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Abstract
PIK3CA mutations are amongst the most prevalent somatic mutations in cancer and are associated with resistance to first-
line treatment along with low survival rates in a variety of malignancies. There is evidence that patients carrying PIK3CA 
mutations may benefit from treatment with acetylsalicylic acid, commonly known as aspirin, particularly in the setting of 
colorectal cancer. In this regard, it has been clarified that Class IA Phosphatidylinositol 3-kinases (PI3K), whose catalytic 
subunit p110α is encoded by the PIK3CA gene, are involved in signal transduction that regulates cell cycle, cell growth, and 
metabolism and, if disturbed, induces carcinogenic effects. Although PI3K is associated with pro-inflammatory cyclooxyge-
nase-2 (COX-2) expression and signaling, and COX-2 is among the best-studied targets of aspirin, the mechanisms behind 
this clinically relevant phenomenon are still unclear. Indeed, there is further evidence that the protective, anti-carcinogenic 
effect of aspirin in this setting may be mediated in a COX-independent manner. However, until now the understanding of 
aspirin’s prostaglandin-independent mode of action is poor. This review will provide an overview of the current literature on 
this topic and aims to analyze possible mechanisms and targets behind the aspirin sensitivity of PIK3CA-mutated cancers.
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Abbreviations
4E-BP1  Eukaryotic translation initiation factor 

4E-binding protein 1
5-FU  5-Fluorouracil
ABD  Adaptor binding domain
AMPK  Adenosine monophosphate–activated 

protein kinase
APC  Adenomatous polyposis coli
ASA  Acetylsalicylic acid
ASCT2  Alanine, serine, cysteine transporter 

2, Neutral amino acid transporter B(0) 
(= SLC1A5)

ATF4  Activating transcription factor 4
AT-L  Aspirin-triggered lipoxins
ATP  Adenosine triphosphate
AT-Rv  Aspirin-triggered resolvins

BAD  Bcl-2 associated death promoter
BH domain  Breakpoint-cluster region homology 

domain (= RhoGAP domain)
BIM  Bcl-2-like protein
circRNA  Circular RNA
COX  Cyclooxygenases
CRC   Colorectal cancer
CSC  Cancer stem cell
DVL  Dishevelled
EGF  Epidermal growth factor
EGFR  Epidermal growth factor receptor
eIF4E  Eukaryotic translation initiation factor 

4E
EMT  Epithelial-mesenchymal transition
eNOS  Endothelial nitric oxide 

synthase (= NOS3)
ERK  Extracellular signal-regulated kinase
FOXO  Forkhead box protein O
G6PD  Glucose-6-phosphate dehydrogenase
GLUT1  Glucose transporter 1
GPT2  Glutamate pyruvate transaminase 2
GSK3  Glycogen synthase kinase 3
HETE  Hydroxyeicosatetraenoic acid
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HIF-1α  Hypoxia-inducible factor 1 α
HK2  Hexokinase 2
I/n/cSH2  Inter/N-terminal/C-terminal Src homol-

ogy 2 domain
IFN-γ  Interferon-γ
IGF  Insulin-like growth factor
IGFR  Insulin-like growth factor 1 receptor
IκB  IκB protein
IκBα  NFKB inhibitor alpha
IKK-β  IκB kinase-beta
ILβ / 6  Interleukin 1β / 6
iNOS  Inducible nitric oxide synthase 

(= NOS2)
ISC  Intestinal stem cell
KRAS  Kirsten rat sarcoma virus
lncRNA  Long noncoding RNA
LPS  Lipopolysaccharide
mCRC   Metastatic colorectal cancer
MACC1  Metastasis-associated colon cancer 1
MEK  Mitogen-activated protein kinase kinase
miRNA  Micro RNA
mRNA  Messenger RNA
mTOR  Mechanistic target of rapamycin kinase
mTORC1 / 2  Mechanistic target of rapamycin com-

plex 1 / 2
ncRNA  Noncoding RNA
NF-κB  Nuclear factor κ B
NO  Nitric oxide
NOS2  Nitric oxide synthase 2 (= iNOS)
NSAID  Non-steroidal anti-inflammatory drug
PDK1  Phosphoinositide-dependent kinase 1
PET  Positron emission tomography
PGE2  Prostaglandin  E2
PGF2α  Prostaglandin  F2α
PGH2  Prostaglandin  H2
PGHS  Prostaglandin G/H synthase (= COX)
PGI2  Prostacyclin
PI3K  Phosphatidylinositol 3-kinase
PIP2  Phosphatidylinositol 4,5-bisphosphate
PIP3  Phosphatidylinositol 3,4,5-trisphosphate
PKB  Protein kinase B (= Akt)
PP2A  Protein phosphatase 2A
PPP  Pentose phosphate pathway
PtdIns(3,4,5)P3  Phosphatidylinositol 3,4,5-trisphosphate 

(=  PIP3)
PtdIns(4,5)P2  Phosphatidylinositol 4,5-bisphosphate 

(=  PIP2)
PTEN  Phosphatase and tensin homolog
PTGIS  Prostacyclin synthase
PTGS  Prostaglandin-endoperoxide synthase 

(= COX)
Ras  Rat sarcoma viral oncogene
RBD  Ras-binding domain

RHEB  Ras homolog enriched in brain
RhoGAP  Rho-GTPase-activating protein domain 

(= BH domain)
RSK2  Ribosomal S6 kinase 2
RTK  Receptor tyrosine kinase
S6K  Ribosomal protein S6 kinase
SGK1  Serum and glucocorticoid-regulated 

kinase 1
SH3  Src homology 3 domain
SLC1A5  Solute carrier family 1 member 5 

(= ASCT2), Neutral amino acid trans-
porter B(0)

TBXAS1  Thromboxane A synthase 1
TNFα  Tumor necrosis factor α
TCA cycle  Tricarboxylic acid cycle
TP53  Tumor protein 53
TSC1/2  Tuberous sclerosis 1/2
TxA2  Thromboxane  A2
UTR   Untranslated region
VEGF-A  Vascular endothelial growth factor A

Introduction

According to the GLOBOCAN 2020 study, cancer is a 
leading cause of death in industrialized countries and in 
most developing countries, accounting for nearly 10 mil-
lion deaths worldwide [1]. For instance, according to recent 
estimates, every third death in Germany among people over 
the age of 45 is cancer-related. In addition, 1.52 million peo-
ple suffering from cancer had to be treated in hospital in 
2018 [2]. Colorectal cancer (CRC) is the third most common 
and the second most deadly cancer being responsible for 
approximately 10% of all cancer-related deaths worldwide 
[1, 3]. Known risk factors for the development of colorec-
tal carcinoma include familial and genetic predisposition, 
chronic inflammatory bowel diseases as well as a diet low in 
fiber and vegetables, obesity, and lack of exercise [4].

For the pathogenesis of colorectal carcinoma, the so-
called adenoma carcinoma-sequence is assumed. It is sup-
posed that the majority of colorectal carcinomas develop in 
a multi-stage process (sequence) of genetic changes from 
initially benign tumors (villous and tubular adenomas) of 
the colon mucosa. The malignant transformation of the cells 
occurs gradually via mutations of various tumor suppressor 
and proto-oncogenes, such as APC (adenomatous polypo-
sis coli), KRAS (kirsten rat sarcoma virus), and p53 (also 
known as TP53, tumor protein 53), and subsequently leads 
to uncontrolled proliferation of the enterocytes and promotes 
invasive growth and metastasis of the degenerated cells to 
regional and distant lymph nodes and organs, such as the 
liver and lungs [5, 6]. Thus, although CRC is associated with 
poor lifestyle choices, genetic mutations play a crucial role 
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in morbidity and mortality [7]. However, since CRC, like all 
cancers, is a collective term for a variety of different cancer 
entities, there is no one-size-fits-all solution to treatment.

The PIK3CA gene encodes for the catalytic subunit 
p110α of class IA phosphatidylinositol 3-kinases (PI3K) 
[8]. In vivo and in vitro research has shown that mutations 
within this gene are associated with poor prognosis for can-
cer patients and resistance to standard treatments such as 
chemotherapy and monoclonal antibody therapy [9–18]. 
Mutations in the PI3K/Akt/mTOR (mechanistic target of 
rapamycin kinase)-pathway are amongst the most common 
across different types of cancer, including not only CRC but 
also lung, breast, and prostate cancer [19], which have col-
lectively killed more than three million people worldwide 
in 2020 [1]. This signaling pathway is crucial in cell cycle 
regulation making it a promising target for anti-cancer drug 
therapy [20].

Aspirin is one of the most commonly used drugs world-
wide. It is widely available and affordable for a large por-
tion of the world’s population as an over-the-counter-drug. 
There are studies implying that regular intake of low-dose 
aspirin (acetylsalicylic acid, ASA; ≤ 150 mg per day) may 
have a chemopreventative and even curative effects on CRC 
[21–27]. Nonetheless, many health experts advise against 
prophylactic intake of aspirin due to possible side effects, 
such as gastrointestinal ulceration and bleeding as well 
as hemorrhagic stroke [28, 29]. In recent years, there has 
been increasing evidence that, in the context of CRC, solely 
patients with PIK3CA mutations benefit from the use of 
aspirin. Therefore, the PIK3CA mutation status has been 
suggested as a predictor for the efficacy of aspirin treat-
ment in CRC [30–34]. However, the mechanisms behind 
this clinical phenomenon are yet unclear. In the following, 
we will discuss several signal transduction pathways whose 
deregulation may be mechanistically related to the effects 
of PIK3CA mutations in cancer development and progres-
sion, as well as to particularities of aspirin action in affected 
individuals.

The PI3K/Akt/mTOR‑Pathway

PI3K are a group of lipid kinases that regulate highly con-
served signaling pathways involved in cell proliferation, adhe-
sion, motility, apoptosis, and angiogenesis, thus influencing 
important hallmarks of cancer [8, 35, 36]. PI3K phosphorylate 
phosphoinositides at the D3-position of the inositol ring lead-
ing to the generation of second messengers. Three classes of 
PI3K are known [37]. Class I PI3K are heterodimers consist-
ing of a regulatory subunit p85 and a catalytic subunit p110 
[38]. The catalytic subunit p110α of class IA PI3K is made 
up of five domains: an adaptor binding domain (ABD), a Ras 
(rat sarcoma viral oncogene)-binding domain (RBD), a C2 

domain, a helical domain and a kinase domain (Fig. 1a) [8]. 
The p85α subunit also consists of the following five domains: 
a Src homology 3 (SH3) domain, a breakpoint-cluster region 
homology (BH) domain flanked by two proline-rich regions, 
also known as Rho-GTPase binding (RhoGAP) domain [39], 
an N-terminal SH2 domain (nSH2), an inter-SH2 (iSH2) 
domain and a C-terminal SH2 domain (cSH2) (Fig. 1b). The 
nSH2 domain is responsible for the regulation of p110α and 
the iSH2 domain is required for tethering (Fig. 1c) [8, 40].

