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suggest careful consideration of pitfalls related to 
the choice of seed families and of the biotic interac-
tion under focus. The latter should be chosen with 
a view on both the experimental treatment and the 
corresponding field data to estimate population his-
tory. Furthermore, we suggest exploiting multiple 
omics approaches to address the complexity of biotic 
interactions, and to account for non-adaptive evolu-
tion with molecular data on demographic history of 
populations. We also reviewed papers that studied 
rapid evolution in non-native plants and quantified 
how many of these met our criteria. We anticipate 
that disentangling adaptive and non-adaptive drivers 
of among-population variation can increase the accu-
racy of research on rapid evolution, and that integrat-
ing phenotypic, metabolomic and population genomic 
data can bring opportunities for studying complex 

Abstract Evolution can occur over contemporary 
timescales, which may be crucial for the invasive suc-
cess of non-native plant species. Many studies have 
shown rapid evolution by comparing native and non-
native populations in common gardens. However, 
our understanding of the mechanisms underpinning 
rapid evolution is still incomplete. Here, we identify 
the progress, applications, and limitations of studies 
on rapid evolution of non-native plants with respect 
to sampling, experimental design and experimen-
tal methods. To encompass broad variation within 
and between the ranges, we recommend sampling 
across large-scale environmental gradients. We also 
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biotic interactions. We also illustrate the importance 
of large collaborative networks and present our sci-
entific network iCONNECT (integrative CONyza 
NEtwork for Contemporary Trait evolution), with the 
goal of motivating similar studies on the mechanistic 
understanding of rapid evolution.

Keywords Among-population variation · Biological 
invasions · Biotic interactions · Conyza canadensis · 
Population history · Rapid evolution

Introduction

Natural selection can act on very short ecologi-
cal scales, shifting the genomes, metabolomes and 
phenotypes of populations over a few generations, 
a process which is called “rapid evolution” (e.g., 
Thompson 1998) or in some other contexts also “con-
temporary evolution” (e.g., Hendry and Kinnison 
1999). We here follow the definition of Thompson 
(1998) using the term rapid evolution as an adaptive 
process that has immediate ecological consequences 
on very short evolutionary scales. Rapid evolu-
tion can result from standing genetic variation (e.g., 
altering genotype frequencies through lineage sort-
ing) and from the emergence of novel genotypes, 
either through recombination within populations or 
through admixture of previously isolated gene pools 
(Turcotte et al. 2011; Cameron et al. 2013; Dlugosch 
et  al. 2016). The ability to rapidly adapt to environ-
mental change is of major importance for plant popu-
lation survival under global change (Hoffmann and 
Sgrò 2011; Franks et  al. 2014; Rosche et  al. 2018a; 
Rauschkolb et  al. 2022) and for successful range 
expansion by non-native plant species (Ochocki and 
Miller 2017; Szűcs et  al. 2017; Woods and Sultan 
2022).

Here we focus on rapid evolution in the course of 
plant invasions. This may happen when non-native 
plant populations rapidly adapt to novel environ-
mental conditions in their non-native ranges. Many 
plant invasions are characterized by a “lag-phase”, 
i.e., delay between the introduction of a non-native 
species and its successful colonization in a new area 
(Osunkoya et al. 2021). This process likely coincides 
with rapid adaptation to the novel environment and 
is often followed by the colonization of the invader 
(Aikio et al. 2010; Clements and DiTommaso 2011). 

Indeed, many studies have shown genomic, metabo-
lomic and phenotypic differences between native and 
non-native populations under common garden condi-
tions, indicating rapid evolution as a common occur-
rence in biological invasions reviewed by Bossdorf 
et  al. (2005); Colautti and Lau (2016); van Kleunen 
et  al. (2018); Clements and Jones (2021). In many 
cases, rapid evolution was associated with higher per-
formance or greater competitive ability of non-native 
compared to native populations in common gardens, 
especially for successful invaders (e.g., Zheng et  al. 
2015; Montesinos et al. 2019).

