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Abstract: The trace element zinc influences a number of biological reactions, including cell growth,
apoptosis, and DNA damage, which affect tumor therapy. The natural compound betulinic acid
(BA) and its derivatives are known for their antiviral, antibacterial, and antitumor effects. Previous
studies show that BA and 3-acetyl-28-sulfamoyloxybetulin (CAI3) have high cytotoxicity and induce
radiosensitization in breast cancer cells. This study investigates the effects of zinc supplementation
on treatment with BA or CAI3 and radiotherapy of breast cancer cell lines MDA-MB-231 and HS578T.
Expression analysis shows that BA and CAI3 lead to altered expression of genes involved in zinc
metabolism. Zinc supplementation affects cell survival and cell death alone and in combination
with BA or CAI3 in both breast cancer cell lines. In MDA-MB-231 cells, zinc excess protects against
ROS formation by BA or CAI3 and exhibits radioprotective effects compared to the single agent
treatment. In contrast, in HS578T cells, zinc induces ROS formation but does not affect radiosen-
sitivity. The variable effects of zinc on radiosensitivity highlight the importance of individualized
treatment approaches. Although zinc has cytotoxic, pro-apoptotic, and anti-clonogenic effects, it
seems worthwhile to consider its radioprotective properties when making treatment decisions in the
case of adjuvant radiotherapy of breast cancer.
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1. Introduction

In the ‘Global Cancer Statistics 2020’, breast cancer is listed as the most commonly
diagnosed cancer worldwide, and it is the second leading cause of cancer-related deaths in
women [1]. There are various factors that influence breast cancer risk, including gender,
age, genetic mutations, and family history [2–4]. Depending on tumor stage and subtype,
different treatment approaches are considered, with the three main pillars being surgery,
radiation, and chemotherapy. However, radiotherapy and chemotherapy often come with
significant side effects such as a weakened immune system, hair loss, and nausea, leading to
an ongoing search for new therapeutic options. Targeted therapies are gaining importance,
using substances that specifically target certain characteristics of tumor cells.

Pentacyclic triterpenes, such as betulin or betulinic acid (BA), have long been used in
various therapies. BA exhibits a wide range of activities, including antiviral, antibacterial,
and antitumor effects [5,6]. Its cytotoxic activity is selective for tumor cells rather than
untransformed normal cells, which have a higher tolerance to BA [7,8]. However, the use
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of BA in tumor therapy has been limited due to its poor solubility and bioavailability. The
development of derivatives like 3-acetyl-28-sulfamoyloxybetulin (CAI3) offers a potential
approach to advance medical applications. CAI3 shows a higher cytotoxic activity and
induces radiosensitivity in breast cancer cell lines [9,10]. Several studies indicate that BA
induces intrinsic apoptotic pathways independently of upstream signaling and mutations
that could lead to drug or chemotherapy resistance [5,11]. Nevertheless, the precise mecha-
nisms of action of BA, especially in combination with radiation or chemotherapy, remain
largely unexplored. Previous studies show that BA induces the expression of stress-induced
gene SESN2 in breast cancer cell lines and that treatment with BA and derivative CAI3
leads to an increased expression of genes involved in zinc homeostasis in breast cancer
cells, including an overexpression of metallothionein 1 (MT1), zinc transporter 1 (SLC30A1),
and S100 calcium and zinc binding protein (S100P) [12]. However, the role of zinc during
treatment with BA or CAI3 remains largely unknown.

Zinc is one of the most crucial trace elements in cellular metabolism, necessary for nu-
merous biochemical reactions. Its homeostasis is regulated through complex mechanisms
involving zinc importers (ZIPs), zinc transporters (ZnTs), and metallothioneins (MTs) [13].
Zinc is a component of over 3000 proteins, influencing a wide range of physiological pro-
cesses, including DNA and RNA synthesis, cell growth, and energy metabolism [14,15].
Reduced zinc levels have been associated with the early development of certain cancers,
such as prostate, liver, and pancreatic cancer [16,17]. Notably, in some specific tumors,
such as breast cancer, increased zinc levels could also be observed in malignant tissues [18].
Nevertheless, zinc deficiency is known to induce oxidative stress, resulting in DNA, protein,
and lipid damage and significantly increasing the risk of cancer [19,20]. The significance of
zinc as a tumor suppressor has been shown in various cancer types, as zinc concentrations
that are tolerated in normal cells become cytotoxic in malignant cells, forming the basis for
the development of zinc-associated chemotherapeutics [21]. In addition, zinc supplemen-
tation has shown promise in reducing side effects associated with chemotherapy [22,23].
The impact of the treatment with zinc in radiotherapy is also gaining attention, with initial
studies showing increased radiosensitivity and apoptosis in different carcinomas [24,25].

