
Minimal-invasive provenance integration
into data-intensive systems

Dissertation

zur Erlangung des akademischen Grades

Doktoringenieur (Dr.-Ing.)

angenommen durch die Fakultät für Informatik

Otto-von-Guericke-Universität Magdeburg

von Dipl.-Inform. Martin Schäler
geboren am 31.März 1985 in Havelberg

Gutachter:

Prof. Dr. Gunter Saake

Prof. Dr. Wilhelm Hasselbring

Prof. Dr. Klaus Schmid

Ort und Datum des Promotionskolloquiums: Magdeburg, 05.12.2014

Schäler, Martin:
Minimal-invasive provenance integration into data-intensive systems
Dissertation, Otto-von-Guericke-Universität Magdeburg, 2014.

Abstract

The purpose of provenance is to determine origin and derivation history of data. Thus,
provenance is used, for instance, to validate and explain computation results. Due to
the digitalization of previously analog processes that consume data from heterogeneous
sources and increasing complexity of respective systems, it is a challenging task to validate
computation results. To face this challenge, there has been plenty of research resulting in
solutions that allow for capturing of provenance data. However, all these approaches have
in common that they are tailored for their specific use case. Consequently, provenance
is considered as an integral part of these approaches that can hardly be adjusted for
new requirements. We envision that provenance, which highly needs to be adjusted to
the needs of specific use cases, should be a cross-cutting concern that can seamlessly be
integrated without interference with the original system.

The goal of this thesis is to analyze in how far techniques, known from modern software
engineering, such as feature-oriented programming, aspect-oriented programming, or
advanced preprocessor techniques are sufficient to integrate a totally new variability
dimension into a monolithic systems. In particular, we empirically explore benefits and
drawbacks of applying these techniques in contrast of using an intuitive approach. In
consequence, the key task is to design, implement, and evaluate a Provenance solution in
form of an application programming interface (API). That API addresses generality as
well as customizability, and minimally affects properties of the original system (minimal
invasiveness). Our results indicate that the nature of the provenance concern changes
based on the granularity of the captured provenance data. Thus, we need different
implementation techniques for different application scenarios.

iv

Zusammenfassung

Der aus dem Englischen entlehnte Begriff Provenance zielt auf die Bestimmung der
originalen Herkunft und der Transformationshistorie von Daten und realen Objekten.
Aus diesem Grund wird Provenance beispielsweise dazu verwendet Resultate digitaler
Berechnungsvorgänge zu erklären und zu validieren. Aufgrund der zunehmenden Durch-
dringung der Gesellschaft mit digitalen Prozessen, die zuvor analog bearbeitet wurden,
ist die Bestimmung der Validität der digitalen Gegenstücke zum Einen schwierig, zum
Anderen von essentieller Bedeutung. Von besonderer Herausforderung ist hierbei, dass
die digitalen Prozesse oft Daten aus verschiedenen Quellen miteinander kombinieren
und aggregieren, sowie diese Systeme selbst immer komplexer werden. Aus diesem
Grund existiert eine Vielzahl von Ansätzen, die sich mit dem Sammeln und Auswerten
von Provenance-Daten beschäftigt. Allerdings sind diese Systeme bisher als Einzelfall-
anwendung konzipiert. Das bedeutet, dass die Provenance-Funktionalität fest und
unveränderlich von Anfang an in diese Systeme integriert ist. Somit kann sie nicht oder
nur schwer auf sich ändernde Anforderungen angepasst werden. Im Gegensatz dazu
zielt diese Arbeit darauf Provenance-Funktionalität, welche schnell an sich ändernde
Gegebenheiten angepasst werden muss, als quer-schneidenden Belang anzusehen. Dieser
soll unmittelbar und ohne negative Beeinflussung in bestehende Systeme integriert
werden können.

Die Zielstellung dieser Dissertation ist es zu analysieren inwiefern Ansätze und Techniken
aus der derzeitigen Forschung im Bereich Software-Engineering dazu verwendet werden
können, eine neue Variabilitätsdimension in bestehende Systeme einzubetten. Hierbei
stehen Techniken, wie feature- und aspektorientierte Programmierung sowie erweiterte
Präprozessoren im Vordergrund, da für diese bereits bekannt ist, dass sie sich für ähn-
liche Anwendungsfälle eignen. Die Grundidee besteht darin Vor- und Nachteile dieser
Techniken im Vergleich zu intuitiven Techniken explorativ zu bestimmen. Daher besteht
eine der Kernaufgaben darin eine möglichst generelle und flexible Provenance-Lösung zu
designen, zu implementieren und zu evaluieren. Die Integration dieser Lösung soll dabei
minimal-invasiv erfolgen. Das bedeutet, dass beispielsweise die Laufzeit des Originalsys-
tems möglichst wenig verändert wird, aber auch, dass der Integrationsaufwand möglichst
gering ausfällt. Unsere Ergebnisse zeigen, dass die Art der zu integrierenden Provenance-
Funktionalität sich mit zunehmender Granularität der gesammelten Provenance-Daten
ändert und somit unterschiedliche Implementierungstechniken benötigt werden, um das
Ziel einer minimal-invasiven Integration zu erreichen.

vi

Acknowledgements

Not starting, not defining the concept, or conducting the implementation, but finding
the point when to finish a dissertation is the real challenge. The long road from starting
such a project to its actual end, should and cannot be taken in isolation. In this sense, I
like to express my gratitude to several people in the following.

First and foremost, I would like to thank my advisors Gunter Saake and Thomas Leich
for supporting me, starting from my Bachelor thesis when I was still a student assistant
researcher at the METOP until finishing my dissertation. Similarly, I would like to
express my gratitude to my external reviewers Prof. Hasselbring and Prof. Schmid.
During the past years as a researcher, many people supported me as teacher, mentor,
(competitive) colleague, or friend. To this end, I want to express my gratitude to
the (current and former) members of the Research Group on Databases and Software
Engineering at the University of Magdeburg, in particular, Christian Kästner, Marko
Rosenmüller, Martin Kuhlemann, Norbert and Janet Siegmund, Thomas Thüm, Mario
Pukall, Andreas Lübcke, Sandro Schulze, Alexander Grebhahn, Reimar Schröter (also
making the best coffee), David Broneske, Sebastian Breß, Ingolf Geist, and Veit Köppen
who accompanied me all the way. You helped me to understand research in its entirety, by
controversial discussions, constructive criticism, and by showing me different perspectives
on certain research topics. In that, you made me a lot the researcher that I am today.
Similarly, many members of the AMSL team, especially those sitting with me in Room
001 supported me in the same sense. Therefore, I would like express my gratitude
to Mario Hildebrandt, Ronny Merkel, Stefan Kiltz, and Christian Krätzer as well. A
special thank goes to the METOP research institute, namely Matthias Ritter, Andy
Kenner, Dan Klingenberg, Andreas Holstein, Katja Gündel, and Mario Pape. Project
work in Digi-Dak and some industrial inside views often help me to see challenges from a
different perspective. Sometimes, taking a break and doing something entirely different
helps to clear your head resulting in new inspiration and motivation. Thus, I would like
to thank all people from my athletics club SC Magdeburg. Special thanks hereby go to
my former trainer Klaus Wübbenhorst, my former and current training partners, as well
as my current athletes. In particular, I would like to mention Birk Lösche, Benjamin
Wegner, Susan Wolf, and Anne Metzlaff. Finally, I would like to issue special thanks
the Mensa, as research makes hungry.

viii

Contents

List of Figures xv

List of Tables xvii

List of Acronyms xix

1 Introduction 1
1.1 Contribution . 3
1.2 Outline . 4

2 On the nature of provenance 7
2.1 What is provenance? . 7
2.2 Background and notation . 8

2.2.1 The open provenance model . 9
2.2.2 The relationship between lineage, why, how, and where provenance 9

2.3 A hierarchical provenance framework . 11
2.3.1 Provenance systems . 12
2.3.2 Necessity for abstraction layers 12

2.4 Workflow layer . 15
2.4.1 Extended open provenance model 15
2.4.2 Graph refinements . 15
2.4.3 Usage and limitations . 17
2.4.4 Related approaches . 20

2.5 Existence layer . 20
2.5.1 Sub levels of the existence layer 21
2.5.2 Limitations of this Layer . 25

2.6 Value origin layer . 25
2.6.1 Structure of artifacts . 25
2.6.2 Value origin with existing approaches 26
2.6.3 Relationship to the previous layer 28

2.7 Cross-cutting reliability layer . 29
2.7.1 Reliability: A different dimension of provenance 29
2.7.2 Current research on reliable provenance 30

2.8 The question of identity . 30

x Contents

2.8.1 Determining artifact identity . 31
2.8.2 A flexible notion of identity . 32

2.9 Insights gained . 32

3 Background on software product lines 35
3.1 Domain and application engineering . 36

3.1.1 Domain engineering . 36
3.1.2 Application engineering . 38

3.2 Implementation techniques . 39
3.2.1 Intuitive techniques as reference 39
3.2.2 Preprocessor-based techniques . 40
3.2.3 Aspect-oriented programming . 41
3.2.4 Feature-oriented programming . 42
3.2.5 Additional techniques and tool support 43

3.3 Advanced topics of relevance for this thesis 43
3.3.1 Composition of features structure trees 43
3.3.2 Homogeneous and heterogeneous cross-cutting concerns 44

3.4 Summary . 46

4 Toward a general provenance- capturing solution for existing systems 47
4.1 Reasoning about the necessity for provenance integration in existing systems 47

4.1.1 The need for customizable solutions 48
4.1.2 Are current solutions feasible? . 51
4.1.3 The necessity for an own solution 52

4.2 The goal of minimal-invasive and efficient provenance integration 52
4.2.1 A notion of invasiveness . 53
4.2.2 Measuring invasiveness of different implementation techniques . . 56

4.3 Conceptual design . 57
4.3.1 Vision - A universe of provenance 58
4.3.2 Architecture - The neuron analogy 58
4.3.3 Parts of special interest and missing basic technologies 61
4.3.4 Derived research agenda . 62

4.4 Summary . 63

5 Tailoring database schemas of provenance data stores 65
5.1 Generalization of the basic problem . 65
5.2 Requirements for tailored database schemas 66
5.3 Limitations of currently used approaches 67

5.3.1 Global schema . 67
5.3.2 View-based approaches . 67
5.3.3 Framework solutions . 68

5.4 Our solution . 68
5.4.1 Basic idea of our approach . 68
5.4.2 Relationship between features and database schema elements . . . 68

Contents xi

5.4.3 Composing a tailored schema variant 70
5.4.4 Structure of features at implementation level 70

5.5 Evaluation of our approach . 70
5.5.1 An industrial-size case study . 71
5.5.2 Feasibility of the approach . 72
5.5.3 Improving maintenance and further development 76
5.5.4 Improving data integrity . 78
5.5.5 Comparison to existing approaches 78

5.6 Role and contribution of the approach for this thesis 79

6 Database-centric chain-of-custody 81
6.1 Analysis goal and resulting methodology 81

6.1.1 A holistic approach . 82
6.1.2 Assumptions and architecture . 85

6.2 Preliminary considerations . 91
6.2.1 What is the initial situation? . 91
6.2.2 What do we want? - Required functionality 92

6.3 The provenance feature tree . 94
6.3.1 The provenance feature . 94
6.3.2 Initial linking the ProveSet to the artifact 95
6.3.3 The Security feature . 97
6.3.4 A short intro to (invertible) watermarks 98
6.3.5 Feature content of the Watermarking feature 100
6.3.6 A short intro to forensic file formats 101
6.3.7 Re-computation feature . 103

6.4 Summary . 105

7 First exploratory case studies 107
7.1 Coarse-grained provenance integration on tool side 108

7.1.1 Objectives . 108
7.1.2 Implementation concept . 109
7.1.3 Provenance integration . 111
7.1.4 Observations . 112
7.1.5 Lessons learned . 120

7.2 Coarse-grained provenance for databases 121
7.2.1 A concept for coarse-grained provenance integration on database

side . 121
7.2.2 Provenance integration . 122
7.2.3 Observations . 124
7.2.4 Lessons learned . 126

7.3 Scientific data management for QuEval 126
7.3.1 Contribution of QuEval for the goal of minimal-invasive prove-

nance integration . 127
7.3.2 Scientific-data management . 128

xii Contents

7.3.3 New features for tailored index structure implementations 130
7.3.4 Results and lessons learned . 131

7.4 Contributions and conclusions . 134

8 Fine-grained provenance integration into complex systems 137
8.1 Granularity refinement on tool side . 137

8.1.1 Expected insights . 138
8.1.2 Provenance integration . 139
8.1.3 Initial integration . 141
8.1.4 Extracted provenance data . 143
8.1.5 Performance considerations . 145
8.1.6 Lessons learned . 147

8.2 Fine-grained provenance for databases 148
8.2.1 Expected insights . 148
8.2.2 Motivating scenario . 149
8.2.3 Feature model and resulting changes 150

8.3 Provenance integration for databases . 151
8.3.1 Case study selection . 151
8.3.2 Exploratory implementation . 153
8.3.3 Evaluation of non-functional properties 155
8.3.4 Alternative implementation techniques 157

8.4 Adaption for different database systems 159
8.4.1 Premises for generalization . 159
8.4.2 Versions of HyperSQL . 160
8.4.3 H2 Database . 162

8.5 Contributions and conclusions . 163

9 Conclusion and future work 165

A Appendix 169

Bibliography 175

List of Figures

1.1 Tailored provenance integration into an existing system 2

2.1 Provenance graph . 9

2.2 Relationship between provenance terms 10

2.3 Provenance system . 12

2.4 Hierarchical provenance framework . 14

2.5 Complex artifacts and processes . 16

2.6 Visualization of implicit dependencies . 17

2.7 Provenance graph containing complex artifacts and processes 18

2.8 Exemplary backtracking levels . 18

2.9 Process refinement . 19

2.10 Sub levels of the existence layer . 21

2.11 Computation with provenance . 27

3.1 Phases of SPL engineering . 36

3.2 Feature model of a database SPL . 37

3.3 SPL implementation with conditional statements 40

3.4 Conditional compilation with preprocessors 41

3.5 SPL implementation with AOP . 41

3.6 Feature-oriented SPL implementation using AHEAD 42

3.7 Excerpt of a features structure tree . 44

3.8 Homogeneous and heterogeneous cross-cutting concerns 45

4.1 Vision - A universe of provenance . 58

xiv List of Figures

4.2 The neuron analogy . 59

4.3 Architecture mapping in program code using the static intuitive imple-
mentation technique . 61

4.4 Derived research agenda . 63

5.1 Basic idea to create a particular variant 69

5.2 Composition of feature structure trees 71

5.3 Procedure to map schema elements to features based on client implemen-
tation . 73

5.4 Tool support: Screen shot of mapping matrix 74

5.5 Derivatives: Size of the Archiving features in different feature combinations 76

5.6 Complexity reduction of the schema variants in different versions of the
case study . 79

6.1 Digi-Dak’s chain-of-custody excerpt . 82

6.2 Analysis of the existing infrastructure . 84

6.3 Concept database-centric chain-of-custody 86

6.4 Create a new intermediate artifact . 89

6.5 Infrastructure classes . 90

6.6 Artifact model without provenance . 93

6.7 Feature content . 94

6.8 Independence of the provenance feature 94

6.9 Excerpt of the provenance feature tree 95

6.10 The ProveSet relations . 95

6.11 Interactions caused by provenance feature on concept and implementation
level . 97

6.12 Variability for the security feature . 97

6.13 Watermarking options . 100

6.14 Effects adding the Watermark feature to database schema generation . . 102

6.15 Forensic file formats feature . 102

6.16 Provenance derivative . 105

List of Figures xv

7.1 Refinement of the neuron analogy for the first case study 109

7.2 Change of the provenance feature tree 113

7.3 Code to integrate using static if-approach with activated hashing feature 114

7.4 Average response time per feature and implementation technique 119

7.5 Average main-memory consumption after five minutes per feature and
implementation technique . 120

7.6 Exemplary usage of pgcrypto library . 122

7.7 Average response time per feature on database side 125

7.8 Median maximum main-memory consumption 126

7.9 Query execution in QuEval . 129

7.10 Exact-match query speed up for low-populated spaces 132

7.11 Epsilon-distance query speed up for low-populated spaces 133

7.12 k nearest-neighbor query speed up for low-populated spaces 134

8.1 Expected extracted provenance data . 139

8.2 Architecture of the equalization tool . 141

8.3 Extracted provenance data . 144

8.4 Initial and optimized non-functional properties 146

8.5 Initial and optimized performance . 147

8.6 Evidence containing four potential regions of interest 150

8.7 Extensions for the provenance API . 152

A.1 Artifact validation procedure . 171

A.2 Example implementation pg/plSQL - Coltuc watermark 172

A.3 Expected extracted provenance data . 173

xvi List of Figures

List of Tables

2.1 Refinement with fragmentary knowledge 24

2.2 Region of interest relation . 26

4.1 Categorization of effects on functional behavior 54

5.1 Correlation of size on database and client side 75

5.2 Evaluation of the variable schema approach compared to currently used
approaches . 79

7.1 Effects on functional level . 118

8.1 Necessary modifications in HyperSQL per feature using 154

8.2 Evaluation queries . 156

8.3 Non-functional properties per feature and query 156

8.4 Dendrite and Soma reusabilty for HyperSQL versions 161

xviii List of Tables

List of Acronyms

AFM aspectual feature modules

AOP aspect-oriented programming

API application programming interface

CIDE colored integrated development environment

DBMS database management system

FOP feature-oriented programming

FST feature structure tree

IDE integrated development environment

JDBC Java database connectivity

ODBC open database connectivity

OPM open provenance model

QuEval query evaluation framework

ROI region of interest

SPJU selection, projection, join, and union - as subset of the relational operators

SPL software product line

SQL structured query language

xx List of Tables

1. Introduction

Do you know where your data’s been? This is the provoking title of a technical report
from 2009 [ZCL09] describing one of the most challenging questions in our linked world.
Data that is used for our own computations often stems from multiple sources, was
transformed multiple times1, and the original data sources are unknown. In addition,
we use aggregated data, for that we often do not know the original data items nor
their composition to the aggregated values(s). However, in case we want to understand
complex computations (e.g., climate models [CBSA11]), determine the influence of a
single data item, or have doubts on the correctness of specific computation result, we
need detailed information on the composition of data items and their origin. These, in
fact, are issues related to provenance. Moreover, if we have provenance information, we
may have doubts on the reliability of the provenance information itself, because it may
be tampered in multiple ways. Hence, we could even ask: What is the provenance of the
provenance information? Indeed, sometimes having no provenance at all is considered
to be better than having (partly) wrong provenance [BSS08].

Anyway, with the collection of (reliable) provenance data, we want to raise transparency
of complex computations, which in summary addresses trust in these results. Often,
there are already existing systems or grown infrastructure for that we need to capture
provenance data instead of re-designing the whole infrastructure from scratch. Therefore,
we require for a solution that allows us to integrate a totally new functionality (a concern)
into that system. The challenge then is that this concern is potentially scattered across
the source code of the whole system and that existing decomposition (e.g., into classes
and methods for object-oriented programs) is not designed for this new concern. In
addition to the aforementioned challenges, our insights reviewing current research on
provenance reveal that there is no one-size-fits-it-all provenance functionality. In fact,
based on the intended objective, different solutions require different tailored provenance
integration as illustrated in Figure 1.1. Consequently, we need an approach to enhance

1Chinese whispers

2 1. Introduction

an existing monolithic system with new functionality. However, we also need to limit the
interference on functional level to the desired effects by keeping non-functional behavior
as close as possible to the original system. In the remainder of this thesis, we refer to
such an approach as minimal-invasive integration.

In software engineering, software product line development is a well-known approach
that focuses on the creation of multiple variants of a program from one common code
base. For software product lines, several implementation techniques are proposed to
develop the single concerns and automatically compose the desired ones into one program.
However, decomposing or designing software in terms of features and integrating a new
variable concern into an existing monolithic system is a different, but related topic.
Therefore, from our point of view, it is a valid proposition that knowledge from software
product line research can be transferred here. The basic questions of this thesis therefore
are: Can we adopt design and implementation techniques in order to model provenance
and generate program variants with tailored provenance support? How do software
product line implementation techniques allow to integrate the resulting provenance code
fragments into an existing system in a minimal-invasive way? How do properties of
the considered case studies and the nature of the provenance concern interact with our
attempt to use software product lines to integrate provenance?

Methodology of this thesis

The goal of this thesis is to enrich existing systems, with additional tailored provenance
capturing and storing capability (cf. Figure 1.1). The basic idea is to re-use the already
existing infrastructure to minimize the amount of changes necessary to integrate the
provenance functionality. To answer the aforementioned questions, this thesis focuses
on using empirical methods. In particular, after an analysis of explicit limitations of
current provenance solutions, we design several concepts contributing to our overall
goal. To evaluate these concepts, we use a series of exploratory case studies to collect
observations and gain insights that, in summary, help to find a sound answer regarding
the aforementioned questions.

Unmodified system
Modified system
with provenance

Figure 1.1: Tailored provenance integration into an existing system

1.1. Contribution 3

1.1 Contribution

The contribution of this thesis shall mainly attract readers from two research communities.
First, there are contributions on the nature of provenance and the relationship of different
approaches on model and implementation level. Second, we contribute to software
engineering, specifically to the feature-oriented software development community, due to
the application and evaluation.

Contribution to the provenance community

Current provenance research focuses on three main directions. First there are formal
approaches for relational databases, frameworks for scientific workflows, and (operation)
system-based approaches.

However, focusing on addressing a broad variety of these approaches offers views from
different directions. It includes the modeling and implementing provenance integration
in a software product line. This, we argue, results into interesting new research directions
for provenance research in order to augment solutions with provenance functionality.

Contribution to the software engineering community

As stated before, provenance is a variable concern. Due to user requirements, a system
may need highly differing provenance extensions. Since we want to provide tailored
provenance solutions, the contribution to the software product line community is to
open an additional field for well-established methods as well as to reveal benefits and
limitation of currently used approaches from a practical point of view.

Specific contributions

Besides the contribution for these scientific communities, we reveal properties of such
software systems that should be avoided in order to easily integrate provenance and
recommend alternative solutions that we favor for provenance integration.

Besides these high-level contributions, the most prominent specific contributions are:

1. We clearly motivate the necessity for minimal-invasive provenance integration
and show short comings of currently used approaches resulting in the need for an
own approach based upon the definition of the term minimal-invasive provenance
integration.

2. We contribute a new approach to tailor relational database schemas (including
user defined functions). This allows to automatically create tailored database
schemas. We show the practical applicability of our approach with the help of an
industrial size case study.

3. We define the database centric chain-of-custody. It is an approach to capture
reliable coarse-grained provenance data. This concept is based on the infrastructure
used to exchange data.

4 1. Introduction

4. We propose a novel approach to exploit the object-oriented decomposition of
a program in order to augment it to capture fine-grained provenance data and
evaluate the applicability of this approach.

5. As a means to minimize the performance penalty after integrating provenance, we
show how to use and to tailor multi-dimensional index structures. Therefore, we
introduce QuEval as a framework to tailor and evaluate these indexes.

6. We design, implement, and evaluate a comprehensive and easy to integrate solution
to track fine-grained provenance data for relational databases.

We bundle the resulting implementations and case studies in several projects. Therefore,
we use the, from our point of view, most advanced and comprehensive development
environment for software product line development FeatureIDE [TKB+14].

Primary result

The primary result of our investigation is that using software product lines to integrate
provenance into existing monolithic systems works well, if we can exploit certain homo-
geneity in the system, such as the object-oriented decomposition. However, the best
implementation technique depends on characteristics, especially granularity, of the the
desired provenance functionality. In addition, we show that intuitive approaches are
insufficient. In particular, the results for the considered implementation techniques
(see Section 3.2) are:

1. An intuitive technique using conditional statements (i.e., if) is insufficient,

2. Preprocessors are often the only possible choice for fine-grained forms of provenance,

3. Feature-oriented programming is sometimes also well-suited for fine-grained forms
provenance, especially if we consider evolution of the original programs.

4. We recommend aspect-oriented programming for coarse-grained provenance inte-
gration.

Besides this primary insights, our research and development resulted in several new
approaches that are required for a comprehensive solution that allows for integrating
provenance into existing systems.

1.2 Outline

The thesis is decomposed using the following structure. The primary decomposition
criterion is the aforementioned contributions, which are nearly directly reflected in the
outline.

1.2. Outline 5

Chapter 2. In Chapter 2, we analyze the concepts behind current provenance research,
which is relevant in the remainder of this thesis to model the provenance concern
in terms of features. In addition, this chapter reveals first short comings that are
refined and analyzed in more detail in subsequent chapters and finally result in
new concepts helping to reach the goal of this thesis.

Chapter 3. The third chapter contains basic background on software product lines
that is later used to design, implement, and integrate the provenance capturing
parts.

Chapter 4. In concept Chapter 4, we first motivate the need for integrating provenance
into existing systems in form of a problem statement. Then, we analyze limitations
of currently used solutions and approaches clearly resulting in the need for an own
solution. Therefore, we design the overall infrastructure and reveal research gaps
that need to be addressed in order to build such an infrastructure resulting in a
research agenda for the remaining chapters, which address these research gaps.

Chapter 5. Chapter 5 addresses storing tailored provenance data in tailored database
schemas. In this chapter, we contribute an approach to model variable relational
database schemas in terms of features and evaluate this approach resulting in clear
benefits using our new approach compared to alternative ones.

Chapter 6. Here, we contribute the database centric chain-of-custody as an abstract
concept finally resulting in a feature model of the provenance software product
line.

Chapter 7. In Chapter 7, we conduct the first exploratory case studies, where we inte-
grate coarse-grained provenance capturing capability into object-oriented programs
and as an additional layer on top of database systems.

Chapter 8. In Chapter 8, we conduct more complex case studies and integrate fine-
grained provenance forms to validate the insights gained so far. To this end,
we propose a concept to exploit the object-oriented decomposition to capture
provenance. In addition, we contribute the evaluation of the provenance capturing
approach and the provenance API for database systems.

Chapter 9. In Chapter 9, we conclude this thesis and state new research directions
revealed during the work on this topic.

6 1. Introduction

2. On the nature of provenance

In the following chapter, we identify relationships between existing provenance capturing
approaches indicating that the ideas behind them can be unified in one general framework.
As a result, this chapter is based on, but not limited to a literature review. The insights
gained here are used to define features that allow us to integrate tailored provenance
functionality in the remainder of this thesis. The chapter also offers a holistic view on
provenance research in general. Furthermore, it contributes a general data model and an
approach to determine the identity of data items. Thus, it lays required basic foundation
for the remaining chapters. However, the specific features are derived in Section 6.3,
based on the results presented subsequently and the general architecture. Note, the
results presented here have been partly published in [SSS12a].

2.1 What is provenance?

What is provenance? As this term is used in many communities, such as relational
databases [BKT01, CW00, GKT07b], (scientific) workflows [MCF+11, MBK+09, SPG08],
and even to determine source code ownership [DGGH11], we cannot give an overall
definition sufficient for all of these communities. Moreover, we even cannot give a
clear definition to one of these communities as pointed out in [CCF+09], because of the
diversity of provenance systems. But what we can say is what provenance is useful for:
(1) Understanding (and possibly recomputation) of foreign results to validate or explain
them and (2) Computation (and subsequent validation) of own results based on the
provenance of previous results, which are used as input [CCF+09]. Moreover, several
authors in the field of provenance have identified certain characteristics that seem to
hold for provenance generally:

Unchangeability. Provenance describes what actually happened in the past and does
not describe future alternatives. Therefore, it is unchangeable [CCF+09].

8 2. On the nature of provenance

Fragmentation. This property states that the provenance information we have at
each level of granularity always is fragmentary. For instance, every provenance
system has some starting point. As Braun argues in a provoking manner, to
be complete, we have to be able to track back the history of any data item to
the Big Bang [BSS08]. Additionally, coarse-grained provenance notions (e.g., for
workflows) omit possibly important details of the derivation process [CCT09]. In
contrast, other forms of provenance contain a lot of very fine granular information,
which might be hard to understand because the big picture is missing and there
is simply too much information [ABC+10]. Thus, this is about the availability of
(complete) provenance information at a certain level of granularity or in turn on
missing fragments at a specific level of granularity.

Uncertainty. Provenance always contains uncertainty to some extent. Thus, in most
cases no provenance is better than wrong provenance [MBM+10]. This problem also
becomes visible in several papers dealing with secure provenance, such as [LLLS10,
LM10, MBM+10], showing the necessity for reliable provenance.

Recently, provenance gained much attention [BKT01, CCF+09, GKT07b, MGH+10].
Unfortunately, it is very difficult to assign single research results to challenges in
provenance, relate them to different aspects of provenance, alternative solutions or
evaluate advantages and (possibly not obvious) drawbacks of a certain approach, because
there is no general provenance framework covering the aforementioned aspects. To
address this problem, we suggest such a general framework for provenance. To ensure
generality, our framework is based on the previously introduced general characteristics. In
fact, we use differences regarding fragmentation and uncertainty to describe abstraction
layers that can be used for different purposes and contain several open research challenges.
Knowing that our framework might be incomplete and furthermore there might be use
cases that are not covered within, we explicitly encourage the reader to question and
extend the results of this chapter. The basic idea is to consider new developments and
research as features that can be integrated into our framework.

The final consequence of these initial considerations is that we cannot define provenance
and related terms right now. We have to conduct an in depth analysis of current
provenance research in the remainder of this chapter. This results in the definition of
provenance terms in Section 2.9.

2.2 Background and notation

Subsequently, we introduce the notation of the well-known Open Provenance Model
(OPM) for coarse-grained provenance and existing formalisms for fine-grained provenance
which are relevant for the remainder of this thesis as our own notation and extensions
are highly related to this notation.

2.2. Background and notation 9

2.2.1 The open provenance model

The OPM [Luc97, MCF+11] is an example for coarse-grained workflow provenance.
According to the OPM, the causal dependencies of a particular data item within a
provenance system are modeled as an acyclic graph (V, E). The vertices of this graph
represent: (1) artifacts naming physical objects or their digital representation, (2)
processes taking input artifacts to create new artifacts, or (3) agents that have certain
effects on processes. The edges of the provenance graph show the relationships between
the vertices. For instance in Figure 2.1, process make photo takes two input artifacts of
roles camera and photographic objective to create an artifact photo and is triggered by
a photographer. As a result, in Figure 2.1, we show the past derivation history of the
result artifact img0001.jpg, but no possible future usage of the artifacts or alternatives
in the past. Furthermore, we extended the OPM with additional semantic information.
As depicted in Figure 2.1, we distinguish between three different artifact types: Initial
data items, intermediate results, and final results1. This differentiation is important,
because we do not produce initial data items in a provenance system and thus, have to
rely on (provenance) information tagged to this object (fragmentation). In contrast, we
produce and consume intermediate results in our system. Moreover, final results may be
initial data items for following (future) processes.

Process P1

Input Art 1

Input Art 2
wasTriggeredBy

uses

uses

ResultwasGeneratedBy

<Input a>

Agent 1

<Input b>

<Result a>

<Role A1>
Artifact:

Intermediate
result

<Role>

Process

Highly
simplified

process
Agent

<Role>

Artifact:
Initial data

item

<Role>

Artifact:
Final
result

<Role>

Figure 2.1: Provenance graph

2.2.2 The relationship between lineage, why, how, and where
provenance

As already mentioned, we build our provenance framework based on existing for-
malisms. Hence, we briefly introduce Lineage [CW00], Why [BKT01], How [GKT07b]
and Where [BKT01] provenance formalisms and their relationships between each other
according to the formalization of Cheney et al. for the relational data model [CCT09].
To explain the relationships of these terms, we use the example in Figure 2.2. The
example contains a database instance I with two binary relations R(a, b) and S(c, d).
Furthermore, the SPJU2 queries q(x) and r(x, y) create the views T and U respectively.

1Note, artifacts are not restricted digital items, but can also represent physical objects.
2Contains Selections, Projections, Joins, and Unions only.

10 2. On the nature of provenance

Note that we annotated all tuples in I such as t1 for the first tuple in R. In this example,
we are interested in how t8 was created. To do so, we track back the derivation history
of t8 to tuples in I. Particularly, we found two intentions of provenance:

R: a b S: c d T: e U: f g
1 1 t1 1 4 t4 1 t6 1 4 t8
1 2 t2 2 5 t5 3 t7 T: q(x) = R(x,y), S(y,z)
3 2 t3 U: r(x,y) = S(x,y), T(x)

t4, t6

t1, t4 t2, t5

t8

Lineage Why How Where
t8 {t4,t6} {{t4,t6}}
t7 {t3,t5} {{t3,t5}}
t6 {t1,t2,t4,t5} {{t1,t4} ,{t2,t5}}

t8 {{t4,{{t1,t4} ,{t2,t5}}}}

t4 x t6 f=1: t4.c, t6.e g=4: t4.d

t3 x t5 e=3: t3.a

(t1 x t4) + (t2 x t5) e=1: t1.a, t2.a

Refining occurance of t6 in t8
{t1,t2,t4,t5} t4 x ((t1 x t4) + (t2 x t5)) f=1: t4.c, t1.a, t2.a g=4: t4.d

t6

Paths to t8

t6

Figure 2.2: Relationship between provenance terms

(A) Existence. Lineage, Why-, and How provenance explain why a tuple is part of the
result of a query (sequence). Hence, these terms are important for recomputation
and validation of query results.

(B) Value origin. The terms Where and (partially) How provenance show where
attribute values stem from and how they are computed if the tuple exists. Note
that How provenance can explain why a tuple exists and in some cases this
approach also denotes how values are computed as we explain shortly.

In the following, we explain the basic principles and formalisms of Lineage, Why, How
and Where provenance with the help of the example in Figure 2.2 and discuss how the
approaches relate to the two intentions.

Lineage. Formally, Lineage Lin(Q, I, tn) for a SPJU query Q, a DB I and a tuple tn is
a subset of I which is used to create tn according to Q. For simplicity, we write
Lin(tn) because we refer to the example DB instance and queries. Note that there
might be several paths to compute tn because of the set semantics of the relational
model. Thus, a tuple tk occurs only once in Lin although it might be used in
several paths (e.g., as join partner). In the example, Lin(t8) = {t4, t6} expresses
that these tuples are somehow used to create t8 without showing any details such
as join partners.

Why provenance. In contrast to Lineage, Why provenance Why(tn) contains a set
of sets denoting the paths (similar to the routes in [CT06]) that indicate why a
tuple in the output exists, which is not shown in Lineage. For t6 in the example,
we see that there are two possible paths to create t6: Joining t1 and t4, or joining
t2 and t5, because of the set semantics. With bag semantics, every Why(t6n)

2.3. A hierarchical provenance framework 11

would contain exactly one path. Furthermore, Cheney et al. have shown that
the provenance information contained in Lineage are totally contained in Why
provenance [CCT09].

How provenance. As in Why provenance, How provenance How(tn) denotes the paths
that indicate how a tuple was created in the notion of polynomials, containing the
operations + and ×. These operations are defined for a set K in a commutative
semiring (K, 0, 1,+,×). Thus, this approach is also known as semiring model.
Independent of the semantics of the operations, the polynomial shows the paths
creating an output tuple such as How(t6) = (t1× t4) + (t2× t5). Dependent on the
semantics of the semiring, it can be used to compute annotation values or even
attribute values. For example, it is possible to compute the uncertainty value of
tuples. To this end, annotations such as t8 contain the probability of this tuple
of being in a result set in a probabilistic database and the polynomial is mapped
to a probability semiring using a semiring homomorphism [CCT09, GKT07b].
Recent work extended How provenance for set minuses [GIT09] and aggregate
queries [ADT11]. Moreover, Cheney et al. have shown that provenance information
contained in Why provenance are totally contained in How provenance [CCT09].

Where provenance. In contrast to the previous definitions, Where provenance is
defined on attribute level (not on tuple level). By definition, Where provenance
indicates where an attribute value of an output result was copied from. For
instance, the Where provenance of attribute f in tuple t8: Where(t8.f) = {t4.c, t6.e}
denotes that the attribute in t8.f was copied from t4.c or t6.e (both containing
the same value). Unfortunately, it is not possible to use Where provenance for
non-copy operations (e.g., aggregate functions), which is sometimes possible in
How provenance. But it is possible to use Where provenance for operations
performing manipulations of the table structure at attribute level (i.e., projection).
Thus, unifying them in one formal model is desirable. Although Cheney et al.
could not proof that, according to the currently used formal models, How and
Where provenance can be unified in one formal model [CCT09]. However, they
emphasized the similarities between the two notions. An approach to unify both
notions is presented in [Tan10].

The interesting question that arises for us form this consideration is: Can we exploit
the similarity between the single approaches and just interpret the captured provenance
data differently in order to address different provenance approaches? This would support
the claim for a general provenance capturing solution.

2.3 A hierarchical provenance framework

In this section, we motivate the necessity of abstraction layers to form our hierarchical
provenance framework. To this end, we introduce a running example that is used for
illustrative purposes in the remainder of this thesis.

12 2. On the nature of provenance

2.3.1 Provenance systems

At a very abstract level, systems capturing and evaluating provenance work as depicted
in Figure 2.3. Initially, requirements for the whole system such as granularity, time when
data is captured, or availability have to be defined (preparation). Afterward, the system
captures and stores the provenance data (also known as annotations), which have to
fulfill the previously defined requirements. Depending on how the data is stored, the
system has to provide a possibility to query the provenance data (e.g., by the use of a
query language), taking additional issues such as privacy aspects into account [BSS08].

Moreover, the provenance data are evaluated with respect to their validity. For instance,
developers can use this information to understand how certain artifacts have been
computed, e.g., how a query result evolved. Beyond that, the system can even reintroduce
these results into subsequent computation steps, such as computing new query results.
However, to validate such results, we may face the problem that the necessary provenance
information is fragmentary or unreliable. Thus, missing information has to be somehow
estimated or validation is simply impossible. In this thesis, we address the fragmentation
and reliability of existing provenance information. In particular, we show that we can
use different layers of abstraction for different purposes based on the fragmentation of
the available provenance information. Furthermore, we show that reliability affects all of
these layers and thus, can be considered as cross-cutting characteristics of provenance.

Preparation

Gathering
& Storage

QueriesEvaluation

O
nline

O
fflineDefines

requirements

Defines language
& granularity

(optional) Reintroduce
evaluation results
into gathering

Delivers information

Figure 2.3: Provenance system

2.3.2 Necessity for abstraction layers

Due to the versatile characteristics of provenance systems, we build our framework on
differences regarding uncertainty and fragmentation represented by layers of abstraction.
We motivate the necessity for every layer shortly. Particularly, the single layers form a
hierarchical granularity framework for provenance where each layer complements the
preceding one in the case that additional, more fine-grained information is available.

2.3. A hierarchical provenance framework 13

Running example: Fingerprint recognition

For motivating such a hierarchical framework as well as clarifying our intention, we
introduce a running example. In a current research project3, we evaluate digital pattern
recognition techniques for latent fingerprints based on high-dimensional sensor data.
Additionally, we are interested into testing different contactless sensor devices at different
materials as well as determining environmental influences. To ensure validity of the
evaluation, we have to gather detailed knowledge about the derivation history of all data
items originally produced by the sensor(s) and subsequent quality enhancement steps.

For this scenario, we want to be able to use the fingerprints in law enforcement proceed-
ings. To this end, we have to provide detailed and reliable information about the whole
processes from scanning the fingerprint to the final results presented at court. However,
we have to take into account that the people in court do not have detailed technical
background.

1. Consequently, we need a layer that abstracts from execution and implementation
details. As a result, we can show the complete causal dependencies from input
data (the original fingerprint scan) to the results presented in court and, beyond
that, the (possibly certified) processes that created the respective results/data.

2. In contrast to the first layer, fingerprint experts and software designers require
more detailed knowledge about the particular processing steps. Specifically, they
have to be able to recompute and therefore validate foreign results (e.g., when a
lawyer doubts evidences). But these people still do not need detailed information
how exactly the single results were computed.

3. However, having detailed knowledge on how exactly the single results were com-
puted is important for software engineers implementing the single computation
steps. For instance, for quality enhancement of latent fingerprints, we use different
filter implementations, such as Gabor filter banks. These filters modify the single
pixels of the original images (scan data), which, in turn, represent the lowest
level of granularity. Consequently, a developer has to know how exactly the filter
modifies the pixel values to implement, improve, or choose the right filter.

4. Finally, there are additional factors, which we have to take into account. These
factors are beyond mathematical descriptions and contain details of hardware
architecture, storage, and transport. Hence, they complement the information
of the previous layers to improve the reliability of both, the data itself and the
respective provenance information of all preceding layers. We discuss whether this
is a real layer or a different dimension in Section 2.7.

3https://omen.cs.uni-magdeburg.de/digi-dak

14 2. On the nature of provenance

(I) Workflow Layer
● Big Picture: Overall dependencies
● Non functional dependency
● Conceptual abstraction e.g., processes

(II) Existence Layer
● Recomputation
● Functional dependency
● Input Classification

(III) Value Origin Layer
● Mathematical description
● Only for lowest granularity

In
cr

ea
se

 le
ve

l o
f a

bs
tra

ct
io

n
an

d
fr

ag
m

en
ta

tio
n (I)

 Workflow
Layer

(II)
Existence

Layer

(III)
Value Origin

Layer

(IV)

Cross cutting Reliability Layer In
cr

ea
se

d
am

ou
nt

 o
f d

at
a

(IV) Cross cutting Reliability Layer
● Beyond mathematical description
● Details of storage and transport
● Details of execution context

Figure 2.4: Hierarchical provenance framework - First published in [SSS12a]

Granularity layers in the real world

To avoid overfitting of our hierarchical framework regarding the fingerprint example,
we searched the literature for concepts and approaches addressing and generalizing
the single layers. Additionally, we took existing approaches as base for each layer and
describe the relationships among them. Then, we assembled the results in a hierarchical
framework depicted in Figure 2.4, which is based on the current state of the art. The
top most level contains the Workflow provenance. Several approaches, such as the
OPM [MCF+11], basically rely on conceptual abstraction and thus, describe only causal
dependencies independent of the implementation.

In contrast to the first layer, the second requires functional dependencies to recompute
and validate results. For this layer we found Lineage [CW00], Why provenance [BKT01],
How provenance [BKT01, GKT07b] and causality [MGH+10] as existing approaches.
For the third layer, Buneman suggested a model explaining for copy operation, where the
single attribute values of an existing tuple stem from [BKT01]. Next, the semirings in
How provenance can be used for computing attribute and annotation values for different
subsets of database operations. Consequently, this lays the foundation for the third
layer of our framework. For layer IV, the basic idea is about increasing (and securing)
the reliability of the provenance data of the previous layers such as proposed by Braun
et al. [BSS08]. We give a detailed and comprehensive overview for all layers and their
relation to each other in the next section.

In the next four sections, we introduce the four abstraction layers and their relationships
to each other. Additionally, we point out their usage and possible refinements for each
layer.

2.4. Workflow layer 15

2.4 Workflow layer

This layer is a conceptual abstraction, representing what happens at coarse-
grained level totally independent of implementation (if there is one). Hence,
this layer shows causal dependencies while hiding details about functionality.
Moreover, this is a starting point for validating, comparing, or discussing results.

Finally, this layer can be used for automatic validation of derivation histories, which
might be produced in distributed systems not having access to each other.

2.4.1 Extended open provenance model

In the workflow layer, we rely on the OPM [MCF+11], that is developed to be a pure
conceptual abstraction of provenance information. We rely on the OPM, because it is
a consensus explicitly designed for workflow provenance. Moreover, most of literature
addressing workflow provenance such as [ABC+10, MBK+09, SPG08] refers to a directed
acyclic graph and is therefore similar to the OPM. To bridge the gap between coarse-
grained workflow provenance and fine-grained forms of provenance [CCF+09], we present
an extension of the OPM in this section. Finally, we explain usage and limitations of
this layer.

As already mentioned in Section 2.2.1, we use additional artifact types to have more
semantics in the model. Within our extended OPM, an artifact has (1) a name, (2) a
role, (3) a type showing whether this is a complex or a simple artifact and furthermore a
unique id as well as a mark denoting if this is an initial or result artifact (cf. Figure 2.5).
For initial artifacts, we have no knowledge about previous causal dependencies, but
about subsequent ones. Hence, backtracking of one of these artifacts is impossible. In
contrast, for result artifacts we have knowledge about previous causal dependencies, but
not about subsequent ones due to the fragmentation of provenance. Thus, these are the
last artifacts for which we can form the dependency graph. Similar to artifacts, each
process has (1) a name, (2) a hierarchy label, and (3) a type.

2.4.2 Graph refinements

Regarding our extended OPM, the most important extension is the introduction of
complex artifacts and complex processes allowing stepwise refinement of granularity.
We argue that this is the key issue to bridge the semantic gap between coarse-grained
workflow provenance and different fine-grained provenance models (accumulated in the
subsequent layers). In fact, it is possible to refine the processes of the workflow layer
until reaching the connection points to the existence layer. In the following, we introduce
our extension of the OPM and how this allows for stepwise refinement.

Complex artifacts

In Figure 2.5 a, we depict our concept of stepwise refinement used for complex artifacts.
A complex artifact such as the Material DB contains a certain number of either complex
or simple artifacts. This forms a tree structure, where the root of the tree is the top

16 2. On the nature of provenance

Mate-
rials

<Material DB>

k

<Number>

(2) Role

(1) Name

(3) Type:
complex

(3) Type:
simple:int

Materials
.Plastic

<Material>

P1
Test

(1) Name

(2) Hierarchy

P5
Quality

inspection

(3) Type:
complex

(3) Type:
simple

P1.1 x

P1.2

P1.3

<role>

P1 Test

Materials
.Paper

<Material>

Materials
.tuples

<Num Tuples>

Materials
.Metal

<Material>

(a) Complex artifacts (b) Complex processes

Simple artifact
& process

Complex artifact
& process

Refined artifact
& process

Figure 2.5: Complex artifacts and processes

most complex artifact (in this case the Material DB), inner nodes are again complex
artifacts and the leaves are simple artifacts, directly linked to a primitive value (e.g., an
integer). The position in the tree is inherited in the name of node. For instance, the
number of tuples in the Material DB is referenced as Materials.tuples. This is similar to
object-oriented programming where this notion is used to reference fields or methods. A
complex artifact inherits its data such as tuples of a DB table or members of an object.
Furthermore, such artifacts inherit additional annotations that contain meta data about
the artifact itself. Note that due to the fragmentation of provenance or due to privacy
issues [BSS08] not all data may be available (i.e., several nodes might be missing).

Complex processes

Analogously to complex artifacts, we also introduce complex processes for stepwise
refinement (cf. Figure 2.5 b). The refinement of a process is an acyclic graph showing
the causal dependencies of the parent process in more detail. To reference the parent
process, the process contains a hierarchy label. For instance, process P1.1 is within the
refinement graph of P1. Basically, the process has to collect provenance data on its own
or may use integrated monitors [LM10]. Moreover, this data is always collected at the
lowest level of granularity, that is, the leaf level of the tree structure. Consequently, all
upper levels are aggregations of this most detailed level.

Implicit dependencies

To allow processes the usage of artifacts with different levels of granularity in one graph
(i.e., only some artifacts are refined), we introduce the concept of implicit dependencies.

2.4. Workflow layer 17

For instance in Figure 2.6, process 1.2 uses artifact a.2.2. As a result of this explicit
dependency, there are additional implicit use dependencies from P1.2 to every ancestor
node in the artifact tree of a. Hence, P1.2 has implicit a use dependency with a.2 and
a. Moreover, we add additional use dependencies from a.2.2 to every parent process
of P1.2. Thus, a.2.2 has a use dependency with P1. Finally, this is repeated for every
pair of parent artifact and parent process recursively, up to the lowest granularity level.
Therefore, a and P1 have a use dependency too.

a

a.1 a.2

a.2.1 a.2.2

P1.1

P1 Test

P1
Test

Refinement

P1.2a.2.2
uses

Causal Dependency

(a) Artifact tree (b) Process hierarchy (c) Some possible visualizations

P1a

a.1 a.2
a

P1

P1.2

P1.1
P1 Test

P1.2a

Figure 2.6: Visualization of implicit dependencies

2.4.3 Usage and limitations

To explain the usage and limitations of this layer, we refer to the motivating example
from Section 2.3.2. In Figure 2.74, we depict the provenance graph for two result
artifacts, namely quality assessment and age interval of a fingerprint. Both artifacts are
final results and thus, we have no knowledge about any subsequent causal dependencies.
Hence, we cannot build any graph using these artifacts as input. However, the graph
reveals where the initial fingerprint was taken from and how the results have been
created at a very coarse-grained level hiding lots of possibly important details.

Backtracking

In the example, the provenance graph exhibits its maximum level of backtracking. This
means that we tracked back all dependencies to initial artifacts, where backtracking is
defined as follows: First, the level of backtracking for each vertex in the graph used as
starting point is defined as Level 0. For example in Figure 2.8, Level 0 contains only
the final result of role quality. When increasing the backtracking level, we expand
the graph for each causal dependency until we reach some process. At the same time,
we add all artifacts and agents having a direct dependency with this process to the

4Note that we omitted labeling the causal dependencies for clarity reasons. To avoid ambiguous
dependencies, we use only use (from process to artifact), wasProducedBy (artifact to process), and
wasTriggeredBy (process or agent to process) in this example.

18 2. On the nature of provenance

Plastic

<Material>

exmp
.ds

<Detailed scan file>
P2 Sepa-
ration of
overlaps

Berta

<Preprocessing operator>

exmp.ds

<Separated
finger print>

P3Age
deter-

 mination

22°C,
23%,

...

<Environment>

< 1
week

<Age interval>

P4 Quality
enhance-

ment

exmp
.sfp

<High quality image>

exmp
.hqi

Cindy

<Analyst>

P5
Quality

inspection

David

<Finger print expert>

9/10
Points

<Quality>

CWL

<Sensor>

CD
Cover

<Assay>
P1

Scan

Mate-
rials

<Material DB>

Adam

<Sensor operator>

Figure 2.7: Provenance graph containing complex artifacts and processes

backtracking level. In Figure 2.8, we depict the first three backtracking levels for the
quality artifact of the example. We argue that stepwise backtracking is important to
simplify understanding of these graphs because provenance graphs can be very large
and therefore hard to understand.

Plastic

<Material>

<Separated
finger print>

P4 Quality
enhance-

ment

<High quality
image>

exmp
.hqi

Cindy

<Analyst>

P5
Quality

inspection

David

<Finger print expert>

9/10
Points

<Quality>

22°C,
23%,

...

exmp
.sfp

<Environment>

Level 0 Level 1 Level 2

Figure 2.8: Exemplary backtracking levels

Graph merging

Unfortunately, by simple backtracking it is impossible to create the graph in Figure 2.7.
This is the case because both result artifacts (quality and age interval) use the separated
fingerprint artifact as input. Consequently, there is no path connecting both result
artifacts in one graph. As a result, by backtracking both artifacts of our example, we
obtain two provenance graphs that can be merged when backtracking reaches Level 2
for the quality artifact and the age interval artifact. Thus, merging graphs is important
to a) show whether some artifacts share a common derivation history (i.e., share a
subgraph) and b) reconstruct graphs based on the derivation history of artifacts.