There are two reasons why rapid evolution is fre-
quent in biological invasions. First, non-native popu-
lations undergo dramatic demographic changes. In 
particular, population genetic studies often observe 
colonization bottlenecks or founder effects associ-
ated with genetic drift on the one hand and multiple 
introductions that intensify gene pool admixture on 
the other hand. Together, these processes can lead 
to fission and fusion of native gene pools in the non-
native ranges (Rius and Darling 2014; Estoup et  al. 
2016; Rosche et  al. 2016). Alexander et  al. (2009), 
for example, showed that population genetic struc-
ture was much weaker in the introduced area, and 
populations were not isolated by distance. Second, 
such rearrangements of gene pools occur when non-
native populations experience fundamentally altered 
selection pressures as compared to populations in the 
native range (van Kleunen et al. 2018). Shifts in biotic 
interactions are considered as the most important 
selection pressures of rapid evolution in non-native 
ranges (Moran and Alexander 2014; Dlugosch et  al. 
2016; Moles et al. 2022; Sheng et al. 2022). The most 
prominent example in this context may be the release 
from specialized herbivores and pathogens present in 
their native ranges (enemy release hypothesis, Keane 
and Crawley 2002).

In recent years, several hypotheses have been 
proposed regarding the underlying mechanisms 
of rapid evolution reviewed by Jeschke and Heger 
(2018). These hypotheses have been tested in 
numerous case studies and have significantly 
improved our understanding of the importance of 
biotic interactions in biological invasions (Dlugosch 
et  al. 2016). However, studies of rapid evolution 
are not always carefully set up with rigorous meth-
odologies and there are many contradictory find-
ings when testing theories based on rapid evolution 
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(Colautti and Lau 2016), including, for example, the 
“evolution of increased competitive ability-hypoth-
esis” (EICA, Blossey and Notzold 1995; Rotter and 
Holeski 2018; Callaway et al. 2022).

Because comprehensive frameworks are essen-
tial to elucidate the intricacies of adaptive processes 
over short evolutionary scales, many recent research 
calls for more sophisticated eco-evolutionary frame-
works to study rapid evolution (e.g., Colautti and 
Lau 2016; Schrieber and Lachmuth 2017; Schrieber 
et al. 2017; Rotter and Holeski 2018; Rosche et al. 
2018b, 2019; Sheng et  al. 2022). They identified 
manifold issues that may arise when studying rapid 
evolution in biotic interaction traits. First, the sam-
plings in the native and the non-native ranges can 
be unbalanced, thereby not representing the full 
breadth of conditions in either range (Colautti and 
Lau 2016). Second, the experimental set-ups are 
diverse and each set up comes with its own specific 
limitations (de Villemereuil et  al. 2016; Schrieber 
and Lachmuth 2017). Third, biotic interactions are 
complex by nature and therefore difficult to describe 
and quantify (e.g., competitive ability), making 
their assessment as selective forces a challenging 
task for evolutionary ecologists (Aschehoug et  al. 
2016).

To address apparent issues in studying rapid evo-
lution, we review progress, applications and limita-
tions of current research. Different empirical methods 
are applied to study rapid evolution from the genetic 
to the phenotypic levels. Some experiments observe 
phenotypic shifts under different treatments over a 
few generations (Williams et  al. 2016; Szűcs et  al. 
2017) whereas others use resequencing approaches 
to identify allele frequency shifts (Turner et al. 2011; 
Schlötterer et  al. 2015). Also, herbarium specimens 
can identify trait shifts through invasion histories (Wu 
and Colautti 2022) and resurrection approaches are 
used to compare revived ancestors from stored prop-
agules with their progeny (Sultan et al. 2013; Franks 
et  al. 2018; Rauschkolb et  al. 2022). However, we 
focus here on classical population ecological studies 
which represent the vast majority of studies dealing 
with rapid evolution, i.e., experimental setups that 
compare native and non-native populations under 
common garden conditions. In this context, we focus 
on three topics where we believe progress is needed 
to advance our mechanistic understanding of rapid 
evolution (Fig. 1):

(1) Sampling Consider comparable spatial and envi-
ronmental variation in both the native and non-
native ranges to avoid misleading conclusions 
drawn from unrepresentative samplings in either 
range.

(2) Design of experiments Conceptualize approaches 
for testing biotic interactions of interest and rec-
ognize common experimental pitfalls to design 
an appropriate experiment.

(3) Experimental methods Utilize interdisciplinary 
approaches to examine complex biotic interaction 
traits with applicable omics tools.

