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Abstract
The non-classical human leukocyte antigen (HLA)-G exerts immune-suppressive properties modulating both NK and T cell 
responses. While it is physiologically expressed at the maternal–fetal interface and in immune-privileged organs, HLA-G 
expression is found in tumors and in virus-infected cells. So far, there exists little information about the role of HLA-G and 
its interplay with immune cells in biopsies, surgical specimen or autopsy tissues of lung, kidney and/or heart muscle from 
SARS-CoV-2-infected patients compared to control tissues. Heterogeneous, but higher HLA-G protein expression levels were 
detected in lung alveolar epithelial cells of SARS-CoV-2-infected patients compared to lung epithelial cells from influenza-
infected patients, but not in other organs or lung epithelia from non-viral-infected patients, which was not accompanied by 
high levels of SARS-CoV-2 nucleocapsid antigen and spike protein, but inversely correlated to the HLA-G-specific miRNA 
expression. High HLA-G expression levels not only in SARS-CoV-2-, but also in influenza-infected lung tissues were 
associated with a high frequency of tissue-infiltrating immune cells, but low numbers of  CD8+ cells and an altered expres-
sion of hyperactivation and exhaustion markers in the lung epithelia combined with changes in the spatial distribution of 
macrophages and T cells. Thus, our data provide evidence for an involvement of HLA-G and HLA-G-specific miRNAs in 
immune escape and as suitable therapeutic targets for the treatment of SARS-CoV-2 infections.
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Introduction

The human leukocyte antigen (HLA)-G is a non-classical 
HLA class I molecule, which was first characterized by its 
expression at the feto-maternal interface. In contrast to clas-
sical HLA class I antigens, HLA-G is less polymorphic and 
exists in seven different isoforms, from which four are mem-
brane bound (HLA-G1 to -G4) and three are soluble forms 
(sHLA-G5 to -G7) [1]. In addition, some novel HLA-G 
isoforms have been recently identified, but their functions 
have not yet been determined [2, 3]. In addition to alter-
native splicing, sHLA-G1 can be generated by proteolytic 
cleavage mainly mediated by the activity of matrix metal-
loproteinases (MMPs) [4]. Under physiologic conditions, 
HLA-G has a highly restricted tissue distribution and is 
mainly expressed on immune-privileged organs, i.e., thymus, 
cornea, testis, erythroblasts, mesenchymal stem cells, and 
cytotrophoblasts. In these tissues, the most common HLA-G 
isoforms are HLA-G1, sHLA-G1 and HLA-G5 [5]. HLA-G 
exerts immune-suppressive properties on  CD8+ cytotoxic T 
lymphocytes (CTL), natural killer (NK) cells, B cells and 
dendritic cells by interacting with the appropriate immune 
cell inhibitor receptors, in particular the Ig-like transcript 
(ILT)-2, ILT-4, the killer cell immunoglobulin-like recep-
tor (KIR)-2DL4, NKG2A/CD94 and CD160 [5–9]. Next to 
the interactions with its receptors, the HLA-G-associated 
tolerance induction could be also mediated by intracellular 

transfer mechanisms, such as trogocytosis, extracellular vesi-
cles (EV), or tunneling nanotubes [10–12].

The expression of HLA-G is tightly regulated at distinct 
levels [13]. These include a transcriptional up-regulation of 
HLA-G by various cytokines, such as interferon (IFN)-ƴ and 
tumor necrosis factor (TNF)-α, and growth factors, like, e.g., 
the transforming growth factor (TGF)-β, granulocyte–mac-
rophage colony stimulating factor (GM-CSF), and granulo-
cyte colony stimulating factor (G-CSF) [14–16] as well as 
microenvironmental factors including indoleamine 2,3-diox-
ygenase (IDO), hypoxia, metabolites and stress factors, such 
as heat shock and chemicals, [13, 17]. In addition, HLA-G is 
altered by epigenetic processes mediated by methylation and 
histone acetylation [18] or by post-transcriptional control 
[19]. The latter is due to RNA-binding proteins (RBPs) and/
or microRNAs (miRNAs) directed against the 3ʹ untrans-
lated region (UTR) or the coding sequence (CDS) of HLA-
G, thereby inhibiting the HLA-G expression [20–24]. In 
addition, the long non-coding RNA HOX transcript anti-
sense RNA (HOTAIR) has been shown to downregulate 
HLA-G expression [25].

