
Multibody System Dynamics (2024) 62:273–306
https://doi.org/10.1007/s11044-024-09970-8

R E S E A R C H

Evaluation and implementation of Lie group integration
methods for rigid multibody systems

Stefan Holzinger1 · Martin Arnold2 · Johannes Gerstmayr1

Received: 20 March 2023 / Accepted: 30 January 2024 / Published online: 12 March 2024
© The Author(s) 2024

Abstract
As commonly known, standard time integration of the kinematic equations of rigid bod-
ies modeled with three rotation parameters is infeasible due to singular points. Common
workarounds are reparameterization strategies or Euler parameters. Both approaches typi-
cally vary in accuracy depending on the choice of rotation parameters. To efficiently com-
pute different kinds of multibody systems, one aims at simulation results and performance
that are independent of the type of rotation parameters. As a clear advantage, Lie group in-
tegration methods are rotation parameter independent. However, few studies have addressed
whether Lie group integration methods are more accurate and efficient compared to con-
ventional formulations based on Euler parameters or Euler angles. In this paper, we close
this gap using the R

3 × SO(3) Lie group formulation and several typical rigid multibody
systems. It is shown that explicit Lie group integration methods outperform the conven-
tional formulations in terms of accuracy. However, it turns out that the conventional Euler
parameter-based formulation is the most accurate one in the case of implicit integration,
while the Lie group integration method is computationally the more efficient one. It also
turns out that Lie group integration methods can be implemented at almost no extra cost in
an existing multibody simulation code if the Lie group method used to describe the config-
uration of a body is chosen accordingly.
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1 Introduction

Rigid bodies are commonly used to model complex multibody systems (MBSs). Since rigid
bodies have six degrees of freedom, it is obvious to use three parameters to model trans-
lations and three parameters to model rotations. As commonly known, modeling spatial
rotations with three rotation parameters is problematic due to singular points [1–3]. Com-
mon workarounds are reparameterization strategies [4, 5] or the use of four Euler parame-
ters optionally with unorthodox normalization or in combination with differential-algebraic
equations [6]. The latter approaches are often referred to as classical parameterization-based
formulations [2, 4] and typically vary in accuracy depending on the choice of rotation pa-
rameters. To be able to efficiently compute a variety of different MBSs, one aims at sim-
ulation results and performance that are independent of the choice of rotation parameters.
Time integration algorithms based on Lie group methods, referred to in the following as Lie
group integration methods (LGIMs), are rotation parameter independent. Moreover, if the
Lie group method used to describe the configuration of a body is chosen accordingly, only a
few adaptations are needed in classical integration algorithms to convert them into LGIMs,
which motivates the present work and will be illustrated in this paper.

Let us briefly review LGIMs. LGIMs have now been developed and successfully applied
for the simulation of MBSs for more than 30 years; see, e.g., Refs. [7, 8]. They not only
enable a singularity-free representation of spatial rotations [9], they also allow the use of
three rotation parameters to model MBSs [10, 11] and even make the unit length constraint
equation obsolete when integrating Euler parameters [3, 12]. Moreover, LGIMs allow the
modeling of MBSs with local velocity coordinates [13] and the so-called “local frame ap-
proach” [14]. Another advantage of LGIMs is that no parameterization is required for the
formulation of the EOMs (see, e.g., [2]), and thus parameterization effects can be avoided.

In the case of rigid body systems, the EOMs are typically formulated on either a Lie
group defined as multiples of the direct product (×) or the semi-direct product (�) of the
group of translations R

3 and the group of special orthogonal transformations SO(3), i.e.,
R

3 × SO(3), R3
� SO(3) =: SE(3), or the group of Euler parameters (unit quaternions)

S3 ⊆ R
4, i.e., R3 × S3, R3

� S3; see, e.g., [8, 15]. For simulating rigid bodies, all of the
latter formulations can be used. It is reported in [16] that for a general MBS, the R

3 ×
SO(3) formulation yields the same accuracy as the SE(3) formulation and in [17] that the
R

3 × SO(3) formulation should be used as the SE(3) formulation is numerically more
complex than the R3 ×SO(3) formulation. However, formulations based on the semi-direct
product allow to represent rigid body motions and are also beneficial for simulating flexible
MBSs; see, e.g., [14, 18]. For both formulations, time integration schemes are reported in
the literature. Runge–Kutta (RK) methods for Lie groups have been introduced by Munthe-
Kaas in [19] and [20]. Multistep methods of BDF type have been extended to Lie groups in
[21, 22]. A RATTLE inspired integration scheme for Lie groups was proposed in [8], and in
[1, 9, 12, 23, 24] the generalized-α methods [25, 26] were extended to Lie groups.

LGIMs are conceptually coordinate-free, which makes them difficult to be incorporated
into existing multibody simulation packages that are based on “absolute coordinates,” i.e., a
set of coordinates that describe the absolute position and orientation of the individual bodies
with respect to an inertial frame [6]. Recently, an interface technique has been proposed
[6, 27] that allows MBSs to be modeled with absolute coordinates while using Lie group
time integration methods. However, the latter studies did not deal with computational aspects
such as the practical implementation of the technique and computational performance.

It is surprising that despite their benefits and long history in multibody dynamics (MBD),
few studies have addressed whether LGIMs are more accurate and computationally efficient
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Table 1 Rigid multibody examples. “perf.” stands for performance and “accu.” stands for accuracy

Nr. Example Expl.
Lie

Impl.
Lie

Comparison with
non-Lie

1 Free rotating rigid body [1, 3, 10, 11] � � perf.: –
accu.: [3, 10, 11]

2 Heavy top with kinematic constraints
[1, 2, 9, 17, 22, 23, 28–30]

� � perf.: [30]
accu.: [1]

3 Heavy top without kinematic constraints
[1, 3, 10, 11, 29]

� � perf.: –
accu.: [1, 3, 10, 11]

4 Rotating body with follower torque [1] − � perf.: –
accu.: [1]

5 Slider–crank mechanism (3D) [15] − � perf.: –
accu.: –

6 Spherical double pendulum [17, 29] � − perf.: –
accu.: –

7 Flyball governor with compliant joints [10] � − perf.: –
accu.: [10]

8 Spacecraft with reaction wheels [3] � − perf.: [3]
accu.: [3]

9 Orthogonal Bricard mechanism [30] � − perf. [30]
accu.: –

10 Two quadrotors transporting a mass point [29] � − perf.: –
accu.: [29]

11 Satellite with 5-DOF manipulator [28] � − perf.: –
accu.: –

12 Interconnected floating bodies [17] � − perf.: –
accu.: –

13 Closed loop spherical 3-bar linkage [17] � − perf.: –
accu.: –

14 Dual-spin satellite [31] � − perf.: –
accu.: –

15 Three bodies with two revolute joints [32] � − perf.: –
accu.: –

compared to classical parameterization-based formulations, even though the answer could
be crucial for the decision to equip a multibody simulation package with LGIMs. Table 1
lists numerical examples used in past work on LGIMs for rigid body systems and the com-
parisons made concerning accuracy and computational performance. As can be seen in Ta-
ble 1, up to now, LGIMs have mostly been compared with other LGIMs, but barely with
classical parameterization-based formulations based on Euler parameters or Euler angles,
especially in combination with implicit integration.

In this paper, we compare the accuracy and computational performance of explicit and
implicit LGIMs with classical parameterization-based formulations based on Euler angles
and Euler parameters using a set of rigid body systems. We also show the transition from
absolute coordinate-based integration methods to LGIMs, with specific focus on the impli-
cations for algorithms and implementation. The implementation is shown for formalisms
that employ explicit RK methods and the implicit generalized-α method [25, 26]. In the
present approach, both classical parameterization-based formulations and LGIMs can be
mixed, which is advantageous for general purpose simulation codes. For the evaluation of
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the accuracy and computational performance of LGIMs, we restrict our investigations to the
R

3 ×SO(3) formulation. The evaluation of the accuracy and computational performance of
SE(3) formulations is left for future work.

The remaining part of the paper is organized as follows: In Sect. 2 the EOMs of two clas-
sical parameterization-based formulations are recapitulated and their relation to the EOMs
on the Lie group R

3 × SO(3) is explained. Subsequently, we show in Sect. 3 how MBS
formalisms that employ explicit RK methods as well as the generalized-α method [26] have
to be modified to become Lie group methods, i.e., Runge–Kutta–Munthe-Kaas (RKMK)
methods [19, 20] or Lie group generalized-α [1]. Then, in Sect. 4, the accuracy and compu-
tational performance of an LGIM are evaluated using five examples of rigid body systems.
Lastly, we draw conclusions from the study in Sect. 5.

2 Equations of motion of rigid body systems

In this section we recapitulate two classical parameterization-based formulations of the
EOMs of rigid body systems and show how these can be turned into EOMs on the Lie
group R

3 × SO(3). The section is divided into two parts. In the first part the classical for-
mulations are addressed, and in the second part the transition to the Lie group formulation
is addressed.