We propose considerations that researchers should 
make when designing studies that test differences 
between native and non-native populations. We also 
reviewed papers from the journal Biological Inva-
sions that studied rapid evolution in non-native plants 
using common garden approaches (Table  1) and 
quantified how many of these met our criteria (related 
to the topics 1 to 3 above). Finally, we illustrate the 
importance of large collaborative networks and pre-
sent our scientific network iCONNECT (integrative 
CONyza NEtwork for Contemporary Trait evolution) 
in which we are studying rapid evolution in competi-
tive ability of native and non-native populations of 
Conyza canadensis (syn. Erigeron canadensis), as an 
example of how this could be achieved.

Sampling comparable spatial and environmental 
variation in both ranges

Common garden experiments have frequently found 
differences between native and non-native popula-
tions (Kulmatiski 2019; Montesinos 2022; Zhang 
et  al. 2022). Such between-range differences may 
suggest evidence for rapid evolution assuming that 
they are based on altered selection pressures between 
the ranges. However, between-range variation is just 
a part of the global spectrum of among-population 
variation (APV, i.e., intraspecific trait variation that is 
due to selection pressures associated with population 
history). In this regard, it is important to consider that 
populations from both native and non-native ranges 
can show strong within-range variation in their popu-
lation history (Oduor et al. 2022; Sheng et al. 2022). 
This means that the choice of sampled populations 
from either range can obviously affect the results of 
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native vs. non-native comparisons in the common 
garden (Rosche et al. 2018b, 2019).

Colautti and Lau (2016) reviewed 31 studies that 
postulated rapid evolution in non-native populations. 
They used data simulations and found that 24 of these 

studies did not present sufficient data to support their 
conclusions. Most of them compared only few and 
rather haphazardly chosen populations from large 
areas and therefore underestimated APV within each 
range. Many studies also sampled along different 

Fig. 1  Conceptual outline how to overcome current limita-
tions in (1) sampling, (2) experimental design, and (3) exper-
imental methods to study rapid evolution between native 
and non-native ranges. We suggest (1a) sampling broad and 
comparable variation in environmental gradients within and 
between native and non-native ranges, (1b) sampling compara-
ble spatial distribution in either range, (2a) evaluating the focal 
biotic interaction for both the design of experimental treat-

ments and the collection of field data on population history. 
Experiments should also consider (2b) pitfalls related to seed 
family selection. In addition, we propose to use multiple omics 
approaches to (3a) capture the complexity of biotic interactions 
with currently available tools and to (3b) account for non-adap-
tive evolution with molecular data on population demographic 
history
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Table 1  Papers from the journal Biological Invasions that studied rapid evolution in non-native plants using common garden 
approaches

Study Objective Populations involved Met suggestions

Shi et al. (2023) Analyze plant chemistry of F1-off-
spring of within-population and 
between-population crosses using 
metabolomics

3 native and 3 non-native Lythrum 
salicaria populations

2a

Hoffbeck and TerHorst (2022) Quantify differences in life history 
traits between and within native 
and non-native ranges, among and 
between genotypes

10 native and 10 non-native Medicago 
polymorpha populations

None

Ferrero et al. (2020) Quantify geographical variation among 
ranges, regions and populations in 
traits and ploidy level

33 native and 110 non-native Oxalis 
pes-caprae populations

1a,2b

Hernández et al. (2019) Test for rapid adaptive evolution of 
seed traits in response to novel abi-
otic conditions

15 native and 7 non-native Helianthus 
annuus populations

None

Irimia et al. (2019) Test biogeographical differences in 
allelopathic effects

10 native and 20 non-native Centaurea 
solstitialis populations

1a,2b

Luo et al. (2019) Compare differences in phenotypic 
traits and in their plasticity between 
populations subjected to high and low 
nutrient availability

3 native and 3 non-native Plantago 
virginica populations

2b

Montesinos et al. (2019) Examine competitive responses and 
competitive effects across ranges

8 native and 8 non-native Centaurea 
solstitialis populations and 8 native 
and 8 non-native C. calcitrapa 
populations

2b

Peng et al. (2019) Understand how climate warming and 
atmospheric nitrogen deposition 
influence are related to fitness

1 native and 1 non-native Solidago 
canadensis populations

None

Tavares et al. (2019) Test genetically based phenotypic dif-
ferences regarding competitive ability

23 native and 12 non-native Oxalis 
pes-caprae populations

1a

Turner et al. (2017) Investigate gene expression during 
drought response that might underlie 
variation in drought tolerance

3 native and 3 non-native Centaurea 
diffusa populations

None

Guo et al. (2016) Assess the differentiation in phenotypic 
traits between genotypes and see if 
can be explained by contrasting habi-
tats and climatic conditions

