
Citation: Lausch, A.; Bannehr, L.;

Berger, S.A.; Borg, E.; Bumberger, J.;

Hacker, J.M.; Heege, T.; Hupfer, M.;

Jung, A.; Kuhwald, K.; et al.

Monitoring Water Diversity and

Water Quality with Remote Sensing

and Traits. Remote Sens. 2024, 16, 2425.

https://doi.org/10.3390/rs16132425

Academic Editor: Hatim Sharif

Received: 27 May 2024

Revised: 23 June 2024

Accepted: 27 June 2024

Published: 1 July 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

remote sensing  

Review

Monitoring Water Diversity and Water Quality with Remote
Sensing and Traits
Angela Lausch 1,2,3,4,* , Lutz Bannehr 4, Stella A. Berger 5 , Erik Borg 6,7 , Jan Bumberger 8,9,10 ,
Jorg M. Hacker 11,12 , Thomas Heege 13, Michael Hupfer 14,15, András Jung 16 , Katja Kuhwald 17 ,
Natascha Oppelt 17 , Marion Pause 4 , Franziska Schrodt 18, Peter Selsam 8 , Fabian von Trentini 13,
Michael Vohland 10,19 and Cornelia Glässer 3

1 Department of Computational Landscape Ecology, Helmholtz Centre for Environmental Research-UFZ,
Permoserstr. 15, D-04318 Leipzig, Germany

2 Landscape Ecology Lab, Geography Department, Humboldt-Universität zu Berlin, Unter den Linden 6,
D-10099 Berlin, Germany

3 Department of Physical Geography and Geoecology, Martin Luther University Halle-Wittenberg,
Von-Seckendorff-Platz 4, D-06120 Halle, Germany; cornelia.glaesser@geo.uni-halle.de

4 Department of Architecture, Facility Management and Geoinformation, Institute for Geo-Information and
Land Surveying, Anhalt University of Applied Sciences, Seminarplatz 2a, D-06846 Dessau, Germany;
l.bannehr@afg.hs-anhalt.de (L.B.); marion.pause@hs-anhalt.de (M.P.)

5 Department of Plankton and Microbial Ecology, Leibniz Institute of Freshwater Ecology and Inland Fisheries,
Zur alten Fischerhütte 2, D-16775 Stechlin, Germany; stella.berger@igb-berlin.de

6 German Aerospace Center, German Remote Sensing Data Center, National Ground Segment,
Kalkhorstweg 53, D-17235 Neustrelitz, Germany; erik.borg@dlr.de

7 Faculty of Landscape Sciences and Geoinformatics, University of Applied Sciences, Brodaer Str. 2,
D-17033 Neubrandenburg, Germany

8 Department of Monitoring and Exploration Technologies, Helmholtz Centre for Environmental Research-UFZ,
Permoserstr. 15, D-04318 Leipzig, Germany; jan.bumberger@ufz.de (J.B.); peter.selsam@ufz.de (P.S.)

9 Research Data Management—RDM, Helmholtz Centre for Environmental Research-UFZ, Permoserstr. 15,
D-04318 Leipzig, Germany

10 German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Puschstraße 4,
D-04103 Leipzig, Germany; michael.vohland@uni-leipzig.de

11 College of Science and Engineering, Flinders University, Adelaide, SA 5000, Australia
12 Airborne Research Australia (ARA), Parafield Airport, Adelaide, SA 5106, Australia;

jorg.hacker@airborneresearch.org.au
13 EOMAP GmbH & Co KG, Schlosshof 4a, D-82229 Seefeld, Germany; heege@eomap.de (T.H.);

trentini@eomap.de (F.v.T.)
14 Department of Ecohydrology and Biogeochemistry, Leibniz Institute of Freshwater Ecology and Inland

Fisheries, Müggelseedamm 301, D-12587 Berlin, Germany; michael.hupfer@igb-berlin.de
15 Department of Aquatic Ecology, Brandenburg Technical University Cottbus-Senftenberg, Seestr. 45,

D-15526 Bad Saarow, Germany
16 Faculty of Informatics, Institute of Cartography and Geoinformatics, Eötvös Loránd University, Pázmány

Péter sétány 1/A, H-1117 Budapest, Hungary; jung@inf.elte.hu
17 Department of Geography, Christian-Albrechts-University of Kiel, Ludewig-Meyn-Str. 8,

D-24098 Kiel, Germany; katja.kuhwald@geographie.uni-kiel.de (K.K.); oppelt@geographie.uni-kiel.de (N.O.)
18 School of Geography, University of Nottingham, University Park, Nottingham NG7 2RD, UK;

franziska.schrodt1@nottingham.ac.uk
19 Geoinformatics and Remote Sensing, Institute of Geography, University of Leipzig, Johannisallee 19a,

D-04103 Leipzig, Germany
* Correspondence: angela.lausch@ufz.de; Tel.: +49-341-235-1961; Fax: +49-341-235-1939

Abstract: Changes and disturbances to water diversity and quality are complex and multi-scale
in space and time. Although in situ methods provide detailed point information on the condition
of water bodies, they are of limited use for making area-based monitoring over time, as aquatic
ecosystems are extremely dynamic. Remote sensing (RS) provides methods and data for the cost-
effective, comprehensive, continuous and standardised monitoring of characteristics and changes
in characteristics of water diversity and water quality from local and regional scales to the scale of
entire continents. In order to apply and better understand RS techniques and their derived spectral
indicators in monitoring water diversity and quality, this study defines five characteristics of water

Remote Sens. 2024, 16, 2425. https://doi.org/10.3390/rs16132425 https://www.mdpi.com/journal/remotesensing

https://doi.org/10.3390/rs16132425
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com
https://orcid.org/0000-0002-4490-7232
https://orcid.org/0000-0002-8835-545X
https://orcid.org/0000-0001-8288-8426
https://orcid.org/0000-0003-3780-8663
https://orcid.org/0000-0002-3458-3465
https://orcid.org/0000-0003-3250-4097
https://orcid.org/0000-0002-5453-4556
https://orcid.org/0000-0001-9444-4654
https://orcid.org/0000-0002-3836-2723
https://orcid.org/0000-0001-6122-7880
https://orcid.org/0000-0002-6048-1163
https://doi.org/10.3390/rs16132425
https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com/article/10.3390/rs16132425?type=check_update&version=2


Remote Sens. 2024, 16, 2425 2 of 47

diversity and quality that can be monitored using RS. These are the diversity of water traits, the
diversity of water genesis, the structural diversity of water, the taxonomic diversity of water and the
functional diversity of water. It is essential to record the diversity of water traits to derive the other
four characteristics of water diversity from RS. Furthermore, traits are the only and most important
interface between in situ and RS monitoring approaches. The monitoring of these five characteristics
of water diversity and water quality using RS technologies is presented in detail and discussed using
numerous examples. Finally, current and future developments are presented to advance monitoring
using RS and the trait approach in modelling, prediction and assessment as a basis for successful
monitoring and management strategies.

Keywords: water diversity; water quality; traits; earth observation; remote sensing; water trait
diversity; water genesis diversity; water structural diversity; water taxonomic diversity; water
functional diversity

1. Introduction

The sea, inland waters and rivers are crucial to the life and survival of all individuals
and fulfil central functions in our aquatic and wider ecosystems [1]. They provide habitats
and critical niches for a wide range of species and are essential components of water, carbon
and nutrient cycles [2]. However, land use intensity (LUI), climate change, urbanisation and
tourism are leading to major changes and even the complete destruction of the ecological
functions and resilience of water bodies due to multiple interacting stress factors [3,4].
Local to global changes in the world’s freshwater ecosystems are already apparent due to
physical, chemical and biological changes [5], such as the biotic homogenisation of algae
in watersheds (i.e., the decreasing differences in taxonomic and functional characteristics
of algal communities) [6], the influence of microplastics [7,8], the effect in antibiotics [9],
the increase in browning [10] or the increase in eutrophication and excess nitrogen in
water bodies [11]. Many studies assume that the productivity of aquatic ecosystems will
increase as a result of global warming [12–15] due to increased nutrient inputs and the
intensification of internal nutrients. However, changes in stratification due to warming
can also lead to (longer) interruptions to internal nutrient cycling. It is also evident that
species respond very differently to, for example, heat stress in water bodies [16]. This
requires a well-founded differentiation of species and knowledge of phylogeny, the entire
aquatic ecosystem and its influencing factors in order to better understand the responses of
organisms and ecosystems to environmental change.

Numerous national and international guidelines have been developed, such as the Wa-
ter Framework Directive in Europe (https://environment.ec.europa.eu/topics/water/wate
r-framework-directive_en, accessed on 26 June 2024), the US Clean Water Act (https://ww
w.epa.gov/sites/default/files/2017-08/documents/federal-water-pollution-control-act-5
08full.pdf, accessed on 26 June 2024), the National Water Management Strategy of Australia
and New Zealand (https://www.waterquality.gov.au/sites/default/files/documents/n
wqms-charter.pdf, accessed on 26 June 2024), the Canada Water Act (https://laws-loi
s.justice.gc.ca/eng/acts/c-11/, accessed on 26 June 2024), and the International Initia-
tive on Water Quality (IIWQ) of UNESCO’s International Hydrological Programme (IHP)
(https://www.unesco.org/en/ihp, accessed on 26 June 2024), which aim to maintain and
sustainably improve the ecological status of water bodies. Improving water quality is one of
the world’s greatest societal challenges and is, therefore, a key issue in the UN 2030 Agenda
for Sustainable Development Goal 6: “Ensure availability and sustainable management
of water and sanitation for all”. Strategies and actions to achieve this goal require the
coherent measurement, analysis and visualisation of water quality from regional to global
scales. The GlobeWQ project (https://www.globewq.info/, accessed on 26 June 2024) is
embedded in the World Water Quality Alliance, led by the UN Environment Programme,
with the challenging task of producing a World Water Quality Assessment of current and

https://environment.ec.europa.eu/topics/water/water-framework-directive_en
https://environment.ec.europa.eu/topics/water/water-framework-directive_en
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future freshwater quality. A common goal of these guidelines is to improve water quality
by identifying pollutants and implementing sustainable management strategies that can be
achieved through continuous monitoring of all water bodies [17–19]. Current monitoring
programmes use labour-intensive, costly and time-consuming in situ methods such as dis-
tributed sampling, analysis, point measurements or other comparable methods. Although
these provide detailed information on the physical, chemical and biological status of water
bodies, their local and selective monitoring and low temporal resolution can lead to inac-
curate assessments and, consequently, a false categorisation of water quality [20,21]. The
temporal and spatial variability of phenomena and ongoing processes and changes, as well
as disturbances caused by, for example, short-lived cyanobacteria or phytoplankton blooms
in water bodies, cannot be sufficiently monitored by infrequent in situ point sampling
measurements [22,23].

To gain an ecosystem-level understanding of water bodies and the role of lakes “as
sentinels, integrators and regulators of climate change” [24], there is an urgent global need
for long-term monitoring approaches that can capture standardised and transferable spatio-
temporal monitoring of water status, quality and change [21]. Ecologists have repeatedly
proposed the use of remote sensing (RS) for monitoring water diversity and water quality
and coupling it with locally conducted in situ measurements to take advantage of both area-
scale RS information and local measurements [25]. Complementary approaches such as the
synergistic use of innovative RS technologies, in situ sensors and measurements, databases
and modelling approaches are required to provide an assessment of the ecosystem integrity
of water status and its health [25,26].

RS techniques are already being used to successfully monitor, model and assess ter-
restrial ecosystem properties such as vegetation diversity [27,28], geodiversity [29–31],
geomorpho-diversity [32] and hydrology [33] to assess the quality and support the sus-
tainable management of marine and coastal protected areas [34]. For some time now,
various water characteristics and water quality indicators have been used, such as tur-
bidity, chlorophyll-a, harmful algal bloom indicators and total absorption (IIWQ World
Water Quality Information and Capacity Building Portal, https://www.eomap.com/worl
d-water-quality/about-iiwq-portal/, accessed on 26 June 2024), which have been merged
as global datasets based on different RS time series from RS missions such as Land-
sat and Copernicus or hyperspectral RS satellites (e.g., EnMAP and PRISMA) (https:
//climate.esa.int/en/projects/lakes/, accessed on 26 June 2024). Recent technological
developments and satellite missions such as the DLR Earth Sensing Imaging Spectrometer
(DESIS, [35], the hyperspectral Environmental Mapping and Analysis Programme (En-
Map, [36]) and the first space-based GEDI Ecosystem LiDAR [37]) or ICESat-2 [38] are now
available and largely free of charge. They help us to gain a deeper understanding of the pro-
cesses and to specifically monitor water heat, water properties, processes and interactions.
NASA’s future Surface Biology and Geology (SBG) missions (https://sbg.jpl.nasa.gov/,
accessed on 26 June 2024) with the Hyperspectral Infrared Imager (HyspIRI) will be partic-
ularly important for RS-based monitoring of water quality, as the sensor combination of
hyperspectral and the Thermal Infrared RS (TIR) will simultaneously record and continu-
ously monitor various water quality characteristics as well as additional vegetation and
geodiversity characteristics on local to global scales [39].

The basic reason why RS can capture changes in water quality characteristics is that
the spectral reflectance and absorption of pixels in an optical RS image is the result of
complex interactions between light (the atmosphere); the water surface; the genesis; and
optical, biochemical–biophysical, morphological, physiological, phenotypical, structural,
taxonomic and functional characteristics of water and its constituents, such as phyto-
plankton [40] and water quality [41], vegetation [42], geodiversity [30,32] and their inter-
actions [43]. The basis of the trait approach is the Spectral Variation Hypothesis (SVH)
approach [44]. The Spectral Variation Hypothesis states that the pixel-to-pixel variability
of the spectral response in an RS image is determined by several factors, such as envi-
ronmental diversity, the diversity of biochemical and structural characteristics, e.g., leaf

https://www.eomap.com/world-water-quality/about-iiwq-portal/
https://www.eomap.com/world-water-quality/about-iiwq-portal/
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and canopy properties, as well as functional vegetation properties and their responses
through interactions with the topography, soil and geodiversity as an expression of the
integrability of the spectral signal and its changes [44]. RS can capture traits and trait
variations. Therefore, traits are crucial indicators and proxies of terrestrial and aquatic
status, opportunities, disturbances and resource limitations. They are also a crucial link
between in situ and RS monitoring approaches [45]. Therefore, RS and the traits approach
are appropriate for assessing changes to water diversity and water quality.

The traits approach for water has already been mentioned by numerous studies in
the past, but they mainly refer to in situ measurements [41,46–51]. The traits approach
is crucial for a better understanding of why organisms live where they do and how they
respond to environmental change [52]. To date, trait approaches with RS have only been in
the context of terrestrial vegetation diversity [45,53,54], forest heath [55–57], geodiversity
(soil characteristics [31], geomorphology, [32], urban intensity [58] or social-ecological
systems [59].

Therefore, the aims of this paper are as follows: (i) to apply the RS-based traits ap-
proach to aquatic and marine systems for the first time. For this purpose, five characteristics
of aquatic diversity have been defined, namely: the diversity of water traits, the diversity
of water genesis, the structural diversity of water, the taxonomic diversity of water and
the functional diversity of water; (ii) to illustrate how RS technologies can monitor these
five traits of water diversity; (iii) to summarise the characteristics of water diversity; and
(iv) to discuss the future opportunity of an integrative approach and application of traits
and RS to integrate a more focused RS and trait approach into water quality assessment
and sustainable management.

2. Definition and Standards of Water Quality and Water Characteristics

The assessment of water quality is based on a set of definitions and standards estab-
lished by various organisations. Monitoring of water quality and water characteristics is
often conducted by in situ measurements, but the specific tests and measurements used
will depend on the water’s intended use for rivers, lakes, groundwater or drinking water.
Here are some of the key parameters and definitions that are commonly used:

Physical characteristics: These relate to parameters such as light (Photosynthetically
Available Radiation—PAR), temperature (thermal stratification), conductivity, transparency,
colour, turbidity (clarity) and total suspended solids. The presence of suspended materials
such as clay, silt, fine organic material, plankton and other inorganic materials in water
is referred to as turbidity, which is a measure of water clarity. For example, the oxygen
saturation in water depends on the temperature, and a higher level of turbidity can indicate
pollution (Environmental Protection Agency (EPA), https://www.epa.ie/pubs/advice/w
ater/quality/Water_Quality.pdf, accessed on 26 June 2024).