2.4. Workflow layer 19

Granularity refinement

Except for process P5 Quality Inspection, all processes in our example in Figure 2.7
are of type complex and thus can be refined. For instance, in Figure 2.9 P1 Scan is
refined, that is, the complex process from Figure 2.7 is replaced by its corresponding
subgraph. Due to the concept of implicit dependencies, we can have both, complex and
refined processes, in one provenance graph and thus show details that are not available
on the coarse-grained level of granularity. For instance, our refined process in Figure 2.9
reveals that the whole scanning process performs two scans. First, Scanner Operator
Adam triggered a coarse scan (P1.1) that was used to find regions of interest possibly
containing a fingerprint pattern. Second, the sensor operator triggered a detailed scan
(P1.4) using the information obtained from the coarse scan (P1.1). Moreover, the graph
depicts that P1.1 triggers P1.2 and P1.3 automatically.

P1.1
 Coarse

scan

CWL

<Sensor>

CD
Cover

<Assay>

exmp
.cgf

<Coarse scan file>

P1.2
Region
location

ROI

<Region of Interest>P1.3
Classify
material

Param
Set

<Scan Params>

P1.4
Detailed

scan

Adam

exmp
.ds

<Sensor
operator>

Plastic

<Material><Detailed scan file>

<Material
 DB>

Mate-
rials

P1 Scan

Figure 2.9: Process refinement

Automatic validation

The provenance graph can be used for automatic validation. To this end, we have to
specify for each process a list for certain valid combinations of input roles and resulting
output roles (or a negative list respectively). Moreover, it is possible to define certain
constraints such as the number of output artifacts has to be larger than the number of
input artifacts etc. Consequently, a monitoring program having access to the provenance
data and to these constraints can detect anomalies.

Limitations

In contrast to the next layer, we do not restrict processes to functions. This means
that providing the same input does not necessarily have to result in the same output5.

5Here, identical artifact means that the artifact trees have the same structure and the primitive
value(s) within an artifact contain the same value(s), excluding annotations.

20 2. On the nature of provenance

Reasons therefore are missing input parameters such as configuration parameters or
class members. For instance, in P5 Quality Inspection a fingerprint expert evaluates
the quality of the fingerprint image. Although we assume that he is an expert, different
environmental factors such as different light settings in different laboratories might
change the quality estimation result especially for borderline images. Consequently, to
reproduce results we have to assume functional dependencies that we cannot express with
processes as conceptual abstraction. Furthermore, in some cases, such as manual quality
inspection, it may be impossible to guarantee functional dependencies. Consequently, we
argue that approximating the functional dependency with refinements is practical and
sufficient and better than having no provenance at all. To determine the similarity of
artifacts of the same role we suggest the use of distance metrics as applied in [DGGH11].

2.4.4 Related approaches

Biton et al. use a similar concept to create user views for arbitrary scientific workflows.
First proposed in [BCD07] and then improved to avoid to introduce loops in the
workflow [BCDH08], it allows to merge composite modules (similar to our complex
processes) to reduce the amount of provenance data presented to a user. As this model
was developed to visualize and query previously captured provenance data, not to
determine what provenance data to capture, the focus is slightly different. However, the
similarity is in the way how to link different levels of granularity. In contrast to our
approach, Biton et al. only refine processes (not artifacts) resulting in a complex merge
procedure, which possibly forbids merging several processes. A solution therefore are
our implicit dependencies allowing us to more flexibly refine processes if only parts of
an artifact (e.g., a tuple in a table) is used. Moreover, to build the provenance graph,
we use an inverse temporal order (from output to input, not vice versa), which is a
tribute to the fragmentary nature of provenance and the application scenario in that
we want to determine the past derivation history and not the future use. In fact, a
result cannot know what it is used for in future, but it may know which artifacts (or
respective subsets) where used to create the artifact itself. As a result our approach is
more flexible, as we do not assume that in the graph there is one (complete) input node,
but for instance also accepts hidden inputs such as state variables from a previous run
having a certain impact on the current result building process. Finally our artifact trees
may also contain the primitive values (if known) and are thus not restricted to simple
id’s written in the log files used to create the graph in [BCDH08].

2.5 Existence layer

While the previous layer addressed causal dependencies, this layer focuses on
result validation. Therefore, we only consider artifacts a computation step created
and thus exist. In turn, we do not consider artifacts that could have been created
potentially (e.g., tuples that do not find a join partner), relevant for instance for

query non-answers. To allow result verification, we assume a functional dependency for
artifact creation: (f : an → am). Consequently, we can recompute and thus validate

2.5. Existence layer 21

results. Moreover, depending on the available information regarding the behavior of the
single functions, we split the existence layer into three sub levels. In the following we
explain the three sub levels, point out how refinement takes place in this layer and its
limitations.

(1) Recomputation

(2) Input classification:
Lineage

(3) Path determination
Why provenance

Figure 2.10: Sub levels of the existence layer

2.5.1 Sub levels of the existence layer

Subsequently, we explain the purpose, use and relationship between the three sub levels
of this layer.

Sub level 1: Recomputation

The first sub level allows recomputation and thus validation of results. To recompute
the result(s), we have to ensure that the input of the single functions in this layer is
identical, which is not always a trivial task. Currently, most authors assume that we
know the input. For example, in DB formal approaches such as How [GKT07b] and
Why provenance [BKT01], the authors implicitly assume that all input (relations) are
known. In the relational model, knowing the query also means knowing the input,
because all input relations are part of the FROM clause(s). But in different data models
or programming paradigms this is not as simple. While in functional programming
the input are the arguments in the function call, in object-oriented programming we
additionally have to take into account class members and different static variables.
Consequently, knowing the input is the minimum requirement for recomputation.

Sub level 2: Classifying the input

Splitting the input into possibly necessary (endogenous) input and never necessary
(exogenous) tuples can improve the understanding of what actually happened during
computation. Again, we start with DB formalisms and explain which of these definitions
can be adapted to different data models and programming paradigms. According to
Meliou et al. [MGH+10, MGMS10], a set of input tuples I for some query R = q(I)
producing an output tuple ti consists of endogenous tuples Ie (tuples used in at least
one path) and exogenous tuples Ix (not used in any of the paths). Both, Ie and Ix are
subsets of I, their intersection Ie ∩ Ix = ∅ is empty, and their union restores I = Ie ∪ Ix.
Moreover, the authors differentiate endogenous tuples into counterfactual and actual

22 2. On the nature of provenance

tuples due to the set semantics that can lead to multiple paths producing one output
tuple.

Explanations for set semantic. Consider the following join example of relations R and S:
{a} = q(x) = R(x), S(x, z) over an instance (I): R{a, b}, S{(a, b), (a, c)}. Obviously, the
tuple R(b) forms Ix because there is no join partner in S. But there are two ways to
compute the query result: (1) R(a) ./ S(a, b) or (2) R(a) ./ S(a, c). Therefore, R(a) is a
counterfactual tuple t ∈ Iec because removing R(a) from I would remove {a} from the
query result. According to Meliou et al. [MGH+10, MGMS10], a tuple t is part of the
set of counterfactual tuples Iec in case there is a tuple r in the result R, which is removed
from the result if t is removed from the set of input tuples. Formally, Iec consists of
∀t ∈ Ie for that ∃r ∈ R in such a way that for query q the execution of q without t
resulting in R′ = q(Ie − {t}) causes that r is not part of the query result r /∈ R′. In
contrast, we can remove either S(a, b) or S(a, c) from Ie because there is still one path
creating the same result. Consequently, these tuples are actual tuples because they can
be part of a certain subset (Γ ⊆ Ie), which can be removed from the input while still
producing the tuple r w.r.t to query q. Note, that Meliou et al. relate causality based on
the definition of Halpern and Pearl [HP05] to How provenance. We stick to their results.
But according to our framework, causality is finding all possible inputs which might
have produced a result tuple rn w.r.t. q. Hence, causality is important if we know only
parts of the input and want to compute (all) possible inputs or query non-answers. By
contrast, in linage we assume we know the input and want to validate what happened.
Consequently, ∀ti ∈ q(I) Ie is equivalent to Lin(q, I, ti) and Ix = I − Lin(q, I, ti).

Adaption to different data models

When adopting these definitions to different data models without set semantics, we
can omit the differentiation between actual and counterfactual input artifacts, because
all actual inputs are also counterfactual. This simplifies the classification of input
determined at the previous sub level, because we can simply omit this differentiation.
Unfortunately, currently there are no formalisms automatically computing the input
classification for different data models, such as they exist for the relational data model.
Consequently, we have to manually collect these annotations in the program itself.

Nevertheless, this sub level improves understanding the relation between input data and
result computation (query equivalence) as follows:

• Every input artifact in Iec cannot be removed without changing the result of the
operation.
• Every input artifact in Ix can be removed without changing the result of the

operation.
• (Only with set semantics) An input artifact ∈ Ie but /∈ Iec can be removed from
I without changing the result, because there is at least one path not using this
tuple to produce the same result.

2.5. Existence layer 23

Sub level 3: Determining paths

As we stated in Section 2.2.2, a path is an acyclic graph showing the sequence of operation
(vertices) and respective connections (edges) to input artifacts. In set semantics, multiple
paths may lead to one result and thus paths are highly related to minimal witness
bases [BKT01, MGH+10]. Furthermore, formalisms such as Why and How provenance
denote the computation paths. The main difference to the previous sub level is, that an
artifact may occur at different nodes in the graph (see Figure 2.2).

In summary, the former two sub levels are approximation of the path determination level.
We need these approximations because of fragmentary knowledge about implementation
details. For example, in API programming or for aggregate functions in databases,
we only know the function name and the arguments to supply. Therefore, we have to
assume that all of the input artifacts are counterfactual (I = Iec) and consequently no
exogenous artifacts exist. This allows to recompute and consequently validate results.
In the second sublevel, we classify the input (if possible due to our knowledge) to know
which input artifacts (Ix) can be omitted without changing the result. Furthermore,
we determine the existence of multiple paths (Ie − Iec 6= {∅}), artifacts contained in
every path (Iec) and artifacts which might be part of a certain contingency (Ie − Iec).
However, in the third sublevel, we determine paths themselves. Each path p in the
set of paths P (p ∈ P) w.r.t. a specific operation (e.g., query) o and Input I creating
result r contains all counterfactual artifacts in Iec and (a possibly empty) subset of
non-counterfactual artifacts Iec−1 = Ie − Iec . Consequently, the following equations
hold: The union of all artifact sets of all paths is equivalent to the set of endogenous
input artifacts

⋃
∀a∈p∈P = Ie. Moreover, the intersection of all artifact sets of a path is

equivalent to the set of counterfactual artifacts
⋂
∀a∈p∈P = Iec . Finally, the set minus of

all non-counterfactual artifacts Iec−1 and a specific path produces a certain contingency
Γ = Iec−1 − p. Obviously, a contingency is a set of endogenous artifacts that we can
remove from Ie so that exactly one path remains for creating the result r.

Refinements

At the existence layer, there are two possible refinements at each sub level showing
different results: (A) Backtracking of artifacts and (B) Implementation refinement. The
limitations of both refinements are highly related to the fragmentation of our knowledge
as we explain in the following.

From results to initial artifacts. For each of the sub levels it is possible to backtrack
artifact occurrences in the same way as with the previous layer (cf. Section 2.4.2). The
backtracking stops when reaching an initial artifact, which is the first element we have
provenance information for. In a nutshell, backtracking operations can be summarized
as follows: Union of the whole input sets for sub level one, union of endogenous input
sets Ie in sub level two, and merging of directed acyclic graphs producing a new directed
acyclic graph in the third sub level.

Refining implementation details. This kind of refinement requires implementation
details such as additional knowledge of the internal structure of functions. For instance,

24 2. On the nature of provenance

Table 2.1: Refinement with fragmentary knowledge

1 r=foo(a,b,c,d);

SubLevel 1

I ={a,b,c,d}

SubLevel 2

1 int foo(a,b,c,d)
2 {
3
5
6
7 }

ret=foo2(a,b);
ret+=c;
return ret;

I ={a,b,c,d} Ie ={a,b,c}

I ={a,b,c,d} Ie ={a,c}

Ie ={b,c}

Ix ={d}

Ix ={b,d} or

Ix ={a,d}

SubLevel 3

I ={a,b,c,d}

Fragmentary Knowledge

r

a,b,c,d

r

ret, c

a,b

r

ret, c or

a

r

ret, c

b
foo

r

ret, c

b

foo
foo2

min

foo

(
(

)
)

1 int foo(a,b,c,d)
2 {
3
5
6
7 }

ret=min(a,b);
ret+=c;
return ret;

a function can call several functions (e.g., foo2 and min() in Table 2.1) and operations
such as + or -. To explain this refinement and the influence of fragmentary knowledge,
we refer to the example depicted in Table 2.1. In this example, there is a function foo()

taking four arguments as Input I (for simplicity we omit argument types) and returning
one (result) artifact. In the first part of the example, we assume that we do not have
detailed knowledge about this function. Hence, we cannot classify the input leading to
one path, assuming that all of the input is counterfactual. In the second part of the
example, we assume that we have additional knowledge about the internal structure of
foo(). Note that we still have fragmentary knowledge, because we do not know what
foo2() in Line 2 calculates. Hence, it is possible to refine implementation details by
revealing the sequence of functions and inputs in the example. To keep the reference to
the containing functions such as foo(), (sub) paths (i.e., the vertices) are annotated
with the function they belong to. The refinement stops when reaching operations only
or because of fragmentary knowledge about functions. In the example, we do not know
what foo2() actually does and thus we have to approximate Ie from I = {a, b} (i.e.,
we do not know whether this function actually uses the arguments). This introduces
uncertainty into our provenance information. However, with additional knowledge
about foo2(), we can calculate Ie. For instance, if it works like a min function (i.e.,
is equivalent to an operation), we cannot further refine the implementation, but it is
possible to determine the path according to the input I.
The advantage in databases is that, for monotone queries, we have formalisms that
automatically and thus without uncertainty compute the following details:

2.6. Value origin layer 25

• For sub level 2, the set of necessary input tuples Ie: Lineage, Why provenance
and How provenance,
• For sub level 3, the set of all paths: Why provenance and How provenance.

Link to parent layer. As recently introduced, a function that is called within the
body of another function such as foo2() from foo() has an annotation to keep the
reference to the calling function. In contrast, the function foo() in Table 2.1 is the
top most function and thus does not contain a link to a calling function. However,
such functions have a link to the abstract process in the preceding layer showing the
respective part of its computation for a particular artifact. Moreover, these functions
may also consume artifacts from the workflow layer.

The combination of both, refinements and the link to the workflow layer, allows us
to increase our understanding of what actually happens. Note that especially the
refinements require proper tool support to visualize certain excerpts from the derivation
history.

2.5.2 Limitations of this Layer

In the example in Table 2.1, we did not consider whether the arguments supplied to
foo() are primitive numeric values or complex objects. However, at this layer we do not
care how the primitive values within an artifact or its annotations (if it is complex) are
calculated. This is restricted to the semantics of the functions and operations denoting
to what extent the primitive values of artifacts contributed to a result. This is in the
scope of the next layer.

2.6 Value origin layer

With the previous layer, we focused on the determination of paths responsible
for the existence of artifacts. In contrast, this layer is about the origin of the
primitive values within existing artifacts such as attribute values in the relational
data model. In the following, we explain how the origin of values can be addressed

by existing approaches and applications for different data models and the relationship
to the existence layer.

2.6.1 Structure of artifacts

As mentioned in Section 2.4.2, we differentiate between complex and simple artifacts.
Simple artifacts are directly related to one primitive value such as an int or char type.
In contrast, complex artifacts may contain several complex and simple artifacts forming
a tree structure, where the leaf nodes are always simple artifacts. Consequently, each
artifact is a container for primitive values at the lowest level of granularity. For instance,
consider a relation containing regions of interest (ROI) from our fingerprint example. By
our means, a ROI is a rectangular part of a coarse scan probably containing a fingerprint.
This ROI is input for the detailed scan process. It is used to scan the physical object

26 2. On the nature of provenance

again with higher resolution showing details such as sweat pores that are not available in
the coarse scan. For our illustrative example we want to increase productivity. To this
end, we want to scan those physical objects in detail first that carry the largest amount
of fingerprints. Consequently, we need to store additional annotations representing this
information.
In Table 2.2, we show the relation storing the ROIs permanently. Each tuple has a
surrogate primary key from some sequence within the DBMS, two points denoting the left
upper and right lower bounds of the rectangle, and a foreign key referencing the coarse
scan file of the physical object. Moreover, there are general additional annotations for
every artifact containing the unique artifact ID, name, role and type (cf. Section 2.4.2).
Finally, for each role there are role specific annotations (cf. Table 2.2 and Figure 2.11).

Table 2.2: Region of interest relation

ROI PK: int l_u: Point r_B: Point FK: int Role specific annotations
x: int y:int x: int y: int Probability ROI Locator

t1 1 12 49 287 413 5 → 0.85 v.0.7.3a
t2 2 12543 736 12781 1052 5 → 0.91 v.0.7.3a

2.6.2 Value origin with existing approaches

Based on the structure of artifacts, we are now interested how we can determine the
value origin of certain artifacts. The value origin of some simple artifact A w.r.t. an
operation O for a path P shows how a particular subset of the primitive values within
the artifacts contribute to A. For instance, consider the query Q to get all ROIs
in Figure 2.11. Furthermore, assume for simplicity that there are only two ROIs for scan
five. For normal computation, the result would look as follows: t3 : {(5, 2)} = Q(ROI)).
In contrast, when including provenance in this scenario, the results look as depicted
in Figure 2.11. The result also contains general annotations as well as role-specific
annotations. The role-specific annotations are computed based on the input tuples and
the respective semiring. Meanwhile, recapitulate that we want to scan those objects
first carrying the greatest amount of fingerprints to increase productivity. Thus, we
additionally store the probability that there is at least one fingerprint on the physical
object and the ROI Locator Version. Then, the probability is computed based on the
detection probability of all tuples contributing to this result and the representation in
How provenance. For the example, the contributing tuples are t1 and t2. Hence, the
probability is computed as follows: p(t1) or p(t2) = (0.85+0.91)− (0.85×0.91) = 0.9865.
Now, we are interested into approaches explaining the value origin of the query result of
Q including the respective annotations.

Where provenance

In databases, the Where provenance formalism is able to determine the origin for pure
copy operations only [BKT01]. By definition, this works for the data such as the attribute
FK, because this is what it was designed for. In contrast, when using Where provenance

2.6. Value origin layer 27

FK

ID Name Role Type Mark

5 t1.FK, t2.FK

t3 SR1 SR1 complex none

Probability ROI Locator Version
0,9898 v.0.7.3a t1.PS[2], t2.PS[2]

Data for query Q: Select FK, count(*)
From ROI

General
annotations

Additional
role specific
annotations

How
Paths

count(*)
2

count Probability
How(t3)=t1+t2 (N,0,1,+,x) ([0..1],0,1,or,and)

Figure 2.11: Computation with provenance

for annotations we face the problem that there may be competitive annotations. For
instance, imagine that the first ROI was computed with ROI Locator Version v.0.7.3a
while the second was determined by v.0.7.3. In this case, we currently add the symbol
a showing that the version is ambiguous (which must not happen). Because this is a
domain-specific solution, we consider different solutions allowing annotations to collect
sets (both versions) or rules to determine the dominant annotations (e.g., the later
version if there are no functional changes, but only an increase of performance).

Semiring model and extensions

In contrast to Where provenance, we can use the semiring model to calculate the results
of queries (e.g., for attribute or annotation values). In the original version this works
for SPJU queries [GKT07b] and has been extended for set minuses [GIT09]. Finally,
Amsterdamer et al. extended the model for aggregation support including optional
group by operations with some limitations [ADT11]. The general challenge in this model
is finding the semiring with the right semantics as in the probability example [CCT09].
Moreover, it is currently not possible to determine the origin of the PK in our example,
because it is linked to a sequence. To determine the origin, the model has to have access
either to the sequence or to the previously created tuples (requiring an order). Finally,
to the best of our knowledge it is not possible to use constants.

Usage for different data models

While Where provenance and the original semiring model are limited to databases,
Amsterdamer et al. emphasize that the extension for aggregate queries is independent
of the data model and therefore might be used to capture automatically provenance
information for aggregate functions. However, the concepts behind Where and How
provenance are also suitable for different data models.

A first formal approach for functional languages is introduced by Buneman et al.
in [BCK12]. The approach also allows hierarchies in the provenance graph for refinements
(zoom in and out). However, the approach currently assumes to have full knowledge on

28 2. On the nature of provenance

the implementation (i.e., the semantics of the functions) and does not consider complex
artifacts. As a result, it is not applicable when having fragmentary knowledge on the
computation (black box processes). Nevertheless, the outlined provenance language
aims at creating a strong formal basis addressing the first three levels of our provenance
framework. Furthermore, the future provenance language shall also able to answer
causality related queries (e.g., by considering if conditions) and thus very powerful.
In prior work [SSS12b], we suggest to facilitate the decomposition of object-oriented
programs for provenance capturing. In this approach methods and constructors are
equivalent to processes and method parameters as well as class members are artifacts.
Then, we create hierarchical provenance graphs, for instance by binding aspects from
aspect-oriented programming to the computation steps (method executions) we are
interested in. This way our approach is very flexible. For instance, we can mask
input artifacts (e.g., passwords) and intermediate processing steps, allowing fine-grained
tuning of the desired provenance capturing functionality. In contrast, in our approach
we usually cannot provide the same semantics (Level 3) as intended by [BCK12], for
instance due to invisible input. This input includes, for instance, random variables,
static class members, and pointer arithmetic. This problem, however results of the
challenging mapping of all computation steps to processes and determination all input
artifacts, which is currently an unsolved problem. A different approach to instrument
program structures for provenance capturing is using modified compilers [TAG12]. The
benefit of this approach is that it is totally transparent (i.e., requires only the modified
compiler). However, it does not allow fine-grained tuning of the provenance capturing
nor is it currently applicable for complex artifacts (e.g., objects).

2.6.3 Relationship to the previous layer

Independent of the way how we determine the value origin, there are several relationships
to the previous layer. First, for each primitive artifact in every path there is one
mathematical description. In Where provenance these are the locations, the primitive
values are copied from. In the semiring model this is a series of operations w.r.t. to a
particular semiring. Second, all simple artifacts used in one mathematical description
are part of the corresponding path [CCT09].

Backtracking refinement

In contrast to all previous layers, there is only one possibility for refinements, because the
value origin is always defined on the lowest level of granularity. Consequently, there is
no granularity refinement. However, backtracking is still possible by means of replacing
a simple artifact in the mathematical description. For instance, in the initial example
in Figure 2.2, the Where provenance of attribute t8.f denoted as Where(t8.f) are the
locations t4.c, t6.e. Now we can replace the location t6.e with Where(t6.e) = {t1.a, t2.a}
(i.e., remove t6.e and add the result {t1.a, t2.a}). Limitations of backtracking are related
to fragmentation. In contrast to the previous layer, we require detailed knowledge about
how exactly the simple artifacts contribute to the result of the computation and cannot
estimate this information. Consequently, further backtracking is not possible if we do
not have this knowledge for an operation in the path.

2.7. Cross-cutting reliability layer 29

Limitations of this Layer

As this layer works on mathematical description, it reaches its limitations for instance
when details of the (hardware) dependent execution context (e.g., for timing experiments)
are required or even when trying to prevent or detect possible attacks.

2.7 Cross-cutting reliability layer
As all previous layers are dealing with granularity and fragmentation, this layer
addresses the reliability of artifacts itself and respective provenance data. As a
result, this layer decreases the degree of uncertainty. Because this is possible for
all previous abstraction layers, we call this layer cross cutting.

2.7.1 Reliability: A different dimension of provenance

Particularly, we consider this layer as a different dimension, which is partially orthogonal
to all other layers, as fragmentation may cause uncertainty as well (see Section 2.5.1).
Hence, we keep calling this dimension of provenance a layer.
The purpose of all preceding layers was to improve our understanding of what hap-
pened (e.g., for validating results) and are restricted to our fragmentary knowledge.
Unfortunately, this information can be wrong for arbitrary reasons. For instance, a
malicious attacker could have changed the data itself or corresponding annotations.
Moreover, there can simply be errors when collecting the information. This is especially
the case when there is no possibility of capturing the information automatically (e.g.,
by a formalism). Consequently, this layer addresses reliability and trust in provenance
information [LLLS10, LM10, MBM+10].

Challenge: Increasing amount of data

Consider the example from Table 2.2. To be really sure that all ROIs are calculated
with the same ROI Locator version, we furthermore annotate the version annotation
with a security hash sum of the version binary. Moreover, to ensure that this artifact
remains unchanged, we have to add an additional signature computed over the whole
artifact (including annotations).

The cross-cutting characteristic

In the recent example, we included a signature to ensure that a specific artifact remains
unchanged. Actually, we want to do this for all provenance data collected in the preceding
layers such as the graphs in the Workflow Layer or the paths in the Existence Layer.
Moreover, we may want to propagate that we secured the execution context for instance
with TPM modules as suggested in [LM10]. But this is not only related to security issues.
For instance, for some application scenarios we need a result within a certain amount of
time. Therefore, we perform several timing experiments using different algorithms for
computation of ROIs. To compare these results, we need to know about the hardware
environment in case that the tests are not performed on the same computer. As a
result, the amount of data to store increases rapidly, which is also denoted by area of
the pyramid slice in the framework visualization (cf. Figure 2.4).

30 2. On the nature of provenance

Annotating annotations

An interesting problem is that annotating annotations furthermore increase the amount of
data. As mentioned previously, we want to include additional annotations to increase the
reliability of annotations or values. Suppose we want also know which hashing algorithm
was used, in which implementation, and how these additional annotations have been
collected. The problem is to determine when to stop annotating, because when doing this
for every piece of data (i.e., every artifact, annotation) the amount of annotation data
is a multitude of the values within the simple artifacts (e.g., in Figure 2.11) [CCT09].

2.7.2 Current research on reliable provenance

Although reliability is an increasingly interesting topic, only few works exist that
addresses this layer. For instance, McDaniel et al. tackle the problem where to place the
software that collects provenance information (monitors). For non-formal approaches,
they emphasize the need for securely deploying provenance especially in distributed
systems [MBM+10]. Similarly, Tan and Lu argue that there are special problems in
service oriented architectures [TGM+06] or cloud [LLLS10] environments. Consequently,
the required mechanisms for reliable provenance depend on architecture and use case.
For instance, Lyle et al. point out that it is applicable to protect the computation
environment (i.e., processes or functions) and monitors with hardware-based methods,
such as TPMs, when malicious effects (e.g., from the user) have to be considered [LM10].
Moreover, it is suggested to save reliable provenance data within multimedia data itself
using invertible watermarks [SSM+11]. A similar approach is used in [CSV10], where
the authors suggest to facilitate the least significant bits of sensor data for embedding a
non-invertible watermark.

Basically, we identified two important points to take care of: (1) The execution context
of processes or functions (e.g., usage of TPMs, hardware architecture, etc.) and monitors
as well as (2) details about storing and transportation of artifacts including the detection
of (malicious) modifications.

2.8 The question of identity

Another important property is that we need to be sure whether two artifacts are
identical. This is apparently important for the recomputation layer. There, we focus on
validating computation results. Thus, we presume functional dependency from input
to output: (f : an → am). Now consider that we have a provenance data set as follows:
fi(a, b) → (c, d). That means that there was a computation somewhere in the past
where a function fi used artifacts a and b to compute artifacts (c, d). In case we want to
validate the computation, we first need artifacts a and b for invocation of fi. However,
usually we have to fetch these artifacts from a database, search for them on a file system
or even have to recompute them as well. Consequently, we have two new artifacts a′ and
b′, which are copies of the original artifacts. So, we have to ensure that identic(a, a′) and
identic(b, b′) holds. In such a way, we expect that invocation of f(a′, b′)→ (c′, d′) where

2.8. The question of identity 31

identic(c, c′) and identic(d, d′) holds and thus we are able to validate the computation.
In addition, we not only have to determine whether two artifacts are identic, but whether
there is an identic artifact in large set of artifacts requesting for efficient support of such
queries.

The question now is: How to define the function identic(). Or in other words what does
identical mean for different artifacts (e.g., attributes, values, annotations)?

2.8.1 Determining artifact identity

In literature, we found two methods to determine whether two artifacts are identic.

ID-based method

Most approaches are based on sequentially assigned IDs. For instance, database formal
approaches (e.g., How provenance [GKT07b]) and respective prototypes [GKT+07a] use
tuple identifiers. Furthermore, most all-in-one solutions for scientific workflows rely on
IDs (visible in log files) as well [BCDH08]. The advantage of using IDs is its easy and
fast application. Two artifacts are identic iff their IDs are identic: identicid(a, a

′) ↔
a.id = a′.id.6 However, IDs have to be globally unique and persistent. Despite the
necessity for global uniqueness, IDs are not linked to the values or structure of the
respective artifacts. That is, we can modify the values of primitive artifacts or even
delete artifacts in the inner structure of complex artifacts and the ID-based method still
considers them as identic, which is problematic for recomputation. Consequently, we
have to ensure that these modifications are not possible. For instance, in PostgreSQL
tuple updates are deletions and inserts resulting in new IDs.7 Alternatively, we have
to permit such modifications. The problem here is that the ID and the (data of the)
artifact are not linked to each other.

For us, application of the ID-based method means that every complex artifact needs a
primitive artifact carrying its ID.

Semantic-based method

A different way to determine the identity of two artifacts is using its semantics. For
instance, in databases two tuples are identic if they have the same type (belong to
the same table) and their attribute values are the same. We can adopt this method
for our data model. For us, two artifacts are semantically identical if they have the
same structure and all their primitive artifacts have the same role and value. However,
in contrast to the previous (ID-based) method this algorithm requires much more
computation effort than simply comparing two IDs. Furthermore, even unimportant
changes, such as comments, last read time-stamps etc., result in non-identity of two
artifacts. However, in case two artifacts are semantically identic, we can reliably use
them to validate computation results.

6In case artifacts of different types can have the same ID, we also check the type a.id = a′.id∩a.type =
a′.type.

7PostgreSQL 9.1.9 Documentation - Chapter 55. Database Physical Storage, available at http:
//www.postgresql.org/docs/9.1/interactive/storage-file-layout.html

http://www.postgresql.org/docs/9.1/interactive/storage-file-layout.html
http://www.postgresql.org/docs/9.1/interactive/storage-file-layout.html

32 2. On the nature of provenance

Combined approaches

The problem of sequentially assigning IDs is that there is no link between the content
(e.g., values of primitive artifacts in complex artifact) and its ID. Thus, we can use
techniques that are already used to ensure integrity and authenticity of data. For
example, we can additionally use digital signatures and hashes (computed on some parts
of the artifact) to determine identity (with a small residential risk of collisions of hash
values).

A different approach is to compute feature-vectors extracted from the artifacts it-
self, exemplary used to determine source code ownership, named software bertillon-
age [DGGH11]. Then, distance metrics are used to compute similarity score and
threshold to decide whether to source codes are clones of each other.

2.8.2 A flexible notion of identity

As discussed before, all known approaches have their strength and weaknesses. We do
not want to restrict our framework to one of these approaches, but use a combination of
them. To this end, we propose a mechanism that is based on inheritance. We define the
basic semantic identity function that first checks whether both artifacts have the same
role, then compare their structure, and finally determines if the values of all contained
primitive artifacts are identic. All complex artifacts that are used in a system (e.g., a
tuple in table or some object etc.) inherit the identity method from the basic complex
artifact. Then, it is possible to define specific identity methods for each artifact role, such
as identicse(Tuple t1, Tuple t2). In this way, we offer very restrictive identity functionality,
required by our recomputation layer (and subsequent ones). Furthermore, a user can
decide to simplify computation of identity, but has to ensure that the simplification is
semantically sound.

2.9 Insights gained

The primary result of this chapter is that there cannot be a one-size-fits-it-all provenance
solution due to the versatile nature of provenance. Consequently, we have to have
tailored solutions collecting the data for the single layers of our provenance framework.
Moreover, for fine-grained provenance capturing, data-model specific (i.e., only work for
relational databases) solutions have to be provided.

Definitions

In this chapter, we revealed that there is no general definition regarding the term
provenance as it describes an abstract goal not a particular method. Thus, we argue that
it may be impossible to find such a clear definition as provenance research in computer
science unifies different views from:

2.9. Insights gained 33

1. data-driven research in the area of linked data,

2. data-model research especially for relational databases,

3. process-driven research from scientific-data management

4. and (operation) system-based approaches.

Nevertheless, we are able to define several terms based on their usage in the context of
this thesis. As we found no suiting definitions, we define them ourselves, based on the
insights we made in this chapter.

Provenance. According to the Oxford Dictionaries8, the term Provenance is taken
over from the French word provenir meaning ’to come or stem from’, which is
itself based on the Latin word provenire, from pro- ’forth’ + venire ’come’. A
similar term, provenience has been adopted in archeology to define the location
where a discovery was made, while provenance also includes a complete chain
of prior owners in order to prevent forgeries. Similarly the term provenance is
used in arts and for books [Pea95]. In summary, provenance helps us to judge
on the validity of an assertion or the authenticity of an item. In this sense, we
consider provenance, in this thesis, as the goal to judge on the validity of data
or real-world item (retrospective aspect of provenance). In addition, it refers to
the incooperation of provenance data into (future) computation steps. It helps to
create more reliable results or to propagate changes in the validity of input to (all)
results that were computed based on them (prospective aspect of provenance).

Provenance concern. A provenance concern refers to the requirements of an applica-
tion, software system, or program with respect to provenance. In this section, we
revealed that there are lots of tools and approaches to address the goal named
provenance. Therefore, the provenance concern is, for instance, based on a threat
model and contains respective methods to address these threats. From a software
product (cf Chapter 3) line point of view, a particular provenance concern results
into several features. Thus, it can be seen as a configuration of a feature model.
Here, we encounter a limitation of current terms in SPL research, as a concern is,
to the best of our knowledge, is not variable itself. Nevertheless, this definition
fits best our purposes.

Provenance data. This term refers to data that is linked to an artifact and based on
that we can judge on the validity of the artifact itself. Provenance data is variable
in its form (schema), content, and interpretation, which is based on the respective
Provenance concern.

Provenance functionality. Provenance functionality defines the implementation and
integration that allows to capture provenance data as well as code fragments that
evaluate and incooperate the captured data.

8Oxford Dictionaries online edition. http://www.oxforddictionaries.com/

http://www.oxforddictionaries.com/

34 2. On the nature of provenance

Core challenges

In addition to the aforementioned issues, we identified two core challenges, which we
address in the remainder of this thesis:

Provenance integration. Our analysis indicates that there are plenty of approaches
on concept level, but mostly only the major approaches have been implemented.
Only a few of them address how to capture tailored provenance data for real-world
applications. Moreover, even less address the challenge of extending existing
systems with provenance capturing functionality. The question that has to be
issued, is how to extend an existing solution with provenance in a way that it
does minimally interfere with the residual system functionality, which we call
minimal-invasive integration of the Provenance concern. Moreover, we have to
define what exactly does the term minimal-invasive integration mean in the context
of extending an existing data-intensive system with new (tailored) functionality?

Tailored provenance store. Priorly, we revealed that the captured provenance data
is very specific to the application scenario. So the question that emerges is: How
to store provenance data that is application scenario specific efficiently, so that it
can be queried?

In the following chapters, we refine these abstract results to a research agenda addressing
the aforementioned challenges and finally resulting in the desired provenance software
product line. With the help of this provenance software product line, we investigate
whether minimal-invasive integration of the Provenance concern is feasible with the help
of implementation techniques used to develop software product lines. However, before
we can refine our objectives in Chapter 4, we have to give basic background on the
implementation techniques we intend to use and software product lines in general in the
next chapter.

3. Background on software product
lines

In this chapter, we give basic background on software product lines (SPLs). Since
one of the objectives of this thesis is to design and implement a software product line
of a general provenance API, we introduce the general concept of SPLs and how to
implement them. First, this encompasses domain engineering that, in our case, results
in a model describing the similarities and differences amongst existing provenance
capturing solutions. Second, we introduce background on application engineering, which
is the automatic creation of a tailored instance of the SPL (variant) based on specific
requirements of an application scenario. Finally, we provide an overview on techniques
to implement SPLs. These techniques are used in the remainder of the thesis to integrate
the provenance concern into our exploratory case studies.

Motivation for software product lines

Traditionally, there are two approaches in software engineering [CE00]: (1) general
purpose software and (2) individual software solutions. The first approach offers a
possibility to compensate the development effort with a high number of sold software
(licenses). Consequently, this approach results in large-scale and, to some extent, general
solutions. However, since specific requirements of an application scenario are usually
unknown, this type of software often contains a lot of unnecessary functions or does not
fulfill all the requirements of the application scenario. The second approach is designed
to fulfill customer-specific requirements, but it is more problematic to compensate the
development effort due to the smaller number of sold software (licenses). Furthermore
the second type may result in developing software for similar problems each time from
scratch.

In contrast to traditional software engineering approaches, the basic idea of software
product lines is to offer multiple similar solutions in one domain from one common code
base [PBL05, LSR07].

36 3. Background on software product lines

(I)

(II)

(III)

(IV)

Requirements

Domain engineering

Program
configuration

Variant
generation

Analysis Design Implementation

Application engineering

Figure 3.1: Phases of SPL Engineering adapted from [CE00]

3.1 Domain and application engineering

The concept of product lines is well-established in classic engineering disciplines, such
as in the automobile industry, and has been transferred to Software Engineering. In
an SPL there are several functionalities and other user visible properties (features). In
addition, there is a description, which features can be combined to create an instance of
the product line (e.g., a car), and a well-defined generation strategy that defines how the
selected features are assembled to form a product. The overall SPL engineering process
consists of two phases (cf. Figure 3.1) that we explain in more detail subsequently and
how these phases interact with design and implementation of our provenance API.

3.1.1 Domain engineering

The primary goal of domain engineering is to model a whole domain. According to
Czarnecki and Eisenecker, domain engineering consists of three steps that also apply to
our provenance API [CE00].

Feature-oriented domain analysis

In the first phase, a domain expert has to identify possible features in the domain analysis.
In feature-oriented domain analysis [KCH+90], domain experts identify requirements
(e.g., based on existing solutions) that are candidates for features of the SPL. For
instance, common requirements often represent features that are part of every variant
of the SPL, while differing requirements usually result into optional features that can

3.1. Domain and application engineering 37

be used to tailor variants to customer-specific needs. For our provenance API, domain
analysis means that we do a comprehensive analysis of the state of the art, to identify
core functionalities of current provenance capturing solutions. Here, one of the main
challenges is to identify variability dimensions where we can offer differing functionality.
For us, a variability dimension is highly related features that are for instance refinements
of each other or alternatives. In current provenance research there are several fields
(e.g., fine-grained approaches for databases [CCT09]) that may form such a dimension.
Furthermore, we have to show relationships between features of one variability dimension,
to offer fine-grained tailoring possibilities. Note that due to the nature of provenance
it is very likely that there are gaps (i.e., missing features or approaches) that may be
addressed by own approaches.

To sum up, the primary result of our provenance domain analysis should be a conceptual
framework containing variability dimensions and classification of known approaches
in provenance capturing regarding to these dimensions. This framework is, in fact,
not only valuable for developing our provenance API but also contributes to the chal-
lenging question what provenance is and where are the borders to related fields of
interest [CFLV12].

Database

Storage format

CSV Paged

Transactions

requires

Multimedia

Indexes

R*-tree M-tree

mandatory

optional

alternative

constraint

Figure 3.2: Feature model of a database SPL

Domain design

Based on the results of the feature-oriented domain analysis, SPL engineers build a feature
model that represents the analyzed domain in terms of features and the dependencies
amongst them. To this end, the feature model contains a description of the domain
that states, which features can be combined to generate a valid variant. To visualize a
feature model, commonly feature diagrams are used [KCH+90]. In Figure 3.2, we show
an exemplary feature model of a small database SPL. In this SPL, every valid variant
that can be generated can store data, because the feature Storage format is mandatory.
However, the user has to choose between one of the alternative (exclusive or) features
that define how the variant stores data: Either as comma separated values choosing
the CSV feature or on database pages in a proprietary data format by selecting the
Paged feature. Moreover, for optional features, such as Transactions and Multimedia

the user can choose any combination. In case the Multimedia feature is selected, the

38 3. Background on software product lines

variant contains the feature index as well, because it is a mandatory (child) feature
of Multimedia. Consequently, this mandatory feature (tree) is only part of a variant
if and only if the optional parent feature is selected. To express additional feature
dependencies, it is possible to define cross-tree constraints, such as features A excludes
or requires feature B. In our database SPL, the Transaction feature requires the paged
data format (e.g., for rollbacks etc.) of the feature Paged and thus, implicitly excludes
the CSV feature.

For our provenance API, we have to convert the conceptual provenance framework from
the domain analysis into a feature model. This includes specifying the single features
and defining their relationships. The core challenge here is to model and separate the
relationships between the different variability dimensions possibly interacting with each
other.

Domain implementation

The final step of domain engineering is the implementation of re-usable software artifacts
(including respective documentation etc.). These artifacts represent the features on code
level and are used to generate a tailored variant of the SPL based on the user selection
(of features) and the generation strategy. Due to a multitude of proposed strategies that
we refer to in the remainder as implementation techniques, we introduce them separately
(cf. Section 3.2).

Usually, SPLs are not created from scratch, but decomposed from previously used
monolithic applications [SLRS12]. Hence, the major purpose of these techniques is to
decompose software into features, not to integrate a completely new variability dimension
(here provenance) into an existing monolithic system. Consequently, we explore the
general ability as well as benefits and drawbacks when applying these implementation
techniques for integrating the provenance concern in the remainder of this thesis.

3.1.2 Application engineering

The aim of application engineering is to create a tailored variant of the SPL, based on
available features (from domain engineering) and specific user requirements (product
derivation). Consequently, as for traditional software engineering, the initial step is
requirement analysis. Afterward, these requirements are mapped to available features.
This results in a valid configuration of the feature model. A configuration is valid if
the selection of features satisfies all dependencies in the feature model. Usually, tool
supports prevents a user from selecting an invalid configuration. Yet, it is possible that,
due to dependencies in the feature model or user requirements not considered in domain
engineering, the SPL cannot satisfy all the requirements of a user. Then SPL engineers
have to adjust the SPL, for instance in form of new features or by changing feature
dependencies.

In this thesis, our aim is to provide a maximum degree of automation for the provenance
API. Consequently, we focus on automated generation of tailored programs (generative
programming [CE00]). Next, we introduce (implementation) techniques that allow such
automated generation.

3.2. Implementation techniques 39

3.2 Implementation techniques
In this section, we review existing techniques for implementing the domain artifacts of
an SPL and for generating tailored variants. We shortly discuss the limitations of an
intuitive technique showing the need for more advanced solutions. Then, we introduce
several techniques that can be used to implement the domain artifacts of our provenance
SPL. For all examples that we show in the following, we use a Java-like syntax. However,
respective explanations are valid for different programming languages as well, since we
emphasize general concepts and do not concentrate on implementation details.

3.2.1 Intuitive techniques as reference

An intuitive technique to implement optional or alternative functionality is the usage
of conditional statements, such as if or switch() in the source code of an applica-
tion. Although this technique is tempting due to its easy application, it introduces
several drawbacks, such as missing separation of concern or run-time overhead (e.g., for
evaluation of unnecessary conditions) [ABKS13].

Dynamic if approach

In Figure 3.3.(a), we depict a dynamic version of the intuitive technique for our database
SPL (cf. Figure 3.2). The main characteristic is that it is possible to change the value of
the feature Transaction in Line 2 to activate this feature. However, runtime updates
may rely on initialization or a specific feature selection (for our example the feature
Paged is required, which is not checked). Hence, re-configuration of a variant at runtime
faces fundamental challenges of consistent dynamic software updates, which is currently
an open problem beyond the scope of this thesis [PKC+13]. Additionally, source code
that belongs to deactivated features (e.g., Lines 7-8, 12-17, and 20) is still part of every
variant and may introduce performance penalties or undesired feature interactions.

Static if approach

In Figure 3.3.(b), we introduce a modification of the intuitive technique that we refer
to in the remainder as static if-technique. The primary difference is that in this
technique we use constants instead of variables. Hence, when compiling a variant, the
compiler should remove parts of the source code of deactivated features (Lines 7-8,
12-17) [Muc97, DEMD00]. In modern development environments (e.g., Eclipse1) this
code is often marked as dead code. However, not required methods (Line 20) or classes
are not removed. Due to these limitations, there has been plenty of research to offer
more advanced techniques.

Meaning for this thesis

Although the aforementioned techniques exhibit several drawbacks at first hand, they
are important for this thesis, because we want to investigate whether techniques used
for SPL implementation are also beneficial for integration of a new variability dimension.
Consequently, we need a ground truth to evaluate more advanced techniques.

1http://www.eclipse.org/

http://www.eclipse.org/

40 3. Background on software product lines

1
2
3 }
4
5
6
7
8
9

10
11
12
13
14
15
16 commit(r);
17 }
18
19 }
20
21 }

class Features{
public static boolean transactions=false;

public class QueryProcessing {
 Result processQuery(Query q){
 if(Features.transactions)
 createSavePoint();
 q.parse();
 q.generateQueryPlan();
 Result r = q.execute();
 if(Features.transactions){
 if(r.aborted())
 rollback();
 else

return r;

 void rollback() { ... } //in every variant

1
2
3 }
4
5
6
7
8
9

10
11
12
13
14
15
16 commit(r);
17 }
18
19 }
20
21 }

interface Features{
static final boolean transactions=false;

public class QueryProcessing {
 Result processQuery(Query q){
 if(Features.transactions)
 createSavePoint();
 q.parse();
 q.generateQueryPlan();
 Result r = q.execute();
 if(Features.transactions){
 if(r.aborted())
 rollback();
 else

return r;

 void rollback() { ... } //in every variant

Unreachable code.
Can be removed
at compile time.

Unreachable code.
Can be removed
at compile time.

(a) Dynamic if-approach (b) Static if-approach

Figure 3.3: SPL implementation with conditional statements

3.2.2 Preprocessor-based techniques

Conditional compilation with preprocessors, especially the C preprocessor, is a well-
known technique for implementing variability [SW10]. Here, the source code contains
different annotations that represent the features. For visualization purposes, in Fig-
ure 3.4.(a) we use the example already known from Figure 3.3, to demonstrate the
application of preprocessors. In the example, feature-specific source code is annotated
with #ifdef <annotated statement> #endif statements. Before compilation, the pre-
processor removes feature-specific code whenever the conditional statement is not true.
As a result, the respective feature combination is not selected. For instance, if feature
Transactions is not selected by a customer, the preprocessor removes Lines 3, 7-10, and
13 from the source code in Figure 3.4.(a). Hence, in contrast to the intuitive technique,
using preprocessors we can physically remove code fragments, such as methods, which
are not required.

We can use preprocessors on a very fine-grained level, since it operates character based.
For instance, we can modify names of methods, or add additional arguments to method
signatures for certain variants of an SPL. Moreover, it is possible to nest #ifdefs in
arbitrary ways and scatter the conditional code over the entire code base, which possibly
consists of hundreds of thousands lines of code. This results in code that is hard to read
and error-prone leading to assertions that introducing variability at a large scale with
#ifdefs is harmful [SC92] even referred to as #ifdef-hell [LST+06].

Advanced preprocessor-based techniques

Due to the mentioned drawbacks of #ifdefs, improvements have been proposed to
address the limitations of preprocessor usage. From our point of view, the most
prominent and analyzed technique is Colored IDE (CIDE) also referred to as virtual
separation of concerns [Käs10]. The idea behind CIDE is to map colored annotations

3.2. Implementation techniques 41

1
2
3
4
5
6
7
8
9

10
11
12
13 commit(r);
14
15
16 }
17
18
19
20 }

public class QueryProcessing {
 Result processQuery(Query q){
 #ifdef Transactions
 createSavePoint();
 #endif
 q.parse();
 q.generateQueryPlan();
 Result r = q.execute();
 #ifdef Transactions
 if(r.aborted())
 rollback();
 else

 #endif
return r;

 #ifdef Transactions
 void rollback() { ... }
 #endif

1
2
3
4
5
6
7
8
9

10 commit(r);
11
12 }
13
14 }

public class QueryProcessing {
 Result processQuery(Query q){
 createSavePoint(); //Feature Transactions
 q.parse();
 q.generateQueryPlan();
 Result r = q.execute();
 if(r.aborted())
 rollback();
 else

return r;

 void rollback() { ... }

Color scheme
Transactions
CSV
Paged
...

(a) Common preprocessor usage (b) Colors representing preprocessor annotations

Figure 3.4: Conditional compilation with preprocessors

replacing #ifdefs statements to avoid the #ifdef hell [FKA+12]. Additionally, CIDE
supports feature models etc. to provide a holistic approach for SPL engineering. Related
techniques have the same goals (e.g., [BCH+10]), but do not offer the holistic approach.

Therefore, we limit our analysis for this type of techniques to CIDE representing the
currently most prominent preprocessor-based technique.

3.2.3 Aspect-oriented programming

One of the basic problems of preprocessor-based techniques or the intuitive technique is
missing cohesion of features. Ideally, the features should be implemented completely in
a cohesive unit (e.g., an own file) containing only feature-specific artifacts [TOHS99].
All techniques introduced so far have a tendency to scatter their feature-specific code
across the code base. In fact, they do not separate the particular code fragments of
features physically, but virtually [KAK08].

1
2
3
4
5
6
7 }
8 }

public class QueryProcessing {
 Result processQuery(Query q){
 q.parse();
 q.generateQueryPlan();
 Result r = q.execute();
 return r;

1
2
3
4 // advice code
5
6
7
8 rollback();
9 else
10 commit()
11 }
12
13
14
15
16 }

aspect Transactions {
 pointcut transactionConcern()
 : execution (Result QueryProcessing.processQuery(..));

 before() : transactionConcern(){ createSavePoint(); }
 after() returning (Result r) : transactionConcern(){
 if (r.aborted())

 // internal method code
 void createSavePoint(){ /* */ }
 void commit() { /* */ }
 void abort() { /* */ }

(a) Feature Base (b) Feature Transactions implemented as aspect

Figure 3.5: SPL implementation with AOP

42 3. Background on software product lines

A technique applying physical separation is aspect-oriented programming (AOP) [Kic96].
In AOP, a feature may be defined by multiple aspects. A particular aspect refers to a
feature that is encoded in an own file. AOP works similar to triggers (in AOP pointcuts)
and trigger functions (advices) in databases. In Figure 3.5, we demonstrate SPL
implementation using AOP. Part (a) of the example contains the original implementation,
typically located in an own file (e.g., QueryProcessing.java), without any source code
of the optional feature Transactions, while Figure 3.5.(b) is the implementation of feature
Transactions. The definition of pointcut transactionConcern() in Line 2 and 3 states
the context (usually a method or constructor) in which the advices linked to this pointcut
are executed. In the example, the pointcut refers to every method processQuery() in
class QueryProcessing that returns a class of type Result. Note the use of wildcards
(..) in the signature of the referred method processQuery (Line 3). Using wildcards
allows to refer to multiple methods with one pointcut, such as processQuery(Query q)

or processQuery(Query q, int priority). The advice definitions (cf. Figure 3.5
Line 5-10) include when to execute the advices, the linked pointcut, and the source code
to execute. Consequently, the first advice in Line 5-7 is executed before execution of the
method processQuery() and creates a save point in case the transactions is aborted.
In contrast, the second advice (Line 8-10) is executed after method processQuery().
It organizes either rollback of the transaction in case of abortion or persistently saves
the changes in the commit method.