Class IA PI3K are mainly activated by growth factor recep-
tor tyrosine kinases (RTK) or associated adaptor proteins [38, 
42–44]. Ligand binding of growth factor receptors leads to 
autophosphorylation of RTK, which in turn leads to binding 
of the p85 SH2-domain to phospho-YXXM-motifs (pY; X 
indicating any amino acid) within the RTK. Upon this, the 
heterodimer dissociates and p110α are released from autoin-
hibition by p85α, revealing the catalytic site [45–47]. Follow-
ing dissociation, p110α is recruited to the plasma membrane, 
a process mediated by GTPases of the Ras family [48]. At 
the membrane p110α phosphorylates its substrate phosphati-
dylinositol 4,5-bisphosphate  (PIP2) to phosphatidylinositol 
3,4,5-trisphosphate  (PIP3) under use of adenosine triphosphate 
(ATP). The second messenger  PIP3 in turn recruits adaptor and 
effector proteins with a pleckstrin homology (PH) domain, 
including Akt (also known as protein kinase B, PKB) and 
phosphoinositide-dependent kinase 1 (PDK1), to the cellu-
lar membrane.  PIP3 is later recycled to  PIP2 by PTEN (phos-
phatase and tensin homologue, deleted on chromosome 10) 
[8]. Akt is activated by phosphorylation of T308 and S473 
by PDK1 and mTORC2 (mechanistic target of rapamycin, 
complex 2), respectively [20, 49, 50]. The serine and threo-
nine kinase Akt/PKB is a key player in the regulation of cell 
survival, proliferation, metabolism, and growth [51–53]. The 
PI3K/Akt/mTOR pathway is also connected to other pathways 
such as the Ras/Raf/mitogen-activated protein kinase kinase 
(MEK)/extracellular signal-regulated kinase (ERK), NF-κB 
(Nuclear factor κ B), Notch, and APC/Wnt/β-catenin pathways 
which are also highly involved in carcinogenesis [50, 54–62]. 
The PI3K pathway as well as the most important connecting 
pathways is depicted in Fig. 2.

Disturbances in the PI3K/Akt/mTOR pathway play a cen-
tral role in cancer, the most common deregulations being a 
loss of PTEN, amplification of the PIK3CA or AKT gene 
locus and PIK3CA mutations [63–65]. This signaling path-
way has, therefore, been suggested as a promising target for 
anti-tumor agents [20, 66].
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PIK3CA mutations in Cancer: results 
from clinical and translational studies

The PIK3CA gene encodes for the catalytic subunit p110α 
of class IA PI3K. According to The Cancer Genome Atlas 
and the US National Cancer Institute, PIK3CA is the sec-
ond most mutated gene across several major cancer types 
investigated, resulting in a mutational frequency of over 
12% (Fig. 3) [19, 73]. Mutation frequency data vary among 
studies, with the highest values observed for hepatocellu-
lar carcinoma (36%) [74], CRC (32%) [75], breast cancer 
(25–44%) [76–80], head and neck squamous cell cancers 
(19%) [81], and ovarian cancer (12%) [82].

Three so-called hotspots of mutation have been identi-
fied, accounting for more than 75% of all PIK3CA sequence 
alterations [75]: two on exon 9 (E542K and E545K) in the 
helical domain at the interface of the p85/p110α binding 
site and one on exon 20 (H1047R) in the kinase domain 

(see Fig. 1) [40, 83]. These gain-of-function-mutations lead 
to an increase in PI3K activity and are oncogenic in vivo. 
[84–86] Molecular analyses have shown that the mechanism 
by which the gain of activity is achieved depends on the 
position of the mutation [46]. All three hotspot mutations 
are single-nucleotide substitutions that result in amino acid 
sequence changes. Mutations of the helical domain (e.g. 
E545K and E542K) lead to an instability of the nSH2-helical 
domain inhibitory contact [46, 87, 88]. E545K, for example, 
induces this by opposite amino acid charge compared to the 
wildtype causing a conformational change at the nSH2-hel-
ical interface [87]. Hence, helical domain-mutated p110α is 
independent of RTK activation; however, Ras-GTP activa-
tion is still necessary. Kinase domain mutations, such as 
H1047R, however, do not require activation by Ras-GTP, 
but are dependent on activation via p85 [46, 89]. Kinase 
domain mutation H1047R also leads to a conformational 
change, which increases membrane binding of PI3K and, 

Fig. 1  Structure of PI3Kα. a  Regulatory subunit p85α 
(NM_181523.3) which is encoded by the PIK3R1 gene consists of 
five domains: a Src homology 3 (SH3) domain, a Rho-GTPase-acti-
vating protein (RhoGAP) domain, an N-terminal SH2 domain (nSH2; 
cyan), an inter-SH2 domain (iSH2; purple) and a C-terminal SH2 
domain (cSH2). The niSH2 domain is depicted in image c, the crys-
tal structures of the white domains are not yet available. b Catalytic 
subunit p110α (NM_181523.3), encoded by PIK3CA, also consists of 

five domains: an adaptor binding domain (ABD; blue), a Ras-binding 
domain (RBD; orange), a C2 domain (yellow), a helical domain (red) 
and a kinase domain (green). The most common PIK3CA mutations 
are E542K and E545K in the helical domain as well as H1047R in 
the kinase domain. c 3D-model of p110α in complex with the niSH2 
domain of p85α generated using PyMOL software (4OVU, PDB 
[41]). The domains are colored according to images a and b 
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thus, the turnover of the membrane-bound substrate  PIP2 
[88, 90] In vitro experiments have shown that helical and 
kinase domain mutations act independently of each other 
and synergistically, if combined [46].

PI3K/Akt signaling plays a major role in the develop-
ment of CRC and other cancers [91]. PIK3CA mutations 
lead to increased proliferation, reduced apoptosis, and 
tumor invasion [84]. Yet, the predictive value of PIK3CA 
mutations for clinical outcome is controversial [92]. Many 

researchers argue in favor of using it as a prognostic 
marker. For instance, activation of the PI3K/Akt pathway 
is linked to poor prognosis in CRC [11, 13, 17] and multi-
ple studies report patients with PIK3CA mutations to have 
an overall higher rate of recurrence and metastasis, as well 
as lower survival rates [11–13, 93]. Moreover, this correla-
tion was not only seen in CRC, but also in other types of 
cancer, most notably breast cancer [92].

Fig. 2  Simplified depiction of 
the PI3K/Akt/mTOR-pathway. 
PI3K is activated by RTK or 
related adaptor proteins. Upon 
activation, it dissociates and 
the catalytic subunit p110α is 
recruited to the cell membrane, 
a process in which Ras family 
GTPases assist. At the mem-
brane, it phosphorylates  PIP2 
to the second-messenger  PIP3, 
which then activates a complex 
network of signaling pathways 
via Akt/PKB and PDK1. The 
key pathways influencing cell 
growth, proliferation, and 
survival, as well as metabolism, 
gene expression, angiogenesis, 
and metastasis are displayed. 
The PI3K/Akt/mTOR-pathway 
is also connected to other sign-
aling pathways, such as the Ras/
Raf/MEK/ERK-, Notch-, and 
APC/Wnt/β-catenin-pathway. 
The most important signal-
ing effectors are highlighted 
in color. Solid lines indicate 
direct interaction whilst dashed 
lines indicate indirect interac-
tion downstream. Transcription 
factors are marked by oval 
encircling [49, 50, 53, 58–62, 
65–72]
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The greatest obstacles in cancer treatment are therapy 
resistance and tumor recurrence. Common treatments 
include surgery, pharmacotherapy, and radiation. Standard 
first-line pharmacological treatments against CRC are chem-
otherapy regimens like FOLFOX (folinic acid, 5-fluorouracil 
(5-FU), and oxaliplatin) or FOLFIRI (folinic acid, 5-FU, 
and irinotecan) in combination with monoclonal antibodies 
against growth factors or RTK such as VEGF-A (vascular 
endothelial growth factor A), e.g. bevacizumab, and EGFR 
(epidermal growth factor receptor), e.g. cetuximab or panitu-
mumab [92]. PIK3CA mutations often coincide with therapy 
resistance [9]. There are multiple reports that PIK3CA muta-
tions lead to resistance to targeted treatments against RTK 
[14, 15, 18]. This was the case in a study conducted by Per-
rone and colleagues. After sequencing samples derived from 
patients who did not respond to cetuximab treatment, they 
found that therapy resistance often coincided with KRAS 
mutation or deregulated PI3K signaling by mutations/loss 
of PIK3CA or PTEN [14]. A larger study by Sartore-Bianchi 
et al. yielded comparable results [18]. After conducting 
in vitro experiments with PIK3CA-mutated CRC cell lines, 
Jhawer et al. propose PIK3CA mutational status as a predic-
tive biomarker regarding the efficacy of anti-EGFR therapy 
[15]. Patients with PIK3CA-mutated CRC have also shown 
resistance to chemotherapy regimens like FOLFOX or FOL-
FIRI as well as radiotherapy [16, 94]. Wang et al. found 
PIK3CA mutations to be responsible for the insensitivity of 
CRC stem cells towards first-line chemotherapy regimens 
[16]. In light of this evidence, inhibitors of the PI3K/Akt/
mTOR-pathway as means of targeted treatment came into 
focus [65]. Indeed, administration of Akt and mTOR inhibi-
tors in combination with anti-EGFR treatment to PIK3CA-
mutated cell lines derived from CRC patients has shown 
promising results, at least in vitro [95]. Morii et al. also 
found that the Akt inhibitor perifosine can overcome chem-
oresistance of PIK3CA-mutated CRC cell lines to oxali-
platin and 5-FU [96]. As a result of PIK3CA-related drug 

development, the first selective inhibitor of PI3K p110α, 
alpelisib, was approved by the US Food and Drug Admin-
istration (FDA) in 2019 as treatment for PIK3CA-mutated 
hormone receptor positive/human epidermal growth factor 
receptor 2 negative (HR + /HER2-) breast cancer in combi-
nation with the estrogen receptor antagonist fulvestrant in 
post-menopausal women and men. The approval was based 
on the SOLAR 1 study, in which progression-free survival 
at a median follow-up of 20 months nearly doubled (11 
vs. 5.7 months) for patients harboring PIK3CA mutations 
receiving the drug compared to the placebo control group. 
In contrast, patients without PIK3CA-mutated cancer did not 
benefit from alpelisib treatment [97, 98]. In addition, clinical 
trials have been set up to study whether patients suffering 
from metastatic colorectal cancer (mCRC) will benefit from 
alpelisib treatment. For instance, preliminary results from 
102 patients enrolled in a combined phase 1b/randomised 
phase 2 clinical trial (NCT01719380) investigating the 
safety and efficacy of the BRAF inhibitor encorafenib and 
the monoclonal EGFR antibody cetuximab with or without 
alpelisib in patients suffering from advanced BRAF-mutant 
mCRC indicated that these patients may benefit from thera-
peutic intervention with alpelisib. Analysis of progression-
free survival comparing the triplet to the doublet after 73 
events showed a hazard ratio (95% confidence interval) of 
0.69 (0.43–1.11; P = 0.064) with an overall response rate 
of 27% (16–41%) and 22% (12–36%), respectively [99]. 
A 2021 preclinical in vitro trial conducted by Aslam et al. 
showed that PIK3CA-mutated colon carcinoma cell lines are 
especially sensitive to simultaneous treatment with alpelisib 
and cyclin-dependent kinase 4 and 6 inhibitor ribociclib 
compared to wild-type cells [100]. Currently, the ALCAP 
clinical trial is underway to evaluate the benefits of com-
bined alpelisib and capecitabine, a 5-FU prodrug, treatment 
in patients with PIK3CA-mutated mCRC (NCT04753203) 
[101]. Also, there is an ongoing study examining the efficacy 
of PI3K inhibitor MEN1611 in combination with cetuximab, 
also concerning PIK3CA-mutated mCRC (C-PRECISE-01, 
NCT04495621) [102].

