
University of Magdeburg

School of Computer Science

D
S E
B

Databases

Software
Engineering

and

Dissertation

Product-Line Specification and Verification
with Feature-Oriented Contracts

Author:

Thomas Thüm

February 23, 2015

Reviewers:

Prof. Dr. Gunter Saake (University of Magdeburg, Germany)

Prof. Don Batory, Ph.D. (University of Texas at Austin, USA)

Prof. Dr. Reiner Hähnle (University of Darmstadt, Germany)

Thüm, Thomas:
Product-Line Specification and Verification with Feature-Oriented Contracts
Dissertation, University of Magdeburg, 2015.

D I SSERTAT ION

zur Erlangung des akademischen Grades

angenommen durch die Fakultät für Informatik
der Otto-von-Guericke-Universität Magdeburg

von

geb. am in

Gutachterinnen/Gutachter

Magdeburg, den

Product-Line Specification and Verification
with Feature-Oriented Contracts

Doktoringenieur (Dr.-Ing.)

Dipl.-Inform. Thomas Thüm

10.09.1984 Magdeburg

Prof. Dr. Gunter Saake
Prof. Don Batory, Ph.D.
Prof. Dr. Reiner Hähnle

23.02.2015

Abstract

Variability is ubiquitous in today’s software development. While techniques to efficiently
implement software product lines are used for decades, verification techniques have been
a hot research topic in the last years. We give an overview on how existing verification
techniques were applied to product lines. Based on our insights, we overcome two
shortcomings of previous research on product-line verification. First, we systematically
investigate how contracts can be utilized for product-line specification. Our theoretical
discussion and practical evaluation lead us to the notion of feature-oriented contracts.
In particular, we found that behavioral subtyping applies to most, but not all feature-
oriented contracts. Second, we use these feature-oriented contracts to compare different
verification techniques and strategies for the same product-line implementation and
specification. We measured synergistic effects when using theorem proving and model
checking for product-line verification in concert.

Zusammenfassung

Variabilität ist allgegenwärtig in der heutigen Softwareentwicklung. Während Tech-
niken zur effizienten Implementierung von Software-Produktlinien seit Jahrzehnten ein-
gesetzt werden, waren Verifikationstechniken ein Forschungsschwerpunkt in den letzten
Jahren. Wir geben eine Übersicht darüber, wie existierende Verifikationstechniken auf
Produktlinien angewandt worden. Mithilfe unserer Erkenntnisse beheben wir zwei De-
fizite früherer Forschungsarbeiten zur Produktlinienverifikation. Einerseits untersuchen
wir systematisch wie Kontrakte zur Produktlinienspezifikation genutzt werden können.
Unsere theoretische Diskussion und praktische Evaluierung führt uns zum Konzept der
Feature-orientierten Kontrakte. Insbesondere haben wir beobachtet, dass viele aber
nicht alle Feature-orientierten Kontrakte dem liskovschen Substitutionsprinzip folgen.
Anderseits nutzen wir Feature-orientierte Kontrakte zum Vergleich verschiedener Ver-
ifikationstechniken und -strategien für die selbe Produktlinienimplementierung und -
spezifikation. Wir konnten Synergien bei der Kombination von Theorembeweisern und
Modellprüfern für die Produktlinienverifikation messen.

Acknowledgements

Numerous researchers contributed to this thesis. Most notably, I thank Gunter Saake
for his trust in my capabilities and for giving me the possibility chose a research topic
of my choice. Even in busy times, such as being a dean, he has always taken the
time to answer my questions and to find solutions to scientific as well as non-scientific
problems. The freedom that I had for teaching and research turned out to be a perfect
environment for my Ph.D. thesis.

Besides Gunter, I gratefully acknowledge other professors that guided me during the last
years. Christian Kästner has been a perfect supervisor for my bachelor’s and master’s
thesis. His critical comments helped me to continuously improve my writing and to
find a challenging research topic. Sven Apel’s and Ina Schaefer’s initiative resulted in
the first paper for this thesis and their substantial feedback broadened my view on the
Ph.D. topic. Thomas Leich initiated and supported the tool building, and he motivated
me to keep going, whenever needed. Don Batory’s prior work inspired several parts of
my thesis and I am grateful for our collaboration on my bachelor’s thesis and Ph.D.
thesis. Furthermore, I thank Reiner Hähnle and Frank Ortmeier for discussions on
specification techniques and their valuable feedback on my research.

The evaluation of my research required a considerable engineering effort to build tool
support, for which I was lucky to find students being interested in bachelor’s and mas-
ter’s theses. The majority of tool support has been implemented by Jens Meinicke and
Fabian Benduhn. André Weigelt, Matthias Praast, and Stefan Krüger implemented
extensions. Many evaluations would have been impossible without their commitment.

My Ph.D. thesis benefited from the experience of other researchers. Many thanks to Ha-
gen Buchwald, Henrique Rebêlo, Martin Hentschel, Richard Bubel, Sebastian Erdweg,
Shriram Krishnamurthi, Tim Molderez, and Wolfgang Scholz for sharing their knowl-
edge on method contracts. For insights on feature-oriented programming, I’m grateful
to Andreas Zelend, Marko Rosenmüller, Martin Kuhlemann, and Reimar Schröter. I
appreciate discussions on variability encoding with Alexander von Rhein and Erik Ernst.

A special thanks to all my colleges from the workgroup Databases and Software En-
gineering for keeping me free of usual obligations in the last months. Being a Ph.D.
student with you guys was a lot of fun. I really enjoy remembering the Whisky tastings
as well as the coffee breaks with Basti and Clemens.

Contents

List of Figures xiv

List of Tables xv

List of Code Listings xviii

1 Introduction 1

2 Background 3
2.1 Specification and Verification with Contracts 3

2.1.1 Design by Contract . 3
2.1.2 Behavioral Subtyping . 5
2.1.3 Contract-Based Verification . 7

2.2 Software Product Lines . 9
2.2.1 Feature Modeling . 10
2.2.2 Feature-Oriented Programming 11
2.2.3 Domain Engineering and Application Engineering 14

3 Classification and Survey of Product-Line Analyses 17
3.1 Classification Overview . 18
3.2 Product-Based Analyses . 21
3.3 Family-Based Analyses . 23
3.4 Feature-Based Analyses . 28
3.5 Combined Analysis Strategies . 30
3.6 Research Agenda . 34
3.7 Related Classifications and Surveys . 43
3.8 Summary . 45

4 Feature-Oriented Contracts for Product-Line Specification 47
4.1 A Taxonomy for Contract Composition 48

4.1.1 Properties of Contract Composition 49
4.1.2 Four Fundamental Options for Contract Composition 52

4.2 Contract-Composition Mechanisms . 54
4.2.1 Plain Contracting . 55
4.2.2 Contract Overriding . 57

xii Contents

4.2.3 Explicit Contract Refinement 59
4.2.4 Conjunctive Contract Refinement 62
4.2.5 Cumulative Contract Refinement 64
4.2.6 Consecutive Contract Refinement 65
4.2.7 Comparison of Contract-Composition Mechanisms 67

4.3 Composition Beyond Pre- and Postconditions 69
4.3.1 Specification Cases . 69
4.3.2 Multiple Preconditions and Postconditions 70
4.3.3 Pure Methods and Model Methods 71
4.3.4 Class Invariants . 72

4.4 Tool Support for Specifying Feature-Oriented Contracts 73
4.4.1 Automating Contract Composition with FeatureHouse 74
4.4.2 Supporting Feature-Oriented Contracts in FeatureIDE 76

4.5 Empirical Evaluation of Feature-Oriented Contracts 77
4.5.1 Case Studies . 77
4.5.2 Results and Insights . 78
4.5.3 Threats to Validity . 90

4.6 Related Work . 91
4.7 Summary . 96

5 Feature-Oriented Contracts for Product-Line Verification 97
5.1 Feature-Product-Based Theorem Proving 98

5.1.1 Product-Based Interactive Theorem Proving 98
5.1.2 Proof Composition for Interactive Theorem Proving 101
5.1.3 Evaluation with Why/Krakatoa and Coq 104

5.2 Family-Based Theorem Proving and Model Checking 106
5.2.1 Variability Encoding for Metaproduct Generation 107
5.2.2 Tool Support for Variability Encoding 113
5.2.3 Evaluation with Theorem Proving and Model Checking 115

5.3 Further Experiences . 122
5.3.1 Type Safety of Feature-Oriented Contracts 122
5.3.2 Static Analysis for Feature-Interaction Detection 125
5.3.3 Blame Assignment with Behavioral Feature Interfaces 126

5.4 Related Work . 128
5.5 Summary . 130

6 Conclusion and Future Work 131

A Appendix 133

Bibliography 139

List of Figures

2.1 Feature model of an object store in three alternative representations. . 11

2.2 Simplified overview on domain engineering and application engineering. 14

3.1 Frequency of analysis strategies addressed in the research literature. . . 35

4.1 Compatibility of changed contracts for callers and callees. 50

4.2 Contract-preservation properties indicate compatibility for callers and
callees of original and refining contracts. 53

4.3 Overriding a contract-composition mechanism with another mechanism. 75

4.4 Contract-composition keywords and possible overriding that establishes
preservation properties. 76

4.5 Percentage of family-wide specifications compared to all specifications. 79

4.6 Collaboration diagram showing all core contracts and core invariants of
product line Poker. 81

4.7 The derivative modules of product line ExamDB cover all combinations
of the optional features BonusPoints, BackOut, and Statistics. 82

4.8 Percentage of contract refinements and alternative contract introductions
compared to all contracts. 83

4.9 Percentage of contract refinements and alternative contract introductions
compared to method refinements and alternative method introductions. 84

4.10 Preservation properties of contract refinements in all product lines. . . 86

4.11 Applicability of contract-composition mechanisms. 87

4.12 The granularity of contract refinements in all product lines. 88

5.1 Lines of proof for proof composition and product-based theorem proving. 105

5.2 Feature model for bank account software. 108

xiv List of Figures

5.3 Product-line verification with feature-oriented contracts in FeatureIDE. 114

5.4 Effectiveness for finding a defect in product lines with some and many
defects. 117

5.5 Performance for finding the first defect in product lines with no, some,
and many defects. 118

5.6 Efficiency as the ratio of effectiveness and performance. 119

5.7 A syntax error in feature-oriented contracts detected by means of feature-
based parsing. 124

5.8 Warning in FeatureIDE for wrong overriding of contract-composition key-
words. 125

List of Tables

3.1 Summary of advantages and disadvantages of analysis strategies. 36

3.2 Number of approaches for each combination of analysis, specification,
and implementation strategy. 38

3.3 Classification of approaches for product-line type checking. 39

3.4 Classification of approaches for product-line static analysis. 40

3.5 Classification of approaches for product-line model checking. 42

3.6 Classification of approaches for product-line theorem proving. 43

4.1 Compatibility of contracts for different preservation properties. 51

4.2 Overview on contract-composition mechanisms and their properties. . . 68

5.1 Mutations applied to feature modules and feature-oriented contracts of
product line BankAccount. 116

A.1 Statistics on feature model and implementation of all product lines. . . 134

A.2 Statistics on contracts and invariants of all product lines. 135

A.3 Statistics on contract refinements of all product lines. 136

List of Code Listings

2.1 A graph implementation with contracts and invariants in JML. 4

2.2 A feature-oriented implementation of an object store. 13

2.3 An object store composed for features MultiStore and AccessControl. . 13

3.1 Family-based type checking for methods read and readAll. 25

3.2 Feature-based type checking for field sealed. 29

3.3 Feature-family-based type checking with interfaces. 32

4.1 Plain contracting in product line IntegerList. 56

4.2 Contract overriding in product line GPL-scratch. 58

4.3 Explicit contract refinement in product line GPL-scratch. 60

4.4 Conjunctive contract refinement in product line GPL-scratch. 63

4.5 Consecutive contract refinement in product line GPL-scratch. 67

4.6 Pure-method refinement in product line ExamDB. 71

4.7 Decomposition of a class invariant for product line ExamDB. 85

4.8 Consecutive contract refinement in product line Email requires cloning
of preconditions. 89

5.1 Excerpt of product line BankAccount to illustrate proof composition. . 99

5.2 Proof that constructor of class Account establishes invariants for config-
uration {BankAccount}. 100

5.3 Proof that constructor of class Account establishes invariants in configu-
ration {BankAccount, DailyLimit}. 101

5.4 Partial proofs that constructor of class Account establishes invariants. . 102

5.5 Variability encoding of the feature model given in Figure 5.2. 109

5.6 Class Account with feature-oriented contracts and two class refinements. 110

5.7 Metaproduct for class Account as defined in Listing 5.6. 111

xviii List of Code Listings

5.8 Example for a type error in a feature-oriented contract. 123

5.9 A defect in method update and its two refinements. 127

5.10 Blame assignment for method update with behavioral feature interfaces. 128

1. Introduction

A major part of our today’s software is not developed from scratch, but rather by start-
ing from existing software [Antkiewicz et al., 2014; Hemel and Koschke, 2012; Laguna
and Crespo, 2013; Rubin and Chechik, 2013; Xue et al., 2012]. Conflicting require-
ments, such as functional requirements and given resource restrictions, force developers
to build variants of a software. Nevertheless, these software variants have similari-
ties. In software-product-line engineering, these similarities are modeled explicitly by
means of features [Clements and Northrop, 2001; Pohl et al., 2005]. Instances of gener-
ative programming can be utilized to automatically generate each product of a software
product line only by providing a selection of features [Apel et al., 2013a; Batory et al.,
2004; Czarnecki and Eisenecker, 2000]. A typical example for a software product line
is an operating system [Parnas, 1976], such as the Linux kernel, but software product
lines have been used in various domains [Weiss, 2008] to increase return on investment,
shorten time to market, and improve software quality [Clements and Northrop, 2001;
Lutz, 2007; van der Linden et al., 2007].

Software-product-line engineering is increasingly used for safety-critical and mission-
critical systems, including embedded, medical, automotive, and avionic systems [Weiss,
2008]. Existing verification techniques, such as theorem proving, model checking, and
type checking, can be applied to a software product line by verifying each product
individually. However, due to the similarities, this strategy involves redundant effort.
Especially if products are generated automatically, generation and verification of each
product individually is often infeasible [Liebig et al., 2013], as the number of products
is up-to exponential in the number of features. More efficient strategies have been
proposed in separate research areas, first for model checking [Fisler and Krishnamurthi,
2001; Nelson et al., 2001], then for type checking [Aversano et al., 2002] and theorem
proving [Poppleton, 2007]. Since then, many new approaches have been presented
for each verification technique with a different nomenclature each, making it hard to
understand their differences and hindering their systematic application by practitioners
and researchers.

2 1. Introduction

In a survey of the research literature on product-line verification, we identified two major
shortcomings of current proposals. First, the focus of the literature is on verification
techniques and their scalability, whereas specification techniques are often not justified
empirically. Most verification techniques, such as theorem proving and model checking,
require to specify the expected behavior, which is then used during the analysis of the
actually implemented or modeled behavior [Clarke et al., 1999; Schumann, 2001; Smith,
1985]. While specification techniques need to be applied to product lines as well, their
application is typically not scrutinized. Second, even though each verification technique
has its strengths and weaknesses, a combination has not yet been used to verify the
same specification for a given product line. In particular, some verification techniques
may be superior to others in certain situations (e.g., in an earlier development step, in
which defects are more likely to occur).

Our long-term vision is that given a software product line, we can recommend verifica-
tion techniques and strategies based on static properties, such as the product-line’s size,
the cohesion of each feature’s artifacts, and the feature specifications. This thesis has
three major contributions, each being a stepping stone towards this long-term vision:

• In Chapter 3, we propose a classification of product-line analyses. Our classifica-
tion identifies the strategy to scale an existing verification technique to software
product lines, as well as the underlying strategies for specification and implemen-
tation. We survey the research literature on product-line verification and classify
a corpus of 137 articles. Based on our insights, we infer a research agenda to guide
future research on product-line verification.

• In Chapter 4, we systematically discuss how to specify product lines, whereas
our discussion is based on method contracts (i.e., preconditions and postcondi-
tions) for specification and feature-oriented programming for implementation. We
propose a taxonomy and mechanisms for the composition of feature-oriented con-
tracts and discuss fundamental properties of contract composition. By means of
case studies, we evaluate which contract-composition mechanisms are superior to
others and which compositions are typical in practice.

• In Chapter 5, we present and evaluate different verification techniques and strate-
gies for feature-oriented contracts. With proof composition, we propose to de-
compose proof scripts along with source code and specification. With variability
encoding, we show how to verify the same product line by means of theorem
proving and model checking. In our evaluation, we found that a combination of
several tools can improve efficiency and effectiveness at the same time.

Besides these three main chapters, we give a brief introduction to contracts and software
product lines in Chapter 2. We conclude our thesis and discuss future work in Chapter 6.

2. Background

This chapter shares material with the ACM Computing Surveys article
“A Classification and Survey of Analysis Strategies for Software Product
Lines” [Thüm et al., 2014a] and with the Science of Computer Program-
ming article “FeatureIDE: An Extensible Framework for Feature-Oriented
Software Development” [Thüm et al., 2014b].

The goal of this chapter is to give a brief introduction into the two main topics of the
thesis. We introduce contracts as a means to formally specify and verify behavior in
Section 2.1. Then, we present main concepts of software product lines in Section 2.2.

2.1 Specification and Verification with Contracts

We give a historical perspective on contracts and their ingredients in Section 2.1.1. In
Section 2.1.2, we discuss the relation of contracts in the presence of subtyping. Finally,
we give an overview on techniques for program verification that are based on contracts
in Section 2.1.3.

2.1.1 Design by Contract

Contracts are almost as old as programming languages, but have been known under dif-
ferent terms in the first steps. Turing [1949] argued that we need assertions to support
programmers in reasoning about correctness of large routines. [Floyd, 1967] proposed
assertions to be used for verification by means of mechanical theorem proving. Some of
these assertions have later been named preconditions [Hoare, 1969, 1972] and postcon-
ditions [Dijkstra, 1976; Gries, 1981]. We found the first usage of the term contract by
Liskov and Guttag [1986], which has been promoted by Meyer [1988, 1992] for object-
oriented programming in Eiffel as design by contract. Other popular languages with

4 2. Background

class Graph {
//@ invariant nodes != null && edges != null;
Collection<Node> nodes = new ArrayList<Node>();
Collection<Edge> edges = new ArrayList<Edge>();
/∗@ requires node != null;

@ assignable nodes;
@ ensures nodes.contains(node) && (\forall Node n; n != node;
@ \old(nodes.contains(n)) <==> nodes.contains(n)); @∗/

void addNode(Node node) {
nodes.add(node);
}
/∗@ requires nodes.contains(edge.first) && nodes.contains(edge.second);

@ assignable edges;
@ ensures hasEdge(edge) && (\forall Edge e; e != edge;
@ \old(hasEdge(e)) <==> hasEdge(e)); @∗/

void addEdge(Edge edge) {
edges.add(edge);
}
/∗@ pure @∗/
boolean hasEdge(Edge edge) {

for (Edge e : edges)
if (e.first == edge.first && e.second == edge.second)

return true;
return false;
}
}

Listing 2.1: A graph implementation with contracts and invariants in JML.

support for contracts are the Java Modeling Language (JML) [Burdy et al., 2005] and
Spec# [Barnett et al., 2011].

Technically, contracts can be viewed as an extension of type specifications [Meyer, 1988].
That is, contracts extend the usual type signatures to include constraints on behavior
to capture behavioral dependencies between objects [Helm et al., 1990]. With contracts,
programmers can make implicit assumptions about possible input and output values
of object-oriented methods explicit [Meyer, 1988]. Explicitly stating these assumptions
can improve program understanding and reuse [Helm et al., 1990] and avoid defensive
programming [Meyer, 1992]. Hatcliff et al. [2012] give an overview on further applica-
tions, such as verifying implementations against specifications as well as the generation
of test cases and test oracles.

Example 2.1. In Listing 2.1, we give an example of contracts in JML, which is an
extension of Java with support for contracts [Leavens et al., 2006]. The class Graph
stores nodes and edges. Both, nodes and edges can be added by means of the methods
addNode and addEdge. The preconditions of these methods denoted by the requires clause

2.1. Specification and Verification with Contracts 5

state that only initialized objects may be passed. Furthermore, an edge can only be added
if it connects nodes that have been added before. The postconditions of both methods
are denoted by ensures and state that the new node or edge is added and that no further
node or edge, respectively, has been added or removed. Keyword old can be used in
postconditions to refer to the state prior to method execution. The quantifiers forall and
exists may be used to reason about sets of objects.

Hoare [1972] proposed two types of invariants for correctness proofs of data represen-
tations, which are also known as class invariants and loop invariants [Meyer, 1988]. A
loop invariant is an assertion that is assumed to hold before the first loop execution
and after each execution. Loop invariants are often needed to prove termination. In
contrast, a class invariant is an assertion that needs to be established by the construc-
tor, and every method can rely on the invariant when it is called, but need to establish
the invariant on return [Hoare, 1972]. That is, a class invariant (for short invariant)
defines the legal values of its type [Liskov and Wing, 1994]. We give a trivial invariant
in Listing 2.1 stating that the fields nodes and edges must be initialized.1 Hence, the
method addNode does neither need to handle the case nodes == null in the method
body, nor does it need to state this as a precondition.

Instead of introducing a postcondition \old(f) == f for each field f of a class that is not
changed by the method, one can add a frame condition [Hatcliff et al., 2012]. Frame
conditions are also known as modifies clauses [Dhara and Leavens, 1996; Leino, 1998;
Liskov and Guttag, 1986] and assignable clauses [Beckert et al., 2007; Chalin et al., 2005;
Leavens and Müller, 2007]. Assignable clauses avoid unnecessary long postconditions,
but are also essential for information hiding [Leavens and Müller, 2007] and formal
verification [Beckert et al., 2007; Weiß, 2011]. In our example, method addNode is only
allowed to change field nodes.

Preconditions, postconditions, and invariants can contain calls to methods that have no
side-effects and terminate. In JML, such methods need to be marked as pure (cf. method
hasEdge in Listing 2.1), which is a shorthand for assignable \nothing; diverges false [Beck-
ert et al., 2007]. Keyword diverges is followed by a logical expression and the semantics
of diverges is that non-termination is only allowed if the expression evaluates to true.
If no assignable clause or diverges clause is given for a non-pure method, the default
assignable \everything and diverges true is assumed, respectively [Beckert et al., 2007;
Chalin et al., 2005]. A further type of methods that may be called from within contracts
only is known as model method [Hatcliff et al., 2012]. Such methods are completely
defined in JML comments and are invisible to the implementation [Beckert et al., 2007].

2.1.2 Behavioral Subtyping

In the presence of subtyping, contracts of a type and its subtypes should be in a spe-
cial relation for several reasons. First, “objects of the subtype ought to behave the

1In recent versions of JML, non-null is assumed as the default for fields and parameters. However,
in this thesis we make this attribute explicit to avoid ambiguities.

6 2. Background

same as those of the supertype as far as anyone or any program using supertype ob-
jects can tell” [Liskov and Wing, 1994]. In particular, preventing type errors due to
incompatible interfaces is not enough [Liskov and Wing, 1994]. Second, to enable mod-
ular specification and verification, we should avoid respecification and reverification
in subtypes [Dhara and Leavens, 1996]. Adding a new subtype whose objects behave
like supertype objects does not require reverification of types expecting supertype ob-
jects [Dhara and Leavens, 1996].

Meyer [1988] introduced the concept of subcontracting as a central idea of object ori-
entation. America [1991] coined the term behavioral subtyping in the context of type
systems, which has been adopted by others [Dhara and Leavens, 1996; Hatcliff et al.,
2012; Liskov and Wing, 1994]. Behavioral subtyping is an extension of structural sub-
typing. That is, syntactical constraints of structural subtyping ensure that a supertype
expression can be replaced by subtype expression without causing type errors [Dhara
and Leavens, 1996]. Avoiding type errors includes contravariance of arguments (same
number of arguments, types may be replaced by supertypes) and covariance of result
(type may be replaced by subtype) [Liskov and Wing, 1994]. In addition, behavioral
subtyping introduces semantic constraints to ensure that replacing supertype objects
by subtype objects does not produce any unexpected behavior [Dhara and Leavens,
1996].

Meyer [1988] proposes that each redeclaration of a method in a subclass must ful-
fill original assertions and formulated the assertion redeclaration rule (a.k.a. meth-
ods rule [Liskov and Wing, 1994]). It states that preconditions in a redeclaration
must be weaker or equal to the original precondition and that postconditions must
be stronger or equal to the original postcondition [Meyer, 1988]. A sound mathe-
matical definition of weaker and stronger based on implications can be found else-
where [America, 1991; Liskov and Wing, 1994]. As checking the assertion redeclaration
rule requires theorem proving [Meyer, 1988] and is infeasible for compilers [America,
1991], Meyer [1988] proposes a simple language rule that uses a disjunction for pre-
conditions and a conjunction for postconditions instead. Given a superclass contract
c = {φ}m{ψ} and a subclass contract c′ = {φ′}m′{ψ′} in Hoare triples [Hoare, 1969],
the subclass method m′ needs to establish the contract c′′ = {φ ∨ φ′}m′{ψ ∧ ψ′}.
With specification inheritance, Dhara and Leavens [1996] relaxed this rule such that
c′′ = {φ ∨ φ′}m′{(old(φ)⇒ ψ) ∧ (old(φ′)⇒ ψ′)}, in which old evaluates a predicate as
it would be evaluated before method execution. The advantage of specification inheri-
tance over the assertion redeclaration rule is that a method needs to establish only those
postconditions to which the according precondition has been fulfilled by the caller.

Beyond preconditions and postconditions, Meyer [1988] proposes that subclass methods
have to establish all superclass invariants. Liskov and Wing [1994] formalized this ex-
pectation in the invariant rule stating that the subtype invariant implies the supertype
invariant. In contrast, there is no consensus how to deal with assignable clauses. Dhara
and Leavens [1996] argue that assignable clauses of subclass and superclass methods
should be concatenated, whereas Leino [1998] proposes that assignable clauses may only
be refined indirectly by means of data groups.

2.1. Specification and Verification with Contracts 7

2.1.3 Contract-Based Verification

In the previous sections, we introduced how to specify the intended behavior of programs
by means of contracts. In the following, we discuss several techniques to verify programs.
Most of these techniques rely on some kind of specification, which can be given by
means of contracts. We briefly discuss strengths and limitations of each verification
technique and argue that a wide variety of techniques is needed to increase the quality
of software. We distinguish techniques based on commonly used terms, even there are
no clear distinctions between them and they can all be defined as some form of abstract
interpretation [Cousot and Cousot, 1977].

Type Checking

A type system is a syntactic method for proving the absence of certain program behav-
iors by classifying phrases according to the kinds of values they compute [Pierce, 2002].
Type systems can be used to syntactically classify programs into well-typed and ill-
typed programs, based on a set of inference rules. Type checking refers to the process of
analyzing whether a program is well-typed according to a certain type system defined
for a particular programming language. A type checker is the actual tool analyzing
programs written in a certain language, usually part of a compiler or linker [Pierce,
2002]. In model-driven development, type checking is essentially the analysis of well-
formedness of a model with respect to its meta-model [Atkinson and Kühne, 2003].

Type checking can detect type errors, such as incompatible type casts, dangling method
references, and duplicate class names. For instance, a dangling method reference occurs
if a method with a certain signature is called that has not been declared. Other examples
are that a programmer may have misspelled the name of a method, or that the number
of arguments is not correct.

A type system can be seen as a formal specification that all programs written in a
certain language must conform to. Pierce [2002] argues that, in principle, types can
be created to check arbitrary specifications. However, in practice, type systems are
defined once for each language and not for each program. Hence, type checking is used
to verify specifications that are common to all programs in a certain language. The
focus of type systems is to automatically detect faults, but type systems are usually
limited in the faults they can detect [Liskov and Wing, 1994]. In particular, they cannot
check contracts defined in first-order logic [America, 1991]. Nevertheless, type checkers
are typically included in compilers and scale to large programs. In this sense, type
checking is a necessary step before verifying programs with respect to contracts.

Static Analysis

The term static analysis (a.k.a. program analysis) refers to analyses that operate at
compile-time and approximate the set of values or behaviors arising dynamically at
runtime when executing a program [Nielson et al., 2010]. Examples for static analyses

8 2. Background

are traditional data-flow and control-flow analyses, but also alias analyses, program slic-
ing, and constraint-based analyses [Muchnick, 1997; Nielson et al., 2010; Weiser, 1981].
A key technique in static analysis is that the undecidability of program termination due
to loops or recursion is handled using approximation [Nielson et al., 2010].

Originally, static analyses have been used for compiler optimizations [Muchnick, 1997;
Nielson et al., 2010] and debugging [Weiser, 1981]; a more recent application is program
verification [Nielson et al., 2010]. For example, a static analysis is able to find accesses
to uninitialized memory regions or variables. Some static-analysis tools operate on
source code (e.g., Lint for C [Darwin, 1986]), others on byte code (e.g., FindBugs for
Java byte code [Hovemeyer and Pugh, 2004]). Static analyses are either integrated into
compilers such as Clang [Lattner, 2008] or implemented in the form of dedicated tools
such as FindBugs [Hovemeyer and Pugh, 2004].

Similar to type checking, static analyses run automatically. The difference to type
checking is that not every behavioral property of interest can be encoded with types.
Instead, they can be encoded by means of contracts. The difference with verification
techniques, such as model checking or theorem proving, is that branches in programs
are typically not interpreted and values are approximated.

Model Checking

Model checking is an automatic technique for formal verification. Essentially, it verifies
that a given formal model of a system satisfies its specification [Clarke et al., 1999].
While early work concentrated on abstract system models or models of hardware, re-
cently, software systems, such as C or Java programs, came into focus in software
model checking [Beyer and Keremoglu, 2011; Visser et al., 2000]. Often, specifications
are concerned with safety or liveness properties, such as the absence of deadlocks and
race conditions, but also application-specific requirements can be formulated. To solve
a model-checking problem algorithmically, both the system model and the specification
must be formulated in a precise formal language.

A model checker is a tool that performs a model-checking task given a system to
verify and its specification. Some model checkers require models with dedicated in-
put languages for this task (e.g., Promela in SPIN [Holzmann, 1997], CMU SMV in
NuSMV [Cimatti et al., 1999]), others extract models directly from source code (e.g.,
C in Blast [Beyer et al., 2007] or CPAchecker [Beyer and Keremoglu, 2011], Java
in JPF [Visser et al., 2000]). After encoding a model-checking problem into the model
checker’s input language, the model-checking task is fully automated; each property
is either stated valid, or a counterexample is provided. The counterexample helps the
user to identify the source of invalidity. The most severe practical limitation of model
checkers is the limited size of the state space they can handle [Schumann, 2001] (e.g.,
they may run out of time or main memory).

Model checking usually requires a model of the program input, which is not needed
for type checking and static analyses. In addition, model checking usually scales only

2.2. Software Product Lines 9

to much smaller programs than type checking and static analyses. Avoiding the state-
space explosion requires manual effort for system abstraction or to configure heuristics
of model checkers. Nevertheless, model checking can uncover faults that type checking
and static analyses can not. In software model checking, contracts can be utilized
by translating them into runtime assertions or by generating test cases [Beckert and
Hähnle, 2014; Hatcliff et al., 2012].

Theorem Proving

Theorem proving is a deductive approach to prove the validity of logical formulas.
A theorem prover is a tool processing logical formulas by applying inference rules
to them [Schumann, 2001]; it assists the programmer in verifying the correctness of
formulas, which can be achieved interactively or automatically. Interactive theorem
provers, such as Coq [Bertot and Castéran, 2004], PVS [Owre et al., 1992], and Is-
abelle/HOL [Nipkow et al., 2002], require the user to write commands applying
inference rules. Instead, automated theorem provers, such as Prover9,2 SPASS [Wei-
denbach et al., 2009], and Simplify [Detlefs et al., 2005], try to evaluate the validity
of theorems without further assistance by the user.

Theorem provers usually provide a language to express logical formulas (theorems).
Additionally, interactive theorem provers also need to provide a language for proof
commands. Automated theorem provers are often limited to first-order logic or subsets
thereof, whereas interactive theorem provers are available for higher-order logic and
typed logic. Theorem provers are able to generate proof scripts containing deductive
reasoning that can be inspected by humans.

Theorem provers are used in many applications, because of their high expressiveness
and generality. In this thesis, we only discuss theorem provers in the context of program
verification. Given a specification in some formal language and an implementation, a
verification tool generates theorems, which are the input for the theorem prover. If a
theorem cannot be proved, theorem provers point to the part of the theorem that could
not be proved.

Compared to other verification techniques, the main disadvantage of theorem proving
is that experts with an education in logical reasoning and considerable experience are
needed [Clarke et al., 1999]. Contrary to type checking and static analysis, model
checking and theorem proving often do not scale to large programs. When specifications
are given in form of contracts, the program is typically translated into logic by means
of the weakest-precondition calculus [Dijkstra, 1976; Gries, 1981].

2.2 Software Product Lines

McIlroy [1968], Dijkstra [1972], and Parnas [1976] proposed program families as a means
to reduce the cost for the development and maintenance of similar programs as well as

2http://www.cs.unm.edu/~mccune/prover9/

http://www.cs.unm.edu/~mccune/prover9/

10 2. Background

their verification: A program family is a set of “programs whose common properties are
so extensive that it is advantageous to study the common properties of the programs
before analyzing individual members” [Parnas, 1976]. McIlroy [1968] proposed to im-
plement components as interchangeable parts to avoid redundant implementations. For
performance reasons, Parnas [1976] suggested to use generators for program generation
instead of implementing runtime variability.

Today, the term program family is almost completely replaced by the term software
product line, even though the fundamental ideas are similar. Bass et al. [1998] and
Clements and Northrop [2001] define a software product line as “a set of software-
intensive systems sharing a common, managed set of features that satisfy the specific
needs of a particular market segment or mission and that are developed from a common
set of core assets in a prescribed way”. A feature is an end-user-visible behavior or
characteristic of a software system that is used to communicate commonalities and
differences between the products of a product line [Apel et al., 2013a]. An example for
a market segment is database management for embedded systems. A product line for
that domain could have features such as multi-user support, transaction management,
and recovery.

In Section 2.2.1, we give a brief introduction to feature modeling, which is used to specify
the valid combinations of features for a particular product line. In Section 2.2.2, we
exemplify feature-oriented programming as an implementation technique for software
product lines. Finally, we give an overview on domain engineering and application
engineering in Section 2.2.3, which are the main development phases in product-line
engineering.

2.2.1 Feature Modeling

We distinguish the products of a software product line by means of features, but not all
combinations of features are valid. For instance, a product line may have support for
different platforms, such as Linux and Windows, but it is not allowed to choose several
platforms for the same product. A feature model can be used to define the features
of a product line and their valid combinations [Batory, 2005]. A feature diagram is a
graphical representation of a feature model and defines a hierarchy between features,
whereas the selection of a feature implies the selection of its parent feature [Kang et al.,
1990]. Each feature may have child features that are either optional, mandatory, or
belong to a group. Common group types are alternative (exactly one of the children
needs to be selected) and or (at least one of the children needs to be selected) [Czar-
necki and Eisenecker, 2000]. A feature model may also have cross-tree constraints (i.e.,
propositional formulas over the set of features) to define dependencies which cannot be
expressed otherwise.

Example 2.2. In Figure 2.1a, we give an example feature model for a simple object
store consisting of three features. Feature SingleStore implements an object store that
can hold a single object, including methods for read and write access. Feature Multi-
Store implements a more sophisticated object store that can hold multiple objects, again

2.2. Software Product Lines 11

Store

Type

SingleStore MultiStore

AccessControl

Legend:

Mandatory
Optional
Alternative
Abstract
Concrete

(a) Feature diagram

P1 = {SingleStore}
P2 = {SingleStore,AccessControl}
P3 = {MultiStore}
P4 = {MultiStore,AccessControl}

(b) Enumeration of all valid combinations

Store ∧ (Store ⇒ Type) ∧ (Type ∨AccessControl ⇒ Store) ∧
(Type ⇔ SingleStore ∨MultiStore) ∧ (¬SingleStore ∨ ¬MultiStore)

(c) Propositional formula

Figure 2.1: Feature model of an object store in three alternative representations [Thüm
et al., 2014a].

including corresponding methods for read and write access. Feature AccessControl pro-
vides a basic access-control mechanism that allows a client to seal and unseal the store,
and thus to control access to stored objects. In our example, each object store either
stores a single object (feature SingleStore) or several (feature MultiStore). Further-
more, an object store may have the optional feature AccessControl.

A further representation of feature models besides feature diagrams is based on sets.
That is, we can enumerate all valid selections of features. A valid selection of features
is called configuration and can be expressed as a set of features (i.e., those features
that are selected). A feature model is then specified by a set of features F and a set of
configurations C with C ⊆ 2F . In our object store example, there are four configura-
tions that we enumerate in Figure 2.1b. In this representation, abstract features (i.e.,
features without mapping to artifacts) are usually omitted, as they have no influence
on generated products [Thüm et al., 2011a]. A problem with this representation is that
it is inefficient and even infeasible for larger product lines.

A propositional formula is a more efficient representation of feature models, which is
often used for the analysis of feature models [Benavides et al., 2010]. A feature diagram
can be automatically translated into a propositional formula [Batory, 2005]. A boolean
variable is used for each feature, and the propositional formula evaluates to true, if and
only if the selection of features is valid. Every relation between a feature and its child
features is translated into a propositional formula, which are then conjoined to a large
formula representing the whole feature model [Batory, 2005]. We give a propositional
formula for the object store in Figure 2.1c.

2.2.2 Feature-Oriented Programming

An implementation technique for software product lines establishes a mapping between
features as defined in the feature model and artifacts. Simply mapping features to
classes is often not sufficient, because features are typically cross-cutting to classes [Tarr
et al., 1999]. In this thesis, we focus on feature-oriented programming for product-line

12 2. Background

implementation, which has its roots in mixins and collaboration-based designs. A mixin
is a “subclass definition that may be applied to different superclasses to create a related
family of modified classes” [Bracha and Cook, 1990]. In particular, a mixin can add
fields and methods to an existing class and override existing methods [Flatt et al.,
1998]. The difference to multiple inheritance is that we can also apply a mixin to one
superclass and another superclass separately.

In collaboration-based design, an application does not only consist of objects and classes,
but also of collaborations and roles [Smaragdakis and Batory, 2002; VanHilst and
Notkin, 1996]. A class can be modularized into several roles, whereas each role is
also part of a different collaboration. A collaboration consists of several roles that con-
tribute to a different class each. At composition time, a class hierarchy is build from
all roles defined for that class [VanHilst and Notkin, 1996].

Similarly, Prehofer [1997] proposed feature-oriented programming as an extension to
object-oriented programming. Classes are decomposed into feature modules each im-
plementing a certain feature. A feature module consists of classes and class refinements,
whereas a class refinement can introduce additional fields and methods to a given class,
and refine existing methods. A method refinement overrides the original method, while
also allowing the developer to reference the original method body with keyword original.
A method and all its method refinements build up a refinement chain, which is based
on a total order of the feature modules. Given a certain configuration, a program can
be generated automatically by composing the feature modules of the selected features
with superimposition [Apel et al., 2013b; Batory et al., 2004].

Example 2.3. In Listing 2.2, we show the implementation of the three features of the
object store using feature-oriented programming. Feature module SingleStore introduces
a class Store that implements the simple object store. Analogously, feature module
MultiStore introduces an alternative class Store that implements a more sophisticated
object store. Feature module AccessControl refines class Store by introducing a field
sealed, which represents the accessibility status of a store, and by extending the methods
read and set to control access. The keyword original is used to refer from the overriding
method to the overridden method.

Once a user has selected a list of desired features, a composer generates the final product.
In our example, we use the tool FeatureHouse [Apel et al., 2013b] for the composition
of the feature modules that correspond to the selected features. Essentially, the composer
assembles all classes and all class refinements of the features modules being composed.
Similar to subclassing, class refinement allows the programmer to override or extend
existing methods. While the features SingleStore and MultiStore introduce only regular
Java classes, feature AccessControl refines an existing class by adding new members.
The result of the composition of the feature modules MultiStore and AccessControl is
shown in Listing 2.3.

In feature-oriented programming, each program is the result of an incremental compo-
sition process, in which feature modules refine other feature modules. In this thesis,

2.2. Software Product Lines 13

class Store { feature module SingleStore
private Object value;
Object read() { return value; }
void set(Object nvalue) { value = nvalue; }
}
class Store { feature module MultiStore

private LinkedList values = new LinkedList();
Object read() { return values.getFirst(); }
Object[] readAll() { return values.toArray(); }
void set(Object nvalue) { values.addFirst(nvalue); }
}
class Store { feature module AccessControl

private boolean sealed = false;
Object read() {

if (!sealed) { return original(); }
else { throw new RuntimeException(”Access denied!”); }
}
void set(Object nvalue) {

if (!sealed) { original(nvalue); }
else { throw new RuntimeException(”Access denied!”); }
}
}

Listing 2.2: A feature-oriented implementation of an object store [Thüm et al., 2014a].

class Store { {MultiStore, AccessControl}
private LinkedList values = new LinkedList();
private boolean sealed = false;
Object read() {

if (!sealed) { return values.getFirst(); }
else { throw new RuntimeException(”Access denied!”); }
}
Object[] readAll() { return values.toArray(); }
void set(Object nvalue) {

if (!sealed) { values.addFirst(nvalue); }
else { throw new RuntimeException(”Access denied!”); }
}
}

Listing 2.3: An object store composed for features MultiStore and AccessControl [Thüm
et al., 2014a].

14 2. Background

D
o
m

ai
n

E
n

g
in

ee
ri

n
g

A
p
p

li
ca

ti
on

E
n

g
in

ee
ri

n
g

GraphLibrary

Edges

Directed Undirected

Algorithms

Number Cycle

Cycle ⇒ Directed

Feature Model Domain Artifacts

Configurations Software Generator Software Products

Figure 2.2: Simplified overview on domain engineering and application engineer-
ing [Thüm et al., 2014a].

we rely on an existing formalization of feature modules and their composition [Apel
et al., 2010b]. Feature-module composition is formalized based on a binary composi-
tion operator • with F ′′ = F ′ • F on the set of features. The composition operator
can be overloaded to express the composition of specific artifacts such as methods:
m′′ = m′ •m. In general, feature composition is not commutative [Apel et al., 2010b].
Thus, we distinguish between the original class or method that is subject to refinement,
and the class or method refinement.

Feature-oriented programming was initially introduced for Java and intended as an
extension for object-oriented programming [Prehofer, 1997]. With the principle of uni-
formity, Batory [2006] and Apel et al. [2013b] applied feature-oriented programming
also to software artifacts which are not object-oriented. The principle states that all
artifacts building up a software system should be composed in the same way including
documentations, specifications, or models.

2.2.3 Domain Engineering and Application Engineering

In Figure 2.2, we illustrate the processes of domain engineering and application engi-
neering, both central to the development of software product lines. For our purposes,
a simplified illustration is sufficient and more elaborate description can be found else-
where [Clements and Northrop, 2001; Pohl et al., 2005]. In domain engineering, a devel-
oper defines a feature model describing the valid combinations of features. Furthermore,
a developer creates reusable software artifacts (i.e., domain artifacts) that implement
each feature. For example, the feature modules of the object store are domain artifacts.
In application engineering, the developer determines a selection of features that serves
the needs of the user best and that is valid according to the feature model. Based on
this selection and the domain artifacts created during domain engineering, the software
product containing the selected features is created. For example, composing the feature
modules SingleStore and AccessControl results in a store tailored for a particular user.

2.2. Software Product Lines 15

In this thesis, we focus on implementation techniques for software product lines that
support the automatic generation of products based on a selection of features. Once a
user selects a valid subset of features, a generator derives the corresponding product,
without further user assistance, such as manual assembly or providing glue code. Be-
sides feature-oriented programming, there are many examples of such implementation
techniques. Apel et al. [2013a] distinguish between annotation-based implementation
approaches, such as preprocessors [Liebig et al., 2010; Tartler et al., 2011] and genera-
tive programming [Czarnecki and Eisenecker, 2000], and composition-based implemen-
tation approaches, such as feature-oriented programming [Batory et al., 2004; Prehofer,
1997], delta-oriented programming [Schaefer et al., 2010a], and aspect-oriented pro-
gramming [Kiczales et al., 1997]. The overall goal is to minimize the effort to tailor
software products to the needs of the user.

Ideally, application engineering is reduced to a manual feature selection and automatic
generation of verified software products. However, then we need to implement, specify,
and verify software product lines during domain engineering. We give an overview on
the state-of-the-art of such approaches for product-line specification and verification in
the next chapter.

16 2. Background

3. Classification and Survey
of Product-Line Analyses

This chapter shares material with the ACM Computing Surveys article
“A Classification and Survey of Analysis Strategies for Software Product
Lines” [Thüm et al., 2014a]. We presented initial ideas at VAST’11 [Thüm
et al., 2011b], VaMoS’13 [von Rhein et al., 2013], and ISSTA’13 [Thüm,
2013]. Furthermore, we have given an overview on analysis tools for product
lines at SPLat’14 [Meinicke et al., 2014].

Software product lines challenge traditional analysis techniques, such as type checking,
model checking, and theorem proving, in their quest of ensuring correctness and reliabil-
ity of software. Simply creating and analyzing all products of a product line is usually
not feasible, due to the potentially exponential number of valid feature combinations.
Recently, researchers began to develop analysis techniques that take the distinguishing
properties of software product lines into account, for example, by checking feature-
related code in isolation or by exploiting variability information during analysis. The
emerging field of product-line analyses is both broad and diverse, so it is difficult for
researchers and practitioners to understand their similarities and differences.

In this chapter, we propose a classification of product-line analyses to enable systematic
research and application. Our classification identifies different strategies for product-line
analysis, as well as for implementation and specification of product lines. While we are
faithful that our classification applies to a wide variety of software analyses, we focus on
particular analyses in our survey for clarity: We concentrate on development techniques,
in which products are generated automatically based on a feature selection. In contrast
to the typically low number of products when manual assembly is required, automatic
generation often leads to a huge number of products and thus is especially challenging
for product-line analyses. Furthermore, we survey analysis approaches that operate

18 3. Classification and Survey of Product-Line Analyses

statically, such as type checking, model checking, and theorem proving. Analyses that
focus exclusively on requirements engineering and domain analysis or that focus only on
testing are outside the scope of our survey – we refer the reader to dedicated surveys on
feature-model analysis [Benavides et al., 2010; Janota et al., 2008] and on product-line
testing [Da Mota Silveira Neto et al., 2011; Engström and Runeson, 2011; Lee et al.,
2012; Oster et al., 2011; Tevanlinna et al., 2004].

In Section 3.1, we give a high-level overview on our classification. The following four
sections contain definitions, examples, a discussion of advantages and disadvantages
for each product-line analysis strategy, and an overview on existing approaches. For
a detailed discussion of all surveyed articles and the methodology used to perform the
survey, we refer to our original article [Thüm et al., 2014a]. Based on our insights with
classifying and comparing a corpus of 137 research articles, we present a research agenda
to guide future research on product-line analyses in Section 3.6. We discuss related
classifications and surveys in Section 3.7 and conclude our findings in Section 3.8.

3.1 Classification Overview

We exemplify the problem of analyzing product lines by means of the object store
example. Then, we give an overview on our classification of analysis strategies and
specification strategies.

The Object Store as a Running Example

We refer again to our object store shown in Listing 2.2 on Page 13. An interesting issue
introduced deliberately is that one of the four valid products misbehaves. The purpose
of feature AccessControl is to prohibit access to sealed stores. We could specify this
intended behavior formally, for example, using temporal logic:

|= G AccessControl ⇒ (state access(Store s)⇒ ¬ s.sealed)

The formula states, given that feature AccessControl is selected, whenever the object
store s is accessed, the object store is not sealed. If we select feature AccessControl in
combination with MultiStore as illustrated in Listing 2.3 on Page 13, the specification
of feature AccessControl is violated; a client can access a store using method readAll
even though the store is sealed.

There are several solutions to solve this misbehavior. We could modify the feature
model to forbid the critical feature combination, we could change the specification, or
we could resolve the problem with alternative implementation patterns. For instance,
we can alter the implementation of feature AccessControl by refining method readAll
in analogy to methods read and set. While this change resolves the misbehavior when
combining MultiStore and AccessControl, it introduces a new problem: The changed
implementation of AccessControl no longer composes with SingleStore, because it at-
tempts to override method readAll, which is not present in this configuration. The

3.1. Classification Overview 19

illustrated problem is called the optional feature problem [Kästner et al., 2009b; Liu
et al., 2006]: The implementation of a certain feature may rely on the implementation
of another feature (e.g., caused by method references), and thus the former feature
cannot be selected independently, even if it is desired by the user.

The point of our example is to illustrate how products can misbehave or cause type
errors even though they are valid according to the feature model. Even worse, such
problems may occur only in specific feature combinations, out of potentially millions of
combinations that are valid according to the feature model; hence, they are hard to find
and may show up only late in the software life cycle. Inconsistencies between the feature
model and the implementation have repeatedly been observed in real product lines and
are certainly not an exception [Abal et al., 2014; Kästner et al., 2012a; Kolesnikov
et al., 2013; Medeiros et al., 2013; Tartler et al., 2011; Thaker et al., 2007]. Ideally,
analysis strategies for software product lines are applied in domain engineering rather
than application engineering, to detect faults as early as possible.

Classification of Product-Line Analyses

In the last decade, researchers have proposed a number of analysis approaches tailored
to software product lines. The key idea is to exploit knowledge about features and the
commonality and variability of a product line to systematically reduce analysis effort.
Existing product-line analyses are typically based on standard analysis methods, in
particular, type checking, static analysis, model checking, and theorem proving. All
these methods have been used successfully for analyzing single software products. As
discussed in Section 2.1.3, they have complementary strengths and weaknesses with
regard to practicality, correctness guarantees, and complexity; so, all of them appear
useful for product-line analysis. However, in most cases, it is hard to compare these
analysis techniques regarding scalability or even to find the approach that fits a given
product-line scenario best. The reason is that the approaches are often presented using
varying nomenclatures, especially if multiple software analyses are involved.

In our survey, we classify existing product-line analyses based on how they attempt
to reduce analysis effort – the analysis strategy. We distinguish three basic strategies,
indicating whether the analysis is applied to products, features, or the whole product
line: product-based, feature-based, and family-based analyses. We explain the basic
strategies and discuss existing approaches implementing each strategy. While surveying
the literature, we found approaches that actually combine some of the basic strategies.
Hence, we discuss possible combinations, as well. For each strategy, we provide a
definition and an example, we discuss advantages and disadvantages, and we classify
existing approaches.

Classification of Product-Line Specifications

Many software analyses, such as model checking and theorem proving, require specifica-
tions defining the expected behavior of the programs to analyze. These analyses check
the conformance of the actual behavior of a given program with the expected behavior.

20 3. Classification and Survey of Product-Line Analyses

While surveying the literature, we identified different strategies to define specifications
for product-line analyses. We briefly present each specification strategy and will use
them to classify approaches for product-line analyses in later sections.

