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Abstract
The German National Cohort (NAKO) is an ongoing, prospective multicenter cohort study, which started recruitment in 
2014 and includes more than 205,000 women and men aged 19–74 years. The study data will be available to the global 
research community for analyses. Although the ultimate decision about the analytic methods will be made by the respec-
tive investigator, in this paper we provide the basis for a harmonized approach to the statistical analyses in the NAKO. 
We discuss specific aspects of the study (e.g., data collection, weighting to account for the sampling design), but also give 
general recommendations which may apply to other large cohort studies as well.
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Data management and data quality

NAKO data were collected, whenever possible, in a stan-
dardized Electronic Case Report Form (ECRF) web appli-
cation with data entry forms generated from the central data 
dictionary. Entered values were immediately stored in the 
centralized database to avoid loss of data and to conduct 
immediate data validation (e.g., plausibility checks). ECRFs 
could not be completed without filling all fields or submit-
ting a reason for aborting an examination. Output of diag-
nostic devices was uploaded to the centralized database, 
parsed and validated by an integrated data transfer applica-
tion. In cases of technical failures and as preliminary work-
around, paper forms were used to collect data for later entry 
into the ECRF application.

Data quality assessments and data cleaning for the dif-
ferent NAKO examinations were performed by scientists 
individually responsible for the respective modules, compe-
tence units (for more complex biomedical data), or by expert 
groups of the NAKO. All persons involved in plausibility 
checks and data cleaning were requested to check the data 
for completeness and expected distributions of variables. 
In case of deviations, recommendations for the handling 
of implausible values were given; if necessary, the original 
variables were replaced by the corrected ones. If implau-
sible values were considered possible but not convincing 
these values were not corrected but highlighted in module-
specific quality reports. In addition, the respective experts 
in charge decided on and defined derived variables, which 
have been added to the datafiles. Missing values were coded 
in accordance with the reason for missingness, if known.

All information on variables (“metadata”), including 
important results from data quality assessments, is collected 
in the NAKO data dictionary which is publicly accessible 
through the NAKO Transfer Hub (transfer.nako.de, registra-
tion required).

Reliability of measurements and correcting for mea-
surement error is an important aspects in all large cohort 
studies and also for NAKO. Thus, a calibration study was 
conducted where n = 5,903 participants from the baseline 
examination were re-investigated within 1 to 12 months. 
This calibration study is currently being analysed by a com-
bination of regression calibration approaches and longitudi-
nal data analysis methods, and will give recommendations 
on calibrating measurements in regression analyses.

Weighting factors for survey design and/or 
non-response

Epidemiologic data that are based on a random sample 
allow valid statistical inference regarding the underlying 

Introduction

The German National Cohort (NAKO, “NAKO Gesund-
heitsstudie”) investigates the causes, predictive factors, 
(pre-)clinical markers and functional health impairments 
underlying common chronic diseases, e.g., cardiovascular 
disease, cancer, diabetes, neurodegenerative/-psychiatric 
disorders, respiratory, and infectious diseases [1]. In 18 
study centers across Germany, more than 205,000 women 
and men aged 19–74 years participated in a baseline exami-
nation between 2014 and 2019 [2]; a follow-up investigation 
is currently ongoing. The response proportion for the base-
line examination was 17% [2]. The study center visits entail 
a face-to-face interview, completion of self-administered 
questionnaires, various physical examinations and assess-
ments, as well as the collection of biospecimens, including 
blood, urine, feces, saliva and nasal swabs. A sub-sample of 
more than 57,000 participants followed an intensified exam-
ination program that included more in-depth physical and 
medical examinations. Between their study center visits, all 
participants are requested to answer questionnaires on their 
health status. Major self-reported diseases (cardiovascular 
disease, stroke, cancer, diabetes, depression, dementia) are 
then validated via physician contacts and pathology reports. 
Access to NAKO data for scientific use is open for all scien-
tists according to the NAKO data use & access regulations.