Pharmacology of aspirin (acetylsalicylic 
acid)

History of aspirin

Aspirin (acetylsalicylic acid, ASA) is one of the most widely 
distributed drugs worldwide. As a non-opioid analgesic, it 
is widely used to treat pain, fever, and also inflammation. 
Indeed, for centuries salicylates found in plants, such as the 
willow or meadowsweet, have been used as remedies against 
the ailments mentioned above [103, 104]. ASA was first 
synthesized by Felix Hoffmann and Arthur Eichengrün in 

Fig. 3  Distribution of the most frequently mutated genes in cancer. 
According to the US National Cancer Institute PIK3CA mutations are 
the second most common mutation in cancer (12.2% of cases), fol-
lowing TP53 mutations [19]
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1897 and subsequently distributed by Bayer under the name 
“Aspirin”. Being the first non-steroidal anti-inflammatory 
drug (NSAID), it quickly became popular as a “wonder 
drug”. Its popularity has, albeit, somewhat declined since 
due to common side-effects, such as gastrointestinal ulcera-
tion and bleeding, and the availability of other NSAIDs and 
acetaminophen (paracetamol) [103]. Although, first intended 
as a prodrug to avoid the gastric irritation often caused by 
salicylic acid, the antithrombotic properties of aspirin were 
discovered in the late 1960s and, thus, widespread use as an 
antiplatelet agent for the prevention and treatment of throm-
boembolic complications in the setting of cardiovascular dis-
ease has since expanded the prescribing scope even further 
[103, 105, 106]. Accordingly, the WHO has listed aspirin as 
an essential medicine since 1977 [105].

Safety of aspirin

Even though aspirin is considered a relatively safe drug, 
there are risks associated with its intake, especially if taken 
long-term [107]. The most common adverse effects of aspi-
rin are an increased risk of bleeding and injuries to the gas-
troduodenal mucosa [28, 29, 107, 108]. While fatal bleed-
ing incidents are rare, life-threatening complications, such 
as intracranial and gastrointestinal hemorrhage, do occur 
and should be considered [28, 29, 109]. Gastrointestinal 
side-effects are the most frequent; these range from dyspep-
sia to gastrointestinal bleeding and peptic ulcers [28, 29, 
110–112]. Particular caution should be heeded when pre-
scribing long-term aspirin use to the elderly (≥ 75 years), a 
group that also has an increased risk of developing malig-
nant colorectal tumors [4, 108]. Since most trials regarding 
the safety of aspirin were conducted in middle-aged patients, 
risk assessment for the elderly is difficult [28, 108]. The 
ASPREE trial (Aspirin in Reducing Events in the Elderly), 
conducted from 2010 to 2014 in the USA and Australia, 
found that participants (ages 70 and older; ≥ 65 years for 
Hispanic and black participants in the US) taking 100 mg 
of aspirin daily actually had higher all-cause mortality than 
those receiving placebo. Most deaths in the aspirin group 
were attributed to cancer, mainly of the gastrointestinal 
tract (including CRC) [113]. Therefore, health experts only 
recommend prophylactic long-term use of low-dose aspirin 
(min. 10 years; ≤ 150 mg) for patients aged 50–69 with a 
life expectancy of at least 10 years and an increased risk of 
developing CRC or cardiovascular disease [28, 29].

Pharmacokinetics of aspirin

Following oral ingestion, aspirin is absorbed from the gastro-
intestinal tract in its unhydrolyzed form by passive diffusion 
[107, 114, 115]. Aspirin is absorbed from the gastrointesti-
nal tract, with the main areas of absorption being the small 

intestine and, to a lesser extent, the stomach [115–117]. 
However, the quantity of non-absorbed aspirin reaching the 
colon and rectum is unclear, raising the question of whether 
colorectal cancer or epithelial cells are exposed to aspirin 
that passes through the colonic lumen or exclusively to 
aspirin that circulates in the bloodstream after absorption in 
more proximal portions of the intestine.

After absorption, it is cleaved by esterases into an acetyl 
moiety and its primary metabolite salicylic acid by cells 
of the gut mucosa and (primarily) the liver following first-
order kinetics [107, 114, 115, 118, 119]. Free acetate yielded 
by hydrolysis can enter the tricarboxylic acid (TCA) cycle 
[114]. Plasma levels of unhydrolyzed aspirin rise quickly 
after absorption and peak after about 15–20 min. Thereafter, 
they decrease rapidly, while the salicylate levels increase 
[120]. According to Needs et al. the peroral bioavailability of 
aspirin is approximately 70%, indicating that about 70% of a 
perorally administered aspirin dose enters the systemic cir-
culation unhydrolyzed [115]. However, the absorption rate 
depends on the kind of formulation; aqueous solutions or 
fast-dissolving formulations lead to quicker absorption from 
the gastrointestinal tract and higher plasma levels of non-
metabolized aspirin [107, 121]. In the blood stream, aspirin, 
as well as salicylate, is bound to proteins, mainly albumin, 
and distributed throughout the body [107, 114, 122, 123].

Mechanism of action of aspirin

Aspirin’s main mechanism of action is the acetylation of 
proteins, which is entirely non-specific [124, 125]. Examples 
include the acetylation of human serum albumin, resulting in 
altered protein function due to conformational changes [124, 
126]. Additionally, aspirin has shown to acetylate tumor sup-
pressor protein p53 [19, 124, 127]. There are also accounts 
of aspirin-acetylating histones, for instance lysine residues 
such as K56 and K122 on histone H3 [128, 129]. In this 
context, Wang et al. identified a total of 523 proteins to be 
targets of aspirin acetylation in HCT116 CRC cells, amongst 
them mTOR and others affected by the PI3K pathway, such 
as eIF2 and eIF4A1. In further experiments they demon-
strated that aspirin does indeed suppress mTOR function as 
evidenced by a reduction in phosphorylation (Ser235/236) of 
the mTORC1 target S6 in HCT116 cells and mouse embry-
onic fibroblasts [130]. Nevertheless, the causality between 
specific acetylation of mTOR and mTOR inactivation needs 
to be verified in future experimental analyses by exchange 
mutations of the detected acetylated amino acid residues.

The most well-known effect of aspirin, to date, is its 
influence on the prostanoid system which was discovered 
by John Vane in 1971 [131]. Prostanoids are a class of lipid 
mediators that can be divided into prostaglandins and throm-
boxanes. They derive from the unsaturated fatty acid arachi-
donic acid which is released from the plasma membrane by 
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phospholipases  A2 [132, 133]. Cyclooxygenases (COX), also 
known as prostaglandin G/H synthases (PGHS) or prosta-
glandin-endoperoxide synthases (PTGS), catalyze the trans-
formation of arachidonic acid into prostaglandin  H2  (PGH2) 
which is a precursor prostanoid [132–134]. COX exist in two 
isoforms, COX-1 and COX-2. Commonly, COX-1 is seen as 
a constitutive form responsible for the maintenance of the 
gastroduodenal mucosa and tissue homeostasis in general, 
whereas COX-2 has been identified as an inducible form 
in most cell types which is mainly expressed in response 
to inflammation [132], although this static role allocation 
has been questioned [135]. Aspirin covalently acetylates 
COX-1 at S530 and COX-2 at S516, thereby irreversibly 
inhibiting the production of  PGH2 [107, 136]. The irrevers-
ibility of COX inhibition distinguishes aspirin from other 
“traditional” NSAIDs, such as ibuprofen, which reversibly 
inhibit the activity of COX-1 and COX-2 through competi-
tive antagonism with arachidonic acid at the active site of the 
enzymes [107, 137, 138]. The duration of aspirin’s effect is, 
therefore, also not limited by its half-life but by the turnover 
rate of the target protein and, in the case of therapeutic use 
of aspirin as an antiplatelet agent, by the platelet lifespan 
[107]. Although aspirin has the potential to inhibit both 
COX isoforms, it is more selective towards COX-1, with 
 IC50 values at isolated enzymes of 5 µg/mL (COX-1) and 
210 µg/mL (COX-2), respectively [139, 140]. In contrast, 
most NSAIDs are predominantly nonselective in inhibiting 
COX-1 and COX-2, although agents such as meloxicam, 
nimesulide, and diclofenac have been reported to possess a 
18- to 29-fold greater potency towards COX-2 in vitro [138, 
141]. In addition, selective COX-2 inhibitors act preferen-
tially on COX-2 and, therefore, appear to differ from nonse-
lective COX inhibitors with regard to the spectrum of side 
effects. As such, they are less likely to cause gastric and 
duodenal ulceration, whereas they increase the incidence of 
thromboembolic events and renovascular hypertension, the 
latter two side effects being most likely due to a reduction 
in the bioavailability of vascular endothelial (vasculoprotec-
tive) prostacyclin with, however, preserved thromboxane  A2 
 (TxA2)-dependent platelet aggregation and vasoconstriction 
[142, 143]. Indeed, COX-2-selective inhibitors rofecoxib and 
valdecoxib have been withdrawn from the market due to an 
increased risk for the occurrence of cardiovascular events, 
including myocardial infarction [143].

PGH2 formed by COX is then further processed into a 
variety of prostaglandins and thromboxane by specific syn-
thases [132, 133]. The most relevant being prostaglandin  E2 
 (PGE2),  D2,  F2α, prostacyclin  (PGI2) and  TxA2. While both 
COX isoforms lead to the biosynthesis of prostaglandins, 
 TxA2 synthesis predominantly depends on COX-1-derived 
precursors [132, 133, 144]. This dependence of  TxA2 forma-
tion on COX-1 activity is due to COX isoform-preferential 
coupling of synthases. COX-1 predominantly interacts with 

thromboxane A synthase 1 (TBXA1S) and with PGF and 
cytosolic PGE synthases, whereas COX-2 primarily couples 
to prostacyclin synthase and microsomal PGE synthases, 
the latter two being induced by cytokines and tumor pro-
motors [133]. In line with this concept, the COX-2 selec-
tive inhibitor celecoxib in doses of up to 800 mg did not 
inhibit  TxA2-induced platelet aggregation in humans, while 
reducing systemic prostacyclin biosynthesis as indicated by 
a reduction in urinary excretion of the prostacyclin metabo-
lite 2,3-dinor 6-keto-PGF1α in these individuals [142]. Pros-
tanoids act locally and mediate their effects via G-protein 
coupled receptors (GPCR) [132, 133]. They are ubiquitously 
expressed throughout the body, where they fulfill a wide 
variety of functions [134]. For example,  PGE2 is involved 
in the response to inflammation and nociception [133, 134]. 
Moreover, prostaglandins such as  PGE2 and  PGI2 contribute 
to renal blood flow and function and, in the case of  PGE2, 
also to gastroduodenal mucosa protection [145]. Prostanoids 
also play an important role in the regulation of the cardio-
vascular system, most notably  TxA2 and  PGI2.  TxA2 induces 
vasoconstriction, platelet aggregation, and endothelial dys-
function, whereas  PGI2 exerts opposite effects which is why 
it is considered a protective functional antagonist of  TxA2 
[146].