Chemical characteristics: These include parameters such as pH; hardness; alkalinity
salinity; nutrients; dissolved organic carbon; anions such as chloride and sulphate; and
cations such as calcium, natrium, magnesium, iron and manganese and the concentration
of dissolved oxygen. Nutrients such as nitrogen, phosphorus and silicon are measured
to estimate the eutrophication level [60]. The presence and concentration of chemicals
that can be harmful to humans or ecosystems are also included, such as heavy metals or
persistent organic pollutants (US Geological Survey, https://www.usgs.gov/, accessed on
26 June 2024).

Biological characteristics: These refer to the microbial quality of water, such as the pres-
ence and quantities of bacteria, viruses, microalgae, fungi and other microorganisms.
Certain types of bacteria (e.g., Escherichia coli) are used as indicators of water pollution,
especially from faecal sources (World Health Organization, https://www.who.int/publicat
ions/i/item/9789241549950, accessed on 26 June 2024).

Ecological characteristics/bioindicators: Certain species of animals (insect larvae, snails,
mussels, amphibians and fish) and/or plants (cyanobacteria, microalgae, submerged macro-
phytes and reeds) serve as bioindicators of the state of an ecosystem. The presence or

https://www.epa.ie/pubs/advice/water/quality/Water_Quality.pdf
https://www.epa.ie/pubs/advice/water/quality/Water_Quality.pdf
https://www.usgs.gov/
https://www.who.int/publications/i/item/9789241549950
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absence of species and changes in their populations can provide important information
on the condition and changes to the water body and its environmental conditions and
anthropogenic influences [60].

Standards and Guidelines

The recording of water quality and water properties is based on various standards and
guidelines that are defined by several international organisations and frameworks. These
organisations and guidelines significantly shape the way in which water properties and
water quality are recorded and assessed worldwide. They provide frameworks to protect
and promote both environmental impacts and human health. Here are some of the most
important organisations and their associated guidelines:

3. Definition of Water Diversity Using Remote Sensing

The recording of water quality and thus water constituents is one of the most frequently
requested RS applications. Due to the immense scale of the area to be monitored worldwide,
the integration of RS technologies into a water monitoring system was not put into practice
until the early 1980s [61]. However, RS approaches represent a target-oriented approach to
monitor the properties and changes to water quality based on the following criteria:

RS can capture the traits and trait variations of water characteristics and water quality
as well as those of plants, vegetation, geodiversity, geomorphology and land use intensity.
Consequently, RS-based water quality monitoring can monitor not only water quality traits
but also the terrestrial compartments of geodiversity and vegetation diversity and take
into account the process interactions and drivers of water quality. The spectral reflectance
and absorption of pixels are the result of interactions between light (the atmosphere),
phylogenetic/genesis, biophysical, biochemical, physical, morphological, physiological,
phenotypic, structural, taxonomic and functional traits of the captured characteristics of
water, vegetation and geodiversity, as well as their interactions between vegetation diversity
and geodiversity [42,43].

The traits approach forms the basis for the in situ monitoring [41] and RS monitoring
of water quality and is therefore a crucial link between the two monitoring approaches [45].
Therefore, in the context of monitoring water diversity and water quality using RS, a new
definition of monitoring water diversity and quality is required.

Water diversity can be described by its five characteristics, namely: the diversity of
water traits, the diversity of water genesis, the structural diversity of water, the taxonomic
diversity of water and the functional diversity of water (modified after Lausch et al. [62]).
These five characteristics of water diversity exist on all spatial and temporal scales and can
be defined as follows (modified after Lausch et al. [32]):

(I) The diversity of water traits, which represents the diversity of the biochemical-,
physical, optical, morphological-, structural-, textural- and functional characteristics
of water traits that affect, interact with or are influenced by their genesis-, taxonomic-,
structural- and functional diversity;

(II) The diversity of water genesis, which refers to the diversity of the length of evo-
lutionary pathways associated with a particular set of water traits, taxa, structures
and functions of water diversity. Therefore, groups of water traits, water taxa, water
structures and water functions that maximise the accumulation of functional diversity
of water diversity are identified;

(II) The structural diversity of water, namely, the diversity of the composition and config-
uration of water characteristics;

(IV) The taxonomic diversity of water, representing the diversity of water components that
differ from a taxonomic perspective;

(V) The functional diversity of water, which is the diversity of water functions and
processes, as well as their intra- and interspecific interactions.

A clear separation and assignment of the five characteristics of water diversity moni-
tored by RS is not always possible but nevertheless helps to monitor, assign and assess the
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various indicators derived with RS, as well as to understand the links between in situ and
RS approaches [62].

4. Approaches for Monitoring Water Diversity and Water Quality

There are two methods for monitoring water characteristics and water diversity, as
well as its properties, health and changes. These are in situ/field observations and the RS
approach (see Figure 1).
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Figure 1. In situ and remote-sensing approaches and the five characteristics of water diversity
(diversity of water traits, diversity of water genesis, structural diversity of water, taxonomic diversity
of water and functional diversity of water). Diversity of water traits is the most important link
between in situ and RS monitoring approaches (modified after Lausch et al. [32]).

4.1. In Situ Approaches

In situ monitoring refers to the direct expert recording, identification and monitor-
ing of changes to water characteristics (traits), their diversity and health. Alexander von
Humboldt was one of the first to adopt a holistic and standardised approach to in situ
monitoring, in which the traits and processes of hydro-, geo- and biodiversity were ob-
served, compared and evaluated, and their interactions and feedback mechanisms were
recorded [63–65]. Organisations and guidelines (see Table 1) have a decisive influence
on the way in which water properties and water quality are recorded and evaluated in a
standardised manner worldwide (see Table A1, Appendix A).

In situ water quality monitoring is based on sampling and on-site observations. Increas-
ingly, however, in situ measurements are also supported by reagent-free, low-maintenance,
autonomous and continuous monitoring sensors and aquatic wireless sensor networks
(WSN) ([66–68], such as the GLEON network (Global Lake Ecological Observatory Net-
work) https://gleon.org/ accessed on 26 June 2024). Furthermore, low-cost automated
GPS, electrical conductivity and temperature sensing devices and Android platforms for
water quality monitoring are also used [69]. Recently, trait-based approaches have also
been increasingly used for in situ monitoring to investigate and evaluate, e.g., short- and
long-term phytoplankton dynamics and the establishment of phytoplankton communities

https://gleon.org/
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in freshwater and marine research. There are some image-based efforts for more automated
plankton analyses (see [70]). These are based on trait-based approaches, which are currently
spreading rapidly [41,46,71].

Table 1. Standards and guidelines, recognised organisations and frameworks for monitoring water
properties and water quality.

Organisation Guidelines Link

World Health Organisation
(WHO):

# The WHO sets guidelines for drinking water
quality, which include standards for
microbiological, chemical and radiological
parameters.

# These guidelines serve as the basis for national
legislation and standards for drinking water
quality worldwide.

https://www.who.int/publicatio
ns/i/item/9789241549950, accessed
on 26 June 2024

U.S. Environmental Protection
Agency (EPA):

# The EPA provides extensive regulations and
standards for water quality in the U.S.,
including the Safe Drinking Water Act and the
Clean Water Act.

# These include limit values for impurities in
drinking water and standards for surface water.

https:
//www.epa.ie/pubs/advice/wat
er/quality/Water_Quality.pdf,
accessed on 26 June 2024

European Union (EU):

# The EU Water Framework Directive (WFD) is a
key document that aims to bring all bodies of
water (rivers, lakes, coastal waters and
groundwater) to a “good status”.

# The EU also lays down specific guidelines for
drinking water and bathing water.

https://environment.ec.europa.eu
/topics/water/water-framework-
directive_en, accessed on 26 June
2024

International Organisation for
Standardisation (ISO):

# ISO offers various standards for water quality,
including methods for testing and
analysing water.

# Examples include ISO 14046 for the water
footprint and various ISO standards for
analysing specific contaminants.

https://www.iso.org/home.html,
accessed on 26 June 2024

American Public Health
Association (APHA):

# APHA publishes the “Standard Methods for the
Examination of Water and Wastewater”, a
comprehensive manual containing standardised
laboratory procedures for the analysis of water
quality.

https://www.apha.org/, accessed
on 26 June 2024

European Union (EU) Water
Framework Directive (WFD)

# Citizens, nature and industry all need healthy
rivers and lakes, groundwater and bathing
waters. The Water Framework Directive (WFD)
focuses on ensuring good qualitative and
quantitative health, i.e., on reducing and
removing pollution and on ensuring that there
is enough water to support wildlife at the same
time as human needs.

# Finland is one of the few countries to have
switched to RS-based national monitoring.

https://environment.ec.europa.eu
/topics/water/water-framework-
directive_en, accessed on 26 June
2024

Despite the increasing amount of in situ data and the development of water quality
databases such as GEMStat (https://gemstat.org, accessed on 26 June 2024), as well as the
increasing free availability of these data, the spatial and temporal continuous resolution of in
situ data has so far been insufficient to provide comprehensive information and assessments
of water quality from the local to the regional and the global scale [25]. Monitoring
programmes or in situ buoys are often at one location in a lake, i.e., the point where the

https://www.who.int/publications/i/item/9789241549950
https://www.who.int/publications/i/item/9789241549950
https://www.epa.ie/pubs/advice/water/quality/Water_Quality.pdf
https://www.epa.ie/pubs/advice/water/quality/Water_Quality.pdf
https://www.epa.ie/pubs/advice/water/quality/Water_Quality.pdf
https://environment.ec.europa.eu/topics/water/water-framework-directive_en
https://environment.ec.europa.eu/topics/water/water-framework-directive_en
https://environment.ec.europa.eu/topics/water/water-framework-directive_en
https://www.iso.org/home.html
https://www.apha.org/
https://environment.ec.europa.eu/topics/water/water-framework-directive_en
https://environment.ec.europa.eu/topics/water/water-framework-directive_en
https://environment.ec.europa.eu/topics/water/water-framework-directive_en
https://gemstat.org
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lake is deepest. This should then represent the whole lake, which is often not the case.
Furthermore, these are often conducted in low-income countries and in regions known for
their lack of policies for permanent in situ monitoring. The inclusion of areal RS data, as
well as water quality modelling that provides relationships between water quality status
and its influencing factors, such as agricultural practices and/or the discharge of untreated
municipal wastewater, can close this gap [25].

In order to optimally incorporate airborne and spaceborne RS data for monitoring
water quality, RS data must be validated by standardised in situ monitoring networks to
monitor bio-geo-optical traits and the diversity of inland and coastal waters. For example,
the GLObal Reflectance Community Dataset for Imaging and Optical Sensing of Aquatic
Environments (GLORIA) provides an important dataset of 7572 local hyperspectral RS
reflectance measurements, which were measured in 1 nm intervals in the wavelength
range from 350 to 900 nm and distributed globally. In this dataset, in addition to spectral
measurements, at least one measurement of water quality (chlorophyll-a, total suspended
solids, dissolved solids absorption and Secchi depth) is also monitored and provided [72].

The optical complexity of coastal and inland waters with different trophic states is
challenging for RS, especially for the retrieval of phytoplankton functional or pigment
groups, and therefore requires additional in situ and laboratory measurements for valida-
tion [73]. The LakeLab, a large-scale experimental research facility in Lake Stechlin (NE
Germany, Figure 2), provides such a unique opportunity for collaboration between aquatic
ecologists and remote sensing experts for validation and calibration. The LakeLab is an
experimental platform for studying the effects of climate change on aquatic organisms, their
interactions and ecological processes in lake ecosystems [74,75]. It consists of a large central
enclosure (30 metres in diameter) and 24 experimental units (enclosures), each 9 metres
in diameter. All 24 enclosures of the LakeLab and 4 additional stations in Lake Stechlin
are equipped with in situ sensors (YSI EXO, LiCor PAR) mounted on automatic profiling
systems and provide continuous data from different water depths, including chlorophyll,
phycocyanin, phycoerythrin, temperature, oxygen, conductivity, pH and light as PAR.
Measurements such as HPLC-based chlorophyll-a and other pigments, image-based flow
cytometry (FlowCam, MDPI, Amnis Image Stream) for plankton organisms, nutrients and
carbon fractions are performed in the nearby laboratories of the Department of Plankton
and Microbial Ecology of the IGB in Stechlin. Several international collaborations with
measurement campaigns in the LakeLab have been carried out to characterise key opti-
cal properties of water and to understand the formation of the remote sensing signal, to
compare and validate remote sensing data (multi- or hyperspectral cameras on satellites,
aeroplanes, drones and handheld) with in situ and laboratory measurements in optically
diverse and complex water bodies created in the LakeLab (Figure 2), supported by the
AQUACOSM project.

4.2. Remote Sensing Approach

All RS technologies are contactless and detect traits and trait variations on and in
the water at a distance of a few millimetres to thousands of kilometres. The sensors
are used on different RS platforms such as aquatic wireless sensor networks (WSN), un-
derwater cameras on submarines and robots, buoys, ships, drones, and airborne and
spaceborne platforms, which use different RS technologies (RGB/photography, multispec-
tral, hyperspectral, thermal, laser, radio/radar, acoustic, and LiDAR (Light Detection and
Ranging) installed to monitor water diversity, water quality and traits of geodiversity such
as bathymetry and depth of the basic composition of water bodies (see Figure 3). There is
already extensive literature describing methodological and sensor technology for recording
and monitoring water quality and water characteristics [1,76]; therefore, they are not the
subject of this paper.
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Figure 2. The IGB LakeLab in Stechlin Lake is a large-scale experimental research facility with
24 lake water basins (enclosures), each 9 metres in diameter and approximately 20 metres deep,
isolated from the lake by a cylindrical watertight membrane extending from the surface to the natural
bottom. The LakeLab can be used to simulate future environmental scenarios and study their effects
on lake ecosystems. The LakeLab is well equipped with in-situ sensor profiling systems and is located
in close proximity to the IGB laboratories of the Department of Plankton and Microbial Ecology,
Stechlin, Germany. The IGB LakeLab also serves as a platform for validation and calibration of in-situ
and laboratory measurements with remote sensing products. Graphic (a) shows the 24 enclosures
around the central reservoir (Credit: IGB); Arial photo (b) shows the LakeLab in Lake Stechlin and
the laboratories of the Department of Plankton and Microbial Ecology on the shore next to the Federal
Weather Station (Credit: Dr. Peter Casper); Drone photo (c) illustrates the size of the LakeLab with
people standing on the ring of the central reservoir (Credit: Dr Carmen Cillero, 3edata); Drone photos
(d,e) illustrate replicated enclosures treated in four different ways (control, cDOM, nutrients, nutrients
+ cDOM) and the resulting colours after the additions and the response of the plankton community
(credit: Prof. Andreas Jechow).

However, the monitoring of water bodies and their quality using RS poses a challenge
compared to terrestrial RS for several reasons: (I) Light absorption and scattering in the
water: water absorbs light, especially in deeper layers. This limits the penetration depth of
the light and therefore the ability of the sensors to obtain information from deeper water
layers. Water also scatters the light, which makes it more difficult to interpret the data
recorded by the sensors. (II) Complex reflection patterns: The surface of water bodies
can exhibit a variety of reflection patterns caused by waves, sediments, organic materials
and other factors. These patterns can affect the accuracy of RS data. (III) Influence of the
atmosphere: when passing through the atmosphere, RS signals are altered by water vapour,
aerosols and other atmospheric components. All these factors make it difficult to obtain
precise information about water quality. Globally consistent and harmonised water quality
data from various different sensors can be ensured with physics-based approaches due
to their relation to the absorption and scattering properties of water constituents. Other
factors should also be considered, namely:

• The spatial and temporal resolution of RS data: many bodies of water change rapidly
both spatially and temporally. Sensors with insufficient spatial or temporal resolution
may therefore not be able to provide accurate or up-to-date data.

• The heterogeneity of water bodies: water bodies are often heterogeneous in their
composition. Different areas of a water body can have different characteristics, which
complicates the analysis and interpretation of RS data.

