak−1 )

M∑
i=1

[
pdf(ydatak |Ŝi)Π(Ŝi|ydatak−1 )

] ; ∀j = 1, . . . ,M (4.13)

The link of Π(Ŝj |ydatak ) to Akaike weights is given by Eq. (4.9), details can be found in

[BA02]. Obviously, for the purpose of model selection the probability of a single model

candidate should converge iteratively to one by incorporating an increased number

of data samples. To steer the process in the desired direction the stimulus u(k) of

the system is optimally chosen by evaluating a feasible cost function that takes the

latest model probabilities into account. A suitable scalar measure of the probability

distribution is given by Shannon’s Entropy (Eq. (4.14)), which was introduced by G. E.

P. Box and W. J. Hill [BH67] in the field of model selection. Generally, the Shannon’s

Entropy, SE, has a maximum value if all candidates have the same probability and a

minimum value if one candidate is assigned by a probability value of one. Consequently,

an optimal stimuli has to increase the difference of Shannon’s entropy, ∆SE, at the

latest time point tk and the expected time point in future tk+1 as shown below.

SE = −
M∑
i=1

Π(Ŝi)lnΠ(Ŝi) (4.14)

∆SE = SE(tk+1)− SE(tk) (4.15)

Moreover, the maximum change in entropy, D, which can be expected from new mea-

surement data is expressed by Eq. (4.16)-(4.17), details can be found in [BH67].

Kij
I =

∫
pdf(Ŝi)ln

pdf(Ŝi)

pdf(Ŝj)
dy +

∫
pdf(Ŝj)ln

pdf(Ŝj)

pdf(Ŝi)
dy (4.16)

D =
M∑
i=1

M∑
j=i+1

Πk(Ŝi)Πk(Ŝj) ·Kij
I (4.17)

By assuming Gaussian probability density functions the Kullback’s total measure of
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Information is given below, see [BH67] for explanation.

KN ;ij
I =

1

2

 (σ2
Ŝi
− σ2

Ŝj
)2

(σ2
ydatak+1

+ σ2
Ŝi

)(σ2
ydatak+1

+ σ2
Ŝj

)
+ (ȳ

Ŝi,k+1 − ȳŜj ,k+1)2

 1

σ2
ydatak+1

+ σ2
Ŝi

+
1

σ2
ydatak+1

+ σ2
Ŝj


(4.18)

Thus, during the experimental run an optimal stimulus, uopt(∆t), acting on a finite

time-interval, ∆t = tk+1 − tk, can be calculated by solving the optimisation problem

given in Eq. (4.19) in parallel. For the sake of simplicity, but with no loss of generality,

a piecewise constant input profile is assumed in ongoing optimisation steps, uopt(∆t) =

uconst.

arg max
u(∆t)

D(KN
I (tk+1)) (4.19)

For implementation purposes necessary statistics about model candidates, Ŝi, and about

measurement data, ydata, are needed. Here, the Kalman Filter is tailor-made in terms

of applicability and, therefore, shortly described in the following subsection. In con-

traction to the original work of [BH67] the Kalman Filter framework enables an online

design. Moreover, the Kalman Filter copes well even with non-linear systems, under

the prerequisite that a proper algorithm of Kalman Filter is put in operation.

4.2.1 Kalman Filter

At this point, the basics of the Kalman Filter (KF) approach are presented. For this

purpose, only discrete-time systems are considered as

xk+1 = f(xk, uk) (4.20)

yk+1 = h(xk+1) (4.21)

Further details about KF and its application for non-linear systems can be found in

vast number of literature, e.g., [Kal60, Gel74, Ste94, Sim06]. In short, the KF operates

in two steps. Firstly, it makes some inferences about the process states, x̂−k+1, and its

covariances, P−k+1, at some future time point, tk+1 (Eq. (4.22)-(4.23)). This part is
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known as the prediction step.

x̂−k+1 = f(x̂+
k , uk) (4.22)

P−k+1 = E
[
(x̂−k+1 − xk+1)(x̂−k+1 − xk+1)T

]
+Qk+1 (4.23)

Here, Qk+1 is a positive definite matrix taking into account model imperfections. In

the second step, the correction step, the feedback in terms of measurement data, ydatak+1 ,

is used to improve the previously done inferences according to

SRk+1 = E
[
(h(x̂−k+1)− h(xk+1))(h(x̂−k+1)− h(xk+1))T

]
+Rk+1 (4.24)

Kk+1 = E
[
(x̂−k+1 − xk+1)(h(x̂−k+1)− h(xk+1))T

]
SR−1

k+1 (4.25)

x̂+
k+1 = x̂−k+1 +Kk+1(ydatak+1 − h(x̂−k+1)) (4.26)

P+
k+1 = P−k+1 −Kk+1SRk+1K

T
k+1 (4.27)

Ŝ1

Ŝ2

ŜM

Sensor Probabilities

Exp. Change in SE

x̂+(Ŝj , tk+1)

Π(Ŝj , tk+1)u(∆t)
x̂−(Ŝj , tk+1)

UKF(Ŝj)

arg max D(tk+1)
u(∆t)

Correction(ydata(tk+1))

OED

Figure 4.1: Workflow of the Online Optimal Design: The inherent input optimisation,
u(∆t), is based on the prediction step of the Unscented Kalman Filter (UKF), i.e., just
simulation results are utilised for the online optimisation circle (OED). Once an optimal
input has been derived, the system is steered in this way in real life. Thus, new measure-
ment data, ydata(tk+1), are generated which are immediately incorporated by the correction
step of UKF. That is, a potential model mis-specification (e.g., biased model parameters)
is compensated for to a certain extent by every new available data sample.

Here, Rk+1 is a positive definite matrix taking into account measurement noise. The

Kalman Filter, however, can only be implemented successfully if the system, Eq. (4.20)-

(4.21), is observable [Gel74, Ste94, Sim06]. Thus, for all proposed models of the subse-
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Algorithm 1: Pseudo-code of the overall online model selection framework

input : Π(Ŝ1|ydata1 ) = Π(Ŝ2|ydata1 ), . . . ,Π(Ŝm|ydata1 ) = 1
M

output: Optimal input profile uopt(tk), ∀k = 1, . . . ,K

1 for k = 1 to K do
2 ∆t = tk+1 − tk;
3 begin Prediction & Optimisation
4 while D(KN

I (tk+1), u∗(∆t)) < D(KN
I (tk+1), uopt(∆t)) do

5 u∗(∆t)← Optimiser({umin umax});
6 for i = 1 to M do

7

(
ŷ−
Ŝi

(tk+1), σ̂−
Ŝi

(tk+1)
)
← Prediction(Ŝi, u

∗(∆t));

// Prediction step based on Eq.(4.22),(4.23)

8 Ω−i ← [ŷ−
Ŝi

(tk+1)σ̂−
Ŝi

(tk+1),Π(Ŝi|ydatatk
)];

// Uncorrected information about model candidate Ŝi

9 end
10 D(KN

I (tk+1), u∗)← Ξ
(
Ω−1 ,Ω

−
2 , . . . ,Ω

−
M

)
;

// Determination (Eq.(4.17),(4.18)) of the maximum change in

entropy D which is expected applying u∗(∆t)

11 end

12 end

13 ydata(tk+1)← ExperimentalRun(uopt(∆t));
// Optimised stimulus uopt(∆t) is applied to the physical system

providing an informative data sample ydata(tk+1)

14 begin Correction & Model Assessment
15 for i = 1 to M do

16

(
ŷ+

Ŝi
, σ̂+

Ŝi

)
← Correction(ŷ−

Ŝi
, σ̂−

Ŝi
, ydata(tk+1));

// Correction step based on Eq.(4.26),(4.27) utilising the

latest data sample ydata(tk+1)

17 Ω+
i ← [ŷ+

Ŝi
(tk+1)σ̂+

Ŝi
(tk+1),Π(Ŝi|ydatatk

)];

// Corrected information about model candidate Ŝi

18 end
19 for i = 1 to M do

20 Π(Ŝi|ydatatk+1
)← ModelAssessment

(
Ω+

1 ,Ω
+
2 , . . . ,Ω

+
M

)
;

// Applying Bayes’ theorem Eq.(4.29)

21 end

22 end

23 end
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quent case studies, the observability has been verified successfully via a method which

is based on differential algebra [Sed02].

4.2.2 Online Optimal Design by Kalman Filtering

The overall strategy of online optimal design can be split into two essential parts,

i.e., model assessment and model discrimination. As described previously, the objec-

tive of model assessment is to assign every model candidate with a conditional prob-

ability value (Eq. (4.13)) according to current measurement data sample, ydata(tk).

For this purpose one has to quantify the conditional probability density functions,

pdf(ydatak |Ŝj); ∀j = 1 . . .M . In [Ste94] it is shown how these probability density func-

tions can be expressed by the estimated process state, x̂k(Ŝj), of the model candidates

at time point tk according to

pdf(ydatak |x̂k(Ŝj)) =
1

(2π)
1
2
√
Sk
e−

1
2
rTk S

−1
k rk (4.28)

Here, the measurement residual is given by rk = ydata(tk) − h(x̂+
k ), where the corre-

sponding residual covariance matrix, Sk, is defined by Eq. (4.24). Now the model

probability can be calculated approximately via

Π(Ŝj |ydatak ) ≈
pdf(ydatak |x̂k(Ŝj))Π(Ŝj |ydatak−1 )

M∑
i=1

[
pdf(ydatak |x̂k(Ŝi))Π(Ŝi|ydatak−1 )

] (4.29)

Clearly, for the purpose of model discrimination one is interested to increase the differ-

ences in the model outputs in the time-interval ∆t = tk+1− tk solving the optimisation

problem in parallel, see Eq. (4.19). On that account, predictions of the expected model

outputs, ŷ(Ŝj , tk+1), and their covariance matrix, σ2(Ŝj , tk+1) = SRk+1 (Eq. (4.24)),

have to be determined by the prediction step of the Kalman Filter as indicated by Eq.

(4.22)-(4.23). The overall scheme of the Online Optimal Design framework is illustrated

in Fig. 4.1.

4.3 Case Study

The ability of living cells to react on external stimuli by a proper reply is essential in

altering environments. Hence, signalling pathways capturing external stimuli, convert-

ing them into an intracellular signal which generates an associated response are of high

interest in systems biology. A malfunction of a signalling pathway can cause a number
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of serious diseases. Naturally, a better understanding of the underlying processes may

lead to novel treatment strategies. Hence, mathematical modelling and model analysis

can play a crucial part in contributing improvements in this field of biology/medicine.

For this purpose, there is a strong need for highly predictive models. That means, an

applied model has to describe the real process adequately even under conditions that

had not been part of a former parameter identification step.

Obviously, a proper model structure, Ŝi, is a prerequisite to ensure predictive simula-

tion results. Here, the proposed method of online OED comes into play to figure out

the most plausible model structure for a finite number of different model candidates.

In detail, the method of online OED is demonstrated for a well known signalling motif,

the mitogene activated protein kinase (MAP kinase) [BHDE07]. Generally, the MAP

kinase pathways mediates various processes ranging from gene transcription right up

to programmed cell death. The cascade consists at least of three enzymes that are

activated sequentially which allows a wide range of different response patterns.

Here, too, the very detailed mechanisms of the signalling pathway are unknown. As a

consequence several plausible mechanisms coexist in literature. In the following, three

different hypotheses of the MAP cascade are considered. As illustrated in Fig. 4.3,

these model candidates are different in their topology, i.e., it is assumed that the total

number of species, as well as their interactions are not known precisely. In addition to

the sequential activation of the three enzymes, KKK, KK, and K, two feedback paths

are postulated in the first model candidate, Ŝ1. As shown, the feedback from KKK∗ to

K∗ includes a forth activation step of an intermediate enzyme IP . The second model

candidate Ŝ2 has a similar topology to Ŝ1. Here, the feedback from KKK∗ to K∗

is simplified, i.e., KKK∗ and K∗ are directly linked via a Michaelis-Menten kinetic.

Finally, the most simplification is made in the third model candidate, Ŝ3. Here, only

the feedback loop starting from KKK∗ to K∗ is preserved, whereas the feedback loop

from KK∗ to K∗ is neglected totally. The actual ODE systems of the individual model

candidates are presented in the Appendix, see Tab. A.5.

Now, the proposed method of online model selection is applied to figure out the most

plausible model candidate at three different test case scenarios presented below.
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ysim(Ŝ3, t)

Figure 4.2: Simulation results after parameter identification, θ̂(Ŝ2) and θ̂(Ŝ3), via in-silico

data, ydata(Ŝ1, tk).

4.3.1 Ideal Case

In the absence of real measurement data, in-silico measurement data, ydata(Ŝj , tk), are

gathered by one of the three model candidates, Ŝj , ∀j = 1, 2, 3. In spite of this very

idealised assumption this strategy is helpful to assess the proposed method as the cor-

rect result is known in advance. In the first step, model Ŝ1 is chosen to provide the

measurement data, ydata(Ŝ1, tk). As stated previously, the data, ydata(Ŝ1, tk), are cor-

rupted by measurement noise, ε(tk) ∼ N(0, σ2
ydatak

). The associated variance is set equal

to σ2
ydatak

= 0.0252. The data are limited to the activity of the enzyme KK, whereas K∗

and KKK∗ are unmeasured. Data sampling is done at discrete time points for every

15 minutes, ∆t = tk+1 − tk = 15 min. Now, using a standard optimisation routine,

fminsearch of Matlabr optimisation toolbox, the differences in the simulation results,

ysim(Ŝ2, tk) and ysim(Ŝ3, tk), to the data, ydata(Ŝ1, tk), are minimised at fixed operating

conditions, see Tab. A.7 first row. Remember, the theoretical identifiability of the

associated model parameters was checked in advance by a method based on differential

algebra [Sed02]. Practically, estimates of model parameters, θ̂(Ŝ2) and θ̂(Ŝ3), can be

reconstructed properly providing a suitable accordance of simulation results and data,

see Fig. 4.2 and Tab. A.6 for details. Consequently, after the parametrisation step,

all model candidates, at least at the previously applied operating condition, provide a

similar input-output behaviour. In this case, methods of model selection are usually

put into operation. Thus, for the initial conditions given Tab. A.7 the proposed online

model selection method is applied. To demonstrate the significance of the optimisation

step, i.e., maximising the change in Shannon’s entropy, the stimulus is fixed to u = 0.2.
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KKK KKK*

KK KK*

K K*
IP IP*

(a) Wiring diagram of candidate Ŝ1

KKK KKK*

KK KK*

K K*

(b) Wiring diagram of candidate Ŝ2

KKK KKK*

KK KK*

K K*

(c) Wiring diagram of candidate Ŝ3

Figure 4.3: The topology of the three competing model candidates, Ŝ1,Ŝ2, and Ŝ3, are
illustrated.

That means, the online framework allows only an assessment of the model candidates

at given operating conditions, see Fig. 4.4, left column. Obviously, all three model

candidates are able to describe the major trend in the measurement data adequately.

Due to the available statistics, model candidate Ŝ3 might be excluded, i.e., it is as-

signed with a probability value close to zero. On the contrary, the left two candidates,

Ŝ1 and Ŝ2, are indistinguishable and in a good agreement to the data. Consequently,

more effort has to put in operation to figure out the most plausible candidate. By

implementing the essential step of entropy maximisation the result given in Fig. 4.4

is derived. Obviously, the step-wise optimally determined stimulus, u(∆t), renders all

three model candidates distinguishable. After a short time of convergence, model Ŝ1

is preferred as the best candidate, i.e., Ŝ1 is assigned with a probability value close to

one. As the data, ydata(Ŝ1, tk), are provided by model candidate Ŝ1, too, the online

selection strategy has done a good job. For the purpose of validation, however, the
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Ŝ2

Ŝ3
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Π(Ŝ2)

Π(Ŝ3)
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Figure 4.4: Online Optimal Experimental Design: Here, a non-optimal design vs. an
optimal design is compared. In both cases, in-silico data ydata(Ŝ1) are provided by model

candidate Ŝ1 which acts as an surrogate of the real process. CI indicates the 99% confidence
interval of measurements.
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Data-generating model ydata(Ŝ1) ydata(Ŝ2) ydata(Ŝ3)

Selected model candidate Ŝ1 Ŝ2 Ŝ3

Table 4.1: Online model selection results of different data-generating models: For any
test case scenario the correct model candidate is identified properly by the proposed online
selection framework.

model selection process is repeated 100 times in the presence of measurement noise. In

this case, the actual objective of the model selection strategy is to turn a preliminary

incorrect model preference, Π(Ŝ1) ≈ 0, into the correct decision, Π(Ŝ1) ≈ 1. Moreover,

the online optimally designed stimulus is compared with (i) a constant input profile,

and (ii) with a pseudo binary amplitude modulated input profile which is known to

provide informative data probably [NRPH03, Ise11]. In doing so, results shown in Fig.