3.2.4 Feature-oriented programming

Another technique that applies physical separation is feature-oriented programming
(FOP). In FOP, all (source-code) artifacts that belong to one feature belong to one
cohesive unit. This also applies to the base feature that contains the implementation
that is the same for all variants of the SPL. To generate a particular variant of the
SPL, the base implementation and the features, selected by the user, are composed
incrementally [BSR03]. In the following, we explain the generation process of a variant.
For details, such as algebraic properties, we refer the reader to [ALMK08].

1
2
3
4
5
6
7 }
8 }

public class QueryProcessing {
 Result processQuery(Query q){
 q.parse();
 q.generateQueryPlan();
 Result r = q.execute();
 return r;

1
2
3
4
5
6 abort();
7 else
8 commit()
9 }
10
11
12
13
14 }

public refines class Transactions {
 Result processQuery(Query q){
 createSavePoint();
 Result r = Super().processQuery(q);//call base
 if(r.aborted())

 // additional methods
 void createSavePoint(){ /* */ }
 void commit() { /* */ }
 void abort() { /* */ }

(a) Feature Base (b) Feature Transactions implemented as refinement

Figure 3.6: Feature-oriented SPL implementation using AHEAD

In Figure 3.6.(a), we depict the original implementation of class QueryProcessing,
which contains only functionality of feature Base. Similarly to AOP, this implementation

3.3. Advanced topics of relevance for this thesis 43

contains no source code of the optional feature Transactions. The source code of
feature Transaction is encoded in an own file that refines the original implementation
(cf. Figure 3.6.(b)). Using FOP, an SPL engineer has to provide a refinement for every
class that needs additional or modified functionality. To add new functionality, we
encode an additional method in the refinement class having the same signature, such
as QueryProcessing in Figure 3.6.(b). Generating, a variant then means using the
refinement as wrapper, and in case the refinement contains the Super() keyword (Line
4), the original implementation is called.

3.2.5 Additional techniques and tool support

The combination of FOP and AOP is called aspectual feature modules (AFM) [ALS08].
We do not introduce AFMs, since we start using FOP and AOP as we have mature
tool support for these techniques. We will only consider AFMs in case we identify
the requirement for introducing a mixture of homogeneous and heterogeneous new
functionality at a level of granularity beneficial for AOP and FOP in our provenance API.
Moreover, in this thesis we require proper tool support to implement several case studies
using different implementation techniques. To this end, we apply FeatureIDE [TKB+14]
offering, to the best of our knowledge, the most comprehensive support for different
implementation techniques and it is fully integrated into the Eclipse IDE2.

3.3 Advanced topics of relevance for this thesis

Subsequently, we introduce advanced topics that are relevant for the remainder of this
thesis. First, we explain variant composition as superimposition of feature structure
trees for feature and aspect-oriented programming. Then, we introduce different types
of cross-cutting concerns and explain how they are supported by the aforementioned
implementation techniques.

3.3.1 Composition of features structure trees

To compose a variant of program using different features, a mechanism is required to
abstract from implementation details in order to be able to compose different assets of a
software product line such as source code implemented in different programming lan-
guages or the required documentation. To this end, the •-operator is introduced [AL08].
The basic idea is to have qualified paths that indicate, which assets have to be composed.
Moreover, the result of a composition step of two features is again a feature containing
the original implementation extended by the second feature, which then can used for
additional refinement. In Figure 3.2, we explain this procedure with our database ex-
ample composing the base feature Database with the optional extension Transactions

denoted as: DBwithTransactions = Transactions•Database. The intended result of
the composition is that the query processing of the database then supports transac-
tions. For explanation, imagine that query processing is implemented in one source file
QueryProcessing.java.

2Feature IDE is accessible via http://wwwiti.cs.uni-magdeburg.de/iti db/research/featureide/

http://wwwiti.cs.uni-magdeburg.de/iti_db/research/featureide/

44 3. Background on software product lines

DBwithTransactions Database

Query
Processing
.java

src doc

readme
.xml

Query
Processing
.java

src doc

readme
.xml

Transaction

Query
Processing
.java

src

originalrefinement
original
and

refinement

Figure 3.7: Excerpt of a features structure tree

To compose the variant, the asset from original implementation in the base features is ex-
tended with the asset sharing the same qualified path: src.db_core.QueryProcessing.
This can be depicted using feature structure trees that visualize, which assets are com-
posed as shown in Figure 3.7. How two assets are composed depends on the applied
language and respective composition rules have to be provided. For instance in Figure 3.6
the Super keyword defines that the additional functionality wraps around the original
implementation. In case this keyword is not provided the whole method is replaced. For
this thesis, these implementation details are relevant as they may explain performance
penalties of an applied technique. Moreover, in case we require composition support for
new asset types (e.g., programming languages), we only have to provide the rules how
to compose the assets in case we need to compose assets, because we can rely on an
operator that is well studied and implemented [ALMK08].

3.3.2 Homogeneous and heterogeneous cross-cutting concerns

Due to one dominant decomposition strategy, the code of a certain feature may be spread
over the source of the resulting program. To address this challenge the aforementioned
techniques, such as feature-oriented programming and aspect-oriented programming,
assist a developer to implement concerns in cohesive source-code units. However, it has
been shown that there are different types of cross-cutting concerns defined upon the way
how they extend the already existing code base. According to Colyer et al. [CRB04],
there are homogeneous and heterogeneous cross-cutting concerns. In the following, we
explain both classes of cross-cutting concerns with the help of the example in Figure 3.8.
First there is an original program that is extended with additions of both concern types.

Homogeneous cross-cutting concerns. In Figure 3.8, on the right hand side a ho-
mogeneous extension of an existing source code is shown. As the locations where
to extend the original program are scattered across all source files, the concern is
cross-cutting. However, the basic property of a homogeneous cross-cutting concern
is that the extensions are all the same. We depict this by same color in Figure 3.8.

3.3. Advanced topics of relevance for this thesis 45

Source 1 Source 2 Source 3

Original program

Source 1 Source 2 Source 3

Original program

Source 1 Source 2 Source 3

Original program

Addition 1 Addition 2 Addition 3

Additional feature

Addition

Additional feature

Heterogeneous cross-cutting
concern

Homogeneous cross-cutting
concern

Figure 3.8: Homogeneous and heterogeneous cross-cutting concerns

Heterogeneous cross-cutting concerns. The basic difference of this type of cross-
cutting concern is that there is not a single extension but multiple ones. For
instance, in Figure 3.8, the concern is still cross cutting, because there are extensions
in all source code files of the original program. However, for each file there are
different extensions, indicated by the respective colors in the example.

The concern type is important as it is differently supported by the introduced imple-
mentation techniques, as we discuss shortly.

Applicability of the implementation techniques

From the implementation techniques we introduced, the intuitive technique as well
as advanced preprocessor based techniques hardly support efficient implementation of
cross-cutting concern. This is because, implementing such as concern results in copying
the source code, required to implement the desired functionality, to the respective
locations in the source code manually. Thus, for them the question whether a cross-
cutting concern is homogeneous or heterogeneous is of minor relevance. In contrast, for
aspect and feature-oriented programming the type of the concern is relevant. Aspect-
oriented programming well supports homogeneous cross-cutting concern, because one
advice can be bound to multiple join points, for instance using wildcards. By contrast
feature-oriented programming supports heterogeneous cross cutting concerns, but has
limitations with homogeneous ones. To support both concern types is the basic idea for
the introduction of aspectual feature modules [ALS08].

46 3. Background on software product lines

So far, we do not know how cross cutting the provenance concern is. Therefore, we
cannot estimate whether it is heterogeneous or homogeneous. Consequently, we have
to implement the provenance concern into exploratory case studies our case study to
answer the questions: How cross cutting is the provenance concern and whether it cuts
heterogeneously or homogeneously through the original programs?

3.4 Summary

In this chapter, we introduce background on software product lines (SPLs) for our
intended provenance API. To this end, we give background on the way how to design and
implement SPLs and the associated procedures of domain and application engineering.
Moreover, we introduced five implementation techniques. We include two intuitive
techniques as reference, preprocessors, feature-oriented, as well as aspect-oriented pro-
gramming. Finally, we discussed different types of cross-cutting concerns and their
known correlation to implementation techniques.

4. Toward a general provenance-
capturing solution for existing
systems

As stated in Chapter 1, the goal of this thesis is to offer a general solution that allows
for seamless integration of customized provenance capturing functionality into existing
systems. Furthermore, we want to determine the influence (e.g., regarding performance)
of different implementation techniques known from software product line engineering. To
this end, we have to motivate the need for such a solution based on limitations of current
provenance capturing solutions and requirements of systems that need provenance
integration. To this end, we analyze current provenance capturing solutions in the first
part of this chapter. Then, we use these results to refine the goals of this thesis and
define criteria to evaluate them. Finally, we state the desired insights and course of
action to achieve the previously mentioned insights.

4.1 Reasoning about the necessity for provenance

integration in existing systems
In the first part of this section, we justify why we favor integrating tailored provenance
rather than usage of existing solutions or why we do not want to re-implement large
parts of existing infrastructure that need provenance support. For our explanations, we
introduce a large-scale joined research project supporting the validity of our claims and
explanations. In addition, we discuss in how far provenance challenges of this research
project represent general, real-world challenges to avoid overfitting of our claims. In the
remainder of this thesis, we also apply this research project to identify case studies that
contain the challenges stated in this section.

In the second part of this section, we review in how far existing provenance solutions
and approaches can be used to integrate tailored provenance support and discuss their

48 4. Toward a general provenance- capturing solution for existing systems

limitations and explain why they are not sufficient to fulfill our requirements. The final
consequence is that current solutions are not feasible and hence the need for a new
approach that we introduce in the next section.

4.1.1 The need for customizable solutions

In the remainder of this thesis, we use our experiences from the Digi-Dak project already
introduced in Section 2.3.2 to justify claims and motivate design decisions. While we
used this project in Section 2.3.2 to generally motivate the need for different provenance
layers, in this section, we amplify it and discuss the requirements from the software
engineering perspective. Furthermore, we state that these experiences and requirements
are not artificial, but to some extent generalizable. As a result, this section motivates
the need for a solution that allows for seamless integration of a customized provenance
concern.

Motivating running example Digi-Dak project

In Digi-Dak1, partners from academia, industry, and law enforcement agencies develop
new solutions for crime-scene investigations. The original project running from 2010 to
2013 focused on non-destructive acquisition of latent finger prints at crime scenes that
we named Digital Dactyloscopy2 [MGD+12]. Then, in 2012, with DigiDak+ additional
forensic evidences, such as traces on firearm cartridges and lock pins are included.

However, independent of the type of the evidence, one core challenge is keeping the
chain-of-custody. The primary goal of the project is to produce evidences that may
be used in court. Therefore, we have to document the whole chain from acquisition of
the evidence, over quality enhancement (e.g., application of different filters [HKGV11,
KHD12, KHDV12]), most likely stored in multiple large-scale databases to its final usage
in court [Bis02]. Moreover, we have to prove the validity the general procedure, for
instance via Daubert hearings [Cen93, DG01].

In summary, we argue that the chain-of-custody is a special form of highly reliable
provenance where we have to ensure the integrity and authenticity of an evidence itself
and respective provenance data. By integrity we understand that a data item is unaltered.
Authenticity indicates that the data set, describing a specific forensic evidence, belongs
to a real evidence found at a crime scene and is, for instance, not forged.

Our focus: Offering a bundle of solutions

The validity of overall analogue treatment of forensic evidences, including integrity
and authenticity, is based on long time experiences, scientific results, and assump-
tions [MMJP05]. The questions now are: How to transfer this knowledge to the digital
process? What new challenges arise? How to provide the same level of trust in such
evidences? Or is it even possible to extend that level of trust? Our focus in this project

1http://www.forschung-sachsen-anhalt.de/index.php3?option=projektanzeige&pid=14049
2The abbreviation Digi-Dak is taken from the German translation Digitale Daktyloskopie.

http://www.forschung-sachsen-anhalt.de/index.php3?option=projektanzeige&pid=14049

4.1. Reasoning about the necessity for provenance integration in existing systems 49

was not the validity of the overall procedure, but enriching the parts of the overall
solution, invented by our partners, with the desired provenance data. Moreover, we
store the artifact data including respective provenance data and prevent forgery of these
evidences including revealing for instance malicious modifications.

Basic requirements. These basic prerequisites have certain effects on our desired general
provenance solution:

B1 - Research in progress. We need a complex infrastructure, where several features
cannot be specified in the beginning of the project, because it is for instance simply
unknown how current laws and guidelines can be transferred from the analogue
processes to the digital ones. Furthermore, we cannot simply gather all data, since
these evidences are person-related data affected by additional laws. Thus, the way
of protecting these data and linking it to the provenance is not clear.

B2 - Nation-specific legislation. Although we focus on Germany and German legis-
lation, we need to be aware that different countries have different requirements.
Moreover these requirements may be complementary.

B3 - Privacy requirements. Currently, there is large discussion on laws regarding
privacy or treatment of digital forensic evidences (e.g., [GFRD09]). Thus, we need
to be aware that requirements regarding provenance capturing may change quite
rapidly. Hence, we should not use inflexible solutions but adaptive ones.

B4 - Security and performance trade off. Especially securing data against forgery
or capturing details of computation processes may result in large performance
deficits. Moreover, we figured out that performance is a critical point. To achieve
acceptance of such new solutions, the overall procedure (including the provenance
concern) needs to be transparent and should not have a negative effect on the way,
for instance a finger print expert works. This results in the requirement that we
have to minimize the effects of provenance capturing. Thus, we need fine-grained
customized solutions that offer only the desired functionality.

B5 - Flexible adaption. Finally, as we do not only want to provide a solution for
certain requirements of the Digi-Dak project, but a to some extent general solution,
we have provide a solution that flexibly fits into a multitude of existing systems
and infrastructures.

Specific requirements requesting flexible solutions. Besides the aforementioned basic
requirements there are more specific ones that we discuss subsequently. In particular,
both requirements are imposed due to continuous changes of required provenance support
throughout the project. This results in the need for customizable provenance solutions.

S1 - Different provenance requirements in different phases of the project. In
different phases of the project, we need different types or granularity of provenance.

50 4. Toward a general provenance- capturing solution for existing systems

For instance when designing or integrating new preprocessing steps, we may want
to verify the correctness of the implementation and thus, are interested into the
origin of every single pixel of an image (similar to debugging). By contrast, in
that phase we are simply not interested in detecting forgeries etc. Now imagine,
we are convinced of the correctness of an implementation and want to benchmark
that part of the infrastructure, which includes also query response times. In this
case, we do not only want to know which input was used for repeatability reasons.
In turn, in case we want to certify (parts) of the Digi-Dak infrastructure, we need
to ensure the complete chain-of-custody with detailed provenance granularity and
requirements from IT-Security, such as integrity and authenticity.

S2 - Allowing rapid independent prototyping. Especially for preprocessing of fin-
gerprint images there are plenty of existing solutions or techniques. These solutions
are modified for our purposes, enhanced, combined, or results of totally new re-
search. For instance, in case, a new approach is found in literature an evaluation
tool is rapidly implemented to benchmark this approach. The basic purpose of
these tools is proof of concept of functional behavior and sometimes first feasibility
studies. However, most of these approaches are not used in the final Digi-Dak
infrastructure. So we have two possibilities: (1) integrate the provenance support
from scratch or (2) integrate it later on, in case we want to use that approach
or tool. The first approach results in large implementation and design overhead
and offers little benefit in return as the basic goal is functional proof of concept.
Moreover, as our provenance requirements change throughput the project (see B1
and S1), already integrated provenance functionality may not be compatible to
newer ones. As a result, we have to integrate the provenance functionality later
on in minimal-invasive way to allow rapid independent prototyping.

Summarily, we conclude that we need tailored provenance support for Digi-Dak. More-
over, large parts of the infrastructure require provenance support. However, for many
systems of the infrastructure the specific required provenance functionality changes
continuously throughout the duration of the Digi-Dak project. Consequently, we need a
bundle of tailored solutions that can be seamlessly integrated into our existing systems
and a solution to avoid re-implementing large parts of the infrastructure again and gain.

Generalization of the running example

The running example may inherit special requirements, due to the nature of forensic
treatments. Nevertheless, in the remainder we use this example to select case studies
(cf. Section 6.1.1) to address different parts of the overall infrastructure. The overall
infrastructure aims at creating a holistic approach that is required to build a complete
solution that acquires forensic traces and enhances the quality of raw images in multiple
ways. Consequently, the chain-of-custody (i.e., provenance) plays a decisive role. This
ensures comprehensiveness and soundness of the results gained in this thesis as we point
out shortly.

4.1. Reasoning about the necessity for provenance integration in existing systems 51

Comprehensiveness. As we consider a complex system having different tools that require
different granularity of provenance and work on the project for a time span of more
than three years, we consider our results and experiences as comprehensive.

Soundness. A challenging problem when performing empirical studies is to avoid biasing
the results by improper selection of the case studies. For instance, using self-implemented
case studies may unintentionally contain (architecture) elements that simplify or harden
the propositions that shall be shown. Alternatively, the problems contained in such a
case study may not represent real-world challenges. To circumvent this threat, we select
case studies that we did not implement or design by ourselves, but are taken from the
Digi-Dak example and contain different complexity (mainly measured in amount of code
lines). This ensures soundness of our results.

Similar experiences from practitioners. To strengthen our claims and argumentation to
produce comprehensive and sound results, we talked to practitioners that have long term
experiences for incorporating provenance in real-world systems. For example, MITRE3,
is a large non-profit organization that works on public projects where some of them
include provenance. There results and experiences, tellingly referred to as ”provenance
capturing in the wild” [ACBS10], rely on similar requirements as we worked out for Digi-
Dak for totally different scenarios. These results and experiences addressing provenance
for real-world systems are also published such as in [ACBS10, CBSA11, Cha08].

As a result, we argue that selecting our case studies from the context of Digi-Dak project
delivers valuable insights for practitioners and scientists.

4.1.2 Are current solutions feasible?

Before we start to implement our own solutions, we review currently used approaches
that could be used to implement our case studies. In our literature study, we found four
classes of approaches [SSS12a]. Summarily all of them have limitations that motivate
the necessity for our new solution.

Formal database-related approaches

Plenty of research focused on formal models mainly based on the relational alge-
bra [CCT09], such as [CW00, BKT01, GKT07b, ADT11], or on related data models
which may be mapped back to a nested relational calculus [ADD+11]. However, existing
implementations of these formal approaches, such as Orchestra [GKT+07a], do not
satisfy our need for variability, as they are built exclusively to capture their form of
provenance and to the best of our knowledge do not exist as extension for existing major
database systems.

Closed-world systems for provenance capturing

Especially to support scientific-data management there are domain-specific solutions that
allow to design the workflow and capture provenance as well (e.g., Kepler [LAB+06]).

3http://www.mitre.org/

52 4. Toward a general provenance- capturing solution for existing systems

However, there are two reasons why we cannot apply such solutions. First, we need to
be able to flexibly, integrate, un-integrate, or modify provenance capturing functionality.
Thus, these solutions are to restricted. Second, there currently is only one approach
that allows for combining coarse- and fine-grained forms of provenance [ADD+11].
However, this approach does not consider the variability requirements and the security
requirements, crucial for forensic data management.

System-based approaches

Another group of provenance-aware systems, are solutions that are integrated into
operating systems [MHBS06] or provide only low level information such as which files
were created or read [MS12, FMS08]. Although these approaches are hard to circumvent
they do not provide the amount of information nor the variability we are looking for.
However, these solutions can be used as additional security mechanism.

Provenance capturing real-world applications via intercepting communica-
tion

In literature, there are several approaches that provide monolithic APIs [ACBS10].
However, these approaches require that the application for that we want to capture
provenance is permanently changed and actively uses the API and thus, has to be aware
of provenance capturing. To overcome this limitation, there are solutions that intercept
provenance. In fact, these systems rely on homogeneity in the infrastructure, such
as a communication between different parts of the infrastructure via services [SPG08,
GMM05] or buses [CBSA11]. Consequently, the granularity of the provenance captured
is restricted to the exchanged messages. Thus, we can use the same concept for our future
case studies. Nevertheless, these solutions do not support our variability requirements
and they are limited to one communication infrastructure. Finally, these approaches do
not support to capture detailed provenance and thus do not fulfill our requirements.

4.1.3 The necessity for an own solution

As a result of our literature analysis, we state that we found two major problems of
currently used approaches. First, none of the approaches published so far, is able to
fulfill our variability requirement. Second, most solutions are limited to their application
domain and cannot track fine-grained and coarse-grained provenance, necessary for our
forensic scenarios. Consequently, we need to implement our own solutions.

4.2 The goal of minimal-invasive and efficient prove-

nance integration

As motivated before, the overall goal is to integrate a customized provenance concern
into an existing system. Generally, major changes of existing systems are critical, since
we do not want to introduce errors or increase resource consumption (e.g., CPU or main
memory) excessively. To this end, we want to modify the system in a minimal-invasive

4.2. The goal of minimal-invasive and efficient provenance integration 53

way. This term is an analogy borrowed from surgical procedures representing the abstract
goal that we want to modify the functional and non-functional behavior of system as least
as possible. To evaluate the degree of invasiveness different implementation techniques
(cf. Section 3.2) inflict, we define respective evaluation criteria subsequently based on
our prior work [SSS12b].

4.2.1 A notion of invasiveness

While invasiveness for surgical procedures is defined on skin injuries, damage inflicted to
reach the intended region of the body, and minimizing the time to recover [Paz11, Wic87],
to the best of our knowledge these properties are not defined for modifications of existing
software systems. Thus, we have to define what minimal invasiveness means in the
context of this thesis. Generally, we have very similar goals when modifying existing
systems, as surgeons in medical treatments.

1. Minimizing manual implementation and maintenance effort.

2. Non-interference with existing functionality (if not intended).

3. Robustness of non-functional properties (e.g., main-memory consumption).

Generally there is an original object-oriented program O and an extension E that
introduces new fields, methods or refines methods (or constructors)4, possibly consisting
of multiple features that shall extend the existing monolithic program O. Moreover,
there is a generation strategy (cf. Section 3.1) ⊕t that is used by implementation
technique t (cf. Section 3.2) and the resulting program OE = O ⊕t E. Then, we
qualify differences between O and OE regarding to certain effects on functional and
non-functional properties that we define shortly.

Invasiveness itself states the number and type of changes in the source code necessary
to integrate the provenance concern. In addition, it states the ability to automatically
remove not required parts of this concern (e.g., for customizing reasons). The basic
assumption is that a less invasive integration has a lower probability of introducing
non-obvious errors regarding the functional behavior of OE. We now discuss the expected
errors when introducing different levels of invasiveness.

Influences on functional behavior

Provenance features may affect the functionality of the original system differently. To
qualify the level of invasiveness, we rely on a modified version of a categorization
system [Kat06]. The categorization system, introduced by Katz, is used to group aspects
in AOP only. Alternative categorizations (e.g., [RSB04, SdM03]) are known, but do not

4Note with this definition, we explicitly exclude modification that add or remove single characters, for
instance to change method names, which is possible using preprocessor-based techniques. The reason is
that these un-disciplined annotations introduce several severe problems and can be avoided [KKHL10].

54 4. Toward a general provenance- capturing solution for existing systems

offer all the categories or a precise definition of the single categories. In addition, we
can easily extend the single groups in such a way that we cover features in general.

We introduce some modifications to the original categorization and discuss their effects
and necessity shortly. First, we add an additional group to represent the ultimate
goal of having no negative effect on the system at all, for instance by application of
hardware-based solutions. Although these solutions are beyond the scope of this thesis,
we want to mention them explicitly for (1) potential future work and (2) indicate that
we are aware that every software-based solution has some (probably) negative influence.
Second, we do not consider aspects but changes and group them to features. Each
feature is implemented by several changes (e.g., if conditions). As a result, we are not
limited to AOP but can use arbitrary implementation techniques.

Table 4.1: Categorization of effects on functional behavior based on [Kat06]

Add to system Modify

field method class

Non-invasive change no no no no no no

yes yes yes yes no no

Regulative change yes yes yes yes yes no

Invasive change yes yes yes yes yes yes

feature-specific
 variables

control
flow

system
variables

Spectative change

In Table 4.1, we depict our version of the categorization introduced in [Kat06]. In
the remainder, we explain the ideas behind the single categories and their respective
restrictions.

Non-invasive change. A non-invasive change does not introduce any change to
functional nor to non-functional properties. Nevertheless, we still can capture the
desired provenance information. In fact, according to our definition E is empty. That
is, E does not introduce fields or methods and thus O = OE, which means that the
binaries of both programs are the same. To be able to collect provenance information,
we need hardware support that for instance logs, which addresses in the RAM are read
and what data is transferred via a network etc. In this thesis, we limit ourselves to
software modifications. Nevertheless, as we want to integrate the provenance concern as
less invasive as possible and thus want to get as close as possible to this type of change.

Spectative change. The basic properties of these kind of changes is that it works as
if we stop the program, do some independent computations and return to the program
without any change of the program states. More formally, we have a sequence of steps
of original program O denoted as s0 . . . sn. In each step sx status(O, sx) of program
O is changed where the status is defined by the all objects of O and their respective
(primitive) field values (see artifacts in Section 2.8.2) and the position of the instruction
pointer. A spectative change E executes its functionality between two steps sx and sx+1

4.2. The goal of minimal-invasive and efficient provenance integration 55

in such a way that status(O, sx) = status(OE, sx) and there is a status status(OE, sx+k)
so that status(O, sx+1) = status(OE, sx+k) holds. Moreover, for each future status,
where no functionality of E is executed, status(O, sx+1+n) = status(OE, sx+k+n) holds.
Consequently, E must not modify the control flow or change any objects nor their values
of O. It may however change internal artifacts of E, for instance to capture provenance
of objects in O.

Spectative bounded change. There are cases when even non-functional properties
may have an impact on functional properties. Therefore, we introduce a special sub
type of the spectative change: the spectative bounded change. The basic idea is as
follows. Imagine a database system with very simple transaction support. To detect and
resolve deadlocks each transaction has a (watch dog) timer as often used in embedded
systems. This timer is reset whenever the transactions reads or writes a tuple. The
basic assumption is when the timer exceeds a pre-defined value, the transaction was
not able to read or write a tuple, so there probably is a deadlock and the transaction
is aborted and then started again. Now, due to the provenance functionality, it may
be possible that the counter is not reset due to the additional functionality and the
system assumes that there is a deadlock and aborts the transaction. Similar scenarios
are also possible for different non-functional properties, such as functions that monitor
the RAM consumption etc. In order to prevent such effects, we can annotate the status
with additional information based on non-functional properties and bound the difference
between these annotations of two states. For the database example, we annotate the
each status sx with a time stamp t(sx) and define that a change is bounded in case for
status(OE, sx+k) : bound < t(sx+k)− t(sx) holds. However, we only use this extension
in case there is such a coupling of function to non-functional properties.

The spectative change is very important for our minimal invasive integration, because

1. it is the lowest invasive level that we can reach using software engineering techniques
only and

2. as we do not change the state of O it is very unlikely that we introduce functional
errors when integrating the provenance concern.

Nevertheless, in contrast to the previous change class, the influence on non-functional
properties is hardly predictable.

Regulative change. For this change type we allow that E changes the control flow in
O. In particular, among the objects of O there is a set of decision variables d that are
used only to manipulate the control flow, such as if or switch case blocks. Now E
may change any of these decision variables, so that O may use a different branch of an
if condition or switch-case block. This way, we limit the amount of changes in such a
way that we do not integrate totally new functionality, but use existing one. The main
hypothesis is that this change is less error prone than a total invasive change where
there are no limitation to what E may change.

56 4. Toward a general provenance- capturing solution for existing systems

For instance in databases, we can use such a mechanism to implement (and propagate)
view deletion in materialized views if the original tuple has been deleted in the source
table by extending the selection predicate with provenance information.

Invasive change. Here, there are simply no limitations what may be affected. Hence,
this type of change should be avoided as it is in opposition to our goal of minimal-invasive
integration.

4.2.2 Measuring invasiveness of different implementation tech-
niques

For evaluation purposes of implementation techniques, we use groups of criteria: (1) inva-
siveness, (2) implementation and maintenance effort, and (3) changes to non-functional
properties. To qualify (1) invasiveness, we rely on the categorization introduced in the
last section. For the remaining groups, we now define respective evaluation criteria to
be able to quantify invasiveness in general.

Implementation effort and maintainability

One key point is the effort to integrate the provenance concern and later on maintain
it. However, qualifying the implementation effort is quite hard, as we implement the
same functionality multiple times. So, after the first implementation all subsequent
ones should benefit from the first one. For instance, we know in what classes in the
original program we find the desired provenance information. As a result, we first use
one objective measurement, namely feature cohesion. Coherent features are implemented
separately (e.g., in own files) containing only the feature code, while non-coherent
features are scattered over the whole source code. We favor coherent implementations
as they are considered to provide better separations of concerns and in return are better
for implementation and maintenance.

As second criterion, we apply our subjective impression, how much effort for locating
the points where we need to integrate the provenance concern is required. At this
point, we assume that for many case studies identifying all points in the source code
of the application where we need to integrate the provenance concern is one important
factor. Thus, we report on whether the implementation techniques help us to find
and integrate the provenance concern. Moreover, we expect that we need to re-factor
or even re-structure the source code of the original programs to be able to integrate
the provenance concern, which may also be linked to the supported granularity of the
implementation technique.

On a more general base, one important question is how programs and their decomposition
in classes interfere with the provenance concern. That means for instance, how cuts
the concern through the original program and is the integrated functionality the same
at many integration points (homogeneous) or heterogeneous. This contributes to the
question what properties help us or impose additional drawbacks when integrating the
provenance concern.

4.3. Conceptual design 57

Influences on non-functional properties

To qualify the effect of our provenance integration in the remaining sections regarding
non-functional properties, we consider three commonly used criteria [SRK+12]: (a)
response time, (b) main-memory consumption, and (c) (binary) footprint of the modified
solutions. Furthermore, we use two ground truths to compare the effects of different
implementation techniques. First, the basic ground truth is the original system O that
represents the ultimate goal that we would like to reach with non-invasive changes only.
Second, we use the properties of our intuitive approach using conditional statements
(cf. Section 3.2.1). This is in fact, the technique that shall be outperformed or least
reached by more advanced implementation techniques.

Response time. In this thesis, response time is defined as the time span from invoking
a process until all results are available. We use this property, because for data-
intensive applications, such as databases, performance in general and response
time in particular is of high importance.

Main-memory consumption. Another important factor is main-memory consump-
tion. Data-intensive systems usually require a lot of main memory and have often
limited memory resources. As they require main memory for actual computa-
tion, we have to avoid that additional data has to be swapped to the hard disk
(e.g. buffered pages in databases). Hence, we need to minimize the amount of
additionally consumed main memory.

Footprint. In this thesis, the size of the compiled binaries (e.g., in Java the .class-files)
is named footprint. The basic idea why we consider this property as one of the
criteria to quantify invasiveness is the ability of the composition strategy to remove
unused parts of the source code (i.e., not required functionality). In case the
binaries OE have the same size as O the composition strategy was able to fully
remove not required functionality. Moreover, as closer the size of the binary of OE

is compared to O the more functionality is removed.

4.3 Conceptual design

For the general provenance capturing solution we target at, we need several infrastructure
parts that we define and conceptually design in the following. In fact, our solution is
not an SPL in the classic sense, but consists of several variable parts that need to be
plugged together as well as parts that need to be integrated into the source code of the
original program.

To this end, we first explain the overall vision that is, to some extent, inspired by the
work of Cheney et al. in [CCF+09] and named a universe of provenance. Based on this
vision and the insight gained so far, we derive, define, and explain the single parts of
our infrastructure that we use for our exploratory case studies in Chapter 6. Finally, we
justify our selection of infrastructure parts that we focus on in the remainder of this
thesis, because they impose novel and, for us, interesting challenges.

58 4. Toward a general provenance- capturing solution for existing systems

Artifact - Initial data item

Artifact - Intermediate result

Artifact - Final result

Process - With Provenance integration, the
coloration indicates degree of invasiveness

Process - Without Provenance integration

Provenance data store

Spectative provenance integration

Spectative and regulative provenance
integration

Provenance data flow

(a) Original infrastructure (b) Infrastructure with Provenance
integration -Universes of provenance

(c) Examples for different levels of invasiveness

Figure 4.1: Vision - A universe of provenance

4.3.1 Vision - A universe of provenance

The overall goal or idea behind the contributions of this thesis is to improve knowledge
on information represented by arbitrary data items. To this end, we want to improve
trust in computation results in general or at least have additional information to judge
on its reliability. Therefore, we need to have knowledge on the impact of single data
items on aggregated results and be able to track back a data item to its original source.
This knowledge shall, however, not result in a continuous chain of events (processes) and
intermediate results (artifacts) that can be tracked back to the Big Bang as provokingly
defined as the source of any information [BSS08]. More specifically, we want to be able
to steer the level of fragmentation and uncertainty (cf. Section Chapter 2) that we
produce and define requirements for data we consume. In addition, we also link different
parts of information, probably aggregate and propagate them (cf. Figure 4.1.a). Our
contribution therefore is tailoring the provenance capturing solution and offer solutions
to plug different provenance capturing solutions together forming networks that are
loosely coupled as depicted in Figure 4.1.b resulting in a universe of provenance.

4.3.2 Architecture - The neuron analogy

While we explained the meta level goal so far, we now concentrate on the architecture
of one instance of our provenance capturing solutions that shall be integrated into one
existing system to capture tailored provenance data (cf. Figure 4.1.c). To this end, we
intuitively need infrastructure parts that intercept and extract the provenance data and
a part that stores the intercepted data. Thus, we also need some infrastructure part
that transports the extracted provenance data to the provenance data store. Altogether
the infrastructure forms a network that transports information to store and eventually
evaluate them, similar to neural networks in biology. In computer sciences, biologic

4.3. Conceptual design 59

neurons are a famous analogy to visualize such information flows. As a neuron analogy
can very easily and tellingly be used to explain the single parts of our infrastructure, we
use the neuron analogy to visualize the single parts of the infrastructure in this section,
too.

Soma

Dendrite

Myelin
shealth

Axon

Process

Store (Database)

Terminal

Copyright © The Worlds of David Darling, U.S. National Institutes of Health
http://www.daviddarling.info/encyclopedia/N/neuron.html

Figure 4.2: The neuron analogy

Parts of our infrastructure

Subsequently, we describe the semantics of the infrastructure parts that we depict
in Figure 4.2 and how they relate to source code or other elements of our desired
solutions.

Dendrite. The Dendrites are the real invasive parts that link the original program
to the provenance capturing functionality. In case we use the intuitive approach,
Dendrites are the if-conditions that are integrated in the original source code. The
basic goal is to re-use neuron implementation between different case studies (with
the help of our implementation techniques), which is challenging as we currently
hypothesize that these parts are application specific. Moreover, the integration
shall be as less invasive as possible.

Soma. The Soma is the code that is called by the Dendrites. So this is in fact the actual
API. Furthermore, the Soma links several pieces of provenance to the data model
that we described in Section 2.4 and stores intermediate results until we store
them persistently. For instance, in case we integrate our provenance functionality
into a database system, the provenance data of all uncommitted changes is stored
in the Soma and only propagated in case the transaction is committed.

Axon. Usually we want to save the provenance data persistently. To this end, we need
to transport the data to a database or some component of our infrastructure that
writes the provenance data on the hard disk. Therefore, we use Axons, such as a
database driver or classes that write data on the hard disk from a software point

60 4. Toward a general provenance- capturing solution for existing systems

of view. Note that hardware parts, such as networks etc. that finally transport
the data, are not explicitly addressed in this thesis, as we want to focus on the
software part only.

Myelin shealth. When transporting provenance data to its final storage location, it
may be necessary to protect this data against possibly malicious changes and
unauthorized access. Therefore, we use features of the myelin shealth, such as
signatures, hashes, encryption, or watermarking techniques. Consequently, the
myelin shealth contains countermeasures to the previously mentioned threats while
the data is transport by the Axon.

Terminal. This optional part of the infrastructure maps the data transported by an
Axon to a data format that is understood by provenance data store. In case,
we want to store provenance data in a database, we can either use the normal
structured query language (SQL) interface or we can circumvent the SQL parsing
etc. and use internal classes of the database management system to insert our
data.

Provenance data store. The provenance data store persistently stores the provenance
data and offers functionalities to query the collected provenance data. Generally,
we intent to use relational databases, but also customized solutions as well as
simple comma-separated files shall be possible.

Mapping to program code

In Figure 4.3, we depict how the previously introduced infrastructure parts map to
source code tokens with the help of the already known example of a database system
from Chapter 3, to give the reader a better understanding of our previous abstract
explanations. For simplicity, we assume that the database system is monolithic (i.e.,
no SPL) itself. In part (a) Lines 11-13, there is additional source code (the Dendrite)
that has been integrated into the source code of the original database system using the
intuitive implementation technique that permanently modifies the source code. This
source code, creates a graph fragment of our indented provenance graph consisting of
input artifacts (the source tables of the query), the process (the query) itself and the
result (again a table). The Dendrite itself only calls the functionality in the Soma in
part (b) of Figure 4.3.

The important thing about the Soma is that there are two possibilities to treat artifacts
and processes based on their role. This allows tailoring the provenance capturing
functionality, refining the provenance graph as well as it improves re-use of already
implemented Soma functionality. Firstly, we can create specialized artifacts having
tailored identity functions (cf. Section 2.8.2) and reliability mechanisms (e.g., Signatures)
mainly to reduce computation overhead or simplify identity determination or, secondly,
use the default implementation which refers to the default (complex or simple) artifact.

4.3. Conceptual design 61

1
2
3
4
5
6
7
8
9
10
11
12 commit(r);
13
14
15
16
17 }
18
19 }

public class QueryProcessing {
 Result processQuery(Query q){
 createSavePoint();
 q.parse();
 q.generateQueryPlan();
 Result r = q.execute();
 if(r.aborted())
 rollback();
 else

 if(Soma.Features.CoarseGrained)
 Soma.createGraphFragment(q.getInputTables()
 ,new Process(“Query”),r);

return r;

 void rollback() { ... }

1
2
3
4 }
5
6 Object[] input, Process p, Object result
7){
8
9
10
11 Artifact a;
12
13
14 else
15
16
17 }
18
19
20 }
21
22 }

public class Soma {
 public interface Features{
 boolean CoarseGrained = true;

 public static void createGraphFragment(

 GraphFragment g = new GraphFragment();
 for (Object in : input) {
 int role = getRole(input);//via reflection

 if(role != DEFAULT_ARTIFACT)
 a = ArtifactFactory[role].getInstance(in);

 a = createDefaultArtifact(in);
 g.pushInput(a);

 /*....*/
 Axon.save(g.toSQL());

 static Artifact ArtifactFactory[];
Dendrite

(a) Manually integrated Dendrite (b) Exemplary Soma implementation (the actual API)

Figure 4.3: Architecture mapping in program code using the static intuitive implemen-
tation technique

To sum up, the Dendrite is source code that needs to be integrated in the source code
of the original system and calls the Soma, the actual provenance capturing API, which
is encoded an additional package creating the provenance graph and allows tailored
provenance capturing capability.

4.3.3 Parts of special interest and missing basic technologies

Although implementation of the whole infrastructure is challenging, from the research
point of view, we want to focus on parts that impose special research challenges. For
instance, in the beginning we stated that we want to create solutions having provenance
capturing and storing capability. However, since we have structured provenance data
in a form that is highly related to the Open Provenance Model, we can use existing
approaches. Moreover querying provenance data has been intensively studied in [Cha08]
and therefore, does not impose new challenges that we have to address in this thesis. In
the remainder, we focus on how to integrate the Dendrites efficiently and how to store
tailored provenance data. In the following, we justify our selection.

Variable provenance data and database schemas

A drawback of our approach to capture tailored provenance data is that not only the
infrastructure parts, such as Dendrites and Soma are variable, but also the collected
data itself is variable. The data may, for instance, include different signatures, additional
fields, or functions to determine the identity of the artifacts having the same role. To
really incorporate provenance data, we require also tailored database schemas to allow
querying the provenance data for instance for indexing etc.

62 4. Toward a general provenance- capturing solution for existing systems

To the best of our knowledge, there currently is no approach that allows for tailored
database schemas that are required by a client application, such as our provenance
capturing infrastructure. Consequently, a major basic technology for our case studies is
missing. As a result, we need to develop an own approach in Chapter 5 before we can
start implementing first exploratory case studies. Furthermore, from a scientific point
of view this part is especially interesting as we expect severe interactions between the
different infrastructure elements.

Integration of Dendrites

The second part that we focus on, are the Dendrites. These parts are selected as
they currently seem to be very application specific and re-using their implementation
with the help of beneficial implementation techniques by simultaneous minimizing
of their invasiveness imposes interesting challenges from a theoretical and practical
Software Engineering such as sufficient decomposition of currently used approaches when
integrating new functionality, degree of required granularity compared to traditional
SPLs as well as the effects on non-functional properties. Moreover, from the provenance
point of view, incorporating academic approaches in real-world provenance systems is
one important step for realizing the ideas from Section 4.3.1.

4.3.4 Derived research agenda

Base on the information given so far, we present a research agenda for the remainder
that shall lead to the desired insights of this thesis (cf. Figure 4.4). In fact, for the four
major points contained in Figure 4.4, there is a chapter in the remainder of this thesis.

One of the primary goals of this thesis is to explore whether integration of a totally new
and variability functionality (in our case provenance) into existing systems is feasible with
current implementation techniques. However, as a first step, we need to perform research
on the basic technology allowing to store the provenance data (as stated in Section 4.3.3).
This is basic prerequisite to perform, as the next step, a series of first case studies having
different characteristics (e.g., programming language, required granularity of provenance,
complexity of the case study).

The basic idea of Chapter 6 is to integrate the required provenance capturing functionality
into different parts of the infrastructure of our running example Digi-Dak, to demonstrate
feasibility, generality as well comprehensiveness of our approach. Moreover, we are
interested to identify pitfalls that we may encounter in more complex case studies.
Specifically, we evaluate the effects of using different implementation techniques to
integrate the provenance concern (cf. Section 4.2.1). In particular, we are interested in
differences of the invasiveness of the newly integrated functionality.

We conduct first provenance integration in Chapter 7. Based on these insights, we
perform a more advanced case study to verify our results and address limitations of
the first cases studies in Chapter 8. Finally, in Chapter 9, we summarize our findings.
This includes a call to software engineers to avoid properties of the programs that

4.4. Summary 63

22

1 Tailored database
schema

2 Provenance SPL
design

3 Exploratory case
studies

4 Large-scale case
studies

Aim:
Allow variable database
schemas for Provenance data
store as prerequisite for later
case studies

Aim:
Explore feasibility to model
a provenance SPL and avoid
feature interactions.

Aim:
Explore feasibility and
beneficial as well as
problematic properties of
programs when integrating
provenance.

Aim:
● Verify findings from (3) in
large scale.
● Address limitation and
problems found in (3).
● Define guidelines

Figure 4.4: Derived research agenda

we have encountered as pitfalls and best practices as alternatives, as well as a call
to use properties (and techniques) that, for instance, simplify the integration of new
functionality into existing systems. As final consequence, we state research challenges
based on the experiences and results gained in this thesis for future work.

4.4 Summary

In this chapter, we reason why we favor integration tailored provenance capturing
functionality instead of alternative approaches. We analyze requirements regarding
provenance based on a large-scale joined project Digi-Dak and results from related
work and discuss limitations of current provenance capturing solutions addressing these
requirements motivating the need for an own approach.

When integrating new functionality, we want to modify the characteristics of the existing
system as less as possible. The integration shall be minimal invasive. To this end, we
develop a notion of invasiveness to qualify differences of implementation techniques used
in the remainder to integrate provenance.

Then, we develop a conceptual design of our solution including the vision to target at
and architectural design. Based on that, we identify missing basic technologies and
invasiveness of the infrastructure parts that really need to be integrated into the source

64 4. Toward a general provenance- capturing solution for existing systems

code of the original program as topics to focus on. To this end, we define a four-point
research agenda. Each point is addressed in an own chapter in the remainder of this
starting with research on variable database schemas required by the provenance data
store.

5. Tailoring database schemas of
provenance data stores

In this chapter, we present a novel approach to address the challenge that we need
tailored database schemas to store the data of our integrated variable provenance concern.
On a more abstract level, this is another important piece for holistic software product
line (SPL) engineering in practice that is relevant for the whole SPL community. Our
approach is based on the idea of Siegmund et al. to apply feature-oriented programming
to database schemas published in [SKR+09]. We map this idea to the relational data
model and demonstrate its applicability firstly in [SLS+11]. Then, we extend this
approach and extensively evaluate it with an industrial-size productively-used case study
with the result of significant improvements compared to traditional approaches [SLRS12].
Note, this chapter largely shares material that has been priorly published in [SLRS12].

5.1 Generalization of the basic problem

Different users of an application have different requirements to its functionality. As we
want to create tailored provenance solutions, the resulting data has differing schemas.
Consequently, we also need tailored database schemas to store this data. Consider as
motivation a software product line of web-based solutions having a user management.
On client side we have tailored implementations, while we use one global database
schema for all solutions. This results in the following challenges.

Alternative and optional schema elements. There are two alternative ways (fea-
tures) to perform the user management: (1) locally or (2) via an Lightweight
Directory Access Protocol (LDAP) server. For the first way, we need to store the
whole user profiles in the local database. This includes, for instance, login names,
email addresses, and all rights of every user. For the LDAP server variant, we
only need to store the user name and respective LDAP server to contact, as there

66 5. Tailoring database schemas of provenance data stores

may be multiple servers within a company. Note, we store the user names locally,
because not all profiles on an LDAP server necessarily shall have access to the
web tool. In summary, there are optional and alternative attributes and tables.
The current solution is to include all schema elements into the database schema of
every variant. This results is large, highly complex database schemas. In addition,
large parts of the schema possibly contain no data or dummy values and hence
suggest functionality that is not included.

Constraints on optional attributes. Imagine there is a base variant where a user
needs to provide a login name and an email address for authentication. For a
different variant, we may also require a password. For this variant, we have to
ensure that the password exists (i.e., is not null). As a result, we have to include
the attribute into the database schema of every variant. However, we either do not
define the constraint, which may lead to incorrect data, or we have to insert dummy
values into this column for the base variant. Both solutions are not desirable.

Research gap. While techniques to provide variability for executable program code are
intensively studied (as described in Section 3.2), knowledge on the effects at database
schemas level (where we store the collected provenance data) is still fragmentary [DSC+07,
Mah02, SKR+09, YPXJ09]. As a result, we need to introduce a novel approach to allow
variability at database schema level in order to reach our goal of a general but tailored
provenance capturing SPL.

In the following, we analyze different currently used approaches to model database
schemas in SPLs. Furthermore, we discuss their limitations to justify our claim for the
need of a novel approach. Therefore, we define requirements that a tailored database
schema must fulfill. Note, we can create thousands of valid variants of large-scale SPLs.
Thus, it is not possible to create a tailored database schema for every single SPL variant
manually.

5.2 Requirements for tailored database schemas

To analyze different approaches, we consider several criteria of the process to create the
single schema variants and of the resulting schema variants itself. We use two different
criteria to describe the modeling process of a certain approach:

Modeling complexity. This criterion points out the complexity of creating the model of the
(variable) database Schema, which contains the basis for the database schema variants.
Expressiveness of the model. In traditional modeling methods, the expressiveness of
the model is limited. For instance, in a global schema, an engineer cannot integrate
conflicting schema elements introduced by alternative features.

Evaluation of schema variants

The requirements for the single schema variants are: Completeness. All database schema
elements (relations and attributes) necessary to perform the read and write operation in

5.3. Limitations of currently used approaches 67

the single features, included in this variant, must be present in the variant’s database
schema.

Complexity of schema variants. The size of the database schema (number of relations
and attributes) shall be reduced to a minimum. Particularly, there shall be no unused
schema elements. We argue that this improves the understandability of the schema
variants, which is important for maintenance and further development.

Data integrity. All integrity constraints have to be included for the schema elements
in a specific schema variant, to guarantee consistent data in the data-intensive system.
This includes primary and foreign keys, attribute value domains, and not null as well as
check constraints.

5.3 Limitations of currently used approaches

Subsequently, we discuss three traditionally used approaches for database schemas
variants and describe which problems arise when applying them for SPL development.
This discussion motivates the necessity for a new approach as well as it serves as basis
when analyzing benefits and drawbacks of our new approach in Section 5.5.

5.3.1 Global schema

Often, for every variant of an SPL the same global schema is applied [SKR+09]. This
schema contains every schema element that is used at least in one variant. Thus,
the schema contains every schema element that is necessary (completeness). On the
other hand, major parts of the global schema can be unused in this particular variant.
Consequently, the highly complex schema is unnecessarily hard to understand, which
complicates maintenance and evolution of SPLs. Additionally, unused parts can impose
integrity problems as stated priorly. Furthermore, the global schema does not exist
in every case. As a result, conflicting schema elements introduced from alternative
features cannot be defined in a global schema (expressiveness). To circumvent this
problem, Ye et al. discuss that overloading schema elements (i.e., using the same
schema element for different purposes instead of renaming it) is possible, but causes
highly confusing database schemas [YPXJ09]. Using a global schema can be seen as the
standard approach. Hence, its modeling complexity is used as reference for all other
approaches [SKR+09].

5.3.2 View-based approaches

View-based approaches [BQR07] generate views on top of the global schema that emulate
a schema variant for the client, which may be seen as an annotative approach [KAK08].
Thus, the global schema is still part of every schema variant. The approach inherits most
of the problems of the global schema. Unfortunately, the variant’s schema complexity
does even increase, because the additional schema elements for the view, emulating the
variant, have to be included as well. Furthermore, there is additional effort to generate

68 5. Tailoring database schemas of provenance data stores

views when modeling the schema. This approach has benefits in data integrity, because
the views emulating the schema variants can contain additional integrity constraints,
which cannot be included into the global schema. Thus, the expressiveness of the model
is also better than in the global schema approach.

5.3.3 Framework solutions

In a framework approach, the plugins implement the features of the SPL and therefore
this approach is a form of physical decomposition [KAK08]. A plugin contains additional
program code and an own schema. The schema variant is built from the single plugins
that add the additionally required schema elements [SKR+09]. Thus, it fulfills the
completeness requirement. Consequently, it also contains only schema elements that are
needed in this variant. Unfortunately, using frameworks could lead to table partitioning,
when two or more plugins use the same real world entity. Hence, this has negative
impact on the complexity of the schema variants and limits the modeling expressiveness.
Furthermore, consistency checking is implemented on client side, because there are no
intra-plugin integrity constraints, which can lead to data integrity problems. The effort
to model the schema is higher than modeling a global schema, because we have to
take care of additional challenges such as naming conflicts, which are usually solved by
naming conventions.

5.4 Our solution

This section contains the basic overall idea of our approach and explains how to obtain
the variable database schema. Therefore, we describe the relationship between features
and database-schema elements.

5.4.1 Basic idea of our approach

For explanations of our basic idea, imagine there is an SPL that consist of a client
application and a database for storing data persistently. For simplicity, we again rely on
the web-based solution that we already introduced in this section and its login features.