This paper aims to provide the basis for a harmonized 
approach to the statistical analyses of NAKO data by point-
ing to specific aspects of the study (e.g., data collection, 
weighting to account for the sampling design), but also 
by giving some general recommendations which may also 
apply to other large cohort studies. Especially with reference 
to the large sample size, the late Sir D.R. Cox reminded us 
recently that “the size of the data does not remove the need 
for appropriate study design and statistical analysis.” [3].

This paper was jointly drafted by members of the expert 
group “Statistical Analysis” of NAKO, a group of statisti-
cians and epidemiologists with considerable experience in 
methods and analysis of epidemiologic data. The authors 
respect the freedom of science and emphasize that each 
researcher is responsible for his/her own statistical analy-
sis. As such, this paper only provides recommendations and 
refrains from prescriptive mandates. Most recommenda-
tions and comments can also be found in numerous tuto-
rial papers, especially from the STRATOS initiative ([4], 
stratos-initiative.org), which provides accessible and accu-
rate guidance in the analysis of observational studies, the 
“Education Corner” of the International Journal of Epide-
miology [5], or the “Practice of Epidemiology” series in the 
American Journal of Epidemiology [6]. For the reporting of 
analyses, we refer to the STROBE statement ([7], strobe-
statement.org).
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Mortality follow-up

Vital status (VS) and causes of death (CoD) as documented 
on the death certificate (DC) cannot be retrieved from a cen-
tral registry in Germany. Therefore, the mortality follow-up 
in the NAKO is case-by-case tracked by the “Competence 
Center Mortality Follow-Up” (MoFU).

Standard for the CoD documentation is the WHO “Inter-
national Form of Medical Certificate of Cause of Death” 
[15]. In view of the four goals of any mortality follow-up 
- authenticity, compatibility, completeness and generaliz-
ability - three versions of the CoD diagnoses are provided 
by the MoFU, offering full choice options to users. The first 
gives CoD diagnoses in ICD codes exactly as on the DC. 
In the second version those ICD codes are potentially rear-
ranged by the coding software IRIS [16], which is used in 
all European (and many more) National Statistical Offices, 
thereby making the first CoD diagnoses version comparable 
to official mortality statistics. For a third version the MoFU 
retrieves additional CoD information from attending physi-
cians, hospices, law-enforcement agencies, next-of-kin, etc. 
In 30% of deaths there are noteworthy, in 10% substantial 
differences between CoD information on the DC (even after 
IRIS rearrangement) and third version CoD information. In 
addition, the third version allows a longer look back in the 
case history – certifying physicians often neglect according 
ICD codes.

For follow-up on morbidity of study participants, a com-
bination of methods is used, including active and passive 
follow-up procedures. Active follow-up includes written 
health follow-up questionnaires sent to participants every 
2–3 years with subsequent contacts with the participants’ 
treating physicians and hospitals and ascertainment of 
events by medical records. Passive follow-up procedures 
include use of secondary data, e.g., from cancer registries or 
health insurance companies.

Missing values/Multiple imputation

Different strategies are available to deal with missing val-
ues, and the choice depends on three factors: (a) the degree 
of missingness, (b) the nature of missingness, and (c) the 
intended use of the variable in question.

(a) Degree of Missingness

In the NAKO, the degree of item missingness ranges from 
0 to 25% per variable. For such variables an available case 
method is generally the appropriate analytic strategy. Gen-
erally, there are less missing values (often 0 to 1%) in vari-
ables obtained in the face-to-face interview, some more 

target population. Since not all population groups are 
equally accessible and not all persons invited to a study take 
part, the composition of the final study sample will in gen-
eral deviate from the target population, potentially leading 
to biased inference. Weighting of data changes the relative 
impact of an observed sample element to generate estimates 
that are closer to the true value of the target population than 
the unweighted estimates [8, 9]. To this end, a weight wi  for 
a sample element i  is constructed that can be used for every 
analysis to provide unbiased or at least less biased esti-
mates. Following Gabler et al., the main reasons to weigh 
a data set are (a) to reduce potential biases due to unequal 
inclusion probabilities of sampling elements, (b) to reduce 
potential biases due to nonresponse and (c) to increase the 
precision of an estimate by retroactive stratification [10]. 
For these purposes, design weighting (a) and calibration (b, 
c) are generally distinguished.

