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Abstract
The geodesic complexity of a Riemannian manifold is a numerical isometry invariant
that is determined by the structure of its cut loci. In this articlewe study decompositions
of cut loci over whose components the tangent cut loci fiber in a convenient way. We
establish a new upper bound for geodesic complexity in terms of such decompositions.
As an application, we obtain estimates for the geodesic complexity of certain classes
of homogeneous manifolds. In particular, we compute the geodesic complexity of
complex and quaternionic projective spaces with their standard symmetric metrics.
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398 S. Mescher, M. Stegemeyer

1 Introduction

The geodesic complexity of a complete Riemannian manifold is an integer-valued
isometry invariant. It is given as a geometric analogue of the notion of topological
complexity as introduced by M. Farber in Farber (2003). Geodesic complexity was
originally defined by D. Recio-Mitter in the more general framework of metric spaces
in Recio-Mitter (2021). Given a complete Riemannian manifold (M, g) we denote
its space of length-minimizing geodesic segments by GM , seen as a subspace of
the path space C0([0, 1], M) with the compact-open topology. Consider the endpoint
evaluation map

ev : GM → M × M, ev(γ ) = (γ (0), γ (1)).

The geodesic complexity of (M, g), denoted byGC(M, g), is defined as the smallest
integer k for which there exists a decomposition ofM×M into locally compact subsets
A1, . . . , Ak with each Ai admitting a continuous local section of ev.

In the same way that topological complexity is motivated by a topological abstrac-
tion of the motion planning problem from robotics, geodesic complexity is motivated
by an abstract notion of efficient motion planning. Sections of ev can be seen as
geodesic motion planners since they assign to a pair of points (p, q) ∈ M × M a
length-minimizing path connecting these two points.

As noted by Recio-Mitter in (Recio-Mitter 2021, p. 144), the main problem in
determining the geodesic complexity of (M, g) lies in understanding the geodesic
motion planning problem on its total cut locus. The latter is defined as

Cut(M) = {(p, q) ∈ M × M | q ∈ Cut p(M)} ⊆ M × M,

where Cut p(M) ⊂ M denotes the cut locus of p ∈ M with respect to the given
metric g. In this article we introduce the notion of a fibered decomposition of the total
cut locus. If such a decomposition exists, it gives rise to a new upper bound for the
geodesic complexity of M . The main applications of this upper bound are estimates
for the geodesic complexity of certain homogeneous Riemannian manifolds. Similar
situations were already studied by the authors in Mescher and Stegemeyer (2021).
The upper bounds in the present article are however independent of the ones given in
Mescher and Stegemeyer (2021). Various estimates from that article can be improved
using the new results.

Let (M, g) be a complete Riemannian manifold and consider the extended expo-
nential map

Exp : T M → M × M, Exp(v) = (pr(v), exppr(v)(v)),

where pr : T M → M denotes the bundle projection. We say that the total cut locus
admits a fibered decomposition if there is a decomposition of Cut(M) into locally
compact subsets A1, . . . , Ak , such that the restriction

πi := Exp |
˜Ai

: ˜Ai → Ai ,
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Geodesic complexity via fibered... 399

where ˜Ai = Exp−1(Ai )∩˜Cut(M), is a fibration for each i ∈ {1, . . . , k}. Here,˜Cut(M)

denotes the total tangent cut locus which will be defined below. We will establish the
following result.

Theorem (Theorem 3.2) Let (M, g) be a complete Riemannian manifold. If the
total cut locus Cut(M) admits a fibered decomposition A1, . . . , Ak with fibrations
πi : ˜Ai → Ai for i ∈ {1, . . . , k}, then the geodesic complexity of M can be estimated
by

GC(M, g) ≤
k

∑

i=1

secat(πi : ˜Ai → Ai ) + 1.

Here, secat denotes the sectional category of a fibration, which was introduced by A.
Schwarz in Albert (1966) as the genus of a fiber space.

Evidently, this raises the questionwhether there are any interesting cases ofRieman-
nian manifolds whose total cut loci admit fibered decompositions. For a homogeneous
Riemannian manifold we will establish a tangible criterion on the cut locus of a single
point implying that its total cut locus admits a fibered decomposition. We will fur-
ther show that each irreducible compact simply connected symmetric space satisfies
this condition, providing a large class of examples whose total cut loci admit fibered
decompositions. By applying this result, we are able to compute the geodesic com-
plexity of complex and quaternionic projective spaces with respect to their standard
symmetric metrics.

Theorem (Theorem 4.6) Let M = CPn orHPn equipped with its standard or Fubini-
Study metric gsym, where n ∈ N. Then its geodesic complexity satisfies

GC(M, gsym) = 2n + 1.

In particular, the geodesic complexity of (M, gsym) equals the topological complexity
of M.

Moreover, using results by V. Ozols from Ozols (1974), we study the total cut
locus of three-dimensional lens spaces with metrics of constant sectional curvature.
We show that lens spaces of the form L(p; 1), where p ≥ 3, are further examples
of homogeneous manifolds whose total cut loci admit fibered decompositions. As
these spaces are not globally symmetric, this shows that fibered decompositions are
not exclusively obtained in the globally symmetric case. A detailed analysis of the
fibrations involved in the fibered decompositions of Cut(L(p; 1)) shows that

6 ≤ GC(L(p; 1), g) ≤ 7,

see Theorem 5.8, where g is a metric of constant sectional curvature.
This manuscript is organized as follows. In Sect. 2 we review the definitions of the

total cut locus and of geodesic complexity and note some basic properties of these
objects.
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400 S. Mescher, M. Stegemeyer

The central notion of a fibered decomposition of the total cut locus is introduced in
Sect. 3. In that section we also prove the above mentioned upper bound on geodesic
complexity and study a criterion for the existence of a fibered decomposition.

Symmetric spaces are studied in Sect. 4. After recalling some properties of root
systems and related notions we prove that the total cut loci of irreducible compact
simply connected symmetric spaces admit fibered decompositions and derive an upper
bound on geodesic complexity. This will be applied to the examples of complex and
quaternionic projective spaces and a particular complex Grassmannian.

Finally, in Sect. 5 we discuss the total cut loci of three-dimensional lens spaces and
study a fibered decomposition to derive an upper bound on the geodesic complexity
of these spaces.

2 Geodesic complexity and the total cut locus

In this sectionwe quickly introduce the basic notions of geodesic complexity and of the
total cut locus. For more properties of geodesic complexity and of the relation between
cut loci and geodesic complexity we refer to Recio-Mitter (2021) and Mescher and
Stegemeyer (2021).

Under a locally compact decomposition of a topological space X we understand a
cover A1, . . . , Ak of X such that the Ai are pairwise disjoint and each Ai , i ∈ {1, . . . k},
is a locally compact subspace of X . As usual we equip the path space C0(I , M) with
the compact-open topology, where I = [0, 1] is the unit interval. For a Riemannian
manifold (M, g) we let GM ⊆ C0(I , M) be the space of length-minimizing paths in
M equipped with the subspace topology of C0(I , M), i.e.

GM = {γ ∈ C0(I , M) | γ is a length-minimizing geodesic in M}.

Definition 2.1 Let (M, g) be a complete Riemannian manifold and let

ev : GM → M × M, ev(γ ) = (γ (0), γ (1)).

(1) A local section of ev is called a geodesic motion planner.
(2) Let B ⊆ M × M be a subset. The subspace geodesic complexity of B in (M, g) is

defined to be the smallest integer k for which there is a locally compact decompo-
sition A1, . . . , Ak of B with the following property: for each i ∈ {1, . . . , k} there
exists a continuous geodesic motion planner Ai → GM . The subspace geodesic
complexity of B in (M, g) is denoted by GC(M,g)(B). If no such k exists, we put
GC(M,g)(B) := +∞.

(3) The geodesic complexity of (M, g) is defined to be the subspace geodesic complex-
ity ofM×M itself and is denoted byGC(M, g), i.e.GC(M, g) = GC(M,g)(M×M).

Remark 2.2 (1) By the definition of topological complexity via locally compact
decompositions, see (Farber 2008, Section 4.3), it is clear that the geodesic com-
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Geodesic complexity via fibered... 401

plexity of aRiemannianmanifold (M, g) is bounded frombelowby the topological
complexity TC(M) of M .