4 native and 4 non-native Phragmites 
australis populations

None

Vandegrift et al. (2015) Test whether founder effects or other 
evolutionary forces are related to 
enemy release and the EICA hypoth-
eses

10 native and 6 non-native Brachypo-
dium sylvaticum populations

2a

Mimura et al. (2013) Compare phenotypic and genetic vari-
ation among genotypes to investigate 
the source and role of standing 
variation

11 native, 7 non-native and 4 cultivars 
Lotus corniculatus populations

2b

Eriksen et al. (2012) Identify candidate morphological and 
life history traits that may have been 
influenced by natural selection and 
contributed to fitness and adaptation

2 native and 2 non-native Centaurea 
solstitialis populations

None

Qing et al. (2012) Test for evolutionary change between 
ranges with respect to nitrogen 
allocations between cell walls and 
photosynthetic proteins

3 native and 3 non-native Spartina 
alterniflora populations

None
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environmental gradients in the native vs. non-native 
ranges. We found that only 23.5% of our reviewed 
studies sampled native and non-native populations 
across comparable environmental gradients in either 
range. In those cases, significant differences between 
native and non-native populations might result from 
within-range APV, which was not measured in both 
ranges to a comparable extent (Rosche et al. 2019). To 
ensure appropriate between-range comparisons test-
ing for rapid evolution, studies should have sufficient 
and representative environmental variation in both 
the native and non-native ranges (Fig. 1-1a). This can 
be achieved by sampling as many populations as pos-
sible while maximizing environmental variation in 
both ranges. Another solution was recently demon-
strated by Sheng et al. (2022) who paired four match-
ing bioclimatic regions in the native and non-native 
ranges to have comparable climatic backgrounds for 
their study populations from either range.

Besides incorporating environmental gradients 
in the sampling design, studies should also sample 
comparable spatial distributions in native vs. non-
native ranges (Fig. 1-1b). We found that none of our 
reviewed studies sampled native and non-native pop-
ulations along comparable spatial distances in either 
range. This is important because variables measured 
from locations close to each other often exhibit more 
similar values than those from further apart (i.e., 
spatial autocorrelation, Legendre 1993). A regional 
clustering of samplings can help to account for spa-
tial auto-correlation if number and spatial distances 
of populations within geographical regions are com-
parable among the regions and between native and 
non-native ranges (Sheng et  al. 2022). Such sam-
pling design may allow setting population nested 

within region as a random effect which was recently 
shown to appropriately account for spatial auto-cor-
relation in native vs. non-native range comparisons 
(Rosche et al. 2019). There are many other statistical 
approaches that account for spatial auto-correlation in 
ecology but all of which benefit from a judicial repre-
sentation of spatial distributions (see Kuehn and Dor-
mann 2012).

Conceptual approaches for experimental designs

To investigate the degree to which differences 
between native and non-native populations are attrib-
utable to rapid evolution, rather than other compo-
nents of APV, it is important to identify biotic inter-
actions (Fig. 1-2a) that differ between the ranges with 
the potential to alter selection pressures (Jones and 
Gomulkiewicz 2012; van Kleunen et al. 2018). There 
are many types of biotic interactions that determine 
the success of invasive species, such as pollination 
(Harmon‐Threatt et  al. 2009; Mackin et  al. 2021), 
herbivory (Hu and Dong 2019; Yin et al. 2023), path-
ogen infestation (Goss et al. 2020), soil biota mutual-
isms (Callaway and Lucero 2020; Sheng et al. 2022) 
and competitive interactions (Shah et  al. 2014). For 
the sake of clarity, we here focus exemplarily on com-
petitive interactions, but our descriptions arguments 
below can be applied in a similar way to other biotic 
interactions under focus.

Competitive interactions are among the most 
important biotic interactions that determine the suc-
cess of invasions (Callaway et  al. 2011) because 
native and non-native species often interact differ-
ently with co-existing species (Felker-Quinn et  al. 
2013; Shah et al. 2014; Pearse et al. 2019; Pal et al. 

