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ABSTRAKT 

 

Da immer mehr Geräte und Server, die auf Heimnetzwerken basieren, zugänglich sind [1], wird das 
Bewusstsein für Cybersicherheit und bewährte Verfahren zur Sicherung drahtloser Netzwerke immer 
wichtiger. Mit der zunehmenden Erschwinglichkeit fortschrittlicher Hardwaretechnologien, wie z. B. 
moderner Gaming-PCs, die mit leistungsstarken Grafikprozessoren (GPUs) ausgestattet sind, die das 
Knacken von Passwörtern mit Brute-Force-Methoden in einem breiteren Spektrum ermöglichen, 
nehmen die Sicherheitsbedrohungen für passwortgeschützte drahtlose Netzwerke zu. In diesem Beitrag 
soll die Robustheit aktueller Passwortstandards sowie die Anfälligkeit häufig verwendeter Passwörter 
untersucht werden. Dazu wird moderne Consumer-GPU-Technologie eingesetzt, um die 
Unbrauchbarkeit einer Untergruppe von Passwörtern zu demonstrieren, die gemeinhin als sicher gelten. 

Diese Studie konzentriert sich auf zwei moderne Consumer-GPUs, AMD Radeon RX 6800 und Nvidia 
RTX 4090, und ihre Fähigkeit, Brute-Force-Angriffe zum Knacken von Passwörtern auf PMKID-
Hashes mit Hashcat durchzuführen [2]. In dieser Arbeit wird die Effektivität des Einsatzes dieser GPUs 
zum Knacken komplexer Passwörter diskutiert und die Länge eines komplexen Passworts bewertet, bei 
der es sofort geknackt werden kann. Darüber hinaus wird die potenzielle Zunahme der Anfälligkeit für 
das Knacken von WPA-Passwörtern innerhalb eines praktischen Zeitrahmens aufgezeigt, insbesondere 
bei der Verwendung von Passwörtern, die sich Menschen merken können, und zwar im Hinblick auf 
die Fortschritte bei der Entwicklung von Gaming-GPUs in den letzten fünf Jahren.  

In dieser Forschungsstudie soll die Effizienz aktueller GPU-Architekturen im Vergleich zu älteren 
Architekturen unter Verwendung verschiedener Algorithmen zum Knacken von Passwörtern bewertet 
werden. Die Ergebnisse zeigen, dass selbst als sicher geltende Passwörter angreifbar sind, was die 
Notwendigkeit verbesserter Sicherheitsmaßnahmen verdeutlicht. 

Schließlich unterstreicht diese Arbeit die Notwendigkeit, das Bewusstsein für Cybersicherheit in der 
Öffentlichkeit zu stärken, insbesondere im Hinblick auf die Sicherung drahtloser Heimnetzwerke. 
Durch Sensibilisierung und Förderung bewährter Verfahren zur Bekämpfung moderner Cracking-
Techniken können wir dazu beitragen, Cyberangriffe zu verhindern und unser digitales Leben zu 
schützen. 
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ABSTRACT 

 

As home network-based devices and servers become more accessible [1], the need for cybersecurity 
awareness and best practices to secure wireless network is increasingly important. With the growing 
affordability of advanced hardware technology, such as modern gaming PCs equipped with powerful 
graphics processing units (GPUs), which can facilitate password brute force cracking on a wider 
spectrum, security threats to password protected wireless networks are on the rise. This paper aims to 
examine the robustness of contemporary password standards, as well as the susceptibility of frequently 
deployed passwords, by utilizing modern consumer GPU technology to demonstrate the deprecation of 
a subset of passwords commonly deemed secure. 

This study focuses on two modern consumer GPUs, AMD Radeon RX 6800 and Nvidia RTX 4090, 
and their ability to perform brute-force password cracking attacks on PMKID hashes using Hashcat [2]. 
The paper discusses the effectiveness of using these GPUs to crack complex passwords and evaluates 
the length of a complex password at which it can be instantly cracked. Moreover, it demonstrates the 
potential increase in vulnerability of WPA password cracking within a practical time frame, especially 
when using human memorable passwords, with respect to the progress made in gaming GPU 
development over the past five years.  

This research study seeks to evaluate the efficacy of recent GPU architectures, in contrast with older 
architectures using different password cracking algorithms. The findings demonstrate that even 
passwords deemed secure are vulnerable to exploitation, highlighting the necessity for enhanced 
security measures. 

Finally, this paper highlights the need for greater cybersecurity awareness among the general public, 
particularly with regards to securing wireless home networks. By raising awareness and promoting best 
practices to combat modern cracking techniques, we can help prevent cyber attacks and safeguard our 
digital lives. 
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 Introduction 

1 INTRODUCTION 

Ensuring WiFi password security is of utmost importance in safeguarding the devices connected to a 
WiFi network. With the advent of Internet of Things (IoT) devices like smart home appliances and 
Network Attached Storage (NAS) devices, it has become increasingly effortless to establish a network 
of gadgets in a home or business. However, if not adequately secured, these devices can be susceptible 
to cyber attacks. 

A viable approach to fortifying a WiFi network is by employing a robust and intricate password. A 
strong password is one that is difficult for hackers to guess or crack using brute-force techniques. 

Utilizing a combination of upper- and lower-case letters, numbers, and special characters, and making 
the password a minimum of eight characters is considered by many institutes the standard practice for 
creating strong passwords [3] [4]. Over the past five years, advancements in GPU technology and 
sophisticated password cracking tools have rendered an eight-character password inadequate in terms 
of security. 

An adequate implementation of strong, complex passwords can serve as the primary defense mechanism 
for individual users and organizations alike. It is imperative to note that the utilization of passwords of 
insufficient length places the entire network at risk of being compromised, even by a modern gaming 
computer with current password cracking technology. 

The objective is to demonstrate the susceptibility of commonly used passwords and the simplicity with 
which they can be cracked using a complex brute force cracking technique. Modern gaming hardware 
was employed to showcase the effectiveness of today’s consumer GPU computing power. 

Hacking a wireless network and then attempting to crack it has become easier than ever. This was 
demonstrated through the utilization of the PMKID attacking method. PMKID hashes are typically used 
in Wi-Fi networks to ensure secure communication between client devices and access points. However, 
they can also be exploited to crack passwords. This approach involves capturing a PMKID hash from a 
Wi-Fi network and then running a brute force attack on it.  

By leveraging the parallel processing power of GPUs, the brute force cracking process will be 
accelerated and the time required to crack passwords will be reduced. 

It is worth noting that while this approach is used as an example in this paper, the use of GPUs to crack 
network passwords is not restricted to this technique. The aim of this study is to exhibit the substantial 
advancements in the cracking proficiency of Graphics Processing Units (GPUs) that have been observed 
in present day. 
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2 THEORETICAL BASIS 

2.1 EXPLANATION OF PMKID AND HOW IT CAN BE USED TO HACK WI-FI 

PASSWORDS 
 

Pairwise Master Key Identifier (PMKID) is a hash that exists in the PMKID list field in the Robust 
Security Network Information Element (RSN IE) of Beacon frames. The utilization of PMKID is 
primarily intended to facilitate secure communication between a client device and an access point for 
roaming purposes [5]. Nevertheless, the legitimate use of PMKID holds limited relevance to the subject 
matter of this thesis. 

PMKID is generated from the pairwise master key (PMK) which is generated using a Password-Based 
Key Derivation Function 2 (PBKDF2). This derivation function derives cryptographic keys from 
passwords. Its main purpose is to enhance password security by producing a strong key that can be 
utilized to encrypt data [6]. 

To generate a derived key, PBKDF2 takes in a password, a salt [7] [8], and an iteration count as inputs. 
The algorithm then applies a pseudorandom function to these inputs. 

 

𝐏𝐌𝐊 =  𝐏𝐁𝐊𝐃𝐅𝟐(𝐏𝐚𝐬𝐬𝐩𝐡𝐫𝐚𝐬𝐞, 𝐒𝐒𝐈𝐃, 𝟒𝟎𝟗𝟔) 

 

The PMK is generated from the name of the network (SSID) which is freely available, the WiFi 
password (Passphrase) and the number of PBKDF2 iterations (4096). 

Once PMK is generated, the PMKID created from the Access Point MAC Address (MAC_AP), Client 
MAC Address (MAC_STA), the pairwise master key (PMK) and PMK Name. 

 

𝐏𝐌𝐊𝐈𝐃 =  𝐇𝐌𝐀𝐂_𝐒𝐇𝐀𝟏_𝟏𝟐𝟖 ( 𝐏𝐌𝐊, "𝐏𝐌𝐊 𝐍𝐚𝐦𝐞" | 𝐌𝐀𝐂_𝐀𝐏 | 𝐌𝐀𝐂_𝐒𝐓𝐀 ) 

 

In order to crack the PMKID hash, the process involves generating and computing possible Pairwise 
Master Keys (PMKs) utilizing the Service Set Identifier (SSID) of the network and various passphrases. 
Afterward, PMKID is calculated using the generated PMK along with other network details. The 
PMKID hash is considered cracked once a PMKID identical to the one from the Access Point is 
produced. The passphrase used in generating the correct PMK used to derive the PMKID is recognized 
as the accurate WiFi password. 
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2.2 RSN IE VULNERABILITY AND HOW IT CAN BE EXPLOITED TO RETRIEVE 

PMKID HASHES 
 

Robust Security Network Information Element (RSN IE) is a security component of the IEEE 802.11i 
standard that provides security features for wireless LANs, including encryption, data integrity, and 
authentication [5]. However, the RSN IE is vulnerable to PMKID attacks that exploit weaknesses in the 
WPA2 protocol [9]. 

When a wireless client authenticates with a WPA2 network, the access point generates a PMK based 
on the pre-shared key (PSK) or the 802.1X/EAP authentication credentials. The access point then sends 
a PMKID to the client, as exemplified in Figure 1.  

This vulnerability is activated when an access point (AP) receives an association request packet and has 
the capability to transmit PMKID [10] [9].  

 

 
Figure 1: captured PMKID from RSN IE of a single EAPOL frame – Wireshark 

 

 



 

 
14 

 

 Theoretical Basis 

2.3 PERFORMANCE CHARACTERISTICS OF NVIDIA RTX 4090 AND AMD 

RADEON RX 6800 GPUS 

2.3.1 AMD Radeon RX 6800 
 

The AMD Radeon RX 6800 is a high-performance graphics card designed for demanding applications 
such as gaming. It was release in 2020 based on AMD's RDNA 2 architecture [11]. It features 60 
compute units and 3,840 stream processors. The card also comes with 16GB of GDDR6 memory and a 
boost clock speed of 2105 MHz. Additionally, it has a 256-bit memory interface and a memory 
bandwidth of 512 GB/s [12]. 

The AMD Radeon RX 6800 excellent graphics performance for demanding applications, high compute 
unit and stream processor count, combined with the memory capacity, make it an ideal option for many 
gamers and professionals alike who require high-quality graphics. 

 

2.3.2 Nvidia RTX 4090 
 

The Nvidia RTX 4090 is a high-performance graphics card designed for demanding applications such 
as gaming, artificial intelligence, and machine learning. It is based on Nvidia's latest Ada Lovelace 
architecture, which was released in 2022 [13]. 

The RTX 4090 features 16,384 CUDA cores, which is a significant increase compared to its 
predecessors. The card also comes with 24GB of GDDR6X memory and a boost clock speed of 2520 
MHz. Additionally, it has a 384-bit memory interface and a memory bandwidth of 1008 GB/s [13]. 

 

2.3.3 Disparities in Performance Between the Two Units 
 

The two GPUs being compared belong to different classes and generations. The disparity in 
performance between the GPUs is significant, with the RTX 4090 exhibiting a performance 
improvement factor of 2.5 to 4.5 times compared to the RX 6800 in various hash cracking applications. 

The RTX 4090 has 128 Streaming Multiprocessors (SMs). Each SM contains 128 CUDA cores, which 
are specialized units for parallel processing [13]. This is equivalent to a total of 16,384 CUDA cores. 
The RX 6800 has 60 Compute Units (CUs), which are equivalent to SMs, and each CU has 64 Stream 
Processors (SPs), which are equivalent to CUDA cores. The RX 6800 has 3,840 SPs [12]. Higher core 
count equates to more processing power for graphics-intensive tasks. 