(2) If the metric under consideration is apparent, then we will drop the metric from
the notation and simply writeGC(M) := GC(M, g) orGCM (B) := GC(M,g)(B).

(3) Geodesic complexity was introduced by D. Recio-Mitter in Recio-Mitter (2021)
for more general geodesic spaces, i.e. metric spaces in which any two points
are connected by a length-minimizing path. Since every complete Riemannian
manifold is a geodesic space, our definition is nothing but a particular case of
Recio-Mitter’s definition. Note however that our definition of geodesic complex-
ity differs from the one in Recio-Mitter (2021) by one. More precisely, while in
Recio-Mitter (2021) a geodesic space of geodesic complexity k ∈ N is decom-
posed into at least k + 1 locally compact subsets admitting geodesic motion
planners, our definition requires the existence of a decomposition into k subsets
having this property.

As pointed out in Recio-Mitter (2021) the geodesic complexity of a Riemannian man-
ifold (M, g) crucially depends on the cut loci of M . We next recall the notion of the
cut locus of a point as well as the total cut locus and the total tangent cut locus of a
Riemannian manifold. The latter two notions were introduced in Recio-Mitter (2021).

Definition 2.3 Let (M, g) be a complete Riemannian manifold and let p ∈ M .

(1) Let γ : [0,∞) → M be a unit-speed geodesic with γ (0) = p. We say that the cut
time of γ is

tcut(γ ) = sup{t > 0 | γ |[0,t] is minimal}.

In case that tcut(γ ) < ∞ we say that γ (tcut(γ )) is a cut point of p along γ and
that tcut(γ )γ̇ (0) ∈ TpM is a tangent cut point of p.

(2) The set of tangent cut points of p is called the tangent cut locus of p and is denoted
by ˜Cut p(M) ⊂ TpM . The set of cut points of p is called the cut locus of p and is
denoted by Cut p(M).

(3) The total tangent cut locus of M is given by

˜Cut(M) =
⋃

p∈M
˜Cut p(M) ⊆ T M .

The total cut locus of M is defined as

Cut(M) =
⋃

p∈M
({p} × Cut p(M)) ⊆ M × M .

Remark 2.4 Let (M, g) be a complete Riemannian manifold.

(1) By definition of the Riemannian exponential map expp : TpM → M at p ∈ M
we have

expp(tv) = γv(t) for all t > 0 and v ∈ TpM,
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402 S. Mescher, M. Stegemeyer

where γv is the unique geodesic starting at p with γ̇ (0) = v. Consequently, expp
maps the tangent cut locus ˜Cut p(M) onto the cut locus Cut p(M).

(2) We recall the definition of the global Riemannian exponential map, see e.g. (Lee
2018, p. 128), which is given by

Exp : T M → M × M, Exp(v) = (pr(v), exppr(v)(v)).

Here, pr : T M → M denotes the bundle projection. It is clear from the definitions
that Exp maps the total tangent cut locus ˜Cut(M) onto the total cut locus Cut(M).

Finally, we want to note how the total cut locus of a Riemannian manifold (M, g)
can be used to study the geodesic complexity of M . As Recio-Mitter argues in (Recio-
Mitter 2021, Theorem 3.3) there is a unique continuous geodesic motion planner on
(M ×M)�Cut(M). By (Błaszczyk and Carrasquel-Vera 2018, Lemma 4.2) the latter
is an open subset of M × M , from which one derives the estimate

GC(M,g)(Cut(M)) ≤ GC(M) ≤ GC(M,g)(Cut(M)) + 1. (2.1)

Hence, in order to find bounds on the geodesic complexity of a complete Riemannian
manifold (M, g) one can study the subspace geodesic complexity of its total cut locus
Cut(M).

3 Fibered decompositions of cut loci

In this section we introduce the notion of a fibered decomposition of the total cut
locus of a Riemannian manifold M and show that such a fibered decomposition of
Cut(M) can be used to derive upper and lower bounds on the geodesic complexity
of M . After that we give a condition on the cut locus of a point p ∈ M of a homo-
geneous Riemannian manifold which implies that the total cut locus admits a fibered
decomposition.

Definition 3.1 Let (M, g) be a complete Riemannian manifold.

(1) A locally compact decomposition A1, . . . , Ak ofCut(M) is called afibered decom-
position of Cut(M) if the following holds: for each i ∈ {1, . . . , k} the restricted
exponential map

πi = Exp |
˜Ai

: ˜Ai → Ai

is a fibration, where ˜Ai = Exp−1(Ai ) ∩ ˜Cut(M).
(2) Similarly, if p ∈ M , then a locally compact decomposition B1, . . . , Bk of

Cut p(M) is called a fibered decomposition of Cut p(M) if

expp |
˜Bi : ˜Bi → Bi

is a fibration, where ˜Bi = exp−1
p (Bi ) ∩ ˜Cut p(M).
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Here, under a fibration we always understand a Hurewicz fibration in the sense of
homotopy theory. Next we will discuss how fibered decompositions of cut loci yield
new lower and upper bounds for geodesic complexity.

Theorem 3.2 Let (M, g) be a complete Riemannian manifold. If the total cut locus
Cut(M) admits a fibered decomposition A1, . . . , Ak with fibrations πi : ˜Ai → Ai

for i ∈ {1, . . . , k} as in Definition 3.1.(1), then the geodesic complexity of M can be
estimated by

GC(M) ≤
k

∑

i=1

secat(πi ) + 1.

Proof We begin by showing that continuous local sections of πi induce continuous
geodesic motion planners. Let C ⊆ Ai be a locally compact subset of Ai and assume
that s : C → ˜Ai is a continuous section of the fibration πi . In particular, we have for
(p, q) ∈ C that

Exp(s(p, q)) = (p, q).

We define σ : C → GM by

σ((p, q))(t) = pr2(Exp(ts(p, q))) for t ∈ [0, 1],

where pr2 : M × M → M denotes the projection onto the second component. This is
clearly a geodesic motion planner. In order to see that map σ is also continuous note
that the map

σ̃ : C × I → M, ((p, q), t) 
→ pr2(Exp(ts(p, q)))

is continuous since it is a composition of continuous maps. By a general property of
the compact-open topology, the continuity of σ̃ implies the continuity of the induced
map σ : C → GM , see e.g. [Bredon 2013, Theorem VII.2.4].

For each i ∈ {1, . . . , k} we put mi := secat(πi ). Then, see e.g. (Mescher and
Stegemeyer 2021, Lemma 4.1), for each i there is a locally compact decomposition
Ci,1, . . . ,Ci,mi of Ai for which there is a continuous section of πi on each Ci, j ,
j ∈ {1, . . . ,mi }. Since the sets A1, . . . , Ak form a decomposition of Cut(M), we see
that the sets

{Ci, j | i ∈ {1, . . . , k}, j ∈ {1, . . . ,mi }}

are a decomposition of Cut(M)with each Ci, j locally compact. By the first part of the
proof we see that each Ci, j admits a continuous geodesic motion planner. This shows
that

GC(M,g)(Cut(M)) ≤
k

∑

i=1

mi =
k

∑

i=1

secat(πi ).
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404 S. Mescher, M. Stegemeyer

Combining this inequality with the inequality (2.1) completes the proof. ��
In the subsequent sections we will see examples of upper bounds on geodesic

complexity by virtue of Theorem 3.2. The next result however shows how a fibered
decomposition of the total cut locus Cut(M) gives rise to a lower bound on
GC(M,g)(Cut(M)). Before we state the result, we recall the definition of the veloc-
ity map, see [Mescher and Stegemeyer 2021, Definition 3.1], i.e. the map given by

v : GM → T M, v(γ ) = γ̇ (0).

The velocity map is continuous by [Mescher and Stegemeyer 2021, Proposition 3.2].
Furthermore, we recall that the sectional category of a fibration p : E → B is defined
by considering open coversU1, . . . ,Uk of B such that eachUi , i ∈ {1, . . . , k} admits
a continuous local section of p. The geodesic complexity of a complete Riemannian
manifold M however is defined via locally compact decompositions of M × M . In
order to compare these two concepts in the following theorem, we employ the notion
of generalized sectional category as introduced by J. M. García Calcines in [García-
Calcines 2019, Definition 2.1].