• The spectral signature of substances: various substances in water (such as chlorophyll,
dissolved organic matter and sediments) have specific spectral signatures. The precise
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identification and quantification of these substances require specialised sensors and
complex analysis methods.

• Technical limitations: the available technology, in particular the spectral and spatial
resolution of the sensors, as well as the limited availability of validation data sets,
limits what can be recorded and analysed.

• Interdisciplinary challenges: the correct interpretation of RS data with regard to water
quality often requires a deep understanding of different scientific disciplines, including
limnology, oceanography and environmental sciences.

Due to these challenges, the monitoring of water bodies using RS is a complex endeav-
our that requires ongoing research and development in the fields of sensor technology, data
analysis and environmental science. Therefore, as a first step, a new definition of the five
characteristics for monitoring water diversity is needed to better understand the RS-based
trait approach (see Chapter 3). RS can use proxies to directly or indirectly monitor the
different indicators of the five characteristics of water diversity (see Figure 4).

However, to gain a basic understanding of the potential and limitations of RS tech-
niques, the suitability for monitoring the five characteristics of water diversity is discussed
in the following chapters.
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Figure 3. Different RS platforms; aquatic wireless sensor networks (WSN); underwater cameras
on submarines and robots, buoys, ships, drones and airborne and spaceborne platforms; and RS
technologies (RGB/photography, multispectral, hyperspectral, thermal, laser, radio/radar, acous-
tic and LiDAR) to capture water quality, water diversity and traits of geodiversity like aquatic
geomorphology (bathymetry, depth, basic composition of waters) (from Foo and Asner [77]).
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Figure 4. Remote sensing monitoring of the five characteristics of water diversity (see Chapter 3):
(I) Diversity of water traits: spectral traits of water diversity monitored with remote-sensing
approaches. (a) Monitoring of turbidity, chlorophyll content, ABS Indicator, Bangladesh, India,
(https://aqua.eoapp.de, accessed on 26 June 2024). (II) Diversity of water genesis: (b) Geological
genesis leads to the formation and shaping of different lakes. (c) Classification of glacial lakes based
on Landsat TM/OLI and Aster DGM data (I) Glacial erosion lakes and (III) Tectonic lakes (from
Weit et al. [78]). (III) Structural diversity of water: (d) Tideways in the Weser River, northeast of
Wilhelmshaven, Germany monitored by airborne LiDAR (from Lausch et al. [62]). (e) The LiDAR-
derived digital elevation model (DEM) (0.25 m cell-size) for One Tree Reef showing some key features
(complex patch reef structure in the deep lagoon) that could not be quantified in the past using
a coarse DEM and single beam echo-sounder surveys. (f) Indicator for the maximum roughness
magnitude with LiDAR DEM. Figure (e,f) (from Harris et al. [79]). (IV) Water taxonomic diversity:
(g) The location of the South Kona District is shown in the green lines on the left, with live coral cover
mapped along the coast based on airborne hyperspectral data in 2019 and 2020. Example areas of
live coral cover are shown at Honaunau Bay, Papa Bay and Okoe-Kapua Bay (from Asner et al. [80]).
(h) The final 18-stratum map of coral reef conditions for the South Kona District coast was derived
from the airborne hyperspectral data. The far-left panel indicates the location of each sub-regional
zoom image (a–h) shown in the remaining panels. Each colour indicates the location of each eco-
logical layer in the reef system (from Asner et al., [80]). (V) The functional diversity of water:
(i) Different processes during the geological genesis lead to the formation of specific morphome-
tric fluvial traits—the meanders. (i-1) The entire river system is characterised by these meanders.
Processes/drivers such as land use intensity, river regulations or barrages lead to changes in struc-
tural and functional fluvial traits (fluvial trait variations) (i-2). These fluvial trait variations lead
to spectral responses in the remote sensing signal. Example of monitoring temporal changes to
fluvial traits—vertical displacement rate of the river system from 2006 to 2010 with remote sensing
technologies (LiDAR). From Ventura et al. [81], reprinted with permission from Ventura et al. [81],
2021, Elsevier. license No. 5816961386058 (from Lausch et al. [32]). (j) Based on the five characteristics
of water diversity, the spectral fingerprint, also known as the spectranometric approach, could be
determined for water bodies.

4.2.1. Monitoring the Diversity of Water Traits Using Remote Sensing

“The diversity of water traits, which represents the diversity of the biochemical, physi-
cal, optical, morphological-, structural-, textural-, and functional characteristics of water

https://aqua.eoapp.de
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traits, that affect, interact with, or are influenced by their genesis, taxonomic-, structural-,
and water functional diversity” (see Chapter 3, modified after Lausch et al. [32]).

RS records the biochemical, physical, optical, morphological, structural, textural and
functional characteristics (traits) of water, ranging from abiotic elements and molecular
structures to individuals, populations and communities of aquatic plants to the entire
aquatic ecosystem and its connectivity and interactions to components of geological and
vegetation diversity. Furthermore, RS records water traits, as well as the trait variations
altered by various processes or drivers. For example, river straightening due to the intensi-
fication of shipping leads to straightening and alteration of the meandering, which leads
to changes in water structure, flow velocity and ecological self-purification. These trait
variations can be recorded using RS.

In contrast to in situ approaches carried out by an expert, RS approaches (close-range,
airborne and spaceborne RS) are not able to capture all characteristics and trait variations of
and within the water column (see limitations, Chapter 4.2). We therefore speak of “spectral
water traits” (properties that can be captured by RS) as opposed to “water traits” (total set
of water properties) [55]. The reasons why far fewer water traits can be measured using RS
are manifold and have already been addressed in Chapter 4.2. However, water traits are
the crucial link between in situ and RS approaches for monitoring, assessing and modelling
the status, changes, stress, health, disturbances and resource limitations and are crucial for
understanding the processes and their diverse interactions with the water ecosystem.

Depending on the respective sensor characteristics (geometric, spectral, radiometric,
temporal and angular resolution), RS sensors record the biochemical, physical, optical,
morphological, physiological, genesis, structural, textural and functional characteristics
(traits) of water. In addition to the sensor traits, the characteristics of the water traits and
especially the composition and configuration (e.g., distribution, density, spatio-temporal
variability, diversity, etc.) of water traits and their variations are of decisive importance for
detectability from RS sensors. If the density is not high enough, it cannot be detected with
any sensor if the density is below the detection limit. For example, the detection limit of
Sentinel-2 for Chl is around 2 mg-m3 [82].

In the first step, RS records water traits and their variations (depending on RS charac-
teristics and trait distribution). RS can discriminate phytoplankton, algae blooms, aquatic
plant species, reef types and waterbody types if they differ from each other in terms of their
traits or trait variations (multi-temporal) through process or temporal changes (seasonal
changes). Likewise, water traits are the decisive basis for the RS-based quantification of
the other four characteristics of water diversity: the genesis diversity, structural diversity,
taxonomic diversity and functional diversity of water (see following chapters).

The spectral characteristics of water are recorded by RS either with single traits
(chlorophyll-a, phycocyanin, phycoerythrin, salinity, nutrient level and pH value) or as
a combination of different spectral traits and their variations (plant strategy types and
biomass). For example, the latest generation of hyperspectral satellites (EnMAP, DESIS
or multi-source satellite combinations) can be used to estimate the chlorophyll-a con-
centration in different plant species of water bodies, e.g., for the identification of algal
blooms [83,84]. With the use of sensors such as MODIS, MERIS or OLCI (on Sentinel-3),
the chlorophyll-a concentration in open marine waters can be estimated with an accuracy
of about 10–20% [85]. The pigments phycocyanin and phycoerythrin, which are associated
with cyanobacteria and cryptophytes, can be detected very well using RS, allowing an
early warning of potentially harmful algal blooms using RS [86]. Furthermore, hyperspec-
tral sensors can be used to estimate turbidity and total suspended solids (TSS) with high
accuracy, as they can spectrally separate the effects of TSS from other components [87].
Hyperspectral technology can also be used to differentiate between phytoplankton pig-
ments, phytoplankton functional types (PFTs), including phytoplankton size classes (PSC),
phytoplankton taxonomic composition (PTC) and particle size distribution (PSD) [88]. The
most recent mission was PACE (Plankton, Aerosol, Cloud, ocean Ecosystem), which was
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launched by NASA this year (https://pace.oceansciences.org/timeline.htm, accessed on
26 June 2024).

Spectral traits can either be captured by direct indicators (chlorophyll and turbidity) or
indirect indicators, i.e., proxies (HAB and ABS indicators) (see Figure 5), which arise from
interactions with traits of geodiversity, terrestrial vegetation diversity, LUI, urbanisation
or climate change. It should be particularly emphasised that traits and trait variations are
filters and proxies for changes and disturbance processes that are triggered by various
drivers and stress indicators (e.g., contaminants in water bodies, river straightening, LUI,
urbanisation). The sum of the water traits recorded by RS reflects the spectral footprint of
the water and its changes or disturbances and is reflected by the water spectranometric
approach. This is comparable to the spectrometric approach of terrestrial plants, where the
diversity and functionality of plant traits can be quantified and assessed using hyperspectral
sensors [89].
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of turbidity (TUR), (b) Chlorophyll-a content (CHL), (c) Algal blooms indicator (HAB-Indicator),
(d) and the Total absorption (ABS), Bangladesh, India, (online water analysis tool: https://aqua.eoa
pp.de, accessed on 26 June 2024).

RS can detect the five spectral traits of water diversity: the diversity of water traits, the
diversity of water genesis, the structural diversity of water, the taxonomic diversity of water
and the functional diversity of water. Furthermore, the spectral traits of changes, stress
factors and disturbances of water can be monitored using RS (see Table A1 (Appendix A)),
which provides an exemplary overview.

https://pace.oceansciences.org/timeline.htm
https://aqua.eoapp.de
https://aqua.eoapp.de
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4.2.2. Monitoring the Diversity of Water Genese Using Remote Sensing

“The diversity of water genese is the diversity of the length of evolutionary pathways
associated with a particular set of water -traits, -taxa, -structures and -functions of water
diversity. Therefore, groups of water traits, water taxa, water structures and water functions
that maximise the accumulation of the functional diversity of water diversity are identified”
(see Chapter 3, modified after Lausch et al. [32]).

The genesis, development and shaping of lake basins and watercourses resulted from
various exogenous and endogenous geomorphological developments such as tectonic
activity, volcanic activity or glacial erosion. The classification of lakes and watercourses
is based on factors such as the genesis of the water body, the organic/inorganic ratio, the
nutrient balance, the physiology, the depth, the size, the shape, the sediment types, the
morphology of the lake basin and the oxygen content [90]. The presence of aquatic species
and the physical and chemical processes taking place in a lake resulting from the influence
of geological and terrestrial vegetation diversity and anthropogenic pressures such as LUI
and climate change also play a decisive role.

Other factors such as mineral and rock composition, location or physical properties,
such as thermal combinations and optical properties, chemical and trophic characteristics
and species diversity, therefore lead to the formation of site-specific traits and a character-
istic water diversity [91]. As tropical lakes behave differently due to high temperatures,
a constant turnover and constant oxygen deficit, they must be monitored and modelled
separately [90]. The monitoring of traits of/in and around water bodies is therefore at the
forefront if the diversity of water genesis characteristics and water genesis quality is to be
recorded with RS.

The following chapter discusses which of these traits can be analysed using RS in
order to identify the diversity of water genesis characteristics and water genesis quality.
Phylohydrology is a relatively new field that combines phylogenetics, i.e., the study of
evolutionary relationships between species, with hydrology, i.e., the study of the character-
istics and the distribution of water in the environment. Phylogeogeny, another new field,
goes one step further and combines elements of phylogenetics, geology and hydrology.

Until now, RS could not be used directly to measure phylohydrological and phylo-
geogenic patterns, as its ability to detect individual traits of water or species or to determine
their genesis was limited due to RS characteristics (spatial, spectral, temporal and direc-
tional resolution). With the increasing development and use of the latest RS technologies,
such as hyperspectral RS (EnMAP) and multisensor RS sensors (HyspIRI), important gaps
in this monitoring are increasingly being closed. However, RS has long provided important
indirectly derived information on the diversity of water genesis. This ensues from monitor-
ing environmental features and processes that are caused or influenced by phylogeogenic
and phylohydrological patterns. It can therefore be said that RS can provide holistic moni-
toring (a combination of water diversity, geodiversity and terrestrial vegetation diversity)
to better capture the diversity of water genesis and to better understand natural and anthro-
pogenic causes of water quality and consequently provide better management strategies
for its protection. The following exemplary phylogeogenic and phylohydrological traits
recorded here have so far been recorded using RS technologies (see Table A1 (Appendix A)):

Structure and patterns of water bodies: RS can be used to record the structural traits of
water bodies and their surroundings in great detail. Important indicators here are the area,
size, length, shape, density or water level of the water body or river course or the contiguity
and connectivity, whereby the water genesis played a decisive role in its formation.

Habitat characteristics: The most recent hyperspectral RS technologies can provide
very detailed information on aquatic habitat traits such as the water temperature, depth,
substrate type and trophic status [23,92]. These factors influence the processes occurring in
water bodies as well as changes to and distributions of species, populations, communities
and habitats, i.e., reef habitat structure [93].

Geology and mineralogy: In order to determine the mineralogical composition of the
water bed surface, spatial high-resolution airborne hyperspectral RS techniques are used in
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particular. In the near future, the use of hyperspectral robots that can record the mineralog-
ical composition of the water bed surface is also planned for water bodies and oceans.

Terrain modelling and hydrological modelling: RS has long been able to use airborne Li-
DAR, multispectral and hyperspectral RS to measure the topography of the water bed
(bathymetry) and create digital elevation models (DEM) for still and flowing waters as
well as shallow water in the oceans. These DEMs can be used in hydrological models to
model water processes. They thus form a decisive basis for local to global modelling and
its process understanding.

Hydrological processes: In addition to the aquatic DEM, RS can provide information on
hydrological processes, e.g., changes in water level, flow direction and velocity or connec-
tivity between water bodies. Connectivity provides crucial information on functionality
and processes as well as the understanding of species migration and gene flow.

Water quality: Satellite images can be used to monitor water quality parameters such
as the chlorophyll-a concentration, water surface temperature, turbidity, water colour, or
salinity. For example, the water colour is a current driver of lake and river systems in
boreal climate regions such as Scandinavia [75]. They are important indicators of processes
of geogenic and/or anthropogenic influences and can be recorded worldwide at a high
temporal frequency with remote sensing [76]. RS can therefore be used to map and monitor
spatial and temporal changes in aquatic habitats.

The phylogenetic diversity of water promotes the resilience and stability of the en-
tire aquatic ecosystem and is an important indicator of its functionality and response to
environmental change [71]. Monitoring the phylogenetic diversity of water using RS is
therefore crucial to understanding resilience and the reaction of drivers and changes to
water on different scales. Most aquatic plant traits are manifestations of their phyloge-
netic and geogenic evolution [94]. Thus, the coupling of phenotypical-based taxonomy
and the evolutionary history of phytoplankton led to a preliminary scientifically sound
categorisation, as a large number of phytoplankton traits are linked to phylogeny [94,95].

In another example, Liu et al. [96] investigated and evaluated the taxonomic, phy-
logenetic and functional diversity of fish on the alpha and beta dimensions and their
environmental drivers at a total of 84 river sites in 3 watersheds. The results showed
that local (e.g., nutrients, dissolved oxygen, river width and transparency), regional (e.g.,
wetland), climatic (e.g., temperature) and spatial variables structured alpha and beta fish
diversity. No significant differences in taxonomic and functional alpha diversity were
found in the three watersheds, but significantly higher phylogenetic alpha diversity was
found in the rivers of other watersheds. In terms of taxonomic and phylogenetic beta
diversity, however, total beta diversity and the turnover component were higher in rivers
of the same catchment, whereas total beta diversity was significantly lower in functional
beta diversity. The analysis of variation partitioning showed that the pure contributions of
local and spatial variables, i.e., characteristic genesis streams and catchments, were more
important than those of climate and regional variables, suggesting that spatial effects and
local environmental filtering are the main drivers of beta diversity of fish communities
in these rivers. These studies also emphasise the importance of coupling in situ measure-
ments to monitor local variables with RS-based monitoring to monitor regional variables
(Landsat TM).