In addition, Nvidia GPUs generally tend to perform better in hash cracking tasks than AMD GPUs. This 
is due to the absence of a competitive alternative to Nvidia's Compute Unified Device Architecture 
(CUDA) by AMD in the past [14] [15]. As a result, Open Computing Language (OpenCL) surfaced as 
the closest substitute. Nonetheless, when evaluated, Nvidia’s CUDA outshines OpenCL in terms of 
stability, compatibility, and overall performance [16]. 
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3 LITERATURE REVIEW 

3.1 PREVIOUS RESEARCH ON HACKING WI-FI NETWORKS 
 

There are several methods that were developed for compromising wireless networks. One of the 
commonly employed techniques involves the interception of a handshake exchange between the access 
point (AP) and the client during the authentication phase [17]. This can be accomplished by scanning a 
target network as demonstrated in Figure 2, then initiating a deauthentication attack [18] against the 
network’s clients as shown in Figure 3, prompting it to re-authenticate and allowing for the capture of 
a hash, as presented in Figure 4. This hash is then used as the basis for a password cracking attack, 
enabling unauthorized access to the network. 

 

 
Figure 2: Identifying a target WPA2 network using airodump-ng 
 

 
Figure 3: Client deauthentication attack using aireplay-ng 

 

 
Figure 4: Handshake captured successfully 
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Another popular approach is by targeting Wi-Fi Protected Setup (WPS) protocol vulnerabilities [19]. 
This can be done by a brute-force attack, where the attacker attempts to guess the WPS Personal 
Identification Number (PIN) through a trial-and-error method, as outlined in Figure 5. The WPS PIN is 
an eight-digit code that is used to authenticate devices to a wireless network. However, because the PIN 
is only eight digits long, it can be easily guessed through automated tools.  

An alternative strategy is the Pixie Dust attack [20], which exploits a weakness in the WPS protocol's 
random number generator. This attack involves capturing a handshake between a client device and a 
wireless network, then using that handshake to calculate the WPS PIN. 

A less common tactic to exploit WPS vulnerabilities is by using null PIN attack [21]. In a null PIN 
attack, an attacker attempts to connect to the wireless access point using a PIN of all zeros or no PIN at 
all. If the WAP has been configured with a default or empty PIN, it will accept the connection, giving 
the attacker access to the wireless network. 

 

 
Figure 5: Attempting to attack a wireless access point that has WPS enabled using Wifite tool 
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3.2 ADVANTAGES OF PMKID ATTACK OVER PREVIOUS WAYS 
 

The utilization of PMKID attacks to demonstrate the cracking potential of modern gaming GPUs over 
conventional network attacks is motivated by the several factors. 

• PMKID attack is clientless. It does not require clients to be connected to the target Wi-Fi 
network. The attacker is able to communicate with the AP directly, even if the network does 
not have connected devices. 

• PMKID attack requires a capture of a single EAPOL frame rather than a full EAPOL 4-way 
handshake. This makes the attack fast to implement, especially when attacking multiple 
networks. 

• PMKID attack is convenient to execute. It does not require extra steps such as client 
deauthentication or creating an evil network [15]. This results in an uncomplicated, 
straightforward attack to perform. 

• The computational complexity of PMKID calculations results in a significant time delay to 
crack PMKID hashes. Demonstrating the ability of GPUs to break them within a reasonable 
timeframe could serve as a benchmark for estimating the feasibility of cracking other types of 
hashes to reveal passwords. 
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3.3 ANALYSIS OF COMMONLY USED PASSWORDS AND THEIR VULNERABILITY 

TO CRACKING 
 

Passwords are a critical component of authentication systems, and weak passwords can be easily 
cracked by attackers using brute-force attacks, dictionary attacks [22], or other methods. Many cyber 
experts recommend using long passwords to increase the difficulty for attackers to guess or crack the 
password [23] [24]. However, most people prefer to use easy-to-remember passwords such as their 
phone number [25] or a word that usually relates to them [26] [27]. These passwords are often used 
repeatedly, which puts them at a higher risk of being compromised.  

NordPass conducted a study on breached passwords, shown in Table 1. They analyzed a database of 
275,699,516 passwords to find the top 200 weakest passwords of the year [28]. 

Table 1: Top 200 most common passwords of the year 2021 - NordPass 

Top 200 most common passwords in 2021. The research shows that people still use weak passwords 

to protect their accounts.         

  2019 2020 2021 

  Password Number of users Password Number of users Password Number of users 

1 12345 2,812,220 123456 2,543,285 123456 103,170,552 

2 123456 2,485,216 123456789 961,435 123456789 46,027,530 

3 123456789 1,052,268 picture1 371,612 12345 32,955,431 

4 test1 993,756 password 360,467 qwerty 22,317,280 

5 password 830,846 12345678 322,187 password 20,958,297 

6 12345678 512,56 111111 230,507 12345678 14,745,771 

7 zinch 483,443 123123 189,327 111111 13,354,149 

8 g_czechout 372,278 12345 188,268 123123 10,244,398 

9 asdf 359,52 1234567890 171,724 1234567890 9,646,621 

10 qwerty 348,762 senha 167,728 1234567 9,396,813 

11 1234567890 329,341 1234567 165,909 qwerty123 8,933,334 

12 1234567 261,61 qwerty 156,765 000000 8,377,094 

13 Aa123456. 212,903 abc123 151,804 1q2w3e 8,204,700 

14 iloveyou 171,657 Million2 143,664 aa12345678 8,098,805 

15 1234 169,683 000000 122,982 abc123 7,184,645 

16 abc123 150,977 1234 112,297 password1 5,771,586 

17 111111 148,079 iloveyou 106,327 1234 5,544,971 

18 123123 145,365 aaron431 90,256 qwertyuiop 5,197,596 

19 dubsmash 144,104 password1 87,556 123321 5,168,171 

20 test 139,624 qqww1122 85,476 password123 4,681,010 

21 princess 122,658 123 84,438 1q2w3e4r5t 4,624,323 

22 qwertyuiop 116,273 omgpop 77,492 iloveyou 4,387,925 
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The analysis presented in Table 1 reveals that over a span of three years, a substantial number 
of users worldwide consistently employ passwords that are characterized by a high degree of 
vulnerability. Such passwords exhibit a marked lack of security, rendering access credentials 
susceptible to facile guessing. 

The data suggests a prevailing lack of awareness among the majority of individuals regarding 
the consequential significance of employing a robust password. This is particularly noteworthy 
in light of the preeminent utilization of the exceedingly common password "123456." 

A comparable analysis was performed on accounts originating from Germany, as detailed in Table 2, 
elucidating the top 200 passwords frequently utilized. The results underscore a consistent behavioral 
trend in password selection among the common masses. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 
20 

 

 Literature Review 

According to the report presented by NordPass, the passwords mentioned in Table 2 below were 
commonly utilized in Germany in the year 2022 [29]. 

Table 2: Top 200 most common passwords in Germany of the year 2022 - NordPass 

Top 200 most common passewords in Germany in 2022. 

Rank password Count Rank Password Count Rank Password Count 

1 123456 10,359 40 wasser 591 79 marcel 414 

2 password 2,901 41 merlin 588 80 patrick 413 

3 123456789 2,669 42 moritz 583 81 banane 411 

4 12345 2,396 43 asdf 572 82 starwars 411 

5 hallo 1,993 44 Groupd2013 571 83 matthias 408 

6 passwort 1,918 45 tobias 570 84 000000 407 

7 ficken 1,628 46 schalke04 555 85 sascha 404 

8 12345678 1,596 47 snoopy 538 86 schnecke 400 

9 master 1,367 48 666666 529 87 nicole 392 

10 1234 1,345 49 markus 526 88 julian 390 

11 qwerz 1,302 50 1q2w3e4r 515 89 fussball 387 

12 hallo123 1,082 51 hamburg 515 90 samsung 383 

13 danial 1,033 52 werder 503 91 borussia 379 

14 killer 1,012 53 computer 497 92 oliver 374 

15 123 922 54 asdasd 486 93 werner 371 

16 111111 903 55 handball 486 94 aaaaaa 370 

17 super123 875 56 arschloch 483 95 nadine 367 

18 guest 841 57 logitech 483 96 schule 366 

19 michael 840 58 sonnenschein 483 97 felix 362 

20 matrix 785 59 abc123 479 98 fuckyou 362 

21 thomas 783 60 asdfgh 479 99 kerstin 362 

22 1234567 776 61 1234567890 475 100 shadow 361 

23 dennis 770 62 andrea 469 101 AlLom! 358 

24 diablo 724 63 fabian 469 102 test 356 

25 sommer 722 64 warcraft 469 103 !~!1 353 

26 123123 701 65 laufen 455 104 bayern 349 

27 stefan 695 66 sebastian 453 105 mercedes 347 

28 florian 694 67 sunshine 453 106 claudia 346 

29 lol 691 68 christian 450 107 xxxxxx 346 

30 alexander 689 69 nirankar 444 108 michelle 345 

31 berlin 681 70 kennwort 440 109 steffi 344 

32 geheim 663 71 johannes 439 110 niklas 341 

33 internet 661 72 lollol 439 111 trustno1 340 

34 andreas 660 73 schalke 434 112 jogmap 337 

35 dragon 644 74 medion 425 113 philipp 337 

36 snadra 643 75 schatz 424 114 sabine 333 

37 lol123 600 76 benjamin 422 115 charly 329 

38 blabla 697 77 eminem 422 116 porsche 328 

39 martin 591 78 melanie 421 117 siemens 328 
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In a similar vein, another study conducted by Tsinghua University [30] in 2016, detailed in Table 3, 
revealed that out of 6,428,632 email passwords examined, 75% of them consisted of 8-10 characters. 

This observation suggests a prevalent inclination among users to adhere to the minimal password 
lengths permissible by platforms. Furthermore, the study underscores that only a scant proportion, 
specifically less than 8%, manifest a willingness to adopt passwords exceeding a length of 12 characters. 
 

Table 3: Frequency of occurrence and corresponding percentages of different password lengths. Highest frequency categories 

are shown in bold. [30] 

Password length Frequency Percent 

1–3 characters  739 0.01% 

4 characters  6,675 0.10% 

5 characters  33,039 0.51% 

6 characters  82,998 1.29% 

7 characters  16,923 0.26% 

8 characters  2,338,639  36.38% 

9 characters  1,552,182  24.14% 

10 characters  930,881 14.48% 

11 characters  628,832 9.78% 

12 characters  369,537 5.75% 

13 characters  167,861 2.61% 

14 characters  154,979 2.41% 

15 characters  75,347 1.17% 

16 characters  49,648 0.77% 

17–34 characters  20,352 0.32% 

1–34 characters  6,428,632  100.00% 
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In a subsequent investigation, depicted in Table 4, it was discovered that when users incorporated 
symbols into their passwords, the characters ‘.’, ‘@’, ‘!’, and ‘*’ were employed in 80% of the 
passwords. 

Table 4: The percentage of passwords including different symbols [30]. 

Symbols Proportion Symbols Proportion 

.  34.57%  (  1.29% 

@  25.43%  ^  1.23% 

!  10.92%  ;  1.10% 

*  9.19%  _  0.96% 

- 7.81%  ,  0.86% 

#  6.62%  ]  0.55% 

+ 5.47% [  0.55% 

/  3.36%  >  0.42% 

$  3.32% ‘  0.42% 

?  2.69%  <  0.36% 

&  2.52%  \  0.32% 

=  2.09%  :  0.30% 

%  2.00%  {  0.09% 

Space  1.46%  }  0.08% 

)  1.41%  “  0.07% 

~  1.34%  |  0.05% 

 

The prevalence of symbols, including but not limited to '.', '-', '!', '@', and '#', commonly employed in 
daily interactions or located at the initial positions on a standard keyboard, may suggest users are 
mimicking common requirements, choosing easily typed and memorable characters, following 
observed patterns, or having a misconception that these symbols enhance security. Password strength 
relies on various factors, and understanding common practices can inform effective password creation. 
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The research also encompasses the analysis of password selection, as demonstrated in Table 5. This 
brings attention to the passwords that were found to be most frequently utilized. 

Table 5: The percentage of most common passwords in the data set [30]. 