However, not only formation of the mentioned prosta-
glandins and thromboxane  A2 depend on the activity of COX 
enzymes, but also COX have been shown to be involved, for 
instance, in dihomoprostaglandin formation from adrenic 
acid [147] or in the (mostly COX-2-dependent) formation 
of the F2-isoprostane and thromboxane  A2 receptor agonist 
8-iso-PGF2α (8-iso-prostaglandin  F2α) [144, 148]. Unin-
hibited, COX also generate a small amount of the arachi-
donic acid derivates 11-(R)-hydroxyeicosatetraenoic acid 
(11-HETE), as well as a racemic mixture of 15-(S)- and 
(R)-hydroxyeicosatetraenoic acid (15-HETE), the majority 
being the (S)-enantiomer [137, 149]. Unlike other NSAIDs, 
aspirin has been reported to qualitatively alter the enzy-
matic substrate specificity and activity of COX-2. Indeed, 
aspirin-acetylated COX-2 is involved in the formation of 
aspirin-triggered specialized proresolving mediators, includ-
ing aspirin-triggered lipoxins and resolvins, which appear to 
play a role in the anti-inflammatory and anti-cancer effects 
of the drug [150, 151]. In this context, acetylation of COX-2 
does not completely inhibit its function [137, 149]. Confor-
mational changes due to the acetylation by aspirin lead to 
a shift in the stereochemistry of the product, resulting in a 
higher ratio of 15-(R)-HETE formation compared to 15-(S)-
HETE (3:1) [137, 149, 152]. Whereas 15-(S)-HETE has 
been shown to be involved in the process of inflammation, 
angiogenesis, and the pathogenesis of cancer, especially 
CRC [153–159], 15-(R)-HETE can be converted to, i.e. 15 
epi-lipoxin  A4 or  B4 by leukocyte 5-lipoxygenase in a trans-
cellular process during the interaction of COX-2-expressing 
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endothelial or epithelial cells with polymorphonuclear leu-
kocytes [151]. In a similar transcellular fashion, aspirin-
induced acetylation of COX-2 initiates the formation of so-
called aspirin-triggered resolvins from docosahexaenoic acid 
(DHA) and eicosapentaenoic acid (EPA) [151]. Resolvins 
are categorized as either D-series (derived from DHA) or 
E-series (derived from EPA) and aspirin-triggered epimers 
have been identified for each family, although compared with 
the pharmacodynamics of other NSAIDs, a unique activity 
of aspirin-acetylated COX-2 appears to be its participation in 
the formation of aspirin-triggered resolvins of the D-series 
[160]. In this regard, both resolvins and lipoxins promote 
the resolution of inflammation by stimulating phagocyto-
sis of cellular debris and counteracting the release of pro-
inflammatory cytokines without being immunosuppressive 
[151]. In addition, they have been reported to counteract 
tumor growth in animal models [161, 162]. Compared with 
native resolvins, aspirin-triggered forms (R-epimers) appear 
to resist rapid inactivation by oxidoreductases more effec-
tively and, therefore, have longer half-lives, and as shown, 
for example, for aspirin-triggered resolvin D1, they appear 
to have greater efficacy in mediating anti-inflammatory 
effects, at least in murine models of inflammation [163]. 
Interestingly, both aspirin-triggered lipoxins and resolvins 
have been attributed significant anticancer effects in pre-
clinical studies by promoting phagocytosis of apoptotic 
and necrotic tumor cells by macrophages and counteract-
ing macrophage-induced secretion of pro-inflammatory 
cytokines [164], suggesting that this pharmacodynamic 
property of aspirin may be clinically relevant with respect 
to the anti-inflammatory and anticancer effects of the drug. 
Nevertheless, it is unclear to what extent these aspirin-trig-
gered lipid mediators play a role in the aspirin sensitivity of 
PIK3CA-mutated CRC. Yet, it is conceivable that activating 
PIK3CA mutations may lead to (i) increased expression of 
COX-2 in cancer or cancer-associated endothelial cells, (ii) 
to increased interaction between polymorphonuclear leuko-
cytes and PIK3CA-mutated colorectal cancer cells, or (iii) to 
interaction-induced increased expression of 5-lipoxygenase 
in polymorphonuclear leukocytes, thereby increasing the 
efficacy of aspirin-triggered local formation of lipid media-
tors with potential anticancer activity.

Apart from the acetyl moiety, salicylic acid also interacts 
with signaling pathways independently, making aspirin one 
drug with two pharmacologically active compounds [107, 
114]. So far, it is not clear if the anti-cancer properties exhib-
ited by aspirin are mediated by acetylation or its salicylate 
moiety. The mechanism of action of salicylic acid is more 
complex and, thus, not yet well understood. Salicylate is 
also known for its anti-inflammatory effect. One possible 
explanation is its interference with COX-2 expression. There 
are multiple reports of salicylate inhibiting COX-2 mRNA 
transcription [165–167]. Xu et al. found that COX-2 mRNA 

transcription inhibition was mediated by interleukin-1β (IL-
1β), phorbol 12-myristate 13-acetate and lipopolysaccharide 
(LPS) [165]. This is consistent with a 2002 study published 
by Cieslik and colleagues. They stated that salicylate sup-
presses both COX-2 as well as inducible nitric oxide syn-
thase (iNOS) expression by reducing the binding CCAAT/
Enhancer-binding protein-β to the promoter, which is stimu-
lated by LPS and the cytokine interferon-γ (IFN-γ) [166]. 
Later, Chae et al. reported that salicylate inhibits phospho-
rylation of IκBα (NFKB inhibitor alpha) and subsequent 
degradation mediated by the cytokine TNFα (tumor necrosis 
factor α) via the ERK1/2-MAPK-pathway. The degradation 
of IκBα is necessary to activate NF-κB downstream and 
induce COX-2 expression [167]. According to Wang and 
Brecher’s 1999 study, salicylate inhibits the expression of 
iNOS by means of ERK, MAPK, IFN-γ, and TNFα [168]. 
Kiss et al. also found that salicylate decreases NF-κB activity 
via inhibition of IκB (IκB protein) [169]. As a downstream 
target of Akt NF-κB is substantially involved in the onco-
genic activity of the PI3K pathway (Fig. 2) [69, 170–172]. 
According to Hawley et al. salicylic acid also activates meta-
bolic regulator adenosine monophosphate–activated protein 
kinase (AMPK) [173]. Taken together, these data suggest 
that the salicylate moiety of aspirin may significantly coun-
teract the PIK3CA mutation-triggered overactivity of several 
relevant effectors of the PIK3 pathway, e.g., by inhibiting 
NF-κB-dependent signal transduction and by downregulat-
ing COX-2 expression, thus possibly contributing to the ben-
eficial effects of aspirin on PIK3CA-mutant CRC.

Aspirin sensitivity of PIK3CA‑mutated CRC 

There is substantial evidence that aspirin is effective in the 
prevention and treatment of CRC. For example, in a rand-
omized controlled trial involving over 1,000 patients, Baron 
et al. found that low-dose aspirin (81 mg) had a chemopre-
ventive effect on colorectal adenoma [25]. Also, in a long-
term cohort study performed in Sweden over a period of 
more than 20 years, aspirin use was associated with a 35% 
reduced risk of CRC [174]. In a meta-analysis that included 
seven trials each on aspirin therapy after the diagnosis of 
CRC and seven trials on aspirin use before the diagnosis 
of CRC, Peiwei Li and colleagues concluded that aspirin is 
effective for the treatment of CRC after diagnosis but not for 
primary prevention in people at high risk of developing CRC 
[27]. Interestingly, an overall survival benefit associated with 
aspirin use after diagnosis was observed in both colon and 
rectal cancers, although this survival benefit of aspirin use 
after diagnosis appeared to be limited to patients with COX-
2-positive as well as PIK3CA-mutant tumors. In agreement 
with this study, Bastiaannet et al. also found aspirin to lower 
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the risk of mortality in CRC patients post-diagnosis [175]. 
Also, in gastrointestinal tract cancers, prolonged patient 
survival has been observed with low-dose aspirin [176]. 
Similar observations have been made in non-gastrointestinal 
malignancies, such as head and neck, breast and lung cancer 
[177–182]. Thus, these findings together suggest that aspirin 
may exhibit broad anti-cancerogenic effects which are not 
limited to CRC.

Different landmark studies suggest that the effect of aspi-
rin on cancer is limited to patients with PIK3CA-mutated 
tumors [30–33]. This was the case in an observational study 
of over 900 CRC patients published in 2012 by Liao et al. in 
which aspirin use significantly improved survival in patients 
with PIK3CA-mutant CRC, whereas survival in patients 
with wild-type PIK3CA CRC was not improved [30]. Zum-
walt et al. compared the effect of aspirin on various colon 
carcinoma cell lines and found that aspirin treatment of 
PIK3CA-mutant colon cancer cells leads to a downregula-
tion of cell-cycle-related genes and reduced tumor growth in 
mouse xenografts [33]. Gu et al. confirmed these findings, 
observing that aspirin induces apoptosis and leads to  G0/G1 
cell-cycle arrest only in colon carcinoma cell lines carrying 
PIK3CA-mutations [32]. Nonetheless, the exact mechanism 
behind the aspirin sensitivity of PIK3CA-mutated tumors 
remains unclear. In the following, we present the current 
knowledge on this topic and discuss possible mechanisms 
by which aspirin may inhibit tumorigenesis related to PI3K 
signaling.

COX‑2‑related aspirin‑sensitivity of cancer cells

The most obvious answer would be that this phenomenon 
is related to inhibition of COX enzymes, as they are by far 
the best researched targets of aspirin [183]. The COX-2/
PGE2 signaling axis contributes to most hallmarks of cancer, 
promoting cancer-associated angiogenesis as well as pro-
liferation, survival, migration, and invasion of cancer cells 
[184]. Also, COX-2 is induced by inflammation, a process 
strongly linked to the development of cancer, CRC in par-
ticular [132, 185, 186]. Colorectal tumors often display 
elevated COX-2 expression levels as seen in both patient-
derived tissues and animal models [187–189]. Importantly, 
overexpression of COX-2 is associated with poor survival 
of CRC patients [190], whereas selective COX-2 inhibition 
in colon cancer cells has shown to suppress tumor growth 
and to induce apoptosis as well as cell-cycle arrest [191, 
192]. With regard to the clinical relevance of COX-2 in the 
pathogenesis of CRC, Veettil and colleagues published a 
systematic review in 2019 concluding that the benefit of 
CRC chemoprevention with COX-2-inhibitor celecoxib 
outweighed the risk of cardiovascular side effects after 
reviewing three randomized controlled trials and three post-
trial studies which compared the incidence of recurrence 