For some analyses, it is sufficient to define a specification independent of the analyzed
product line – referred to as domain-independent specification. A prominent example for
a domain-independent specification is a type system, which is assumed to hold for every
software product line written using a particular product-line implementation technique
and programming language. Further examples for domain-independent specifications
are parsers (i.e., syntax conformance) [Kästner et al., 2011b], the absence of runtime
exceptions [Post and Sinz, 2008; Rubanov and Shatokhin, 2011], path coverage [Shi
et al., 2012], or that every program statement in a software product line appears in, at
least, one product [Tartler et al., 2011]. However, a domain-independent specification
can only describe properties that are common across product lines.

If a domain-independent specification is insufficient, we can define a specification for
a particular product line that is assumed to hold for all products – called family-wide
specification. For example, in a product line of pacemakers, all products have to adhere
to the same specification, stating that a heart beat is generated whenever the heart
stops beating [Liu et al., 2007]. A limitation of family-wide specifications is that we
cannot express varying behavior that is common to some but not all products of the
product line.

In principle, we could define a specification for every software product individually –
referred to as product-based specification. We can use any specification technique from
single-system engineering without adoption for product-based specification. However,
specifying the behavior for every product scales only for software product lines with few
products. Furthermore, it involves redundant effort to define behavior that is common
for two or more products.

In order to achieve reuse for specifications, we can specify the behavior of features
instead of products – called feature-based specification [Apel et al., 2013c]. Every feature
is specified without any explicit reference to other features. Nevertheless, they may be
used to verify properties across features (e.g., for feature-interaction detection) [Apel
et al., 2013c]. For example, in our object store, we could define a specification for feature
AccessControl that objects cannot be accessed, if the store is sealed. This specification
would apply to all products that contain feature AccessControl.

Finally, it is also possible to define specifications that particular subsets of all products
have in common – referred to as family-based specification. In a family-based specifica-
tion, we can specify properties of individual features or feature combinations. Basically,
we can provide specifications together with a presence condition, which describes a sub-
set of all valid configurations (e.g., by a propositional formula). Alternatively, features
can be referenced directly in the specification. For example, in our object store we
might want to specify that objects cannot be accessed using method readAll, if the store
is sealed and the product contains the features MultiStore and AccessControl. In fact,
family-based specification generalizes family-wide, product-based, and feature-based

3.2. Product-Based Analyses 21

specifications, in a sense that such specifications can be expressed as special family-
based specifications. With a family-based specification, we can automatically generate
specifications of individual products, similar to product generation. Several family-
based specifications require extensions to existing specification techniques [Asirelli et al.,
2012; Classen et al., 2013], as features are referenced explicitly to model variability in
properties.

3.2 Product-Based Analyses

Pursuing a product-based analysis, the products of a product line are generated and
analyzed individually, each using a standard analysis technique. The simplest approach
is to generate and analyze all products in a brute-force fashion, but this is feasible only
for product lines with few products. A typical strategy is to sample a smaller number of
products, usually based on some coverage criteria, such that still reasonable statements
on the correctness or other properties of the entire product line are possible [Nie and
Leung, 2011; Oster et al., 2010; Perrouin et al., 2010].

Definition 3.1 (Product-based analysis). An analysis of a software product line is
product-based, if it operates only on generated products or models thereof, whereas the
feature model may be used to generate all products or to implement optimizations. A
product-based analysis is called optimized, if it operates on a subset of all products
(a.k.a. sample-based analysis) or if intermediate analysis results of some products are
reused for other products; it is called unoptimized otherwise (a.k.a. exhaustive, com-
prehensive, brute-force, and feature-oblivious analysis).

Example 3.2. In our object-store example, we can generate and compile every product
to detect type errors. However, we could save analysis effort when checking whether
the specification of feature AccessControl is satisfied: First, all products that do not
contain AccessControl do not need to be checked. Second, if two products differ only
in features that do not concern class Store (not shown in our example; e.g., features
that are concerned with other data structures), only one of these products needs to be
checked.

Advantages and Disadvantages

The main advantage of product-based analyses is that every existing software analysis
can easily be applied in the context of software product lines. In particular, existing
off-the-shelf tools can be reused to analyze individual products. Furthermore, product-
based analyses can easily deal with changes to software product lines that alter only a
small set of products, because only changed products need to be re-analyzed.

A specific advantage of an unoptimized product-based analysis is the soundness and
completeness with respect to the analysis that is scaled from single-system engineering
(i.e., the base analysis). First, every fault detected using this strategy, is a fault of a
software product that can be detected by the base analysis (soundness). Second, every

22 3. Classification and Survey of Product-Line Analyses

fault that can be detected using the base analysis, is also detected using an unoptimized
product-based analysis (completeness). Note that, while the base analysis itself might
be unsound or incomplete with regard to some specification and analysis goal, this
strategy is still sound and complete with regard to the base analysis (i.e., it will detect
the same faults).

However, there are serious disadvantages of product-based analyses. Already gener-
ating all products of a software product line is often infeasible, because the number
of products is up-to exponential in the number of features. Even if the generation of
all products is possible, separate analyses of individual products perform inefficient,
redundant computations, due to similarities between the products.

The analysis results of product-based analyses refer necessarily to generated artifacts
of products, and not to domain artifacts implemented in domain engineering, which
gives rise to two difficulties. First, a programmer may need to read and understand
the generated code in order to understand the analysis results (e.g., the composed class
Store in Listing 2.3 contains all members introduced by the features of the analyzed
product). Second, if a change to the code is necessary, it must be applied to the
domain artifacts instead of generated artifacts, and automatic mappings are not always
possible [Kuhlemann and Sturm, 2010].

While an unoptimized product-based strategy is often not feasible in practice, it serves
as a baseline for other strategies in terms of soundness, completeness, and efficiency.
Ideally, an analysis strategy is sound and complete with respect to the base analysis,
and, at the same time, it is more efficient than the unoptimized product-based strategy.
However, we will also discuss strategies that are incomplete or unsound to increase the
efficiency of the overall analysis.

Unoptimized Product-Based Analyses

Product-based strategies are widely used in practice, because they are simple and can be
applied without creating and using new concepts and tools. For example, when generat-
ing and compiling individual software products, type checking is usually done internally
by the compiler (e.g., the Java compiler). Type checking is redundant when different
products share implementation artifacts, and sharing artifacts between products is the
common case and goal in product-line engineering [Apel et al., 2013a; Czarnecki and
Eisenecker, 2000].

In general, we found no proposal in the literature explicitly suggesting an unoptimized
product-based analysis. However, we found some approaches that actually use product-
based analyses for specific implementation mechanisms and do not discuss how to deal
with many products; these approaches apply type checking [Apel et al., 2008a; Buch-
mann and Schwägerl, 2012; Istoan, 2013], static analyses [Klaeren et al., 2001; Scholz
et al., 2011], model checking [Apel et al., 2010c; Bessling and Huhn, 2014; Fantechi
and Gnesi, 2008; Istoan, 2013; Kishi and Noda, 2006; Ubayashi and Tamai, 2002], and

3.3. Family-Based Analyses 23

theorem proving [Harhurin and Hartmann, 2008] to software product lines. The unop-
timized product-based analysis strategy has been used with domain-independent speci-
fications [Apel et al., 2008a; Buchmann and Schwägerl, 2012; Istoan, 2013], family-wide
specifications [Fantechi and Gnesi, 2008; Istoan, 2013; Kishi and Noda, 2006; Ubayashi
and Tamai, 2002], and feature-based specifications [Apel et al., 2010c; Bessling and
Huhn, 2014; Harhurin and Hartmann, 2008; Istoan, 2013; Klaeren et al., 2001; Scholz
et al., 2011]. These approaches considered composition-based implementation [Apel
et al., 2008a; Klaeren et al., 2001; Scholz et al., 2011; Ubayashi and Tamai, 2002],
composition-based design [Apel et al., 2010c; Bessling and Huhn, 2014; Harhurin and
Hartmann, 2008; Istoan, 2013], and annotation-based design [Buchmann and Schwägerl,
2012; Fantechi and Gnesi, 2008; Kishi and Noda, 2006] as domain artifacts.

Optimized Product-Based Analyses

Several optimized product-based strategies have been proposed to improve scalability
and reduce redundant computations. Optimizations proposed in the literature focus
either on detecting redundant parts in analyses [Bruns et al., 2011; Cordy et al., 2012d;
Hähnle et al., 2013] or on eliminating products that are already covered by other anal-
ysis steps [Apel et al., 2013d; Jayaraman et al., 2007; Katz, 2006; Liebig et al., 2013;
Plath and Ryan, 2001], according to certain coverage criteria. The optimized product-
based strategy has been applied to type checking [Jayaraman et al., 2007; Liebig et al.,
2013], static analysis [Liebig et al., 2013], model checking [Apel et al., 2013d; Cordy
et al., 2012d; Katz, 2006; Lochau et al., 2014; Plath and Ryan, 2001], and theorem
proving [Bruns et al., 2011; Hähnle et al., 2013]. This strategy has been discussed for
composition-based implementation [Apel et al., 2013d; Bruns et al., 2011; Hähnle et al.,
2013; Katz, 2006], composition-based design [Jayaraman et al., 2007; Lochau et al., 2014;
Plath and Ryan, 2001], and annotation-based implementations [Liebig et al., 2013]. We
classify their used specification strategies as domain-independent specification [Jayara-
man et al., 2007; Liebig et al., 2013; Plath and Ryan, 2001], family-wide specifica-
tion [Liebig et al., 2013; Lochau et al., 2014], and feature-based specification [Apel
et al., 2013d; Bruns et al., 2011; Hähnle et al., 2013; Katz, 2006].

3.3 Family-Based Analyses

The main problem with product-based analyses are redundant computations, because
the products of a software product line share code [Apel et al., 2013a; Czarnecki and
Eisenecker, 2000]. Besides an optimized product-based strategy, another option to
achieve a more efficient analysis is to consider domain artifacts such as feature modules
instead of generated artifacts (i.e., products).

Family-based analyses operate on domain artifacts and valid combinations thereof, as
specified by a feature model. The feature model is usually converted into a logic for-
mula to allow analysis tools to reason about all valid combinations of features (e.g., a
satisfiability solver can be used to check whether a method is defined in all valid feature
combinations, in which it is referenced). The overall idea is to analyze domain artifacts

24 3. Classification and Survey of Product-Line Analyses

and feature model in concert from which we can conclude that some intended properties
hold for all products. Often, all implementation artifacts of all features are merged into
a single virtual product (a.k.a. metaproduct or product simulator). The virtual product
is not necessarily a valid product due to optional and mutually exclusive features [Thüm
et al., 2012].

Definition 3.3 (Family-based analysis). An analysis of a software product line is
family-based, if it (a) operates only on domain artifacts and (b) incorporates the knowl-
edge about valid feature combinations.

Example 3.4. A family-based type checker, for instance, can analyze the code base of
the object store example (i.e., all feature modules) in a single pass, although the features
are combined differently in the individual products. To this end, it takes variability
into account, in the sense that individual feature modules may be present or absent
in certain products. Regarding method invocations, it checks whether a corresponding
target method is declared in every valid product in which it is invoked. In Listing 3.1,
we illustrate how a family-based type system checks whether the references of a slightly
modified feature module AccessControl to the methods read and readAll are well-typed
in every valid product. For method read, the type system infers that the method is
introduced by the feature modules SingleStore and MultiStore, and that one of them is
always present (checked using a satisfiability solver; solid arrows).1 FM denotes the
feature model of Figure 2.1 on Page 11 as propositional formula. For method readAll,
it infers that the method is introduced only by feature module MultiStore, which may
be absent when feature module AccessControl is present (dashed arrow). Hence, the
type system reports a fault and produces a counter example in terms of a valid feature
selection that contains a dangling method invocation: {SingleStore, AccessControl}.

Advantages and Disadvantages

Family-based strategies have advantages and disadvantages compared to product-based
strategies; we begin with the advantages. First of all, not every individual product must
be generated and analyzed, because family-based analyses operate on domain artifacts.
Thus, family-based strategies avoid redundant computations across multiple products,
in which reasoning about variability and commonality prevents these duplicate analyses.

Second, the analysis effort is not proportional to the number of valid feature combi-
nations. While the satisfiability problem is in NP-complete, in practice, satisfiability
solvers perform well when reasoning about feature models [Mendonça et al., 2009; Thüm
et al., 2009]. Intuitively, the performance of family-based analyses is mainly influenced
by the number and size of feature implementations and the amount of sharing during
analysis [Brabrand et al., 2013], but largely independent of the number of valid feature
combinations. For comparison, the effort for product-based approaches increases with
every new product.

1A satisfiability solver can be used to check whether a propositional formula is a tautology by
checking whether the negation of the whole formula is unsatisfiable.

3.3. Family-Based Analyses 25

class Store { feature module SingleStore
private Object value;
Object read() { return value; }
void set(Object nvalue) { value = nvalue; }
}
class Store { feature module MultiStore

private LinkedList values = new LinkedList();
Object read() { return values.getFirst(); }
Object[] readAll() { return values.toArray(); }
void set(Object nvalue) { values.addFirst(nvalue); }
}
class Store { feature module AccessControl

private boolean sealed = false;
Object read() {

if (!sealed) { return original(); }
else { throw new RuntimeException(”Access denied!”); }
}
Object[] readAll() {

if (!sealed) { return original(); }
else { throw new RuntimeException(”Access denied!”); }
}
void set(Object nvalue) {

if (!sealed) { original(nvalue); }
else { throw new RuntimeException(”Access denied!”); }
}
}

FM ⇒ (AccessControl ⇒ SingleStore ∨MultiStore)

FM ⇒ (AccessControl ⇒ MultiStore)

Listing 3.1: Family-based type checking for methods read and readAll.

However, family-based strategies also have disadvantages. Often, known analysis meth-
ods for single products cannot be used as they are. The reason is that the analysis
method must be aware of features and variability. Existing analysis methods and off-
the-shelf tools need to be extended, if possible, or new analysis methods need to be
developed. For some software analyses, such as model checking and theorem prov-
ing, there exist techniques to encode the analysis problem in an existing formalism
or language (e.g., using a metaproduct simulating all products) and reuse off-the-shelf
tools [Apel et al., 2011; Post and Sinz, 2008; Thüm et al., 2014; Thüm et al., 2012], but
it is not clear whether these techniques can be used for all kinds of software analyses.

Second, changing the domain artifacts of one feature or a small set of features, usually
requires to analyze the whole product line again from scratch [Cordy et al., 2012b].
Hence, the effort for very large product lines with many features is much higher than
actually necessary, while the product line evolves over time. However, it is possible to
cache certain parts of the analysis, which may reduce the overall analysis effort [Kästner
et al., 2012a].

26 3. Classification and Survey of Product-Line Analyses

Third, changing the feature model usually requires to analyze the whole product line
again. For instance, if we add a new product or a small set of new products, we may be
faster analyzing these new products with a product-based strategy than analyzing the
product line again using a family-based strategy. Similar to domain-artifact changes,
this depends on the analysis approach and available caching strategies. When the fea-
ture model was specialized or refactored (i.e., no new products are added), reanalyzing
the product line cannot reveal new faults [Thüm et al., 2011a].

Fourth, as family-based analyses consider all domain artifacts as a whole, the size
of the analysis problem can easily exceed physical boundaries such as the available
memory [Apel et al., 2013d]. Thus, family-based analysis may be infeasible for large
software product lines and expensive analyses.

Finally, family-based analyses assume a closed world – all features have to be known
during the analysis process (e.g., to look up all potential targets of method invocations).
In practice, this may be infeasible, for example, in multi-team development or software
ecosystems such as Eclipse. Note, whenever we want to analyze the whole software
product line, a closed world is required – independent of the chosen strategy.

Family-Based Syntax Checking

Although parsing detects only certain defects in source code (i.e., syntax conformance
with respect to a domain-independent specification), it is a necessary step for many
analyses such as type checking. While parsing is straightforward for composition-based
implementation approaches such as feature-oriented programming or aspect-oriented
programming, it is complicated for product lines implemented with conditional com-
pilation. There are several approaches for family-based parsing of C code with pre-
processor directives that avoid to preprocess the code for each product separately by
generating a variability-aware abstract syntax tree [Gazzillo and Grimm, 2012; Kästner
et al., 2011b; Medeiros et al., 2013; Nguyen et al., 2014a].

Family-Based Type Checking

Family-based strategies have been proposed by several authors for type checking of
software product lines. The majority of work on family-based type checking is about
creating variability-aware type systems (i.e., a domain-independent specification) and
proving that, whenever a product line is type safe according to the type system, all
derivable products are also well-typed. The rules of these type systems contain reach-
ability checks (basically implications) making sure, among others, that every program
element is defined in all products where it is referenced. Variability-aware type sys-
tems have been developed for composition-based implementation [Apel et al., 2010a,d;
Delaware et al., 2009; Huang et al., 2007; Kim et al., 2008; Kolesnikov et al., 2013;
Kuhlemann et al., 2009; Schröter et al., 2014; Thaker et al., 2007], composition-based
design [Alférez et al., 2011], annotation-based implementation [Aversano et al., 2002;
Chen and Erwig, 2014; Chen et al., 2014; Kästner et al., 2012a,b; Kenner et al., 2010;
Kim et al., 2008; Le et al., 2013; Liebig et al., 2013; Teixeira et al., 2011], and annotation-
based design [Czarnecki and Pietroszek, 2006; Heidenreich, 2009; Metzger et al., 2007].

3.3. Family-Based Analyses 27

Family-Based Static Analysis

Recently, researchers have proposed family-based static analyses for software product
lines, in particular, intra-procedural [Brabrand et al., 2013; Kanning and Schulze, 2014;
Liebig et al., 2013; Midtgaard et al., 2014] and inter-procedural [Bodden et al., 2013]
data-flow analyses. Furthermore, static analyses have been proposed [Adelsberger et al.,
2014; Nguyen et al., 2014a; Ribeiro et al., 2010; Sabouri and Khosravi, 2014; Tartler
et al., 2011] that do not scale an existing static analysis known from single-system engi-
neering, but rather focus on an analysis that is specific to product lines – to which we re-
fer to as family-specific analyses. Interestingly, most approaches for family-based static
analysis are designed for annotation-based implementations and domain-independent
specifications. As an exception, Adelsberger et al. [2014] focus on composition-based
implementations with feature-oriented programming, and Sabouri and Khosravi [2014]
propose a family-wide specification.

Family-Based Model Checking

One distinguishing characteristic of approaches for family-based model checking is
whether they operate directly on source code or on an abstraction of a system. The
former is known as software model checking and we refer to the latter as abstract model
checking. The majority of approaches for family-based model checking apply abstract
model checking [Asirelli et al., 2012; Classen et al., 2014, 2013, 2010; Cordy et al.,
2013a, 2012a,b,c, 2013b; Dubslaff et al., 2014; Fischbein et al., 2006; Greenyer et al.,
2013; Gruler et al., 2008; Lauenroth et al., 2010; Sabouri and Khosravi, 2012, 2013a,b,
2014; Shi et al., 2014; ter Beek and de Vink, 2014; ter Beek et al., 2013]. In contrast,
several authors proposed approaches for family-based software model checking [Apel
et al., 2011, 2013d,d; Kästner et al., 2012c; Post and Sinz, 2008; Schaefer et al., 2010b].
Family-based model checking has been applied to composition-based [Apel et al., 2011,
2013d; Classen et al., 2014, 2013; Dubslaff et al., 2014; Greenyer et al., 2013; Sabouri
and Khosravi, 2013a] and annotation-based [Asirelli et al., 2012; Classen et al., 2013,
2010; Cordy et al., 2013a, 2012a,b,c, 2013b; Fischbein et al., 2006; Gruler et al., 2008;
Lauenroth et al., 2010; Post and Sinz, 2008; Sabouri and Khosravi, 2012, 2013b, 2014;
Schaefer et al., 2010b; Shi et al., 2014; ter Beek and de Vink, 2014; ter Beek et al., 2013]
product lines.

Besides the product line’s source code or an abstraction thereof, family-based model
checking requires a formalism to encode properties (i.e., specifications) to be checked.
Existing formalisms and languages to specify properties, such as computation tree logic
(CTL) and linear temporal logic (LTL), have been lifted to product lines as domain-
independent [Post and Sinz, 2008; Sabouri and Khosravi, 2013a], family-wide [Cordy
et al., 2012c; Fischbein et al., 2006; Greenyer et al., 2013; Gruler et al., 2008; Sabouri
and Khosravi, 2012, 2013b, 2014; Schaefer et al., 2010b; Shi et al., 2014; ter Beek and
de Vink, 2014; ter Beek et al., 2013], feature-based [Apel et al., 2011, 2013d; Classen
et al., 2010; Dubslaff et al., 2014; Lauenroth et al., 2010], and family-based specifi-
cations [Asirelli et al., 2012; Classen et al., 2014, 2013; Cordy et al., 2013a, 2012a,b,
2013b].

28 3. Classification and Survey of Product-Line Analyses

Family-Based Theorem Proving

In our survey, we identified that there is no approach applying the family-based strategy
to theorem proving. Based on this insight, we propose family-based theorem proving
for product lines implemented with feature-oriented programming in Section 5.2.

3.4 Feature-Based Analyses

Software product lines may also be analyzed using a feature-based strategy. That is, all
domain artifacts implementing a certain feature are analyzed in isolation (in bundles
assigned to individual features) without considering other features or the feature model.
The idea of feature-based analyses is to reduce the potentially exponential number of
analysis tasks (i.e., for every valid feature combination) to a linear number of analy-
sis tasks (i.e., for every feature) by accepting that the analysis might be incomplete.
The assumption of feature-based analysis is that certain properties of a feature can
be analyzed modularly, without reasoning about other features and their relationships.
Similar to family-based strategies, feature-based strategies operate on domain artifacts
instead of generated products. Contrary to family-based strategies, no feature model
is needed as every feature is analyzed only in isolation. Feature-based analyses are
sound and complete with respect to the base analysis, if the properties and the analy-
ses are compositional with respect to the features (i.e., the analysis results cannot be
invalidated by interactions of features).

Definition 3.5 (Feature-based analysis). An analysis of a software product line is
feature-based, if it (a) operates only on domain artifacts and (b) software artifacts
belonging to a feature are analyzed in isolation (i.e., knowledge about valid feature com-
binations is not used), and feature interactions are not considered.

Example 3.6. In the object-store example, we can analyze each of the three feature
modules in isolation to some extent. First, we can parse each feature module in isola-
tion to make sure that it conforms to the syntax and to create an abstract syntax tree
for each feature module. For syntax checking, it is sufficient to consider each feature
module in isolation, as syntactic correctness is independent of other features, and thus
a compositional property. Second, the type checker uses the abstract syntax tree to in-
fer which types and references can be resolved by a feature itself and which have to be
provided by other features. As an example, all references to field sealed are internal
and can be checked within the implementation of feature AccessControl, as illustrated
in Listing 3.2. That is, there is no need to check this reference for every product. How-
ever, some of the references cut across feature boundaries and cannot be checked in a
feature-based fashion. Well-typedness is not a compositional property. For example,
references to the methods read and readAll of feature AccessControl cannot be resolved
within the feature.

Advantages and Disadvantages

Feature-based analyses have a strong disadvantage that we want to discuss first. A
feature-based analysis can only detect issues within a certain feature and cannot reason

3.4. Feature-Based Analyses 29

class Store { feature module AccessControl
private boolean sealed = false;
Object read() {

if (!sealed) { return original(); }
else { throw new RuntimeException(”Access denied!”); }
}
Object[] readAll() {

if (!sealed) { return original(); }
else { throw new RuntimeException(”Access denied!”); }
}
void set(Object nvalue) {

if (!sealed) { original(nvalue); }
else { throw new RuntimeException(”Access denied!”); }
}
}

Listing 3.2: Feature-based type checking for field sealed.

about issues across features, because features are only analyzed in isolation. A well-
known problem in this context are feature interactions [Calder et al., 2003]: several
features work as expected in isolation, but lead to unexpected behavior in combina-
tion. A prominent example from telecommunication systems is that of the features
CallForwarding and CallWaiting [Bowen et al., 1989]. While both features may work
well in isolation, it is not clear what should happen if both features are selected and
an incoming call arrives at a busy line: forwarding the incoming call or waiting for
the other call to be finished. Hence, feature-based strategies must usually be combined
with product-based or family-based strategies to cover feature interactions and to deal
with non-compositional properties.

Nevertheless, feature-based strategies have advantages compared to product-based and
family-based strategies. First, they analyze domain artifacts (similar to family-based
strategies) instead of operating on generated software artifacts, and thus there are no
redundant computations across products.

Second, the feature-based strategy supports open-world scenarios: It is not required
that all features are known at analysis time. Furthermore, it is not required to have a
feature model, which is typically not available in an open-world scenario. Nevertheless,
a feature-based strategy can also be applied for closed-world scenarios, where all features
and their valid combinations are known at analysis time.

Third, the effort to analyze a product line is minimal, when one or a small set of features
are changed. In such cases, only changed features need to be re-analyzed in isolation,
whereas with family-based and product-based strategies, we would need to re-analyze
the whole product line or all affected products.

Fourth, the analysis of a software product line using a feature-based strategy is di-
vided into smaller analysis tasks. Thus, a feature-based strategy is especially useful

30 3. Classification and Survey of Product-Line Analyses

for software analysis with extensive resource consumption (e.g., memory) and for large
software product lines, for which some family-based analyses are not feasible.

Finally, changing only the feature model does not affect feature-based analysis at all.
Hence, when the feature model evolves, we do not need to perform any feature-based
analysis again, since features are only analyzed in isolation.

Feature-Based Approaches

As indicated previously, there are only few strict feature-based approaches. For exam-
ple, parsing and syntax checking of software product lines with composition-based im-
plementations, such as feature-oriented or aspect-oriented programs, are compositional
analyses. While parsing is a necessary task for any static analysis, it is only discussed for
non-modular feature implementations, such as conditional compilation [Kästner et al.,
2011b], for which feature-based parsing is impossible. A further example for a simple
feature-based analysis is to compute code metrics. For most software analyses, we need
to combine feature-based analyses with other strategies.

It may seem odd that we defined a strategy which is not present in literature itself.
Indeed, previous drafts of our classification were less restrictive for the feature-based
strategy. In particular, we also included approaches that do parts of the analysis feature-
based. However, it turned out that many approaches with very different characteristics
were classified as feature-based, and it was difficult to assess their conceptual differences.
Whereas many approaches claim to be modular or compositional, it is unclear what
happens to those parts of the analysis which concern feature interactions (i.e., non-
compositional properties). With our more strict classification, we identify how those
approaches resolve feature interactions – which we discuss in the next section.

3.5 Combined Analysis Strategies

We have discussed product-based, family-based, and feature-based analyses as different
strategies to scale software analyses from single-system engineering to software product
lines. These three strategies form the basis of our classification, but they can also be
combined resulting in four additional strategies. In this section, we discuss possible
combinations even if some of them are not yet implemented.

Feature-Product-Based Analyses

A commonly proposed combined strategy, which we identified in the literature, is the
feature-product-based strategy that consists of two phases. First, features are analyzed
in isolation and, second, all properties not checked feature-based are analyzed for each
product. The feature-based part can only analyze features locally and the product-
based part checks that features work properly in combination. The key idea is to
reduce analysis effort by checking as much as possible feature-locally.

3.5. Combined Analysis Strategies 31

Definition 3.7 (Feature-product-based analysis). An analysis of a software product
line is feature-product-based, if (a) it consists of a feature-based analysis followed by
a product-based analysis, and (b) the analysis results of the feature-based analysis are
used in the product-based analysis.

Example 3.8. In our object store, we could start to type-check all features in isolation.
As shown in Listing 3.2 on Page 29, we can check that all intra-feature references are
valid and create an interface for every feature. The interface contains all methods, fields,
and classes that the feature provides and also those that are required. In the second step,
we take these interfaces and iterate over every valid combination of features and check
whether the interfaces are compatible for every valid configuration (i.e., everything that
is required in some interface is provided by another interface). This way, we can save
redundant checks for intra-feature references. Especially, if some features evolve, we
can omit re-analyzing unchanged features in the feature-based analysis step.

Feature-product-based strategies reduce redundant computations, compared to strict
product-based strategies, but redundancies still occur for all analyses applied at the
product level. For example, when some features evolve, other features need not to be
re-analyzed, but all products containing any of the affected features need to be analyzed
again whenever the feature interface changes. Considering that strict feature-based
strategies are not sufficient for non-compositional properties, feature-product-based
strategies seem to be a good compromise. Whether feature-product-based strategies
are better than family-based strategies depends on the actual analysis, the number of
products, how much can be checked feature-based, and whether evolution of the product
line is an issue.

The feature-product-based strategy has been applied to scale type checking [Apel and
Hutchins, 2010; Bettini et al., 2013, 2015; Klose and Ostermann, 2010; Kolesnikov et al.,
2013], model checking [Blundell et al., 2004; Fisler and Krishnamurthi, 2001; Li et al.,
2002, 2005; Liu et al., 2011; Nelson et al., 2001], and theorem proving [Batory and
Börger, 2008; Damiani et al., 2012; Delaware et al., 2011, 2013] to software product
lines. These approaches check composition-based implementations [Apel and Hutchins,
2010; Bettini et al., 2013, 2015; Damiani et al., 2012; Klose and Ostermann, 2010;
Kolesnikov et al., 2013] and composition-based designs [Blundell et al., 2004; Fisler and
Krishnamurthi, 2001; Li et al., 2002, 2005; Liu et al., 2011; Nelson et al., 2001] against
domain-independent specifications [Apel and Hutchins, 2010; Bettini et al., 2013, 2015;
Klose and Ostermann, 2010; Kolesnikov et al., 2013], family-wide specifications [Blun-
dell et al., 2004; Fisler and Krishnamurthi, 2001; Liu et al., 2011; Nelson et al., 2001],
and feature-based specifications [Damiani et al., 2012; Li et al., 2002, 2005].

Feature-Family-Based Analyses

A strategy similar to feature-product-based analysis is to combine feature-based and
family-based analyses. The idea of feature-family-based analysis is to analyze features
separately, and to analyze everything that could not be analyzed in isolation based on
properties inferred from the feature-based analysis.

32 3. Classification and Survey of Product-Line Analyses

provides class Store { interface of SingleStore
provides Object Store.read();
provides void Store.set(Object);
}
provides class Store { interface of MultiStore

provides Object Store.read();
provides Object[] Store.readAll();
provides void Store.set(Object);
}
requires class Store { interface of AccessControl

requires Object Store.read();
requires Object[] Store.readAll();
requires void Store.set(Object);
}

FM ⇒ (AccessControl ⇒ SingleStore ∨MultiStore)

FM ⇒ (AccessControl ⇒ MultiStore)

Listing 3.3: Feature-family-based type checking with interfaces.

Definition 3.9 (Feature-family-based analysis). An analysis of a software product line
is feature-family-based, if (a) it consists of a feature-based analysis followed by a family-
based analysis and (b) the analysis results of the feature-based analysis are used in the
family-based analysis.

Example 3.10. In our object store, we can infer interfaces for each feature using
feature-based type checking and check these interfaces for compatibility using family-
based type checking. The interface of each feature defines the program elements it pro-
vides and the program elements it requires (cf. Listing 3.3). For example, feature Ac-
cessControl requires a method read, which is provided either by feature SingleStore or
feature MultiStore. However, method readAll required by feature AccessControl is not
available in all products with feature AccessControl. Basically, we can create a propo-
sitional formula for each reference, which can be checked using a satisfiability solver, as
described in Section 3.3.

Feature-family-based analysis can be seen as an improvement of feature-product-based
analysis, as redundant computations are eliminated entirely (i.e., redundancies are not
only eliminated for feature-local analyses, but also for analyses across features). Fur-
thermore, compared to a pure family-based analysis, it better supports the evolution
of software product lines, in which usually only a small set of features evolves. Finally,
a feature-family-based analysis combines open-world and closed-world scenarios. That
is, while the feature-based analysis does not require to know all features and their valid
combinations, we can post-pone all parts of the analysis requiring a closed world to the
family-based analysis.

The feature-family-based strategy has been proposed for type checking [Damiani and
Schaefer, 2012; Delaware et al., 2009] and theorem proving [Hähnle and Schaefer, 2012]
of composition-based implementations [Damiani and Schaefer, 2012; Delaware et al.,

3.5. Combined Analysis Strategies 33

2009; Hähnle and Schaefer, 2012] with domain-independent [Damiani and Schaefer,
2012; Delaware et al., 2009] and feature-based specifications [Hähnle and Schaefer, 2012].

Family-Product-Based Analyses

A combination of family-based and product-based analyses may not seem useful at the
first thought, because everything that can be analyzed product-based could already be
analyzed family-based. Nevertheless, family-product-based analyses can be useful (a)
if a product-based analysis is faster for particular parts of the analysis, (b) if there is
a part of the analysis (e.g., certain safety properties) that is relevant for one product
or a small set of products only, (c) if several software analyses are combined, and (d)
if the analysis problem for a family-based analysis is too large to be solved with given
resource limitations.

Definition 3.11 (Family-product-based analysis). An analysis of a software product
line is family-product-based, if (a) it consists of a (partial) family-based analysis fol-
lowed by a product-based analysis and (b) the analysis results of the family-based analysis
are reused in the product-based analysis.

We have not found pure static approaches for this strategy. However, some approaches
that combine family-based static analysis with product-based dynamic analyses for
software product lines [Kim et al., 2011, 2010; Shi et al., 2012; Tartler et al., 2012]. In
contrast to approaches for sampling discussed in Section 3.2, a family-product-based
analysis incorporates not only the feature model, but also the source code of the product
line during the family-based analysis step.

Feature-Family-Product-Based Analyses

It is also possible to combine all three analysis strategies. We can first analyze the
features in isolation, then check whether the features are compatible in all valid combi-
nations, and finally analyze products that have specific requirements.

Definition 3.12 (Feature-family-product-based analysis). An analysis of a software
product line is feature-family-product-based, if (a) it consists of a feature-based analysis
followed by a family-product-based analysis, and (b) the analysis results of the feature-
based analysis are used during family-product-based analysis.

We have not found any feature-family-product-based strategy in the literature, but it
might be useful to separate product-based from feature-based and family-based analy-
ses, especially, if different software-analysis techniques are combined. It is future work,
to analyze and discuss the feasibility of this strategy in more detail.

34 3. Classification and Survey of Product-Line Analyses

3.6 Research Agenda

Our aim is to bring the issue of systematic research on and application of product-line
analysis to the attention of a broad community of researchers and practitioners. Our
classification is intended to serve as an agenda for research on product-line analysis:

• What are the strengths and weaknesses of the individual strategies in practice?

• Is it meaningful to combine each strategy with each software analysis, and which
combinations are useful and superior in what circumstances?

• What can we learn from strategies applied to one analysis when applying them
to other analyses?

• Are there further novel analysis strategies?

• What characteristics of a given product line affect the efficiency of the individual
analysis strategies?

• Is there a principle and possibly automated way to lift a given specification and
analysis technique to product lines?

Based on the classification of existing approaches in the previous sections, we discuss
underrepresented research areas and specific research questions that we uncovered in our
survey: First, we summarize advantages and drawbacks of each strategy, and identify
underrepresented analysis strategies. Second, we discuss how strategies have been eval-
uated quantitatively and report weaknesses of existing evaluations. Third, we discuss
which analysis strategies have been combined with which specification and implementa-
tion strategies. Finally, we describe future challenges for type checking, static analysis,
model checking, and theorem proving of software product lines.

Comparison of Analysis Strategies

In the previous sections, we have discussed three basic strategies and four combined
strategies to scale software analysis to product lines. In Figure 3.1, we give an overview
of how often each strategy was applied in the surveyed approaches and when. More
than half of the approaches apply a family-based strategy, suggesting that this strategy
to cope with software variability is well-known. However, we also found approaches for
analysis in a product-line context that do not discuss how to cope with many, similar
products. Almost a third of all approaches relies on the generation of all products (i.e.,
unoptimized product-based and feature-product-based strategy), which is infeasible for
large product lines. None of the surveyed analysis approaches is solely feature-based,
because analyzing features only in isolation is usually not sufficient (i.e., the properties of
interest are not compositional). All combined strategies except for the feature-product-
based strategy are underrepresented.

3.6. Research Agenda 35

2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014
0

5

10

15

20

25

Year of Publication

N
u
m

b
er

o
f

A
rt

ic
le

s

Product-based
Family-based
Feature-product-based
Feature-family-based
Family-product-based

Figure 3.1: Frequency of analysis strategies addressed in the research literature.

In Table 3.1, we summarize the main advantages and disadvantages of all strategies.
Each strategy enables the analysis of compositional properties. However, the feature-
based strategy is the only strategy that does not support non-compositional properties.
A further interesting characteristic is whether analysis results refer to domain artifacts
or generated artifacts, because, for the latter, the developer needs to understand gener-
ated artifacts. For example, each strategy incorporating a product-based part inherently
refers to generated artifacts. As feature-based and family-based strategies operate on
domain artifacts, their results also refer to them. Nevertheless, with additional effort it
is possible to aggregate analysis results from products.

A key characteristic of each strategy is to which extent redundant computations are
avoided [Kolesnikov et al., 2013]. In the product-based strategy, we have redundant
computations due to the similarities between products. In contrast, when analyz-
ing a product line with the feature-based strategy, we avoid redundancies by con-
sidering domain artifacts in isolation, but we can only analyze compositional prop-
erties. The family-based strategy avoids redundancies for both, compositional and
non-compositional properties. However, if some domain artifacts evolve in a product
line that has been analyzed before, the family-based strategy usually requires redundant
analyses. The redundant effort can be reduced by combining it with the feature-based
strategy, because we can omit the analysis of domain artifacts for unchanged features.

The size of the analysis problem for a given product line is influenced by the analysis
strategy. A particular strategy may conflict with resource limitations, while another
does not. For example, even if we can model check each product in isolation on a given
machine, it is possible that family-based model checking requires more main memory
than actually available and is thus infeasible. In Table 3.1, we compare the expected
problem size for each strategy with that of the product-based strategy. In general,
we expect smaller problems for strategies incorporating a feature-based analysis step,

36 3. Classification and Survey of Product-Line Analyses

Analysis Strategy A
n
al

y
si

s
of

n
on

-c
om

p
os

it
io

n
a
l

p
ro

p
er

ti
es

A
n
al

y
si

s
re

su
lt

s
re

fe
r

to
d
om

a
in

a
rt

if
a
ct

s

N
on

-r
ed

u
n
d

an
t

co
m

p
u
ta

ti
o
n

s
fo

r
co

m
p

os
it

io
n

al
p
ro

p
er

ti
es

N
on

-r
ed

u
n
d

an
t

co
m

p
u
ta

ti
o
n

s
fo

r
n
o
n
-c

om
p

o
si

ti
o
n
al

p
ro

p
er

ti
es

N
on

-r
ed

u
n
d

an
t

co
m

p
u
ta

ti
o
n

s
fo

r
ev

o
lv

in
g

p
ro

d
u
ct

li
n
es

S
m

a
ll
er

a
n

a
ly

si
s

p
ro

b
le

m
s

fo
r

co
m

p
o
si

ti
o
n

a
l

p
ro

p
er

ti
es

S
m

a
ll
er

a
n

a
ly

si
s

p
ro

b
le

m
s

fo
r

n
o
n

-c
o
m

p
o
si

ti
o
n
a
l

p
ro

p
er

ti
es

Product-based yes no no no no — —
Family-based yes yes yes yes no no no
Feature-based no yes yes — yes yes —
Feature-product-based yes yes/no1 yes no maybe2 yes yes
Feature-family-based yes yes yes yes maybe2 yes maybe3

Family-product-based yes yes/no1 yes yes no no no
Feature-family-product-
based

yes yes/no1 yes yes maybe2 yes maybe3

1 Analysis results of product-based analysis step refers to products
2 Avoids redundant computations when changed domain artifacts can be verified feature-based
3 The family-based analysis problem may be larger or smaller than verifying a single product depending
on how much feature-based part reduces the analysis problem

Table 3.1: Summary of advantages and disadvantages of analysis strategies.

because the analysis problem is split into an analysis of compositional properties for
each feature and an analysis of non-compositional properties. However, as Table 3.1
indicates, avoiding redundant computations (e.g., with the family-based strategy) and
minimizing the analysis problem (e.g., with the feature-product-based strategy) are
conflicting goals. It seems that the feature-family-based strategy is a good trade-off,
but empirical evaluations are needed to find the best strategy based on product-line
characteristics.

Quantitative Evaluation of Analysis Strategies

Ideally, we would like to recommend the best strategy for a given software analysis
based on static characteristics of a product line, such as the number of features, the
number of products, or the size and cohesion of feature implementations. However, for
such recommendations, we need reliable empirical evaluations assessing quantitative
characteristics for each strategy and analysis. Whereas there are some evaluations,
they are often not comparable to each other.

First, we found that, in almost all studies, a particular strategy is compared to an un-
optimized product-based analysis [Apel et al., 2013d; Chen et al., 2014; Classen et al.,
2014, 2013, 2010; Cordy et al., 2012a,c; Greenyer et al., 2013; Sabouri and Khosravi,
2012, 2013a,b; Schaefer et al., 2010b; Thüm et al., 2012] or to the analysis of a sin-
gle product [Delaware et al., 2009; Gazzillo and Grimm, 2012; Kästner et al., 2012a,

3.6. Research Agenda 37

2011b; Kenner et al., 2010; Post and Sinz, 2008]. The advantage of such a standard
evaluation is that we can compare different approaches more easily; even if evalua-
tions strongly depend on the size and kind of product line being analyzed. However,
the unoptimized product-based strategy is often not an option in practice (e.g., for
large product lines). Recently, researchers started comparing family-based with opti-
mized product-based [Apel et al., 2013d; Liebig et al., 2013] and feature-product-based
strategies [Kolesnikov et al., 2013]. However, there are still strategies that have not
been compared with any other strategy. For example, researchers proposed feature-
family-based analyses [Damiani and Schaefer, 2012; Delaware et al., 2009; Hähnle and
Schaefer, 2012], but there is no empirical comparison with a family-based or feature-
product-based strategy that assesses the potential of such a strategy.

Second, most studies only focus on time efficiency. However, memory consumption is
especially important for product lines, because analyzing all products simultaneously
may require significantly more resources than analyzing each product separately. Fur-
thermore, there are different characteristics of product lines (e.g., number of faults)
that influence time and memory efficiency of the analysis (e.g., model checking could
be faster when the product line contains more faults). Hence, when comparing strate-
gies, we should also incorporate product lines containing no faults, some faults, and
many faults in source code and specification. We address this issue in Section 5.2.

Finally, there is no consensus on how to compare strategies empirically. The overall
time for product-line analysis may include several analysis steps, but it is questionable
what to compare if one strategy includes steps that the other does not include. For
example, product-based type checking requires to retrieve all or a subset of all valid
configurations from the feature model, to generate products, and the actual type check-
ing of each product. In contrast, family-based type checking does not require to retrieve
all valid configurations nor to generate products. Brabrand et al. [2013] and Kolesnikov
et al. [2013] document the performance of each analysis step, while all other empiri-
cal comparisons ignore variability-model analysis and product generation [Apel et al.,
2011, 2013d; Chen et al., 2014; Classen et al., 2014, 2013, 2010; Cordy et al., 2012a,c;
Delaware et al., 2011; Gazzillo and Grimm, 2012; Kästner et al., 2012a, 2011b; Liebig
et al., 2013; Post and Sinz, 2008; Sabouri and Khosravi, 2012, 2013b; Schaefer et al.,
2010b; Thüm et al., 2012]. Especially, sampling may require a considerable amount of
time [Liebig et al., 2013]. In summary, for empirical evaluations, the performance of
each step should be documented to improve comparability.

Product-Line Implementation and Specification

In addition to the analysis strategy, we classified product-line analyses with respect
to the underlying strategy for implementation and specification of variability. We
distinguish between composition-based and annotation-based implementations, and
between domain-independent, family-wide, product-based, feature-based, and family-
based specifications. In Table 3.2, we give an overview of which analysis strategies have
been applied to which kind of implementation and specification strategy, respectively.

38 3. Classification and Survey of Product-Line Analyses

Analysis strategy Im
p
le

m
e
n
ta

ti
o
n

C
o
m

p
o
si

ti
on

-b
a
se

d

A
n
n

ot
at

io
n

-b
a
se

d

S
p

e
c
ifi

c
a
ti

o
n

D
o
m

ai
n
-i

n
d
ep

en
d
en

t

F
am

il
y
-w

id
e

P
ro

d
u
ct

-b
as

ed

F
ea

tu
re

-b
as

ed

F
am

il
y
-b

a
se

d

Unoptimized product-based 7 3 2 3 0 5 0
Optimized product-based 8 2 3 3 0 5 0
Family-based 19 43 31 14 0 7 8
Feature-based 0 0 0 0 0 0 0
Feature-product-based 17 0 8 5 0 6 0
Feature-family-based 3 0 2 0 0 1 0
Family-product-based 2 2 1 2 0 0 0
Feature-family-product-based 0 0 0 0 0 0 0
Total* 54 49 45 26 0 23 8

* The bottom row is not necessarily the sum of all above rows, because some specification approaches
are used with several analysis strategies. Furthermore, some analysis approaches are available for both,
annotation-based and composition-based implementations.

Table 3.2: Number of approaches for each combination of analysis, specification, and
implementation strategy.

The majority of implementation and specification strategies discussed in our survey
have actually been applied. Both composition-based and annotation-based implemen-
tations have been used with similar frequency in the literature. In contrast, most
approaches built on domain-independent specifications. This is natural, as many ap-
proaches consider type checking or static analysis, for which specifications are often
defined independently of a particular system. In addition, many other specifications
are family-wide, which means that, while the implementation contains variability, the
specification does not. About the same number of approaches rely on feature-based
specifications, which support variability similar as with composition-based implementa-
tion. However, we found only eight approaches using family-based specification [Asirelli
et al., 2012; Classen et al., 2014, 2013; Cordy et al., 2013a, 2012a,b, 2013b, 2014], and
none with product-based specification. An open research question is how much variabil-
ity is required in product-line specifications (e.g., whether feature-based specifications
are sufficient [Apel et al., 2013c]) and whether there are differences in the variabil-
ity of specifications depending on the underlying software analysis. Model checking is
the only software analysis to which all specification strategies (except product-based
specification) have already been applied (cf. Section 3.3). For type checking, domain-
independent specification are sufficient, but other specification strategies shall be ex-
plored for static analysis and theorem proving.

While the strategies for implementation, specification, and analysis seem to be largely
independent of each other, we discuss some findings based on our classification. First,
product-based specifications are problematic not only from a reuse perspective, but also

3.6. Research Agenda 39

Composition-based Annotation-based

Unoptimized
product-
based

Apel et al. [2008a] Buchmann and Schwägerl [2012]

Optimized
product-
based

Jayaraman et al. [2007] Liebig et al. [2013]

Family-
based

Thaker et al. [2007], Kim et al. [2008],
Kuhlemann et al. [2009], Apel et al.
[2010a], Apel et al. [2010d], Alférez
et al. [2011], Kolesnikov et al. [2013],
Schröter et al. [2014]

Aversano et al. [2002], Czarnecki and
Pietroszek [2006], Huang et al. [2007],
Metzger et al. [2007], Kim et al. [2008],
Post and Sinz [2008], Heidenreich
[2009], Kenner et al. [2010], Teixeira
et al. [2011], Kästner et al. [2012a],
Kästner et al. [2012b], Le et al. [2013],
Liebig et al. [2013], Chen and Erwig
[2014], Chen et al. [2014]

Feature-
product-
based

Apel and Hutchins [2010], Klose and
Ostermann [2010], Bettini et al. [2013],
Istoan [2013], Kolesnikov et al. [2013],
Bettini et al. [2015]

Feature-
family-based

Delaware et al. [2009], Damiani and
Schaefer [2012]

Table 3.3: Classification of approaches for product-line type checking.

for analysis efficiency, because we can hardly reuse verification effort if specifications
are not reused at all. Hence, product-based specifications should be avoided whenever
possible. Second, for annotation-based implementations or family-based specifications
there is not a single approach including a feature-based analysis. Clearly, we cannot an-
alyze a feature in isolation if its implementation or specification scattered in the product
line. However, future research should investigate how to extract feature implementation
and specification from an annotation-based implementation to enable modular analysis,
for which emergent interfaces [Ribeiro et al., 2010] are a first step. Finally, product-line
specifications are used in several approaches not covered in our survey (e.g., [Johnsen
et al., 2012; Kim et al., 2013; Thüm et al., 2012]). The reason is that such specification
approaches have not been proposed in the context of an analysis that operates stati-
cally. Consequently, to better understand the strategies for product-line specification,
a survey dedicated to specification rather than analysis should be performed.

Product-Line Type Checking

In Table 3.3, we summarize the strategies that have been applied to type checking.
We identified product-based, family-based, feature-product-based, and feature-family-
based approaches, whereas the majority of work is on family-based type checking. While
it is unclear whether any useful properties can be analyzed with feature-based type

40 3. Classification and Survey of Product-Line Analyses

Composition-
based

Annotation-
based

Domain-
independent

Family-wide
Feature-
based

Unoptimized
product-
based

Klaeren et al.
[2001], Scholz
et al. [2011]

Klaeren et al.
[2001], Scholz
et al. [2011]

Optimized
product-
based

Katz [2006]
Liebig et al.
[2013]

Liebig et al.
[2013]

Liebig et al.
[2013]

Katz [2006]

Family-
based

Adelsberger
et al. [2014]

Ribeiro et al.
[2010], Bod-
den et al.
[2013],
Brabrand
et al. [2013],
Liebig et al.
[2013], Kan-
ning and
Schulze
[2014],
Midtgaard
et al. [2014],
Nguyen et al.
[2014a],
Sabouri and
Khosravi
[2014]

Ribeiro et al.
[2010], Liebig
et al. [2013],
Midtgaard
et al. [2014],
Nguyen et al.
[2014a]

Bodden
et al. [2013],
Brabrand
et al. [2013],
Liebig et al.
[2013],
Sabouri and
Khosravi
[2014]

Family-
product-
based

Kim et al.
[2010], Kim
et al. [2011]

Kim et al.
[2011], Shi
et al. [2012]

Shi et al.
[2012]

Kim et al.
[2010], Kim
et al. [2011]

Table 3.4: Classification of approaches for product-line static analysis.

checking, future research should propose and evaluate approaches pursuing a family-
product-based and feature-family-product-based strategy.

For type checking, there are no empirical evaluations for feature-family-based type
checking. This strategy should be compared to existing approaches for family-based
type checking to assess its potential. In particular, it is not clear how much time is
needed to analyze features in isolation compared to the overall analysis time. An open
research questions is whether the feature-family-based strategy is faster than the family-
based strategy for evolving product lines. Similarly, it is to be assessed empirically
whether the feature-family-based strategy requires more or less memory.