4.10 are derived. Obviously, for the total number of 100 test runs the online OED

approach determines the correct model candidate, Ŝ1, as the most plausible candidate

reliably. In comparison to the constant as well as pseudo random input profiles the

most informative data samples are generated by the proposed online framework. For

instance, in the majority of experimental test runs the constant input is insufficient to

ensure a proper model selection. Indeed, the pseudo random input seems to provide

more informative data in relation to the constant input profile, but, in comparison to

the online approach an increased number of data samples has to be gathered to figure

out the correct model candidate. Similar results can be derived for different conditions

of the data-generating model, see Tab. 4.1 and Fig. 4.5 for details. In all cases, the

proposed method of online selection is able to detect the correct model candidate prop-

erly.

Certainly, one has to comment on the optimised stimulus profiles. For all practical pur-

poses, much simpler profiles might be desirable when taking lab equipment limitations

into account. In this case, additional stimulus constraints can be easily implemented

in the optimisation routine. For instance, the previous model selection task (ydata(Ŝ1))

is repeated assuming a binary stimulus, uopt ∈ [0 0.5]. Caused by the simpler shape of

the stimulus profile the discrimination power is reduced, see Fig. 4.6. More measure-

ment data have to be evaluated until the probability values converge and Ŝ1 is selected

selected correctly as the most plausible one.
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Figure 4.5: Online Optimal Experimental Design: In-silico data ydata(Ŝi) are generated

by model candidate Ŝ2 (left column), as well as by model candidate Ŝ3 (right column). In
both cases, the correct model is selected via the proposed online method.
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Figure 4.6: In case of a binary input profile the online model selection approach needs
an increased number of data samples to figure out the correct model candidate due to the
decreased flexibility of the input profile.

4.3.2 Switching Model Case

Complex systems like living organisms are regulated in a hierarchical manner. Thus,

there are several regulatory layers that influence each other and usually act at different

time scales. By way of example, the stimulus response of a cell is usually determined

by the interaction of gene regulation [FPPM09] and post-translational protein modi-

fication (PTM) [DPD10]. Strictly speaking, the gene regulation specifies which genes

are translated to proteins and which not, whereas PTM defines if synthesised proteins

are active or inactive.

Frequently, models exist that describe a certain regulatory layer more precisely than

other model candidates, whereas different regulatory layers are more appropriately rep-

resented by different model candidates, too. As these regulatory layers are active at

different time scales, various model candidates are more suitable at different time in-

tervals. Even such an effect can be detected by the proposed online model selection

method. As shown in Eq.(4.29), the determined model probabilities, Π(Ŝi, tk), are func-

tions of time. Consequently, a temporal change in the very best model candidate can

be traced. For the purpose of demonstration, an artificial switch in the data-generating

process is implemented.

At the first time interval, TI1 = [0 . . . 300] min, the data are provided by model Ŝ1,

whereas subsequently, TI2 = [300 . . . 600] min, the in-silico data are generated by model

Ŝ2 instead. In this particular test case, the proposed online method is able to detect the
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Figure 4.7: Online Optimal Experimental Design: Here, a shift during the process of
measurement data generation is introduced, ydata(Ŝ1) → ydata(Ŝ2). In detail, up to the

time-point of 300 min the in-silico data are provided by Ŝ1, whereas subsequent data are
generated by Ŝ2.

switch in the data, see Fig. 4.7 for details. Obviously, after a short time of convergence

the model Ŝ1 possesses a probability value close to one at TI1. Subsequently, after the

switch to ydata(Ŝ2, tk), the candidate Ŝ2 is assigned by a probability value close to one

at TI2 with a delay of a few data sample points. Here, too, simulations have been

performed at operating conditions given in Tab. A.7.

4.3.3 True-to-Life Case

In the previous test case scenarios it has been assumed that the measurement data

are generated by one of the model candidates. That means, the true model is part

of the pool of candidates which are up for election. In practise, however, it would

mean that one model candidate describes the physical process perfectly - a quite ide-

alised assumption. A more true-to-life case represents the following scenario. A master

model is used to generate in-silico measurement data, ydata(ŜMaster, tk), exclusively.

Thus, this master model is not part of the set of potential model candidates, i.e., it

is only used as a surrogate for the physical process. In detail, model Ŝ1 is chosen as

the master model. Hence, the left model candidates, Ŝ2 and Ŝ3, are applied as two
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Figure 4.8: Global Sensitivities associated to Ŝ2 & Ŝ3: k1 and k11 are the most sensitive
parameters for both model candidates, Ŝ2 and Ŝ3.

different hypotheses about the vaguely known process of interest, Ŝ1. Moreover, an-

other crucial point in practise is the influence of parameter uncertainties. In principle,

a correct model candidate can be excluded from the set of potential candidates due to

a faulty model parametrisation. Naturally, to make the model selection process robust

against these parameter uncertainties is a challenging issue. The proposed online se-

lection method, however, compensates for minor uncertainties of model parameters by

the Kalman Filter correction step inherently. In addition, to tackle even severe uncer-

tainties of important model parameters, θh (Sec. 2.2.5.4), one has to slightly modify

the implementation as described below.

In a first step, the most sensitive parameters, θh, are determined. Using formulas

given in Sec. 2.2.5.4, the Sobol’s Indices associated to Ŝ2 and Ŝ3 are calculated for a

relative parameter perturbation of 20% at fixed operating conditions (Tab. A.7), see

Fig. 4.8 for illustration. Obviously, two parameters, k1 and k11, are the most sensitive

parameters for both model candidates. Therefore, these two parameters are added to

the states, x(t), of the related ODE systems (Tab. A.5). That means, the two most

sensitive parameters are estimated directly by the Kalman Filtering process.

For demonstration purposes, k1 and k11 are changed to kc1 and kc11 (Tab. A.7). Sub-

sequently, an online selection run is conducted without any parameter correction (Fig.

4.9). Due to the wrong parametrisation, model Ŝ2 is not able to follow the major trend

defined by the measurement data, i.e., model Ŝ3 is preferred and gets a probability

value close to one. A close look to the topology (Fig. 4.3), however, shows that the

89



4. OED FOR MODEL SELECTION

0 200 400 600
10

20

30

40

50

60

70

A
ct

iv
at

ed
en

zy
m

e
K
K
∗

[%
]

No Parameter Correction

(a) Statistics provided by UKF

0 200 400 600

10

20

30

40

50

60

Parameter Correction

Ŝ2
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Figure 4.9: Online Optimal Experimental Design: Here, a master model (Ŝ1) generates
in-silico data. Without model parameter correction (left column) a sub-optimal model
candidate is determined. Only the joint estimation of states and sensitive parameters
(right column) leads to a proper model selection.
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feedback from K∗ to KK∗ is overlooked. If we allow now the parameter correction, the

model candidate Ŝ2 is assigned by a probability value close to one after short time of

convergence. Obviously, the topologies of Ŝ2 and of the “real process”, Ŝ1, are in good

agreement, i.e., both comprise the two feedback mechanisms.

Here, too, the proposed online method is able to figure out the most plausible model

candidate. Nevertheless, there is no guarantee of such a desired outcome, i.e., if a system

cannot be excited sufficiently, or if the measurement imperfection is too dominant the

online selection process is likely to fail like other approaches, too. In general, no method

of model selection is free of flaw. For instance, the presented AIC’s weights, W(Ŝi), are

very sensitive to measurement noise, η(tk). Consequently, W(Ŝi) should be considered

as random variables, too, instead of single scalar values. In doing so, the additional

information of the variance of W(Ŝi) is helpful to take the measure of confidence about

W(Ŝi). In Fig. 4.11 the expected value of W(Ŝi) as well as its confidence region

are illustrated. Here, the stimulus is fixed to 0.6 and the statistics about W(Ŝi) are

determined for an increasing measurement noise-levels, σ2
y . Obviously, the expected

value of W(Ŝi) is strongly affected by σ2
y . Even under the assumption of almost noise-

free data the confidence interval is serious prohibiting meaningful inferences.

4.4 Overlap Approach

In cases at which no online measurement data can be provided the previously presented

approach of online model selection fails. Here, the overlap approach [Lor05] might be an

interesting alternative. In contrast to the online strategy the model selection process is

performed in the traditional batch mode. That means, firstly the optimal model-based

design is determined before the associated experiment is put in operation. In conse-

quence, during the actual experimental run the previously optimal operating conditions

are unchanged. Thus, available measurement samples are not incorporate immediately

for the purpose of an experimental redesign, but, the measurements are collected over

the entire running time. After the experiment is finished the whole set of data is used

for the purpose of a new model assessment. Subsequently, a refined OED is determined

in case of need. In doing so, a fully automated OED strategy cannot be performed,

however, the overlap approach provides an efficient and elegant way to take at least

the imperfection of parameter estimates in the field of model selection into account.

Here, too, the inherent propagation of uncertainties is performed by crude linearisation

principles and by computational cumbersome Monte Carlos simulations, respectively,
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Figure 4.10: Benchmark study comparing a constant input (a), a pseudo binary ampli-
tude modulated input (b), and an online optimised input (c). For any type of input profile
100 test runs are evaluated to take account of measurement imperfections. The most infor-
mative data - at least for the purpose of model selection - are provide by the online model
selection algorithm. By starting from a false probability, Π(Ŝ1) ≈ 0, the correct result,

Π(Ŝ1) = 1, is determined with the lowest number of evaluated data samples.
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Figure 4.11: Uncertainty of AIC weights: Expected value of selection probability (black
line) and the corresponding 99% confidence interval (grey line) are shown as a functions of
the measurement error.

see [Lor05, LDTS07] for details.

Alternatively, the universal concept of the Unscented Transformation enables a proper

exploration of the influence of parameter uncertainties on simulation results, ysim(t),

see Sec. 2.2.3. For example, approximations of confidence intervals of simulation re-

sults can be determined in this way. In agreement to the previous results of model

selection, the task of OED is to find appropriate operating conditions, e.g., a system

stimulus which renders competing model candidates distinguishable. As indicated in

Sec. 4.1.2, the general problem in OED is to find a suitable measure of model differ-

ences which can be used as a proper cost function for the purpose of model selection.

Hence, the additional statistical information about simulation results is incorporate in

the cost function definition. Thus, OED aims to provide operating conditions which

turns simulation results of competing model candidates into distinguishable quantities,

whereby the related confidence intervals indicate in which extend these differences have

to be.

Obviously, the overlap of the system states of competing model hypothesis is a suitable

measure of these scaled model differences [Lor05]. By assuming a Gaussian density

distribution of ysim(Ŝi) the definition of the associated overlap becomes

Oj =
∑
tk

2 ·
√
Cjjx

Ŝ1
(tk) · C

jj
x
Ŝ2

(tk)

Cjjx
Ŝ1

(tk) + Cjjx
Ŝ2

(tk)

exp

−0.5 · (E[xj
Ŝ1

(tk)]− E[xj
Ŝ2

(tk)])
2

Cjjx
Ŝ1

(tk) + Cjjx
Ŝ2

(tk)

 (4.30)
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Here, Cjj(·) the j’th diagonal element of the related (co)variance matrix and E[(·)j ] the

j’th element of the expectation vector. To incorporate overlap regions of different

system states their superposition is used according to

O∑ =
∑
j

Oj . (4.31)

As already mentioned, all needed information to calculate the overlap, Eq. (4.30), is

given by the Unscented Transformation. Uncertainties about estimated parameters

which might be determined in advance by UT are transferred to the simulation results.

Subsequently, the derived statistics of the outputs is used to make competing model

hypothesis more distinguishable in a credible fashion. Furthermore, if no measurement

data can be explained by the confidence regions of the system states, the model struc-

ture has to be corrected, as it remains the only source of disagreement.

For the purpose of illustration, the UT based overlap approach is implemented for a

unstructured growth model:

ċB = µ · cB −D · cB (4.32)

ċS = − 1

YB|S
· µ · cB +D · (cs,in − cs) (4.33)

Here, too, cB means the concentration of biomass, cS the concentration of the sub-

strate, D the dilution rate, and YB|S the yield factor which is considered as given by

literature. Moreover, it is assumed that there is some uncertainty about the growth

rate, µ, resulting in two different hypothesis given below

µ(Ŝ1) = µmax ·
cS

cS +KS
(4.34)

µ(Ŝ2) = µmax ·
cS

cS +KS +
c2S
KI

(4.35)

Obviously, the rate µ(Ŝ1) describes the classical Monod kinetic, whereas the competing

rate µ(Ŝ2) is known as the Andrew’s equation [ON05] and takes account of the sub-

strate inhibition effect. The two model parameters, µmax (the maximum growth rate)

and KS (the substrate affinity constant) of the kinetics, are assumed to be unknown

and have to be identified (before the actual model selection) by measurement data of

the biomass concentration.
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Figure 4.12: Here, the resulting confidence intervals are illustrate according to ( )

µ(Ŝ1) and ( ) µ(Ŝ2), respectively. At low initial substrate concentration (a) both can-
didates cannot be distinguished uniquely. Only in case of an increased initial substrate
concentration (b) the two competing candidates can be distinguished properly. Moreover,

measurement data ( ) clearly support the correct model associated to µ(Ŝ1).

For the case of simplicity, a batch process is assumed, D=0, and the artificial mea-

surement data of biomass concentration at seven time-points, tk = [0, 0.15, 0.3, . . . , 0.9]

h, are generated by the original Monod model. The artificial data are corrupted by

measurement noise, v ∼ N(0, 0.1), additionally. In case of suboptimal initial condi-

tions, i.e., low initial concentration of biomass and substrate, the two models describe

a similar dynamic behaviour. That means, both candidates provide almost equal state

confidence intervals which are caused by parameter uncertainties, see Fig. 4.12(a).

Thus, no advice of a proper model candidate selection can be given at this stage. Sub-

sequently, by applying the overlap approach [LDTS07], the discrimination function,

Eq. (4.31), is put in operation. Hence, the primary objective of OED is to find initial

conditions which reduce the overlap of the states confidence intervals as low as in any

way possible. As might be expected by (bio)chemical principles, an increased initial

substrate concentration reduces the overlap significantly, see Fig. 4.12(b). Naturally,

the influence of the substrate inhibition becomes substantially more important in case

of µ(Ŝ2). Moreover, measurement data, which are associated to the optimised exper-

iment, clearly support model candidate Ŝ1. Thus, the correct model has been select

properly, see Fig. 4.12(b) for details.
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4.5 Chapter Summary

In this chapter an unified framework of an online model selection algorithm has been

presented. As shown by various test case scenarios the proposed approach copes well

with serious uncertainties. The most essential merits are summarised below:

i) Designed as an online approach it may render succeeding experiments redundant.

The online approach aims to reduce the total number of additional experiments

by an immediate incorporation of measurement data followed by an immediate

adaptation of operating conditions. Thus, one major source of uncertainty, i.e.,

to put optimally designed experiments into practice, is addressed appropriately.

ii) Minor uncertainties, e.g., uncertainties of initial conditions and of less sensitive

model parameters, that would have an undesired influence on the optimal exper-

imental design are compensated for by default, due to the correction step of the

Kalman Filter.

iii) Sensitive model parameters, which may be known vaguely, are the principle reason

that even an optimally designed experiment is frequently suboptimal in practice.

Hence, the joint/parallel determination of an optimal design, u(∆t), and the

estimation of sensitive model parameters make this approach particularly well

suited for the purpose of robust experimental design.

iv) The proposed method is flexible enough to detect fundamental changes in the

measurement data. That means, different plausible model candidates can be

detected for different time intervals.

Moreover, in cases at which no online measurement data are at hand the overlap ap-

proach has been presented as a proper alternative. By operating in a batch mode,

the Unscented Transformation method is directly applied to determine some statistics

about simulation results which are caused by parameter uncertainties and measurement

imperfections, respectively. In doing so, the overall framework of OED becomes more

robust and takes intrinsic uncertainties into account adequately.
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5

Flatness Approach for Parameter

Identification

5.1 Introduction1

As shown so far, mathematical models described by ODE systems are capable to repre-

sent various types of processes in biology, e.g., metabolism (Sec. 3.3, 3.4) as well as cell

signaling processes (Sec. 4.3). The underlying principles of these biochemical reaction

networks, however, are neither known in detail nor directly accessible by measurement

data. As a consequence, different model hypotheses about basic processes may exist,

which have to be validated by methods presented in Sec. 4. Alternatively, in case of

insufficient physical insight into certain subprocesses these vague known parts might

be approximated more appropriately by time-delay systems. Here, the sole focus is

about the timespan which a certain mechanism consumes, but not about the detailed

mechanism itself. Instead of ODEs, those systems are described by delay differential

equations (DDEs). In what follows, input affine DDEs are of current interest:

ẋ(t) = f(x(t), x(t− τ), θ) + g(u(t)) ;x ∈ Rn , u ∈ Rs , θ ∈ Rl (5.1)

ysim(t) = h(x(t)) ; ysim ∈ Rm (5.2)

x(t) = Ξ(t) ; t ∈ [−τ, 0], (5.3)

Here, Ξ(t) represents the initial function in the range of t ∈ [−τ, 0]. Obviously, DDEs

are the more general case of ODEs, i.e., for zero time delay values, τ = 0, a DDE system

simplifies to an ODE system (Eq. (4.1)). In case of DDEs, however, the additional

1A large majority of results contained in this chapter have already been published in the peer-
reviewed literature, [SRM12, SM14].
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time delay parameters, τ , influence the input/output behaviour of the mathematical

model and have to be identified in addition to the model parameters, θ. Therefore,

the parameter identification problem of DDEs (θ & τ) is generally more challenging in

comparison to ODEs. Novel identification strategies that are beneficial for DDEs, as

well as for ODEs are highly desired in systems biology.