Table 1  (continued)

Study Objective Populations involved Met suggestions

Erfmeier and Bruelheide (2010) Assess nutrient supply, temperature 
and community characteristics and 
quantify the environmental pressure 
in native and non-native ranges

12 native and 6 non-native Rhododen-
dron ponticum populations

None

He et al. (2010) Compare the total biomass and pheno-
typic plasticity indices under stressed 
and non-stressed conditions

18 native and 13 non-native Centaurea 
stoebe populations

1a

The selected papers were checked with respect to the criteria suggested in Fig. 1 on sampling (1a. comparable APV range, 1b. com-
parable spatial distribution), design of experiments (2a. biotic interactions, 2b. seed family variation), and experimental methods (3a. 
multiple approaches, 3b. demographic history). Details on the study selection and on the evaluation whether the studies met the sug-
gestions can be found in the Supporting Information.
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2020; Nagy et  al. 2022). Studies on rapid evolution 
often select treatments that simulate the particu-
lar biotic interaction assumed to drive rapid evolu-
tion (e.g., Turcotte et al. 2011; Schrieber et al. 2017; 
Macel et  al. 2017; Rosche et  al. 2018b; Javed et  al. 
2020). For example, if different competitive interac-
tions between the native and non-native ranges are 
observed in the field, studies can apply a competi-
tion treatment under common conditions (e.g., neigh-
bor vs. no neighbor; e.g., Shah et  al. 2014). Such a 
design allows recording whether the response to the 

experimental treatment differs between the ranges 
(i.e., range x treatment interaction).

To integrate the effects of APV within and between 
ranges, field data that deal with the biotic interaction 
of interest can be included in the models as a proxy 
for population history. Such proxies can explicitly 
test whether the strength and direction of natural 
selection in recent population history differ between 
native and non-native ranges (i.e., range x popula-
tion history x treatment interaction; e.g., Schrieber 
et al. 2017; Rosche et al. 2018b; Villellas et al. 2021). 

Fig. 2  Conceptual scheme 
of the current research in 
the iCONNECT project 
that aims to disentangle 
drivers of rapid evolution 
in the competitive ability 
of Conyza canadensis. The 
project has four connected 
and interdisciplinary 
work packages (WPs) that 
analyze data from one 
greenhouse experiment 
(olive boxes). The experi-
ment investigates among-
population variation in the 
response of 112 native and 
177 non-native populations 
to experimental competi-
tion × drought treatments. 
Available field data will be 
used as a proxy for the pop-
ulation history of the local 
drought regime, the com-
petitive regime, mutualist-
pathogen ratio in the field 
rhizosphere (gray boxes). 
The population history data 
and data on neutral genetic 
relatedness of the popula-
tions are anticipated to help 
disentangling how adaptive 
and non-adaptive evolution 
determinants drive among 
population variation with 
respect to the response 
to experimental competi-
tion × drought treatments, 
both within and between 
native and non-native 
ranges
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Moreover, such assessments allow testing for differ-
ential effects of plasticity vs. local adaptation in both 
native and non-native ranges (Villellas et  al. 2021). 
In studies of competition as the main driver of rapid 
evolution, field data on the competitive regime can 
be used to test whether competition in the population 
history has the same effects on competitive ability 
in the greenhouse in native vs. non-native popula-
tions (Lachmuth et  al. 2011; Heger et  al. 2014). As 
an example different from competitive interactions, 
Schrieber et al. (2017) investigated how the herbivory 
that native and non-native populations experienced in 
the field affected experimental herbivory under com-
mon garden conditions. However, only 11.8% of the 
reviewed studies investigated how biotic interactions 
experienced in the field might affect the outcome of 
corresponding experimental treatments as an indica-
tion of rapid evolution.

Another important point for designing experiments 
is the consideration of seed family variation to mini-
mize unexplained variance in common garden experi-
ments (Fig.  1-2b). Within populations, genotypes 
may differ in phenotype with some genotypes show-
ing a high performance across multiple environments 
(e.g., general purpose genotype, Barrett 2016), which 
can be a problem for experimental designs. For exam-
ple, in competition experiments, an overrepresenta-
tion of general purpose genotypes in the “competition 
treatment” as compared to the “no competition treat-
ment” may lead to overestimation of the population´s 
competitive ability. One way to avoid this pitfall is to 
control for equal distribution of seed families across 
the experimental treatments in the greenhouse (Lach-
muth et al. 2011; Schrieber et al. 2017). 29.4% of the 
papers that we reviewed used different seed families 
in their experiments to distribute them equally across 
their treatments. This means that the effect of individ-
ual genomes has been underestimated in the majority 
of the studies.