Design weights are recommended whenever the design 
of a study sample causes unequal inclusion probabilities for 
sample elements and researchers are interested in estimates 
of particular subpopulations. They are generally calculated by 
the inverse of an element’s inclusion probability. We recom-
mend employing design weights for inferential estimations.

Calibration weights, on the other hand, use auxiliary 
information available for the target population (e.g., socio-
economic data from official population statistics) to adjust 
the study sample in order to align the sample’s (marginal) 
distribution to that of the population when using the cali-
brated estimator. The actual benefit of calibration weights 
(i.e., the reduction in bias), and therefore researchers’ deci-
sions whether or not to use them in a particular analysis, 
critically depends on the variables available for calibration, 
the underlying nonresponse mechanism, and of course the 
particular variable of interest [8, 9, 11].

The use of correction weights is generally not advised 
when estimating complex models, because models usually 
come with assumptions that might be hard to satisfy [12], 
but exceptions to this general rule are known, see, e.g., 
Hernán/Robins [13] for causal modeling.

In NAKO, population statistics from the German Federal 
Statistical Office are used to calculate design and calibration 
weights. Correction weights, as well as information on their 
use and its reporting are provided with the NAKO data set, 
since it is known that the use of weights can vary consid-
erably across publications even for the same data set [14]. 
Since NAKO is performed in 18 study centers that were not 
randomly selected and the respective local regulations led 
to slightly different ways to arrive at the final population 
sample, weights have been calculated for each study cen-
ter separately. Thus, the underlying weighting strategy does 
not target Germany as a whole, but the target populations of 
individual study regions.
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how to handle missing values in NAKO. Of note, this is not 
a blanket recommendation but more an example to guide 
decision making, and choices will vary depending on the 
research question. It is important that the handling of miss-
ing values is reported in an appropriate manner in the meth-
ods section of the manuscript. Furthermore, to follow the 
guidelines below, the proportion of missing values should 
not be severe. The severity of missingness is a multidimen-
sional problem that depends on a multitude of characteris-
tics, such as variable’s distribution, the research question, 
the type of nonresponse, the data’s covariance structure, 
etc., and in specific situations even a small number of miss-
ing values may result in a distorted estimate.

Covariate/Confounder selection

In principle, two statistical modelling approaches in epide-
miology with different philosophies can be distinguished: 
causal modelling and individual prediction modelling. In 
NAKO, in agreement with many recent cohort studies, the 
focus is on causal modelling approaches. Causal inference 
is based on potential outcomes for which four fundamental 
identification conditions are required including exchange-
ability, positivity, counterfactual consistency, and no inter-
ference [20, 21]. Causal diagrams also known as directed 
acyclic graphs (DAGs) can answer interventional and 
counterfactual questions. A confounder is defined as any 
variable that can close a backdoor path between an expo-
sure and an outcome [22]. This modern definition is about 
to replace the well-known previous definition that a con-
founder simply represents a variable that is associated with 
the outcome and with the exposure of interest. DAGs, and 
especially the directions of the paths between covariates 
and exposure or outcomes or between covariates are drawn 
based on prior knowledge. Based on a DAG, a minimal 

missing values (usually 5 to 15%) on the self-administered 
touch screen questionnaires and a wide range of missing 
values in the variables obtained from physical and medi-
cal examinations. There are special cases of missingness 
by design, e.g., for variables only assessed in participants 
with the intensified examination program, where the degree 
of missingness could be 75% or more. For such variables, 
when analysis is not restricted to the respective sub-cohort, 
an available case method is generally the appropriate ana-
lytic strategy.