In this study, it is investigated if a treatment of breast cancer cell line MDA-MB-231
with BA or CAI3 might possibly lead to an increase in intracellular zinc concentration. To
this end, the significance of zinc supplementation alone or in combination with BA or CAI3
is investigated in breast cancer cell lines, focusing on cell viability, clonogenic survival, cell
death rate, generation of reactive oxygen species, and radiosensitivity.

2. Materials and Methods
2.1. Cell Culture Conditions, Treatment of Cells

Human breast cancer cell lines MDA-MB-231, HS578T, T47D (kindly provided by Jür-
gen Dittmer, Department of Gynecology, Martin Luther University Halle-Wittenberg, Halle,
Germany), and MCF-7 (Cell Lines Service GmbH, Eppelheim, Germany) were cultured at
37 ◦C and 5% CO2, with RPMI 1640 medium (Thermo Fisher Scientific, Waltham, MA, USA)
containing 10% fetal bovine serum (Capricorn Scientific, Ebsdorfergrund, Germany), 1%
sodium pyruvate (Gibco, Thermo Fisher Scientific), and 2% penicillin/streptomycin (Sigma-
Aldrich, St. Louis, MO, USA). Cell line authentication was achieved by short tandem repeat
(STR) DNA profiling to detect possible crosscontamination between cell lines. The cells
were regularly tested for mycoplasma contamination by PCR. The cells were seeded in cell
culture flasks (Greiner Bio-One, Kremsmünster, Austria) 24 h before treatment.

The chemical drugs betulinic acid (BA) and 3-Acetyl-28-sulfamoyloxybetulin (CAI3)
(kindly provided by BioSolutions, Halle, Germany) were dissolved in dimethyl sulfoxide
(DMSO; Sigma, Steinheim, Germany) to achieve a 20 mM stock solution. The purity of
the substances was specified by the manufacturers as >99%. Zinc sulfate (ZnSO4; Sigma)
was dissolved in water (sterile filtered) to achieve a 200 mM stock solution. The cells were
treated with 20–40 µM BA, 20–40 µMCAI3, and/or 0–500 µM ZnSO4 for 24 h at 37 ◦C,
depending on the assay performed.
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2.2. Analysis of RNA Expression

Previous microarray analyses [12] show that genes such as MT1E, MT1F, SLC30A1,
and S100P involved in the regulation of zinc homeostasis are differentially expressed by
a treatment of breast cancer cells with BA or CAI3. RNA isolation, cDNA synthesis, and
qRT-PCR were performed as previously described [12]. The TaqMan primers used are listed
in Table 1. A no-template reaction was used as a negative control. Housekeeping gene
MMGT1 (membrane magnesium transporter 1) was used for normalization. The primers
used for qRT-PCR were ordered from Sigma–Aldrich.

Table 1. TaqMan primer.

Gene Assay ID Product Length

MMGT1 Hs00953954_m1 100 bp
MT1E Hs01652848_g1 146 bp
MT1F Hs04398568_g1 166 bp

SLC30A1 Hs00253602_m1 97 bp
S100P Hs00195584_m1 73 bp

SLC30A1, solute carrier family 30 member 1; MT1E, metallothionein 1E; MT1F, metallothionein 1F; S100P, S100
calcium binding protein P.

To quantify all qRT-PCR data, the delta–delta Ct method (∆∆Ct) was applied [26]. ∆Ct
values were calculated as the variation between the Ct values of the gene of interest and
the Ct values of the reference gene MMGT1. The average Ct value from cells treated with
DMSO was chosen as the reference sample. The ∆∆Ct value was defined as the difference
between the ∆Ct value of the treated sample and the ∆Ct value of the reference sample.
The 2−∆∆Ct represents the fold change in the mRNA expression level of the treated sample
compared to the averaged reference sample.

2.3. FluoZin-3 Staining and Measurement of Intracellular Zinc

The quantification of intracellular free zinc was carried out using the zinc-specific
fluorescent dye FluoZin-3-AM (Thermo Fisher Scientific). FluoZin-3-AM was always
freshly dissolved in DMSO as a 10 µM stock solution, TPEN (Sigma) was dissolved in
DMSO as a 2 mM stock solution, and pyrithione (Sigma) was dissolved in bidistilled water
as a 200 mM stock solution.