Figure 6 shows how geological genesis leads to the formation and development of
different lakes—glacial erosion lakes, valley lakes and tectonic lakes—and it analyses the
development and change characteristics of glacial lakes in the Niangmuco region on the
eastern edge of the eastern Himalayas based on Landsat TM/OLI (2000–2021) and classifies
the stability of lakes with an area of more than 0.02 km2 using the fuzzy matrix method [78].
The results show that the development and change of glacial lakes in this area is primarily
controlled by temperature and precipitation and that topography and fault activity have an
important influence on the stability of glacial lakes.
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4.2.3. Monitoring the Structural Diversity of Water Using Remote Sensing

“The structural diversity of water is the diversity of composition and configuration of
water characteristics” (see Chapter 3, modified after Lausch et al. [32]).

Exogenous and endogenous processes, genesis, morphometry, morphology, mineral
and rock composition, as well as processes of the earth’s formation and evolution, are deci-
sive for the emergence and formation of a characteristic water diversity with site-specific
physical properties like thermal combinations and gradients, optical properties, chemical
and trophic characteristics and species diversity [91]. Thus, evolutionary characterised
structures and patterns of marine and freshwater systems lead to diversity and gradients
and niches of species that increase the niche dimensionality of species [97] and consequently
promote species richness and overall biodiversity [98]. Numerous marine and freshwater
structures and patterns can be captured by different RS technologies, which are discussed
in the following chapter (see Figure 1 and Table A1 in Appendix A).

With RS-based approaches, the recording and quantification of the structural diversity
of water is more difficult compared to the recording of structural vegetation diversity [53]
or geodiversity [32]. In many cases, indirect methods or proxies such as water temperature,
salinity or environmental parameters such as light supply and turbulence are used to derive
RS-based quantitative structural indicators. Indeed, RS techniques provide an efficient
way to monitor indicators such as location, shape, area, size, depth, volume and the water
level of various water bodies such as rivers, lakes and oceans. These measurements are
useful for a range of applications, such as water resources management, flood forecasts
and the monitoring of trophic levels in aquatic ecosystems. Different RS methods and
technologies can be applied based on the specific structural and pattern characteristics of
the water body and the information needed. Several types of satellites, such as Landsat,
MODIS and Sentinel, carry multispectral and hyperspectral sensors that can be used to
monitor water bodies. For instance, these can be used to identify changes in water area over
time and to distinguish between water and land [99]. RADAR can provide information
about the shape and size of water bodies. Synthetic Aperture Radar (SAR) data can detect
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water bodies, even in cloudy conditions or during the night. With the use of satellite
radar altimetry, the spatial extent, distribution, area or surface water levels of water bodies
and their changes can be recorded [100]. Since the 1990s, the water level fluctuations of
around 6282 water bodies have been recorded in a permanent water database, and their
changes have been monitored [100]. Furthermore, radar altimeters, such as those mounted
on the satellites of the Sentinel-3 and Jason series, can measure changes in water level,
changes in the extent of water bodies and river flow. In addition, LiDAR can be used to
measure the depth of shallow water bodies by calculating the time it takes for the laser
pulse to travel to the water surface and back [101]. A wide range of RS-based structural
water traits is provided by the ESA Lakes Project (in the Copernicus Essential Climate
Variables). These are, e.g., water extent, water level and surface water temperature (see
https://climate.esa.int/en/projects/lakes/, accessed on 26 June 2024). Thermal Infrared
RS (TIR) with, e.g., Landsat TM/ETM+/TIRS thermal infrared data, can be used to measure
the temperature of spatially smaller water bodies. The surface temperature of water bodies
can be related to their depth, as the water temperature tends to decrease with depth. Thus,
the thermal properties of water bodies might be analysed to estimate their depth [102].
Sonar systems (sound navigation and ranging) are an RS technology that can be used to
measure the water depth (only for rather shallow water, with ICESat up to approx. 12 m in
turbid Baltic Sea water) and volume by sending sound pulses into the water and recording
the time it takes for them to return [103]. Furthermore, optical RS technology such as
Word View, Sentinel-2 MSI or Landsat 8/9 OLI can be used for quantifying the water level,
especially in the case of lakes and reservoirs [104].

Hyperspectral RS data like PRISMA and DESIS or multispectral data like Sentinel-2/3,
Landsat, MODIS and airborne LiDAR data can estimate the water depth and clarity (highly
correlated with Secchi-depth, an indicator of the clarity or turbidity of the water by mea-
suring the visibility depth of a white disc lowered into the water [105–107]. Monitoring
water clarity helps to monitor changes in habitat quality and ecosystem health. Information
on water depth is obtained by measuring the change in water colour with depth using
hyperspectral RS (such as EnMAP, PRISMA or DESIS [108]) and multispectral RS (such as
Landsat or Sentinel-2 [109]). Airborne LiDAR, but also increasingly multi- and hyperspec-
tral RS technologies, have been used for bathymetric surveys of the morphology of seabeds,
lake beds and riverbeds for some time now [108,110,111]. Furthermore, in clear and shallow
waters, information on the substrate type (sandy, muddy and rocky) and its distribution at
the bottom of a water body can also be recorded, which provides important information
on potential habitats (Niroumand-Jadidi et al. [112,113]. Conclusions can also be drawn
about the intensity of matter influx as a cause of intensification or river straightening in
reservoirs or dams.

Monitoring hydrological connectivity is important for maintaining the stability and
function of wetland ecosystems, streams, riparian zones, floodplains, alluvial aquifers,
standing waters and oceans, which are connected by longitudinal, lateral and vertical fluxes
of water, matter and energy. This is crucial for understanding, for example, the migration
patterns of different species and gene flow, as well as the influence of human activities on
this connectivity [114]. With the help of the RS time series, these networks can be recorded,
and their changes and effects on biodiversity can be documented [115].

Furthermore, airborne LiDAR can be used to accurately measure the height of the
water surface, which allows conclusions to be drawn about the flow characteristics of rivers.
In some cases, these data can be used to estimate the discharge of a river, which is an
important parameter for water quality modelling [116]. Information on the flow velocity in
rivers is crucial for infrastructure planning, the modelling of pollutant and matter flows
and habitat assessment. Moving Aircraft River Velocimetry Monitoring can be used to
measure the flow velocity effectively and rapidly [117].

Furthermore, high spatial-resolution RS data will be used to determine the complexity,
structure, shape and changes in the shoreline of a water body. More complex shorelines
can increase habitat diversity and provide niches for different species [118]. However, the

https://climate.esa.int/en/projects/lakes/
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choice of sensor technology with appropriate properties (spectral, radiometric, geometric
and temporal resolution) is crucial to capturing accurate geomorphological structures and
shorelines. For example, hydrological model predictions are only as good as the quality
of the RS-based input data [62]. By capturing detailed terrain structures of coastal regions
with airborne LiDAR data, it was shown that more than three times as many people are at
risk from climate change and sea level rise than previously calculated with less detailed
SRTM-DEM-RS data [119].

By monitoring currents, eddies and ocean circulation patterns, RS helps to understand
the movement and transport of water masses. RADAR (Radio Detection and Ranging)
data can be used specifically to recognise surface features such as waves and currents
that indicate deeper water properties. This information is imperative for studying marine
habitats, identifying potential sources of pollution and predicting the spread of pollution or
the effects of climate change as a result of changes to natural processes such as El Niño [120].
Furthermore, RS technologies are valuable for estimating water surface roughness and
other parameters from a distance using data gathered from aircraft or satellites. Several
types of RS techniques are applied for this task, such as optical imaging, thermal infrared
and RADAR. Radar RS is commonly used for measuring water surface roughness, whereby
radar waves are emitted towards the Earth’s surface and then reflected back to the radar
system. The degree of backscatter is influenced by the roughness of the water surface.
Synthetic Aperture Radar (SAR) is particularly sensitive to surface roughness and has
been used in a number of studies to estimate water surface roughness [121] as well as
LiDAR [122]. Optical and Infrared RS can monitor the patterns of light reflected off a water
body and can provide clues about its roughness. Similarly, rougher surfaces will distribute
heat differently compared to smoother ones, leading to detectable differences in thermal
infrared data. However, these techniques are generally less accurate than RADAR for this
particular application [123,124].

RADAR, microwave radiometer, LiDAR and thermal infrared data provide valuable
information on the complex interactions between fresh- and saltwater in coastal areas
and estuaries. The sensors can distinguish between different water types and pH values
and detect the mixing of freshwater and seawater, which is essential for the study of
coastal ecosystems and the management of coastal resources [125,126]. For example, the
salinity of the sea surface is indirectly determined using RS by recording the changes in sea
surface radiation density caused by changes in salinity. This is conducted using L-band
microwave radiometers from the SMOS (Soil Moisture and Ocean Salinity) and Aquarius
satellites [127].

Satellites such as Landsat or AVHRR (Advanced Very High-Resolution Radiometer)
can collect information on the temperature of the sea surface using TIR sensors. Different
temperature regimes can favour different types of organisms, indicating a certain kind
of diversity. Water bodies with different thermal properties cause different temperature
patterns. Thermal fluctuations and changes provide important insights into phenomena
such as the upwelling of nutrient-rich water or currents of colder water rising to the
surface. The rise in sea temperature is one of the most important indicators of climate
change [128,129]. The surface temperature of water bodies is an outcome variable of
energy and mass fluxes in the contact zone between the atmosphere and the water body
as a result of interacting environmental processes, whereby the temperature controls
the physical, chemical and biological processes in the water [130]. Consequently, the
detection of surface temperature using different RS technologies has become one of the key
variables for understanding ecological phenomena and processes in marine, coastal and
lake environments.

One of the key applications of satellite data is in the use of time series, which now
enables almost 40 years of continuous monitoring (e.g., Landsat) of seasonal and annual
changes to water extent, water temperature, flow processes and numerous water quality
parameters, providing crucial knowledge about spatio-temporal patterns of water diversity
and water quality [131].
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The composition, dispersion, richness, diversity and homogeneity of phytoplank-
ton [46,132] are good indicators to describe the structural and functional diversity of
phytoplankton populations and communities [41,133]. There are numerous environmen-
tal factors that shape phytoplankton communities, but also lots of interactions, such as
zooplankton gating. Thus, phylogenetic as well as geogenic factors shape and control the
functional traits of phytoplankton structure and their seasonal dynamics in marine and
freshwater ecosystems [134]. Traits are crucial for answering the questions of intraspecific
and interspecific competition of phytoplankton and thus control not only the composition
of the community but also the functioning and processes of ecosystems such as the primary
production, the transfer of biomass and the entire nutrient cycle (Abonyi et al. [135]). For
example, temperature influences photosynthesis, respiration, growth, resource availability
and motility, as well as the dominance of various taxonomic groups of phytoplankton and
all aquatic organisms [47]. As the main groups of phytoplankton have different optimum
temperatures, the temperature plays a crucial role in the seasonal dynamics and distribu-
tion of phytoplankton in both marine and freshwater habitats. The temperature mainly
affects heterotrophic organisms and thus plays an indirect role in the seasonal succession
of phytoplankton (e.g., [136,137]). Freshwater cyanobacteria have a higher optimum tem-
perature compared to other taxonomic groups, leading to dominance in late summer when
water temperatures are higher [138]. Higher optimum temperatures of cyanobacteria are
therefore also important indicators of global warming, leading to the spread of harmful
toxic algal blooms. However, some other studies have also shown that blooms also like the
cold [139].

Initial RS-based surveys of phytoplankton were based on estimates of phytoplankton
biomass and its seasonal variation, which can be monitored by chlorophyll concentra-
tions [140]. Recent methods, however, combine RS data with in situ high-performance
liquid chromatography (HPLC) measurements of pigments and deep learning-based mod-
elling to estimate the concentrations of different phytoplankton pigments on a global
scale [120]. This novel approach enables a global estimate of the concentration of different
pigments and thus the dynamics of the phytoplankton community on a large spatio-
temporal scale. Vostokov et al. [141] investigated the seasonal and long-term variability of
phytoplankton in the ocean based on SeaWiFS and MODIS-Aqua-Scanner RS time series
(1998–2021) and in situ data, which allowed them to capture the seasonal variabilities, as
well as the main periods for autumn and winter seasons of phytoplankton production [141].
The application of hyperspectral RS technologies (EnMAP, Prisma, DESIS) will greatly
improve the monitoring of phytoplankton species composition and configuration as well
as influencing factors such as the composition and type of photosynthetic pigments [142],
as well as the phytoplankton species composition based on the spaceborne Hyperspectral
Imager for the Coastal Ocean (HICO) imagery [143]. Cyanobacterial harmful algal blooms
(cyanoHABs) are a progressive problem in freshwater bodies as the growth and decay
of cyanoHABs lead to anoxic and hypoxic conditions, which can result in human health
impacts, the death of fish and benthic invertebrates, imbalances in the existing food web
and loss of biodiversity in the water body [144]. Therefore, monitoring and predicting the
distribution and intensity of cyanoHAB in lakes using RS is an approach that has been
successfully implemented for some time [145]. In addition to drone-based approaches [146]
and airborne hyperspectral RS (AISA) [147], multispectral RS technologies such as Meris
(Matthews et al.) [148], Landsat and Sentinel-2 [149], Sentinel-3A and -3B (OLCI) [145].
Matthews [145] was able to predict cyanobacteria and cyanobacterial harmful algal blooms
(cyanoHABs) based on Sentinel-3A and -3B (OLCI) satellite data with an accuracy of 80%
for one week in advance.

RS can capture the ecological complexity and diversity of aquatic habitats, such as vari-
ations in water depth, ecological gradients (thermal gradients and freshwater to saltwater
transitions), shoreline complexity or the presence of aquatic and riparian vegetation. These
gradients are often areas of high biodiversity [150]. RS is therefore ideal for monitoring
aquatic habitats and providing RS-based indicators for habitat modelling. Asner et al. [151]
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were able to quantify and assess the live coral cover density, spatial distribution, coral cover
of living corals and the relative condition of reefs down to a water depth of 16 m on the
main islands of Hawaii using airborne data visible-to-shortwave infrared (VSWIR) imag-
ing spectrometer and a light detection and ranging (LiDAR) scanner. Li and Asner [152]
used spectroscopy to determine the three-dimensional complexity of shallow benthos (also
referred to as benthic roughness), which reflects the physical conditions of shallow coral
reefs and is used to estimate fish biomass and coral cover on the reefs. Figure 7 shows the
monitoring of tideways in the Weser River, northeast of Wilhelmshaven in Germany, based
on Airborne Laser Scanning (ALS) [62].
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4.2.4. Monitoring the Taxonomic Diversity of Water with Remote Sensing

The “taxonomic diversity of water represents the diversity of water components that
differ from a taxonomic perspective” (see Chapter 3, modified after Lausch et al. [32]).

Geogenic factors led to the formation of different types of lakes, such as tectonic and
volcanic lakes, dam lakes and erosion lakes [62]. In addition, other factors such as genesis,
morphometry, morphology and location; physical properties such as thermal combinations
and optical properties; and chemical and trophic status led to the establishment of seas and
lakes [91], which exhibit a characteristic aquatic trait diversity.

For example, Reynolds et al. [153] monitored phytoplankton taxa based on their
characteristic environmental conditions such as seasons, lake morphology, trophic state of
the lake or light availability, as phytoplankton communities are filters of environmental
factors such as vertical water dynamics and depth, trophic state, predation and growth [47].
The taxonomic diversity and abundance of different taxonomic phytoplankton groups or
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coral communities and their changes are key parameters to describe the status, disturbance,
stability, functionality and resilience of aquatic ecosystems [41,154,155].