2.1 Classical parameterization-based formulations

The EOMs of an MBS with N rigid bodies can be expressed in the general form

M•(q•)v̇• = g•(q•,v•, t) − BT
• (q•)λ, (1)

v• = H•(q•)q̇•, (2)

�•(q•) = 0, (3)

where Eq. (1) represents k equilibrium equations,1 Eq. (2) k kinematic equations and Eq. (3)
j linearly independent holonomic constraints.2 Note that the quantities in Eqs. (1)–(3),
marked with the symbol •, are different in each of the two classical formulations but have
the same meaning and are therefore only placeholders at this point. In the following, the
general meaning of the quantities in Eqs. (1)–(3) is first described and then explicitly given
for the respective formulation. The symbols assigned to the respective formulation are given
in Table 2. In this paper, the time derivative of a quantity c is denoted by ċ.

The system states are represented by

q• =
[(

q(1)•
)T

, . . . ,
(
q(N)•
)T ]T

, v• =
[(

v(1)•
)T

, . . . ,
(
v(N)•
)T ]T

, (4)

and the states for the i-th rigid body by

q(i)
• =

[
x(i)•
ρ(i)•

]
, v(i)

• =
[

v(i)
x,•

v(i)
ρ,•

]
. (5)

1For the classical formulation 1 we have k = 6N and for the classical formulation 2 we have k = (3 + l)N ,
where l is the number of rotation parameters used to describe the orientation of the individual rigid bodies in
the system. In the case of Euler angles or the rotation vector, l = 3, and in the case of Euler parameters, l = 4.
2Note that the constraints (3) can also be formulated in terms of v• or q̇•.
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Table 2 Assignment list of the placeholder quantities and the quantities in the respective classical formulation

Quantity q• x• ρ• v• vx,• vρ,• G• H• M• �• B• g•,gyr

Formulation 1 q x ρ v vx vρ G H M � B ggyr

Formulation 2 q̂ x̂ ρ̂ v̂ v̂x v̂ρ Ĝ Ĥ M̂ �̂ B̂ ĝgyr

In Eq. (5), x(i)• ∈ R
3 represents the i-th rigid body’s position relative to an inertial frame,

ρ(i)• ∈ R
l the body’s l rotation parameters and v(i)

x,• ∈ R
3 and v(i)

ρ,• ∈ R
l its translational and

rotational velocities. The block diagonal matrix H•(q•) ∈R
6N×(3+l)N

H•(q•) = blockdiag1≤i≤N

(
H(i)

• (q(i)
• )
)

(6)

relates q̇• to v•, where

H(i)
• (q(i)

• ) =
[

I 0
0 G•(ρ(i)• )

]
∈ R

6×(3+l). (7)

In Eq. (7), matrix G•(ρ(i)• ) ∈ R
3×l relates ρ̇(i)

• to v(i)
ρ,• and the matrices I and 0 represent

identity and null matrices of proper size. The mass matrix M•(q•) ∈ R
k×k

M•(q•) = blockdiag1≤i≤N

(
M(i)

• (q(i)
• )
)

(8)

contains in its block diagonal the mass matrices of the N rigid bodies, is symmetric, not
necessarily constant, and may depend on q•. The vector g• ∈R

k in Eq. (1) collects for each
rigid body the applied forces3 ga and gyroscopic forces g•,gyr

g• =
[(

g(1)•
)T

, . . . ,
(
g(N)•
)T ]T

, g(i)
• = g(i)

a + g(i)
•,gyr , g(i)

a =
[

f(i)

t(i)

]
. (9)

In Eq. (9), the vector f(i) ∈ R
3 represents external forces expressed in the inertial frame and

the vector t(i) ∈ R
3 represents external torques expressed in the body-attached frame [4].

Note that both f(i) and t(i) result, for example, from gravity or from springs and dampers.
The holonomic constraints (3) are coupled to the equilibrium equations by constraint forces
−BT• (q•)λ. The vector of Lagrange multipliers is denoted by λ ∈ R

j and is multiplied by
the transpose of the constraint matrix B ∈R

j×k that represents the constraint gradients

B•(q•) = ∂�̇(q•)
∂v•

. (10)

2.1.1 Classical formulation 1

In the classical formulation 1, the velocity coordinates of Eq. (5), the mass matrix and the
gyroscopic forces for the i-th rigid body read

v(i)
x = ẋ(i), v(i)

ρ = ω(i), M(i) =
[
m(i)I 0

0 J(i)

]
, g(i)

gyr =
[

0
ω̃(i)J(i)ω(i)

]
. (11)

3The vector of the applied forces ga respectively g(i)
a is identical in both formulations. Therefore, they are

not marked with the placeholder symbol •.
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In Eq. (11), ω(i),v(i)
ρ ∈ R

3 represents the angular velocity vector expressed in the body-
attached frame, m(i) is the mass of the rigid body, J(i) ∈ R

3×3 is the inertia tensor expressed
in the body-attached frame and ω̃(i) is the skew-symmetric matrix such that ω × y = ω̃y for
ω, y ∈R

3.

2.1.2 Classical formulation 2

In the classical formulation 2, Eqs. (1)–(2) are reformulated into k second-order differential
equations.4 To this end, Eq. (2) is inserted into Eq. (1) and Eq. (1) is then multiplied with
ĤT (̂q) from the left hand side, which yields

M̂(̂q) ¨̂q = ĤT (̂q)
(̂
g(̂q, ˙̂q, t) − B̂T (̂q)λ

)
,

�̂(̂q) = 0.
(12)

For the i-th rigid body, the velocity coordinates Eq. (5), the mass matrix and gyroscopic
forces read5

v̂(i)
x = ẋ(i), v̂(i)

ρ = Ĝ(ρ(i))ρ̇(i), (13)

M̂(i)=
[
m(i)I 0

0 Ĝ(i),T J(i)Ĝ(i)

]
, ĝ(i)

gyr=
⎡
⎣

0(
J(i) ˙̂G(i) + ω̃(i)J(i)Ĝ(i)

)
ρ̇(i)

⎤
⎦ . (14)

2.2 Lie group formulation

Before we illustrate the transition step from the classical parameterization-based formula-
tions of the EOMs into a Lie group formulation, we first need to introduce the kinematic
description for rigid bodies on R

3 × SO(3).

2.2.1 Rigid body kinematics on R
3 × SO(3)

On R
3 × SO(3), the configuration of a rigid body is denoted by the pair

q = (x, R), (15)

where the rigid body’s position relative to an inertial frame is represented by x ∈ R
3 and its

orientation by the rotation matrix R ∈ SO(3)

SO(3) := {R ∈R
3×3 | RRT = I, det(R) = +1} . (16)

The Lie group G :=R
3 × SO(3) is defined as the direct product of the linear space R

3 with
the Lie group SO(3) and composition operation ◦,

qa ◦ qb = (xa, Ra) ◦ (xb, Rb) = (xa + xb, RaRb) ∈ G, (17)

4Note that certain time integration methods such as Newmark-type methods, for example, require that v• =
q̇• in Eqs. (1)–(3).
5Note that formulation 1 is closer to the Lie group formulation than formulation 2 but requires that v(i)

ρ �= ρ̇(i).
However, explicit time integration methods can directly be applied to formulation 1, whereas implicit time

integration methods are only directly applicable when dim(ρ̇(i)) = dim(v(i)
ρ ).
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which results in the kinematic equations [2, 9]

ẋ = u and Ṙ = Rω̃ . (18)

In Eq. (18), u ∈ R
3 represents the translational velocity in the inertial frame. The kinematic

equations (18) can be written in the compact form [2, 9]

Q̇ = Q̃v (19)

if the pair (x, R) in Eq. (15) is represented by a 7 × 7 matrix Q,

Q :=
⎡
⎣

R 03×3 03×1

03×3 I3×3 x
01×3 01×3 1

⎤
⎦ ∈ G, ṽ :=

⎡
⎣

ω̃ 03×3 03×1

03×3 I3×3 u
01×3 01×3 0

⎤
⎦ . (20)

For an efficient implementation, we do not work with the rotation matrices R directly but
with an isomorphic representation in terms of rotation parameters6 ρ ∈ R

l . To this end, we
express Eq. (15) in terms of rotation parameters ρ,

q = (x, ρ) ∼= q(i). (21)

The composition operation ◦ then reads

qa ◦ qb = (xa, ρa) ◦ (xb, ρb) = (xa + xb, ρa � ρb). (22)

In Eq. (22), the symbol � denotes the composition operation for rotation parameters, whose
explicit form depends on the respective rotation parameters. For LGIMs, the composition
operation for Euler angles is given in [11], for the rotation vector in, e.g., [11, 33] and for
Euler parameters in, e.g., [3, 12].