MDA-MB-231 and HS578T cells were seeded in 6-well plates (Greiner Bio-One). After
24 h, the cells were treated with different concentrations of BA (20 µM and 40 µM), CAI3
(20 µM and 30 µM), and/or ZnSO4 (150 µM and 200 µM) for 24 h. Afterwards, the cells
were incubated with trypsin-EDTA (Biochrom, Berlin, Germany) for 5 min at 37 ◦C. Trypsin
was decanted, the cells were detached with culture medium, and the cell suspension was
centrifuged at 800 rpm for 4 min in 15 mL tubes (Greiner Bio-One). Subsequently, the
culture medium was decanted and the cells were stained by incubating with 1 µM FluoZin-
3-AM in measurement buffer (5 mM glucose, 1 mM MgCl2, 1 mM NaH2PO4, 1.3 mM CaCl2,
25 mM HEPES, 120 mM NaCl, 5.4 mM KCl) for 30 min at 37 ◦C. The cells were washed
by adding measurement buffer, and centrifugation at 800 rpm for 4 min. The cells were
resuspended in 1 mL measurement buffer and the cell suspension was fractionated at
250 µL each in three wells of a 96-well plate (Greiner Bio-One): (1) cell sample (=̂ F); (2) cell
sample with 100 µM TPEN (=̂ Fmin); (3) cell sample with 50 µM pyrithione and 100 µM
ZnSO4 (=̂ Fmax). Again, the samples were incubated for 10 min at 37 ◦C and resuspended
in the wells.

The stained cells were analyzed for fluorescent signal with an LSR II Fortessa flow
cytometer (BD Biosciences, Heidelberg, Germany). The measured mean fluorescence
intensities of the three sample fractions (F, Fmin, and Fmax) described above were combined
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with the binding coefficient of FluoZin-3 (KD = 15 nM), and the concentration of free
intracellular zinc ions (Zn2+) was determined according to Equation (1):[

Zn2+
]
= KD ∗

(
F − Fmin

Fmax − F

)
(1)

The average fluorescence intensities of 10,000 cells were used for evaluation.

2.4. Cytotoxicity

To determine the influence of intracellular zinc on the cytotoxicity of BA or CAI3,
the CellTiter-Glo® Luminescent Cell Viability Assay (Promega, Mannheim, Germany)
was used. Breast cancer cells were seeded at 6000 cells/well in 96-well plates (Berthold
Technologies GmbH & Co.KG, Bad Wildbad, Germany); after 24 h the growth medium was
changed and the cells were treated with different concentrations of BA or CAI3 (20–40 µM)
and/or ZnSO4 (0–500 µM) for another 24 h. Luminescence was measured using a Spark®

Multimode Microplate Reader (Tecan Group AG, Männedorf, Switzerland). IC50 values
(half-maximal inhibitory concentration) were determined from the dose response curve
calculated using Origin2019 (OriginLabCorp., Northampton, MA, USA).

2.5. Clonogenic Survival and Radiosensitivity

To estimate the effects of BA (20 µM and 40 µM), CAI3 (20 µM and 30 µM), and/or
ZnSO4 (150 µM and 200 µM) on clonogenic survival, 24 h after treating the cells, a colony-
forming assay was performed. Therefore, cells were trypsinized and a defined cell number
between 150 and 20,000 (depending on cell line, treatment, and irradiation) were plated
in 50 mL cell culture flasks. The cells were cultured at 37 ◦C and 5% CO2 and allowed
to form colonies over 10 (HS578T) or 12 (MDA-MB-231) days. The colonies were fixed
with formaldehyde (Roth, Karlsruhe, Germany) and stained with 10% Giemsa solution
(Sigma). A minimal size of approximately 50 cells was set to be counted as a colony. Colony
counting was made using the GelCount system (Oxford Optronics, Abingdon, UK).

Irradiation was performed to determine radiosensitivity 24 h after treatment with
a Synergy linear accelerator (Elekta, Stockholm, Sweden). The cells were irradiated at
different doses (0–10 Gy) depending on the cell line. Survival fraction (SF) and dose-
modifying factor (DMF10) were defined as described previously [27]. Cell survival curves
were fitted to a linear quadratic model (−lnS = αD + βD2) using Origin 2019 (OriginLab,
Northampton, MA, USA).

2.6. Annexin V-PI Assay

For the evaluation of apoptosis using the Annexin V-PI method, MDA-MB-231 and
HS578T cells were seeded in 6-well plates, and after 24 h, the cells were treated with BA
(20 µM and 40 µM), CAI3 (20 µM and 30 µM), and/or ZnSO4 (150 µM and 200 µM) for
another 24 h. The cells were then stained and analyzed by FACS using an LSR II Fortessa
flow cytometer as previously described [27]. Upon assessment, annexin V- and PI-positive
cells were classified as late apoptotic, annexin V-positive and PI-negative cells as early
apoptotic, annexin V-negative and PI-positive cells as necrotic, and cells negative for both
markers as vital.