To create a tailored variant of an SPL, a customer first selects the desired features
(see Figure 5.1(a)). Every feature contains one model for its functions in the client
program and another one for the database schema (see Figure 5.1(b)). Furthermore,
each of the two models of a particular feature points to different implementation artifacts
(e.g., source code files). Finally, a well-defined composition strategy (see Section 5.4.3)
creates the variant including the tailored client program and database schema.

5.4.2 Relationship between features and database schema ele-
ments

As defined in Section 3.1, a feature is some characteristics that is important for some
stakeholder. Furthermore, the features are the units a customer selects to create a

5.4. Our solution 69

Login

Local

LDAP

...

...

Mandatory – Cannot be deselected
Unselected optional feature – Can be selected
Selected optional feature – Can be unselected

Local

Client DB Schema

FileFile

File

...

Client DB Schema

FileFile

File

+ +

+ +

Compose

Compose

Login

Client DB Schema

FileFile

File

(a) Customer's feature selection

(b) Logical layer: Modeling of (selected) features

(c) Physical layer: Variant generation

Client variant

Schema variant

Figure 5.1: Basic idea to create a particular variant

tailored variant, which includes a database schema. Therefore, we have to define the
relationship between features and schema elements to model the variable database
schema. Moreover, we need to discuss the interaction of features on client and database-
schema level. A feature at database schema level contains all schema elements (relations,
attributes, and integrity constraints) that this feature on client side needs to perform
the read and write operations within its specific source code on client side. Thus, we
tailor the database schema with respect to the requirements of the feature on client side.
As a result, there is one feature model for the whole SPL allowing us to easily generate
the single variants of the SPL (see Section 5.4.3).

Note that the relationship between a feature on client and database schema level ensures
completeness and minimizes the complexity of the schema variant (see Section 5.2).
Every schema element that a selected feature needs is contained in the feature and
therefore added to the schema variant during composition. Furthermore, the schema
variant contains no unused schema elements for the same reason. Alternatively, the
feature models could contain only the additionally required schema elements. This
approach has the benefit that schema elements cannot be mapped to multiple features.
This can lead to conflicting definitions of a schema element in one variant during the
evolution of the SPL. The drawback of this alternative is, that we have to decide to what
feature a schema element belongs, especially when they are only required by optional
features. However, a high number of redundancies suggest a refactoring of the client
programs source code.

70 5. Tailoring database schemas of provenance data stores

Relationship to a similar approach

Meanwhile, a similar approach has been published by Brummermann et al [BKS13].
Their and our approach address the same issue as both are introduced to tailor database
schemas. However, they differ in the specific application scenario and thus, also in
technical details. We focus on separation of concerns and address evolution as a minor
topic. In contrast, Brummermann et al. directly focus on supporting evolution in
software systems. Consequently, there data model is dominated by the object-oriented
decomposition not by features. Thus, from our point of view this approach is similar to
priorly introduced framework solutions. Nevertheless, the existence, motivation as well
a primary objective of this approach supports relevance and significance of our results.

5.4.3 Composing a tailored schema variant

We already defined that the model on database side contains a mapping of schema
elements to features. Furthermore, we emphasized that the feature on database schema
level contains all necessary elements for the feature on client side to perform the read
and write operations of this feature.

As noted in Figure 5.1, the approach needs a well-defined composition strategy to generate
a tailored SPL variant. For this reason we use superimposition. Superimposition is a
language-independent composition strategy that has been applied successfully in software
engineering [AL08] and also in view integration [BLN86]. Thus, the composition is able
to handle the client implementation and the corresponding database schema. In [AKL09],
Apel et al. present FeatureHouse, which offers a general support for composing software
artifacts. It has been tested for several case studies on client side, written in languages
such as Java, C, or Haskell.

5.4.4 Structure of features at implementation level

The •-operator works on feature structure trees (FST), which represent the internal
structure of the implementation of a feature. They can be seen as simplification of
an abstract syntax tree [AL08]. In Figure 5.2, we show the FST on database schema
level of two features of our web-based SPL that we already applied to explain the basic
idea of our approach. The FST can be generated quite intuitively from the model (i.e.,
the feature model and the schema elements mapped to the features). The result of
the composition contains all schema attributes of the input features with the desired
integrity constraints. FST nodes of two features that share the same path from the root
node (e.g., attribute login name) are merged and thus show only once in the result as
intended.

5.5 Evaluation of our approach

In the following, we apply the previously presented approach to an industrial-size
productively-used case study and evaluate the results. To this end, we first justify our
selection of the case study and secondly explain how we use this case study to evaluate
our novel approach. Finally, we evaluate the approach.

5.5. Evaluation of our approach 71

Relations

Attributes

DB schema

login_daten

user_id login_name deactivated

Implementation
varchar(255)
PK

Implementation
varchar(128)

Implementation
int(1)

Login

Client Progr.

Feature

DB schema

login_daten

login_name password

Implementation
varchar(255)
NN

Local Auth.

Implementation
varchar(255)
NN

=
DB schema

login_daten

user_id login_name deactivated

Implementation
varchar(255)
PK

Implementation
varchar(255)
NN

Result

Client Progr.

Implementation
int(1)

password

Implementation
varchar(255)
NN

Figure 5.2: Composition of feature structure trees

5.5.1 An industrial-size case study

The ViT R©-Manager is a family of industrial controlling tools for continuous improvement
processes of the METOP Institute1. A continuous improvement process defines a
structured approach with regularly (continuous) meetings to identify and solve problems
within a company, which increases productivity. Because the ViT-Manager is used
commercially in several companies with different size, internal structure, and portfolio,
the customers have a set of equal and differing requirements regarding one variant of
the application. To face these challenges, the ViT development team re-factored the
application using a plug-in infrastructure to form an SPL. In the ViT framework, a
customer chooses additional features according to his needs, when generating a new
variant of the application. While the client program was decomposed into features during
the re-factoring, the database schema was not. Instead, a global database schema for
all variants was applied. In our prior work [SLRS12], we also defined a semi-automatic
decomposition procedure to re-factor the previously used global schema into a variable
one. In this thesis, we design our provenance SPL from scratch. Thus, we only briefly
reflect on the properties this decomposition procedure as it shows benefits and drawbacks
or our approach independent of the way to the variable schema is created.

Generally, we need to show the feasibility of our novel approach. To this end, we use
the introduced case study for that we created a variable schema and evaluated the
ability to integrate new features into the initial variable schema for more than a year.
Moreover, we use our experiences from this case study for our future case studies to
avoid non-obvious pit falls that we discover with the ViT-Manager case study.

Evaluation goals

We first analyze the feasibility of our approach before discussing its impacts on main-
tenance, data integrity, and further development. Finally, we evaluate the overall
advantages and drawbacks of our approach compared to the traditionally used ones
from Section 5.3. To ensure validity of the evaluation, we additionally rely on interviews
of the ViT Development Team, which is experienced in applying global database schemas
to SPLs, because the case study previously used a global schema. Furthermore, this
team tested the variable schema approach for more than a year. Finally, we strengthen
our conclusions with specific measurements if possible.

1http://www.metop.de/site/ai-angewandte-informatik/produkte/vit/

http://www.metop.de/site/ai-angewandte-informatik/produkte/vit/

72 5. Tailoring database schemas of provenance data stores

5.5.2 Feasibility of the approach

We want to evaluate whether the variable database schema approach is manageable
in practice. Consequently, we have to evaluate the modeling process, the result of the
modeling (features), and the variant generation process.

Creating the variable schema

To create the variable schema, there are two possibilities:

1. Refactoring a previously applied global schema into features based on the client
implementation.

2. Define the features from scratch (including the respective schema definition).

In the following, assume that the client is an SPL allowing us to map code fragments to
features, which is required to decompose a global schema.

Decomposing a global schema

When we created the variable schema for the case study (having at this time about
50.000 lines of code) for first time in [SLS+11], we performed the mapping of schema
elements to features mainly manual. The basic idea is to identify database queries in
feature-specific source code and identify the required schema elements. The procedure
we used is as follows:

Step 0: Identify all database query executions. For every schema element that
is required by a feature, there has to be some database query called from feature-
specific code that uses this schema element. That means there is an SQL statement
that contains this schema element. As executing a query requires a database driver
(e.g., JDBC, ODBC, etc.) with a fixed set of methods, we automatically search
the source code for these patterns. For instance, in the example in Figure 5.3 in
Line 18, the method executeSQL(String) is called that represents such a pattern.
For each of these patterns found, we then perform Steps 1 to 4.

Step 1: Get text source of SQL statement. In this step, the complete text source
of the SQL statement is identified, in order to find the required database schema
elements in the next step. For the example (Line 17), this identification is rather
simple, similarly to the most SQL statements of our case study. Nevertheless,
the SQL statement may be assembled over multiple lines, modified by optional
features, or totally depend on user input making this step extremely challenging
or even impossible for some database query executions.

Step 2: Analyze SQL statement source. In this step, we analyze what schema
elements are used in the respective SQL statement. Note the definition of these
schema elements (e.g., data type and constraints) are determined automatically
using tool support. Consequently, in this step we only need the qualified path of
every schema element consisting of the table name and the attribute name.

5.5. Evaluation of our approach 73

Step 3: Get feature context. To add the schema elements, identified in Step 2, to
the correct feature(s), we determine the feature context. That means that we
determine to which feature the source code fragments belong that contain the
definition of the SQL statement. In Figure 5.3, the function that defines the SQL
statement is called within the feature Local Authentication. Thus, this is the
feature context. Note that there may be multiple features and determination of the
feature context is a challenging task shown in [Sch12]. However, the decomposition
technique simplifies this process. For instance, if we use physical decomposition,
the feature context is defined by the file the source code is located in.

Step 4: Add schema elements to feature definition. In the final step the identi-
fied schema elements are added to all features of the feature context. In case a
schema element is already part of the schema definition, we do not add it again.

1
2
3
4
5
6
7
8
9

10 }
11

12

13
14
15 }
16

17

18
19
20 }

int testCredentials(String userName, String cryptedPassword){
 if(not userExists(userName)) return WRONG_USER_NAME;
 if(Features.Local_Authentication){
 if(correctPW(userName, cryptedPassword)) return CORRECT_CRED;
 else if(!Features.LDAP) return WRONG_USER_PW_COMBINATION;
 }
 if(Features.LDAP)
 return authenticateLDAPServer(userName, cryptedPassword);
 return UNKNOW_ERROR;//Should never occur

boolean userExists(String userName){
 String SQL = "Select user_name from users where user_name ='"
 +userName+"'";
 String userNameDB = executeSQL(SQL);
 return userNameDB == userName; //character-wise comparison

boolean correctPW(String userName, String pw){
 String SQL = "Select password from users where user_name ='"
 +userName+"'";
 String passwordDB = executeSQL(SQL);
 return passwordDB == pw; //character-wise comparison

0
Found DB-query execution

If DB-query execution
 found in source code
get SQL (text) source:

Select password ...

1

 Match schema elements:
users.password &
users.user_name

2

Get feature context:
Local_Authentication

3

Add schema elements
to feature:

Local_Authentication →
users.password &
users.user_name

4

Find all DB-query
executions:

For each perform step 1 to 4

0

1

3

Figure 5.3: Procedure to map schema elements to features based on client implementation

Although we could use tools to identify all database query executions (step 0) and had
developers with deep knowledge on the structure and semantics of the source code, the
complete mapping of database schema elements took about two days of work and turned
out to be laborious. Altogether there are three pattern classes and, in total, about
1.500 occurrences of these patterns. Nevertheless, even considering this effort, applying
our approach in practice is manageable but currently not desirable. To address the
aforementioned issue, we offered tool support and provided more automation.

Tool support to model the variable schema

To support the decomposition of a global schema, we developed a tool in our prior
work [Sch10]. The tool offers the following support:

Mapping visualization. The tool visualizes the current mapping of schema elements
to features in an n×m matrix (cf. Figure 5.4).

74 5. Tailoring database schemas of provenance data stores

Mapping modification. The visualization matrix also allows to modify the mapping,
by simply clicking on the respective check box.

Schema variant generation. Given a configuration for a particular variant, the tool is
able to generate the variant’s database schema in form of an SQL script. Currently
the tool supports MySQL and Oracle SQL syntax.

Automatic schema element definition determination. To automatically gener-
ate a complete schema, we need the data types and integrity constraints. In Step
2 of the decomposition procedure, we only determined the qualified path, but
not the integrity constraints etc. Furthermore, we need all schema elements of
the previously applied global schema to map them to the features and depict
this mapping. As manual insertion into our tool is laborious and error-prone, we
determine this information automatically. The basic idea is that there already
exists a consistent global schema. To this end, we can analyze the schema catalog
of the used database system and import the desired information.

Base Workflows BVW ViT FMEA ViT-Basic ...
1 Datum
2
3
4 Nachher
5 Operation
6 Vorher
7

Base Workflows BVW ViT FMEA ViT-Basic ...
8
9
10 Name
11 Pfad
12

bvw_history

Geaendert_von
Hist_id

Vorschlags_id

dyn_bvw_anlagen
Anlagen_id
Geleoscht

Vorschlag_id

Menü Speichern

Figure 5.4: Tool support: Screen shot of mapping matrix (taken from [Sch10])

The tool support is currently based on PHP and thus, not integrated into modern IDEs,
such as FeatureIDE, which is desirable, but not mandatory for our purposes.

Limitations of automizing the decomposition process

According to our experiences the most time consuming step when decomposing a global
schema, is to perform the mapping of schema elements to features. To this end, we
explored how to automize the manual process as much as possible [Sch12]. The major
result is that we can provide a first and correct mapping, which contains a sub set
of mappings. Moreover, we can annotate source code fragments for manual review in
case one of the decomposition steps fails. Note, we also revealed it is not a problem if
the automatization fails for some SQL statements to produce a quite comprehensive
mapping as most schema elements are used in multiple SQL statements.

5.5. Evaluation of our approach 75

First conclusions

To sum up, with our additional improvements, namely tool support and automatically
providing a first mapping, we conclude that our approach is generally feasible in practice.

As stated in Section 5.4, the modeling process, which includes the decomposition of the
global schema into features, is laborious. Furthermore, the decomposition procedure is
not generally automatable, because because some database queries depend on manual
input or assembled using complex logic. Consequently, the procedure needs manual
recall. However, according to interviews the modeling is still manageable. Moreover,
the modeling effort is an investment for the automated generation of a tailored database
schema variant. A customer simply chooses the desired features and the database schema
(and the client) are generated automatically. Additionally, the size of the features scale
in the case study (see Table 5.1), because the size on client and on database side seems to
correlate. This effect does not change significantly over time. As visualized in Table 5.1,
even when comparing two major releases such as v1.6 and v1.7 the correlation exists.

Table 5.1: Correlation of size on database and client side
Features v1.6 Attributes Features v1.7 Attributes

1 / 1 88 16 1 / 4 124 17
2 / 2 80 14 2 / 1 105 16

BVW 4 / 3 75 12 3 / 2 88 16
3 / 4 65 12 BVW 4 / 5 75 12
5 / 5 63 12 5 / 3 66 12

… …
LDAP 24 / 21 1 1 LDAP 30 / 26 1 1

Rank Size DB/client Relations Rank Size DB/client Relat ions
ViT Archiving
ViT -SPO ViT -SPO

ViT
ViT Square
ViT Basic ViT Square

Additional challenges due to feature interactions

We identified two additional challenges of the variable schema approach that we try
to avoid for our provenance solutions: (1) Redundantly defined schema elements and
(2) changing feature models. Redundant schema elements increase the size of a feature
on database side. Thus, the features were extracted from global schema, two features
that can be present in one variant cannot contain different models of the same schema
element, which would produce an error during composition. But, when modeling the
features without a previously used schema this challenge has to be faced, which exists
also in view integration.

The second challenge results because of the combination of optional features. The
schema variant might need additional schema elements when a customer chooses two
optional features to generate a variant. These schema elements are not part of the
schema variant when only one of them is chosen. This effect is also known on client side
(e.g., glue code), but to the best of our knowledge it has not been identified at database
schema level.

In the case study, there is an optional Archiving feature that archives data of different
optional features, such as ViT basic or BVW. Thus, these optional features are not part

76 5. Tailoring database schemas of provenance data stores

of every variant. Therefore, the archiving feature does not need the tables to archive
the BVW data if the BVW feature is not included into the variant. To minimize the
complexity of the schema variant, these unneeded relations should not be included.
Hence, we move the additionally needed schema elements into derivatives, which are
included automatically when both optional features are part of the variant [LBL06].
Particularly, the composition mechanism includes Archiving:BVW (cf. Figure 5.5) into
the schema variant, when a customer selects BVW and Archiving. Using derivatives
raises the expressiveness of the model and decreases the size of the Archiving feature in
some variants dramatically, by making the modeling process more complex.

0
20
40
60
80

100
120
140

Features Relations Attributes
Archiving:BVW 12 59

7 32
3 16
4 13

Archiving:Others 1 8

Archiving:ViT SPO
Archiving:ViT Square
Archiving:ViT Basic

Max.size Min. size

1

2 3
4

5

1: BVW not selected
2: Additionally without ViT-SPO
3: Additionally without ViT Square
4: Additionally without ViT Basic
5: No optional feature selected

Figure 5.5: Derivatives: Size of the Archiving features in different feature combinations

Conclusion - Trade-off

According to our interviews with the developers, the trade-off between the drawbacks of
our approach, such as additional modeling overhead, and the advantages like automated
variant generation are beneficial only when handling multiple variants of an application.
But the specific costs, such as modeling the variable schema, related to the amount
of time saved (e.g., for manually tailoring a variant or additional bug fixing if using
a global schema) to the customer’s needs, is imprecise for the following reasons. The
complete costs for alternative solutions are unknown, because these approaches have
not been implemented and the previous costs can hardly be taken into account because
the tasks are highly different. Moreover, there are a lot of fine-grained costs where the
specific amount of time is unknown. For instance for bug fixing in the variable-schema
approach, we do not know the amount of time, as only the time from reporting the
bug until fixing it is known. After all, the numbers we have and interviews with the
developers suggest that for the ViT-Manager the variable-schema approach is beneficial
when there are at least five (different) variants used productively.

5.5.3 Improving maintenance and further development

Here we argue that not having unnecessary schema elements in the variant schema is a
suitable way to reduce its complexity. The effort to maintain a schema variant becomes
more predictable, because we have a mapping of a particular function to schema elements
(features). Thus, the estimation of possible side effects becomes easier.

The complexity of a schema variant is minimized, because it contains only necessary
schema elements. Therefore, the understandability of the database schema variants

5.5. Evaluation of our approach 77

rises and is additionally supported by the mapping of schema elements to features.
When comparing the complexity reduction of the schema variants in different versions
(cf. Figure 5.6), the benefits of the variable schema become even more obvious for the
case study. The minimum configuration (no optional feature selected) of v1.6 covered
about the half of the maximum configurations schema elements (all optional features
selected). Whereas, the difference in v1.7.6 is about one fourth. Furthermore, the
database schema of the minimum configuration remains nearly stable. This is, because
many new optional features have been added to the case study, but the core functions
remained roughly unchanged, which is common in SPLs. Thus, we conclude that the
benefit of our approach increases over time, when new optional features are added to
the SPL.

According to our interviews, after introducing the variable schema the number of support
requests slightly increased for a quarter of a year, especially because of problems related
to the database schema. After this, there was significant decrease of support request even
if introducing new features. We hypothesize that one reason therefore is the variable
schema, but we cannot say to what extent.

Similar observations have been made for further development. Extending the case study
with new features becomes easier and is more predictable in the variable database schema
approach. First, a software engineer can simply add new features to the composition
process. Furthermore, the mapping between features and schema elements is helpful
when designing new features or extending existing ones. This was highly useful, when
designing the Archiving feature and its derivatives, because for every feature it is known,
which schema elements are necessary and thus have to be archived. Challenges arise
when modifying schema elements used in different features in preserving the model’s
consistency.

In addition, there are naming problems when adding schema elements of new features.
In particular, we identified three naming conflicts, which are well-known in schema
matching and view integration [BLN86]:

1. Contradicting definition of the same schema element for instance regarding the
data type or length.

2. Double definition of semantically the same schema element with different name
(synonym).

3. Using erroneously the same name for semantically different schema elements
(homonym).

From our experiences the first two problems are the most frequent ones. In Section 5.5.4,
we already discussed how we avoid the first conflict with tool support. Similarly, we
address the second conflict. In case a developer wants to add new schema elements
using our decomposition tool, there is suggestion of ten similar schema elements even
while typing the name of the new element. Similarity is defined by (1) a schema element

78 5. Tailoring database schemas of provenance data stores

having the same name, (2) elements that enclose the current input (i.e., the input is a
sub string of existing schema elements), and (3), in case there are less than ten similar
existing schema elements found we apply the edit distance. By concept, it is also possible
to extend the similarity function, for instance to use ontologies etc.

For the case study, the third conflict was not found. Thus, we do not provide a dedicated
tool support and adjourn resolving this conflict to the developer.

5.5.4 Improving data integrity

One of the strongest points supporting the variable schema approach is the benefit
regarding data integrity. Using the variable schema allows to reintroduce the integrity
constraints that had to be dropped (see Section 5.3), because of the global schema
approach. Additionally, integrity constraints that were encoded on client side can now
be added to the database schema. As a result the variable schema approach ensures
integrity of the data and is therefore beneficial here. Furthermore, tricks as inserting
dummy values to circumvent Not Null constraint for attributes not used in this variant
are not necessary any more. Therefore, the variable schema approach is beneficial for
data quality as well.

Moreover, decomposition procedure guarantees that we can only introduce valid integrity
constraints and that additional restrictions of the variability of the SPL (introduced
by foreign keys referencing from an optional feature to a different optional feature) are
visible in the feature model. Nevertheless, contradicting schema-element definitions may
be introduced:

1. By intention - In case an optional feature shall override a previous definition (e.g.,
data type).

2. By mistake - When designing the variable schema from scratch or during evolution
of the SPL.

To address this challenge, we use tool support. In particular, there is an additional
view in our decomposition tool that shows contradicting schema-element definitions.
Moreover, the current feature order is visualized and can be modified to define which
shall be the dominant definition. However, in the case study overriding a schema element
definition is not required, even after an evolution of more than a year.

5.5.5 Comparison to existing approaches

In Table 5.2, we resketch the result of currently used approaches of Section 5.1 and
compare them to the variable schema approach. The scoring of variable schema is based
on the discussion in Section 5.3. The variable schema has strong benefits due to the
complexity reduction of schema variants and the improvement of data integrity (also
helping to improve data quality). Furthermore, the model expressiveness increases, which

5.6. Role and contribution of the approach for this thesis 79

0

100

200

300

400

500

600

Maximum
Configuration

Without BVW Without
ViT-SPO

Without ViT
Square

Without ViT
Basic

Minimal
Configuration

192
146

205210234

309

572

153

438

364 343
317

...

Case study v1.7.6
Case study v1.6

Figure 5.6: Complexity reduction of the schema variants in different versions of the case
study

allows conflicting schema elements and changing feature models that is not possible with
a global schema approach. By contrast, the global schema approach and frameworks have
benefits regarding modeling complexity. The variable schema needs a previously used
global schema, which has to be decomposed into features. Alternatively, the modeling of
features instead of views, including all derivatives is also more complex than modeling
one global schema. This is the trade-off our approach needs to improve maintenance
and further development.

Table 5.2: Evaluation of the variable schema approach compared to currently used
approaches

Modeling Schema Variants
Complexity Expressiveness Completeness Data Integrity Schema Complexity

Global DB Schema* + -- ++ - -
View Approach* -- - ++ +/- --
Framework Solutions +/- +/- ++ - +
Variable Schema - + ++ ++ ++
++ very good, + good, 0 neutral, - unhandy, -- very unhandy *Approach only possible if global schema exists.

5.6 Role and contribution of the approach for this

thesis

Our novel approach allows to store the data of our provenance solutions using customized
database schemas. Moreover, we benefit from the experiences gained when applying
the approach for the industrial case study. In particular, we need to avoid feature
interactions. Whether we can avoid such interactions when designing the provenance
SPL from scratch, including respective reasoning, is one question we want to explore with
first case studies using the provenance SPL. Furthermore, we want to avoid problems
with respect to referential integrity. Especially, foreign keys that point to schema

80 5. Tailoring database schemas of provenance data stores

elements that possibly do not exist in a particular variant. With our decomposition
approach to re-factor a consistent schema into a variable one, we have rules to avoid
this problem. Whether we can (generally) avoid this problem, when designing an SPL
from scratch, and whether additional, currently unknown, problems exits, needs to be
determined.

6. Database-centric
chain-of-custody

Before, we can start to implement the case studies, we need a proper selection of such
case studies. In addition, we need to know what provenance functionality is required.
To this end, in this chapter, we contribute the concept of the database-centric chain-of-
custody as a general concept that finally allows a proper selection of the exploratory case
studies. Secondly, we design our desired provenance SPL that defines the provenance
functionality that is integrated into the case studies in the remainder of this thesis.

6.1 Analysis goal and resulting methodology
A fundamental objective of this thesis is to explore whether it is possible to integrate
the provenance concern into existing systems in a minimal-invasive way using different
implementation techniques. Moreover, we are interested in revealing differences between
the single implementation techniques. In this chapter, we prepare the conduction of the
first exploratory cases studies in the next chapter.

To reveal insights regarding this objective, we need a sound selection of case studies.
In Section 4.1.1, we already justified why using case studies from the Digi-Dak project
delivers sound and comprehensive results in general. However, for our first exploratory
case studies, we have to consider additional properties:

Holistic approach. We need a concept that allows us to argue that the selected case
studies represent all major parts of the infrastructure used in the Digi-Dak project.
This prevents us from choosing an improper selection of cases studies and hence,
ensures comprehensiveness of our analysis.

Technical heterogeneity. As we want to provide a (to some extend) general solution,
we require case studies that use different paradigms such as object-oriented vs.
relational data model or are different in complexity and decomposition approach.

82 6. Database-centric chain-of-custody

Functional provenance heterogeneity. Moreover, we need case studies that require
different provenance functionality, so that we gain data on the how to integrate a
variable cross-cutting concern into existing solutions.

6.1.1 A holistic approach

To provide a holistic approach as requested, we suggest the concept of a database-centric
chain-of-custody that we published in our prior work [SSK11]. The contribution of
this concept for this chapter is to group solutions used in the Digi-Dak infrastructure
in classes that share the same requirements for provenance integration. Moreover, we
use these classes to define the required provenance functionality based on a threat
model where provenance functionality offers respective countermeasures. Then, the basic
idea is to select a case study from each group and integrate the required provenance
functionality.

Infrastructure boundaries: Considered excerpt of the chain-of-custody

The future goal is to provide a system that ensures the chain-of-custody from the
acquisition of a trace at a crime scene to its final usage in court. The Digi-Dak
infrastructure, however, is responsible for ensuring only a part of the chain-of-custody.
To this end, we first define the boundaries of the system. That means, we define the
initial and final artifacts. Then, we take care of the intermediate results to document
the chain from its initial artifacts to its final artifacts and define granularity
refinements.

Digital acquisition
(scanning) Pre-processing Feature extraction Matching Presentation

at court
Physic acquisition
(at crime scene)

1 2 3 4 5 6

Digi-Dak focus

Figure 6.1: Digi-Dak’s chain-of-custody excerpt

In Figure 6.1, we depict a simplification of the major steps from initial acquisition of a
trace until its final deposition as well as the respective excerpt the Digi-Dak infrastructure
is responsible for [HKGV11]. To clarify our intentions and to clearly mark the borders
of the resulting case studies, we now explain the major steps, which are in fact highly
simplified processes.

Physical acquisition. In this thesis, physic acquisition contains all necessary actions
taken by law enforcement agencies at a crime scene, including transportation, in
order to secure all possibly relevant assets that may contain evidences. Examples
are usage of brush and powder to reveal fingerprints or removing parts or any
objects (e.g., large furniture that cannot be transported) that may contain valuable
evidences. These actions are performed by law enforcement agencies, using long
established technical and organizational means to ensure the chain-of-custody.
Hence, our infrastructure is not responsible for this part of the chain-of-custody.

6.1. Analysis goal and resulting methodology 83

Digital acquisition. The overall Digi-Dak infrastructure works on digital artifacts
(primarily images). To this end, different sensors are used to create a digital image
of each trace. In Digi-Dak, it is not intended to develop novel sensor technologies
or devices for acquisition of fingerprints or other traces [Kom05]. Consequently,
it is presumed that these sensors work correctly and thus, have limited access
and knowledge on internal details of all sensors. Thus, we only capture sensor
and (important) environment parameters, but treat the whole scanning process as
black box. However, immediately after the creation of digital artifact(s), we
are responsible for ensuring the chain-of-custody.

Preprocessing. In order to increase the quality of a trace, such as a fingerprint, several
preprocessing steps are performed. This includes for instance correction of optic
distortions due to non-planar surfaces [KCDV12] or separation of overlapping
fingerprints.

Feature extraction and quality estimation. Based on preprocessed images, there
are several tools that extract features. An example is to estimate the point in time
when a fingerprint was laid. In contrast to preprocessing steps, feature extraction
results into data that represents a desired result, from a forensic point of view. For
the Digi-Dak research project, these steps are important as they first result in final
artifact(s) and second contain new challenges to manage research data. One of
the core challenges in the project is to evaluate different well-known approaches
or invent novel ones. Consequently, in the project there is plenty of scientific
data that has to be managed, including respective provenance, as well. Despite
the additional requirement of managing the scientific data, there is no difference
between preprocessing and feature extraction from the provenance point of view,
because both steps are implemented as object-oriented programs. Consequently,
we treat them the same way and need to select only one case study.

Matching. The Digi-Dak infrastructure does not provide support for matching of
fingerprints. However, the results produced are input for subsequent systems, such
as the AFIS1, or manual evaluations. To this end, we have to provide provenance
information so that any subsequent system or expert trusts the delivered data.
Consequently, the Digi-Dak infrastructure is responsible for ensuring the chain-of-
custody until sending the final artifact(s).

Presentation at court. As we are no experts in law proceedings and legal regulations
differ among different countries, we do not go into detail here. Nevertheless,
documentation at a level of granularity that can be presented in court must be
stored in a reliable manner. Thus, any provenance data has to be stored persistently
in a reliable way as well.

To summarize, the Digi-Dak infrastructure is responsible for ensuring its excerpt of
the chain-of-custody. It starts with sensor images having required provenance data to

1http://www.bka.de/DE/ThemenABisZ/Erkennungsdienst/Daktyloskopie/AFIS/afis node.html

http://www.bka.de/DE/ThemenABisZ/Erkennungsdienst/Daktyloskopie/AFIS/afis__node.html

84 6. Database-centric chain-of-custody

ensure authenticity and integrity (initial artifact(s)), contains all intermediate and
initial artifact(s) for that we capture the required provenance data, and stops at final
artifact(s) that are send in appropriate format to subsequent systems, such as the
AFIS system or manual evaluation of fingerprint experts.

A first analysis of the existing infrastructure

When looking at the already existing infrastructure of the Digi-Dak project from a
software product line point of view, we discover that it can be modeled as software
product line as we illustrate in Figure 6.2. The feature model mainly consists of a flat
tree with several optional features that represent the single tool-chains. These tool-chains
may have alternative implementations that apply different image processing filters but
serve the same purpose. Moreover, nearly all feature extraction tools can directly work
on the initial artifact (the sensor), but deliver better results with previously applied
preprocessing steps. This is the case, because the result of preprocessing steps is, as the
name suggests, an image with enhanced quality.

There are only a few dependencies. For instance, a trace is first scanned with low
resolution. Then, potential regions that contain a fingerprint are marked and finally the
marked regions are scanned with higher resolution. The goal is to save scan time as not
the whole trace has to be scanned with high resolution. However, the result is again an
image that can be processed by subsequent tool chains. Anyway, the main result for
this thesis is that:

1. the tool chains can be considered independent from each other,

2. the results of the tool chains define the granularity for the chain-of-custody.

Base

Pre-processing
Tool 1

Pre-processing
Tool 2

Alternative 1 Alternative 2

Feature ex-
traction Tool 1

requires

Create new
Intermediate Artifacts

Figure 6.2: Analysis of the existing infrastructure

6.1. Analysis goal and resulting methodology 85

Granularity definition of the chain-of-custody

In our previous work [SSK11], we defined the required provenance information to
ensure the chain-of-custody as follows. First, there is an initial artifact, in our case
a sensor image, for that we rely on delivered provenance information to ensure that
this artifact holds integrity and authenticity (i.e., is not faked). To produce the final
artifact(s) of our infrastructure there are several intermediate ones. For each artifact
in our infrastructure, we define the required provenance information as a ProveSet. The
ProveSets are the links that from the chain-of-custody and are in fact fragments of a
provenance graph. For the resulting graph, we have special requirements to ensure that
we can reproduce any artifact (i.e., show that the chain-of-custody holds):

1. Every artifact with forensic relevance (defined by respective experts) itself has
to be stored, for instance, to verify results by re-producing them.

2. All involved processes are in fact functions that allow to re-produce any artifact in
case the same input is provided. Thus, we have to know the input artifact(s)
as well.

3. For every intermediate or final artifact, we need to be able to identify the initial
artifacts (sensor images), which is a starting point for any computation step for
this excerpt of the chain-of-custody. This means that we can track back the
provenance graph until we reach initial an artifact. This graph fragment then is
named as Complete Prove Set (CProveSet).

4. The applied transformation has to be semantically sound. However, we are not
responsible for proving soundness, but provide functionality to define and check
the collected provenance information.

6.1.2 Assumptions and architecture

The basic idea of the database-centric chain-of-custody is to model all transformations
along the way to produce the final artifact as functions. Moreover, we define respective
identity functions to prove identity holds for two artifacts having the same role. As
a result, it allows reproduction of each transformation step. To this end, we need all
input to re-invoke any process with same input that shall result in the same output.
All artifacts that need to be stored persistently are stored in databases, such as our
research prototype Fingerprint Verification Database (FiVe DB) as depicted in Figure 6.3.
Moreover, any input requested from a database and newly created intermediate artifacts
are stored in (a possibly differing) database as well. It is not allowed to directly pass
intermediate results that shall be stored persistently, to different tool-chains.

This way, we ensure that we first store each intermediate artifact of interest persistently
and second know which input artifacts are sent to a transformation, as well as the
role of the expected result. This forms a first part of the desired ProveSet that is

86 6. Database-centric chain-of-custody

send to the tool-chain together with input artifacts. However, to re-invoke any process
expecting the same result, tool-specific configuration parameter may be required, such as
thresholds for image filter functions etc. These additional input artifacts are provenance
information that are added to the ProveSet by the tool-chain and are sent back to a
database together with result artifact.

DB

DB
Initial

artifacts

Final
artifacts

Digi-Dak
infrastructure

Figure 6.3: Concept database-centric chain-of-custody

ProveSet definition

As stated, a ProveSet is a single chain link for the chain-of-custody. More formally,
this means that each ProveSet is linked to exactly one artifact (Ak). We write this as
ProveSet(Ak). Furthermore, each ProveSet contains several attributes that we define
in Equation 6.1.

ProveSet(Ak) := {{Link,Role, Process, Input, Parent, Children}, Security} (6.1)

Now we explain the purpose of the single attributes and link them to the data
model of our provenance framework from Section 2.4.1. Recapitulate that there are
two dimensions of provenance: fragmentation and uncertainty. For the first dimen-
sion forming the provenance graph and allows granularity refinements, we use the
{Link,Role, Process, Input, Parent, Children} attributes. While for the latter dimen-
sion, we have a Security attribute that is used to reduce the amount of uncertainty.
Now, we explain the semantics of all attributes.

Link. This attributes links the ProveSet to the artifact itself. This can be done in
arbitrary ways, such as foreign keys in databases or pointers in object oriented
programming.

6.1. Analysis goal and resulting methodology 87

Role. A role states the semantics of this artifact. This may be a table name (with
respective schema) or class in object-oriented programming, but also abstract roles
for real-world artifacts.

Input. This attribute contains all links to all input artifacts that are used to create Ak.
Therefore, it is similar to the Link of the ProveSet to the associated artifact.

Process. The process that created Ak using the input artifacts that are contained in
the Input attribute of the ProveSet. Each process has a name and an invocation
number that links an execution of this process to the creation of Ak.

Security. To improve trust in the ProveSet and artifacts itself, it is possible to add
cryptographic data, such as signatures and hashes. In contrast to the first dimen-
sion, we have no explicit structure how a security attribute shall look like. Mainly,
we refer to the aforementioned techniques of signatures and hashes. However,
the basic purpose of this attribute is that all data that reduce the amount of
uncertainty are explicitly defined and not implicitly contained.

Derived threat model

Our architecture decisions and assumptions for the database-centric chain-of-custody
result in a threat model that defines where we need provenance support and finally
determines the case studies applied in the remainder of this section. Note, an instance
of this threat model has been part of prior work [SSK11] and thus the model presented
here is based on our explanations in the referred prior work.

Faking initial artifacts. There is a certain risk that initial artifact(s) are faked or
a result of a sensor malfunctions. Consequently, we need provenance data that
minimize this uncertainty.

Tampering the provenance data store. When an artifact including its prove-
nance data is stored persistently it is possible that this data is modified for
instance due to implementation errors, hardware errors, or manual interferences.

Interfering the communication channel. As any artifact is stored in a database
and has to be send to a transformation tool as well as the result is shipped back,
it is possible that it is modified in the communication channel. This includes
modification of artifacts, removing, or tampering of the associated provenance
data.

Malicious tool behavior. Due to implementation errors, improper usage, etc. a tool
may modify artifacts or the associated provenance data in a malicious way.

88 6. Database-centric chain-of-custody

Creating a new intermediate artifact.

Our recent argumentation revealed that our primary granularity focus to ensure the
chain-of-custody in form of ProveSets and thus to capture provenance, are the creation
of new intermediate artifact(s). Consequently, we explain the procedure to create
a new artifact(s) when using a database-centric chain-of-custody. Note, receiving
initial artifact(s) or sending final artifact(s) to subsequent systems are special
forms that consist only of parts of this procedure. Thus, we only have to explain the
creation of inter mediate artifact(s) as it covers all other two cases.

Creating a new intermediate artifact(s) means that some tool or tool-chain in the
Digi-Dak infrastructure requests one or several data items. For our explanation, we
assume that an artifact (data item) Ak is requested from a tool to remove distortions
due to non-planar surfaces. Therefore, the tool requests a sensor image with distortions
and produces an equalized image. For simplicity, we assume that the image with
distortions is stored in the same database as the resulting image. The overall procedure
is illustrated in Figure 6.4 in detail. Note, we omit technical details as there are possibly
multiple solutions to implement the single steps distracting from core concepts. Anyway,
a detailed technical discussion is part of the case studies in the remainder of this section.

Step 1: Data request. The procedure is started by a transformation tool with re-
questing the input artifact (Ak) from our Fingerprint Verification DB. Then,
the DB checks whether it trusts the tool and the tool may access the requested
data. In the positive case, Fingerprint Verification DB checks whether Ak has
a valid CProveSet with the help of a provenance library. If so, Ak, including
respective provenance data, is send to the requesting tool. The consequence is
that we assume (with a certain residential risk) that for any artifact Ak that is
requested from a database and input to some preprocessing, the chain-of-custody
holds. In case the tool is not trusted, the data request is declined and in case
the CProveSet does not exist there is an alert, because Step 3 should ensure that
this never happens. Thus, we assume that this is most likely a result of hardware
errors or manipulation.

Step 2: Perform transformation. In this step, the transformation tool checks the
existence and validity of the provenance data (i.e., ProveSet(Ak)). If it does
not exist or is not valid, we assume the data has been modified during the
transportation from Fingerprint Verification DB to the tool, as Step 1 ensures a
database only sends artifacts that have a valid CProveSet. In case ProveSet(Ak)
exists, it has to be removed from Ak to perform the transformation and it must
be stored to create ProveSet(Ak+1). The transformation tool now creates the new
intermediate artifacts Ak+1 as t(Ak) and adds ProveSet(Ak+1) to Ak+1.

Step 3: Insert new intermediate result. In the final step, the transformation sends
a request to Fingerprint Verification DB to insert the new intermediate result
Ak+1. Before accepting the request, Fingerprint Verification DB checks whether

6.1. Analysis goal and resulting methodology 89

Request Inter-
mediate Result (Dk)

Source is trusted?

Start

Reject Request

No Yes

Stop

Alert Invalid
Intermediate Result

Dir contains Provenance Info?

Send Dk

Remove and Save
 Provenance Info

Perform
Transformation

Re-embed Provenance
 Info with Delta

Insert Intermediate
Result (Dk+1) Request

Dk+1 contains correct Provenance
Information and Source is trusted?

Reject Request Accept Request

YesNo

No Yes

Performed by
Transformation Tool

Performed by
FiVe DB

Receive Dk+1

Step 1: Data Request

Step 2 Pre-processing
 or feature extraction

Step 3: Insert new
 intermediate result

Figure 6.4: Create a new intermediate artifact

the tool is trusted, ProveSet(Ak+1) exists and if the CProveSet(Ak) enhanced
with ProveSet(Ak+1) forms a valid CProveSet. As a result, we can assume that
whenever an artifact is send to a tool or inserted into FiVe DB the corresponding
CProveSet is valid and forms a chain-of-custody.

Rejecting request and alerts. For security reasons, there have to be additional mech-
anism such as, routines that detect incorrect CProveSet, prevent data requests
from untrusted tools, consistency checks etc. However, as these mechanisms are
not in the focus of this thesis, we do not go into the details.

90 6. Database-centric chain-of-custody

Infrastructure classes

So far, we have defined the database-centric chain-of-custody as a holistic approach
resulting in a thread model that allows us to define the points in the overall Digi-Dak
infrastructure that needs functionality to capture and validate provenance data. These
points represent the infrastructure classes from that we select our case studies. The
three classes are depicted in Figure 6.5.

Database

Database

T
o
o
l
s

Scientific
data

Send input Artifact &
Provenance (ProveSet)

Send result Artifact &
Provenance (ProveSet)

Provenance for
databases

Provenance for
tool chains

Scientific data
provenance 123

Figure 6.5: Infrastructure classes

Provenance for databases. This class ensures that every artifact send to or received
from a database by any other part of the infrastructure contains a valid ProveSet.
To this, we have to verify the existence of such a ProveSet on the database side
itself. This covers also initial and final artifacts as special cases of the procedure
to create a new intermediate artifact.

Provenance for tool chains. This class requires the same functionality as the first
one, but is integrated on tool side.

Provenance of scientific data. The third class collects and evaluates provenance
information for the scientific data that is produced within the Digi-Dak project.
As most research prototypes are implemented as object-oriented programs (as the
tool chains), the goal is explore whether functionality used on tool side can be
used for this class as well.

To sum up, we have three different classes of systems in our infrastructure. In all of
these classes, we have to integrate provenance. To this end, we select a first case study
for each class to explore whether minimal-invasive provenance integration is feasible in
the remainder of this thesis.

6.2. Preliminary considerations 91

6.2 Preliminary considerations

In Section 6.1.1, we revealed that the infrastructure can be seen as software product
line with a flat feature model. Adding a feature thus means deploying a variant of a
tool-chain. However, before we can start to implement the first case studies, we have to
take a closer look on details of the infrastructure to clearly state what we have to do in
order to integrate the provenance concern for each case study.

In this section, we describe in detail the situation in the infrastructure before integrating
the provenance functionality. Especially the first two case studies are closely related
to each other, because the first one is about integrating coarse-grained provenance
functionality on tool side (object-oriented data model) while the second one integrates
provenance for relational databases. Thus, both case studies have to offer the same
functionality but for a different data model. Based on the information provided in this
section, we state what provenance functionality is required for the first two case studies.
The information given here is used to implement and evaluate the case studies in the
remainder of this section.

6.2.1 What is the initial situation?

In the following, we describe how the tool chains work without integrated provenance
functionality. This is the starting point from where we start to explore how to integrate
tailored provenance functionality in a minimal-invasive way. We first explain how the
tools work from a technical perspective. Then, we describe the content of the features
representing either a tool-chain or the base feature. Finally, we describe what ithe
desired situation after integrating the provenance concern is. According to our analysis,
we expect that the following assumptions hold. There is:

1. A database (DB1) having a table, named by our conventions after the role of
the artifact (e.g., SensorScan for the initial artifact), storing the input artifacts.
Furthermore, there is a possibly different database (DB2) that stores the result
artifact. Both have a tailored database schema where we can store the artifact using
our approach from Chapter 5. Both databases currently do not have provenance
functionality.

2. A tool (or tool-chain) without provenance functionality invoking a function f()
using input artifact(s) from DB1 and possibly tool-specific parameters to create
the result artifact. Function f() delivers the same output in case we provide the
same input, which can verified by artifact-specific identity functions.

3. The tool requests data via common2 SQL an input artifact from DB1 and inserts
the resulting artifact into DB2. Note the databases are not necessarily from the
same vendor.

2By common SQL we refer to Select ... From ... Where ... and Insert into statements.

92 6. Database-centric chain-of-custody

4. The tool has a view on the (meta) data where a user (or the program automatically)
selects the desired input artifacts. For an image that may be a unique identifier,
the file name, resolution etc. without the actual pixel data. Then, the user requests
the actual pixel data by using the unique identifiers.

5. For all databases, we assume the respective users are created and rights to corre-
sponding views and tables are granted.

Note, we omitted several security related details that are important from a general
security point of view, but are not required in the remainder of this chapter to integrate
the provenance functionality in a minimal-invasive way. This includes, certificate
infrastructures or validation of provided certificates when establishing a connection
between tool-chain and a database.

Feature content - Base feature

As already mentioned there are two types of features. Now, we give details on the
content of the Base feature without provenance integration. In the remainder, we use
this information to state what changes in case we integrate the provenance concern.

The base feature defines the initial and final artifacts of the infrastructure by adding
the tailored database schemas to the respective database. To this end, the base feature
contains an abstract description of the initial and final artifact. In Figure 6.6, we depict
the model of the initial artifact (the sensor scan) using the same representation as for our
approach to tailor database schemas. We obtained the model with the decomposition
tool as shown in Section 5.5.2 by analyzing the database schema catalog.

Note, the decomposition tool stores the artifact model internally in database tables,
but is able to create and import the grammar representation, which is closely related
to SQL. However, for visualization purposes, we use the grammar representation to
depict artifact models. On implementation level, we automatically map the abstract
implementation to an object-oriented (e.g., a Java source file) and an SQL script (of a
certain SQL-dialect), where the artifact model ensures consistency between tool and
database.

Feature content - Tool chain feature

In contrast to the base feature, tool-chain features contain their result artifacts and
the respective tool-chain program. Their input artifacts are already introduced by a
different tool-chain feature, which is indicated by a requires dependency in the feature
model or directly by the base feature. We depict the feature content as well as the
difference of both feature types in Figure 6.7

6.2.2 What do we want? - Required functionality

So far we described, how the infrastructure works without provenance integration and
how the features are defined accordingly. Now, we define the changes that have to be
applied to integrate provenance support:

6.2. Preliminary considerations 93

Feature Base
1 % Artifact comment: represents sensor scan (initial Artifact)
2 id long , % surrogate running key
3 name text , % usually the file name
4 int , % pixel density in pixel per inch
5 height int , % height of both images
6 width int , % width of both image
7 int[] , % pixel data topography image (height x width)
8 intensity_data int[] , % pixel data intensity image (height x width)
9 KEY id
10);

Artifact SensorScan (

dpi

topo_data

Object-oriented representation
1 /** Artifact comment: ... */
2
3
4
5
6 ...

public class SensorScan {
long id; // ...
String name; // ...
int dpi; // ...

Database schema
1 /** Artifact comment: ... */
2
3
4
5
6 ...

create table SensorScan (
id long, -- ...
name text, -- ...
dpi integer, -- ...

Figure 6.6: Artifact model without provenance

1. We have to provide a possibility to store the ProveSets for every artifact of forensic
interest, which actually implements the chain-of-custody. Moreover, we need to
link the provenance data (the ProveSets) to the actual artifacts.

2. We need functionality on database and the same on tool side to evaluate the
ProveSets. This includes determining whether there is a correct CProveSet, which
also means to evaluate cryptographic signatures etc.

3. Furthermore, we need portability. As one goal of minimal invasiveness is to
minimize development and maintenance support the applied solution shall be
as general as possible. This means that we want to be able to exchange the
database system (e.g., switch from Oracle to DB2) and minimize adaptation for
new tools. This results in the requirement that we have conceptually one feature
provenance with a feature tree indicating the variability of the provenance concern
itself (cf. Figure 6.8). However, we need to avoid feature interactions Section 3.3.2

4. Ideally functional and non-functional properties of the tools and database system
remain the same. This especially includes the SQL statements that are send from
a tool a database, as well as APIs of the tools. This is important because it ensures
that provenance integration is transparent to the tool-chain developers, which
contributes the goal of non-invasive provenance integration.

5. Optionally, we want to be able to recompute results to determine their correctness
to trace back errors or prove that there is none.

In the remainder, we discuss how these requirements effect concept and implementation
of the provenance feature tree and analyze what trade-offs have to be taken into account.

94 6. Database-centric chain-of-custody

Base feature

ArtifactsTool

DB SchemaOO Repre
-sentation

Tool-chain
feature

ArtifactsTool

DB SchemaOO Repre
-sentation

source file SQL script source files source file SQL script

tool tool

Logical layer: Model

Physical layer

Figure 6.7: Feature content

Base

Pre-processing
Tool 1

Pre-processing
Tool 2

Alternative 1 Alternative 2

Feature ex-
traction Tool 1

requires

Provenance

...

Avoid feature
interactions on
conceptual and

implementation level

Figure 6.8: Independence of the provenance feature

6.3 The provenance feature tree

The provenance feature tree contains the provenance integration on concept and im-
plementation level. In the following, we describe what variability is required (i.e., the
single features) and how does this affect the other features conceptually and from
implementation point of view. In Figure 6.9, we illustrate an excerpt of the feature tree
that we use to structure our descriptions in the following.

6.3.1 The provenance feature

The provenance feature itself is the root of the provenance feature tree and offers basic
provenance functionality. In fact, it allows the databases in our database-centric chain-
of-custody to store the ProveSets as well as it provides a class representing a ProveSet
for the tools implemented in object-oriented paradigm. In Equation 6.1, we define the

6.3. The provenance feature tree 95

Provenance

Validation
ability Security

Watermarks &
forensic files

Forensic file
format

Invertible
Watermarks

Figure 6.9: Excerpt of the provenance feature tree

ProveSet. Technically, this feature implements the parts of the ProveSet required to
build the provenance graph and allows granularity refinement. Consequently, it does
not implement security, which is an optional child feature.

Relation Input
id long long
process long long

long
Relation Process

Relation Children id long
long name text
long long

Relation ProveSet
autoincrement ProveSetResult FK ProveSet.id
FK Process.id ProveSetInput FK ProveSet.id

parentID nullable

ProveSetParent FK ProveSet.id autoincrement
ProveSetChild FK ProveSet.id invocationID

Figure 6.10: The ProveSet relations

To store data that represent a ProveSet in a database, we need to translate the ProveSet
definition from Equation 6.1 to the relational data model. As the definition of the
ProveSet does not change, we do not have an explicit model of the ProveSet as for
other artifacts. We use pre-defined SQL scripts (for different SQL-dialects) to create the
ProveSet relations. The result is depicted in Figure 6.10. However, the most important
questions remain:

1. How to link the ProveSet to the actual artifacts?

2. How to capture (and evaluate) the provenance in the ProveSet in a minimal-invasive
way?

We now answer the first question while the second question is case-study specific and
thus, is discussed in the case-study sections in the remainder of this thesis.