Furthermore, there are two competing approaches for family-based type checking, called
local and global approaches [Apel et al., 2010d; Huang et al., 2011]. The main difference
is whether the whole product line is encoded as a single or a large number of satisfiability
problems. However, empirical evaluations are missing that compare time and space
efficiency of both approaches.

3.6. Research Agenda 41

Product-Line Static Analysis

In Table 3.4, we give an overview of static analyses for software product lines. The
majority of approaches has been published in the last four years. So far, only product-
based, family-based, and family-product-based strategies have been considered, which
naturally raises the question of whether other strategies can be applied to static analysis.
Interestingly, the family-product-based strategy has been applied exclusively to static
analysis. In particular, feature-product-based and feature-family-based strategies, as
known from other analyses, have not yet been applied. It is an open research question
whether static analyses can take advantage of compositional properties.

All approaches for family-based static analysis are based on implementations using
preprocessors and domain-independent specifications. Thus, future research should
evaluate whether it is possible to create family-based static analysis for composition-
based implementations and how to define family-wide, feature-based, and family-based
specifications for static analysis.

Family-based static analyses have been compared empirically with optimized [Liebig
et al., 2013] and unoptimized [Bodden et al., 2013; Brabrand et al., 2013] product-
based analyses. Comparisons include time efficiency [Bodden et al., 2013; Brabrand
et al., 2013; Liebig et al., 2013], memory efficiency [Brabrand et al., 2013], and sound-
ness [Bodden et al., 2013]. In particular, Bodden et al. [2013] measured that it is faster
to ignore than to incorporate the feature model during static analysis. Further studies
shall evaluate whether this is the case for all kinds of static analysis and explore the
fundamental reasons. This is especially interesting, as opposite experience has been
made with model checking [Classen et al., 2013].

Product-Line Model Checking

In Table 3.5, we present strategies applied to scale model checking to product lines.
In 2001, the first approach for model checking has been proposed pursuing a feature-
product-based strategy. However, since then, mainly family-based approaches have
been developed and several unoptimized product-based approaches. Compared to type
checking, there is not a single approach for feature-family-based model checking. Hence,
the research question arises whether this strategy can be applied to model checking,
and, if so, what are the benefits of such an approach. Similar research questions can be
formulated for all other “missing” strategies.

As for type checking, most empirical evaluations compare family-based model checking
with product-based model checking. For feature-product-based model checking there is
only one evaluation using a product line with four products [Liu et al., 2011]. Further
empirical evaluations are needed with larger product lines that also compare feature-
product-based with family-based model checking.

Product-Line Theorem Proving

In Table 3.6, we summarize the strategies used for theorem proving. Compared to
type checking and model checking, there are fewer approaches for theorem proving,

42 3. Classification and Survey of Product-Line Analyses

C
o
m

p
o
si

ti
o
n

-
b

a
se

d
A

n
n

o
ta

ti
o
n

-b
a
se

d
D

o
m

a
in

-
in

d
ep

en
d

en
t

F
a
m

il
y
-w

id
e

F
ea

tu
re

-b
a
se

d
F

a
m

il
y
-b

a
se

d

U
n

o
p
ti

m
iz

ed
p

ro
d

u
ct

-b
a
se

d

U
b

a
y
a
sh

i
a
n
d

T
a
m

a
i

[2
0
0
2
],

A
p

el
et

a
l.

[2
0
1
0
c]

,
B

es
sl

in
g

a
n
d

H
u

h
n

[2
0
1
4
]

K
is

h
i

a
n
d

N
o
d

a
[2

0
0
6
],

F
a
n
te

ch
i

a
n

d
G

n
es

i
[2

0
0
8
]

U
b

a
y
a
sh

i
a
n
d

T
a
m

a
i

[2
0
0
2
],

K
is

h
i

a
n
d

N
o
d

a
[2

0
0
6
],

F
a
n
te

ch
i

a
n
d

G
n
es

i
[2

0
0
8
]

A
p

el
et

a
l.

[2
0
1
0
c]

,
B

es
sl

in
g

a
n
d

H
u

h
n

[2
0
1
4
]

O
p
ti

m
iz

ed
p

ro
d

u
ct

-b
a
se

d

P
la

th
a
n

d
R

y
a
n

[2
0
0
1
],

K
a
tz

[2
0
0
6
],

C
o
rd

y
et

a
l.

[2
0
1
2
d
],

A
p

el
et

a
l.

[2
0
1
3
d
],

L
o
ch

a
u

et
a
l.

[2
0
1
4
]

C
o
rd

y
et

a
l.

[2
0
1
2
d
],

L
o
ch

a
u

et
a
l.

[2
0
1
4
]

P
la

th
a
n

d
R

y
a
n

[2
0
0
1
],

K
a
tz

[2
0
0
6
],

A
p

el
et

a
l.

[2
0
1
3
d
]

F
a
m

il
y
-b

a
se

d

A
p

el
et

a
l.

[2
0
1
1
],

S
a
b

o
u

ri
a
n
d

K
h
o
sr

a
v
i

[2
0
1
2
],

A
p

el
et

a
l.

[2
0
1
3
d
],

C
la

ss
en

et
a
l.

[2
0
1
3
],

G
re

en
y
er

et
a
l.

[2
0
1
3
],

S
a
b

o
u

ri
a
n
d

K
h
o
sr

a
v
i

[2
0
1
3
a
],

C
la

ss
en

et
a
l.

[2
0
1
4
],

D
u

b
sl

a
ff

et
a
l.

[2
0
1
4
],

T
h
ü

m
et

a
l.

[2
0
1
4
]

F
is

ch
b

ei
n

et
a
l.

[2
0
0
6
],

G
ru

le
r

et
a
l.

[2
0
0
8
],

P
o
st

a
n
d

S
in

z
[2

0
0
8
],

C
la

ss
en

et
a
l.

[2
0
1
0
],

L
a
u
en

ro
th

et
a
l.

[2
0
1
0
],

S
ch

a
ef

er
et

a
l.

[2
0
1
0
b
],

A
si

re
ll
i

et
a
l.

[2
0
1
2
],

C
o
rd

y
et

a
l.

[2
0
1
2
a
],

C
o
rd

y
et

a
l.

[2
0
1
2
b
],

C
o
rd

y
et

a
l.

[2
0
1
2
c]

,
C

la
ss

en
et

a
l.

[2
0
1
3
],

C
o
rd

y
et

a
l.

[2
0
1
3
a
],

C
o
rd

y
et

a
l.

[2
0
1
3
b
],

S
a
b

o
u

ri
a
n

d
K

h
o
sr

a
v
i

[2
0
1
3
b

],
te

r
B

ee
k

et
a
l.

[2
0
1
3
],

C
o
rd

y
et

a
l.

[2
0
1
4
],

S
a
b

o
u

ri
a
n

d
K

h
o
sr

a
v
i

[2
0
1
4
],

S
h

i
et

a
l.

[2
0
1
4
],

te
r

B
ee

k
a
n

d
d
e

V
in

k
[2

0
1
4
]

P
o
st

a
n

d
S

in
z

[2
0
0
8
],

S
a
b

o
u

ri
a
n
d

K
h
o
sr

a
v
i

[2
0
1
3
a
]

F
is

ch
b

ei
n

et
a
l.

[2
0
0
6
],

G
ru

le
r

et
a
l.

[2
0
0
8
],

S
ch

a
ef

er
et

a
l.

[2
0
1
0
b
],

C
o
rd

y
et

a
l.

[2
0
1
2
c]

,
S

a
b

o
u
ri

a
n

d
K

h
o
sr

a
v
i

[2
0
1
2
],

G
re

en
y
er

et
a
l.

[2
0
1
3
],

S
a
b

o
u

ri
a
n
d

K
h
o
sr

a
v
i

[2
0
1
3
b
],

te
r

B
ee

k
et

a
l.

[2
0
1
3
],

S
a
b

o
u
ri

a
n

d
K

h
o
sr

a
v
i

[2
0
1
4
],

S
h
i

et
a
l.

[2
0
1
4
],

te
r

B
ee

k
a
n
d

d
e

V
in

k
[2

0
1
4
]

C
la

ss
en

et
a
l.

[2
0
1
0
],

L
a
u

en
ro

th
et

a
l.

[2
0
1
0
],

A
p

el
et

a
l.

[2
0
1
1
],

A
p

el
et

a
l.

[2
0
1
3
d
],

D
u

b
sl

a
ff

et
a
l.

[2
0
1
4
],

T
h
ü

m
et

a
l.

[2
0
1
4
]

A
si

re
ll
i

et
a
l.

[2
0
1
2
],

C
o
rd

y
et

a
l.

[2
0
1
2
a
],

C
o
rd

y
et

a
l.

[2
0
1
2
b
],

C
la

ss
en

et
a
l.

[2
0
1
3
],

C
o
rd

y
et

a
l.

[2
0
1
3
a
],

C
o
rd

y
et

a
l.

[2
0
1
3
b
],

C
la

ss
en

et
a
l.

[2
0
1
4
],

C
o
rd

y
et

a
l.

[2
0
1
4
]

F
ea

tu
re

-
p

ro
d

u
ct

-b
a
se

d

F
is

le
r

a
n

d
K

ri
sh

-
n

a
m

u
rt

h
i

[2
0
0
1
],

N
el

so
n

et
a
l.

[2
0
0
1
],

L
i

et
a
l.

[2
0
0
2
],

B
lu

n
d
el

l
et

a
l.

[2
0
0
4
],

L
i

et
a
l.

[2
0
0
5
],

L
iu

et
a
l.

[2
0
1
1
],

Is
-

to
a
n

[2
0
1
3
]

Is
to

a
n

[2
0
1
3
]

F
is

le
r

a
n

d
K

ri
sh

-
n

a
m

u
rt

h
i

[2
0
0
1
],

N
el

so
n

et
a
l.

[2
0
0
1
],

B
lu

n
d
el

l
et

a
l.

[2
0
0
4
],

L
iu

et
a
l.

[2
0
1
1
],

Is
-

to
a
n

[2
0
1
3
]

L
i

et
a
l.

[2
0
0
2
],

L
i

et
a
l.

[2
0
0
5
],

Is
to

a
n

[2
0
1
3
]

Table 3.5: Classification of approaches for product-line model checking.

3.7. Related Classifications and Surveys 43

Composition-based Domain-independent Feature-based

Unoptimized
product-
based

Harhurin and Hartmann
[2008]

Harhurin and Hartmann
[2008]

Optimized
product-
based

Bruns et al. [2011],
Hähnle et al. [2013]

Bruns et al. [2011],
Hähnle et al. [2013]

Family-
based

Thüm et al. [2012],
Thüm et al. [2014]

Thüm et al. [2012],
Thüm et al. [2014]

Feature-
product-
based

Batory and Börger
[2008], Delaware et al.
[2011], Thüm et al.
[2011b], Damiani et al.
[2012], Delaware et al.
[2013]

Delaware et al. [2011],
Delaware et al. [2013]

Batory and Börger
[2008], Thüm et al.
[2011b], Damiani et al.
[2012]

Feature-
family-based

Hähnle and Schaefer
[2012]

Hähnle and Schaefer
[2012]

Table 3.6: Classification of approaches for product-line theorem proving.

suggesting that this research field is underrepresented. Surprisingly, the family-based
strategy has not been applied to theorem proving, whereas this strategy has been applied
often to type checking and model checking. Based on these insights, we propose two
new approaches in Chapter 5.

For theorem proving, there is a lack of reliable evaluations comparing the strategies to
each other. There is only one empirical evaluation, besides our evaluations presented in
Chapter 5. Delaware et al. [2011] measured the time needed for the feature-based and
the product-based part in feature-product-based theorem proving.

3.7 Related Classifications and Surveys

We found classifications and surveys related to ours and describe commonalities and
differences in the following.

Classifications for Quality Assurance in Software Product Lines

Pohl et al. [2005] discuss four strategies for product-line testing. In contrast to our
classification, they discuss strategies incorporating tests at different levels including
unit tests, integration tests, and system tests. The brute force strategy is similar
to unoptimized product-based analysis, but tests are performed at all levels for all
products. In contrast, for the pure application strategy only delivered products are
tested in application engineering. The sample application strategy is equivalent to the
sample-based strategy in our classification. Finally, with the commonality and reuse
strategy artifacts common to all products are tested in domain engineering and then

44 3. Classification and Survey of Product-Line Analyses

all products are tested separately. These strategies have been defined for product-line
testing and do not represent all strategies that we identified in our survey.

Similarly, Metzger [2007] and Lauenroth et al. [2010] discuss three strategies for quality
assurance (e.g., model checking) of product lines, namely commonality strategy, sam-
ple strategy (similar to sample-based analysis), and comprehensive strategy (similar
to unoptimized product-based analysis). The idea of the commonality strategy is to
check artifacts that are common to all products. Similar to the family-based strategy,
the commonality strategy uses the feature model and domain artifacts to retrieve the
common artifacts. Similar to the feature-based strategy, it can only uncover certain
faults for a given product line. The commonality strategy is not represented in our
classification. However, we have not found any approaches applying this strategy.

Lutz [2007] classifies approaches for product-line verification and validation with re-
spect to the software development life-cycle. In particular, he distinguishes require-
ments, safety requirements, architecture, design, and implementation. We made the
experience that many approaches cannot uniquely be assigned to one of these classes.
For example, most approaches for model checking are applicable to architecture, design,
and implementation.

It is worthwhile to note that two extensions of our classification have already been
proposed. In the first extension, we explore modeling product-line analyses by means
of three dimensions: sampling, feature grouping, and variability encoding [von Rhein
et al., 2013]. The difference to the taxonomy discussed in the previous sections is that
there is a continuum along these dimensions. The dimension variability encoding ranges
from a product-based to a family-based analysis and the dimension feature grouping
ranges feature-based to product-based analyses. Orthogonal to these dimensions, each
approach may use a certain degree of sampling ranging from a single product or fea-
ture to all products or features. The value of this extension is that it may lead to
new approaches in the future. Furthermore, it is equipped with graphical and formal
notations. However, besides classifying some example approaches, there is no literature
survey applying this extension.

In the second extension, Benduhn [2014] builds on our classification and survey to
distinguish product-line representations proposed in the research literature, such as
product-line implementation, modeling, and specification. He unifies our classifications
of implementations and specifications into a general classification to assess similarities
and differences across representations. This classification was used to survey and classify
approaches with a slightly different focus than in this chapter. First, analyses that do
not require a specification for each product line were omitted (e.g., type checking).
Second, he incorporates dynamic analyses and testing, which were not in our scope.
Compared to this chapter, the focus is rather on how to specify and model the expected
behavior, rather than to verify and analyze product lines.

Surveys on Quality Assurance in Software Product Lines

Benavides et al. [2010] survey automated analyses for feature models. These analyses
consider only the feature model and can detect anomalies such as dead features or com-

3.8. Summary 45

pute statistics such as the number of products. In contrast, our focus is on approaches
that operate on source code or models thereof. However, many of the approaches in our
survey rely on techniques from this line of research to reason about variability (e.g., for
the family-based strategy).

Furthermore, numerous surveys on product-line testing have been conducted in the last
decade [Carmo Machado et al., 2014; Da Mota Silveira Neto et al., 2011; Engström and
Runeson, 2011; Lee et al., 2012; Oster et al., 2011; Tevanlinna et al., 2004]. These sur-
veys are complementary to ours, because we focus on approaches that operate statically
and they focus on dynamic analysis and test execution. Nevertheless, our classification
could also be applied to testing. While we started to apply our classification to testing
approaches, it seems that most approaches for product-line testing are sample-based
analyses. However, researchers recently proposed approaches for family-based test-
ing [Kästner et al., 2012c; Kim et al., 2012, 2013; Nguyen et al., 2014a,b].

Montagud and Abrahão [2009] performed a systematic literature review on quality
assessment of software product lines. They distinguish between quality assessment
applied in domain engineering and application engineering. Etxeberria et al. [2008]
presented a survey that additionally incorporates feature modeling, design, architecture,
implementation, and testing. In contrast to both reviews, we focus only on product-line
analysis that operate statically, our classification is more fine-grained, and we survey
more approaches. Furthermore, we derived a research agenda based on our insights.

3.8 Summary

In software-product-line engineering, similar software products are built in an efficient
and coordinated manner based on reusable artifacts. While there are efficient techniques
to implement software product lines, current research seeks to scale software analyses,
such as type checking, static analyses, model checking, and theorem proving, from single
software products to entire software product lines. The field of product-line analysis is
broad and diverse, and different approaches are often hard to compare.

We propose a classification of product-line analyses into three main analysis strategies:
product-based, feature-based, and family-based analyses. These strategies indicate how
the analysis handles software variability, and can be even combined, resulting in four
further strategies: feature-product-based, feature-family-based, family-product-based,
and feature-family-product-based analyses. Besides the analysis strategy, we classify
approaches with respect to the implementation and specification strategy. We iden-
tified four specification strategies that have been applied in the literature: domain-
independent, family-wide, feature-based, and family-based specifications.

Overall, we classified 137 existing analysis and specification approaches, gaining in-
sights into the field of product-line analyses. First, whereas many approaches claim to
be compositional, we distinguish feature-product-based and feature-family-based strate-
gies to reveal how inherently non-compositional properties such as feature interactions
are analyzed. Second, not all strategies have been applied to all software analyses.

46 3. Classification and Survey of Product-Line Analyses

For example, we have not found feature-product-based static analyses, feature-family-
based static analyses, family-based theorem proving, and feature-family-based model
checking. Third, we identified well-represented (e.g., family-based type checking, static
analysis, and model checking) and underrepresented research areas (e.g., optimized
product-based analyses and feature-family-based theorem proving). Finally, there is no
compositional analysis for annotation-based product lines or family-based specifications.

Based on these insights, we formulated research questions to be addressed in future
work. With the following two chapters, we overcome some limitations of prior work. In
Chapter 4, we discuss how to specify product lines by means of contracts. Furthermore,
we propose approaches for feature-product-based and family-based theorem proving in
Chapter 5.

We hope this chapter can raise awareness of the importance and challenges of product-
line analyses, initiate a discussion on the future of product-line analyses, motivate
researchers to explore and practitioners to use product-line analysis methods, and help
to form a community of researchers, tool builders, and users interested in product-line
analyses. We refer interested readers to our website to follow the progress of our ongoing
classification effort.2

2http://fosd.net/spl-strategies/

http://fosd.net/spl-strategies/

4. Feature-Oriented Contracts
for Product-Line Specification

This chapter shares material with the FASE’12 paper “Applying De-
sign by Contract to Feature-Oriented Programming” [Thüm et al., 2012].
Initial ideas have been presented at VAST’11 [Thüm et al., 2011b] and
FOSD’11 [Scholz et al., 2011].

As indicated in the previous chapter, most verification techniques for product lines
require a specification of the expected behavior of all products. In product-line verifica-
tion, we analyze whether all products of the product line adhere to their specifications.
While there exist many approaches to specify product lines, they are often just used as
proof-of-concept for verification techniques and not justified empirically. To the best
of our knowledge, this chapter presents the first systematic discussion and evaluation
of how to specify product lines. Our results are a foundation for analyses of product
lines that rely on specifications, such as formal verification, feature-interaction detec-
tion, or test-case generation. Indeed, we build on this foundation when we investigate
product-line verification in the next chapter.

Our investigation of product-line specifications is based on design by contract for vari-
ous reasons. First, contracts enable the formal specification of behavior and, thus, can
be used for a wide range of verification techniques, such as theorem proving [Barnett
et al., 2011; Beckert et al., 2007; Burdy et al., 2005; Hatcliff et al., 2012], model check-
ing [Robby et al., 2006], static analysis [Burdy et al., 2005; Hatcliff et al., 2012], runtime
assertion checking [Barnett et al., 2011; Burdy et al., 2005; Hatcliff et al., 2012; Meyer,
1988], and test-case generation [Burdy et al., 2005; Hatcliff et al., 2012]. Consequently,
our findings inherently have many applications. Second, contracts help to identify the
location of defects by means of blame assignment [Hatcliff et al., 2012; Meyer, 1988].
For example, a violation of a postcondition is the fault of a method itself and we should

48 4. Feature-Oriented Contracts for Product-Line Specification

correct the method implementation or the postcondition. We expect defect localization
to be especially helpful when developing product lines with large development teams,
in which no developer knows the complete code base. Third, design by contract is a
means for specifying detailed designs. Once we understand the variability mechanisms
required for specifications at code-level, we can use this knowledge to guide the devel-
opment of product-line specification techniques for more abstract specifications (e.g.,
transition systems) or even abstraction mechanisms, such as model-based refinement
methods (e.g., ASM [Börger and Stark, 2003] and Event-B [Abrial, 2010]).

We investigate contracts for product lines implemented by means of feature-oriented
programming, to simplify the transfer of our results to other product-line implementa-
tion techniques. The reason is that feature-oriented programming contains only core
variability mechanisms that can be encoded in many other implementation techniques.
For instance, feature-oriented method refinement can be expressed using the around ad-
vice in aspect-oriented programming [Apel et al., 2008b], using method modifications
in delta-oriented programming [Schaefer et al., 2010a], and using presence conditions
in preprocessor-based product lines [Kästner et al., 2009a]. Consequently, when iden-
tifying variability patterns for feature-oriented method refinements, we can directly
apply these patterns to other implementation techniques. A further reason for using a
composition-based rather than an annotation-based technique is that it enables feature-
based analysis techniques per-se and does not require a preceding family-based analysis
step to extract modules (cf. Section 3.6).

While both, design by contract and feature-oriented programming, have been hot re-
search topics for more than two decades, their combination is not straightforward and
has not been addressed prior to this thesis. A key question is how to define and compose
contracts when applying feature-oriented method refinements. For instance, we may
assume behavioral subtyping [America, 1991; Dhara and Leavens, 1996; Hatcliff et al.,
2012; Liskov and Wing, 1994; Meyer, 1988], which is often assumed for object-oriented
inheritance, but this might be too restrictive for method refinements. In Section 4.1,
we present a taxonomy of fundamental options for contract composition and then pro-
pose several mechanisms to implement these options in Section 4.2. In Section 4.3,
we discuss how these contract-composition mechanisms can be extended for specifica-
tion concepts beyond preconditions and postconditions (e.g., class invariants, assignable
clauses, and specification cases). We describe our tool support for the specification of
feature-oriented contracts in Section 4.4. Finally, we evaluate all contract-composition
mechanisms empirically in Section 4.5 and discuss related work on contracts in aspect-
oriented and delta-oriented programming in Section 4.6.

4.1 A Taxonomy for Contract Composition

Before actually integrating contracts into feature-oriented programming, we explore
fundamental options for contract composition. Our consideration is more general
than feature-oriented programming and can also be applied to contract composition
for object-oriented method overriding, aspect-oriented around advice, delta-oriented

4.1. A Taxonomy for Contract Composition 49

method modification, mixins, and traits. Whenever we compose two methods, the ques-
tion is how to compose their contracts and which properties does such a composition
establish. While we focus on composition of methods, we can even derive conclusions
for annotation-based product lines, in which methods and their contracts may con-
tain variability as well. First, we discuss interesting properties of contract-composition
mechanisms in Section 4.1.1. Second, we discuss four fundamental options for contract
composition based on these properties in Section 4.1.2.

4.1.1 Properties of Contract Composition

With contract composition, we refer to the process of retrieving a contract for a method
given a list of contracts as input. Contract composition is motivated by the decomposi-
tion of methods on code level. Methods are decomposed into parts to achieve separation
of concerns [Harrison and Ossher, 1993; Kiczales et al., 1997; Tarr et al., 1999] or to
enable the automatic composition based on requirements [Apel et al., 2013a; Batory
et al., 2004; Czarnecki and Eisenecker, 2000; Prehofer, 1997]. For both applications,
the question arises how to decompose and compose contracts accordingly. That is, for
each possible composition of methods, we are interested in the behavior in terms of a
contract. While we may want to compose more than two contracts, our consideration
is based on the composition of two contracts. This is sufficient, because a composition
of more than two contracts can be simulated by several binary compositions. This
simplification is in line with work on software composition, which is also often defined
as a binary function [Apel et al., 2010b; Batory et al., 2004; Dhara and Leavens, 1996;
Hatcliff et al., 2012; Höfner and Möller, 2009; Liskov and Wing, 1994; Meyer, 1988;
Prehofer, 1997].

An interesting property is whether contract composition is commutative (i.e., whether
the order of composed contracts matters). Contract composition is closely related to
the composition of source code, because contracts are typically embedded in source
code [Meyer, 1988]. Commutativity can facilitate comprehension, even if the composi-
tion of source code is often not commutative, because method refinements may refer to
previous method implementations [Apel et al., 2010b; Höfner and Möller, 2009]. Usually,
there is a special keyword to do so; for example, keyword super or Precursor in object-
oriented method overriding [Bracha and Cook, 1990; Gosling et al., 2005; Meyer, 1988],
keyword proceed (formerly runNext) in aspect-oriented around advice [Kiczales et al.,
2001], and keyword original in feature-oriented [Apel et al., 2013b] and delta-oriented
programming [Schaefer et al., 2011]. Hence, approaches enabling the composition of
methods typically assume a partial order (i.e., a total order for each composition). For
instance, delta modules in delta-oriented programming have to declare a partial order to
all other modules refining the same methods [Schaefer et al., 2010a]. In feature-oriented
programming, usually a total order on all features is assumed [Prehofer, 1997; Thüm
et al., 2014b]. In aspect-oriented programming, aspect precedence can be defined and
if the order is not unique, the aspect compiler chooses an order [Kiczales et al., 2001].
In object-oriented programming, an order is given by the inheritance hierarchy. Conse-

50 4. Feature-Oriented Contracts for Product-Line Specification

caller-compatible callee-compatible

equivalent

Figure 4.1: Compatibility of changed contracts for callers and callees.

quently, we can assume an order of composed contracts. We refer to the contract that
is subject to refinement as original contract and its refinement as refining contract.

A contract defines obligations and benefits for callers and the callee (i.e., the method
itself), respectively [Meyer, 1988]. We distinguish between two views, namely the caller
view and the callee view. The caller has the obligation to fulfill the precondition of the
method, but can rely on the postcondition. The callee can rely on the precondition,
but has to fulfill the postcondition. As the result of contract composition is a new
contract for a particular method, a distinguishing property of contract composition
is to which extent the new contract is compatible with the original and the refining
contract. However, we define compatibility with respect to the callee view and the
caller view:

Definition 4.1. Given two contracts c1 = {φ1}m1{ψ1} and c2 = {φ2}m2{ψ2}.

• The contract c2 is called caller-compatible with respect to c1, if and only if φ1 |=
φ2 and ψ2 |= ψ1, and caller-incompatible otherwise.

• The contract c2 is called callee-compatible with respect to c1, if and only if φ2 |=
φ1 and ψ1 |= ψ2, and callee-incompatible otherwise.

• If and only if contract c2 is both, callee-compatible and caller-compatible with
respect to c1, then c2 is called equivalent to c1, and non-equivalent otherwise.

We illustrate these definitions by means of a Venn diagram in Figure 4.1. Assuming a
fixed contract c1, the Venn diagram illustrates the compatibility of all possible contracts
c2 with respect to c1. Considering the caller view, it seems beneficial if the result of
contract composition c2 is caller-compatible, because all callers relying on c1 can rely
on c2 instead. In contrast, callee-compatibility is desirable, because callees do not
need to be aware of contract changes. However, requiring both properties enables only
changes to contracts in which preconditions and postconditions remain equivalent (i.e.,
|= φ1 ⇔ φ2 and |= ψ1 ⇔ ψ2).

Given an original contract c = {φ}m{ψ} and a refining contract c′ = {φ′}m′{ψ′}, we
denote the composed contract as c′′ = c′•c = {φ′}m′{ψ′}•{φ}m{ψ} = {φ′′}m′•m{ψ′′}.
A specific mechanism for contract composition defines how φ′′ and ψ′′ are derived from
the contracts c and c′. We consider a contract-composition mechanism M as a total
function •M : C × C → C defined over the set C of all possible contracts. If it is
clear from the context which contract-composition mechanism is meant, we write •

4.1. A Taxonomy for Contract Composition 51

Preservation property Compatibility for Compatibility to

original-caller-preserving callers original contract
refinement-caller-preserving callers refining contract

original-callee-preserving callees original contract
refinement-callee-preserving callees refining contract

Table 4.1: Compatibility of contracts for different preservation properties.

instead of •M and thus overload the composition operator for method implementations
(cf. Section 2.2.2). Clearly, the set C is specific to a certain specification language,
whereas we discuss contract composition independently of a particular language. Still,
we require that each contract c ∈ C can be formulated as c = {φ}m{ψ}, where φ and ψ
are logical expressions being the precondition and postcondition, and m is the method
to which the contract c applies to.

Based on caller-compatibility and callee-compatibility, we define preservation proper-
ties for contract-composition mechanisms that indicate to which extent it maintains
the compatibility with the original and refining contract. Compared to our previous
definitions of compatibility, we quantify over all possible contracts as input and classify
the mechanism rather than single contracts. We define the following four preservation
properties (cf. Table 4.1), which all facilitate some form of modular reasoning:

Definition 4.2. Assume that a contract-composition mechanism m composes an orig-
inal contract c with a refining contract c′ to the resulting contract c′′ = c′ •m c.

• The mechanism m is called original-caller-preserving, if for all c, c′ ∈ C the re-
sulting contract c′′ is caller-compatible with respect to c.

• The mechanism m is called refinement-caller-preserving, if for all c, c′ ∈ C the
resulting contract c′′ is caller-compatible with respect to c′.

• The mechanism m is called original-callee-preserving, if for all c, c′ ∈ C the re-
sulting contract c′′ is callee-compatible with respect to c.

• The mechanism m is called refinement-callee-preserving, if for all c, c′ ∈ C the
resulting contract c′′ is callee-compatible with respect to c′.

In object-oriented programming, original-caller-preserving contract composition for in-
heritance is already known as subcontracting [Meyer, 1988] and behavioral subtyp-
ing [Dhara and Leavens, 1996; Hatcliff et al., 2012; Liskov and Wing, 1994]. Neverthe-
less, we introduce a new name for it as many composition mechanisms are orthogonal to
object-oriented inheritance. For example, aspect-oriented programming, delta-oriented
programming, and feature-oriented programming can be seen as extensions of object-
oriented programming and do not aim to completely replace inheritance [Kiczales et al.,
1997; Prehofer, 1997; Schaefer et al., 2010a]. As a consequence, when applying con-
tracts to these techniques, we need a mechanism for composing contracts in inheritance

52 4. Feature-Oriented Contracts for Product-Line Specification

as well as a mechanism for aspects, delta modules, and feature modules. In particular,
we might want to chose different mechanisms for modularization with inheritance and
the modularization of cross-cutting concerns. For this reason, we decided to introduce
original-caller-preserving composition as a new name.

Besides the four preservation properties, other interesting properties of contract com-
position are commutativity, associativity, and idempotence.1 Contract composition is
commutative, if the order of contracts in composition does not matter (i.e., c′•c ≡ c•c′).
Contract composition is associative, if different parentheses in the composition of more
than two contracts result in equivalent contracts (i.e., c′′ • (c′ • c) ≡ (c′′ • c′) • c). Con-
tract composition is idempotent, if the composition of two identical contracts yields an
equivalent contract (i.e., c • c ≡ c). Commutativity, associativity, and idempotence are
desirable properties for contract composition, because they may ease the understanding
of contracts as the order, parentheses, and identical contracts do not influence resulting
contracts.

4.1.2 Four Fundamental Options for Contract Composition

Given the four preservation properties of contract composition, it seems useful to de-
sign mechanisms that fulfill as many as possible of these properties, because those
mechanisms enable compositional reasoning. For instance, an original-caller-preserving
mechanism allows verification tools and programmers to reason about a method call
without knowing later contract refinements. That is, if we formally verify or analyze in
a code review that a given method a is correct by relying on the contract c of method b
called by method a, this fact cannot be invalidated by refining the contract of method
b in a later refinement. The reason is that the contract c may only be changed by
refining contracts c′ in a way that the resulting contract c′′ is caller-compatible to c.
Similarly, refinement-caller-preserving mechanisms do not depend on changes to pre-
vious contracts. Analogously, the callee can be verified independently of earlier or
later contract refinements, if the mechanism is original-callee-preserving or refinement-
callee-preserving, respectively. However, not all of these preservation properties are
compatible with each other.

Theorem 4.3. There is no contract-composition mechanism that is both, original-
caller-preserving and refinement-callee-preserving.

Proof. We prove the theorem with proof by contradiction. Assume there is a contract-
composition mechanism m that is both, original-caller-preserving and refinement-callee-
preserving. Because mechanism m is original-caller-preserving, for all original contracts
c ∈ C and refining contracts c′ ∈ C the resulting contract c′′ is caller-compatible with
respect to c. Without loss of generality, we assume that c = {φ}m{ψ}, c′ = {φ′}m′{ψ′},
and c′′ = {φ′′}m′′{ψ′′}. Because contract c′′ is caller-compatible with respect to c, we

1Our discussion of properties is independent of the composition of implementations. That is, con-
tract composition can be commutative, even if the composition of source code is typically not commu-
tative [Apel et al., 2010b; Höfner et al., 2012].

4.1. A Taxonomy for Contract Composition 53

original-caller-preserving

original-callee-preservingrefinement-caller-preserving

refinement-callee-preserving

caller-preserving original-preserving

refinement-preserving callee-preserving

Figure 4.2: Contract-preservation properties indicate compatibility for callers and
callees of original and refining contracts.

know that φ′′ |= φ and ψ |= ψ′′. Because mechanism m is refinement-callee-preserving,
we know that c′′ is callee-compatible with c′, and thus φ′ |= φ′′ and ψ |= ψ′′. However,
with φ′ |= φ′′ and φ′′ |= φ it follows that φ′ |= φ, which is a restriction on the contracts
that are composed. Thus the properties do not hold for all contracts c and c′, which is a
contradiction to our assumption that the mechanism is both, original-caller-preserving
and refinement-callee-preserving.

Theorem 4.4. There is no contract-composition mechanism that is both, original-
callee-preserving and refinement-caller-preserving.

Proof. Analogous to Theorem 4.3.

By means of Theorem 4.3, we know that a contract-composition mechanism cannot
return a contract c′′ that is caller-compatible with respect to c and callee-compatible
with respect to c′ for all c, c′ ∈ C. Nevertheless, the proof indicates that if we would
restrict our contracts c = {φ}m{ψ} and c′ = {φ′}m′{ψ′} to fulfill φ′ |= φ and ψ |=
ψ′, the resulting contract c′′ could be caller-compatible with respect to c and callee-
compatible with respect to c′. However, such restriction on the input contracts for
contract composition are not in our scope and would hinder compositionality, because
we would have to check that all possible compositions of contracts fulfill the restrictions
on preconditions and postconditions.

With Theorem 4.3 and Theorem 4.4, we conclude that at most two of the four preserva-
tion properties can be fulfilled by a contract-composition mechanism. We illustrate the
possible combinations of the preservation properties also using a Venn diagram in Fig-
ure 4.2. Overall, there are nine options for mechanisms with respect to the preservation
properties. First, one option is to fulfill no preservation properties (white area in Fig-
ure 4.2). Second, there are four options to fulfill exactly one of these four properties (red,
orange, green, and blue). Finally, fulfilling two out of four properties give rise to further
four options (mixed colors). Theorem 4.3 rules out overlapping between green and red,

54 4. Feature-Oriented Contracts for Product-Line Specification

and Theorem 4.4 rules out overlapping between orange and blue. As explained above,
fulfilling more of these preservation properties improves modular reasoning. Hence, of
these nine options, the four options fulfilling two preservation properties seem to be
most promising. For that reason, we refer to them as fundamental options for contract
composition and introduce names for them:

Definition 4.5. A contract-composition mechanism m is called caller-preserving if
and only if it is original-caller-preserving and refinement-caller-preserving. A mech-
anism m is called callee-preserving if and only if it is original-callee-preserving and
refinement-callee-preserving. A mechanism m is called original-preserving if and only if
it is original-caller-preserving and original-callee-preserving. A mechanism m is called
refinement-preserving if and only if it is refinement-caller-preserving and refinement-
callee-preserving.

The four fundamental options for contract composition have different properties, al-
though they all support some kind of modular reasoning. A caller-preserving mech-
anism enables modular reasoning for callers. That is, if a method m calls a method
n with contract c defined in the same module (e.g., aspect, feature module, or delta
module), we can rely on the contract c without a need to consider other contracts de-
fined for method n in other modules. Similarly, a callee-preserving mechanism enables
modular reasoning for callees. That is, a method m has to fulfill only what is defined in
the contract of the module. Contracts for method m defined in other modules can only
strengthen preconditions or postconditions. In contrast, an original-preserving mech-
anism ensures that contracts may only be replaced by equivalent contracts. Hence,
caller and callee can rely on this contract independent of later modules. A refinement-
preserving mechanism basically allows to completely replace the contract, but callers
and the callee do not need to consider previous modules.

4.2 Contract-Composition Mechanisms

Our formal taxonomy of contract composition and the properties discussed in the past
section can generally be applied to any software composition supporting the composition
of methods. In this section, we focus on feature-oriented programming as a particu-
lar technique for software composition. We already introduced feature-oriented pro-
gramming in Section 2.2.2 and discuss how to integrate contracts into feature-oriented
programming in the following. In particular, we propose six mechanisms for con-
tract composition in feature-oriented programming, namely plain contracting, contract
overriding, explicit contract refinement, conjunctive contract refinement, cumulative
contract refinement, and consecutive contract refinement. These contract-composition
mechanisms extend the composition of feature modules by support for contracts. All
mechanisms are illustrated based on Java and JML, but are not restricted to them in
principle. All examples used for illustration are excerpts of the product lines used in our
evaluation and no fictive examples. As in the previous section, we concentrate on pre-
conditions and postconditions for simplicity. Contract-based specification techniques
beyond preconditions and postconditions are discussed in Section 4.3.

4.2. Contract-Composition Mechanisms 55

4.2.1 Plain Contracting

A simple mechanism to deal with contracts during feature-module composition is to
apply the identity function to the original contract. That is, given an original contract
c and a refining contract c′, the result of contract composition is always the original
contract c. We call this mechanism plain contracting [Thüm et al., 2012] and denote
it as •pc (i.e., c′ •pc c = c). In plain contracting, the idea is to define a contract for
each method, but to not allow their refinement. Instead of ignoring refining contracts
during composition, the idea is rather to not define any contract refinements at all.
Nevertheless, feature modules may contain method refinements if they establish the
original contract.

Example 4.6. In Listing 4.1, we show an excerpt of a product line that was developed
by Wolfgang Scholz for feature-interaction detection [Scholz et al., 2011]. The product
line IntegerList contains a method refinement of method push. In feature module Base,
the method is introduced with a contract and simply inserts a given element at the end
of the list. In feature module Sorted, the method is refined such that the list is sorted
after each insertion. The method refinement adheres to the contract defined in feature
module Base and is not refined in the optional feature module Sorted.2

A rather technical design decision of contract composition, in general, and plain con-
tracting, in particular, is how to handle methods without a contract during composition.
In design by contract, the absence of a precondition means that there are no assump-
tions that the caller has to fulfill [Meyer, 1988], which is semantically equivalent to
requires true. Analogously, the absence of a postcondition indicates that there is noth-
ing the caller can rely on (i.e., ensures true). In the following, we call such a missing
contract an empty contract, denoted as c = ε. Given this semantics, the question for
contract composition is whether or not such contracts are considered during composi-
tion. For instance, assume we want to compose the method m with methods m′ and
m′′, of which m has no contract and the contracts of m′ and m′′ are c′ and c′′, respec-
tively. If we ignore empty contracts during composition, the result for our example is
c′′ •pc c′ = c′. However, if we treat the empty contract as a contract that is subject
to composition, the result is c′′ •pc c′ •pc c = ε. While both options are possible, they
are largely independent of our discussion. We choose to ignore empty contracts during
composition in the following, because a programmer can enforce the latter behavior by
providing the trivial contract requires true; ensures true.

Properties

With respect to the properties discussed in Section 4.1.1, plain contracting is original-
preserving, because the caller view and callee view of the original contract are both
maintained. The reason is that caller and callee compatibility are reflexive. For any
given contract c, c is caller-compatible and callee-compatible to c, due to the fact that

2We postpone a discussion on the role of class invariants in this example to Section 4.3.4.

56 4. Feature-Oriented Contracts for Product-Line Specification

public class IntList { feature module Base
//@ invariant data != null;
public int[] data;
public IntList() { data = new int[0]; }
/∗@ assignable data;

@ ensures (\exists int z; 0<=z && z<data.length && data[z]==newTop) &&
@ (\forall int k; 0<=k && k<\old(data).length ==>
@ (\exists int z; 0<=z && z<data.length && data[z]==\old(data[k]))); @∗/

public void push(int newTop) {
int[] tmp = new int[data.length+1];
tmp[tmp.length−1] = newTop;
for (int i = 0; i < data.length; i++) { tmp[i] = data[i]; }
data = tmp;
}
[...]
}
public class IntList { feature module Sorted

//@ invariant (\forall int k; 0<=k && k<data.length−1; data[k]>=data[k+1]);
public void push(int newTop) { original(newTop); sort(); }
/∗@ assignable data;

@ ensures (\forall int k; 0<=k && k<data.length−1; data[k]>=data[k+1]);
@ ensures (\exists int z; 0<=z && z<data.length && data[z]==newTop) &&
@ (\forall int k; 0<=k && k<\old(data).length ==>
@ (\exists int z; 0<=z && z<data.length && data[z]==\old(data[k]))); @∗/

private /∗@ helper @∗/ void sort() {
for (int i = 0; i < data.length; i++)

for (int j = data.length−2; j >= 0; j−−)
if (data[j] < data[j+1]) {

int tmp = data[j]; data[j] = data[j+1]; data[j+1] = tmp;
}

}
}

Listing 4.1: Plain contracting in product line IntegerList : feature Base introduces a
contract for method push, which is not refined in feature Sorted.

|= is reflexive, too. Furthermore, plain contracting is idempotent as c •pc c = c and
associative as (c′′ •pc c′) •pc c = c and c′′ •pc (c′ •pc c) = c. However, plain contracting is
not commutative.

Advantages

The simplicity of plain contracting may facilitate creation and maintenance of contracts
for programmers. A programmer only needs to specify a method once, even if it is
refined by several other feature modules, which reduces the effort for specification (i.e.,
writing contracts). Furthermore, programmers and verification tools can easily reason

4.2. Contract-Composition Mechanisms 57

about method calls, because the same contract holds for every possible combination of
features.3 This is beneficial since a programmer needs to know the contract for every
called method (e.g., to find out whether the precondition is fulfilled at every position
where the method is called).

Disadvantages

The downside of plain contracting is its restrictiveness. Method refinements may change
the behavior only such that the original contract is maintained. For an example consider
Listing 4.1 again; replacing the ascending sorting order by a descending order by means
of a method refinement for method sort would not be allowed. In addition, even if
the method refinement establishes the original contract, we cannot specify the changed
behavior with the method refinement. As a consequence, callers cannot rely on the
changed behavior. For instance, if we replace the instable sorting algorithms heap sort
and quick sort by a stable algorithm, such as merge sort, we may want to express that
callers can rely on stability, which is impossible with plain contracting.

4.2.2 Contract Overriding

Contract overriding is a contract-composition mechanism, which is complementary to
plain contracting [Thüm et al., 2012]. In contract overriding, all methods and method
refinements may provide a contract. During composition, the refining contract com-
pletely overrides the original contract (i.e., c′•co c = c′). Similar as for plain contracting,
we assume that empty contracts are ignored during composition. Otherwise, we would
need to repeat contracts for each method refinement, even if they do not require any
changes to original contract.

Example 4.7. In Listing 4.2, we give an example for contract overriding. The product
line GPL-scratch was developed by André Weigelt to illustrate the need of different
contract composition techniques in a single product line [Weigelt, 2013]. Feature module
Base introduces a method addEdge that takes a given edge and inserts it into an existing
graph. However, the edge need to be non-null and the nodes it connects must already
exist in the graph. The feature module MaxEdges refines the method implementation
such that only a specified number of edges can be added to the graph. That is, an edge is
only inserted if the maximum number of edges will not be exceeded. The contract given
in feature module MaxEdges is supposed to completely override the original contract.

Properties

Contract overriding is a refinement-preserving contract-composition mechanism, be-
cause caller and callee view of the refining contract are maintained. As plain con-
tracting, contract overriding is associative and idempotent, but not commutative. The
argumentation for these properties is analogous to that for plain contracting.

3Although contract refinement is not possible with this approach, there can be different contracts
for the same method when alternative features introduce the same method with a different contract.
However, such cases can be forbidden and their absence could be automatically verified by means of a
static analysis.

58 4. Feature-Oriented Contracts for Product-Line Specification

public class Graph { feature module Base
private Collection<Node> nodes;
private Collection<Edge> edges;
/∗@ requires edge != null && nodes.contains(edge.first)

@ && nodes.contains(edge.second);
@ ensures hasEdge(edge); @∗/

public void addEdge(Edge edge) {
edges.add(edge);
}
[...]
}
public class Graph { feature module MaxEdges

private static Integer MAXEDGES = new Integer(10);
/∗@ requires edge != null && nodes.contains(edge.first)

@ && nodes.contains(edge.second) && MAXEDGES != null;
@ ensures \old(edges.size()) < MAXEDGES ==> hasEdge(edge); @∗/

public void addEdge(Edge edge) {
if(countEdges() < MAXEDGES)

original(edge);
}
}

Listing 4.2: Contract overriding in product line GPL-scratch: feature MaxEdges over-
rides the contract of feature Base (adapted from [Weigelt, 2013]).

Advantages

The main advantage of contract overriding over plain contracting is that contracts can
be refined. Hence, when a method refinement provides some new guarantees, we can
actually specify them in a refining contract and callers can rely on it. In addition,
because we can arbitrarily refine contracts, also all method refinements are possible
and do not have to adhere to the original contract. That all contract refinements and
all method refinements are possible, provides flexibility particularly with respect to
unanticipated changes.

Disadvantages

However, the flexibility of contract overriding also comes with disadvantages. Any
contract may be subject to later refinement, which challenges callers. That is, callers
need to be aware of any contract for a given method in order to determine the contract
they can rely on. In particular, the composed contract heavily depends on the actual
feature selection. In our example, precondition and postcondition of method addEdge
depend on whether feature MaxEdges is selected or not. Hence, callers need to consider
the valid feature combinations defined by the feature model, which may rule out certain
combinations of contract refinements.

4.2. Contract-Composition Mechanisms 59

A further problem of contract overriding is that it may require to clone and adapt
previous contracts. For example, the refined contract in Listing 4.2 repeats the complete
precondition and postcondition of the original contract. In analogy to code clones [Roy
et al., 2009], we refer to such cloned contracts as specification clones. Similar to code
clones, we could distinguish several levels of specification clones, but such a discussion is
out of our scope. The reason why we need to clone contracts is that contract overriding
only supports to completely replace contracts without any mechanism to reuse existing
contracts. Hence, the CPA (copy, paste, adapt) principle is the only option to refine
contracts. We argue that specification clones have similar drawbacks as code clones.
For instance, when updating a certain contract, we may forget to update clones of this
contract and introduce inconsistencies. Hence, specification clones should be avoided
whenever possible requiring more sophisticated mechanisms for contract composition.

Furthermore, if two or more features refine the same contract using contract overrid-
ing, we may get undesired contracts if both features are selected. This problem is
already known from the implementation of feature modules as the optional feature
problem [Kästner et al., 2009b; Liu et al., 2006], which we discussed in Section 3.1. A
solution is to introduce derivative contracts (i.e., a contract that is only included if two
or more features are selected). However, derivative contracts can cause further specifi-
cation clones and may not scale for many contract refinements of the same method.

4.2.3 Explicit Contract Refinement

Explicit contract refinement [Thüm et al., 2012] is a contract-composition mechanism
that tries to mitigate the issues of contract overriding with respect to specification
clones and derivative contracts. Similar to contract overriding, explicit contract re-
finement permits contract refinements. That is, refining contracts override original
contracts. However, refining contracts may refer to the original precondition and
original postcondition in their precondition and postcondition, respectively. Simi-
lar to feature-oriented method refinement, we introduce keyword original in precon-
ditions and postconditions, which are replaced by the original contract during compo-
sition. We define explicit contract refinement based on the composition of predicates:
{φ′}m′{ψ′}•ecr{φ}m{ψ} = {φ′•φ}m′•m{ψ′•ψ}, whereas φ′•φ is the result of replacing
all occurrences of keyword original by φ in φ′ and ψ′ •ψ is defined analogously. The key-
word is neither mandatory in preconditions nor in postcondition and may even appear
several times in the same precondition or postcondition, respectively. In fact, contract
overriding is a special case of explicit contract refinement where the keyword original
is never used. The usage of keyword original has also been proposed for delta-oriented
programming [Hähnle and Schaefer, 2012].

Example 4.8. In Listing 4.3, we give an example for explicit contract refinement based
on the previous example in Listing 4.2. The feature module Base is identical. However,
instead of cloning precondition and postcondition of the original contract in feature mod-
ule MaxEdges, we refer to them by means of keyword original. The result of composing
both feature modules is excactly the same as for our example on contract overriding.

60 4. Feature-Oriented Contracts for Product-Line Specification

public class Graph { feature module Base
private Collection<Node> nodes;
private Collection<Edge> edges;
/∗@ requires edge != null && nodes.contains(edge.first)

@ && nodes.contains(edge.second);
@ ensures hasEdge(edge); @∗/

public void addEdge(Edge edge) {
edges.add(edge);
}
[...]
}
public class Graph { feature module MaxEdges

private static Integer MAXEDGES = new Integer(10);
/∗@ requires \original && MAXEDGES != null;

@ ensures \old(edges.size()) < MAXEDGES ==> \original; @∗/
public void addEdge(Edge edge) {

if(countEdges() < MAXEDGES)
original(edge);

}
}

Listing 4.3: Explicit contract refinement in product line GPL-scratch: feature MaxEdges
refines a contract by referring to the original contract defined in feature Base (adapted
from [Weigelt, 2013]).

Properties

Similar to contract overriding, explicit contract refinement is associative and not com-
mutative. In contrast, explicit contract refinement is not idempotent, because replac-
ing the keyword original may lead to different contracts. For example, precondition
φ = ¬original is composed to φ • φ = ¬original • ¬original = ¬¬original with ¬φ 6≡ φ.

According to our definition of preservation properties, explicit contract refinement does
not establish any properties. First, the preservation properties regarding the original
contract are not established, because the refining contract may arbitrarily replace the
contract. For example, the result of composing an original contract {true}m′{true} with
a refining contract {false}m′{false} is neither callee-compatible nor caller-compatible
to the original contract, because true 2 false. Second, the preservation properties re-
garding the refining contract are not established, because keyword original is resolved
at composition time and the definitions of preservation properties relate the refining
contract (i.e., which may contain keyword original) with the result of composition
(i.e., in which keyword original may be replaced). Similarly to the above example,
the result of composing an original contract {true}m′{true} with a refining contract
{original}m′{original} is neither callee-compatible nor caller-compatible to the refining
contract, because true 2 original.