2.7. Analysis of ROS

The formation of intracellular reactive oxygen species (ROS) was analyzed using the
CM-H2DCF-assay, as previously described [28]. For this, the cells were cultured in RPMI
1640 medium without Phenol Red (Thermo Fisher Scientific) at least one week before
testing and then seeded in 6-well plates (150,000 cells/well) for 24 h. After treatment with
BA (20 µM and 40 µM)/CAI3 (20 µM and 30 µM) and/or ZnSO4 (150 µM and 200 µM)
for 24 h, the cells were incubated with 0.5 µM ROS indicator CM-H2DCFDA (Thermo
Fisher Scientific) in PBS (Sigma; complemented with CaCl2 and MgCl2) for 30 min at 37 ◦C
according to the manufacturer’s suggestions. The cells were washed, trypsinized for 3 min,
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and resuspended in PBS. The average fluorescence intensities of 5000–10,000 (depending
on the number of vital cells) detached cells were used for analysis with an LSR II Fortessa
flow cytometer. The cells stained with CM-H2DCFDA were excited at 488 nm, and the
fluorescent signal was measured using a 530/30 nm filter.

2.8. Statistical Analysis

All mean values and standard deviations (±SD) were obtained from at least three
independent experiments. Statistical analyses were performed using Student’s t-test in
Excel 16.0 (Microsoft Corporation, Redmond, WA, USA). Significant differences were
based on p-values of <0.05, ≤0.01, or ≤0.001 in comparison with DMSO-treated cells and
highlighted with asterisks (* p ≤ 0.05, ** p ≤ 0.01, *** p ≤ 0.001).

3. Results
3.1. Quantitative PCR Analysis

Four human breast cancer cell lines (MDA-MB-231, MCF-7, HS578T, and T47D) were
subjected to a 48 h treatment with BA or CAI3 to uncover the genes and pathways po-
tentially associated with the mechanism of action of BA or CAI3. Genes involved in zinc
homeostasis (SLC30A1, S100P, MT1F, and MT1E) were particularly noticeable. PCR analy-
ses showed that the mRNA expression levels of metallothioneins MT1F and MT1E, zinc
transporter SLC30A1, and zinc binding protein S100P were significantly enhanced after
treatment with BA or CAI3 (Table 2), with the exception of MT1F upon treatment with BA
in MDA-MB-231 cells (Table 2, Figure 1).
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Figure 1. Relative mRNA expression genes involved in zinc homeostasis in MDA-MB-231 cells.
Breast cancer cells were treated with BA or CAI3 for 48 h. Relative mRNA expressions of (A) MT1F,
(B) MT1E, (C) SLC30A1, and (D) S100P were measured by qRT-PCR. Data represent mean values
(±SD) of at least three independent experiments. All data were referred to DMSO-treated cells,
and significant results are highlighted with asterisks (n.a., not analyzed; * p ≤ 0.05, ** p ≤ 0.01,
*** p ≤ 0.001).

Table 2. Relative mRNA expression (fold change) caused by treatment with BA or CAI3 referred to
DMSO-treated cells.

MDA-MB-231 MCF-7 T47D HS578T
Gene BA CAI3 BA CAI3 BA CAI3 BA CAI3

MT1F 0.3 4.4 ** 2.9 2.3 * 14.3 7.8 ** n.d. n.d.
MT1E 3.4 *** 2.9 *** 2.3 2.4 n.d. n.d. 2.5 4.1 ***

SLC30A1 1.8 *** 1.5 *** 1.5 *** 1.7 *** 1.4 2.0 ** 1.3 ** 1.7 **
S100P n.a. 4.4 * n.a. 2.1 * n.a. 1.7 n.a. 6.7

MT1F, metallothionein 1F; MT1E, metallothionein 1E; SLC30A1, solute carrier family 30 member 1; S100P, S100
calcium-binding protein; n.d., not detectable; n.a., not analyzed; * ≤0.05; ** ≤0.01; *** ≤0.001.
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3.2. Quantification of Intracellular Free Zinc

Previous studies showed that treatment with BA or CAI3 leads to dysregulation of zinc
homeostasis genes in breast cancer cells. Consequently, the level of intracellular free zinc
was investigated in breast cancer cell lines MDA-MB-231 and HS578T after treatment with
BA, CAI3, and zinc. In MDA-MB-231 cells, treatment with BA caused a 4.4-fold (p = 0.04),
CAI3 a 5.1-fold (p = 0.01), and zinc a 3.7-fold (p = 0.03) increase in intracellular free zinc
concentration (Figure 2). However, in HS578T cells, treatment with BA and CAI3 had no
significant effect on the intracellular free zinc concentration. A treatment with zinc caused
a 6.1-fold (p = 0.01) increase (Figure 2). A combined treatment with BA or CAI3 and zinc
showed no significant additional impact on intracellular free zinc concentration in both of
the two breast cancer cell lines.
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Figure 2. Intracellular free zinc concentration in breast cancer cells. MDA-MB-231 and HS578T cells
were treated with BA, CAI3, or ZnSO4 for 24 h. After staining with 1 µM FluoZin-3-AM, cells were
analyzed for intracellular free zinc by flow cytometry. (A) Data represent the mean values (+SD) of at
least three independent experiments. All data were referred to DMSO-treated cells, and significant
results are highlighted with asterisks (* p ≤ 0.05, ** p ≤ 0.01). Representative immunofluorescence
staining of Zn2+ ions (green: FluoZin-3) and cell nuclei (blue: DAPI) in (B) untreated cells, (C) zinc,
(D) BA, and (E) CAI3-treated cells in 20× magnification. The red arrows mark the accumulation of
zinc in treated cells.