Password  Frequency  Percentage Password  Frequency  Percentage 

123456789 235012 3.66% iloveyou  3080 0.05% 

12345678 212749 3.31% 31415926  3061  0.05% 

11111111  76346  1.19% 12344321  2985 0.05% 

dearbook  46053  0.72% 0000000000  2885  0.04% 

00000000  34952  0.54% asdfghjkl  2826  0.04% 

123123123  19986  0.31% 1q2w3e4r  2796 0.04% 

1234567890  17790  0.28% 123456abc  2580 0.04% 

88888888  15033  0.23% 0123456789  2578  0.04% 

111111111  6995  0.11% 123654789  2573 0.04% 

147258369  5965  0.09% 12121212  2540  0.04% 

987654321  5553  0.09% qazwsxedc  2515 0.04% 

aaaaaaaa  5459  0.08% abcd1234  2396 0.04% 

1111111111  5145  0.08% 12341234  2380  0.04% 

66666666  5025  0.08% 110110110  2348  0.04% 

a123456789  4435  0.07% asdasdasd  2296 0.04% 

11223344  4096  0.06% 22222222  2243  0.03% 

1qaz2wsx  3667  0.06% 123321123  2166 0.03% 

xiazhili  3649  0.06% abc123456  2160 0.03% 

789456123  3610  0.06% a12345678  2138  0.03% 

password  3501  0.05% 123456  2131 0.03% 

87654321  3281 0.05% 123456123  2113  0.03% 

qqqqqqqq  3277  0.05% a1234567  2106  0.03% 

000000000  3175 0.05% 1234qwer  2100  0.03% 

qwertyuiop  3143  0.05% qwertyui  1989  0.03% 

qq123456  3094  0.05% 123456789a  1986  0.03% 

 

The findings of this investigation are congruent with the analysis disseminated by NordPass 
[28] [29], as presented in Tables 1 and 2.  

The examination reveals that the passwords "123456789" and "12345678" exhibit the highest 
frequency of utilization among the surveyed population, aligning with the reported patterns. 
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3.4 INVESTIGATING THE VULNERABILITIES OF WIRELESS ROUTERS: 

ANALYSIS OF DEFAULT WPA2 PASSWORD GENERATION ALGORITHMS 
 

In 2015, Radboud University, in collaboration with the Dutch National Cyber Security Centre, 
conducted a study that investigated the security of the default WPA2 password generating algorithms 
employed by wireless routers [31]. These algorithms are loaded during device initialization and 
hardware reset. The study demonstrated that certain algorithms exhibit weak password generating 
mechanisms, which renders them vulnerable to brute-force attacks. 

An investigation was conducted into the default WiFi password generation algorithm utilized by two 
prominent Internet Service Providers (ISPs) in the Sachsen Anhalt region of Germany, namely Telekom 
and PYUR. The inquiry was carried out through an analysis of default router passwords extracted from 
second-hand market offerings of the most recent iterations of routers provided by internet service 
providers. 

Based on the investigation of the two ISPs, A pre-set WiFi password consisting of 16 digits is provided 
by Telekom for its routers, as shown in Figure 6.  

 

 
Figure 6: Back side of Speedport W 724v Telekom router showing the WiFi password [32]. 
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In contrast, PYUR uses a 12-character password that includes 2-4 digits and 2-4 capital letters, with the 
remainder of the password comprising lowercase letters, as evidenced in Figure 7. 

 

 
Figure 7: Back side of a PYUR CH7467CE router showing the WiFi password [33]. 

 

Passwords satisfying sufficient length criteria, such as 12 characters, are deemed secure owing to the 
vast array of potential combinations. 16-digit passwords remain secure unless insufficient complexity 
or randomness renders them susceptible to brute-force attacks. 
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3.5 A COMPARATIVE ANALYSIS OF NVIDIA RTX 4090 AND AMD RADEON 

RX6800 FOR HASH CRACKING PERFORMANCE EVALUATION 
 

The performance of the AMD Radeon RX 6800 GPU and Nvidia RTX 4090 in the context of hash 
cracking has been evaluated through a comparative analysis. This analysis involved comparing the 
performance of both GPUs with other GPUs in their respective classes, using standardized benchmarks 
to assess their computational capabilities. The results of this analysis indicate that the Nvidia RTX 4090 
is capable of providing superior hash cracking performance compared to its peers, due to its advanced 
hardware architecture and optimized software support. It delivers up to 247.6% higher performance 
compared the previous generation. In contrast, the AMD Radeon RX 6800 exhibits a commendable 
hash cracking performance in its category, often demonstrating parity with the RTX 3080 under similar 
circumstances. It is also worth to mention that these findings have significant implications for the 
development of more efficient and effective cryptographic algorithms, as well as for the design and 
implementation of secure password authentication systems. 

A comparison was made among the high-end gaming graphics processing units (GPUs) released by 
Nvidia over the past five years. These include the RTX 4090 [13], RTX 3090 [34], RTX 3080 [34], and 
RTX 2080 [35], which were released in 2022, 2020, 2020, and 2018, respectively. 

On the AMD side, a similar comparison is carried out between the high-end gaming GPUs of the 
Radeon RX 7000, RX 6000 and RX 5000 [36] series. This list includes the RX 7900 XTX [37], RX 
6900 XT [38], RX 6800 [39] and RX 5700 XT [36], which were released in 2022, 2020, 2020 and 2019, 
respectively. 

In this analysis, a benchmark test was conducted using the Hashcat tool to analyze the performance of 
these GPUs in cracking different types of hashes. The benchmark test consisted of commonly used 
hashes, such as salted MD5 [40], salted SHA1 [41], HMAC-SHA1 [42], salted SHA256 [43], HMAC-
SHA256 [44], and WPA/PMKID. The obtained results were then compared among the GPUs to 
evaluate their respective performance. 

Comparing the cracking capabilities of GPUs across different types of hashes provides a broader 
perspective on the extent of their capabilities in modern computing. 

The raw benchmark data of the RTX 3090, RTX 3080, RTX 2080, RX 7900 XTX, RX 6900 XT, and 
RX 5700 XT GPUs were provided by the Hashcat team and other users in the Hashcat forum [45] [46]. 

In the context of GPU hash cracking, the metric used to quantify its performance is represented by the 
speed hash rate per second, indicating the rate at which the GPU is capable of cracking a given hash. 
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3.5.1 Analysis Results 
 

In the conducted study, benchmark tests were performed utilizing Hashcat to assess the computational 
capabilities of various GPUs. The obtained results have been documented in Table 6 and Table 7. A 
comprehensive comparative analysis of these results demonstrates the superior performance of the latest 
Nvidia GPU architecture, specifically the RTX 4090, when compared to both earlier Nvidia generations 
and AMD architectures. Notably, the GPUs denoted in the highlighted columns are earmarked for 
subsequent investigations concerning secure password weaknesses. 

 

Table 6: A comparative evaluation of hash cracking performance among NVIDIA GPUs, utilizing the Hashcat tool. 

  RTX 4090 RTX 3090 RTX 3080 RTX 2080 

md5($pass.$salt) 164.0 GH/s 66252.7 MH/s 52134.0 MH/s 36671.4 MH/s 

sha1($pass.$salt) 52244 MH/s 22777.5 MH/s 16852.0 MH/s 12010.8 MH/s 

PBKDF2-HMAC-SHA1 19933 kH/s 9240.9 kH/s 7135.9 kH/s 4535.8 kH/s 

sha256($pass.$salt) 22880 MH/s 9746.6 MH/s 6980.9 MH/s 5380.8 MH/s 

PBKDF2-HMAC-SHA256 8948.3 kH/s 3785.4 kH/s 3029.2 kH/s 2144.1 kH/s 

WPA-PBKDF2-PMKID 2720 kH/s 1129.0 kH/s 839.3 kH/s 556.3 kH/s 

 

Table 7: A comparative evaluation of hash cracking performance among AMD GPUs, utilizing the Hashcat tool. 

  RX 7900 XTX RX 6900 XT RX 6800 RX 5700 XT 

md5($pass.$salt) 70078.3 MH/s 56112.1 MH/s 44337.9 MH/s 32182.4 MH/s 

sha1($pass.$salt) 28889.1 MH/s 22231.2 MH/s 17975.2 MH/s 12731.3 MH/s 

PBKDF2-HMAC-SHA1 11783.2 kH/s 8810.0 kH/s 6846.0 kH/s 5076.6 kH/s 

sha256($pass.$salt) 12770.9 MH/s 9421.7 MH/s 7602.2 MH/s 5377.0 MH/s 

PBKDF2-HMAC-SHA256 4788.5 kH/s 3681.1 kH/s 2918.8 kH/s 2099.3 kH/s 

WPA-PBKDF2-PMKID 1466.4 kH/s 1132.4 kH/s 910.0 kH/s 647.5 kH/s 
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In the following charts, comparative analysis assessment of the hash cracking performance is illustrated 
based on GPU benchmarks for each algorithm. 

In Figure 8, the presented data illustrates the computational prowess of the RTX 4090 GPU in the 
context of salted MD5 hash cracking, achieving an average performance of 160,000 mega hashes per 
second. Notably, this performance level surpasses that of the second best consumer-grade GPU 
currently available by a factor of 2.28, underscoring the significant advancement in processing speed 
and efficiency offered by the RTX 4090 in the realm of cryptographic computations. 

Conversely, the AMD RX 6800 showcases an average performance typical of high-end consumer GPUs 
observed over the past two years. 

 
Figure 8: Comparative Evaluation of GPU Performance for Salted MD5 Hash Cracking. 
 

In accordance with the methodology employed in the preceding graphical representation, Figure 9 
illustrates that the RTX 4090 exhibits a computational speed 1.8 times higher than that of the RX 7900 
XTX when subjected to salted hash SHA1 encryption cracking. 

Notably, in this specific algorithm, AMD GPU architectures exhibit a favorable edge, even though 
Nvidia's CUDA core technology traditionally surpasses AMD's OpenCL in general computing tasks. 
Specifically, the AMD RX 6900 XT showcases performance parity with the Nvidia RTX 3090, whereas 
the RX 6800 surpasses the RTX 3080 in terms of computational efficiency during the aforementioned 
encryption cracking process. 

 
Figure 9: Comparative Evaluation of GPU Performance for Salted SHA1 Hash Cracking. 
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In Figures 10 and 11, it is observed that the RTX 4090 still demonstrates superior performance in the 
context of PBKDF2 HMAC encryption cracking, outperforming other GPUs. Additionally, the RX 
6800 exhibits comparable performance to the RTX 3080 in the same task. 

 

 
Figure 10: Comparative Evaluation of GPU Performance for HMAC-SHA1 Hash Cracking. 
 

 
Figure 11: Comparative Evaluation of GPU Performance for Salted SHA256 Hash Cracking. 
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In the context of deciphering complex algorithms like PBKDF2-HMAC-SHA256, the comparative 
analysis of performance across GPUs, including the RTX 4090, reveals consistent results, as depicted 
in Figure 12. 

 

 
Figure 12: Comparative Evaluation of GPU Performance for HMAC-SHA256 Hash Cracking. 
 

The RTX 4090 demonstrates remarkable performance in decrypting WPA2 password encryption, as 
evidenced by the data presented in Figure 13. Despite WPA2's robustness and reliability in securing the 
majority of wireless network infrastructures, the exceptional capabilities of the RTX 4090 in this 
context are noteworthy. 

Moreover, the ongoing investigation into secure password vulnerabilities using this algorithm is crucial. 
Given its robust and common usage, the identification of weaknesses within a subset of secure password 
ranges could have severe consequences. In network environments where access security relies solely 
on passwords without additional authentication factors, such vulnerabilities pose a significant threat, 
emphasizing the importance of thorough analysis and reconsideration of minimum password 
requirements. 

 

 
Figure 13: Comparative Evaluation of GPU Performance for PMKID Hash Cracking. 
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4 METHODOLOGY 

4.1 EXPLANATION OF THE HARDWARE AND SOFTWARE USED IN THE PROCESS 
 

Hacking a wireless network involves using specific hardware and software tools to analyze surrounding 
networks, attempting to attack a target network, retrieving the handshake (PMKID) and attempting to 
crack that hash. Here is an overview of the hardware and software I have used for this purpose. 