2.2.2 Equations of motion on R
3 × SO(3)

In this section, we introduce the EOMs of rigid body systems on the Lie group R
3 × SO(3)

and explain their connection with the classical formulations introduced earlier in Sect. 2.1.
The EOMs on R

3 × SO(3) are closely related to the EOMs of the classical formulation
1. On R

3 × SO(3), the equilibrium conditions, the constraint forces and the holonomic
constraints are the same as in the classical formulation 1. Only the kinematic equations (2)
are different; cf. Sect. 2.2.1. Thus, the EOMs on R

3 × SO(3) read7

Mv̇ = g(q,v, t) − BT (q)λ,

Q̇ = Q̃v,

�(q) = 0.

(23)

The equations in (23), more specifically the kinematic reconstruction equations (19), are
integrated using LGIMs; see Sect. 3.1. This ensures that the orthogonality of the rotation
matrix is preserved when solving Ṙ = Rω̃ (Eq. (18)). The derivatives Q̇ are never explicitly
evaluated in the numerical procedure, which will be illustrated in Sect. 3. The same applies
to the matrix Q; only absolute coordinates q are considered.

6We understand ρ as a “compressed storage of R,” as R = R(ρ) holds.
7Note that for MBSs, Q̇ = blockdiag1≤i≤N

(
Q̇(i)
)

.
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3 Embedding Lie group methods in an MBS formalism

In this section, we show how MBS formalisms that employ explicit RK methods [34], as well
as the generalized-α method [25, 26] for the time integration of the EOMs of the classical
formulation 2 (12), have to be modified to become Lie group methods, i.e., RKMK methods
[19, 20] and Lie group generalized-α [1], respectively.

To this end, we first show for a single time step tn → tn+1 how Lie group time integration
methods solve the kinematic reconstruction equations (18). We then show how the classical
time integration methods can be transformed into Lie group time integration methods and
discuss implementation details.

3.1 Lie group time integration step

This section deals with solving the kinematic reconstruction equations (18) using LGIMs.
The methodology is illustrated for a single rigid body.

LGIMs for absolute coordinates compute an update for the coordinates q(t) at time t ∈
[tn, tn+1] within time step n + 1 in terms of local coordinates �q(t) and initial values q(tn).
The transition from local coordinates and initial values to coordinates q is performed by
using the so-called local–global transition (LGT) map τ ,

τ :R3+l ×R
6 →R

3+l ,

(q(tn), �q(t)) 
→ q(t) = τ (q(tn), �q(t)),
(24)

which was introduced recently in [6, 27]. We determine the local coordinates �q(t) by
numerical integration of the ordinary differential equation

�q̇(t) = T−1
exp(�q(t))v(t) (25)

with the initial conditions �q(tn) = 0. In Eq. (25), T−1
exp ∈R

6×6 represents the inverse of the
tangent operator Texp ∈R

6×6 on R
3 × SO(3) and is given in closed form in Appendix A.1.

It is important to note that the LGT map (24) involves the composition operation (22).
Thus, in Eq. (24), different rotation parameters can be used, such as Euler parameters, Euler
angles or the rotation vector, for example.

In this paper, we use the three components of the rotation vector ψ ∈ R
3 as rotation

parameters, i.e., ρ = ψ . The rotation vector is defined as the vector

ψ = ϕ n, (26)

which has the direction of the rotation axis n = ψ/‖ψ‖ and a length equal to the rotation
angle ϕ = ‖ψ‖ [4]. Thus, in our case, the absolute coordinates q(i) ∈ R

6 for the i-th rigid
body are

q(i) =
[

x(i)

ψ (i)

]
. (27)

For implementation purposes, it is convenient to divide the vector �q ∈R
6 into the parts

�x ∈R
3 and �ψ ∈R

3,

�q =
[

�x
�ψ

]
, (28)
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Algorithm 1 Numerical algorithm for updating absolute coordinates. The symbol “#” rep-
resents start of comments
function UAC(q, �q)

1: for i = 1 to n do # loop over all nodes n

2: if type(q(i)) = LieGroupNode then

3: q(i) :=
[

τ x(x(i), �x(i))

τψ (ψ (i), �ψ (i))

]
# apply composition operations

4: else
5: q(i) := q(i) + �q(i) # “conventional” update
6: end if
7: end for
8: return q

end function

and to separate the LGT map (24) into an LGT map for translations τ x,

τ x :R3 ×R
3 → R

3,

(x(tn), �x(t)) 
→ x(t) = x(tn) + �x(t),
(29)

and an LGT map for rotations τψ ,

τψ :R3 ×R
3 →R

3,

(ψ(tn), �ψ(t)) 
→ ψ(t) = ψ(tn) � �ψ(t).
(30)

The symbol � in Eq. (30) denotes the composition operation for rotation vectors, which is
given in Appendix A.3.

At this point, we would like to emphasize that the easy transition from classical inte-
gration methods to LGIMs is facilitated by the fact that Eq. (24) can be used to directly
calculate an update for the rotation parameters without the need for history variables [11].
Thus, the data structures available in an MBS package based on absolute coordinates can
be used directly. Note also that beside rigid body nodes, other components in an MBS code
might also add coordinates q(i) to the vector of overall absolute coordinates q, which might
have a different meaning compared to rigid bodies, e.g., minimal coordinates of a subsystem
or flexible coordinates. As the integration step for such coordinates has to be performed in
the “conventional way”

q(i)(t) = q(i)(tn) + �q(i)(t), (31)

it is necessary to distinguish between nodes of the type “Lie group” and the type “conven-
tional.” To this end, we use an algorithm UAC (Update Absolute Coordinates) that performs
the latter distinction; see Algorithm 1. The algorithm UAC represents the practical imple-
mentation of the LGT map proposed in [6, 27], but also includes linear spaces and therefore
allows an arbitrary combination of Lie group and other formulations within a single simula-
tion.

3.2 Explicit time integration

In this section, we show how MBS formalisms that employ explicit RK methods for the
time integration of the EOMs (12) have to be modified to become Lie group methods, i.e.,
RKMK methods [19, 20].
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Algorithm 2 Numerical algorithm for computing one step with an explicit RK method with
s stages. The symbol “#” represents start of comments
function RKStep(̂qn, wn, tn)

1: # evaluate slopes at the first stage, i.e., at i = 1
2: K1 = wn

3: k1 = M̂−1̂g(̂qn, wn, tn)

4: for i = 2, . . . , s do
5: # evaluate solution vectors at stage i

6: qi := q̂n + h
∑i−1

j=1 aij Kj

7: vi := wn + h
∑i−1

j=1 aij kj

8: # evaluate slopes at stage i with solution vectors at stage i

9: Ki := vi

10: ki := M̂−1̂g(qi , vi , tn + cih)

11: end for
12: q̂n+1 := q̂n + h

∑s

j=1 bj Kj

13: wn+1 := wn + h
∑s

j=1 bj kj

14: return q̂n+1, wn+1

end function

To enable explicit time integration of the EOMs (12), we convert Eq. (12) without con-
straints to first-order equations,

ẇ = M̂−1ĝ(̂q, w, t),

˙̂q = w.
(32)

In classical MBS formalisms, the equations (32) are solved for a single time step tn → tn+1

as shown in Algorithm 2. The modifications required to transmit the explicit RK method
shown in Algorithm 2 into an RKMK method are given in the subsequent listing and are
illustrated in Algorithm 3.

1. Instead of calculating the absolute coordinates as described in line 6 and line 12 in Al-
gorithm 2, Lie group time integration methods require q to be determined via the LGT
map (24). For this, the local coordinates �q must be calculated in addition to q. This
modification is shown in lines 6–7 and 13–14 in Algorithm 3.

2. The kinematic equation ˙̂q in Eq. (32) must be replaced by the kinematic equation (25).
This modification is shown in line 10 in Algorithm 3.

3. Instead of calculating the slopes with Eq. (32) (see lines 3 and 10 in Algorithm 2), Lie
group time integration methods require the slopes to be calculated using the equilibrium
conditions (23). This modification is shown in lines 3 and 11 in Algorithm 3.

3.2.1 Automatic step size control for RKMK methods

Advanced explicit time integration methods such as ODE23 [35] and DOPRI5 [36] include
automatic step size control and are well established in MBD for solving Eq. (32). Variable
step size implementations for solving Eq. (23) with RKMK methods have been discussed
in a recent paper of Celledoni et al.; see [29]. In this paper, we follow a slightly different
approach, which is summarized in Appendix B and [37].
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Algorithm 3 Numerical algorithm for computing one step with an explicit RKMK method
with s stages. The symbol “#” represents start of comments
[h]

function LieRKStep(qn, vn, tn)
1: # evaluate slopes at the first stage, i.e., at i = 1
2: K1 = vn

3: k1 = M−1g(qn, vn, tn)

4: for i = 2, . . . , s do
5: # evaluate solution vectors at stage i

6: �qi := h
∑i−1

j=1 aij Kj

7: qi := UAC(qn, �qi )

8: vi := vn + h
∑i−1

j=1 aij kj

9: # evaluate slopes at stage i with solution vectors at stage i

10: Ki := T−1
exp(�qi )vi

11: ki := M−1g(qi , vi , tn + cih)

12: end for
13: �qn := h

∑s

j=1 bj Kj

14: qn+1 := UAC(qn, �qn) # update absolute coordinates
15: vn+1 := vn + h

∑s

j=1 bj kj

16: return qn+1, vn+1

end function

3.3 Implicit time integration

In this section, we show how an MBS formalism that employs the generalized-α method
[25, 26] for the time integration of the EOMs in parameterized form (12) has to be modi-
fied to obtain Lie group generalized-α [1]. In [26], a function AlphaStep has been intro-
duced that solves the EOMs in parameterized form (12) at time tn+1 using the generalized-α
method. In the following, we show how AlphaStep can be modified to obtain Lie group
generalized-α.