Definition 3.3 Let p : E → B be a fibration. The generalized sectional category
secatg(p) is defined as the smallest integer k for which there exists a cover A1, . . . , Ak

of B such that each Ai , i ∈ {1, . . . , k}, admits a continuous local section of p.

Note that the sets Ai in the above definition can be arbitrary subsets of B. García-
Calcines shows in [García-Calcines 2019, Theorem2.7] that if p : E → B is a fibration
and if E and B are absolute neighborhood retracts, one has

secatg(p) = secat(p).

Theorem 3.4 Let (M, g) be a complete Riemannianmanifold. Assume that the total cut
locusCut(M)admits a fibered decomposition A1, . . . , Al with fibrationsπi : ˜Ai → Ai

for i ∈ {1, . . . , l}. Furthermore, assume that all ˜Ai and Ai are absolute neighborhood
retracts. Then

GC(M,g)(Cut(M)) ≥ max{secat(πi ) | i ∈ {1, . . . , l}}.

Proof Let m ∈ N be the maximum of {secat(πi ) | i ∈ {1, . . . , l}} and choose i0 ∈
{1, . . . , l} such that secat(πi0) = m. Assume that the assertion of the theorem is false.
Then there are a locally compact decomposition B1, . . . , Bk of Cut(M) with k < m
and continuous geodesic motion planners s j : Bj → GM for j ∈ {1, . . . , k}. For
i ∈ {1, . . . , k} setCi = Bi∩Ai0 . It is possible that there are i ∈ {1, . . . , k}withCi = ∅.
By reordering the Bi we can arrange that C1, . . . ,Cr �= ∅ and Cr+1, . . . ,Ck = ∅ for
some 1 ≤ r ≤ k. The sets C1, . . . ,Cr form a cover of Ai0 . For j ∈ {1, . . . , r} we
define a map

σ j : C j → ˜Ai0 , σ j = v ◦ s j |C j ,
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where v denotes the velocity map. It is clear that σ j is continuous. We claim that it is
a section of ˜Ai0 . For any (p, q) ∈ C j the path s j (p, q) is a minimal geodesic. Thus,
there is w ∈ ˜Cut p(M) with

s j (p, q)(t) = expp(tw).

By definition of the velocity map, we obtain

σ j (p, q) = (v ◦ s j )(p, q) = w

and by definition of ˜Ai0 it is clear that w ∈ ˜Ai0 . Consequently,

(πi0 ◦ σ j )(p, q) = (Exp |
˜Ai0

◦ σ j )(p, q) = (p, expp(w)) = (p, q),

which shows that σ j is a continuous section of πi0 . Hence, we obtain

secatg(πi0) ≤ r ≤ k < m.

Since πi0 : ˜Ai0 → Ai0 is a fibration with ˜Ai0 and Ai0 being absolute neighborhood
retracts, we derive from [García-Calcines 2019, Theorem 2.7] that

secat(πi0) = secatg(πi0) < m,

which is a contradiction. This completes the proof. ��
Corollary 3.5 Let (M, g) be a complete Riemannian manifold. Assume that

π = Exp |
˜Cut(M)

: C̃ut(M) → Cut(M)

is a fibration andassume that̃Cut(M)andCut(M)are absolute neighborhood retracts.
Then

GC(M,g)(Cut(M)) = secat(π) and secat(π) ≤ GC(M, g) ≤ secat(π) + 1.

Proof It is clear by Theorem 3.4 that

GC(M,g)(Cut(M)) ≥ secat(π).

The reverse inequality follows from the proof of Theorem 3.2. The second asserted
inequality follows from equation (2.1). ��

In Sect. 4 we will show that the symmetric metrics on complex and quaternionic
projective spaces are examples for which the conditions of Corollary 3.5 are satisfied.

In the following we will derive a tangible criterion in order to find fibered decom-
positions of the total cut locus. In the setting of homogeneous Riemannian manifolds
we want to use a fibered decomposition of the cut locus of a point to obtain a fibered
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406 S. Mescher, M. Stegemeyer

decomposition of the total cut locus, whose fibrations will in fact be fiber bundles. We
will see applications of this idea in Sects. 4 and 5.

Note that if a compact group of isometries acts transitively on a Riemannian man-
ifold, then the manifold is necessarily complete. If K is a group of isometries of a
Riemannian manifold which fixes a point p ∈ M , then k · Cut p(M) = Cut p(M) for
all k ∈ K .

Definition 3.6 Let (M, g) be a Riemannian manifold and assume that G is a group
of isometries acting transitively on M . Let p ∈ M be a point and let K ⊆ G be its
isotropy group. Let B1, . . . , Bm be a locally compact decomposition of Cut p(M). We
say that the decomposition is isotropy-invariant if k · Bi = Bi for all i = 1, . . . ,m
and all k ∈ K .

In the following let (M, g) be a Riemannian manifold and let G be a group of
isometries of M acting transitively on M . We denote the group action by � : G ×
M → M . We shall use the shorthand notation �g = �(g, ·) : M → M as well as
�(g, p) = g · p for g ∈ G, p ∈ M .

Our aim is to use the homogeneity of M to construct a fibered decomposition of the
total cut locus Cut(M) out of a fibered decomposition of the cut locus of one single
point in M .

In the following, we fix a point p ∈ M and let B1, . . . , Bk be a decomposition of
Cut p(M) which is both isotropy-invariant and a fibered decomposition such that the
associated fibrations ˜Bi → Bi are fiber bundles for i ∈ {1, . . . , k}.

Let K be the isotropy group of p and let pr : G → M ∼= G/K denote the canonical
projection. For i ∈ {1, . . . , k} set

Ai = {(q, r) ∈ Cut(M) | r ∈ �g(Bi ) for some g ∈ G with pr(g) = q}

and

˜Ai = {(q, v) ∈ ˜Cut(M) | v ∈ (D�g)p(˜Bi ) for some g ∈ G with pr(g) = q}.

We further consider the maps

πi : Ai → M, πi (q, r) = q, π̃i : ˜Ai → M, π̃i (q, v) = q, i ∈ {1, . . . , k}.

Lemma 3.7 In the present setting the following holds for each i ∈ {1, . . . , k}:
1. πi : Ai → M is a fiber bundle with typical fiber Bi .
2. π̃i : ˜Ai → M is a fiber bundle with typical fiber ˜Bi .

Note that by fiber bundle, we mean a fiber bundle in the continuous category. We do
not assume that the sets Bi carry any differentiable structure.

Proof We want to show that both Ai and ˜Ai are locally trivial. Fix an i ∈ {1, . . . , k}
and let

πi : Ai → M, πi (q, r) = q,
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be the projection on the first factor. Let U ⊆ M be an open set on which there exists
a continuous section s : U → G of pr. Define ϕi : Ai |U → U × Bi by

ϕi (q, r) = (q, s(q)−1 · r) for (q, r) ∈ Ai |U .

This is a well-defined map since if (q, r) ∈ Ai , then there is a b ∈ Bi such that
r = g · b for some g ∈ G with g · p = q. Therefore, by the isotropy invariance of the
decomposition B1, . . . , Bk ,

s(q)−1 · r = (s(q)−1g) · b ∈ Bi

since s(q)−1g ∈ K . Evidently, ϕi is a homeomorphism. For each point (q, r) ∈ Ai

there is such an open neighborhood U of q admitting a continuous section s : U →
G of pr. Thus, the above construction shows that Ai → M is a continuous fiber
bundle. The proof for ˜Ai is analogous. One defines local trivializations of the form
ψi : Ai |U → U × ˜Bi , whereU is an open subset of M admitting a continuous section
s : U → G of pr, by

ψi (q, v) = (q, (D�s(q)−1)qv) for (q, v) ∈ ˜Ai .