 

4.1.1 Hardware 

4.1.1.1 Network Adapter 
 

 
Figure 14: ALFA AWUS036ACH WiFi Adapter 

 

To capture a PMKID WiFi hash, a network adapter with the capability of monitor mode is required, as 
it allows for packet capturing without the need for association with an access point. This capability is 
typically found in network adapter devices designed to test and diagnose wireless network security by 
attempting to gain unauthorized access. Therefore, a network adapter device that supports both 
connectivity and monitor mode capabilities is essential for effective PMKID hash capture and network 
security testing. 

There are various network adapters that support managed and monitor modes [47]. The ALFA 
AWUS036ACH [48], shown in Figure 14, utilizes Realtek RTL8812AU WLAN chipset [49]. 
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4.1.1.2 Router 
 

 
Figure 15: Deutsche Telekom Speedport W 724V Router and Access Point 

 

In order to demonstrate a target access point, a router is needed to provide a controlled environment and 
safe testing ground to test our network attack. 

The Speedport W 724V router, in Figure 15, is provided by Telekom German Internet Service Provider 
(ISP). 

 

4.1.1.3 Computer/Laptop 
 

 
Figure 16: Personal computer with average specifications for a common modern gaming PC 

 

A computer or laptop is required to execute the network attack and run the cracking processes. An 
average consumer PC is demonstrated in Figure 16. 
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4.1.1.4 GPU card 
 

 
Figure 17: AMD Radeon RX 6800 GPU connected to the computer 

 

 
Figure 18: Nvidia RTX 4090 GPU connected to a separate computer 

 

Graphics processing units required for cracking process. Shown in Figures 17 and 18. 
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4.1.2 Software 
 

4.1.2.1 Linux OS 
 

 
Figure 19: Debian based PopOS, LTS edition 

 

 
Figure 20: Debian based Kali Linux, rolling edition 
 

A Linux operating system is required to install the necessary tools for the process. As an example, two 
different Linux Debian based operating systems are shown in Figures 19 and 20. 
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4.1.2.2 Hcxdumptool and Hcxtools 
 

 
Figure 21: hcxdumptool 6.2.7, compiled from the latest available branch 
 

Hcxdumptool, shown in Figure 21, contains a set of tools to capture packets from WLAN devices and 
to discover potential weak points within own Wi-Fi networks [50]. In addition, hcxtools are required 
for further processing of captured hashes. It consists of a set of tools that extract and convert captured 
hashes into a format compatible with cracking tools [51]. 

As of the time of composing this paper, it should be noted that these tools exclusively offer support for 
Linux-based operating systems. 

 

 

4.1.2.3 Hashcat 
 

 
Figure 22: Hashcat version 6.2.6 
 

An advanced password recovery tool that combines CPU and GPU capabilities to crack hashes [2]. 

Hashcat, presented in Figure 22, can be used in both Linux and Windows environments. 
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4.2 DETAILED DESCRIPTION OF THE STEPS INVOLVED IN EXPLOITING THE 

RSN IE VULNERABILITY, RETRIEVING PMKID HASHES AND CRACKING 

PASSWORDS USING GPU PERFORMANCE 

4.2.1 Wi-Fi AP Attack and Retrieving PMKID Hash. 
 

First step starts by stopping services that might interfere with packet capturing tools 

 

Using the Hcxdumptool, in Figure 23, we scan surrounding networks using the ALFA WLAN interface 
using the following command options, which are explained in Table 8. 

 

Table 8: hcxdumptool scan command options explanation 

Command Option Explanation 

-i <interface> Select the wireless interface to be used. 

--do_rcascan Scan for target access points. 

 

 
Figure 23: hcxdumptool scan for target access points 

sudo systemctl stop NetworkManager 

sudo systemctl stop wpa_supplicant 

sudo hcxdumptool -i wlx00a096f98754 --do_rcascan 
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As the target access point is identified in Figure 23. The wireless interface is set to monitor mode in 
order to begin the attack, using the following commands.  

 

In order to create a controlled environment and make sure only the target network is being monitored, 
a filter is required to explicitly specify the targeted traffic based on the target’s MAC address 
(84:DB:AC:DD:16:03). Using Berkeley Packet Filter (BPF) [52], packets can be identified with the 
MAC address in one of the three address fields of a Wi-Fi frame. BPF allows network packages to be 
filtered and processed in real time at the kernel level. This method ensures that packets exchanged with 
the target access point are exclusively monitored.  

To create a BPF file, we use the following tcpdump [53] command, which is explained in Table 9. 

 

 

Table 9: tcpdump filter command options explanation [54] 

Command Option Explanation 
-i <interface> Select the interface to be used. 
wlan addr1 ehost True if the first IEEE 802.11 address field is ehost. 
wlan addr2 ehost True if the second IEEE 802.11 address field, if present, is ehost. The second address 

field is used in all frames except for CTS (Clear To Send) and ACK 
(Acknowledgment) control frames. 

wlan addr3 ehost True if the third IEEE 802.11 address field, if present, is ehost. The third address 
field is used in management and data frames, but not in control frames. 

-ddd Dump packet-matching code as decimal numbers (preceded with a count). 
 

 

 

 

 

 

 

sudo tcpdump -i wlx00a096f98754 wlan addr1 84:DB:AC:DD:16:03 

or wlan addr2 84:DB:AC:DD:16:03 or wlan addr3 84:DB:AC:DD:16:03 

-ddd > target.bpf 

sudo ip link set wlx00a096f98754 down 

sudo iwconfig wlx00a096f98754 mode monitor 

sudo ip link set wlx00a096f98754 up 
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In the next step, the PMKID attack is initiated employing hcxdumptool while applying the previously 
created Berkley Packet Filter using the following command. The selected options of the command are 
detailed in Table 10. 

 

 

Table 10: hcxdumptool PMKID attack command options explanation 

Command Option Explanation 
-i <interface> Select the interface to be used. 
-o <dump file> Output file in pcapng format. 
--enable_status=5 Enable real-time display of incoming traffic: EAPOL and 

AUTHENTICATION. 
--disable_deauthentication Do not send deauthentication or disassociation frames to connected clients. 
--disable_client_attacks Do not attack clients. 
--bpfc=<file> Input kernel space Berkely Packet Filter (BPF) code. 

 

Finally, the PMKID of the target network is captured, as shown in Figure 24. 

 

 
Figure 24: captured PMKID using hcxdumptool 
 

The attack resulted in an output file “testNetwork_PMKID.pcapng” which contain the captured 
packages. This file can be opened and analysed using network protocol analyzers, as demonstrated in 
Figure 25. Nevertheless, to facilitate further processing, the PMKID must first be extracted from the 
pcapng file and transformed into a compatible format readable by cracking tools, such as Hashcat. 

 

sudo hcxdumptool -i wlx00a096f98754 -o 

testNetwork_PMKID.pcapng --enable_status=5      

--disable_deauthentication --disable_client_attacks            

--bpfc=target.bpf 
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Figure 25: Captured PMKID using hcxdumptool shown in testNetwork_PMKID.pcapng file - Wireshark 
 

In order to extract and transform the captured hash from “testNetwork_PMKID.pcapng” file, 
hcxpcapngtool of the hcxtools set is utilized. Employing the following command produces a text file 
holds the PMKID transformed into hashcat format 22000. 

 

 

 

 

 

 

 

 

hcxpcapngtool -o testNetwork_PMKID_22000_hash.txt 

testNetwork_PMKID.pcapng 
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 The execution of the previous command using hcxpcapngtool led to the generation of the file 
"testNetwork_PMKID_22000_hash.txt," encompassing the subsequent information. 

 

This hash format corresponds to 22000 hashcat mode which combines PMKIDs and EAPOL 
MESSAGE PAIRs in a single file [55]. 

The 22000-hash format stores the following information, which are clarified in Table 11. 

 

Table 11: Hashcat 22000 hash format details 

Information Details 
PROTOCOL Fixed string "WPA" 
TYPE 01 for PMKID, 02 for EAPOL 
PMKID/MIC PMKID if TYPE=01, MIC if TYPE=02 
MACAP MAC address of access point 
MACCLIENT MAC address of client 
ESSID Network name (ESSID) in HEX 
ANONCE ANONCE 
EAPOL EAPOL (SNONCE) 
MESSAGEPAIR Bitmask [56] 

 

Having successfully captured the PMKID hash, the utilization of ANONCE, EAPOL, and 
MESSAGEPAIR in this context is deemed unnecessary, leading to the absence of their values within 
the hash. 

 

 

 

 

 

 

 

WPA*01*5ef9e9519d9f262215eb01fc1ac3c218*84dbacdd1603*b0febd61

b866*546573744e6574776f726b*** 

PROTOCOL*TYPE*PMKID/MIC*MACAP*MACCLIENT*ESSID*ANONCE*EAPOL*ME

SSAGEPAIR 
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4.2.2 Cracking the PMKID hash using Hashcat tool 
 

Hashcat has the capability to utilize multiple techniques for cracking passwords, with the most 
commonly employed method being the utilization of a dictionary attack [57] that is bolstered by the 
inclusion of rules and masks [58]. In the present example, a basic "mask attack" [59] was conducted, 
wherein a keyspace was defined to establish how a brute force attack should be executed. 

When performing a mask attack, a built-in charset, detailed in Table 12, is to be used. 

Table 12: Hashcat Mask-Charset explanation 

Mask Charset Charset Components  
?l abcdefghijklmnopqrstuvwxyz 
?u ABCDEFGHIJKLMNOPQRSTUVWXYZ 
?d 0123456789 
?h 0123456789abcdef 
?H 0123456789ABCDEF 
?s «space»!"#$%&'()*+,-./:;<=>?@[\]^_`{|}~ 
?a ?l?u?d?s 

 

As an example, the mask of the word Merseburg2023 is ?u?l?l?l?l?l?l?l?l?d?d?d?d 

The following hashcat command was used to try all possible numbers from 8 characters long, which is 
the minimum length allowed for WPA2 password to 10 characters long. 

 

 

 

 

 

 

 

 

 

 

./hashcat.exe -a 3 -w 4 -m 22000 -i --increment-min=8          

--increment-max=10 …\testNetwork_PMKID_22000_hash.txt 

?d?d?d?d?d?d?d?d -o testNetwork_pmkid_cracked.txt 
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The components of the command are elucidated in Table 13, with the outcomes illustrated in Figures 
26 to 28. 

Table 13: Hashcat mask attack command explanation 

Command Option Explanation 
-a Attack-mode. 3 = Brute-force 
-w Workload-profile. 4 = highest power consumption. 
-m Hash-type. 22000 combines WPA-PBKDF2-PMKID and EAPOL 
-i Enables mask increment mode 

--increment-min Start mask incrementing at X 
--increment-max Stop mask incrementing at X 

-o Output file for recovered hash 
 

 
Figure 26: Starting hashcat mask attack utilizing AMD RX 6800 GPU 

 

 
Figure 27: Hashcat mask attack in a running status 
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Figure 28: Hashcat final result after cracking the PMKID hash 
 

The Hashcat session status in Figure 28 shows that the hash with a length of 8 digits was successfully 
cracked in just 15 seconds using the AMD RX 6800 GPU. As per the Hashcat command specifications, 
the output file named "testNetwork_pmkid_cracked.txt" was generated, which contains the passphrase 
of the corresponding access point, revealed in Figure 29. 

 

 
Figure 29: The cracked passphrase in the testNetwork_pmkid_cracked.txt file 
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4.3 EXPLORING THE CAPABILITIES OF MODERN GPUS FOR CRACKING OF 

NETWORK PASSWORDS 
 

4.3.1 Password Lists Generation 
 

To simulate real-world scenarios that involve commonly used passwords in Germany, customized 
scripts were developed to generate German phone numbers list, dates list, and different complicated 
password lists in combination with frequently utilized passwords. These lists of passwords were then 
compiled into lists of PMKID hashes, which were then composed in 22000 hashcat format. The main 
objective is to explore the effectiveness of using common and complex passwords against modern GPUs 
cracking capabilities. The generation of these lists also shines the light on common human behaviors in 
creating complex memorable passwords. 

 

4.3.1.1 German Phone Number Generator 
 

Given that phone numbers are commonly employed as Wi-Fi passwords, even considered weak, a 
custom script was crafted to generate random German phone numbers. 