4.2. Contract-Composition Mechanisms 61

Advantages

Explicit contract refinement supports the refinement of contracts by the same linguistic
means as method refinement, which is an intuitive approach for programmers famil-
iar with feature modules, and thus could raise the acceptance of contracts in feature
modules. That is, in feature-oriented programming, we may or may not refer to the
original method implementation in a method refinement with keyword original. With
explicit contract refinement, we may or may not refer to the original precondition or
postcondition in a contract refinement with keyword original, too. Consequently, pro-
grammers may completely override, refine, or completely reuse the previous method
implementation, precondition, and postcondition independently from each other.

Furthermore, explicit contract refinement overcomes some drawbacks of contract over-
riding. First, programmers can avoid some specification clones, because they have a
linguistic means to refer to original preconditions and postconditions individually and
do not have to clone and adapt contracts for all method refinements. Second, the need
for derivative contracts is reduced as we can refer to a previous contract from what-
ever feature module this contract may be provided, and thus supporting compositional
flexibility. Nevertheless, in some cases specification clones and derivative contracts may
still be necessary (e.g., if we want to change just a small part within a precondition).

Disadvantages

As for contract overriding, callers need to be aware of any contract defined for a given
method and its refinements. Even worse in explicit contract refinement, specification
may even get more complex if several refinements for the same method contract exist
and some, but not all refinements refer to the previous contracts. Furthermore, a
new dimension of complexity arises due to the possibility to independently refer to
preconditions and postconditions, and that it is even possible to negate preconditions
or postconditions or to use them in some new logical context. Again, it may be hard
for a programmer to retrieve the contract for a certain context, which, however, could
be mitigated by means of tool support.

References to previous contracts introduce the possibility of dangling references. That
is, we may use the keyword original in a contract, but during composition we detect
that there is no original contract to which the keyword can point to. For example, we
may define a method introduction including a contract in an optional feature and use
the keyword original to refer to this contract from another optional method refinement.
This is a particular instance of an unwanted feature interaction [Calder et al., 2003]
(cf. Section 3.1). As typical for feature interactions, this dangling reference may only
occur in some feature combinations and thus stay unnoticed until feature modules are
composed for one of these combinations. However, we show how tool support can
address this issue in Section 5.3.1.

While references of original method implementations is known from most approaches
for software composition [Batory et al., 2004; Kiczales et al., 1997; Meyer, 1988; Pre-
hofer, 1997], such as feature-oriented programming, aspect-oriented programming, and

62 4. Feature-Oriented Contracts for Product-Line Specification

object-oriented programming, it is uncommon for specifications. For instance, JML
and Spec# do not provide any keyword to refer to preconditions and postconditions
of superclasses. Hence, it may be unintuitive for programmers familiar with existing
contract languages to refer to other contracts. However, this is not a severe limitation
and could also indicate missing language constructs in existing contract languages.

4.2.4 Conjunctive Contract Refinement

In contrast to explicit contract refinement, the next three contract-composition mech-
anisms that we discuss do not require any keywords to explicitly refer to previous
contracts. We refer to these mechanisms also as implicit contract refinement, be-
cause how two given contracts are composed is only implicitly given by the mech-
anisms and not made explicit in the contract itself. One of these mechanisms for
implicit contract refinement is conjunctive contract refinement [Thüm et al., 2012].
Given two contracts c = {φ}m{ψ} and c′ = {φ′}m′{ψ′} their composition is deter-
mined by the conjunction of their preconditions and postconditions, respectively (i.e.,
c′ •ConjCR c = {φ′ ∧ φ}m′ •m{ψ′ ∧ ψ}).

Example 4.9. In Listing 4.4, we again show an excerpt of product line GPL-scratch to
exemplify conjunctive contract refinement. The keyword conjunctive contract indicates
that the contracts for method equals are composed using conjunctive contract refine-
ment. More details on this and other contract-composition keywords are postponed to
Section 4.4.1. Each contract refinement contains a precondition and a postcondition
that must be fulfilled in addition to all preconditions and postconditions defined in other
feature modules. In particular, the optional feature module Weighted introduces a new
field weight, for which method equals and its contract need to be refined accordingly,
because edges are only considered equivalent if they have the same weight. A similar re-
finement is given in feature module Directed, which is considered alternative to feature
module Undirected (not shown for brevity).

Properties

Conjunctive contract refinement is associative, commutative, and idempotent, because
it inherits these properties from the conjunction of predicates. However, it does not
establish any preservation properties. The result of composition is neither caller-
compatible with respect to c nor to c′, because ψ 2 ψ′ ∧ ψ and ψ′ 2 ψ′ ∧ ψ. Similarly,
the result of composition is neither callee-compatible with respect to c and c′, because
φ 2 φ′∧φ and φ′ 2 φ′∧φ. Nevertheless, the conjunction of postconditions is helpful for
callers and the conjunction of preconditions is helpful for callees, but the combination
is not sufficient for modular reasoning as discussed for the preservation properties in
Section 4.1.1.

Advantages

Compared to explicit contract refinement, there is no specification effort with respect
to providing the keyword original. At the same time, it is possible to avoid some

4.2. Contract-Composition Mechanisms 63

public class Edge implements Comparable<Edge> { feature module Base
private Node first, second;
/∗@ \conjunctive contract

@ requires ob != null;
@ ensures \result ==> ob instanceof Edge; @∗/

@Override
public /∗@ pure @∗/ boolean equals(Object ob) {

return (ob instanceof Edge) ? true : false;
}
[...]
}
public class Edge { feature module Weighted

private Integer weight = 0;
/∗@ requires weight != null;

@ ensures \result ==> weight == ((Edge)ob).weight; @∗/
public /∗@ pure @∗/ boolean equals(Object ob) {

return original(ob) && weight.equals(((Edge)ob).weight);
}
[...]
}
public class Edge { feature module Directed

/∗@ requires first != null && second != null;
@ ensures \result ==> first.equals(((Edge) ob).first) &&
@ second.equals(((Edge) ob).second); @∗/

public /∗@ pure @∗/ boolean equals(Object ob) {
return original(ob) && first.equals(((Edge) ob).first) &&

second.equals(((Edge) ob).second);
}
[...]
}

Listing 4.4: Conjunctive contract refinement in product line GPL-scratch: features
Weighted and Directed refine a contract by adding a precondition and a postcondition
to the original contract defined in feature Base (adapted from [Weigelt, 2013]).

specification clones and derivative contracts due to the fact that previous preconditions
and postconditions are assumed to hold in all cases. Furthermore, resulting contracts are
easy to understand as all preconditions and all postconditions are simply concatenated.
That is, a later or potentially unknown feature module can only change the contract in
this limited way.

Disadvantages

Nevertheless, the main disadvantage is the missing support for modular reasoning.
Callers have to fulfill all preconditions and thus need to know all method refinements

64 4. Feature-Oriented Contracts for Product-Line Specification

in the refinement chain and their contracts in advance, which prohibits modular rea-
soning. Analogously, callees have to fulfill all postconditions. Both, precondition and
postcondition refinements make it impossible to understand, maintain, or reason about
a method call by considering one feature. Instead, programmers and verification tools
always need to consider all features of the refinement chain.4

A further disadvantage of conjunctive contract refinement is that only a limited form
of contract refinements can be expressed. In principle, contract refinements can only
add formulas to preconditions and postconditions in conjunction to existing ones. As a
result, we might have to remove some contracts to enable certain method refinements.
However, in the worst case, we may only be able to specify a small portion of the
product-line behavior, and thus only detect some errors of the product line. For exam-
ple, conjunctive contract refinement is too restrictive to specify the contract refinement
shown in Listing 4.2 on Page 58. Whether this is a severe restriction in practice will be
evaluated in Section 4.5.

4.2.5 Cumulative Contract Refinement

There is a further mechanism for implicit contract refinement, which we used for feature-
interaction detection [Scholz et al., 2011] and to which we refer to as cumulative contract
refinement. Compared to conjunctive contract refinement, the idea is to facilitate mod-
ular reasoning for callers similar to subcontracting in object orientation. Meyer [1988]
states that composed preconditions must be weaker or equal to original preconditions
and composed postconditions must be stronger or equal. He has proposed a simple lan-
guage rule that avoids checking the conformance using theorem proving: preconditions
are combined in a disjunction and postcondition in a conjunction (cf. Section 2.1.2).
Adopting this language rule to feature orientation leads us to the definition of cumula-
tive contract refinement as {φ′}m′{ψ′}•CumCR {φ}m{ψ} = {φ′∨φ}m′ •m{ψ′∧ψ}. We
omit an example, as (a) we have not found a motivating use case during our evaluation
and (b) the only difference between cumulative contract refinement and conjunctive
contract refinement is the disjunction of preconditions.

Properties

Analogously to conjunctive contract refinement, cumulative contract refinement is as-
sociative, commutative, and idempotent, as it inherits these properties from disjunction
and conjunction. Furthermore, cumulative contract refinement is caller-preserving, as
the resulting contract c′′ is caller-compatible with respect to the original contract c and
to the refining contract c′.

4As a special case, a refinement chain may only consist of one method implementation, if a method
is only introduced in one feature and not refined by others. However, programmers and verification
tools still need to consider all feature modules to find out whether this is the case.

4.2. Contract-Composition Mechanisms 65

Advantages

The main advantage of cumulative contract refinement compared to all previously dis-
cussed mechanisms is that it facilitates contract refinement and modular reasoning.
Compared to plain contracting, it enables contract refinement by combining original
contracts with new preconditions and postconditions. In contrast to contract overriding,
explicit contract refinement, and conjunctive contract refinement, it enables modular
reasoning for callers as discussed for caller-preserving mechanisms (cf. Section 4.1.2).

In addition, cumulative implicit refinement is beneficial for callers. A caller must fulfill
any of the preconditions of selected features and can rely on all postconditions of selected
features. If there are several preconditions available, the caller only needs to fulfill one
of these.

Disadvantages

The beneficial characteristic for callers is, of course, a downside for callees. Using cu-
mulative contract refinement, we can easily create contracts that are hard to fulfill for
callees, or there might not even be a single implementation as the contract refinement
is contradictory. In the end, this restrictiveness with respect to the addition of precon-
ditions and postconditions may lead to the fact that many interesting properties of a
given product-line implementation cannot be specified, which we empirically investigate
in Section 4.5. The examples given in Listing 4.2 on Page 58 and Listing 4.4 on Page 63
cannot be expressed by means of cumulative contract refinement.

4.2.6 Consecutive Contract Refinement

In the third mechanism for implicit contract refinement, to which we refer to as con-
secutive contract refinement, we apply specification inheritance [Dhara and Leavens,
1996] known from object orientation to product lines [Thüm et al., 2012]. As dis-
cussed in Section 2.1.2, specification inheritance is an enhancement compared to sub-
contracting [Dhara and Leavens, 1996], and we aim to transfer this enhancement to
product lines by the following definition. We define consecutive contract refinement
as {φ′}m′{ψ′} •ConsCR {φ}m{ψ} = {φ′ ∨ φ}m′ • m{(old(φ′) ⇒ ψ′) ∧ (old(φ) ⇒ ψ)},
in which old evaluates a predicate in a postcondition as it would be evaluated before
method execution (cf. Section 2.1.2).

Example 4.10. We give an example for consecutive contract refinement based on prod-
uct line GPL-scratch in Listing 4.5. The original method sortEdges takes a list of edges
as input and returns a sorted list. The feature module UniqueEdges extends the method
by additionally supporting a set of edges as input, which cannot contain duplicate val-
ues. Thus, when calling method sortEdges with a set as input, the result is strictly sorted
(i.e., is sorted and does not contain duplicates). Given that feature UniqueEdges is se-
lected, the caller has the choice which precondition to fulfill (i.e., passing a list or a set)
and can rely on the respective postcondition. This example could not have been specified
by means of cumulative contract refinement, because it is impossible for the method to
fulfill both postconditions if only the precondition of feature Base is established.

66 4. Feature-Oriented Contracts for Product-Line Specification

Properties

Consecutive contract refinement shares the properties with cumulative contract refine-
ment – both mechanisms are commutative, associative, and idempotent. Commuta-
tivity is caused by the commutativity of conjunction and disjunction. Associativity is
given due to the following equivalences:

{φ′′}m′′{ψ′′} •ConsCR

(
{φ′}m′{ψ′} •ConsCR {φ}m{ψ}

)
≡{φ′′}m′′{ψ′′} •ConsCR

(
{φ′ ∨ φ}m′ •m{(old(φ′)⇒ ψ′) ∧ (old(φ)⇒ ψ)}

)
≡{φ′′ ∨ φ′ ∨ φ}m′′ •m′ •m
{(old(φ′′)⇒ ψ′′) ∧

(
old(φ′ ∨ φ)⇒ (old(φ′)⇒ ψ′) ∧ (old(φ)⇒ ψ)

)
}

≡{φ′′ ∨ φ′ ∨ φ}m′′ •m′ •m
{(old(φ′′)⇒ ψ′′) ∧ (old(φ′ ∨ φ)⇒ (old(φ′)⇒ ψ′)) ∧

(
old(φ′ ∨ φ)⇒ (old(φ)⇒ ψ)

)
}

≡{φ′′ ∨ φ′ ∨ φ}m′′ •m′ •m{(old(φ′′)⇒ ψ′′) ∧ (old(φ′)⇒ ψ′) ∧ (old(φ)⇒ ψ)}
≡{φ′′ ∨ φ′ ∨ φ}m′′ •m′ •m
{(old(φ′′ ∨ φ′)⇒ (old(φ′′)⇒ ψ′′)) ∧

(
old(φ′′ ∨ φ′)⇒ (old(φ′)⇒ ψ′)

)
∧ (old(φ)⇒ ψ)}

≡{φ′′ ∨ φ′ ∨ φ}m′′ •m′ •m
{
(
old(φ′′ ∨ φ′)⇒ (old(φ′′)⇒ ψ′′) ∧ (old(φ′)⇒ ψ′)

)
∧ (old(φ)⇒ ψ)}

≡
(
{φ′′ ∨ φ′}m′ •m{(old(φ′′)⇒ ψ′′) ∧ (old(φ′)⇒ ψ′)}

)
•ConsCR {φ}m{ψ}

≡
(
{φ′′}m′′{ψ′′} •ConsCR {φ′}m′{ψ′}

)
•ConsCR {φ}m{ψ}

In particular, old(φ′ ∨ φ) ⇒ (old(φ′) ⇒ ψ′) is equivalent to old(φ′) ⇒ ψ′, as ψ′ only
needs to be fulfilled if old(φ′) is fulfilled and old(φ′) |= old(φ′∨φ). Analogously, old(φ′∨
φ) ⇒ (old(φ) ⇒ ψ) is equivalent to old(φ) ⇒ ψ. Furthermore, the commutativity
of consecutive contract refinement is due to the commutativity of conjunction and
disjunction, and idempotence is given because of the following equivalences:

{φ}m{ψ} •ConsCR {φ}m{ψ}
≡{φ ∨ φ}m •m{(old(φ)⇒ ψ) ∧ (old(φ)⇒ ψ)}
≡{φ}m •m{old(φ)⇒ ψ}
≡{φ}m •m{ψ}

Furthermore consecutive contract refinement is caller-preserving. Due to commutativ-
ity, we only show that the result of composition is caller-compatible with respect to the
original contract. First, the preconditions align with the property (i.e., φ |= φ′ ∨ φ).
Second, for the postconditions we get that old(φ)∧ (old(φ′)⇒ ψ′)∧ (old(φ)⇒ ψ) |= ψ,
which is equivalent to ψ |= ψ, and thus fulfilled. Caller-compatibility with the refining
contract is given due to commutativity.

4.2. Contract-Composition Mechanisms 67

public class Graph { feature module Base
/∗@ \consecutive contract

@ requires edges instanceof List<Edge>;
@ ensures (\forall int i; 0 < i && i < \result.size();
@ \result.toArray()[i−1].compareTo(\result.toArray()[i]) <= 0); @∗/

public Collection<Edge> sortEdges(Collection<Edge> edges) {
List<Edge> list = new ArrayList<Edge>(edges);
Collections.sort(list);
return list;
}
[...]
}
public class Graph { feature module UniqueEdges

/∗@ requires edges instanceof Set<Edge>;
@ ensures (\forall int i; 0 < i && i < \result.size();
@ \result.toArray()[i−1].compareTo(\result.toArray()[i]) < 0); @∗/

public Collection<Edge> sortEdges(Collection<Edge> edges) {
if (!(edges instanceof Set<Edge>))

return original(edges);
return new TreeSet<Edge>(edges);
}
[...]
}

Listing 4.5: Consecutive contract refinement in product line GPL-scratch: features
UniqueEdges refines a contract by adding a new pair of precondition and postcondi-
tion to the original contract defined in feature Base (adapted from [Weigelt, 2013];
differences of contracts highlighted for convenience).

Advantages and Disadvantages

The advantages and disadvantages of consecutive contract refinement are the same as
for cumulative contract refinement, except that callers cannot only provide one of the
preconditions and rely on all postconditions. Consequently, it is not the burden of
callees to fulfill all postconditions for any given precondition. Hence, we expect that
consecutive contract refinement is superior to cumulative contract refinement, which we
evaluate empirically in Section 4.5. In particular, we investigate empirically whether
enforcing specification inheritance for feature-oriented method refinements is always
feasible.

4.2.7 Comparison of Contract-Composition Mechanisms

So far, we discussed six mechanisms for contract composition that all have their ad-
vantages and disadvantages. We summarize the properties of these mechanisms in
Table 4.2 and make several observations. All mechanisms are associative and, except
for explicit contract refinement, also idempotent. Only conjunctive, cumulative, and

68 4. Feature-Oriented Contracts for Product-Line Specification

Contract-composition mechanism* Preservation property A
ss

o
ci

at
iv

it
y

Id
em

p
ot

en
ce

C
om

m
u
ta

ti
v
it

y

c′ •PC c = {φ}m′ •m{ψ} original-preserving yes yes no
c′ •CO c = {φ′}m′ •m{ψ′} refinement-preserving yes yes no

c′ •ECR c = {φ′ • φ}m′ •m{ψ′ • ψ} none yes no no
c′ •ConjCR c = {φ′ ∧ φ}m′ •m{ψ′ ∧ ψ} none yes yes yes
c′ •CumCR c = {φ′ ∨ φ}m′ •m{ψ′ ∧ ψ} caller-preserving yes yes yes
c′ •ConsCR c = {φ′ ∨ φ}m′ •m{ψ′′} caller-preserving yes yes yes

* c = {φ}m{ψ}, c′ = {φ′}m′{ψ′}, and ψ′′ =
(
old(φ′)⇒ ψ′

)
∧
(
old(φ)⇒ ψ

)
Table 4.2: Overview on contract-composition mechanisms and their properties.

consecutive contract refinement are commutative. With respect to the previously de-
fined preservation properties, plain contracting is original-preserving and contract over-
riding is refinement-preserving. Explicit contract refinement and conjunctive contract
refinement do not fulfill any preservation properties. The remaining two mechanisms,
cumulative and consecutive contract refinement, are both caller-preserving.

The discussed mechanisms can be distinguished by the supported contract refinements.
Plain contracting completely forbids any contract refinement, whereas conjunctive and
cumulative contract refinement enable the refinement in a limited way. Consecutive con-
tract refinement subsumes cumulative contract refinement with respect to the supported
refinements. Finally, contract overriding and explicit contract refinement facilitate ar-
bitrary contract refinements and, consequently, also arbitrary method refinements.

A property that is conflicting with support for arbitrary contract refinements is modular
reasoning for callers. Modular reasoning is possible with plain contracting as no refine-
ment is available. The only other mechanisms enabling modular reasoning for callers
are cumulative and consecutive contract refinement, but they only support contract
refinement in a limited way.

Finally, for contract overriding, we discussed that the missing support to implicitly
or explicitly reusing contracts of other features may lead to specification clones and
derivative contracts. Explicit contract refinement improves over contract overriding by
providing a means to explicitly refer to previous preconditions and postconditions and,
thus, a means to avoid some specification clones and derivative contracts. In addition,
explicit contract refinement relies on similar linguistic means as feature modules, but
may lead to an additional source of errors in contracts due to dangling references for
keyword original.

Based on our discussions, we cannot yet rule out mechanisms or even favor a single
mechanism. Their are some indicators that consecutive contract refinement is superior

4.3. Composition Beyond Pre- and Postconditions 69

to cumulative contract refinement, and that explicit contract refinement is superior to
contract overriding. Nevertheless, an empirical evaluation is required to judge about
the practical relevance of these six mechanisms, which we postpone to Section 4.5.

4.3 Composition Beyond Pre- and Postconditions

For brevity, our considerations in Section 4.1 and Section 4.2 only focused on contracts
consisting of a precondition and a postcondition. However, there are numerous advanced
specification concepts based on the notion of contracts [Chalin et al., 2005; Hatcliff et al.,
2012; Meyer, 1988]. In this section, we discuss some of the most relevant concepts
and how our previous discussions relate to these concepts. In particular, we discuss
specification cases, multiple preconditions and postconditions, class invariants, as well
as pure methods.

4.3.1 Specification Cases

In the principle of design by contract, every contract consists of exactly one precondition
and one postcondition [Meyer, 1988, 1992]. However, specification languages such as
JML support the use of multiple specification cases for one method, by connecting them
with keyword also [Chalin et al., 2005]. Roughly speaking, a method is specified with
multiple contracts, which are connected by contract composition as with consecutive
contract refinement. In fact, keyword also is just syntactic sugar and can be desugared
whenever required, as described elsewhere [Chalin et al., 2005].

In theory, we can easily apply all contract-composition mechanisms as defined above
by desugaring all specification cases prior to composition. In practice, the resulting
contracts may turn out to be hard-to-read, especially if there are more than two spec-
ification cases involved. The problem arises when the result of contract composition
is presented to the user. One application that requires programmers to read these
contracts is if we generate a documentation for a single product of our product line.
Another application is when the contracts are used for runtime assertion checking or
verification and the programmer is supposed to understand the contract to locate the
faulty feature module or combination of feature modules. Consequently, desugaring
during composition could be considered harmful.

To avoid desugaring of keyword also, we can extend contract-composition mechanisms
with support for specification cases. A trivial extension exists for plain contracting and
contract overriding; instead of copying the original and refining precondition and post-
condition, respectively, we can simply copy the complete original or refining contract
during composition [Benduhn, 2012]. The extension of consecutive contract refinement
is straightforward, because the composition is equivalent to specification cases anyway,
and we can simply combine contracts from different feature modules by means of key-
word also, too. Hence, consecutive contract refinement can be implemented by means
of specification cases [Benduhn, 2012].

70 4. Feature-Oriented Contracts for Product-Line Specification

Supporting specification cases in explicit contract refinement is slightly more complex.
The reason is that keyword original may then also be used in specification cases or refer
to a contract with specification cases. A design decision is what keyword original then
refers to. First, it may refer to the desugared precondition or postcondition of the
original contract. This would require some desugaring only during the replacement of
keyword original. Second, the keyword may refer to the precondition or postcondition
of a particular specification case [Benduhn, 2012]. As specification cases do not have
an identifying name, a simple strategy is to assume that keyword original defined in the
ith specification case of a refining contract refers to the ith specification case of the
original contract. We refer to a bachelor’s thesis introducing new keywords that enable
to choose between one of these two semantics [Benduhn, 2012].

In contrast to these four contract-composition mechanism, it seems that desugaring can-
not be avoided for conjunctive contract refinement and cumulative contract refinement.
However, specification cases are even an elegant way for implementation of consecutive
contract refinement, because it avoids the cloning of preconditions into postconditions
during composition (cf. Section 4.2.6).

4.3.2 Multiple Preconditions and Postconditions

Besides the definition of multiple specification cases each consisting of a precondition
and a postcondition, we may also define multiple preconditions and postconditions
for a single specification case. Similar to specification cases, multiple preconditions
and postconditions are just syntactic sugar and can be replaced as follows: Given the
preconditions φ1, φ2, . . . , φn, we can combine them into one precondition by means of
a conjunction (i.e.,

∧
1≤i≤n φi), and the same applies to postconditions [Beckert et al.,

2007; Benduhn, 2012].

As for specification cases, we may apply desugaring with respect to multiple precondi-
tions and postconditions before composition to reuse contract-composition mechanisms
as presented above. However, desugaring is, again, not required for plain contracting
and contract overriding, as they can simply copy the complete contract. When imple-
menting consecutive contract refinement by means of specification cases (as discussed
in Section 4.3.1), we can simply copy complete cases and, thus, desugaring is not re-
quired, too. For conjunctive contract refinement, we only compose preconditions and
postconditions by means of conjunction, which can be implemented with multiple pre-
conditions and postconditions. For cumulative contract refinement, the same is true
for postconditions, but preconditions need to be desugared as described above prior to
composition. Finally, explicit contract refinement poses similar challenges as for specifi-
cation cases, because keyword original can either refer to the desugared precondition or
postcondition, or refer to the jth precondition or postcondition of the ith specification
case. For simplicity, we assume the former option.

In summary, most contract-composition mechanisms can directly be extended to mul-
tiple preconditions and postcondition for input contracts. Some of them can even take
advantage of this language construct to avoid lengthy preconditions and postconditions.

4.3. Composition Beyond Pre- and Postconditions 71

class ExamDatabase { feature module Base
/∗@ ensures \result == (\forall int i; 0 <= i && i < students.length &&

@ validStudent(students[i]); students[i].points >= 0); @∗/
boolean consistent() {

for (int i = 0; i < students.length; i++)
if (validStudent(students[i]) && students[i].points < 0) return false;

return true;
}
/∗@ pure @∗/ boolean validStudent(Student student) { return student != null; }
}
class Student {

//@ invariant matrNr > 0 && firstname != null && surname != null;
int matrNr; String firstname, surname;
}
class ExamDatabase { feature module BackOut

/∗@ pure @∗/ boolean validStudent(Student student) {
return original(student) && !student.backedOut;
}
}
class Student {

//@ invariant !backedOut || backedOutDate != null;
Date backedOutDate = null; boolean backedOut = false;
}

Listing 4.6: Pure-method refinement in product line ExamDB : the contract of method
consistent contains a call to the pure method validStudent. Feature module BackOut re-
fines the contract of method consistent indirectly by refining method validStudent [Thüm
et al., 2012].

4.3.3 Pure Methods and Model Methods

As introduced in Section 2.1.1, contracts may contain calls to pure methods (i.e., meth-
ods that terminate and are side-effect free) [Beckert et al., 2007]. Pure methods require
attention during composition, as their refinement implicitly refines all those contracts
calling this method. That is, by refining one pure method, we can refine several con-
tracts indirectly at the same time. In the following, we refer to the refinement of pure
methods as pure-method refinement. Interestingly, pure-method refinement enables con-
tract composition by means of traditional feature-oriented method composition and does
not require new language concepts nor new mechanisms for contract composition.

Example 4.11. In Listing 4.6, we give an example of pure-method refinement in a
feature-oriented database implementation for student exams. Class ExamDatabase stores
the results of student exams in array students, whereas a null-value refers to a free po-
sition in the array. The method consistent checks whether all students have at least
zero points. The method validStudent is used in the contract of method consistent and
is refined by a class refinement of feature module BackOut; this refinement allows stu-

72 4. Feature-Oriented Contracts for Product-Line Specification

dents to back out from an exam. Hence, the contract of method consistent is refined by
changing the body of method validStudent. While our example just shows one method
contract with one pure-method call, in principle, a pure method could be called from
several contracts and a contract may contain calls to several pure methods.

Similarly to the refinement of pure methods, we may refine model methods. A model
method is a method introduced only for specification purposes and it can only be called
within the specification and is invisible for the implementation [Chalin et al., 2005;
Hatcliff et al., 2012]. With refining a model method, we can indirectly refine all contracts
calling this model method as with pure methods. The advantage of refining model
methods instead of pure methods is that we do not need to encode specifications into
the underlying programming language. In contrast, the advantage of pure methods
over model methods is that we can use the same method refinement in specification
and implementation. Consequently, it depends on the situation whether pure methods
or model methods should be refined. However, for our following considerations, it is
sufficient to exemplarily focus on pure-method refinement.

All mechanisms discussed in Section 4.2 may or may not be enriched with pure-method
refinement, resulting in twelve mechanisms overall. However, enabling pure-method
refinement comes with the disadvantage that it breaks almost all properties. Com-
pared to the properties without pure-method refinement (cf. Table 4.2 on Page 68),
we loose all preservation properties, idempotence, and commutativity. The reason is
that feature-oriented method refinement with keyword original is neither idempotent nor
commutative [Apel et al., 2010b], and that contracts containing method calls may be
arbitrarily changed by means of refining those pure methods. Consequently, it is a de-
sign decision whether or not to allow the refinement of pure methods. If the refinement
of pure-methods is forbidden, tools could check for possible violations.

4.3.4 Class Invariants

In design by contract, besides assigning contracts to methods, we may also define con-
ditions for classes by means of class invariants. Depending on the visibility (i.e., public
in JML) of a given class invariant, it applies to all methods with the same or higher
visibility [Leavens and Müller, 2007]. In particular, a class invariant is equivalent to
adding the same condition to all preconditions and postconditions of methods that
it applies to. Indeed, class invariants are sometimes just syntactic sugar. However,
an exception is given in inheritance hierarchies in which not all subclasses are known
(i.e., object-oriented, open systems). For example, an invariant defined for the class
AbstractSet in the Java platform cannot be expressed by means of preconditions and
postconditions, because we simply do not know all subclasses to which this invariant
applies to. Nevertheless, for our considerations about the refinement of class invariants
it is sufficient to consider them as syntactic sugar.

For each of our six contract-composition mechanisms, we derive a strategy for dealing
with the refinement of class invariants. As preconditions and postconditions cannot

4.4. Tool Support for Specifying Feature-Oriented Contracts 73

be refined at all in plain contracting, when desugaring class invariants, we cannot al-
low any refinement of invariants either. In contrast, we should be able to arbitrarily
refine class invariants in contract overriding or explicit contract refinement, as precon-
ditions and postconditions can be arbitrarily refined, too. Similar to preconditions and
postconditions in explicit contract refinement, we could introduce keyword original in
invariants to reuse the invariant that is subject to refinement. For all remaining mech-
anisms, invariants may also be changed arbitrarily. However, for conjunctive contract
refinement and cumulative contract refinement, refining a class invariant from i to i′

requires that the postcondition i′ ∧ i is satisfiable. For example, we cannot refine an in-
variant by its negation. Otherwise, the postcondition cannot be fulfilled by any method
implementation. In summary, we could allow the refinement of class invariants except
for plain contracting, whereas conjunctive contract refinement and cumulative contract
refinement restrict possible refinements.

A rather technical problem for the refinement of class invariants is that they typically
cannot be uniquely identified. We may define several invariants for one class without
providing a unique name for them. Furthermore, invariants are not assigned to a
particular member of a class. In contrast, a method contract is always assigned to
a particular method which can be uniquely identified by its fully qualified name. The
identification problem of class invariants is due to the fact that most contract languages
are not feature-ready : Apel et al. [2010b] define properties that a language must fulfill to
apply feature-oriented composition. They discuss a similar problem with XML and the
solution is to simply introduce names by either extending the contemporary language
or by adding an overlaying module structure.

However, a restrictive refinement of class invariants does not require a unique identi-
fication. That is, if we aim to refine an existing invariant by adding further terms in
a conjunction, we can simply introduce a new invariant instead. The reason is that
multiple invariants in a single class are syntactic sugar for a single invariant being the
conjunction of all of them. Hence, simply by adding new invariants in feature modules,
we can implicitly refine invariants in this restrictive way, which is similar to conjunctive
contract refinement. By introducing invariants in feature modules, we achieve variable
class invariants customizable by the feature selection. In particular, an invariant defined
in a certain feature module does only need to be established if the feature module is
selected. We refer again to Listing 4.1 on Page 56 and Listing 4.4 on Page 63, in which
class invariants are introduced in core features as well as optional features.

4.4 Tool Support for Specifying Feature-Oriented

Contracts

In the former part of this chapter, we discussed numerous options for feature-oriented
contract composition. This includes six mechanisms for contract composition, as well
as design decisions how to deal with pure-method calls and class invariants. We aim
to answer remaining questions by means of an empirical investigation of product-line

74 4. Feature-Oriented Contracts for Product-Line Specification

specifications in Section 4.5. However, a comprehensive empirical investigation requires
tool support for specifying feature-oriented contracts and for their composition. Next,
we describe the tool support that has been developed in the course of this thesis. In
Section 4.4.1, we discuss our extension of a tool for feature-oriented composition, namely
FeatureHouse, with support for JML. Based on our FeatureHouse extension, we
implemented tool support in Eclipse by extending FeatureIDE, which we present in
Section 4.4.2.

4.4.1 Automating Contract Composition with FeatureHouse

The goal of feature-oriented contract composition is to define feature-oriented contracts,
which can be composed automatically for a given configuration. Hence, tool support for
feature-oriented contract composition must provide a language to define feature-oriented
contracts and a composer taking feature-oriented contracts as input and returning the
resulting contract. The composition of feature-oriented contracts should be automated,
because manual composition would need to be done whenever one of the feature modules
evolves. In particular, manual composition is a laborious and error-prone task that may
even lead to wrong results in a subsequent verification of products.

As our goal is to build tool support for feature-oriented contracts based on existing
tools, we aim to extend an existing language for method contracts. We have chosen
to extend JML, because many verification tools are available for JML [Burdy et al.,
2005]. Furthermore, instead of building a new feature-module composer from scratch,
we rather extend an existing one; available composers are FeatureC++ [Apel et al.,
2005], AHEAD [Batory, 2006], and FeatureHouse [Apel et al., 2013b]. While Fea-
tureC++ only supports the composition of feature modules written in a feature-
oriented extension of C++, AHEAD and FeatureHouse support a variety of pro-
gramming languages. AHEAD supports Java 1.4, XML, and JavaCC, whereas Fea-
tureHouse supports Java 1.5, C#, C, Haskell, JavaCC, Alloy, and UML. We decided
to extend FeatureHouse as it already supports Java 1.5 and a new language can be
integrated by providing a new grammar annotated with information about composition
rules [Apel et al., 2013b].

We have developed a JML grammar according to the JML language levels 0-3 [Leavens
et al., 2013], based on the existing FeatureHouse grammar for Java 1.5. The six
contract-composition mechanisms discussed in Section 4.2 are implemented by means
of a new command-line parameter of FeatureHouse. That is, a user can choose one
mechanism for a product line and then compose feature modules of selected features
automatically. The main part of this tool support was developed in the course of a
bachelor’s thesis [Benduhn, 2012].

However, in our empirical evaluation, we found that several mechanisms could even
be combined when specifying a single product line. Otherwise, a single method of a
product line may rule out certain composition mechanisms and certain preservation
properties. By means of keywords, we can choose a contract-composition mechanism
for each method individually.

4.4. Tool Support for Specifying Feature-Oriented Contracts 75

Figure 4.3: Overriding a contract-composition mechanism with another mecha-
nism [Weigelt, 2013].

Before presenting keywords specifying contract composition, we explain some design
decisions. First, we should consider one mechanism as default to save effort when spec-
ifying keywords. We argue that this should be explicit contract refinement or contract
overriding, as they do not pose any restrictions on the possible method refinements in
feature-oriented programming. In particular, it would be counter-intuitive if the de-
fault in a specification technique in feature-oriented programming is restrictive, while
feature-oriented programming is not. Second, we argue that there is no need for sepa-
rate keywords for contract overriding and explicit contract refinement. The difference
of both is that explicit contract refinement allows for the usage of keyword original, but
there is no reason to forbid this keyword. Hence, explicit contract refinement subsumes
contract overriding as the developer may decide to not use keyword original at his choice.

We propose the following contract-composition keywords for the remaining mechanisms.
The keyword for plain contracting is final contract, because the contract cannot be
refined at all. Similarly, we can forbid the refinement of a pure method with the keyword
final method. The latter keyword may actually also be applied to non-pure methods to
indicate that the developer can rely on the method’s implementation independent of
subsequent feature modules. For all remaining mechanisms we propose keywords based
on their name: conjunctive contract, cumulative contract, and consecutive contract. We
refer interested readers to a bachelor’s thesis providing more details on the choice of
the keywords [Weigelt, 2013].

We propose to define contract-composition keywords at the beginning of contracts.
However, the ability of feature-oriented programming for method refinement naturally
raises the question whether it should be possible to override contract-composition key-
words. With overriding, we could use different contract-composition mechanisms for
different refinements of the same method. We illustrate the overriding of keywords in
Figure 4.3. Contract c1 and c2 are composed using explicit contract refinement as no
keyword is specified in contract c1. Keyword consecutive contract defined in contract
c2 overrides the contract composition with consecutive contract refinement for later
refinements (e.g., when applying the contract refinements c3 and c4) [Weigelt, 2013].

The overriding of contract-composition keywords provides more flexibility for refine-
ment, but may break preservation properties. For instance, if we decide to use con-
secutive contract refinement for a given method and a subsequent method refinement
changes the composition mechanism to explicit contract refinement. In this case, we
lose the modular reasoning for method callers, as later feature modules may completely

76 4. Feature-Oriented Contracts for Product-Line Specification

final method

final contractcumulative contract consecutive contract

conjunctive contract explicit contract refinement

Figure 4.4: Contract-composition keywords and possible overriding that establishes
preservation properties.

replace existing preconditions and postconditions. To avoid that keyword overriding can
break preservation properties, we only permit overriding if guarantees are preserved.

In Figure 4.4, we illustrate in which cases overriding is permitted, whereas transitive
arrows are omitted. First of all, keyword final method can be used after every other
mechanism, as it only indicates the end of the refinement chain and does not violate
any properties. In contrast, keyword final method cannot be followed by any other
mechanism, as later method refinements are prohibited. Next, we can override keywords
with mechanisms that have identical preservation properties (cf. Table 4.2 on Page 68).
In particular, we can override cumulative contract refinement with consecutive contract
refinement, and vice versa. The same holds for conjunctive contract refinement and
explicit contract refinement. Finally, as explicit contract refinement and conjunctive
contract refinement do not establish any of the above defined preservation properties,
we can override them by all other mechanisms.

We refer to the contract composition with the aforementioned keywords and possible
overridings as keyword-based contract composition. With our extension of Feature-
House it is possible to use any of the contract-composition mechanisms discussed in
Section 4.2 or keyword-based contract composition based on a command-line parameter.

4.4.2 Supporting Feature-Oriented Contracts in FeatureIDE

Prior to this thesis, the command-line tool FeatureHouse has been integrated into
Eclipse in the FeatureIDE project [Kästner et al., 2009c; Thüm et al., 2014b], to-
gether with several other product-line implementation tools. FeatureIDE is a frame-
work for product-line implementation providing editors with syntax highlighting and
content assistants as well as views specific to feature-oriented programming supporting
the whole development process [Thüm et al., 2014b]. We integrated our Feature-
House extension into FeatureIDE (a) to provide a convenient use of contracts for
student in lectures on product lines, (b) to ease the transfer of research results to prac-
tice, and (c) to implement error reporting for wrong usage of contracts based on the
FeatureIDE infrastructure. Our extensions are open-source and available as part of
the FeatureHouse and FeatureIDE projects.5

5http://featureide.cs.ovgu.de

http://featureide.cs.ovgu.de

4.5. Empirical Evaluation of Feature-Oriented Contracts 77

In our FeatureIDE extension, the contract-composition mechanisms can be chosen
in the properties of Eclipse projects. More specifically, the Eclipse project needs to
be a regular FeatureIDE project with FeatureHouse selected as the product-line
generation tool. The programmer can change the contract-composition mechanism for
each project at any time of development, which is especially useful to compare different
approaches. In addition, we extended several views in FeatureIDE with support
for contracts [Proksch and Krüger, 2014]. The outline view for feature-oriented Java
files indicates which methods are specified by means of a contract. The collaboration
diagram, a view giving an overview on all feature modules and their mapping to classes,
has options to show contracts or filter methods with contracts. Finally, the statistics
view showing metrics on FeatureIDE projects is enriched with several metrics on
contracts.

4.5 Empirical Evaluation of Feature-Oriented Con-

tracts

The above sections raise several questions that we aim to answer by means of an empir-
ical evaluation. In particular, to what extent do feature modules require variability in
contracts and contract refinement? Are refinements of feature-oriented contracts typi-
cally original-preserving, refinement-preserving, caller-preserving, or callee-preserving?
Which of the six contract-composition mechanism discussed in Section 4.2 is superior
to others in practice? Do specification clones and derivatives contracts occur frequently
with contract overriding? Is cumulative contract refinement too restrictive in practice?
Does keyword-based contract composition give benefits compared to the six mecha-
nisms in typical product lines? We give on overview on the subject product lines in
Section 4.5.1. In Section 4.5.2, we share the insights gained with our case studies.
Finally, we discuss possible threats to validity in Section 4.5.3.

4.5.1 Case Studies

As we propose the concept of feature-oriented contracts in this thesis, we cannot ex-
pect to find and study real product lines specified with feature-oriented contracts. We
used three strategies to create product lines with feature-oriented contracts. First, we
implemented product lines and feature-oriented contracts from scratch. Second, we
decomposed existing, object-oriented programs including their contracts into a product
line. That is, we identified features of the program and separated them into feature mod-
ules. Third, we specified existing product lines with feature-oriented contracts. Each of
these creation strategies is a typical application scenario of employing feature-oriented
contracts and may impose different requirements for contract-composition mechanisms.

The rationale behind developing product lines from scratch is that a given language for
contracts may impose restrictions on the design. However, when developing a feature-
oriented program from scratch, we can try to come up with a design that fits the
language. In the end, we know whether a certain contract-composition mechanism is

78 4. Feature-Oriented Contracts for Product-Line Specification

feasible when building modules and their contracts from scratch. Overall, we have
implemented and specified five feature-oriented product lines, which consist of data
structures (IntegerList), algorithms (UnionFind, StringMatcher), and both (BankAc-
count, GPL-scratch).

The advantage of decomposing existing programs with contracts into feature modules
is that we can work with rich specifications from existing software. Thus, it is possible
to evaluate whether such specifications can be decomposed into features by means of
a given contract-composition mechanism. We have used this approach for variational
data structures (IntegerSet, Numbers), libraries (DiGraph, ExamDB), and stand-alone
systems (Paycard, Poker).

Existing feature-oriented systems, in which contracts have not been specified during
development, may require certain kinds of variability that is not supported by some
contract-composition mechanisms. With the other two approaches, we might miss such
situations, because specifications are considered from early on. By developing contracts
for existing modules, we evaluate how contract-composition mechanisms can be used
to specify systems with typical variability characteristics. We have enriched existing
feature-oriented systems with contracts, such as a library (GPL) and stand-alone sys-
tems (Elevator, Email). For product lines Elevator and Email, we formalized existing
informal specifications in JML, and, for product line GPL, we specified contracts based
on the existing design and domain knowledge.

In total, we conducted 14 case studies with a different product line each. According
to our above mentioned tool support, all studied product lines are implemented in
feature modules based on Java and feature-oriented contracts based on JML, but we
expect similar results for other object-oriented languages and contract-based specifica-
tion languages. We refer to Appendix A for a short description of each product line and
statistics such as the number of features and classes. For our evaluation, it was not nec-
essary to verify or test whether all or some products adhere to their specification. In the
most case studies, we just created feature-oriented contracts as documentation. Never-
theless, how some of these product lines have been verified is explained in Chapter 5.
All 14 subject product lines are publicly available at SPL2go.6

4.5.2 Results and Insights

In the following, we share our results of our case studies and gained insights. First,
we aim to answer to which extent feature-oriented contracts are variable and whether
contract refinement is actually needed. Then, we discuss which contract preservation
properties are established by the contract refinements in our subject product lines.
Finally, we discuss how fine-granular typical contract refinements are and the conse-
quences of granularity that we experienced.

6http://spl2go.cs.ovgu.de/

http://spl2go.cs.ovgu.de/

4.5. Empirical Evaluation of Feature-Oriented Contracts 79

BankAcco
unt

GPL-sc
ratch

Integ
erL

ist

UnionFind

Stri
ngMatch

er

DiG
raph

ExamDB

Integ
erS

et

Numbers

Pay
card

Poker

Elev
ator

Email
GPL

0

20

40

60

80

100

22

38

14

57

14

58

43

25

47

40 42

0 0 2

67 67

100

80

0

33 33

Product line

P
er

ce
n
ta

g
e

of
fa

m
il
y
-w

id
e

sp
ec

ifi
ca

ti
on

s
[%

]
Core contracts/contracts

Core invariants/invariants

Figure 4.5: Percentage of family-wide specifications compared to all specifications.

Variability in Contracts

We proposed feature-oriented contracts as a means to define variable product-line spec-
ifications. However, it is unclear to what extent typical feature-oriented contracts are
variable. In particular, while we can automatically generate contracts for each product,
the question is whether these product specifications actually differ from each other. No
differences would occur if all contracts and invariants are defined in feature modules
that do belong to core features (for short core contracts and core invariants). After
creating the subject product lines, we counted the number of method contracts and
class invariants defined in core features and the overall number of contracts.

In Figure 4.5, we illustrate the percentage of core contracts and core invariants compared
to all contracts and invariants, respectively. Missing numbers for some product lines
indicate that invariants were not existent and thus the percentage is undefined (due
to division by zero). Every product line contains contracts that are not defined in
core features. Except for product line DiGraph, every product line with invariants also
contains invariants not defined in core features. That is, the generated specification is
typically similar between products, but not identical. In particular, for the product lines
Elevator and Email there are products that do not share any specifications, because
they do neither contain core contracts nor core invariants. The average over all product
lines is that 29 % are core contracts and 54 % are core invariants, but we expect even
smaller percentages for larger product lines.7

7We compute all average values by computing the percentage of each product line and then calcu-
lating the average. That is, we do not sum up the values of all product lines and then calculate the
average, because then larger product lines would have more influence on the result.

80 4. Feature-Oriented Contracts for Product-Line Specification

In Section 3.6, we identified as an open research question whether family-wide specifica-
tions are sufficient for product lines. Our case studies indicate that family-wide speci-
fications are not feasible, at least when specifying product lines by means of contracts.
Hence, it seems that the code-level specification of variable code requires variable speci-
fications, which are supported by all contract-composition mechanism discussed above.
Even with plain contracting we can introduce contracts in optional feature modules to
create variation in specifications.

Nevertheless, we may define a family-wide specification by means of feature-oriented
contracts. That is, we can decompose a family-wide specification into several feature
modules belonging to core features. Indeed, such a decomposition has been done in
product line Poker. In Figure 4.6, we show an excerpt of the collaboration diagram,
in which product-line specifications common to all products are split up to three core
features. Reasons for such a decomposition are manifold. For example, the decomposi-
tion separates concerns that different developers need to consider during evolution. In
this sense, feature-oriented contracts are more general than defining contracts that all
products must establish.

In Section 3.6, we raised a similar research question, namely whether family-based spec-
ifications are needed or whether feature-based specifications are sufficient. That is, can
we define the intended behavior of a product line by specifying each feature? Or do we
need to explicitly define the behavior of feature combinations? The research question is
similar to the question whether product lines can be implemented by means of feature
modules. Liu et al. [2006] experienced that implementing a feature module for each
feature has not been sufficient when they decomposed a legacy system into a product
line, but they can easily be enriched by additional derivative modules (a.k.a. lifters [Pre-
hofer, 1997]). A derivative module is a feature module that is added whenever two or
more specific features are chosen.

In our case studies, we made similar experiences when decomposing contracts into
feature-oriented contracts. For almost all programs that we migrated to a product
line, we were able to specify all contract refinements by means of contract-composition
mechanisms as discussed in Section 4.2 – without a need for derivative modules. As an
exception, massive use of derivative modules turned out to be necessary for product line
ExamDB. In particular, we had to create all theoretically possible derivative modules.
For one core feature and three independent-optional features, we had to create three
second-order derivatives and one third-order derivative (cf. Figure 4.7). The reason and
possible solutions are discussed below. For creation strategies beyond migration (i.e.,
development from scratch and specification of existing product lines), no derivatives
were needed except for GPL. However, GPL already contained ten derivatives for im-
plementation purposes and specifying the product line with feature-oriented contracts
did not require further derivatives. Overall, our experience is that feature-based specifi-
cation is sufficient, because derivative modules could be completely avoided in our case
studies by choosing a feasible contract-composition mechanism for each product line.

4.5. Empirical Evaluation of Feature-Oriented Contracts 81

de
fa

ul
t

Pl
ay

er

Ta
bl

e

C
ar

ds

Bu
tto

n(
)

ge
tP

os
iti

on
()

: i
nt

se
tP

os
iti

on
(in

t)

Bu
tto

n.
ja

va

C
ar

d(
in

t,
in

t)
ge

tS
ui

t()
 :

in
t

se
tR

an
k(

in
t)

se
tS

ui
t(i

nt
)

C
ar

d.
ja

va

de
al

Fl
op

()
de

al
Pl

ay
er

s(
in

t)
de

al
R

iv
er

()
de

al
Tu

rn
()

ge
tD

ec
k(

) :
 D

ec
k

in
it(

)
se

tD
ec

k(
D

ec
k)

D
ea

le
r.j

av
a

0
<=

 a
llC

ar
ds

.le
ng

th
 &

 a
l..

.
ge

tA
llC

ar
ds

()
: C

ar
d[

]
in

iti
liz

e(
)

se
tA

llC
ar

ds
(C

ar
d[

])
sh

uf
fle

()D
ec

k.
ja

va

0
==

 c
ar

ds
.le

ng
th

 |
ca

rd
s.

..
id

 >
 0

;
fo

ld
()

ge
tC

ar
ds

()
: C

ar
d[

]
ge

tId
()

: i
nt

in
itP

la
ye

r(
in

t,
do

ub
le

)
se

tC
ar

ds
(C

ar
d[

])
sh

ow
C

ar
ds

()
st

ay
()

Pl
ay

er
.ja

va

se
at

s.
le

ng
th

 >
=

M
IN

_P
LA

YE
...

ge
tS

ea
ts

()
: i

nt
[]

se
tD

ea
le

r(D
ea

le
r)

se
tS

ea
ts

(in
t[]

)

Ta
bl

e.
ja

va

Figure 4.6: Collaboration diagram showing all core contracts and core invariants of
product line Poker.

82 4. Feature-Oriented Contracts for Product-Line Specification

ExamDB

Statistics

BonusPointsBackOut

BonusPointsStatistics

BackOutStatistics

getAverage() : int

getNumParticipants() : int

getNumWithGrade(int) : int

getPassedAverage() : int

getAverage() : int

getNumParticipants() : int

getNumWithGrade(int) : int

getPassedAverage() : int

getGrade(int) : int

getAverage() : int

getNumWithGrade(int) : int

getPassedAverage() : int

ExamDataBase.java

Figure 4.7: The derivative modules of product line ExamDB cover all combinations of
the optional features BonusPoints, BackOut, and Statistics.

The Need for Contract Refinement

Although we have seen that feature-oriented contracts are variable to a large extent,
this does not necessarily mean that there is a need for contract refinement. A method
with a contract that is introduced in an optional feature is variable (i.e., not part of
all products), even if never refined. Thus, it is questionable whether there is a need for
contract-composition mechanisms that allow programmers to refine existing contracts
(i.e., all mechanisms except plain contracting).