of colorectal adenomas in patients given celecoxib at vary-
ing doses or placebo [193]. In line with these findings, Val-
verde et al. found that combined celecoxib and cetuximab 
treatment inhibited growth and induced apoptosis in non-
KRAS-mutated CRC cells in vitro and in mouse xenografts 
via impairment of the EGFR/RAS/β-catenin/FOXM1 sign-
aling axis [194]. Also, other NSAIDs like sulindac have 
proven to induce apoptosis in colon cancer cells, thereby 
pointing to a class effect of COX inhibitors in CRC treat-
ment or prevention that may be attributable to the ability 
of these drugs to inhibit COX-2 function [188, 195]. There 
is evidence from non-CRC cancers indicating that COX-2 
signaling is related to PI3K signaling. For instance, Uddin 
et al. observed that COX-2 inhibition via aspirin, a selective 
COX-2 inhibitor (NS398), and gene silencing by siRNA led 
to a reduction of Akt phosphorylation, which resulted in cell 
cycle inhibition and apoptosis of ovarian cancer xenografts 
in mice [196]. Further, in a study published by Tury and col-
leagues, the COX-2-selective inhibitor celecoxib was effec-
tive against PIK3CA-mutated patient-derived breast cancer 
xenografts, but not against PIK3CA-wildtype xenografts 
[197]. In CRC, Liao et al. found aspirin was most effective 
on tumors with both PIK3CA mutation and COX-2 expres-
sion, but the sample size in this study was too small to draw 
reliable conclusions [30]. Indeed, PI3K has been identified 
as a downstream target of COX-2/PGE2 but may also be 
involved in the regulation of COX-2 expression in the con-
text of a positive feedback loop [198–205]. In this regard, 
 PGE2-driven EP4 activation and a subsequent EP4-related 
activation of the GRK/β-arrestin/Src/PI3K/GSK3 pathway 
has been proposed, leading, for example, to nuclear trans-
location of β-catenin and β-catenin-dependent gene expres-
sion [206]. Moreover, an EP4-selective agonist activated 
the PI3K/ERK pathway in colon carcinoma cells possibly 
via EGFR transactivation and thereby rescued proliferation 
suppressed by indomethacin or COX-2 inhibitors [203]. In 
this context,  PGE2 was shown to induce EGFR transacti-
vation and subsequent PI3K signaling via EP4, β-arrestin 
and c-Src in colon cancer cells [202] In addition,  PGE2 via 
EP2 and EP4 has also shown to modify the activity of other 
growth factor receptors, such as insulin-like growth fac-
tor 1 receptor (IGFR) [207]. Interestingly, COX-2 mRNA 
expression and  PGE2 synthesis may also be regulated by 
PI3K via insulin-like growth factors (IGF) 1 and 2, as seen 
in in vitro experiments with Caco-2 colon carcinoma cells. 
Here, both the inhibition of PI3K and antagonism of the 
receptor suppressed COX-2 mRNA transcription [200]. 
Interestingly, and as addressed in the section on aspirin 
pharmacodynamics, aspirin can alter the enzymatic activity 
of COX-2 through acetylation such that it generates precur-
sors of aspirin-triggered forms (R-epimers) of lipoxins and 
resolvins that arise from these precursor molecules in trans-
cellular processes of COX-2-expressing epithelial or cancer 
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cells and polymorphonuclear leukocytes [151]. These lipid 
mediators have been shown to elicit both anti-inflammatory 
and anti-cancer effects in preclinical models, the latter pre-
sumably by stimulating phagocytosis of tumor cell debris 
by macrophages and by inhibiting macrophage-induced 
inflammation [151]. Although the exact background of the 
generation of aspirin-triggered lipoxins and resolvins in 
PIK3CA-mutated and COX-2-overexpressing CRC remains 
unclear to date, it can, therefore, be postulated that aspirin 
mediates enhanced generation of these lipid mediators in the 
presence of increased COX-2 expression and activity, which 
in turn may contribute to the antitumor effects of the drug.

However, it must also be noted that there are clinical data 
that contradict the relevance of COX-2 as an important target 
of aspirin in PIK3CA-mutated CRC. For instance, in a study 
by Gray et al., aspirin intake led to increased patient survival 
in colon cancers with increased COX-2 expression, but the 
PIK3CA mutational status determined was not related to 
this effect [208]. Moreover and interestingly, in a trial by 
Enric Domingo and colleagues published in 2013, patients 
with PIK3CA-mutated CRC benefited from aspirin, albeit 
no improvement was seen in the patients being treated with 
the COX-2-inhibitor rofecoxib [34]. In this context, it must 
be noted that in most studies PIK3CA mutations were not 
differentiated as to whether they were located in the helical 
or in the kinase domain. This could explain in part contradic-
tory study outcomes. For example, as described above, the 
COX-2/PGE2/EP4 signaling axis is able to increase PI3K 
activity via RTK (trans)activation, an effect that is unlikely 
to have a relevant impact on downstream signaling events 
with PIK3CA mutations in the helical domain because of 
uncoupling of these mutants from RTK signaling. Off note, 
this is also the reason why PIK3CA mutations in the heli-
cal domain are discussed as a cause of resistance to, for 
example, EGFR inhibitor therapy and are being investigated 
in clinical trials (C-PRECISE-01, NCT04495621) as a tar-
get in such CRC entities [102]. Nonetheless, aspirin could 
also elicit anti-tumor effects in these cancer entities via 
downregulation of COX-2 mRNA expression (potentially 
via the salicylate moiety of the drug) and a shift in COX-2 
enzymatic activity (acetylation by aspirin). Thus, the results 
presented in this section collectively suggest that COX-2 is 
a relevant target for aspirin sensitivity of PIK3CA-mutated 
CRC, as both PIK3CA activity and COX-2 expression and 
activity may be amplified as part of a positive feedback 
loop. Contributing to the clinical phenomenon of aspirin 
sensitivity of PIK3CA-mutated CRC could also be increased 
formation of aspirin-triggered lipoxins and resolvins in 
COX-2-overexpressing tumors, which may also provide a 
promising explanation for different clinical outcomes of 
aspirin- and selective COX-2 inhibitor-treated patients suf-
fering from PIK3CA-mutated CRC. However, given the 

conflicting clinical and experimental results in this context, 
further research is needed to clarify the exact mechanistic 
interconnections.

COX‑1‑ and  TXA2‑related mechanisms

Aspirin is an NSAID with clinically relevant preference for 
COX-1 and it has the potential to inhibit COX-2 at higher 
doses [139, 140, 183]. In this context, it seems plausible 
that the effect of aspirin on PIK3CA-mutated CRC is medi-
ated preferentially by COX-1 or  TxA2, the latter being a 
prostanoid whose generation depends predominantly on 
COX-1-mediated  PGH2 biosynthesis [132, 133]. Angio-
genesis, as well as platelet aggregation play an important 
role in tumor growth and metastasis, both are influenced by 
 TxA2 [209–213]. Thus, these processes could be inhibited 
by aspirin’s anti-platelet properties and in particular through 
a reduction in platelet  TxA2 synthesis, which appears to be 
essential to prepare metastatic intravascular niches at least 
in preclinical cancer models in vivo [214]. The inhibition of 
platelet-activated metastasis by aspirin could be mediated by 
inhibition of Akt, as suggested by a preclinical in vivo study 
on breast cancer cells [215]. Here, platelets were shown to 
promote metastasis of these cells through activation of the 
Akt signaling pathway and aspirin treatment of platelets 
resulted in inhibition of Akt and subsequent inhibition of 
pro-metastatic IL-8 production. Also, Li et al. proposed 
that PI3K is critical for platelet secretion as they were able 
to stimulate PI3K-dependent phosphorylation of Akt after 
activation of the thromboxane  A2 receptor using the  TxA2 
mimetic U46619 [216]. COX-1 activity (and subsequent 
 TxA2 formation) may also be involved in the development of 
CRC as experiments regarding azoxymethane-induced CRC 
in rats suggest [217, 218]. In line with these findings, Wu 
et al. observed that the selective COX-1 inhibitor SC-560 
induced cell-cycle arrest and macroautophagy in colon can-
cer cells [219]. A study by Sakai et al. reported that  TxA2 
levels were upregulated in human colorectal carcinomas and 
CRC cell lines due to overexpression of TBXA1S, resulting 
in increased cell proliferation [220]. In addition, COX-1 can 
ease symptoms of colitis by upregulating β-arrestin via  PGE2 
and PI3K/Akt, indicating that the activity of these signaling 
effectors upstream may also be influenced by COX-1 in the 
colonic epithelium [221]. Taken together, COX-1 signaling 
in cancer and its inducible mechanisms have long been over-
looked. Therefore, to fully understand the development of 
CRC and the beneficial effects of aspirin in PIK3CA-mutated 
CRC in this context, further research in this area is essential. 
However, based on current knowledge, COX-1 appears to 
act similarly to COX-2 upstream of PI3K and therefore the 
effect of aspirin on COX-1 activity is unlikely to explain 
the particular effects of the drug on PIK3CA-mutated CRC.
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NF‑κB signaling

Another possibility for the aspirin-sensitivity of PIK3CA-
mutated CRC could be explained by prostaglandin-inde-
pendent mechanisms. The NF-κB pathway is involved in 
the response to inflammation and infection, but also cancer 
development. A study by Martha Slattery and colleagues 
in 2018 showed that the NF-κB signaling pathway is dys-
regulated in CRC, as are p53 and Wnt/β-catenin signaling 
[172, 222]. NF-κB and β-catenin are involved in angiogen-
esis and metastasis in CRC [170]. Interestingly, both aspirin 
and salicylate were identified as specific inhibitors of IKK-β 
(IκB kinase-beta) activity in vitro and in vivo, an effect that 
depended on direct binding of the drugs to IKK-β to interfere 
with ATP binding [223]. Indeed, Jinbo Fu and colleagues 
demonstrated that aspirin suppressed chemoresistance to 
5-FU in 5-FU-resistant CRC cell lines SW620 and SW480 
by abrogating 5-FU-induced NF-κB activation, thereby 
enhancing the antitumor activity of 5-FU [224]. Also, salicy-
late treatment has been suggested to reduce chemotherapy 
resistance by inhibiting NF-κB activity [225] and it may 
inhibit Mucin-1 (MUC1)-mediated tumor migration and 
invasion by inhibiting Akt [226]. Thus, these results sug-
gest that aspirin-mediated inhibition of tumor pathogenesis 
may also involve modulation of atypical signaling pathways 
not previously associated with aspirin pharmacodynamics. 
NF-κB signaling is not only related to PI3K/Akt, but also 
the Wnt/β-catenin pathway, and their connection is neces-
sary to fully understand PI3K signaling in CRC and aspirin 
sensitivity of PIK3CA-mutant CRC entities.

Wnt and β‑catenin‑dependent signaling

The canonical Wnt/β-catenin pathway is one of the most 
crucial pathways in the development of CRC [227, 228]. It 
drives cell cycle progression and maintains the undifferenti-
ated state of intestinal stem cells [227]. Pathway activation 
starts with a glycoprotein of the Wnt family extracellularly 
binding to the N-terminal domain of a G-protein coupled 
receptor of the Frizzled family. This activates Dishevelled 
(DVL), which is then translocated to the plasma membrane. 
In turn, DVL recruits the destruction complex consisting of 
APC, glycogen synthase kinase (GSK) 3β, Axin and casein 
kinase 1, inactivating it by removal from the cytosol [229]. 
In the cytosol, the destruction complex marks the protein 
β-catenin for ubiquitination and subsequent degradation by 
the proteasome [228]. However, unhindered by the com-
plex, β-catenin relocates to the nucleus where it enables 
the transcription of various proteins responsible for cell 
differentiation, proliferation, and migration, for example, 
the proto-oncogene c-myc [230]. Wnt/β-catenin signaling 
is important for the homeostasis of the intestinal epithelium 

[231]. In complex with E-cadherin, β-catenin forms cell–cell 
junctions regulating epithelial cell adhesion and polarity. 
Deregulation may lead to epithelial-mesenchymal transi-
tion (EMT) [232]. EMT refers to the process of transition 
of epithelial cells into cells with mesenchymal properties, in 
which cells lose cell polarity and cell–cell adhesion to adopt 
a migratory and invasive phenotype, often considered the 
first step towards metastasis [233].