Other considerations in experimental design 
regarding the seed families include maternal effects 
and breeding background (Pico et al. 2003). Offspring 
may show responses to conditions experienced by the 
mother (maternal effects, Herman and Sultan 2011; 
Heger 2016). Moreover, field conditions influence 
the resource availability of the mother plant and thus 
indirectly affect the offspring in the experiment (Ves-
elá et al. 2021). Greenhouse estimates of population 
fitness thus depend on the environmental conditions 

that the mothers faced in the sampling year (de Vil-
lemereuil et al. 2016; de Kort et al. 2020). Differences 
in mother fitness on offspring performance may be 
accounted for by including seed mass as a covariate 
in the models (Dyer et al. 2010). Also, the breeding 
background of an individual (e.g., selfing, biparental 
inbreeding, outcrossing) can affect its performance 
(reviewed by Angeloni et al. 2011). This may result in 
unexplained variance in experiments on rapid evolu-
tion (Rosche et al. 2017; Schrieber et al. 2017; Gus-
tafsson et  al. 2022). The use of F1-offspring gener-
ated under standardized environmental and breeding 
conditions can control for both maternal effects and 
breeding background. However, such approach would 
reduce epigenetic variation which—depending on the 
research question—can be preferable or not.

Experimental methods: utilizing various omics 
approaches

Traditionally recorded phenotypic data can only pro-
vide inference of rapid evolution and ideally should 
be accompanied by molecular data (de Villemereuil 
et  al. 2016, 2022). However, most native vs. non-
native range comparisons have focused on phenotypic 
data reviewed by Bossdorf et al. (2005). Others have 
used population genomic reviewed by Flucher et  al. 
(2021), or metabolomic data (e.g., Macel et al. 2014; 
Wu et al. 2020; Yu et al. 2022; Yin et al. 2023), but 
these did not cover APV in both ranges. In fact, stud-
ies that cover both molecular and phenotypic data 
across broad spatio-environmental gradients are rare 
and almost exclusively focus on Arabidopsis thali-
ana (e.g., Mönchgesang et al. 2016; Exposito-Alonso 
et  al. 2019). In our review, none of the studies used 
multi-omic approaches. This is an important knowl-
edge gap as complex biological questions cannot be 
investigated using only a few genotypes or popu-
lations (Des Roches et  al. 2018; Milcu et  al. 2018). 
With insights into drivers of rapid evolution in biotic 
interactions, applying multiple omics approaches may 
be particularly promising (Fig.  1-3a) because biotic 
interactions are often characterized by trait complexes 
which are difficult to understand, quantify, or even to 
define. For example, competitive ability is a complex 
of traits comprising the tolerance of an individual to 
the suppressive effects of nearby plants, and traits 
that usurp resources from a finite pool and traits that 
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directly inhibit growth of neighboring plants (Asche-
houg et al. 2016).

Molecular interaction ecology

Eco-metabolomics is a powerful tool for under-
standing the underlying mechanisms of ecological 
processes (Peters and Worrich 2018), may help to 
understand hitherto unexplained variation in plant 
interactions (Walker et  al. 2022; 2023) and can 
unravel strategies of invasive plants (Macel et  al. 
2014). Metabolites are viewed as one of the inter-
mediary layers between the genome and expressed 
phenotypes, and thus represent a key component 
to understanding how species interact (Yang et  al. 
2021; Walker et  al 2022; Auwerx et  al. 2023). We 
here focus exemplarily on studying root exudates; yet, 
metabolomics can be applied for studying many other 
biotic interactions (e.g., studying secondary metabo-
lites in leaves in herbivory studies, Wu et al. 2022).

Root exudates can have direct effects on the com-
petitive ability of plants via the toxic suppression of 
nearby plant growth, known as allelopathy (Sem-
chenko et  al. 2014). The novel-weapons hypothesis 
posits that the overwhelming success of some plants 
in their non-native ranges is due to allelopathic sup-
pression of native species that are not adapted to the 
novel chemical traits (Hierro and Callaway 2021). 
At the same time, an increased allelopathic suscepti-
bility of local competitors in non-native ranges may 
stimulate rapid evolution for the production of allel-
opathic substances between native and non-native 
ranges, although this has rarely been investigated (but 
see Irimia et  al. 2019 for leaf leachates). Moreover, 
root exudates may shape the soil biota community in 
the rhizosphere by attracting mutualists or repelling 
pathogens (Weidenhamer and Callaway 2010; van 
Dam and Bouwmeester 2016; Yu et  al. 2022). This 
is important because shifts in soil biota communities 
affect resource availability and can have strong indi-
rect effects on competitive interactions among plants, 
while these relationships may differ strongly in native 
vs. nonnative ranges (Lekberg et al. 2018).