Specific characteristic aquatic traits can be captured by RS approaches, enabling the
determination of taxonomic diversity, e.g., phytoplankton taxonomic groups, coral reef
classification or aquatic vegetation taxa or river systems, river network types, coast types,
catchment areas, hydrological response units (HRUs) and watersheds (see Figure A1 and
Table A1 in Appendix A). Aquatic taxonomic diversity, such as phytoplankton taxonomic
groups or coral classification, can be discriminated by RS if species, populations or com-
munities differ in their aquatic traits (e.g., structure, chemical–mineral composition or
photosynthetic pigments). Furthermore, the distribution, density, composition and configu-
ration of the aquatic traits of different taxa play a decisive role in RS-based discrimination.
For example, the Great Barrier Reef in Australia can be discriminated more easily using
RS due to its high density of identical aquatic traits than, for example, reefs in the Red Sea,
where traits occur at a lower density. The radiometric, spectral, geometric and temporal
resolution of the RS technology also plays a decisive role in discrimination. Only RS sensor
technology that can spectrally record these aquatic traits and thus discriminate between
taxa will be successful. This is very complex and similar taxa still have different spectral
distributions, but in the future, it could work with a high hyperspectral resolution and
combinations of validated methods (including optically more complex inland waters).

Airborne LiDAR RS technologies have been successfully used for the taxonomic
classification of coral reefs for some time now, providing valuable insights into reef structure,
complexity and taxonomy [156,157]. Thus, detailed 3D-LiDAR maps capture complex
features of the coral reef, such as the height, 3D complexity and spatial arrangement of
corals, which is crucial for the discrimination of different coral species, as each species
differs phylogenetically in terms of its unique morphological traits [158]. By integrating
RS time series from the same reef, changes in the structure, composition and healthy
status of coral reefs are recorded. This is important to understand how reefs respond
to environmental changes and to take protective measures [159,160]. Multi-sensor RS
approaches can be used to capture a range of aquatic features, e.g., to better distinguish
between different reef components such as hard and soft corals and different coral genera
or species [161]. In addition, coral reef habitats and their restoration will be monitored
using high spatial resolution unmanned aerial systems [162] or satellite imagery from
PlanetScope and Sentinel-2 [163].

In order to facilitate the global monitoring of coral reefs, the Millennium Coral Reef
Mapping Project was established between 1999 and 2002 by the World Conservation
Monitoring Centre of the United Nations Environment Programme in order to use satellite
images (IKONOS 2, Landsat, SPOT, High-Resolution Visible (HRV) and the airborne
hyperspectral Compact Airborne Spectrographic Imager (CASI)) to understand, classify
and map coral reefs, their composition and changes [164]. In 2020, Arizona State University,
together with Planet, the Coral Reef Alliance and the University of Queensland, released the
world’s first high-resolution coral reef monitoring data product (Allen Coral Atlas) [165].
The classification and description of phytoplankton biodiversity was an early area of
research, as phenotype-based taxonomy and the phylogeny of phytoplankton are closely
linked, and a large number of traits are linked to phylogeny. This ensures the development
of different ecological strategies and the occupation of specific niches [94].

Phytoplankton taxonomic classes or groups can be discriminated by different pro-
portions of bio-optical traits using RS, such as, e.g., the Chl-a concentration, accessory
pigments (Chl-b, Chl-c, carotenoids and phycobillins) or pigment ratios (TChl-a/AP, TChl-
a/TP, PPC/TC) [41]. Furthermore, accurate monitoring of the spatio-temporal distribution,
taxonomy and variability of phytoplankton groups using RS approaches is crucial to gain
a better understanding of marine ecosystem dynamics and biogeochemical cycles [166].
Li et al. [88] reported on the global satellite observation of the distribution of marine phy-
toplankton taxonomic groups over the past two decades (2002–2022), with six main taxa
globally, namely, chlorophytes (~26%), diatoms (~24%), haptophytes (~15%), cryptophytes
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(~10%), cyanobacteria (~8%) and dinoflagellates (~3%), which account for the majority
of the variation (~86%) in the phytoplankton communities, compared to diatoms that
dominate the spatial distribution. It was further shown that diatoms dominate in high
latitudes, marginal seas and coastal upwelling areas, while haptophytes and chlorophytes
dominate the open oceans [88]. Due to the increasing free availability of multispectral and
hyperspectral RS data, the creation of spectral libraries for green macrophytes for coastal
and aquatic biodiversity RS is steadily progressing [167,168]. Similarly, global RS data
availability and the use of spaceborne hyperspectral RS (EnMAP and DESIS) facilitates the
classification and monitoring of mangrove species as an important part of the global blue
carbon pool [169,170].

One of the first applications of RS is the monitoring of the trophic state (eutrophication)
of seas, lakes and rivers. Using the RS satellite sensors MODIS MERIS [171], Landsat-8
OLI, Sentinel-2 [172–175] or spaceborne hyperspectral PRISMA data [176]), the trophic
state is determined based on different variables of water quality such as chlorophyll-a, total
phosphorus and transparency/Secchi disc depth.

The world’s rivers are undergoing accelerated change in the Anthropocene and are
subject to the increasing influence of human intensification. Based on the geomorphological,
structural and trophic state of these rivers, Piégay et al. [177] developed a classification
system of rivers that discriminates between rivers whose structure and functions have been
characterised by natural and anthropogenic processes.

Another application of taxonomic diversity is the discrimination of water catchment
areas as well as river courses. For example, based on the Shuttle Radar Topography
Mission (SRTM) DEM with a pixel resolution of 3 arc seconds (~90 m at the equator), Linke
et al. [178] calculated, for the first time, globally available hydro-ecological sub-catchment
and river section characteristics (HydroATLAS). This provided information on, e.g., runoff
accumulation, runoff distances, river orders, catchment boundaries and river networks on
a global scale and represents the first standardised classification of water catchment areas
(BasinATLAS) and rivers (RiverATLAS) on a global scale [178].

Coastal geomorphology describes the dynamic interface between the ocean and the
land surface. Since different coastal types filter water differently, the ecosystem services of
the different coastal types can be classified using RS methods, allowing their functionality
and resilience to be assessed. Hence, coastlines can be discriminated from each other using
RS, as they can be classified into different types based on hydrological, lithological and
morphological characteristics, such as small deltas, tidal systems, lagoons, fjords, large
rivers, tidal estuaries and karst [179].

Coral reefs are subject to change due to coastal development, resource use and climate
change. Using airborne hyperspectral RS data, Asner et al. [80] were able to demonstrate
the extent and rate of reef change with robust and spatially explicit monitoring that can
support RS-based management and conservation decisions. An airborne approach was
developed to plan and optimise field surveys of reef fishes over an ecologically complex
reef ecosystem along the islands of Hawaii. Reef habitat variability was best determined by
a combination of variables derived from airborne hyperspectral RS data: the water depth,
coral and macroalgal cover, fine-scale reef structure, reef curvature and latitude as a proxy
for a regional climate–ecosystem gradient. Modelling was used to classify 18 different
reef habitats from the combination of these different RS variables. This modelling also
required 117 in situ monitoring sites to quantify fish diversity and biomass with minimal
uncertainty [80] (see Figure 8).
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derived from the airborne hyperspectral data. The far-left panel indicates the location of each sub-
regional zoom image (a–h) shown in the remaining panels. Each colour indicates the location of 
each ecological layer in the reef system. (III) Ecological modelling was then applied to produce fish 
biomass maps of Honomalino Bay for (a) all fish and for fish classified as (b) scrapers, (c) browsers 
and (d) grazers. Differences in distribution patterns between the different trophic groups can be 
seen, especially across depth gradients. (IV) Finally, upscaled biodiversity maps of Honomalino Bay 
were generated using (a) species richness and (b) the Shannon diversity index (from Asner et al.) 
[80]. 

4.2.5. Monitoring the Functional Diversity of Water with Remote Sensing 
The “functional diversity of water is the diversity of water functions and processes, 
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assessing the functionality, trade-offs and maintenance of ecosystem services in water 
bodies [41,154]). On the one hand, the concept of the functional diversity of water refers 
to the functional diversity of aquatic species such as marine bacteria, macroalgae [180], 
eutrophication, the composition of freshwater phytoplankton [155] and the changes to the 
macrosystem community of phytoplankton in lakes, which has an impact on diversity and 
numerous functions [71,154]. On the other hand, processes and interactions with 
components of geodiversity, terrestrial vegetation diversity and land use intensification, 
such as river straightening and urbanisation, influence the functionality and resilience of 
aquatic diversity. For example, geodiversity influences the functional diversity in 
freshwater macroinvertebrate systems [181]. In this chapter, the monitoring of functional 

Figure 8. (I) The location of the South Kona District is demarcated by the green lines on the left,
with live coral cover mapped along the coast based on airborne hyperspectral data in 2019 and 2020.
Example areas of live coral cover are shown at (a) Honaunau Bay, (b) Papa Bay and (c) Okoe-Kapua
Bay. (II) The final 18-stratum map of coral reef conditions for the South Kona District coast was
derived from the airborne hyperspectral data. The far-left panel indicates the location of each sub-
regional zoom image (a–h) shown in the remaining panels. Each colour indicates the location of
each ecological layer in the reef system. (III) Ecological modelling was then applied to produce fish
biomass maps of Honomalino Bay for (a) all fish and for fish classified as (b) scrapers, (c) browsers
and (d) grazers. Differences in distribution patterns between the different trophic groups can be seen,
especially across depth gradients. (IV) Finally, upscaled biodiversity maps of Honomalino Bay were
generated using (a) species richness and (b) the Shannon diversity index (from Asner et al.) [80].

4.2.5. Monitoring the Functional Diversity of Water with Remote Sensing

The “functional diversity of water is the diversity of water functions and processes, as
well as their intra- and interspecific interactions” (see Chapter 3, modified after
Lausch et al. [32]).

Monitoring the status and changes of functional diversity in water bodies is crucial
for assessing the status, changes and shifts of ecosystem functions such as productivity,
nutrient cycling or trophic regulation. In monitoring aquatic functional diversity, the
traits approach plays a crucial role with regard to in situ monitoring [41,46] and RS-based
monitoring. The traits approach is a proxy and indicator that is crucial for quantifying
and assessing the functionality, trade-offs and maintenance of ecosystem services in water
bodies [41,154]. On the one hand, the concept of the functional diversity of water refers
to the functional diversity of aquatic species such as marine bacteria, macroalgae [180],
eutrophication, the composition of freshwater phytoplankton [155] and the changes to the
macrosystem community of phytoplankton in lakes, which has an impact on diversity
and numerous functions [71,154]. On the other hand, processes and interactions with
components of geodiversity, terrestrial vegetation diversity and land use intensification,
such as river straightening and urbanisation, influence the functionality and resilience
of aquatic diversity. For example, geodiversity influences the functional diversity in
freshwater macroinvertebrate systems [181]. In this chapter, the monitoring of functional
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diversity using RS can only be discussed as an example. Table A1 (Appendix A) provides
an overview of RS-based monitoring of aquatic functional traits.

Plant Functional Types (PFTs) refers to the grouping of plants based on their common
functional traits (growth rate, leaf shape, type of photosynthesis or response to stress
factors), which is in contrast with the taxonomic classification. PFTs are used to better
understand the impact of environmental changes such as climate change or land use
intensity on vegetation by focussing on functional traits. The first naming of functional plant
types defined the plant strategy types by Grimme [182], where plant characteristics have
adapted to stressors and disturbance regimes through structural and functional properties
and thus survival strategies over longer periods of time. The term PFTs was coined by
Smith [183] and defines groups of plant species that show comparable responses to the
environment and the functioning of ecosystems through similar functional characteristics.
Reynolds [184] transferred this concept to a functional classification of phytoplankton
by assigning 14 phytoplankton associations to specific environmental conditions such as
lake size, nutrients, light and carbon availability. This approach was further developed by
Reynolds et al. [153], whereby 31 associations of phytoplankton are currently described. The
different phytoplankton species that make up a single PFT may have similar morphological
characteristics and yet be adapted to similar environmental conditions by implementing
different ecological strategies [46].

If aquatic ecosystem functions are to be recorded using RS, the aquatic traits that
influence and regulate ecosystem functions must be defined. The traits and trait variations
triggered by their processes (e.g., photosynthesis, photosynthetic pathways and carbon se-
questration) must be recorded using RS. The RS-based detection of phytoplankton functions
in aquatic environments is based on the spectral analysis of light reflected from the surface
of a water body, as different PFTs have characteristic optical properties that are reflected in
their light spectrum. Most techniques for the detection of phytoplankton with RS focus on
the measurement of chlorophyll-a concentration [185,186]. Furthermore, different classes
of algae contain different photosynthetic pigments that produce characteristic colour ratios
in the reflected light. Optical RS sensors are able to classify different pigments and thus
assign them to specific PFTs [120]. By using hyperspectral RS technology (PRISMA, DESIS
and EnMAP), much finer discrimination of PFTs is possible compared to multispectral RS
data, as spectral information of phytoplankton abundance, particle size distribution (PSD),
bio-optical properties, chlorophyll-a and other pigments or spectral features (absorption,
backscattering and/or reflectance) of the water in the VIS-NIR range are used [187]. The
particle size distribution (PSD) of suspended particles in near-surface seawater is another
crucial property that combines biogeochemical and ecosystem characteristics with optical
properties and is reflected in the sea colour, which can be detected using RS. For example,
small phytoplankton (picoplankton) are found in continuously stratified waters with lots of
light at the surface and limited light in deep layers as well as limited nutrients, while large
phytoplankton (microplankton) occur in turbulent systems with lots of light and nutrients
near the surface [188]. Furthermore, phytoplankton size classes (PSCs) influence the phys-
iological cell properties and, consequently, their biogeochemistry and biological carbon
pump, which is crucial for the global carbon cycle and climate [189]. LiDAR technology
can also be used to detect the structure of phytoplankton, which is used to distinguish
PFTs based on structure and shape [190]. Some studies on RS-based PFT quantification
use complex bio-optical models to identify specific phytoplankton species and classes.
These models take into account various factors such as water quality, light absorption
and scattering [191]. When in situ measurements are combined with RS, it can increase
the accuracy of PFT classification, as in situ samples are used to calibrate and validate
models [191,192], which is imperative. Furthermore, a tremendous advantage of RS is to
use continuous waters using RS time series to capture seasonal and temporal patterns in
phytoplankton dynamics, including the dominant occurrence of certain PFTs [186,193,194].

In the 19th–21st century, anthropogenic influences such as river straightening, urbani-
sation and land use change have increasingly led to irreversible changes and, consequently,
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the structural and functional disturbances of watercourses. By using aerial and satellite
data, RS is able to monitor these change processes in the morphology, structures and
functions of watercourses and their interactions and to assess their impacts on ecosystems
and ecosystem functions. Rivers are the result of millions of years of morphogenesis.
They are highly dynamic and adapt their course (meanders) according to the temporal
changes in their discharge. Their meanders were formed by convergent and divergent flow
movements that ran transversely to the general direction of the flow [32] (see Figure 9).
The shape and structure of a river’s meanders are a proxy of a stable, dynamic equilibrium
between the river and the riverbed, leading to the development of a characteristic fluvial
biodiversity, resulting in the stability of ecosystem functions such as a high self-purification
potential. For example, numerous flood protection measures were implemented on the
Upper Rhine in Germany in the 19th century. Areas at risk of flooding were reduced in size;
measures were implemented to regulate low water levels, e.g., for year-round navigation,
and power stations were built to make use of hydropower. These changes to the natural
course of the Rhine in Germany led to strong influences and changes in the erosion and
sediment behaviour (strong vertical erosion of up to 7 m) of the river, as well as an increase
in flow velocity. The eroded material led to an increased formation of sand and gravel
banks, whereby the barrages, in turn, acted as sediment traps, which consequently made
further measures for low water regulation necessary [195]. These river regulation measures
lead to irreversible changes in the geomorphology as well as the structural, functional and
fluvial characteristics of rivers.
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Figure 9. Monitoring status and changes to geomorphic characteristics with RS. (a) Different processes
during geogenesis lead to the formation of specific morphometric fluvial traits—the meanders.
(b) The entire river system is characterised by these meanders. (2) Processes/drivers such as land use
intensity, river regulations and barrages lead to (c) changes in structural and functional fluvial traits
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(fluvial trait variations–(3)) (d,e). These fluvial trait variations lead to spectral responses (4) in the
remote sensing signal (d,e). An example of monitoring temporal changes to fluvial traits—vertical
displacement rate of the river system from 2006 to 2010 with remote sensing technologies (LiDAR)
(d,e). From Ventura et al. [81], reprinted with permission from Ventura et al. [81], 2021, Elsevier.
License No. 5816961386058 (from Lausch et al. [32]).