It is believed that the majority of CRCs arise via the ade-
noma carcinoma-sequence, a series of mutational events 
leading to the gradual transformation of benign polyps into 
malignant carcinomas [5, 234]. Alterations in the Wnt/β-
catenin pathway, especially APC mutations, play a central 
role in this process [5, 235]. The Wnt/β-catenin and PI3K 
pathways are closely connected. One example is the con-
nection via GSK3β, a substrate of Akt and member of the 
β-catenin destruction complex [58, 235]. It is phosphoryl-
ated by Akt at S9 leading to its inactivation [236]. Albeit, 
there is no evidence that phosphorylation of GSK3β by Akt 
directly influences the activity of the Wnt pathway [237, 
238]. Further, Zeng et al. could show that tuberous sclero-
sis (TSC) 2 deletion and subsequent mTORC1 activation 
inhibits Wnt signaling by regulating Frizzled protein lev-
els in a DVL-dependent way [239]. This is an interesting 
finding in the context of PIK3CA-mutated CRC because 
mTORC1 is a downstream target of PI3K-Akt by inhibit-
ing TSC1/2 (see Fig. 2) and because there is evidence for 
aspirin-mediated direct acetylation and inactivation of 
mTOR and the mTORC1 complex [130, 240]. Also, a 2007 
publication by Fang et al. suggests that Akt directly phos-
phorylates β-catenin at S552 resulting in dissociation of cell 
junctions and accumulation of β-catenin in the cytosol and 
the nucleus of human epidermoid carcinoma cells [241]. In 
accordance, Steffen Ormanns and colleagues later found that 
β-catenin transcriptional activity depended on PI3K activ-
ity, presumably due to Akt phosphorylation. In this context, 
PI3K inhibition did not affect the subcellular localization 
of β-catenin but impaired the binding of β-catenin to Wnt 
target gene promoters and decreased the expression of Wnt 
target genes [242]. Apart from this, it also should be noted 
that both pathways are also connected to NF-κB signaling 
(see Fig. 2 and previous section) [69, 243, 244].

Interestingly, there is evidence that sensitivity of cancer 
cells to aspirin is mediated by Wnt and β-catenin signaling. 
In an in vitro approach to investigate the influence of aspi-
rin on Wnt/β-catenin signaling in CRC, Bos and colleagues 
demonstrated that aspirin treatment induced a decreased 
expression of Wnt target genes and increased phosphoryla-
tion of β-catenin in DLD-1 and SW480 colon carcinoma 
cell lines. Phosphorylation of β-catenin most likely led 
to its ubiquitination, as cytosolic β-catenin subsequently 
decreased. They, therefore, assumed that this effect is medi-
ated by protein phosphatase 2A (PP2A), a negative regulator 
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of Akt [245, 246]. PP2A is critically involved in cell–cell 
adhesion and EMT by stabilizing the β-catenin/E-cadherin 
complex. Interestingly, the findings of Bos et al. are consist-
ent with two studies published in recent years. In 2019 Jin 
and Wuo observed that aspirin inhibits Wnt-mediated EMT 
in SW480 colon carcinoma cells [247]. In addition, a paper 
published in 2021 by Dunbar et al. showed that aspirin could 
reverse a Wnt-induced stem-like phenotype in intestinal 
organoids derived from mouse and human organoids lacking 
APC. In addition, motility and invasion of colon cancer cells 
were reduced, effects mediated via the induction of Dick-
kopf-1, a Wnt-antagonist, through aspirin treatment [248]. 
Taken together, these data suggest that beneficial effects of 
aspirin on CRC pathogenesis may be mediated, at least in 
part, by inhibition of Wnt/β-catenin signaling. However, it is 
unclear to what extent the inhibitory effects of aspirin might 
be of particular relevance in PIK3CA-mutated CRC in this 
context. Additional future studies are therefore needed to 
elucidate this issue.

Cancer stem cells

As discussed in the previous section, Wnt/β-catenin signal-
ing is among the most important factors in CRC carcino-
genesis. In addition, it plays an important role in intestinal 
homeostasis and cancer stem cell (CSC) development, which 
will be discussed in the following.

The epithelium of the intestine is continually replenished 
with a turnover rate of approximately 3–4 days [249]. New 
cells derive from so-called crypts of Lieberkühn which line 
the intestinal wall [249–251]. These crypts harbor pluripo-
tent intestinal stem cells (ISCs) responsible for renewal of 
the intestinal mucosa and its homeostasis [249, 251], a pro-
cess highly regulated by the Wnt/β-catenin pathway [231]. 
It is conceivable that colorectal CSCs derive from ISCs in a 
series of mutational events leading to a loss of proliferative 
control mechanisms [251, 252]. Importantly, CSCs could 
then represent key players in metastasis, therapy resistance, 
and CRC recurrence [252, 253]. Most cancer therapies, such 
as radiation and chemotherapeutic drugs, target replication 
mechanisms of highly proliferating cells, such as cancer 
cells [252, 253]. CSCs are usually in a quiescent state, thus, 
evading those therapies [252, 253]. Even after seemingly 
successful chemo- or radiotherapy, surviving CSCs may 
lead to tumor recurrence and metastasis [252, 253]. Specifi-
cally targeting CSCs is difficult and the objective of current 
research. The PI3K/Akt/mTOR and related pathways, such 
as the Notch and Wnt/β-catenin pathways, have come into 
focus of this research [253]. Chen et al. observed that the 
dual PI3K/mTOR inhibitor BEZ235 suppresses the prolifer-
ation of CSCs [254]. Wang et al. also linked PI3K/Akt sign-
aling to stem cell-like properties and 5-FU resistance in CRC 
[255]. They suggested that the observed effect is mediated 

by metastasis-associated colon cancer 1 (MACC1), which 
has also been proposed as a biomarker predicting metastasis, 
poor prognosis, and therapy resistance [255, 256]. Similar 
observations have also been made in other cancers: in an 
in vitro model of therapy resistant ovarian cancer, Thakur 
and Ray found that NF-κB activates TNFα and PIK3CA via 
a feedback loop leading to the maintenance of stem cell-like 
characteristics [257]. According to Zhou et al., activation of 
the PI3K/Akt/mTOR pathway is responsible for stemness in 
gastric carcinoma cells [258]. In this context, several stud-
ies confirm that NANOG, a transcription factor essential 
for the maintenance of embryonic and CSCs, is regulated 
by the PI3K/Akt pathway [255, 259–262]. In CRC, high 
levels of NANOG are associated with vascularization and 
more aggressive behavior in general [263, 264]. Indeed, it 
is possible that CSCs are the target of aspirin’s anti-cancer 
properties. Chen et al. reported that aspirin (but no other 
NSAIDs) directly interacts with p300 in the nucleus, pro-
motes H3K9 acetylation, activates FasL expression, and 
induces apoptosis in patient-derived colorectal CSCs, 
whereas these effects of aspirin were not observed in non-
CSCs most likely because of H3K9 hypermethylation [265]. 
Interestingly, salicylate and its derivates have also shown to 
interfere with p300 [266, 267]. Previously, p300 had been 
reported to be a target of Akt phosphorylation [268]. Wang 
and colleagues demonstrated that aspirin reduced colorectal 
xenograft tumor growth in nude mice, an effect that was 
associated with a reduction in stemness-related transcription 
factors, such as c-Myc, OCT4, and NANOG. Interestingly, 
suppression of NANOG was also able to block the anti-
tumorigenic effect of aspirin, suggesting that NANOG is an 
important downstream target of aspirin action in CRC [269]. 
In esophageal squamous cell carcinoma, aspirin was able 
to overcome cisplatin resistance in CSCs by inhibiting the 
phosphorylation of Akt, suggesting an involvement of PI3K. 
Aspirin most likely acetylated histones leading to altered 
gene expression, in this case remodeling of chromatin in 
the region encoding the pro-apoptotic Bcl-2-like protein 11 
(BIM) [270]. Both Khoo and Saha suggest that aspirin may 
overcome chemotherapy resistance in preclinical models of 
CSCs via interleukin 6 (IL6), a pro-inflammatory cytokine 
which acts downstream of NF-κB and is regulated by COX-
dependent as well as COX-independent mechanisms [271, 
272]. Khoo et al. believe the effect to be due to COX-2 inhi-
bition, whereas Saha et al. speculate aspirin to interfere with 
the IL6-NF-κB-feedback loop [271, 272]. Taken together, 
the effect of aspirin on CSCs and the involvement of PI3K 
in their regulation may provide an explanation for how aspi-
rin treatment can overcome treatment resistance and coun-
teract metastasis in PIK3CA-mutated CRC. Nevertheless, 
studies on the influence of aspirin or its salicylate moiety 
on CSCs carrying activating somatic mutations of PIK3CA 
are lacking. This important and interesting field of research 



 D. C. N. Hall, R. A. Benndorf 

1 3

393 Page 14 of 27

is therefore still in its infancy and further research on this 
topic is to be expected in the near future.

Noncoding RNA

Even though a relevant portion of the genome is tran-
scribed, only 1–2% encode for protein and are translated 
by the ribosome. Nevertheless, for decades, non-coding 
RNA (ncRNA) was mainly considered as "transcriptional 
junk" with no biologically relevant function [273, 274]. 
With accumulating evidence of involvement of ncRNAs 
in signal transduction, this perception has rapidly changed 
[275]. The types of ncRNA to be focused on in this review 
are microRNA (miRNA), long noncoding RNA (lncRNA), 
and circular RNA (circRNA). These regulatory RNAs have 
been observed to play a role in the development of CRC and 
have, therefore, been proposed as therapeutic targets and 
diagnostic markers [275–278]. Although it has been proven 
that altered ncRNA expression is a central element in the 
formation of cancerous entities, the underlying regulatory 
mechanisms are complex and not well explored [275, 277, 
279]. Indeed, according to Anastasiadou et al., ncRNAs act 
as parts of vast and intricate networks [275].

miRNAs are short noncoding RNA strands with an 
average length of 22 bases, deriving mainly from intronic 
sequences [280]. Their most prominent function is post-tran-
scriptional gene regulation by base-pairing to the 3’ untrans-
lated region (3’UTR) of messenger RNAs (mRNAs), thus, 
hindering translation or inducing degradation of their target 
mRNAs [281]. Most miRNAs can bind to multiple mRNAs, 
also their expression and actions may differ in a cell-type 
specific way [280]. In the context of cancer pathogenesis, 
miRNA expression has been shown to play a crucial role in 
the regulation of cell cycle progression, growth, and metabo-
lism, and, thereby, carcinogenesis. For instance, deregulated 
miRNAs can promote tumorigenesis by both inhibiting the 
transcription of tumor suppressor genes as well as failing to 
do so in the case of oncogenes [282].