Many studies support enemy release from soil 
biota in non-native ranges, particularly for special-
ized pathogens (Kulmatiski et  al. 2008; Flory et  al. 
2011). The reduced pathogen pressure in non-native 
populations may also facilitate beneficial interactions 
with mutualists (Reinhart and Callaway 2006; Sheng 

et al. 2022). This aligns with competition experiments 
where non-native plants benefit more than native 
plants from the presence of soil fungi (e.g., Callaway 
and Lucero 2020). However, while the evolutionary 
consequences of biotic interactions have been studied 
extensively for aboveground interactions, we know 
very little on how altered soil biota communities may 
trigger rapid evolution in non-native plants (Lekberg 
et al. 2018; Sheng et al. 2022). Current meta-genomic 
tools such as next generation amplicon sequenc-
ing or the recent progress in analyzing root exudates 
increase our abilities to address such questions related 
to the “belowground black box” (van Kleunen et  al. 
2018).

Population genomics and rapid evolution

High throughput sequencing approaches are revo-
lutionizing the field of eco-evolutionary genomics 
by providing large amounts of genome-wide single 
nucleotide polymorphisms (SNPs, Andrews et  al. 
2016). The availability of thousands of SNPs facili-
tates our ability to unravel how gene flow is con-
trolled by the interplay of adaptive vs. non-adaptive 
drivers of the dispersal probability at the global scale 
(Orsini et al. 2013; Levy and Boone 2019). Quantify-
ing gene flow among populations is crucial for a com-
prehensive understanding of the demographic history 
of populations (Fig. 1-3b, Al‐Gharaibeh et  al. 2017; 
Nagy et al. 2018; Vendrami et al. 2019; Walsh et al. 
2021), and important for predicting native source 
populations and reconstructing the invasion history of 
non-native populations (Fitzpatrick et  al. 2012; Hou 
and Li 2020; Bieker et al. 2022; Encinas‐Viso et al. 
2022; McCulloch et al 2023).

Moreover, knowledge on the demographic history 
of populations allows accounting for non-adaptive 
evolution when analysing phenotypic or metabolomic 
APV (Raeymaekers et al. 2017; de Villemereuil et al. 
2022). APV in general, and between-range varia-
tion more specifically, is not only caused by natural 
selection but can also result from purely demographic 
processes such as genetic drift and migration his-
tory (i.e., population co-ancestry, Keller and Taylor 
2008). For example, Rosche et al. (2019) used pedi-
gree mixed-effects models that account for population 
co-ancestry and demonstrated for C. canadensis that 
non-adaptive evolution may false-positively indicate 
rapid evolution or obscure adaptive effects due to 
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unexplained residual variance.This variance is par-
ticularly useful for studying rapid evolution because 
both fission and fusion of native gene pools can shift 
allele frequencies towards sweep scenarios, where 
adaptive allele frequencies vary greatly across non-
native populations without actually corresponding to 
any selection pressures (Ravinet et  al. 2017; Rosche 
et al. 2019; Irimia et al. 2023). However, our review 
indicated that none of the studies have taken popu-
lation genomic information into account to analyses 
when studying rapid evolution in non-native plants.

Furthermore, mapping high throughput SNP data 
on assembled genomes can identify genomic regions 
that are associated with environmental gradients in 
population histories (McKown et  al. 2014). Simi-
larly, these data can detect genomic regions that are 
associated with phenotypic and metabolomic APV in 
common garden experiments. Combined, these data 
provide insights into whether selection patterns in the 
population history correspond with APV in experi-
ments (Exposito-Alonso et  al. 2019). Mapping of 
candidate SNP loci can also identify functional genes 
that are potentially related to APV. This may allow, 
for example, identifying gene size changes, novel 
genomic rearrangements and local adaptations under-
pinning rapid evolutionary change (Andrews et  al. 
2016; Hendry 2016; Rudman et  al. 2018), and may 
also be used to design probes for sequence capture 
approaches in further studies (Fahrenkrog et al. 2017; 
Capblancq et  al. 2020). Together, these approaches 
can assess the causality of adaptive correlations 
observed in eco-evolutionary studies.