 

In the first part of the script, Code Listing 1, a country code is defined as 0, as every phone number 
starts with 0 when called locally. A list of German area codes [60] is defined, including the 3 major 
carriers, T-Mobile, Vodafone and O2. 
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import random 

 

# Define a list of German area codes 

COUNTRY_CODE = "0" 

AREA_CODES = [ 

    {"city_carrier": "T-Mobile", "codes": ["151", "160", "170", "171", "175"]}, 

    {"city_carrier": "Vodafone", "codes": ["152", "162", "172", "173", "174"]}, 

    {"city_carrier": "o2 Germany", "codes": ["155", "157", "159", "163", "176", 

"177", "178", "179"]}, 

    {"city_carrier": "Berlin", "codes": ["30"]}, 

    {"city_carrier": "Munich", "codes": ["89"]}, 

    {"city_carrier": "Hamburg", "codes": ["40"]}, 

    {"city_carrier": "Frankfurt", "codes": ["69"]}, 

    {"city_carrier": "Cologne", "codes": ["221", "228"]}, 

    {"city_carrier": "Stuttgart", "codes": ["711"]}, 

    {"city_carrier": "Düsseldorf", "codes": ["211"]}, 

    {"city_carrier": "Bremen", "codes": ["421"]}, 

    {"city_carrier": "Dresden", "codes": ["351"]}, 

    {"city_carrier": "Leipzig", "codes": ["341"]}, 

    {"city_carrier": "Halle", "codes": ["345"]}, 

]  
 

Code Listing 1: German Phone Number Generator - Part 1 
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In Code Listing 2, lines 1-16, the script generates multiple phone numbers by taking the country code 
(0) and selecting a random area code from a list of pre-defined German area codes, and then generating 
a random 6 to 8 digits long number creating a German phone number, which is 9 to 13 digits long [61]. 
The generated phone numbers are then written to a file specified by the user, lines 18-32. 

Using this code, a list of random phone numbers has been compiled to a text file. 
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# Generate a random phone number 

def generate_phone_number(): 

    # Select a random area code list 

    area_code_list = random.choice(AREA_CODES) 

     

    # Select a random area code from the chosen list in the previous step 

    area_code = random.choice(area_code_list["codes"]) 

     

    # Generate a random number between 10^6 and 10^8 - 1 (6 - 8 digits long) 

    number = random.randint(10**6, 10**8 - 1) 

     

    # Format the previously generated number as a string 

    number_str = str(number) 

     

    # Return the concatenated phone number 

    return COUNTRY_CODE + area_code + number_str 

 

# Generate multiple phone numbers and write them to a file 

def generate_phone_numbers_to_file(num_numbers, filename): 

    # Create an empty list to store the generated numbers 

    phone_numbers = [] 

     

    # Generate the specified number of phone numbers 

    for i in range(num_numbers): 

        phone_numbers.append(generate_phone_number()) 

 

    # Write the phone numbers to the file 

    with open(filename, "w") as f: 

        f.write("\n".join(phone_numbers)) 

 

    # Return the list of generated phone numbers 

    return phone_numbers 

 

# Take user inputs 

while True: 

    try: 

        num = int(input("How many German phone numbers to generate? ")) 

        break 

    except ValueError: 

        print("Invalid input. Please enter a number.") 

output = input("Name of the output file? ") 

 

# Generate numbers from user input 

generate_phone_numbers_to_file(num, output + ".txt")  
 

Code Listing 2: German Phone Number Generator - Part 2 
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4.3.1.2 Dates List Generator 
 

 A frequently observed password choice is a specific date that holds personal significance for the user, 
such as a date of birth, graduation, or marriage. In order to reproduce this phenomenon, a script was 
developed to generate a user-defined quantity of such dates. 

 

 

The script in Code Listing 3, lines 3-11, asks for the number of dates to generate and the name of the 
output file where the generated dates will be written. The script then, in lines 13-23, generates the 
specified number of dates of birth in lines and adds each date to a list called “dates”. The dates are 
generated randomly and are in the format DDMMYYYY, where DD is the day, MM is the month, and 
YYYY is the year. To ensure the generation of accurate dates of birth, the days, months and years are 
limited to 1-28, 1-12 and 1900-2023, respectively. Finally, in lines 25-28 the list of generated dates is 
written to the specified output file, with each date on a separate line. 

A list of random dates was generated and compiled into a txt file. 
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import random 

 

# Specify the number of dates to generate 

while True: 

    try: 

        num_dates = int(input("How many dates to generate? ")) 

        break 

    except ValueError: 

        print("Invalid input. Please enter a number.") 

 

output = input("Name of output file? ") 

 

# Generate a list of random dates 

dates = set() 

while len(dates) < num_dates: 

    day = str(random.randint(1, 28)).zfill(2) 

    month = str(random.randint(1, 12)).zfill(2) 

    year = str(random.randint(1900, 2023)) 

    date = day + month + year 

    if date not in dates: 

        dates.add(date) 

 

dates = list(dates) 

 

# write the list of dates to a file 

with open(output, 'w') as f: 

    for date in dates: 

        f.write(date + '\n') 

         

print(f"File '{output}' created.")  
 

Code Listing 3: Dates List Generator 
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4.3.1.3 Default ISP Password Generator 
 

A prevalent practice among users is to retain the default WiFi password that is provided by the Internet 
Service Provider (ISP). The rationale behind this practice is often based on convenience, as the 
password is readily available at the back of the router, in case the user forgets it.  

Following the investigation of Telekom and PYUR routers, as detailed in section 5.4 of this study, an 
ISP password generator was developed. The Python script is designed to generate passwords with 
randomized characters and writes them to a file that mimics PYUR ISP default passwords. The script 
defines the set of characters that can be included in each password, consisting of a combination of 2-4 
uppercase letters, 2-4 digits, and lowercase letters. The passwords are generated by randomly selecting 
characters from each of these categories, and the order of the sections is randomized by shuffling. 
Finally, the resulting passwords are written to the output file. The script was executed to generate a 
dataset of random passwords. 

 

The script in Code Listing 4, lines 4-13, prompting the user to enter the name of the output file as well 
as a valid integer for the number of passwords to generate. In lines 15-23, the script defines sets of 
characters to be used in the password (uppercase letters, lowercase letters, and digits) and the length of 
each section in the password. The total length is fixed at 12 characters. 
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import random 

import string 

 

# prompt for the name of the output file 

filename = input("Enter the name of the output file: ") + ".txt" 

 

# specify the number of passwords to generate 

while True: 

    try: 

        num_passwords = int(input("How many passwords to generate? ")) 

        break 

    except ValueError: 

        print("Invalid input. Please enter a number.") 

 

# define the possible characters to use in the password 

uppercase = string.ascii_uppercase 

lowercase = string.ascii_lowercase 

digits = string.digits 

 

# define the length of each section in the password 

upper_length = random.randint(2, 4) 

digit_length = random.randint(2, 4) 

lower_length = 12 - upper_length - digit_length 
 

 

Code Listing 4: Default ISP Password Generator - Part 1 
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Finally, in lines 25-37, passwords are generated and written to the output file. To ensure password 
randomization, each password is created by randomly selecting characters from each character set and 
then shuffling the order of the characters. 
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# generate the passwords and write them to the output file 

with open(filename, 'w') as file: 

    for i in range(num_passwords): 

        upper = ''.join(random.choices(uppercase, k=upper_length)) 

        digit = ''.join(random.choices(digits, k=digit_length)) 

        lower = ''.join(random.choices(lowercase, k=lower_length)) 

 

        # combine the sections and shuffle the order 

        password = upper + digit + lower 

        password = ''.join(random.sample(password, len(password))) 

 

        # write the password to the output file 

        file.write(password + "\n")         

print(f"{num_passwords} passwords have been generated and saved to {filename}.")  
 

Code Listing 5: Default ISP Password Generator – Part 2 



 

 
49 

 

 Methodology 

4.3.1.4 PMKID Hash Generator 
 

After compiling a list of frequently used passwords, a method is required to transform them into PMKID 
hashes in Hashcat format 22000, which mimics their capture from WiFi attacks and facilitates their 
decryption. To achieve this, a script was designed based on the process of creating Hashcat 22000 
format, as elaborated in section 6.2.1, to generate a roster of PMKID hashes utilizing the aforementioned 
password lists. 

 

Code Listing 6 comprises of 4 functions that randomly generate values for Access Point MAC address 
in lines 7-13, Client MAC address in lines 15-21, and an Access Point name in lines 23-39. These values 
are essential for creating a PMKID hash. In particular, the Access Point name is necessary for 
computing the PMK, which, in turn, is used in conjunction with the Access Point and Client MAC 
addresses to derive the PMKID hash, as described in section 4.1. 
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import hashlib 

from hashlib import pbkdf2_hmac, sha1 

import hmac 

import subprocess 

import random 

 

# Generate a random MACADDRESS for Access Point 

def generate_mac_ap(): 

    mac = [ 0x00, 0x12, 0x3a, 

            random.randint(0x00, 0xff), 

            random.randint(0x00, 0xff), 

            random.randint(0x00, 0xff) ] 

    return ''.join(map(lambda x: "%02x" % x, mac)) 

  

# Generate a random MACADDRESS for CLIENT  

def generate_mac_client(): 

    mac = [ 0x00, 0x12, 0x3b, 

            random.randint(0x00, 0xff), 

            random.randint(0x00, 0xff), 

            random.randint(0x00, 0xff) ] 

    return ''.join(map(lambda x: "%02x" % x, mac)) 

 

# Access Point name generator 

def generate_random_word(): 

    # Generate a random word of length between 8 and 9 characters 

    length = random.randint(8, 9) 

    word = ''.join(random.choices('abcdefghijklmnopqrstuvwxyz1234567890', k=length)) 

    return word 

 

def generate_random_APname(): 

    # Access Point indicator 

    name = 'AP' 

 

    # Generate a counter with leading zeros 

    counter = str(random.randint(000, 999)).zfill(3) 

 

    # Generate a random word 

    word = generate_random_word() 

    return f"{name}_{counter}_{word}" 

  
 

Code Listing 6: PMKID Hash Generator - Part 1 
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In Code Listing 7, lines 1-7, the user is prompted to provide the names of the input and output files. The 
input file should contain a list of passwords generated earlier, while the output file will contain the 
corresponding PMKID hashes. The code then opens the input file, reads its contents, and splits them 
into individual lines, which are stored as separate items in a list named “items”. In lines 9-40, a loop is 
implemented to process each item in the list of passwords generated earlier. For each password, random 
values are generated for the Access Point (AP) MAC address, Client MAC address, and ESSID name, 
utilizing the functions defined in Code Listing 6.  

Thereafter in lines 26-29, the pbkdf2_hmac function is employed to create a Pairwise Master Key 
(PMK) using the passphrase and ESSID. Finally, in lines 31-36, the hmac function is used to generate 
a PMK Identifier (PMKID) hash based on the PMK, which is then formatted with the other parameters 
into a hashcat 22000 format string. The resultant string is then written to the output file. 
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# Read input file name and output file name from the user 

input_file_name = input("Enter the input file name: ") 

output_file_name = input("Enter the output file name: ") 

 

# Open the input file and read the list of items 

with open(input_file_name, 'r') as input_file: 

    items = input_file.read().splitlines() 

 

# Open the output file for writing 

with open(output_file_name, 'w') as output_file: 

    # Loop through the items and convert each one to a PMKID hash 

    for item in items: 

        # Parameters 

PROTOCOL*TYPE*PMKID/MIC*MACAP*MACCLIENT*ESSID*ANONCE*EAPOL*MESSAGEPAIR 

        protocol="WPA" 

        pType="01" 

        passphrase = item 

 

        # AP MAC Address 

        bssid = generate_mac_ap() 

        # Client MAC Address 

        sta_mac = generate_mac_client() 

        # Essid Name 

        essid = generate_random_APname() 

 

        pmk = pbkdf2_hmac( 

            'sha1', bytes(passphrase, 'utf-8'), bytes(essid, 'utf-8'), 

            iterations=4096, dklen=32 

        ) 

 

        pmkid = hmac.new(pmk, (b'PMK Name' + bytes.fromhex(bssid) + 

bytes.fromhex(sta_mac)), sha1).hexdigest()[:32] 

 

        pmkid_string = '{}*{}*{}*{}*{}*{}***'.format(protocol, pType, pmkid, bssid, 

sta_mac, bytes(essid, 'utf-8').hex()) 

        print(pmkid_string) 

 

         

        # Write the PMKID hash to the output file 

        output_file.write(pmkid_string + '\n')  
 

Code Listing 7: PMKID Hash Generator - Part 2 
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4.3.2 Assessing Password Security: An Analysis of Breached Passwords in Generated 
Passwords 

 

4.3.2.1 Bloom Filter Generator 
 

To enhance password uniqueness, it is essential to implement a mechanism that filters out compromised 
passwords. By doing so, we can guarantee that the generated password lists remain exclusive to 
individual users and are devoid of entries found in breached databases. 