In the previous sections, the parameter identification process has been applied in the

traditional way, see Fig. 5.1(a). That means, an optimisation routine is used to min-

imise differences between simulation results, ysim(t) ∈ R1, and measurement data,

ydata(t) ∈ R1, by evaluating a suitable cost function, Jy, according to

arg min
θ,τ

Jy(θ, τ) =
K∑
k=1

(ydata(tk)− ysim(tk))
2 (5.4)

Though being the most frequently applied approach in practice, this strategy has some

serious shortcomings:

a) One limiting factor in evaluating the cost function, Jy(θ, τ), is the repeated need

of numerical integration for solving the underlying ODE/DDE system. Although

very efficient ODE solvers are implemented in the most standard simulation tools,

they slow down the actual parameter identification step dramatically. Depending

on the problem at hand, the numerical integration subpart consumes up to 90%

of the overall cpu-time in the framework of parameter identification [MMB03a].

In general, the situations becomes much worse for DDE systems. Here, numer-

ical solvers are likely to suffer in efficiency and robustness, e.g., the history of

the dynamic process before the experiment’s starting time has to be known or

alternatively to be estimated. Thus, with respect to the computational load it

would be of great benefit to eliminate the numerical integration part in total.

b) Another disadvantage concerns the initialisation of the ODE/DDE solvers. Gen-

erally, before solving any ODE system one has to provide related initial values of

the states, x(t0), at the initial time point, t0. If these initial values are unknown

they have to be identified by measurement data which might be challenging. The

complexity of the identification process increases substantially. Moreover, to solve

DDEs related initial functions (Eq. (5.3)) have to be provided. Similar to the

initial conditions of ODEs, these initial functions have to be identified by mea-

surement data in most applications. Consequently, by using the same amount

of data, but reconstructing an increased number of unknowns, the identification
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process leads to an increased level of uncertainties about the identified quanti-

ties in all. Therefore, an approach that is capable to identify model parameters

without the explicit need for initial states/functions is preferable. In this case,

the exclusive use of measurement data for the purpose of parameter identifica-

tion ensures more precise parameter estimates or may even render the principle

identification of model parameters possible in special cases.

c) The third major criticism concerns directly the cost function Jy, which has to be

evaluated through the process of parameter identification. As previously men-

tioned, in the traditional approach one minimises the differences between sim-

ulation results, ysim(t), and measurement data, ydata(t). Here, the functional

dependency of the simulation results on model parameters is utilised. The rela-

tion of model parameters and outputs, however, becomes non-linear even in case

of linear ODE systems. Hence, the resulting cost function for parameter iden-

tification is also non-linear in relation to the identified parameters. Thus, the

non-linearity is one major reason why traditional cost functions for parameter

identification are commonly non-convex. This basically means, an unambiguous

set of parameter estimates is difficult to identify. In consequence, due to multiple

local minima of the cost function strongly diverse parameter sets might be the

result of the parameter identification process depending on the initial parameter

values as well as on measurement data. To provide a remedy, global optimisation

routines, e.g., simulated annealing, particle swarm, and genetic algorithms, could

be applied for the purpose of parameter identification. Here, the computational

demand increases significantly without guarantee of uniqueness in general. More

efficient approaches are desired in practice. For instance, a reformulation of the

cost function providing a global minima avoids the application of cpu-intensive

global optimisation routines. Naturally, such a reformulation cannot be derived

in general. Thus, in the case of non-convex cost functions, sophisticated global

optimisation routines might be applied with a very low computational load if no

ODE/DDE system has to be solved in parallel, see item a).

In summary it can be said, therefore, that the need of simulation results, ysim(t), turns

the actual parameter identification step into a computational demanding and challeng-

ingly to evaluate process. In the following, the concept of flat inputs is introduced to

overcome these previously mentioned limitations to a certain extent. On that account, a

short recall about the basics of differential flatness is given which provides the link to the

concept of flat inputs and their merits for parameter identification issues. Furthermore,
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another point of interest is the model based design of new informative experiments

providing additional measurement data which facilitate the parameter identification

process, see Sec. 3. So far, new measurement data are of vital importance to turn

insensitive model parameters into more sensitive one. In a break from this tradition,

the pure evaluation of a cost function which is based on flat inputs leads to a change

in parameter sensitivities. That means, without any new experimental data insensitive

model parameters may become sensitive just by a change in the utilised cost func-

tion. Consequently, the flat input based parameter identification strategy contributes

an interesting perspective to the framework of optimal experimental design. Finally,

some application examples demonstrate potential merits of the proposed method. All

applied models describe (bio)chemical processes whereas the general framework of the

presented method is not limited to those.

5.2 Comparison with Existing Approaches in Literature

Over the last decades a tremendous effort has been made to improve the original param-

eter identification process. The focus has been on robustness, efficiency, and credibility

of optimisation routines. The parameter identification or rather the implemented al-

gorithm has to provide parameter estimates which are the very best candidates in

minimising the mismatch between simulation results and measurement data. Hence,

suboptimal results due to local minima have to be avoided or even better they have

to be excluded totally by the applied optimisation routine. On that account, various

global optimisation strategies have been developed and are subject of ongoing research.

Usually, their capability to extricate themselves from local minima is dearly paid by

an increased computational load. Therefore, approaches which speed up the evalua-

tion of the underlying cost functions are of high interest for global as well as in local

optimisation algorithms. Finally, parameter estimates have to be assessed in relation

to their credibility, i.e., to derive a meaningful model the identified model parameters

should possess low parameter uncertainties at all. In this field, parameter sensitivities

are of vital interest as the most sensitive parameters are likely to be identified with the

utmost precision.

Methods which try to tackle at least one of the previously mentioned shortcomings have

been developed frequently, but in real world application an “one size fits all” algorithm

does not exist down to the present day. For instance, the proposed approach of flat
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input based parameter identification is limited to differentially flat systems and may

suffer in credibility due to the need of higher-order derivatives of measurement data.

Nevertheless, similar approaches exist and have been applied successfully in the field

of (bio)chemical modelling. Details about these cognate methods and their relation to

the proposed approach are discussed in more detail in what follows.

In the field of ODE systems, a sequential strategy of parameter identification was pub-

lished in 1975 by J. Swartz and H. Bremermann [SB75]. Here, a parameter identification

concept was implemented which is based on two essential steps:

a) By assuming that all states are measurable, model parameters are determined

that minimise the differences between first order derivatives of the data, ydata(tk),

and the right hand side of the ODE systems, see Eq. (5.6). Hence, first basic

concepts of data smoothing are presented and applied in practice. Surrogate

functions, ysurr(tk, c), are used for this purpose as shown in Eq. (5.5). In detail,

polynomial functions of low degree are applied as surrogates and differentiated

analytically. Being aware of potentially large parameter uncertainties due to a

misfit of the surrogate functions a subsequent second step is put into operation.

arg min
c
Jc(c) =

K∑
k

(ydata(tk)− ysurr(tk, c))2 → ĉ (5.5)

arg min
θ
Ja(θ) =

K∑
k

(Dysurr(tk, ĉ)− f(x(tk), u(tk), θ))
2 → θ̂a (5.6)

b) Parameter estimates which are the result of this first identification step, θ̂a, are

used to initialise the subsequent part of parameter refinement. Here, the standard

cost function is utilised in the traditional way by evaluating Eq. (5.7) which

results in the final estimates, θ̂b. Thus, numerical integration of the ODE system

is involved.

arg min
θ
Jb(θ) =

K∑
k

(ydata(tk)− ysim(x(tk), θ))
2 → θ̂b (5.7)

The characteristic of these two step concept can be summarised according to:
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5. FLATNESS APPROACH FOR PARAMETER IDENTIFICATION

“The first is fast (economical in computation time), requires no initial esti-

mates, but is not so accurate. The second requires more computational time,

and fairly accurate initial estimates, but achieves high accuracy.

J. Swartz & H. Bremermann [SB75] ”
Since that time lots of effort has been been made to change the first step into a fast as

well as accurate approach. Hence, different strategies have been derived which combine

the approximation step via surrogate functions, Jc(c), and the original model parameter

estimation, Ja(θ), in a beneficial manner. In general, both objectives are joint into an

unified optimisation problem as shown below

arg min
c,θ

J(c, θ) = υJc(c) + (1− υ)Ja(θ) (5.8)

This expression might be solved iteratively or simultaneously [Var08]. In addition, the

determination of a suitable weighting factor, υ, has been addressed by probabilistic

assumptions [VMM08a]. In cases where all states are directly measured the flat input

based approach is equivalent to the joint estimation problem given in Eq. (5.8). In

practice, however, it is likely that only a subset of quantities is measurable. To cope

also with unmeasured states model-based constraints have been incorporated into the

above optimisation strategy [VMM08b] which are defined as

(Dysurrunmeasured(tk, ĉ)− funmeasured(x(tk), u(tk), θ))
2 (5.9)

Here, additional nuisance parameters, ĉ, have to be identified in relation to the dimen-

sion of the unmeasured states, i.e., the overall number of unknown parameters may

increase significantly. Moreover, the corresponding surrogate functions of unmeasured

sub-states ensure model consistency but do not have any direct relation to measure-

ment data. In doing so, the resulting optimisation problem is different in comparison

to the flat input approach where higher-order derivatives of measurement data are used

to recalculate the unmeasured states immediately.

In recent times, also methods based on differential algebra enrich the field of practical

parameter identification routines. For instance, the differential elimination approach

renders a given ODE system into an equivalent representation according to a given

state-elimination-order [Bou07, NHO+10, NSL+12]. Hence, ...
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“...the most basic step in the theory of differential elimination algorithms is to

replace differential equations by algebraic ones... .

A. Wittkopf [Wit04] ”
In practice this means, unmeasured states are sequentially eliminated (according to the

predefined ranking) by given outputs and derivatives thereof. An algebraic expression

of the resulting equivalent system is indicated by CDE [NSL+12]. Here, C(·) gives a

hint to the intended application, a constraint/penalty term as part of the cost function,

whereas (DE) reflects its origin, the differential elimination. The algebraic expressions

are averaged over discrete time points, CDEi (θ) =
K∑
k=1

∣∣CDEi (θ, tk)
∣∣ ; ∀i = 1, . . . , n, and

might be summarised according to

CDE(θ) =
n∑
i=1

CDEi (θ) (5.10)

Subsequently, CDE(θ) is incorporated into the parameter optimisation cost function as

a penalty term, see [NSL+12] and references therein, as shown below

arg min
θ
JDE(θ) = υJb(θ) + (1− υ)CDE(θ) (5.11)

By making use of simulation results, ysim(t), to evaluate the cost function, Jb(θ), the

associated differential equation system has to be solved in parallel. Therefore, it is

scarcely to be expected that there is any benefit in the meaning of computational load.

At best, an improvement of the credibility of parameter estimates might be observed

in opposition to the standard approach for parameter identification as highlighted by

the following quotation:

“The introduction of the constraints by using differential elimination has effec-

tively improved the parameter accuracy . . . . This clearly indicates that the

ability of our method for estimating the parameter values was far superior to

that of various methods with the standard error function.

M. Nakatsui et al. [NHO+10] ”
In contrast to the flat input approach only autonomous systems have been analysed

by differential elimination so far, i.e., systems without any input, ureal(t), have been

subject of parameter identification [Bou07, NHO+10, NSL+12].
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Up to now, in the flatness-based approach, an algebraic representation of the in-

put/output behaviour of dynamic systems is derived for the purpose of flat input deter-

mination, uflat(t). In doing so, an analytical inverse model, Ŝ−1, is generated. As an

alternative, the concept of inverse simulation [MS11] bypasses the analytical reformula-

tion by applying control feedback methods. That means, the flat inputs are simulation

results of the closed loop behaviour of the original system, Ŝ, which has been extended

by a proper feedback control strategy. In the field of non-linear dynamic systems the

determination of suitable feedback concept as well as its parametrisation might be a

tedious work if at all possible. Nevertheless, the concept of inverse simulation has been

implemented successfully in various field of control problems, see [TB06, MS11] an ref-

erences therein. Recently, also parameter sensitivities in conjunction with simulated

inputs are taken into consideration [MS12b]. However, no application to the actual pa-

rameter identification problem can be found in literature as confirmed by the comment

given below:

“It appears that, despite the potential benefits, established parameter estima-

tion methods such as the output error methods have not been applied to the

inverse problem.

D. Thomson & R. Bradley [TB06] ”
Recently, an approach which is also based on flat inputs has been introduced in the field

of ODE systems [VGS+10]. In contradiction to the previously proposed concept the

unknown model parameters, θ, are directly considered as flat inputs, uflat(t) = θ(t).

That means, the model parameters might be analytically recalculated by the output

functions and derivatives thereof which obviates the need of any numerical optimisa-

tion routine. On the other hand, this also means that the number of identifiable model

parameters is limited to the number of measurable quantities. Moreover, the anal-

ysed system has to be differentially flat for a given output configuration and for those

model parameters which “pretend” to be flat inputs. Consequently, this approach is

only applicable for a very limited number of practical parameter identification problems.

Here, it should be stressed that the previously reviewed methods are solely applied

for parameter identification problems of pure ODE systems. Thus, non of these ap-

proaches finds use in the field of DDEs, i.e., to estimated model parameters, θ, as well

as time-delay parameters, τ . In fact, for non-linear DDE systems the general concept

of differential flatness is known as an appropriate tool to solve challenging problems in
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Ŝ(θ, τ)

Sureal ydata

ysim

(a) Standard Approach

Ŝ−1(θ, τ)

Sureal ydata

uflat

(b) Flat Input Approach

Figure 5.1: In the standard approach of parameter identification (left sub-figure) one
attempts to minimise differences between simulation results, ysim, and measurement data,
ydata, by a proper selection of model parameters, θ, and time delay values, τ , respectively.
In the right sub-figure the idea of flat inputs, uflat, is illustrated. Here, one tries to minimise
the mismatch between uflat and physical inputs, ureal, by adjusting θ and τ jointly.

control theory [MR98]. For the task of parameter identification, however, additional

research is required. Here, the proposed approach of flat input based parameter identi-

fication addresses this issue substantially. As demonstrated in Sec. 5.5.3, the proposed

approach copes well with time delay parameters of non-linear DDEs.

5.3 Concept of Differential Flatness

Initially introduced by Fliess et al. [FLMR92, FLMR95] the concept of differential

flatness has received much interest in control theory over the last two decades. The

main field of application is devoted to trajectory tracking control problems [MR98,

HLBA04, GWRG06, L0́9]. For instance, the flatness approach has been successfully

implemented even in industrial practice [PRB+02]. The crucial point of differential

flatness is the determination of so-called flat outputs, yflat(t). In most cases, flat

outputs do not agree with originally given output configurations, yflat(t) 6= ysim(t),

but have to be defined appropriately. In doing so, these outputs might be physical or

fictitious, i.e., in the first case they correspond to the physical outputs of the analysed

process, while in the latter case they have no physical counterpart in reality. For

differentially flat systems, flat outputs and derivatives thereof parametrise the states,

x(t), as well as system inputs, u(t), according to

x(t) = Ψx(yflat(t),Dyflat(t), . . . ,Dn−1yflat(t)) (5.12)

u(t) = Ψu(yflat(t),Dyflat(t), . . . ,Dnyflat(t)), (5.13)

where Di represents the operator notation of the ith derivative, di/dti. That means,

the original ODE system is transformed into an algebraic input/output representation.
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5. FLATNESS APPROACH FOR PARAMETER IDENTIFICATION

Even though many control systems have been shown to be differentially flat in practice,

necessary and sufficient conditions for the existence of flat outputs exist only for single

input and single output systems (SISO systems). Here, the relative degree, ν, is of

central relevance and is defined as follows.

Definition 1 (Relative degree [WZ08])

The system (Eq. (5.1)-(5.3)) is said to have a relative degree ν locally at x0 if

LgL
i
fh(x) = 0 ∀x ∈ N(x0), i = 0, 1, . . . , r − 2

LgL
r−1
f h(x0) 6= 0,

where N(x0) is the neighbourhood of x0 and L(·) represents the Lie derivative of a

function along the vector field (·).