In Figure 4.8, we illustrate the percentage of contract refinements with respect to the
overall number of contracts. We discover that between 0 % and 86 % of all contracts
refine another contract in at least one product. No contract refinements were neces-
sary only for DiGraph and IntegerSet. Product line DiGraph does not contain a single
method refinement that could have required contract refinement. In other words, the
features chosen for decomposition do not cross-cut method implementations. Never-
theless, method and contract refinement could be necessary when extracting further
features or extending DiGraph with new features. The product line IntegerSet con-
tains several method refinements that all adhere to the initially introduced contract.
We already gave an example for a method refinement that does not require a contract
refinement in Listing 4.1 on Page 56. Besides these two exceptions, all other product
lines contain contract refinements. Hence, plain contracting is only applicable to all
contracts in product lines DiGraph and IntegerSet.

In our subject product lines, several methods do have different contracts in different
products. However, contract refinement is not the only option to achieve different con-
tracts for the very same method; we experienced alternative introductions of contracts
in three product lines, namely GPL-scratch, IntegerSet, and GPL. Interestingly, the
three product lines have been created by means of a different strategy each (i.e., prod-
uct line developed from scratch, specified program migrated to a product line, and

4.5. Empirical Evaluation of Feature-Oriented Contracts 83

BankAcco
unt

GPL-sc
ratch

Integ
erL

ist

UnionFind

Stri
ngMatch

er

DiG
raph

ExamDB

Integ
erS

et

Numbers

Pay
card

Poker

Elev
ator

Email
GPL

0

20

40

60

80

Product line

P
er

ce
n
ta

ge
of

al
l

co
n
tr

a
ct

s
[%

] Contract refinements
Alternative contract introductions

Figure 4.8: Percentage of contract refinements and alternative contract introductions
compared to all contracts.

specification of an existing product line). Hence, alternative contract introductions are
not only caused by an existing program or product-line design. Based on Figure 4.8, we
make two observations. First, in product line IntegerSet all differing contracts are due
to alternative contract introductions (i.e., there are no contract refinements). Second, in
product line GPL more than half of the contracts are introduced in alternative features.
Consequently, each contract-composition mechanism should also come with a strategy
to deal with alternative contract introductions. Disallowing alternative contract intro-
ductions completely does not seem to be a valid option according to our experience
with the case studies.

We already discussed that not all but some method refinements require contract refine-
ments. That is, even though the implementation of a method is refined, the resulting
method still adheres to the original contract (cf. plain contracting in Section 4.2.1).
In Figure 4.9, we illustrate the percentage of method refinements that require the re-
finement of contracts. Similarly, we illustrate the percentage of alternative method
introductions that require alternative contract introductions. Missing numbers indicate
that the product line does not contain method refinements or alternative method intro-
ductions (i.e., the percentage is undefined). Both percentages range from 0 % to 100 %
over all product lines. On the one hand, as indicated above, product line IntegerSet has
method refinements, but no contract refinements. On the other hand, all method refine-
ments of product lines BankAccount, GPL-scratch, and StringMatcher require contract
refinements. Similarly, product line Poker has alternative method introductions but no
alternative contract introductions, whereas in product line GPL-scratch every alterna-
tive method introductions is specified by means of an alternative contract. In average
over all product lines, 47 % of the method refinements require contract refinements

84 4. Feature-Oriented Contracts for Product-Line Specification

BankAcco
unt

GPL-sc
ratch

Integ
erL

ist

UnionFind

Stri
ngMatch

er

DiG
raph

ExamDB

Integ
erS

et

Numbers

Pay
card

Poker

Elev
ator

Email
GPL

0

20

40

60

80

100

120

140

100 100

25
20

100

52

0

86

33

40

32

19

11

100

50

0

49

Product line

P
er

ce
n
ta

ge
of

m
et

h
o
d
s

[%
]

Contract refinements/method refinements

Alternative contract/alternative method introductions

Figure 4.9: Percentage of contract refinements and alternative contract introductions
compared to method refinements and alternative method introductions.

(i.e., plain contracting is sufficient for 53 % of the method refinements), and 50 % of
the alternative method introductions require alternative contracts.

In contrast to method contracts, alternative introductions and refinements of class in-
variants were not needed in our case studies. However, there was an interesting case
when decomposing ExamDB into a product line, which is shown in Listing 4.7. The
original source code contained a large invariant that we had to decompose to the fea-
ture modules ExamDB and BonusPoints. The reason for decomposition was that field
bonusPoints was moved to feature module BonusPoints, and thus the reference to the
field within the invariant had to be moved accordingly. Otherwise, the absence of fea-
ture BonusPoints would have resulted in a dangling method reference in JML. In this
case, fortunately, we could decompose the original invariant into two invariants. Hence,
the refinement of invariants was not necessary. Nevertheless, other product lines may
actually require invariant refinements.

Contract Preservation

In Section 4.1.1, we discussed several preservation properties that contract composition
may establish. Hence, a question is to which percentage the contract refinements in
our subject product lines preserve which properties. In the first diagram of Figure 4.10,
we illustrate percentage of contract refinements for each preservation property.8 That
some bars sum up to more than 100 % is due to the fact that the same contract

8Our definitions of preservation properties are based on the composition of two contracts. However,
in some case the same contract refinement established different properties in different products. We
count only preservation properties if they are established by a contract refinement in all products.

4.5. Empirical Evaluation of Feature-Oriented Contracts 85

public abstract class ExamDataBase { Original source code
/∗@ public invariant students!=null &&

@ 0<threshold && threshold<=maxPoints &&
@ 0<step && step<=(maxPoints−threshold)/10 &&
@ (\forall int i; 0<=i && i<students.length && students[i]!=null;
@ −1<=students[i].points && students[i].points<=maxPoints
@ && 0<=students[i].bonusPoints && students[i].bonusPoints<=maxPoints
@ && (\forall int j; 0<=j && j<students.length && students[j]!=null && i!=j;
@ students[i].matrNr!=students[j].matrNr)
@ && (\forall ExamDataBase ex; ex!=null && ex!=this;
@ (\forall int k; 0<=k && k<ex.students.length; ex.students[k]!=students[i])));
@∗/

[...]
}
public class Student { public int bonusPoints = 0; [...] }
public abstract class ExamDataBase { feature module ExamDB

/∗@ public invariant students!=null &&
@ 0<threshold && threshold<=maxPoints &&
@ 0<step && step<=(maxPoints−threshold)/10 &&
@ (\forall int i; 0<=i && i<students.length && students[i]!=null;
@ −1<=students[i].points && students[i].points<=maxPoints
@ && (\forall int j; 0<=j && j<students.length && students[j]!=null && i!=j;
@ students[i].matrNr!=students[j].matrNr)
@ && (\forall ExamDataBase ex; ex!=null && ex!=this;
@ (\forall int k; 0<=k && k<ex.students.length; ex.students[k]!=students[i])));
@∗/

[...]
}
public class Student { [...] }
public abstract class ExamDataBase { feature module BonusPoints

/∗@ public invariant
@ (\forall int i; 0<=i && i<students.length && students[i]!=null;
@ 0<=students[i].bonusPoints && students[i].bonusPoints<=maxPoints);
@∗/

[...]
}
public class Student { public int bonusPoints = 0; }

Listing 4.7: Decomposition of a class invariant for product line ExamDB.

refinement may establish several preservation properties. In average, most contract re-
finements are original-caller-preserving (71 %) or refinement-caller-preserving (65 %).
Only a small portion of all contract refinements are refinement-callee-preserving (17 %),
original-callee-preserving (16 %), or do not preserve any of these four properties (16 %).
Only three product lines contain contract refinements without preservation properties,

86 4. Feature-Oriented Contracts for Product-Line Specification

0

100

200

300

Original-caller-preserving Refinement-caller-preserving
Original-callee-preserving Refinement-callee-preserving
Other

BankAcco
unt

GPL-sc
ratch

Integ
erL

ist

UnionFind

Stri
ngMatch

er

DiG
raph

ExamDB

Integ
erS

et

Numbers

Pay
card

Poker

Elev
ator

Email
GPL

0

50

100

150

200

Product line

P
er

ce
n
ta

ge
of

co
n
tr

ac
t

re
fi
n

em
en

ts
[%

]

Caller-preserving Refinement-preserving
Original-preserving Callee-preserving
Other

Figure 4.10: Preservation properties of contract refinements in all product lines.

namely GPL-scratch, ExamDB, and Numbers. For an example of such a contract re-
finement, we refer again to Listing 4.4 on Page 63. In this example, precondition and
postcondition are strengthened at the same time using conjunctive contract refinement.

In the second diagram of Figure 4.10, we show the percentage of contract refinements
that adhere to the fundamental preservation options discussed in Section 4.1.2. Most
contract refinements are caller-preserving (64 %), and thus align with behavioral subtyp-
ing. A fourth of all contract refinements do not establish any of the fundamental options
(25 %). Callee-preserving (13 %), refinement-preserving (8 %), and original-preserving
(3 %) contract refinements are rather rare. Original-preserving contract refinements
only occur in product line GPL and the reason is that a method with its contract is
introduced in an optional feature; even though the contract refinement establishes the
same contract, the contract has to be cloned. Otherwise the method would have no con-

4.5. Empirical Evaluation of Feature-Oriented Contracts 87

BankAcco
unt

GPL-sc
ratch

Integ
erL

ist

UnionFind

Stri
ngMatch

er

DiG
raph

ExamDB

Integ
erS

et

Numbers

Pay
card

Poker

Elev
ator

Email
GPL

0

100

200

300

400

500

600

Product line

P
er

ce
n
ta

ge
of

co
n
tr

a
ct

re
fi
n

em
en

ts
[%

]
Contract overriding Explicit contract refinement
Conjunctive contract refinement Cumulative contract refinement
Consecutive contract refinement

Figure 4.11: Applicability of contract-composition mechanisms.

tract in those products that do not contain the optional contract introduction. Those
original-preserving contract refinements could be avoided by changing the design of the
product line (i.e., introducing a new feature module for the contract introduction). This
insight justifies our strategy to specify an existing product line, because the reason was
that an existing product-line design was given, and it could have remained unnoticed
with the other two strategies.

Our insight with these statistics is that caller-preserving mechanisms, such as consec-
utive contract refinement and cumulative contract refinement, are suitable for most
contract refinements. For all other contract refinements, explicit contract refinement
can be used, which does not establish any preservation properties. One may also use
a callee-preserving mechanism for some contract refinements, which, however, was not
part of our previous discussion. In Figure 4.11, we show the percentage of contract
refinements that can be expressed with each contract-composition mechanism. We
counted contract overriding as applicable to contract refinements if explicit contract
refinement was applicable and keyword original could not be used. Furthermore, we
counted mechanisms only as applicable if there was no other mechanism that could be
used and avoided more specification clones.

Most contract refinements can be expressed with explicit contract refinement (87 % on
average), followed by conjunctive contract refinement (74 %), consecutive contract re-
finement (58 %), and cumulative contract refinement (54 %). Only each fifth contract
refinement can be expressed with contract overriding (19 %). In particular, explicit
contract refinement is applicable in 55 % of the contract refinements by taking advan-
tage of keyword original and 21 % without keyword original (i.e., contract overriding).
The experience with our case studies confirms our suspicion that contract overriding is

88 4. Feature-Oriented Contracts for Product-Line Specification

BankAcco
unt

GPL-sc
ratch

Integ
erL

ist

UnionFind

Stri
ngMatch

er

DiG
raph

ExamDB

Integ
erS

et

Numbers

Pay
card

Poker

Elev
ator

Email
GPL

0

50

100

150

200

250

Product line

P
er

ce
n
ta

ge
o
f

co
n
tr

ac
t

re
fi
n

em
en

ts
[%

]
Precondition and postcondition Only precondition
Only postcondition Part of a condition

Figure 4.12: The granularity of contract refinements in all product lines.

superseded by explicit contract overriding. Similarly, there was not a single contract
refinement to which cumulative contract refinement is applicable, while consecutive
contract refinement is not applicable. Hence, our case studies suggest that contract
overriding and cumulative contract refinement are not needed. Even if not shown in
these diagrams, each case in which a method refinement does not require a contract
refinement can be considered as original-preserving (cf. Figure 4.9), and thus plain
contracting can be applied.

Granularity of Contract Refinement

A further interesting property of contract refinement is granularity. That is, whether
only a precondition is refined, only a postcondition, or even just a part of a condition.
In Figure 4.12, we give an overview on the granularity for the contract refinements in
our subject product lines.9 Most contract refinements only changed the postcondition
while the precondition remained unchanged (79 % of contract refinements on average
over all product lines). In contrast, sole refinement of a precondition was rather rare
(11 %). Contract refinements that refine precondition and postcondition only occurred
in product line GPL-scratch and seem to be rather atypical. The reason for the special
position of GPL-scratch is most probably that it was designed to show the power of
contract-composition mechanisms (cf. Appendix A).

That simultaneous refinement of precondition and postcondition does not occur in most
product lines is rather surprising and does have consequences that we have not antic-

9As mentioned above, product line GPL contains identical contracts in contract refinements due to
optional contract introductions, which do not fall into any of the categories of the diagram and are
thus omitted.

4.5. Empirical Evaluation of Feature-Oriented Contracts 89

public class Client { feature module Base
static void mail(Client client, Email msg) { [...] }
[...]
}
public class Client { feature module Encrypt

/∗@ \consecutive contract
@ requires msg.isEncrypted() ==> !unEncryptedMails.contains(msg);
@ requires !msg.isEncrypted() ==> !encryptedMails.contains(msg);
@ requires encryptedMails.contains(msg) ==> msg.isEncrypted();
@ ensures msg.isEncrypted() ==> encryptedMails.contains(msg);
@ ensures !msg.isEncrypted() ==> unEncryptedMails.contains(msg); @∗/

static void mail(Client client, Email msg) { [...] original(client, msg); }
[...]
}
public class Client { feature module Sign

/∗@ requires msg.isEncrypted() ==> !unEncryptedMails.contains(msg);
@ requires !msg.isEncrypted() ==> !encryptedMails.contains(msg);
@ requires encryptedMails.contains(msg) ==> msg.isEncrypted();
@ ensures msg.isSigned() ==> signedMails.contains(msg); @∗/

static void mail(Client client, Email msg) { [...] original(client, msg); }
[...]
}

Listing 4.8: Consecutive contract refinement in product line Email requires cloning of
preconditions.

ipated in our previous discussion: First, when refining only the postcondition con-
junctive contract refinement, cumulative contract refinement, and consecutive contract
refinement collapse to the same semantics (i.e., postconditions are connected in a con-
junction). Second, when only refining a precondition cumulative contract refinement
and consecutive contract refinement collapse to the same semantics (i.e., preconditions
are connected in a disjunction). Finally, it is relevant how contract-composition mech-
anisms deal with contract refinements in which either precondition or postcondition is
refined. In particular, we found that conjunctive contract refinement can avoid cloning
unchanged preconditions compared to cumulative contract refinement or consecutive
contract refinement. We give an example of such cloning in Listing 4.8. The precondi-
tion has to be cloned, because non-existent preconditions are treated as requires true and
the composition with the original precondition by means of a disjunction would invali-
date all existing preconditions. However, it seems more reasonable to treat non-existent
preconditions and postconditions in contract refinements of all contract-composition
mechanisms as requires original and ensures original instead.

We noticed that specification clones were especially a problem in those product lines,
in which only a part of a precondition or postcondition was refined. In particular,
these product lines are GPL-scratch, StringMatcher, ExamDB, and Numbers (cf. Fig-

90 4. Feature-Oriented Contracts for Product-Line Specification

ure 4.12). For instance, in product line ExamDB, we had to clone and adapt contracts
for all contract refinements, because they required fine-granular changes. All discussed
mechanisms for contract composition only enable the reuse of complete preconditions
and postconditions. Even worse, we had to create many derivative contracts due to
the cloning; for four contract refinements in regular feature modules, we had to create
11 additional contract refinements in four derivatives modules. These derivative con-
tracts massively aggravated the cloning. However, we found an elegant solution that
avoids all clones and all derivatives based on pure-method refinement. We refer again
to Listing 4.6 on Page 71, which is an excerpt of product line ExamDB illustrating the
solution. Overall, we introduced two pure methods called from several contracts and
refined the pure methods instead of refining each contract explicitly. Alternatively, we
could have used model methods, but in this case we could even use these pure methods
to reduce code clones. Hence, pure methods and model methods seem to be especially
suited for fine-grained contract refinements. At the same time, it is possible to reduce
accidental contract refinements by using keyword final method for all pure methods that
are not supposed to be refined.

Furthermore, we experienced several specification clones in alternative contract intro-
ductions. However, only a small percentage of them actually contain fine-granular dif-
ferences, which could be avoided by means of pure methods and model methods. The
majority of these alternative contract introductions were identical clones. We experi-
enced the relevance of this problem especially in product line GPL, in which more than
half of the contracts are introduced in alternative features and cloned (cf. Figure 4.8
on Page 83). A solution could be to specify those contracts in another feature module,
which is available whenever one of the alternative features is available. In some cases,
this could require to create a new feature module only for contracts. Another solution
could be to investigate how contracts for alternative features should be specified, which
was only rudimentary discussed in the previous sections.

4.5.3 Threats to Validity

Our case studies and results depend on several threats to validity that we aim to discuss
in the following.

The subject product lines that we analyzed may not represent real product lines. First,
most of our subjects are significantly smaller than industrial product lines. We tried
to overcome this threat by including also larger product lines such as GPL with 27
features and 110 contracts. Second, our product lines may not be representative even
for small, industrial product lines. To reduce this threat, our subject product lines
include several domains, variable algorithms as well as variable data structures, and used
three strategies to create product lines with feature-oriented contracts, which should
cover all typical application scenarios for the creation of product-line specifications.
Furthermore, the subject product lines have been created by several authors to reduce
subjectivity (cf. Appendix A).

The results of our case studies may depend on the purpose of specifying a product line
with contracts. For most product lines, the main purpose of specifying contracts was

4.6. Related Work 91

static verification. Nevertheless, only the product lines BankAccount and StringMatcher
have been verified. All programs with contracts that we decomposed into a product line
were said to be verified prior to our decomposition. Hence, it is likely that they still
contain defects with respect to variability, but we do not expect that fixing these defects
heavily changes our statistics on contracts and their refinements. For all remaining
product lines, contracts were created for documentation only. However, developing
contracts for an existing product-line design is not straightforward, as we had to recover
the implicit assumptions that the programmer could have had in mind. Nevertheless,
with all three strategies for the creation of subject product lines, we achieved similar
results.

A further influence on our results might be that the case studies have been applied
between 2010 and 2014 (cf. Appendix A), some even before we started to systematically
discuss contract-composition mechanisms [Thüm et al., 2012]. That is, the product lines
IntegerList and an initial version of BankAccount have been developed while creating
a new contract-composition mechanism that fits the needs of the product line [Scholz
et al., 2011; Thüm et al., 2011b]. However, both product lines have lead to similar
statistics as other product lines. In particular, by means of a manual inspection in
August 2014, we have retrieved statistics on all product lines at the same time to
mitigate threats due to different knowledge on contract composition.

4.6 Related Work

In the following, we discuss the roots of feature-oriented contracts and differences to
prior work on contract composition.

Contracts in Feature-Oriented Programming

All proposals for combining design by contract and feature-oriented programming were
developed in the course of this thesis. Nevertheless, initial ideas have been discussed in
the literature long ago. Helm et al. [1990] proposed contracts to model collaborations
of classes, although their understanding of contracts has not much in common with
contracts as proposed by Meyer [1988]. Mezini and Lieberherr [1998] compare adaptive
plug and play components, which are similar to feature modules, with those collab-
orative contracts and rather see both as alternative approaches. Batory et al. [2000]
were the first proposing to combine feature modules and contracts, but they have not
investigated the combination. Agostinho et al. [2008] and Smaragdakis and Batory
[2002] argue that behavioral subtyping does not apply to mixin-like refinements. Our
experiences with case studies supports their general claim, but in most cases behavioral
subtyping is still applicable.

We started to investigate to use contracts for feature modules with the purpose of
product-line verification [Scholz et al., 2011; Thüm et al., 2011b]. However, the ver-
ification techniques required a contract-composition mechanism to compose feature-
oriented contracts into product specifications. Driven by the subject product lines, we

92 4. Feature-Oriented Contracts for Product-Line Specification

used cumulative contract refinement [Scholz et al., 2011] and contract overriding [Thüm
et al., 2011b]. With the insights of the previous section, we know that consecutive
contract refinement and explicit contract refinement should have been used instead.
Then, we proposed further contract-composition mechanisms and systematically dis-
cussed their advantages and disadvantages [Thüm et al., 2012]. As proof-of-concept
and to enable larger evaluations, we developed tool support for contract composition
in FeatureHouse and FeatureIDE [Benduhn, 2012; Proksch and Krüger, 2014;
Weigelt, 2013]. Based on explicit contract refinement, we proposed further verification
techniques [Meinicke, 2013; Thüm et al., 2013; Thüm et al., 2014; Thüm et al., 2012],
which we discuss in Chapter 5.

Contracts for Mixins

Mulet et al. [1995] were the first to discuss contracts in the context of metaobjects and
mixins. However, they seem to assume that the contracts of each metaobject have to
be established by all mixins, which is similar to plain contracting. Findler and Felleisen
[2002] apply contracts to higher-order functions. One example for such a higher-order
function could be a mixin, which consumes a class and produces a new class by adding
and refining methods. However, they do not discuss whether mixins may introduce
contracts or refine existing ones. Nevertheless, they propose dependent contracts which
could solve some problems with specification clones similar to pure-method refinement
and model-method refinement. Strickland and Felleisen [2010] extend this work by
proposing contract composition for first-class classes (a generalization of mixins and
traits) in the functional language Racket. The main difference to our work is a reverse
control of contracts: a mixin can decide whether it establishes behavioral subtyping with
respect to its superclass, whereas our keywords in feature-oriented contracts specify the
expected behavior of later feature modules. Their mechanism for contract composition
is similar to explicit contract refinement. However, instead of referring to the original
precondition and postcondition, they enable the reuse of complete contracts (i.e., even
those defined for other methods). Hence, as almost all of our contract refinements only
refine the postcondition, their approach would have required to completely clone the
precondition in each case. Strickland et al. [2013] provide a formal model, soundness
proofs, and an evaluation of contracts for first-class classes. Takikawa et al. [2012] use
contracts to implement a static type system for the dynamically-typed language Racket,
but do not discuss how contracts are composed for mixins.

Contracts in Delta-Oriented Programming

Contracts have also been proposed for delta-oriented programming, which is similar to
feature-oriented programming; delta modules are basically feature modules that can
also remove classes and members [Schaefer et al., 2010a]. Bruns et al. [2011] propose
a mechanism analog to contract overriding in feature modules, but also permit the
removal of contracts in delta modules. Damiani et al. [2012] define contracts similar
to explicit contract refinement. However, their contracts can reference preconditions
and postconditions of any other contract by means of uninterpreted assertions. These

4.6. Related Work 93

uninterpreted assertions can be seen as a generalization of keyword original, with which
only the contract being subject to refinement can be referenced. With the abstract be-
havioral specification (ABS) language, Hähnle and Schaefer [2012] propose cumulative
contract refinement for delta modules, whereas the composition is technically imple-
mented by means of a restricted form of explicit contract refinement. Hähnle et al.
[2013] propose a form of explicit contract refinement that supports to add, modify, and
remove preconditions, postconditions, assignable clauses, and specification cases. Ac-
cording to our evaluation results, a single contract-composition mechanism is usually
not sufficient and instead several mechanisms should be combined when specifying a
product line.

Contracts in Aspect-Oriented Programming

Aspect-oriented programming aims to modularize homogeneous cross-cutting concerns,
whereas feature-oriented programming focuses on heterogeneous cross-cutting concerns.
Nevertheless, the aspect-oriented around advice can be considered equivalent to feature-
oriented method refinement [Apel et al., 2008b]. Aspects have been specified by means of
contracts similar to plain contracting [Clifton, 2005; Clifton and Leavens, 2002; Lorenz
and Skotiniotis, 2005; Molderez and Janssens, 2015; Shinotsuka et al., 2006], contract
overriding [Agostinho et al., 2008; Lorenz and Skotiniotis, 2005; Wampler, 2007; Zhao
and Rinard, 2003], explicit contract refinement [Molderez and Janssens, 2015], and
conjunctive contract refinement [Clifton, 2005; Clifton and Leavens, 2002; Klaeren et al.,
2001; Rebêlo et al., 2013a]. Some of these approaches [Agostinho et al., 2008; Lorenz
and Skotiniotis, 2005; Molderez and Janssens, 2015; Zhao and Rinard, 2003] also check
the contracts of each method in a refinement chain and not only the contract for the
last method refinement as we do. In aspect-oriented programming, the considered
variability is typically limited to two products: the base application without aspects
and the base application with all aspects. As discussed above, all approaches applying
contract overriding [Agostinho et al., 2008; Lorenz and Skotiniotis, 2005; Wampler,
2007; Zhao and Rinard, 2003] suffer from the problem of specification clones.

Clifton and Leavens [2002] classify aspects into observers and assistants. An observer
(a.k.a. spectator [Clifton, 2005]) is supposed to adhere to contracts of methods it advises,
and thus is similar to plain contracting. In contrast, the specification of an assistant
is composed similar to conjunctive contract refinement. For assistants, the effective
assignable clause is the union of all assignable clauses defined for that method and its
pieces of advice, and the condition in the signals clause is composed by means of a
conjunction.

Zhao and Rinard [2003] specify AspectJ programs in Pipa and translate them into Java
programs with JML annotations. With Pipa, they introduce two new keywords to JML;
keyword proceeds indicates whether the advised method is executed or not, and keyword
then separates the contract of before advice from that of after advice. A difference with
respect to invariants is that their invariants defined in aspect specify the state of an
aspect only, whereas invariants in feature modules are added directly to classes.

94 4. Feature-Oriented Contracts for Product-Line Specification

Lorenz and Skotiniotis [2005] propose to check advice contracts by means of runtime
assertion checking. Similar to our mechanisms, they propose three categories of aspects
with an according runtime assertion strategy each: agnostic and obedient similar to
plain contracting and rebellious similar to contract overriding. The difference between
agnostic and obedient is that in an agnostic advice the precondition and postcondition of
the original contract are checked before and after the proceed call, respectively. Lorenz
and Skotiniotis [2005] discuss blame assignment not only for callers and callees, but for
the original method, the advice, and the aspect, whereas for obedient pieces of advice
the original method cannot be blamed. In rebellious pieces of advice, preconditions
may only be weakened and postconditions only be strengthened, which is also known
as the advice substitution principle [Agostinho et al., 2008; Molderez and Janssens,
2012; Wampler, 2007]. Wampler [2007] argues that most aspects adhere to the advice
substitution principle, which is supported by our empirical investigation on feature-
oriented contracts.

Molderez and Janssens [2012] propose ContractAJ, in which aspects have to adhere
to the advice substitution principle. However, in 2014, Molderez and Janssens [2015]
adapted ContractAJ to support two contract-composition mechanisms, which are simi-
lar to plain contracting and explicit contract refinement. To maintain modular reason-
ing, they propose to explicitly mention all pieces of advice that do not adhere to the
advice substition principle with keyword @advisedBy. Their keyword proc is similar to
keyword original and is actually the first time that previous contracts can be referenced
explicitly in aspect-oriented programming. However, a problem is that all pieces of ad-
vice not mentioned in @advisedBy clause are oblivious to each other, and thus they may
define a new contract but no other aspect can rely on it. In contrast, when composing
contracts with any of our mechanisms, callers can rely on changed contracts.

There are several further approaches combining contracts with aspect-oriented pro-
gramming [Griswold et al., 2006; Rebêlo et al., 2011, 2014; Rebêlo et al., 2013a; Rebêlo
et al., 2008; Rebêlo et al., 2013b, 2008]. However, these approaches consider contracts
as crosscutting concern that is modularized by means of aspects, which initiated a
controversial discussion [Balzer et al., 2006; Rebêlo et al., 2014].

Besides contracts, Katz [2006] proposes to distinguish categories of aspects that have
different temporal properties. First, spectative pieces of advice establish all temporal
properties of the base application except for next state properties. Second, regula-
tive pieces of advice establish only safety properties except for next state properties.
Roughly speaking, spectative corresponds to plain contracting and regulative is orthog-
onal to our contract-composition mechanisms. That is, while we focus on input-output
behavior only, one could extend our taxonomy and mechanisms to also preserve tem-
poral properties.

Contracts in Object-Oriented Programming

For object-oriented programming, several versions of behavioral subtyping and spec-
ification inheritance have been proposed [America, 1991; Dhara and Leavens, 1996;

4.6. Related Work 95

Findler et al., 2001; Hatcliff et al., 2012; Liskov and Wing, 1994; Meyer, 1988], whereas
newer versions are usually supposed to completely replace older ones. With cumulative
contract refinement and consecutive contract refinement, we discussed two mechanisms
being similar to behavioral subtyping as proposed by Meyer [1988] and specification in-
heritance as proposed by Dhara and Leavens [1996], respectively. For feature-oriented
contracts, our case studies revealed that consecutive contract refinement supersedes
cumulative contract refinement, which indicates that specification inheritance super-
sedes behavioral subtyping, too. The main difference to our work is that we allow
programmers to use several mechanisms, because consecutive contract refinement does
not apply to all feature-oriented contracts. Similarly, not all subclasses are necessarily
behavioral subtypes, which is especially challenging when specifying existing designs
posterior; either we cannot specify all properties of superclasses or we must change the
design. Thus, having the option to use several contract-composition mechanisms could
also be beneficial for object orientation. Interestingly, America [1991] has already pro-
posed to distinguish between inheritance for code reuse and actual behavioral subtypes,
but unfortunately his idea is not implemented in today’s behavioral interface specifi-
cation languages such as Eiffel, JML, and Spec#. Even if not establishing any of the
preservation properties discussed above, conjunctive contract refinement is also applied
to object orientation in the runtime assertion checker JMSAssert.10

The open-closed principle in object-oriented programming states that classes and meth-
ods should be open for extension, but closed for modification [Meyer, 1988]. As feature-
oriented programming is an extension of object-oriented programming, inheritance can
be used in feature modules to implement the open-closed principle. However, in our
experience, feature-oriented method refinement requires modification rather than ex-
tension in some cases. The discussed contract-composition mechanisms are all open
for extension using inheritance, but differ to the extent to which modifications using
method refinement are possible. While feature-oriented programming is permissive re-
garding modification, we found contract-composition mechanisms such as consecutive
contract refinement are useful to restrict possible modifications. Contract-composition
mechanisms can be used to adjust the degree of openness at a fine grain, such that some
methods are open for some modifications.

Product-Line Specification with Contracts

Several other researchers proposed product-line specification by means of contracts for
various applications, such as feature-model analysis [Bubel et al., 2010; Rhanoui and
Asri, 2014], analysis of service-oriented product lines [Lee et al., 2008] and multi product
lines [Schröter et al., 2013], as well as test generation for product lines [Bashardoust-
Tajali and Corriveau, 2008] and specification of non-functional properties [Rhanoui and
Asri, 2014]. However, they do not systematically discuss advantages and disadvantages
of mechanisms for specifying product lines by means of contracts.

For product-line development, Kästner et al. [2011a] distinguish between open-world
view and closed-world view. In a closed-world view, we know all feature modules when

10http://www.mmsindia.com/DBCForJava.html

http://www.mmsindia.com/DBCForJava.html

96 4. Feature-Oriented Contracts for Product-Line Specification

reasoning about them, whereas, in an open-world view, feature modules may be added
that are unknown. In an open-world view, we need to reason about a set of feature
modules without knowing all possible feature modules. In particular, Smaragdakis
and Batory [2002] argue that feature-oriented programming is difficult to use in open,
collaborative developments. However, our contract-composition mechanisms (e.g., con-
secutive contract refinement) may be used to facilitate reasoning for feature-oriented
programming even in an open-world view. That is, we can assign contract-composition
keywords to certain methods to enable modular reasoning.

4.7 Summary

The goal of this chapter was to systematically investigate how to specify product lines,
whereas the focus of our discussion lies on contracts and feature-oriented programming.
We argue that this focus enables the transfer of our results to more abstract specifi-
cation techniques and other techniques for product-line implementation. In particular,
key questions were how to specify contracts in feature modules and how to compose
contracts for method refinements.

We proposed a taxonomy for contract composition based on the caller view and callee
view as well as the original contract and the refining contract. We proved that, in
general, not all properties of two contracts can be preserved during composition. We
discussed six mechanisms for the composition of preconditions and postconditions. We
compared these mechanisms based on their preservation properties. Furthermore, we
explained how to extend each contract-composition mechanism for some advanced spec-
ification concepts beyond preconditions and postconditions.

We presented our tool support for contract composition and an empirical evaluation, in
which we specified 14 product lines by means of contracts and gained several insights:
First, the majority of contracts defined for product lines are not contained in all prod-
ucts (i.e., family-wide specification is not sufficient). Second, product-line specifications
can be given by specifying each feature module and usually even without derivative
modules (i.e., feature-based specification is sufficient). Third, most but not all method
refinements establish behavioral subtyping. Fourth, we identified that four of our six
mechanisms were superior to all other mechanisms for certain contract refinements,
and thus these four mechanisms should be used in concert. Fifth, fine-granular con-
tract refinements and alternative method introductions often cause specification clones.
Finally, most contract refinements only refine the postcondition while the precondition
remains unchanged.

Specifying the intended behavior of a product line is necessary for a variety of applica-
tions, such as formal verification, feature-interaction detection, and testing. How these
applications can be achieved by means of feature-oriented contracts is discussed in the
next chapter.

5. Feature-Oriented Contracts
for Product-Line Verification

This chapter shares material with the VAST’11 paper “Proof Compo-
sition for Deductive Verification of Software Product Lines” [Thüm et al.,
2011b], the FOSD’11 paper “Automatic Detection of Feature Interactions
using the Java Modeling Language: An Experience Report” [Scholz et al.,
2011], the GPCE’12 paper“Family-Based Deductive Verification of Software
Product Lines” [Thüm et al., 2012], the MASPEGHI’13 paper “Subclack:
Feature-Oriented Programming with Behavioral Feature Interfaces” [Thüm
et al., 2013], and the SPLC’14 paper “Potential Synergies of Theorem Prov-
ing and Model Checking for Software Product Lines” [Thüm et al., 2014].

In the previous chapter, we systematically discussed how to specify the intended behav-
ior of a product line by means of feature-oriented contracts. In this chapter, we show
how feature-oriented contracts can be utilized for product-line verification. Our focus
is on deductive verification techniques, because we identified it as underrepresented re-
search area (cf. Chapter 3). In particular, for the first time, we compose human-written
proof scripts by the same syntactic means as source code and specifications, as pre-
sented in Section 5.1. The decomposition of source code and specifications into feature
modules allows us to reduce the verification effort by providing proof scripts for feature
modules and to compose them for each product.

Furthermore, we found that there was not a single family-based approach for deductive
product-line verification prior to this thesis (cf. Section 3.6). We share our insights with
family-based theorem proving in Section 5.2. In addition, we exploit an advantage of
feature-oriented contracts over other specification techniques; feature-oriented contracts
enable us to apply several verification techniques to the very same product-line imple-
mentation and specification. We are the first to apply model checking to a product-line

98 5. Feature-Oriented Contracts for Product-Line Verification

specification in terms of contracts, and to empirically compare product-line theorem
proving and model checking.

In Section 5.3, we discuss further, preliminary results with respect to contract-based
product-line verification. In detail, we show how to detect syntax and composition prob-
lems for feature-oriented contracts. Then, we share our experiences of applying static
analyses to feature modules specified by means of feature-oriented contracts. Finally,
we discuss how to locate defect feature modules with behavioral feature interfaces.

5.1 Feature-Product-Based Theorem Proving

Compared to product-based analyses, the feature-product-based analysis strategy aims
to reduce the analysis effort by performing part of the analysis on features in isolation
and to reuse these results in the product-based part. In contrast to existing approaches
for feature-product-based theorem proving (cf. Section 3.5), we propose the first ap-
proach applying the principle of uniformity to machine-readable proof scripts. Batory
et al. [2004] introduced the principle of uniformity stating that all artifacts, such as
source code, documentation, specification, and test cases, should be generated in a sim-
ilar manner. That is, as feature modules and feature-oriented contracts are composed
by means of superimposition, we apply superimposition also to proof scripts – to which
we refer to as proof composition. In particular, proofs are modularized into feature
modules and are automatically composed based on a selection of features similar to
source code and contracts.

The underlying assumption of proof composition is that the creation of proof scripts is
way more expensive than only checking the correctness of an existing proof script. This
is the case especially for interactive theorem proving, in which proof scripts are created
by a human and then checked by a machine [Bertot and Castéran, 2004]. That proof
checking is easier than proof finding is also assumed for proof-carrying code [Necula,
1997] and in fact, proof composition can be seen as an instance of proof-carrying code.
Each feature module comes with a proof and these proofs can be checked after product
derivation and before product execution.

In Section 5.1.1, we give a brief introduction how interactive theorem proving can be
applied to individual products according to a product-based strategy. In Section 5.1.2,
we present proof composition for feature-product-based interactive theorem proving.
While our considerations are based on Why/Krakatoa [Filliâtre and Marché, 2007]
and Coq [Bertot and Castéran, 2004], we are confident that proof composition can also
be applied to other proof-obligation generators and proof assistants. In Section 5.1.3, we
share our insights of an empirical comparison between proof composition and product-
based interactive theorem proving.

5.1.1 Product-Based Interactive Theorem Proving

When using interactive theorem proving for software verification, a verification tool
is required to automatically generate proof obligations (i.e., theorems) for a given a

5.1. Feature-Product-Based Theorem Proving 99

1 class Account { feature module BankAccount
2 //@ invariant balance non negative: balance>=0;
3 int balance = 0;
4 //@ ensures balance == 0;
5 Account() {}
6 [...]
7 }
8 class Account { feature module DailyLimit
9 final static int DAILY LIMIT = −1000;

10 //@ invariant withdraw in limit: withdraw >= DAILY LIMIT;
11 int withdraw = 0;
12 [...]
13 }

Listing 5.1: Excerpt of product line BankAccount to illustrate proof composition.

program and its specification [Filliâtre and Marché, 2007]. These proof obligations are
then proven interactively by a human with several proof commands – to which we refer
to as proof script. The proof script is then checked for correctness by a further tool,
such as a proof assistant. Our examples and our evaluation are based on the verifica-
tion platform Why/Krakatoa [Filliâtre and Marché, 2007] and the proof assistant
Coq [Bertot and Castéran, 2004]. Why is a verification platform providing a language
for proof obligations. Krakatoa is a plug-in for Why that parses a JML-annotated
Java program and produces proof obligations in the Why language. Using Why, proof
obligations can be exported to several automated theorem provers and proof assistants.
We selected the proof assistant Coq, because of our expertise in theorem proving with
Coq from previous work [Kästner et al., 2012a; Thüm, 2010].

In the following, we illustrate proof composition using a tiny excerpt of product line
BankAccount (cf. Appendix A). We show two feature modules for features BankAc-
count and DailyLimit in Listing 5.1, which consist of one class fragment for class
Account each. In feature module BankAccount, field balance is introduced with invari-
ant balance non negative and a constructor is defined with a postcondition. Similarly,
the fields withdraw and DAILY LIMIT are introduced with invariant withdraw in limit in
feature module DailyLimit. Even though this example appears to be overly simplistic,
it already illustrates an interesting feature interaction: depending on whether feature
DailyLimit is selected or not, the constructor defined in feature module BankAccount
has to establish invariant withdraw in limit or not.

A proof obligation generated by Why typically consists of several premises and one
conclusion. A human is supposed to write proof commands to simplify and trans-
form the conclusion into formulas being equivalent to the premises. In Listing 5.2,
we give an example for the proof obligation that the constructor of class Account in
configuration {BankAccount} establishes all invariants. In particular, only invariant
balance non negative is available in this configuration. A separate proof obligation is

100 5. Feature-Oriented Contracts for Product-Line Verification

1 (∗Why goal∗) Lemma cons Account safety po 1 :
2 forall (this 1: (pointer Object)),
3 forall (Account balance: (memory Object int32)),
4 forall (Object alloc table:(alloc table Object)),
5 forall (HW 1: (valid struct Account this 1 0 0 Object alloc table)),
6 forall (result: int32),
7 forall (HW 2: (integer of int32 result) = 0),
8 forall (Account balance0: (memory Object int32)),
9 forall (HW 3: Account balance0 = (store Account balance this 1 result)),

10 (∗ JC 17 ∗) (balance non negative this 1 Account balance0).
11 Proof.
12 intuition.
13 unfold balance non negative.
14 replace Account balance0 with (store Account balance this 1 result).
15 rewrite select store eq; trivial.
16 omega.
17 Save.

Listing 5.2: Proof that constructor of class Account establishes invariants for
configuration {BankAccount} [Thüm et al., 2011b].

generated by Why stating that the constructor fulfills its postcondition, which is not
shown here.

The proof obligation in Listing 5.2 contains a name in Line 1, which is generated by
Why to identify the proof in case that we regenerate proof obligations after changing
the source code. Lines 2–9 show premises that can be used to prove the conclusion
in Line 10. For this proof obligation, we wrote the proof script surrounded by Proof
and Save, which has been checked with Coq v8.3. For our discussion of proof com-
position, it is not necessary to understand these proof commands in detail. Instead,
we refer interested readers to dedicated literature on interactive theorem proving with
Coq [Bertot and Castéran, 2004; Coq Development Team, 2010].

To illustrate our motivation to propose proof composition, we show the same proof
obligation for a different configuration in Listing 5.3. In this new configuration, the
features BankAccount and DailyLimit have been selected. Due to the similarity of the
source code and specification of both configurations, proof obligation and proof are quite
similar. However, there are three main differences. First, new premises were added at
the Lines 4 and 11–14 because of the new fields. Second, there is a new conclusion
to prove in Line 16 stating that invariant withdraw in limit is established. Third, the
Lines 23–28 contain new proof steps, which we wrote to prove the additional conclusion.

An unoptimized product-based strategy can be applied to interactive theorem proving
as follows. For each valid configuration, we compose selected feature modules including
their feature-oriented contracts. Then, we use Why/Krakatoa to generate proof
obligations and write proof scripts for each product individually. However, as our

5.1. Feature-Product-Based Theorem Proving 101

1 (∗Why goal∗) Lemma cons Account safety po 1 :
2 forall (this 3: (pointer Object)),
3 forall (Account balance: (memory Object int32)),
4 forall (Account withdraw: (memory Object int32)),
5 forall (Object alloc table:(alloc table Object)),
6 forall (HW 1: (valid struct Account this 3 0 0 Object alloc table)),
7 forall (result: int32),
8 forall (HW 2: (integer of int32 result) = 0),
9 forall (Account balance0: (memory Object int32)),

10 forall (HW 3: Account balance0 = (store Account balance this 3 result)),
11 forall (result0: int32),
12 forall (HW 4: (integer of int32 result0) = 0),
13 forall (Account withdraw0:(memory Object int32)),
14 forall (HW 5: Account withdraw0 = (store Account withdraw this 3 result0)),
15 (∗ JC 45 ∗) ((balance non negative this 3 Account balance0)
16 ∧ (withdraw in limit this 3 Account withdraw0)).
17 Proof.
18 intuition.
19 unfold balance non negative.
20 replace Account balance0 with (store Account balance this 3 result).
21 rewrite select store eq; trivial.
22 omega.
23 unfold withdraw in limit.
24 replace Account withdraw0 with (store Account withdraw this 3 result0).
25 rewrite select store eq; trivial.
26 replace (integer of int32 result0) with 0.
27 unfold Account DAILY LIMIT.
28 rewrite int32 coerce; omega.
29 Save.

Listing 5.3: Proof that constructor of class Account establishes invariants in
configuration {BankAccount, DailyLimit}, whereas major differences to Listing 5.2 are
highlighted [Thüm et al., 2011b].

previous example indicates, parts of proofs are identical for different products, leading
to redundant, human effort. In contrast, the idea of proof composition is to modularize
proof scripts with respect to features, and to compose them for a given configuration
together with feature modules and contracts.

5.1.2 Proof Composition for Interactive Theorem Proving

Proof composition has two main ingredients: partial proofs and their composition. A
partial proof consists of a name and a proof script. We give an example for partial
proofs of feature modules BankAccount and DailyLimit in Listing 5.4. The name is
necessary for two reasons. First, we use the name to know which partial proofs have to
be composed, similar to class and method names in feature modules. Second, the name

102 5. Feature-Oriented Contracts for Product-Line Verification

1 (∗Why goal∗) Lemma cons Account safety po 1 : feature module BankAccount
2 Proof.
3 intuition.
4 unfold balance non negative.
5 replace Account balance0 with (store Account balance this 1 result).
6 rewrite select store eq; trivial.
7 omega.
8 Save.

9 (∗Why goal∗) Lemma cons Account safety po 1 : feature module DailyLimit
10 Proof.
11 unfold withdraw in limit.
12 replace Account withdraw0 with (store Account withdraw this 3 result0).
13 rewrite select store eq; trivial.
14 replace (integer of int32 result0) with 0.
15 unfold Account DAILY LIMIT.
16 rewrite int32 coerce; omega.
17 Save.

Listing 5.4: Partial proofs that constructor of class Account establishes invariants.

is needed by Why to identify where the proof obligation need to be generated (i.e.,
which proof obligation belongs to which composed proof). Partial proofs are composed
by concatenating their proof scripts in the same order as defined for the feature modules.
Then, Why is used to generate the according proof obligation. The conceptual result
of composing these partial proofs and calling Why is shown in Listing 5.3.

With partial proofs, we exploit Why’s support for software evolution. Given that we
generated proof obligations and wrote proofs for a given program, we may want to
change the program and verify it again. In this case, Why makes sure that existing
proofs remain untouched while proof obligations are updated according to the program
changes. For our partial proofs, Why identifies proofs by their name and generates the
required proof obligations.

A central question is whether simple concatenation of partial proofs is sufficient for
refinements of feature modules and feature-oriented contracts. To investigate this ques-
tion, we systematically discuss all possible cases of refinements that may belong to a
single feature. For each case, we consider corresponding changes to proof obligations.
Then, we discuss the consequences of these changes to proof obligations to the proof
script. In our discussion, we abstract from technical issues, which we discuss afterward.
In detail, we distinguish between the following, typical refinements of feature modules:

• Adding a new field. We get no new proof obligations for any class. A new premise
that represents the initialization of the field is added to the proof obligations for
constructors (cf. Case 2 below).

5.1. Feature-Product-Based Theorem Proving 103

• Adding a new invariant. We need to prove for every method and constructor
of the class that the invariant is fulfilled after execution. This changes proof
obligations concerning constructors and existing methods (Case 3). New proof
obligations are generated in case there were no invariants before (Case 1).

• Adding a new method with or without a contract. No existing proof obligations are
changed. However, if the class contains invariants or if the method has a contract,
we get new proof obligations that the method fulfills the existing invariants or the
newly added contract (Case 1).

• Refining a method with consecutive contract refinement. No existing proof obliga-
tions are changed, because we only allow to refine a method according to consec-
utive contract refinement. We get new proof obligations to show that the refined
method fulfills the existing invariants and the contract refinement (Case 1).

We assume that all contract refinements are defined by means of consecutive contract
refinement to increase the potential of proof reuse. In case of arbitrary contract refine-
ments, we would need to adapt all those proof scripts relying on the original contract
(i.e., the contract that is subject to the refinement). In the worst case, it could mean
that not a single proof can be reused. However, it is out of our scope to evaluate the
reuse potential beyond consecutive contract refinement and a possible target for future
work. We refer interested readers to related work on abstract contracts with similar
goals [Bubel et al., 2014].

These four changes to feature modules induce changes to proof obligations that can
be classified into the following three cases. For each change of proof obligations, we
elaborate on the consequent changes to proof scripts:

Case 1 New proof obligations. For every newly created proof obligation, we can write
a new partial proof for the new feature. Proof composition simply copies it to
the proof of the composed program.

Case 2 New premises at proof obligations. A new premise does not imply a change to
the proof steps.

Case 3 New cases at proof obligations. The changed proof obligations contain a new
conclusion for which we need additional proof steps at the end of the proof.
This can be achieved as illustrated in Listing 5.3 and Listing 5.4 (i.e., creating
a new partial proof including these additional proof steps). Proof composition
will concatenate the partial proofs according to the selection of features.

Technical Issues of Proof Composition

The previous case distinction shows that proof composition is generally possible. Next,
we want to discuss some technical problems we faced with Why/Krakatoa and give
suggestions for solutions.

104 5. Feature-Oriented Contracts for Product-Line Verification

First, whenever composing a module introducing an invariant, it should be added below
all other invariants. This ordering simplifies proof composition, since new cases always
appear at the end of proof obligations and new proof steps can always be added below
existing proof steps. For example, when composing the feature modules shown in
Listing 5.1, the invariants of feature DailyLimit should be added below the invariants
of feature BankAccount.

Second, Why and Krakatoa generate names for premises, assignments, nested ex-
pressions, and for the current object. These names are needed to reference these entities
in proof steps. The problem is that name generation is very fragile in terms of changes
to the source code. For example, variable this 1 in Listing 5.2 is named this 3 in List-
ing 5.3. That is, it depends on the feature selection and the reference in the partial
proof for feature BankAccount in Listing 5.4 has to be renamed during composition.
We suggest to minimize references to generated names, which is possible to a certain
degree. Remaining references can mostly be updated automatically based on the gen-
erated proof obligation.

Third, during feature-module composition, refined methods are usually renamed and
the keyword original is replaced by a call to that renamed method [Apel et al., 2013b].
Since the name of a proof obligation is generated using a method’s name, we also
need to rename the partial proofs, such that they still match to the proof obligation.
Fortunately, the renaming of methods is predictable and renaming partial proofs can
be done automatically when composing proofs.

Finally, Why requires all proof obligations to be alphabetically ordered. However,
proof composition can easily take the order into account when composing partial proofs.
Alternatively, a postprocessing step after composition could order all proofs.

5.1.3 Evaluation with Why/Krakatoa and Coq

The practicability of proof composition is not yet clear from our previous discussions.
One open question is whether it actually saves proof effort compared to product-based
interactive theorem proving. Another questions is whether the above discussed cases
are sufficient and how proof composition can deal with feature interactions. We aim
to answer these questions by verifying a small version of the product line BankAccount
with five features and 12 program variants (cf. Appendix A). Verifying larger or several
product lines was not feasible in the course of this thesis, as formal verification with
Coq already requires heavy user interaction even for small programs.

We created hand-written partial proofs for every feature module, in which we omitted
the proof obligation including all premises and the conclusion. Then, we generated every
program variant including its specification in JML and composed the partial proofs of
the features included in the configuration. We used Krakatoa and Why to generate
the proof obligations into our composed proofs and checked the correctness of the proofs
using Coq for all 12 program variants.