The function AlphaStep (see Algorithm 4) represents a Newton method with un-
knowns q̂ and λ, and solves Eq. (12) at time tn+1 and involves the parameters

β ′ = 1 − αm

h2β(1 − αf )
, γ ′ = γ

hβ
, (33)

the residual vector

r̂(̂q, ˙̂q, ¨̂q,λ, t) = M̂(̂q) ¨̂q − ĤT (̂q)
(̂
g(̂q, ˙̂q, t) − B̂T (̂q)λ

)
(34)

and the iteration matrix8

Ŝt =
[

M̂(̂q)β ′ + Ĉt (̂q, ˙̂q, t)γ ′ + K̂t (̂q, ˙̂q, ¨̂q,λ, t) ĤT (̂q)B̂T (̂q)

Ĥ(̂q)B̂(̂q) 0

]
, (35)

which is also denoted as Jacobian. The numerical parameters αm, αf , β and γ in
Eqs. (33)–(35) can be selected by choosing the numerical damping ρ∞ ∈ [0,1] in order

8Note that Ŝt may be singular for formulations with three rotation parameters at singular points.
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Algorithm 4 Numerical algorithm for computing a Newton update for generalized-α ac-
cording to [26]

function AlphaStep(̂qn, ˙̂qn, ¨̂qn, a)
1: ¨̂qn+1 := 0
2: λn+1 := 0
3: ā := (αf

¨̂qn − αma)/(1 − αm)

4: ˙̂qn+1 := ˙̂qn + h(1 − γ )a + hγ ā
5: q̂n+1 := q̂n + h ˙̂qn + h2(0.5 − β)a + h2βā
6: for k = 1 to kmax do

7: res :=
[

r̂(̂qn+1, ˙̂qn+1, ¨̂qn+1,λn+1, tn+1)

�̂(̂qn+1)

]

8: if ‖res‖ < tol then
9: break

10: end if
11: Ŝt := Ŝt (̂qn+1, ˙̂qn+1, ¨̂qn+1,λn+1, tn+1)

12:

[
�q̂

�λ

]
:= −Ŝ−1

t res

13: q̂n+1 := q̂n+1 + �q̂

14: ˙̂qn+1 := ˙̂qn+1 + γ ′�q̂

15: ¨̂qn+1 := ¨̂qn+1 + β ′�q̂

16: λn+1 := λn+1 + �λ

17: end for
18: a := ā + (1 − αf )/(1 − αm) ¨̂qn+1

19: return q̂n+1, ˙̂qn+1, ¨̂qn+1, λn+1, a
end function

to have suitable accuracy and stability properties [26]. In Eq. (35), the tangent stiffness and
damping matrices K̂t and Ĉt are calculated by

K̂t (̂q, ˙̂q, ¨̂q,λ, t) = ∂ r̂(z, ˙̂q, ¨̂q,λ, t)

∂z

∣∣∣∣
z=q̂

(36)

≈ −∂ĤT (z)̂g(z, ˙̂q, t)

∂z

∣∣∣∣
z=q̂

, (37)

Ĉt (̂q, ˙̂q, t) = −∂ĤT (̂q)̂g(̂q, z, t)
∂z

∣∣∣∣
z=˙̂q

, (38)

where we use Eq. (37) in our implementation. Note that in Algorithm 4, the auxiliary vari-
able a is set to9 a0 = ¨̂q0 for time t = 0; see [26].

The modifications required to transform AlphaStep (Algorithm 4) into a Lie group
method, i.e., SolveTimeStep [1], are illustrated in Algorithm 5 and are given in the
subsequent listing.

1. The unknowns in the Newton method are now �q and λ; cf. Sect. 3.1.

9An optimal initialization scheme for Lie group generalized-α, which guarantees second-order convergence
in all solution components, is presented in [9], which is not considered here, however.
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Algorithm 5 Numerical algorithm computing a Newton update for Lie generalized-α. The
symbol “#” represents start of comments
function LieAlphaStep(qn, vn, v̇n, a)

1: v̇n+1 := 0
2: λn+1 := 0
3: ā := (αf v̇n − αma)/(1 − αm)

4: vn+1 := vn + h(1 − γ )a + hγ ā
5: �qn := hvn + h2(0.5 − β)a + h2βā
6: qn+1 := UAC(qn, �qn) # initial guess for absolute coordinates
7: for k = 1 to kmax do

8: res :=
[

r(qn+1,vn+1, v̇n+1,λn+1, tn+1)

�(qn+1)

]

9: if ‖res‖ < tol then
10: break
11: end if
12: St := St (qn+1,�q,vn+1, v̇n+1,λn+1, tn+1)

13:

[
�q

�λ

]
:= −S−1

t res

14: �qn := �qn + �q

15: qn+1 := UAC(qn, �qn) # update absolute coordinates
16: vn+1 := vn+1 + γ ′�q

17: v̇n+1 := v̇n+1 + β ′�q

18: λn+1 := λn+1 + �λ

19: end for
20: a := ā + (1 − αf )/(1 − αm)v̇n+1

21: return qn+1, vn+1, v̇n+1, λn+1, a
end function

2. The absolute coordinates q have to be determined via the LGT map (24). For this, the
vector �q must be calculated in addition to q. This modification is shown in lines 5–6
and 14–15 in Algorithm 5. Note that the latter modification might be also achieved by
(1) introducing an additional data coordinate q̂n that stores qn, i.e., q̂n = qn, and (2) by
setting qn = 0. The data coordinate q̂n may then be used instead of qn to update the
absolute coordinates in lines 6 and 15.

3. The residual vector Eq. (34) has to be computed with the equilibrium conditions in
Eq. (23), which now reads

r(q,v, v̇,λ, t) = M(q)v̇ − g(q,v, t) + BT (q)λ. (39)

This modification is shown in line 8 in Algorithm 5.
4. The iteration matrix Eq. (35) has to be computed differently. For Lie group generalized-α,

the iteration matrix is given by [1, 9, 23]

St (q,�q,v, v̇,λ, t)

=
[

M(q)β ′ + Ct (q,v, t)γ ′ + Kt (q,v, v̇,λ, t)Texp(�q) BT (q)

B(q)Texp(�q) 0

]
.

(40)



286 S. Holzinger et al.

This modification is shown in line 12 in Algorithm 5. In this paper, the tangent stiffness
matrix10 Kt reads

Kt (q,v, v̇,λ, t) = ∂r(UAC(q, z),v, v̇,λ, t)

∂z

∣∣∣∣
z=0

(41)

≈ −∂g(UAC(q, z),v, t)

∂z

∣∣∣∣
z=0

, (42)

where we use Eq. (42) in our implementation.11 The damping matrix Ct in Eq. (40) reads

Ct (q,v, t) = −∂g(q, z, t)
∂z

∣∣∣∣
z=v

. (43)

Practical experiments have shown that the tangent operator Texp(�q) = I+O(‖�q‖) can
be neglected in Eq. (40) for small time steps, which we do throughout this paper and will
illustrate in the numerical examples in Sect. 4. Note however that neglecting the tangent
operator in Eq. (40) may lead to stability problems but may prevent the destruction of
sparsity structures of the system matrices in the simulation code.

Both iteration matrices Eq. (35) and Eq. (40) become severely ill conditioned for small time
step sizes h [9, 26]. To avoid this phenomenon, we use the scaling method proposed by
Bottasso et al. in [38] in our implementation. The scaling of the iteration matrix for the
generalized-α method and its Lie group counterpart are discussed, for example, in [9, 26,
39].

3.4 Modified Newton method

Evaluating the iteration matrix (35) respectively (40) might be time-consuming in the full
Newton method, where the Jacobian is computed in each Newton iteration. Therefore, to in-
crease computational performance, we compute an update and factorization of the iteration
matrix in the so-called “modified Newton method” only if needed. Therein, the iteration ma-
trix is computed at the beginning of the simulation and updated during the iteration process
only if either a predefined maximum number of Newton iterations is reached or the error in
each Newton iteration could not be reduced by a predefined tolerance [37, 40].

3.5 Effects of round-off errors in Texp and T−1
exp

In our numerical experiments, we observed effects of round-off errors in the evaluation of the
tangent operator Texp respectively its inverse near ‖�q‖ = 0. The effects of round-off errors
when evaluating tangent operators have also been reported in [41] and are termed there as
a loss of significance. To obtain accurate and precise results, we use Taylor approximations
for those terms that cause the loss of significance. The approximation strategy is presented
in Appendix A.2.