RS approaches are able to continuously monitor these structural geomorphological
changes of the meanders or sediment displacements over longer periods of time, as these
changes to fluvial features lead to spectral responses in the RS signal (see Figure 9e).
For example, the temporal changes of fluvial features—the vertical displacement rate of
the river system from 2006 to 2010—were recorded using airborne LiDAR technologies
(see Figure 9d). In addition to structural changes, the latest hyperspectral sensors, such as
HySPEX, AISA, CHIME and EnMAP, can be used to make statements about changes to the
functional diversity of water, changes to vegetation diversity (increasing eutrophication,
chlorophyll content and turbidity) and the effects of river degradation on the neighbouring
terrestrial ecosystem.

5. Conclusions and Further Research

The sea, inland waters and rivers play a central role in our aquatic and other ecosys-
tems and provide the most important ecosystem services that enable and sustain life on
Earth. The monitoring of water diversity and quality and their changes are complex,
multidimensional and multi-scale in terms of space, time, processes and driving forces.

RS approaches have been successfully used for many years to implement monitoring
on local to global scales. The traits approach was already introduced back in the 1980s for
aquatic traits, but monitoring was based only on in situ measurements and observations.
The aim of this paper was to apply the traits approach to monitoring water diversity and
quality using RS approaches, as RS can monitor traits and trait variations for water diversity
and quality. Traits form a crucial interface between in situ, airborne and spaceborne RS
approaches and are filters or proxies for monitoring status, changes, disturbances and
resource limitations on all scales. Therefore, RS approaches and the traits concept can be
used to cover water diversity and quality, as well as changes and disturbances to them on
all spatio-temporal scales, in a standardised way.

In order to understand how RS approaches monitor water diversity and water quality,
five characteristics for the RS-based monitoring of water diversity and water quality were
defined in this paper. These five characteristics are (i) the diversity of water traits, (ii) the
diversity of water genesis, (iii) the structural diversity of water, (iv) the taxonomic diversity
of water and (v) the functional diversity of water. The diversity of water traits is imperative
to derive the other four characteristics with RS. The monitoring of the five characteristics
of water diversity and water quality using RS technologies is presented in detail in this
paper and discussed using numerous examples. Similar to the approach of Diaz (The
Global Spectrum of Plant Forms and Functions) and Asner, the “Global Spectrum of Water
Diversity and Water Quality” (Spectranometric Approach) can be created based on RS and
the traits approach on the basis of traits, genesis, structures, taxonomy and the function of
water diversity.

Monitoring water diversity and water quality and their interactions is complex. There-
fore, future monitoring requires a holistic and interdisciplinary approach (a combination of
water, geological and vegetation diversity) with analytical tools that combine in situ data,
RS platforms and databases and integrate ecological modelling (see www.globewq.info). In
addition, the traits approach allows the application of semantic data integration methods
that enable the monitoring and modelling of ecosystem integrity (see the eReefs Research
in Australia, https://research.csiro.au/ereefs/ accessed on 26 June 2024, Figure 10).

www.globewq.info
https://research.csiro.au/ereefs/
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Figure 10. The trait approach allows the application of semantic data integration methods that
enable monitoring and modelling of ecosystem integrity (see the eReefs Research in Australia,
https://research.csiro.au/ereefs/ accessed on 26 June 2024).

In addition, the freely available tool (ESIS/Imalys—Ecosystem Integrity Remote Sens-
ing/Modelling Tool and Service) has been developed based on traits and RS data [196].
The tool is under continuous development and can be downloaded from GitLab (https:
//doi.org/10.5281/zenodo.8116370, accessed on 26 June 2024). The tool can therefore be
used to support research, application and planning to better classify and model RS data
based on the traits approach in order to achieve a better understanding of ecosystems and
integrative processes.
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Table A1. Remote sensing-aided examples derived in monitoring the characteristics of water diversity
(water trait diversity, geogenic water trait diversity, structural water diversity, taxonomic water
diversity and functional water diversity) and shifts and disturbances.

Water Traits Mission/Platform Sensor References

Sea surface temperature (SST), river surface
temperature (RST)

GOES-8 IMAGER 3, METEOSAT (MSG) SEVIRI 3,
NOAA POES AVHRR 3, Aqua MODIS 3, Terra
ASTER 3, Landsat 5 TM 3, Landsat 7 ETM+ 3,
ERS-1/-2/ATSR1 3, FLIR Tau 2

[197–211]

Chlorophyll-a (CHL)—phytoplankton
(large/small phytoplankton)

OrbView-2 SeaWiFS 3, Terra/Aqua MODIS 3,
Envisat MERIS 3, Sentinel-3 OLCI 3, Sentinel-2 3,
Landsat 8 OLI/TIRS 3, APEX 2, LiDAR 1

[23,186,212–231]
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Table A1. Cont.

Water Traits Mission/Platform Sensor References

Phycocyanin (PC) and phycoerythrin—other
photosynthetic and accessory pigments
(cyanobacterial blooms indicated by
phycocyanin (PC) and phycoerythrin)

Terra/Aqua MODIS 3, Sentinel-3 OLCI 3, Landsat
8 OLI/TIRS 3, NOAA GLERL 2, Sentinel-2 MSI 3 [214,219–221,232,233]

Fluorescence—sun-induced fluorescence
emission by phytoplankton/open-ocean
phytoplankton chlorophyll fluorescence,
(Fsat) distributions

Terra/Aqua MODIS 3 [219,229,234]

Chemical oxygen demand concentration
(CCOD)
Water pollution

Sentinel 3 A/Ocean 3, Land Colour Instrument
(OLCI) 3 [235]

Algal blooms indicator
(HAB)/Cyanobacterial Harmful Algal
Bloom(s) (CHAB)

Landsat 8 3, Sentinel-2A,2B 3, Sentinel-3A, 3B,
3C 3, WorldView-3 3, PRISMA 3 [236–239]

Phytoplankton populations, community
structures (e.g., phaeocystis and diatoms,
phaeocystis globosa spp)

OrbView-2 SeaWiFS 3 [219,240]

Aquatic Phytoplankton Functional Types
(A-PFTs) OrbView-2 SeaWiFS 3, MERIS 3, APEX 2 [188,219,241,242]

Macrobenthos, macrophytes—submerged
aquatic vegetation (SAV)

QuickBird BGIS2000 3, RapidEye REIS 3,
Sentinel-2 3, Landsat 8 OLI/TIRS 3, HJ-WVC 3,
Daedalus MIVIS 2, Ocean Portable Hyperspectral
Imager for Low-Light 2, Spectroscopy (Ocean
PHILLS) 2, VarioCAM 1

[82,228,243–250]

Lake-type classification Landsat TM/ETM +/OLI 3, ASTER GDEM 3 [78,251]

Optical water types (OWTs) Sentinel-3 OLCI 3 [214]

Channel landforms, hydrogeomorphic units
including coarse woody debris, hydraulic
(fluvial) landform classification,
hydro-morphological units, riverscape units,
river geomorphic units, in-stream
mesohabitats, tidal channel characteristics

SAR 3, aerial images 2, LiDAR 2 [252–255]

Coast taxonomy, coast types (small delta,
tidal system, lagoon, fjord and fjärd, large
river, tidal estuary, ria, karst, arheic)

Different RADAR sensors 3, different optical RS
sensors 3 [179]

Macrophyte taxonomy/macrophyte
taxa/aquatic plant species

Canon Ixus 70 ® 1, Sentinel 2 3

Airborne Hyperspectral 2 [167,256]

Coral classification, coral reef habitat
mapping, seagrass, aquatic vegetation
community

Landsat 8 OLI/TIRS 3, RapidEye REIS 3, Ocean
Portable Hyperspectral Imager for Low-Light 3,
Spectroscopy (Ocean PHILLS) 2, Sentinel-2 3,
QuickBird 3, WorldView 3, NOAA 3

Worldview-2 3, HyMAP 2, airborne (imaging
spectrometer (hyperspectral) 2, Planet Dove
satellite imagery 2, Airborne data
visible-to-shortwave infrared 2, (VSWIR) imaging
spectrometer and a light detection and ranging 2

LiDAR 2, CASI 2

[113,151,219,249,257–263]

Coral mortality
Airborne data visible-to-shortwave infrared 2,
(VSWIR) imaging spectrometer and a light
detection and ranging 2, LiDAR 2

[261]



Remote Sens. 2024, 16, 2425 30 of 47

Table A1. Cont.

Water Traits Mission/Platform Sensor References

Live coral cover density
Airborne data visible-to-shortwave infrared 2,
VSWIR imaging spectrometer and a light
detection and ranging 2, LiDAR 2

[151]

Reef rugosity LiDAR 2, VSWIR spectrometer
Data 2 [264]

Macrophyte canopy morphological traits
(MTs)—fractional cover (fc) APEX 2 [242]

Macrophyte—Leaf Area Index (LAI) Spot-5 HRG 3, Sentinel-2 MSI 3

Landsat 7 ETM+ 3, Landsat 8 OLI/TIRS 3, APEX 2 [242,245]

Above-water biomass
Landsat 8 OLI/TIRS 3, Terra/Aqua MODIS 3,
Landsat 8 OLI/TIRS 3, GaoFen-1 WFV 3,
WorlsView-2 WV110 3, APEX 2

[242,265,266]

Macrophyte seasonal dynamics
(phenology)/spatial distribution
patterns/species-dependent variability,
interannual changes of aquatic vegetation

Spot-5 HRG 3, Sentinel-2 MSI 3, Landsat 7
ETM+ 3, Landsat 8 OLI/TIRS 3, HJ-1A/B WVC 3,
Landsat 5 TM 3

[245,267]

Growth height of submerged aquatic
vegetation (SAV) Spot-6 NAOMI 3 [268]

Suspended Particulate Matter (SPM), also
referred to as the Total Suspended Matter
(TSM)

Envisat MERIS 3, Terra/Aqua MODIS 3, Landsat
8 OLI/TIRS 3, Sentinel 3 OLCI 3, AHS 2 [23,219,224,265,269–272]

Suspended Sediment Concentration (SSC) Envisat MERIS 3 [219,273]

Suspended inorganic particulate matter
(SPIM) Sentinel-2 MSI 3, Daedalus MIVIS 2 [219,248,274]

Coloured Dissolved Organic Matter
(CDOM)

OrbView-2 SeaWiFS 3, Envisat MERIS 3, Landsat
5 TM 3 < Landsat 7 ETM+ 3, Landsat 8
OLI/TIRS 3, Sentinel-2 MSI 3,Sentinel-3 OLCI 3,
Daedalus MIVIS 2

[23,212,217,219,222,224,248,
275,276]

Sediment and sediment dynamic, carbon
and nutrient loads, particulate organic
carbon (POC)

EO-1 Hyperion 3, Terra/Aqua MODIS 3, Landsat
5 TM 3, Landsat 7 ETM+ 3, Sentinel-2 MSI 3 [82,269,277,278]

Calcite precipitation, calcium balance in the
water surface layer Landsat 8 OLI/TIRS 3, Sentinel-2 MSI 3 [279,280]

SEA or ocean water acidification/salinity SMOS MIRAS 3, PLMR 2, MODIS-OCGA 3 [281–285]

Surface nitrate concentration Terra/Aqua MODIS 3 [229]

Surface phosphate concentration Terra/Aqua MODIS 3 [229]

Aeolian soluble iron deposition Terra/Aqua MODIS 3 [229]

Secchi disk depth, turbidity

OrbView-2 SeaWiFS 3, Terra/Aqua MODIS 3,
Landsat 5 TM 3, Landsat 7 ETM+ 3, Landsat 8
OLI/TIRS 3, Sentinel-2 MSI 3, Sentinel-3 Ocean 3,
Land Colour Instrument (OLCI) 3, Planet Dove
satellites 3

[221,222,270,271,286–291]

Wather depth, water transparency

Terra ASTER 3,Terra/Aqua MODIS 3, Landsat 8
OLI/TIRS 3, Sentinel-2 MSI 3, RapidEye REIS 2

RIEGL VQ-820-G 2, Ocean Portable Hyperspectral
Imager for Low-Light Spectroscopy (Ocean
PHILLS) 2, AISA-EAGLE 2

[82,202,247,249,292–295]

Bathymetry, seabed mapping Landsat 8 3, Sentinel-2 3, Multispectral 3,
Hyperspectral Imagery 3, ICESat-2 3, LiDAR 2 [152,296–300]
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Table A1. Cont.

Water Traits Mission/Platform Sensor References

River bathymetry CASI 2/H, Daedalus 2/H, aerial images 2,
LiDAR 2 [255,301–304]

Water height, water level
ENVISAT 3, AMSR-E 3

TRMM 3

Daedalus 2/H, aerial images 2, LiDAR 2
[255,304–308]

Water surface roughness LiDAR 2, RADAR 3 [122]

Water colour Envisat MERIS 3, Sentinel-3 OLCI 3 [23,309]

Submarine Groundwater Discharge (SGD) Landsat 5 TM 3, Landsat 7 ETM+ 3

Landsat 8 OLI/TIRS 3, FLIR Systems 2, FLIR Tau 2 [310–315]

Groundwater nutrient fluxes Landsat 5 TM 3, Landsat 7 ETM+ 3 [311]

Riverine discharge Terra/Aqua MODIS 3 [316]

Coastal fronts, plumes, oil slicks OrbView-2 SeaWiFS 3, Terra/Aqua MODIS 3,
Landsat 5 TM 3, Landsat 7 ETM+ 3 [219,317]

Morphology, water level, water surface area,
storage variations, extent, size, structure of
water bodies, coastline changes

TerraSAR-X/TanDEM-X 3, SRTM 3, Landsat 5
TM 3, Landsat 7 ETM+ 3, Landsat 8 OLI 3,
Sentinel-2 3, WorldView-2 WV110 3

[219,318–326]

Shallow water inversion Sentinel-2 3 [82]

Benthic complexity Sentinel-2 3 [152]

Salinity MODIS-OCGA 3 [285]

River detection, small streams detection SAR 3, Landsat-5 TM/-7 ETM+/-8 OLI 3, aerial
images 2, aerial images 1, LiDAR 2 [255,327–330]

Channel characteristics, floodplain
morphology hydraulic channel morphology,
geometries, topography, river width arc
length, longitudinal transect (width, depth
and longitudinal channel slope, below water
line morphology), morphometric patterns of
meanders (sinuosity, intrinsic wavelength,
curvature and asymmetry), meander
dynamics, channel geometry

SAR 3, ENVISAT 3, Terra/Aqua MODIS 3,
Landsat-5 TM/-7 ETM+/-8 OLI 3, Sentinel-2 3,
aerial images 2, LiDAR 2

[327,331–338]

Channel migration, channel migration rates,
channel planform changes and tidal channel
migration
Channel changes, disturbances, temporal
evolution of natural and artificial
abandoned channels, canal position,
systematic changes of the river banks and
canal centre lines

SAR 3, SRTM 3, Landsat-5
TM 3, Landsat-7/8 ETM+ 3

OLI 3, aerial images 2
[254,339–344]

Flow energy of stream power, channel
sensitivity to erosion and deposition
processes and channel stability assessment

Landsat-1 MSS/-5 3 TM/-8 OLI 3, LiDAR 2 [345,346]

River discharge estimation (river discharge,
run-off characteristics)

ENVISAT 3, Jason-2/-3 3, Sentinel-3A 3

OLCI/SLSTR 3, CryoSat-2 3, AltiKa 3,
ENVISAT 3, Advanced RADAR Altimeter
(RA-2) 3, Terra/Aqua MODIS 3

[308,347]

Water and flow velocity ENVISAT 3, Terra/Aqua
MODIS 3, Aerial images 2, LiDAR 2 [255,333,348]
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Table A1. Cont.