In short, a SISO system is differentially flat if it has a relative degree of n (x ∈ Rn),

i.e., only after the nth derivative of yflat(t) the flat output becomes an explicit function

of u(t) in case of a differentially flat system.

Definition 2 (Differential Flatness - Flat Outputs [WZ08])

The system (Eq. (5.1)-(5.3)) is said to be differentially flat if there exists an output

yflat(t) = h̄(x(t)) such that the resulting SISO system

ẋ(t) = f(x(t), θ, u(t)) ;x ∈ Rn , u ∈ R1 (5.14)

yflat(t) = h̄(x(t)) ; yflat ∈ R1 (5.15)

x(t0) = x0 (5.16)

has a relative degree of n.

Obviously, the system output, ysim(t), is treated as a design variable that may trans-

fer a non-flat ODE system into a differently flat system if at all possible, whereas the

general model structure, Ŝ, model parameters, θ, initial conditions, x(t0), as well as

system input, u(t), are unchanged. As was intended, this strategy works satisfactorily

for solving control issues in different areas of application. In the field of parameter

estimation, however, a change in the output function causes serious problems. The

need for the adjustment of simulation results to measurement data entails that flat

outputs, yflat(t), are feasible in practice but not fictitious. Moreover, not all states

are measurable in principle, which limits the amount of potential flat output candi-

dates additionally. Hence, a given output configuration should remain unchanged in
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the framework of parameter identification, too.

In comparison to the flat outputs, the concept of flat inputs seems to be more suited

for solving parameter identification problems. In the first place, flat inputs have been

introduced as a dual approach to the concept of flat outputs [WZ08]. Here, the output

functions, ysim(t), are fixed but the so-called flat inputs, uflat(t), have to be determined

in a proper way turning a non-flat ODE system into a flat system if at all possible. In

doing so, potential generic system inputs are deleted by zeroing, u(t) = 0, in a first

step. Subsequently, control affine flat inputs, uflat(t), are determined to derive a differ-

entially flat system. The definition of flatness for the SISO case can be easily adapted

in this context and is given below.

Definition 3 (Differential Flatness - Flat Inputs [WZ08])

The system (Eq. (5.1)-(5.3)) is said to be differentially flat if there exists an input

uflat(t) such that the resulting SISO system

ẋ(t) = f(x(t), θ) + γ(x(t))uflat(t) ;x ∈ Rn , uflat ∈ R1 (5.17)

ysim(t) = h(x(t)) ; ysim ∈ R1 (5.18)

x(t0) = x0 (5.19)

has a relative degree of n. Here, γ(x(t)) represents the flat input vector field.

Now, for the purpose of parameter identification flat inputs, uflat(t), can be utilised to

define suitable cost functions. If flat inputs have real physical counterparts, ureal(t), a

proper cost function has to measure the mismatch of ureal(t) and uflat(t) as indicated

in Fig. 5.1(b). Hence, a generic cost function might be defined as

arg min
θ,τ

Ju(θ, τ) =

T∫
0

(uflat(t)− ureal(t))2dt (5.20)

In cases of fictitious inputs, i.e., real physical counterparts do not exist in reality, the

following cost function has to be implemented alternatively.

arg min
θ,τ

Ju(θ, τ) =

T∫
0

(uflat(t))2dt (5.21)

If needed time derivatives of output functions in Eq. (5.13) are unknown at certain
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time intervals due to delays, τ , these parts have to be excluded in Eq. (5.20) and Eq.

(5.21), respectively.

A much more serious problem in the framework of flat inputs for parameter identifica-

tion are measurement imperfections. In practice, real measurement data, ydata(tk), are

only available at discrete time points, tk; ∀k = 1, . . . ,K, and are corrupted by mea-

surement noise. Here, the concept of functional data analysis (FDA) [RS05, PVM+06,

VPM+08] provides sophisticated methods for determining surrogate output functions

(Eq. 5.22) that can be incorporated in Eq. (5.13) appropriately.

ysurr(t) = cT Φ(t) (5.22)

In what follows, B-splines [RS05] are mainly applied as basis functions, Φ(t), which are

fitted to the measurement data, ydata(tk), by optimally chosen coefficients, c. Moreover,

different surrogate concepts are suitable as well. For instance, neural networks [ZP08]

and wavelet concepts [DJ95] might be applied as feasible alternatives. Obviously, a

proper surrogate function, ysurr(t), and derivatives thereof, Dsysurr(t), ∀s = 1, . . . , n,

are of high relevance for a meaningful evaluation of the cost functions Eq. (5.20) and

Eq. (5.21), respectively. In practice, the surrogate function has to be made robust

against measurement noise. For this purpose, a penalty term is frequently introduced

in Eq. (5.22) [RS05] according to

arg min
c
Jsurry (c) = υ

K∑
k=1

(ydata(tk)− ysurr(tk))2 + (1− υ)

tend∫
t0

(D2ysurr(t))2dt (5.23)

By adding
tend∫
t0

(D2ysurr(t))2dt, the overall curvature of ysurr(t) shall be kept low. That

is, to fit the actual measurement signal but not the measurement noise. A weighting

factor, υ ∈ [0, 1], has to be adapted in relation to the analysed data, ydata(tk), and is

usually determined by intuition. As shown in Fig. 5.2, the parameter υ may strongly

influence the outcome of the surrogate function parametrisation. For the purpose of

illustration, measurement data are generated by a sine function which is corrupted by

additive white noise, ydata(tk) = sin(tk)+vk. Only with a deliberately chosen weighting

factor, υ = 0.8, the original sine function can be approximated adequately.

To avoid the tedious work of manual tuning of υ this process is incorporated as a

subroutine into the framework of parameter identification as well. In addition to the

unknowns of the surrogate functions, c, and the model parameters, θ & τ , the weighting
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Figure 5.2: The influence of the additive penalty term, (1 − υ)
tend∫
t0

(D2ysurr(t))2dt, in

determining a surrogate function, ysurr(t), is illustrated. In the presence of discrete noisy
data, ydata(tk) = sin(tk) + vk; tk+1 − tk = 0.25; vk ∼ N(0, 0.2), an appropriate function
ysurr(t) can be derived using a proper υ value (υ = 0.8).

factor, υ, is estimated by evaluating the cost functions Eq. (5.24) and Eq. (5.25),

respectively. In the following test cases, one of the succeeding cost functions is applied.

arg min
c,υ,θ,τ

Ju(c, υ, θ, τ) =

tend∫
t0

(uflat(Dsysurr(c, υ, t), θ, τ)− ureal(t))2dt (5.24)

arg min
c,υ,θ,τ

Ju(c, υ, θ, τ) =

tend∫
t0

(uflat(Dsysurr(c, υ, t), θ, τ))2dt (5.25)

In cases of strongly fluctuating process dynamics, a penalty term minimising the cur-

vature might be inappropriate. A possible way to bypass this issue consists in replacing

the penalty term in Eq. (5.23) by an explicit incorporation of flat inputs, uflat(t), and

their mismatch to ureal(t) via

arg min
c,θ,τ

Ju = υ

K∑
k=1

(ysurr(c, tk)− ydata(tk))2 + (1− υ)

tend∫
t0

(uflat(t)− ureal(t))2dt (5.26)

arg min
c,θ,τ

Ju = υ

K∑
k=1

(yc,surr(tk)− ydata(tk))2 + (1− υ)

tend∫
t0

(uflat(t))2dt (5.27)

The resulting cost functions are more flexible, but require a meaningful initial param-

eter set of θ and τ , too. The inverse model acts as a model based filter, uflat(Ŝ−1),

minimising the influence of measurement noise on the determined ysurr(t) and may be

applied as an alternative to Eq. (5.24) and Eq. (5.25), respectively.
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At this point it is worth noting that the presented approach can be easily implemented

in existing tools for parameter identification. As shown in detail the only adaptation

concerns the definition of the cost function, i.e., the standard cost function Eq. (5.20)

is replaced by a suitable candidate of Eq. (5.24) -(5.27). The numerical optimisation

routine on top, however, is not affected by this change. Thus, various optimisation

strategies, e.g., genetic algorithms or multiple shooting methods [MMB03b, PT07], are

still usable. In what concerns parameter statistics and parameter sensitivities a similar

statement can be made. For instance, methods for the quantification of parameter

uncertainties introduced in Sec. 3 are applicable as before. According to the presented

global parameter sensitivities in Sec. 2.2.4 an equivalent counterpart of Sobol’s first

order indices can be defined as

Sui =
σ
i

2(E
−i

[uflat|θ[i]])

σ2(uflat)
(5.28)

Finally, it should be pointed out that the concept of Optimal Experimental Design

is beneficial for the flat input based parameter identification framework, too. One

attempts to provide operating conditions that facilitate the overall parameter identi-

fication process. Here, the most desired outcome of OED are measurement data that

are easily representable by surrogate output functions, ysurr(t), and informative with

respect to the estimates of θ and τ , respectively. Note moreover, due to the algebraic

input/output representation of the ODE/DDE system there is no need of numerical

integration routines in the OED framework. It is rather a question of whether an

informative time course of the output function, ysim(t), exists at all. Therefore, the

determination of an informative output function, yopt(t) (Eq. (5.29)), is of primary in-

terest in this particular case. In detail, the coefficients, ζ, in Eq. (5.29) are the design

parameter for OED and have to be determined by evaluating a suitable cost function,

Joed(ζ). For example, the basis functions, Φoed(t), might be B-splines and monomials,

respectively.

yopt(t) = ζT Φoed(t) (5.29)

Once determined, the informative output functions are applied to the inverse model,

Ŝ
−1

(θ̂, τ̂), to calculate the corresponding input profiles. In a second step, these calcu-

lated input profiles are used to steer the physical system in the desired optimal way,
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Ŝ−1(θ̂, τ̂) S

min
ζ
Joed(θ̂, τ̂) min

θ,τ
||uflat−ureal||

yopt uflat/real ydata

θ̂, τ̂

Figure 5.3: The overall scheme of OED in the field of flat input based parameter identi-
fication is shown. After a first experimental run, the resulting data, ydata(tk), are applied

for the purpose of parameter identification, θ̂&τ̂ . In doing so, a new parametrised model is
derived which is utilised in a subsequent part of the model-based experimental design. Sub-
sequently, the resulting optimal output function, yopt(t), is applied to the inverse model,

Ŝ−1, providing an associated optimal input, uflat/real(t). Now, the real process, S, is steered
by uflat/real(t) generating new informative data. This procedure might be reiterated until
sufficiently precise estimates are derived.

where optimal means to provide new informative data that are incorporated in the

presented framework of flat input based parameter identification. The process of pa-

rameter identification (θ̂ & τ̂), the determination of new informative output functions,

and the rerun of informative experiments might be reiterated until sufficiently precise

parameter estimates are obtained. The overall work flow of OED associated to flat

inputs is illustrated in Fig. 5.3.

Up to now, it has been assumed that flat inputs, uflat(t), have physical counterparts in

reality, ureal(t), for the purpose of OED. As previously mentioned, this is an very ide-

alised assumption. At least a minor subset of uflat(t) is likely to have no corresponding

physical inputs. By taking this into account, a constrained optimisation problem has

to be solved. In detail, flat inputs that do not have a real equivalent (uflat/fict) are set

equal to zero by corresponding equality constraints. Whereas flat inputs which have a

physical complement (uflat/real) might be forced to stay in a certain range of physical

bounds. This can be easily achieved by appropriate inequality constraints. In addition,

constraints related to states might be incorporated as well. A resulting constrained

optimisation problem is given below

arg min
ζ
Joed

(
min
θ,τ
||uflat − ureal(ζ)||

)
(5.30)

s.t. c1 ≤ xi ≤ c2

c3 ≤ uflat/real ≤ c4

In cases at which no real counterpart of uflat(t) exist at all, a potential workaround
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might be - if determinable - the introduction of a so-called dynamic compensator (pre-

filter) which turns fictitious inputs into physically applicable inputs on the condition

that the resulting ODE system possesses stable internal dynamics [SSK09].

5.4 Determination of Flat Inputs

The aim of this subsection is to provide some helpful hints about the determination

of flat inputs, uflat(t). Necessary and sufficient conditions for the existence of flat

inputs are not known for the general multiple-input and multiple-output (MIMO) case

[WZ10]. Nevertheless, a systematic procedure of determining flat inputs for observable

systems exists [WZ10]. These results are a generalisation of conditions which have been

provided for single-input and single-output (SISO) systems [WZ08]. The basic idea of

flat input determination in the SISO case (Eq. (5.17)) is based on the determination of

a proper input vector field, γ(x(t)). In case of observable systems, i.e., the observability

matrix (Eq. (5.31))1 is locally regular, det(Q(x)) 6= 0, ∀x ∈ N(x), the determination

of γ(x(t)) can be done easily.

Q(x) =
∂

∂x


h(x)

Lf(x0)h(x)
...

Ln−1
f(x0)h(x)

 (5.31)

In particular, by assuming a non-zero scaling function, ϑ(x) 6= 0, the flat input vector

field can be expressed according to

γ(x) = ϑ(x)Q−1(x)(0, . . . , 0, 1︸ ︷︷ ︸
n entries

)T (5.32)

In doing so, the resulting system (Eq. (5.17)-(5.19)) has a relative degree that is equiv-

alent to the dimension of the state space (ν = n), i.e., steering the system with the

determined flat input, uflat(t), the associated ODE system is rendered into a differen-

tially flat system.

The same procedure can be applied for a broad class of MIMO systems [WZ10]. For

special cases, however, the previous framework of flat input determination fails, i.e.,

for the general MIMO case no necessary conditions for existence of flat inputs can be

given [WZ10]. The same is true for general DDE systems, i.e., there is no rigorous

1Here, Lf means the Lie derivative of a function along the vector field f as stated in [WZ08].
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proof for the existence of flat inputs as well as no systematic procedure of flat input

determination. Hence, a heuristic approach is shortly presented in the following. In

flat system theory it is well known that the dimension of the input, u ∈ Rl, has to be

equivalent to the dimension of the output, y ∈ Rm, l !
=m. Thus, for a given number of

measurable outputs the number of needed flat inputs, uflat(t), is defined immediately.

Now, the question at which states, x(t), these flat inputs have to act on has to be ad-

dressed. In principle, this can be answered heuristically by the framework of structural

analysis. First attempts in this direction can be found in the context of flat outputs

[Wey02]. The structural analysis is based on directed graphs (digraphs), D(v, e), with

n different nodes, vi, representing the states of the ODE/DDE system. That means,

the existence of an edge, ei,j , from node vi to vj is determined by non-zero elements,

aj,i, of the adjacency matrix, A∗. Here, the ai,j element of A∗ is set to 1 if the asso-

ciated derivative, ∂fi(x(t),x(t−τ),θ)
∂xj(t)

or ∂fi(x(t),x(t−τ),θ)
∂xj(t−τ) , exists and equal to 0 if this is not

the case. Equivalently, an adjacency matrix C∗ of the output functions, ysim(t) (Eq.

5.2), can be derived. Now, flat inputs, uflat(t), should act on those nodes, vi, that are

the most distant nodes in combination to the outputs, ysim(t), i.e., there is a maximum

number of edges to get from uflat(t) to ysim(t) travelling along the shortest path. Thus,

a max-min optimisation problem has to be solved.

In order to illustrate the presented flat input selection strategy, the following parameter-

free DDE system is analysed

ẋ1(t) = x3(t− τ1)

ẋ2(t) = x1(t)

ẋ3(t) = x2(t)

ysim(t) = x2(t)

(5.33)

Due to the related adjacency matrices (Eq. 5.34) a digraph can be generated, see

Fig.5.4. Obviously, a suitable flat input, uflat(t), should enter at node x3 to provide

the most distantly shortest path.

A∗ =

 0 0 1

1 0 0

0 1 0

 ; C∗ = [ 0 1 0 ] (5.34)

According to the above outcome, a potential input affine DDE system can be derived
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x1 x2 x3

ysim uflat

Figure 5.4: Digraph of the illustrative example: For a given output, ysim, the flat input,
uflat, has to act on state x3 to provide a maximum distance to get from uflat to ysim using
a minimum number of edges.

as

ẋ1(t) = x3(t− τ1)

ẋ2(t) = x1(t)

ẋ3(t) = x2(t) + uflat(t)

ysim(t) = x2(t)

(5.35)

In fact, the resulting DDE system (Eq. 5.35) is differentially flat, i.e., all states, xi(t),

as well as the flat input, uflat(t), can be recalculated by the output, ysim(t), and

derivatives thereof as demonstrated below.

x2(t) = ysim(t) (5.36)

x1(t) = D1ysim(t) (5.37)

x3(t− τ1) = D2ysim(t) (5.38)

uflat(t) = D3ysim(t+ τ1)− ysim(t) (5.39)

Remember, Di represents the operator notation of the ith derivative, di/dti. In general,

more complex systems can be checked in this way by highly efficient methods of graph

analysis, e.g., the algorithm of Dijkstra shortest path [Dij59] might be applied for a

systematic analysis of complex ODE/DDE systems.