10The multiplication of the tangent stiffness matrix Kt with the matrix Texp in Eq. (40) can be avoided by
evaluating the directional derivative (41) at z = �q.
11Using Eq. (42) yields an improvement of the computational performance compared to Eq. (40) as the
linearization of the mass matrix and constraint forces is avoided.
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4 Numerical examples

In this section, we compare the classical formulations 1 and 2 with an LGIM in terms of ac-
curacy and computational performance using five typical rigid body systems. In the LGIM,
the rotation vector is used to represent the orientation of a rigid body; see Sect. 3.1. In both
classical formulations, Cardan/Tait–Bryan angles (123-Euler angles, cf. [37, 42]) are used as
rotation parameters. Euler parameters are used only in the classical formulation 2 in combi-
nation with implicit integration and by imposing the Euler parameter unit length condition as
an additional constraint equation on position level; cf. [37]. Both the LGIM and the classical
formulation 1 are used in combination with explicit and implicit time integration methods.
In all numerical examples, the following abbreviations are used:

• “Rxyz” means Cardan/Tait–Bryan angles (classical formulation 2),
• “RV” means rotation vector (LGIM),
• “EP” means Euler parameter (classical formulation 2).

The abbreviations used in the following for the explicit RK and RKMK methods, such as
RK44, follow the designations used in [34].

All rigid body systems considered are set up and simulated in Exudyn12 [37, 43] using
version 1.4.5.dev1 and Python 3.7 64bit. Note that the LGIM has been implemented in
C++ focusing on efficiency. All simulations have been performed in Windows 10 on an
Intel Core i7-6600U 2.60 GHz processor. The absolute and relative error tolerances atol and
rtol for automatic step size control have been chosen in each numerical example as rtol =
10−2/(tEnd/h)p and atol = rtol × 10−2, where tEnd represents the simulation period and p

the order of the integration method. The spectral radius is set to ρ∞ = 0.9 for generalized-α
and Lie group generalized-α for all examples.

4.1 Heavy top

The first rigid body system we consider is the benchmark example “heavy top”; see Fig. 1.
Two simulation cases are considered, which are described in the following two sections.
In both cases, we simulate the motion of the heavy top over a period of t = 1 s. Model
parameters and initial conditions are summarized in Table 3.

4.1.1 Heavy top without kinematic constraints

In the first investigations, we consider the heavy top without kinematic constraints according
to Refs. [1, 3, 10, 11, 29].

In Fig. 2, the time histories of the heavy top’s center of mass (COM) position coordi-
nates (left plot) and translational velocity coordinates (right plot) computed with Lie group
generalized-α are compared with reference solutions computed with the multibody simu-
lation software RecurDyn.13 As can be seen in Fig. 2, the time histories obtained with Lie

Fig. 1 Benchmark problem
Heavy top; see, e.g., Ref. [1]

12https://github.com/jgerstmayr/EXUDYN.
13https://support.functionbay.com/en/page/single/2/recurdyn-overview, accessed on February 23, 2023.

https://github.com/jgerstmayr/EXUDYN
https://support.functionbay.com/en/page/single/2/recurdyn-overview
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Table 3 Model parameters and initial conditions of the heavy top

Parameter Value Notes

m in kg 15 mass of the heavy top

Jxx in kg m2 0.234375 moment of inertia w.r.t. COM for x-axis

Jyy in kg m2 0.468750 moment of inertia w.r.t. COM for y-axis

Jzz in kg m2 0.234375 moment of inertia w.r.t. COM for z-axis

x in m [0.0, 1.0, 0.0] position vector of the COM w.r.t. the fixing point represented in
the body-attached frame

γ in m/s2 [0.0, 0.0, −9.81] vector of gravity acceleration

ω0 in rad/s [0.0, 150.0, −4.61538] initial angular velocity

ψ0 in rad [0.0, 0.0, 0.0] initial orientation (rotation vector)

Fig. 2 Time histories of the heavy top’s center of mass position (left plot) and translational velocity coordi-
nates (right plot) expressed in the global frame. Reference solutions were computed over a simulation time
of t = 1 s with a time step size of h = 2.5 × 10−5 s using RecurDyn. The heavy top’s center of mass position
and translational velocity coordinates obtained with Euler parameters and generalized-α are computed for
comparison purposes over t = 0.8 s

group generalized-α visually match the reference solutions. The absolute deviation of the
heavy top’s position and velocity coordinates at t = 1 s is approximately 1.0 × 10−5 m re-
spectively 1.0 × 10−5 m/s. Similar results have been obtained for explicit Lie group time
integration.

In Fig. 3, the convergence in the norm of the COM position error ‖xRef − x‖ is illus-
trated for explicit (left plot) and implicit time integration (right plot). The fixed time step
sizes used in the convergence analysis are calculated by hn = (1.0 × 10−4 × 2(1−n))n=1,2,...,8.
Convergence is investigated at t = 1 s. The reference solution for the convergence analysis
xRef was computed using the LGIM and an explicit RK method with order six using a time
step size of hRef = 3.90625 × 10−6 s. As can be seen in Fig. 3, in case of explicit time inte-
gration, LGIM outperforms the conventional approach in terms of accuracy. In contrast, the
conventional Euler parameter approach is more accurate than Lie group time integration for
implicit integration; see Fig. 3 (right plot).

At this point, we conclude that Euler parameters only give nonlinearities with low-order
polynomials, e.g., in the rotation matrix, which seem to be more suitable for the second-
order time integrator than the Lie group method.

In Table 4 the average number of Newton iterations per time step needed for the simu-
lation of the heavy top is given. As can be seen in Table 4, the average number of Newton
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Fig. 3 Convergence in the norm of the maximum error of the heavy top without kinematic constraints COM
position for different rotation parameters and time integration methods. Left plot, explicit integration; right
plot, implicit integration (generalized-α)

Table 4 Average number of
Newton iterations per time step
needed in generalized-α for
different rotation parameters:
benchmark heavy top without
kinematic constraints

h in s Rxyz (non-Lie) RV (Lie) EP (non-Lie)

1.00 × 10−3 – 1.96 3.0

5.00 × 10−4 – 1.9 2.52

2.50 × 10−4 – 1.8 2.0

1.25 × 10−4 – 1.6 2.0

6.25 × 10−5 2.36 1.0 2.0

3.12 × 10−5 2.09 1.0 2.0

1.56 × 10−5 2.01 1.0 2.0

7.81 × 10−6 1.96 1.0 2.0

iterations per time step is lower for Lie group time integration as compared to the conven-
tional approaches, which is due to the reduced nonlinearities in the EOMs for Lie group
methods.

The CPU time needed for simulation is shown in Fig. 4 for explicit (left plot) and im-
plicit integration (right plot). As can be seen in Fig. 4, the CPU time is on average shorter
in the case of Lie group time integration, both explicit and implicit, than in the conventional
approaches. In the case of implicit integration, the latter observation is in line with our ex-
pectations, since the lower number of Newton iterations required by the LGIM compared
to the two conventional approaches should also be reflected in the CPU time. In contrast to
the expectation, in case of explicit integration, the additional computational effort required
by the LGIM14 compared to the conventional approach (compare Algorithm 2 with Algo-
rithm 3) does not seem to have a big effect on the CPU time. The shorter CPU time of the
LGIM stems from the fact that the mass matrix is constant and therefore does not need to
be recomputed and factorized in each time step. However, this is not the case for the con-
ventional Rxyz formulation. Similar behavior is observed in all other numerical examples
considered, as will be shown in the remainder of this paper.

Finally, Fig. 5 shows the work–precision diagrams for explicit and implicit integration.
As illustrated in Fig. 5, the CPU time required to achieve, for example, an accuracy of

14Evaluating the integration formulas requires about six times more CPU time for the LGIM than in the
conventional Rxyz approach in this example.
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Fig. 4 CPU time of “heavy top without kinematic constraints” for different rotation parameters and time
integration methods. Left plot, explicit integration; right plot, implicit integration (generalized-α)

Fig. 5 Work–precision diagrams for explicit and implicit time integration methods for the example “heavy top
without kinematic constraints.” Left plot, explicit integration; right plot, implicit integration (generalized-α)

1.0 × 10−6 with Cardan/Tait–Bryan angles and RK44 is about 40 times higher than with
the LGIM. In contrast, the conventional Euler parameter approach requires only about a
quarter of the CPU time needed by the LGIM to achieve an accuracy of 1.0 × 10−4 in case
of implicit integration.

4.1.2 Heavy top with kinematic constraints

In the second investigations, we consider the heavy top with kinematic constraints according
to Refs. [1, 2, 9, 17, 22, 23, 28–30].