Water Traits Mission/Platform Sensor References

Fluvial sediment transport, sediment
budget, channel bank erosion, exposed
channel substrates and sediments,
suspended soil concentration and bed
material, percentage clay, silt and sand in
inter-tidal sediments, suspended sediments,
flood bank overbank sedimentation,
sediment wave and sand mining

LiDAR 2, Radio frequency identification 1 [337,349–351]

Stream bank retreat Aerial images 2, LiDAR 2 [352–357]

Grain characteristics, grain size, gravel size,
shape, bed and bank sediment size

Daedalus 2, aerial images 2, aerial images 2,
LiDAR 2 [177,358–362]

Pebble mobility Radio frequency identification technologies 1 [363]

Coastal dynamical and bio-geo-chemical
patterns

NOAA/MetOp AVHRR 3, ERS-1 3, TOPEX 3,
Nimbus-7 CZCS 3 [364]

Coastal landforms and coastline and
shoreline detection

SRTM 3, ALOS 3, NOAA 3, Landsat-7 ETM+ 3,
Terra ASTER 3, IKONOS OSA 3, LiDAR 2 [119,365,366]

Spatio-temporal shoreline dynamic,
shoreline erosion–accretion trends, coast
changes, cliff retreat and erosion hotspots

SRTM 3, SAR 3, Landsat-4 MSS/-5 TM 3,
Landsat-8 OLI 3, SPOT 5 3, Sentinel-2 2, aerial
images 2, LiDAR 2

[367–374]

Different morphometric shoreline indicators:
morphological reference lines, vegetation
limits, instant tidal levels and wetting limits,
tidal datum indicators, virtual reference
lines, beach contours and storm lines

Different optical RS sensors 3, LiDAR 2 [118,375,376]

Coastal dynamical and bio-geo-chemical
patterns

NOAA/MetOp AVHRR 3, ERS-1 3, TOPEX 3,
Nimbus-7 CZCS 3 [364]

Trophic state (eutrophication):
Chlorophyll-a (CHL-a), total phosphorous
and Secchi disk transparency

MODIS 3, MERIS 3, Landsat-8 OLI 3,
Sentinel-2B 3, PRISMA 3 [171–176,377,378]

Phytoplankton Functional Types (PFTs),
Chlorophyll-a-Konzentration, different
photosynthetic Pigments, Particle Size
Distribution (PSD), Phytoplankton Size
Classes (PSCs), Bio-Optical
Characteristics (BOT)

NOAA 3, LiDAR 1, PRISMA 3, DESIS 3, EnMAP 3,
MERIS 3 [120,185,187–189]

Ocean Circulation SAR Nadir Altimetry 3 [379]

The sensor is used on the RS platform: UAV 1—unmanned aerial vehicles (UAV); airborne 2—airborne RS
platform; spaceborne 3—spaceborne RS platform.
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using dense time series of medium resolution satellite data. Remote Sens. Environ. 2018, 216, 230–244. [CrossRef]

246. Villa, P.; Bresciani, M.; Bolpagni, R.; Pinardi, M.; Giardino, C. A rule-based approach for mapping macrophyte communities using
multi-temporal aquatic vegetation indices. Remote Sens. Environ. 2015, 171, 218–233. [CrossRef]

247. Yadav, S.; Yoneda, M.; Tamura, M.; Susaki, J.; Ishikawa, K.; Yamashiki, Y. A Satellite-Based Assessment of the Distribution and
Biomass of Submerged Aquatic Vegetation in the Optically Shallow Basin of Lake Biwa. Remote Sens. 2017, 9, 966. [CrossRef]

248. Giardino, C.; Bresciani, M.; Valentini, E.; Gasperini, L.; Bolpagni, R.; Brando, V.E. Airborne hyperspectral data to assess suspended
particulate matter and aquatic vegetation in a shallow and turbid lake. Remote Sens. Environ. 2015, 157, 48–57. [CrossRef]

249. Lesser, M.P.; Mobley, C.D. Bathymetry, water optical properties, and benthic classification of coral reefs using hyperspectral
remote sensing imagery. Coral Reefs 2007, 26, 819–829. [CrossRef]

250. Wawrzyniak, V.; Piégay, H.; Allemand, P.; Vaudor, L. Prediction of water temperature heterogeneity of braided rivers using very
high resolution thermal infrared ( TIR ) images. Int. J. Remote Sens. 2013, 34, 4812–4831. [CrossRef]

251. Wang, Y.; Wang, K.; Bai, Y.; Wu, D.; Zheng, H. Research progress in calculating net community production of marine ecosystem
by remote sensing. Front. Mar. Sci. 2023, 10, 1–11. [CrossRef]

252. Wheaton, J.M.; Fryirs, K.A.; Brierley, G.; Bangen, S.G.; Bouwes, N.; O’Brien, G. Geomorphic mapping and taxonomy of fluvial
landforms. Geomorphology 2015, 248, 273–295. [CrossRef]

253. Demarchi, L.; Bizzi, S.; Piégay, H. Regional hydromorphological characterization with continuous and automated remote sensing
analysis based on VHR imagery and low-resolution LiDAR data. Earth Surf. Processes Landf. 2017, 42, 531–551. [CrossRef]

254. Pinheiro, M.; Amao-Oliva, J.; Scheiber, R.; Jaeger, M.; Horn, R.; Keller, M.; Fischer, J.; Reigber, A. Dual-frequency airborne SAR for
large scale mapping of tidal flats. Remote Sens. 2020, 12, 1827. [CrossRef]

255. Mandlburger, G.; Hauer, C.; Wieser, M.; Pfeifer, N. Topo-Bathymetric LiDAR for Monitoring River Morphodynamics and Instream
Habitats—A Case Study at the Pielach River. Remote Sens. 2015, 7, 6160–6195. [CrossRef]

256. Husson, E.; Hagner, O.; Ecke, F. Unmanned aircraft systems help to map aquatic vegetation. Appl. Veg. Sci. 2014, 17, 567–577.
257. Hestir, E.L.; Brando, V.E.; Bresciani, M.; Giardino, C.; Matta, E.; Villa, P.; Dekker, A.G. Measuring freshwater aquatic ecosystems:

The need for a hyperspectral global mapping satellite mission. Remote Sens. Environ. 2015, 167, 181–195. [CrossRef]
258. Kennedy, E.V.; Roelfsema, C.M.; Lyons, M.B.; Kovacs, E.M.; Borrego-Acevedo, R.; Roe, M.; Phinn, S.R.; Larsen, K.; Murray, N.J.;

Yuwono, D.; et al. Reef Cover, a coral reef classification for global habitat mapping from remote sensing. Sci. Data 2021, 8, 1–20.
259. Traganos, D.; Reinartz, P. Interannual Change Detection of Mediterranean Seagrasses Using RapidEye Image Time Series. Front.

Plant Sci. 2018, 9, 96. [CrossRef]
260. Kobryn, H.T.; Wouters, K.; Beckley, L.E.; Heege, T. Ningaloo Reef: Shallow Marine Habitats Mapped Using a Hyperspectral

Sensor. PLoS ONE 2013, 8. [CrossRef]
261. Asner, G.P.; Vaughn, N.R.; Martin, R.E.; Foo, S.A.; Heckler, J.; Neilson, B.J.; Gove, J.M. Mapped coral mortality and refugia in an

archipelago-scale marine heat wave. Proc. Natl. Acad. Sci. USA 2022, 119, 1–6. [CrossRef]
262. Li, J.; Knapp, D.E.; Fabina, N.S.; Kennedy, E.V.; Larsen, K.; Lyons, M.B.; Murray, N.J.; Phinn, S.R.; Roelfsema, C.M.; Asner, G.P. A

global coral reef probability map generated using convolutional neural networks. Coral Reefs 2020, 39, 1805–1815. [CrossRef]
263. Lyons, M.B.; Roelfsema, C.M.; Kennedy, E.V.; Kovacs, E.M.; Borrego-Acevedo, R.; Markey, K.; Roe, M.; Yuwono, D.M.; Harris,

D.L.; Phinn, S.R.; et al. Mapping the world’s coral reefs using a global multiscale earth observation framework. Remote Sens. Ecol.
Conserv. 2020, 6, 557–568.

264. Asner, G.P.; Vaughn, N.R.; Balzotti, C.; Brodrick, P.G.; Heckler, J. High-Resolution Reef Bathymetry and Coral Habitat Complexity
from Airborne Imaging Spectroscopy. Remote Sens. 2020, 12, 310. [CrossRef]

265. Zhang, Y.; Zhang, Y.; Shi, K.; Zha, Y.; Zhou, Y.; Liu, M. A Landsat 8 OLI-Based, Semianalytical Model for Estimating the Total
Suspended Matter Concentration in the Slightly Turbid Xin’anjiang Reservoir (China). IEEE J. Sel. Top. Appl. Earth Obs. Remote
Sens. 2016, 9, 398–413. [CrossRef]

266. Hu, L.; Zeng, K.; Hu, C.; He, M. Remote Sensing of Environment On the remote estimation of Ulva prolifera areal coverage and
biomass. Remote Sens. Environ. 2019, 223, 194–207. [CrossRef]

267. Luo, J.; Li, X.; Ma, R.; Li, F.; Duan, H.; Hu, W. Applying remote sensing techniques to monitoring seasonal and interannual
changes of aquatic vegetation in Taihu Lake, China. Ecol. Indic. 2016, 60, 503–513. [CrossRef]

268. Rotta, L.H.S.; Mishra, D.R.; Watanabe, F.S.Y.; Rodrigues, T.W.; Alcântara, E.H.; Imai, N.N. Analyzing the feasibility of a space-
borne sensor (SPOT-6) to estimate the height of submerged aquatic vegetation (SAV) in inland waters. ISPRS J. Photogramm.
Remote Sens. 2018, 144, 341–356. [CrossRef]

https://doi.org/10.1080/01431160600821036
https://doi.org/10.4081/jlimnol.2017.1629
https://doi.org/10.1007/s10750-010-0466-6
https://doi.org/10.3390/w9070510
https://doi.org/10.1016/j.rse.2018.06.048
https://doi.org/10.1016/j.rse.2015.10.020
https://doi.org/10.3390/rs9090966
https://doi.org/10.1016/j.rse.2014.04.034
https://doi.org/10.1007/s00338-007-0271-5
https://doi.org/10.1080/01431161.2013.782113
https://doi.org/10.3389/fmars.2023.1191013
https://doi.org/10.1016/j.geomorph.2015.07.010
https://doi.org/10.1002/esp.4092
https://doi.org/10.3390/rs12111827
https://doi.org/10.3390/rs70506160
https://doi.org/10.1016/j.rse.2015.05.023
https://doi.org/10.3389/fpls.2018.00096
https://doi.org/10.1371/journal.pone.0070105
https://doi.org/10.1073/pnas.2123331119
https://doi.org/10.1007/s00338-020-02005-6
https://doi.org/10.3390/rs12020310
https://doi.org/10.1109/JSTARS.2015.2509469
https://doi.org/10.1016/j.rse.2019.01.014
https://doi.org/10.1016/j.ecolind.2015.07.029
https://doi.org/10.1016/j.isprsjprs.2018.07.011


Remote Sens. 2024, 16, 2425 43 of 47

269. Doxaran, D.; Ehn, J.; Bélanger, S.; Matsuoka, A.; Hooker, S.; Babin, M. Optical characterisation of suspended particles in the
Mackenzie River plume (Canadian Arctic Ocean) and implications for ocean colour remote sensing. Biogeosciences 2012, 9,
3213–3229. [CrossRef]

270. Manzo, C.; Federica, B.; Luca, Z.; Ernesto, B.V.; Claudia, G.; Mariano, B.; Cristiana, B. Spatio-temporal analysis of prodelta
dynamics by means of new satellite generation. Int. J. Appl. Earth Obs. Geoinf. 2018, 66, 210–225.

271. Lymburner, L.; Botha, E.; Hestir, E.; Anstee, J.; Sagar, S.; Dekker, A.; Malthus, T. Landsat 8: Providing continuity and increased
precision for measuring multi-decadal time series of total suspended matter. Remote Sens. Environ. 2016, 185, 108–118. [CrossRef]

272. Sterckx, S.; Knaeps, E.; Bollen, M.; Trouw, K.; Houthuys, R. Retrieval of Suspended Sediment from Advanced Hyperspectral
Sensor Data in the Scheldt Estuary at Different Stages in the Tidal Cycle. Mar. Geod. 2007, 30, 97–108. [CrossRef]

273. Shen, F.; Verhoef, W.; Zhou, Y.; Salama, M.S.; Liu, X. Satellite Estimates of Wide-Range Suspended Sediment Concentrations in
Changjiang (Yangtze) Estuary Using MERIS Data. Estuaries Coasts 2010, 33, 1420–1429. [CrossRef]

274. Liu, H.; Li, Q.; Shi, T.; Hu, S.; Wu, G.; Zhou, Q. Application of Sentinel 2 MSI Images to Retrieve Suspended Particulate Matter
Concentrations in Poyang Lake. Remote Sens. 2017, 9, 761. [CrossRef]

275. Kutser, T. The possibility of using the Landsat image archive for monitoring long time trends in coloured dissolved organic
matter concentration in lake waters. Remote Sens. Environ. 2012, 123, 334–338. [CrossRef]

276. Li, J.; Yu, Q.; Tian, Y.Q.; Becker, B.L.; Siqueira, P.; Torbick, N. Spatio-temporal variations of CDOM in shallow inland waters from
a semi-analytical inversion of Landsat-8. Remote Sens. Environ. 2018, 218, 189–200. [CrossRef]

277. Milewski, R.; Chabrillat, S.; Behling, R. Analyses of Recent Sediment Surface Dynamic of a Namibian Kalahari Salt Pan Based on
Multitemporal Landsat and Hyperspectral Hyperion Data. Remote Sens. 2017, 9, 170. [CrossRef]

278. Fassoni-andrade, A.C.; Cauduro, R.; Paiva, D. De Remote Sensing of Environment Mapping spatial-temporal sediment dynamics
of river-floodplains in the Amazon. Remote Sens. Environ. 2019, 221, 94–107. [CrossRef]

279. Nouchi, V.; Kutser, T.; Wüest, A.; Müller, B.; Odermatt, D.; Baracchini, T.; Bouffard, D. Resolving biogeochemical processes in
lakes using remote sensing. Aquat. Sci. 2019, 81, 1–13. [CrossRef]

280. Heine, I.; Brauer, A.; Heim, B.; Itzerott, S.; Kasprzak, P.; Kienel, U.; Kleinschmit, B. Monitoring of calcite precipitation in hardwater
lakes with multi-spectral remote sensing archives. Water 2017, 9, 15. [CrossRef]

281. Mu, Z.; Zhang, W.; Wang, P.; Wang, H.; Yang, X. Assimilation of SMOS Sea Surface Salinity in the Regional Ocean Model for
South China Sea. Remote Sens. 2019, 11, 919. [CrossRef]

282. Dinnat, E.P.; Vine, D.M.L.; Boutin, J.; Meissner, T.; Lagerloef, G. Remote Sensing of Sea Surface Salinity: Comparison of Satellite
and In Situ Observations and Impact of Retrieval Parameters. Remote Sens. 2019, 11, 750.