3.3. Cytotoxicity of BA or CAI3 and Zinc

To investigate the effect of a treatment with zinc on the drug-induced cytotoxicity, a
Cell Titer Glo® assay (Promega, Mannheim, Germany) was performed with breast cancer
cell lines MDA-MB-231 and HS578T, showing that cell viability decreased with increasing
zinc and drug concentrations in both cell lines. During the co-treatment with zinc, the
cytotoxicity of BA and CAI3 was influenced by the zinc concentration. Up to a zinc concen-
tration of 150 µM (MDA-MB-231) or 200 µM (HS578T), a treatment with zinc had hardly
any effect on the efficacy of the drugs. Treatment with 200 µM (MDA-MB-231) or 300 µM
(HS578T) zinc showed the same cell viability regardless of drug concentration (except when
treated with BA in MDA-MB-231 cells). The use of even higher zinc concentrations in
combination with treatment with BA or CAI3 even showed slight cytoprotective effects
(Figure 3B–D).
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Figure 3. Dose-dependent effects on cell viability of zinc and BA or CAI3 as combined treat-
ment in breast cancer cells. Cell viability was measured using a Cell Titer Glo® assay. Cell
lines (A,B) MDA-MB-231 and (C,D) HS578T were treated with ZnSO4 (100–500 µM) and (A,C) BA
(20 µM, 30 µM, and 40 µM) or (B,D) CAI3 (20 µM, 30 µM, and 40 µM) for 24 h. Data represent mean
values (±SD) of at least three independent experiments and were referred to DMSO-treated cells.

3.4. Effects of a Combined Treatment with BA or CAI3 and ZnSO4 on Clonogenic Cell Survival

A clonogenic survival assay was performed with MDA-MB-231 and HS578T breast
cancer cells to investigate the effect of zinc supplementation on the clonogenic survival
after treatment with BA or CAI3 (Figure 4). Based on pilot studies, zinc concentrations
of 150 µM and 200 µM were selected to have a reliable effect on drug efficacy. Treatment
with 150 µM zinc had only slight effects on clonogenic survival in both cell lines. However,
after incubation with 200 µM zinc, a reduction of clonogenic survival was observed in
MDA-MB-231 cells up to 19.9% (p = 0.02) and in HS578T cells up to 60.5% (p = 0.04).
Simultaneous incubation of 150 µM zinc with the respective drug caused no significant
effects on clonogenic survival compared to single treatment in both cell lines. Except
in HS578T cells, treatment with 150 µM zinc even showed a cytoprotective effect on
clonogenic survival after treatment with CAI3 with an increase in clonogenic survival of
23.6% (p ≤ 0.05) compared to that after treatment with CAI3 alone. In MDA-MB-231 cells,
additional treatment with 200 µM zinc caused further reduction in clonogenic survival of
52.5% (BA; p = 0.02) and 20.1% (CAI3), respectively, compared to the respective treatment
without zinc. In HS578T cells, the same treatment caused further reductions in clonogenic
survival of 32.4% (BA) and 15.1% (CAI3), respectively (Figure 4).
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Figure 4. Clonogenic survival of breast cancer cells. (A) MDA-MB-231 and (B) HS578T breast cancer
cells were treated with 150 µM and 200 µM ZnSO4 as single treatments and in combination with
BA or CAI3 for 24 h. Data represent mean values (+SD) of at least three independent experiments.
All data were referred to DMSO-treated cells, and significant results are highlighted with asterisks
(* p ≤ 0.05, ** p ≤ 0.01, *** p ≤ 0.001).