In Fig. 6, the convergence in the norm of the heavy top’s COM position error ‖xRef −x‖ is
illustrated for implicit time integration and different types of Newton methods; cf. Sect. 3.4.
The time step sizes used in the convergence analysis are calculated again by hn = (1.0 ×
10−4 × 2(1−n))n=1,2,...,8 and convergence is investigated at t = 1 s. The reference solution
xRef has been computed with the conventional EP approach and generalized-α using a time
step size of hRef = 1 × 10−7 s.

As can be seen in Fig. 6, the conventional EP approach is again more accurate than Lie
group time integration both for full Newton and modified Newton. However, the LGIM can
simulate the heavy top even at the largest considered time step sizes as compared to both
classical approaches.
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Fig. 6 Convergence in the norm of the maximum error of the heavy top with kinematic constraints COM
position for different rotation parameters and generalized-α using different Newton methods. Left plot, full
Newton; right plot, modified Newton

Fig. 7 Number of Newton iterations (generalised-α) required in the “heavy top with kinematic constraints”
example for different Newton methods and rotation parameters. Left plot, full Newton; right plot, modified
Newton. For the LGIM (RV), Texp is included in Eq. (40)

As expected, the number of Newton iterations for “modified Newton” is larger compared
to “full Newton”; see Fig. 7. Figure 7 also shows that the number of Newton iterations is
lower for Lie group time integration than in the conventional approaches, which results in a
shorter CPU time as shown in Fig. 8. Finally, Table 5 shows the average number of Newton
iterations required per time step when the tangent operator Texp is considered or neglected in
Eq. (40). As can be seen from Table 5, neglecting Texp in the iteration matrix (40) leads to a
larger number of Newton iterations per time step at time step sizes h ≥ 4.0 × 10−5 s, which
corresponds at time t = 1 s to an incremental rotation of ‖�ψ‖ ≈ ‖hω‖ ≈ 6.0 × 10−3 rad.
However, for time step sizes h < 4.0 × 10−5 s, neglecting Texp in Eq. (40) no longer affects
the number of Newton iterations needed per time step. As can be seen in Table 5, including
Texp in Eq. (40) within the modified Newton method has hardly any effect on the required
Newton iterations per time step; cf. Fig. 7. We observed similar results in all other numerical
examples.

4.2 High-speed rotor with flexible supports

We investigate the performance of Lie group time integration methods compared to the
conventional approaches considered using a flexibly supported high-speed rotor; see Fig. 9.
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Fig. 8 CPU time (generalised-α) required in the “heavy top with kinematic constraints” example for different
Newton methods and rotation parameters. Left plot, full Newton; right plot, modified Newton

Table 5 Average number of
Newton iterations per time step
needed in Lie group
generalized-α when the tangent
operator Texp is considered or
neglected in Eq. (40): benchmark
heavy top with kinematic
constraints

h in s With Texp
(full Newton)

Without Texp
(full Newton)

Without Texp
(modified Newton)

2.50 × 10−3 3.0 8.98 11.99

1.25 × 10−3 2.41 6.0 11.94

6.25 × 10−4 2.0 4.86 10.0

3.12 × 10−4 2.0 4.0 9.25

1.56 × 10−4 2.0 3.0 8.79

7.81 × 10−5 2.0 2.75 8.55

3.91 × 10−5 2.0 2.0 8.37

Fig. 9 Schematic representation
of high-speed rotor with flexible
supports

The model parameters are given in Table 6. The rotor is subjected to a torque of

t = [0 0 (L
2 − LL)mg

]T
. (44)

All simulations are performed over a period of t = 4 s.
In Fig. 10, the trajectory of point p1 = [−LL, 0.0, 0.0] in the y-z-plane (left plot) and

the time history of its coordinates (right plot) are shown. Figure 10 was obtained using the
LGIM in combination with an explicit RK method with order six (RK67) and a time step
size of h = 1.0 × 10−5 s. As can be seen in the left plot of Fig. 10, the rotor performs a
precession motion, whereby the precession period is about 2.5 s (cf. Fig. 10, right plot),
which corresponds to a precession frequency of 0.4 Hz.
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Table 6 Model parameters of
“high-speed rotor with flexible
supports”

Model parameter Value Notes

m in kg 1.223 mass of the rotor

r in m 0.05 radius for disk mass distribution

Lr in m 0.02 length of rotor disk

Jxx in kg m2 0.001541 polar moment of inertia

Jyy in kg m2 0.000812 moment of inertia for y-axis

Jzz in kg m2 0.000812 moment of inertia for z-axis

LL in m 0.11 length of rotor

LR in m 0.09 length of rotor

n in rpm 200000 rotational speed

ω in rad/s 20944 ω = 2πn/60

kL in N/m 4000 applied in x-y-z-direction

kR in N/m 4000 applied in y-z-direction

D 0.0001 dimensionless damping

dL in kg/s 5.165093 dL = 2Dωm applied in x-y-z-direction

dR in kg/s 5.165093 dR = 2Dωm applied in y-z-direction

g in m/s2 9.81 gravitational acceleration

Fig. 10 Left: Trajectory of point p1 on the rotor located at the position of the left support. Right: Time history
of the components of the angular velocity vector represented in the local frame. Left plot, tilting motion of
the rotor; right plot, position coordinates of point p1

In Fig. 11, the convergence in the norm of the position error ‖pRef − p‖ of point p1 on
the rotor is illustrated for explicit time integration (left plot) and for implicit time integration
(right plot). The fixed time step sizes used in the convergence analysis are calculated by
hn = (1.0 × 10−4 × 2(1−n))n=1,2,...,8. Convergence is investigated at t = 4 s. The reference
solution pRef for the convergence analysis was computed using the conventional approach
Rxyz and RK67 using a time step size of hRef = 1.0 × 10−6 s. As can be seen in Fig. 11, Lie
group time integration outperforms the conventional approach in terms of accuracy in case
of explicit time integration. In contrast, the conventional EP approach is again more accurate
than the LGIM in case of implicit integration; see Fig. 11 (right plot). However, in contrast
to the conventional EP approach, both the LGIM and the conventional Rxyz approach can
simulate the rotor even at the largest considered time step sizes.
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Fig. 11 Convergence in the norm of the maximum error of point p1 on the rotor located at the position of
the left support for different rotation parameters and time integration methods. Left plot, explicit integration;
right plot, implicit integration (generalized-α)

Table 7 Average number of
Newton iterations per time step
needed in generalized-α for
different rotation parameters:
high-speed rotor with flexible
supports

h in s Rxyz (non-Lie) RV (Lie) EP (non-Lie)

5.00 × 10−5 3.0 2.0 –

2.50 × 10−5 3.0 2.0 –

1.25 × 10−5 3.0 2.0 –

6.25 × 10−6 2.0 2.0 3.17

3.12 × 10−6 2.0 2.0 3.0

1.56 × 10−6 2.0 1.0 2.81

7.81 × 10−7 2.0 1.0 2.0

3.91 × 10−7 2.0 1.0 2.0

1.95 × 10−7 2.0 1.0 2.0

9.77 × 10−8 1.23 1.0 2.0

In Table 7 the average number of Newton iterations per time step needed for the simula-
tion of the rotor is given. As can be seen in Table 7, the average number of Newton iterations
per time step is smaller for LGIM as compared to the conventional approaches.

The CPU time needed for simulation of the high-speed rotor is shown in Fig. 12 for
explicit integration (right plot) and for implicit integration (left plot). As with the previous
numerical examples, the CPU time is in the case of the LGIM on average equal or even
smaller as compared to the conventional approaches, both for explicit and implicit integra-
tion.

Finally, Fig. 13 shows the work–precision diagrams for explicit (left plot) and implicit
(right plot) integration. As illustrated in Fig. 13, the CPU time required to achieve, for ex-
ample, an accuracy of 1.0 × 10−9 with Cardan/Tait–Bryan angles and DOPRI5 or RK67 is
about 10 times higher than with the LGIM. Figure 13 also shows that the LGIM achieves
in this example in case of implicit integration a higher performance than the conventional
Rxyz approach and a similar performance to the conventional Euler parameter approach.

4.3 Spatial rigid Slider–Crank mechanism

In the next investigations, we compare the accuracy and computational performance of
LGIM with both conventional approaches using the slider–crank mechanism shown in
Fig. 14. The spatial rigid slider–crank mechanism is an MBD benchmark problem taken
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Fig. 12 CPU time of “high-speed rotor with flexible supports” for different rotation parameters and time
integration methods. Left plot, explicit integration; right plot, implicit integration (generalized-α)

Fig. 13 Work–precision diagrams for explicit and implicit time integration methods for the example
“high-speed rotor with flexible supports.” Left plot, explicit integration; right plot, implicit integration
(generalized-α)

Fig. 14 Spatial rigid slider–crank
mechanism [45]

from the library of computational benchmark problems by IFToMM [44] and is illustrated
in Fig. 14.