During the last two decades, highly variable levels of 
HLA-G neo-expression leading not only to escape from 
immune surveillance, but also to tolerogenic responses of 
transplants have been described in different neoplasms, auto-
immune, and inflammatory diseases as well as upon patho-
gen infection by parasites, bacteria, and viruses [26–35]. 
In addition, the pathophysiologic neo-expression of HLA-G 
surface antigens and of sHLA-G isoforms in tumors or 
upon viral infections was associated with disease progres-
sion, poor clinical outcome, and adverse therapy response 
of patients [36–46]. Recently, evidence accumulated that 
HLA-G is an emerging susceptibility and/or protection rele-
vant factor for unresolved virus infection and viral resistance 
[47]. Thus, targeting of HLA-G, its receptors, or HLA-G-
relevant molecules might offer a novel therapeutic strategy 
for malignant tumors and also viral infections.

The severe acute respiratory syndrome coronavirus-2 
(SARS-CoV-2) is a novel RNA beta coronavirus, which 
causes the coronavirus disease-2019 (COVID-19) [48]. 
In March 2020, the World Health Organization (WHO) 
declared COVID-19 as a pandemic public health disease. 
This disease is associated with infection of the upper respira-
tory tract with the risk of sustaining a pneumonia and/or an 
acute respiratory distress syndrome (ARDS) accompanied 
by a high patients’ morbidity and mortality rate depend-
ing on the virus strain [49]. SARS-CoV-2 enters the host 
cells through its spike protein by binding to the angioten-
sin-converting enzyme 2 (ACE2) receptor, which is abun-
dantly expressed on alveolar type II epithelial cells of the 
respiratory tract [50]. SARS-CoV-2 infection often causes 
an immune deregulation including sustained cytokine pro-
duction and hyperinflammation, which in turn is associated 
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with disease severity and induces damages to host tissues 
[51]. Immune profiling of peripheral blood or bronchioal-
veolar fluid as well as damaged lung tissues has revealed 
major changes in the immune system of COVID-19 patients 
[52, 53]. A unique immunological profile was found in the 
peripheral blood of COVID-19 patients with an increased 
number of NK cells, but low T cell numbers and overexpres-
sion of T cell immunoglobulin and mucin domain (TIM)-
3,  programmed cell death ligand 1 (PD-L1) and CD69 in 
both immune effector cells suggesting a hyperactivated and 
exhausted immune response upon COVID-1 infection [54]. 
However, an increased understanding of the immunogenicity 
in combination with immune responses is urgently needed 
and will provide further information about the pathophysi-
ologic role of SARS-CoV-2 and the clinical manifesta-
tion of severe disease [55, 56]. Regarding a putative link 
between HLA-G and COVID-19 infection, it has been sug-
gested that in an early inflammatory stage, the host might 
produce the anti-inflammatory cytokine IL-10, which could 
later enhance HLA-G expression to avoid injuries [57]. 
These data were further extended by a positive correlation 
next to IL-10 with IL-6 and IL-8 in the acute phase of the 
SARS-CoV-2 infection [58]. Thus, HLA-G expression and/
or secretion might reflect a negative feedback response to 
inflammatory processes during viral infections [29]. Despite 
HLA-G has been suggested to have immune regulatory func-
tions in SARS-CoV-2-infected patients [59–61], a thorough 
analysis of HLA-G in COVID-19 patients is still lacking. To 
elucidate the role of HLA-G during COVID-19, membrane-
ous HLA-G expression in organs of SARS-CoV-2-infected 
patients and respective controls, its spatial context, and inter-
play with immune cells were determined and correlated with 
clinical parameters.

Materials and methods

Patients’ characteristics

Formalin-fixed, paraffin-embedded (FFPE) lung tissue 
samples from 65 SARS-CoV-2-affected patients were col-
lected in Germany between 2020 and 2021 at the Institutes 
of Pathology of the University Hospital of the Martin-Luther 
University Halle-Wittenberg, the University Hospital of the 
Friedrich-Alexander University Erlangen-Nuremberg and of 
the Hannover Medical School, Hannover. Tissue samples 
from lungs of patients who died from influenza (n = 12) or 
from heart attack (n = 10) were collected in the period from 
2009 to 2020 and served as controls. In a subset of SARS-
CoV-2-infected patients, FFPE tissues from further organs 
were available (see Table 1). The FFPE tissues derived 
from autopsies, or in the case of six patients that survived 
COVID-19, were obtained by interventional tissue resection 

during the disease. Clinical and laboratory data were col-
lected from the medical records. SARS-CoV-2 and influ-
enza infections were proven by real-time polymerase chain 
reaction (RT-PCR) during the life-time of the patients. All 
samples analyzed are summarized in Table 1.

Cohorts were stratified based on COVID-19 death data 
from the Robert Koch Institute as follows: 1st wave com-
prises calendar weeks 10–31 in 2020. Calendar weeks 32 in 
2020 to 11 in 2021 were selected for the 2nd wave [8]. The 
3rd wave was defined as beginning of calendar weeks 12–32 
in 2021, and the 4th wave as calendar weeks 33–53 in 2021.