3.5. Effects of a Combined Treatment with BA or CAI3 and ZnSO4 on Cell Death

Quantification of necrotic (Q1), late apoptotic (Q2), and early apoptotic (Q4) cells was
performed using Annexin V-PI analysis (Figure 5). Treatment with 150 µM zinc had only
slight effects on cell death rate, whereas 200 µM zinc resulted in a strong induction of cell
death in both cell lines (MDA-MB-231: 39.3% (0.5% necrotic; 28.3% late apoptotic; and
10.5% early apoptotic cells); HS578T: 55.3% (2.4% necrotic; 44.2% late apoptotic; and 8.7%
early apoptotic cells). Simultaneous incubation of 150 µM zinc with each drug caused
a low increase in cell death rate compared to single drug treatment in both cell lines.
Except in HS578T, treatment with 150 µM zinc showed a cytoprotective effect on cell death
after treatment with BA with a reduction of late apoptosis of 10% compared to that after
treatment with BA alone. Additional treatment with 200 µM zinc had no significant effect
on necrosis but significantly increased late and early apoptosis by 38.9% in MDA-MB-231
and by 19% in HS578T compared to that after treatment with BA alone (Figure 5). The
combined treatment with 200 µM zinc and CAI3 resulted in an increase in necrosis as
well as late and early apoptosis summing up of 19% (MDA-MB-231) and 43.4% (HS578T)
compared to that after a treatment with CAI3 alone (Figure 5).
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Figure 5. Evaluation of necrosis and apoptosis using the Annexin V-PI method in breast cancer cells.
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All data were referred to DMSO-treated cells and significant results are highlighted with asterisks
(* p ≤ 0.05, ** p ≤ 0.01, *** p ≤ 0.001).
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3.6. Effects of a Combined Treatment with BA or CAI3 and ZnSO4 on Reactive Oxygen Species
(ROS) Formation

ROS formation was investigated after treating cells with zinc and BA or CAI3 using
the CM-H2DCF-assay (Figure 6). A treatment with 150 µM zinc led to a 4.7-fold (p = 0.005)
and 2.8-fold increase in ROS production in MDA-MB-231 and HS578T (p = 0.01) breast
cancer cells, respectively. While treatment with 200 µM zinc in MDA-MB-231 cells showed
only a slight 2-fold (p = 0.04) increase, the ROS levels in HS578T cells continued to rise a
5.6-fold increase (p = 0.02). A combined treatment with zinc and BA or CAI3 caused an
inhibition of a BA-induced or a CAI3-induced increase in ROS production in MDA-MB-231
cells: the incubation with 200 µM zinc resulted in a significant decrease in ROS production
of 7-fold after BA (p = 0.002) and of 14-fold after CAI3 (p = 0.0002) treatment compared to
their respective individual substance treatments. However, in HS578T cells, an additional
treatment with 200 µM zinc led to a significant 4.6-fold (p = 0.01) increase in ROS production
compared to that after treatment with BA alone (4-fold, p = 0.04), whereas it showed no
significant effect on ROS production compared to that after treatment with CAI3 alone
(26-fold, p = 0.02) (Figure 6).
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Figure 6. ROS formation in breast cancer cells using the CM-H2DCF-assay. Cell lines (A) MDA-MB-
231 and (B) HS578T were treated with 150 µM and 200 µM ZnSO4 and BA or CAI3, respectively, for
24 h. Data represent mean values (+SD) of at least three independent experiments and were referred
to DMSO-treated cells. Significant results are highlighted with asterisks (* p ≤ 0.05, ** p ≤ 0.01,
*** p ≤ 0.001).

3.7. Effects of a Combined Treatment with BA or CAI3 and ZnSO4 on Radiosensitivity

The radiosensitivity of combined treatment with zinc and BA or CAI3 was observed
after irradiation with 2 Gy, 5 Gy, and 8 Gy (MDA-MB-231) or 10 Gy (HS578T). Treatment
with BA had almost no effect on radiosensitization (DMF10 = 1.05), whereas treatment
with CAI3-radiosensitized MDA-MB-231 cells (DMF10 = 1.29, p = 0.09) consistent to [10].
In addition, a treatment with zinc showed no significant effects on the radiosensitivity of
MDA-MB-231 breast cancer cells (Figure 7A,B). However, the combined treatment with
zinc and BA or CAI3 had radioprotective effects. In particular, the combined treatment
with zinc and CAI3 resulted in a significant reduction of the DMF10 value to 1.04 (p = 0.008)
compared to the treatment with CAI3 alone (DMF10 = 1.29) (Figure 7B).

In contrast, radiosensitizing effects could be observed in HS578T cells after a treatment
with zinc (DMF10 = 1.11, p = 0.03), whereas a treatment with BA or CAI3 did not affect the
radiosensitivity of HS578T breast cancer cells. The additional treatment with zinc had no
effect on the radiosensitivity of the HS578T cells treated with BA or CAI3 (Figure 7C,D).
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Figure 7. The influence of zinc on radiosensitivity of breast cancer cells. Cell lines (A,B) MDA-MB-231
and (C,D) HS578T were treated with 150 µM ZnSO4 and (A,C) BA or (B,D) CAI3. After a 24 h
treatment, cells were irradiated with different doses depending on the cell line. Afterwards, 150 to
20,000 single cells were plated depending on the cell line and radiation dose. After 10 (HS578T) or
12 (MDA-MB-231) days of colony formation, the colonies were stained and counted. Data represent
mean values of at least three independent experiments and were referred to non-irradiated cells for
each treatment.