(b) Nature of Missingness

When deciding on how to treat missing values, it is impera-
tive to evaluate whether the values are missing completely 
at random (MCAR), missing at random (MAR), or not miss-
ing at random (NMAR) [17, 18]. This is often not obvious 
and assumptions have to be made. Of note, an assumption 
of missingness completely at random can almost never be 
made. Few missing values are truly random [17, 18], but 
for values missing by design the assumption of random-
ness is likely reasonable if measurements are taken in a ran-
dom subgroup of individuals. Investigators might want to 
explore missing distributions by age, sex, study center, and 
other covariates. The NAKO has generated a detailed list of 
missing categories providing guidance to investigators with 
information about the nature of missingness. These catego-
ries are: do not know; blank, implausible value; value could 
not be derived, variable/module was not assessed (reason 
provided, e.g. participant refusal, contraindicated, skipped 
due to lack of time, instrument malfunction), missing by 
design. The coding of the missing variables is available 
from the NAKO code book.

(c) Intended Use of Variable

The strategy of how to approach missing values depends 
on whether the variable is used for prevalence or incidence 
estimations, whether it represents an exposure or outcome of 
interest in a regression model, or whether it is a confounder 
or covariate in a regression model [17–19]. For estimating 
prevalence and incidence, multiple imputation is probably 
the best approach. If model building is the objective, both 
primary exposure and outcome variables should follow an 
available case method and not be imputed [18, 19]. Potential 
confounders and other covariates that are not clearly NMAR 
can be imputed using a single imputation method which is 
simple to perform and will provide appropriate variance 
estimates given the sample size and the fraction of miss-
ing values of NAKO. Only in case of an obvious NMAR 
situation, an available case method should be preferred for 
covariates [18]. Table 1 displays an exemplary decision on 

Table 1 Treatment of missing values by nature of missingness and 
research question as appropriate in NAKO
Variable and Analysis/ 
Missing Type

Missing 
Completely 
at Random 
(MCAR)

Missing at 
Random 
(MAR)

Not Missing 
at Random 
(NMAR)

Incidence/Prevalence Avail-
able Case 
Analysis

(Multiple-) 
Imputation

Complete 
Case Analy-
sis (reporting 
restrictions)

Outcome or Exposure in 
a regression model

Avail-
able Case 
Analysis

Avail-
able Case 
Analysis

Complete 
Case Analy-
sis (reporting 
restrictions)

Covariate in a regression 
model

Avail-
able Case 
Analysis

(Single-) 
Imputation

Available 
Case Analysis 
(reporting 
restrictions)
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the linear component of the confounder is accounted for 
giving rise to potential residual confounding. Conversely, 
when the variable is categorized or dichotomized, not only 
a (sometimes tremendous) loss of information is inducted, 
but model assumptions like step-wise constant effects on 
the outcome are implicitly made; this might again intro-
duce residual confounding, which may lead to both a loss of 
power and inaccurate estimation [25, 26]. Therefore, we do 
not recommend the categorization of continuous covariates 
in the modelling stage.

On the other hand, the dichotomization of a quantitative 
variable in an association model can be warranted, when 
this reflects a pre-defined disease status (or disease stage in 
the case of multiple categories) defined by clinical guide-
lines. This is relevant when the covariate-disease status may 
be linked to therapeutic consequences: for example, when 
hypertension is associated with an x-fold increased risk of 
cardiovascular disease, then individuals with hypertension 
are subject to potential therapy and the risk increase is the 
impact on disease that may be avoided. A categorization 
can also be warranted to compare NAKO results with those 
from previous studies. In any case, the use of categories for 
quantitative variables as covariates should be justified by 
sound scientific or clinical/public health arguments [27] and 
accompanied by statistically more appropriate methods.

Ideally, the functional form of the confounder’s effect on 
the outcome is to be evaluated in the modelling procedure 
and is best accounted for as fully as possible, e.g., by frac-
tional polynomials or splines [28, 29]. For variables with a 

sufficient adjustment set of confounders is selected and used 
as covariates in regression analyses. It is important to note 
that the wealth of variables in large cohorts may also lead to 
over-fitting and adjustment for mediating variables in cases 
of not correctly specified DAGs. Of course, the latter might 
results from errors of respective researchers, but also are 
likely to occur based on limited knowledge at the time of 
DAG generation.