Ethical approval

Autopsies were in accordance with the ethical standards of 
the institutional and/or national research committee and with 
the 1964 Helsinki Declaration and its later amendments or 
comparable ethical standards. All autopsies were conducted 
after consent for autopsy was obtained from the deceased 
or next of kin, or autopsies were requested by the health 
authorities or by the prosecutor’s office. Each participating 
center had local ethical approval. Clinical parameters were 
recovered from the final biopsy/autopsy report or the labora-
tory information system. Only cases with a positive SARS-
CoV-2 test (usually antigen tests from either nasopharyngeal 
or PCR from either nasopharyngeal swab or tissue) either 
preclinical, clinical, or post-mortem, were implemented in 
the analyses. Regarding the cause of death, data were taken 
from the final autopsy report.

The use of collected FFPE tissue samples and serum/
plasma samples from patients who survived COVID-19 was 
approved by the Ethical Committees of the Medical Faculty 
of the Martin Luther University Halle-Wittenberg, Halle 
(2017-81), of the MHH Hannover (9022-BO.K-22c), and of 
the Medical Faculty of the University Hospital in Erlangen.

Standard morphological evaluation

Hematoxylin and eosin (HE)-stained tissue slides were used 
to evaluate the specific pattern of damage following SARS-
CoV-2 infection with respect to the following histological 
patterns of acute interstitial pneumonia: acute exudative, 
organized, and fibrotic pattern [62, 63]. Furthermore, tissue-
infiltrating lymphocytes in the alveolar walls were quantified 
in accordance to the evaluation of stromal tissue-infiltrating 
lymphocytes (TILs) using the guidelines of the International 
Working Group for tumor-infiltrating lymphocytes [64].

Immunohistomorphological evaluation

Conventional immunohistochemistry (IHC) was performed 
on 3 µm thick, consecutive sections of FFPE samples with 
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the Bond Polymer refine detection Kit (Leica, DS9800) 
according to the manufacturer’s instructions on a fully 
automated IHC stainer (Leica Bond). For IHC staining, 
the anti-HLA-G monoclonal antibody (mAb) (Abcam, UK, 
clone 4H84) was used as recently described [22]. In addi-
tion, mAbs directed against CD3 (Labvision, Germany, 
clone SP7), CD20 (DAKO, California, USA, clone L26), 
CD56 (Cell marque, Massachusetts, USA, clone MRQ-42) 
and the SARS-CoV nucleocapsid protein (Rockland Inc., 
Pennsylvania, USA, clone 200-401-A50) and the spike 
protein (Abcam, UK, clone ab272504) were employed 
according to the supplier’s instructions. Sections were 
examined and imaged with a Zeiss Axiophot microscope 
(Zeiss, Jena, Germany). Two pathologists (MB and CW), 
independently and blinded to the clinical data, scored all 
samples. HLA-G expression was analyzed using a His-
toscore as previously described [65]. The relative amount 
of positively stained cells (%) was multiplied by their 
intensity from 0 (negative), 1 (weak), 2 (moderate) to 3 
(intense) leading to the expression intensity (or H-score) 
that was further classified as absent (0), low (1–100), 
intermediate (101–200), or strong (201–300) overall 
expression.

Multispectral imaging

Multispectral imaging (MSI) was performed using the basic 
protocol described in Wickenhauser et al. [66]. Two mul-
tiplex panels with different mAbs and opal-dye combina-
tions were used. The first panel included anti-PD-L1 clone 
E1L3N (Cell Signaling E1L3N, 1:150) in combination with 
Opal690, anti-Foxp3 clone 236A/E/ (Abcam, 1:00) with 
Opal540, anti-CD3 clone SP7 (ThermoFisher SP7, 1:100) 
with Opal570, anti-CD163 clone MRQ-26 (Cell Marque, 
1:50) with Opal620 and anti-panCK Ab AE1/AE3 (Dako, 
1:150) with Opal520. The second panel comprised anti-
TIM-3 (Abcam, ab241332, 1:1000) with Opal 520, anti-
PD-1 (Biocare Medical, NAT105, 1:50) with Opal 540, 
anti-CD8 (DAKO, C8/144b, 1:50) with Opal 570, anti-
TIGIT (Biozol, USC-PAN056HU01-1, 1:50) with Opal 
620, anti-CD69 (Abcam, ab233396, 1:50) with Opal 650 
and anti-HLA-G (Abcam, clone 4H84, 1:100) with Opal 
690. After counterstaining with DAPI (Akoya Biosciences, 
Marlborough, MA), the sections were mounted and scanned 
with the Vectra Polaris System (Akoya Biosciences, Marl-
borough, MA) and a mean of 18 regions of interest (ROIs) 
per slide were taken with a 20 × zoom. The inForm soft-
ware (Version 2.4.10, Akoya Biosciences) was employed to 