Recently, there have been numerous instances of high-profile data breaches that have caused millions 
of user passwords to be leaked [62]. To address this problem, a tool has been developed using Python 
that employs Bloom Filters to analyze breached passwords in generated passwords. A Bloom Filter is 
a probabilistic data structure that efficiently checks if an item is a member of a set. In this particular 
case, the dataset utilized by the Bloom Filter consists of 851,082,816 passwords from hacker breaches 
until March 2023, which was supplied by HIBP [63]. 

To ensure accuracy, the MurmurHash3 algorithm was utilized to create the Bloom Filter with a false 
positive probability rate of 1/10000000. As a result, the Bloom Filter is 99.99999% accurate in detecting 
whether a generated password is present in the breached dataset. 

 

In Code Listing 8, lines 7-14, several crucial parameters are computed, including the name of the input 
and output files, the quantity of lines in the input file, the desired false positive probability rate, and the 
number of partitions into which the generated Bloom Filter will be divided.  
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#! /usr/bin/python 

import mmh3 

import bitarray 

import math 

import datetime 

 

inputFile = "pwnedpasswords.txt" 

number_of_lines = int(subprocess.check_output(['wc', '-l', inputFile]).decode('utf-

8').split()[0]) 

outputFile = "finalBF_" + datetime.datetime.now().strftime("%H%M") + "_pt" 

 

# Define the desired false positive rate 

false_positive_rate = 0.0000001 

num_partitions = 8 

 

# Calculate the required size of the bit array and the number of hash functions 

num_bits = int(-(number_of_lines * math.log(false_positive_rate)) / (math.log(2) ** 2)) 

num_bits_per_partition = (num_bits + 1) // num_partitions 

num_hashes = int((num_bits_per_partition / number_of_lines) * math.log(2)) 

 

print(f"num_hashes (k): {num_hashes}") 

print(f"num_bits   (m): {num_bits}") 

print(f"number of bits per partition: {num_bits_per_partition}")  
 

Code Listing 8: Bloom Filter Generator - Part 1 
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The calculation of the Bloom Filter size, which takes place in line 17, is based on the false positive 
probability rate and the total number of lines in the input file. Subsequently, in line 18, the size of each 
partition is determined by dividing the calculated number of bits by the specified number of partitions. 

Eventually, the calculation of the hash functions, in line 19, is then performed using the bits per partition 
and the total number of lines in the input file. Finally, in lines 21-23, the program displays the computed 
values for the number of bits, hash functions, and bits per partition on the screen. 

 

In Code Listing 9, lines 1-4, a list of bit arrays are initialized, where each bit array corresponds to a 
partition. The size of each bit array is defined by the number of bits per partition. All bits in these arrays 
are initially set to false. In lines 6-13, the program opens the input file in read mode and iterates through 
each line. For each password, hash values are calculated by using the mmh3 hash function. The 
mmh3.hash64 function takes the encoded password as input and generates a 64-bit hash value, while 
ensuring that the hash values are within the range of the current partition's bit array. Afterward, another 
loop iterates over the calculated hash values for the current password and for each hash value, the 
corresponding bit is set to true, marking the positions in the Bloom filter where the current password's 
hash values indicate membership.  

Finally, in lines 15-22, after processing all passwords, the code writes each partition's bit array to 
separate binary files and prints the names of the input file as well as the names of the output binary files 
for each partition. 
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# Create a list of bit arrays. One for each partition 

bit_arrays = [bitarray.bitarray(num_bits_per_partition) for _ in range(num_partitions)] 

for bit_array in bit_arrays: 

    bit_array.setall(False) 

 

with open(inputFile, 'r') as f: 

    for line in f: 

        password = line.strip() 

        for i in range(num_partitions): 

            hash_values = [mmh3.hash64(password.encode(), j, True)[0] % 

num_bits_per_partition for j in range(num_hashes)] 

            for index in hash_values: 

                bit_arrays[i][index] = True 

 

# Write the Bloom filter to a binary file 

for i in range(num_partitions): 

    with open(f'{outputFile}{i}.bin', 'wb') as f: 

        bit_arrays[i].tofile(f)   

       

print(f"\nInput file: {inputFile}") 

for i in range(num_partitions): 

    print(f"Output file: {outputFile}{i}.bin")  
 

Code Listing 9: Bloom Filter Generator - Part 2 
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Utilizing the custom-designed Bloom Filter tool, a Bloom filter with a size of 3.6GB was created, 
partitioned into eight segments, employing the 36.6GB password dataset supplied by HIBP, as depicted 
in Figures 30 and 31. 

 

 
Figure 30: Generated output using the Bloom Filter Generation script. 
 

 
Figure 31: Binary files generated with Bloom Filter Generation script 
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4.3.2.2 Bloom Filter Checker 
 

To validate a set of generated passwords against a pre-existing Bloom Filter, a dedicated software 
application was engineered for this purpose. 

 

The program in Code Listing 10, lines 7-13, was configured with variable outputs from Bloom Filter 
Generator in Figure 30, together with the number of partitions alongside the name of the input list to 
check and the name of the corresponding bloom filter binary. 

In lines 16-23, the code iterates over the number of partitions. For each partition, it opens the 
corresponding binary file (finalBF_1037_pt0.bin, finalBF_1037_pt1.bin, ..., finalBF_1037_pt7.bin) 
and reads the content into a bit array. The file names and contents are printed for each iteration. 

In the next instance, the code, in lines 25-27, opens the file containing the list passwords to check. It 
reads the content of the file, splits it into lines, and stores the result in the list passwords_to_check. 
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#! /usr/bin/python 

import os 

import mmh3 

import struct 

import bitarray 

 

num_partitions = 8 

 

num_hashes = 2 

num_bits = 28551874663 

num_bits_per_partition = 3568984333 

textFile = input('Enter file to check: ') 

binFile = "finalBF_1037_pt" 

 

 

# Load the Bloom filter bit arrays from the binary files 

bit_arrays = [] 

for i in range(num_partitions): 

    with open(f'{binFile}{i}.bin', 'rb') as f: 

        print(f"{binFile}{i}.bin") 

        bit_array = bitarray.bitarray() 

        bit_array.fromfile(f) 

        bit_arrays.append(bit_array) 

 

# Check if the strings are present in the Bloom filter 

with open(textFile, 'r') as file: 

    passwords_to_check = file.read().splitlines()  
 

Code Listing 10: Bloom Filter Checker - Part 1 
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Subsequently, in Code Listing 11, lines 1-4, the code establishes multiple variables to serve as counters, 
specifically designated for quantifying the total number of passwords, the count of successfully detected 
passwords, and the count of undetected passwords. Additionally, the program initializes a list, denoted 
as not_detected_passwords, to systematically record and monitor the outcomes of the detection process. 

In lines 5-20, the code iterates through each password in the passwords_to_check list. For every 
password, a series of hash functions is employed to hash the password across the partitions of the Bloom 
filter. Afterwards, the algorithm evaluates whether the respective bits in the Bloom filter are configured 
to 1. If any bit is not set, the password is considered not in the filter. The results are used to update the 
detected and undetected counters, alongside populating the not_detected_passwords list. 

Finally, in lines 22-29, the program writes the passwords not detected by the Bloom filter to a file and 
prints the summary statistics on the display. 

By utilizing this Bloom Filter, it was possible to verify whether generated passwords had appeared in 
prior breaches. This helps ensure that the passwords generated are not leaked and are not easily guessed. 
By preventing the reuse of easily guessed passwords, it is feasible to accurately assess the capabilities 
of modern GPUs in cracking these passwords.  

 

1 

 2 

 3 

 4 

 5 

 6 

 7 

 8 

 9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

21 

22 

23 

24 

25 

26 

27 

28 

29 

num_passwords = 0 

num_detected = 0 

num_not_detected = 0 

not_detected_passwords = [] 

for password in passwords_to_check: 

    num_passwords += 1 

    is_password_in_filter = True 

    for i in range(num_partitions): 

        hash_values = [mmh3.hash64(password.encode(), j, True)[0] % 

num_bits_per_partition for j in range(num_hashes)] 

        for index in hash_values: 

            if not bit_arrays[i][index]: 

                is_password_in_filter = False 

                break 

 

    if is_password_in_filter: 

        num_detected += 1 

    else: 

        num_not_detected += 1 

        not_detected_passwords.append(password) 

 

with open(f'not_detected_{textFile}', 'w') as file: 

    for not_detected_password in not_detected_passwords: 

        file.write(not_detected_password + '\n') 

 

print("Total number of passwords: {}".format(num_passwords)) 

print("Number of passwords detected: {}".format(num_detected)) 

print("Number of passwords NOT detected: {}".format(num_not_detected)) 

print(f'Not detected passwords are written to not_detected_{textFile}')  
 

Code Listing 11: Bloom Filter Checker - Part 2 
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4.3.3 Preparation and Curation of Password Datasets 
 

All generated passwords lists underwent a curation process comprised of the following measures:  

1. Integration of files into a singular file. 
2. Elimination of duplicates. 
3. Exclusion of passwords with a length of less than eight characters, which is the minimum 

password length possible for WPA.  
4. Elimination of passwords identified in the leaked password dataset supplied by HIBP by using 

a Bloom Filter.  

 

Following the curation process, a compilation of 33,864 passwords was obtained, detailed in Table 14. 

Table 14: Sorted collection of curated passwords list 

Number of Passwords Type of Password 
4253 Dates and 8-digit passwords 
4179 German phone numbers 
1000 12 characters (uppercase, lowercase and digits) 
3000 12 characters (L33t type passwords) 
1222 +20 characters (L33t type passwords) 
16252 Commonly used passwords over 13 characters long 
2802 Complexified Common WPA Passwords (8 char) 
763 Complexified Common WPA Passwords (9 char) 
305 Complexified Common WPA Passwords (10 char) 
88 Complexified Common WPA Passwords (11 char) 

 

Ultimately, The PMKID Hash Generator script (section 6.3.1.4) was utilized to generate a list of 
PMKID hashes in hashcat 22000 format from the curated passwords. A snapshot of this list is displayed 
in Figure 32. 

 

Figure 32: A snapshot of a portion of the PMKID hashes from the generated list 
 

The decryption of generated PMKID hashes was then carried out by utilizing the RTX 4090 and the 
comparatively older RX 6800. By performing a comparative analysis of the outcomes, the study aims 
to elucidate the impact of the new GPU technology on diverse secure password standards. 
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4.4 CHALLENGES OR ISSUES ENCOUNTERED DURING THE EXPERIMENTATION 
 

Throughout the course of experimentation, several challenges and limitations were identified and 
carefully documented. In the subsequent sections, a comprehensive analysis of these challenges is 
provided for a thorough understanding of the experimental constraints encountered during the study. 

 

4.4.1 Insufficient Availability of Authentic Packet Captured Data 
 

Despite the aspiration to collect random packet data through extensive street-level roaming and analysis, 
ethical constraints, notably Sec. 202a of the German Criminal Code [64], prohibit such practices. 
Obtaining consent from numerous access point (AP) owners for a generalized wireless attack involving 
thousands of APs is an arduous task. Consequently, an alternative approach involves simulating typical 
human password creation patterns based on the analysis of previous studies and breached data dumps. 

This alternative approach, while not replicating real-world scenarios entirely, offers valuable insights 
into common human password behaviors. By meticulously studying historical data breaches and 
previous research, patterns emerge, shedding light on the recurring tendencies of individuals when 
devising passwords. These insights encompass factors such as the prevalence of easily guessable 
passwords, the overreliance on dictionary words, and the predictable use of common alphanumeric 
combinations. 

Furthermore, this study strives to expose the fallibility of what are conventionally perceived as strong 
passwords. By systematically scrutinizing password behaviors derived from previous research and data 
breaches, we shed light on the subtle nuances that can render even seemingly robust passwords 
susceptible to exploitation. This nuanced perspective is crucial, as it challenges the conventional 
understanding of password security and necessitates the adoption of more robust measures. 