The spatial slider–crank mechanism consists of four rigid bodies: a slider, a crank, a con-
necting rod and the ground. The crank (AB) has a length of 0.08 m and is connected to the
ground by a revolute joint at point A. The crank is driven from initial crank angle θ = 0 rad
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Table 8 Model parameters and initial conditions of the slider–crank mechanism. All quantities are expressed
with respect to the center of mass of the respective rigid body

Parameter Value Notes

mcr in kg 0.12 mass of the crank

mco in kg 0.5 mass of the connecting rod

ms in kg 2.0 mass of the slider

Jcr in kg m2 diag(0.0001, 0.00001, 0.0001) crank inertia

Jco in kg m2 diag(0.0004, 0.004, 0.004) connecting rod inertia

Js in kg m2 diag(0.0001, 0.0001, 0.0001) slider inertia

xcr in m [0.0, 0.1, 0.12]T initial position: crank

xco in m [0.1, 0.05, 0.1]T initial position: connecting rod

xs in m [0.2, 0.0, 0.0]T initial position: slider

θ in rad 0.0 initial crank angle

ρ
Rxyz
co in rad [−0.46364761, 0.84106867, 0.0]T initial attitude: connecting rod

ẋco in m/s [0.12, −0.24, 0.0]T initial velocity: connecting rod

ẋs in m/s [0.24, 0.0, 0.0]T initial velocity: slider

ωcr in rad/s [6.0, 0.0, 0.0]T init. ang. vel.: crank

ωco in rad/s [1.92, −0.96, 0.48]T init. ang. vel.: connecting rod

Fig. 15 Time histories of the slider–crank’s slider position and crank angle. The reference solution
(sMasarati ) was taken from the library of computational benchmark problems IFToMM [44]

with an initial angular velocity of 6 rad/s. The connecting rod has a length of 0.3 m and is
connected to the crank by a spherical joint at point B and to the slider by a universal joint
at point C. The slider is connected to the ground by a prismatic joint at point D with sliding
displacement s. All links are subjected to gravity of magnitude 9.81 m/s2 in the negative
z-direction. Studying the dynamic response of the slider–crank mechanism under the grav-
itational force is the main objective of this benchmark problem. The model parameters and
initial conditions are summarized15 in Table 8.

In Fig. 15, the time histories of the slider–crank’s slider position coordinate s (Fig. 15a)
and crank angle θ (Fig. 15b) are compared with reference solutions provided by IFToMM

15The crank’s initial velocity ẋAB and the slider’s initial angular velocity ωS are zero, i.e., ẋAB = ωS = 0.
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Fig. 16 Convergence in the norm
of the maximum error of the
slider–crank’s slider position for
different rotation parameters and
generalized-α

Fig. 17 Average number of Newton iterations per time step and CPU time of the slider–crank simulation for
different rotation parameters and time implicit integration methods. Left plot, Newton iterations; right plot,
CPU time

[44]. Figure 15 was obtained using the conventional Rxyz approach and generalized-α with
time step size h = 1.0 × 10−5 s. As can be seen in Fig. 15, the time histories obtained
with generalized-α and Euler parameters visually match the reference solution. The absolute
deviation of the slider–crank’s slider position s at t = 5 s is approximately 8.6 × 10−3 m.
The difference between our solution and the solution provided by IFToMM is due to the fact
that different time integration methods were used; see [44].

In Fig. 16, the convergence in the norm of the slider position error is shown for
generalized-α and different formulations for decreasing values of the time step hn =
(4.0 × 10−3 × 2(1−n))n=1,2,...,13. Convergence is investigated at t = 5 s. The reference so-
lution sRef for the convergence analysis was computed using the conventional approach
Rxyz and generalized-α using a time step size of hRef = 1.0 × 10−6 s. As can be seen in
Fig. 16, the conventional approaches are more accurate than the LGIM for time step sizes
h > 1.0 × 10−4 s. For time step sizes h ≤ 1.0 × 10−5 s, the LGIM appears to be partially
slightly more accurate than both conventional approaches.

In Fig. 17 (left plot) the average number of Newton iterations per time step needed for
the simulation of the slider–crank mechanism is illustrated. As can be seen in Fig. 17, the
average number of Newton iterations per time step is lower for the conventional approach
Rxyz compared to the LGIM and the Euler parameter approach. The CPU time needed for
simulation of the slider–crank mechanism is shown in Fig. 17 (right plot). As expected from
the lower number of Newton iterations required in the Rxyz formulation compared to the
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Fig. 18 Schematic representation of the Puma P560 manipulator and its kinematic chain

Lie group and Euler parameter formulations, the CPU time of the Rxyz formulation turns
out to be on average the lowest.

4.4 Puma 560 robot

Finally, we consider the Puma 560 robot (Programmable Universal Manipulator for Assem-
bly), which is illustrated schematically in Fig. 18a. The Puma robot consists of six rigid
bodies [46] and its kinematic chain with six revolute joints is illustrated in Fig. 18b. In to-
tal, the Puma robot has six degrees of freedom. The robot performs a point-to-point motion
using constant joint acceleration profiles, whereby all links are subjected to gravity of mag-
nitude 9.81 m/s2 in the negative z-direction. The constant joint acceleration profiles are give
in Table 9. The point-to-point motion starts with initial joint angles ϕinit and aims to reach
the goal configuration defined by the joint angles ϕGoal :

ϕinit =

⎡
⎢⎢⎢⎢⎢⎢⎣

ϕ1

ϕ2

ϕ3

ϕ4

ϕ5

ϕ6

⎤
⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎣

0.0◦
22.5◦
90.0◦
0.0◦

22.5◦
0.0◦

⎤
⎥⎥⎥⎥⎥⎥⎦

, ϕGoal =

⎡
⎢⎢⎢⎢⎢⎢⎣

ϕGoal
1

ϕGoal
2

ϕGoal
3

ϕGoal
4

ϕGoal
5

ϕGoal
6

⎤
⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎣

−120.0◦
60.0◦

−200.0◦
90.0◦
90.0◦
45.0◦

⎤
⎥⎥⎥⎥⎥⎥⎦

. (45)

In Fig. 19, the time histories of the robot’s joint angles are shown, which where computed us-
ing the conventional Euler parameter approach and a time step size of h = 1.0 × 10−4 s. The
Puma P560 robot has been well studied and its parameters are very well known [46]. The
standard Denavit–Hartenberg parameters, as well as the physical parameters of the Puma
robot, can be found in many textbooks on robotics, such as [46, 47] for example, and are
omitted here due to space reasons. In each joint, a PD controller, which is implemented
in the simulation model as a spring–damper element with control parameters specified in
Table 10, ensures that the prescribed trajectory is followed with minimal error. In the fol-
lowing, we compare the accuracy and computational performance of the LGIM and both
conventional approaches with a minimal coordinate formulation [48], which is abbreviated
as “Min. Coord.” hereafter.
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Table 9 Values of constant
angular acceleration profiles used
for the point-to-point motion

Link ϕ̈ ≤ t = 0.5 ϕ̈ > t = 0.5

1 −8.3776 8.3776

2 4.1888 −4.1888

3 −13.9626 13.9626

4 6.2832 −6.2832

5 6.2832 −6.2832

6 3.1416 −3.1416

Fig. 19 Joint angles

Table 10 PD controller
parameters of the Puma P560
manipulator

Link Proportional (P) term Derivative (D) term

1 40000.0 400.0

2 40000.0 400.0

3 40000.0 100.0

4 100.0 1.0

5 100.0 1.0

6 10.0 0.1

Fig. 20 Convergence in the norm
of the maximum error of the
robot’s joint angles for different
formulations and generalized-α

In Fig. 20, the convergence in the norm of the robot’s joint angles is illustrated. The
time step sizes used in the convergence analysis are calculated by hn = (1.0 × 10−1 ×
2(1−n))n=1,2,...,11. Convergence is investigated at t = 1 s and the reference solution ϕRef was
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Fig. 21 Average number of Newton iterations per time step and CPU time required by the generalized-α
method in the example “serial 6R robot” for different rotation parameters. Left plot, Newton iterations (full
Newton); right plot, CPU time

computed by employing the minimal coordinate formulation and generalized-α using a time
step size of hRef = 1.0 × 10−6 s. As can be seen in Fig. 20, the minimal coordinate formu-
lation is the most accurate for all considered time step sizes. The classical Euler parameter
approach and the LGIM exhibit for time step sizes h > 1.56 × 10−2 s virtually the same
accuracy, while the classical Euler parameter approach is more accurate at smaller time step
sizes. The conventional Rxyz approach is the least accurate. Moreover, both the LGIM and
the conventional Euler parameter approach can simulate the Puma at almost the largest con-
sidered time step sizes, in contrast to the conventional Rxyz approach. However, the minimal
coordinate formulation outperforms both the LGIM and the conventional approaches in this
regard. At this point we would like to note that the relative tolerance in “full Newton” had
to be increased to 1.0 × 10−5 in order for Newton’s method to converge in the case of the
LGIM.