As for ϕi one shows that ψi is well-defined and a homeomorphism. ��
Theorem 3.8 Let (M, g) be a Riemannian manifold and G be a group of isometries of
M acting transitively on M. Fix a point p ∈ M. Let B1, . . . , Bk be a decomposition
of Cut p(M) which is both isotropy-invariant and a fibered decomposition such that
the associated fibrations ˜Bi → Bi are fiber bundles. For i = 1, . . . , k let Ci be the
typical fiber of the bundle ˜Bi → Bi . Define the sets Ai ⊆ Cut(M) as above. Then the
decomposition of Cut(M) into A1, . . . , Ak is a fibered decomposition. More precisely,
the restriction Exp |

˜Ai
: ˜Ai → Ai is a fiber bundle with typical fiber Ci .

Proof Fix i ∈ {1, . . . , k} and let p ∈ M . As discussed in the proof of Lemma 3.7,
we can find an open neighborhood U ⊆ M of p and local trivializations ϕi : Ai |U →
U × Bi and ψi : ˜Ai |U → U × ˜Bi . If ϕi and ψi are given as in that proof, then the
inverse of ϕi is explicitly given by

ϕ−1
i : U × Bi → Ai |U , ϕ−1

i (q, b) = (q, s(q) · b),

where s : U → G is a local section of pr : G → M . We claim that the diagram

˜Ai |U Ai |U

U × ˜Bi U × Bi

Exp |
˜Ai |U

ψi ϕi

(idU ,expp)
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commutes. To see this, let (q, v) ∈ ˜Ai |U . Then

ψi (q, v) = (q, (D�s(q)−1)qv) = (q, (D�s(q))
−1
p v) ∈ U × ˜Bi .

By naturality of the exponential map, see [Lee 2018, Proposition 5.20], it thus holds
that

(ϕ−1
i ◦ (idU , expp) ◦ ψi )(q, v) = ϕ−1

i (q, expp((D�s(q))
−1
p v))

= (q, s(q)s(q)−1 · expq(v))

= (q, expq(v))

= Exp(q, v).

By assumption the restriction expp |
˜Bi : ˜Bi → Bi is a fiber bundle. Hence, by choosing

an open subset V ⊆ Bi such that ˜Bi |V is trivial and considering ϕ−1
i (U×V )we obtain

an open set in Ai over which the map Exp |
˜Ai

: ˜Ai → Ai is trivial. Since Ai is covered
by such trivializations, this proves the claim. ��

4 The total cut loci of symmetric spaces

In this section we turn to the study of cut loci in irreducible compact simply connected
symmetric spaces and show that the total cut locus of these spaces always admits a
fibered decomposition. Furthermore, we derive a new upper bound for the geodesic
complexity of symmetric spaces. Note that this section is related to (Mescher and
Stegemeyer 2021, Sect. 3) where the authors proved an upper bound for irreducible
compact simply connected symmetric spaces in terms of the sectional category of
the isometry bundle Isom(M) → M over a symmetric space M and certain subspace
geodesic complexities. The upper bound in the current section is derived independently
of this previous result.

We briefly recall the most important notions related to root systems of symmet-
ric spaces. Let M = G/K be a symmetric space with (G, K ) being a Riemannian
symmetric pair. Denote the canonical projection by π : G → G/K ∼= M . There is
a decomposition g = k ⊕ m of the Lie algebra g of G such that m ∼= Tπ(e)M is a
linear isometry. We set o = π(e), where e is the unit element of G. Consider the
complexification g

C
of g and choose a Cartan subalgebra h ⊆ g

C
. A root of g

C
is an

element α ∈ h∗ of the dual space of h for which there exists an X ∈ g
C

� {0} with

[H , X ] = α(H)X for all H ∈ h.

If a is a maximal abelian subalgebra of m, then consider the restriction α|a of a root
of g

C
. If this restriction is non-zero, we call it a root of the symmetric pair (G, K ).

We choose and fix a set of simple roots of the symmetric pair (G, K ) and denote it
by π(G, K ). We further let δ denote its highest root. See [Helgason 1978, Section
X.3] or (Bröcker and Dieck 1995, Section V.4) for details on these notions. Due to
the compactness of G we can choose an AdG -invariant inner product 〈·, ·〉 on g and
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identify the roots with vectors in a via this inner product. Then a Weyl chamber of
π(G, K ) can be defined as

W := {X ∈ a | 〈γ, X〉 > 0 ∀γ ∈ π(G, K )}.

Note that one can define the other Weyl chambers by choosing other systems of
simple roots. TheWeyl group W (G, K ) of the symmetric pair (G, K ) is generated by
the reflections sα on the hyperplanes

{H ∈ a | α(H) = 0}.

It is a finite group and acts simply transitively on the set of Weyl chambers of (G, K ).
T. Sakai has studied the cut loci of compact simply connected symmetric spaces in

Sakai (1978), see also Sakai (1977) and Sakai (1978). We summarize the main results.
If there are two or more simple roots of (G, K ), put

D := {
 ⊂ π(G, K ) | 
 �= ∅, δ /∈ 
}.

In case there is only one simple root γ , this is then also the highest root and we set

D := {{γ }}.

If there are two or more simple roots, we set

S
 := {

X ∈ W | 〈γ, X〉 > 0 ∀γ ∈ 
, 〈γ, X〉 = 0 ∀γ ∈ π(G, K ) � 
, 2 〈δ, X〉 = 1
}

for each 
 ∈ D. In case there is a single simple root γ , we define

S{γ } := {X ∈ a | 2〈γ, X〉 = 1}.

As usual, we denote by exp : g → G the exponential map of G and define

exp : m → M, exp := π ◦ exp |m.

This in fact agrees with the Riemannian exponential at the point o under the canonical
identification m ∼= ToM and is often denoted by Exp. In order not to confuse it with
the global Riemannian exponential map used in Section 3, we denote it by exp. For

 ∈ D set

˜�
 : K × S
 → M, ˜�
(k, X) = exp(Adk(X)),

and

˜�
 : K × S
 → m, ˜�
(k, X) = Adk(X).
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Furthermore, we define

Z
 := {k ∈ K | exp(Adk(X)) = exp(X) ∀X ∈ S
}

and

K
 = {k ∈ K |Adk(X) = X ∀X ∈ S
}.

Evidently, Z
 and K
 are closed subgroups of K with K
 ⊆ Z
. Sakai shows in
(Sakai 1978, Proposition 4.10), that if
 ∈ D, then themap˜�
 induces a differentiable
embedding

�
 : K/Z
 × S
 → M .

Define C
 := im�
 for each 
 ∈ D. The cut locus of the point o = π(e) ∈ M is
then given by

Cuto(M) =
⋃


∈D
C


see (Sakai 1978, Theorem 5.3). Moreover, the set {C
}
∈D forms a locally compact
decomposition of Cuto(M).

Lemma 4.1 The map ˜�
 induces a continuous embedding �
 : K/K
 × S
 → m
and for ˜C
 := im(�
) we have that

˜C
 = exp−1(C
) ∩ C̃uto(M).

Proof By definition of K
 it is clear that ˜�
 induces a continuous map�
 : K/K
×
S
 → m. To prove that �
 is an embedding, we closely follow the proof of (Sakai
1978, Proposition 4.10). For the injectivity of �
, let k, k′ ∈ K and X , X ′ ∈ S
 such
that Adk′ X ′ = Adk X . We need to show that [k′] = [k] in K/K
 and that X = X ′.
Clearly, it holds that

Adk−1k′ X ′ = X .

Therefore, by (Helgason 1978, Proposition VI.2.2) we know that there is an element
s of the Weyl groupW (G, K ) of the Riemannian pair (G, K ) such that sX ′ = X . But
since X and X ′ are in the closure of the same Weyl chamber, they have to be equal,
see (Sakai 1978, p. 131). This also shows that k−1k′ ∈ K
, so [k′] = [k] in K/K
.

In order to show that �
 is an embedding, let (kn)n∈N
be a sequence in K and

(Xn)n∈N
be a sequence in S
 such that Adkn (Xn) → Adk X for n → ∞, where

k ∈ K and X ∈ S
. We want to show that [kn] → [k] in K/K
 and Xn → X
for n → ∞. Assume that this does not hold. Then by compactness of K there are
k0 ∈ K and Y ∈ W and there are subsequences (kni )i∈N

and (Xni )i∈N
with kni → k0

and Xni → Y for i → ∞ with ([k0],Y ) �= ([k], X). By continuity of Ad we have
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Adk0Y = Adk X so as argued above for the injectivity, we obtain X = Y and [k0] = [k]
in K/K
 which gives a contradiction. This shows the sequential continuity of �−1


 ,
thereby yielding that �
 is an embedding.