Table 1  Clinico-pathological 
characteristics and sample 
specifications

Category SARS-CoV-2 Influenza Control

Number of patients 65 10 12
Clinical data
 Age min–max (mean) 36–96 (71) 34–84 (64) 54–83 (69)
 Gender
  Male 43 6 7
  Female 22  4  5

 Survival time
  < 7 days 17
  > 7 days  42

 Survived  6
Tissues analyzed for HLA-G expression
 Lung 65 10 12
 Brain 10 – –
 Heart 12 – –
 Kidney 21 – –
 Pancreas 12 – –
 Spleen 6 – –
 Liver 6 – –

Samples analyzed for miRNA expression 20 5 5
Samples analyzed by MSI 26 8 5
Histological pattern of acute interstitial pneumonia
 Exudative pattern 12 – –
 Organizing pattern 52 – –
 Fibrosis 1 – –
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perform cell segmentation and phenotyping. PhenoptrRe-
ports scripts were used within R to evaluate the frequency 
and density of the different cell types as well as their inter-
spatial relationships.

RNA extraction, cDNA synthesis, and qPCR analyses

Two 5 µm thick FFPE tissue slides of lung tissues were sub-
jected to the extraction of total RNA using the MasterPure™ 
Complete DNA & RNA Purification Kit according to the 
manufacturer’s protocol (Lucigen, Middleton, WI, USA).

For quantification of the selected HLA-G regulatory 
miRNAs, template-specific cDNA syntheses were per-
formed with the RevertAid First Strand cDNA Synthesis 
Kit (Thermo Fisher Scientific, Waltham, MA, USA) and 
miR specific stem-loop primers [67] as published by Jasin-
ski-Bergner et al. [22]. Subsequently, the qPCR analyses 
were performed by calculation of relative copy numbers. 
The HLA-G non-relevant and highly abundantly expressed 
miR-3960 served as a house keeping gene. For the qPCR 
reactions  GoTaq® qPCR Master Mix (Promega, Madison, 
WI, USA) was employed. The sequences of the stem-loop 
primers as well as of the respective qPCR primers and their 
amplification settings are listed in Table 2.

Statistics

Statistical analyses were performed employing IBM SPSS 
statistic packages (version 25) or GraphPad Prism9. Kol-
mogorov–Smirnov test revealed non-parametric data 
(p < 0.05). The Mann–Whitney U test was used to compare 

clinical data, frequencies of immune cell subpopulations, 
and immunohistochemical expression pattern. For cor-
relation analysis Pearson’s correlation was performed. p 
values < 0.05 were considered statistically significant. All 
graphs were created using GraphPad Prism 9.

Results

Determination of HLA‑G expression in lung tissues 
from SARS‑CoV‑2‑ and influenza‑infected patients 
and histomorphologic normal control lung tissues

To determine whether SARS-CoV-2 infection induces 
HLA-G expression, lung tissues from SARS-CoV-2- 
(n = 65) or influenza- (n = 10) infected patients as well as 
from respective controls (n = 12) were stained by IHC with 
the HLA-G-specific mAb 4H83 detecting all major HLA-G 
isoforms. Representative images of the tissue stainings 
are shown in Fig. 1a demonstrating a highly heterogene-
ous HLA-G expression pattern in the lung tissues analyzed 
with a predominant positivity in pneumocytes and weaker 
expression in immune cells and some cases of bronchial 
respiratory epithelia. A comparable staining pattern, but 
statistically significant higher HLA-G expression levels 
were found in SARS-CoV-2- compared to lung tissues from 
influenza-infected patients (Fig. 1b). In contrast, pneumo-
cytes of the lung control samples lacked HLA-G expression, 
while a few HLA-G-positive immune cells were detected 
(Fig. 1b). To evaluate whether this HLA-G expression was 
organ specific or also relevant in other organs receptive to 

Table 2  Summary of the primer sequences and conditions

Primer Sequence (5ʹ⟶3ʹ) Application Condi-
tion 
(°C)