If there is little prior knowledge about relations between 
variables, VanderWeele [23] suggests to adjust for each 
covariate that is either a cause of the exposure or the out-
come or is a cause of both the exposure and the outcome. In 
contrast to smaller studies, NAKO enables extensive adjust-
ment or even stratification for many confounders simultane-
ously with an acceptable loss of statistical precision. In any 
case, in a multicenter study like NAKO it is of central inter-
est how to deal with the center effect in regression analy-
ses. In principle, we consider the center effect as a regular 
covariate, and the decision about adjusting or not adjusting 
for it depends on its anticipated role as a confounder or a 
non-confounder.

The covariate selection should be made explicit in an a 
priori analysis plan independently of the method used and 
should not be based on the statistical significance of p-val-
ues in (bivariate) group comparisons. Likewise, an increase 
or decrease in effect size of the exposure on the outcome 
due to further adjustment for a covariate in a regression 
model is not necessarily an indication that the covariate is a 
confounder, because colliders (common effects of exposure 
and outcome) or mediators (effect of exposure, cause for the 
outcome) can also produce a change in the effect size. Fur-
thermore, the non-collapsibility property of the odds ratio 
can result in a change in effect estimate that is unrelated to 
confounding [24].

Dichotomization/Categorization

In epidemiologic studies, many variables are obtained on 
a quantitative (or continuous) as opposed to a categorical 
scale, either by direct measurement (e.g., age) or by com-
bining information from several variables to a new compos-
ite variable (e.g., BMI). When analyzing data from NAKO 
the following should be considered: In descriptive analy-
ses, continuous variables should be presented providing the 
mean or median, a measure of spread (standard deviation, 
interquartile range, or range), or with a figure, e.g., a histo-
gram. The appropriate handling of a continuous covariate in 
a regression model is less clear. Several methods are avail-
able with specific advantages and disadvantages (Table 2).

When a continuous variable is used to adjust for con-
founding (e.g., “adjusted for age”) in the common way, only 

Table 2 Methods to model continuous covariates in regression models
Method Advantages Disadvantages
Categorization 
into two or more 
groups

Easy to communicate;
Enables comparison to 
earlier studies which use 
the same cutpoints;
Can reflect disease stages 
and potential therapeutic 
consequences

Information loss; 
Induces biologi-
cally unplausible 
step functions as 
dose-response 
relationships; 
Inflation of α- and 
β-errors; Potentially 
arbitrary selection 
of cutpoints

Leaving the vari-
able as measured

No information loss (In general) 
Assumption of 
linear relation

Transformation 
of the vari-
able according 
to a specified 
procedure (e.g., 
fractional 
polynomials)

Non-linear and non-
monotone relations 
possible;
Statistical tools available; 
High statistical power

Arbitrary or data-
driven choice of 
transformation

Spline regression Allows complex dose-
response relationships; 
“Letting the data speak for 
themselves”

Data driven method; 
Danger of overfitting; 
Difficult in compari-
son across studies
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Subgroup analyses

Subgroup or stratified analyses are an important tool in epi-
demiology, for instance, to account for pathophysiological 
heterogeneity or differences in risk profiles [33]. However, 
they come with certain pitfalls if not applied with care. At 
worst, unplanned post-hoc analysis without clear justifica-
tion can lead to misleading and even wrong conclusions 
[34]. The NAKO with its wealth of variables will lend itself 
to pursue subgroup analyses. Note that, although we use 
a dichotomized interpretation of p-values in the following 
remarks since it is still common in these types of analyses, 
the aforementioned caution against it nevertheless applies.

Defining subgroups of participants based on certain char-
acteristics and investigating differential exposure effects or 
occurrences of outcomes can lead to important findings, but, 
with a multitude of possible comparisons, possibly also to 
false positive results due to inflated overall α-levels. There-
fore, instead of testing large numbers of group differences 
post-hoc, the number of comparisons should be limited, and 
they should be defined and justified a priori. Results from 
post-hoc tests should always be reported together with the 
number of tests carried out and the information whether and 
which adjustments were made for multiple comparisons 
[35].