6.3.2 Initial linking the ProveSet to the artifact

In the Digi-Dak infrastructure, we use object-relational as well as traditional relational
databases. Moreover, on tool-side, we have classic object-oriented programs. To ensure

96 6. Database-centric chain-of-custody

the chain-of-custody, we have to capture and evaluate the ProveSets for all of these data
models. Consequently, we need to develop a solution, minimizing feature interactions,
how to link the ProveSets to the actual data (artifacts) for every data model. Note,
ensuring that this link is not tampered is the primary objective of the security feature,
not of the provenance feature itself.

Object-relational and object-oriented data model. On database-side, we favor
object-relational database, because here we can use inheritance. In fact, the basic
idea is that each artifact inherits the ProveSet relation. The primary benefit
is that we avoid feature interactions on concept level between the provenance
feature and the tool features. The desired effect is that this modification is
transparent. For any SQL query, there is no visible schema change. Consequently,
we consider this solution as minimal invasive. In Figure 6.11, we explain the
actual difference selecting the provenance feature in detail. To this end, we
use the already introduced example of the SensorScan. Note, on concept level
the model of the artifacts remain unchanged. The only difference is that the
generated implementation (the SQL script) is changed. Each artifact now inherits
the ProveSet relation. For the object-oriented data model, we rely on the same
mechanism as shown in Figure 6.11.

Relational model. In this data model, we cannot directly use inheritance. However,
we can emulate it to achieve similar effects. Basically, we have two options. First,
we can add a foreign key to every artifact relation referencing the primary key
of the ProveSet relation. This changes the schema of the table, which may be
problematic for instance if SQL-queries use the *-Operator in the select clause.
An improvement is to re-name the table and create a view that does not contain
the additional foreign key. Anyway, on concept level there are no interactions
between the provenance feature and the tool features. However, generating the
implementation either changes the schema or requires generation of additional
views. The second option is using an additional join table. This table has three
attributes: (1) The primary key of the ProveSet relation tuple, (2) the (surrogate)
key of the artifact relation and (3) a discriminator attribute. We require the
discriminator attribute representing the role of the artifact (which also is the table
name by convention), as we cannot presume that all artifacts contain globally
unique identifiers. To avoid the discriminator, we experimented with using RowIDs,
which are unique and moreover allow fast joining. However, we recognized that
under certain (hardly predictable) circumstances several database systems re-
organize tables resulting in new RowIDs making the link between ProveSet and
artifact invalid.

To summarize, we favor inheritance for linking artifacts to their ProveSets. Thus, here
we do not require novel implementation techniques as classic inheritance works fine.
However, not in every case, we can or want to use object-relational databases but apply
classic relational databases. To this end, we create Oracle syntax for relational databases

6.3. The provenance feature tree 97

and PostgreSQL syntax for object-relational databases. This is no limitations because
many database systems can parse several SQL-dialects.

Feature Base
1 % Artifact comment: represents sensor scan (initial Artifact)
2 id long , % surrogate running key
3 name text , % usually the file name
4 int , % pixel density in pixel per inch
5 height int , % height of both images
6 width int , % width of both image
7 int[] , % pixel data topography image (height x width)
8 intensity_data int[] , % pixel data intensity image (height x width)
9 KEY id
10);

Artifact SensorScan (

dpi

topo_data

Object-oriented representation
1 /** Artifact comment: ... */
2
3
4
5
6 ...

public class SensorScan extends ProveSet {
long id; // ...
String name; // ...
int dpi; // ...

Database schema
1 /** Artifact comment: ... */
2
3

11
12

create table SensorScan (
id long, -- ...
[...]
) inherits (ProveSet);

Modified
generation

Figure 6.11: Interactions caused by provenance feature on concept and implementation
level

6.3.3 The Security feature

The Security feature and associated child features (cf. Figure 6.12) address Security
aspects and thus, shall improve trust into the ProveSets. Basically, we provide three
major possibilities to enhance security (cf. Figure 6.12): Cryptographic hashes, digital
signatures, and advanced security formats. We now explain the semantics of the first
two possibilities and discuss the third one separately.

Security

Cryptographic
hashes

Partial
hashing Algorithms

Digital
signatures

Algorithms

Advanced
formats

Figure 6.12: Variability for the security feature

Cryptographic hashes. Cryptographic hashes can be used to evaluate the integrity
of a data item. For images and any other files, we compute hashes on the file
representation (i.e., meta data and color values), while for different data types we
use the string representation. Note, hashes do not ensure authenticity. However,
especially during the first project years and as prove of concept, we just needed

98 6. Database-centric chain-of-custody

integrity, optionally computed only on a part of an artifact (e.g., query result
or image). Thus, we added an optional feature Partial hashing using either the
first ten tuples of a query string representation, the first ten lines of a file, or
the first 100 pixels, to speed up the hashing computation. Moreover, we support
different hashing algorithms, which usually is just a parameter for cryptographic
frameworks that we use to compute the hash sums.

Digital signatures. In contrast, to cryptographic hashes, digital signatures can be
used to ensure integrity and authenticity of a data item with a certain residential
risk. Thus, this feature is more important towards the final phase of the Digi-Dak
project and for later productive usage. Similar to the hashing feature, we support
different algorithms as the required security may change over time. Moreover,
most cryptographic frameworks support several signature algorithms similar to
the hashing functionality. Generally, we assume that all artifacts of forensic value
are signed using the same algorithm (or are not signed at all).

Advanced formats. The ProveSets is currently linked to artifacts using foreign keys,
which can be seen as default approach in databases. However, in the threat model,
we defined that one thread are data modifications in the database itself, such
as re-assigning a foreign key to a different artifact. To this end, we provide two
additional features that tightly link the ProveSets to their artifact: (1) Invertible
watermarks and (2) forensic file formats. To describe the semantics of these
features, we have to give some additional background. Hence, we introduce them
separately.

Independent of whether we apply signatures or hashes, the modification how to store
artifacts and ProveSets work the same way. The algorithm features add an attribute to
the ProveSet relation. Note, how the signature and hash validation is integrated into the
procedure to create a new intermediate artifact is discussed in the case-study sections.

6.3.4 A short intro to (invertible) watermarks

One of the advanced techniques that allow to directly embed ProveSets into the artifacts
are digital watermarks. Watermarks are a complex topic. However, we limit our brief
overview on this topic to information relevant for this thesis. This is valid, because we
do not want to conduct research on watermarks itself, but use them for our purposes.
For more detailed overview refer the reader to [DWN01].

Generally, watermarks are a well-known technique to embed information directly into a
data item by altering the data item imperceptibly [DWN01]. For instance, for images,
least-significant bit encoding is an easy example. The basic idea is that altering the
least significant bits of a pixel does not imply a visible change to the image. This way,
every pixel in a gray-scale image carries one bit of additional information. However,
using this approach alters the image irretrievably, which imposes severe problem when
using signatures and hashes as they cannot be verified anymore.

6.3. The provenance feature tree 99

There are several watermarking techniques proposed. Moreover, different watermarking
techniques can be combined to create a watermarking scheme. Depending on the applied
techniques, the resulting watermark has different properties, such as fragility, invisibility,
or robustness [DWN01]. For our purposes it is important that the watermark is fragile
(i.e., can be used to detect any modification of the artifact and ProveSet data) and
invertible to be able un-embed the watermark. Thus, we focus on invertible watermarking
techniques.

Invertible techniques

Our categorization of the first two techniques is based on a survey of invertible water-
marking techniques [FLTC06]. The slack technique uses unused space in storage formats
to embed the watermark.

Lossless compression. The basic idea of this technique is to apply a lossless compres-
sion on (parts) of the image and use the gained space to embed the watermark.
To un-embed, the watermark and restore the original image the image data has to
be un-compressed. The detail how the compression is applied depends on the used
algorithms, such as [CSTS05]. For us, it is important that most compression-based
techniques are fragile and thus can be used to ensure integrity.

Difference expansion. The basic idea of difference expansion in well-known ap-
proaches, such as [CC07, Tia03], is embedding one bit of a watermark into a
pixel pair. Therefore, the distance of two pixels (i.e., subtraction of color values)
is spread. For instance, in [Tia03], the authors double the distance and embed
a bit of the watermark. Due to lossy integer divisions the original pixel values
and the bit can be restored. The basic problem of these approaches is overflows.
It is possible that spreading the distance of a pixel pair leads to color values
that do not exist (e.g., are bigger than 255 for 8 bit gray values). To avoid such
overflows, the watermark is extended with a location map that indicates which
pixels do not contain an embeded bit of the watermark. Anyway, overflows lead to
an unpredictable capacity (number of bits that can be embedded). Nevertheless,
for our purposes, they seem to promising, because we have large images and short
messages.

Slacks. In many storage formats or databases the term slacks names reserved but
unused storage space [SML07, GSKS13]. For example, in an image format using
16 bit data types, only 10 may be used to encode the color values. Thus, there
are six bytes that are allocated but not used, which can be used for embedding
data, such as the ProveSets. In contrast, to the first techniques the coupling of
ProveSet and artifact data is less tight, as the ProveSet can be removed by using
simple bit masks. However, the embedding capacity is easily predictable.

To sum up, all techniques have benefits and drawbacks. Thus, we offer several solutions
and allow the engineers to choose the adequate solution.

100 6. Database-centric chain-of-custody

Watermarks

Schemes

Merkel et al.

Basic

LSB encoding

Invertible

Slacks

Difference
expansion

Compression

Figure 6.13: Watermarking options

6.3.5 Feature content of the Watermarking feature

In the following, we explain the selectable options for using invertible watermarking
techniques as shown in Figure 6.13, which are part of the provenance feature tree
from Figure 6.9. Note, although it is possible to combine different watermarking
techniques nearly arbitrarily to form a watermarking schemes, we limit ourselves to
four techniques and one watermarking scheme as prove-of-concept. However, additional
watermarking schemes can be added quite intuitively as creating a new watermarking
scheme is concatenation of applying different watermarking techniques. The selection of
offered features is based on available implementations (e.g., watermarking scheme of
Merkel et al. [MKDV11]) and expected implementation or modification effort.

Least significant bit encoding. We provide a feature with modified least significant
bit encoding. The modification is that we first modify the image using a bit
mask setting the least significant bit to zero. In this way, we create an additional
slack, which can be used to embed one bit. Any hash sum or signature is
computed preprocessed image (with least significant bit set to zero). As a result,
the watermark can be removed and the image be restored by setting all least
significant bits to zero. Therefore, we permanently modify each image (taking
sensor acquisition noise into account) perceptually and a potential attacker with
knowledge of the algorithm may remove the ProveSet. Nevertheless, it is easy to
use approach, especially in research phase of the project that can be seen as ground
truth for more advanced approaches and is thus, offered. Note, a similar approach
that uses sensor noise to embed watermarks is presented in [CSV10], however their
modifications of the data is less perceptual as they focus on embedding capacity
and cannot remove the watermark.

Difference expansion. We use the embedding scheme of Coltuc and Chassery [CC07],
because their evaluation has shown that their technique allows fast embedding.
This supports our goal of minimal invasiveness regarding non-functional properties,
such as response time, as well as it provides good embedding capacity. Finally,
this technique is used to create the privacy-preserving watermarking scheme of
Merkel et al. [MKDV11].

6.3. The provenance feature tree 101

Compression. Our compression-based technique is a zip-function known from com-
pressing files. The resulting watermark creates a visible watermark that appears
as random noise in areas that are compressed. We selected this technique as it
used to form, together with the difference expansion approach of [CSTS05], the
offered privacy-preserving watermarking scheme.

Privacy-preserving watermarking scheme. We included one watermarking scheme,
which was explicitly designed for the Digi-Dak project, as example to show how to
combine watermarking techniques to a watermarking scheme.3 The basic idea of
this scheme is to protect privacy of (potential) fingerprints. Therefore, first bound-
ing boxes for all regions potentially containing a fingerprint are computed. Second,
image data in the bounding boxes are compressed and encrypted. The gained space
is used to embed a watermark message, such as a signature, or filled with arbitrary
noise. As a result, the image contains regions appearing as arbitrary noise where
potentially a finger print is located. Finally, the location and expansion of the
bounding boxes are embedded using a non-visible embedding technique [CC07].
To un-embed the watermark, first the bounding boxes have to be determined, the
data in the bounding boxes needs to be decrypted, un-compressed and re-inserted
into the image.

From a data modeling perspective, there is no overhead for storing the watermarks.
For instance, for the initial artifact (cf. Figure 6.6), we can embed the watermarks into
topo_data attribute. Thus, the storage location is already there. However, for the case
studies the libraries on client and database side have to know where the watermark
is located in. Again for the initial artifact, there are two attributes that may contain
the watermark. To avoid confusions, we have to provide additional information, which
attribute contains the watermark. To this end, the Watermark feature has a table that
contains the mapping (cf. Figure 6.14). Unfortunately, the mapping is artifact specific.
Thus, if we want to avoid sticking to naming convention, which would be an invasive
change, we have to have a derivative for every artifact that has a watermark, to define
which attribute contains the mapping. To avoid explicit derivatives, we added optional
information the -WM flag, which can be added to the artifact comment and is understood
by the parsers generating the implementation of the SQL script containing the schema
implementation. Thus, in case the artifact has no watermark there is no -WM flag.

6.3.6 A short intro to forensic file formats

The basic idea of forensic file formats is having an all-in-one solution. The result is a
container in that all data (including signatures) and transformation steps are stored,
for instance using an XML structure. To this end, they correspond to our CProveSets,
but contain also the artifact data of every (priorly computed) artifact, usually in an
encrypted way. As a result, the forensic file format grows with every transformation

3A watermarking technique itself also is a watermarking scheme. However, combining different
techniques to a complex scheme offers interesting opportunities.

102 6. Database-centric chain-of-custody

Feature Base
1 % Artifact comment: represents sensor scan (initial Artifact)
2 id long , % surrogate running key
3 name text , % usually the file name
4 int , % pixel density in pixel per inch
5 height int , % height of both images
6 width int , % width of both image
7 int[] , % -WM pixel data topography image (height x width)
8 intensity_data int[] , % pixel data intensity image (height x width)
9 KEY id
10);

Artifact SensorScan (

dpi

topo_data

Feature Watermarks: DB schema
1
2
3
4);

create table watermark_data (
role text,
field_name text,

1
2
3
4);

Addition to feature Base resulting
SQL-script (Postgres syntax)
insert into watermark_data values (

'SensorScan',
'topo_data'

Figure 6.14: Effects adding the Watermark feature to database schema generation

step creating a new intermediate artifact. Especially for our high-resolution fingerprint
images, this easily creates large container files. It is problematic, because per definition
the whole container is shipped to any requesting tool, possibly requiring a large amount
of time. Nevertheless, they can be seen as ultimate solution to ensure integrity and
authenticity as well as providing all provenance data. However, during research, for
rapid prototyping and evaluation of novel preprocessing always using such a container
format is simply too much overhead. Consequently, we offer all the previously introduced
alternatives and do not only rely on forensic file formats. For demonstration purposes,
we limit ourselves to two formats: the first one specifically, designed for Digi-Dak, the
Brandenburg Container Format [KVL11] and the second one, the more widely-known,
Advanced Forensic Format Version 4 (AFF4) [CGS09]. Both formats come with complex

Forensic
file formats

BRB container
format

AFF4

Figure 6.15: Forensic file formats feature

APIs that allow to validate a container, read parts of the containers, and extend it (if
proper keys for respective signatures are provided). Thus, we do not describe their
architecture in detail, as we rely on existing functionality. From the data modeling point
of view, we can add an attribute containing the binary data4 of the container file, as we
do not require artifact-specific treatment. This attribute contains the current version of
container file. However, we have to keep in mind the container file shall be send to the
tool-chains instead of the pure pixel data.

4Usually this data tape is named BLOB such as in PostgreSQL: http://www.postgresql.org/docs/9.
1/static/datatype-binary.html

http://www.postgresql.org/docs/9.1/static/datatype-binary.html
http://www.postgresql.org/docs/9.1/static/datatype-binary.html

6.3. The provenance feature tree 103

6.3.7 Re-computation feature

So far, we concentrated on how to store the provenance data. To this end, we did not
consider what is required on concept and implementation level to re-compute artifacts.
Therefore, we have to be able to determine whether identity of the old and the newly
computed artifact holds. Re-compute an intermediate or final artifact means to re-invoke
the same process with the same input artifacts. All required information is stated in
the ProveSet and the identity of the input and output artifacts are determined using
(semantic) identity functions. In the remainder, we discuss how validation works. Based
on that explanation, we state what is required on database and tool side.

Artifact validation procedure

The validation procedure is in fact a modification of the procedure to create an interme-
diate artifact (cf. Figure 6.4). To this end, we introduce a totally new functionality for
that the original tool-chain was not designed for. However, the applied modifications to
perform Step 2 are a regulative change of the procedure to create a new intermediate
artifact. This is the least invasive possible modification. For comprehensiveness, we
depict the procedure in the appendix Figure A.1. The actual differences are:

1. The tool starts a validation request for a previously produced result (Ak+1) of this
tool-chain using the unique ID of Ak+1.

2. The database storing Ak+1 determines the input artifact5 Ak and sends Ak to the
tool-chain in the same way as when creating a new intermediate artifact.

3. Additionally, the ProveSet of Ak+1 is send in case there are tool-chain specific
parameters, which have to be provided to ensure functional dependency.

4. In case there are tool-chain specific parameters, the transformation function has
to be invoked using these parameters. Note, the actual computation remains the
same.

5. The tool-chain sends the resulting artifact An
k+1 to the database, which invokes

identic(Ank+1,Ak+1) and send the result back to the tool-chain approving or
declining the validation request.

Local artifact validation procedure

In later productive use, we expect that there is a database administrator responsible for
the database and a forensic expert administrating the tool-chain. In case the validation
is declined (i.e., an error is detected), it is not clear where the error occurred. Therefore,

5Note, for simplicity of explanations, we assume that there is only one input artifact of forensic
relevance (e.g., and image), as we encountered it frequently in Digi-Dak. However, the explanations are
easily adapted to multiple input artifacts as the resulting query remains the same and subsequent steps
have to be repeated for all input artifacts.

104 6. Database-centric chain-of-custody

we offer an optional feature Local validation that shall allow to verify results locally,
in the responsibility of one person. The idea is to give the tool a local provenance
store that allows to determine identity of the input and result artifact on client side.
Always having these provenance stores when developing light weighted tools may reduce
development efficiency. Thus, we offer this functionality as an optional feature. The
primary differences to the normal validation are:

1. The tool-chain needs a local provenance store containing either IDs of the input
artifacts if only the provenance feature is selected. In case the Hashing or Signature
feature is selected also the hash (or signature) values values are stored.

2. The tool-chain needs (potentially artifact-specific) identity functions.

3. Ak+1 itself is send to the tool-chain instead of only sending the respective ProveSet.
This is required to invoke the identity functions locally.

4. The tool can decline the validation request locally in case one of the identities
does not hold.

Effect on modeling level

So far, we were able to avoid interactions of the provenance feature tree and the tool-chain
features, which have to be resolved using derivative features. However, as artifact-specific
identity functions as well as tool-specific parameters, cannot be defined globally without
highly restrictive conventions, making prototyping practically impossible, we see no
better option than using a derivative for each tool-chain feature. However, not every
artifact requires a special identity function as the default semantic identity function
(comparing all fields of a database table) works well in many cases. Nevertheless,
practically every tool-chain has tool-specific parameters. Anyway, the derivatives the
following content on concept level as depicted in Figure 6.16:

Tool-specific parameters. Considering our provenance framework from Section 2.3.2
collecting tool-specific parameters means we switch from the Workflow layer, show-
ing causal dependencies, to the Existence layer, allowing recomputation of the
resulting artifact. To this end, we do not add tool-specific parameters to the
ProveSet relation, but create an extra relation referencing the artifact relation.
This way, we can easily query the data for the two provenance layers. By con-
vention, we name the resulting table after the artifact role and add _parameters.
To this end, the resulting table for the EqualizedImage artifact is EqualizedIm-
age_parameters. In case we use watermarks, we do not have to create another
relation, because we store the parameters in the watermarks. Similarly, this works
for forensic file formats. However, embedding the additional provenance data is
required and considered in the case-study sections.

6.4. Summary 105

Artifact-specific identity functions. In contrast to any previous feature, we have
to consider user defined functions on database side, which require an extension of
our approach to tailor database schema. To this end, every artifact may contain
specific identity functions. Upon variant creation the default identity functions are
superimposed with the artifact model (cf. Figure 6.16). Thus, the artifact-specific
definitions prevail. Note, it is conceptually and technically possible to have multiple
definitions of the identity functions. Then, the last one prevails. However, as we
did not encounter a useful application for multiple definitions, we forbid this case.
An error occurs if a user tries to define an identity function multiple times.

Derivative Feature Equalization Tool/Provenance
1
2 int ,
3);
4
5
6 scan_1.dpi = scan_2.dpi
7 and scan_1.height = scan_2.height
8 and scan_1.width = scan_2.dpi.width
9 % int[] is complex artifact calls identity function for int[]
10 % identity(int[] i_1, int[] i_2) compares length and all values in array
11 and scan_1.topo_data = scan_2.topo_data
12 and scan_1.intensity_data = = scan_2.intensity
13);

Parameter EqualizedImage (
blockSize

Identity function semantic EqualizedImage scan_1 scan_2 (

Artifact

Identity
functions

id-based
function

semantic
function

Artifact
EqualizedImage

Identity
functions

semantic
function

Attribute 1

Artifact
EqualizedImage

Identity
functions

semantic
function

Attribute 1

Variant generation using Feature Structure Trees

default id-based
function

default id-based
function

default semantic
function

semantic
function

default id-based
function

semantic
function

Figure 6.16: Provenance derivative

6.4 Summary

In this chapter, we contribute the concept of the database-centric chain-of-custody [SSK11]
as preparation in order to conduct the first case studies in the next chapter. Particularly,
the chain-of-custody, therefore, is a concept that defines the level of granularity regarding
the artifacts for that we have to capture reliable provenance information. Moreover, we

106 6. Database-centric chain-of-custody

amplify this concept to develop a threat model that results in the definition of classes of
systems within our infrastructure requiring similar provenance functionality. For each of
these classes, we select one case study in the remainder.

The second contribution is the design of a versatilely applicable provenance SPL in
order to extract the desired provenance data. Based on this design, in the following
chapter, we first implement the provenance SPL (the Soma), secondly integrate the
desired provenance functionality (the Dendrites) into the case studies itself, and finally
report on our observations.

7. First exploratory case studies

In our research agenda in Section 4.3.4, we defined the goal of this chapter as: Explore
feasibility and beneficial as well as problematic properties of programs when integrating
provenance by conducting first exploratory case studies. In particular, we investigate the
following questions and their (possible) mutual interaction:

1. What is the impact of applying different implementation techniques regarding
the goal of minimal-invasive integration of the provenance concern as defined
in Section 4.2.1?

2. What characteristics, especially in the decomposition of existing solutions, support
or complicate the integration of the provenance concern in a minimal-invasive
way?

3. Are there mutual interactions between applied implementation technique to inte-
grate the provenance concern and characteristics of the existing solution?

In this chapter, we explore whether it is feasible to integrate tailored provenance
functionality into existing systems. Mainly, we are interested in the major challenges
that arise when integrating the provenance capturing capability. These insights shall
help to implement and evaluate more advanced case studies in the next chapter. And
consequently, in the end, allow a more reliable answer to the question whether provenance
integration into existing systems is practically feasible. To this end, we rely on the
infrastructure classes from the previous chapter. For each of the three groups, we select
a representative case study to integrate the provenance capturing capability and finally
summarize the insights gained.

108 7. First exploratory case studies

7.1 Coarse-grained provenance integration on tool

side

In the prior chapter, we designed the provenance SPL that we want to integrate into
our case studies. Moreover, we succeeded in minimizing feature interactions. In the
following, we explore the remaining question how to incorporate provenance capturing
and evaluation of provenance data in the single parts of the infrastructures. To this end,
we start with small case studies allowing for more advanced and complex ones in the
remainder. The question we work on is: How to capture (and evaluate) the provenance
in the ProveSet in a minimal-invasive way?

7.1.1 Objectives

Besides implementing the features from Section 6.3 with techniques introduced in Sec-
tion 3.2, there are several objectives that have to be considered for this case study. In
the following, we point out these objectives and explain why they are of special relevance
for this case study to ensure minimal invasiveness:

Minimizing implementation and maintenance effort. This contains the view of
the developer trying to integrate the provenance functionality.

Minimizing functional impact. This objective contains the view from tool side ac-
cording to the classification given in Section 4.2.1. It considers two points: (1)
Intended invasiveness of the change itself and (2) additional invasiveness implied
by limitations of the implementation technique.

Minimizing non-functional impact. In this objective, we try to minimize impact
on non-functional properties. The evaluation is based on the unmodified system
as optimum and the intuitive implementation technique as ground truth. This
way, we are first interested into getting an impression of the influences without
integrated provenance. Moreover, we are able to explore potential differences using
different implementation techniques.

In addition to the aforementioned objectives, we are also interested into properties
of the programs that either support or complicate the integration of the provenance
functionality. In the considered case studies, we have effectively no support from the
developers that would simplify integration of the new concern. However, allowing easy
integration with no support of the developer may turn out to be naive. Thus, we are
interested into properties that can easily be realized for instance by known refactoring,
which should be applied anyway. Finally, we explore where to integrate the provenance
concern considering different opportunities and discussing benefits and drawbacks.

7.1. Coarse-grained provenance integration on tool side 109

7.1.2 Implementation concept

In the following, we explain the implementation concept as required to comprehend
details of the actual implementation and the subsequent evaluation. To this end, we first
explain why a first general approach fails. Then, we use the insights gained to develop
the solution concept.

The neuron analogy revisited

In Section 4.3.2, we defined the overall architecture using the neuron analogy. Now, we
refine this analogy for this case study in Figure 7.1 and recapitulate the architecture parts
used in this case study. In addition, we give additional information on the semantics of
the single parts.

DB

Soma

Tool

DB driver

Exchange
Artifacts

Local
store

Spectative Dendrite

Regulative Dendrite

Figure 7.1: Refinement of the neuron analogy for the first case study

Soma implementation. The Soma implementation encodes the actual provenance
functionality. However, as described in Section 4.3.2, the Soma itself does not
contain any connection to the original tool. Recapitulate that these connections
are named Dendrites.

Dendrite implementation. In contrast to the Soma, the Dendrites are the invasive
parts that either intercept the artifacts or propagate regulative changes from the
Soma to the tool-chain (e.g., abort in case signature validation fails).

Optional provenance store. In case the optional Validation feature with Local valida-
tion is selected, the tool-chain has an additional local provenance store containing
signatures, keys, and hashes of priorly consumed and produced artifacts.

110 7. First exploratory case studies

On the way to the actual solution - The road not taken

Based on the Figure 7.1 and similar to the ideas of communication-centric architectures
for services [SPG08, GMM05] or buses [CBSA11], our first idea was to link the provenance
functionality to database drivers. These drivers are essential for any communication
with a database. The benefits are that drivers, such as JDBC1, are implemented for
all major database vendors and are the gateway from and to the database. Thus, we
do not have go into the details of the tools themselves. We linked our provenance
capturing and evaluation to the methods of the JDBC Statement interface that are
responsible for query execution and the ResultSet class representing an abstract query
result. However, the tool chains query the database not only to receive or insert artifacts,
but also for getting meta data etc. To this end, we cannot treat every SQL query the
same way, but have to identify the queries and corresponding results representing either
an intermediate result request or an insert of a new intermediate artifact Figure 6.4
at run time, by parsing the SQL strings. This is possible, but not practical and does
not support non-invasiveness regarding non-functional properties. To sum up, it would
have been desirable to modify only the database drivers, which is very well possible for
instance to log, which queries have been sent to a database. However, for our purposes
the level of abstraction at the database driver is too much. Consequently, we have the
need for a different solution that we introduce in the remainder.

Defining the extension points via source-code generation

Our initial solution attempt showed that we need more semantics than simple SQL
strings. To this end, the next logical step is trying to link provenance capturing and
evaluation to the construction of the object representing the artifacts. This is a novel
concept to exploit the structure of object-oriented programs for provenance functionality
that we first published in [SSS12b]. So far, provenance capturing focused on abstract
descriptions, such data models (e.g., [CCT09]), but ignored how these descriptions are
implemented in object-oriented languages. Similar approaches, published simultaneously
(at the same venue) [TAG12, BCK12], also acknowledge this gap and try to exploit the
program structure. However, in [TAG12] the authors use modified compilers resulting
in an all or nothing property. This does not allow for tailored provenance capturing
and they cannot handle complex objects (artifacts). In a similar way, the approach
in [BCK12] contains a formal model, which does not consider the tailoring requirement.
A later approach is also defined on object-oriented program structures [CSRH13], but it
is not designed for minimizing the integration effort.

We already have a model of the artifacts that can be easily mapped to source code.
Thus, the basic idea is to create the source of a class file that represents the artifact.
However, we discovered that the classes representing the artifacts in the tool chains
contain additional methods or fields. Consequently, we cannot generate these source files.
However, we can generate a class that can be easily mapped to the desired one. To this
end, we generate a helper class named by convention after the role of the corresponding

1Java Database Connectivity specification: http://java.cnam.fr/iagl/biblio/spec/jdbc-3 0-fr-spec.pdf

http://java.cnam.fr/iagl/biblio/spec/jdbc-3_0-fr-spec.pdf

7.1. Coarse-grained provenance integration on tool side 111

artifact attached with Artifact (e.g., SensorScanArtifact for the SensorScan). This
can be seen as a light weighted object-relational mapping without using respective tools.
We do not use such tools especially, because we consider integrating these tools as not
minimal invasive, especially regarding the footprint of the tool chains.

Refactoring effort - A practical solution

To create the actual classes representing the artifact (e.g., SensorScan) from a helper
class (e.g., SensorScanArtifact), the actual classes need two methods that fetch the
data from the database and send new results back to the database. Per class, this
requires three lines of code, where we can generate the code fragments (complete
methods). However, as they have to be present also in case we have no provenance
integration, these methods have to be integrated manually or result in refactoring effort.
Our analysis of the existing tool chains reveal that often the functionality to load the
data is tangled somewhere in the source code and not explicitly capsuled in an extra
method. Consequently, a refactoring is suggested anyway. Moreover, we experienced
that this enhances the acceptance of the original programmers of the tool chains for the
integration of our new functionality, as it gives them an impression where and how the
integration takes place. Finally, in case there are small changes to the objects, such as
renaming of fields, the helper classes provide some limited schema independence. To
sum up, we consider our approach of the generating the source code of the helper classes
as a practical solution that allows us to integrate the provenance functionality.

7.1.3 Provenance integration

We implemented the Soma functionality in form of a provenance API in an extra package
de.ovgu.provenance that is deployed as jar-file. Note, the Soma currently contains
no connection to the program, because this is handled by the Dendrites. Moreover,
the variability within the API is contained in independent sub packages that are either
deployed or not. In the following, we briefly sketch some implementation details that
are relevant in the remainder.

Internal watermark scheme generator. As we proposed in prior work [SSM+11],
we designed the provenance API in such a way that we can nearly arbitrarily
combine different watermarking techniques to form a watermarking scheme. To
this end, a watermarking scheme is a concatenation of techniques embedding a bit
string (the message). How to interpret (and generate) the bit string, is defined in
a pattern, which in fact is a schema for the bit string. Moreover, we automatically
map the provenance data of the artifact (e.g., artifact id, signatures etc.) to such
a pattern, which then can be embedded or read.

Applied cryptographic framework. For computing the signatures or hashes, we use
java.security package. When deploying our provenance API, the API comes
with default keys and certificates to test functionality. However, for intended
productive application the keys and certificates have to be exchanged requiring a
certificate infrastructure. This is not part of the provenance SPL.

112 7. First exploratory case studies

Forensic file formats. The forensic file formats are deployed with a fully functional
API to query and extend these files. The challenge is that these APIs do not
exist for all programming languages. For instance, the Brandenburg Container
Format [KVL11] API is only available in C Sharp, while a lot of our prototypes
are programmed in Java. To integrate these container files, we have to call these
libraries via command line from within the tool-chain and store the desired result
in a temporary file. We are aware that this imposes new attack vectors and imposes
performance drawbacks. However, it is the only way to integrate the container
formats instead of providing an own API.

Dendrite implementation using different implementation techniques

Implementing the Dendrites means implementing the previously defined functionality
with all introduced implementation techniques. This results into five different imple-
mentations of the same functionality. The implementations for the two variants of the
intuitive techniques are nearly identical and considerably similar to the CIDE imple-
mentation. However, the implementation feature and aspect-oriented implementation
differ significantly and are in fact new implementations.

Implementation procedure. To observe differences, we started the implementation
using the intuitive techniques and recorded core challenges to compare them to
the more advanced implementation techniques. In the remainder, we also use the
implementation to evaluate the effect on functional and non-functional properties.

Evaluation coverage. Subsequently, we focus on a sub set of the available features
selecting a representative from different groups of functionalities. For instance, we
consider one hashing and signature algorithm. In addition, we limit ourselves to
one forensic file format (BRB), two watermarking techniques least significant bit
& the technique from Coltuc et al. [CC07] and one hashing (SHA256) as well as
one signature algorithm (AES256 with SHA256) in accordance with [BSI14].

7.1.4 Observations

In the following, we discuss observations that we made during the implementation and
when testing and evaluating the implementations in the context of minimal-invasive
integration as defined in Section 4.2.1.

Integration and maintenance effort

From point of view of the developer, the first and most important observation is that
the feature model changes from the quite complex one for the Soma functionality
(cf. Section 6.3) to the one displayed in Figure 7.2. This is because the additional
functionality is hidden in the Soma implementation. This eases integration and is one
argument why our approach is practically feasible. All case studies are implemented

7.1. Coarse-grained provenance integration on tool side 113

in Java 1.7 using Eclipse Kepler with FeatureIDE extension2 except for CIDE having
an own Eclipse plug-in offering roughly the same functionality. This way, we ensure
comparability and soundness of our results and we can automatically generate tailored
tool-chain variants.

Provenance

Security Validation

Hashes

Signatures Watermarks

ForensicFiles GlobalLocal

Tool chain

Figure 7.2: Change of the provenance feature tree

In the following, we summarize the most important properties regarding (1) integration
effort, (2) impact on maintenance of particular variant (mainly measured by feature
cohesion), and (3) obfuscation of the resulting source code for every implementation
technique. As it is hard to measure these criteria objectively, for instance by giving
total numbers, we compare them subjectively from the point of view of a developer and
justify our explanations.

Intuitive implementation techniques. Recapitulate that the two intuitive implementation
techniques use conditional statements to encode the intended variability. The difference
between both techniques is that the dynamic approach utilizes variables, while the static
one utilizes constants. The main intention for two techniques is the assumption that
the compiler removes not required code in the second technique denoted by conditional
expression that are evaluated as false and contain not required code.

Integration effort. Integrating the provenance capturing and evaluation functionality
into the tools requires to extend the two methods get() and send() of each gen-
erated helper class (e.g., SensorScanArtifact) communicating with the database.
An extension means, for instance, to copy thirty lines of additional source code into
the get() method of each artifact used in the tool as depicted in Figure 7.3. This
source code consists of nested if conditions to avoid code duplication. However,
as we do generate these classes, we can easily generate these parts as well, but we
have to encode artifact-specific behavior using reflection [GJSB05]3 to allow for
such generation. In summary, we do not have to integrate the Dendrites manually.

2FeatureIDE 2.6.7 can be obtained on http://wwwiti.cs.uni-magdeburg.de/iti db/research/
featureide/ or via the Eclipse marketplace.

3http://docs.oracle.com/javase/7/docs/api/java/lang/reflect/package-summary.html

http://wwwiti.cs.uni-magdeburg.de/iti_db/research/featureide/
http://wwwiti.cs.uni-magdeburg.de/iti_db/research/featureide/
http://docs.oracle.com/javase/7/docs/api/java/lang/reflect/package-summary.html

114 7. First exploratory case studies

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22 }
23 }
24
25
26
27
28
29
30 }

long aid = result.getLong("aid");
Artifact temp = getInstance(aid);

if (!(Provenance.Security.XOR == Provenance.Security.FORENSIC_FILES)){
 database.DB.map(temp,result);//Using reflection

 if(Provenance.Security.XOR == Provenance.Security.WATERMARKS){
 WaterMarkPattern pattern = new WaterMarkPattern((Object)temp);
 pattern.verify();
 }else{//Provenance.Security.SIGNATRUES || Provenance.Security.HASHES
 String verificationString = getVerificationString(temp);
 byte[] toTest = CryptoFramework.getVerificationString(temp)
 .getBytes(java.nio.charset.Charset.forName("UTF-8"));///Using reflection
 CryptoFramework crypto = CryptoFramework.instance();

if(Provenance.Security.XOR == Provenance.Security.HASHES){
 byte[] hash = result.getBytes("hash");

 crypto.verifyHash(toTest, hash, temp);
}else{// Provenance.Security.SIGNATURES)
 byte[] signature = result.getBytes("signature");

 crypto.verifySignature(toTest, signature, temp);

}else{
 String fileName = "temp_container.zip";
 byte[] container = result.getBytes("container");
 Container.writeTempFile(fileName,container);
 Container.validate(fileName);
 temp = readContainer(fileName, aid);

Marked as
dead code
Marked as
identical
expression

Figure 7.3: Code to integrate using static if-approach with activated hashing feature

Note that using reflection may introduce a performance penalty, but does not
introduce problems regarding type safety as all artifacts are generated using one
artifact model. The previously described functionality contains only the Security
feature tree. In addition, we have to integrate the validation feature. In contrast,
to the Security functionality the Validation has no fixed point in the program
structure where to integrate the required Dendrites. Often, we can directly change
the main() function, but the functionality encoding the program logic of the tool
may be hidden in the source code. As a result, we have to look for the right point
in the source of the tool and integrate the Validation functionality manually. To
sum up, the main effort is writing the code generator and locating the program
logic where to integrate the Validation.

Maintenance. Regarding maintenance the provenance security functionality is scat-
tered over all artifacts, which themselves may be distributed over the whole source
of the source code, and the Validation functionality is hidden somewhere in the
source code of the tool. To this end, there is little feature cohesion. However,
using Eclipse, the development environment automatically provides an overview
of all source code locations that contain feature specific code. From our point
of view, this nearly totally compensates the missing feature cohesion regarding
maintenance.

7.1. Coarse-grained provenance integration on tool side 115

Source obfuscation. The major drawback of both intuitive implementation techniques
is the missing variant generation step. In fact, every variant contains on source code
level the program code for all possible variants. This obfuscates the variant source
code (cf. Figure 7.3) not only the general code base used for variant generation.
Furthermore, in the static if-approach with features encoded as constants, the
applied development environment additionally puzzles the developer with its syntax
highlighting as shown in Figure 7.3. The reason is that it correctly displays all
code fragments of inactive features as dead code and the conditional statements
of activated features as unnecessary (in Eclipse comparing identical expressions).
For our explanations, we used different (but similar) colors to mark dead code and
identical expressions. However, per default the development environment does not.
Consequently, the developer can hardly determine, which features are activated
based on the current configuration. Finally, another drawback of this integration
of the Validation feature is that we cannot remove the Dendrites from the source
automatically, as we can for the helper classes. In case we want, for instance,
benchmark a variant of the tool totally without provenance, there are remainders
of the Validation feature in the source code of the tool. Consequently, there has
to be a part of the Soma functionality as well. This is not in the sense of our goal
of minimal-invasive provenance integration and hence, hardly acceptable.

Advanced preprocessor technique. As defined in Section 3.2.2, we use CIDE (in Version
2.2.0) as preprocessor technique and report our observations subsequently.

Integration effort. The integration effort is very similar to the intuitive techniques.
However, one difficulty arises due to implementation details of CIDE. The pre-
processor annotations are stored in a different file and not directly in the source
code. Thus, we have to generate this file as well. Moreover, we had to re-engineer
how the content of the mark-up file is interpreted. A different difficulty arises
due the idea of using colors in general. In Figure 7.3 Line 4, it is defined that
a certain part of the source code only is not executed in case the Forensic Files
feature is selected. This information is hardly depictable with colors. For code
that is only executed in case multiple features are selected the colors are mixed,
for inclusive ors however, we have to replicate code. Finally, using this technique,
we also have the issue that we need to locate where to integrate the Validation
features. However, in contrast to the intuitive technique the variant code does not
contain un-required code.

Maintenance. The feature cohesion is the same as for the intuitive approach. The
provenance code is scattered over all artifacts and the Validation code is hidden
somewhere in the program itself. In contrast to the intuitive technique, there is
no global overview that can be used to jump directly to the feature code for the
whole project.

116 7. First exploratory case studies

Source obfuscation. From our subjective point of view, which is supported by empir-
ical studies [FKA+12] using colors, the source-code obfuscation is less than using
if-conditions, especially as we have little overlapping features.

Feature-oriented programming. To implement our case studies, FeatureIDE offers to use
FeatureHouse [AKL13] or AHEAD [Bat04]. We decided to use FeatureHouse instead
of AHEAD, because with FeatureHouse, we can directly use the source of the original
program and copy it into the base feature implementation module. Using AHEAD, we
would have to convert every source file from .java into a .jak file and the .jak files do
not contain information regarding the implementation package which we would have to
remove from the .java file.

Integration effort. Technically, for each artifact and feature there has to be an im-
plementation (a refinement). However, as the refinement encodes the same func-
tionality, we can generate these code fragments for each artifact as well, which are
then used to compose a tailored variant automatically. As a result, we do not have
to implement each refinement manually. In addition, we do not have to replicate
code, but we had to integrate two empty hook methods [MLWR01] per artifact.
Nevertheless, for the validation feature, the effort to locate the source code where
to integrate the Validation feature remains the same.

Maintenance. From point of cohesion, the Dendrites of a feature are located in separate
files belonging to that feature (including the Validation feature). We consider this
as very beneficial, because it is clear where which functionality is added in case a
certain feature is selected.

Source obfuscation. In fact, there is no obfuscation of the original source code contrary
to any prior implementation technique. Moreover, as the Dendrite feature model
mainly contains alternatives and there are little method refinements, we argue
that the source code is easy to understand.

Aspect-oriented programming. For the aspect-oriented integration, we use the FeatureIDE
extension for AspectJ (v. 2.6.7) in concert with AspectJ Development Tools for Eclipse
(v. 2.1.3) [Kic96], because it is already part of FeatureIDE and offers full development
support. This includes a feature modeling tool and allows to create particular variants
containing only selected aspects, which is usually not the main focus of aspect-oriented
programming.

Integration effort. Interestingly, we only need two pointcuts for the Security feature
sub tree. Thus, we also have to implement only two advices per feature not per
combination of artifact and feature. However, as we generate parts of the source
code, this only results into less effort to implement the code generator, which
is compensated by the learning effort to deal with complex syntax of AspectJ.

7.1. Coarse-grained provenance integration on tool side 117

Nevertheless, this is an interesting observation for more advanced case studies in
the next section. In contrast to feature-oriented programming, we do not have to
implement hook methods nor do we have to re-factor the source code of the tools.
Finally, integrating the Validation functionality is as laborious as using the other
programming techniques.

Maintenance. Regarding feature cohesion, here aspect-oriented programming is very
similar to feature-oriented programming. The Dendrites, encoded as pointcuts, are
located in a separate package and the advice codes are located in separate files of the
single features modules too. Subjectively, it is uncommon that even in a particular
variant the executed source code in the advices remains physically separated and
we require tool support to see where what additional code is executed, which is
not as intuitive as using feature-oriented programming.

Source obfuscation. As the Dendrites are implemented in separate files there practi-
cally is no obfuscation. The already mentioned physical separation of concerns
in variant code may be less intuitive to programmers used to object-oriented
paradigm, but in summary we cannot observe a difference compared to feature-
oriented programming.

Comparison of the implementation techniques. Generally, we observed little difference
regarding the implementation techniques and report that each technique is valid and
practical choice under certain circumstances. Considering our observations, we only
recommend to use the intuitive technique, in case conventions or other restrictions do
not allow to use FeatureIDE, mainly due to the missing variant generation step resulting
in massive code obfuscation. CIDE would always be a valid choice with better tool
support for this kind of case studies. Finally, here we cannot make a distinction between
aspect-oriented programming and feature-oriented programming. Although, we have to
use hook methods in feature-oriented programming and need to re-factor small parts
of the code, we argue that the aspect-oriented language extension is far too powerful
and thus, too complex for this first case study. Anyway, the observation that we can
integrate the provenance functionality using aspect orientation with very little source
code is highly interesting.

Effect on functional level

In the following, we report on the invasiveness of the single features that we integrated
into the source of the application. In fact, we are interested whether any of the
implementation techniques forced us to perform more invasive changes. We depict our
observations in Table 7.1. This table contains the categorization (cf. Table 4.1) for
each integrated Dendrite (block of code) and short explanation on the semantics of the
respective Dendrite.

The general result is that most additional changes are minor ones. The only real
problem that occurred are un-removable code fragments for the Validation feature

118 7. First exploratory case studies

Table 7.1: Effects on functional level
Feature

Category Description Intuitive CIDE FOP AOP
Provenance get() Monitor which artifact is requested

store() Monitor which artifact is send to DB
Security get() hook method reflective call

store() hook method reflective call
Hashes get() check & read container data code cloning

store() computes hash
Signatures get() adds signature does not match alert code cloning

store() computes signature

Watermarks get()
store() embed watermark
get() check container, read container data
store() append & send container to DB

Validation main() 2 Invasive Validation request contacting DB
main() Local validation error

Intended invasivenes Additional invasiveness

1 Spect.
1 Spect.
1 Spect. Adds new method, but actual

control-flow changes in child features
1 Regul.
1 Spect.
1 Regul.
1 Spect.

2 Regul.
unembed watermarks,
adds signature does not match alert

1 Regul.
ForensicFiles 2 Regul.

2 Regul.
un-removable

LocalValid. 1 Regula. un-removable

using the intuitive implementation techniques. Whether, the additional reflective calls
of the aspect-oriented technique (allowing to use two advices per feature) introduce
a performance penalty is examined shortly. Summarily, we observed one additional
potential drawback for the aspect-oriented technique.

Effect on non-functional properties

Subsequently, we examine the effects of the provenance features on the non-functional
properties footprint, performance, and main-memory consumption as defined in Sec-
tion 4.2.2.

Footprint. We have already determined that, except for the intuitive techniques, in a
particular variant there is only required code. Thus, the footprint is of minor importance.
However, a different footprint of the compiled helper classes (containing the Dendrites)
delivers a first and easy to examine hint whether the compiler is able to remove un-
required (dead) code from the binaries. Indeed, if compare, for instance, the resulting
SensorScanArtifact.class files produced with the help of the dynamic and static
intuitive approach (with selected Feature Hashing), we observe a difference in the file
sizes although the source code files are of equal size. Consequently, we hypothesize that
the compiler removes un-required code fragments.

To verify our hypothesis, we analyzed the resulting byte code gained by invoking the
javap command, from the Java Development Kit 1.7 on the SensorScanArtifact class
file. Our in depth analysis reveals that using the static implementation technique indeed
all dead code fragments and the conditional statements of the activated feature code
are removed. In contrast, using the dynamic approach the code fragments are part of
the compiled code. This firstly, justifies that it is necessary to differentiate between the
two techniques and secondly, we have to answer the question whether this results into a
measurable performance difference.

7.1. Coarse-grained provenance integration on tool side 119

Performance. From the point of view of minimal-invasive integration, we have to
minimize the introduced performance penalty. Thus, now we have to determine two
things: First, the general performance penalty introduced by the different provenance
functionalities. And second, we have to know whether we can measure a performance
difference for the same variant due to the application of a different implementation
technique. Of special interest is whether we can determine a difference between the two
intuitive techniques and whether there is a general performance penalty using AspectJ
due to language overhead. Generally, we assume that we cannot measure a significant
performance difference caused by different implementation technique. Consequently, we
expect that the measured performance difference per implementation technique is less
than the variance of the measured response times.

We use the get() function of an artifact to determine the response times. Response time
is defined from invoking the function until it resumes. We select the get() function as
the store() functions performs very similar tasks. We measure 100 invocations of the
function via requesting the same image and compute the mean values to ensure statistical
soundness. All images have the same size as the one we that was used in [KS13a] and
thus represents realistic workloads. All measurements are performed on an Intel Core
2 processor with 2GB main memory and the tendencies have been verified using an
Intel i7 with 8GB main memory. In addition, we used Oracle Java Development Kit in
version 1.7.0 and the artifacts are stored using PostgreSQL in version 8.4.

No Provenance
Provenance

Hashes
Signatures

Watermarks

0

1

2

3

4

5

6

Original
Dynamic
Static
CIDE
FOP
AOPAv

er
ag

e
re

sp
on

se
 ti

m
e

(s
)

Figure 7.4: Average response time per feature and implementation technique

As expected, in Figure 7.4 we cannot observe a significant difference using different
implementation techniques. However, we do observe large differences between the
single features. As a result, for coarse-grained provenance, we conclude that regarding
performance there is no difference between the implementation techniques. However, for
future case studies, we hypothesize that we face additional performance penalties which
have to be taken into consideration.

120 7. First exploratory case studies

Main-memory consumption. What we are interested in, is the total amount of main
memory consumed, as it may reach the capacities of a given system. Hence, we run
a tool in an infinite loop, requesting always new results, and record the total amount
allocated memory from the task manager. In Figure 7.5, we depict our results for each
feature and technique using the equalization tool from [KS13a].

No Provenance
Provenance

Hashes
Signatures

Watermarks

0

100

200

300

400

500

600

Original
Dynamic
Static
CIDE
FOP
AOP

M
ai

n
m

em
or

y
co

ns
um

pt
io

n
(M

B
)

Figure 7.5: Average main-memory consumption after five minutes per feature and
implementation technique

We observe that there are in fact two different amounts of main memory required. In
depth analysis using profilers reveal that this results from the applied cryptographic
frameworks to validate hashes and signatures. Consequently, we do not see a measurable
difference between the single implementation techniques not even with the additional
runtime libraries required for AspectJ.

7.1.5 Lessons learned

Conducting the first exploratory case studies reveals mainly three findings. First,
the simplification of the feature model on Dendrite side eases the integration of the
provenance functionality, which is important for practical feasibility of our approach.
Secondly, by application of our helper classes (representing the artifact), we ensure that
the object-oriented decomposition is congruent to the integrated provenance functionality
and the underlying data model of the provenance framework (i.e., is encoded in one
class or method). This causes that the functionality to integrate remains crosscutting
but not heterogeneous, which would have made integration a lot more difficult. It allows
us to integrate the same functionality at one location only. This, in turn, suggests that
in more complex systems where the decomposition is not congruent, integration of the
provenance concern may be practically infeasible. To this end, we need to examine more
advanced case studies to reveal whether there are case studies where provenance is a
heterogeneous cross-cutting concern. Finally, considering the different implementation

7.2. Coarse-grained provenance for databases 121

techniques, we found that the intuitive techniques impose severe drawbacks, as we
cannot remove all feature-specific code fragments. Moreover, we hypothesize that aspect-
oriented programming may be a solution to easily integrate more fain-grained forms of
provenance by introducing a performance penalty.