miR-148A SL Rkt GTC GTA TCC AGT GCA GGG TCC GAG GTA TTC GCA CTG GAT ACG ACA CAA AG cDNA synthesis 42
miR-148A qPCR GCC CTC AGT GCA CTA CAG A qPCR 60
miR-148B SL Rkt GTC GTA TCC AGT GCA GGG TCC GAG GTA TTC GCA CTG GAT ACG ACA CAA AG cDNA synthesis 42
miR-148B qPCR GCC CTC AGT GCA TCA CAG GA qPCR 60
miR-152 SL Rkt GTC GTA TCC AGT GCA GGG TCC GAG GTA TTC GCA CTG GAT ACG ACC CAA GT cDNA synthesis 42
miR-152 qPCR GCC CTC AGT GCA TGA CAG A qPCR 60
miR-3960 SL Rkt GTC GTA TCC AGT GCA GGG TCC GAG GTA TTC GCA CTG GAT ACG ACC CCC CG cDNA synthesis 42
miR-3960 qPCR GCC CGG CGG CGG CGG AGG C qPCR 60
miR-548q SL Rkt GTC GTA TCC AGT GCA GGG TCC GAG GTA TTC GCA CTG GAT ACG ACC CGC CA cDNA synthesis 42
miR-548qfw qPCR GCC CGC TGG TGC AAA AGT AA qPCR 60
miR-628-5p SL Rkt GTC GTA TCC AGT GCA GGG TCC GAG GTA TTC GCA CTG GAT ACG ACC CTC TA cDNA synthesis 42
miR-628-5p qPCR GCC CAT GCT GAC ATA TTT AC qPCR 60
miR-744-5p SL Rkt GTC GTA TCC AGT GCA GGG TCC GAG GTA TTC GCA CTG GAT ACG ACT GCT GT cDNA synthesis 42
miR-744-5p qPCR GCC CTG CGG GGC TAG GGC TA qPCR 60
miR qPCR rev GTG CAG GGT CCG AGGT qPCR 60
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SARS-CoV-2-induced damage, HLA-G expression was 
determined in representative samples of kidney (n = 21) and 
heart tissues (n = 12) obtained from SARS-CoV-2-infected 
patients. All these tissue samples lacked HLA-G expression 
(data not shown) suggesting a tissue-specific HLA-G neo-
expression upon course of COVID-19.

Correlation of HLA‑G expression with SARS‑CoV‑2 
nucleocapsid antigen and spike protein expression

Next to HLA-G, the SARS-CoV-2 nucleocapsid and spike 
protein antigen expression was determined in the lung tissue 
samples analyzed using IHC. In the group of SARS-CoV-2-in-
fected patients, the nucleocapsid expression was detectable in 
23/65 (35.4%), the spike protein in 31/65 (47.7%) of cases. 
All samples expressing the nucleocapsid were also positive 
for the spike protein. The expression of the respective markers 

was detectable in pneumocytes, respiratory epithelia, and lung 
infiltrating immune cells, but neither in other tissue samples 
from SARS-CoV-2-infected patients nor in lung epithelium 
samples of influenza-infected or control patients. All SARS-
CoV-2 nucleocapsid antigen-positive lung samples expressed 
HLA-G, while the 42 nucleocapsid antigen-negative tissues 
from patients with proven SARS-CoV-2 infection presented a 
trend towards higher HLA-G expression levels, although sta-
tistically non-significant (Fig. 1c).

Inverse correlation of HLA‑G expression 
with HLA‑G‑specific miRNAs

Building on the miRNA-mediated posttranscriptional regu-
lation of HLA-G expression [20–23, 68], the expression of 
HLA-G-specific miRNAs known to inhibit HLA-G expres-
sion by either binding to the 3’ UTR or CDS was analyzed by 

Fig. 1  Evaluation of HLA-G 
expression in lung tissues from 
SARS-CoV-2- and influenza-
infected patients and controls. 
HLA-G expression in SARS-
CoV-2- or influenza-infected 
lungs as well as in lungs from 
control patients was deter-
mined by IHC as described 
in “Material and methods”. a 
Representative micrographs 
of HLA-G expression in lung 
epithelia from SARS-CoV-2- 
or influenza-infected patients 
as well as controls are shown. 
Magnification 1:40; bars 
indicate a scale of 50 µm. H&E 
hematoxylin and eosin stain-
ing; b, c HLA-G expression is 
shown using the H-score for 
the different patients (SARS-
CoV-2, n = 65; influenza, 
n = 10; control patients, n = 12) 
or for the SARS-CoV-2-infected 
individuals divided regard-
ing the presence or absence of 
detectable nucleocapsid antigen 
by IHC (positive, n = 13; nega-
tive, n = 52)
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qPCR in lung tissues across the samples and correlated with 
the HLA-G staining intensity (H-score) obtained by IHC 
(Fig. 1b). The HLA-G protein levels of FFPE specimen were 
categorized into a HLA-G negative/weak (n = 8; HLA-G 
negative with H-score = 0; HLA-G weak H-score < 50) and a 
HLA-G medium/high (n = 17; HLA-G medium H-score > 50 
and < 100; HLA-G high H-score > 100) group. A statisti-
cally significant, inverse expression of HLA-G-regulating 
miRNAs and HLA-G protein was detected for miR-744-5p 
(p = 0.0063) and for miR-152 (p = 0.036), which bind to the 
CDS and the 3ʹ UTR of the HLA-G mRNA, respectively, 
whereas the expression of miR-548q (p = 0.0982) and miR-
148B (p = 0.2302) did not reach statistical significance 
(Fig. 2). The miRNAs miR-628 and miR-148A completely 
lacked an inverse expression to the HLA-G protein (Fig. 2). 