 

4.4.2 Limitations of Latin Alphabet-Based Metrics 
 

The metrics utilized in this study are constrained to users utilizing Latin alphabet-based keyboards, such 
as English and German. Despite similarities in human behavior, these metrics do not encompass 
passwords composed in non-Latin languages such as Arabic, Chinese, Japanese, Cyrillic, and others. 
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4.4.3 Mitigation Strategies of Hash Collision for Large Password Datasets Using 
MurmurHash3 Algorithm 

 

The MurmurHash3 algorithm is a non-cryptographic hash function that generates hash values with high-
quality distribution and computational efficiency. Despite its efficacy, the algorithm is still prone to 
hash collisions [65], which occur when two different input values result in the same hash value. This 
phenomenon poses a challenge to hash table-based data storage and retrieval applications, causing file 
corruption. 

The probability of hash collisions is positively correlated with the number of input values and the hash 
table size. In the present study, the password file consisting of leaked database passwords, provided by 
HIBP, was 37.5 gigabytes and consisted of 851,082,816 passwords. To address this risk, it is 
recommended to employ larger hash tables to ensure an adequate number of slots to store all possible 
hash values, while raising the false positive probability rate to 1/1000, which is relatively high given 
the large number of passwords in the data set. 

Efforts to mitigate hash collision probabilities in the presence of an extensive password dataset proved 
to be highly demanding in terms of resources. As a result, an intricate yet efficient approach was 
developed to improve the accuracy of the Bloom filter. 

The approach to address the challenge at hand involves dividing the Bloom Filter binary into eight 
partitions, with each partition serving as an individual Bloom Filter. The process entails scanning the 
generated passwords through all eight partitions. This method yields several advantages, including a 
reduction in the size of the generated binaries, decreasing resource-intensive processes, and the ability 
to operate with a considerably low false positive probability rate in a relatively shorter time.  
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5 RESULTS & ANALYSIS 

5.1 PRESENTATION OF THE DATA OBTAINED FROM THE EXPERIMENTATION, 
INCLUDING THE SUCCESS RATE IN CRACKING PMKID HASHES 

 

A total of 12 comprehensive tests, marked in Table 15, were conducted to evaluate the performance of 
the two distinct Graphics Processing Units (GPUs), namely the RTX 4090 and the RX6800. These tests 
encompassed a mix of exhaustive brute-force and dictionary-based attacks. Every test was restricted by 
predetermined time limits, following the Hashcat general rules embedded within the tool, and utilizing 
well-known wordlists frequently employed by penetration testers. 

The applied rules in the tests included "capitalize", "append", "leetspeak", and "rockyou-30000". The 
dictionaries employed included the RockYou wordlist [66] and a standard English language dictionary.  

The first three experiments employ an identical encrypted password dataset to demonstrate the speed at 
which a present-day consumer GPU can break a commonly used vulnerable password, serving as a 
benchmark against its forerunners.  

Notably, certain tests were successfully completed within the designated time frame on the RTX 4090, 
which in turn determined the time constraint applied to the tests conducted on the RX6800. Presented 
below are the detailed results derived from these rigorous evaluations. 
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Table 15: Results of Password Cracking Tests Conducted on Nvidia RTX 4090 and AMD RX 6800 GPUs 

 

The experimental findings demonstrate a significant disparity in computational speed between the 2 
GPUs when tasked with decrypting passwords. The RTX 4090 displays a computational efficiency 
ranging from 2 to 5 times higher than that of the RX6800. Despite that, anomalies were detected during 
tests 5, 7, and 12 in the performance of the RX6800. 

 

 

No. Test 
Cracking 

Duration 
Mask 

Mask 

Meaning / 

Dictionary 

Total  

Encrypted 

Password

s 

RTX 4090 

Cracked 

Password

s 

RX 6800 

Cracked 

Password

s 

Cracked Password 

Samples 

1 8 Digits 
9H 

(09:00:00) 

?d?d?d?d?d?

d?d?d 
8 Digits 4253 

1208 

(28.40%) 

352 

(8.27%) 
26101978 

2 8 Digits 
4H 

(04:00:00) 

-1 01 

?1?d?d?d?d?

d?d?d 

8 Digits 4253 
1266 

(29.77%) 

357 

(8.39%) 
17021969 

3 
Date of 

Birth 

4.86 Min. 

(00:04:52) 

-1 0123 -2 01 

-3 12 -4 90 

?1?d?2?d?3?

4?d?d 

All possible 

dates of birth 

from 

01011900 

4253 
4253 

(100%) 

795 

(18.69%) 
22041960 

4 
Phone 

Number 

8H 

(08:00:00) 

0?d?d?d?d?d

?d?d?d?d?d 
11 Digits 4179 

666 

(15.56%) 

176 

(4.11%) 
3417749012 

5 

12 Char 

(Uppercase 

+ 

Lowercase 

+ Digits) 

24H 

(24:00:00) 

Dictionary 

Attack 

English 

Language 

Dictionary 

1000 
112 

(11.20%) 
0 (0%) 

Alterant9641 

Absolved5084 

6 

12 Char 

L33t Type 

Passwords 

24H 

(24:00:00) 

Dictionary 

Attack 

English 

Language 

Dictionary 

3000 
825 

(27.5%) 

190 

(6.33%) 

pyr0phyll1t3 

w0nd3rm0ng3r 

7 

+20 Char 

L33t Type 

Passwords 

24H 

(24:00:00) 

Dictionary 

Attack 

English 

Language 

Dictionary 

1222 
35 

(2.86%) 
0 (0%) m3thyltr1n1tr0b3nz3n3 

8 

Common 

passwords 

+13 char 

24H 

(24:00:00) 

Dictionary 

Attack 
RockYou 16252 

2259 

(13.89%) 

1060 

(6.52%) 
syncmaster920n 

9 

Common 

WPA 

Passwords 

8 Char 

8H 

(08:00:00) 

Dictionary 

Attack 
RockYou 2802 

1355 

(48.36%) 

514 

(18.34%) 

bl1zz4rd 

schn3ck3 

r0s3m4ry 

10 

Common 

WPA 

Passwords 

9 Char 

8H 

(08:00:00) 

Dictionary 

Attack 
RockYou 763 

442 

(57.93%) 

161 

(21.1%) 

v4l3nt1n3 

bulld0z3r 

schn31d3r 

11 

Common 

WPA 

Passwords 

10 Char 

8H 

(08:00:00) 

Dictionary 

Attack 
RockYou 305 

167 

(54.75%) 

40 

(13.11%) 

krypt0n1t3 

w4t3rm3l0n 

12 

Common 

WPA 

Passwords 

11 Char 

8H 

(08:00:00) 

Dictionary 

Attack 
RockYou 88 

42 

(47.73%) 
2 (2.27%) 

c0mpl1c4t3d 

chr1st0ph3r 
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In response to the observed anomalies, the assessment protocols were modified by extending the 
temporal constraints. Specifically, Tests 5 and 7 were subjected to a time limit of 48 hours, while Test 
12 required a total of 64 hours to complete, owing to the limited quantity of encrypted passwords 
involved in the analysis. The following outcomes of these tests are delineated in Table 16. 

 

Table 16: Findings from Experiments 5, 7, and 12 conducted on AMD RX 6800 Under Extended Time Constraints 

 

Upon analyzing the outcomes, it becomes evident that the RX6800 demonstrates increased efficacy in 
handling specific password subsets as the duration of computation extends. Following the conclusion 
of test 12, it is apparent that the RX6800 produces results equivalent to those attained by the RTX 4090, 
albeit with a prolonged time frame. This observed phenomenon may arise from limitations inherent in 
OpenCL in comparison to CUDA, or it could be influenced by the positioning of the passwords within 
the latter portion of the dictionary. 

 

 

 

 

 

 

 

 

No Test 
Cracking 

Duration 
Mask 

Mask 

Meaning  

Total 

Encrypted 

Passwords 

RTX 4090 

Cracked 

Passwor

ds 

RX 6800 

Cracked 

Passwords 

Cracked Password 

Samples 

5 

12 Char 

(Uppercase + 

Lowercase + 

Digits) 

48H 

(48:00:00) 

Dictionar

y Attack 

English 

Language 

Dictionary 

(370,000 

Words) 

1000 - 24 (2.4%) 
Abricock6515 

Acalephs1743 

7 

+20 Char L33t 

Type 

Passwords 

48H 

(48:00:00) 

Dictionar

y Attack 

English 

Language 

Dictionary 

(370,000 

Words) 

1222 - 9 (0.73%) p0lyv1nylpyrr0l1d0n3 

12 

Modified 

Common 

WPA 

Passwords 

(11 Char) 

64H 

(64:00:00) 

Dictionar

y Attack 
RockYou 88 - 42 (47.73%) 

y3ll0wst0n3 

c0nst4nt1n3 
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5.2 DEFINING THE THRESHOLD FOR CRITICALLY WEAK PASSWORDS AND 

INTRODUCING THE CONCEPT OF PASSWORD DEAD-ZONE 
 

In the realm of cybersecurity, a critically weak password denotes a password of utmost vulnerability 
due to its ubiquity and ease of prediction, exemplified by sequences like "123456" or "qwerty". In the 
context of assessing the computational power of the RTX 4090, it was observed that certain passwords 
were breached almost instantaneously under pure brute-force attacks. This observation instigated a 
comprehensive inquiry into varying password lengths and character sets. The objective was to evaluate 
the feasibility of cracking all possible combinations within a relatively short timeframe using today's 
consumer-grade GPUs. 

These investigations imposed specific constraints: the passwords being analyzed had to be entirely 
random, mirroring the generation protocols employed by password managers. Moreover, the attacks 
executed were strictly pure brute-force attacks, encompassing the entirety of the character sets involved, 
without any rules, wordlists, or procedures that might enhance the efficiency of the attack. The primary 
aim was to evaluate, from a raw computational potency perspective, the RTX 4090's ability to penetrate 
through all conceivable password combinations within a 24-hour window, pushing the boundaries until 
the maximum password length was determined where the RTX 4090 broke all possible combinations. 

The data, in Table 17, presents the outcomes obtained from an experiment assessing the threshold values 
associated with passwords characterized as critically weak, formulated solely from a lowercase 
character set. 

 

Table 17: Test Results for Critically Weak Password Lengths Formulated from Lowercase Characters 

No. Test 

Duration 

to 

complete 

Test Status Mask Range 

Total  

Encrypted 

Passwords 

RTX 4090 

Cracked 

Passwords 

Cracked 

Password 

Samples 

1 
4 random 

characters 

1s 

(00:00:01) 
Completed 

Bruteforce 

Attack 
aaaa -> zzzz 10 10 (100%) 

jrqz 

lkvh 

2 
5 random 

characters 

28s 

(00:00:28) 
Completed 

Bruteforce 

Attack 
aaaaa -> zzzzz 10 10 (100%) 

nbjvz 

zlesj 

3 
6 random 

characters 

9.6m 

(00:09:40) 
Completed 

Bruteforce 

Attack 

aaaaaa -> 

zzzzzz 
10 10 (100%) 

qzmpyf 

lkbkae 

4 
7 random 

characters 

4.3H 

(04:18:00) 
Completed 

Bruteforce 

Attack 

aaaaaaa -> 

zzzzzzz 
10 10 (100%) 

njtgouj 

jopdsft 

5 
8 random 

characters 

EST. 6 days 

(144:00:00) 

Only 24h 

Completed 

Bruteforce 

Attack 

aaaaaaaa -> 

zzzzzzzz 
10 3 (30%) 

gcuswfrl 

tyzgkxhr 
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Subsequently, an additional experiment was conducted, involving an extended character set comprising 
lowercase letters (a-z), numerals (0-9), and most common special symbols (!@#$%^&*()), to further 
evaluate password strength and security, detailed in Table 18. 