7.2 Coarse-grained provenance for databases

As already imposed by the name, in our database-centric chain-of-custody, databases
play pivotal role. Consequently, we need to integrate the provenance functionality not
only on tool side but partly on database side as well. Especially, the databases in our
infrastructure have to be able to check hashes, signatures, and validate watermarks.
To this end, we first need a concept how to integrate this functionality, because, so
far, we considered databases mainly only for storing artifacts. To this end, this section
addresses the dynamic behavior of the database (e.g., procedures and functions) and not
the schema (i.e., tables and views). Note, large parts of this content have been priorly
published in [SSM+11].

7.2.1 A concept for coarse-grained provenance integration on
database side

As a first step to integrate the provenance concern, we need a concept how and where
to integrate the provenance functionality. Basically, we have two options. Firstly, we
can integrate our provenance library on code level. This option has the advantage that
we can re-use our Soma implementation of the first case study. Secondly, we can use
procedural extensions of SQL. This way, we do not have to locate respective source-code
fragments. In addition, we do not interfere with performance critical implementation
parts, because we integrate our functionality on top of the database system and not
within. However, then we have to re-implement the Soma functionality.

We decided for the second option to use procedural language extension, because currently
we want to integrate coarse-grained provenance and thus, have no need to change the
query processing itself. Moreover, based on our experiences with locating the source-code
location to integrate the Validation feature, we argue that locating the source code
location within a mature database system requires more time than re-implementing the
Soma functionality. To the best of our knowledge, there in no experience to incooperate
provenance in such a way so far. Consequently, this represents a novel concept.

PostgreSQL as example

Priorly, we decided to integrate the provenance functionality on top of a database system.
As proof of concept, we integrate our provenance functionality into one mature database
system. Although most database systems provide a procedural language extension, we
choose PostgreSQL and to this end, PL/pgSQL4 mainly because it is available open
source.

4http://www.postgresql.org/docs/8.4/static/plpgsql.html

http://www.postgresql.org/docs/8.4/static/plpgsql.html

122 7. First exploratory case studies

7.2.2 Provenance integration

In the following, we briefly describe how the Soma and Dendrite functionality are
integrated into a PostgreSQL database system.

General Soma functionality

First, we have to enable PostgreSQL to compute hashes, signatures, and to be able to deal
with watermarks. Fortunately, PostgreSQL already contains a package named pgcrypto

that allows to compute these values. We illustrate the usage in Figure 7.6. The function
compute_sha256 determines the SHA256 hash value for an artifact identified by its
artifact_id. For simplicity, we now assume that there is a table raw_data that
contains a linearized representation of the artifact (e.g., as file), which is the database-
side equivalent for the getVerificationString function from Figure 7.3 Line 12-13.
The compute_sha256 function computes the SHA256 hash value using the digest

function by providing the desired hash algorithm as second parameter. Note that the
compute_sha256 function is implemented in own schema prov_crpyto. Schemas are
equivalent to packages. Using different schemas allows us to capsule the child feature
implementations of the Security feature tree and finally allows us to roll out only the
required functionality.

1
2 RETURNS character AS
3 $BODY$
4 DECLARE
5
6 hash character(256);
7 BEGIN
8
9 hash = digest(blob_data, 'sha256');
10 return hash;
11

CREATE OR REPLACE FUNCTION prov_crypto.compute_sha256(artifact_id integer)

 blob_data bytea;

 SELECT INTO blob_data data FROM signatures.raw_data WHERE id = artifact_id;

END;$BODY$

Figure 7.6: Exemplary usage of pgcrypto library

From a practical point of view, there are scripts creating the single schemas. Due to
development reasons, we offer scripts, based on the reduced feature model in Figure 7.2.
Therefore, in case the Watermark feature is selected the respective Watermarking script
creates the Watermarking schema and all Watermarking algorithm schemas are deployed
as well.

Artifact-specific Dendrites

So far, we explained how we integrate the Soma functionality. However, the real
challenges are artifact-specific functions and activating a certain feature. We have three
types of artifact-specific functions that need to be integrated.

1. Identity functions. For each artifact there is a specialized identity function named
by convention compare<ArtifactRole>(aid1 int64, aid2 int64). The func-
tion first determines whether both aids refer to artifacts of the same role. If so,

7.2. Coarse-grained provenance for databases 123

there are two possibilities. In case there is a specialized semantic identity function
defined (cf. Figure 6.16), we generate the respective pl/pgSQL code. Alternatively,
we generate code that executes the default semantic identity function (cf. Sec-
tion 2.8.2). As a result, we can automatically generate these functions, which is
important regarding integration effort as a factor of minimal invasiveness.

2. Linearized representation to compute hash sums or signatures. Similar as in the
object-oriented integration, we need a representation of each artifact to compute
a hash sum or signature. To this end, we generate a string representation by
concatenation of all attributes and compute the underlying bytes based on a pre-
defined character set (in our case UTF-8). Therefore, this approach is very similar
as generating the default semantic identity functions and can thus, automatically
generate these functions.

3. Function to determine the field containing the watermark. In contrast to the
first two artifact-specific functions, the solution here is rather trivial. In the
artifact model (cf. Figure 6.14), the developer has to mark where the watermark
is embedded. This is stored in an additional table. Consequently, there is
one function getWatermarkedAttribute(aid int64) that first determines the
artifact role, queries the additional table, and finally returns the watermarked field
of the artifact identified by the provided aid. In contrast to the first two functions,
we do not need to generate artifact-specific source code, but this functions works
for every artifact.

In summary, there is practically no manual implementation effort, as we can either
write functions that work in any case or generators that are able to generate artifact-
specific pl/pgSQL code. However, initially developing these generators results in high
implementation effort.

Activating a feature

In addition to artifact-specific Dendrites, we have to activate the right features when
a tool requests an artifact or tries to store a new intermediate result. To this end, we
tested two possibilities:

1. Introduction of getArtifact() functions and revoke the user the right to directly
execute select queries on the actual tables as we proposed in [SSM+11],

2. Application of constraints (and triggers) to ensure that signatures and hashes
hold.

The second alternative means that we do not have to change the way how artifacts are
requested from the database. However, as there is no trigger that works just on select

queries, we have to trust the check constraint upon inserts is sufficient. However, there
is no explicit check, as defined in Figure A.1. The first alternative requires that we
change the select queries to request artifacts. As we generate the source code anyway,
there is no additional overhead and thus, we selected the first alternative.

124 7. First exploratory case studies

7.2.3 Observations

Similarly, as for the provenance integration on client side, we now report on the observa-
tions we made when integrating provenance on top of the database system.

Integration and maintenance effort

In contrast to the client side, we cannot use the implementation techniques here, but have
to generate scripts that create the required functions in the database. Recapitulate, also
on client side, we used some source code generation. The idea now is to examine what
we miss regarding our implementation techniques, or if code generation is a practical
alternative.

Integration of the provenance features into a database system is rather simple, because
it means executing scripts. However, the development of the script generator is not.
Developing such a script-generating solution requires high effort and is error prone.
Moreover, we need to adapt our script generators, in case we use a different database
vendor. However, from a conceptual point of view it is possible. Finally, adapting such
a solution (i.e., extend with new features) or maintaining it (or a variant) and keeping
all other variants functionally and consistent is highly difficult. This becomes visible, for
instance, in delivering Soma functionality that is not required. Moreover, the Dendrites
are scattered in constraints and trigger function all over the database system. Even
with naming conventions and extra schemas, subjectively the source code is hardly
understandable.

As priorly stated, one of the goals of this case studies is to examine whether code
generation could be an alternative. Summarily, we conclude that from point of view of
the developer as well as for maintenance tasks, this approach is conceptually possible,
and currently the only alternative, but far less elegant than the solutions on client side.

Effects on functional level

For the solution on database side, we exactly achieve the desired invasiveness levels as
defined in Table 7.1. This is because the generated code is tailored and the complexity
is in the script generator.

Effect on non-functional level

Subsequently, we examine the effects of the provenance features on the non-functional
properties performance and main-memory consumption in a similar sense as on client
side. Note that the footprint is not a criterion here. We could measure the lines of codes
in the scripts or the additional size of the table spaces storing the functions. However,
based on our integration concept, we do not modify source code files of the database
system itself, and thus the footprint is not applicable.

Performance. In contrast to the client side, we do not measure the execution time
for the combinations of feature and implementation, but solely the original system
and the additional effort for the provenance features. This helps to answer, whether

7.2. Coarse-grained provenance for databases 125

the integration of the provenance feature is generally feasible. Our measurements are
performed on a locally installed PostgreSQL 8.4 (to avoid network latencies) using a
machine with an Intel Core 2 processor and 2GB main memory. Moreover, we applied
pgAdmin III as tool to send the queries and record the execution times for the same
image as on client side.

No Provenance
Provenance

Hashes
Signatures

Watermarks

0

0,5

1

1,5

2

2,5

3

Feature
Original

Av
er

ag
e

re
sp

on
se

 ti
m

e
(s

)

Figure 7.7: Average response time per feature on database side

In Figure 7.7, we depict the response time per feature on database side for requesting an
artifact. As we are interested in the performance penalty introduced by the provenance
features, which is the same for requesting an artifact or inserting a new one, we
concentrate on the request. We show the additional required time in Figure 7.7. We
acquire this value executing the whole procedure of requesting an artifact and the
subtraction of the original system performance response time. Therefore, we assume
that the response time for the original functionality remains the same.

Generally, we observe that in all cases the major cost factor is copying the artifact (the
image) from hard disk to an output buffer requiring on average 2 seconds. There is no
measurable difference, when the provenance feature is enabled (i.e., the specific artifact
table inherits the general artifact table). Moreover, we cannot observe a difference
between computing (and comparing) of hashes or signatures. Both require on average
0.22 seconds more time. By contrast the un-embedding of watermarks requires observable
more time. On a more general level, there is less performance penalty than on client side.
To sum up, we conclude because there is little overhead from point of performance, we
are able to minimally-invasively integrate coarse-grained provenance on database side.

Main-memory consumption. Now we are interested, whether we can measure increased
main-memory consumption. To this end, we monitor the maximum main-memory
consumption of the postgreSQL process during our performance measurements as this
may cause the database to crash due to insufficient heap space. We repeat this at least
four times and use the median to receive reliable maximal numbers (cf. Figure 7.8).

126 7. First exploratory case studies

No Provenance
Provenance

Hashes
Signatures

Watermarks

0

20

40

60

80

100

120

140

RAM
M

ed
ia

n
m

ax
im

um
 m

ai
n-

m
em

or
y

co
ns

um
pt

io
n

(M
B

)

Figure 7.8: Median maximum main-memory consumption

In summary, we observed little differences in main-memory consumption. In particular,
except for the watermarking, there is no measurable difference as the median is approxi-
mately around 110 MB. Moreover, we observed that the allocated main memory does
not increase linearly, but continuously alternates within a range of 60 MB up 110 MB.
Thus, PostgreSQL efficiently frees no longer required memory. Consequently, regarding
main-memory consumption, we achieved minimal-invasive provenance integration.

7.2.4 Lessons learned

In summary, although we achieved good results regarding functional and non-functional
minimal invasiveness, limitations of the script generation approach clearly state the
benefits of the introduced programing techniques that we encountered in the first case
study on client side. Nevertheless, the concept of integrating provenance with the help
of procedural extensions of SQL is successful. This is demonstrated with the proof-of-
concept implementations in PostgreSQL, which can be ported to arbitrary database
systems with procedural language extension. Nevertheless, based on our experiences
here, for more fine-grained provenance approaches, the solution concept seems practically
infeasible. Consequently, for the case studies in the next section, we have to integrate
the provenance functionality on code level, extending the actual source code of the
database system itself using our programming techniques.

7.3 Scientific data management for QuEval

In the following, we present our QuEval framework5, which is designed to allow for
reliable and reproducible evaluations of high-dimensional index structures [SGS+13].
In particular, we apply the framework and the imposed challenges regarding scientific

5www.queval.de

www.queval.de

7.3. Scientific data management for QuEval 127

data management to show the generality and limitations of our provenance framework
from Chapter 2. In addition, we show how and to what extend QuEval contributes to the
goal of minimal-invasive provenance integration. Finally, we report on novel interesting
application scenario for minimal-invasive integration of features with special concerns
regarding non-functional properties. In this case, the system is itself variable (a multi
product line [RS10, SST13]) and not a monolithic one as the systems in the focus of
this thesis. Note, parts of the content of this section as well as evaluation results and a
detailed description on QuEval itself have been published priorly in [GBS+12], [SGS+13],
or [KSS14].

7.3.1 Contribution of QuEval for the goal of minimal-invasive
provenance integration

To determine the identity of two artifacts (cf. Section 2.8.2), we compare the values
inside the artifacts. For instance, for an image, the pixel values, the resolution, and
the height and length. Mathematically, every artifact has a multi-dimensional key with
the exception of primitive artifacts that are a value, such as an integer. Hence, we
compare two multi-dimensional keys to determine the identity of two artifacts. However,
in Digi-Dak, there are several application scenarios where we have to compare one
artifact (the query) to thousands, millions, or even more artifacts. For instance, in the
development phase, we have to assemble different benchmarking data sets. In these data
sets, each artifact has to be present only ones when inserting a new intermediate result.
In addition, such a data set may consist of a training and an evaluation set, where there
must be no artifact present in both sets. Finally, in later productive use it is a means
of fake prevention to determine whether an identic (not similar) finger print has been
found, as it is practically impossible lay the fingerprint twice. This is due to different
pressure, distortions etc. In addition, scanning the same assay with a sensor does not
result in exactly the same image (having the same color values), due to analog digital
conversion and sensor noise.

As a result, we cannot only rely on exact comparison of values (exact match), but have
to use different query types, namely epsilon distance and k nearest neighbor queries.
For us, these three query types are the most important to determine artifact identity
and are defined as follows:

Exact match. An exact-match query exact(a,A) determines whether there exists, for
a given artifact a, at least one exact copy in a set of artifacts A having exactly
the same key.

Epsilon-distance query. An epsilon-distance query epsilon(a,A, ε,m), determines
potential duplicate artifacts for a given artifact A in a set of artifacts a for further
investigation. All query answers have a multi-dimensional key that has a maximum
distance of ε from a, according to an additionally given metric m.

128 7. First exploratory case studies

k nearest neighbor. Finally, we apply k nearest-neighbor queries knn(k, a, A,m) to
determine potentially identic artifacts having the same set of neighbors, which
basically is a classification. To this end, we use a query artifact a, a set of artifacts
A, a metric m to compute the distances, and a value k (usually between one and
ten) to state the number of neighbors.

Speeding up identity queries

To summarize, the procedures and Digi-Dak in general, requires to solution to answer
identity queries fast (i.e., minimize the response times). There are several possibilities
to speed up such queries. We decided to use multi-dimensional index structures. There
are plenty of such index structures [GG97, BBK01, Sam05] and we have to consider a
lot of influence factors of the data [GBS+12, BGRS99], have to optimize parameters
of the index structures [SGS+13], and even provide tailored implementations [KSS14].
Consequently, applying these indexes results itself in a multi-dimensional challenge of
selecting an appropriate index structure. Unfortunately, there currently is no practical
solution to compare index structures fairly. We are interested in minimizing response
times and in comparing them empirically and not mathematically (e.g., O notation). To
this end, we developed QuEval. QuEval is a Query Evaluation framework that allows
for a sound and reliable empirical comparison of multi-dimensional index structure
(implementation) for user-defined workloads.

7.3.2 Scientific-data management

Besides, speeding up identity queries, QuEval itself imposes provenance challenges
regarding the evaluation data upon them we decide for a suitable index structure. In
case, we have to work out a suitable index structure for a new use case, we can narrow
down the list of candidate index structures to a small number. The selection is based on
our experiences and experimental results from the literature. However, even with this
small selection the number of runs, especially to optimize the index parameters, is easily
larger than 100. For instance, for one use case in the empirical evaluation of [SGS+13],
we tested over 200 different index configurations to find the best parameters, which have
to be executed several times to ensure statistical soundness.

QuEval and provenance

We consider each execution of a test case as a process returning query answers, according
to the data model of our provenance framework. However, we are not primarily interested
in the result itself, but the amount of time that is required to compute the result (i.e., the
response time). The result itself is just required to ensure that the index works correctly.
In fact, we invoke an identity function on the result set and take the sequential scan,
which is the approach to beat, as reference. In Figure 7.9, we show an example process
that executes several exact-math queries (one for each artifact in Q). Then, QuEval
collects the results of each query, which are in our case tuple identifiers, allowing easy
comparison of query results. The basic challenges regarding validity of the measured
response times, and to this end, concerning provenance are:

7.3. Scientific data management for QuEval 129

<Index>
I

<Parameter
values>

P

<Data set>
A

<Queries>
Q

exact-match
query test round

for each q in Q
{
 r=Index.exact(q,A)
 R.add(r)
}

<Results>
R

Figure 7.9: Query execution in QuEval

1. We need to be sure that a measured response time belongs to the designated input
data set.

2. As far as possible, we have to record influence factors, such as hardware and
software specification of the applied machine.

3. We would like to have a possibility to verify that a given index-structure imple-
mentation works as proposed by the inventors - Or in other words: Is the index
what it claims to be?

Input output relationship

In the research process, we evaluated for instance, the influence of different stochastic
data distribution on the performance of index structures. To this end, the properties of
the data sets are the same regarding number of points, dimensionality etc. Consequently,
it is not possible to determine what data set is used by looking at the data set itself.
This led to questions whether the right data sets were used. Once it concluded in the
consequence to run the whole evaluation again; one and a half week before submission
deadline (which required four days). As solution, we integrated parts of our provenance
functionality by introducing a naming convention that included a hash value computed
over the first 100 points in the data sets for the data sets themselves as well as for the
result sets. So, here we could use our provenance SPL as well.

Influence factors

Generally, we cannot reach functional dependency between two executions of test runs
in QuEval using the same input parameter and resulting in the same measured response
times. Anyway, a direct functional dependency is not required. The assertion is that

130 7. First exploratory case studies

the same workload using the same hardware configuration results into measured value
having the same stochastic distribution. To this end, computing robust mean values or
medians is sufficient to compare index structures. In this sense, we treat a hardware
configuration in the same way as tool-specific parameters and record them as well.

Verification of index structures

For an index implementation, we can determine whether the result is correct. However,
we cannot verify whether an implementation of an index-structure works as designed by
the original inventors. Nevertheless, we can use reference implementations and compare
newly implemented ones, step by step whether they work in the same way. In addition,
and for us of more interest, there are generalizations of index structures for the R-tree
family. R-trees are balanced trees to index multi-dimensional data. The basic idea is
to use minimum bounding rectangles as nodes to group regions that contain points.
When searching for a point the concept is to exclude large parts of the data space
as early as possible resulting in logarithmic complexity of an exact-match query for
example [Gut84]. However, it turned out that when building an R-tree overlapping nodes
are created, which unpredictably slow down queries as multiple paths within the tree
have to be considered. Sometimes even the whole tree has to be searched. As a result,
several extensions and variations of the original R-Tree have are proposed to address
the challenge of overlapping nodes [GLL98]. For instance, different ways how to split
nodes upon insert [AT97, BKSS90, BKK96], clipping nodes to avoid overlaps [SRF87]
by creating more nodes, using spheres [WJ96] instead of rectangles, or combining spheres
and rectangles [KS97].

Anyway, most algorithms remain the same. The difference is in how and when to
split the nodes leading to a generalization of R-trees in the Generalized Search Tree
framework [HNP95]. This generalization allows us to use the general properties to
check the correctness of a tree implementation. In fact, we integrated an index named
R-variant that can be extended in the sense of GIST and we can verify that at certain
points in the algorithms the correctness of the tree. However, these correctness tests
are cost intensive and thus, cannot be present in all variants of the index structure.
Consequently, they have to be an optional feature. As a result, we found another
scenario that requires for integration of new features into existing implementations that
we discuss in more detail subsequently.

7.3.3 New features for tailored index structure implementa-
tions

Priorly, we identified a new application that requires to integrate optional features into
highly performance relevant implementations. An in depth analysis reveals that there are
several other features, which have to integrated on source-code level [KSS14]. Examples
are allowing online update, multi-threading [Her13], index visualization [BSG13], or
privacy awareness [GSKS13]. Moreover experiences gained in the QuEval project running
over several years (cf. [SSG+13]), reveal that even small changes in the source code can

7.3. Scientific data management for QuEval 131

have a significant influence on the overall performance. Under certain circumstances,
we are able to measure the influence of evaluating a single if condition, which can be
excluded in certain variants. Finally, we encountered that development of indexes takes
place in an iterative process. That means there is first a working implementation, which
is then optimized or extended with additional features.

A future research direction

The consequence is that there cannot be a one-size-fits-it-all index structures implemen-
tation and that we have to be able to integrate new features by avoiding performance
penalties [KSS14]. Therefore, the task is similar as the objective of this thesis: To
explore whether modern software-engineering techniques are suitable to integrate new
variability dimension into monolithic systems showing the significance and importance
of the topic. The difference is the application domain (indexes instead of provenance).
However, there is also a fundamental difference. In this thesis, the scope is on integrating
a new variability dimension into monolithic systems. However, the QuEval framework is
not monolithic, but the infrastructure consists of variable parts itself [Tob13]. Moreover,
each index is itself a software product line containing dozens of currently used variants.

To this end, we hypothesize that integrating new features consistently, is even more
challenging and thus, beyond the scope of this thesis. Nevertheless, this outlines a new
research direction in the field of multi product lines.

7.3.4 Results and lessons learned

The objective of integrating tailored multi-dimensional index structures is to minimize
performance penalties within the procedure to insert new intermediate artifacts. This
way, we want to minimize the effects regarding performance when integrating provenance
compared to the original solution contributing to the goal of minimal-invasive provenance
integration. Generally, we achieved significant response-time reductions for all considered
query types and published parts of the results in well-known database conferences, such
as VLDB [SGS+13] and RCIS [KSS14]. In the sequel, we present evaluation results. For
all results, we use the same three data sets. The size and dimensionality refers to forensic
data sets or have the same characteristics as forensic data [SGS+13]. In particular, we
use three different sizes and dimensionalities: (1) 16 dimensions and 10,992 artifacts
representing hand-writing features [AA97], (2) 43 dimensions and 411,961 artifacts
containing spectral features used to adjust our sensors [KFV11], and (3) 50 dimensions
and 131,000 artifacts covering scientific data from physics [RYZ+05]. To abstract from
stochastic distribution, we use, per data set, two additional artificially created data
sets. The first has a uniform and the second a multivariate Gaussian distribution
(MVG) [ADV96]. For the evaluation, we run 120 measurements and compute robust
mean values using a γ-trimming approach with γ = 16.67 to ensure statistical soundness.

We select promising index structures either from literature or based on our own expe-
riences also covering a broad range of different index classes addressing completeness.
We do not go into details of how the indexes work, as they are complex structures and

132 7. First exploratory case studies

the explanation would distract from core points. Moreover, in this thesis, we are not
interested in explaining why there is a difference in performance, but we only want
to select the best index. To this end, we refer the reader to the original literature
proposing the index structures. In particular, we used a sequential scan (SEQ) as
worst case reference, an R-Tree variant based upon the idea of the Generalized Search
Tree [HNP95], the k-d Tree [Ben75], the Pyramid Technique (Pyr) [LK03], the Vector
Approximation File (VA) [WB97], the Prototype-based Approach (Prot) [GFN08], and
p-stable Locality-sensitive Hashing (p-stable) [DIIM04].

Results for exact matches

Normal identity queries are executed without distance computation as exact-match
queries. For this type of queries, we recognize performance gains up to five magnitudes
compared to a sequential scan. In Figure 7.10, we depict exemplary results showing that
each applied index clearly outperforms the sequential scan. Moreover, we observe that
there are robust indexes regarding changes of the stochastic distribution, while others are
not. Anyway, for all tested use cases the Pyramid Technique delivers the best results. To
this end, we use this index for high-dimensional data spaces having at least 16 dimensions
as they occur in the Digi-Dak project. However, additional evaluations [KSS14] reveal
that the observations regarding the Pyramid Technique cannot be transferred to densely-
populated low-dimensional spaces (up to 10 dimensions). For these data, we observe
a significant increase of the response time of several magnitudes. Therefore, we have
to use different index structures, such as our variant of the Dwarf [SDRK02] that we
applied in [KSS14]. It outperforms the Pyramid Technique by at least one magnitude.
In case the data space is small enough to fit into the main memory, we can also linearize
the data space into a Cube, resulting in the best possible response time [GCB+97].
Summarily, independent of the characteristics of the data, we can identify and optimize
a suitable index structure supporting this kind of identity queries using QuEval.

Seq
R-Variant

k-d Tree
Pyr

VA
Prot

p-stable

1,0E+0

1,0E+1

1,0E+2

1,0E+3

1,0E+4

1,0E+5

1,0E+6

(b) 43 Dimensions

Seq
R-Variant

k-d Tree
Pyr

VA
Prot

p-stable

1,0E-1

1,0E+0

1,0E+1

1,0E+2

1,0E+3

1,0E+4

1,0E+5

1,0E+6

(c) 50 Dimensions

Seq
R-Variant

k-d Tree
Pyr

VA
Prot

p-stable

10E-2

10E-1

10E+0

10E+1

10E+2

(a) 16 Dimensions

R
e

sp
on

se
 t

im
e

 in
 m

s

real w orld

MVG

uniform

Seq: Sequential Scan R-Variant: R-Tree Variant k-d Tree Pyr: Pyramid Technique
VA: VA-File Prot: Prototype Based Approach p-stable: p-stable LSH

103

102

101

100

10-1

105

106

104

103

102

101

100

10-1

105

106

104

103

102

101

100

10-1

R
es

po
ns

e
tim

e
 in

 m
s

R
e

sp
on

se
 t

im
e

in
 m

s105

106

104

103

102

101

100

10-1

Figure 7.10: Exact-match query speed up for low-populated spaces - Adapted
from [SGS+13]

7.3. Scientific data management for QuEval 133

Results for epsilon-distance queries

Identity functions that have to be robust, for instance against sensor noise, are defined as
epsilon-distance query. An evaluation of our index structure implementations considering
epsilon-distance queries is conducted in [Weh13]. The results are similar to the results
of exact-match queries. The basic result is that most indexes outperform the sequential
scan serving as reference approach. However, as depicted in Figure 7.11, we first observed
that, as expected, the response time per query, are clearly higher. To this end, we prefer
using exact matches if possible and not to compute exact matches as epsilon-distance
query with ε = 0. Secondly, the difference between all index structures is smaller than
for exact-match queries including the sequential scan. Finally, for all measured use
cases, the R-Variant delivers best results. In summary, although the performance gain is
smaller than for exact-math queries, we can significantly speed-up this kind of identity
query as well.

Seq R-Variant Pyr Prot
1,00E+00

1,00E+01

1,00E+02

1,00E+03

1,00E+04

Seq R-Variant Pyr Prot
1,00E+02

1,00E+03

1,00E+04

1,00E+05

1,00E+06

Seq R-Variant Pyr Prot
1,00E+02

1,00E+03

1,00E+04

1,00E+05

1,00E+06

100

101

102

103

104

102

103

104

105

106

102

103

104

105

106

R
es

po
ns

e
tim

e
in

 m
s

R
es

po
ns

e
tim

e
in

 m
s

R
es

po
ns

e
tim

e
in

 m
s

(a) 16 Dimensions (a) 43 Dimensions (a) 50 Dimensions

Figure 7.11: Epsilon-distance query speed up for low-populated spaces

Results for k nearest-neighbor queries

Another important query type is the k nearest-neighbor query, used to define identity
functions (similar to a classification) and also in different application scenarios in the Digi-
Dak project itself. For this query type, we have to be aware that the Prototype-based
approach and p-stable locality-sensitive hashing are approximative index structures.
This means that they not necessarily deliver the same result as the reference approach.
This may include neighbors that are not the exact nearest neighbors, but have a similar
(i.e., larger) distance. The fraction the correctly found nearest neighbors is known as
accuracy. To ensure a sufficient result quality, we define the minimal accepted accuracy
as 0.9, meaning that 90 percent of the neighbors have to be correct. We obtain such
values by optimizing the parameters of the index structures accordingly [SGS+13].

The results in Figure 7.12 are very similar to the ones of epsilon-distance queries.
However, we observe large differences between the different stochastic distributions. For
example, the tree-based index structures highly excel for real-world data. However, they
require for a different parameter configuration.

134 7. First exploratory case studies

Seq
R-Variant

k-d Tree
Pyr

VA
Prot

p-stable

10E+1

10E+3

10E+5

(a) 16 Dimensions

Seq
R-Variant

k-d Tree
Pyr

VA
Prot

p-stable

10E+1

10E+3

10E+5

(b) 43 Dimensions

Seq
R-Variant

k-d Tree
Pyr

VA
Prot

p-stable

10E+1

10E+3

10E+5

(c) 50 Dimensions

102

104

106

102

104

106

102

104

106
R

es
po

ns
e

tim
e

in
 m

s

R
es

po
ns

e
tim

e
in

 m
s

R
es

po
ns

e
tim

e
in

 m
s

Acc>0.9 Acc>0.9 Acc>0.9

Figure 7.12: k nearest-neighbor query speed up for low-populated spaces - Adapted
from [SGS+13]

Case study summary

In summary, our results reveal that using tailored index structures, identified with the
help of QuEval, results in performance benefits of at least one magnitude. In fact, using
the indexes makes the provenance integration with enabled identity detection feasible
in practice. It furthermore reveals, without optimizing the indexes and comparison of
different alternative index structures much of the possible performance gain is probably
lost (e.g., if parameter values are not guessed correctly). In some cases, the performance
is even worse than with using an optimized implementation of a linear scanning approach.
This is the default approach that works in any case and the observation is a well-known
phenomenon [WSB98]. The performance optimization often results in increased main-
memory consumption, which is another factor that we want limit as part of minimizing
the effects on non-functional properties. To this end, the main-memory consumption is
considered in QuEval as well, allowing us to select a suitable index structure.

Summarily, the results of the QuEval project are an important part supporting the goal
of minimal-invasive provenance integration. Moreover, we learned that we could use
our provenance framework and parts of the implementation of our provenance SPL to
address challenges regarding scientific data management, showing the versatility of our
solutions.

7.4 Contributions and conclusions

In this chapter, we perform another step of the research agenda developed in Section 4.3.4.
Based on the approach to tailor the database schema of the provenance data store
from Chapter 5, the objective is to identify benefits and drawbacks of our approach in
general and of the implementation techniques in particular. To this end, we integrate
the provenance functionality into the first exploratory case studies to report on our
observations. In summary, this chapter makes the following contributions in order to
achieve the objective of the chapter.

7.4. Contributions and conclusions 135

1. Integration of the provenance SPL into different parts of the infrastructure using
different implementation techniques in order to identify benefits and drawbacks
of the approach in general and the implementation techniques in particular. The
integration is conducted on client and databases side.

2. The application of multi-dimensional index structures to minimize the effect of the
provenance integration on performance. This results in a general procedure to tailor
multi-dimensional indexes bundled in our QuEval framework [SGS+13] offering
large performance benefits. Furthermore, it issues a new research direction as it
shows the necessity for integrating novel variability dimensions into itself variable
infrastructures with the objective to gain an optimized performance [KSS14].

On a more abstract level, our results clearly show the drawbacks of the intuitive
implementation techniques. Although still applicable, they impose severe drawbacks,
which are in opposition to our goal of minimal-invasive provenance integration. Moreover,
we observe that most provenance features are crosscutting, but homogeneous, which is
beneficial for the integration. Moreover, on coarse-grained provenance level the object-
oriented decomposition, except for the validation feature, is congruent to the provenance
data model and integrated provenance functionality. This allows us to easily encode
features in refinements or aspects that are bound to object-oriented structures (i.e.,
methods or constructors) resulting in low integration effort. However, our observations
result into the hypothesis that this characteristics does not hold for more fine-grained
provenance approaches. To verify or decline this hypothesis, we have to use more
complex case studies in the next chapter.

136 7. First exploratory case studies

8. Fine-grained provenance
integration into complex systems

In the prior chapter, we integrated coarse-grained provenance functionality into our
case studies. In this chapter, we select more complex systems and enhance them with
provenance functionality. The goal is to reveal additional insights regarding our goal of
minimal-invasive provenance integration. In particular, we are interested whether our
findings from the prior chapter are still valid for these kinds of case studies. Especially,
we are interested whether our observations regarding the homogeneous nature of the
provenance concern remains valid. To this end, we first integrate fine-grained provenance
on tool side and second on database side.

8.1 Granularity refinement on tool side

In Section 7.1, we integrated coarse-grained provenance into the tools of our infrastructure.
In the following, we implement provenance granularity refinements into one of these tools.
Therefore, we use the equalization tool, which has been published in [KCDV12]. We select
this case study, as it is a classic example for a tool in our infrastructure that is designed
as proof of concept, as well as for evaluating novel preprocessing approaches. Moreover,
for this tool the authors present a detailed technical and mathematical description,
which is used to validate the provenance integration. Note, the initial analysis regarding
the original tool is published in [KS13a]. Moreover, the basic concept to exploit the
object-oriented decomposition in order to allow for tailored provenance capturing is
contained in [SSS12b]. Finally, the provenance integration and parts of the evaluation
are published in [KS13b].

Motivation

Now, we shortly motivate why we need more fine-grained provenance than integrated in
the first exploratory case study and why this functionality is not always integrated. To

138 8. Fine-grained provenance integration into complex systems

motivate the requirement for more fine-grained provenance within a tool, recapitulate
the semantics of the Validation feature. The basic purpose of that feature is to verify
the identity of an artifact. We re-invoke the process (tool) that created this artifact by
providing the same input and execute the identity function. Imagine the identity does
not hold. Then, we first have to be sure that the provided input was used as desired,
to exclude that the error occurred on tool side. Therefore, we apply more fine-grained
provenance capturing functionality. Similarly, we verify that an implementation of the
tool works as it is designed. The observations of our prior case studies reveal that the
provenance functionality significantly slows down the tools. To this end, we do not
integrate this functionality in every tool in case the Variability feature is selected, but
use this as an additional optional feature.

8.1.1 Expected insights

So far, we revealed that integrating the provenance concern is manageable, if we can
exploit object-oriented decomposition. To this end, our approach integrates generated
source code (i.e., the classes representing the artifact). However, we also observe that for
the integration of the Validation feature, we have to manually review the source code.
The basic question that arises is: What effort has to be performed in order to integrate
the desired provenance capturing functionality. To this end, we now explore whether
we can exploit the object-oriented decomposition to ease integration effort. Moreover,
we explore what additional effects regarding the goal of minimal-invasive provenance
integration can be observed using different implementation techniques. Finally, we
are interested into what knowledge on architecture details of the tool is beneficial for
integrating the concern.

Correctness of extracted provenance data

One challenge that arises in order to answer the previously issued question is whether
the extracted provenance data is correct. Fortunately, in [KCDV12], the authors
state the input and result artifacts as well as the executed functions (i.e., processes
with functional dependency between input and output). We depict their specification
in Figure 8.1.1 Moreover, Figure 8.1 contains the view on the provenance data that
we have at different layers of our provenance framework. For the Workflow layer, we
only know there is a process equalization that uses a SensorScan I as input to produce
an EqualizedImage I ′. However, in case we invoke the process with the same input,
the output is not necessarily the same, as the tool-specific parameter blockSize b is
missing. For functional dependency in the Existence layer, we need this parameter as
well. Therefore, it is added in the tool-specific Derivative of the Validation and the
Equalization tool feature (cf. Figure 6.16). We denote the change in layers by using
f<process> to indicate that functional dependency between input and output holds. To
this end, the executed function of the tool is: I ′ = fequalization(I, b).

In [KCDV12], the authors state that the equalization tool consists of three functions
and that these functions use only parts of the input artifact. The first functions results

1A more detailed and visual explanation is given in the Appendix Figure A.3.

8.1. Granularity refinement on tool side 139

in a filter mask that is used in the second function, together with the blockSize and
the topography data of I etc. The expected gathered provenance data therefore is:
I ′ = fscale(I.inten, fblockgradients(I.topo, flowpass(I.topo), b)). However, we are particularly
interested, whether we can detect and locate additional computation steps that modify
the data.

I' → equalization(I)

I' = fequalization(I,b)

mask = flowpass(I.topo)
grad = fblockgradients(I.topo, mask, b)
I' = fscale(I.inten, grad)

I' = fscale(I.inten, fblockgradients(I.topo, flowpass(I.topo), b))

I : SensorScan artifact
I': EqualizedImage artifact
b : blockSize

I.topo : Topography data of
 the SensorScan artifact
I.inten: Intensity data of
 the SensorScan artifact

View of the Workflow layer

Initial view of the
Existence layer

Expected granularity
refinement

Processes and functions Input and output artifacts

Figure 8.1: Expected extracted provenance data - Based on [KCDV12]

8.1.2 Provenance integration

As we now know what the correct extracted provenance data is, we integrate the required
provenance functionality into the equalization tool. To this end, we have to locate the
method(s) implementing the priorly stated functions, record their execution, and the
provided input data. As first step to integrate the provenance functionality, we shortly
analyze the architecture of the implementation.

Analysis of the implementation

An analysis of the tool reveals that the tool is more complex as suggested by the function
specification (cf. Figure 8.2). Moreover, we find that the tool consists of two parts. One
that contains the logic and another that performs the image transformations. For the
second part, the authors use an existing image processing library ImageJ2.

Integration concept

The tool basically invokes for every image transformation the ImageJ library. Therefore,
the basic idea is to enhance every method in this API, record the supplied arguments,
and compare whether there is a complete sequence from input to output. Moreover,
there shall be no modification of the artifacts between the single computation steps
(i.e., method executions) and we determine in how far the extracted provenance data
corresponds to the announced specification. By concept, this means that we have to
integrate Dendrites into 144 methods of the class ij.IJ, which contains static processing
methods and into 162 methods of the class ij.ImagePlus and several more methods
for the classes CurveFilter, ColorProcessor, and ImageProcessor to provide a

2ImageJ project website http://imagej.nih.gov/ij/

http://imagej.nih.gov/ij/

140 8. Fine-grained provenance integration into complex systems

general solution for this API. A seamless integration of Dendrites, therefore is only
possible using aspect-oriented programming, as we can use one Dendrite to cover multiple
methods and classes. However, we can limit the number of methods by automatically
analyzing the source code of the tool, which methods of this API have been used. This
reduces the number of methods where to integrate provenance to 15.

We conduct our initial provenance integration using aspect-oriented programming trying
to use as less Dendrites as possible. To this end, we annotate all used methods of
the ImageJ API and the execute() method of the tool, where the Validation feature
functionality is already integrated. As this may result in a significant performance
decrease, we repeat the integration for different implementation techniques and try to
optimize the initial integration.

Two-phase integration

In order to map functions of the specification to methods in the implementation, we need
to record their execution, the order and hierarchy of the execution, as well as respective
input and output artifacts. To this end, we use a two-phase integration [SSS12b].
This approach integrates two Dendrites into each method of interest and performs the
following functionality:

Method begin. When a method is called, a Dendrite determines the input artifacts
and the method name. Moreover, it puts the method on the current stack view to
allow refinement and track additional input. In addition, we need to record the
current status of the class members by invoking the associated identity function.
This way, we reveal hidden input and output. This mainly corresponds to member
accesses or modifications without using a get() or set() method. Note, this is
an optional Soma feature and only activated in case we assume that there is such
hidden input.

Method end. At the end of a method, a Dendrite initiates the output artifact determi-
nation, performed in the Soma. This includes the return values as well as modified
class members (e.g., modified by set()). Hidden output artifacts are determined
by invoking identity function on all class members as well as arguments passed by
reference and compare them to their prior state at the begin of the method. In
case the identity does no hold they have been modified.

Regarding our implementation techniques that means that we have to manually introduce
two Dendrites per provenance augmented method for the intuitive approaches and the
advanced preprocessor approach. Using feature-oriented programming, we have to write
one refinement per method, which is then automatically composed. For aspect-oriented
programming, we hypothesize that we can use one pointcuts to bind an advice to several
(or even all) provenance augmented methods taking advantage from the homogeneous
nature of the provenance concern.

8.1. Granularity refinement on tool side 141

File name #classes #methods #members #lines of code
1 1 1 72
1 52 29 1039
1 7 0 342

main.java
RasteredImage.java
RasteredImageTools.java

ImageJ API

Tool logic

Equalization
tool

Figure 8.2: Architecture of the equalization tool

8.1.3 Initial integration

We conduct our initial provenance integration using aspect-oriented programming by
using the Dendrites from the exploratory case study capturing the data requested from
and send back to the database. In addition, we add one Dendrite to the execute method
of the tool to detect whether the tool-specific parameter is applied. In the following, we
explain what additional functionality in the Soma and what additional Dendrites are
required to record the final provenance data shown in Figure 8.3. Therefore, we report
on challenges we faced and introduce our applied solutions as published in [SSS12b].
Moreover, we summarize what properties should be avoided when implementing such
tools and what alternative solution is preferred in order to reach the goals of minimal-
invasive provenance integration.

Invisible input and output

In our two-phase integration, we are already aware that there may be hidden input
or output and considered members of the classes which are explicitly included (via
get() and set() methods) as well as implicitly used members with the help of the
identity functions. However, in the case study, we encounter additional invisible input
due to calls of static variables of different classes and implementation details of the
ImageJ library. This library contains internal storage capacity (a stack) that is used to
transform images. For instance, the tool computes the difference of two images. Both
images are assembled by preprocessing steps and therefore present on the stack of the
ImageJ library. Then, at some point, the source code calls the ImageJ library to execute

142 8. Fine-grained provenance integration into complex systems

some function without specifying the input, which is then taken from the stack. We
discovered similar challenges, for instance, in the batch processing component of JDBC
driver that executes a series of priorly added SQL statements.

As solution, we need to have access to the internal storage to add input artifacts to the
method execution. As this functionality is not case-study specific (i.e., works for all tools
using the ImageJ library) and is hidden in the Soma this does not affect the integration
effort criteria of minima -invasiveness. However, it would be beneficial, considering the
integration, as well as minimizing the performance overhead to avoid such hidden input.
In particular, we favor that input is either directly passed as argument in the method
call or retrieved via a get() method. In the same way, output should be either only a
return value or set explicitly via set() methods.

Determining provenance fragments

The basic goal of our provenance capturing is to assemble a graph that shows, for
instance, which input artifacts are used to create an output artifact. The data we
collect, however, are fragments of the desired graph at different levels of granularity.
Therefore, we have to assemble the fragment to form that graph. It turned out that the
basic assumption that method names correspond to the functions of the specification
is not generally applicable. For instance, the tool calls the generic ij.run() method
and passes the desired filter function and input as argument: "image1=Raw opera-

tion=Subtract image2=Filtered". As a result, we need to integrate special parsing
and assembling logic for the ij.run() method in the Soma and link the execution of
that method to the Soma implementation using a separate Dendrite.

Technically, there are two pointcuts matching the ij.run() method. Therefore, the
more specific one (matching only this method) is executed. Consequently, we do not
have to change the Dendrite augmenting all methods of that ImageJ Library resulting
in two required Dendrites. To conclude, we suggest that developers avoid such generic
functions and use explicit method calls not requiring parsing of passed arguments.

Issues regarding the object-oriented decomposition

To map methods to the functions of the specifications, we used a third Dendrite
augmenting all methods with provenance capturing capability that are directly called
form the execute() method of the tool. To this end, we can map executions of any
method within the ImageJ library to one method that is supposed to correspond to
one function in the specification. Our observations reveal that this works well for most
functions, but not for everyone. For instance, there is a method that contains several
computation steps. Our solution then was to use the extract method refactoring, which
creates separate methods that then correspond to functions of the specification. This
modification of the tool may be seen as an invasive change to the original tool. However,
we argue that it is not - for the following reason. We do not change the intended function
of the tool, due to the nature of the refactoring not to alter the way how the program
works. Moreover, this refactoring helps to separate concerns within the implementation

8.1. Granularity refinement on tool side 143

improving understandability of the source code generally and therefore this should be
applied anyway.

Generally, we favor that the decomposition of the tool reflects the intended functionality.
That means that there is a method for every function. In addition, in complex programs,
locating the respective methods may be difficult. Therefore, it would ease provenance
integration, if there is an additional tool or language support helping us to localize the
respective source-code locations. For instance, the functionality can be implemented in
a separate feature, the methods could stick to a naming convention, or use annotations
in the method comment that helps us to define pointcuts integrating the Dendrite into
the desired methods.

Provenance granularity level

Augmenting all used methods of the ImageJ library result in vast number of provenance
graph fragments of different granularity levels. To assemble the provenance graph
associated to the specification, we need less than 30 graph fragments. Our initial
integration attempt results in more than 32,000,000 graph fragments using the evaluation
image having 5439× 2943 pixel. These fragments mainly show Where provenance, when
results of a computation are copied from a result buffer to the corresponding object,
pixel by pixel. Moreover, the execution time of the tool increased from 12 minutes
to more than an hour. As a result, we decided to use specific pointcuts referencing
only the desired methods. Nevertheless, using one pointcut is a good initial idea to
identify the important methods. Moreover, this result indicates we can even track Where
provenance for parts of the implementation and it is another argument why we need
tailored provenance capturing solutions.

Results

The results of our initial provenance integration, using aspect-oriented programming, are
several beneficial as well as problematic properties for the programming guide. Moreover,
and in contrast to our initial assumption, it is not possible to augment the whole API
in order to collect the desired granularity level of provenance data. Nevertheless, there
still is a benefit using aspect-oriented programming regarding the integration effort
criterion. The benefit compared to feature-oriented programming is that we can use
one pointcut for several methods and do not have to write one refinement per method
or compare or even integrate them manually into the source code for the remaining
techniques. On a more general level integration still is manageable and, if performed
once, is composed automatically. However, for larger case studies integration effort may
be a severe challenge.

8.1.4 Extracted provenance data

In Figure 8.3, we depict the extracted provenance data. For the Workflow layer (I)
and coarse-grained Existence layer data (II), we also depict the expected provenance
data from Figure 8.1. For the Existence layer, the captured provenance data reveal that

144 8. Fine-grained provenance integration into complex systems

I' → equalization(I) <-> I' → equalize(SensorScan.get(id))

I' = fequalization(I,b) <-> I' = Mequalize(Mget(id),block_size
 ,filter_parameter
 ,minThreshold
 ,maxThreshold)

mask = MmakeMask(MBinarize(MDelta(MGauss(ImagePlus.new(I.topo)),ImagePlus.new(I.topo))))
I.topo' = Mfilter(MGaussian_Blur((ImagePlus.new(s.topo), σ="22"))
grad = MGradients(I.topo', mask, b)
xScale = MgetScale(g.gradHorizontal)
yScale = MgetScale(g.gradVertical)
I' = Mscale(I.inten, xScale, yScale)

Processes and functions mapped to methods

Additional hard-coded
tool-specific parameters

Additional unspecified
computation steps

I

II

II

Figure 8.3: Extracted provenance data

there are additional tool-specific parameters. However, they are passed as hard-coded
literals and therefore not in contradiction to the specification of the tool. Nevertheless,
they should be recorded as well, which is performed by our provenance integration. To
indicate that this is an actual provenance graph and not a specification, we do not use
the symbol f naming a function but use m for method. Note, for visualization purposes,
we skipped the complete qualified names of the extracted methods. In addition, we
depict calls of static members as ClassName.methodName() and constructor calls as
ClassName.new(). Finally, we note that for primitive values and strings, the values (or
hash values) are recorded but not depicted, again due to visualization reasons.

The granularity refinement of the Existence layer (II’) is the first complete refinement
for that we can assemble a complete provenance graph. That means that there are no
intermediate computations steps that modify the named artifacts in the specification.
The extracted provenance data shows more details than the specification, but can
be easily mapped to that specification. Consequently, we consider our provenance
integration as correct. A manual review of the source code confirms this assumption. In
particular, we first observe that the mask is computed as the difference of the original
topography image and the filtered topography image. Moreover, we see that the grad

artifacts containing the gradients is a complex artifact and that the gradients are
computed of the filtered topography image I.topo’ using a Gaussian blur. Finally, we
see that the parameter b is passed to that method. This allows us, for instance, to verify
that the correct block size parameter was used upon validation of a computation result.

To summarize, the extracted data is correct, contains interesting additional insights,
and allows us to verify whether the tool-specific parameters are used, which was the
motivation for the need of the provenance granularity refinements. To this end, we
consider our provenance integration as successful and re-implement this functionality
with different implementation techniques for the evaluation in the remainder of this
section.

8.1. Granularity refinement on tool side 145

8.1.5 Performance considerations

In the prior section, we give information regarding the implementation effort. Moreover,
we state that the granularity refinement, independent of the applied implementation
technique, is purely spectative. Therefore, we now concentrate on the effects regarding
non-functional properties as final criterion of minimal-invasive provenance integration.

Initial situation and performance tuning

Recapitulate that for every tool in our infrastructure, performance is an important
factor, which is one of the motivations for the goal of minimal-invasive provenance
integration. To this end, we analyze, as initial step, the performance of the equalization
tool in [KS13a]. We use the same image as for all prior evaluations and perform our
measurements on an Intel Core2 duo in a statistical sound manner. The result consists
of two main observations:

1. The primary focus of the initial implementation is to serve as proof-of-concept.
To this end, performance is of minor importance. However, an overall response
time of more than 10 minutes is barely acceptable mainly caused by reading the
input artifacts (cf. Figure 8.4(a) first column). More suitable would be a response
time of several seconds up to one minute.

2. By contrast to the first observation, the amount of required main-memory does
not impose a problem based on current main memory sizes. Therefore, we can use
more main memory in order to speed up computation.

The consequence is that we first need to tune the performance of the tool itself. The
basic idea is to use techniques known from databases to improve the performance. Then,
we compare the performance penalty introduced by the provenance integrations with
the original and the tuned implementation. This comparison allows us to draw even
more sound conclusions regarding the practical applicability of our approach.

The results of our tuning as well the applied optimization are published in [KS13a]. The
basic result is that we can reduce the average response time from 10 to 2 minutes on
an Intel Core2 duo (98 seconds on an Intel Core i7). Moreover, using multi-threading
there is a linear scale up in throughput imposing also a linear increase in required
main memory. Therefore, the above stated performance requirements are matched.
The question that remains is: How much of the gained performance is lost due to the
provenance integration and are there implementation-technique specific differences?

Comparison after provenance integration

In the following, we present the results of the evaluation to determine implementation
technique-specific impacts. In addition, we compare the effects of the provenance
integration in comparison to the performance gain of the tuned version of the equalization
tool.

146 8. Fine-grained provenance integration into complex systems

Original
Opt. (1 core)

Opt. (2 core)
Opt. (3 cores)

Opt. (4 cores)

0

100

200

300

400

500

600

700

800

CPU Time (s)
I/O time (s)

Original
Opt. (1 core)

Opt. (2 core)
Opt. (3 cores)

Opt. (4 cores)

0

500

1000

1500

2000

2500

RAM (MB)

(a) Response time per image (s) (b) Main memory
consumption (MB)

Figure 8.4: Initial and optimized non-functional properties

Implementation-technique specific impacts. Regarding the response time of the
tool, we cannot measure an implementation-technique specific impact. In Fig-
ure 8.5(a), we depict the average response time. The difference between the single
implementation techniques is within three seconds, which is, compared to the overall
response time, negligible. By contrast, we do measure a small implementation-
specific influence regarding main-memory consumption. Our results indicate that
there is a small overhead when using aspect-oriented programming. In addition,
we note that, in case we collect the Where provenance data for some parts of
the tool resulting in more 32,000,000 graph fragments, we do see an observable
performance difference. It is introduced by the way the Dendrites are called,
especially regarding aspect-oriented programming. That means, in case there is
an application scenario having these call frequencies, we expect differences with
respect to response time are the major selection criteria. However, here and in all
prior case studies this is not the case.