Large collaborative networks to address adaptive 
evolution

Large collaborative networks are crucial for advanc-
ing our understanding of ecology and evolution 
(Goring et  al. 2014; Papale et  al. 2020). Existing 
networks that address adaptive evolution on global 
scales include, for example, the Global Urban Evo-
lution Project (GLUE, Santangelo et  al. 2022), 
the PLANTPOPNET (Smith et  al. 2020), and the 
Genomics of Rapid Evolution in Novel Environ-
ments-net (Czech et al. 2022). These networks bring 
together large amounts of data across broad spa-
tio-environmental scales and involve experts from 
diverse backgrounds, enabling the integration of 

various perspectives and methodologies. Together 
these characteristics address three important issues 
when studying complex evolutionary questions. 
First, studying evolutionary ecology requires exten-
sive datasets across many populations and time peri-
ods (Vermeulen et al. 2013). Second, biogeographic 
regions can fundamentally differ in how environ-
mental changes affect adaptation (Exposito-Alonso 
et al. 2019) and how this affects biotic interactions 
(Lee et  al. 2022). And third, evolutionary biology 
is inherently interdisciplinary, drawing from genet-
ics, metabolomics, ecology, and other fields (Craven 
et al. 2019).

Here, we introduce iCONNECT, which is a new 
large collaborative and interdisciplinary network 
investigating mechanisms driving rapid evolution in 
C. canadensis (https:// conyz aicon nect. wixsi te. com/ 
iconn ect). This framework is an open collabora-
tion of researchers who contribute to the sampling 
of populations from the Northern Hemisphere, and 
researchers who investigate APV on sampled popu-
lations in their particular field. We use C. canaden-
sis as a model because it is a successful invader, 
and an economically significant agricultural weed 
(Okada et  al. 2015). The species is native to large 
parts of North America and non-native to large 
parts of the rest of the temperate and subtropical 
world. This cosmopolitan distribution allows study-
ing APV in biotic interactions across large climatic 
gradients. Conyza canadensis has a high capability 
for rapid evolution given by that it was the first eud-
icot weed that evolved glyphosate resistance, inde-
pendently at multiple locations (Okada et al. 2015).

Our current research investigates the drivers 
of rapid evolution in the competitive ability of C. 
canadensis under mesic vs. drought-stressed condi-
tions. To do so, we investigate how population his-
tory determines APV under common garden con-
ditions for competitive ability, drought responses, 
root exudate profiles, allelopathic activity, resource 
acquisition patterns and, interactions with mutu-
alistic and pathogenic fungi (Fig.  2). In addition, 
correlating data across the interdisciplinary work 
packages can help to unravel how  belowground 
mechanisms determine  competitive ability. This 
includes genome-wide association studies to iden-
tify genomic regions that drive rapid evolution in 
competitive ability.

https://conyzaiconnect.wixsite.com/iconnect
https://conyzaiconnect.wixsite.com/iconnect
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Conclusion

The understanding of rapid evolution is still incom-
plete despite tremendous efforts that have been made 
with diverse approaches in common garden studies. 
There are only few studies on rapid evolution that 
explicitly disentangle how population history drives 
APV within and between native and non-native 
ranges. There is also a lack of interdisciplinary frame-
works that could identify the underlying mechanisms 
of rapid evolution, particularly studies involving 
multi-omics approaches. In this conceptual paper, we 
reiterate the call for more sophisticated eco-evolution-
ary frameworks to study rapid evolution (e.g., Mráz 
et al. 2014; Schrieber et al. 2017; Rosche et al. 2018b, 
2019) by focusing on three topics: (1) sampling, (2) 
design of experiments, and (3) experimental methods.

We argue that integrating data-intensive research 
on phenotypes, metabolomics, belowground amplicon 
sequencing and population genomics offers promising 
opportunities for studying complex biotic interac-
tions. Considering these aspects, we outline how to 
study rapid evolution in the context of competitive 
ability under changing environmental conditions and 
introduce our scientific network iCONNECT. Our 
conceptual approach, however, is applicable to other 
invasive species and other types of biotic interac-
tions and we emphasize the value of large collabora-
tive networks to address such research. We hope that 
our considerations can be helpful for researchers that 
design studies on rapid evolution to test for differ-
ences between native vs. non-native populations.
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