Finally, by (Sakai 1978, p.133)we have that ˜C
 = im(�
) ⊆ ˜Cuto(M).Moreover,
it is clear by construction that exp(˜C
) = C
. In order to show that

(exp|
˜Cuto(M))

−1(C
) ⊆ ˜C


let X ∈ ˜Cuto(M) such that exp(X) ∈ C
. Then there is k ∈ K with

k · exp(X) = exp(Adk(X)) = exp(Y )

for some Y ∈ S
. We set q = exp(Y ) and ˜X = Adk X . Clearly, ˜X ∈ ˜Cuto(M) and
since ˜X ∈ exp−1(q) we have by (Sakai 1978, Lemma 4.7) that there is an h ∈ Z


with ˜X = Ad(h)(Y ). But this implies that X = Ad(k−1h)(Y ) which shows that
X ∈ ˜C
. ��
It is clear by construction that the decomposition {C
}
∈D of Cuto(M) is isotropy-
invariant. The next theorem shows that it is a fibered decomposition of Cuto(M).

Theorem 4.2 Let M = G/K be an irreducible compact simply connected symmetric
space with (G, K ) being a Riemannian symmetric pair and let p ∈ M. Then the
cut locus of p admits a decomposition which is both isotropy-invariant and a fibered
decomposition with the associated fibrations being fiber bundles.

Proof Aswe have already argued, the decomposition of Cuto(M) into theC
,
 ∈ D,
is a decomposition into locally compact subsets and is isotropy-invariant. Hence, it
remains to show that it is a fibered decomposition. Let 
 ∈ D and consider the map

χ : K/K
 × S
 → K/Z
 × S
, χ(kK
, X) = (kZ
, X).

We derive from Lemma 4.1 that the diagram

K/K
 × S
 K/Z
 × S


˜C
 C


χ

�
 �

exp|

˜C


commutes where the vertical arrows are homeomorphisms. It is well-known, see e.g.
(Steenrod 1951, Theorem I.7.4), that the canonical map K/K
 → K/Z
 is a fiber
bundle with typical fiber Z
/K
. Consequently, the above commutative diagram
shows that exp|

˜C

: ˜C
 → C
 is a fiber bundle with typical fiber Z
/K
. Since this

holds for all 
 ∈ D we have shown that the decomposition {C
}
∈D is a fibered
decomposition with the associated fibrations being fiber bundles. ��
Combining Theorems 3.8 and 4.2 we obtain the following.
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Corollary 4.3 Let M be an irreducible compact simply connected symmetric space.
Then the total cut locus Cut(M) admits a fibered decomposition and the associated
fibrations are fiber bundles.

For 
 ∈ D let A
 ⊆ Cut(M) and ˜A
 ⊆ ˜Cut(M) be the subsets of the total cut locus
and the total tangent cut locus, resp., induced by the C
 as described in Sect. 3. The
set π(G, K ) consists of precisely r = rank M elements. For each i ∈ {1, 2, . . . , r}
we set

Di := {
 ∈ D | #
 = i} and Ai :=
⋃


∈Di

A
.

Note that by (Sakai 1978, Lemma 5.2), we have for all i ∈ {1, . . . , r} that

C
 ∩ C
′ = ∅ for 
,
′ ∈ Di , 
 �= 
′.

It is easy to see that the same relation then holds for the A
, i.e.

A
 ∩ A
′ = ∅ for 
,
′ ∈ Di , 
 �= 
′. (4.1)

Therefore, if we have a locally compact decomposition of all A
, 
 ∈ Di , then we
can combine geodesic motion planners in the following way.

Theorem 4.4 Let M be an irreducible compact simply connected symmetric space of
rank r . Then the geodesic complexity of M can be estimated by

GC(M) ≤
r

∑

i=1

max{secat(Exp |
˜A


: ˜A
 → A
) | 
 ∈ Di } + 1.

Proof Let i ∈ {1, . . . , r} and assume that for each 
 ∈ Di we have a locally compact
decomposition B
,1, . . . , B
,k
 of A
 such that for each j ∈ {1, . . . , k
} there is a
continuousgeodesicmotionplanner s
, j : B
, j → GM . Letmi = max{k
 | 
 ∈ Di }
and set B
, j = ∅ for k
 < j ≤ mi . For l = 1, . . . ,mi put

Bl =
⋃


∈Di

B
,l

and define a geodesic motion planner sl : Bl → GM by

sl(q, r) = s
,l(q, r) if (q, r) ∈ B
,l .

It follows from (4.1) that this defines a continuous geodesicmotionplanner on Bl . Since
the sets B1, . . . , Bmi form a decomposition of Ai , this shows that GCM (Ai ) ≤ mi .
Arguing as in the proof of Theorem 3.2, one further shows that

k
 ≤ secat(Exp |
˜A


: ˜A
 → A
) ∀
 ∈ Di ,
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which in turn yields mi ≤ max{secat(Exp |
˜A


) | 
 ∈ Di } for each i ∈ {1, 2, . . . , r}.
Eventually, we derive that

GCM (Cut(M)) ≤
r

∑

i=1

GCM (Ai ) ≤
r

∑

i=1

mi ≤
r

∑

i=1

max{secat(Exp |
˜A


) | 
 ∈ Di }.

��
Throughout the following, we shall always write ∼= to indicate that two manifolds are
diffeomorphic. We further let S

n denote the n-sphere with its standard differentiable
structure for each n ∈ N.

Example 4.5 Consider the complex Grassmannian Gr2(C4) which is an irreducible
compact symmetric space of rank 2. As shown in (Sakai 1978, p.143) and (Mescher
and Stegemeyer 2021, Example 8.5), the cut locus Cuto(M) can be decomposed into

C
1
∼= S

2 × S
2, C
2

∼= {∗}

and a six-dimensional manifoldC
0 . As discussed in (Mescher and Stegemeyer 2021,
Example 8.5), these three spaces are simply connected. Note thatD1 = {
1,
2}. The
decomposition of the cut locus of o induces a decomposition of Cut(M) as in Sect. 3
and we shall call the induced sets A
0 , A
1 and A
2 . In order to apply Theorem 4.4,
we need to find upper bounds for

secat(Exp |
˜A
i

: ˜A
i → A
i ) for i = 0, 1, 2.

Fix i ∈ {0, 1, 2}. By (Albert 1966, Theorem 18), we have secat(π : E → B) ≤
cat(B) for any fibration π where cat(B) is the Lusternik-Schnirelmann category of
B. Consequently, we obtain

secat(Exp |
˜A
i

: ˜A
i → A
i ) ≤ cat(A
i ).

Note that Gr2(C4) and C
i are simply connected, therefore A
i is simply connected
since it is a fiber bundle over Gr2(C4)with typical fiberC
i by Lemma 3.7. Therefore,
we get the estimate

cat(A
i ) ≤ dim(A
i )

2
+ 1 = dim(Gr2(C4)) + dim(C
i )

2
+ 1 = dimC
i

2
+ 5

by (Cornea et al. 2003, Theorem 1.50). Explicitly, we obtain

cat(A
0) ≤ 8, cat(A
1) ≤ 7 and cat(A
2) ≤ 5.

Consequently, by Theorem 4.4, we see that

GC(M) ≤ cat(A
0) + max{cat(A
1), cat(A
2)} + 1 = 16.
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Note that this improves the upper bound in (Mescher and Stegemeyer 2021, Example
8.5).

Theorem 4.6 Let M = CPn or HPn equipped with the standard or Fubini-Study
metric, where n ∈ N. Then its geodesic complexity satisfies

GC(M) = 2n + 1.

In particular, one has

GC(M) = TC(M).