Comparison. Compared to the performance gain of the tuning, there is little overhead
for the provenance integration in general. For instance, we observe an increase of
the response time of about 30% after integrating the provenance concern. This
results in an average increase of over 40 seconds. However, the response is still 23
percent of the initial response time. Moreover, our approach allows for additional,
more specific optimizations at the cost of additional, tool-specific integration and
development effort. The major cost factor in provenance capturing is the execution
of identity functions to identify hidden input and output. In case, we are sure
there is no hidden input, we can skip their execution. Then, we can barely observe
the performance overhead.

To summarize, our results indicate that minimal-invasive integration with respect to
non-functional properties is feasible using our approach. This conclusion is based on

8.1. Granularity refinement on tool side 147

our observation that, compared to the inherent performance potential, the provenance
integration is negligible. In addition, we do observe some implementation-technique
specific behavior, but not in magnitudes that allow us to state that one of the techniques
is inappropriate for these kinds of case studies. The major reason therefore is that the
major cost factor lies in the Soma functionality not within the number of calls of the
provenance functionality by Dendrites, which may change in the next case study.

Unmodif ied
Tuned

Dynamic
Static

CIDE
FOP

AOP

0

100

200

300

400

500

600

700

800

(a) Response time per image (s)

Provenance
Original

Unmodif ied
Tuned

Dynamic
Static

CIDE
FOP

AOP

0

200

400

600

800

1000

1200

1400

1600

1800

2000

(b) Main memory
consumption (MB)

Provenance
Original

Figure 8.5: Initial and optimized performance

8.1.6 Lessons learned

The general conclusion of this case study is that we can again exploit the object-oriented
decomposition to augment a program with tailored provenance integration. Moreover,
the integration effort remains practically feasible. In particular, we use homogeneity in
the infrastructure (e.g., an image processing library or communication infrastructures
such as the JDBC driver etc.) to integrate Dendrites into the implementing methods
decreasing the integration effort. However, there are several properties that either ease
or harden the provenance integration. This includes for instance, hidden input and
output, or additional provenance fragments resulting in additional computation effort or
improper object-oriented decomposition. Some of these properties result in the necessity
to integrate additional functionality into the Soma in order to assemble a complete
provenance graph from the collected provenance data fragments. In summary, the best
implementation technique to integrate the provenance concern in a minimal-invasive way
for these kinds of case studies is aspect-oriented programming. This is mainly based on
the minimization of integration effort and based on the homogeneous and cross-cutting
nature of the provenance concern. In addition, there is only a small and to this end
negligible additional main-memory consumption using aspect-oriented. Nevertheless,
similar to the first case study, we encounter that the complexity and syntax of AspectJ
slows down integration. What we require is a technique that also allows to apply the
same refinement to several methods, which is exactly the motivation for aspectual feature
modules [ALS08]. This would be completely sufficient for our purposes.

148 8. Fine-grained provenance integration into complex systems

Relationship to recent results

Recently, the CAPS Framework3 is proposed [BFH14] in the domain of provenance
integration for scientific workflows. The basic idea is to use aspect-oriented programming
to integrate provenance for scientific workflows. To this end, their motivation, assump-
tions, and objectives are very similar to ours. They even use the term minimal-invasive
integration in the same sense [BH12]. They also do acknowledge that provenance is a
cross-cutting concern, but do not distinguish between homogeneous and heterogeneous
nature of such concerns. We hypothesize that they do not encounter heterogeneous
cross-cutting concerns due to their application scenario, which focuses on scientific work-
flows. We assume that the processes and artifacts here are the dominant decomposition
criterion. As a result, they are reflected in classes and methods allowing to easily bind
pointcuts to these program structure. Consequently, aspect-oriented programming is the
best implementation technique, similar as in our first case studies. However, in [BFH14]
the authors do not focus on offering tailored provenance capturing and storing capability,
again due to their application scenario.

In summary, the CAPS framework strengthens the motivation, objectives, and results
as well as it highlights the importance of the overall topic. From, our point of view it is
not a competitive, but highly related approach due to its slightly different focus.

8.2 Fine-grained provenance for databases

In this section, we discuss what additional insights are expected upon integration of the
provenance concern into a (mature) database system. Moreover, we justify why such
integration is required in context of the Digi-Dak project with the help of a motivating
scenario. Finally, we design an extension of our provenance API and discuss in how far
the single features interact with the query processing including the intended level of
invasiveness.

8.2.1 Expected insights

In the prior section, an analysis of the source code of the case study reveals that the
major criterion to decompose the tool remains the intended functionality. Therefore, it
is congruent to the provenance features to integrate. Hence, we can easily exploit the
object-oriented decomposition to integrate the Dendrites. This results in low manual
implementation effort using either feature-oriented or aspect-oriented programming. To
this end, we select as final case study in this thesis, a complex system for that we assume
that the primary decomposition is not reflected or at least hidden in the object-oriented
decomposition.

Database systems have the advantage that the offered functionality is clearly stated
in the relation algebra and that they use a limited, but powerful operator set. That
means, most queries use a well-defined set of operators (e.g., projection and selection)

3CAPS - Capturing and Archiving Provenance in Scientific workflows.

8.2. Fine-grained provenance for databases 149

with known semantics. Moreover, for the relational data model, there are currently the
most fine-grained provenance approaches defined. Finally, as performance in databases
is of special interest, the objective of minimal invasiveness regarding non-functional
properties is clearly motivated. To this end, we integrate provenance into databases in
the remainder of this chapter. The intended insights in particular thereby are:

1. Explore whether integration effort remains feasible in practice.

2. Determine the effects on non-functional properties regarding the single features.
Moreover, we are interested in differences between the implementation techniques,
as prior case studies suggest that there are measurable differences. This reflects
one criterion of minimal invasiveness.

3. Investigate whether we can re-use (parts) of the Soma implementation and whether
we can automatically integrate Dendrite into different database systems. This is
intended to show the comprehensiveness of our approach.

Before we start integrating the provenance functionality into an existing and mature
database system, we first have to motivate the practical relevance of provenance inte-
gration in the context of the Digi-Dak project. This motivation, secondly, allows us
to extend the feature model of our provenance API defining what to integrate in the
sequel.

8.2.2 Motivating scenario

To explain the necessity to integrate provenance into databases in our infrastructure,
we again use a scenario from the Digi-Dak context. This forms the motivation for the
final case study of this thesis. An important step in the overall infrastructure is to
automatically locate areas on an evidence that potentially contain a fingerprint (called
regions of interest). This location is based on a coarse-grained scan, which can be
produced fast and does not contain details of the fingerprint pattern. The purpose of a
region of interest is to define areas that shall be scanned in more detail to extract details
of the fingerprint pattern. These detailed scans are time consuming (up to several hours
for one scan), thus we only want to scan regions of interest that contain finger prints
with a certain probability. Furthermore, we must not exclude forensic evidences and
therefore have to determine the error rates of our algorithms with a manual review.

Now we may use different sensors or one sensor may produce different results that have
to be combined. For instance, our default scanner creates an intensity image (based
on amount of reflected light) and a topography map (contains height information).
In Figure 8.6, we depict an evidence that contains four anomalies. Our region of interest
identification algorithm looks for something that is significantly different from the rest of
the surface having the right size. Dependent on the input data, this algorithm has benefits
and drawbacks regarding to certain anomalies. For instance, considering Figure 8.6 the
intensity image, the scratches are detected to be a possible fingerprint. By contrast, in

150 8. Fine-grained provenance integration into complex systems

the topography image the algorithm detects that the scratches are below the surface
and thus cannot be a fingerprint. Meanwhile, it is possible that dirt is classified to be a
potential finger print based on topography information, but not in the intensity image
since it is a very homogeneous area. Finally, the low-quality print has not been located
at all, which is an error and important for determining the error rates.

Scratches

Dirt

Good print

Low quality print

Found in both images

Found in topography
map only

Found in intensity
image only

Figure 8.6: Evidence containing four potential regions of interest

The regions of interest example

For our final case study, we apply the regions of interest example. Specifically, we want
to modify existing database systems in a way that we can, based on the variant of our
provenance API, gather either (1) lineage or why provenance, changes of aggregated
values as well as view deletions.

For the regions of interest example, we have several (independent) databases in our
distributed infrastructure, in some databases we only need to know which tuples were
used to create a result tuple, thus we need lineage. For, evaluation purposes, we may
temporarily want more fine-grained forms of provenance, e.g. error propagation, or
probability annotations. Furthermore, local copies may have a different provenance
requirement. Summarily, we need variants of our provenance API able to collect different
forms of fine-grained provenance.

8.2.3 Feature model and resulting changes

As Cheney et al. state [CCT09], detailed forms of provenance are instances of each
other. Lineage is contained in Why provenance, and Why provenance is itself contained
in How provenance. In the same sense, recent extensions for aggregate queries or the
pig latin language are based on How provenance as well. Finally, in Chapter 2 we have
shown that many of the forms of provenance (including coarse-grained forms) known,
have similarities used to unify them in a conceptual framework. As a result, we can
extend our provenance API with additional functionality that is easily integrated in
case we need a different form of provenance.

In Figure 8.7.(a), we depict the feature model of an extension for our provenance API
based on a domain analysis performed in Chapter 2. The basic proposition is that we

8.3. Provenance integration for databases 151

modeled the more detailed forms as extensions of each other. The reason is that we want
to able to build a variant of our provenance API in a modular way by adding/replacing
only the necessary parts overtaken from the first exploratory case study on client side.
Nevertheless, in Figure 8.7(b)-(e) we reveal that, based on the variant of provenance
API, we change tuple processing of our database systems. Therefore, we mark the
applied change in the query processing with the color of the feature. Tuple processing,
however, is a performance critical part. Thus, we do not want to include unnecessary
modifications into a database system to capture the provenance or change the behavior
of query processing. On the other hand, we want to provide a general solution that
allows for easy integration into arbitrary database systems. Consequently, the major
research question for this case study is: What software engineering techniques allow
that we integrate the desired provenance form into existing database systems efficiently?
Here efficiently means that we have to consider the trade-off between integration effort,
computation overhead as well as maintenance criteria.

Deletion propagation for materialized views

So far, all provenance functionality works retrospective. That means that we only
collect provenance, but do not actively use collected provenance to compute new results.
To consider these kinds of features as well, we add the materialized view feature. In
particular, we want to integrate deletion propagation for materialized views.

We decided for this feature, because deletion propagation for materialized views is s well-
known problem in databases that can be addressed using provenance [BKT02, CW01].
Moreover, the intended regulative change in the query processing is complex and thus,
well suited. Finally, for instance, in case we detect that a sensor delivered erroneous
results, we need to know which intermediate artifacts are affected.

In the sequel, we use this feature model to first implement the Soma functionality and
then, integrate the Dendrites to a mature database system.

8.3 Provenance integration for databases

In this section, we integrate the priorly designed extension of our provenance API into a
database system and evaluate the effects regarding our objective of minimal-invasive
provenance integration. Then, we explore in how far we can port the extension to
different database systems. To this end, we firstly select a suitable database system,
secondly integrate and evaluate the intended functionality, and finally try to generalize
our implementation for different database systems.

8.3.1 Case study selection

Now we select the database system into that we integrate our provenance functionality.
Therefore, we have two selection criteria. We need:

1. A mature database system containing real-world challenges. Consequently, we
need a system that is used productively in large scale.

152 8. Fine-grained provenance integration into complex systems

getInputTuples

distinct
scan?

fetchTuple

store Provenance
(input tuples)

no

isUnique?

mergeStored
Lineage

yes

yes

getInputTuples

distinct
scan?

fetchTuple

store Provenance
(input tuples)

no

isUnique?

mergeStored
Why Provenance

yes

yes

getInputTuples

distinct
scan?

fetchTuple

store Provenance
(input tuples)

no

isUnique?

mergeStored
Why Provenance

yes

yes

 map to Semiring
notation

update
Annotations

getInputTuples

distinct
scan?

fetchTuple

store Provenance
(input tuples)

no

isUnique?

add to
Group

yes

yes

 map to Semiring
notation

compute Aggregate
AttributeValue

Create
new Group

update
Annotations

add Tuple to
Result

add Tuple to
Result

add Tuple to
Result

valid
Tuple?

add Tuple to
Result

ignore Tuple

yes

no

(a) Feature model
extension

(b) Variant: Lineage (c) Variant: Why
Provenance

(d) Variant: How
Provenance

(e) Variant: All

Provenance

Lineage

Why

How

Aggregates Materialized Views

Propagation

Figure 8.7: Extensions for the provenance API

2. As our implementation techniques are not available for all programming languages,
which includes proper tool support, we have to limit ourselves to languages that
have respective tool support. Currently, we found the best support for Java. As
Java is one of the most frequently used programming languages this does not
impose limitation with respect to the intended results.

Priorly in this thesis, we applied PostgreSQL. However, as this database system is written
in C, we cannot use our implementation techniques. We decide to use HyperSQL4 for
the following reasons. First, it is an open-source database system entirely implemented
in Java, which is, amongst others, used in Open Office. Consequently, we consider this

4Project website: http://hsqldb.org/

http://hsqldb.org/

8.3. Provenance integration for databases 153

database system as mature. In addition, this system has been used by other authors
to show that newly developed concepts are feasible for real-world application, such
as in [PKC+13]. We conduct our case study for version 2.2.5, which was the current
version when we started implementation. Finally, as the source code for prior and later
versions is available, we can test whether our implementation can be integrated into
these versions as well. This is a first means to investigate the generality of our solution.

8.3.2 Exploratory implementation

As a first step to evaluate the effects of different implementation techniques, we integrate
the provenance functionality using our intuitive techniques. When implementing this
case study, we looked for the desired functionality and documented changes and pitfalls.

As we assume that a major challenge is to locate the source-code locations where we
need to integrate the provenance Dendrites, we looked for the locations in a structured
way. The basic idea is to locate the implementation of the single relational operators,
handling of intermediate result, and additional functionality like duplicate elimination
and sorting. To this end, we started sending simple queries containing selection and
projection only to the HyperSQL database system. We added a breakpoint to the
execute methods of the JDBC driver used to send the query. Then, we used the debug
functionality of the Eclipse IDE navigating via single step execution until we reached the
source code implementing the desired functionality. Then, we extended the complexity
of the query and repeated the procedure until we found all source code locations we
were looking for. The advantage of this procedure is that it first can be used for every
database system and delivers a valid starting point. Altogether, we needed three days
to integrate the desired functionality not including developing the Soma parts of the
provenance API. We argue that this amount of time is no counterargument regarding
the practicability of our overall approach.

Code scattering and heterogeneity

Generally, there is series of very small modifications (cf. Table 8.1) that are scattered
over the whole source code of HyperSQL. For instance, most modifications require
three lines of code. Only in the buildResult method there are plenty of modifications.
Nevertheless, 6 out of 13 changes require structural modification of the HyperSQL source
code that are not totally removed when building the binary. For us, especially the
code scattering and code obfuscation (due to if-conditions) when debugging non-trivial
behavior was a major challenge. In contrast, to prior case studies provenance is no
longer a homogeneous, but a heterogeneous concern as we have to integrate different
code for the single relational operators.

Additional system modifications

One major problem in HyperSQL are non-persistent and non-accessible RowIDs. There is
a RowID that is encoded as long value having 64bit. The first 32 bit integer contains the
TableID and the second one the row number. However, the TableID is not persistent,

154 8. Fine-grained provenance integration into complex systems

Feature Class Method Line count #Changes Line inc. Premise/Purpose Structure change
39 1 5 Study 1 no
7 1 5 Bug yes

Table 5 1 2 persistent ID's yes

Lineage 231 3 23 1 of 3
24 1 3 Commit no

execute 9 1 5 no
materialize 31 1 3 Sub query no

10 1 3 ID's & sort no
55 3 9 ID's & sort no
33 1 4 Duplicate yes

union 27 1 3 no
16 1 3 Sub query no
20 - 17 Sub query yes

Why 20 1 3 Sub query no

Where 3 3 Copy origin no

Mat views 1067 1 3 Save provenance no

Σ 9 14 1594 21 94 6

Study 1
(JDBC)

JDBCStatement fetchResult
JDBCResultSet getFetchSize

getID

Query-
Specification

buildResult Tuple creation
getSingleResult

JDBCStatement Vizualization
SubQuery
ArraySort moveAndInsertRow

quickSort
RowSet-
Navigator

removeDuplicates
Dupli. & sub query

unionAll
ResultMetaData addProvenance

ResultMetaData addProvenance

QuerySpecification buildResult s.o.

StatementSchema getResult

Table 8.1: Necessary modifications in HyperSQL per feature using

because the TableID is assigned when a running instance of a HyperSQL server loads a
table space and is used to organize the table of running instance. As a result, we had to
implement additional functionality to provide persistent identifiers. Furthermore, the
row number can only be used for identification as long as the table is not re-organized
(i.e., sorted). Unfortunately, sorting is used to determine duplicates and can be issued
by a user. Consequently, we need to implement functionality to map tuples to new
RowIDs after sorting, which was not intended and is based on implementation details of
HyperSQL.

A challenging task is to integrate materialized views with deletion propagation. Hy-
perSQL does not support materialized views in version 2.2.5. Thus, we first have to
integrate this functionality and also integrate the deletion propagation. The idea is to
use normal tables and annotate these tables as materialized views. The basic advantage
is that these tables act like normal tables (e.g., regarding transactions). However, in
case they are queried, we extend the evaluation of the selection predicate s where s
is a propositional formula for each considered tuple. In fact, we add a term p, where
p results from the evaluation of the provenance data and indicates whether this tuple
has been deleted. In detail, p is true in case there remains at least one path in Why
provenance creating the current tuple otherwise it is false. A tuple only is result of
a query if the evaluation of the selection predicate and the provenance predicate is
true. Therefore, the new selection predicate s′ for any tuple is computed as s′ = (s ∩ p)
ensuring this property. Note, in case there is no selection predicate, it is set to true

resulting in s′ = (1 ∩ p) = p. In addition, we have to extend the commit functionality
of HyperSQL to ensure that the fine-grained provenance data are only committed in
case the query is committed. Otherwise the provenance data is only send to the tool
along with the query result. As a result, the provenance data are only saved persistently

8.3. Provenance integration for databases 155

in case the query is committed and in turn the database system ensures in case the
modification is committed the provenance data is saved persistently as well.

Correctness of the integration

Although most changes are by concept spectative (with exception of the view deletion
propagation), we need to validate the integrated functionality. This includes:

1. That we do not inflict any undesired modification to the tuple processing of the
database system.

2. That the provenance data are gathered and stored correctly.

Generally, we validate the integration via testing using specific test cases. For both
above mentioned properties, we use a test database with the schema of the TPC-H
benchmark [TPC-H10]5. The TPC-H benchmark is a well-known benchmark to evaluate
the database system performance for complex queries, which suits best to our workloads.
We validated that the processing functionality delivers correct results by testing first
the single operators including distinct scans and sorting and compared the results to
the expected ones of the original database system. In addition, we compared the results
of the TPC-H queries showing that these results are correct. To this end, we conclude
that our integration does not impose an unintended change to the query processing with
certain, but small, residential risk of undetected errors.

We validate capturing and storing of provenance data in a very similar way. First, we
test the single operators and compared them to manually calculate results and then
compare the resulting provenance data of the TPC-H queries. Subsequently, we query
the stored the provenance data again to test whether they are stored correctly. Finally,
we create materialized views and delete exemplary data in the original tables to test
whether deletion propagation works correctly. This includes also that transitive deletion
works. That is that a materialized view is created from another one which then is based
on normal tables.

In summary, the tests indicate that our provenance integration is correct. Therefore,
there is no (unintended) functional modification except the desired ones and thus, the
integration is conform to our goal of minimal-invasive provenance integration regarding
functional properties.

8.3.3 Evaluation of non-functional properties

In the following, we examine the impact on performance and main-memory consumption
for different provenance features and queries. We compare them to the measurements
of the original system. This allows us to draw a first conclusion on the impact of the
integration in general. Moreover, the gathered data allows us to compare the effects of

5Project website: http://www.tpc.org/tpch/

http://www.tpc.org/tpch/

156 8. Fine-grained provenance integration into complex systems

different implementation techniques in the remainder. The query selection is similar to
the tests for functional correctness. We first measure the effects for simple queries and
then for more complex ones. All subsequently presented measurements are robust mean
values.

Evaluation results

In the following, we evaluate the provenance integration with respect to non-functional
properties based on the priorly introduced evaluation concept. To this end, we define
several queries, to examine the effects of the operations separately (Q1 to Q6). In Ta-
ble 8.2, we depict the queries and note our intention for the design of the query. For
instance, Query 2 uses a distinct projection, while Query 4 is designed for evaluation of
union all operator, which does not remove duplicates after the union of two relations.

Table 8.2: Evaluation queries
Query SQL Command Operation
Q1 Simple query
Q2 Distinct scan
Q3 Selection
Q4

Q5 Aggregation
Q6 Join

Select * from lineitem;
Select distinct L_PARTKEY from lineitem;
Select L_ORDERKEY from lineitem where L_SHIPDATE > $value;
Select L_ORDERKEY from lineitem where L_SHIPDATE > $value
union all
Select L_ORDERKEY from lineitem where L_SHIPDATE <= $value;

Union without
duplicate
elimination

Select sum(L_QUANTITY) from lineitem group by L_PARTKEY;
Select * from lineitem, orders where O_ORDERKEY = L_ORDERKEY;

In Table 8.3, we depict our measurements regarding the average response time and
main-memory consumption for all queries. Generally, the table contains on the left
side the values for the original system. This means, for instance that, in the original
system, Query 1 required on average 23 ms to execute. Then, we depict the values with
Lineage (Lin), Why provenance (Why), and Where provenance (Where). As we could
not observe a significant difference between both intuitive techniques, we only depict
one result.

Table 8.3: Non-functional properties per feature and query

Response time in ms RAM in MB
Original Lin Why Where Original Lin Why Where

Server start 516 703 719 724 70 119 119 110
Q1 23 31 32 34 110 208 195 209
Q2 60 2390 3188 3221 73 161 164 178
Q3 18 31 24 26 72 157 168 163
Q4 36 46 60 56 73 149 159 165
Q5 59 204 154 143 73 155 169 170
Q6 60 196 157 133 70 158 154 174

Response time

Regarding response time, we observe that performance penalty due to the provenance
functionality depends more on the included operators than on the provenance feature

8.3. Provenance integration for databases 157

(i.e., granularity level). For operations that do not require duplicate detection, our data
reveals a performance overhead of less than factor two. We argue that this is a very
good result. However, for queries Q5 and Q6 the observed increase is between factor two
and three, which still seems manageable. For Q2, however, we encounter an increase of
factor 30. An in depth analysis reveals that this effect is caused by an interaction with
an implementation detail of the database system. To execute a distinct scan, the result
table is sorted and then duplicates are removed from the result. Therefore, after sorting
our initial provenance data shows that the result table contains all tuples including
duplicates. In case, a duplicate is removed from the result, we have to remove this line
in the provenance data and copy the provenance data to the identic tuple that is not
removed. This causes a lot of additional work. However, the major problem is that
our data structures in the Soma are designed for fast insert not for removing, resulting
in large reorganization effort. We tested different implementations that result in an
additional performance penalty for other queries. To this end, we have to accept the
problem with distinct scans and suggest a refactoring of the original system. Similar to
the computation of groups for aggregations, duplicates should not be removed, but after
sorting new tuples should be copied into a different result table.

Main-memory consumption

Considering the required main memory in Table 8.3, we observe an overhead of factor
two to three. Similar to our response time observations, there hardly is a difference
between the different provenance features showing the efficiency. This is mainly due to
the fact that we do not store different data but just change the way how to interpret
the stored data.

8.3.4 Alternative implementation techniques

We repeat the initial provenance integration using feature-oriented programming with
FeatureHouse, aspect-oriented programming with AspectJ and CIDE. Transferring our
initial implementation using conditional statements to CIDE is fast and simple, as we
only have to delete the introduced if statements and mark the remaining source code.
Moreover, we are able to remove all permanent additional modifications that we had to
introduce using the intuitive techniques. To this end, we conclude that this technique is
less invasive.

Comparing the integration effort of all techniques there is little difference among them.
Basically, the main effort is finding the source-code location where to integrate the
Dendrites. Using feature-oriented programming, we have to integrate additional hook
methods, while in AOP we could avoid most of these hook methods. Usually, there is a
method that can be instrumented in order to capture provenance, but this method is
called from multiple locations and not in every case we want to capture provenance. To
specify the source locations, we can use the within and withincode keywords in the
pointcut definition, which really helped us to avoid unnecessary hooks. However, in AOP
we have to integrate hooks as well. In addition, we have to change the visibility of class

158 8. Fine-grained provenance integration into complex systems

members (or add additional get() methods). Finally, AOP resulted in hard to explain
errors especially with respect to aspect execution in or around synchronized methods
requiring redefinition and moving of respective pointcuts. Therefore, we consider AOP
and FOP techniques more invasive than the CIDE approach, but less invasive than
the intuitive techniques as we have a smaller number of permanent code modifications.
For all integration, we successfully ran the test queries. Thus, we conclude that the
integration is successful.

Effects on non-functional properties

In the following, we explore the effects on non-functional properties. Based on our prior
observations, we expect that we cannot observe a significant difference between the
techniques except for AOP. In particular, we are interested whether we can measure
an additional implementation-technique specific performance overhead for AOP as it
is suggested by prior case studies. For main-memory consumption, we also expect an
overhead using AOP.

Initial experiments with unmodified variants of the database systems (i.e., a variant
where no provenance feature is selected) for each technique, resulted in the same average
values as for the original system. Therefore, we conclude that there is no provenance func-
tionality related overhead, which is one goal of minimal-invasive provenance integration
and also indicates that our subsequent measurements are correct.

Response time. As expected, we cannot measure a significant performance overhead
for FOP and CIDE compared to the intuitive techniques. However, we expected a
significant penalty for AOP due to the large number of reflective Dendrite calls, but
we could not measure such penalty. In fact, most of the additional time is consumed
in storing and merging the provenance data in the Soma or when either persistently
storing the data or integrating it into the query result. In addition, we assume
that Java’s run-time optimization may remove some performance bottlenecks.

Main-memory consumption. Our measurements reveal that our hypothesis that
there is no significant difference between the required main-memory is correct.
For any provenance augmented variant, we measure a higher initial main-memory
consumption upon server start. After starting the database the original database
and the unmodified variant using AOP the server required 120MB (cf. Table 8.3),
while all other implementation techniques require about 70 MB. This is due to
an implementation detail of FeatureIDE and AspectJ resulting in the effect that
the provenance API is even loaded in case it is not part of the variant. However,
we cannot observe additional memory consumption for provenance augmented
variants.

In summary, our observations result in two conclusions. First, we state that aspect-
oriented programming and the intuitive techniques are unsuitable for provenance in-
tegration in databases - mainly due to permanent un-removable source source-code

8.4. Adaption for different database systems 159

modifications and runtime overhead. Second, we cannot give a clear recommendation
whether feature-oriented programming or preprocessors should be used as they are very
similar regarding the criteria of minimal-invasive provenance integration. To this end,
we determine in the remainder, whether we can re-use Dendrites of FOP for seamless in-
tegration or at least to speed-up integration provenance integration into (newer) versions
of HyperSQL and other java-based database systems.

8.4 Adaption for different database systems
In the following, we determine whether our Soma and Dendrites are database-system
specific or can be re-used for different database systems. In particular, we want to
know whether our solution represents a, to some extend, general solution or we have to
develop completely new provenance capturing solutions for every database system. To
this end, we first review our implementation to find commonalities that we expect to
find in all or most database systems. Then, we integrate the exiting functionality into
newer versions of HyperSQL and a different java-based database system.

8.4.1 Premises for generalization

To generalize our results and allow easy integration into different database systems,
we need requirements that we premise for provenance integration and thus, need to
be offered by the database system. Consequently, the basic idea is that the database
system already provides all the functionality we need for its own query processing.
Furthermore, the assumption is there are only a few but powerful relational operators
(e.g., projections etc.) and respective well-known algorithms. Thus, there also is a
limited set of functionalities the provenance API has to offer. Note that the amount of
system-dependent additional required functionality especially regarding the Dendrites is
one issue addressed in the remainder.

Identifiers. Persistent and accessible unique tuple and table identifiers (RowID and
TableID): We store only tuple identifiers and not the tuples itself (for privacy and
performance reasons). Hence, we need a possibility to identify tuples in a database
by a unique identifier that should also include the unique TableId. In HyperSQL,
we did not have such persistent identifiers and thus needed to integrate them.

Tuple creation. When creating a new tuple, we need the RowId r of the new tu-
ple (routput) and a list L of tuple(s) used to create this tuple (routput, L(rinput)).
Additionally, we use a simplification introduced by a difference between the imple-
mentation of relational database systems and the relational algebra. Generally,
the relational algebra uses set semantics. In contrast in SQL, we have to specify
distinct scans explicitly or use set operation (e.g., UNION). Hence, there is no
possibility to have multiple paths creating one result tuple (the duplicates are also
in the result). As a result, this premise covers all basic non-distinct relational
operators : Selection, Projections, Crossproducts, and Joins. Finally, this allows us
to benefit from optimization, such as performing projections and selections at the
same time.

160 8. Fine-grained provenance integration into complex systems

Duplicate elimination. In case a user specifies a distinct scan, our implementation
requires a function provided by the database systems to identify the duplicates
by their RowID. Then, our provenance API merges the provenance information as
follows. For two tuples (r1, L1) and (r2, L2) identified as duplicates provenance
API creates (r1,Merge(L1, L2)), where Merge depends on the form of provenance.

Groupings & aggregates. For groupings we need a similar functionality as for dupli-
cate elimination. A tuple either adds a new group to a result or is added to an
existing group. Additionally, we need a possibility to access the attribute value and
information about the aggregate function to document the computation formula,
necessary to propagate updates or deletes for materialized views.

Sub-queries. In case sub-queries are materialized (e.g., for inner queries or set opera-
tions such as Union), we need a functionality indicating that independent results
are merged. Note, dependent on the implementation, we can re-use the duplicate
elimination functionality.

These requirements are in fact Soma functionalities offered by our provenance API.
To this end, there are methods, which can be called in the Soma that compute and
store respective provenance. Consequently, we hypothesize that our Soma offers general
provenance capturing functionality. However, we can currently not hypothesize in
how far we can re-use (parts of) the Dendrites for HyperSQL. Thus, we explore their
re-usability in the sequel.

8.4.2 Versions of HyperSQL

In the following, we explore whether we can re-use our Dendrites (and Soma) implemen-
tation for newer versions of HyperSQL. In the previous section, we could not give a clear
recommendation whether preprocessors, such as CIDE, or feature-oriented programming
shall be used. The following exploration intends to answer this question. In case,
we can re-use our Dendrite implementation, we clearly recommend feature-oriented
programming due to less integration effort. In case we cannot re-use the Dendrites and
have to adapt the Dendrites, we suggest CIDE. To this end, our integration procedure
is as follows.

1. Create a new FeatureIDE project using the FeatureHouse composer.

2. Copy feature model and all feature implementations except for the Base feature.

3. Copy the implementation of the newer HyperSQL version (e.g., 2.2.6) into the
feature Base implementation module (folder).

4. Check for build errors and correct them if present.

5. Execute the correctness tests from Section 8.3.2.

8.4. Adaption for different database systems 161

Note, we use two versions for our Dendrite integration. The first one minimizes manual
integration effort by overwriting whole methods in case hook methods would be required.
The second one requires for manual hook integration before we are able to generate
variants.

Table 8.4: Dendrite and Soma reusabilty for HyperSQL versions
Dendrites reusable

Released Method override Manual hook integration
Version 2.2.5 06.07.11
Version 2.2.6 20.11.11 yes yes yes
Version 2.2.7 15.01.12 yes yes yes
Version 2.2.8 22.01.12 1 build error 1 build error yes
Version 2.2.9 06.08.12 2 build errors yes* yes
Version 2.3.0 08.07.13 no yes* yes
Version 2.3.1 08.10.13 no yes* yes
Version 2.3.2 14.02.14 no yes* yes

yes* with changes for 2.2.8

Soma reusable
HyperSQL Version

In Table 8.4, we depict our results regarding the re-usability of the Soma and Dendrite
implementation. Recapitulate that we perform the initial integration for version 2.2.5.
Thus, the table only contains the release date. We emphasize that the version history
covers a time span of two and a half year and a major release (switch from 2.2 to 2.3).
Therefore, we argue that our results contain interesting and valid results regarding the
applicability of our approach considering software evolution.

Generally, the integration of the Dendrites is easily manageable. Especially for the
releases before version 2.2.8, we can simply integrate the Dendrites by overwriting
the methods, if refinements are possible (and hooks are required). In these cases, we
just copy the implementation into the feature implementation modules without any
manual modification. For version 2.2.8, we have to change the method signature of
the QuerySpecification.buildResult() method, so that the correct method is over-
ridden. Since HyperSQL version 2.2.9, there are bigger changes affecting the provenance
integration. For instance, not anymore existing members in the buildResult() method
or deletion of the SubQuery class results in additional modification effort of our Dendrite
implementations. However, it does not affect the Soma, as intermediate sub query
handling (as intermediate results) works the same way. Nevertheless, adapting the
implementation is a nasty task and manually integrating the hook methods was faster
and less error prone for our purposes. An interesting observation for our purposes is
that the source code close to the Dendrites was not changed at all with exception of the
deleted SubQuery class.

The purpose of these experiments is to evaluate whether there is a clear benefit using
feature-oriented programming. The hypothesis is that due to re-usability of the Dendrites
we have less integration effort. Our results clearly indicate that there is a significant
benefit until (including) version 2.2.8. This covers a time span of half a year. For any
later version, we have to manually adapt the source code. As final comparison, we

162 8. Fine-grained provenance integration into complex systems

manually integrated the provenance functionality into the latest HyperSQL version with
preprocessor annotation. The idea is to compare the manual development effort to the
adaption of the automatic ones. This integration (including test) required less than an
hour. For the feature-oriented programming the time is very similar, mostly to tool
related waiting times. For instance, in case we integrate a hook, FeatureIDE issues a full
build of the project to check all resulting variants for correctness. This requires about a
minute.

Based on the presented information, we make the following conclusions. In the short
term, we suggest FOP. However, in the long run and due to performance optimization
potentials, we prefer preprocessor based solutions.

8.4.3 H2 Database

To examine the generality of our solution, we integrated the provenance API into an
additional java-based database system H26. H2 is a database comparable in complexity,
offered functionality, and performance to HyperSQL7. To this end, we consider this
database system as an ideal case study to examine, which parts of our prior implementa-
tions for HyperSQL can be re-used. Based on our previous explanations, we assume that
the Soma implementation can be re-used completely and already contains all required
functionality. In addition, we are interested into integration effort, especially the location
the respective source-code locations and whether the Dendrites are similar to those of
HyperSQL. On a more abstract level, we want to ensure that our observations are not
specific to or based on limitations of HyperSQL.

Integration effort. Altogether, locating the respective source-code location where
we need to integrate the Dendrites took less than a day. This includes setting
up the database system and running it from source code. In particular, the
procedure to locate the source-code locations is the same as for HyperSQL. We use
a client application and send a simple select query to the database server and then
start investigation from the execute methods of the JDBC driver. For H2, the
integration is even easier than for HyperSQL. The reason is that the object-oriented
decomposition of H2 corresponds more to the actual functions performed by the
database system (i.e., the relational operators). We assume that this difference is
either due to performance reasons or an effect of the evolution of HyperSQL. For
instance, there are several classes in the package org.h2.command.dml that first
by naming convention correspond to relational operators and second extend from
and abstract Query class. To this end, we can easily detect all classes and the
methods where we need to integrate the Dendrites. In summary, we argue that
integration effort is feasible in practice and therefore not in opposition to our goal
of minimal-invasive provenance integration.

6H2 project website: http://www.h2database.com/html/main.html
7Comparison of H2, HyperSQL, and PostgreSQL: http://www.h2database.com/html/features.html

http://www.h2database.com/html/main.html
http://www.h2database.com/html/features.html

8.5. Contributions and conclusions 163

Soma re-usability. When integrating the provenance concern, we observed that, as
we expected, the Soma contained the required functionality with one exception.
Therefore, we had to perform only little additional implementation overhead for
duplicate elimination for distinct scans. In HyperSQL, duplicate elimination means
sorting a relation and subsequent removing of duplicates. By contrast, H2 uses
hash buckets containing duplicates (without prior sorting). To this end, we have
to extend our Soma with one additional method, using the small hashing methods
to group duplicates in the same hash bucket and add the desired provenance data.
In fact, H2 functionality corresponds even more to the data structures in our
Soma. This, results in a smaller relative performance penalty (factor 3) than for
HyperSQL. As we argue there are only few algorithms for each relational operator
that are different from point of view of provenance capturing, we consider our
Soma as general provenance API for database systems. It allows for tailored
provenance integration, which can be easily extended if necessary.

Dendrite similarity. Similar to HyperSQL, the Dendrites are scattered over several
files and we cannot simply wrap around methods to extract the desired provenance
data. Mostly, the provenance data is within for loops looping over intermediate
results or test selection predicates. To this end, we have to either directly insert
code using preprocessors for tailoring purposes or inject hook methods. In addition,
we observe similar to HyperSQL that provenance on this granularity level is no
longer a homogeneous concern, but heterogeneous mostly due to the different
semantics of the relation operators and specifics of their implementation.

Summary

In summary, we conclude that our results from HyperSQL and H2 are very similar and
to this end not artificial, but generalizable. The major result of these cases studies is
that we can integrate the provenance concern in a minimal-invasive way, although its
nature changes from homogeneous to a heterogeneous cross-cutting concern, which is
hardly congruent to the object oriented decomposition. Consequently, our suggestion of
using preprocessor remains best suiting our goal of minimal invasiveness remains. As a
result, we conclude that current object-oriented decomposition is hardly sufficient to
separate the concerns clearly.

8.5 Contributions and conclusions

In the preceding two chapters, we explore how to integrate provenance in a minimal-
invasive manner for different case studies. In general, we explore whether using software
product lines in order to integrate a totally new variability dimension into an existing
monolithic data-intensive system is possible and in how far we can observe differences
between different well-known implementation techniques. In addition, we are interested
into properties of our case studies that either ease or harden provenance integration
to formulate rules and guidelines for engineers designing new solutions. Therefore, the

164 8. Fine-grained provenance integration into complex systems

case studies have different complexity and different provenance requirements to address
the challenge of provenance integration in a comprehensive manner. In this chapter,
we integrate fine-grained provenance into complex systems resulting in the following
contributions:

1. We evaluate in how far our concept to exploit the object-oriented decomposition
of programs [SSS12b] can be applied for tool chains in the Digi-Dak infrastructure.
The basic purpose of our concept is to speed-up provenance integration using AOP
or FOP. Using this concept delivers good results if certain properties are avoided
and a small performance overhead [KS13b].

2. We design, implement, integrate, and evaluate a variable provenance solution
for java-based database systems. In addition, we show that the solution can be
easily integrated into different database systems exploiting the limited number of
(relational) operators and respective algorithms. Thus, it can be easily integrated
in additional database systems.

3. The conduction of case studies reveals several benefits and pitfalls in the archi-
tecture of programs, which can serve as recommendation for developers when
designing new systems. We assemble the complete list of recommendations in the
appendix of this thesis as they are scattered over the case study conduction in the
preceding chapters.

The primary goal of this thesis is to explore whether we can integrate a provenance
concern into existing monolithic systems efficiently. We call this integration minimal
invasive. As provenance is itself a highly versatile concern and different systems have
different requirements regarding provenance, the key idea is to treat the provenance
concern and its integration as a software product line. This way we are able to automat-
ically generate tailored provenance capturing solutions. These solutions, however, need
to be integrated efficiently. Therefore, another idea is to use well-known implementation
techniques from SPL development and compare them to two intuitive integration tech-
niques. Generally, we observe that minimal-invasive provenance integration is possible
exploiting homogeneity within these systems, such as global communication infrastruc-
ture or object-oriented decomposition. According to our results it is practically feasible
considering integration effort and effects on non-functional properties to integrate prove-
nance into existing systems efficiently. Nevertheless, we reveal that integration effort
and performance penalties depend more on properties of the systems itself than on the
applied implementation techniques. To this end, we document these properties for each
case study.

In summary, based on the results of our empiric research method and proper selection
of the applied cases studies and their evaluation, we consider the primary goal of this
thesis as successfully addressed.

9. Conclusion and future work

Even integration of a monolithic additional concern into an existing monolithic system
often results in severe issues regarding functional correctness and non-interference with
non-functional properties. To this end, integrating a whole variability dimension in a
minimal-invasive manner is even more challenging. However, our results indicate that
due to the versatile nature of provenance and different user requirements (that often
change over time) there cannot be an ones-size-fits it all solution, but we need to generate
tailored provenance capturing solutions, based on a selection of required features. Thus,
it is required to enhance existing systems and infrastructures with provenance support.
However, so far, most of the research in the domain of provenance resulted in solutions
and approaches that cannot be flexibly adapted to changing requirements. To this end,
this thesis contributes knowledge on software product lines. In particular, in how far
SPLs can be used to integrate tailored provenance as a cross-cutting concern into an
existing system. We explore how to efficiently integrate this variable concern based upon
the term minimal-invasive integration. We borrow this term from surgical procedures
and define it in the context of computer science.

The research in this thesis is based upon a series of case studies that explore how to
integrate tailored provenance capturing and storing capability. Therefore, we mainly
rely on case studies or application scenarios from a real-world large-scale joined research
project with partners from industry, academia, and law enforcement agencies. In
addition, we consider object-oriented programs as well as (object-) relational databases.
To this end, we ensure that our findings are sound and generalizable. In addition, this
research project allows us to claim that this thesis contains valuable contributions to
real-world challenges and academic questions, which is for instance shown by respective
publications.

The primary result of this thesis is that minimal-invasive integration of provenance is
practically possible as long as we can exploit certain homogeneity in the system(s), such
as communication infrastructures etc. This includes modeling the provenance concern

166 9. Conclusion and future work

in terms of features, minimizing undesired feature interactions due the nature of the
provenance concerns, as well as implementing the feature content. In addition, software
product line implementation techniques outperform intuitive implementation techniques
and are, to this end, very well suited to integrate the additional features. In particular,
we made several contributions to reach the goal of this thesis. The most prominent are:

1. Defining the term minimal invasiveness for provenance and adapting the neuron
analogy for a universe of provenance.

2. Introducing the database-centric chain-of-custody as concept that can be ported
to arbitrary communication-centric infrastructures.

3. Design and show the practical relevance of our tailoring approach for relational
database schemas.

4. Propose and show the applicability and limitations of an approach to exploit object-
oriented decomposition in order to enhance programs with tailored provenance
support.

5. Define a general provenance API based on our provenance framework, which can
be easily integrated into relational database systems.

6. Introduce QuEval to support minimal-invasive provenance integration.

On a more general level, we discover that provenance in general is a cross-cutting
concern. In addition, the source code locations where to integrate provenance are
scattered over the source of most of our case studies due non-congruency with the
dominant decomposition in classes and methods. On the other hand, we reveal that fine-
grained forms of provenance require heterogeneous source code while for coarse-grained
we can exploit the homogeneous nature of the provenance concern to ease provenance
integration. Both named properties offer interesting directions for future work.

Future work

In this thesis, we identified several points that offer potential for future work.

A request for research on multi product lines

One of the propositions of this thesis is that we integrate provenance into monolithic
systems. However, for future work, we suppose integrating provenance into systems
that are itself variable results into interesting findings. We hypothesize that, due to the
decomposition into features, finding the source-code locations is less time consuming
than for monolithic systems. However, as variability in the original program contains
the challenge of how to ensure type safety, we are interested in the resulting trade-off
of between less integration effort due to easier location of the source code where to
integrate the desired provenance functionality and the penalty due to requirements for

167

safe composition. In addition, we expect that for tailored data-management solutions
verification that our provenance functionality is integrated correctly is easier possible due
to less supported functionality. We also reveal that multi-dimensional index structures
are a good starting point as they can be tailored in order to exploit characteristics of
a use-case achieving optimized performance. The future vision is to have interacting
software product lines in a multi product line that interact with each other first ensuring
safe composition (or product generation in general) and second minimizing negative
effects regarding non-functional properties. This also includes a standardized procedure
and respective tool support for such kinds of product lines including modeling, imple-
mentation, maintenance etc. First results, such as [SST13], seem promising in this area.
Consequently, this is a request for researchers to address this topic

Interpretation of aspect-oriented paradigm

During our experimental case-studies, we encountered that today aspect orientation
does not work as we would have required it. In particular, the problem is that aspects,
especially in ApsectJ, are designed as additional decomposition dimension besides
the object-oriented decomposition. This, in turn, results into the property that it is
sometimes hard to differentiate whether limitations in our aspect-oriented case studies
are due to the limitation of the aspect-oriented concept in general or due to its current
interpretation and tool support. We would prefer that aspects, in the context of feature-
oriented development, only exist on modeling level but not in the source of a particular
variant, similar to refinements in feature-oriented programming. In this sense, we argue
that aspectual feature modules as defined upon the formal bases of [ALMK08] are one
of the most underestimated concepts. However, whether these findings are artificial for
integration of additional features in existing case studies or have even more application
scenarios is open to future investigations.

Tool support

Only with proper tool support, we can really benefit from new approaches. To this end,
we really appreciate projects such as FeatureIDE. Therefore, this is a call to offer proper
tool support. For the approaches presented in this thesis, we often use self-implemented
tools. Therefore, integration into existing well-known tools, such as FeatuerIDE, is
desirable especially for other scientist to benefit fully from our results.

Provenance research

It is commonly known in the provenance community that provenance is a cross-cutting
concern. However, so far researchers did not consider whether their approaches or
concept result into heterogeneous or homogeneous features. For our case studies,
integrating coarse-grained and to this end homogeneous forms of provenance results in
less integration effort, as we can reuse existing implementations or bind one aspect to
several method executions. For fine-grained forms, the change from a homogeneous to
a heterogeneous concern is problematic. We argue that this nature of the provenance
concern is not only relevant for integrating provenance but for incooperating provenance
in general.

168 9. Conclusion and future work

A. Appendix

Programming guide - Do’s and Don’ts

A seamless integration of provenance in particular, or functionality in general is hardly
possible without adequate implemented and designed software systems. To this end, we
summarize our insights in a programming guide. This guide is not a full-scale modeling
procedure but shall be seen as some kind cook book where our recommendations are
the flavors.

Persistent and accessible global keys

Having persistent and accessible keys belonging to artifacts for that we capture prove-
nance is one of the most important properties. In case we do not have these keys, we
have to introduce along with our provenance integration usually resulting in changes
that increase the invasiveness of our integration. Without these keys, key-based identity
instead of application of semantic identity functions is not possible. This finally results
in highly increased response times, which are in opposition to our goal of minimal
invasiveness.

Homogeneity labeling and separation of concerns

We integrate our provenance functionality based on homogeneity. However, sometimes
the implementation is or cannot be congruent to the intended functionality (requiring
provenance). Thus, labeling the respective source-code parts is of high importance in
order to minimize the integration effort. This includes the object-oriented decomposition,
naming conventions, or annotations.

Stick to the decomposition and integration of a functional layer

Our general assumption is that methods in object-oriented programs encode functions.
Thus, their names correspond to the name of the indented function or process, the

170 A. Appendix

arguments are input artifacts and the return value is the output artifact. This is an ideal
that can hardly be achieved in any case. However, this highly eases our integration using
AOP or FOP. Additional input and output, should be specified by using set() and
get() methods. For us, it is especially difficult to identify additional input or output
that is hidden in internal storage structures such as the ImageStack for our first case
study. We also recommend, not to use generic functions where the intended functionality
is supplied as argument etc.

Ideally the functions of system are encoded in a functional layer, meaning that the
methods are used as functions. This does not mean we should change the programming
paradigm form object-orientated to functional languages, but the current languages
should be used in a functional way. Particularly, we encountered that using static
processing library usually results in avoiding hidden input and output.

171

Artifact validation procedure

In Figure A.1, we depict the validation procedure, which is in fact a modification of the
procedure to create an intermediate Artifact (cf. Figure 6.4). Although, we introduce
a totally new functionality for that the original tool chain was not designed for. The
applied modifications to perform Step 2 are, from perspective of the tool chain, a
regulative change of the procedure to create a new intermediate Artifact. This is the
least invasive possible modification.

Send validation request
for Result (Ak+1) to DB

Source is trusted?

Start

Reject Request

No Yes

Stop

Alert Invalid
Intermediate Result

Ak contain Provenance Info?

Send all Ak and Ak+1

Remove and Save
 Provenance Info of Ak

Re-embed Provenance
 Info with Delta in Ak+1

Submit validation
Result (Ak+1) Request

Decline
validation

Approve
validation

YesNo

No Yes

Performed by
Transformation Tool

Performed by
Database

invoke
identic(Ak+1,Ak+1)

Step 1: Validation Request

Step 2: Validation on
client side

Step 3: Validation on
database side

Determine Ak

Determine tool-specific
 parameters from Ak+1

Perform Transformation
using Ak and tool-specific
 parameters to create Ak+1

,

invoke
identic(Ak+1,Ak+1),

Identity holds
No

Yes

,

,

Identity holds

Decline
validation

Figure A.1: Artifact validation procedure

172 A. Appendix

Complexity of pg/plSQL procedures

1
2 RETURNS bit varying AS
3 $BODY$
4 DECLARE
5 i integer;
6 bit_string bit varying(65536);--longest valid watermark 8KB
7
8 x_t integer;
9 y_t integer;
10
11
12 BEGIN
13 i := 1;--Arrays start with 1
14 bit_string := '';
15
16 RAISE NOTICE 'Starting loop.';
17 LOOP
18 x_t := marked_image[2*i-1];
19 y_t := marked_image[2*i];
20
21
22
23
24 ELSE
25
26
27
28 ELSE--Case (3) not embedded pixel pair
29 --do nothing
30 END IF;
31 END IF;
32 --first 32bit contain the overhead_size
33
34 RAISE NOTICE 'WM: %',bit_string;
35
36
37 END IF;
38 --Read WM the first 32bit of the payload contain the length of the payload
39
40
41
42 END IF;
43 --found end of watermark
44
45 i := i+1;
46
47
48 END;

CREATE OR REPLACE FUNCTION coltuc_embedding."extract"(marked_image integer[])

 wm_length integer;--current length of the watermark

 overheadSize integer;
 payloadSize integer;

 wm_length := 0;

 IF (coltuc_embedding.even(x_t)=false) THEN --Case(1) odd pixel pair
 bit_string := bit_string || watermark_infrastructure.get_lsb(y_t)::bit(1);
 wm_length := wm_length + 1;

 IF (coltuc_embedding.isPixelPairInD(x_t, y_t)) THEN--Case(2) pixel pair
 bit_string := bit_string || watermark_infrastructure.get_lsb(y_t)::bit(1);
 wm_length := wm_length + 1;

 IF (wm_length = 32) THEN

 overheadSize := watermark_infrastructure.int32(bit_string);
 RAISE NOTICE 'Overhaed size: %',overheadSize;

 IF (wm_length = 32 + overheadSize) THEN
 payloadSize := watermark_infrastructure.int32(substring(bit_string,overheadSize+1,32));
 RAISE NOTICE 'Payload size: %',payloadSize;

 EXIT WHEN (wm_length >= overheadSize + payloadSize);

 END LOOP;
 RETURN bit_string;

Figure A.2: Example implementation pg/plSQL - Coltuc watermark

To give the reader an example how complex the function are, we depict the pg/plSQL
code extracting a Coltuc watermarking [CC07] in Figure A.2. The function receives as
argument the field (attribute) that contains the watermark and returns the embedded
message as bit string. This function assumes that the watermark is embedded sequentially
and that the first 32 bit contain the length of the watermark. It loops over each pixel
pair of the image and extracts a bit of the watermark message until the whole message
is extracted. There are three cases of pixel pairs separated via if conditions. Generally
the actual method bodies are very similar to object-oriented counterparts.