5.5 Introduction to the Case Studies

Throughout this section the concept of flat inputs for parameter identification is applied

for the following three case studies.

a) Parameter identification for the FitzHugh-Nagumo equations

b) Parameter identification for a MAP Cascade model
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c) Parameter identification for an influenca A virus production model

In the first case study, in silico data, ydata, are generated and incorporated in the frame

work of parameter identification. Here, a benchmark study demonstrates potential

benefits of the presented method compared to the standard approach for parameter

identification under almost perfect measurement data. That means, their is no mea-

surement noise. Subsequently, measurement noise is introduced and its influence on

the parameter identification is analysed. Therefore, the in silico data, ydata(tk), are

perturbed by a Gaussian random variable, νk ∼ N(0, σ2
y). Naturally, the presented

concepts of Optimal Experimental Design are beneficial for flat input based parameter

identification as well. Hence, a new OED is derived that provide new informative data,

i.e., the influence of measurement imperfections to the identified model parameters is

reduced significantly.

In what follows, the focus is not that much on the impact of measurement noise to

identified parameters. In fact, shortcomings of the standard approach for parameter

identification are illustrated that show up frequently even under conditions that are

beneficial for the actual identification step, i.e., a large number of noise free measure-

ment samples is assumed. For instance, in the second case study it is shown that the

internal dynamics of a system might be insensitive to the measurement data, ydata(tk).

In many cases, the measurements are an integral quantity of the overall process, i.e.,

internal highly dynamical fluctuations near the input of a model are attenuated through

the underlying process itself. Consequently, only a minor subset of model parameters is

sensitive to the output. The majority of unknown parameters, however, can be changed

by order of magnitudes without a significant variation on ysim(t), i.e., these parameters

are likely to be hard to identify practically. Here, it is shown that the reconstructed

flat input is much more sensitive to the internal dynamics. Consequently, a different

set of associated model parameters is sensitive to the flat input and might become more

precisely identifiable.

A similar effect is shown in the third test case. By analysing a DDE system, in silico

data are used to identify model parameters as well as a time delay parameter. Compared

to the standard approach of parameter identification the flat input based identification

framework is robust against initial model parameters and the time delay parameter,

respectively.
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5.5.1 Parameter Identification for FitzHugh-Nagumo Equations

The first considered model (Eq. (5.40)) describes the electro-physiology of a nerve axon.

Here, the quantities V and R represent the voltage and the recovery of the membrane,

respectively. This model is known as the so-called FitzHugh-Nagumo equations and

was derived by FitzHugh [Fit61] and Nagumo [NAY62] independently. The aim of this

model is not to explore the underlying biochemical principles in detail but to describe

essential features qualitatively, i.e., the action potential and their spiking property are

reproduced. In detail, the FitzHugh-Nagumo equations are a simplification of the well

known Hodgkin and Huxley model [HH52] and have been intensively used in the field

of non-linear analysis, see [Sey10] and references therein. Moreover, this ODE system

was also used in [RHCC07] as a test case for their generalised smoothing approach for

parameter identification.

V̇ = c

(
V − V 3

3
+R

)
Ṙ = −1

c
(V − a+ bR)

(5.40)

Throughout this case study, the parameters a and b have to be identified whereas c is

assumed to be known from literature. For the purpose of parameter identification, in

silico measurement data of the membrane voltage are provided by Eq. (5.41).

ydata(tk) = V (tk) (5.41)

Obviously, the FitzHugh-Nagumo equations are an autonomous ODE system, i.e., there

is no physical input, u(t). As one quantity is measured, one fictitious flat input, uflat(t),

has to be determined to render Eq. (5.40) into a differentially flat SISO representation.

In the next step, the question has to be addressed at which state this flat input has to act

on. For this purpose, concepts which are presented in Sec. 5.4 are applied. As a SISO

ODE system is analysed a flat input vector field, γ(x(t)), can be derived systematically.

The corresponding observability matrix has to be regular which is confirmed below.

Q(x) =

[
1 0

c(1− V )2 c

]
(5.42)

det(Q(x)) = c (5.43)

By assuming c 6= 0 and α(x) = c, a resulting flat input vector field can be derived

according to

γ(x) = α(x)Q−1(x)[0, 1]T = [0, 1]T (5.44)
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uflat R V ysim

Figure 5.5: Digraph of the FitzHugh-Nagumo equations: For a given output ysim, the
flat input uflat has to act on R to provide a maximum distance to get from uflat to ysim

using a minimum number of edges.

Subsequently, a differentially flat SISO system can be determined immediately as

V̇ (t) = c

(
V (t)− V 3(t)

3
+R(t)

)
Ṙ(t) = −1

c
(V (t)− a+ bR(t)) + uflat(t)

ysim(t) = V (t)

(5.45)

Alternatively, the structural analysis concept is put in operation. The associated adja-

cency matrices are given by

A∗ =

[
1 1

1 1

]
; C∗ = [ 0 1 ] (5.46)

The corresponding digraph in Fig. 5.5 agrees well with the above result of flat input

detection. Accordingly, the flat input, uflat, has to act on R to provide a maximum

distance to get from uflat to ysim utilising a minimum number of edges.

After the determination of a flat input, the differentially flat ODE system (Eq. (5.45))

can be transformed into the algebraic input/output representation. As shown in Eq.

(5.47) the states, R(t) and V (t), as well as the defined flat input, uflat(t), can be deter-

mined by ysim(t) and derivatives thereof. In the following, uflat(t) and its applicability

for the purpose of parameter identification is analysed in detail.

V (t) = ysim(t)

R(t) =
1

c
Dysim(t)− 3ysim(t) + ysim(t)

3

3

uflat(t) =
1

c
D2ysim(t)−Dysim(t)

(
1− ysim(t)

2
)
− 1

c

(
ysim(t)− a+ bR(t)

) (5.47)

First of all, the cost functions of the standard approach, Jy (Eq. (5.4)), and of the flat

input based method, Ju (Eq. (5.25)), are evaluated for different model parameter con-

figurations. Therefore, noise free measurement data of the voltage are generated by Eq.

(5.40) on conditions that are given in Tab. 5.1. Here, a sampling rate of ∆t = 0.05 ms
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is assumed and the overall experimental run is limited to tend = 20 ms. Corresponding

simulation results are shown in Fig. (5.6).

a b c V (t = 0) R(t = 0) ∆t σ2
y

0.2 0.2 3 -1 1 0.05 0.04

Table 5.1: Configuration parameters of the test case study at which the in silico data,
ydata(tk), are generated.

0 2 4 6 8 10 12 14 16 18 20

−2

0

2

Figure 5.6: Simulation results of the FitzHugh-Nagumo equations. In detail, rep-
resents the membrane recovery (R), the voltage (V), and illustrates discrete noisy
simulated data of V.

The analysed cost functions are evaluated iteratively in a predefined parameter range

of −1 ≤ a, b ≤ 1.5. Each individual parameter range is separated in 251 intervals

which leads to an overall number of 63001 evaluations of Jy (Eq. (5.4)) and Ju (Eq.

(5.25)), respectively. Subsequently, an assessment of the used cpu-time (tcpu) is done.

As previously mentioned, the need of an ODE solver in the subroutine of the stan-

dard cost function slows down the evaluation process significantly. The total computa-

tion of corresponding cost function values consumes tcpu(ysim) = 5707.1 sec. Alterna-

tively, the overall computation of cost function values which are based on uflat(t) needs

tcpu(uflat) = 14.8 sec in total. Obviously, the algebraic input/output representation of

the original ODE system leads to a significant reduction in terms of the computational

load. As any parameter optimisation routine has to evaluate the cost functions Eq.

(5.4) or Eq. (5.25) inherently, the cpu-non-intensive concept of flat inputs is beneficial

for a wide class of optimisation algorithms.

Analogous to the golden rule of mechanics which essentially states that whatever one

saves in power one has to invest in displacement, the question of negative side effects

of the flat input based approach comes up. As shown, the proposed cost function, Ju
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(Eq. (5.25)), may reduce the need of cpu-power drastically in the framework of pa-

rameter identification. This effect might be compensated for by an increased number

of the overall function evaluations due to an increased complexity of cost function sur-

face, i.e., the actual parameter identification problem might become ill-conditioned and,

therefore, challengingly to explore. For instance, if the resulting cost function possesses

several local minima a global parameter optimisation algorithm has to be used which

usually corresponds to an increased number of function evaluations. For this particular

application, the opposite is true. The method of flat inputs saves not only cpu-power,

but also changes the cost function complexity in a beneficial manner. The surfaces of

the corresponding cost functions, Jy and Ju, are illustrated in Fig. 5.7(a) and 5.7(b).

Obviously, the implementation of the standard cost function leads to a non-convex op-

timisation problem, i.e., the cost function has a number of local minima which turns the

parameter identification into a hard to solve issue for common optimisation routines.

On the contrary, the cost function Ju which is based on uflat(t) renders the optimisa-

tion process into a well-posed problem. That means, the resulting cost function surface

(Fig. 5.7(b)) relates to a convex optimisation surface which can be efficiently evaluated

by standard optimisation algorithms.

−1 0 1
−1

0

1

a

b

(a) Cost Function - Standard Approach

−1 0 1
−1

0

1

a

(b) Cost Function - Flat Input Approach

Figure 5.7: The resulting cost function of the standard approach (left sub-figure) possesses
several local minima, i.e., the optimisation problem is ill-posed and difficult to evaluate
properly. Whereas using the same measurement data as done before, the cost function
which is based on the flat input (Eq. (5.25)) ensures a global minima, i.e., the optimisation
problem is well-posed. (Low values are shown from dark grey to black, whereas high values
are shown from light grey to white.)

Up to now, only noise free measurement data are considered. In addition, the influence
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of measurement imperfection is analysed in what follows. For this purpose, the simu-

lated data are corrupted by a Gaussian random variable, ε ∼ N(0, 0.04), which corre-

sponds to a standard deviation of at least 10% of the generated in silico data. Moreover,

also the initial estimates values are changed randomly in the range of 0 ≤ a, b ≤ 10. In

doing so, 1000 optimisation problems are generated and solved by evaluating Jy (Eq.

(5.4)) and Ju (Eq. (5.25)), respectively. In detail, the Matlabr built-in Levenberg-

Marquardt algorithm (lsqnonlin) at its default configuration is applied for the actual

parameter identification where the parameter range is limited to −1 ≤ a, b ≤ 10. The

resulting parameter estimates, θ̂, are illustrated in Fig. 5.8(a) and 5.8(b), respectively.

As might be expected, the standard approach (Jy) produces a strong variation in the

identified parameters due to the non-convexity of the cost function. By contrast, the

usage of the flat input based cost function, Ju, ensures a credible identification of the

two parameters, θ̂ = (â, b̂).

0 2 4 6 8 10
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8

10

â

b̂

(a) Scatter Plot - Standard Approach
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10

â

(b) Scatter Plot - Flat Input Approach

Figure 5.8: Running 1.000 parameter identifications the resulting estimates, â & b̂,
are visualised. In doing so, the initial parameters are changed randomly in the range
of 0 ≤ a, b ≤ 10, and measurement data are corrupted by white noise. In the left sub-figure
the standard approach is utilised which leads to significant uncertainty about parameter
estimates. Using the flat-input based approach instead the estimates are closely grouped
in the near of the nominal parameter values, a = b = 0.2.

Additionally, the computational effort of both approaches is compared and summarised

in Tab. 5.2. By assessing the consumed cpu-time and reliability of parameter estimates,

the concept of flat inputs outperforms the standard approach even in the presence of

measurement imperfections. For instance, the total cpu-time of the parameter iden-

tification process is reduced from 24394.1 seconds to 661.4 seconds, respectively. By
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taking the overall number of function calls into account (Tab. 5.2) the average cpu-

time for evaluating Jy is roughly about 0.34 seconds due to the inherent use of an ODE

solver. In the case of Ju, a single evaluation takes 0.01 seconds, i.e., the input/output

representation of the ODE system in the framework of parameter identification reduces

the computational load approximately by a factor of 30. As mentioned previously,

wavelets and neural networks may also be suitable candidates in providing surrogate

output functions, ysurr(t). Hence, a benchmark study is performed which compares

the credibility of parameter estimates in relation to an increased level of measurement

noise. The result is summarised in Fig. 5.9(a) and 5.9(b), respectively. Further de-

tails about the de facto applied algorithms are given in Appendix A.8. As might be

expected, an increased level of measurement imperfection leads to an increased level of

parameter uncertainties which can be seen by high mean square error values. In this

particular case, surrogate functions based on wavelets and neural networks seem to be

suitable candidates in the presence of measurement noise.

â σâ b̂ σb̂ tcpu(PI)[sec] tcpu(Jy/u)[sec] calls(Jy/u)

PI(Jy) 0.825 1.355 1.765 2.952 24394.1 24004.8 70503

PI(Ju) 0.190 0.058 0.327 0.168 661.4 551.4 47000

PI(Joptu ) 0.201 0.050 0.208 0.024 704.3 652.7 110943

Table 5.2: Result of parameter identification by minimising a cost function based on
the traditional (Jy) as well as on flat input-based (Ju) approach, respectively. Here, the
concept of flatness outperforms the traditional approach in the meaning of credibility and
computational effort as well. An optimal experimental design (Joptu ) ensures a precise
estimate of the two parameters, a and b. tcpu(PI)[sec] represents the total cpu-time of the
overall parameter identification process and tcpu(Jy/u)[sec] the cpu-time dedicated to the
actual cost function evaluation.

Obviously, the estimates of b are strongly affected by the measurement noise inde-

pendently of the applied surrogate output function concept. Subsequently, more in-

formative measurement data are needed to reduce the uncertainties about b̂. Hence,

the parameter sensitivities (Sec. 2.2.4) associated to uflat(t) are of high interest. By

analysing Eq. (5.48) and Eq. (5.49) it is evident that uflat depends linearly on a and

b, respectively. Consequently, sensitivities based on linearisation are appropriate for

the purpose of Optimal Experimental Design. When interested in low parameter un-

certainties, i.e., the standard deviations of σθ̂ have to be small, one has to increase the

parameter sensitivities as stated in Sec. 3. Here, only the parameter sensitivity about
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Figure 5.9: Various approaches are applicable for the purpose of determining ysurr(t).
Here, wavelets ( ), neural network ( ), and B-Splines ( ) concepts are compared.
In doing so, the mean square error (MSE) of parameter estimates is shown at different
levels of measurement noise, σdatay .

b (Eq. (5.49)) can be influenced by OED whereas the corresponding sensitivity about

a depends solely on the constant c. In conclusion, the objective of OED is to maximise

the parameter sensitivity about b (Eq. (5.49)) by the determination of an informative

output function, yopt(t).

∂uflat(t)

∂a
= −1

c
(5.48)

∂uflat(t)

∂b
=

(
1

c

)2

Dysim(t)− 1

c

(
3ysim(t)− ysim(t)3

3

)
(5.49)

A proper candidate of yopt(t) has to be easily representable by a surrogate output func-

tion, ysurr(t). In what follows, the previous “worst case” approach in the presence

of measurement noise, the cubic B-splines, is used. Now, a tailor-made OED strat-

egy is performed, i.e., by using different approaches for the determination of ysurr(t)

also different OED strategies might be required. As shown previously, a penalty term

(D2ysurr(t)) is incorporated in Eq. (5.23) for the determination of ysurr(t). That

means, yopt(t) should have a minimum curvature inherently (Eq. (5.50)) to ensure a

reliable discrimination between the measurement signal and the measurement noise.

arg min
ζ


tend∫
t0

(D2yopt(t))2dt

 (5.50)

Consequently, a potential candidate of yopt(t) is the equation of a straight line (Eq.
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(5.51)) which fulfils the previous condition (Eq. (5.50)) by definition.

yopt(t) = ζ0 (5.51)

Now, the question has to be addressed how to determine the design parameter, ζ0, for

the purpose of sensitivity maximisation. Therefore, a constrained optimisation problem

is formulated according to

arg max
ζ0

Jopt(ζ0) =

tend∫
t0

(
∂uflat(t)

∂b

)2

dt

ζ0 ≥ 0;

uflat/real(t) ≤ 1

(5.52)

In fact, an analytic solution can be derived as

yopt(t) = 2.4269 (5.53)

In the next step, the determined optimal output, yopt(t), is applied to the inverse

model, Ŝ−1, providing the corresponding optimal input, uopt(t) = uflat/real(t) = 1. In

practice, uopt(t) is used to steer the next experimental run optimally, i.e., to provide

informative measurement data, ydata(tk). The new data are illustrated in Fig. 5.10.

Obviously, the expected value of the data, ydata(t), is close to the desired optimal out-

put of yopt(t) = 2.4269. The minor mismatch of both can be explained by the previous

estimates of θ which are similar but not equal to the nominal parameter values. That

means, the recalculated optimal flat input, uflat/real, depends on the credibility of the

estimates, θ̂ = (â, b̂) and might be suboptimal in cases at which θ̂ differs strongly in

comparison to the the nominal values of θ. To a certain extent this effect might be

compensated for by a number of OED reiterations and data generation, respectively,

see Fig. 5.3.