Proof Since CPn and HPn are simply connected symmetric spaces of rank one, we
know by (Sakai 1978, Theorem 5.3) and Corollary 4.3 that the restriction

Exp |
˜Cut(M) : ˜Cut(M) → Cut(M)

is a fibration. Moreover for n ≥ 2, the cut locus of a point satisfies

Cut p(CPn) ∼= CPn−1 and Cutq(HPn) ∼= HPn−1,

where p ∈ CPn and q ∈ HPn , see (Arthur 1978, Proposition 3.35). By Lemma 3.7
we see that Cut(CPn) is a fiber bundle overCPn with typical fiberCPn−1. SinceCPn

is simply connected for each n ≥ 1, it follows that Cut(CPn) is simply connected as
well for all n ≥ 2. By (Albert 1966, Theorem 18) and (Cornea et al. 2003, Theorem
1.50) we obtain

secat(˜Cut(CPn) → Cut(CPn)) ≤ dim(Cut(CPn))

2
+ 1 = 2n.

Consequently by Theorem 3.2 we obtain

GC(CPn) ≤ secat(˜Cut(CPn) → Cut(CPn)) + 1 ≤ 2n + 1

for n ≥ 2. Since TC(CPn) = 2n + 1 by (Farber 2006, Lemma 28.1), we obtain

GC(CPn) = TC(CPn) = 2n + 1

for n ≥ 2. The argument for HPn is similar, using that HPn is 3-connected for
all n ≥ 1 and that TC(HPn) = 2n + 1 by (Basabe et al. 2014, Corollary 3.16).
Finally, for n = 1 we have that CP1 is isometric to S

2 and HP1 is isometric to S
4,

where both S
2 and S

4 are equipped with the standard metric. It is well-known that
GC(S2) = GC(S4) = 3, see (Recio-Mitter 2021, Proposition 4.1), so this proves the
assertion for n = 1. ��
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5 Three-dimensional lens spaces

In this section we show that the total cut locus of a lens space of the form L(p; 1)with
a metric of constant sectional curvature admits a fibered decomposition. It is thus an
example of a homogeneous Riemannian manifold which has this property, but which
is not a globally symmetric space, see e.g. (Gilkey et al. 2015, p. 105). We will use the
explicit fibered decomposition to derive an upper bound for the geodesic complexity
of three-dimensional lens spaces of type L(p; 1). We start by studying the cut locus
of a point in the lens space L(p; 1), which was explicitly described by S. Anisov in
Anisov (2006). However, we give a self-contained exposition in this section, since we
will need a detailed description of the tangent cut locus and of the cut locus in this
setting.

We consider the 3-sphere as a subspace of C
2, i.e.

S
3 = {(z1, z2) ∈ C

2 | z1z1 + z2z2 = 1}.

In the following we will also consider S
3 as embedded in R

4 under the standard
identification C

2 ∼= R
4. The special unitary group SU (2) acts transitively on the 3-

sphere. Furthermore, for arbitrary p ≥ 3, we have an action of Zp on S
3 denoted by

� : Zp × S
3 → S

3, where Zp is the cyclic group with p elements, given by

�(m, (z1, z2)) 
→ (e
2π im
p z1, e

2π im
p z2). (5.1)

It is easy to see that this action is properly discontinuous. If we equip S
3 with the

standard metric, then � is an action by isometries. Consequently, we can equip the
quotient L(p; 1) = S

3/Zp with a metric for which π : S
3 → L(p; 1) becomes a

Riemannian covering. We henceforth always consider L(p; 1) as equipped with such
a metric. The space L(p; 1) is called a lens space. Furthermore, note that the metric
on L(p; 1) constructed in this way is a metric of constant sectional curvature. By the
Killing-Hopf theorem all metrics of constant sectional curvature on L(p; 1) arise in
this way, see e.g. (Lee 2018, Theorem 12.4 and Corollary 12.5).

Note that the action of Zp on S
3 commutes with the action of SU (2). Thus, SU (2)

acts on L(p; 1) and in particular this action is transitive, since it is already transitive
on S

3. In the following we fix the point p0 = π(1, 0) ∈ L(p; 1). Its isotropy group
under the SU (2)-action on L(p; 1) is easily seen to be

K =
{(

e
2π ik
p 0

0 e− 2π ik
p

)

∣

∣

∣

∣

k ∈ {0, . . . , p − 1}
}

∼= Zp. (5.2)

Note that for more general lens spaces of the form L(p; q)where p and q are coprime
with q �= 1, see e.g. (Hatcher 2002, Example 2.43), the isometry group does not act
transitively in general. See Kalliongis and Miller (2002) for details on the isometry
groups of lens spaces.
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In order to describe the cut locus of a point p0 ∈ L(p; 1), let us first consider
the more general situation of a Riemannian covering π : ˜M → M . The following
exposition closely follows (Ozols 1974, Section 3).

It is well known that geodesics in ˜M are mapped to geodesics in M under the
Riemanian covering map π . Assume that M ∼= ˜M/
 where 
 is a finite group of
isometries of ˜M acting properly discontinuously. Let d : ˜M × ˜M → R denote the
distance function induced by the metric on ˜M . For any two distinct points q, r ∈ ˜M
we set

Hq,r = {u ∈ ˜M | d(q, u) < d(r , u)}.

We recall from (Ozols 1974, Definition 3.1) that


q =
⋂

g∈
�{e}
Hq,g·q ⊆ ˜M

is called the normal fundamental domain of 
 centered at q. The following result by
V. Ozols establishes a connection between normal fundamental domains and cut loci.

Theorem 5.1 [(Ozols 1974, Corollary 3.11)] Let π : ˜M → M be a Riemannian
covering, let q ∈ ˜M and let 
q ⊂ ˜M be its normal fundamental domain. If its closure
satisfies 
q ∩ Cutq( ˜M) = ∅, then

Cutπ(q)(M) = π(∂
q).

Hence, to understand the cut locus of the point π(q) ∈ M ∼= ˜M/
 we can study
the boundary of the normal fundamental domain 
q . Let inj(Tq ˜M) ⊆ Tq ˜M be the
domain of injectivity of the exponential map in ˜M and put

̂
q := (expq |inj(Tq ˜M))
−1(
q) ⊆ Tq ˜M .

Assume in the following that 
q ∩ Cutq( ˜M) = ∅. Then expq maps ̂
q homeomor-

phically onto 
q , since the restriction of expq to inj(Tq ˜M) is a homeomorphism onto
its image. With K := inj(Tπ(q)M) ∪ ˜Cutπ(q)(M) the diagram

̂
q K


q M

Dπq

≈
expq ≈ expπ(q)

π

commutes and one checks that the maps Dπq |̂
q
: ̂
q → K and expq |

̂
q
: ̂
q → 
q

are homeomorphisms. In particular, we see that ∂
q is homeomorphic to the tangent
cut locus ˜Cutπ(q)(M) and that the exponential map

expπ(q) |
˜Cutπ(q)(M) : ˜Cutπ(q)(M) → Cutπ(q)(M)
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can be understood by considering

π |∂
q : ∂
q → Cutπ(q)(M).

In the following we denote by 〈·, ·〉 the standard inner product on R
4. The next lemma

is easily shown by means of elementary geometry. Thus, we omit its proof.

Lemma 5.2 Let q, r ∈ S
3 be two distinct points. Let u = q − r ∈ R

4 and let Eu be
the 3-plane of points in R

4 orthogonal to u. Then Hq,r = {v ∈ S
3 | 〈v, u〉 > 0}.

We consider 
q0 , the normal fundamental domain of Zp centered at q0 =
(1, 0, 0, 0) ∈ S

3. For k ∈ {0, . . . , p − 1}, we define

uk = q0 − k · q0 = (

1 − cos( 2πkp ),− sin( 2πkp ), 0, 0
)

.

By Lemma 5.2, it is clear that


q0 = {r ∈ S
3 | 〈uk, r〉 > 0 for k = 1, . . . , p − 1}.

Its boundary is

∂
q0 =
{

r ∈ S
3

∣

∣

∣

∣

∃k ∈ {1, . . . , p − 1} with 〈uk , r〉 = 0,
〈

uk′ , r
〉 ≥ 0 ∀k′ ∈ {1, . . . , p − 1} � {k}

}

.

For l ∈ {1, . . . , p − 1} and numbers 1 ≤ i1 < i2 < . . . < il ≤ p − 1, we define

˜D(l)
i1,...,il

=
{

r ∈ S
3

∣

∣

∣

∣

〈ui1 , r〉 = · · · = 〈uil , r〉 = 0, 〈u j , r〉 > 0 ∀ j ∈ {1, . . . , p − 1} � {i1, . . . , il }
}

.