LncRNAs are defined as transcripts with a length of > 200 
nucleotides [282]. Apart from not being translated, lncR-
NAs are believed to be processed in the same manner as 
mRNAs, including transcription by RNA polymerase II as 
well as post-transcriptional modification, such as 5’ capping, 
polyadenylation, and splicing [283]. LncRNAs interact with 
DNA, mRNA, miRNA, and proteins in a multitude of ways. 
For instance, they can regulate gene expression by blocking 
access of transcription factors, polymerases, or miRNA to 
DNA or RNA, or they can also act in the opposite manner, 
by guiding transcription factors towards DNA or by modify-
ing chromatin remodeling and accessibility [284].

CircRNAs, as the name indicates, are not linear strands 
of nucleotides but closed loops without 5’ or 3’ ends [285]. 
CircRNA is less explored than miRNA and lncRNA, most 

of what is known has been discovered within the past decade 
[286]. It has been suggested that circRNA descends from 
protein-coding regions of the genome and is generated from 
pre-mRNA in a process called “backsplicing” [285] and 
some circRNAs may even be translated [287]. So far, it has 
been discovered that circRNA can act as a molecular sponge 
for miRNA by presenting complementary binding sites akin 
to those of mRNA targets [288].

There is proven crosstalk between the PI3K pathway and 
ncRNA networks [289]. For example, the CRNDE lncRNA 
transcript is activated via the PI3K/Akt/mTOR and Raf/
MAPK pathway by insulin/IGF in colorectal carcinoma 
cells, resulting in altered metabolism and the induction of 
the Warburg effect, which describes metabolic changes by 
which cancer cells switch to anaerobic glycolysis even in 
the presence of oxygen and fully functioning mitochondria 
[290]. A paper by Khan and Law further reported that the 
lncRNA RAMS-11 is significantly overexpressed in various 
CRC cell lines, a phenomenon that correlates with increased 
proliferation and metastasis. Moroever, downregulation of 
RAMS-11 resulted in increased apoptosis by inhibition of 
Akt/mTOR signaling via AMPK [291]. Multiple studies 
associate the expression of oncogenic lncRNA HOTAIR 
with PI3K signaling [290, 292, 293]. HOTAIR may act 
as a molecular sponge for miRNAs such as miR-34a and 
mir-206, which are known to interact with the PI3K path-
way [294, 295]. In a similar fashion, miR-34a also binds 
to lncRNA SNHG7 enabling translation of GALNT7 [296]. 
Li and colleagues were able to show that this competition 
leads to an increase in PI3K/Akt/mTOR activity and related 
cell proliferation in CRC cells [296]. MiR-206 inhibits Akt 
and its downstream target GSK3β via c-Met, resulting in 
reduced proliferation, migration, and invasion of CRC cells 
[297]. Overexpression of miR-590-3p desensitizes colon 
carcinoma cells to radiation by promoting PI3K and Akt 
phosphorylation [298]. Most notably, El-Daly et al. discov-
ered that miR-370 acts as a tumor suppressor by inhibit-
ing PIK3CA and EGFR mRNA expression through 3’UTR 
base-pairing in an in vitro and in vivo model of CRC [299]. 
CircRNAs have shown to influence PI3K/Akt signaling, as 
well. For instance, circ-0001313 is overexpressed in CRC 
cells where it induces cell proliferation and inhibition of 
apoptosis by sponging AKT2 mRNA-directed miR-510-5p 
[300]. Circ_0008285 acts as a tumor suppressor by enabling 
PTEN translation, although, however, it appears to be down-
regulated in CRC cells [301]. Just recently, Chong and col-
leagues demonstrated that downregulation of circLHFPL2 
most likely promotes sustained activation of the PI3K/Akt 
pathway by acting as a sponge for miR-556-5p and miR-
1322 in CRC cells to modulate PTEN expression [302]. 
These results demonstrate that there are numerous reciprocal 
interactions between PI3K or PI3K-dependent signal trans-
duction and ncRNA which have been shown to influence the 
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phenotype of CRC entities. However, systematic studies on 
the impact of activating PIK3CA mutations on the expres-
sion of ncRNAs in CRC remain surprisingly scarce.

Results from experimental studies indicate that aspirin 
exerts anti-carcinogenic properties via ncRNA. Examples 
include a study by Lan et al., who found aspirin to negatively 
regulate miR-21 expression through inhibition of TCF4, a 
transcription factor of the Wnt/β-catenin signaling pathway, 
in patient-derived colon cancer epithelium [303]. Further, 
Guo et al. could show the involvement of aspirin in the tran-
scription of lncRNA OLA1P2 in cultured cancer cell lines as 
well as mouse xenografts. Aspirin, they observed, enabled 
expression of the transcription factor FOXD3 via demeth-
ylation of the FOXD3 promotor, leading to transcription of 
OLA1P2. In turn, OLA1P2 blocked the nuclear import of 
phosphorylated STAT3 [304]. STAT3 is a phosphorylation 
target of mTOR [305]. In a 2021 study, aspirin treatment of 
colon carcinoma cell lines lead to inhibition of lncRNAs 
NEAT1 and LOC152578 resulting in reduced cell growth 
and metastasis [306]. Although ncRNAs have now come into 
focus with regard to aspirin-mediated inhibitory effects on 
CRC pathogenesis, systematic studies on the role of ncRNAs 
in aspirin sensitivity of PIK3CA-mutated CRC are scarce 
to date. Nevertheless, ncRNA may play a significant role 
in mediating the aspirin-induced effects associated with 
PIK3CA-mutated CRC. Therefore, it is expected that future 
research projects will soon shed light on this hitherto poorly 
studied issue.

Gut microbiota

The gastrointestinal microbiome plays an important role in 
inflammatory processes and the regulation of gut homeo-
stasis, closely communicating with ISCs [307, 308]. Gut 
microbiota are believed to be involved in carcinogenesis 
[309]. While some infectious pathogens may drive cancer 
development, an imbalance in the microbial composition is 
often found in CRC patients compared to healthy controls 
[309–311]. Escherichia coli, Streptococcus gallolyticus/
bovis, Bacteroides fragilis and Fusobacterium nucleatum, 
amongst others, have been linked to the development of CRC 
. [310, 312–316] In addition a pathogenic role of Enterococ-
cus faecalis in this regard has been discussed but remains 
controversial [317]. One Factor which may contribute to 
dysbiosis is nutrition, especially a diet high in fat and low 
in fiber [309, 310, 313, 318]. There is evidence that the 
intake of aspirin affects the gut microbiome [319, 320]. In 
an observational study with healthy volunteers, Rogers and 
Aronoff noticed that the profile of the gut microbiome of 
NSAID users differed from that of non-users. In this study, 
the operational taxonomic units of bacterial species Prevo-
tella, Bacteroides, Barnesiella, and the Ruminococcaceae 
family distinguished aspirin users from those abstaining 

from any kind of medication [320]. This is consistent with 
a later study by Prizment et al. who measured the relative 
abundance of multiple gut bacterial taxa before and after a 
six week treatment with 325 mg aspirin or placebo. They 
found relative increases in Akkermansia, Prevotella, and 
Ruminococcaceae as well as decreases in Parabacteroides, 
Bacteroides, and Dorea in the aspirin group compared to 
the placebo group [321]. In this context, the presence of 
Prevotella and Ruminococcaceae have been shown to nega-
tively correlate with CRC, whilst the latter three have been 
positively correlated with the disease [322, 323]. In the case 
of Akkermansia there is conflicting evidence whether it is 
considered a beneficial microbe, especially with regard to 
inflammation [324, 325]. Zhao and colleagues observed 
aspirin treatment to induce a shift in microbiomal composi-
tion. Bacterial genera considered beneficial, such as Bifido-
bacterium and Lactobacillus, were enriched, while bacteria 
associated with CRC, like Alistipes finegoldii and B. fragilis, 
were reduced. In addition, they confirmed an inverse effect 
of aspirin treatment on tumor size and number in mouse 
xenografts, albeit only in animals treated with antibiot-
ics. Importantly, some microbes, especially Lysinibacillus 
sphaericus, were found to degrade aspirin resulting in lower 
plasma levels [319]. Caitlin Brennan et al. found that aspi-
rin and its metabolite salicylic acid alter the expression of 
several genes in the F. nucleatum strain Fn7-1 in culture, 
including genes encoding for chaperones, proteins related 
to the Wnt/β-catenin pathway, and ptgs2, the gene encoding 
for COX-2. At higher concentrations, aspirin also inhibited 
growth of the mentioned F. nucleatum strain Fn7-1. Fur-
ther, they observed that aspirin reduced F. nucleatum-related 
growth of colorectal adenomas in mice. F. nucleatum strains 
isolated from human CRC tissues yielded consistent results. 
Additionally, aspirin treatment asserted significant antibacte-
rial effects on B. fragilis and E. coli strains similar to those 
seen with F. nucleatum, although somewhat milder [326]. 
Interestingly, Han et al. report in a pre-print that infection of 
Caco-2 and HT-29 CRC cells lines with F. nucleatum leads 
to resistance against cetuximab in vitro and in mouse xeno-
grafts coinciding with an activation of the PI3K/Akt and 
JAK/STAT3 pathways in infected cells [327]. However, to 
our knowledge, a link between this and the sensitivity of gut 
bacteria towards aspirin has not yet been investigated, but 
it might be worth keeping in mind. Thus, to our knowledge, 
there is no evidence (but also no counterevidence) to date 
that aspirin sensitivity of PIK3CA-mutated CRC is related 
to the microbiome. Nevertheless, the colon microbial milieu 
plays an important role in intestinal epithelial homeosta-
sis and carcinogenesis, so this must be taken into account 
when elucidating the specific pharmacodynamics of aspirin 
in PIK3CA-mutated CRC in future studies.
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Tumor metabolic reprogramming

Changes in metabolism stand at the heart of tumorigen-
esis and are now considered a hallmark of cancer [328]. 
Cancer cells have a high demand for nutrients and energy 
to enable unhindered growth and proliferation, a need that 
cannot be met by the mechanisms utilized by “ordinary”, 
non-malignant cells [329]. Otto Warburg already observed 
metabolic reprogramming of cancer cells nearly a century 
ago. The Warburg effect states that tumor cells perform 
anaerobic glycolysis despite an adequate supply of oxygen 
[330]. This kind of metabolism might be favorable for highly 
proliferative cells by directing metabolites towards biomass 
production instead of generating ATP [331–334]. A height-
ened need for glutamine is also considered a hallmark of 
cancer metabolism [329]. In the cell, it can be converted to 
α-ketoglutarate to enter the TCA cycle and not only serves 
as an energy source, but also yields carbon and nitrogen 
for biosynthesis [329, 334, 335]. It is likely that metabolic 
shifts precede somatic mutations in CRC and promote the 
development of benign adenomas into carcinomas [334]. 
As metabolic changes are very common in cancer, they 
can be used for diagnosis and prognosis of disease. Imag-
ing techniques like positron emission tomography (PET) 
scans are a frequently used option. CRC and other cancers 
can be identified through increased glucose metabolism, an 
indicator of the Warburg effect, by detecting positron emis-
sion of the glucose analog  [18F]fluorodeoxyglucose after 
injection [336]. In addition, PET scan techniques detecting 
11C-glutamine are currently being established [337]. Serum 
glutamine levels may also be used as diagnostic and prog-
nostic marker. For instance, in a retrospective study of 123 
newly diagnosed CRC patients Ling and colleagues found 
decreased glutamine levels to correlate with lower overall 
and progression-free survival [338].