After the experimental run, the new data, which are expected to be informative for b̂,

are used in addition to the previous data to determine θ̂ = (â, b̂) by minimising Ju (Eq.

(5.25)). In fact, the credibility of b̂ is improved significantly, see Tab. 5.2 as well as

Fig. 5.11(a),5.11(b).
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Figure 5.10: Based on the parametrised model an optimal stimulus, uopt(t) , is
calculated which is associated to the optimal output function, yopt(t) = 2.4269 . By
applying uopt(t) to the physical system, S, measurement data, ydata(tk) , are generated.
The mean values of these data, , are in good agreement with the previously determined
yopt(t) function.

5.5.2 Parameter Identification for a MAP Kinase Model

The biological meaning of the MAP kinase was presented in Sec.4.3 in detail. Here,

the focus is on parameter sensitivities in relation to ysim(t) and uflat(t), respectively.

In this case study, the ODE system given in Eq. (5.54) is assumed to describe the

signalling process approximately. First of all, the ODE system is analysed if the pre-

defined input/output configuration is a differential flat system. After the adjacency

matrices are derived in Eq. (5.55) the corresponding digraph illustrated in Fig. 5.12 is

analysed. Obviously, the input u enters at the node which is the most distant node in

relation to the output ysim. As shown previously, this outcome is a basic prerequisite

for u to be a flat input, uflat = u.

˙KKK∗ =
k1 · u · (1−KKK∗)
k1m+ (1−KKK∗)

− v2 ·KKK∗

k2m+KKK∗
− k5 ·K∗ ·KKK∗

k5m+KKK∗

˙KK∗ =
k6 ·KKK∗ · (1−KK∗)
k6m+ (1−KK∗)

− v7 ·KK∗

k7m+KK∗

K̇∗ =
k3 ·KK∗ · (1−K∗)
k3m+ (1−K∗)

− v4 ·K∗

k4m+K∗

with

1 = KKK +KKK∗

1 = KK +KK∗

1 = K +K∗

ysim(t) = K∗

(5.54)
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Figure 5.11: Here, 1.000 parameter estimates are performed using noisy data. In the
left sub-figure the result of an initial experiment (Non-OED experiment) is shown. Using

in addition measurement data which are generated by OED, the uncertainty about b̂ is
reduced significantly.

u KKK∗ KK∗ K∗ ysim

Figure 5.12: Digraph of the MAP kinase model: For a given input/output configuration
the input u enters at the most distant node in relation to ysim. This result is a basic
prerequisite for a system to be differentially flat.

A∗ =

 1 0 1

1 1 0

0 1 1

 ; C∗ = [ 0 0 1 ] (5.55)

Actually, the MAP kinase model can be reformulated to an algebraic input/output

representation by ysim(t) and derivatives thereof as shown by the condensed expressions

below.
K∗(t) = ysim(t)

KK∗(t) = ΨKK∗
(
θ, yflat(t),Dysim(t)

)
KKK∗(t) = ΨKKK∗

(
θ, yflat(t),Dysim(t),D2ysim(t)

)
uflat(t) = Ψu

(
θ, yflat(t),Dysim(t),D2ysim(t),D3ysim(t)

)
(5.56)

The detailed functional expressions are given in App. A.10.
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Moreover, Sobol’ indices of first order are determined for ysim(t) as well as for uflat(t).

Initial conditions, x0, the input, ureal(t), the model parameters, θ, and the measure-

ment layout have to be specified as done in App. A.6. Subsequently, the Sobol’ indices

associated to ysim(t) are calculated by the presented approach given in Sec. 2.2.4.

Here, the Sobol’ indices are integrated with respect to simulation time and normalised

by the largest entry of these integral quantities. The result given in Fig. 5.13(a) il-

lustrates clearly that ysim(t) is only sensitive to a minor subpart of θ. Thus, most of

the parameters are likely to be poorly identified, i.e., estimates of θ might be strongly

biased and/or possess large confidence intervals. Consequently, the desired outcome

of modelling, the development of a predictive model, is counteracted by an imprecise

parametrisation. In this case, methods of OED presented in Sec. 3 are of inestimable

value for the purpose of a reliable parameter identification. A serious drawback of

OED, however, is the inevitable need of new measurement data, ydata(tk), at optimised

operating conditions. In cases at which no rerun of an experiment is feasible at all,

e.g., due to limitations in term of money and/or time, the concept of OED has to be

fundamentally reconsidered. In this context, it is rather a question of whether existing

measurement data can be recycled more informatively for the purpose of parameter

identification. In detail, one has to address the questions how insensitive parameters

become sensitive using the same “old” measurement data. This may sound counter-

intuitive at the first glance but becomes more clear in application.

Therefore, Sobol’ indices, Sui , related to the flat input, uflat(t), are determined as de-

fined previously in Eq. (5.28). Though, the same in-silico date are utilised as before

the range of parameter sensitivities, presented in Fig. 5.13(b), looks quite different to

those based on the standard approach (Fig. 5.13(a)). Using the same measurement

data but applying the concept of flat inputs an extended set of model parameters, θ,

is sensitive to uflat and Ju, respectively. An increased number of parameters become

practically identifiable by evaluating Ju instead of Jy. Such an outcome satisfies the

overall objective of OED evidently, i.e., an increased number of parameters is likely to

be identified more precisely.

As shown in Fig. 5.13(c), by applying the standard approach a similar range of param-

eter sensitivities can only be derived by measuring at least the phosphorylated enzyme,

ysim2 (t) = KK∗(t), additionally.
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(c) Standard approach - measuring all states

Figure 5.13: Integral measures of Sobol’s indices,
∫ T

0
Sidt, normalised to the most sen-

sitive parameter are presented for the two different strategies of parameter identification,
sub-figures (a) and (b), assuming ydata(tk) = K∗. In (a), the spectrum of parameter sensi-
tivities is shown for the standard approach, i.e., parameter sensitivities related to outputs,
ysim(t). In (b), parameter sensitivities related to flat inputs, uflat(t), are given. In sub-
figure (c), Sobol’ indices are given for the standard approach but assuming that all states
are measurable.
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(a) Standard approach
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Figure 5.14: The surface of the cost function associated to the parameters, θ7 and θ11, is
compared. (Low values are shown dark grey to black, whereas high values are shown light
grey to white.) In the left sub-figure the standard approach is used. Here, the insensitivity
of θ7 in relation to Jy leads to an ill-posed parameter identification problem, i.e., a proper
identification of θ7 is hard to derive. In contrast, using the flat input based approach
(right sub-figure) the identification is turned into an easier to evaluate issue, i.e., the two
parameters, θ7 as well as θ11, are sensitive to Ju.

5.5.3 Parameter Identification for a Virus Replication Model

The following DDE system (Eq. 5.57) describes the influenza A virus production in

large-scale microcarrier culture by a model similar to [MFSR05]. Uninfected Madin-

Darby canine kidney (MDCK) cells, Uc(t), are infected by active viruses, Vi(t). After

a certain delay time of τ1, infected MDCK cells, Ic(t), release active and inactive virus

particles, Vi(t) and Vd(t), respectively. The active virus particles either infect the

remaining uninfected cells or are degraded to inactive virions.

dUc(t)

dt
= θ6

Cmax − (Uc(t) + Ic(t))

Cmax
Uc(t)−

θ1Uc(t)Vi(t)

dIc(t)

dt
= θ1Uc(t)Vi(t)− θ2Ic(t)

dVi(t)

dt
= θ3Ic(t− τ1)− θ4Vi(t)− θ1Uc(t)Vi(t)

dVd(t)

dt
= θ5Ic(t− τ1) + θ4Vi(t)

(5.57)

Here, it is assumed that the concentrations of active and inactive virus particles are
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Figure 5.15: Digraph of the influenza A virus production model (Eq. (5.57)). Here, the

two potential flat inputs, uflat1 and uflat2 , should act on the states Uc and Ic to fulfil the
distance criteria which has been introduced in Sec. 5.4 as a rule of thumb.

measurable according to

y1(t) = Vi(t) (5.58)

y2(t) = Vd(t) (5.59)

With these measurement quantities and Eq. (5.57) an associated digraph (Fig. 5.15)

can be derived. As two quantities are measured, two flat inputs, have to be determined,

uflat1 (t) and uflat2 (t). Due to the distance criteria (Sec. 5.4), as rule of thumb, these

inputs should act on Uc(t) and Ic(t) (Eq. (5.60)), respectively.

dUc(t)

dt
= θ6

Cmax − (Uc(t) + Ic(t))

Cmax
Uc(t)−

θ1Uc(t)Vi(t) + uflat1 (t)

dIc(t)

dt
= θ1Uc(t)Vi(t)− θ2Ic(t) + uflat2 (t)

dVi(t)

dt
= θ3Ic(t− τ1)− θ4Vi(t)− θ1Uc(t)Vi(t)

dVd(t)

dt
= θ5Ic(t− τ1) + θ4Vi(t)

(5.60)

As states and inputs (Eq. (5.61)-(5.65)) can be expressed explicitly by the outputs

(Eq. (5.58)-(5.59)) and derivatives thereof, the associated DDE system (Eq. (5.60)) is

differentially flat.
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Ic(t− τ1) =
1

θ5
(ẏ2(t)− θ4y1(t)) (5.61)

Uc(t) =
θ3Ic(t− τ)− θ4y1(t)− ẏ1(t)

θ1y1(t)
(5.62)

uflat2 (t) =
1

θ5
(ÿ2(t+ τ1)− θ4ẏ1(t+ τ1))−

θ1Uc(t)y1(t) + θ2Ic(t) (5.63)

uflat1 (t) = µ(t+ τ1)Uc(t+ τ1) + θ1Uc(t+ τ1)y1(t+ τ1)−
θ4ẏ1(t+ τ1)− ÿ1(t+ τ1)

θ1y1(t+ τ1)
−

θ3 (θ1Uc(t)y1(t)− θ2Ic(t) + uf2(t))

θ1y1(t+ τ1)
−

Uc(t+ τ1)ẏ1(t+ τ1)

y1(t+ τ1)
(5.64)

with

µ(t+ τ1) = θ6
Cmax − (Uc(t+ τ1) + Ic(t+ τ1))

Cmax
(5.65)

After the successful transformation to a flat system, the proposed method of parameter

identification can be applied. The cultivation of MDCK cells is done in a batch mode,

i.e., the generated two flat inputs (Eq. (5.60)) are just fictitious. Consequently, the cost

function (Eq. (5.27)) has to be evaluated for the identification of model parameters

and the delay parameter, respectively. (Technical Note: Here, the upper limit of the

integral in Eq. (5.27) has to be replaced by tend − τ̂1).

Assuming almost perfect measurement data, i.e., high sample rate without measure-

ment noise, the model parameters, θ, are estimated for 100 different delay parameter

values equally spaced in the the range of 5 to 15 hours, τ1 ∈ [5, 15] h. As the in-silico

measurement data, ydata(tk), are noise-free, the υ value is set equal to 1 in Eq. (5.27).

In figure Fig. 5.16, the cost function (Eq. (5.27)) has a global minimum at τ1 = 7.5 h

which is the correct result. The estimated model parameters, θ̂, at this optimally de-

termined delay parameter are given in Tab. 4.1. Although the initial parameter values,

θ̂Ini, deviates strongly from the true parameter values, θTrue, the proposed optimisa-

tion framework is able to provide reliable estimates, θ̂Opt, in a feasible computational

time. The overall cpu-time is less than 10 seconds in this case. In comparison to the
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Figure 5.16: The novel cost function, Ju(c, θ, τ1) (Eq. (5.27)), evaluated at different time-
delay parameter values τ1. In detail, an optimiser is initialised iteratively at 100 different
τ1 values, τ1 ∈ [5, 15] h. The overall cpu-time is less than 10 seconds in this case.

θ1 θ2 θ3 θ4 θ5 θ6

θ̂Ini/θTrue 750 750 750 750 750 750

θ̂Opt/θTrue 1.0032 1.0014 0.9974 1.000 0.9974 0.9976

Table 5.3: Result of parameter identification by minimising a cost function based on flat
inputs uflat(t) (Eq. (5.27)). Despite the initial parameter deviation, θIni, the identified

model parameters, θ̂Opt, are close to the true values, θTrue.

evaluation of the standard cost function (Eq. (5.4)) it is significant speedup.

In the framework of parameter identification also robustness against initial parameter

values, θIni and τ Ini1 , is an important issue. Here, the standard approach (Eq. (5.4))

is much more sensitive to initial parameter values than the flat input approach. For

instance, only under the ideal condition of τ1 = 7.5 h the model parameters, θ, are

identified properly. A slight deviation from τ1, however, leads to a divergence of the

optimisation routine as demonstrated in Fig. 5.17.

Finally, the change in parameter sensitivities is demonstrated for the differentially flat

DDE system (Eq. (5.60)). In the following, a relative parameter perturbation of 25%

and fixed operating conditions are assumed. The corresponding parameter sensitivity

spectrum of the standard approach (Eq. (2.68)) indicates that model parameter θ4 is

the least sensitive one, see Fig. 5.18(a). Here, as previously suggested, the parameter

sensitivities are investigated by the novel approach described above (Eq. (5.28)). As

shown in Fig. 5.18(b), the spectrum of parameter sensitivities is changed significantly.

The previously insensitive model parameter θ4 is now the most sensitive one, i.e., pa-

rameter θ4 is likely to be identified precisely. This result agrees well with the previous
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Figure 5.17: The standard cost function, Jy(θ, τ1) (Eq. (5.4)), evaluated at different
time-delay parameter values, τ1. In detail, an optimiser is initialised iteratively at 100
different τ1 values, τ1 ∈ [5, 15] h. A slight deviation of the true τ1 value, τ1 = 7.5 h, leads
to a divergence of the optimisation routine.

outcome of the actual parameter identification (Tab. 4.1), i.e., the model parameter

θ4 is reconstructed best. Remember, the existing measurement data set is used just

in a different way by evaluating Eq. (5.27). Thus, there is no need of OED and any

additional experiment to improve the sensitivity of θ4.

5.6 Chapter Summary

The essential step of parameter identification in model developing is known to be a

cpu-intensive process. In an attempt to avoid a computational overload, the flatness

property of dynamical systems for the purpose of parameter identification is reviewed.

A property of practical interest is, that for flat systems the states and inputs are given

as analytical expressions of the outputs and a finite number of derivatives thereof. Thus,

there is no need to solve differential equations numerically as part of a cpu-intensive

subroutine in the overall parameter identification framework. As a result, this strategy

leads to a significant speed-up in the parameter identification process and it circum-

vents the problem of determining possibly unknown initial conditions of the states.

These features are particularly useful for delay differential equations, whose numerical

solution and the feasible choice of initial functions are challenging.

Moreover, it has also been demonstrated that the flat input approach might render a

non-convex cost function into a more suitable expression, i.e., into a cost function, Ju,

with less local minima in comparison to the traditional approach, Jy. This result can

hardly be generalised to all classes of systems, in fact, even the opposite may holds. But
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still, one can also conclude that expressions based on flat inputs are likely to depend on

the model parameters in a less severe non-linear way than the outputs. For example,

model parameters of linear systems appear as arguments of exponential functions in

the expressions of the system outputs, but as polynomial or rational functions in the

expressions of flat inputs. Thus, in cases of parameter identification problems with

many local minima in the traditional approach it may be worthwhile looking at the

flat inputs instead. It has to be stressed, too, that there is no need of additional data

and new experimental runs, respectively. The same recorded data are evaluated just

in a different way. The obstacle which may limits the applicability of the proposed

approach is the determination of suitable flat input candidates. Fortunately, there is

a method in literature that makes this issue surprisingly simple for the large class of

observable systems. Additionally, the construction of flat inputs for given outputs is

much easier than the opposite problem of finding flat outputs for the purpose of flatness

based control.

The most crucial point of the flat input method, however, is need to form derivatives

of measured outputs, ydata(tk). In this thesis, this problem is solved satisfactorily

by introducing surrogate output functions based on B-splines and other approxima-

tion techniques. The extra effort of determining a larger set of unknowns could be

over-compensated by the very efficient solution of the ODE/DDE model equations.

Naturally, the accuracy of the proposed method is likely to suffer if higher order output

derivatives are required and the measurements are noisy or the measurement sampling

rates are low. Thus, systems where the number of states is not orders of magnitude

larger than the number of outputs are most attractive for the flat input approach.