It is clear that

∂
q0 =
⊔

l∈{1,...,p−1}
1≤i1<...<il≤p−1

˜D(l)
i1,...,il

.

Lemma 5.3 All sets of the form ˜D(l)
i1,...,il

are empty except ˜D(1)
1 , ˜D(1)

p−1 and ˜D(p−1)
1,...,p−1.

Consequently, ∂
q0 is the disjoint union of ˜D(1)
1 , ˜D(1)

p−1 and ˜D(p−1)
1,...,p−1.

Proof It is easy to see that

˜D(p−1)
1,...,p−1 = {(0, 0, x, y) ∈ S

3 | (x, y) ∈ S
1}.

Hence, ˜D(p−1)
1,...,p−1 is non-empty. For l ∈ {1, . . . , p − 1}, l �= p

2 , we set

σl = 1 − cos( 2πlp )

sin( 2πlp )
.
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It can be seen directly that

˜D(1)
1 = {(a, σ1a, x, y) ∈ S

3 | a > 0} and ˜D(1)
p−1 = {(a, σp−1a, x, y) ∈ S

3 | a > 0}.

Note that σp−1 = −σ1. Let m ∈ {2, . . . , p − 2}. We claim that ˜D(1)
m = ∅. Assume

that there is a point r = (a, b, x, y) ∈ ˜D(1)
l . Then, 〈r , um〉 = 0 implies that

b = σma if m �= p

2
.

For arbitrary m ∈ {2, . . . , p − 2}, we get from 〈u1 + u p−1, r〉 > 0 that

2
(

1 − cos( 2πp )
)

a > 0 (5.3)

which implies that a > 0. In case that p is even and m = p
2 , it can easily be seen that

a = 0, yielding a contradiction to inequality (5.3). Thus, ˜D(1)
p
2

= ∅. Therefore, we
assume throughout the rest of the proof that m �= p

2 . We consider two separate cases,
starting with 2 ≤ m <

p
2 . In this case we have σm > 0, so we see that b > 0. We

write r = (̃aeiϕ, x + iy) as an element of C
2 with ã > 0. It is clear that we have

tan ϕ = 1 − cos( 2πmp )

sin( 2πmp )
> 0

and we can choose ϕ ∈ (0, π
2 ). Since the third and fourth component of u1 are trivial,

we can use the Euclidean inner product on R
2 to compute that

〈u1, r〉 =
〈

(

1 − cos( 2πp )

− sin( 2πp )

)

,

(

ã cos(ϕ)

ã sin(ϕ)

) 〉

R

2

=
〈 (

0
−2 sin(π

p )

)

, ã

(

cos(ϕ − π
p )

sin(ϕ − π
p )

)

〉

R

2

= −2̃a sin(π
p ) sin(ϕ − π

p ),

where we rotated the vectors by an angle of −π
p to get the second equality. Note that

by our assumption we have 〈u1, r〉 > 0 which implies sin(π
p ) sin(ϕ − π

p ) < 0. Since
ϕ < π

2 by assumption, we want to show that ϕ > π
p . Then sin(π

p ) sin(ϕ − π
p ) > 0,

which is thus a contradiction. The inequality ϕ > π
p is equivalent to showing that

tan(ϕ) > tan(π
p ), i.e. that

1 − cos( 2πmp )

sin( 2πmp )

!
>

sin(π
p )

cos(π
p )

. (5.4)
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Note that since m <
p
2 , we have

πm
p < π

2 . Consequently,

2 cos(πm
p )2 < 2 cos(π

p )2.

By standard trigonometry

2 cos(πm
p )2 = 1 + cos( 2πmp )

and therefore

1 − cos( 2πmp )2 < 2 cos(π
p )2(1 − cos( 2πmp )).

One checks by direct computation that this is equivalent to

(sin( 2πmp ))2(sin(π
p ))2 < (1 − cos( 2πmp ))2(cos(π

p ))2.

Since all squared terms were positive before squaring, we see that this is equivalent
to

sin( 2πmp ) sin(π
p ) < (1 − cos( 2πmp )) cos(π

p )

which clearly implies the inequality (5.4). We thus get the desired contradiction in the
case 2 ≤ m <

p
2 . The case

p
2 < m ≤ p − 2 can be treated similarly. One can argue

similarly that all sets of the form ˜D(l)
i1,...,il

with 2 ≤ l ≤ p − 2 are empty. ��

To shorten our notation we write ˜D(p−1) for ˜D(p−1)
1,...,p−1. Set p0 = π(q0) ∈ L(p; 1)

and recall that

Dπq0 ◦ (expq0 |∂̂
q0
)−1 : ∂
q0 → ˜Cut p0(L(p; 1))

is a homeomorphism. Moreover, the diagram

∂̂
q0
˜Cut p0(L(p; 1))

∂
q0 Cut p0(L(p; 1))

Dπq0

expq0 expp0
π

commutes. Here, we obviously consider the restrictions of the maps to the spaces
occurring in the diagram, which we drop from the notation for the sake of readability.
We denote the images of the sets ˜D(1)

i by

˜C (1)
i = (Dπq0 ◦ (expq0 |∂̂
q0

)−1)(˜D(1)
i ), for i ∈ {1, p − 1}
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and similarly

˜C (p−1) = (Dπq0 ◦ (expq0 |∂̂
q0
)−1)(˜D(p−1)).

Proposition 5.4 Let p ∈ N with p ≥ 3 and consider the lens space L(p; 1) with
a Riemannian metric of constant sectional curvature. Let π : S

3 → L(p; 1) be the
corresponding Riemannian covering and put p0 := π(1, 0, 0, 0).

(1) The sets ˜C (1)
1 , ˜C (1)

p−1 and ˜C (p−1) form a locally compact decomposition of the

tangent cut locus C̃ut p0(L(p; 1)). Moreover, ˜C (1)
1 and ˜C (1)

p−1 are homeomorphic

to open 2-disks and ˜C (p−1) is homeomorphic to S
1.

(2) The cut locus Cut p0(L(p; 1)) admits a locally compact decomposition into

C (1) = π(˜D(1)
i ) = expp0(

˜C (1)
i ), i ∈ {1, p − 1}

and

C (p−1) = π(˜D(p−1)) = expp0(
˜C p−1).

The map expp0 |
˜C(1)
i

: ˜C (1)
i → C (1) is a homeomorphism for i ∈ {1, p−1}. Under

suitable identifications of ˜C (p−1) and C (p−1) with S
1, the map

expp0 |
˜C(p−1) : ˜C (p−1) → C (p−1)

can be identified with the standard p-fold covering of S
1 by S

1.

Hence,

Cut p0(L(p; 1)) = C (1) � C (p−1)

is a fibered decomposition of Cut p0(L(p; 1)) and the associated fibrations are fiber
bundles.

Proof The first part is apparent given the identification ∂
q0 ≈ ˜Cut p0(L(p; 1)) and
the characterization of the sets ˜D(1)

1 , ˜D(1)
p−1 and ˜D(p−1) in the proof of Lemma 5.3.

For the second part, we note that

�(1, ˜D(1)
p−1) = ˜D(1)

1 .

Consequently, ˜D(1)
1 and ˜D(1)

p−1 are identified under π . Furthermore, the restriction of

π to ˜D(1)
i , i ∈ {1, p − 1} is a homeomorphism onto its image since it is continuous,

injective and a local homeomorphism. The same properties therefore hold for ˜C (1)
1 ,

˜C (1)
p−1 and the map expp0 under the identification ∂
q0

∼= ˜Cut p0(L(p; 1)). Recall that

˜D(p−1) = {(0, z) ∈ S
3 | z ∈ S

1},
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thus it is obviously homeomorphic to S
1 and theZp-action on S

3 becomes the standard
Zp-action on S

1 under this identification. Since the map S
1 → S

1/Zp is a p-fold
covering, this proves the last claim. ��

In the following, wewant to show that the fibered decomposition of Cut p0(L(p; 1))
is isotropy-invariant with respect to the transitive SU (2)-action to obtain a fibered
decomposition of the total cut locus of L(p; 1) from Theorem 3.8.