In Fig. 21, the average number of Newton iterations per time step (left plot) and the CPU
time (right plot) needed for simulation of the Puma robot are shown. As can be seen in
Fig. 21, the LGIM achieves the lowest number of Newton iterations per time step for time
step sizes h ≤ 1.0 × 10−3 s, while the LGIM requires also the most Newton iterations per
time step for time step sizes h > 3.12×10−2 s. Similar to the other numerical examples con-
sidered, the classical Rxyz approach requires on average fewer Newton iterations per time
step than the conventional Euler parameter approach. These observations are reflected in the
CPU time required; see Fig. 21 (left plot). It is worth noting that the minimal coordinate for-
mulation achieves the lowest CPU time, which is due to the fact that only six EOMs need to
be treated in the minimal coordinate formulation, while in the LGIM and both conventional
approaches 6 × (3 + l) equilibrium equations (1) and 6 × 5 holonomic constraints (3) need
to be treated.

5 Conclusion

The accuracy and computational performance of explicit and implicit LGIMs have been
compared with classical Euler angle and Euler parameter-based formulations using a
set of rigid body systems. It has been found that explicit LGIMs outperform classical
parameterization-based formulations in terms of accuracy, while the computational effi-
ciency is almost the same. Especially for systems with high rotational speeds, explicit
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LGIMs turn out to be more accurate than the classical formulations. In contrast, in the case
of implicit integration, the classical Euler parameter-based formulation outperforms both the
classical Euler angle formulation and the LGIM in terms of accuracy. The LGIM appears to
be computationally more efficient, as the number of Newton iterations required in each time
step is lower compared to the classical formulations. The number of Newton iterations may
be further reduced in case of changing from the R

3 × SO(3) formulation to the SE(3) for-
mulation, which reduces nonlinearities in equations for one integration step. Furthermore, it
has been illustrated how LGIMs can be implemented into an MBS formalism that is based
on absolute coordinates. The implementation is shown for formalisms that employ explicit
RK methods and the implicit generalized-α method. It turns out that LGIMs can be imple-
mented at almost no extra cost, i.e., it takes only a few changes in the classical integration
algorithms to convert them into LGIMs. The straightforward transition from classical inte-
gration methods to LGIMs is facilitated by the fact that LGIMs readily allow three rotation
parameters to be used for modeling MBSs, which makes the dimension of the residual and
the iteration matrix coincide with that of the absolute coordinates and thus existing data
structures might be used. Up to now, we restricted our investigations to the R

3 × SO(3)

formulation. Future work will address the evaluation of the SE(3) formulation in terms of
accuracy and computational performance compared to classical formulations using a set of
rigid and flexible MBSs.

Appendix A: Implementation details

A.1 Tangent operators

The tangent operator Texp ∈ R
6×6 on R

3 × SO(3) and its inverse T−1
exp ∈ R

6×6 are given by
[3, 49]

Texp(�q) =
[

I 0
0 TexpSO(3)

(�ψ)

]
, T−1

exp(�q) =
[

I 0
0 T−1

expSO(3)
(�ψ)

]
. (A1)

In Eq. (A1), the matrices TexpSO(3)
∈ R

3×3 and T−1
expSO(3)

∈ R
3×3 are the tangent operators on

SO(3) and read [2, 41]

TexpSO(3)
(�ψ) =

{
I if ‖�ψ‖ = 0,

I + f1(‖�ψ‖)�̃ψ + f2(‖�ψ‖)�̃ψ
2

else,
(A2)

T−1
expSO(3)

(�ψ) =
⎧⎨
⎩

I if ‖�ψ‖ = 0,

I + 1

2
�̃ψ + f3(‖�ψ‖)�̃ψ

2
else,

(A3)

where

f1(‖�ψ‖) =

⎧⎪⎨
⎪⎩

cos‖�ψ‖ − 1

‖�ψ‖2
if ‖�ψ‖ > 0,

−1

2
if ‖�ψ‖ = 0,

(A4)

f2(‖�ψ‖) =

⎧
⎪⎨
⎪⎩

‖�ψ‖ − sin‖�ψ‖
‖�ψ‖3

if ‖�ψ‖ > 0,

1

6
if ‖�ψ‖ = 0,

(A5)



302 S. Holzinger et al.

f3(‖�ψ‖) =

⎧
⎪⎪⎨
⎪⎪⎩

1 − ‖�ψ‖
2 cot ‖�ψ‖

2

‖�ψ‖2
if ‖�ψ‖ > 0,

1

12
if ‖�ψ‖ = 0.

(A6)

A.2 Handling loss of significance in Texp and T−1
exp

There is a loss of significance when Eqs. (A4)–(A6) are evaluated near ‖�ψ‖ = 0 on a
computer [41]. In order to obtain accurate and precise results from Eqs. (A4)–(A6) for all
reasonable values of ‖�ψ‖, we approximate Eqs. (A4)–(A6) by Taylor polynomials. We
choose the intervals where Eqs. (A4)–(A6) are evaluated by its Taylor approximation as
proposed in [41]. The improved versions of Eqs. (A4)–(A6) read

f1(‖�ψ‖) =

⎧⎪⎨
⎪⎩

cos‖�ψ‖ − 1

‖�ψ‖2
if ‖�ψ‖ ≥ 1 × 10−2,

−1

2
+ ‖�ψ‖2

24
− ‖�ψ‖4

720
if 0 ≤ ‖�ψ‖ < 1 × 10−2,

(A7)

f2(‖�ψ‖) =

⎧
⎪⎨
⎪⎩

‖�ψ‖ − sin‖�ψ‖
‖�ψ‖3

if ‖�ψ‖ ≥ 1 × 10−4,

1

6
− ‖�ψ‖2

120
+ ‖�ψ‖4

5040
if 0 ≤ ‖�ψ‖ < 1 × 10−4,

(A8)

f3(‖�ψ‖) =

⎧⎪⎪⎨
⎪⎪⎩

1 − ‖�ψ‖
2 cot ‖�ψ‖

2

‖�ψ‖2
if ‖�ψ‖ ≥ 1 × 10−2,

1

12
+ ‖�ψ‖2

720
+ ‖�ψ‖4

30240
if 0 ≤ ‖�ψ‖ < 1 × 10−2,

(A9)

which give an absolute error in the Taylor approximation of about 1 × 10−16 and a relative
error in the actual function of about 1 × 10−10.

A.3 Composition operation for rotation vectors

We write the composition operation � for two rotation vectors ψ0 and �ψ with ψ being the
resultant rotation vector as

ψ = ψ0 � �ψ = ν0 η + η0 ν + ν × η

2 sincϕ
, (A10)

where

η0 = cos
‖ψ0‖

2
, η = ψ0

2
sinc

‖ψ0‖
2

, (A11)

ν0 = cos
‖�ψ‖

2
, ν = �ψ

2
sinc

‖�ψ‖
2

(A12)

and

ϕ = acos
(
ν0 η0 − νT η

) ; (A13)

cf. [11, 33]. In Eqs. (A10)–(A13), sinc represents the cardinal sine function

sinc(x) =
⎧⎨
⎩

1 if x = 0,
sinx

x
else,

(A14)
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which is continuous and computable at x = 0 [49]. The composition operation Eq. (A10)
enables a singularity-free update of the rotation vector and can be evaluated without restric-
tions [10, 11].

Appendix B: Automatic step size control

In this paper, we use one and the same approach for automatic step size control for formu-
lations 1 and 2 as well as for the Lie group formulation. To this end, we define the solution
vector for explicit solvers as

ξ = [qT• vT•
]T

. (B15)

Following [37], we estimate the error of a time step with current step size h by using an
embedded RK formula, which includes two approximations of order p and p̂ = p − 1.
The approximations are obtained by using two different integration formulas with common
coefficients ci , but two sets of weights bi and b̂i , leading to two approximations ξ and ξ̂ .
These so-called embedded RK formulas are widely used; see for example Hairer et al. [34].

The approximations ξ and ξ̂ are used to estimate an error

ej = |ξj − ξ̂j | (B16)

for every component j of the solution vector ξ . A scaling ej is used for every component of
the solution vector, evaluating at the beginning (0) and end (1) of the time step

sj = atol + rtol · max(|ξ0j |, |ξ1j |). (B17)

In Eq. (B17), atol and rtol represent the absolute respectively relative tolerance for the error
control, both prescribed by the user. The relative, scaled, scalar error for the step, which
needs to fulfill err ≤ 1, is computed as

err =

√√√√√1

n

n∑
j=1

(
ξ1j − ξ̂1j

sj

)2

. (B18)

The optimal time step size then reads

hopt = h ·
(

1

err

) 1
p+1

. (B19)

Currently we use the suggested step size as

hnew = min(min(hmax, h · fmaxInc), max(hmin, fsf ty · hopt ))) (B20)

with the minimum and maximum step size hmax

hmax = tend − tstart

nsteps

(B21)

respectively hmin, both prescribed by the user. The factor fmaxInc limits the increase of the
current step size h, and the factor fsf ty is a safety factor for limiting the chosen step size
relative to the optimal one in order to avoid frequent step rejections. If hopt ≥ h, the current
step is accepted, otherwise the step is recomputed with hnew . For more details, see [37].
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