As proof composition is based on interactive theorem proving, measuring the time for
proof checking does not seem valid for evaluation. Indeed, proof composition does

5.1. Feature-Product-Based Theorem Proving 105

1 (1) 2 (2) 3 (3) 4 (6) 5 (12)
0

200

400

600

800

1,000

1,200

38
80 90 95

145

38
118

208

431

1,158

Number of features (products)

LOP feature-product-based
LOP product-based

Figure 5.1: Lines of proof for proof composition and product-based theorem proving.

not simplify proof checking at all; still each program of the product line needs to be
generated to check the validity of the proofs. Additionally, the time to check proofs
is negligible compared to the time a human being needs to come up with the proof
script. Hence, we estimate the effort for writing partial proofs for each feature and
compare it with the effort of writing proofs for each program variant. We assume that
the effort for proof writing is related to the number of proof steps, and so we introduce
the measure lines of proof (LOP) that counts the number of proof steps, in analogy to
the measure lines of code. For example, the LOP for Listing 5.2 and Listing 5.3 are 5
and 11, respectively.

In Figure 5.1, we show the measure LOP of all partial proofs and compare it with the
LOP of all program variants. In particular, we wrote partial proofs for all five feature
modules, which sum up to 145 LOP. In contrast, the result of composing these partial
proofs for each program variant results in a total of 1,158 LOP. That is, proof compo-
sition reduces the LOP by 88 %. To illustrate the scalability of proof composition even
with our small product line, we decided to measure both values also when removing
some of the features, leading us to product lines with one, two, three, four, and five
features. The diagram illustrates that we can already save proof effort for two products
and that the potential to reuse proofs increases with the number of features and prod-
ucts. For an overview on the reuse potential for each feature, we refer to the original
publication on proof composition [Thüm et al., 2011b], in which we also discuss when
derivative modules are required due to feature interactions.

Discussion and Experiences

Using proof composition, we were able to save time in verifying the correctness of all
program variants in our case study. In order to generalize these results, further case

106 5. Feature-Oriented Contracts for Product-Line Verification

studies are needed. Case studies may evaluate the potential of proof composition for
other domains or larger code bases. In particular, it is unclear whether proof composi-
tion can generate proofs automatically for all program variants in practice. Problems
can arise with feature interactions (i.e., we need to prove something only if two features
are contained in the same configuration).

Our approach is designed for languages and tools that rely on superimposition [Apel
et al., 2013b], which raises the question of whether proof composition can be used
with other product-line implementation techniques such as delta-oriented program-
ming [Schaefer et al., 2010a] or preprocessors [Liebig et al., 2010]. For delta-oriented
programming, we would further need to be able to remove proofs or parts of proofs
(e.g., if we remove a field including its class invariant). Hence, a mechanism would be
required to refer to parts of proofs. When implementing product lines using preproces-
sors, we could imagine that preprocessor macros are used in proof documents as well.
Proof composition seems to fit well in this scenario and even easier than with feature
modules, as methods are not renamed.

We discovered several technical problems using Krakatoa and Why, but we assume that
similar problems will arise for other verification tools. The reason is, that we need to
refer to assignments, expressions, and instances in proofs for which names have to be
generated. These generated names may change when adding new members to a class.

Nevertheless, we have doubts on the practicability of proof composition for three rea-
sons. First, the question is how to come up with partial proofs. The tool support by a
proof assistant such as Coq is crucial for interactive theorem proving, but it cannot deal
with partial proofs. For our evaluation, we interactively proved the program variant
with all features and decomposed this proof into features, which could get complicated
for larger product lines. Second, a rather technical issue is that the generator of proof
obligations and the composition tool for proofs highly depend on each other. That is,
changes to one tool will most probably also require changes to the other tool, which
could turn out infeasible in practice. Finally, consecutive contract refinement is not ap-
plicable to a considerable amount of contract refinements (cf. Section 4.5) and arbitrary
contract refinements are likely to reduce the proof reuse with proof composition.

5.2 Family-Based Theorem Proving and Model

Checking

We present how to verify product lines with feature-oriented contracts by means of
family-based analyses with two advantages over proof composition. First, contract
refinements do not need to be expressed with consecutive contract refinement. In-
stead, our approach is based on explicit contract refinement, which does not require
feature modules to apply behavioral subtyping (cf. Section 4.5). Second, we avoid the
generation of products and their redundant analysis during proof checking (i.e., the
product-based phase of proof composition).

5.2. Family-Based Theorem Proving and Model Checking 107

As discussed in Section 3.3, family-based analysis can be implemented by making anal-
yses for single systems variability-aware or by transforming compile-time into runtime
variability. We focus on the latter, which is known as configuration lifting [Post and
Sinz, 2008] or variability encoding [Apel et al., 2013d], because existing analysis tools
can be reused as-is. The novelty of our approach is that we are the first to extend
variability encoding for specifications (i.e., contracts). Furthermore, we use variability
encoding to scale theorem proving and model checking to product lines according to the
open research challenges identified in our survey (cf. Section 3.3). For theorem proving,
we present the first approach pursuing a family-based strategy. For product-line model
checking, contracts have not yet been used for specification.

Applying variability encoding to feature-oriented contracts enables an empirical com-
parison of family-based theorem proving and model checking. Such a comparison has
not yet been performed for product lines, but can expose whether one verification tech-
nique is superior for earlier or later stages in the development process. That is, efficiency
and effectiveness may be influenced by the number of defects in the product line. How-
ever, existing evaluations of product-line verification techniques have either verified a
product line with [Apel et al., 2011, 2013d; Classen et al., 2011] or without [Bodden
et al., 2013; Brabrand et al., 2013; Liebig et al., 2013; Post and Sinz, 2008; Thüm et al.,
2011b] defects, or have not compared these verification times [Kästner et al., 2012a,c;
Kolesnikov et al., 2013; Thaker et al., 2007]. We consider the number of defects as
independent variable and introduce artificial defects by means of mutation techniques
as known from mutation testing [Jia and Harman, 2011].

In Section 5.2.1, we illustrate how to transform compile-time into runtime variability
by means of variability encoding. In particular, we apply variability encoding to feature
models, feature modules, and feature-oriented contracts. In Section 5.2.2, we present
our tool support to automate variability encoding and the tool chains for family-based
theorem proving and model checking. Finally, we share the results of our evaluation in
Section 5.2.3.

5.2.1 Variability Encoding for Metaproduct Generation

Variability encoding is the process of transforming a product-line’s compile-time vari-
ability into runtime variability with the purpose of reusing analyses from single-system
engineering [Apel et al., 2013d]. Variability encoding takes several artifacts of the prod-
uct line as input. First, the feature model is encoded to make sure that only valid feature
combinations are considered during analysis. Second, the product-line implementation
(i.e., feature modules) is transformed into runtime variability. Finally, a step that we
introduce in this thesis is to also encode the product-line specification (i.e., feature-
oriented contracts). The result of variability encoding is a metaproduct consisting of
a metaprogram simulating all program variants and a metaspecification simulating all
product specifications. Both, metaprogram and metaspecification are ideally expressed
in existing programming and specification languages from single-system engineering, to
enable the reuse of existing tools for analysis.

108 5. Feature-Oriented Contracts for Product-Line Verification

BankAccount

DailyLimit Interest

InterestEstimation

Overdraft Logging

TransactionLog

CreditWorthiness Lock

Transaction

Legend:

Optional

Logging ∧ Transaction ⇔ TransactionLog

Figure 5.2: Feature model for bank account software [Thüm et al., 2014].

Variability Encoding for Feature Models

The feature model is encoded into the metaproduct to simulate exactly those feature
selections that are valid. A boolean class variable is created for each feature, whereas
the variable assignment true indicates that the feature is selected and false that it is
not. Verification tools are configured to treat those feature variables as not initialized
to consider all combinations. The dependencies between features are translated into
a propositional formula into the host language (e.g., Java in our case). The transla-
tion of feature models into propositional formulas is well-known [Batory, 2005; Thüm
et al., 2011a]. This formula is then used to prohibit any execution of non-valid feature
selections.

In Java, the point where the program starts may not be unique. For example, a Java
program may have several main methods in different classes. Alternatively, we may also
want to verify a Java library and basically every static method or constructor may be the
entry point of the program. Our solution is to use Java’s class loading for initialization
of feature variables. We add a class called FeatureModel containing all feature variables.
When this class is accessed for the first time, the class is loaded and random values are
assigned to each feature variable, to make sure that the values are arbitrary. Another
option would be to prompt the user for providing values. Hence, verification tools
cannot rely on particular values and all feature combinations are verified.

Example 5.1. In Figure 5.2, we give an example feature model for a variable bank
account software that we use to illustrate variability encoding. In Listing 5.5, we show a
class that encodes the bank account feature model. Feature variables are modeled as static
fields and initialized in a static constructor using random values. The dependencies
between features are modeled using a propositional formula (cf. Section 2.2.1), which
is encoded as a Java expression (Lines 11–13). If the random initialization is invalid
according to the feature model, the program is terminated to avoid verification of invalid
feature combinations (Line 8). If the initialization is valid, we can assume the feature
model as an invariant, because the feature variables are declared as final (Line 2).

Variability Encoding for Feature Modules

Based on variability encoding of the feature model, we discuss how to compose feature
modules into the metaproduct. Compared to the generation of products from feature

5.2. Family-Based Theorem Proving and Model Checking 109

1 class FeatureModel { metaproduct
2 //@ static invariant fm();
3 final static boolean bankAccount, dailyLimit, interest, interestEstimation,
4 overdraft, logging, transactionLog, creditWorthiness, lock, transaction;
5 static {
6 bankAccount = random();
7 //initialization of other variables
8 if (!fm()) System.exit(1);
9 }

10 /∗@ pure @∗/ static boolean fm() {
11 return bankAccount && (!(dailyLimit || interest || overdraft || logging
12 || creditWorthiness || lock) || bankAccount) && (!interestEstimation || interest)
13 && (!transactionLog || logging) && (!transaction || lock);
14 }
15 static boolean random() { return Math.random() < 0.5; }
16 }

Listing 5.5: Variability encoding of the feature model given in Figure 5.2 (adapted from
[Thüm et al., 2012]).

modules, variability encoding of feature modules has two differences. First, whereas a
configuration is taken as input for product generation, variability encoding is used to
compose all feature modules instead of a selection. Second, the composition of feature
modules is based on feature variables to simulate the behavior of all products. That is,
branching statements are added to switch between different implementations depending
on the configuration at runtime.

The transformation of feature modules into a metaproduct (a.k.a. product simulator)
was proposed by Apel et al. [2011], which we adapt for our purpose. All feature modules
of the product line are composed by merging class introductions with their respective
class refinements. The crucial case is how to handle method refinements, because the
method body of a method and its refinements depend on the configuration. In a nutshell,
we generate a distinct method for every method introduction and method refinement,
where methods that are subject to refinement are renamed to distinguish them in the
resulting metaproduct. At the beginning of each method refinement, we add a branching
statement to check at runtime, whether the corresponding feature of the refinement
is selected or not. If the feature is selected, we continue with the implementation
introduced by this feature, and if not, we call the original method (i.e., the previous
method refinement or the method introduction). Similarly, variability encoding can be
applied to constructors and fields. We refer interested readers to a dedicated bachelor’s
thesis [Meinicke, 2013].

Example 5.2. We illustrate variability encoding of feature modules by means of our
running example. In Listing 5.6, we show excerpts of three feature modules of product
line BankAccount (ignore feature-oriented contracts for now). Feature module BankAc-
count introduces class Account with a method and two fields. In our excerpt, feature

110 5. Feature-Oriented Contracts for Product-Line Verification

1 class Account { feature module BankAccount
2 final static int OVERDRAFT LIMIT = 0;
3 //@ invariant balance >= OVERDRAFT LIMIT;
4 int balance = 0;
5 /∗@ ensures (!\result ==> balance == \old(balance))
6 @ && (\result ==> balance == \old(balance) + x); @∗/
7 boolean update(int x) {
8 int newBalance = balance + x;
9 if (newBalance < OVERDRAFT LIMIT) return false;

10 balance = newBalance;
11 return true;
12 }
13 }
14 class Account { feature module Overdraft
15 final static int OVERDRAFT LIMIT = −5000;
16 }
17 class Account { feature module DailyLimit
18 final static int DAILY LIMIT = −1000;
19 //@ invariant withdraw >= DAILY LIMIT;
20 int withdraw = 0;
21 /∗@ ensures \original && (!\result ==> withdraw == \old(withdraw))
22 @ && (\result ==> withdraw<=\old(withdraw)); @∗/
23 boolean update(int x) {
24 int newWithdraw = withdraw;
25 if (x < 0) { newWithdraw += x; if (newWithdraw < DAILY LIMIT) return false; }
26 if (!original(x)) return false;
27 withdraw = newWithdraw;
28 return true;
29 }
30 }

Listing 5.6: Class Account with feature-oriented contracts and two class refinements
(adapted from [Thüm et al., 2012]).

module Overdraft only refines the value of a field, and feature module DailyLimit refines
method update and adds two fields to class Account. The result of applying variability
encoding to these three feature modules is shown in Listing 5.7. In the metaproduct, class
Account contains the fields balance, withdraw, OVERDRAFT LIMIT, and DAILY LIMIT,
as defined in the respective feature modules. Method update, defined in feature module
BankAccount, is renamed to update$$BankAccount (Lines 7–12). In the refinement of
method update (Lines 24–31), defined originally in feature module DailyLimit, a new
branching statement is added as first statement. If feature DailyLimit is not selected,
the original method is called and then the method returns. Otherwise, the method is
executed as defined in feature module DailyLimit.

5.2. Family-Based Theorem Proving and Model Checking 111

1 class Account { metaproduct
2 final static int OVERDRAFT LIMIT = FeatureModel.overdraft ? −5000 : 0;
3 //@ invariant balance >= OVERDRAFT LIMIT;
4 int balance = 0;
5 /∗@ ensures (!\result ==> balance == \old(balance))
6 @ && (\result ==> balance == \old(balance) + x); @∗/
7 boolean /∗@ helper @∗/ update$$BankAccount(int x) {
8 int newBalance = balance + x;
9 if (newBalance < OVERDRAFT LIMIT) return false;

10 balance = newBalance;
11 return true;
12 }
13 final static int DAILY LIMIT = −1000;
14 //@ invariant FeatureModel.dailyLimit ==> withdraw >= DAILY LIMIT;
15 int withdraw = 0;
16 /∗@ ensures !FeatureModel.dailyLimit==>
17 @ (!\result ==> balance == \old(balance))
18 @ && (\result ==> balance == \old(balance)+x);
19 @ ensures FeatureModel.dailyLimit ==>
20 @ ((!\result ==> balance == \old(balance))
21 @ && (\result ==> balance == \old(balance)+x))
22 @ && (!\result ==> withdraw == \old(withdraw))
23 @ && (\result ==> withdraw <= \old(withdraw)); @∗/
24 boolean update(int x) {
25 if (!FeatureModel.dailyLimit) return update$$BankAccount(x);
26 int newWithdraw = withdraw;
27 if (x < 0) { newWithdraw += x; if (newWithdraw < DAILY LIMIT) return false; }
28 if (!update$$BankAccount(x)) return false;
29 withdraw = newWithdraw;
30 return true;
31 }
32 }

Listing 5.7: Metaproduct for class Account as defined in Listing 5.6 [Thüm et al., 2012].

Similarly to Kästner et al. [2012a], we assume type uniformity for all feature modules.
That is, (a) all valid combinations of feature modules are well-typed and (b) the com-
position of all feature modules is well-typed. The first condition is necessary as only
well-typed programs can be verified. The second condition is necessary as mutually
exclusive features may introduce incompatible classes or class refinements, which may
cause type errors in the metaproduct. For example, two mutually exclusive feature
modules may introduce a field to a certain class with the same name but of incompati-
ble types. In this case, the metaproduct is ill-typed, even though every valid product is
well-typed. The problem can be solved by renaming based on a variability-aware type
system [Apel et al., 2010a]. However, mutually exclusive features introducing incom-

112 5. Feature-Oriented Contracts for Product-Line Verification

patible types are rare in feature-oriented product lines [Apel et al., 2013b], and did not
occur in our evaluation.

Furthermore, we assume that there is no name shadowing in the resulting metaproduct.
Name shadowing can occur when a field of a class has the same name as a local variable
(lexical shadowing) or if a field is defined in a class and its superclass (inheritance-based
shadowing). For an example consider Listing 5.6 again: if method update in feature
module BankAccount would declare a local variable balance, then the statement in
Line 10 would access the local variable instead of field balance. With name shadowing, a
certain statement can have different meanings depending on the configuration, but only
one meaning in the metaproduct. That is, the metaproduct does not cover the behavior
of all products. Fortunately, name shadowing can be detected statically. Nevertheless,
it is out of our scope to handle name shadowing in metaproducts correctly.

Variability Encoding for Feature-Oriented Contracts

With variability encoding of the feature model and all feature modules, we can generate
a metaprogram that simulates the actual behavior of all products. As we want to verify
a product line with respect to its feature-oriented contracts, we need to apply variability
encoding to feature-oriented contracts, too. The result is a metaspecification describing
the intended behavior of all products. We propose a composition of feature-oriented
contracts resulting the metaprogram specified by means of contracts, such that existing
tools for contract-based verification can be reused for the metaproduct.

Contracts and invariants are encoded into the metaspecification by introducing implica-
tions with feature variables. Each precondition and postcondition (for short condition)
c defined in a feature f is rewritten as f ⇒ c to ensure that the condition is checked
only if feature f is selected. Similar to the encoding of feature modules (cf. Line 25 in
Listing 5.7), we need to specify the behavior if f is not selected. Given the previous
condition c′ in the refinement chain, we also add the condition ¬f ⇒ c′. As invariants
do not need to be refined (cf. Section 4.3.4 and Section 4.5), it is sufficient to rewrite
each invariant i in feature f as f ⇒ i. A simple optimization is to keep each specifi-
cation as-is that is specified in a core feature (i.e., a feature that is included in every
product), because its specification must be fulfilled by every product.

Beyond these implications, we need to replace all occurrences of keyword original in
the contracts to reuse existing verification tools from single-system engineering. We
replace every occurrence of original by the previous precondition or postcondition in
the refinement chain. The order of replacement is important; it is necessary to start
with method introductions and then to continue with every method refinement in the
refinement chain to successfully remove all occurrences of the keyword.

Example 5.3. The metaproduct shown in Listing 5.7 already contains a metaspecifica-
tion. The invariant from feature module DailyLimit is transformed into an implication
stating that it is established only if feature DailyLimit is selected (Line 14). In contrast,
the invariant from feature module BankAccount is not transformed into an implication,

5.2. Family-Based Theorem Proving and Model Checking 113

because feature BankAccount is a core feature and its specification must be fulfilled by
all products (Line 3). For the same reason, the contract of the method introduction
update is copied as-is to update$$BankAccount. The only change to the contract is that
this method is annotated with the keyword helper to indicate that it does not need to ful-
fill class invariants. Note that all renamed methods must be marked as helper methods,
because they are not intended to fulfill all class invariants (a detailed discussion follows
in Section 5.3.3).

The transformation for the contract of method refinement update, defined in feature
module DailyLimit, is more complex. We generate two postconditions stating the be-
havior for products containing the feature DailyLimit and those not containing it. If
feature DailyLimit is not selected, the method guarantees the original postcondition as
defined in feature module BankAccount. Hence, we copy the postcondition from method
update$$BankAccount (Lines 16–18). Otherwise, if feature DailyLimit is selected, the
method guarantees the contract as defined in feature module DailyLimit, in which we
need to replace keyword original by the postcondition from method update$$BankAccount
(Lines 19–23).

5.2.2 Tool Support for Variability Encoding

With this thesis, we overcome limitations of existing tool support for variability en-
coding and family-based verification. Post and Sinz [2008] have proposed variability
encoding, but manually assembled metaproducts, which is laborious and error-prone.
Apel et al. [2011] presented the first tool support for variability encoding, which has
been used also in later research projects [Apel et al., 2013d; Kästner et al., 2012c]. Their
implementation of variability encoding is based on FeatureHouse [Apel et al., 2013b]
and available for feature modules in Java and C. However, this functionality was only
available in the command-line interface of FeatureHouse and did not support vari-
ability encoding of contracts. Furthermore, there was no tool support for family-based
theorem proving and family-based model checking with contracts, as we identified in
our survey on analysis tools [Meinicke et al., 2014].1

We extended variability encoding in FeatureHouse for the composition of feature-
oriented contracts into a metaspecification. We have chosen FeatureHouse for two
reasons. First, we already implemented the composition of feature-oriented contracts
into product specifications in FeatureHouse (cf. Section 4.4.1). Second, variability
encoding of feature models and feature modules was already supported by Feature-
House. Our extension is available in the master of the FeatureHouse repository.2

In line with our integration of FeatureHouse into FeatureIDE (cf. Section 4.4.2),
we extended the user interface of FeatureIDE to make variability encoding avail-
able in Eclipse. We illustrate the interplay of FeatureIDE and FeatureHouse
in Figure 5.3. FeatureIDE passes feature modules and feature-oriented contracts

1http://fosd.de/tools
2https://github.com/joliebig/featurehouse

http://fosd.de/tools
https://github.com/joliebig/featurehouse

114 5. Feature-Oriented Contracts for Product-Line Verification

FeatureIDE FeatureHouse

product

meta-
product

OpenJML

JPF

KeY

J
a
v
a

+
J
M

L

feature-oriented
Java + JML

configuration

feature model

Java byte code

errors

warnings

Figure 5.3: Product-line verification with feature-oriented contracts in the FeatureIDE
framework [Thüm et al., 2014].

into FeatureHouse. In addition, the configuration is passed for product genera-
tion and the feature model for metaproduct generation. In each case, the output is
a JML-annotated Java program (cf. Section 2.1.1), which can, in principle, be pro-
cessed and verified by means of any existing JML tool. However, different verification
techniques can require small adaptations of the metaproduct generation, as outlined
elsewhere [Meinicke, 2013; Thüm et al., 2014]. Nevertheless, we were able to reuse the
theorem prover KeY [Ahrendt et al., 2014; Beckert et al., 2007] and the software model
checker JPF [Havelund and Pressburger, 2000] as-is for product-line verification. As
JPF has no built-in support for contracts, we use OpenJML [Cok, 2011] to translate
contracts of the metaproduct into runtime assertions before model checking.

Our extension of FeatureIDE enables the user to switch between product gener-
ation and metaproduct generation by means of a context menu in the Package Ex-
plorer. While error propagation was available for product generation before [Thüm
et al., 2014b], we implemented error propagation for the metaproduct. That is, if any
analysis tool, such as a compiler or verification tool, finds a defect in the metaproduct,
it will create an error marker in the metaproduct (i.e., in generated code). With error
propagation, we refer to the process of identifying the initial location in one of the
feature modules that lead to the error in the metaproduct. We integrated our extension
of FeatureIDE into the master of the FeatureIDE repository.3

3https://github.com/tthuem/FeatureIDE

https://github.com/tthuem/FeatureIDE

5.2. Family-Based Theorem Proving and Model Checking 115

5.2.3 Evaluation with Theorem Proving and Model Checking

Given our tool support in FeatureIDE, it is possible to implement feature modules,
specify feature-oriented contracts, and verify them using theorem proving and model
checking by means of variability encoding. This gives rise to a number of questions.
What are the benefits of combining theorem proving and model checking? Which
verification technique is a programmer supposed to use when? How do the verification
techniques scale depending on the number of features or defects? In the following, we
describe our experiment to explore potential synergies of combining techniques, the
results of the experiment, and threats to validity. We refer interested readers to our
website containing screencasts, source code, and raw data for reproduction purposes.4

Experiment Subjects and Set-Up

In our experiment, we use product line BankAccount (cf. Appendix A), which we com-
pletely verified with KeY and JPF. In contrast to the tool support described above, we
use MonKeY [Thüm et al., 2012], an extension of KeY that we created to provide a batch
mode for automatic verification. For model checking, we use JPF-BDD [Apel et al.,
2013d], an extension of JPF for product-line verification that symbolically encodes
feature variables in a binary decision diagram for better performance. We deliberately
introduced defects by means of mutations in feature modules and feature-oriented con-
tracts, respectively. The goal of mutations is to simulate different phases of development
(i.e., mature and less mature product lines). We measured the verification time and
effectiveness of KeY and JPF for the product line containing no defects, some defects,
and many defects.

Compared to Section 5.1.2, we extended product line BankAccount by four new fea-
tures, to ten features overall [Meinicke, 2013; Thüm et al., 2014]. The feature model
of the product line has already been presented in Figure 5.2, and a simplified version
of three feature modules and their contracts have been shown in Listing 5.6. Overall,
the product line consists of four classes, ten class refinements, 17 unique methods with
a contract each, six class invariants, eight method refinements, and six contract refine-
ments. Quantifiers and model methods were not necessary for specifying product line
BankAccount. The test scenarios that are necessary for software model checking [Thüm
et al., 2014] are composed along with the feature modules and achieve a method cover-
age of 100.0 %, an instruction coverage of 91.6 %, and a branch coverage of 72.2 % for
the largest product. Based on this product line, we simulate different product-line sizes
by successively removing existing features. The resulting product lines have between 2
and 10 features (2, 4, 6, 12, 24, 36, 36, 72, and 144 products).

While the goal of product-line verification is a defect-free product line, verification tools
are used to detect defects on the way towards a verified product line. Consequently,
an interesting characteristic for evaluating verification techniques is how they perform
for product lines containing many, some, or no defects. While extending the bank ac-
count product line, we introduced defects, but they are too few to make any general

4http://fosd.de/spl-contracts

http://fosd.de/spl-contracts

116 5. Feature-Oriented Contracts for Product-Line Verification

Source/Target Target/Source In Java In JML Sum

false true 27 1 27
* / 12 0 12
- + 7 8 15

+= -= 4 0 4
< <= 7 5 12
> >= 1 12 13

&& || 0 11 11
==> <==> 0 27 27
== != 0 37 37

Sum 58 101 159

Table 5.1: Mutations applied to feature modules and feature-oriented contracts of prod-
uct line BankAccount [Thüm et al., 2014].

statements. Hence, we decided to automatically introduce defects as known from mu-
tation testing [Jia and Harman, 2011]. We mutate feature modules before variability
encoding to simulate realistic defects. Table 5.1 shows the considered mutation oper-
ators as well as the number of occurrences for our product line. These operators are
typical for mutation testing [Jia and Harman, 2011]. As common in mutation testing,
we use string replacements, as they are applicable to feature modules and contracts.
With regular expressions, we identified possible positions for mutations and randomly
selected mutations in our experiment.

We computed all experiments on a lab computer with Intel Core i5 CPU with 3.33 GHz,
8 GB RAM, and Windows 7. In all runs, we measured the time for verification with
KeY and JPF. We created separate runs for no defects, one defect, and so on, until
reaching ten defects, whereas each run was repeated 20 times with different, randomized
mutations each to avoid computation bias and bias due to mutations. We stopped both
tools after the first defect had been identified, because this time is more critical for
developers than the overall verification time; a developer can investigate the first defect
already and need to start verification again after fixing the defect anyway. In particular,
we stopped KeY if a proof obligation could not be proven automatically. In general,
an open proof obligation does not necessarily indicate a defect; the proof obligation
may require user interaction. However, we inspected all open proof obligations for each
single mutation and they all indicate a defect.

Effectiveness

We measured effectiveness as how often a verifier finds at least one defect, independent
of whether the product line contains one, two, or more defects. In particular, we consider
a verifier as effective, even if it finds less defects than the product line contains. The
rational behind this decision is that developers typically work on one defect at a time
and then verify the product line again.

5.2. Family-Based Theorem Proving and Model Checking 117

0
20

40
60

80
10

0

Index

ke
ys

m
al

l

2 3 4 5 6 7 8 9 10

1−3 Defects

N

um
be

r
of

 e
ffe

ct
iv

e
ru

ns
 (

in
 %

)

Index

ke
yl

ar
ge

2 3 4 5 6 7 8 9 10

4−10 Defects

KeY
JPF
KeY or JPF
Key and JPF

Number of featuresNumber of featuresNumber of featuresNumber of features

Figure 5.4: Effectiveness for finding a defect in product lines with some and many
defects [Thüm et al., 2014].

In Figure 5.4, we show the effectiveness of theorem proving and model checking for
some defects (left diagram) and many defects (right diagram). With regard to the size
of our subject product line, we already consider more than three defects as many. Each
run is either effective or not, and we show the percentage of runs in which KeY (solid,
blue line) and JPF (dashed, red line) were effective. The x-axis represents the number
of features of the product line in each run. Furthermore, we show the percentage of
runs in which both, KeY and JPF, were effective (dashed, black line, named “KeY
and JPF”) and the percentage in which at least one of them was effective (solid, black
line, named “KeY or JPF”). We computed the percentage for each number of defects
separately and show mean values in the diagram (e.g., for one, two, and three defects
in the left diagram).

These diagrams lead to the following observations. First, both verification techniques
are more effective, when more defects are introduced, because it is more likely that
they detect one defect. Second, JPF is, in general, less effective than KeY. A code
inspection in these cases revealed that our test scenarios were not sufficient to detect
several defects. Third, JPF detects some defects that KeY does not. One reason is
that the test scenarios can expose defects in addition to the contracts. Another reason
is that KeY does not check precondition violations of called methods when a method
body is inlined instead of applying its contract. Fourth, the effectiveness varies for
different sizes of product lines, which is caused by our rather small product line with
only few mutations (58 mutations in Java and 101 mutations in JML, cf. Table 5.1).
Finally, using both verifiers leads to better effectiveness compared to each of them.
This is especially the case if there are only few defects in the product line. That the
combined effectiveness is not 100 % is due to the fact that some mutations can simply
not be detected with the given contracts and test scenarios. Overall, we found that

118 5. Feature-Oriented Contracts for Product-Line Verification

●

●

●

●

●

●
●

●●●●
●●●● ●●●

0.
5

5.
0

50
.0

50
0.

0

K
eY

KeY, 0 Defects

(in
 s

, l
og

ar
ith

m
ic

)

●

●●●●●●●●
●●●●●●●●

●●●●●●●●●●●●●KeY, 1−3 Defects

●●

●

●

●

●
●

●

●●●

●
●

●

●●●

●

●●

●●●

●

●
●

●●●

●

●●●●●

●

●●●●●

●

●

●
●●

●
●
●●

●●

●

●

●

●

●
●
●
●
●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●
●●

●

●

●

●●

●

●

●●

●●

●

●

●●
●
●

●●●●
●
●●●●●●
●●

●

●

●

●
●
●
●

●

●

●

●
●
●

●

●
●●

●

●●

●●

●●

●●

●●

●●

●

●

●

●
●
●
●
●

●

●
●
●

●

●
●
●

●

●●

●●

●●

●●

●●

●●

KeY, 4−10 Defects

●

●

●

●

●

●

●

●

●●
●

●●

●

●●●

●

●

●

●

2 3 4 5 6 7 8 9 10

1
2

5
10

20

JP
F

JPF, 0 Defects

V
er

ifi
ca

tio
n

tim
e

●

● ●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●●

●

●●

●
●

●
●

●

●●
●
●

●

●

●

●

●

●

●

2 3 4 5 6 7 8 9 10

JPF, 1−3 Defects

Number of features

●●

●
●●●●●●

●
●●●

●

●

●●

●

●
●

●

●
●●

●

●
●

●

●

●
●

●

●

●

●

●

●●●
●
●

●

●
●●●

●

●

●

●

●

●●

●

●
●
●●●

●

●●

●

●
●

●

●

●

●

●●

●

●●
●

●

●

●

●

●●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●
●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

2 3 4 5 6 7 8 9 10

JPF, 4−10 Defects

Figure 5.5: Performance for finding the first defect in product lines with no, some, and
many defects [Thüm et al., 2014].

the combination of theorem proving and model checking improves the effectiveness,
especially if there are only a few defects (i.e., in later development stages).

Performance

We assess the performance of theorem proving and model checking as the time needed
to detect the first defect. If no defects were found, we consider the time to completely
verify the product line. For JPF, we measured the time until the first runtime assertion
was violated. For KeY, we measured the time until the first proof obligation could not
be proven automatically. In Figure 5.5, we present the performance of KeY and JPF in
box plots (created with default parameters of R). Note that the y-axes are logarithmic.
Compared to effectiveness, we also consider the product line without defects.

Again, we make several observations. First, the most obvious result is that JPF is
significantly faster than KeY (39.5 times in average). However, this result heavily
depends on the test scenarios and should not be overestimated. Second, the verification
time grows with the size of the product line, which is due to the larger code base. Third,
the deviation of verification is larger for some and many defects than for no defects.
The reason is that the computation bias is much smaller than the bias introduced by
mutations; the left diagrams only show computation bias as we repeatedly verified the
source code without mutations. Finally, the average verification time of both verifiers
reduces when more defects are added; for KeY from 163.4 s to 50.7 s and 19.3 s, and
for JPF from 1.19 s to 1.06 s and 1.01 s, for some and many defects, respectively.
Thus, the speed-up from no to many defects is 8.5 for KeY and 1.2 for JPF. The

5.2. Family-Based Theorem Proving and Model Checking 119

0
20

40
60

80
10

0
12

0
14

0

2 3 4 5 6 7 8 9 10

1−3 Defects

KeY
JPF
JPF, then KeY

E
ffe

ct
iv

en
es

s
/ v

er
ifi

ca
tio

n
tim

e
(in

 %
/s

)

2 3 4 5 6 7 8 9 10

4−10 Defects

Number of featuresNumber of featuresNumber of featuresNumber of features

Figure 5.6: Efficiency as the ratio of effectiveness and performance (larger values are
better) [Thüm et al., 2014].

better average performance is caused by the fact that both verifiers are aborted once
they detect a defect. In contrast, larger verification times in some cases indicate that
verifiers have, depending on the mutation, some extra effort. In those cases, JPF
executes more statements and KeY needs to consider further proof rules than for the
defect-free product line.

Efficiency

Based on the effectiveness and performance, we measured efficiency as the ratio of
both. However, with our insight that JPF was faster than KeY, we propose to combine
both verifier as follows: the product line is checked with JPF first and, depending
on the result, KeY is only used if no defects were identified by JPF, resulting in the
same effectiveness as always running both verifiers (i.e., “KeY or JPF” in Figure 5.4).
Another reason for using JPF first is that it always indicates actual defects, compared
to an open proof obligation in KeY. We show our results in Figure 5.6 (the new strategy
is named Synergy), whereas larger values indicate higher efficiency. In the combination,
KeY was utilized in 17.6 % of all runs and consumed 90.2 % of the verification time.
However, KeY indicated additional defects in 71.3 % of those runs, in which JPF did
not find a defect.

Based on the diagrams in Figure 5.6, we make the following observations. First, each
verifier and the combination of both is more efficient for many defects than for some
defects. The reason is that they are more effective and require less time. Second, JPF
is more efficient for all sizes of product lines as well as some and many defects, because
of the better performance. Third, the combination of both verifiers is less efficient than
JPF but more efficient than KeY. This is an interesting result, as the combination

120 5. Feature-Oriented Contracts for Product-Line Verification

achieves a better effectiveness than each verifier individually, but the efficiency is still
better than KeY. The reason is that we do only verify a product line with KeY, if no
defects were found with JPF. In summary, combining KeY and JPF seems beneficial, as
it increases the effectiveness compared to both in isolation and the efficiency compared
to KeY.

Discussion

Besides our empirical evaluation, we discuss fundamental differences of theorem proving
and model checking in the following, such as inherent guarantees, support for incomplete
product lines, defect identification, and tool support.

Software model checking does not provide the same guarantees as theorem proving.
With theorem proving, we verify methods for all given inputs, whereas software model
checking is usually based on test scenarios, which are then executed symbolically. A
test scenario is more than a simple test case, as it may consider a set of values at the
same time. For example, method update in Listing 5.6 on Page 110 may be called with
any positive integer value, which can be handled symbolically in JPF (with extensions
dedicated to symbolic execution). In principle, we can write a test scenario exposing
each possible defect, but defects are typically not known in advance. Test scenarios are
often incomplete and it is up to the developer to write meaningful tests.

In principle, theorem proving enables verification with incomplete implementations and
model checking with incomplete specifications. In theorem proving, we can verify meth-
ods separately by only relying on contracts of called methods. By doing this, we can
even verify product lines that are not completely implemented. In contrast, model
checking requires that for each test scenario all called methods are implemented, but
they do not need to have contracts. Modular verification with theorem proving may
be impractical, because contracts of all called methods must be strong enough, which
comes with the price of high specification effort. In particular, some contracts in product
line BankAccount are too weak, and thus we configured KeY to use the implementation
of called methods (a.k.a. method inlining).

A further characteristic difference is how the programmer can identify defects. Using
JPF, the result is a trace that is essentially a counter example. With KeY, we can
inspect the proof, in general, and the unclosed goal, in particular. Both, the trace and
the proof, can be large and hard-to-understand. However, an advantage of combining
theorem proving and model checking is that we can use both to locate the defect.
Nevertheless, a benefit of contracts in both cases is that the violated method contract is
already identified, and we only need to identify whether the defect is in the specification
or implementation.

A rather technical detail is that each JML tool implements a different set of keywords
and a slightly different semantics, which requires some effort to use them in concert.
For example, OpenJML reports invalid use of access modifiers (e.g., private, public)
in contracts that KeY does not check. A further example is that OpenJML creates

5.2. Family-Based Theorem Proving and Model Checking 121

runtime assertions reporting every violation of a precondition, whereas KeY does only
check precondition violations if a method call is treated by applying its contract (e.g.,
not for method inlining). In addition, each tool usually only supports a certain subset
of Java (e.g., OpenJML does not support threads and KeY does not support floating
numbers).

Threats to Internal Validity

We measured the verification time for KeY and JPF until the first contract cannot be
proven and the first assertion is thrown, respectively. While this time strongly depends
on the order of test scenarios and proof order, we randomly generated a large number
of mutations for each case to increase our confidence in the results. In general, an
unproven contract in KeY does not necessarily mean that there is a defect; the theorem
prover may need additional support, such as providing loop invariants [Barnett et al.,
2011; Beckert et al., 2007; Burdy et al., 2005]. However, we inspected all unproven
contracts for single mutations and they all indicated a defect.

The mutations that we applied to the product line may not be considered as defects
in all cases. To avoid this problem, first, our implementation makes sure that each
position in the code is only mutated once, to avoid that two mutations compensate
each other. Second, some of the mutations cannot be detected with the given method
contracts, as contracts typically do not encode the behavior completely. However, this
is independent of the verification technique and should not influence our comparison.

The verification with JPF is influenced by the test scenarios, which are not required
for KeY. Whether our test scenarios are meaningful for a comparison with KeY is
questionable. As JPF with our test scenarios has a similar effectiveness as KeY indicates
that our test scenarios are reasonable. Nevertheless, other test cases may lead to changes
in effectiveness, performance, and efficiency of JPF.

The performance and efficiency of KeY could be better than measured in our experi-
ment. The reason is that KeY can store proofs and check them after changes rather
than finding a new proof. A common experience is that proof checking is magnitudes
faster than proof finding [Beckert et al., 2007]. In our experiment, we have not used
the ability to store proofs, because it is questionable how to simulate two subsequent
versions of a product line with mutations. Simply taking the product line with and
without mutations does not seem realistic and it is future work to incorporate proof
checking into the comparison. For model checking, there are similar strategies that save
effort during evolution [Strichman and Godlin, 2008].

Threats to External Validity

It is questionable to which extent our results can be generalized to larger product lines
(i.e., more features and larger feature implementations). While experiments with larger
product lines would be more valuable, already verifying product line BankAccount with
several tools was a considerable effort. Furthermore, each verification tool does only

122 5. Feature-Oriented Contracts for Product-Line Verification

support a certain subset of Java and JML, which rules out many large product lines.
Nevertheless, according to experience reported in Section 4.5, our subject product line
including its contracts has typical characteristics (e.g., with respect to the mapping
between features and classes). In addition, we simulate different sizes of product lines
each bringing us to the same conclusions.

Our mutations may not represent real defects in product lines. As it was necessary for
our evaluation to automatically generate defects into feature-oriented Java code and
JML specifications, we decided to use mutation techniques. We used typical string
replacement operators from mutation testing [Jia and Harman, 2011] to mutate fea-
ture modules and their contracts directly. More sophisticated operators operating on
abstract syntax trees may provide more realistic defects, because a real defect may
consist of not only slightly wrong parts, but also missing parts or wrong orders of state-
ments. Furthermore, the generated mutations may not represent typical defects caused
by feature interactions. The automatic generation of representative feature-interaction
defects is non-trivial and should be investigated in future research.

Other verification tools for theorem proving and model checking may lead to different
results, which should be evaluated in further studies. We have chosen KeY and JPF
as both tools have been used by many other researchers before and in particular also
for product-line verification [Apel et al., 2011, 2013d; Bruns et al., 2011; Kästner et al.,
2012c].

Our comparison is based on fully automated verification, but in practice, both, theorem
proving and model checking may depend on user input. Theorem proving may require
to provide loop invariants or to guide the proof interactively. Besides creating test
scenarios, model checking is automatic itself, but may require tuning of parameters to
avoid the state explosion. Hence, further experiments are needed to assess the effort
when evolving a product line.

5.3 Further Experiences

Besides proof composition and variability encoding, we explored further facets of the
utilization of feature-oriented contracts for product-line verification. In the following,
we give a brief overview on further challenges and discuss possible solutions, even if they
have not yet been implemented and evaluated in-depth for various reasons. Neverthe-
less, we hope that their discussion provides a broader overview on research challenges of
product-line verification with feature-oriented contracts. In particular, we discuss type
checking for feature-oriented contracts in Section 5.3.1, feature-interaction detection in
Section 5.3.2, and blame assignment in Section 5.3.3.

5.3.1 Type Safety of Feature-Oriented Contracts

With proof composition and variability encoding, we aim to verify that feature modules
are correct with respect to feature-oriented contracts. Proof composition requires the
generation of proof obligations for each product by means of a verification tool, such as

5.3. Further Experiences 123

class Account { feature module BankAccount
//@ invariant balance >= OVERDRAFT LIMIT;
int balance = 0;
}
class Account { feature module Overdraft

final static int OVERDRAFT LIMIT = −5000;
}
class Account { metaproduct

//@ invariant balance >= OVERDRAFT LIMIT;
int balance = 0;
final static int OVERDRAFT LIMIT = −5000;
}

Listing 5.8: Example for a type error in a feature-oriented contract.

Why. Besides generating proof obligations, each product is parsed and type checked
in Why. In contrast, variability encoding generates the metaproduct instead of each
product. When verifying the metaproduct, verification tools, such as KeY, parse and
type check the metaproduct, but it is not ensured that all products are type safe.

Example 5.4. In Listing 5.8, we give an example for a type error that cannot be de-
tected by type checking the metaproduct. For illustration purposes, we adapted the exam-
ple in Listing 5.6 on Page 110. The invariant defined in feature modules BankAccount
references a field of feature module Overdraft. When generating a product containing
feature BankAccount, but not feature Overdraft, JML tools detect an undefined field
access. With Java compilers, the problem cannot be detected, because it only concerns
the type safety of JML contracts, which are written in comments. When verifying the
metaproduct with a JML tool, this problem remains unnoticed, too, because all members
are included into the metaproduct.

As discussed in Section 5.2.1, a necessary step before applying analyses to the metaprod-
uct is a type check of the product line. Efficient type checking of feature modules, in
particular, and product-line implementations, in general, have been hot research topics
and are well-understood (cf. Section 3.6). However, there is not a single approach for
type checking product-line contracts, beyond product-based type checking. That is, we
can generate all products and type check their contracts separately, as we do for proof
composition.

An implementation of feature-based or family-based type checking of feature-oriented
contracts seems to be desirable from a practical perspective. Such tool support can be
achieved by either making existing type checkers for contracts variability-aware or by
extending existing product-line type checkers with support for contracts. While this
involves a large engineering effort in both cases, we do not expect many new insights
from a research perspective. We implemented some analyses in FeatureHouse and

124 5. Feature-Oriented Contracts for Product-Line Verification

Figure 5.7: A syntax error in feature-oriented contracts detected by means of feature-
based parsing.

FeatureIDE that could be part of such a type checker for feature-oriented contracts.
We give a brief overview on those analyses:

• With our FeatureHouse extension, we parse each feature module including its
feature-oriented contracts separately [Benduhn, 2012]. Thus, this can be consid-
ered as feature-based syntax checking. In principle, if all feature-oriented contracts
are syntax-conform, also all generated products should not contain syntax errors.
In Figure 5.7, the string \res is identified to be an invalid keyword and reported
by FeatureIDE using an error marker.

• In Section 4.4.1, we proposed the use of contract-composition keywords as an
alternative to using the same contract composition for all contracts of a given
product line. If contract-composition keywords are used even when FeatureIDE
is configured for using just one contract-composition mechanisms, then a warning
is generated as the result of a feature-based analysis [Proksch and Krüger, 2014].

• We implemented several family-based analyses to detect wrong usage of contract-
composition keywords [Proksch and Krüger, 2014]. First, if keyword final method
or keyword final contract are followed by a method refinement or contract refine-
ment, respectively, an error marker is created to emphasize the violation of the
keyword. Second, we detect whether keyword original is used beyond explicit

5.3. Further Experiences 125

Figure 5.8: Warning in FeatureIDE for wrong overriding of contract-composition key-
words [Weigelt, 2013].

contract refinement. Third, we warn users for prohibited keyword overriding ac-
cording to Figure 4.4 on Page 76, and give an example for such a warning in
Figure 5.8. In each case, the analysis problem is reduced to a satisfiability prob-
lem based on the FeatureIDE infrastructure [Proksch and Krüger, 2014].

These analyses helped to identify some errors in our product lines with feature-oriented
contracts. Nevertheless, we expect these product lines to contain more type errors in
feature-oriented contracts that could be found by means of family-based type checking.

5.3.2 Static Analysis for Feature-Interaction Detection

Beyond theorem proving and model checking, feature-oriented contracts can also be
checked by means of static analyses. As pointed out in Section 2.1.3, static analyses
typically have a better scalability at the price of being unsound or incomplete. That is,
a static analysis may miss defects and at the same time falsely signals defects. We ex-
perimented with the verifier ESC/Java2 [Cok and Kiniry, 2005], which is an extension
of the extended static checker ESC/Java [Flanagan et al., 2002] with support for JML.
ESC/Java2 takes a JML-annotated Java program as input and generates verification
conditions that can be verified by an existing theorem prover. Our experiments are
based on the automated theorem prover Simplify [Detlefs et al., 2005].

We verified product line IntegerList (cf. Appendix A) with deliberately introduced fea-
ture interactions [Scholz et al., 2011]. The product line consists of a core feature and
four optional features giving rise to 16 products in total. None of these 16 products con-
tains type errors, neither due to feature modules nor due to feature-oriented contracts
(i.e., no syntactical feature interactions occur). In contrast, product line IntegerList has
two semantic feature interactions that can only be found by means of a product-line
specification. Each feature interaction affects four products. Due to the small size of
the product line, we could anticipate these feature interactions in a manual inspection
of the product-line implementation and specification.

126 5. Feature-Oriented Contracts for Product-Line Verification

We applied ESC/Java2 to all 16 products in a product-based fashion, as the subject
product line is sufficiently small. With the default parameters of ESC/Java2, we
found only one of two feature interactions. A manual inspection revealed that one
interaction was not found due to the unsoundness of ESC/Java2. In particular, loops
are verified by loop unrolling but the default value is that only the first loop run is
checked. Changing the according parameter to check also the second run results in the
detection of both feature interactions. However, changing the default values lead to a
false alarm, too. This false alarm was due to the fact that some verification condition
were too large for Simplify and could be avoided by providing further specifications
(i.e., assert and assume statements). We refer interested readers to the original work
for more details on the experiments [Scholz et al., 2011].

Our experiences with static analysis of feature-oriented contracts for feature-interaction
detection are twofold. We were able to verify the product line with ESC/Java2 and,
in the end, have not missed feature interactions and do not get false alarms. However,
the problem with feature interactions is that they are typically unknown and then the
question arises which parameters of ESC/Java2 should be used for verification. In con-
trast, software model checkers might miss feature interactions but have no false alarms
and theorem proving might produce false alarms but do not miss feature interactions. It
is an open challenge to compare the scalability and practicability of static analyses for
product lines with that of model checking and theorem proving. Our initial experiences
indicate that static analysis runs faster, but involves more effort for programmers to
identify false alarms from actual feature interactions and defects.

5.3.3 Blame Assignment with Behavioral Feature Interfaces

One of the benefits of design by contract is blame assignment [Meyer, 1992]. That
is, if the precondition of a method is not established, blame is assigned to the caller.
Analogously, if the postcondition of a method is not established, blame is assigned to
the callee. Hence, blame assignment is a means to locate defects in source code. In
particular, blame assignment can identify the method that violated a given contract.

Feature-oriented contracts enable a kind of blame assignment for feature modules. If a
method from one feature module calls a method from another feature module, blame
assignment helps to locate the faulty feature module. However, not in all cases the
faulty feature module can be identified, because method implementations may cross
cut feature boundaries. If a method has several refinements, it is not sufficient to
know that the method implementation is faulty. Instead, we also want to know the
feature module that contributed a faulty method refinement. We propose behavioral
feature interfaces [Thüm et al., 2013], which apply feature-oriented contracts also within
refinement chains of methods, as we illustrate in the following example.

Example 5.5. In Listing 5.9, we show three slightly modified feature modules of prod-
uct line BankAccount. All three feature modules contribute to method update in class
Account. We deliberately introduced a bug into one of these three feature modules.
When composing all three feature modules into a product, we are likely to detect the

5.3. Further Experiences 127

class Account { feature module BankAccount
int balance = 0;
/∗@ requires balance + x >= 0;

@ ensures balance == \old(balance) + x && \result == balance; @∗/
int update(int x) { balance += x; return balance; }
}
class Account { feature module DailyLimit

final int DAILY LIMIT = −1000;
int withdrawToday = 0;
/∗@ requires \original && withdrawToday + x >= DAILY LIMIT;

@ ensures \original; @∗/
int update(int x) { if (x < 0) withdrawToday += x; return original(−x); }
}
class Account { feature module History

int lastTransaction = 0;
/∗@ requires \original;

@ ensures \original && lastTransaction == x; @∗/
int update(int x) { lastTransaction = x; return original(x); }
}

Listing 5.9: A defect in method update and its two refinements [Thüm et al., 2013].

defect by means of runtime assertions or verification. However, identifying the feature
module with a defective contribution to method update is hardly possible. With behav-
ioral feature interfaces, we do not only compose contracts for method refinements, but
we also generate contracts for each method introduction and method refinement sepa-
rately, as illustrated in Listing 5.10. Not only the final method refinement is specified
with a contract, but also all renamed methods, such as method update$$BankAccount
and method update$$DailyLimit. For statement new Account().update(42), the first vio-
lation by means of a runtime assertion is found for statement update$$BankAccount(-x),
which is originally defined in feature module DailyLimit. The method call violates the
precondition balance + x >= 0 defined in feature module BankAccount. Consequently,
we assign blame the method refinement update defined in feature module DailyLimit, in
which statement original(-x) could be corrected to original(x).