Moreover, comparisons between subgroups should not 
be solely based (and interpreted) on the fact that separate 
tests reached significance in one group but not in the other, 
because the difference between a significant and a non-sig-
nificant test result is not necessarily significant itself [36]. 
Instead, group differences should only be reported if rele-
vant interaction between group and exposure effects is pres-
ent in addition to significant main effects [33].

When exploring subgroup analyses in NAKO these 
should be defined a priori based on pathophysiological prin-
ciples, carefully justified, adequately sized, and limited to 
few endpoints and subgroups of interest. If group differ-
ences are observed post-hoc even after accounting for mul-
tiplicity, they should be interpreted carefully regardless of 
their statistical significance and all comparisons made and 
endpoints analyzed should be reported.

More recent approaches to subgroup analyses include 
Bayesian methods, for instance, for the evaluation of het-
erogeneity of treatment effects [37] or subgroup analysis 
with hierarchical models [38], as well as machine learning 
approaches [39, 40].

Conclusion and outlook

In summary, we have emphasized some specific character-
istics in the NAKO data collection and sample composition 

semi-continuous distribution (spike at zero), for example, 
dose of lifetime smoking when never-smokers are included, 
methods are available using an expanded fractional polyno-
mial procedure [30].

Estimation and quantification of 
associations

In risk factor epidemiology, the key objective is to estimate 
the association between an exposure variable and a disease 
outcome along with the quantification of the strength and 
direction of such an association. For quantification, we con-
sider a p-value insufficient to describe empirical evidence 
of an association because it confounds the size of the effect 
with its precision. In NAKO, due to the large sample size of 
the study, nearly every p-value will be dramatically low and 
might be labelled “statistically significant”. We thus recom-
mend to use p-values only in specific situations and always, 
at least if possible, with the respective parameter estimate 
and a measure of precision. Preferred is a 95% confidence 
interval even though it might be argued that in large cohort 
studies like NAKO 95% confidence intervals might be too 
narrow to be of value or may suggest a level of precision not 
supported by the data or the measurement process itself. Sit-
uations where a p-value indeed might be reported are those 
where it is difficult to provide parameter estimates, e.g., for 
a test for trend or when testing the fit of a smooth/flexible 
regression fit against a linear or a null fit. However, these 
p-values should be accompanied with meaningful graphs to 
describe the situation under study. In any case it is important 
to communicate and interpret p-value correctly, that is, not 
as a probability of the null hypothesis being true [31], but 
the probability that the observed (or a more extreme) result 
would have occurred if the null hypothesis had been true.

There is considerable debate about the usage of p-val-
ues in a dichotomized fashion, i.e., in the judgement of an 
association being “statistically significant” and “not sta-
tistically significant” at arbitrary cutpoints [32]. Statistical 
significance is frequently erroneously equated with epide-
miologic or clinical relevance, and a statistically significant 
result is considered epidemiologically important, whereas a 
statistically non-significant result is considered as not being 
important.

In summary, we recommend sparse utilization and cau-
tious interpretation of p-values in data sets like NAKO. 
Dichotomization in statistically significant and non-signif-
icant results should be entirely abandoned. Finally, we also 
encourage the reporting of null associations, which are fre-
quently omitted from the scientific literature but are equally 
important as non-null associations.
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that call for appropriate analytic methods, such as the use 
of weights. Moreover, we have highlighted other consid-
erations for data analysis, which we hope will be helpful 
for individual researchers and will provide the basis for a 
unified approach to statistical analyses in NAKO and other 
large cohort data.

With respect to the future, an important aspect for the next 
funding period is genotyping of all 205,000 NAKO partici-
pants using a genome-wide single nucleotide polymorphism 
array. This will allow, besides the standard application of 
genomic information, also more advanced methodological 
approaches, like polygenic risk scores or Mendelian ran-
domization analyses. The ‘large data’ will allow to connect 
multiple layers of biological information with new com-
putational approaches (e.g., artificial intelligence) and will 
contribute to an enhanced understanding of human physiol-
ogy and pathomechanisms.
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