It is noteworthy that miR-744-5p and miR-152 classified as 
key regulators of HLA-G in previous studies [23] displayed 
the highest abundancies, strengthening their importance in 
the post-transcriptional regulation of HLA-G in tissues of 
SARS-CoV-2-diseased individuals.

Effect of SARS‑CoV‑2‑infection on immune 
cell infiltration in lung tissues and correlation 
with HLA‑G expression levels

To investigate whether there exists a link between HLA-G 
expression levels and the cellular environment as well as 
its spatial organization, the immune cell infiltration of tis-
sues across all samples was assessed by quantification of 
lymphocyte infiltration using HE staining, conventional 

Fig. 2  Correlation of HLA-G miRNA expression with HLA-G inten-
sity in lung sections of SARS-CoV-2 patients. Expression of the rela-
tive copy numbers of HLA-G-regulating miRNAs was determined by 
qPCR on the lung sections of SARS-CoV-2 patients. The results are 
shown as Box-Whiskers Plots upon subdivision of the patients into 

HLA-G negative/weak (n = 8) and HLA-G medium/high (n = 17) 
based on the H-score obtained by IHC staining (HLA-G negative = 
0; HLA-G weak < 50; HLA-G medium > 50 and < 100; HLA-G high 
> 100). The statistical significance (p value) was determined by cal-
culation of the two sided student’s t test
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IHC and MSI (Fig. 3). An increased immune cell infiltra-
tion in the lungs of SARS-CoV-2- and to a lesser extent of 
influenza-infected patients compared to healthy controls was 
observed (data not shown). Lymphocyte quantification in 
tissues from SARS-CoV-2-infected patients demonstrated 
a statistically significant positive correlation of lung-spe-
cific HLA-G expression levels and the immune cell density 

(Fig. 3a). Furthermore, in these patients, pulmonary HLA-G 
expression was positively correlated with the frequency of 
 CD3+ T cells and  CD56+ T/NK cells analyzed by conven-
tional IHC (Fig. 3b, c). In contrast, there was no correlation 
between HLA-G expression and the frequency of  CD20+ 
B cells (Fig. 3d). Interestingly, lung tissues with detectable 

Fig. 3  Altered composition of 
the immune cell infiltrate in 
lung tissues of SARS-CoV-
2-infected patients. Lung tissues 
from the SARS-CoV-2 patients 
(n = 65) were evaluated for 
lymphocyte infiltration by HE 
staining (a) or by conventional 
IHC using mAbs directed 
against CD3 for total T cells 
(b), CD56 for NK or NKT 
cells (c) and CD20 for B cells 
(d). The resulting cell frequen-
cies are shown in correlation 
to the H-score of HLA-G. 
In addition, the Spearman 
correlation coefficients and p 
values are given. Lung tissues 
from SARS-COV-2-diseased 
patients were stained by MSI 
and evaluated as described in 
"Material and Methods". The 
minimum distance (in μm) 
between macrophages and mac-
rophages (e) as well as between 
conventional T cells (Tconv, i.e. 
 CD3+  Foxp3neg) to  Tconv cells (f) 
is shown as Box-Whiskers plot. 
The lines represent the median 
values of the groups
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SARS-CoV-2 nucleocapsid antigen showed a slightly lower 
lymphocyte infiltration (data not shown).

The analysis of the frequency and composition of the 
immune cell repertoire was extended by a more detailed 
examination of the spatial distribution between the differ-
ent immune cells (Fig. 3e, f). The spotwise evaluation of 
MSI demonstrated no significant differences in the number 
of infiltrating immune cells, such as  CD163+ macrophages 
or total  CD3+ T cells across the samples (data not shown). 
However, evaluation of the relative distance among the dif-
ferent immune cells in the lung epithelia highlighted that 
in the SARS-CoV-2 patient group the macrophages were 
in closer proximity to each other, while the conventional T 
cells determined as  CD3+  Foxp3neg cells were more distant 
from each other than in the tissues of controls or influenza-
infected patients, respectively (Fig. 3e, f).