The PI3K/Akt pathway plays a major role in the regula-
tion of metabolism as well as metabolic reprogramming of 
cancer cells [61]. Phosphorylation of the glycolysis enzyme 
hexokinase 2 (HK2) by Akt results in increased prolifera-
tion, tumorigenesis, and metastasis of colon cancer mediated 
by NF-κB and hypoxia inducible factor 1α (HIF-1 α) both 
in vitro and in vivo in mouse xenograft tumors [339]. PI3K/
Akt-mediated HK2 signaling has also shown to inhibit apop-
tosis in pediatric osteosarcoma [340]. In cervical carcinoma, 
PIK3CA mutations E545K and E542K lead to increased glu-
cose metabolism and cell proliferation via AKT/GSK3β/β-
catenin signaling in xenografts and in patient-derived sam-
ples [341]. Laboratory experiments as well as clinical trials 
have shown that PIK3CA-mutated CRC cells are especially 
dependent on glutamine for survival compared to PIK3CA 

wildtype cells [67, 342–344]. This might be related to the 
fact that the expression of glutamine transporter ASCT2 
(also known as solute carrier family 1, member 5 (SLC1A5)) 
is regulated by PI3K-dependent mTOR signaling [345].

In recent years, glucose and glutamine metabolism have 
come into focus as potential mediators of aspirin’s effect 
on cancer. Further, there is substantial evidence that it tar-
gets the deregulated metabolism of cancer cells in a PI3K-
dependent manner. For example, aspirin has shown to inhibit 
the enzyme glucose-6-phosphate dehydrogenase (G6PD) 
responsible for NADH production in the pentose phosphate 
pathway (PPP) by acetylating lysine residues in HCT116 and 
HT-29 CRC cells [346, 347]. G6PD is regulated by PI3K/
Akt as a downstream target of mTORC1 [348–350]. Chen 
et al. found that PI3K activity decouples glycolysis and the 
TCA cycle, while promoting PPP through G6PD activa-
tion [347]. Further, aspirin downregulated glutamine and 
glucose levels as well as inflammation and tumor growth 
in a study of lung cancer in obese mice, effects that were 
associated with Akt phosphorylation and GLUT1 expression 
[351]. Experiments concerning a murine model of ulcera-
tive colitis, a kind of inflammatory bowel disease, yielded 
that both glutamine and 5-aminosalicylic acid (5-ASA) 
were able to alleviate symptoms caused by oxidative stress-
injury induced through inhibition of the PI3K/Akt signal-
ing pathway [352]. According to a paper published by Hao 
et al. in 2016 PIK3CA mutations lead to an upregulation 
of glutamate pyruvate transaminase 2 (GPT2) in CRC cells 
via ATF4 (activating transcription factor 4)/PDK1/RSK2 
(ribosomal S6 kinase 2) in an AKT-independent manner 
ultimately rendering the cells dependent on glutamine [67]. 
In 2020, Shogen Boku and colleagues could prove that 
administration of aspirin led to the same effect as glutamine 
deprivation in PIK3CA-mutated CRC cell lines. It did so by 
two mechanisms:  G1-arrest was induced via the mTOR-path-
way and glutaminolysis enzymes w-ere activated via ATF4 
[68]. Taken together, one of the most effective methods of 
preventing tumor growth appears to be to deprive cancer 
cells of nutrients. The evidence for the effect of aspirin on 
deregulated metabolism in PIK3CA-mutated cancer is con-
siderable. However, no clear metabolic targets have yet been 
identified in the aforementioned publications to explain the 
aspirin sensitivity of PIK3CA-mutant CRC, so additional 
research is needed here to elucidate the precise mechanistic 
background of this phenomenon.
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Summary and conclusion

A vast number of cancer patients harbor PIK3CA mutations. 
Unfortunately, the prognosis of these patients is dismal in 
many cases, and the efficacy of standard treatments is often 
reduced. This leads to an urgent need of alternative treat-
ments for these patients. Genetic profiling and subsequent 
targeted therapy may be a promising perspective for these 
individuals. PI3K and Akt inhibitors have shown much 
potential, aspirin, however, is low in cost and easily avail-
able. Nonetheless, the U.S. Preventive Services Task Force 
is cautious to universally recommend low-dose aspirin 
(< 100 mg/day) as preventative treatment against CRC due 
to side-effects, such as gastrointestinal bleeding and hemor-
rhagic stroke [28].

Moreover and importantly, the balance between harm and 
benefit is yet unclear. Thus, additional evidence is needed to 
elucidate the mechanisms behind the preventive and cura-
tive effects of aspirin with regard to colorectal carcinoma 
in order to identify patients who particularly benefit from 
aspirin therapy.

Although the effect of aspirin on the prostaglandin path-
way is one of the best-researched drug mechanisms so far, it 
is still unclear how aspirin is linked to beneficial effects in 
individuals carrying somatic PIK3CA mutations. Aspirin is 
hydrolyzed in the body into acetyl and salicylic acid within 
a short time, making it two pharmacologically active com-
pounds in one drug. The acetylation of molecules is nonspe-
cific and is related to the concentration of aspirin at the site 
of action, which is particularly high in the gastrointestinal 

Fig. 4  Potential key targets of aspirin in PIK3CA-mutated CRC. 
Mutations of the PIK3CA helical and kinase domain lead to an over-
activity of PI3K (visualized by multiple arrows). Helical domain 
mutations decouple the enzyme from upstream signals by RTK, indi-
cated by the red “X”, although it has to be noted that Ras-GTP activa-
tion by external signals may still be required for full PI3K activation. 
Kinase domain mutations are, however, independent from Ras-GTP 
activation. PI3K activates Akt and PDK1. mTOR is both an activa-
tor of Akt and a downstream target and, therefore, closely linked to 
its actions. mTOR has been identified as a direct acetylation target of 
aspirin (ASA), and is presumably inhibited by this. Akt is the cen-
tral player connecting most pathways, however, glutaminolysis may 
be influenced by PDK1 Akt-independently. Aspirin has been reported 
to inhibit PDK1-mediated glutaminolysis by an, as yet, unresolved 
mechanism. Further, salicylate and aspirin have been observed to 
suppress NF-κB via IκB, thereby reducing chemoresistance in can-
cer cells. NF-κB is also involved in COX-2 expression. COX-2 has 
been reported to act upstream of PI3K via  PGE2/EP4 and to modify 
the activity of growth factor receptors (e.g. IGFR or EGFR), induc-
ing its own expression via a feedback loop. It is acetylated by aspirin 
at S516 which disables the production of  PGH2, but enables the for-

mation of aspirin-triggered lipoxin (AT-L) and resolvins (AT-Rv) in 
a transcellular fashion. In addition, salicylate may suppress the tran-
scription of COX-2 mRNA. In addition, aspirin has been reported to 
inhibit Wnt/β-catenin-mediated signaling, although the exact target 
of aspirin in this context is unclear. Wnt/β-catenin are also substan-
tially involved in the pathophysiology of cancer stem cells, which are 
highly associated with therapy-resistance and metastasis. Stemness of 
these cells may also be inhibited by aspirin via p300 and NANOG. 
NF-κB may also be involved. Gut bacteria are involved in inflamma-
tory processes and the maintenance of intestinal homeostasis. In this 
context, it has been observed that aspirin can influence the growth of 
intestinal bacteria, possibly leading to a shift in the intestinal micro-
biome towards a more favorable composition. The named pathways 
and their potential interconnections are shown. Arrows illustrate the 
connections between them, arrow thickness is related to their hypo-
thetical importance in the carcinogenesis of the PI3K pathway. The 
microbiome, inflammation, as well as AT-L and AT-Rv formation are 
depicted, despite not being directly involved in PI3K signaling. How-
ever, as they are influenced by aspirin, they might enhance the anti-
carcinogenic effect seen in patients with PIK3CA-mutated CRC 
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tract after peroral ingestion of the drug, although to our 
knowledge there are no available pharmacokinetic data on 
how high the luminal concentration of perorally adminis-
tered aspirin at the colorectal epithelium really is. However, 
based on such data, specific retardations of aspirin with 
dissolution in the colorectal intestinal segments could be 
developed, allowing higher luminal concentrations of aspirin 
at the colorectal epithelium and thereby possibly enhancing 
the anticancer effects, while potentially reducing the known 
gastroduodenal toxicity of the drug.

The aspirin targets COX-1 and 2 are associated with the 
upstream PI3K signaling axis, but because these enzymes 
are also inhibited by other NSAIDs, it is difficult to explain 
why the clinical effect of aspirin is specific to the drug, par-
ticularly in the context of prevention/treatment of PIK3CA-
mutated CRC. Yet, increased generation of 15-(R)-HETE 
and the formation of aspirin-triggered lipoxins and resolvins 
distinguishes the pharmacodynamics of aspirin from that 
of other NSAIDs and selective COX-2 inhibitors. Moreo-
ver, as PIK3CA mutations, especially of the helical domain, 
render the enzyme independent of upstream RTK activa-
tion signals, it seems likely that the target responsible for 
its inhibition must be sought downstream. However, if the 
effect is prostaglandin-related, it is more likely connected to 
inhibition of cyclooxygenase expression mediated by hyper-
active PI3K than to classical COX-acetylation. Neverthe-
less, further studies are required to decipher the importance 
of both COX isoforms in the context of PIK3CA-mutated 
malignancies and the effect of aspirin thereon.

But is there only one right answer? As such, the expected 
multiple interactions of aspirin and its metabolite salicy-
late with various complex networks of signaling pathways 
involving PI3K imply that numerous interactions must be 
considered to unravel the mechanisms of aspirin-mediated 
inhibition of PIK3CA-mutated cancer. The putative major 
signaling pathways responsible for carcinogenesis of 
PIK3CA-mutated CRC and the interactions of aspirin with 
them are shown in Fig. 4. For example, inhibitory effects 
of aspirin on signaling networks associated with the PI3K/
Akt/mTOR pathway with known oncogenic potential, such 
as the NF-κB, Wnt/β-catenin, and Ras/Raf/MEK/ERK path-
ways (the latter shown in Fig. 2) have to be mentioned. In 
addition, new players have entered the field, adding to the 
level of complexity. For instance, the influence of non-cod-
ing RNAs, metabolism, gut microbiome, and CSCs on the 
development of CRC, as well as the reciprocal interactions 
of these factors with aspirin and PIK3CA mutations in the 
context of CRC, has long been overlooked and show prom-
ising potential in providing answers and novel treatment 
targets. Last, PIK3CA-independent actions of aspirin may 
contribute synergistically, for instance by inhibiting inflam-
mation. Taken together, the sensitivity of PIK3CA-mutated 
cancers to aspirin has gained much attention, especially in 

recent years. Nevertheless, the key mechanisms of this effect 
are still unknown. However, deciphering the underlying 
mechanisms is of great importance, in particular with regard 
to identifying patients who will benefit from treatment or 
chemoprevention with aspirin. Further interesting research 
on this topic can, therefore, be expected in the coming years.
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