The solution illustrated in the example above does not establish behavioral feature in-
terfaces for class invariants, as discussed elsewhere in more detail [Thüm et al., 2013].
For short, class invariants apply only to previous method refinements, which can be
achieved by creating an inheritance hierarchy for all class refinements as in Lightweight
Feature Java [Delaware et al., 2009], FeatureC++ [Apel et al., 2005], and Mixin of
the AHEAD tool suite [Batory, 2006]. In contrast to these formalizations and tools,
methods being subject to later refinements need to be renamed. Otherwise, all method
refinements would need to establish behavioral subtyping, which is too restrictive (cf.
Section 4.5). An interesting side-effect of our application of contracts to feature mod-

128 5. Feature-Oriented Contracts for Product-Line Verification

class Account { behavioral feature interfaces
int balance = 0;
final int DAILY LIMIT = −1000;
int withdrawToday = 0;
/∗@ requires balance + x >= 0;

@ ensures balance == \old(balance) + x && \result == balance; @∗/
private int update$$BankAccount(int x) { balance += x; return balance; }
/∗@ requires balance + x >= 0 && withdrawToday + x >= DAILY LIMIT;

@ ensures balance == \old(balance) + x && \result == balance; @∗/
private int update$$DailyLimit(int x) { if (x < 0) withdrawToday += x;

return update$$BankAccount(−x); }
/∗@ requires balance + x >= 0 && withdrawToday + x >= DAILY LIMIT;

@ ensures balance == \old(balance) + x && \result == balance &&
@ lastTransaction == x; @∗/

int update(int x) { lastTransaction = x; return update$$DailyLimit(x); }
}

Listing 5.10: Blame assignment for method update with behavioral feature interfaces.

ules is that we identified semantic differences between different realizations of feature
modules in products, which have been considered equivalent before [Thüm et al., 2013].

We illustrated behavioral feature interfaces for product generation, but they can also be
established in the metaproduct. In Listing 5.7 on Page 111, we already showed contracts
for renamed methods in Lines 5–6. Nevertheless, the same problem with class invariants
and their visibility raises, and our solution for product generation [Thüm et al., 2013]
may be applied metaproducts, too. In summary, to identify faulty feature modules,
behavioral feature interfaces should be established for all analyses of feature-oriented
contracts, such as proof composition and variability encoding.

5.4 Related Work

We already gave a comprehensive overview on product-line verification in Chapter 3. In
the following, we discuss product-line verification by means of contracts in more detail.

Contracts for Product-Line Verification

Before we started to work on this thesis, contracts have not been used for product-
line verification. Since then, several researchers investigated contracts for product-line
verification, whereas all approaches are based on theorem proving. Bruns et al. [2011]
and Hähnle et al. [2013] propose optimized product-based theorem proving based on
KeY. Bruns et al. [2011] reduce the effort for products by means of slicing techniques,
whereas Hähnle et al. [2013] split product verification into a first phase with abstract
contracts and a second phase with concrete contracts. With proof composition, we
presented another technique for proof reuse. Instead of searching for reuse potential

5.4. Related Work 129

after product generation, we systematically compose partial proofs defined for each
feature. Damiani et al. [2012] discuss feature-product-based theorem proving. The
difference to proof composition is that features are verified by means of uninterpreted
assertions. Proofs that could not be closed in the feature-based phase, are proven for
each product separately. In contrast to proof composition, the product-based phase is
likely to require user interaction. Hähnle and Schaefer [2012] propose feature-family-
based theorem proving, in which features are verified in isolation and then their valid
combinations are verified in a family-based fashion. The advantage of their approach
over variability encoding is that part of the verification problem is already solved at
feature level. The advantage of variability encoding, as presented in this thesis, is that
features do not have to establish behavioral subtyping.

Product-Line Theorem Proving

Product-line theorem proving has its roots in type-soundness proofs for product lines
of programming languages. Indeed, proof composition is inspired by feature-product-
based theorem proving as proposed by Batory and Börger [2008]. They modularize the
Java grammar, theorems on type soundness, and natural language proofs into feature
modules. Nevertheless, a human needs to reason about all products when understanding
the proofs. Later, Delaware et al. [2009, 2011, 2013] verified type-soundness proofs with
the proof assistant Coq in a feature-product-based manner. The difference to proof
composition is that they manually modularize theorems, while we generate theorems
with the program verification framework Why. Furthermore, the product-based phase
of proof composition does not require any user interaction, whereas theorems and proofs
have to be manually assembled and extended for the type-soundness proofs.

Product-Line Model Checking

As discussed in Chapter 3, the majority of approaches for product-line model checking
are applied to an abstraction of the product line, whereas we apply software model
checking to the implementation of a product line. All existing approaches to model check
a product-line implementation are family-based and rely on variability encoding [Apel
et al., 2011, 2013d; Kästner et al., 2012c; Post and Sinz, 2008], as we do. By means of
variability encoding, product lines are verified with existing model checkers from single-
system engineering, such as CBMC [Post and Sinz, 2008], CPAchecker [Apel et al.,
2011, 2013d], and JPF [Apel et al., 2013d; Kästner et al., 2012c]. The main difference
to our work is that we extend variability encoding to specifications (i.e., contracts), and
thus are the first to apply model checking on product-line contracts. Furthermore, we
analyze the effect of defects on the effectiveness and efficiency of product-line model
checking and theorem proving for the first time.

Product-Line Type Checking

An assumption of variability encoding is that the product line is type safe. In Chapter 3,
we give a detailed overview on product-line type checking. While several strategies have
been applied to composition-based and annotation-based product-line implementations
and designs, none of these approaches applies type checking to specifications. We
discussed type checking for feature-oriented contracts and sketched possible approaches.

130 5. Feature-Oriented Contracts for Product-Line Verification

Combination of Verification Techniques

Other researchers propose a combination of verification techniques. Liebig et al. [2013]
combine type checking and dataflow analysis to find defects in Linux. However, both
techniques are used for different kinds of errors, whereas we focus on synergies for the
same kind of error. Others use Event-B for product-line verification, which has support
for theorem proving and model checking [Gondal et al., 2011; Poppleton, 2007, 2008;
Sorge et al., 2010]. However, they do neither discuss nor evaluate the benefit of that
combination. Besides product lines, several combinations of theorem proving and model
checking have been proposed [Abrial, 2010; Dybjer et al., 2004; Halpern and Vardi, 1991;
Ismail et al., 2013; Owre et al., 1996], but they all inherently require to create new or
change existing verifiers, whereas, with variability encoding, we used each verifier as-is.
Nevertheless, more sophisticated combinations of theorem proving and model checking
could be considered for product lines and single systems in future work.

5.5 Summary

We explored several analysis strategies and verification techniques for the verification
of product lines based on feature-oriented contracts. With proof composition and vari-
ability encoding, we propose two alternative techniques for proof reuse, which promote
the underrepresented research area of product-line theorem proving. In proof compo-
sition, we are the first to apply the concept of proof-carrying code to feature modules.
Composing proofs together with source code and specification can drastically reduce the
effort of proof writing. Nevertheless, redundant effort for proof checking is necessary in
our feature-product-based theorem proving.

We used variability encoding to overcome redundant proof checking and to combine
several verification techniques to the very same properties. One interesting outcome
is that the combination of theorem proving and model checking is more effective and
efficient than using each verification technique in isolation. Furthermore, product-line
theorem proving and model checking are both more effective and efficient if the product
line contains more defects.

Beyond proof composition and variability encoding, we discussed the role of other ver-
ification techniques for feature-oriented contracts and gained several insights. First,
existing type checking approaches for product lines need and can be extended to type
check feature-oriented contracts. Second, static analyses for feature-oriented contracts
seem to scale better than theorem proving and model checking, but suffer from in-
completeness and unsoundness. Finally, each verification approach for feature-oriented
contracts should establish behavioral feature interfaces to lift blame assignment from
classes to feature modules.

6. Conclusion and Future Work

In the following, we conclude our thesis and briefly discuss potential future work on
product-line specification and product-line verification.

Conclusion

The success of software-product-line engineering does not only depend on sophisticated
techniques for code generation, but also on efficient and effective analysis strategies.
As product lines are increasingly used for mission-critical and safety-critical systems,
quality assurance becomes indispensable. Whereas existing work on product-line anal-
ysis stems from various communities, we propose a common terminology and use it to
classify approaches for product-line verification according to their strategy to deal with
variability in implementation, specification, and analysis. An interesting insight with
our classification and survey is that many authors claim to propose compositional ap-
proaches, whereas we distinguish between compositional implementation, compositional
specification, and three strategies for compositional analysis, namely feature-based,
feature-product-based, and feature-family-based analysis. These strategies indicate how
approaches handle feature interactions, which are inherently non-compositional.

In our survey, we have recognized that existing specification techniques for product lines
are just used as proof-of-concept for verification techniques and have not been justified
theoretically and empirically. We fill this gap, by a chapter dedicated to the specifica-
tion of product lines, in which we systematically discuss and empirically evaluate how
to specify software product lines by means of feature-oriented contracts. While our dis-
cussion and evaluation is based on contracts and feature-oriented programming, we are
confident that the results can be transferred to other specification and implementation
techniques. Our main insight is that behavioral subtyping applies to most feature-
oriented method refinements, but not all. The consequence is that existing product-line
verification approaches based on behavioral subtyping are not applicable to the major-
ity of product lines. With feature-oriented contracts, we provide the flexibility to decide
for each method refinement whether it is supposed to establish behavioral subtyping.

132 6. Conclusion and Future Work

Based on feature-oriented contracts, we explored approaches for product-line verifica-
tion with theorem proving. We propose proof composition and variability encoding for
proof reuse. Proof composition only reduces effort for proof writing, while variability
encoding reduces effort for proof checking additionally. In both cases, our evaluation
revealed that verification effort is drastically reduced by means of proof reuse. Further-
more, we combined proof reuse with software model checking and measured synergistic
effects, such as improved efficiency and effectiveness. Our evaluation also revealed that
theorem proving and model checking for product lines perform better for earlier devel-
opment stages (i.e., if the product line contains more defects).

Future Work

One outcome of our classification and survey of product-line analyses is a research
agenda (cf. Section 3.6), which may guide future work for the analysis of product
lines. For instance, we propose to create and evaluate approaches for combinations
of strategies and verification techniques that have not been considered before. As most
proposals for product-line analysis neglect evolution, we plan to investigate approaches
pursuing a feature-family-based strategy, because it could be superior to other strategies
for evolving product lines.

We discussed and evaluated feature-oriented contracts for feature-oriented programming
only, such that it is natural to evaluate how our results transfer to other product-
line implementation techniques, namely preprocessors, plug-ins, and aspect-oriented
programming. Beyond product lines, different contract composition mechanisms could
even be beneficial for object-oriented programming and mixins, especially as behavioral
subtyping is desirable, but does often not apply to legacy software. Our considerations
of feature-oriented contracts were focused on basic constructs of behavioral interfaces
specification languages, whereas an extension to framing conditions, visibility levels,
and exceptional statements is required for a practical use.

With variability encoding, we verified product lines according to feature-oriented con-
tracts by transforming compile-time variability into runtime variability. Besides some
informal argumentation and practical evaluations, there is no proof that the transforma-
tion is correct. Such a proof should be done in future work and requires a formalization
of feature model, feature modules, and feature-oriented contracts, as well as a formal-
ization of product generation and variability encoding. Besides the correctness proof, it
seems beneficial to combine feature-based analyses with variability encoding resulting
in a feature-family-based strategy. Furthermore, new verification approaches should be
investigated to exploit that some feature-oriented contracts establish behavioral sub-
typing, even if not all of them.

Besides these research challenges, we hope that our engineering effort to provide tool
support for feature-oriented contracts in FeatureIDE supports technology transfer.
FeatureIDE is already used in lectures at several universities, and thus feature-
oriented contracts could be added to lectures easily. Furthermore, we envision the
evaluation of feature-oriented contracts in practice.

A. Appendix

The product lines that we used to evaluate feature-oriented contracts for product-line
specification and verification all have different characteristics. We give an overview on
statistics with respect to the feature model and implementation in Table A.1. Fur-
thermore, we present several statistics on feature-oriented contracts in Table A.2 and
on their composition in Table A.3. As discussed in Section 4.5, some of the product
lines have been development from scratch, while others are the result of decomposing
an already specified program or by specifying an existing product line. We give a short
description for each product line describing the basic functionality and how it has been
created. Then, we give some details on the statistics. All product lines are publicly
available as examples within FeatureIDE and at the website SPL2go.1

Product Lines and Their Specifications Developed from Scratch

1. BankAccount : A feature-oriented system for bank-account management that mod-
els basic concepts such as accounts and users, as well as features for limiting
withdrawals and for calculating interests and credit worthiness. In 2010, I have
created the product line with five features for the purpose of evaluating proof
composition and I verified it using Coq [Thüm et al., 2011b]. In 2012, I ex-
tended the product line by a further feature and verified it using KeY with the
help of Martin Hentschel and Richard Bubel [Thüm et al., 2012]. Finally, Jens
Meinicke extended the product line by two further features and verified it using
KeY and JPF [Meinicke, 2013; Thüm et al., 2014]. The feature model of the last
version is shown in Figure 5.2 on Page 108. Excerpts of the feature modules are
shown in Listing 5.1 on Page 99, Listing 5.6 on Page 110, Figure 5.7 on Page 124,
and Listing 5.9 on Page 127.

2. GPL-scratch: The graph product line has been proposed as a standard prob-
lem for the evaluation of product-line techniques, and provides variability in data

1http://spl2go.cs.ovgu.de/

http://spl2go.cs.ovgu.de/

134 A. Appendix

P
ro

d
u
ct

s

F
ea

tu
re

s

C
o
re

fe
a
tu

re
s

A
lt

er
n

a
ti

ve
fe

at
u
re

s

D
er

iv
a
ti

ve
s

C
la

ss
es

F
ie

ld
s

M
et

h
o
d

s

R
ol

es

A
lt

er
n

a
ti

ve
m

et
h

o
d

in
tr

o
d

u
ct

io
n
s

M
et

h
o
d

re
fi
n
em

en
ts

P
u

re
m

et
h
o
d

s

A
lt

er
n

a
ti

ve
p
u

re
-m

et
h
o
d

in
tr

o
d
u
ct

io
n

s

P
u

re
-m

et
h
o
d

re
fi

n
em

en
ts

BankAccount 72 8 1 0 0 3 8 13 11 0 5 2 0 0
GPL-scratch 128 10 1 2 0 4 13 42 19 6 7 12 2 6

IntegerList 16 5 1 0 0 2 2 9 8 0 4 0 0 0
UnionFind 6 8 2 5 0 4 8 19 10 0 10 2 0 4

StringMatcher 6 8 2 6 0 2 1 3 9 0 6 0 0 0

DiGraph 8 4 1 0 0 8 12 66 11 0 0 26 0 0
ExamDB 8 8 1 0 4 4 10 50 20 0 29 9 0 0

IntegerSet 2 3 1 2 0 1 7 15 3 4 6 6 0 2
Numbers 2 2 1 0 0 1 0 10 2 0 7 0 0 0
Paycard 6 4 1 0 0 7 42 25 10 0 3 6 0 1

Poker 21 10 3 3 0 8 34 56 16 3 5 15 0 0

Elevator 20 6 1 0 0 11 38 92 19 0 19 8 0 0
Email 40 9 1 0 0 3 23 55 14 0 16 9 0 1
GPL 156 27 2 24 10 21 46 104 87 141 53 17 35 1

Table A.1: Statistics on feature model and implementation of all product lines.

structures and algorithms [Lopez-Herrejon and Batory, 2001]. In this spirit, An-
dré Weigelt developed a product line of graph libraries for his bachelor’s the-
sis [Weigelt, 2013], in which edges are directed or undirected and weighted or
unweighted. Furthermore, the shortest or weight-optimal path between two given
nodes can be calculated. Parts of the feature-oriented contracts and feature mod-
ules are shown in Listing 4.2 on Page 58, Listing 4.3 on Page 60, Listing 4.4 on
Page 63, and Listing 4.5 on Page 67.

3. IntegerList : A feature-oriented implementation of a list structure for storing inte-
ger values and corresponding basic operations. Based on the feature selection, the
list behaves like a stack or a sorted list. Wolfgang Scholz developed this product
line to evaluate the feasibility of feature-oriented contracts for feature-interaction
detection [Scholz et al., 2011]. In Listing 4.1 on Page 56, we used an excerpt of
this product line to illustrate plain contracting.

4. UnionFind : A feature-oriented system representing variations of the union-find
algorithm [Sedgewick, 1983], which can calculate the union of sets, check whether
two values are in the same component, and calculate the number of components.
Fabian Benduhn developed this product line in the course of his bachelor’s the-
sis [Benduhn, 2012].

135

C
on

tr
ac

ts

In
va

ri
an

ts

C
o
re

co
n
tr

ac
ts

C
o
re

in
va

ri
an

ts

A
lt

er
n

a
ti

ve
co

n
tr

ac
t

in
tr

o
d
u

ct
io

n
s

A
lt

er
n

a
ti

ve
in

va
ri

a
n
t

in
tr

o
d
u

ct
io

n
s

C
o
n
tr

a
ct

re
fi

n
em

en
ts

In
va

ri
a
n
t

re
fi

n
em

en
ts

E
x
p
li
ci

t
co

n
tr

ac
t

re
fi
n

em
en

t

C
o
n
tr

a
ct

ov
er

ri
d
in

g

C
o
n
ju

n
ct

iv
e

co
n
tr

ac
t

re
fi
n

em
en

t

C
u
m

u
la

ti
ve

co
n
tr

ac
t

re
fi
n

em
en

t

C
o
n
se

cu
ti

ve
co

n
tr

a
ct

re
fi
n

em
en

t

BankAccount 18 3 4 2 0 0 5 0 5 2 5 5 5
GPL-scratch 42 0 16 0 6 0 7 0 5 0 4 0 2

IntegerList 7 3 1 2 0 0 1 0 1 0 1 1 1
UnionFind 7 0 4 0 0 0 2 0 2 0 2 2 2

StringMatcher 7 0 1 0 0 0 6 0 6 0 4 0 0

DiGraph 45 9 26 9 0 0 0 0 0 0 0 0 0
ExamDB 40 5 17 4 0 0 15 0 14 14 0 0 1

IntegerSet 12 7 3 0 2 0 0 0 0 0 0 0 0
Numbers 15 0 7 0 0 0 6 0 5 1 5 5 5
Paycard 10 6 4 2 0 0 1 0 0 0 0 0 1

Poker 48 6 20 2 0 0 2 0 2 0 2 1 0

Elevator 13 0 0 0 0 0 6 0 6 0 6 6 6
Email 7 0 0 0 0 0 3 0 3 0 3 1 0
GPL 110 0 2 0 69 0 6 0 6 5 5 5 5

Table A.2: Statistics on contracts and invariants of all product lines.

5. StringMatcher : A product line of string comparison algorithms, whereas each
variant considers other pairs of strings as equivalent (e.g., if they have the same
length or if one is a substring of the other). Fabian Benduhn developed this
product line for his bachelor’s thesis [Benduhn, 2012] and verified it later using
KeY and JPF.

Decomposition of Existing Programs with Specifications

1. DiGraph: A library for representing and manipulating directed graph structures.
Beside basic graphs, it supports various operations such as removal, traversal,
and transposition. The library has been developed and specified by Albert Baker,
Katie Becker, and Gary T. Leavens, and published as a JML example.2 In 2011,
I identified and modularized three optional features, resulting in a product line
with eight products.

2. ExamDB : An exam database management system that manages exams to be
passed by students, including features for subscription and backouting, bonus
points, and statistics. Timo Eifler implemented and specified ExamDB, verified
it with KeY, and published it in the VerifyThis repository.3 In 2011, I decom-
posed ExamDB into a product line with four features and eight products. As the

2http://www.eecs.ucf.edu/~leavens/JML-release/org/jmlspecs/samples/digraph/
3http://www.verifythis.org/post?pid=database-system-for-managing-exams

http://www.eecs.ucf.edu/~leavens/JML-release/org/jmlspecs/samples/digraph/
http://www.verifythis.org/post?pid=database-system-for-managing-exams

136 A. Appendix

O
ri

g
in

al
-c

al
le

r-
p
re

se
rv

in
g

O
ri

g
in

al
-c

al
le

e-
p
re

se
rv

in
g

R
efi

n
em

en
t-

ca
ll
er

-p
re

se
rv

in
g

R
efi

n
em

en
t-

ca
ll
ee

-p
re

se
rv

in
g

N
o

p
ri

m
it

iv
e

p
re

se
rv

at
io

n

O
ri

g
in

al
-p

re
se

rv
in

g

R
efi

n
em

en
t-

p
re

se
rv

in
g

C
a
ll
er

-p
re

se
rv

in
g

C
a
ll
ee

-p
re

se
rv

in
g

N
o

co
m

b
ou

n
d

p
re

se
rv

a
ti

on

P
re

co
n
d

it
io

n
a
n

d
p

os
tc

o
n
d

it
io

n

O
n

ly
p
re

co
n
d

it
io

n

O
n

ly
p

os
tc

o
n
d
it

io
n

P
a
rt

o
f

a
co

n
d

it
io

n

Id
en

ti
ca

l
co

n
tr

a
ct

BankAccount 5 0 5 2 0 0 2 5 0 0 0 0 5 0 0
GPL-scratch 2 2 2 2 3 0 0 2 2 3 6 1 0 2 0

IntegerList 1 0 1 0 0 0 0 1 0 0 0 0 1 0 0
UnionFind 2 0 2 0 0 0 0 2 0 0 0 0 2 0 0

StringMatcher 4 0 4 0 2 0 0 4 0 2 0 0 6 2 0

DiGraph 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
ExamDB 1 0 1 0 14 0 0 1 0 14 0 1 14 15 0

IntegerSet 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Numbers 5 0 5 0 1 0 0 5 0 1 0 0 6 1 0
Paycard 1 0 1 0 0 0 0 1 0 0 0 0 1 0 0

Poker 1 1 0 1 0 0 0 0 1 1 0 1 1 0 0

Elevator 6 0 6 0 0 0 0 6 0 0 0 0 6 0 0
Email 1 2 0 1 0 0 0 0 1 2 0 2 1 0 0
GPL 5 3 6 3 0 2 3 5 3 0 0 0 4 0 2

Table A.3: Statistics on contract refinements of all product lines.

chosen features required fine-granular refinements of source code and contracts
and to avoid code and specification clones, I slightly modified the design by intro-
ducing pure methods and pure-method refinements (cf. Listing 4.6 on Page 71). In
2014, I created a different version of ExamDB without pure-method refinement,
which required to introduce derivatives (cf. Figure 4.7 on Page 82 and Listing 4.7
on Page 85). Both version are available as FeatureIDE examples and if not
specified explicitly, we refer to the second version in this thesis.

3. IntegerSet : A representation of sets to insert and remove values, and to check
element containment. A special characteristic is the use of alternative imple-
mentations based on trees or hashing. The systems has been implemented and
specified by Katie Becker, Arthur Thomas, and Gary T. Leavens.4 Fabian Ben-
duhn decomposed the system into a base implementation and two features for
trees and hashing [Benduhn, 2012].

4. Numbers : As an example for JML, Gary T. Leavens specified operations, such as
multiplication and division, on complex numbers inspired by the book of Abelson

4http://www.eecs.ucf.edu/~leavens/JML-release/org/jmlspecs/samples/sets/

http://www.eecs.ucf.edu/~leavens/JML-release/org/jmlspecs/samples/sets/

137

and Sussman [1996].5 Fabian Benduhn decomposed implementation and specifi-
cation into imaginary and real parts in his bachelor’s thesis [Benduhn, 2012].

5. Paycard : An implementation of a paycard, which can be charged by the customer
with a certain amount of money for cashless payment afterward. The implemen-
tation is partitioned into a core implementation and a graphical user interface to
simulate transactions. The paycard has a limit of 1,000, 100, or a user-defined
limit to which charging is allowed. Paycard is an example being used in the KeY
tutorial.6 In 2011, I decomposed the source code and contracts into four feature
modules: a base implementation, logging of transactions, lock out after a number
of unsuccessful implementations, and access of the largest transaction.

6. Poker : An implementation of a poker game specified in JML,7 which has been
decomposed into several feature modules by Fabian Benduhn [Benduhn, 2012].
The features include changing the maximum number of cards a player can have,
whether players can bet money while playing, introducing a limit for betting
money, or changing the blinds. Figure 4.6 on Page 81 gives an overview on the
methods defined in core features.

Specification of Existing Product Lines

1. Elevator : Plath and Ryan [2001] developed a model and informal specification of
an elevator that has optional features, such as a priority mode for a special floor
or ignoring buttons inside the elevator when it is empty. Alexander von Rhein
implemented the product line in Java and encoded specifications by means of
AspectJ.8 The product line has been verified with JPF, except for some detected
feature interactions [Apel et al., 2013c,d]. In 2013, I encoded the specifications
given in AspectJ into feature-oriented contracts.

2. Email : Hall modeled an email system providing optional features such as en-
cryption, forwarding, and signatures [Hall, 2005]. He provided informal and for-
mal specifications for feature-interaction detection. Alexander von Rhein, Stefan
Boxleitner, and Hendrik Speidel implemented the email system in Java with spec-
ifications in AspectJ.9 Similarly to product line Elevator, it has been verified with
JPF [Apel et al., 2013c,d] and I encoded AspectJ specifications as feature-oriented
contracts in 2013 (cf. Listing 4.8 on Page 89).

3. GPL: As written above, the graph product line has been proposed as a benchmark
for product-line techniques [Lopez-Herrejon and Batory, 2001], which we used a

5http://www.eecs.ucf.edu/~leavens/JML-release/org/jmlspecs/samples/dbc/
6http://www.key-project.org/download/quicktour/
7https://github.com/topless/PokerTop
8http://spl2go.cs.ovgu.de/projects/16
9http://spl2go.cs.ovgu.de/projects/17

http://www.eecs.ucf.edu/~leavens/JML-release/org/jmlspecs/samples/dbc/
http://www.key-project.org/download/quicktour/
https://github.com/topless/PokerTop
http://spl2go.cs.ovgu.de/projects/16
http://spl2go.cs.ovgu.de/projects/17

138 A. Appendix

further time for evaluation of feature-oriented contracts. In contrast to GPL-
scratch and DiGraph, an existing implementation10 of the graph product line was
specified with feature-oriented contracts. In particular, Fabian Benduhn specified
GPL by guessing contracts for the existing design in the course of his bachelor’s
thesis [Benduhn, 2012].

Comments on the Statistics

Although most of the statistics presented in the tables above should be self-explaining
in the context of this thesis, we want to emphasize some peculiarities. In Table A.1,
we only count concrete features, as abstract features do have not influence on the
decomposition of contracts [Thüm et al., 2011a]. In particular, we present the number
of actually different products and not the number of possible configurations [Thüm
et al., 2011a]. For simplicity, we do not explicitly count constructors, but count them as
methods instead. The column Methods only refers to unique methods (i.e., if a method
is defined in two alternative features, it is only counted once). Whether a certain
method defined in a feature module is a method refinement or a method introduction,
can vary from product to product. The reason is that all previous method introductions
can be optional. We decided to count a method as method refinement, if it refines a
method in at least one product, and else as method introduction.

In Table A.2, we give the number of contracts for each product line, whereas solely
the keyword pure does not count as contract (i.e., only if at least a precondition or
postcondition is defined). As discussed in Section 4.2, a special case occurs if a method
without a contract is refined by a method enriched with a contract c. In such a case,
we do not consider the contract c as a contract refinement, but rather as a method
introduction. Otherwise, contract-refinement mechanisms pursuing behavioral subtyp-
ing, such as conjunctive contract refinement, could not be used in most of these cases.
In particular, refining of the default precondition requires true would not be possible
(i.e., restricting the possible method input). Finally, in Table A.3, refinement of a
“part of a condition” refers to all refinements beyond adding something in disjunction
or conjunction (e.g., refining a part of a condition while the rest remains identical).

10http://www.infosun.fim.uni-passau.de/spl/apel/fh/#download

http://www.infosun.fim.uni-passau.de/spl/apel/fh/#download

Bibliography

Abal, I., Brabrand, C., and Wasowski, A. (2014). 42 Variability Bugs in the Linux
Kernel: A Qualitative Analysis. In Proc. Int’l Conf. Automated Software Engineering
(ASE), pages 421–432, New York, NY, USA. ACM.

Abelson, H. and Sussman, G. J. (1996). Structure and Interpretation of Computer
Programs. MIT Press, Cambridge, MA, USA, 2nd edition.

Abrial, J.-R. (2010). Modeling in Event-B: System and Software Engineering. Cam-
bridge University Press, New York, NY, USA, 1st edition.

Adelsberger, S., Sobernig, S., and Neumann, G. (2014). Towards Assessing the Com-
plexity of Object Migration in Dynamic, Feature-Oriented Software Product Lines. In
Proc. Int’l Workshop Variability Modelling of Software-Intensive Systems (VaMoS),
pages 17:1–17:8, New York, NY, USA. ACM.

Agostinho, S., Moreira, A., and Guerreiro, P. (2008). Contracts for Aspect-Oriented
Design. In Proc. Workshop Software Engineering Properties of Languages and Aspect
Technologies (SPLAT), pages 1:1–1:6, New York, NY, USA. ACM.

Ahrendt, W., Beckert, B., Bruns, D., Bubel, R., Gladisch, C., Grebing, S., Hähnle,
R., Hentschel, M., Klebanov, V., Mostowski, W., Scheben, C., Schmitt, P. H., and
Ulbrich, M. (2014). The KeY Platform for Verification and Analysis of Java Programs.
In Giannakopoulou, D. and Kroening, D., editors, Proc. IFIP Working Conf. Verified
Software: Theories, Tools, Experiments (VSTTE), pages 55–71, Berlin, Heidelberg.
Springer.

Alférez, M., Lopez-Herrejon, R. E., Moreira, A., Amaral, V., and Egyed, A. (2011).
Supporting Consistency Checking Between Features and Software Product Line Use
Scenarios. In Proc. Int’l Conf. Software Reuse (ICSR), pages 20–35, Berlin, Heidel-
berg. Springer.

America, P. (1991). Designing an Object-Oriented Programming Language with Be-
havioural Subtyping. In Proc. Int’l Workshop Foundations of Object-Oriented Lan-
guages (FOOL), pages 60–90, London, UK. Springer.

Antkiewicz, M., Ji, W., Berger, T., Czarnecki, K., Schmorleiz, T., Lämmel, R., Stănci-
ulescu, t., W ↪asowski, A., and Schaefer, I. (2014). Flexible Product Line Engineering

140 Bibliography

with a Virtual Platform. In Proc. Int’l Conf. Software Engineering (ICSE), pages
532–535, New York, NY, USA. ACM.

Apel, S., Batory, D., Kästner, C., and Saake, G. (2013a). Feature-Oriented Software
Product Lines: Concepts and Implementation. Springer, Berlin, Heidelberg.

Apel, S. and Hutchins, D. (2010). A Calculus for Uniform Feature Composition. ACM
Trans. Programming Languages and Systems (TOPLAS), 32(5):19:1–19:33.

Apel, S., Kästner, C., Größlinger, A., and Lengauer, C. (2010a). Type Safety for
Feature-Oriented Product Lines. Automated Software Engineering, 17(3):251–300.

Apel, S., Kästner, C., and Lengauer, C. (2008a). Feature Featherweight Java: A Calcu-
lus for Feature-Oriented Programming and Stepwise Refinement. In Proc. Int’l Conf.
Generative Programming and Component Engineering (GPCE), pages 101–112, New
York, NY, USA. ACM.

Apel, S., Kästner, C., and Lengauer, C. (2013b). Language-Independent and Auto-
mated Software Composition: The FeatureHouse Experience. IEEE Trans. Software
Engineering (TSE), 39(1):63–79.

Apel, S., Leich, T., Rosenmüller, M., and Saake, G. (2005). FeatureC++: On the
Symbiosis of Feature-Oriented and Aspect-Oriented Programming. In Proc. Int’l
Conf. Generative Programming and Component Engineering (GPCE), pages 125–
140, Berlin, Heidelberg. Springer.

Apel, S., Leich, T., and Saake, G. (2008b). Aspectual Feature Modules. IEEE Trans.
Software Engineering (TSE), 34(2):162–180.

Apel, S., Lengauer, C., Möller, B., and Kästner, C. (2010b). An Algebraic Foundation
for Automatic Feature-Based Program Synthesis. Science of Computer Programming
(SCP), 75(11):1022–1047.

Apel, S., Scholz, W., Lengauer, C., and Kästner, C. (2010c). Detecting Dependences
and Interactions in Feature-Oriented Design. In Proc. Int’l Symposium Software
Reliability Engineering (ISSRE), pages 161–170, Washington, DC, USA. IEEE.

Apel, S., Scholz, W., Lengauer, C., and Kästner, C. (2010d). Language-Independent
Reference Checking in Software Product Lines. In Proc. Int’l Workshop Feature-
Oriented Software Development (FOSD), pages 65–71, New York, NY, USA. ACM.

Apel, S., Speidel, H., Wendler, P., von Rhein, A., and Beyer, D. (2011). Detection
of Feature Interactions Using Feature-Aware Verification. In Proc. Int’l Conf. Auto-
mated Software Engineering (ASE), pages 372–375, Washington, DC, USA. IEEE.

Apel, S., von Rhein, A., Thüm, T., and Kästner, C. (2013c). Feature-Interaction
Detection Based on Feature-Based Specifications. Computer Networks, 57(12):2399–
2409.

Bibliography 141

Apel, S., von Rhein, A., Wendler, P., Größlinger, A., and Beyer, D. (2013d). Strategies
for Product-Line Verification: Case Studies and Experiments. In Proc. Int’l Conf.
Software Engineering (ICSE), pages 482–491, Piscataway, NJ, USA. IEEE.

Asirelli, P., ter Beek, M. H., Fantechi, A., and Gnesi, S. (2012). A Compositional Frame-
work to Derive Product Line Behavioural Descriptions. In Proc. Int’l Symposium
Leveraging Applications of Formal Methods, Verification and Validation (ISoLA),
pages 146–161, Berlin, Heidelberg. Springer.

Atkinson, C. and Kühne, T. (2003). Model-Driven Development: A Metamodeling
Foundation. IEEE Software, 20(5):36–41.

Aversano, L., Penta, M. D., and Baxter, I. D. (2002). Handling Preprocessor-
Conditioned Declarations. In Proc. Int’l Working Conference Source Code Analysis
and Manipulation (SCAM), pages 83–92, Washington, DC, USA. IEEE.

Balzer, S., Eugster, P. T., and Meyer, B. (2006). Can Aspects Implement Contracts?
In Proc. Int’l Conf. Rapid Integration of Software Engineering Techniques (RISE),
pages 145–157, Berlin, Heidelberg. Springer.

Barnett, M., Fähndrich, M., Leino, K. R. M., Müller, P., Schulte, W., and Venter,
H. (2011). Specification and Verification: The Spec# Experience. Comm. ACM,
54:81–91.

Bashardoust-Tajali, S. and Corriveau, J.-P. (2008). On Extracting Tests from a Testable
Model in the Context of Domain Engineering. In Proc. Int’l Conf. Engineering of
Complex Computer Systems (ICECCS), pages 98–107, Washington, DC, USA. IEEE.

Bass, L., Clements, P., and Kazman, R. (1998). Software Architecture in Practice.
Addison-Wesley, Boston, MA, USA.

Batory, D. (2005). Feature Models, Grammars, and Propositional Formulas. In Proc.
Int’l Software Product Line Conf. (SPLC), pages 7–20, Berlin, Heidelberg. Springer.

Batory, D. (2006). A Tutorial on Feature Oriented Programming and the AHEAD Tool
Suite. In Proc. Generative and Transformational Techniques in Software Engineering,
pages 3–35, Berlin, Heidelberg. Springer.

Batory, D. and Börger, E. (2008). Modularizing Theorems for Software Product Lines:
The Jbook Case Study. J. Universal Computer Science (J.UCS), 14(12):2059–2082.

Batory, D., Cardone, R., and Smaragdakis, Y. (2000). Object-Oriented Frameworks and
Product Lines. In Proc. Int’l Software Product Line Conf. (SPLC), pages 227–247,
Norwell, MA, USA. Kluwer Academic Publishers.

Batory, D., Sarvela, J. N., and Rauschmayer, A. (2004). Scaling Step-Wise Refinement.
IEEE Trans. Software Engineering (TSE), 30(6):355–371.

142 Bibliography

Beckert, B. and Hähnle, R. (2014). Reasoning and Verification: State of the Art and
Current Trends. IEEE Intelligent Systems, 29(1):20–29.

Beckert, B., Hähnle, R., and Schmitt, P. (2007). Verification of Object-Oriented Soft-
ware: The KeY Approach. Springer, Berlin, Heidelberg.

Benavides, D., Segura, S., and Ruiz-Cortés, A. (2010). Automated Analysis of Feature
Models 20 Years Later: A Literature Review. Information Systems, 35(6):615–708.

Benduhn, F. (2012). Contract-Aware Feature Composition. Bachelor’s thesis, Univer-
sity of Magdeburg, Germany.

Benduhn, F. (2014). Representing Variability in Product Lines: A Survey of Modeling
and Specification Techniques. Master’s thesis, University of Magdeburg, Germany.

Bertot, Y. and Castéran, P. (2004). Interactive Theorem Proving and Program De-
velopment - Coq’Art: The Calculus of Inductive Constructions. Springer, Berlin,
Heidelberg.

Bessling, S. and Huhn, M. (2014). Towards Formal Safety Analysis in Feature-Oriented
Product Line Development. In Proc. Int’l Symposium Foundations of Health Informa-
tion Engineering and Systems (FHIES), pages 217–235, Berlin, Heidelberg. Springer.

Bettini, L., Damiani, F., and Schaefer, I. (2013). Compositional Type Checking of
Delta-Oriented Software Product Lines. Acta Informatica, 50(2):77–122.

Bettini, L., Damiani, F., and Schaefer, I. (2015). Implementing Type-Safe Software
Product Lines Using Parametric Traits. Science of Computer Programming (SCP),
97(3):282–308.

Beyer, D., Henzinger, T. A., Jhala, R., and Majumdar, R. (2007). The Software Model
Checker Blast: Applications to Software Engineering. Int’l J. Software Tools for
Technology Transfer (STTT), 9(5):505–525.

Beyer, D. and Keremoglu, M. E. (2011). CPAchecker: A Tool for Configurable Software
Verification. In Proc. Int’l Conf. Computer Aided Verification (CAV), pages 184–190,
Berlin, Heidelberg. Springer.

Blundell, C., Fisler, K., Krishnamurthi, S., and Hentenryck, P. V. (2004). Parameterized
Interfaces for Open System Verification of Product Lines. In Proc. Int’l Conf. Auto-
mated Software Engineering (ASE), pages 258–267, Washington, DC, USA. IEEE.

Bodden, E., Tolêdo, T., Ribeiro, M., Brabrand, C., Borba, P., and Mezini, M. (2013).
SPLLIFT: Statically Analyzing Software Product Lines in Minutes Instead of Years.
In Proc. ACM SIGPLAN Conf. Programming Language Design and Implementation
(PLDI), pages 355–364, New York, NY, USA. ACM.

Börger, E. and Stark, R. F. (2003). Abstract State Machines: A Method for High-Level
System Design and Analysis. Springer, Secaucus, NJ, USA.

Bibliography 143

Bowen, T. F., Dworack, F. S., Chow, C.-H., Griffeth, N., Herman, G. E., and Lin, Y.-J.
(1989). The Feature Interaction Problem in Telecommunications Systems. In Proc.
Int’l Conf. Software Engineering for Telecommunication Switching Systems (SETSS),
pages 59–62, Washington, DC, USA. IEEE.

Brabrand, C., Ribeiro, M., Tolêdo, T., Winther, J., and Borba, P. (2013). Intraproce-
dural Dataflow Analysis for Software Product Lines. Trans. Aspect-Oriented Software
Development, 10:73–108.

Bracha, G. and Cook, W. (1990). Mixin-Based Inheritance. In Proc. Europ. Conf.
Object-Oriented Programming (ECOOP), pages 303–311, New York, NY, USA. ACM.

Bruns, D., Klebanov, V., and Schaefer, I. (2011). Verification of Software Product
Lines with Delta-Oriented Slicing. In Proc. Int’l Conf. Formal Verification of Object-
Oriented Software (FoVeOOS), pages 61–75, Berlin, Heidelberg. Springer.

Bubel, R., Din, C., and Hähnle, R. (2010). Verification of Variable Software: An Expe-
rience Report. In Proc. Int’l Conf. Formal Verification of Object-Oriented Software
(FoVeOOS), Karlsruhe, Germany. Technical Report 2010-13, Department of Infor-
matics, Karlsruhe Institute of Technology.

Bubel, R., Hähnle, R., and Pelevina, M. (2014). Fully Abstract Operation Contracts.
In Margaria, T. and Steffen, B., editors, Proc. Int’l Symposium Leveraging Applica-
tions of Formal Methods, Verification and Validation (ISoLA), pages 120–134, Berlin,
Heidelberg. Springer.

Buchmann, T. and Schwägerl, F. (2012). Ensuring Well-Formedness of Configured
Domain Models in Model-Driven Product Lines Based on Negative Variability. In
Proc. Int’l Workshop Feature-Oriented Software Development (FOSD), pages 37–44,
New York, NY, USA. ACM.

Burdy, L., Cheon, Y., Cok, D. R., Ernst, M. D., Kiniry, J., Leavens, G. T., Leino, K.
R. M., and Poll, E. (2005). An Overview of JML Tools and Applications. Int’l J.
Software Tools for Technology Transfer (STTT), 7(3):212–232.

Calder, M., Kolberg, M., Magill, E. H., and Reiff-Marganiec, S. (2003). Feature Interac-
tion: A Critical Review and Considered Forecast. Computer Networks, 41(1):115–141.

Carmo Machado, I. D., McGregor, J. D., Cavalcanti, Y. a. C., and De Almeida, E. S.
(2014). On Strategies for Testing Software Product Lines: A Systematic Literature
Review. J. Information and Software Technology (IST), 56(10):1183–1199.

Chalin, P., Kiniry, J., Leavens, G. T., and Poll, E. (2005). Beyond Assertions: Advanced
Specification and Verification with JML and ESC/Java2. In Proc. Int’l Symposium
Formal Methods for Components and Objects (FMCO), pages 342–363, Berlin, Hei-
delberg. Springer.

144 Bibliography

Chen, S. and Erwig, M. (2014). Type-Based Parametric Analysis of Program Families.
In Proc. Int’l Conf. Functional Programming (ICFP), pages 39–51, New York, NY,
USA. ACM.

Chen, S., Erwig, M., and Walkingshaw, E. (2014). Extending Type Inference to Vari-
ational Programs. ACM Trans. Programming Languages and Systems (TOPLAS),
36(1):1:1–1:54.

Cimatti, A., Clarke, E. M., Giunchiglia, F., and Roveri, M. (1999). NuSMV: A New
Symbolic Model Verifier. In Proc. Int’l Conf. Computer Aided Verification (CAV),
pages 495–499, London, UK. Springer.

Clarke, E. M., Grumberg, O., and Peled, D. A. (1999). Model Checking. MIT Press,
Cambridge, Massachussetts.

Classen, A., Cordy, M., Heymans, P., Legay, A., and Schobbens, P.-Y. (2014). For-
mal Semantics, Modular Specification, and Symbolic Verification of Product-Line
Behaviour. Science of Computer Programming (SCP), 80, Part B(0):416–439.

Classen, A., Cordy, M., Schobbens, P.-Y., Heymans, P., Legay, A., and Raskin, J.-F.
(2013). Featured Transition Systems: Foundations for Verifying Variability-Intensive
Systems and Their Application to LTL Model Checking. IEEE Trans. Software
Engineering (TSE), 39(8):1069–1089.

Classen, A., Heymans, P., Schobbens, P.-Y., and Legay, A. (2011). Symbolic Model
Checking of Software Product Lines. In Proc. Int’l Conf. Software Engineering
(ICSE), pages 321–330, New York, NY, USA. ACM.

Classen, A., Heymans, P., Schobbens, P.-Y., Legay, A., and Raskin, J.-F. (2010). Model
Checking Lots of Systems: Efficient Verification of Temporal Properties in Software
Product Lines. In Proc. Int’l Conf. Software Engineering (ICSE), pages 335–344,
New York, NY, USA. ACM.

Clements, P. and Northrop, L. (2001). Software Product Lines: Practices and Patterns.
Addison-Wesley, Boston, MA, USA.

Clifton, C. (2005). A Design Discipline and Language Features for Modular Reasoning
in Aspect-Oriented Programs. PhD thesis, Iowa State University, Ames, IA, USA.

Clifton, C. and Leavens, G. T. (2002). Observers and Assistants: A Proposal for
Modular Aspect-Oriented Reasoning. In Proc. Workshop Foundations of Aspect-
Oriented Languages (FOAL), pages 33–44, Ames, IA, USA. Iowa State University.

Cok, D. R. (2011). OpenJML: JML for Java 7 by Extending OpenJDK. In Proc. Int’l
Conf. NASA Formal Methods (NFM), pages 472–479, Berlin, Heidelberg. Springer.

Cok, D. R. and Kiniry, J. (2005). ESC/Java2: Uniting ESC/Java and JML. In Proc.
Int’l Conf. Construction and Analysis of Safe, Secure, and Interoperable Smart De-
vices (CASSIS), pages 108–128, Berlin, Heidelberg. Springer.

Bibliography 145

Coq Development Team (2010). The Coq Proof Assistant Reference Manual. LogiCal
Project. Version 8.3.

Cordy, M., Classen, A., Heymans, P., Legay, A., and Schobbens, P.-Y. (2013a). Model
Checking Adaptive Software with Featured Transition Systems. In Proc. Work-
shop Assurances for Self-Adaptive Systems (ASAS), pages 1–29, Berlin, Heidelberg.
Springer.

Cordy, M., Classen, A., Perrouin, G., Schobbens, P.-Y., Heymans, P., and Legay, A.
(2012a). Simulation-Based Abstractions for Software Product-Line Model Checking.
In Proc. Int’l Conf. Software Engineering (ICSE), pages 672–682, Piscataway, NJ,
USA. IEEE.

Cordy, M., Classen, A., Schobbens, P.-Y., Heymans, P., and Legay, A. (2012b). Man-
aging Evolution in Software Product Lines: A Model-Checking Perspective. In Proc.
Int’l Workshop Variability Modelling of Software-Intensive Systems (VaMoS), pages
183–191, New York, NY, USA. ACM.

Cordy, M., Schobbens, P.-Y., Heymans, P., and Legay, A. (2012c). Behavioural Mod-
elling and Verification of Real-Time Software Product Lines. In Proc. Int’l Software
Product Line Conf. (SPLC), pages 66–75, New York, NY, USA. ACM.

Cordy, M., Schobbens, P.-Y., Heymans, P., and Legay, A. (2012d). Towards an Incre-
mental Automata-Based Approach for Software Product-Line Model Checking. In
Proc. Int’l Workshop Formal Methods and Analysis in Software Product Line Engi-
neering (FMSPLE), pages 74–81, New York, NY, USA. ACM.

Cordy, M., Schobbens, P.-Y., Heymans, P., and Legay, A. (2013b). Beyond Boolean
Product-Line Model Checking: Dealing with Feature Attributes and Multi-Features.
In Proc. Int’l Conf. Software Engineering (ICSE), pages 472–481, Piscataway, NJ,
USA. IEEE.

Cordy, M., Willemart, M., Dawagne, B., Heymans, P., and Schobbens, P.-Y. (2014).
An Extensible Platform for Product-Line Behavioural Analysis. In Proc. Workshop
Software Product Line Analysis Tools (SPLat), pages 102–109, New York, NY, USA.
ACM.

Cousot, P. and Cousot, R. (1977). Abstract Interpretation: A Unified Lattice Model
for Static Analysis of Programs by Construction or Approximation of Fixpoints.
In Proc. Symposium Principles of Programming Languages (POPL), pages 238–252,
New York, NY, USA. ACM.

Czarnecki, K. and Eisenecker, U. (2000). Generative Programming: Methods, Tools,
and Applications. ACM/Addison-Wesley, New York, NY, USA.

146 Bibliography

Czarnecki, K. and Pietroszek, K. (2006). Verifying Feature-Based Model Templates
Against Well-Formedness OCL Constraints. In Proc. Int’l Conf. Generative Pro-
gramming and Component Engineering (GPCE), pages 211–220, New York, NY,
USA. ACM.

Da Mota Silveira Neto, P. A., Carmo Machado, I. D., McGregor, J. D., De Almeida,
E. S., and De Lemos Meira, S. R. (2011). A Systematic Mapping Study of Software
Product Lines Testing. J. Information and Software Technology (IST), 53(5):407–
423.

Damiani, F., Owe, O., Dovland, J., Schaefer, I., Johnsen, E. B., and Yu, I. C. (2012).
A Transformational Proof System for Delta-Oriented Programming. In Proc. Int’l
Workshop Formal Methods and Analysis in Software Product Line Engineering (FM-
SPLE), pages 53–60, New York, NY, USA. ACM.

Damiani, F. and Schaefer, I. (2012). Family-Based Analysis of Type Safety for Delta-
Oriented Software Product Lines. In Proc. Int’l Symposium Leveraging Applications
of Formal Methods, Verification and Validation (ISoLA), pages 193–207, Berlin, Hei-
delberg. Springer.

Darwin, I. F. (1986). Checking C Programs with Lint. O’Reilly & Associates, Inc.,
Sebastopol, CA, USA.

Delaware, B., Cook, W., and Batory, D. (2009). Fitting the Pieces Together: A
Machine-Checked Model of Safe Composition. In Proc. Europ. Software Engineering
Conf./Foundations of Software Engineering (ESEC/FSE), pages 243–252, New York,
NY, USA. ACM.

Delaware, B., Cook, W., and Batory, D. (2011). Product Lines of Theorems. In Proc.
Conf. Object-Oriented Programming, Systems, Languages and Applications (OOP-
SLA), pages 595–608, New York, NY, USA. ACM.

Delaware, B., d. S. Oliveira, B. C., and Schrijvers, T. (2013). Meta-Theory à la Carte.
In Proc. Symposium Principles of Programming Languages (POPL), pages 207–218,
New York, NY, USA. ACM.

Detlefs, D., Nelson, G., and Saxe, J. B. (2005). Simplify: A Theorem Prover for Program
Checking. J. ACM, 52(3):365–473.

Dhara, K. K. and Leavens, G. T. (1996). Forcing Behavioral Subtyping through Specifi-
cation Inheritance. In Proc. Int’l Conf. Software Engineering (ICSE), pages 258–267,
Washington, DC, USA. IEEE.

Dijkstra, E. W. (1972). Chapter i: Notes on structured programming. In Dahl, O. J.,
Dijkstra, E. W., and Hoare, C. A. R., editors, Structured Programming, pages 1–82.
Academic Press Ltd., London, UK.