 

Table 18: Test Results for Critically Weak Passwords Formulated from Lowercase Letters, Numerals, and Special Symbols 

No Test 
Duration to 

complete 
Test Status Mask Range 

Total 

Number of 

Encrypted 

Passwords 

RTX 4090 

Cracked 

Password

s 

Cracked 

Password 

Samples 

1 
4 random 

characters 

12s 

(00:00:12) 
Completed 

Brute force 

Attack 
aaaa -> )))) 10 10 (100%) 

@wz) 

 4#u3 

2 
5 random 

characters 

4.75m 

(00:04:45) 
Completed 

Brute force 

Attack 
aaaaa -> ))))) 10 10 (100%) 

!dx0q 

5tn^& 

3 
6 random 

characters 

3.59H 

(03:36:00) 
Completed 

Brute force 

Attack 

aaaaaa -> 

)))))) 
10 10 (100%) 

*y56q% 

hkrl)8 

4 
7 random 

characters 

EST. 20 Days 

(480:00:00) 

Only 24h 

Completed 

Brute force 

Attack 

aaaaaaa -> 

))))))) 
10 0 (0%) 

xa%*5nu 

3w(u@c) 

 

In experiment no.4 identified as 7 random characters, a 24-hour duration was allocated for testing 
without yielding any visible results. Despite the absence of outcomes within this timeframe, it is 
anticipated that the exhaustive exploration of all potential combinations within this specific character 
set will require a maximum period of 20 days to successfully crack and complete the test. 

These experiments led to the discovery of a phenomenon termed the 'Password Dead-Zone'. This term 
refers to a specific range of password lengths and character sets that are cracked almost instantly under 
pure brute-force attacks, highlighting a critical area of concern in digital security. 

In the realm of the Password Dead-Zone, passwords of those lengths are alarmingly weak no matter the 
character compositions. These passwords are highly susceptible to brute-force attacks due to their 
insufficient length. The computational power of modern consumer GPUs, exemplified by the RTX 
4090, can swiftly crack passwords within the range of this zone, making them essentially worthless as 
security measures. 
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5.3 DISCUSSING STRATEGIES TO MITIGATE PASSWORD VULNERABILITIES 
 

In spite of the extensive dissemination of warnings and recommendations regarding the formulation of 
robust passwords, a substantial segment of internet users persists in employing weak and easily 
predictable passwords, provided they meet the minimum technical requirements. As evidenced in the 
conducted experiments, the WPA2 protocol mandates a minimum password length of 8 characters. 
Nonetheless, an 8-character password lacking randomness and intricate complexity is susceptible to 
instant decryption. Furthermore, the encryption algorithm for password protection in WPA2 networks 
stands as the primary defense against network intrusion. The computational prowess of GPU-based 
cracking techniques is expected to advance further, rendering even more intricate password 
configurations vulnerable to rapid decryption in the future. 

As time progresses and technology advances, the Password dead zone continues to expand. Considering 
that passwords tested are encrypted using WPA2 algorithm, which is currently regarded as one of the 
most robust encryption methods relied upon by the majority of wireless networks. This highlights the 
critical significance of implementing strong password policies, emphasizing the necessity for strict 
requirements concerning password length and complexity. Users are encouraged to utilize lengthy, 
random, and diverse combinations of characters. It is crucial to refrain from employing passwords that 
fall within the criteria of the Password Dead-Zone, as they provide minimal to no protection against 
cyber threats. 

Based on the experimental findings presented in this study, wherein an encryption algorithm renowned 
for its robustness and resistance to rapid decryption was employed, coupled with the tendency of 
individuals to devise passwords based on memorability, it is advisable to opt for password management 
systems featuring a minimum complexity of 16 characters. This exceeds the established Password 
Dead-Zone threshold by twofold, thereby ensuring heightened security. Nonetheless, it is noteworthy 
that human-memorable passwords, composed of multiple words and exceeding 18 characters, remain 
secure when employing a sophisticated character set, as evidenced by contemporary standards. 

In conclusion, the concept of the Password Dead-Zone serves as a stark reminder of the ever-present 
dangers in the digital landscape. By staying vigilant and employing robust password practices, 
individuals and organizations can fortify their defenses against cyber threats, ensuring the safety of 
sensitive information in an increasingly interconnected world.
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6 CONCLUSION 

6.1 SUMMARY OF THE MAIN FINDINGS OF THE STUDY 
 

The research conducted on the vulnerabilities of secure passwords, particularly focusing on the impact 
of consumer GPU technology advancements on password cracking. The results underscored several 
critical points: 

1. Ineffectiveness of Complex Passwords: Contrary to common belief, the study revealed that 
the complexity of passwords alone is no longer a sufficient safeguard against modern cracking 
techniques. Even intricate passwords lacking adequate character randomization were found to 
be vulnerable. This challenges the widely held notion that incorporating uppercase letters, 
numbers, and special characters guarantees security. 
 

2. Cracking Long Passwords: One of the discoveries was the ability to crack long passwords. 
Passwords with 12 or more characters, despite their length, become vulnerable to cracking 
attempts within a reasonable timeframe. This highlights the inadequacy of length alone in 
ensuring security; character randomization and unpredictability are equally crucial factors. 
 

3. Instant Vulnerability of Short Passwords: Perhaps most concerning was the finding that 
passwords below 8 characters, regardless of their complexity, were instantly crackable. This 
signifies a critical Password Dead-Zone, a range where passwords are exceptionally vulnerable, 
emphasizing that even minimal length requirements are insufficient in the face of modern 
cracking tools. 
 

4. Advancements in Consumer GPU Technology: The study showcased the substantial 
progress made in consumer GPU performance concerning password cracking. With each 
generation, these GPUs become exponentially more potent, enabling attackers to break 
passwords at an alarming pace. This escalation in computational power significantly reduces 
the time and effort required to crack passwords, making traditional security measures obsolete. 
 

5. Default Wordlists and Rules: The research employed default wordlists and rules provided by 
encryption cracking tools like Hashcat. This highlights the accessibility and ease with which 
attackers can utilize off-the-shelf tools to compromise passwords. The default configurations 
alone were potent enough to breach passwords, indicating the simplicity of launching such 
attacks. 
 

6. Implications for Security Paradigms: These findings challenge existing paradigms of 
password security. Passwords, regardless of their complexity, face a formidable threat from 
evolving cracking techniques. The research underscores the urgent need for a paradigm shift in 
security strategies, moving away from reliance solely on passwords. 
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In conclusion, the research paints a grim picture of the current state of password security. It highlights 
the pressing need for innovative approaches that transcend traditional password policies. The study's 
revelations serve as a wake-up call for individuals, organizations, and security professionals, urging 
them to adopt advanced security measures, robust authentication protocols, and continuous awareness 
programs to effectively safeguard against the escalating threat landscape. 
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6.2 IMPLICATIONS FOR WI-FI PASSWORD SECURITY 
 

The implications of these findings for Wi-Fi password security are significant and far-reaching. Wi-Fi 
networks serve as gateways to a multitude of devices and sensitive information, making them attractive 
targets for malicious actors. Historically, Wi-Fi networks have relied heavily on passwords to safeguard 
access. However, the emergence of increasingly powerful consumer GPUs amplifies the vulnerabilities 
associated with this approach. 

Firstly, the research emphasizes that the traditional reliance on passwords, even complex ones, is 
precarious. Weak or easily guessable passwords could lead to unauthorized access, enabling attackers 
to exploit network resources, intercept data, or launch more extensive attacks within the network. This 
scenario raises concerns about user privacy, data integrity, and overall system security. 

Additionally, the study challenges the common assumption that longer passwords automatically 
guarantee security. As demonstrated, the length alone does not suffice if the characters lack 
randomization. This finding prompts a fundamental reexamination of how passwords are created, 
emphasizing the need for genuine randomness in character selection. Without this, even lengthy 
passwords can be cracked, leaving Wi-Fi networks vulnerable to infiltration. 

Furthermore, these vulnerabilities have significant implications for businesses and individuals alike. 
For organizations, a breach in Wi-Fi security could lead to data breaches, financial losses, and damage 
to their reputation. Individuals may experience identity theft, loss of sensitive personal information, and 
unauthorized access to their online accounts. 

In summary, the research findings indicate a paradigm shift in cybersecurity, necessitating a 
fundamental reevaluation of Wi-Fi password security practices. New, innovative approaches, such as 
multifactor authentication, biometric recognition, and enhanced encryption methods, are imperative to 
fortify Wi-Fi networks against the ever-advancing capabilities of malicious actors armed with powerful 
consumer GPU technology. Without adopting advanced security measures, the risk of unauthorized 
access and data compromise in Wi-Fi networks remains unacceptably high. 
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6.3 RECOMMENDATIONS FOR IMPROVING WI-FI SECURITY AND BEST 

PASSWORD PRACTICES 
 

1. Longer and Unique Passwords: 

Encouraging users to create longer passwords (at least 16 characters) is essential. These 
passwords should not be dictionary words or predictable combinations. Users should 
incorporate a mix of uppercase and lowercase letters, numbers, and special symbols to enhance 
complexity. Avoiding easily guessable information like birthdays or pet names is crucial. 
Additionally, passwords should be unique for each account or device, reducing the impact of a 
potential breach on other accounts. 

 

2. Passphrases: 

Promoting the use of passphrases can significantly enhance security. Passphrases are essentially 
longer combinations of words or even complete sentences. They are easier to remember yet 
highly secure. For instance, "PurpleElephant$Jumping@Stars" is a strong passphrase. Their 
length and randomness make them robust against both brute-force attacks and dictionary 
attacks. One effective technique is the "3-Word Technique," where users think of three random 
words and combine them to form a passphrase. For instance, the passphrase 
"BananaMountain$Dance". 

 

3. Password Managers:  

Encourage the use of reputable password managers. Password managers are secure tools that 
generate, store, and manage complex passwords for various accounts. They offer the 
convenience of having unique, complex passwords for each service without requiring users to 
remember them all. Password managers can generate lengthy, randomized passwords that are 
practically impossible to guess. Additionally, they often come with features like secure 
password sharing and auditing, ensuring that users maintain good password hygiene across all 
their accounts. By utilizing password managers, individuals can enhance both the security and 
convenience of their online activities, reducing the risk of weak or reused passwords 
compromising their accounts. 

 

4. Network Encryption: 

Ensure that Wi-Fi networks are encrypted using the latest protocols, preferably WPA3, which 
offers advanced security features. Although it's important to note that widespread adoption of 
WPA3 is still in progress and not all devices and clients currently support it, upgrading to 
WPA3-compatible equipment is advisable when feasible. For devices that do support WPA3, 
implementing it enhances the security of the network significantly. This proactive approach 
ensures that the network remains resilient against evolving cybersecurity threats, even as device 
compatibility catches up with the latest encryption standards. 
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5. Separate Wi-Fi Networks: 

In environments where various smart home appliances are in use, it's crucial to separate home 
networks effectively. One effective strategy is to employ Virtual Local Area Networks 
(VLANs) to create distinct network segments for user devices and Internet of Things (IoT) 
devices. By isolating these categories into different VLANs, potential security risks are 
contained within specific network boundaries. This segmentation limits the scope of hacking 
attacks significantly. Even if an IoT device is compromised, it remains isolated from user 
devices and sensitive data, reducing the overall impact of a potential breach. Proper network 
segmentation ensures that vulnerabilities in one category of devices do not compromise the 
security of the entire network, enhancing overall resilience against cyber threats. 

 

6. Network Monitoring and Intrusion Detection: 

Implementing network monitoring tools and intrusion detection systems to actively monitor 
network traffic. While it might be challenging for the average Wi-Fi user to set up and manage, 
its benefits are significant. These systems continuously monitor network traffic, detecting 
unusual patterns or suspicious activities indicative of potential cyber threats. While it demands 
a certain level of expertise, this proactive approach can substantially minimize the damage 
caused by intruders. Timely detection and response to unauthorized access attempts can thwart 
malicious activities before they escalate, ensuring a higher level of security for the network. 

 

7. Regular Security Audits: 

Conduct regular security audits and vulnerability assessments to identify potential weaknesses 
in the network infrastructure. Regular audits help in identifying and addressing vulnerabilities 
before they can be exploited by malicious actors. It's crucial to stay proactive in identifying and 
mitigating security risks. 

 

8. Device Security: 

Educate oneself and others about securing their devices that connect to the Wi-Fi network. This 
includes ensuring that devices have updated antivirus software, enabling firewalls, and 
regularly updating the device's operating system and applications. Insecure devices can serve 
as entry points for attackers even if the network itself is well-protected. 

 

By implementing these recommendations and promoting best password practices, organizations and 
individuals can significantly enhance their Wi-Fi security posture. A multi-layered approach that 
combines strong passwords, encryption protocols, and user education is key to mitigating the evolving 
threats posed by sophisticated cyber attackers. 
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