Finally, the close link to OED principles is demonstrated by parameter sensitivity analy-

ses. As mentioned previously, OED aims to provide informative data which may render

insensitive parameters to sensitive quantities. Traditionally, a novel experimental run

and subsequently new measurement data are utilised to provide a desired change in the

range of parameter sensitivities. Thus, before running a new experiment to transform

insensitive parameters to sensitive expressions the evaluation of the flat input based

cost function might be worthwhile.
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(a) Standard approach (Eq. 2.68)
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(b) Flat input approach (Eq. 5.28)

Figure 5.18: Integral measures of Sobol’s indices,
∫ T

0
Sidt, normalised to the most sensi-

tive parameter are presented for two different strategies of parameter identification. In the
upper case, the spectrum of parameter sensitivities is shown for the standard approach,
i.e., parameter sensitivities related to the simulated outputs, ysim(t). Below, parameter
sensitivities related to flat inputs, uflat(t), are given. Obviously, by using the same mea-
surement data, ydata(tk), there is a significant change in the range of sensitivities.
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6

Conclusions and future work

In this thesis, three different aspects of Optimal Experimental Design are addressed in

order ...

1.) ... to provide operating conditions which are expected to ensure the most infor-

mative data in relation to parameter identification problems. Here, OED aims to

provide the most precise parameter estimates and the most credible simulation

results, respectively.

2.) ... to provide operating conditions which are expected to ensure a proper model

selection in case of several model candidates. Here, OED aims to facilitate the

model selection process by providing suitable measurement data.

3.) ... to provide a changed spectrum of parameter sensitivities without the need of

additional experimental data. That means, to improve the parameter accuracy

by utilising existing measurement data in a more sophisticated way.

In Chapter 2 the general problem of uncertainty quantification and propagation is

presented. The concept of the Unscented Transformation is compared with more tradi-

tional approaches, e.g., the Fisher Information Matrix (FIM) and Monte Carlo simula-

tion. It is shown, that the Unscented Transformation outperforms the FIM in precision

and the Monte Carlos simulation in computational load. Moreover, the basics of the

Polynomial Chaos Expansion (PCE) are addressed shortly. Here, too, in comparison

to the Unscented Transformation the PCE approach might become too computational

demanding for the intended application for OED. Thus, the Unscented Transforma-

tion is identified to be a more reliable as well as practicable concept for the purpose

of uncertainty propagation. It is also shown how the UT approach can be applied to
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non-Gaussian distributions by evaluating suitable transformation equations. The uni-

versal concept of UT provides an efficient calculation of global parameter sensitivities

additionally. Therefore, the Unscented Transformation is a versatile approach which is

applied in the following chapters intensively.

The principles of Optimal Experimental Design for parameter identification are intro-

duced in Chapter 3. Here, it is demonstrated that the overall performance of OED

depends on the credibility of the uncertainty propagation critically. Most applied

mathematical models are associated to their model parameters in a non-linear fash-

ion. Therefore, concepts which are based on linearisation principles are likely to fail.

In the framework of OED this means, a sub-optimal experimental design is put in oper-

ation. The UT-based OED, however, has the ability to gather informative data which

ensure more precise parameter estimates and simulation results, respectively.

OED for model selection, which is addressed in Chapter 4, aims to provide measure-

ment data which facilitate the original model selection task. That is, to figure out the

most plausible model. Here, too, a proper consideration of uncertainties is mandatory.

The Unscented Transformation as part of the Unscented Kalman Filter is implemented

to run an online model selection concept. The immediate processing of available mea-

surement data contributes essentially to the robustness of the proposed algorithm. In

more detail, even in case of a poor initial model parametrisation the most plausible

model candidate can be quantified. Moreover, the online OED concept contributes to

reduce the impact of “human-error”, because optimally designed experiments which are

usually non-standard experiments are error-prone in implementation. In all presented

test case studies the correct model candidate is selected by the proposed algorithm.

By implementing the previously presented OED strategies it has been assumed in-

herently that new experiments are feasible in principle. Thus, new experiments are

designed to provide the most informative data depending on the intend task. In case of

non-repeatable / non-additional experiments or in the case that even optimally designed

experiments are insufficient, new concepts have to be derived. A potential strategy is to

utilise the flatness property of a certain class of dynamical systems. For this purpose,

the basics of flatness and how flat inputs contribute to solve parameter identification

problems are revealed in Chapter 5.
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In future work following aspects might be worthwhile to be analysed in more detail:

• In the framework of OED for parameter identification scalar values are evaluated

which represent the uncertainty of model parameters and simulation results, re-

spectively. Multi-objective criteria, however, might be more suitable compared to

scalar values, because the individual contribution of parameters or states becomes

visible.

• In case of the online model selection framework it would be worthwhile taking

state and parameter constraints into account as well as delay times in measure-

ments. It is expected that the flexibility of the UKF approach enables an straight-

forward incorporation of these issues of practical relevance.

• For the purpose of flat input based parameter identification there is need for

model inversion. Moreover, the concept of inverse simulation [Lu07] might be an

interesting alternative/extension to the proposed approach.

137



6. CONCLUSIONS AND FUTURE WORK

138



A

Appendix

A.1 An n-Dimensional Input Problem Settings

In case of the non-linear mapping of

η = g(ξ) = ξT ξ, ξ ∼ N(0n, In×n) (A.1)

the UT3 approach performs in the following way. The sample points and associated

weights are determined according to the Equations (2.30)-(2.31) and (2.36)-(2.37), re-

spectively. By assuming ϑ =
√

3, see Section 2.2.3 for explanation, the resulting η-

samples are: η0 = 0 and ηi = 3; ∀i = 1, . . . , 2n. Thus, the expected value of η is

determined correctly as

E[η] = w0 · η0 + 2n · w1 · ηi (A.2)

= w0 · 0 + 2n · w1 · 3 (A.3)

= (1− n

3
) · 0 + 2n · 1

6
· 3 (A.4)

= n (A.5)

Remember, the analytical results are E[η] = n and σ2
η = 2n [HMGB03b]. A credible

approximation of the associated variance depends critically on the correction factor, β.

As stated previously, the corrected weighting factor is defined as wc0 = w0 + β. The

139



A. APPENDIX

associated variance is approximated according to

σ2
η ≈ wc0 · (η0 − n)2 + 2n · w1 · (ηi − n)2 (A.6)

≈ wc0 · (0− n)2 + 2n · w1 · (3− n)2 (A.7)

≈ (1 +
n

3
+ β) · (0− n)2 + 2n · 1

6
· (3− n)2 (A.8)

≈ 3n− (β − 1)n2 (A.9)

Obviously, the most suitable choice of the correction factor is β = 1. For the sake

of completeness, by a minor modification of the ϑ-value (ϑ =
√

2, β = 1) the UT3

approach determines the variance correctly as σ2
η = 2n.

A.2 Global Sensitivity Analysis Settings

Each term in

Syi =
σ
i

2(E
−i

[ysim|θ[i]])

σ2(ysim)
(A.10)

can be determined immediately by applying UT3 and UT5, respectively. In doing so,

a quite a number of redundant samples are generated. The associated computational

effort is unnecessarily high. For example, by applying the UT3 approach to an n-

dimensional input problem the total number of samples points is made up of

σ2(ysim) → 2n+ 1 (A.11)

E
−i

[ysim|θ[i]]) → 2(n− 1) + 1 (A.12)

σ
i

2(·) → 2 · 1 + 1 (A.13)

The last two terms have to be evaluated for all n individual elements: n · (2 · 1 + 1 ·
(2(n− 1) + 1)). Thus, the overall number becomes

#SP = 2n+ 1 + n · ((2 · 1 + 1) · (2(n− 1) + 1)) (A.14)

= 6n2 − n+ 1 (A.15)

By eliminating all redundant samples, however, the number of sample evaluations can

be reduced to

#SP = 2n2 + 1 (A.16)

Obviously, the resulting set of samples is equivalent to the set of samples which is

generated by applying the UT5 method to approximate σ2(ysim). In the meaning of
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precision, the Sobol’ indices should be determined in the following way: (i) to determine

σ2(ysim) by UT5, and (ii) to reuse these evaluated samples to get the n expressions

of σ
i

2(E
−i

[ysim|θ[i]]). In this way, the most difficultly to approximate term, σ2(ysim), is

calculated by the precision associated to UT5.

The numerical values associated to the parameter vectors, ai, as well as to the matrix

M of the O’Hagan & Oakley function read:

a1 =

0.0118

0.0456

0.2297

0.0393

0.1177

0.3865

0.3897

0.6061

0.6159

0.4005

1.0741

1.1474

0.788

1.1242

1.1982

; a2 =

0.4341

0.0887

0.0512

0.3233

0.1489

1.036

0.9892

0.9672

0.8977

0.8083

1.8426

2.4712

2.3946

2.0045

2.2621

; a3 =

0.1044

0.2057

0.0774

0.273

0.1253

0.7526

0.857

1.0331

0.8388

0.797

2.2145

2.0382

2.4004

2.0541

1.9845

A.3 Kriging Interpolation

The evaluation of cost functions of complex systems can be very cpu-time intensive. To

reduce the computational effort one is interested in an easily to evaluate surrogate cost

function, which is used to solve the original optimisation problem in a proper manner.

One possibility is to apply Kriging interpolation. The roots of the Kriging interpolation

go back to geostatistics (spatial statistics) [Mat63]. The original application was to get

maps of underground sedimentations based on samples that are taken from the area of

interest, e.g., regularly or irregularly spaced borehole sites for the search of noble metals

or oil [DJ07]. Kriging has been adapted quite soon in the field of global optimisation

[Rat01, LP06, EVBM09]. The key idea is to evaluate only a few points of the design-

parameter space of the original cost function. These points provide an input sample

set for the Kriging interpolation. In contrast to the standard polynomial regression

approaches, these input samples are assumed to be correlated in the following way: the

closer the input samples (design-parameter) are, the more positively correlated are their

outputs (evaluations of cost function (Eq.3.10)). Finally, Kriging provides estimates,

ŷ(x), with a minimum error variance at unexplored points, x, of the region of interest.

A detailed mathematical background of this method can be found in [Kle07]. In the

following, the Matlab Toolbox DACETM is used for running Kriging interpolation. A
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A.4 ODEs of the Two-Substrate Model

lot of work has been done in this field pointing out that Kriging is superior over the

most commonly used interpolation approaches [GSB+06]. For illustration, interpolation

results of a benchmark function, the original six-hump camel back function (Eq.A.17)

[DS75], are visualised, see Fig. A.1. Over the region of interest an input set of 50

randomly spaced samples is used for interpolation of

f(x1, x2) = (4− 2.1x2
1 + x

4/3
1 )x2

1 + x1x2 + (−4 + 4x2
2)x2

2 (A.17)

The contour-plot based on Kriging agrees quite well with the original function while

the Matlab built-in triangle based cubic interpolation algorithm provides just a very

crude approximation.
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−2
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Kriging interpolation
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−1

0
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0

1

2
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Figure A.1: Benchmark-contour plot of the Kriging method related to the Matlab built-
in triangle-based cubic interpolation. Small black circles represent the initial input set of
50 samples of the original six-hump camel back function.

A.4 ODEs of the Two-Substrate Model

The following ODE system is implemented in MatlabTM:

function yp = sysdyn(t,y,p)

% simulates Glc/Glc_6P

parameter_global

% -------- modified parameters --------

K1 = p(1);

K2 = p(2);

Kg6p = p(3);
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Keiiap = p(4);

% -------- states ---------------------

XX = y(1,:); % biomass

S1 = y(2,:); % Glc_6P

S2 = y(3,:); % Glc

E1 = y(4,:); % transporter Glc_6P

E2 = y(5,:); % transporter Glc

M1 = y(6,:); % G6p

M2 = y(7,:); % Pep

M3 = y(8,:); % Pyruvate

XP = y(9,:); % EIIAP (Pts Protein)

% --------- rates ------------------

% uptake carbo 1/2

rup1 = kg6p*(E1.*S1)./(Kg6p+S1);

rup2 = kptsup*XP.*(E2.*S2)./...

(Kglc*Keiiap*x0+S2*Keiiap*x0+XP*Kglc+XP.*S2);

% enzyme syn 1/2

rsyn1= k1 * (kb+ksyn*(XP).ˆ6./(XP.ˆ6+Kˆ6))...

.*rup1./(K1+rup1);

rsyn2= k2 * (KI./(E1+KI)).*(kb+ksyn*(XP).ˆ6./(XP.ˆ6+Kˆ6))...

.*rup2./(K2+rup2);

% rates

rgly = kgly * M1; % Glycolyse

f = (M1.ˆn).*M2.ˆm;

rpyk = kpyk*M2.*f; % Pyk

rpts = kpts * M2.*(x0-XP) - km_pts*M3.*XP; % PTS rate

rabb = kpdh * M3; % Pdh

% -----------------------------

mu = Y1_sim * rup1 + Y2_sim * rup2; % growth rate

yp =[ (mu).* XX % biomass

-mw1 * rup1.*XX % carbo 1

-mw2 * rup2.*XX % carbo 2
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A.5 Box-Bias Approach

rsyn1 - (kd + mu).*E1; % trans 1

rsyn2 - (kd + mu).*E2; % trans 2

rup1 + rup2 - rgly % G6p

2*rgly - rpyk - rpts % Pep

rpyk + rpts - rabb % Pyruvate

rpts - rup2]; % EIIAP

A.5 Box-Bias Approach

As a more traditional approach of uncertainty analysis for non-linear regression models

the so called Box Bias has been introduced [Box71] to overcome the assumption of an

ideal unbiased estimator. Traditionally, the Box Bias is calculated according to

BiBox = −1

2
FIM−1

K∑
tk=1

STtkC
−1
y

 tr
[
FIM−1H1,tk

]
...

tr
[
FIM−1Hm,tk

]
 , (A.18)

where

FIM =

K∑
tk=1

STtkC
−1
y Stk , (A.19)

Stk =



∂y1

∂θ1

∣∣∣
tk

∂y1

∂θ2

∣∣∣
tk

· · · ∂y1

∂θl

∣∣∣
tk

∂y2

∂θ1

∣∣∣
tk

∂y2

∂θ2

∣∣∣
tk

· · ·
...

...
...

. . .
...

∂ym
∂θ1

∣∣∣
tk

· · · ∂ym
∂θl−1

∣∣∣
tk

∂ym
∂θl

∣∣∣
tk


(A.20)

and

Hi,tk =



∂2yi
∂θ2

1

∣∣∣
tk

∂2yi
∂θ1∂θ2

∣∣∣
tk

· · · ∂2yi
∂θ1∂θl

∣∣∣
tk

∂2yi
∂θ2∂θ1

∣∣∣
tk

∂2yi
∂θ2

2

∣∣∣
tk

· · ·
...

...
...

. . .
...

∂2yi
∂θl∂θ1

∣∣∣
tk

· · · ∂2yi
∂θp∂θl−1

∣∣∣
tk

∂2yi
∂θ2
l

∣∣∣
tk


. (A.21)

Obviously, there is a need for first and second-order derivatives of the model output

with respect to the parameters (Eq.A.20,Eq.A.21). Especially, the determination of

second derivatives is numerically quite challenging. Furthermore, the inverse of the

Fisher Information matrix (Eq.A.19) is part of Eq.A.18, so the Box Bias is likely to be

inaccurate for ill-conditioned matrices. Again the UT method seems to be in favour
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as neither inversion nor derivatives are part of this approach. Commonly, a high bias

indicates a severe nonlinearity. In [Rat83] a model is quantified to be non-linear with

respect to a parameter θj if the percentage bias %Bij (Eq.A.22) exceeds 1%.

%Bij =
|Bij |
θj
· 100, (A.22)

where Bij is the jth element of the bias vector.

A.6 MAP Kinase Model Settings

a b c V (t = 0) R(t = 0) ∆t σy2

0.2 0.2 3 -1 1 0.05 0.04

Table A.2: Configuration parameters of the test case study at which the in-silico data,
ydata(tk), are generated.