4. Discussion

BA, a natural compound derived from plane tree bark, exhibits a variety of antitumor
effects. Examination of the transcriptional profiles regarding the cytotoxicity of BA in
60 NCI cell lines indicated the involvement in different mechanisms [29]. BA and deriva-
tives such as CAI3 exhibit selective cytotoxic effects, induce apoptosis, inhibit migration,
and show radiosensitizing effects in tumor cells [10,30–33]. Previous microarray analyses
showed that a treatment with BA or the derivative CAI3 disrupted the regulation of genes
involved in zinc homeostasis in breast cancer cells, including upregulation of metalloth-
ionein 1 (MT1), zinc transporter 1 (SLC30A1), and S100 calcium-binding protein (S100P).

Compared to healthy controls, decreased serum zinc levels have been observed in
breast cancer patients [34]. However, elevated zinc levels were observed in tissues of
breast cancer patients compared to those of a healthy control group [35]. An increased
intracellular uptake of zinc and enzymatic activity in highly proliferative tumor cells are
responsible for an increased influx of zinc and result in a decreased serum level and an
overload of intracellular zinc level. Metastatic breast cancer cells have an increased zinc
content compared to that in normal breast cancer cells, which is essential for the modulation
of the microenvironment [36]. Additionally, Vogel–Gonzalez indicated that zinc promoted
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the tumorigenic behavior of breast cancer cells. A therapeutic approach with zinc oxide
nanoparticles (ZnO-NP) showed a selective inhibition of tumor cells, an induction of
apoptosis and necrosis, an inhibition of migration and attachment, and an induction of
ROS production in breast cancer cells [37–39]. In addition, the in vivo inhibitory effect of
zinc supplementation in the form of ZnO-NPs on breast cancer growth in rats confirmed
the relevance of zinc for cancer metabolism and the potential of zinc as an attractive
chemotherapeutic approach for breast cancer [40]. In this context, the aim of the present
study was to investigate the significance of zinc supplementation during treatment with BA
or CAI3 combined with radiotherapy in breast cancer cell lines MDA-MB-231 and HS578T.

Previous microarray analyses of breast cancer cells treated with BA or CAI3 showed
dysregulation of several genes involved in zinc homeostasis. In further investigations, four
breast cancer cell lines were screened for mRNA expression of MT1F, MT1E, SLC30A1,
and S100P after treatment with BA or CAI3 and showed an upregulation of MT1F, MT1E,
SLC30A1, and S100P in four breast cancer cell lines (Table 2). These results indicate that
zinc homeostasis is disturbed, which is confirmed by measurement of intracellular free zinc
level: In MDA-MB-231 cells, a strong increase in intracellular free zinc level was observed
after treatment with BA, CAI3, and zinc (Figure 2). However, only a marginal effect on
intracellular free zinc level was observed in HS578T cells. This may depend on the cell
line-specific effects or concentration of BA, CAI3, and zinc, respectively. However, defense
mechanisms of HS578T cells against increasing zinc concentrations are also conceivable.
They might compensate for the dysregulation of zinc homeostasis in HS578T cells better
than MDA-MB-231 by the regulation of genes/proteins relevant for the intracellular zinc
level, such as ZnTs, ZIPs, or MTs. Chandler et al. observed that different breast cancer
cell lines show specific mRNA and protein expression profiles for members of ZnT or ZIP
families, which resulted in differences in intracellular zinc accumulation [41].

Nevertheless, both of the examined breast cancer cell lines showed an increasing
cytotoxicity after treatment with increasing zinc concentrations (100–500 µM). However, no
significant additive effects were observed in combination with a treatment with BA or CAI3.
In addition, there were even protective effects, and the cells appeared to be more resistant to
chemotherapeutic treatment at high zinc concentrations (Figure 3). Additionally, both cell
lines showed anticancer effects after a treatment with zinc concerning clonogenic survival
and apoptosis, as well as enhancing effects on inhibition of clonogenic survival and the
induction of cell death after treatment with BA or CAI3 (Figures 4 and 5). Other studies
also show a reduction in viability in breast cancer cells using zinc pyrithione or Zn-NPs as
well as inhibition of cell proliferation, clonogenicity, migration, invasion, and induction of
apoptosis, autophagy, and cuproptosis [37–39,42]. Even in more complex models, a smaller
number and slower growth of spheroids could be observed, as well as a decrease in the
number and length of vessels in the CAM (chorioallantoic membrane) model and even
slower tumor growth in vivo in the mouse model [37,38,42,43].