Since viral infections have been shown to influence T cell 
function by inducing hyperactivation and anergy [69], the 
frequency of  CD8+ T cells as well as the expression of the 
T cell immunoreceptor with Ig and ITIM domains (TIGIT), 
TIM-3, programmed cell death protein 1 (PD-1), and CD69 
was evaluated as surrogate markers by MSI. Data were 
correlated with the SARS-CoV-2-induced HLA-G expres-
sion as representatively shown in Fig. 4a. Higher HLA-G 
expression levels correlated with lower  CD8+ T cell frequen-
cies (Fig. 4b). These  CD8+ T cells showed a significantly 
increased expression of CD69 and TIGIT (Fig. 4c, d), while 
the expression of TIM-3 and PD-1 (Fig. 4e, f) was signifi-
cantly lower in high HLA-G-expressing cases. However, 
even though the activation marker CD69 was significantly 
higher expressed in these T cells,  CD69+ T cells were more 
distant to high HLA-G-expressing lung epithelial cells with 
a minimal distance of 1.58 µm versus 3.08 µm, and an aver-
age distance of 4.73 µm versus 118.23 µm.

Clinical relevance of HLA‑G expression, frequency, 
and composition of the pulmonary immune cell 
infiltrate in SARS‑CoV‑2‑infected patients

To determine whether HLA-G expression levels might have 
a prognostic impact in SARS-CoV-2-infected lungs, the 
level of HLA-G expression was correlated to the severity of 
disease. Therefore, the patients with SARS-CoV-2 infection 
were divided into those who survived and those with early 
and late disease depending whether death occurred before 
or after 7 days from the start of respiratory symptoms. In 
SARS-CoV-2-infected patients HLA-G and nucleocapsid 
expression levels were associated with the patients’ outcome 
as shown in Fig. 5. In detail, lung resection tissues of the six 
SARS-CoV-2 survivors exhibited significantly lower HLA-G 
levels than lung tissues from deceased patients (Fig. 5a). 
Among the deceased individuals the HLA-G expression was 
lower in patients, who survived longer than 7 days compared 

to patients with a survival of less than 7 days after the first 
symptoms (Fig. 5a). Interestingly, most patients with detect-
able SARS-CoV-2 nucleocapsid antigen expression in lung 
epithelia died early (< 7 days after first symptoms, data not 
shown). It is noteworthy that lung samples with an early 
acute interstitial pneumonia pattern (exudative phase) 
showed lower HLA-G expression levels compared to sam-
ples with later inflammatory stages (organized and fibrotic 
phases) (Fig. 5b).

In addition, the correlation of the frequency and locali-
zation of lymphocytes to the survival of SARS-CoV-2-in-
fected patients demonstrated a significantly lower frequency 
of  CD3+ T cells in the stroma of lung tissues of survivors 
(Fig. 5c). In addition, despite not reaching statistical sig-
nificance, survivors exhibited higher levels of  CD20+ and 
 CD56+ cells (Fig. 5d, e). Moreover, a significantly enhanced 
presence of regulatory T cells (Tregs) determined as  CD3+ 
 Foxp3+ cells could be highlighted in the SARS-CoV-2 sur-
vivors versus deceased patients (Fig. 5f) although their fre-
quency was low.

Discussion

Recently, HLA-G has been shown to be upregulated by 
various viruses, such as HCV, HCMV, HPV and HIV [32, 
70, 71], which was extended in this report to SARS-CoV-2 
infection. We show here for the first time that patients 
infected with the SARS-CoV-2 and pulmonary disease had 
a high frequency of membranous HLA-G expression in the 
lung tissues, predominantly the alveocytes, but not in other 
tissues suggesting an organ-specific HLA-G neo-expression. 
Despite sharing a viral pathogenic origin and a similar dam-
age pattern within the lung, the level of HLA-G expression 
in lung epithelia of COVID-19 patients was higher than that 
of influenza-diseased patients and might reflect an altered 
immune response associated with an increased fibrosis score 
in the lungs of COVID-19 patients [72, 73]. In contrast, 
lung epithelia of non-virus-infected controls lacked HLA-G 
expression.