Lemma 5.5 Let (M, g) be a Riemannian manifold and let q ∈ M be a point. Further-
more, let m ≥ 2 be an integer. Assume that G is a group of isometries of M which fixes
q. Let Sm ⊆ Cutq(M) be the set of points r ∈ Cutq(M) such that there are precisely
m distinct minimal geodesics between q and r. Then Sm is invariant under G.

Proof Let ϕ : G × M → M denote the G-action and let � : G ×GM → GM denote
the induced pointwise G-action, given by

�(g, γ )(t) = �g(γ )(t) = ϕ(g, γ (t)), for t ∈ [0, 1], g ∈ G, γ ∈ GM .

Let r ∈ Sm and g ∈ G. Since r is a cut point, s = ϕ(g, r) ∈ Cutq(M). Let γ1, . . . , γm
be the m distinct minimal geodesics between q and r . Then �g(γ1), . . . , �g(γm) are
distinctminimal geodesics betweenq and s. If therewas aminimal geodesicσ between
q and s which is distinct from all �g(γi ), i ∈ {1, . . . ,m}, then �g−1(σ ) would be a
minimal geodesic joining q and r distinct from γ1, . . . , γm . This contradicts r ∈ Sm ,
hence such a σ does not exist and we derive that s ∈ Sm as well. This proves the claim.

��
Corollary 5.6 The fibered decomposition of Cut p0(L(p; 1)) = C (1) � C (p−1) con-
structed in Proposition 5.4 is isotropy-invariant.

Proof By Proposition 5.4 we can characterize C (1) and C (p−1) as

C (1) = {q ∈ Cut p0 (L(p; 1)) | there are precisely two minimal geodesics joining p0 and q},
C (p−1) = {q ∈ Cut p0 (L(p; 1)) | there are precisely p minimal geodesics joining p0 and q}.

Therefore the isotropy invariance is a direct consequence by Lemma 5.5. ��
It follows from Theorem 3.8 and Corollary 5.6 that there is a decomposition

of Cut(L(p; 1)) into sets A(1) and A(p−1) which form a fibered decomposition of
Cut(L(p; 1)). We now want to study this decomposition in greater detail.

Recall that we denote the isotropy group of the SU (2)-action on L(p; 1) by K and
computed it in equation (5.2). In order to better distinguish the various group actions,
let

� : SU (2) × S
3 → S

3 and ϕ : SU (2) × L(p; 1) → L(p; 1)

be the actions of SU (2) on S
3 and on L(p; 1), respectively. Recall that we denoted

the Zp-action on S
3 be �, see equation (5.1). If A ∈ SU (2) we shall also write �A

for the diffeomorphism �(A, ·) : S
3 → S

3 and similarly for the other actions.

123



422 S. Mescher, M. Stegemeyer

The fibered decomposition of Cut(L(p; 1)) is given as follows. For l ∈ {1, p − 1},
we have

A(l) = {(q, r) ∈ Cut(L(p; 1)) | r ∈ ϕA(C (l)), A ∈ SU (2) such that pr(A) = q},

where pr : SU (2) → L(p; 1) is the canonical projection. We denote the preimages of
A(1) and A(p−1) in the total tangent cut locus by ˜A(1) and ˜A(p−1). Explicitly, we have

˜A(1) = {(q, v) ∈ ˜Cut(L(p; 1)) | v ∈ (DϕA)p0 (
˜C(1)
1 ∪ ˜C(1)

p−1), A ∈ SU (2) such that pr(A) = q}

By Proposition 5.4, Corollary 5.6 and Theorem 3.8 we obtain that ˜A(1) → A(1) is
a 2-fold covering and that ˜A(p−1) → A(p−1) is a p-fold covering, where we allow
coverings to be trivial, i.e. the total space of the covering might not be connected.
We want to show that ˜A(1) consists of two connected components which implies that
˜A(1) → A(1) is a trivial covering.

Lemma 5.7 The set ˜C (1)
1 ⊆ Tp0L(p; 1) is isotropy-invariant with respect to the

induced SU (2)-action in the tangent bundle T L(p; 1). More precisely if A ∈ K,
then (DϕA)p0(

˜C (1)
1 ) = ˜C (1)

1 . The same holds for ˜C (1)
p−1.

Proof Let x ∈ ˜C (1)
1 ⊆ Tp0L(p; 1) and A ∈ K , i.e. there is a k ∈ {0, . . . , p − 1} such

that

A =
(

e
2π ik
p 0

0 e− 2π ik
p

)

.

It holds that (�−k◦�A)(q0) = q0.Wewant to show that (DϕA)p0(x) ∈ ˜C (1)
1 . Consider

the following diagram.

S
3

S
3

S
3

Tq0S
3 T�A(q0)S

3 Tq0S
3

Tp0L(p; 1) Tp0L(p; 1) Tp0L(p; 1)

�A �−k

expq0
(D�A)q0

Dπq0

exp�A(q0)

(D�−k )�A(q0)

Dπ�A(q0)

expq0

Dπq0

(DϕA)p0 id

The lower two squares commute by definition of ϕ and the fact that the induced
action of � on L(p; 1) is trivial. The upper two squares commute by the naturality of
the exponential map. Note that all arrows in the lower two squares are isomorphisms.
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If we restrict to ˜Cut p0(L(p; 1)) and to ∂
q0 , respectively, we obtain a commutative
diagram

∂
q0 ∂
q0

˜Cut p0(L(p; 1)) ˜Cut p0(L(p; 1)).

�−k◦�A

Dπq0◦exp−1
q0

Dπq0◦exp−1
q0

(DϕA)p0

By the proof of Lemma 5.3 we can write y = (expq0 ◦(Dπ)−1
q0 )(x) ∈ ˜D(1)

1 as

y = ((1 + iσ1)a, z) where a > 0, z ∈ C,

and where σ1 was defined in the proof of Lemma 5.3. Then it follows that

(�−k ◦ �A)(y) =
(

(1 + iσ1)a, e− 4π ik
p z

)

,

which is again an element of ˜D(1)
1 . Consequently, (DϕA)p0(x) ∈ ˜C (1)

1 . The argument

for ˜C (1)
p−1 is analogous. ��

By the previous lemma, the sets

˜A(1)
1 = {(q, v) ∈ ˜Cut(L(p; 1)) | v ∈ (DϕA)q (˜C(1)

1 ), A ∈ SU (2) such that pr(A) = q}

and

˜A(1)
p−1 = {(q, v) ∈ ˜Cut(L(p; 1)) | v ∈ (DϕA)q (˜C

(1)
p−1), A ∈ SU (2) such that pr(A) = q}

are well-defined. Moreover, we clearly have ˜A(1) = ˜A(1)
1 � ˜A(1)

p−1. Since ˜A(1) → A(1)

is a fiber bundle by Theorem 3.8, we now see that ˜A(1) → A(1) is a trivial 2-fold
covering. This implies that

secat(˜A(1) → A(1)) = 1.

Theorem 5.8 Let p ∈ Nwith p ≥ 3 and consider the lens space L(p; 1)with a metric
of constant sectional curvature. Then

6 ≤ GC(L(p; 1)) ≤ 7.

Proof M. Farber and M. Grant have shown in (Farber and Grant 2008, Corollary
15) that the topological complexity of L(p; 1) is TC(L(p; 1)) = 6, which yields
GC(L(p; 1)) ≥ TC(L(p; 1)) = 6, see (Recio-Mitter 2021, Remark 1.9). By Theorem
3.2 we have

GC(L(p; 1)) ≤ secat(˜A(1) → A(1)) + secat(˜A(p−1) → A(p−1)) + 1. (5.5)
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As argued above, we have secat(˜A(1) → A(1)) = 1. Recall that A(p−1) is a circle
bundle over L(p; 1), therefore it is 4-dimensional and we get

secat(˜A(p−1) → A(p−1)) ≤ cat(A(p−1)) ≤ 5

by (Albert 1966, Theorem 18) and (Cornea et al. 2003, Theorem 1.50). Thus, the
inequality (5.5) gives the upper bound GC(L(p; 1)) ≤ 7. ��
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