173

Details of expected extracted provenance data

In Figure A.3, we depict the details of the expected captured provenance data for
provenance refinement on tool side. This includes data for the Workflow and the
Existence layer of our Provenance Framework.

(a) Workflow layer

(b) Existence layer - Exploratory case study (chain-of-custody)

Equalization
toolI

<SensorScan>

I'

<EqualizedImage>

Granularity refinement
(Artifact model)

Feature Base
1
2 id long ,
3 name text ,
4 int ,
5 height int ,
6 width int ,
7 int[] ,
8 intensity_data int[] ,
9 KEY id

10);
Derivative Feature Equalization Tool

12
13 int ,
14);

Artifact SensorScan (

dpi

topo_data

Parameter EqualizedImage (
blockSize

(c) Existence layer - Granularity refinement

Equalization
tool

I

<SensorScan>

I'

<EqualizedImage>

b

<blockSize>

I' = fequalization(I,b)

<SensorScan>
I

I'

<EqualizedImage>

b

<blockSize>

I' = fequalization(I,b)

mask = flowpass(I.topo)
grad = fblockgradients(I.topo, mask, b)
I' = fscale(I.inten, grad)

I' = fscale(I.inten, fblockgradients(I.topo, flowpass(I.topo), b))

Equalization
tool

Lowpass

Block
Gradients

Scale

topo

<topo_data>

inten

<intensity_data>

mask

<FilterMask>

grad

<Gradients>

Figure A.3: Expected extracted provenance data

174 A. Appendix

Bibliography

[AA97] Fevzi Alimoglu and Ethem Alpaydin. Combining multiple representations
and classifiers for pen-based handwritten digit recognition. In Proc. Int’l
Conf. on Document Analysis and Recognition (ICDAR), volume 2, pages
637–640. IEEE, 1997. (cited on Page 131)

[ABC+10] Umut Acar, Peter Buneman, James Cheney, Jan Van Den Bussche, Natalia
Kwasnikowska, and Stijn Vansummeren. A graph model of data and
workflow provenance. In Proc. Workshop on Theory and Practice of
Provenance (TaPP), pages 8/1–8/10. USENIX, 2010. (cited on Page 8

and 15)

[ABKS13] Sven Apel, Don Batory, Christian Kästner, and Gunter Saake. Feature-
oriented software product lines: Concepts and implementation. Springer,
2013. (cited on Page 39)

[ACBS10] David Allen, Adriane Chapman, Barbara Blaustein, and Lenn Seligman.
Provenance capture in the wild. In Int’l Provenance and Annotation of Data
and Processes Workshop (IPAW), number 6378 in LNCS, pages 98–101.
Springer, 2010. (cited on Page 51 and 52)

[ADD+11] Yael Amsterdamer, Susan Davidson, Daniel Deutch, Tova Milo, Julia
Stoyanovich, and Val Tannen. Putting lipstick on pig: Enabling database-
style workflow provenance. Proc. VLDB Endowment (PVLDB), 5(4):346–
357, 2011. (cited on Page 51 and 52)

[ADT11] Yael Amsterdamer, Daniel Deutch, and Val Tannen. Provenance for
aggregate queries. In Proc. Symposium on Principles of Database Systems
(PODS), pages 153–164. ACM, 2011. (cited on Page 11, 27, and 51)

[ADV96] Adelchi Azzalini and Alessandra Dalla-Valle. The multivariate skew-normal
distribution. Biometrika, 83(4):715–726, 1996. (cited on Page 131)

[AKL09] Sven Apel, Christian Kästner, and Christian Lengauer. FeatureHouse:
Language-independent, automated software composition. In Proc. Int’l
Conf. on Software Engineering (ICSE), pages 221–231. IEEE, 2009. (cited

on Page 70)

176 Bibliography

[AKL13] Sven Apel, Christian Kästner, and Christian Lengauer. Language-
independent and automated software composition: The FeatureHouse
experience. IEEE Transactions on Software Engineering, 39(1):63–79, 2013.
(cited on Page 116)

[AL08] Sven Apel and Christian Lengauer. Superimposition: A language-
independent approach to software composition. In Proc. Int’l Conf. on
Software Composition (SC), pages 20–35. Springer, 2008. (cited on Page 43

and 70)

[ALMK08] Sven Apel, Christian Lengauer, Bernhard Möller, and Christian Kästner.
An algebra for features and feature composition. In Proc. Int’l Conf. on
Algebraic Methodology and Software Technology (AMAST), pages 36–50.
Springer, 2008. (cited on Page 42, 44, and 167)

[ALS08] Sven Apel, Thomas Leich, and Gunter Saake. Aspectual feature modules.
IEEE Transactions on Software Engineering, 34(2):162–180, 2008. (cited

on Page 43, 45, and 147)

[AT97] Chuan-Heng Ang and Tuck-Choy Tan. New linear node splitting algorithm
for R-trees. In Proc Int’l Symposium on Advances in Spatial Databases
(SSD), pages 339–349. Springer, 1997. (cited on Page 130)

[Bat04] Don Batory. Feature-oriented programming and the AHEAD tool suite. In
Proc. Int’l Conf. on Software Engineering (ICSE), pages 702–703. IEEE,
2004. (cited on Page 116)

[BBK01] Christian Böhm, Stefan Berchtold, and Daniel Keim. Searching in high-
dimensional spaces: Index structures for improving the performance of
multimedia databases. ACM Computing Surveys, 33(3):322–373, 2001.
(cited on Page 128)

[BCD07] Olivier Biton, Sarah Cohen-Boulakia, and Susan Davidson. Querying and
managing provenance through user views in scientific workflows. Technical
Report MS-CIS-07-13, University of Pennsylvania, 2007. (cited on Page 20)

[BCDH08] Olivier Biton, Sarah Cohen-Boulakia, Susan Davidson, and Carmem Hara.
Querying and managing provenance through user views in scientific work-
flows. In Proc. Int’l Conf. on Data Engineering (ICDE), pages 1072–1081.
IEEE, 2008. (cited on Page 20 and 31)

[BCH+10] Quentin Boucher, Andreas Classen, Patrick Heymans, Arnaud Bourdoux,
and Laurent Demonceau. Tag and prune: A pragmatic approach to software
product line implementation. In Proc. Int’l Conf. on Automated Software
Engineering (ASE), pages 333–336. ACM, 2010. (cited on Page 41)

Bibliography 177

[BCK12] Peter Buneman, James Cheney, and Egor Kostylev. Hierarchical models
of provenance. In Proc. Workshop on Theory and Practice of Provenance
(TaPP), pages 10/1–10/4. USENIX, 2012. (cited on Page 27, 28, and 110)

[Ben75] Jon Bentley. Multidimensional binary search trees used for associative
searching. Communications of the ACM, 18(9):509–517, 1975. (cited on

Page 132)

[BFH14] Peer Brauer, Florian Fittkau, and Wilhelm Hasselbring. The aspect-
oriented architecture of the CAPS framework for capturing, analyzing
and archiving provenance data. In Poster presentation at Proc. Int’l
Provenance and Annotation Workshop (IPAW), LNCS. Springer, 2014.
(cited on Page 148)

[BGRS99] Kevin Beyer, Jonathan Goldstein, Raghu Ramakrishnan, and Uri Shaft.
When is nearest neighbor meaningful? In Proc. Int’l Conf. on Database
Theory (ICDT), volume 1540 of LNCS, pages 217–235. Springer, 1999.
(cited on Page 128)

[BH12] Peer Brauer and Wilhelm Hasselbring. Capturing provenance information
with a workflow monitoring extension for the Kieker framework. In Proc
Int’l Workshop on Semantic Web in Provenance Management, volume 856
of CEUR Workshop Proceedings. CEUR-WS, 2012. (cited on Page 148)

[Bis02] Matthew Bishop. The art and science of computer security. Addison-Wesley,
2002. (cited on Page 48)

[BKK96] Stefan Berchtold, Daniel Keim, and Hans-Peter Kriegel. The X-tree: An
index structure for high-dimensional data. In Proc. Int’l Conf. on Very
Large Data Bases (VLDB). Morgan Kaufmann, 1996. (cited on Page 130)

[BKS13] Hendrik Brummermann, Markus Keunecke, and Klaus Schmid. Managing
the evolution and customization of database schemas in information system
ecosystems. In Proc. Int’l Conf. on Advanced Information Systems Engi-
neering (CAiSE), volume 7908 of LNCS, pages 417–432. Springer, 2013.
(cited on Page 70)

[BKSS90] Norbert Beckmann, Hans-Peter Kriegel, Ralf Schneider, and Bernhard
Seeger. The R*-tree: An efficient and robust access method for points and
rectangles. In Proc. Int’l Conf. on Management of Data (SIGMOD), pages
322–331. ACM, 1990. (cited on Page 130)

[BKT01] Peter Buneman, Sanjeev Khanna, and Wang-Chiew Tan. Why and where:
A characterization of data provenance. In Proc. Int’l Conf. on Database
Theory (ICDT), volume 1973 of LNCS, pages 316–330. Springer, 2001.
(cited on Page 7, 8, 9, 14, 21, 23, 26, and 51)

178 Bibliography

[BKT02] Peter Buneman, Sanjeev Khanna, and Wang-Chiew Tan. On propagation of
deletions and annotations through views. In Proc. Symposium on Principles
of Database Systems (PODS), pages 150–158. ACM, 2002. (cited on Page 151)

[BLN86] Carlo Batini, Maurizio Lenzerini, and Shamkant Navathe. A comparative
analysis of methodologies for database schema integration. ACM Computing
Surveys, 18(4):323–364, 1986. (cited on Page 70 and 77)

[BQR07] Cristiana Bolchini, Elisa Quintarelli, and Rosalba Rossato. Relational data
tailoring through view composition. In Proc. Int’l Conf. on Conceptual
Modeling (ER), pages 149–164. Springer, 2007. (cited on Page 67)

[BSG13] David Broneske, Martin Schäler, and Alexander Grebhahn. Extending an
index-benchmarking framework with non-invasive visualization capability.
In Workshop Proc. of the German Nat’l Conf. on Database Systems in
Business, Technology, and Web (BTW), volume 216 of LNI, pages 151–160.
Köllen-Verlag, 2013. (cited on Page 130)

[BSI14] BSI Technische Richtlinie - Kryptographische Verfahren: Empfehlungen
und Schlüssellängen. Technical Report TR-02102-1, Bundesamt für Sicher-
heit in der Informationstechnik (BSI), 2014. (cited on Page 112)

[BSR03] Don Batory, Jacob Sarvela, and Axel Rauschmayer. Scaling step-wise
refinement. In Proc. Int’l Conf. on Software Engineering (ICSE), pages
187–197. IEEE, 2003. (cited on Page 42)

[BSS08] Uri Braun, Avraham Shinnar, and Margo Seltzer. Securing provenance. In
Proc. Workshop on Hot Topics in Security, pages 4:1–4:5. USENIX, 2008.
(cited on Page 1, 8, 12, 14, 16, and 58)

[CBSA11] Adriane Chapman, Barbara Blaustein, Len Seligman, and David Allen.
Plus: A provenance manager for integrated information. In Proc. Int’l
Conf. on Information Reuse and Integration (IRI), pages 269–275. IEEE,
2011. (cited on Page 1, 51, 52, and 110)

[CC07] Dinu Coltuc and Jean-Marc Chassery. Very fast watermarking by reversible
contrast mapping. IEEE Signal Processing Letters, 14(4):255–258, 2007.
(cited on Page 99, 100, 101, 112, and 172)

[CCF+09] James Cheney, Stephen Chong, Nate Foster, Margo Seltzer, and Stijn
Vansummeren. Provenance: A future history. In Proc. Int’l Conf. on Object
Oriented Programming Systems Languages and Applications (OOPSLA),
pages 957–964. ACM, 2009. (cited on Page 7, 8, 15, and 57)

[CCT09] James Cheney, Laura Chiticariu, and Wang Chiew Tan. Provenance in
databases: Why, how, and where. Foundations and Trends in Databases,
1(4):379–474, 2009. (cited on Page 8, 9, 11, 27, 28, 30, 37, 51, 110, and 150)

Bibliography 179

[CE00] Krzysztof Czarnecki and Ulrich Eisenecker. Generative Programming:
Methods, Tools, and Applications. ACM Press/Addison-Wesley, 2000.
(cited on Page 35, 36, and 38)

[Cen93] US Supreme Court Center. Daubert v. Merrell
Dow Pharmaceuticals, Inc. - 509 U.S. 579. online -
https://supreme.justia.com/cases/federal/us/509/579/case.html, 1993.
(cited on Page 48)

[CFLV12] James Cheney, Anthony Finkelstein, Bertram Ludäscher, and Stijn Van-
summeren. Reports of the dagstuhl seminar on principles of provenance,
2012. (cited on Page 37)

[CGS09] Michael Cohen, Simson Garfinkel, and Bradley Schatz. Extending the
advanced forensic format to accommodate multiple data sources, logical
evidence, arbitrary information and forensic workflow. Digital Investigation,
6:57 – 68, 2009. (cited on Page 102)

[Cha08] Adriane Chapman. Incorporating provenance in database systems. PhD
thesis, University of Michigan, 2008. (cited on Page 51 and 61)

[CRB04] Adrian Colyer, Awais Rashid, and Gordon Blair. On the separation of
concerns in program families. Technical Report OMP-001-2004, Computing
Department, Lancaster University, 2004. (cited on Page 44)

[CSRH13] Lucian Carata, Ripduman Sohan, Andrew Rice, and Andy Hopper. IPAPI:
Designing an Improved Provenance API. In Proc. Workshop on Theory and
Practice of Provenance (TaPP), pages 10/1–10/4. USENIX, 2013. (cited

on Page 110)

[CSTS05] Mehmet Celik, Gaurav Sharma, Ahmet Tekalp, and Eli Saber. Lossless
generalized-lsb data embedding. IEEE Transactions on Image Processing,
14(2):253–266, 2005. (cited on Page 99 and 101)

[CSV10] Stephen Chong, Christian Skalka, and Jeffrey Vaughan. Self-identifying
sensor data. In Proc. Int’l Conf. on Information Processing in Sensor
Networks (ISPN), pages 82–93. ACM, 2010. (cited on Page 30 and 100)

[CT06] Laura Chiticariu and Wang-Chiew Tan. Debugging schema mappings with
routes. In Proc. Int’l Conf. on Very Large Data Bases (VLDB), pages
79–90. VLDB Endowment, 2006. (cited on Page 10)

[CW00] Yingwei Cui and Jennifer Widom. Lineage tracing in a data warehousing
system. In Proc. Int’l Conf. on Data Engineering (ICDE), pages 683–684.
IEEE, 2000. (cited on Page 7, 9, 14, and 51)

180 Bibliography

[CW01] Yingwei Cui and Jennifer Widom. Run-time translation of view tuple
deletions using data lineage. Technical Report 2001-24, Stanford InfoLab,
2001. (cited on Page 151)

[DEMD00] Saumya Debray, William Evans, Robert Muth, and Bjorn De Sutter. Com-
piler techniques for code compaction. ACM Transactions on Programming
Languages and Systems, 22(2):378–415, 2000. (cited on Page 39)

[DG01] Lloyd Dixon and Brian Gill. Changes in the standards for admitting
expert evidence in federal civil cases since the Daubert decision. RAND
Corporation, 2001. (cited on Page 48)

[DGGH11] Julius Davies, Daniel German, Michael Godfrey, and Abram Hindle. Soft-
ware bertillonage: Finding the provenance of an entity. In Proc. Conf. on
Mining Software Repositories (MSR), pages 183–192. ACM, 2011. (cited

on Page 7, 20, and 32)

[DIIM04] Mayur Datar, Nicole Immorlica, Piotr Indyk, and Vahab Mirrokni. Locality-
sensitive hashing scheme based on p-stable distributions. In Proc. Sym-
posium on Computational Geometry (SCG), pages 253–262. ACM, 2004.
(cited on Page 132)

[DSC+07] Curtis Dyreson, Richard Snodgrass, Faiz Currim, Sabah Currim, and
Shailesh Joshi. Weaving temporal and reliability aspects into a schema
tapestry. Data Knowledge Engineering, 63:752–773, 2007. (cited on Page 66)

[DWN01] Jana Dittmann, Petra Wohlmacher, and Klara Nahrstedt. Using crypto-
graphic and watermarking algorithms. IEEE MultiMedia, 8(4):54–65, 2001.
(cited on Page 98 and 99)

[FKA+12] Janet Feigenspan, Christian Kästner, Sven Apel, Jörg Liebig, Michael
Schulze, Raimund Dachselt, Maria Papendieck, Thomas Leich, and Gunter
Saake. Do background colors improve program comprehension in the #ifdef
hell? Empirical Software Engineering, pages 1–47, 2012. (cited on Page 41

and 116)

[FLTC06] Jen-Bang Feng, Iuon-Chang Lin, Chwei-Shyong Tsai, and Yen-Ping Chu.
Reversible watermarking: Current status and key issues. International
Journal of Network Security, 2(3):161–171, 2006. (cited on Page 99)

[FMS08] James Frew, Dominic Metzger, and Peter Slaughter. Automatic capture
and reconstruction of computational provenance. Concurrency and Com-
putation: Practice and Experience, 20(4):485–496, 2008. (cited on Page 52)

Bibliography 181

[GBS+12] Alexander Grebhahn, David Broneske, Martin Schäler, Reimar Schröter,
Veit Köppen, and Gunter Saake. Challenges in finding an appropriate
multi-dimensional index structure with respect to specific use cases. In
Proc. German Nat’l Workshop on Foundations of Databases (GvD), pages
77–82. CEUR-WS, 2012. (cited on Page 127 and 128)

[GCB+97] Jim Gray, Surajit Chaudhuri, Adam Bosworth, Andrew Layman, Don
Reichart, Murali Venkatrao, Frank Pellow, and Hamid Pirahesh. Data
cube: A relational aggregation operator generalizing group-by, cross-tab,
and sub-totals. Data Mining and Knowledge Discovery, 1(1):29–53, 1997.
(cited on Page 132)

[GFN08] Edgar Gonzalez, Karina Figueroa, and Gonzalo Navarro. Effective prox-
imity retrieval by ordering permutations. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 30(9):1647–1658, 2008. (cited on

Page 132)

[GFRD09] Simson Garfinkel, Paul Farrell, Vassil Roussev, and George Dinolt. Bringing
science to digital forensics with standardized forensic corpora. Digital
Investigation, 6, Supplement(0):S2 – S11, 2009. (cited on Page 49)

[GG97] Volker Gaede and Oliver Günther. Multidimensional access methods. ACM
Computing Surveys, 30:170–231, 1997. (cited on Page 128)

[GIT09] Todd Green, Zachary Ives, and Val Tannen. Reconcilable differences. In
Proc. Int’l Conf. on Database Theory (ICDT), pages 212–224. ACM, 2009.
(cited on Page 11 and 27)

[GJSB05] James Gosling, Bill Joy, Guy Steele, and Gilad Bracha. JavaTM Language
Specification - Third Edition. Addison-Wesley, 2005. (cited on Page 113)

[GKT+07a] Todd Green, Gregory Karvounarakis, Nicholas Taylor, Olivier Biton,
Zachary Ives, and Val Tannen. Orchestra: Facilitating collaborative data
sharing. In Demonstration at Proc. Int’l Conf. on Management of Data
(SIGMOD), pages 1131–1133. ACM, 2007. (cited on Page 31 and 51)

[GKT07b] Todd Green, Grigoris Karvounarakis, and Val Tannen. Provenance semir-
ings. In Proc. Symposium on Principles of Database Systems (PODS),
pages 31–40. ACM, 2007. (cited on Page 7, 8, 9, 11, 14, 21, 27, 31, and 51)

[GLL98] Yván Garćıa, Mario Lopez, and Scott Leutenegger. On optimal node
splitting for R-trees. In Proc. Int’l Conf. on Very Large Data Bases
(VLDB), pages 334–344. Morgan Kaufmann, 1998. (cited on Page 130)

[GMM05] Paul Groth, Simon Miles, and Luc Moreau. Provenance recording for
services. In Proc. UK eScience All Hands Meeting. EPSRC, 2005. (cited

on Page 52 and 110)

182 Bibliography

[GSKS13] Alexander Grebhahn, Martin Schäler, Veit Köppen, and Gunter Saake.
Privacy-aware multidimensional indexing. In Proc. German Nat’l Conf. on
Database Systems in Business, Technology, and Web (BTW), volume 214
of LNI, pages 133–147. GI, 2013. (cited on Page 99 and 130)

[Gut84] Antonin Guttman. R-trees: A dynamic index structure for spatial searching.
In Proc. Int’l Conf. on Management of Data (SIGMOD), pages 47–57.
ACM, 1984. (cited on Page 130)

[Her13] Tim Hering. Parallel execution of knn-queries on in-memory k-d trees.
In Workshop Proc. of the German Nat’l Conf. on Database Systems in
Business, Technology, and Web (BTW), volume 216 of LNI, pages 257–266.
Köllen-Verlag, 2013. (cited on Page 130)

[HKGV11] Mario Hildebrandt, Stefan Kiltz, Ina Grossmann, and Claus Vielhauer.
Convergence of digital and traditional forensic disciplines: A first exemplary
study for digital dactyloscopy. In Proc. Int’l Workshop on Multimedia and
Security (MMSec), pages 1–8. ACM, 2011. (cited on Page 48 and 82)

[HNP95] Joseph Hellerstein, Jeffrey Naughton, and Avi Pfeffer. Generalized search
trees for database systems. In Proc. Int’l Conf. on Very Large Data Bases
(VLDB), pages 562–573. Morgan Kaufmann, 1995. (cited on Page 130

and 132)

[HP05] Joseph Halpern and Judea Pearl. Causes and explanations: A structural-
model approach. part i: Causes. British Journal for the Philosophy of
Science, 56:843–887, 2005. (cited on Page 22)

[KAK08] Christian Kästner, Sven Apel, and Martin Kuhlemann. Granularity in
software product lines. In Proc. Int’l Conf. on Software Engineering (ICSE),
pages 311–320. ACM, 2008. (cited on Page 41, 67, and 68)

[Kat06] Shmuel Katz. Aspect categories and classes of temporal properties. In
Transactions on Aspect-Oriented Software Development I, volume 3880 of
LNCS, pages 106–134. Springer, 2006. (cited on Page 53 and 54)

[KCDV12] Stefan Kirst, Erik Clausing, Jana Dittmann, and Claus Vielhauer. A first
approach to the detection and equalization of distorted latent fingerprints
and microtraces on non-planar surfaces with confocal laser microscopy. In
Proc. Int’l Conf. on Optics and Photonics for Counterterrorism, Crime
Fighting, and Defence (SPIE 8546), pages 0A/1–0A/12. SPIE Digital
Library, 2012. (cited on Page 83, 137, 138, and 139)

[KCH+90] Kyo Kang, Sholom Cohen, James Hess, William Novak, and Spencer
Peterson. Feature-oriented domain analysis (FODA) - Feasibility study.
Technical Report CMU/SEI-90-TR-21, Software Engineering Institute,
1990. (cited on Page 36 and 37)

Bibliography 183

[KFV11] Tobias Kiertscher, Robert Fischer, and Claus Vielhauer. Latent fingerprint
detection using a spectral texture feature. In Proc. Int’l Workshop on
Multimedia and Security (MMSec), pages 27–32. ACM, 2011. (cited on

Page 131)

[KHD12] Rainer Kärgel, Mario Hildebrandt, and Jana Dittmann. An evaluation of
biometric fingerprint matchers in a forensic context using latent impressions.
In Proc. Int’l Workshop on Multimedia and Security (MMSec), pages 133–
138. ACM, 2012. (cited on Page 48)

[KHDV12] Stefan Kiltz, Mario Hildebrandt, Jana Dittmann, and Claus Vielhauer.
Challenges in contact-less latent fingerprint processing in crime scenes:
Review of sensors and image processing investigations. In Proc. Europ.
Signal Processing Conf. (EUSIPCO), pages 1504–1508. IEEE, 2012. (cited

on Page 48)

[Kic96] Gregor Kiczales. Aspect-oriented programming. ACM Computing Surveys,
28(4), 1996. (cited on Page 42 and 116)

[KKHL10] Andy Kenner, Christian Kästner, Steffen Haase, and Thomas Leich. Type-
Chef: Toward type checking #ifdef variability in C. In Proc. Int’l Workshop
on Feature-Oriented Software Development (FOSD), pages 25–32. ACM,
2010. (cited on Page 53)

[Kom05] Peter Komarinski. Automated fingerprint identification systems (AFIS).
Academic Press, 2005. (cited on Page 83)

[KS97] Norio Katayama and Shin’ichi Satoh. The SR-tree: An index structure
for high-dimensional nearest neighbor queries. In Proc. Int’l Conf. on
Management of Data (SIGMOD), pages 369–380. ACM, 1997. (cited on

Page 130)

[Käs10] Christian Kästner. Virtual separation of concerns: Toward preprocessors
2.0. PhD thesis, University of Magdeburg, Germany, 2010. (cited on

Page 40)

[KS13a] Stefan Kirst and Martin Schäler. Database and data management require-
ments for equalization of contactless acquired traces for forensic purposes.
In Proc. Workshop on Databases in Biometrics, Forensics and Security Ap-
plications (DBforBFS), Workshops of the German Nat’l Conf. on Database
Systems in Business, Technology, and Web (BTW), volume 216 of LNI,
pages 89–98. GI, 2013. (cited on Page 119, 120, 137, and 145)

[KS13b] Stefan Kirst and Martin Schäler. Database and data management require-
ments for equalization of contactless acquired traces for forensic purposes -
provenance and performance. Datenbank-Spektrum, 13(3):201–211, 2013.
Selected for the special DASP issue Best Workshop Papers of BTW 2013.
(cited on Page 137 and 164)

184 Bibliography

[KSS14] Veit Köppen, Martin Schäler, and Reimar Schröter. Toward variability
management to tailor high dimensional index implementations. In Proc.
Int’l Conf. on Research Challenges in Information Science (RCIS), pages
452–457. IEEE, 2014. (cited on Page 127, 128, 130, 131, 132, and 135)

[KVL11] Tobias Kiertscher, Claus Vielhauer, and Marcus Leich. Automated forensic
fingerprint analysis: A novel generic process model and container format.
In Europ. Workshop on Biometrics and ID Management (BioID), volume
6583 of LNCS, pages 262–273. Springer, 2011. (cited on Page 102 and 112)

[LAB+06] Bertram Ludäscher, Ilkay Altintas, Chad Berkley, Dan Higgins, Efrat
Jaeger, Matthew Jones, Edward Lee, Jing Tao, and Yang Zhao. Scientific
workflow management and the Kepler system. Concurrency and Computa-
tion: Practice and Experience, 18(10):1039–1065, 2006. (cited on Page 51)

[LBL06] Jia Liu, Don Batory, and Christian Lengauer. Feature-oriented refactoring
of legacy applications. In Proc. Int’l Conf. on Software Engineering (ICSE),
pages 112–121. ACM, 2006. (cited on Page 76)

[LK03] Dong-Ho Lee and Hyoung-Joo Kim. An efficient technique for nearest-
neighbor query processing on the SPY-TEC. IEEE Transactions on Knowl-
edge and Data Engineering, 15(6):1472–1486, 2003. (cited on Page 132)

[LLLS10] Rongxing Lu, Xiaodong Lin, Xiaohui Liang, and Xuemin Shen. Secure
provenance: The essential of bread and butter of data forensics in cloud
computing. In Proc. Symposium on Information, Computer and Communi-
cations Security (ASIACCS), pages 282–292. ACM, 2010. (cited on Page 8,

29, and 30)

[LM10] John Lyle and Andrew Martin. Trusted computing and provenance: Better
together. In Proc. Workshop on Theory and Practice of Provenance (TaPP),
pages 1/1–1/10. USENIX, 2010. (cited on Page 8, 16, 29, and 30)

[LSR07] Frank van der Linden, Klaus Schmid, and Eelco Rommes. Software product
lines in action. Springer, 2007. (cited on Page 35)

[LST+06] Daniel Lohmann, Fabian Scheler, Reinhard Tartler, Olaf Spinczyk, and
Wolfgang Schröder-Preikschat. A quantitative analysis of aspects in the
eCos kernel. ACM SIGOPS Operating Systems Review - Proc. of the 2006
EuroSys Conf., 40(4):191–204, 2006. (cited on Page 40)

[Luc97] Luc Moreau and Juliana Freire and Joe Futrelle and Robert McGrath and
Jim Myers and Patrick Paulson. Open Provenance Model, 1997. (cited on

Page 9)

Bibliography 185

[Mah02] Wolfgang Mahnke. Towards a modular, object-relational schema design. In
Doctoral consortium at Proc. Int’l Conf. on Advanced Information Systems
Engineering (CAiSE), pages 61–71. Springer, 2002. (cited on Page 66)

[MBK+09] Pierre Mouallem, Roselyne Barreto, Scott Klasky, Norbert Podhorszki,
and Mladen Vouk. Tracking files in the kepler provenance framework. In
Scientific and Statistical Database Management, volume 5566 of LNCS,
pages 273–282. Springer, 2009. (cited on Page 7 and 15)

[MBM+10] Patrick McDaniel, Kevin Butler, Steve McLaughlin, Radu Sion, Erez Zadok,
and Marianne Winslett. Towards a secure and efficient system for end-to-
end provenance. In Proc. Workshop on Theory and Practice of Provenance
(TaPP), pages 2/1–2/5. USENIX, 2010. (cited on Page 8, 29, and 30)

[MCF+11] Luc Moreau, Ben Clifford, Juliana Freire, Joe Futrelle, Yolanda Gil, Paul
Groth, Natalia Kwasnikowska, Simon Miles, Paolo Missier, Jim Myers,
Beth Plale, Yogesh Simmhan, Eric Stephan, and Jan Van den Bussche. The
open provenance model core specification (v1.1). Future Gener. Comput.
Syst., 27(6), 2011. (cited on Page 7, 9, 14, and 15)

[MGD+12] Ronny Merkel, Stefan Gruhn, Jana Dittmann, Claus Vielhauer, and Anja
Bräutigam. On non-invasive 2D and 3D chromatic white light image sensors
for age determination of latent fingerprints. Forensic Science International,
222(1-3):52–70, 2012. (cited on Page 48)

[MGH+10] Alexandra Meliou, Wolfgang Gatterbauer, Joseph Halpern, Christoph Koch,
Katherine Moore, and Dan Suciu. Causality in databases. IEEE Data
Engineering Bulletin, 33(3):59–67, 2010. (cited on Page 8, 14, 21, 22, and 23)

[MGMS10] Alexandra Meliou, Wolfgang Gatterbauer, Katherine Moore, and Dan
Suciu. The complexity of causality and responsibility for query answers
and non-answers. Proc. VLDB Endowment (PVLDB), 4(1):34–45, 2010.
(cited on Page 21 and 22)

[MKDV11] Ronny Merkel, Christian Kraetzer, Jana Dittmann, and Claus Vielhauer.
Reversible watermarking with digital signature chaining for privacy pro-
tection of optical contactless captured biometric fingerprints - a capacity
study for forensic approaches. In Int’l. Conf. on Digital Signal Processing
(DSP), pages 1–6. IEEE, 2011. (cited on Page 100)

[MLWR01] Gail Murphy, Albert Lai, Robert Walker, and Martin Robillard. Separating
features in source code: An exploratory study. In Proc. Int’l Conf. on
Software Engineering (ICSE), pages 275–284. IEEE, 2001. (cited on

Page 116)

[MMJP05] Davide Maltoni, Dario Maio, Anil Jain, and Salil Prabhakar. Handbook of
fingerprint recognition. Springer, 2005. (cited on Page 48)

186 Bibliography

[MHBS06] Kiran Muniswamy-Reddy, David Holland, Uri Braun, and Margo Seltzer.
Provenance-aware storage systems. In Proc. Int’l USENIX Annual Technical
Conference (ATC), pages 43–56. USENIX, 2006. (cited on Page 52)

[MS12] Peter Macko and Margo Seltzer. A general-purpose provenance library.
In Proc. Workshop on Theory and Practice of Provenance (TaPP), pages
6/1–6/6. USENIX, 2012. (cited on Page 52)

[Muc97] Steven Muchnick. Advanced compiler design and implementation. Morgan
Kaufmann Publishers, 1997. (cited on Page 39)

[Paz11] Abdolreza Pazouki. Minimally invasive surgical sciences: A new scientific
opportunity for all scientists. Journal of Minimally Invasive Surgical
Sciences, 1(1):9–10, 2011. (cited on Page 53)

[PBL05] Klaus Pohl, Günter Böckle, and Frank van der Linden. Software product
line engineering: Foundations, principles, and techniques. Springer, 2005.
(cited on Page 35)

[Pea95] David Pearson. Provenance research in book history: A handbook. The
British Library Publishing Division, 1995. (cited on Page 33)

[PKC+13] Mario Pukall, Christian Kästner, Walter Cazzola, Sebastian Götz, Alexan-
der Grebhahn, Reimar Schröter, and Gunter Saake. JavAdaptor - Flexible
runtime updates of Java applications. Software: Practice and Experience,
43:153–185, 2013. (cited on Page 39 and 153)

[RS10] Marko Rosenmüller and Norbert Siegmund. Automating the configuration
of multi software product lines. In Proc. Int’l Workshop on Variability
Modelling of Software-intensive Systems (VaMoS), volume 37 of ICB-
Research Report, pages 123–130. University Duisburg-Essen, 2010. (cited

on Page 127)

[RSB04] Martin Rinard, Alexandru Salcianu, and Suhabe Bugrara. A classification
system and analysis for aspect-oriented programs. In Proc. Int’l Symposium
on Foundations of Software Engineering (FSE), pages 147–158. ACM, 2004.
(cited on Page 53)

[RYZ+05] Byron Roe, Hai-Jun Yang, Ji Zhu, Yong Liu, Ion Stancu, and Gordon
McGregor. Boosted decision trees as an alternative to artificial neural
networks for particle identification. Nuclear Instruments and Methods in
Physics Research, 543(2-3):577–584, 2005. (cited on Page 131)

[Sam05] Hanan Samet. Foundations of multidimensional and metric data structures.
Computer Graphics and Geometric Modeling. Morgan Kaufmann, 2005.
(cited on Page 128)

Bibliography 187

[SC92] Henry Spencer and Geoff Collyer. #ifdef considered harmful, or porta-
bility experience with C news. In Proc. Int’l USENIX Annual Technical
Conference (ATC), pages 185–197. USENIX, 1992. (cited on Page 40)

[Sch10] Martin Schäler. Produktlinientechnologien für den Entwurf variabler DB-
Schemata unter Berücksichtigung evolutionärer Änderungen. Master’s
thesis, University of Magdeburg, Germany, 2010. (cited on Page 73 and 74)

[Sch12] Christopher Schulz. Ansätze zur Erzeugung variabler Datenbankschemata
in Softwareproduktlinien. Master’s thesis, University of Magdeburg, Ger-
many, 2012. (cited on Page 73 and 74)

[SdM03] Damien Sereni and Oege de Moor. Static analysis of aspects. In Proc.
Int’l Conf. on Aspect-oriented software development (AOSD), pages 30–39.
ACM, 2003. (cited on Page 53)

[SDRK02] Yannis Sismanis, Antonios Deligiannakis, Nick Roussopoulos, and Yannis
Kotidis. Dwarf: Shrinking the petacube. In Proc. Int’l Conf. on Manage-
ment of Data (SIGMOD), pages 464–475. ACM, 2002. (cited on Page 132)

[SGS+13] Martin Schäler, Alexander Grebhahn, Reimar Schröter, Sandro Schulze,
Veit Köppen, and Gunter Saake. QuEval: Beyond high-dimensional in-
dexing à la carte. Proc. of the VLDB Endowment, 6(14):1654–1665, 2013.
(cited on Page 126, 127, 128, 131, 132, 133, 134, and 135)

[SKR+09] Norbert Siegmund, Christian Kästner, Marko Rosenmüller, Florian Heiden-
reich, Sven Apel, and Gunter Saake. Bridging the gap between variability
in client application and database schema. In Proc. Nat’l German Conf.
on Database Systems in Business, Technology, and Web (BTW), volume
144 of LNI, pages 297–306. GI, 2009. (cited on Page 65, 66, 67, and 68)

[SLRS12] Martin Schäler, Thomas Leich, Marko Rosenmüller, and Gunter Saake.
Building information system variants with tailored database schemas using
features. In Proc. Int’l Conf. on Advanced Information Systems Engineering
(CAiSE), volume 7328 of LNCS, pages 597–612. Springer, 2012. (cited on

Page 38, 65, and 71)

[SLS+11] Martin Schäler, Thomas Leich, Norbert Siegmund, Christian Kästner,
and Gunter Saake. Generierung maßgeschneiderter Relationenschemata
in Softwareproduktlinien mittels Superimposition. In Proc. Nat’l German
Conf. on Database Systems in Business, Technology, and Web (BTW),
volume 180 of LNI, pages 514–533. GI, 2011. (cited on Page 65 and 72)

[SML07] Patrick Stahlberg, Gerome Miklau, and Brian Levine. Threats to privacy
in the forensic analysis of database systems. In Proc. Int’l Conf. on
Management of Data (SIGMOD), pages 91–102. ACM, 2007. (cited on

Page 99)

188 Bibliography

[SPG08] Yogesh Simmhan, Beth Plale, and Dennis Gannon. Karma2: Provenance
management for data-driven workflows. Int’l Journal of Web Services
Research, 5(2):1–22, 2008. (cited on Page 7, 15, 52, and 110)

[SRF87] Timos Sellis, Nick Roussopoulos, and Christos Faloutsos. The R+-Tree:
A dynamic index for multi-dimensional objects. In Proc. Int’l Conf. on
Very Large Data Bases (VLDB), pages 507–518. Morgan Kaufmann, 1987.
(cited on Page 130)

[SRK+12] Norbert Siegmund, Marko Rosenmüller, Martin Kuhlemann, Christian
Kästner, Sven Apel, and Gunter Saake. SPL Conqueror: Toward opti-
mization of non-functional properties in software product lines. Software
Quality Journal, 20(3-4):487–517, 2012. (cited on Page 57)

[SSG+13] Martin Schäler, Sandro Schulze, Alexander Grebhahn, Veit Köppen, An-
dreas Lübcke, and Gunter Saake, editors. Techniken zur forensischen
Datenhaltung - Ausgewählte studentische Beiträge, volume 1. University of
Magdeburg, 2013. (cited on Page 130)

[SSK11] Martin Schäler, Sandro Schulze, and Stefan Kiltz. Database-centric chain-
of-custody in biometric forensic systems. In Europ. Workshop on Biomet-
rics and ID Management (BioID), volume 6583 of LNCS, pages 250–261.
Springer, 2011. (cited on Page 82, 85, 87, and 105)

[SSM+11] Martin Schäler, Sandro Schulze, Ronny Merkel, Gunter Saake, and Jana
Dittmann. Reliable provenance information for multimedia data using
invertible fragile watermarks. In Proc. British Nat’l Conf. on Databases
(BNCOD), volume 7051 of LNCS, pages 3–17. Springer, 2011. (cited on

Page 30, 111, 121, and 123)

[SSS12a] Martin Schäler, Sandro Schulze, and Gunter Saake. A hierarchical frame-
work for provenance based on fragmentation and uncertainty. Technical
Report FIN-01-2012, University of Magdeburg, 2012. (cited on Page 7, 14,

and 51)

[SSS12b] Martin Schäler, Sandro Schulze, and Gunter Saake. Toward provenance
capturing as cross-cutting concern. In Proc. Workshop on Theory and
Practice of Provenance (TaPP), pages 12/1–12/5. USENIX, 2012. (cited

on Page 28, 53, 110, 137, 140, 141, and 164)

[SST13] Reimar Schröter, Norbert Siegmund, and Thomas Thüm. Towards modular
analysis of multi product lines. In Workshop Proc. of the Int’l Conf.
Software Product Line Conf. (SPLC), pages 96–99. ACM, 2013. (cited on

Page 127 and 167)

[SW10] Richard Stallman and Zachary Weinberg. The C Preprocessor. Free
Software Foundation, 4th edition, 2010. (cited on Page 40)

Bibliography 189

[TAG12] Dawood Tariq, Maisem Ali, and Ashish Gehani. Towards automated
collection of application-level data provenance. In Proc. Workshop on
Theory and Practice of Provenance (TaPP), pages 16/1–16/5. USENIX,
2012. (cited on Page 28 and 110)

[Tan10] Val Tannen. Provenance for database transformations. In Keynote at Proc.
Int’l Conf. on Extending Database Technology (EDBT), pages 1–1. ACM,
2010. (cited on Page 11)

[TGM+06] Victor Tan, Paul Groth, Simon Miles, Sheng Jiang, Steve Munroe, Sofia
Tsasakou, and Luc Moreau. Security issues in a SOA-based provenance
system. In Proc. Int’l Provenance and Annotation of Data Workshop
(IPAW), volume 4145 of LNCS, pages 203–211. Springer, 2006. (cited on

Page 30)

[Tia03] Jun Tian. Reversible data embedding using a difference expansion. IEEE
Transactions on Circuits and Systems for Video Technology, 13(8):890–896,
2003. (cited on Page 99)

[TKB+14] Thomas Thüm, Christian Kästner, Fabian Benduhn, Jens Meinicke, Gunter
Saake, and Thomas Leich. FeatureIDE: An extensible framework for
feature-oriented software development. Science of Computer Programming,
79(0):70–85, 2014. (cited on Page 4 and 43)

[Tob13] Martin Tobies. Konzeption, Modellierung und prototypische Umsetzung
eines Benchmarks für mehrdimensionale Indexstrukturen. Master’s thesis,
University of Magdeburg, 2013. (cited on Page 131)

[TOHS99] Peri Tarr, Harold Ossher, William Harrison, and Stanley Sutton (Jr.). N
degrees of separation: Multi-dimensional separation of concerns. In Proc.
Int’l Conf. on Software Engineering (ICSE), pages 107–119. ACM, 1999.
(cited on Page 41)

[TPC-H10] Transaction Processing Performance Council. TPC BENCHMARKTM H -
Decision Support Standard Specification. Revision 2.11.0. White Paper,
2010. (cited on Page 155)

[WB97] Roger Weber and Stephen Blott. An approximation-based data structure
for similarity search. Technical Report ESPRIT project, no. 9141, ETH
Zürich, 1997. (cited on Page 132)

[Weh13] Adrian Wehrmann. Exemplarische Erweiterung mehrdimensionaler In-
dexstrukturen um Epsilon-Range-Queries. Bachelor thesis, University of
Magdeburg, 2013. (cited on Page 133)

[Wic87] John Wickham. The new surgerys. British Medical Journal (Clin. Res.
Ed.), 295(6613):1581–1582, 1987. (cited on Page 53)

190 Bibliography

[WJ96] David White and Ramesh Jain. Similarity indexing with the ss-tree. In
Proc. Int’l Conf. on Data Engineering (ICDE), pages 516–523. IEEE, 1996.
(cited on Page 130)

[WSB98] Roger Weber, Hans-Jörg Schek, and Stephen Blott. A quantitative analysis
and performance study for similarity-search methods in high-dimensional
spaces. In Proc. Int’l Conf. on Very Large Data Bases (VLDB), pages
194–205. Morgan Kaufmann, 1998. (cited on Page 134)

[YPXJ09] Pengfei Ye, Xin Peng, Yinxing Xue, and Stan Jarzabek. A case study of
variation mechanism in an industrial product line. In Proc. Int’l Conf. on
Software Reuse (ICSR), pages 126–136. Springer, 2009. (cited on Page 66

and 67)

[ZCL09] Jing Zhang, Adriane Chapman, and Kristen LeFevre. Do you know where
your data’s been? - Tamper-evident database provenance. Technical Report
CSE-TR-548-08, University of Michigan, 2009. (cited on Page 1)

E h r e n e r k l ä r u n g

Ich versichere hiermit, dass ich die vorliegende Arbeit ohne unzulässige Hilfe Dritter und
ohne Benutzung anderer als der angegebenen Hilfsmittel angefertigt habe; verwendete
fremde und eigene Quellen sind als solche kenntlich gemacht. Insbesondere habe ich
nicht die Hilfe eines kommerziellen Promotionsberaters in Anspruch genommen. Dritte
haben von mir weder unmittelbar noch mittelbar geldwerte Leistungen für Arbeiten
erhalten, die im Zusammenhang mit dem Inhalt der vorgelegten Dissertation stehen.
Ich habe insbesondere nicht wissentlich:

• Ergebnisse erfunden oder widersprüchliche Ergebnisse verschwiegen,

• statistische Verfahren absichtlich missbraucht, um Daten in ungerechtfertigter
Weise zu interpretieren,

• fremde Ergebnisse oder Veröffentlichungen plagiiert,

• fremde Forschungsergebnisse verzerrt wiedergegeben.

Mir ist bekannt, dass Verstöße gegen das Urheberrecht Unterlassungs- und Schadenser-
satzansprüche des Urhebers sowie eine strafrechtliche Ahndung durch die Strafverfol-
gungsbehörden begründen kann. Die Arbeit wurde bisher weder im Inland noch im
Ausland in gleicher oder ähnlicher Form als Dissertation eingereicht und ist als Ganzes
auch noch nicht veröffentlicht.

Magdeburg, den

	Contents
	List of Figures
	List of Tables
	List of Acronyms
	1 Introduction
	1.1 Contribution
	1.2 Outline

	2 On the nature of provenance
	2.1 What is provenance?
	2.2 Background and notation
	2.2.1 The open provenance model
	2.2.2 The relationship between lineage, why, how, and where provenance

	2.3 A hierarchical provenance framework
	2.3.1 Provenance systems
	2.3.2 Necessity for abstraction layers

	2.4 Workflow layer
	2.4.1 Extended open provenance model
	2.4.2 Graph refinements
	2.4.3 Usage and limitations
	2.4.4 Related approaches

	2.5 Existence layer
	2.5.1 Sub levels of the existence layer
	2.5.2 Limitations of this Layer

	2.6 Value origin layer
	2.6.1 Structure of artifacts
	2.6.2 Value origin with existing approaches
	2.6.3 Relationship to the previous layer

	2.7 Cross-cutting reliability layer
	2.7.1 Reliability: A different dimension of provenance
	2.7.2 Current research on reliable provenance

	2.8 The question of identity
	2.8.1 Determining artifact identity
	2.8.2 A flexible notion of identity

	2.9 Insights gained

	3 Background on software product lines
	3.1 Domain and application engineering
	3.1.1 Domain engineering
	3.1.2 Application engineering

	3.2 Implementation techniques
	3.2.1 Intuitive techniques as reference
	3.2.2 Preprocessor-based techniques
	3.2.3 Aspect-oriented programming
	3.2.4 Feature-oriented programming
	3.2.5 Additional techniques and tool support

	3.3 Advanced topics of relevance for this thesis
	3.3.1 Composition of features structure trees
	3.3.2 Homogeneous and heterogeneous cross-cutting concerns

	3.4 Summary

	4 Toward a general provenance- capturing solution for existing systems
	4.1 Reasoning about the necessity for provenance integration in existing systems
	4.1.1 The need for customizable solutions
	4.1.2 Are current solutions feasible?
	4.1.3 The necessity for an own solution

	4.2 The goal of minimal-invasive and efficient provenance integration
	4.2.1 A notion of invasiveness
	4.2.2 Measuring invasiveness of different implementation techniques

	4.3 Conceptual design
	4.3.1 Vision - A universe of provenance
	4.3.2 Architecture - The neuron analogy
	4.3.3 Parts of special interest and missing basic technologies
	4.3.4 Derived research agenda

	4.4 Summary

	5 Tailoring database schemas of provenance data stores
	5.1 Generalization of the basic problem
	5.2 Requirements for tailored database schemas
	5.3 Limitations of currently used approaches
	5.3.1 Global schema
	5.3.2 View-based approaches
	5.3.3 Framework solutions

	5.4 Our solution
	5.4.1 Basic idea of our approach
	5.4.2 Relationship between features and database schema elements
	5.4.3 Composing a tailored schema variant
	5.4.4 Structure of features at implementation level

	5.5 Evaluation of our approach
	5.5.1 An industrial-size case study
	5.5.2 Feasibility of the approach
	5.5.3 Improving maintenance and further development
	5.5.4 Improving data integrity
	5.5.5 Comparison to existing approaches

	5.6 Role and contribution of the approach for this thesis

	6 Database-centric chain-of-custody
	6.1 Analysis goal and resulting methodology
	6.1.1 A holistic approach
	6.1.2 Assumptions and architecture

	6.2 Preliminary considerations
	6.2.1 What is the initial situation?
	6.2.2 What do we want? - Required functionality

	6.3 The provenance feature tree
	6.3.1 The provenance feature
	6.3.2 Initial linking the ProveSet to the artifact
	6.3.3 The Security feature
	6.3.4 A short intro to (invertible) watermarks
	6.3.5 Feature content of the Watermarking feature
	6.3.6 A short intro to forensic file formats
	6.3.7 Re-computation feature

	6.4 Summary

	7 First exploratory case studies
	7.1 Coarse-grained provenance integration on tool side
	7.1.1 Objectives
	7.1.2 Implementation concept
	7.1.3 Provenance integration
	7.1.4 Observations
	7.1.5 Lessons learned

	7.2 Coarse-grained provenance for databases
	7.2.1 A concept for coarse-grained provenance integration on database side
	7.2.2 Provenance integration
	7.2.3 Observations
	7.2.4 Lessons learned

	7.3 Scientific data management for QuEval
	7.3.1 Contribution of QuEval for the goal of minimal-invasive provenance integration
	7.3.2 Scientific-data management
	7.3.3 New features for tailored index structure implementations
	7.3.4 Results and lessons learned

	7.4 Contributions and conclusions

	8 Fine-grained provenance integration into complex systems
	8.1 Granularity refinement on tool side
	8.1.1 Expected insights
	8.1.2 Provenance integration
	8.1.3 Initial integration
	8.1.4 Extracted provenance data
	8.1.5 Performance considerations
	8.1.6 Lessons learned

	8.2 Fine-grained provenance for databases
	8.2.1 Expected insights
	8.2.2 Motivating scenario
	8.2.3 Feature model and resulting changes

	8.3 Provenance integration for databases
	8.3.1 Case study selection
	8.3.2 Exploratory implementation
	8.3.3 Evaluation of non-functional properties
	8.3.4 Alternative implementation techniques

	8.4 Adaption for different database systems
	8.4.1 Premises for generalization
	8.4.2 Versions of HyperSQL
	8.4.3 H2 Database

	8.5 Contributions and conclusions

	9 Conclusion and future work
	A Appendix
	Bibliography