Bibliography 147

Dijkstra, E. W. (1976). A Discipline of Programming. Prentice Hall PTR, Upper Saddle
River, NJ, USA, 1st edition.

Dubslaff, C., Klüppelholz, S., and Baier, C. (2014). Probabilistic Model Checking for
Energy Analysis in Software Product Lines. In Proc. Int’l Conf. Aspect-Oriented
Software Development (AOSD), pages 169–180, New York, NY, USA. ACM.

Dybjer, P., Haiyan, Q., and Takeyama, M. (2004). Verifying Haskell Programs by Com-
bining Testing, Model Checking and Interactive Theorem Proving. J. Information
and Software Technology (IST), 46(15):1011–1025.

Engström, E. and Runeson, P. (2011). Software Product Line Testing - A Systematic
Mapping Study. J. Information and Software Technology (IST), 53:2–13.

Etxeberria, L., Sagardui, G., and Belategi, L. (2008). Quality-Aware Software Product
Line Engineering. J. Brazilian Computer Society (JBCS), 14(1):57–69.

Fantechi, A. and Gnesi, S. (2008). Formal Modeling for Product Families Engineering.
In Proc. Int’l Software Product Line Conf. (SPLC), pages 193–202, Washington, DC,
USA. IEEE.

Filliâtre, J.-C. and Marché, C. (2007). The Why/Krakatoa/Caduceus Platform for
Deductive Program Verification. In Computer Aided Verification, pages 173–177,
Berlin, Heidelberg. Springer.

Findler, R. B. and Felleisen, M. (2002). Contracts for Higher-Order Functions. In Proc.
Int’l Conf. Functional Programming (ICFP), pages 48–59, New York, NY, USA.
ACM.

Findler, R. B., Latendresse, M., and Felleisen, M. (2001). Behavioral Contracts and
Behavioral Subtyping. In Proc. Europ. Software Engineering Conf./Foundations of
Software Engineering (ESEC/FSE), pages 229–236, New York, NY, USA. ACM.

Fischbein, D., Uchitel, S., and Braberman, V. (2006). A Foundation for Behavioural
Conformance in Software Product Line Architectures. In Proc. Int’l Workshop Role
of Software Architecture for Testing and Analysis (ROSATEA), pages 39–48, New
York, NY, USA. ACM.

Fisler, K. and Krishnamurthi, S. (2001). Modular Verification of Collaboration-Based
Software Designs. In Proc. Europ. Software Engineering Conf./Foundations of Soft-
ware Engineering (ESEC/FSE), pages 152–163, New York, NY, USA. ACM.

Flanagan, C., Leino, K. R. M., Lillibridge, M., Nelson, G., Saxe, J. B., and Stata,
R. (2002). Extended Static Checking for Java. In Proc. ACM SIGPLAN Conf.
Programming Language Design and Implementation (PLDI), pages 234–245, New
York, NY, USA. ACM.

148 Bibliography

Flatt, M., Krishnamurthi, S., and Felleisen, M. (1998). Classes and Mixins. In Proc.
Symposium Principles of Programming Languages (POPL), pages 171–183, New
York, NY, USA. ACM.

Floyd, R. W. (1967). Assigning Meanings to Programs. Mathematical Aspects of Com-
puter Science, 19:19–32.

Gazzillo, P. and Grimm, R. (2012). SuperC: Parsing All of C by Taming the Prepro-
cessor. In Proc. ACM SIGPLAN Conf. Programming Language Design and Imple-
mentation (PLDI), pages 323–334, New York, NY, USA. ACM.

Gondal, A., Poppleton, M., and Butler, M. (2011). Composing Event-B Specifications:
Case-Study Experience. In Proc. Int’l Symposium Software Composition (SC), pages
100–115, Berlin, Heidelberg. Springer.

Gosling, J., Joy, B., Steele, G., and Bracha, G. (2005). The Java Language Specification,
Third Edition. Addison-Wesley, Amsterdam.

Greenyer, J., Sharifloo, A. M., Cordy, M., and Heymans, P. (2013). Features Meet
Scenarios: Modeling and Consistency-Checking Scenario-Based Product Line Speci-
fications. Requirements Engineering, 18(2):175–198.

Gries, D. (1981). The Science of Programming. Springer, Secaucus, NJ, USA, 1st
edition.

Griswold, W. G., Sullivan, K., Song, Y., Shonle, M., Tewari, N., Cai, Y., and Rajan,
H. (2006). Modular Software Design with Crosscutting Interfaces. IEEE Software,
23(1):51–60.

Gruler, A., Leucker, M., and Scheidemann, K. (2008). Modeling and Model Checking
Software Product Lines. In Proc. IFIP Int’l Conf. Formal Methods for Open Object-
Based Distributed Systems (FMOODS), pages 113–131, Berlin, Heidelberg. Springer.

Hähnle, R. and Schaefer, I. (2012). A Liskov Principle for Delta-Oriented Programming.
In Proc. Int’l Symposium Leveraging Applications of Formal Methods, Verification
and Validation (ISoLA), pages 32–46, Berlin, Heidelberg. Springer.

Hähnle, R., Schaefer, I., and Bubel, R. (2013). Reuse in Software Verification by
Abstract Method Calls. In Proc. Int’l Conf. Automated Deduction (CADE), pages
300–314, Berlin, Heidelberg. Springer.

Hall, R. J. (2005). Fundamental Nonmodularity in Electronic Mail. Automated Software
Engineering, 12(1):41–79.

Halpern, J. Y. and Vardi, M. Y. (1991). Model Checking vs. Theorem Proving: A
Manifesto. In Lifschitz, V., editor, Artificial Intelligence and Mathematical Theory
of Computation, pages 151–176. Academic Press Professional, Inc., San Diego, CA,
USA.

Bibliography 149

Harhurin, A. and Hartmann, J. (2008). Towards Consistent Specifications of Product
Families. In Proc. Int’l Symposium Formal Methods (FM), pages 390–405, Berlin,
Heidelberg. Springer.

Harrison, W. and Ossher, H. (1993). Subject-Oriented Programming: A Critique of
Pure Objects. In Proc. Conf. Object-Oriented Programming, Systems, Languages
and Applications (OOPSLA), pages 411–428, New York, NY, USA. ACM.

Hatcliff, J., Leavens, G. T., Leino, K. R. M., Müller, P., and Parkinson, M. (2012).
Behavioral Interface Specification Languages. ACM Computing Surveys, 44(3):16:1–
16:58.

Havelund, K. and Pressburger, T. (2000). Model Checking Java Programs Using Java
PathFinder. Int’l J. Software Tools for Technology Transfer (STTT), 2(4):366–381.

Heidenreich, F. (2009). Towards Systematic Ensuring Well-Formedness of Software
Product Lines. In Proc. Int’l Workshop Feature-Oriented Software Development
(FOSD), pages 69–74, New York, NY, USA. ACM.

Helm, R., Holland, I. M., and Gangopadhyay, D. (1990). Contracts: Specifying Be-
havioral Compositions in Object-Oriented Systems. In Proc. Europ. Conf. Object-
Oriented Programming (ECOOP), pages 169–180, New York, NY, USA. ACM.

Hemel, A. and Koschke, R. (2012). Reverse Engineering Variability in Source Code
Using Clone Detection: A Case Study for Linux Variants of Consumer Electronic
Devices. In Proc. Working Conf. Reverse Engineering (WCRE), pages 357–366,
Washington, DC, USA. IEEE.

Hoare, C. A. R. (1969). An Axiomatic Basis for Computer Programming. Comm.
ACM, 12(10):576–580.

Hoare, C. A. R. (1972). Proof of Correctness of Data Representations. Acta Informatica,
1(4):271–281.

Höfner, P. and Möller, B. (2009). An Extension for Feature Algebra. In Proc. Int’l
Workshop Feature-Oriented Software Development (FOSD), pages 75–80, New York,
NY, USA. ACM.

Höfner, P., Möller, B., and Zelend, A. (2012). Foundations of Coloring Algebra with
Consequences for Feature-Oriented Programming. In Proc. Int’l Conf. Relational and
Algebraic Methods in Computer Science (RAMiCS), pages 33–49, Berlin, Heidelberg.
Springer.

Holzmann, G. J. (1997). The Model Checker SPIN. IEEE Trans. Software Engineering
(TSE), 23(5):279–295.

Hovemeyer, D. and Pugh, W. (2004). Finding Bugs is Easy. SIGPLAN Not., 39(12):92–
106.

150 Bibliography

Huang, S. S., Zook, D., and Smaragdakis, Y. (2007). cJ: Enhancing Java with Safe Type
Conditions. In Proc. Int’l Conf. Aspect-Oriented Software Development (AOSD),
pages 185–198, New York, NY, USA. ACM.

Huang, S. S., Zook, D., and Smaragdakis, Y. (2011). Statically Safe Program Generation
with SafeGen. Science of Computer Programming (SCP), 76(5):376–391.

Ismail, M., Hasan, O., Ebi, T., Shafique, M., and Henkel, J. (2013). Formal Verification
of Distributed Dynamic Thermal Management. In Proc. Int’l Conf. Computer-Aided
Design (ICCAD), pages 248–255, Piscataway, NJ, USA. IEEE.

Istoan, P. (2013). Methodology for the Derivation of Product Behaviour in a Software
Product Line. PhD thesis, Université Rennes 1, Luxembourg.

Janota, M., Kiniry, J., and Botterweck, G. (2008). Formal Methods in Software Product
Lines: Concepts, Survey, and Guidelines. Technical Report Lero-TR-SPL-2008-02,
Lero, University of Limerick.

Jayaraman, P., Whittle, J., Elkhodary, A. M., and Gomaa, H. (2007). Model Composi-
tion in Product Lines and Feature Interaction Detection Using Critical Pair Analysis.
In Proc. Int’l Conf. Model Driven Engineering Languages and Systems (MODELS),
pages 151–165, Berlin, Heidelberg. Springer.

Jia, Y. and Harman, M. (2011). An Analysis and Survey of the Development of Mutation
Testing. IEEE Trans. Software Engineering (TSE), 37(5):649–678.

Johnsen, E. B., Hähnle, R., Schäfer, J., Schlatte, R., and Steffen, M. (2012). ABS:
A Core Language for Abstract Behavioral Specification. In Proc. Int’l Symposium
Formal Methods for Components and Objects (FMCO), pages 142–164, Berlin, Hei-
delberg. Springer.

Kang, K. C., Cohen, S. G., Hess, J. A., Novak, W. E., and Peterson, A. S. (1990).
Feature-Oriented Domain Analysis (FODA) Feasibility Study. Technical Report
CMU/SEI-90-TR-21, Software Engineering Institute.

Kanning, F. and Schulze, S. (2014). Program Slicing in the Presence of Variability.
In Proc. Int’l Conf. Software Maintenance and Evolution (ICSME), pages 501–505,
Washington, DC, USA. IEEE.

Kästner, C., Apel, S., and Kuhlemann, M. (2009a). A Model of Refactoring Physically
and Virtually Separated Features. In Proc. Int’l Conf. Generative Programming and
Component Engineering (GPCE), pages 157–166, New York, NY, USA. ACM.

Kästner, C., Apel, S., and Ostermann, K. (2011a). The Road to Feature Modularity? In
Proc. Int’l Workshop Feature-Oriented Software Development (FOSD), pages 5:1–5:8,
New York, NY, USA. ACM.

Bibliography 151

Kästner, C., Apel, S., Thüm, T., and Saake, G. (2012a). Type Checking Annotation-
Based Product Lines. Trans. Software Engineering and Methodology (TOSEM),
21(3):14:1–14:39.

Kästner, C., Apel, S., ur Rahman, S. S., Rosenmüller, M., Batory, D., and Saake, G.
(2009b). On the Impact of the Optional Feature Problem: Analysis and Case Studies.
In Proc. Int’l Software Product Line Conf. (SPLC), pages 181–190, Pittsburgh, PA,
USA. Software Engineering Institute.

Kästner, C., Giarrusso, P. G., Rendel, T., Erdweg, S., Ostermann, K., and Berger, T.
(2011b). Variability-Aware Parsing in the Presence of Lexical Macros and Conditional
Compilation. In Proc. Conf. Object-Oriented Programming, Systems, Languages and
Applications (OOPSLA), pages 805–824, New York, NY, USA. ACM.

Kästner, C., Ostermann, K., and Erdweg, S. (2012b). A Variability-Aware Module
System. In Proc. Conf. Object-Oriented Programming, Systems, Languages and Ap-
plications (OOPSLA), pages 773–792, New York, NY, USA. ACM.

Kästner, C., Thüm, T., Saake, G., Feigenspan, J., Leich, T., Wielgorz, F., and Apel, S.
(2009c). FeatureIDE: A Tool Framework for Feature-Oriented Software Development.
In Proc. Int’l Conf. Software Engineering (ICSE), pages 611–614, Washington, DC,
USA. IEEE. Formal demonstration paper.

Kästner, C., von Rhein, A., Erdweg, S., Pusch, J., Apel, S., Rendel, T., and Ostermann,
K. (2012c). Toward Variability-Aware Testing. In Proc. Int’l Workshop Feature-
Oriented Software Development (FOSD), pages 1–8, New York, NY, USA. ACM.

Katz, S. (2006). Aspect Categories and Classes of Temporal Properties. Trans. Aspect-
Oriented Software Development, 1:106–134.

Kenner, A., Kästner, C., Haase, S., and Leich, T. (2010). TypeChef: Toward Type
Checking #Ifdef Variability in C. In Proc. Int’l Workshop Feature-Oriented Software
Development (FOSD), pages 25–32, New York, NY, USA. ACM.

Kiczales, G., Hilsdale, E., Hugunin, J., Kersten, M., Palm, J., and Griswold, W. G.
(2001). An Overview of AspectJ. In Proc. Europ. Conf. Object-Oriented Programming
(ECOOP), pages 327–354, London, UK. Springer.

Kiczales, G., Lamping, J., Mendhekar, A., Maeda, C., Lopes, C., Loingtier, J.-M.,
and Irwin, J. (1997). Aspect-Oriented Programming. In Proc. Europ. Conf. Object-
Oriented Programming (ECOOP), pages 220–242, Berlin, Heidelberg. Springer.

Kim, C. H. P., Batory, D., and Khurshid, S. (2011). Reducing Combinatorics in Testing
Product Lines. In Proc. Int’l Conf. Aspect-Oriented Software Development (AOSD),
pages 57—68, New York, NY, USA. ACM.

152 Bibliography

Kim, C. H. P., Bodden, E., Batory, D., and Khurshid, S. (2010). Reducing Configura-
tions to Monitor in a Software Product Line. In Proc. Int’l Conf. Runtime Verification
(RV), pages 285–299, Berlin, Heidelberg. Springer.

Kim, C. H. P., Kästner, C., and Batory, D. (2008). On the Modularity of Feature Inter-
actions. In Proc. Int’l Conf. Generative Programming and Component Engineering
(GPCE), pages 23–34, New York, NY, USA. ACM.

Kim, C. H. P., Khurshid, S., and Batory, D. (2012). Shared Execution for Efficiently
Testing Product Lines. In Proc. Int’l Symposium Software Reliability Engineering
(ISSRE), pages 221–230, Washington, DC, USA. IEEE.

Kim, C. H. P., Marinov, D., Khurshid, S., Batory, D., Souto, S., Barros, P., and
D’Amorim, M. (2013). SPLat: Lightweight Dynamic Analysis for Reducing Com-
binatorics in Testing Configurable Systems. In Proc. Europ. Software Engineering
Conf./Foundations of Software Engineering (ESEC/FSE), pages 257–267, New York,
NY, USA. ACM.

Kishi, T. and Noda, N. (2006). Formal Verification and Software Product Lines. Comm.
ACM, 49:73–77.

Klaeren, H., Pulvermueller, E., Rashid, A., and Speck, A. (2001). Aspect Composition
Applying the Design by Contract Principle. In Proc. Int’l Symposium Generative and
Component-Based Software Engineering (GCSE), pages 57–69, Berlin, Heidelberg.
Springer.

Klose, K. and Ostermann, K. (2010). Modular Logic Metaprogramming. In Proc.
Conf. Object-Oriented Programming, Systems, Languages and Applications (OOP-
SLA), pages 484–503, New York, NY, USA. ACM.

Kolesnikov, S., von Rhein, A., Hunsen, C., and Apel, S. (2013). A Comparison of
Product-Based, Feature-Based, and Family-Based Type Checking. In Proc. Int’l
Conf. Generative Programming: Concepts & Experiences (GPCE), pages 115–124,
New York, NY, USA. ACM.

Kuhlemann, M., Batory, D., and Kästner, C. (2009). Safe Composition of Non-
Monotonic Features. In Proc. Int’l Conf. Generative Programming and Component
Engineering (GPCE), pages 177–186, New York, NY, USA. ACM.

Kuhlemann, M. and Sturm, M. (2010). Patching Product Line Programs. In Proc. Int’l
Workshop Feature-Oriented Software Development (FOSD), pages 33–40, New York,
NY, USA. ACM.

Laguna, M. A. and Crespo, Y. (2013). A Systematic Mapping Study on Software Prod-
uct Line Evolution: From Legacy System Reengineering to Product Line Refactoring.
Science of Computer Programming (SCP), 78(8):1010–1034.

Bibliography 153

Lattner, C. (2008). LLVM and Clang: Next Generation Compiler Technology. In Proc.
BSD Conference (BSDCan).

Lauenroth, K., Metzger, A., and Pohl, K. (2010). Quality Assurance in the Presence of
Variability. In Intentional Perspectives on Information Systems Engineering, pages
319–333, Berlin, Heidelberg. Springer.

Le, D. M., Lee, H., Kang, K. C., and Keun, L. (2013). Validating Consistency between a
Feature Model and Its Implementation. In Proc. Int’l Conf. Software Reuse (ICSR),
pages 1–16, Berlin, Heidelberg. Springer.

Leavens, G. T., Baker, A. L., and Ruby, C. (2006). Preliminary Design of JML: A Be-
havioral Interface Specification Language for Java. SIGSOFT Software Engineering
Notes, 31(3):1–38.

Leavens, G. T. and Müller, P. (2007). Information Hiding and Visibility in Interface
Specifications. In Proc. Int’l Conf. Software Engineering (ICSE), pages 385–395,
Washington, DC, USA. IEEE.

Leavens, G. T., Poll, E., Clifton, C., Cheon, Y., Ruby, C., Cok, D., Müller, P., Kiniry,
J., Chalin, P., Zimmerman, D. M., and Dietl, W. (2013). JML Reference Manual.

Lee, J., Kang, S., and Lee, D. (2012). A Survey on Software Product Line Testing. In
Proc. Int’l Software Product Line Conf. (SPLC), pages 31–40, New York, NY, USA.
ACM.

Lee, J., Muthig, D., and Naab, M. (2008). An Approach for Developing Service Oriented
Product Lines. In Proc. Int’l Software Product Line Conf. (SPLC), pages 275–284,
Washington, DC, USA. IEEE.

Leino, K. R. M. (1998). Data Groups: Specifying the Modification of Extended State.
In Proc. Conf. Object-Oriented Programming, Systems, Languages and Applications
(OOPSLA), pages 144–153, New York, NY, USA. ACM.

Li, H., Krishnamurthi, S., and Fisler, K. (2002). Verifying Cross-Cutting Features as
Open Systems. In Proc. Int’l Symposium Foundations of Software Engineering (FSE),
pages 89–98, New York, NY, USA. ACM.

Li, H., Krishnamurthi, S., and Fisler, K. (2005). Modular Verification of Open Features
Using Three-Valued Model Checking. Automated Software Engineering, 12(3):349–
382.

Liebig, J., Apel, S., Lengauer, C., Kästner, C., and Schulze, M. (2010). An Analysis of
the Variability in Forty Preprocessor-Based Software Product Lines. In Proc. Int’l
Conf. Software Engineering (ICSE), pages 105–114, Washington, DC, USA. IEEE.

154 Bibliography

Liebig, J., von Rhein, A., Kästner, C., Apel, S., Dörre, J., and Lengauer, C. (2013).
Scalable Analysis of Variable Software. In Proc. Europ. Software Engineering
Conf./Foundations of Software Engineering (ESEC/FSE), pages 81–91, New York,
NY, USA. ACM.

Liskov, B. and Guttag, J. (1986). Abstraction and Specification in Program Develop-
ment. MIT Press, Cambridge, MA, USA.

Liskov, B. H. and Wing, J. M. (1994). A Behavioral Notion of Subtyping. ACM Trans.
Programming Languages and Systems (TOPLAS), 16(6):1811–1841.

Liu, J., Basu, S., and Lutz, R. (2011). Compositional Model Checking of Software
Product Lines Using Variation Point Obligations. Automated Software Engineering,
18(1):39–76.

Liu, J., Batory, D., and Lengauer, C. (2006). Feature Oriented Refactoring of Legacy
Applications. In Proc. Int’l Conf. Software Engineering (ICSE), pages 112–121, New
York, NY, USA. ACM.

Liu, J., Dehlinger, J., and Lutz, R. (2007). Safety Analysis of Software Product Lines
Using State-Based Modeling. J. Systems and Software (JSS), 80(11):1879–1892.

Lochau, M., Mennicke, S., Baller, H., and Ribbeck, L. (2014). DeltaCCS: A Core
Calculus for Behavioral Change. In Margaria, T. and Steffen, B., editors, Proc. Int’l
Symposium Leveraging Applications of Formal Methods, Verification and Validation
(ISoLA), pages 320–335, Berlin, Heidelberg. Springer.

Lopez-Herrejon, R. E. and Batory, D. (2001). A Standard Problem for Evaluating
Product-Line Methodologies. In Proc. Int’l Symposium Generative and Component-
Based Software Engineering (GCSE), pages 10–24, London, UK. Springer.

Lorenz, D. H. and Skotiniotis, T. (2005). Extending Design by Contract for Aspect-
Oriented Programming. Computing Research Repository (CoRR), abs/cs/0501070.

Lutz, R. (2007). Survey of Product-Line Verification and Validation Techniques. Tech-
nical Report 2014/41221, NASA, Jet Propulsion Laboratory, La Canada Flintridge,
CA, USA.

McIlroy, M. D. (1968). Mass Produced Software Components. In Proc. NATO Conf.
Software Engineering, pages 138–155. Springer.

Medeiros, F., Ribeiro, M., and Gheyi, R. (2013). Investigating Preprocessor-Based
Syntax Errors. In Proc. Int’l Conf. Generative Programming: Concepts & Experiences
(GPCE), pages 75–84, New York, NY, USA. ACM.

Meinicke, J. (2013). JML-Based Verification for Feature-Oriented Programming. Bach-
elor’s thesis, University of Magdeburg, Germany.

Bibliography 155

Meinicke, J., Thüm, T., Schöter, R., Benduhn, F., and Saake, G. (2014). An Overview
on Analysis Tools for Software Product Lines. In Proc. Workshop Software Product
Line Analysis Tools (SPLat), pages 94–101, New York, NY, USA. ACM.

Mendonça, M., W ↪asowski, A., and Czarnecki, K. (2009). SAT-Based Analysis of Feature
Models is Easy. In Proc. Int’l Software Product Line Conf. (SPLC), pages 231–240,
Pittsburgh, PA, USA. Software Engineering Institute.

Metzger, A. (2007). Quality Issues in Software Product Lines: Feature Interactions and
Beyond. In Proc. Int’l Conf. Feature Interactions in Software and Communication
Systems (ICFI), pages 1–12, Amsterdam, The Netherlands. IOS Press.

Metzger, A., Pohl, K., Heymans, P., Schobbens, P.-Y., and Saval, G. (2007). Disam-
biguating the Documentation of Variability in Software Product Lines: A Separation
of Concerns, Formalization and Automated Analysis. In Proc. Int’l Conf. Require-
ments Engineering (RE), pages 243–253, Washington, DC, USA. IEEE.

Meyer, B. (1988). Object-Oriented Software Construction. Prentice-Hall, Inc., Upper
Saddle River, NJ, USA, 1st edition.

Meyer, B. (1992). Applying Design by Contract. IEEE Computer, 25(10):40–51.

Mezini, M. and Lieberherr, K. (1998). Adaptive Plug-and-Play Components for Evo-
lutionary Software Development. In Proc. Conf. Object-Oriented Programming, Sys-
tems, Languages and Applications (OOPSLA), pages 97–116, New York, NY, USA.
ACM.

Midtgaard, J., Brabrand, C., and W ↪asowski, A. (2014). Systematic Derivation of Static
Analyses for Software Product Lines. In Proc. Int’l Conf. Aspect-Oriented Software
Development (AOSD), pages 181–192, New York, NY, USA. ACM.

Molderez, T. and Janssens, D. (2012). Design by Contract for Aspects, by Aspects.
In Proc. Workshop Foundations of Aspect-Oriented Languages (FOAL), pages 9–14,
New York, NY, USA. ACM.

Molderez, T. and Janssens, D. (2015). Modular Reasoning in Aspect-Oriented Lan-
guages from a Substitution Perspective. Trans. Aspect-Oriented Software Develop-
ment, pages 3–59.

Montagud, S. and Abrahão, S. (2009). Gathering Current Knowledge About Quality
Evaluation in Software Product Lines. In Proc. Int’l Software Product Line Conf.
(SPLC), pages 91–100, Pittsburgh, PA, USA. Software Engineering Institute.

Muchnick, S. S. (1997). Advanced Compiler Design and Implementation. Morgan Kauf-
mann Publishers Inc., San Francisco, CA, USA.

Mulet, P., Malenfant, J., and Cointe, P. (1995). Towards a Methodology for Explicit
Composition of MetaObjects. In Proc. Conf. Object-Oriented Programming, Systems,
Languages and Applications (OOPSLA), pages 316–330, New York, NY, USA. ACM.

156 Bibliography

Necula, G. C. (1997). Proof-Carrying Code. In Proc. Symposium Principles of Pro-
gramming Languages (POPL), pages 106–119, New York, NY, USA. ACM.

Nelson, T., Cowan, D. D., and Alencar, P. S. C. (2001). Supporting Formal Verification
of Crosscutting Concerns. In Proc. Int’l Conf. Metalevel Architectures and Separation
of Crosscutting Concerns, pages 153–169, London, UK. Springer.

Nguyen, H. V., Kästner, C., and Nguyen, T. N. (2014a). Building Call Graphs for
Embedded Client-Side Code in Dynamic Web Applications. In Proc. Int’l Symposium
Foundations of Software Engineering (FSE), pages 518–529, New York, NY, USA.
ACM.

Nguyen, H. V., Kästner, C., and Nguyen, T. N. (2014b). Exploring Variability-Aware
Execution for Testing Plugin-Based Web Applications. In Proc. Int’l Conf. Software
Engineering (ICSE), pages 907–918, New York, NY, USA. ACM.

Nie, C. and Leung, H. (2011). A Survey of Combinatorial Testing. ACM Computing
Surveys, 43(2):11:1–11:29.

Nielson, F., Nielson, H. R., and Hankin, C. (2010). Principles of Program Analysis.
Springer, Secaucus, NJ, USA.

Nipkow, T., Wenzel, M., and Paulson, L. C. (2002). Isabelle/HOL: A Proof Assistant
for Higher-Order Logic. Springer, Berlin, Heidelberg.

Oster, S., Markert, F., and Ritter, P. (2010). Automated Incremental Pairwise Testing
of Software Product Lines. In Proc. Int’l Software Product Line Conf. (SPLC), pages
196–210, Berlin, Heidelberg. Springer.

Oster, S., Wübbeke, A., Engels, G., and Schürr, A. (2011). A Survey of Model-Based
Software Product Lines Testing. In Model-Based Testing for Embedded System, pages
339–381. CRC Press, Boca Raton, FL, USA.

Owre, S., Rajan, S. P., Rushby, J. M., Shankar, N., and Srivas, M. K. (1996). PVS:
Combining Specification, Proof Checking, and Model Checking. In Proc. Int’l Conf.
Computer Aided Verification (CAV), pages 411–414, Berlin, Heidelberg. Springer.

Owre, S., Rushby, J. M., and Shankar, N. (1992). PVS: A Prototype Verification
System. In Proc. Int’l Conf. Automated Deduction (CADE), pages 748–752, London,
UK. Springer.

Parnas, D. L. (1976). On the Design and Development of Program Families. IEEE
Trans. Software Engineering (TSE), SE-2(1):1–9.

Perrouin, G., Sen, S., Klein, J., Baudry, B., and Le Traon, Y. (2010). Automated
and Scalable T-Wise Test Case Generation Strategies for Software Product Lines. In
Proc. Int’l Conf. Software Testing, Verification and Validation (ICST), pages 459–
468, Washington, DC, USA. IEEE.

Bibliography 157

Pierce, B. C. (2002). Types and Programming Languages. MIT Press, Cambridge,
Massachusetts, USA.

Plath, M. and Ryan, M. (2001). Feature Integration Using a Feature Construct. Science
of Computer Programming (SCP), 41(1):53–84.

Pohl, K., Böckle, G., and van der Linden, F. J. (2005). Software Product Line Engi-
neering: Foundations, Principles and Techniques. Springer, Berlin, Heidelberg.

Poppleton, M. (2007). Towards Feature-Oriented Specification and Development with
Event-B. In Proc. Int’l Working Conf. Requirements Engineering: Foundation for
Software Quality (REFSQ), pages 367–381, Berlin, Heidelberg. Springer.

Poppleton, M. (2008). The Composition of Event-B Models. In Proc. Int’l Conf.
Abstract State Machines, Alloy, B and Z (ABZ), pages 209–222, Berlin, Heidelberg.
Springer.

Post, H. and Sinz, C. (2008). Configuration Lifting: Software Verification Meets Soft-
ware Configuration. In Proc. Int’l Conf. Automated Software Engineering (ASE),
pages 347–350, Washington, DC, USA. IEEE.

Prehofer, C. (1997). Feature-Oriented Programming: A Fresh Look at Objects. In
Proc. Europ. Conf. Object-Oriented Programming (ECOOP), pages 419–443, Berlin,
Heidelberg. Springer.

Proksch, F. and Krüger, S. (2014). Tool Support for Contracts in FeatureIDE. Technical
Report FIN-001-2014, University of Magdeburg, Germany.

Rebêlo, H., Coelho, R., Lima, R., Leavens, G. T., Huisman, M., Mota, A., and Cas-
tor Filho, F. (2011). On the Interplay of Exception Handling and Design by Contract:
An Aspect-Oriented Recovery Approach. In Proc. Workshop Formal Techniues for
Java-Like Programs (FTfJP), pages 7:1–7:6, New York, NY, USA. ACM.

Rebêlo, H., Leavens, G. T., Bagherzadeh, M., Rajan, H., Lima, R., Zimmerman, D. M.,
Cornélio, M., and Thüm, T. (2014). AspectJML: Modular Specification and Runtime
Checking for Crosscutting Contracts. In Proc. Int’l Conf. Aspect-Oriented Software
Development (AOSD), pages 157–168, New York, NY, USA. ACM.

Rebêlo, H., Leavens, G. T., Lima, R., Borba, P., and Ribeiro, M. (2013a). Modular
Aspect-Oriented Design Rule Enforcement with XPIDRs. In Proc. Workshop Foun-
dations of Aspect-Oriented Languages (FOAL), pages 13–18, New York, NY, USA.
ACM.

Rebêlo, H., Lima, R., Cornélio, M., and Soares, S. (2008). A JML Compiler Based on
AspectJ. In Proc. Int’l Conf. Software Testing, Verification and Validation (ICST),
pages 541–544, Washington, DC, USA. IEEE.

158 Bibliography

Rebêlo, H., Lima, R., Kulesza, U., Ribeiro, M., Cai, Y., Coelho, R., Sant’Anna, C., and
Mota, A. (2013b). Quantifying the Effects of Aspectual Decompositions on Design
by Contract Modularization: A Maintenance Study. Int’l J. Software Engineering
and Knowledge Engineering (IJSEKE), 23(7):913–942.

Rebêlo, H., Soares, S., Lima, R., Borba, P., and Cornélio, M. (2008). JML and Aspects:
The Benefits of Instrumenting JML Features with AspectJ. In Proc. Int’l Workshop
Specification and Verification of Component-Based Systems (SAVCBS), pages 11–18,
Orlando, Florida, USA. University of Central Florida.

Rhanoui, M. and Asri, B. E. (2014). A Contractual Specification of Functional and
Non-Functional Requirements of Domain-Specific Components. Int’l J. Computer
Science Issues (IJCSI), 11(2):172–181.

Ribeiro, M., Pacheco, H., Teixeira, L., and Borba, P. (2010). Emergent Feature Modu-
larization. In Proc. Int’l Conf. Object-Oriented Programming Systems Languages and
Applications Companion (SPLASH), pages 11–18, New York, NY, USA. ACM.

Robby, Rodŕıguez, E., Dwyer, M. B., and Hatcliff, J. (2006). Checking JML Specifi-
cations Using an Extensible Software Model Checking Framework. Int’l J. Software
Tools for Technology Transfer (STTT), 8(3):280–299.

Roy, C. K., Cordy, J. R., and Koschke, R. (2009). Comparison and Evaluation of
Code Clone Detection Techniques and Tools: A Qualitative Approach. Science of
Computer Programming (SCP), 74(7):470–495.

Rubanov, V. V. and Shatokhin, E. A. (2011). Runtime Verification of Linux Kernel
Modules Based on Call Interception. In Proc. Int’l Conf. Software Testing, Verifica-
tion and Validation (ICST), pages 180–189, Washington, DC, USA. IEEE.

Rubin, J. and Chechik, M. (2013). A Framework for Managing Cloned Product Variants.
In Proc. Int’l Conf. Software Engineering (ICSE), pages 1233–1236, Piscataway, NJ,
USA. IEEE.

Sabouri, H. and Khosravi, R. (2012). Efficient Verification of Evolving Software Product
Lines. In Proc. Int’l Conf. Fundamentals of Software Engineering (FSEN), pages
351–358, Berlin, Heidelberg. Springer.

Sabouri, H. and Khosravi, R. (2013a). Delta Modeling and Model Checking of Product
Families. In Proc. Int’l Conf. Fundamentals of Software Engineering (FSEN), pages
51–65, Berlin, Heidelberg. Springer.

Sabouri, H. and Khosravi, R. (2013b). Modeling and Verification of Reconfigurable
Actor Families. J. Universal Computer Science (J.UCS), 19(2):207–232.

Sabouri, H. and Khosravi, R. (2014). Reducing the Verification Cost of Evolving Prod-
uct Families Using Static Analysis Techniques. Science of Computer Programming
(SCP), 83(0):35–55.

Bibliography 159

Schaefer, I., Bettini, L., Bono, V., Damiani, F., and Tanzarella, N. (2010a). Delta-
Oriented Programming of Software Product Lines. In Proc. Int’l Software Product
Line Conf. (SPLC), pages 77–91, Berlin, Heidelberg. Springer.

Schaefer, I., Bettini, L., and Damiani, F. (2011). Compositional Type-Checking for
Delta-Oriented Programming. In Proc. Int’l Conf. Aspect-Oriented Software Devel-
opment (AOSD), pages 43–56, New York, NY, USA. ACM.

Schaefer, I., Gurov, D., and Soleimanifard, S. (2010b). Compositional Algorithmic
Verification of Software Product Lines. In Proc. Int’l Symposium Formal Methods
for Components and Objects (FMCO), pages 184–203, Berlin, Heidelberg. Springer.

Scholz, W., Thüm, T., Apel, S., and Lengauer, C. (2011). Automatic Detection of
Feature Interactions Using the Java Modeling Language: An Experience Report. In
Proc. Int’l Workshop Feature-Oriented Software Development (FOSD), pages 7:1–7:8,
New York, NY, USA. ACM.

Schröter, R., Siegmund, N., and Thüm, T. (2013). Towards Modular Analysis of Multi
Product Lines. In Proc. Int’l Workshop Multi Product Line Engineering (MultiPLE),
pages 96–99, New York, NY, USA. ACM.

Schröter, R., Siegmund, N., Thüm, T., and Saake, G. (2014). Feature-Context Inter-
faces: Tailored Programming Interfaces for Software Product Lines. In Proc. Int’l
Software Product Line Conf. (SPLC), pages 102–111, New York, NY, USA. ACM.

Schumann, J. (2001). Automated Theorem Proving in Software Engineering. Springer,
Berlin, Heidelberg.

Sedgewick, R. (1983). Algorithms. Addison-Wesley.

Shi, J., Cohen, M. B., and Dwyer, M. B. (2012). Integration Testing of Software Prod-
uct Lines Using Compositional Symbolic Execution. In Proc. Int’l Conf. Fundamen-
tal Approaches to Software Engineering (FASE), pages 270–284, Berlin, Heidelberg.
Springer.

Shi, Y., Wei, O., and Zhou, Y. (2014). Model Checking Partial Software Product Line
Designs. In Proc. Workshop Innovative Software Development Methodologies and
Practices (InnoSWDev), pages 21–29, New York, NY, USA. ACM.

Shinotsuka, S., Ubayashi, N., Shinomi, H., and Tamai, T. (2006). An Extensible Con-
tract Verifier for AspectJ. In Proc. Asian Workshop Aspect-Oriented Software De-
velopment (AOAsia), pages 1:1–1:6, Washington, DC, USA. IEEE.

Smaragdakis, Y. and Batory, D. (2002). Mixin Layers: An Object-Oriented Implemen-
tation Technique for Refinements and Collaboration-Based Designs. Trans. Software
Engineering and Methodology (TOSEM), 11(2):215–255.

160 Bibliography

Smith, B. C. (1985). The Limits of Correctness. SIGCAS Comput. Soc.,
14,15(1,2,3,4):18–26.

Sorge, J., Poppleton, M., and Butler, M. (2010). A Basis for Feature-Oriented Modelling
in Event-B. In Proc. Int’l Conf. Abstract State Machines, Alloy, B and Z (ABZ),
pages 409–409, Berlin, Heidelberg. Springer.

Strichman, O. and Godlin, B. (2008). Verified Software: Theories, Tools, Experiments.
In Meyer, B. and Woodcock, J., editors, Regression Verification - A Practical Way
to Verify Programs, pages 496–501. Springer, Berlin, Heidelberg.

Strickland, T. S., Dimoulas, C., Takikawa, A., and Felleisen, M. (2013). Contracts for
First-Class Classes. ACM Trans. Programming Languages and Systems (TOPLAS),
35(3):11:1–11:58.

Strickland, T. S. and Felleisen, M. (2010). Contracts for First-Class Classes. In Proc.
Symposium on Dynamic Languages (DLS), pages 97–112, New York, NY, USA. ACM.

Takikawa, A., Strickland, T. S., Dimoulas, C., Tobin-Hochstadt, S., and Felleisen, M.
(2012). Gradual Typing for First-Class Classes. In Proc. Conf. Object-Oriented
Programming, Systems, Languages and Applications (OOPSLA), pages 793–810, New
York, NY, USA. ACM.

Tarr, P., Ossher, H., Harrison, W., and Sutton, Jr., S. M. (1999). N Degrees of Sep-
aration: Multi-Dimensional Separation of Concerns. In Proc. Int’l Conf. Software
Engineering (ICSE), pages 107–119, New York, NY, USA. ACM.

Tartler, R., Lohmann, D., Dietrich, C., Egger, C., and Sincero, J. (2012). Configuration
Coverage in the Analysis of Large-Scale System Software. ACM SIGOPS Operating
Systems Review, 45(3):10–14.

Tartler, R., Lohmann, D., Sincero, J., and Schröder-Preikschat, W. (2011). Feature
Consistency in Compile-Time-Configurable System Software: Facing the Linux 10,000
Feature Problem. In Proc. Europ. Conf. Computer Systems (EuroSys), pages 47–60,
New York, NY, USA. ACM.

Teixeira, L., Borba, P., and Gheyi, R. (2011). Safe Composition of Configuration
Knowledge-Based Software Product Lines. In Proc. Brazilian Symposium Software
Engineering (SBES), pages 263–272, Washington, DC, USA. IEEE.

ter Beek, M. H. and de Vink, E. P. (2014). Software Product Line Analysis with
mCRL2. In Proc. Workshop Software Product Line Analysis Tools (SPLat), pages
78–85, New York, NY, USA. ACM.

ter Beek, M. H., Lafuente, A. L., and Petrocchi, M. (2013). Combining Declarative and
Procedural Views in the Specification and Analysis of Product Families. In Proc.
Int’l Workshop Formal Methods and Analysis in Software Product Line Engineering
(FMSPLE), pages 10–17, New York, NY, USA. ACM.

Bibliography 161

Tevanlinna, A., Taina, J., and Kauppinen, R. (2004). Product Family Testing: A
Survey. SIGSOFT Software Engineering Notes, 29:12–17.

Thaker, S., Batory, D., Kitchin, D., and Cook, W. (2007). Safe Composition of Product
Lines. In Proc. Int’l Conf. Generative Programming and Component Engineering
(GPCE), pages 95–104, New York, NY, USA. ACM.

Thüm, T. (2010). A Machine-Checked Proof for a Product-Line–Aware Type System.
Master’s thesis, University of Magdeburg, Germany.

Thüm, T. (2013). Product-Line Verification with Feature-Oriented Contracts. In Proc.
Int’l Symposium in Software Testing and Analysis (ISSTA), pages 374–377, New
York, NY, USA. ACM.

Thüm, T., Apel, S., Kästner, C., Schaefer, I., and Saake, G. (2014a). A Classification
and Survey of Analysis Strategies for Software Product Lines. ACM Computing
Surveys, 47(1):6:1–6:45.

Thüm, T., Apel, S., Zelend, A., Schröter, R., and Möller, B. (2013). Subclack: Feature-
Oriented Programming with Behavioral Feature Interfaces. In Proc. Workshop Mech-
Anisms for SPEcialization, Generalization and inHerItance (MASPEGHI), pages 1–
8, New York, NY, USA. ACM.

Thüm, T., Batory, D., and Kästner, C. (2009). Reasoning about Edits to Feature Mod-
els. In Proc. Int’l Conf. Software Engineering (ICSE), pages 254–264, Washington,
DC, USA. IEEE.

Thüm, T., Kästner, C., Benduhn, F., Meinicke, J., Saake, G., and Leich, T. (2014b).
FeatureIDE: An Extensible Framework for Feature-Oriented Software Development.
Science of Computer Programming (SCP), 79(0):70–85.

Thüm, T., Kästner, C., Erdweg, S., and Siegmund, N. (2011a). Abstract Features in
Feature Modeling. In Proc. Int’l Software Product Line Conf. (SPLC), pages 191–200,
Washington, DC, USA. IEEE.

Thüm, T., Meinicke, J., Benduhn, F., Hentschel, M., von Rhein, A., and Saake, G.
(2014). Potential Synergies of Theorem Proving and Model Checking for Software
Product Lines. In Proc. Int’l Software Product Line Conf. (SPLC), pages 177–186,
New York, NY, USA. ACM.

Thüm, T., Schaefer, I., Apel, S., and Hentschel, M. (2012). Family-Based Deductive
Verification of Software Product Lines. In Proc. Int’l Conf. Generative Programming
and Component Engineering (GPCE), pages 11–20, New York, NY, USA. ACM.

Thüm, T., Schaefer, I., Kuhlemann, M., and Apel, S. (2011b). Proof Composition
for Deductive Verification of Software Product Lines. In Proc. Int’l Workshop
Variability-intensive Systems Testing, Validation and Verification (VAST), pages
270–277, Washington, DC, USA. IEEE.

162 Bibliography

Thüm, T., Schaefer, I., Kuhlemann, M., Apel, S., and Saake, G. (2012). Applying De-
sign by Contract to Feature-Oriented Programming. In Proc. Int’l Conf. Fundamen-
tal Approaches to Software Engineering (FASE), pages 255–269, Berlin, Heidelberg.
Springer.

Turing, A. (1949). Checking a Large Routine. In Conference on High Speed Automatic
Calculating Machines, pages 67–69.

Ubayashi, N. and Tamai, T. (2002). Aspect-Oriented Programming with Model Check-
ing. In Proc. Int’l Conf. Aspect-Oriented Software Development (AOSD), pages 148–
154, New York, NY, USA. ACM.

van der Linden, F. J., Schmid, K., and Rommes, E. (2007). Software Product Lines in
Action: The Best Industrial Practice in Product Line Engineering. Springer, Berlin,
Heidelberg.

VanHilst, M. and Notkin, D. (1996). Using Role Components in Implement
Collaboration-Based Designs. In Proc. Conf. Object-Oriented Programming, Sys-
tems, Languages and Applications (OOPSLA), pages 359–369, New York, NY, USA.
ACM.

Visser, W., Havelund, K., Brat, G. P., and Park, S. (2000). Model Checking Programs.
In Proc. Int’l Conf. Automated Software Engineering (ASE), pages 3–12, Berlin,
Heidelberg. Springer.

von Rhein, A., Apel, S., Kästner, C., Thüm, T., and Schaefer, I. (2013). The PLA
Model: On the Combination of Product-Line Analyses. In Proc. Int’l Workshop
Variability Modelling of Software-Intensive Systems (VaMoS), pages 14:1–14:8, New
York, NY, USA. ACM.

Wampler, D. (2007). Aspect-Oriented Design Principles: Lessons from Object-Oriented
Design. In Proc. Int’l Conf. Aspect-Oriented Software Development (AOSD), pages
I6:1–I6:10, New York, NY, USA. ACM.

Weidenbach, C., Dimova, D., Fietzke, A., Kumar, R., Suda, M., and Wischnewski, P.
(2009). SPASS Version 3.5. In Proc. Int’l Conf. Automated Deduction (CADE), pages
140–145, Berlin, Heidelberg. Springer.

Weigelt, A. (2013). Methoden-basierte Komposition von Kontrakten in Feature-
orientierter Programmierung. Bachelor’s thesis, University of Magdeburg, Germany.
In German.

Weiser, M. (1981). Program Slicing. In Proc. Int’l Conf. Software Engineering (ICSE),
pages 439–449, Piscataway, NJ, USA. IEEE.

Weiß, B. (2011). Deductive Verification of Object-Oriented Software: Dynamic Frames,
Dynamic Logic, and Predicate Abstraction. PhD thesis, Karlsruhe Institute of Tech-
nology, Germany.

Bibliography 163

Weiss, D. M. (2008). The Product Line Hall of Fame. In Proc. Int’l Software Product
Line Conf. (SPLC), page 395, Washington, DC, USA. IEEE.

Xue, Y., Xing, Z., and Jarzabek, S. (2012). Feature Location in a Collection of Product
Variants. In Proc. Working Conf. Reverse Engineering (WCRE), pages 145–154,
Washington, DC, USA. IEEE.

Zhao, J. and Rinard, M. C. (2003). Pipa: A Behavioral Interface Specification Language
for AspectJ. In Proc. Int’l Conf. Fundamental Approaches to Software Engineering
(FASE), pages 150–165, Berlin, Heidelberg. Springer.

EE h r e n e r k l ä r u n g

Ich versichere hiermit, dass ich die vorliegende Arbeit ohne unzulässige Hilfe Dritter und
ohne Benutzung anderer als der angegebenen Hilfsmittel angefertigt habe; verwendete
fremde und eigene Quellen sind als solche kenntlich gemacht. Insbesondere habe ich
nicht die Hilfe eines kommerziellen Promotionsberaters in Anspruch genommen. Dritte
haben von mir weder unmittelbar noch mittelbar geldwerte Leistungen für Arbeiten
erhalten, die im Zusammenhang mit dem Inhalt der vorgelegten Dissertation stehen.

Ich habe insbesondere nicht wissentlich:
- Ergebnisse erfunden oder widersprüchliche Ergebnisse verschwiegen,
- statistische Verfahren absichtlich missbraucht, um Daten in ungerechtfertigter
 Weise zu interpretieren,
- fremde Ergebnisse oder Veröffentlichungen plagiiert,
- fremde Forschungsergebnisse verzerrt wi dergegeben.

Mir ist bekannt, dass Verstöße gegen das Urheberrecht Unterlassungs- und
Schadensersatzansprüche des Urhebers sowie eine strafrechtliche Ahndung durch die
Strafverfolgungsbehörden begründen kann. Die Arbeit wurde bisher weder im Inland
noch im Ausland in gleicher oder ähnlicher Form als Dissertation eingereicht und ist als
Ganzes auch noch nicht veröffentlicht.“

Magdeburg, den

23.02.2015

Thomas Thüm

	Contents
	List of Figures
	List of Tables
	List of Code Listings
	1 Introduction
	2 Background
	2.1 Specification and Verification with Contracts
	2.1.1 Design by Contract
	2.1.2 Behavioral Subtyping
	2.1.3 Contract-Based Verification

	2.2 Software Product Lines
	2.2.1 Feature Modeling
	2.2.2 Feature-Oriented Programming
	2.2.3 Domain Engineering and Application Engineering

	3 Classification and Survey of Product-Line Analyses
	3.1 Classification Overview
	3.2 Product-Based Analyses
	3.3 Family-Based Analyses
	3.4 Feature-Based Analyses
	3.5 Combined Analysis Strategies
	3.6 Research Agenda
	3.7 Related Classifications and Surveys
	3.8 Summary

	4 Feature-Oriented Contracts for Product-Line Specification
	4.1 A Taxonomy for Contract Composition
	4.1.1 Properties of Contract Composition
	4.1.2 Four Fundamental Options for Contract Composition

	4.2 Contract-Composition Mechanisms
	4.2.1 Plain Contracting
	4.2.2 Contract Overriding
	4.2.3 Explicit Contract Refinement
	4.2.4 Conjunctive Contract Refinement
	4.2.5 Cumulative Contract Refinement
	4.2.6 Consecutive Contract Refinement
	4.2.7 Comparison of Contract-Composition Mechanisms

	4.3 Composition Beyond Pre- and Postconditions
	4.3.1 Specification Cases
	4.3.2 Multiple Preconditions and Postconditions
	4.3.3 Pure Methods and Model Methods
	4.3.4 Class Invariants

	4.4 Tool Support for Specifying Feature-Oriented Contracts
	4.4.1 Automating Contract Composition with FeatureHouse
	4.4.2 Supporting Feature-Oriented Contracts in FeatureIDE

	4.5 Empirical Evaluation of Feature-Oriented Contracts
	4.5.1 Case Studies
	4.5.2 Results and Insights
	4.5.3 Threats to Validity

	4.6 Related Work
	4.7 Summary

	5 Feature-Oriented Contracts for Product-Line Verification
	5.1 Feature-Product-Based Theorem Proving
	5.1.1 Product-Based Interactive Theorem Proving
	5.1.2 Proof Composition for Interactive Theorem Proving
	5.1.3 Evaluation with Why/Krakatoa and Coq

	5.2 Family-Based Theorem Proving and Model Checking
	5.2.1 Variability Encoding for Metaproduct Generation
	5.2.2 Tool Support for Variability Encoding
	5.2.3 Evaluation with Theorem Proving and Model Checking

	5.3 Further Experiences
	5.3.1 Type Safety of Feature-Oriented Contracts
	5.3.2 Static Analysis for Feature-Interaction Detection
	5.3.3 Blame Assignment with Behavioral Feature Interfaces

	5.4 Related Work
	5.5 Summary

	6 Conclusion and Future Work
	A Appendix
	Bibliography