At present, there are only a few studies in which the combined effect of chemotherapy
and zinc was investigated in breast cancer cells. Hu et al. showed that the use of ZnO-
NPs sensitized normal MCF-7 cells as well as drug-resistant MCF-7/ADR breast cancer
cells to treatment with doxorubicin. They postulated that ZnO-NPs induced autophagy,
resulting in cell death through ROS generation [38]. Quercetin-loaded ZnO-NPs had a
higher potential to induce apoptosis, oxidative stress, and mitochondrial damage in breast
cancer cells and caused a greater reduction in tumor growth and tumor-associated toxicity
in the liver and kidney in a mammary adenocarcinoma model compared to those after
a single chemotherapeutic treatment [43]. Similar results were obtained in prostate and
ovarian cancer cells, where zinc/ZnO-NPs mediated increased chemosensitivity (paclitaxel,
doxorubicin), which was reflected in reduced viability, clonogenic survival, invasion,
migration, and increased apoptosis [44–46].

BA and its derivatives are known to decrease the mitochondrial membrane potential,
which results in mitochondrial dysfunction and the generation of ROS. In this study, the
enhanced ROS generation after treatment with BA or CAI3 could be confirmed. However,



Antioxidants 2024, 13, 1299 12 of 15

zinc is described to have pro-oxidant and antioxidant effects [47], which are apparently
dependent on the zinc concentration and cell line (Figure 6). Stephankova et al. supported
this phenomenon by describing the opposite effects of ZnO-NPs on ROS generation in two
different triple-negative breast cancer cells [39]. Additionally, the two studied breast cancer
cell lines showed different responses to the formation of ROS after incubation with BA
or CAI3 in combination with zinc supplementation. In MDA-MB-231 cells, the addition
of zinc to treatment with BA or CAI3 had a strong antioxidative effect (Figure 6). There
is evidence that zinc can induce antioxidant molecules/enzymes like glutathione, SOD
(superoxide dismutase), and Nrf2 (nuclear factor erythroid 2-related factor 2) [47]. In
contrast, in HS578T cells, the supplementation of zinc in combination with a treatment
with BA or CAI3 leads to pro-oxidative effects (Figure 6). In this case, the inhibition of
mitochondrial function by zinc due to destruction of the mitochondrial membrane potential
further increases ROS production, which enhances oxidative stress [47].

The contrasting function of zinc as a pro- and antioxidant in the two studied breast
cancer cell lines is also reflected in the effects of irradiation after treatment with BA or CAI3
with and without zinc (Figure 7). In MDA-MB-231 cells, where zinc acts as an antioxidant,
zinc supplementation to treatment with BA or CAI3 overcomes the radiosensitizing effects
of BA and CAI3. In HS578T cells, where the addition of zinc had only a small effect on the
ROS formation, treatment with zinc had a radiosensitizing effect but no significant effect on
radiosensitivity in the case of a combined treatment with BA or CAI3. To date, there have
been only a few studies investigating the role of zinc in the radiosensitivity of tumor cells.
Radiochemotherapy consisting of a chemotherapeutic agent and zinc showed radiosensi-
tizing effects in cervical and nasopharyngeal cancer cells compared to controls [24,25]. For
breast cancer cells, Arab-Bafrani et al. also described the radiosensitizing effects of ZnO
bio-nanocomposites loaded with chemotherapeutic agents, associated with increased ROS
generation and apoptosis rate due to increased radiation-induced complex DNA breakage
as well as weakened DNA repair mechanisms [48]. In addition, chemotherapy with zinc
and clioquinol caused enhanced DNA double-strand breaks and apoptosis in MCF-7 breast
cancer cells, resulting in radiosensitizing effects [25]. However, Zn-MTs are able to protect
against radiation-induced DNA damage better than other antioxidants such as GSH or
other Cu-binding MTs [49].

In terms of clinical use, zinc is discussed as an adjunctive therapy, particularly with
radiotherapy, as it may reduce the side effects on normal tissue [50]. In detail, adminis-
tration of zinc delayed the beginning, shortened the duration and reduced the intensity
of radiation-induced mucositis in head and neck cancer patients [51,52]. In addition, zinc
could improve the impact of radiotherapy on oral pain, loss of taste, and dermatitis [52–54].
The findings of this study indicate that tumor cells could also benefit from zinc administra-
tion, suggesting to assess the benefit of a treatment with zinc during radiotherapy on an
individual basis, but further studies are needed to investigate the clinical relevance of zinc
and BA or BA derivatives for radiotherapy.

In conclusion, zinc seems to play an important role in breast cancer and could thus be
considered as an individual therapy option for breast cancer patients.
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