θ1 θ2 θ3 θ4 θ5 θ6 θ7 θ8 θ9 θ10 θ11 θ12

3.26 0.87 2.38 0.14 9.32e-1 23.63 0.03 0.20 0.02 0.37 0.02 1.07

θ13 θ14 a w ts tend ∆t KKK∗(t0) KK∗(t0) K∗(t0)
8.57e-6 1.40e3 1 0.1e-2 1.57 600 5.00 0.00 0.50 0.50

Table A.3: Model parameters of model candidates Ŝ1, Ŝ2, and Ŝ3

θ1 θ2 θ3 θ4 θ5 θ6 θ7 θ8 θ9 θ10 θ11 θ12

3.26 0.87 2.38 0.14 9.32e-1 23.63 0.03 0.20 0.02 0.37 0.02 1.07

θ13 θ14 a w ts tend ∆t KKK∗(t0) KK∗(t0) K∗(t0)
8.57e-6 1.40e3 1 0.1e-2 1.57 600 5.00 0.00 0.50 0.50

Table A.4: Model parameters of model candidates Ŝ1, Ŝ2, and Ŝ3

A.7 Model Selection Equations and Settings
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A.8 Concepts Used to Derive Surrogate Functions

Ŝ1

˙KKK
∗

= k1·U(1−KKK∗)
k1m+(1−KKK∗) −

k2·KKK∗
k2m+KKK∗ − k5 · IP ∗ ·KKK∗

˙KK
∗

= k3·KKK∗(1−KK∗)
k3m+(1−KK∗) − k4·KK∗

k4m+KK∗ − k10 ·K∗ ·KK∗

K̇∗ = k6·KK∗(1−K∗)
k6m+(1−K∗) −

k7·K∗
k7m+K∗

˙IP
∗

= k8·K∗(1−IP ∗)
K8m+(1−IP ∗) −

k9·IP ∗
k9m+IP ∗

Ŝ2

˙KKK
∗

= k1·U(1−KKK∗)
k1m+(1−KKK∗) −

k2·KKK∗
k2m+KKK∗ −

k11·K∗·KKK∗
k11m+KKK∗

˙KK
∗

= k3·KK∗(1−KK∗)
k3m+(1−KK∗) −

k4·KK∗
k4m+KK∗ −

k10·K∗·KK∗
k10m+KK∗

K̇∗ = k6·KK∗(1−K∗)
k6m+(1−K∗) −

k7·K∗
k7m+K∗

Ŝ3

˙KKK
∗

= k1·U(1−KKK∗)
k1m+(1−KKK∗) −

k2·KKK∗
k2m+KKK∗ −

k11·K∗·KKK∗
k11m+KKK∗

˙KK
∗

= k3·KKK∗(1−KK∗)
k3m+(1−KK∗) − k4·KK∗

k4m+KK∗

K̇∗ = k6·KK∗(1−K∗)
k6m(1−K∗) − k7·K∗

k7m+K∗

Table A.5: Related ODE system of model candidates Ŝ1, Ŝ2, and Ŝ3

A.8 Concepts Used to Derive Surrogate Functions

By utilising the Matlab Spline ToolboxTM following setting is applied:

• B-Splines up to order 8 are tested

• 350 equally spaced knots are used

By utilising the Matlab Wavelet ToolboxTM following setting is applied:

• a biorthogonal wavelet family ’bior3.3’ is selected

• a decomposition level of 5 is used

By utilising the Matlab Neural Network ToolboxTM following setting is applied:

• a generalised regression neural network is selected

• the spread of radial basis functions is set equal to 0.4
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k1 k1m k2 k2m k3 k3m k4 k4m k5 k6

Ŝ1 0.30 0.46 0.1e-2 0.18 0.25e-1 0.66 0.71e-2 1.96 3.86 0.12e-1

Ŝ2 1.13 0.15e-1 0.17e-2 28.95 0.95e-1 3.62 0.17e-2 0.68 - 0.29e-2

Ŝ3 3.26 0.87 0.93-7 23.63 0.31e-1 0.2 0.15e-1 0.37 - 0.21e-1

k6m k7 k7m k8 k8m k9 k9m k10 k10m k11 k11m

0.56 0.64e-2 2.10 0.23e-2 0.68 0.25e-2 1.11 0.1e-1 - - -

0.12e-1 0.53e-2 21.82 - - - - 0.34e-1 2.1 1.98 0.24

1.07 0.86e-5 1.4e3 - - - - - - 2.38 0.14

Table A.6: Model parameters of model candidates Ŝ1, Ŝ2, and Ŝ3

KKK∗(t0) KK∗(t0) K∗(t0) IP ∗(t0) u P+
0 = I. · P+

0,i Q = I. ·Qi
Fig. 4.2 0 0.5 0.5 0 0.6 - -

Fig. 4.4 0.25 0.5 0.5 0.1 0.2 0.03 1e-6

Fig. 4.7 0.25 0.5 0.5 0.1 - 0.03 1e-6

Fig. 4.8 0.25 0.5 0.5 - 1 - -

Fig. 4.9 0.25 0.5 0.5 0.1 - 0.03 1e-6

Fig. 4.11 0 0.5 0.5 0 0.6 - -

Fig. 4.5 0.25 0.5 0.5 0.1 - 0.03 1e-6

Qθ = I2×2. ·Qθ,i R kc1(Ŝ2) kc1(Ŝ3) kc11(Ŝ2) kc11(Ŝ3) α β κ

Fig. 4.2 - - - - - - 0.1 2 0

Fig. 4.4 - 0.0252 - - - - 0.1 2 0

Fig. 4.7 - 0.0252 - - - - 0.1 2 0

Fig. 4.8 - - - - - - 0.1 2 0

Fig. 4.9 1e-3 0.0252 1.5 · k1 1.5 · k1 0.5 · k11 1.5 · k11 0.1 2 0

Fig. 4.11 - - - - - - 0.1 2 0

Fig. 4.5 - 0.0252 - - - - 0.1 2 0

Table A.7: Operating conditions for different scenarios. Here, I is the n × n identity
matrix.

A.9 Analytical Solution of the Optimal Flat Input

According to the Equations ((5.49)-(5.51)) the sensitivity function becomes

∂uflat(t)

∂b
= −1

c

(
3ζ0 − ζ3

0

3

)
(A.23)

Thus, the actual optimisation problem reads as follows

arg max
ζ0

Jopt(ζ0) =

tend∫
t0

(
∂uflat(t)

∂b

)2

dt

= tend

(
−ζ0

1

c
+

1

c
ζ3

0

)2

− t0
(
−ζ0

1

c
+

1

c
ζ3

0

)2

(A.24)

By assuming t0 = 0, tend = 20, and c = 3, the following derivatives of the cost function
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with respect to the design parameter, ζ0, exist

dJopt(ζ0)

dζ0
= −40

(
ζ0/3− ζ3

0/9
) (
ζ2

0/3− 1/3
)

d2Jopt(ζ0)

dζ2
0

= 40
(
ζ2

0/3− 1/3
)
−
(
80ζ0

(
ζ0/3− ζ3

0/3
))
/3

(A.25)

The resulting singularities, dJopt(ζ0)
dζ0

= 0, are

ζ∗0 =
[
−1, 1, 0,

√
3,−
√

3
]

(A.26)

The associated second-order derivatives are determined as

d2Jopt(ζ0)

dζ2
0

∣∣∣∣
ζ∗0

= [−160/27,−160/27, 40/9, 160/9, 160/9] (A.27)

Obviously, the optimisation problem has 2 local maxima and 3 local minima [NW99],

see Fig. A.2 for illustration. By a closer inspection of Eq.(A.24), however, it can

be concluded that a design parameter, ζ0, tending to plus/minus infinity ensures the

highest sensitivity of the cost function with respect to parameter b. By introducing

some plausible physical constraints of the system input, u(t), the following constrained

optimisation problem has to be solved

arg max
ζ0
Jopt(ζ0)

subject to u(t) ≤ 1

u(t) ≥ 0

(A.28)

By utilising the Karush-Kuhn-Tucker conditions [NW99] the optimisation problem is

recast according to

L(ζ0, µ) = Jopt(ζ0) + µ1 (u(t)− 1) + µ2 (−u(t)) (A.29)

Here, in addition to the local maxima, ζ∗0 = 1, an optimum at ζ∗0 = 2.4268 becomes

the most feasible solution (Jopt(ζ0 = 1) < Jopt(ζ0 = 2.4268)), i.e., the constraints are

fulfilled (µ1 = 29.34, µ2 = 0) and the second derivation is negative, d2L(ζ0,µ)
dζ2

0

∣∣∣
ζ∗0

=

−81.7.
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Figure A.2: OED for flat inputs: Here, the goal is to figure out an optimum output
function by evaluating the unconstrained version of the optimisation problem given in
Eq.(A.24).

A.10 Equations for the Flat Input of MAP

%--------------------------------------------------------

% Measurements and time derivatives thereof

y = Ks; % measuring the acitve K - Enzyme, K*

yd; % first-order derivative of y

ydd; % second-order dervivative

yddd; % third-order derivative

%--------------------------------------------------------

% Reconstruction of KK*

KKs = (yd +(v7.*y)./(k7m+y)).*(k6m+1-y)./(k6.*(1-y));

%--------------------------------------------------------

% Reconstruction of KKK*

M = (-yd.*(k6-k6.*y)-(k6m+1-y).*(-k6.*yd))./...

(k6.*(1-y)).ˆ2;

L = ydd+(v7.*yd.*(k7m))./(k7m+y).ˆ2;

KKsd= L.*(k6m+1-y)./(k6.*(1-y))+(yd+(v7.*y)./...

(k7m+y)).*M;

KKKs= (KKsd+(v4.*KKs)./(k4m+KKs)).*((k3m+1-KKs)./...

(k3.*(1-KKs)));

%--------------------------------------------------------

% Reconstruction of the flat input U

H4 = 2.*(k6.*(1-Ks)).*(-k6.*Ksd);

H3 = -Ksdd.*(k6-k6.*Ks)+(-Ksd.*(-k6.*Ksd))-...

(-Ksd.*(-k6.*Ksd))-(k3m+1-Ks).*(-k6.*Ksdd);
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Md = (H3.*(k6.*(1-Ks)).ˆ2-(-Ksd.*(k6-k6.*Ks)-...

(k3m+1-Ks).*(-k6.*Ksd)).*H4)./(k6.*(1-Ks)).ˆ4;

Ld = Ksddd+(v7.*k7m.*Ksdd.*(k7m+Ks).ˆ2-v7.*k7m.*...

Ksd.*2.*Ksd.*(k7m+Ks))./(k7m+Ks).ˆ4;

KKsdd= Ld.*(k6m+1-Ks)./(k6.*(1-Ks)) + L .*...

(-Ksd.*(k6.*(1-Ks))-(k6m+1-Ks).*(-k6.*Ksd))./...

(k6.*(1-Ks)).ˆ2+(Ksdd + (v7.*Ksd.*(k7m + Ks)...

-(v7.*Ks).*Ksd)./(k7m+Ks).ˆ2).*M+...

(Ksd+(v7.*Ks)./(k7m+Ks)).*Md;

H2 = (-KKsd.*(k3.*(1-KKs))-((k3m+1-KKs).*...

(-k3.*KKsd)))./(k3.*(1-KKs)).ˆ2;

H1 = KKsdd+((v4.*KKsd.*(k4m+KKs)-v4.*KKsd.*KKs))./...

(k4m+KKs).ˆ2;

KKKsd= H1.*((k3m+1-KKs)./(k3.*(1-KKs)))+...

(KKsd + v4.*KKs./(k4m+KKs)).*H2;

U = (KKKsd+v2.*KKKs./(k2m+KKKs)+...

k5.*Ks.*KKKs./(k5m + KKKs)).*...

(k1m+1-KKKs)./(k1.*(1-KKKs));
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[SA11] M. Sjöstrand and Özlem Aktas. Cornish-Fisher

Expansion and Value-at-Risk in Application to

Risk Management of Large Portfolios. LAP

LAMBERT Academic Publishing, 2011. 35, 40

[SB75] J. Swartz and H. Bremermann. Discussion of

parameter estimation in biological modelling:

Algorithms for estimation and evaluation of

the estimates. Journal of Mathematical Biology,

1:241–257, 1975. 101, 102

[Sed02] A. Sedoglavic. A probabilistic algorithm to

test local algebraic observability in polyno-

mial time. Journal of Symbolic Computation,

33(5):735–755, May 2002. 80, 82

[Sey10] R. U. Seydel. Practical Bifurcation and Stability

Analysis. Springer, 2010. 116

[SG01] N. Schenker and J. F. Gentleman. On judg-

ing th significance of differences by examining

the overlap between confidence intervals. The

American Statistican, 55:182–186, 2001. 12

[Sim06] D. Simon. Optimal state estimation. Wiley-

Interscience, 2006. 32, 77, 78

[SKM08] R. Schenkendorf, A. Kremling, and M. Man-

gold. Application of sigma points to the op-

timal experimental design of a biological sys-

tem. In The 20th International Symposium on

Chemical Reaction Engineering- Green Chemical

Reaction Engineering for a Sustainable Future,

2008.

[SKM09a] R. Schenkendorf, A. Kremling, and M. Man-

gold. Optimal experimental design and model

selection by a sigma point approach. In Math-

mod 2009 - 6th Vienna International Confer-

ence on Mathematical Modelling, Vienna, Aus-

tria, 2009. 69

[SKM09b] R. Schenkendorf, A. Kremling, and M. Man-

gold. Optimal experimental design with the

sigma point method. IET Systems Biology,

3:10–23, 2009. 56

[SKM12] R. Schenkendorf, A. Kremling, and M. Man-

gold. Influence of non-linearity to the optimal

experimental design demonstrated by a biolog-

ical system. Mathematical and Computer Mod-

elling of Dynamical Systems, 18:413–426, 2012.

60

157



REFERENCES

[SL10] D. Skanda and D. Lebiedz. An optimal exper-

imental design approach to model discrimina-

tion in dynamic biochemical systems. Bioinfor-

matics, 26:939–945, 2010. 70

[SM11a] R. Schenkendorf and M. Mangold. Challenges

of parameter identification for nonlinear biolog-

ical and chemical systems. In SIAM Conference

on Optimization, Darmstadt, 2011.

[SM11b] R. Schenkendorf and M. Mangold. Qualita-

tive and quantitative optimal experimental de-

sign for parameter identification. In 18th IFAC

World Congress Milano (Italy), 2011.

[SM13] R. Schenkendorf and M. Mangold. Online

model selection approach based on unscented

kalman filtering. Journal of Process Control,

23:44–47, 2013. 69

[SM14] R. Schenkendorf and M. Mangold. Parameter

identification for ordinary and delay differen-

tial equations by using flat inputs. Theoretical

Foundations of Chemical Engineering, accepted,

2014. 97

[Sob93] I. M. Sobol’. Sensitivity analysis for nonlin-

ear mathematical models. Mathematical Model-

ing and Computational Experiment, 1:407–414,

1993. 38

[Sob01] I. M. Sobol’. Global sensitivity indices for

nonlinear mathematical models and the monte

carlo estimates. Ma, 55:271–280, 2001. 38

[SRM12] R. Schenkendorf, U. Reichl, and M. Mangold.

Parameter identification of time-delay systems:

A flatness based approach. In MATHMOD 2012

- Full Paper Preprint Volume, 2012. 97

[SRTC05] A. Saltelli, M. Ratto, S. Tarantola, and

F. Campolongo. Sensitivity analysis for chem-

ical models. Chemical Reviews, 105:28112828,

2005. 38

[SSK09] J.-F. Stumper, F. Svaricek, and R. Kennel.

Trajectory tracking control with flat inputs and

a dynamic compensator. In Proceedings of the

European Control Conference, 2009. 112

[Ste94] R. F. Stengel. Optimal Control and Estimation.

Dover Publications, 1994. 13, 77, 78, 80

[TB06] D. Thomson and R. Bradley. Inverse simula-

tion as a tool for fight dynamics research - prin-

ciples and applications. Progress in Aerospace

Sciences, 42:174–210, 2006. 104

[Tem09] Brian A. Templeton. A polynomial chaos

approach to control. Master’s thesis, Vir-

ginia Polytechnic Institute ans State Univer-

sity, 2009. 22

[TF05] C. W. Tsai and S. Franceschini. Evaluation

of probabilistic point estimate methods in un-

certainty analysis for environmental engineer-

ing applications. J. Environ. Eng., 131:387–395,

2005. 25

[TKA00] Y. Tanaka, K. Kimata, and H. Aiba. A novel

regulatory role of glucose transporter of es-

cherichia coli: membrane sequestration of a

global repressor mlc. The EMBO Journal,

19:5344–5352, 2000. 60

[TLDI12a] D. Telen, F. Logist, E. Van Derlinden, and

J. F. Van Impe. Robust optimal experiment

design: A multi-objective approach. In 7th

Vienna Conference on Mathematical Modelling,

2012. 51

[TLDI12b] D. Telen, F. Logist, E. Van Derlinden, and

J. Van Impe. Approximate robust optimal ex-

periment design in dynamic bioprocess models.

In 20th Mediterrnean Conference on Control &

Automation (MED), Barcelona, Span, 2012. 51

[Tyl53] G. W. Tyler. Numerical integration of func-

tions of several variables. Canadian Jn. Math.,

5:393–412, 1953. 24, 25

[Var08] M. S. Varziti. Parameter Estimation in Non-

linear Continuous-Time Dynamic Models with

Modelling Errors and Process Disturbances. PhD

thesis, Queen’s University, Kingston, Ontaria,

Canada, 2008. 102

[vdM04] R. v. d. Merwe. Sigma-Point Kalman Filters for

Probabilistic Inference in Dynamic State-Space

Models. PhD thesis, OGI School of Science &

Engineering at Oregon Health & Science Uni-

versity, 2004. 31, 32

[VG07] J.-P. Vila and J.-P. Gauchi. Optimal designs

based on exact confidence regions for parame-

ter estimation of a nonlinear regression model.

Journal of Statistical Planning and Inference,

137:2935–2953, 2007. 51

[VGS+10] V. Vassilev, M. Gröschel, H.J. Schmid,
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