There exist a number of publications on the immune 
cell repertoire and/or its spatial distribution in COVID-
19 damaged lungs ranging from macroscopic to single-
cell level [74], but a correlation between HLA-G expres-
sion, the immune cell composition, and the clinical course 
has not yet been described. In agreement with published 
data using targeted spatial transcriptomics, changes in 
the cell type composition and interactions between mac-
rophages and T cells using IHC and MSI were found in 
the diseased lungs. This study showed for the first time 
that the increased immune cell infiltration was associated 
with high HLA-G-expression levels, which might be due 
to cytokines secreted by T cells and macrophages, like 
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IL-10, TGF-β and/or IFN-γ, present in high numbers of 
the lung tissue microenvironment [75, 76]. Furthermore, 
higher HLA-G expression levels were associated with 
decreased frequencies of  CD69+  CD8+ T cells.  CD8+ T 
cells expressing the activation marker CD69 were more 
distant located to HLA-Ghigh cells compared to cases with 
low or no HLA-G expression. In this context, it is note-
worthy that HLA-G inhibits T cell activity by binding to 
the ILT2 and ILT4 receptors, and therefore activated  CD8+ 
T cells in the proximity of HLA-G expressing cells are 
not functional [77, 78]. The expression of HLA-G and its 
receptors (ILT-2, ILT-4, KIR-2DL-4) could be also found 
in peripheral immune cells, like T and B cells as well as 
monocytes upon SARS-CoV-2 infection [59].  CD8+ T 
cells have been shown to overexpress CD69 and TIM-3 in 
the peripheral blood of COVID-19-infected patients com-
pared to healthy controls, which is a characteristic for a 
hyperactivated/exhausted T cell phenotype. This observa-
tion has also clinical relevance, since the hyperactivated 
T cell status was accompanied by a reduced survival of 
COVID-19-infected patients [54]. Based on the analysis 
of PBMC in COVID-19-infected patients,  CD8+ T cells 
exhibit an exhausted phenotype characterized by the sur-
face expression of TIGIT, TIM-3 and/or PD-1 [79, 80]. In 
our study, TIGIT expression was significantly increased in 
HLA-G-positive cases, while PD-1 and TIM-3 exhibited 
a significantly higher surface expression on  CD8+ T cells, 
which reflect an exhausted  CD8+ T cell phenotype and 
mainly confirmed the published results of PBMC analysis 
of COVID-19-infected individuals. Dysfunction or T cell 
exhaustion result in deficient T cell responses in COVID-
19-infected individuals. This might be driven by a type I 
IFN-induced transcriptional network regulating the expres-
sion of co-inhibitory molecules [81].

In addition, a negative correlation between the expres-
sion of HLA-G, the nucleocapsid, and the spike protein 
was detected, which point to an altered expression of these 
molecules during the disease and indicate an up-regulation 
of viral proteins in the early phase of COVID-19. The nega-
tive correlation between HLA-G expression and COVID-19 
course underlines that HLA-G might be a potential therapeu-
tic target in this disease. This hypothesis is further supported 
by an association between the HLA-G variant rs9380142 and 
the susceptibility to SARS-CoV-2 infection [82].

The molecular mechanisms regulating HLA-G expression 
are highly complex and comprise single nucleotide polymor-
phisms (SNPs) in the CDS and 3ʹ UTR of the HLA-G gene, 
epigenetic, transcriptional as well as posttranscriptional reg-
ulation. In multiple tumor entities, the expression of HLA-
G-regulating miRNAs has been shown to be inversely cor-
related with HLA-G [21, 23]. In this study, we observed that 
lung biopsies from COVID-19-diseased patients displaying 
increased HLA-G protein expression exhibit lower miR-
744-5p and miR-152 expression levels suggesting a deregu-
lated HLA-G-specific miRNA expression due to COVID-
19 infection. However, further evaluations are required to 
identify the processes responsible for directly or indirectly 
leading to a down-regulation of these miRNAs as well as to 
understand why the other known HLA-G-regulating miR-
NAs are not inversely expressed.

Other mechanisms resulting in HLA-G neo-expression 
are related to the composition of the tissue microenviron-
ment, in particular of immune-suppressive inflammatory 
cytokines, such as IL-10, TGF-β, and IFN-γ, which are 
able to upregulate and/or enhance HLA-G expression [83]. 
Therefore, analysis of cytokine secretion by the different 
immune cell subpopulations in the SARS-CoV-2-infected 
lungs might help to evaluate their role in HLA-G neo-
expression and in the outcome of SARS-CoV-2-infected 
patients.

Conclusions

We here propose that HLA-G is a major player in the altered 
immunogenicity of SARS-CoV-2-infected lung epithelia. 
Thus, HLA-G might serve as prognostic marker and might 
also pave the way to develop HLA-G as therapeutic target 
for the treatment of COVID-19 infection by restoring the 
exhausted immune responses induced by HLA-G.

Fig. 4  Correlation of the frequency and function of  CD8+ T cells 
to HLA-G expression. MSI staining was performed as described in 
Materials and Methods and staining patterns of exhaustion/hyperac-
tivation markers were correlated to HLA-G. a  Representative mul-
tiplex staining of lung tissues from a SARS-CoV-2 patient with a 
multiplex panel consisting of mAbs directed against HLA-G (violet), 
CD69 (red), CD8 (yellow), TIGIT (orange), TIM-3 (green), and PD-1 
(turquoise). b Pearson correlation map with association to functional 
markers: Pearson correlation coefficients are represented by differ-
ent colors defined in the scale bar on the right side of the correlation 
map. Significant associations are highlighted by a black frame. Cor-
relation of TIGIT (c), CD69 (d), PD-1 (e) and TIM-3 (f) expression 
to HLA-Ghigh and HLA-Glow expression levels

◂
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