283. Wang, Y.; Heron, M.L.; Prytz, A.; Ridd, P.V.; Steinberg, C.R.; Hacker, J.M. Evaluation of a new airborne microwave remote sensing
radiometer by measuring the salinity gradients across the shelf of the great barrier reef lagoon. IEEE Trans. Geosci. Remote Sens.
2007, 45, 3701–3710. [CrossRef]

284. Heron, M.L.; Ridd, P.V.; Prytz, A.; Wang, Y.; Hacker, J.M. Salinity gradients in coastal waters by airborne microwave radiometer
remote sensing. In Proceedings of the Ocean 2006-Asia Pacific, Singapore, 16–19 May 2006. [CrossRef]

285. Liu, C.; Zhu, L.; Wang, J.; Ju, J.; Ma, Q.; Kou, Q. The decrease of salinity in lakes on the Tibetan Plateau between 2000 and 2019
based on remote sensing model inversions. Int. J. Digit. Earth 2023, 16, 2644–2659. [CrossRef]

286. Horion, S.; Bergamino, N.; Stenuite, S.; Descy, J.-P.; Plisnier, P.-D.; Loiselle, S.A.; Cornet, Y. Optimized extraction of daily bio-optical
time series derived from MODIS/Aqua imagery for Lake Tanganyika, Africa. Remote Sens. Environ. 2010, 114, 781–791. [CrossRef]

287. Binding, C.E.; Jerome, J.H.; Booty, W.G. Suspended particulate matter in Lake Erie derived from MODIS aquatic colour imagery.
Int. J. Remote Sens. 2010, 31, 5239–5255. [CrossRef]

288. Heege, T.; Kiselev, V.; Wettle, M.; Hung, N.N. Operational multi-sensor monitoring of turbidity for the entire Mekong Delta. Int. J.
Remote Sens. 2014, 35, 2910–2926. [CrossRef]

289. Braga, F.; Zaggia, L.; Bellafiore, D.; Bresciani, M.; Giardino, C.; Lorenzetti, G.; Maicu, F.; Manzo, C.; Riminucci, F.; Ravaioli, M.;
et al. Mapping turbidity patterns in the Po river prodelta using multi-temporal Landsat 8 imagery. Estuar. Coast. Shelf Sci. 2017,
198, 555–567. [CrossRef]

290. Jiang, D.; Scholze, J.; Liu, X.; Simis, S.G.H.; Stelzer, K.; Müller, D.; Hunter, P.; Tyler, A.; Spyrakos, E. A data-driven approach to
flag land-affected signals in satellite derived water quality from small lakes. Int. J. Appl. Earth Obs. Geoinf. 2023, 117, 103188.
[CrossRef]

291. Grady, B.W.; Kittle, R.P.; Pugh, A.; Lamson, M.R.; Richards, J.L.; Fredericq, S.; McDermid, K.J.; Allen, Q.; Asner, G.P. Long-term
ecological monitoring of reefs on Hawai’i Island (2003–2020): Characterization of a common cryptic crust, Ramicrusta hawaiiensis
(Peyssonneliales, Rhodophyta). Front. Mar. Sci. 2022, 9, 1–16. [CrossRef]

292. Giardino, C.; Bresciani, M.; Cazzaniga, I.; Schenk, K.; Rieger, P.; Braga, F.; Matta, E.; Brando, V.E. Evaluation of Multi-Resolution
Satellite Sensors for Assessing Water Quality and Bottom Depth of Lake Garda. Sensors 2014, 14, 24116–24131.

293. Hacker, J.M.; Pfennigbauer, M. Pushing Lidar to the Limits: High-resolution Bathymetric Lidar from Slow-flying Aircraft. GIM
Int. 2017, 31, 29–31.

294. Uhl, F.; Bartsch, I.; Oppelt, N. Submerged Kelp Detection with Hyperspectral Data. Remote Sens. 2016, 8, 487. [CrossRef]
295. Legleiter, C.J.; Roberts, D.A.; Lawrence, R.L. Spectrally based remote sensing of river bathymetry. EARTH Surf. Processes Landf.

2009, 1059, 1039–1059. [CrossRef]

https://doi.org/10.5194/bg-9-3213-2012
https://doi.org/10.1016/j.rse.2016.04.011
https://doi.org/10.1080/01490410701296341
https://doi.org/10.1007/s12237-010-9313-2
https://doi.org/10.3390/rs9070761
https://doi.org/10.1016/j.rse.2012.04.004
https://doi.org/10.1016/j.rse.2018.09.014
https://doi.org/10.3390/rs9020170
https://doi.org/10.1016/j.rse.2018.10.038
https://doi.org/10.1007/s00027-019-0626-3
https://doi.org/10.3390/w9010015
https://doi.org/10.3390/rs11080919
https://doi.org/10.1109/TGRS.2007.903400
https://doi.org/10.5194/egusphere-egu23-13215
https://doi.org/10.1080/17538947.2023.2233469
https://doi.org/10.1016/j.rse.2009.11.012
https://doi.org/10.1080/01431160903302973
https://doi.org/10.1080/01431161.2014.890300
https://doi.org/10.1016/j.ecss.2016.11.003
https://doi.org/10.1016/j.jag.2023.103188
https://doi.org/10.3389/fmars.2022.1009471
https://doi.org/10.3390/rs8060487
https://doi.org/10.1002/esp.1787


Remote Sens. 2024, 16, 2425 44 of 47

296. Li, J.; Knapp, D.E.; Lyons, M.; Roelfsema, C.; Phinn, S.; Schill, S.R.; Asner, G.P. Automated global shallowwater bathymetry
mapping using google earth engine. Remote Sens. 2021, 13.

297. Xu, Y.; Cao, B.; Deng, R.; Cao, B.; Liu, H.; Li, J. Bathymetry over broad geographic areas using optical high-spatial-resolution
satellite remote sensing without in-situ data. Int. J. Appl. Earth Obs. Geoinf. 2023, 119, 103308. [CrossRef]

298. Zhou, W.; Tang, Y.; Jing, W.; Li, Y.; Yang, J.; Deng, Y.; Zhang, Y. A Comparison of Machine Learning and Empirical Approaches for
Deriving Bathymetry from Multispectral Imagery. Remote Sens. 2023, 15, 393. [CrossRef]

299. Li, S.; Wang, X.H.; Ma, Y.; Yang, F. Satellite-Derived Bathymetry with Sediment Classification Using ICESat-2 and Multispectral
Imagery: Case Studies in the South China Sea and Australia. Remote Sens. 2023, 15, 1026. [CrossRef]

300. Marcello, J.; Eugenio, F.; Martín, J.; Marqués, F. Seabed Mapping in Coastal Shallow Waters Using High Resolution Multispectral
and Hyperspectral Imagery. Remote Sens. 2018, 10, 1208. [CrossRef]

301. Dietrich, J.T. Bathymetric Structure-from-Motion: Extracting shallow stream bathymetry from multi-view stereo photogrammetry.
Earth Surf. Processes Landf. 2017, 42, 355–364. [CrossRef]

302. Legleiter, C.J. Remote measurement of river morphology via fusion of LiDAR topography and spectrally based bathymetry. Earth
Surf. Processes Landf. 2012, 37, 499–518. [CrossRef]

303. Legleiter, C.J.; Overstreet, B.T.; Glennie, C.L.; Pan, Z.; Fernandez-Diaz, J.C.; Singhania, A. Evaluating the capabilities of the
CASI hyperspectral imaging system and Aquarius bathymetric LiDAR for measuring channel morphology in two distinct river
environments. Earth Surf. Processes Landf. 2016, 41, 344–363. [CrossRef]

304. Gilvear, D.J.; Davids, C.; Tyler, A.N. The use of remotely sensed data to detect channel hydromorphology; River Tummel, Scotland.
River Res. Appl. 2004, 20, 795–811. [CrossRef]

305. Emery, C.M.; Paris, A.; Biancamaria, S.; Boone, A.; Calmant, S.; Garambois, P.-A.; Santos da Silva, J. Large-scale hydrological
model river storage and discharge correction using a satellite altimetry-based discharge product. Hydrol. Earth Syst. Sci. 2018, 22,
2135–2162. [CrossRef]

306. Ridolf, E.; Manciola, P. Water Level Measurements from Drones: A Pilot Case Study at a Dam Site. Water 2018, 10, 297. [CrossRef]
307. Hirpa, F.A.; Hopson, T.M.; De Groeve, T.; Brakenridge, G.R.; Gebremichael, M.; Restrepo, P.J. Upstream satellite remote sensing

for river discharge forecasting: Application to major rivers in South Asia. Remote Sens. Environ. 2013, 131, 140–151. [CrossRef]
308. Tourian, M.J.; Sneeuw, N.; Bárdossy, A. A quantile function approach to discharge estimation from satellite altimetry (ENVISAT).

Water Resour. Res. 2013, 49, 4174–4186. [CrossRef]
309. Donlon, C.; Berruti, B.; Buongiorno, A.; Ferreira, M.H.; Féménias, P.; Frerick, J.; Goryl, P.; Klein, U.; Laur, H.; Mavrocordatos, C.;

et al. The Global Monitoring for Environment and Security (GMES) Sentinel-3 mission. Remote Sens. Environ. 2012, 120, 37–57.
[CrossRef]

310. Schubert, M.; Scholten, J.; Schmidt, A.; Comanducci, J.F.; Pham, M.K.; Mallast, U.; Knoeller, K. Submarine groundwater discharge
at a single spot location: Evaluation of different detection approaches. Water 2014, 6, 584–601. [CrossRef]

311. Oehler, T.; Eiche, E.; Putra, D.; Adyasari, D.; Hennig, H.; Mallast, U.; Moosdorf, N. Seasonal variability of land-ocean groundwater
nutrient fluxes from a tropical karstic region (southern Java, Indonesia). J. Hydrol. 2018, 565. [CrossRef]

312. Kelly, J.L. Integration of aerial infrared thermography and in situ radon-222 to investigate submarine groundwater discharge to
Pearl Harbor. Limnol. Oceanogr. 2019, 238–257. [CrossRef]

313. Tamborski, J.J.; Rogers, A.D.; Bokuniewicz, H.J.; Cochran, J.K.; Young, C.R. Identification and quantification of diffuse fresh
submarine groundwater discharge via airborne thermal infrared remote sensing. Remote Sens. Environ. 2015, 171, 202–217.
[CrossRef]

314. Lee, E.; Yoon, H.; Hyun, S.P.; Burnett, W.C.; Koh, D.C.; Ha, K.; Kim, D.J.; Kim, Y.; Kang, K.M. Unmanned aerial vehicles
(UAVs)-based thermal infrared (TIR) mapping, a novel approach to assess groundwater discharge into the coastal zone. Limnol.
Oceanogr. Methods 2016, 14, 725–735. [CrossRef]

315. Mallast, U.; Siebert, C. Combining continuous spatial and temporal scales for SGD investigations using UAV-based thermal
infrared measurements. Hydrol. Earth Syst. Sci. 2019, 23, 1375–1392. [CrossRef]

316. Kang, Y.; Pan, D.; Bai, Y.; He, X.; Chen, X.; Chen, C.T.A.; Wang, D. Areas of the global major river plumes. Acta Oceanol. Sin. 2013,
32, 79–88. [CrossRef]

317. Purkis, S.J.; Klemas, V.V. Remote Sensing and Global Environmental Change; John Wiley & Sons: Hoboken, NJ, USA, 2013;
ISBN 9781118687659.

318. Du, Y.; Feng, G.; Li, Z.; Peng, X.; Ren, Z.; Zhu, J. A Method for Surface Water Body Detection and DEM Generation with
Multigeometry TanDEM-X Data. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2018, 12, 1–11. [CrossRef]

319. Heine, I.; Francke, T.; Rogass, C.; Medeiros, P.H.A.; Bronstert, A.; Foerster, S. Monitoring seasonal changes in the water surface
areas of reservoirs using terrasAR-X time series data in semiarid northeastern Brazil. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens.
2014, 7, 3190–3199. [CrossRef]

320. NASA/NGA SRTMWater Body Data Product Specific Guidance, Version 2.0. 2003. Available online: https://library.mcmaster.c
a/maps/SWDB_Product_Specific_Guidance.pdf (accessed on 20 February 2019).

321. Yamazaki, D.; Trigg, M.A.; Ikeshima, D. Development of a global ~90m water body map using multi-temporal Landsat images.
Remote Sens. Environ. 2015, 171, 337–351. [CrossRef]

322. Pekel, J.-F.; Cottam, A.; Gorelick, N.; Belward, A.S. High-resolution mapping of global surface water and its long-term changes.
Nature 2016, 540, 418–422. [CrossRef] [PubMed]

https://doi.org/10.1016/j.jag.2023.103308
https://doi.org/10.3390/rs15020393
https://doi.org/10.3390/rs15041026
https://doi.org/10.3390/rs10081208
https://doi.org/10.1002/esp.4060
https://doi.org/10.1002/esp.2262
https://doi.org/10.1002/esp.3794
https://doi.org/10.1002/rra.792
https://doi.org/10.5194/hess-22-2135-2018
https://doi.org/10.3390/w10030297
https://doi.org/10.1016/j.rse.2012.11.013
https://doi.org/10.1002/wrcr.20348
https://doi.org/10.1016/j.rse.2011.07.024
https://doi.org/10.3390/w6030584
https://doi.org/10.1016/j.jhydrol.2018.08.077
https://doi.org/10.1002/lno.11033
https://doi.org/10.1016/j.rse.2015.10.010
https://doi.org/10.1002/lom3.10132
https://doi.org/10.5194/hess-23-1375-2019
https://doi.org/10.1007/s13131-013-0269-5
https://doi.org/10.1109/JSTARS.2018.2883772
https://doi.org/10.1109/JSTARS.2014.2323819
https://library.mcmaster.ca/maps/SWDB_Product_Specific_Guidance.pdf
https://library.mcmaster.ca/maps/SWDB_Product_Specific_Guidance.pdf
https://doi.org/10.1016/j.rse.2015.10.014
https://doi.org/10.1038/nature20584
https://www.ncbi.nlm.nih.gov/pubmed/27926733


Remote Sens. 2024, 16, 2425 45 of 47

323. Palmer, S.C.J.; Kutser, T.; Hunter, P.D. Remote sensing of inland waters: Challenges, progress and future directions. Remote Sens.
Environ. 2015, 157, 1–8. [CrossRef]

324. Du, Y.; Zhang, Y.; Ling, F.; Wang, Q.; Li, W.; Li, X. Water Bodies’ Mapping from Sentinel-2 Imagery with Modified Normalized
Difference Water Index at 10-m Spatial Resolution Produced by Sharpening the SWIR Band. Remote Sens. 2016, 8, 354. [CrossRef]

325. Heine, I.; Stüve, P.; Kleinschmit, B.; Itzerott, S. Reconstruction of lake level changes of groundwater-fed lakes in Northeastern
Germany using rapideye time series. Water 2015, 7, 4175–4199. [CrossRef]

326. Jawak, S.D.; Luis, A.J. Improved land cover mapping using high resolution multiangle 8-band WorldView-2 satellite remote
sensing data. J. Appl. Remote Sens. 2013, 7, 73573. [CrossRef]

327. Liu, Y.; Zhang, P.; He, Y.; Peng, Z. River detection based on feature fusion from synthetic aperture radar images. J. Appl. Remote
Sens. 2020, 14, 1. [CrossRef]

328. Allen, G.H.; Pavelsky, T. Global extent of rivers and streams. Science 2018, 361, 585–588. [CrossRef]
329. Bird, S.; Hogan, D.; Schwab, J. Photogrammetric monitoring of small streams under a riparian forest canopy. Earth Surf. Processes

Landf. 2010, 970, 952–970. [CrossRef]
330. Bizzi, S.; Demarchi, L.; Grabowski, R.C.; Weissteiner, C.J. The use of remote sensing to characterise hydromorphological properties

of European rivers. Aquat. Sci. 2016, 78, 57–70. [CrossRef]
331. Lorenz, R.D.; Lopes, R.M.; Paganelli, F.; Lunine, J.I.; Kirk, R.L.; Mitchell, K.L.; Soderblom, L.A.; Stofan, E.R.; Ori, G.; Myers, M.;

et al. Fluvial channels on Titan: Initial Cassini RADAR observations. Planet. Space Sci. 2008, 56, 1132–1144. [CrossRef]
332. Smith, L.C.; Pavelsky, T.M. Estimation of river discharge, propagation speed, and hydraulic geometry from space: Lena River,

Siberia. Water Resour. Res. 2008, 44, 1–11. [CrossRef]
333. Tarpanelli, A.; Brocca, L.; Barbetta, S.; Faruolo, M.; Lacava, T.; Moramarco, T. Coupling MODIS and Radar Altimetry Data for

Discharge Estimation in Poorly Gauged River Basins. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2015, 8, 141–148. [CrossRef]
334. Belletti, B.; Dufour, S.; Piégay, H. What is the Relative Effect of Space and Time to Explain the Braided River Width and Island

Patterns at a Regional Scale? River Res. Appl. 2015, 31, 1–15. [CrossRef]
335. Finotello, A.; D’Alpaos, A.; Bogoni, M.; Ghinassi, M.; Lanzoni, S. Remotely-sensed planform morphologies reveal fluvial and

tidal nature of meandering channels. Sci. Rep. 2020, 10, 1–13.
336. Naito, K.; Parker, G. Can Bankfull Discharge and Bankfull Channel Characteristics of an Alluvial Meandering River be Cospecified

From a Flow Duration Curve? J. Geophys. Res. Earth Surf. 2019, 124, 2381–2401. [CrossRef]
337. Lallias-Tacon, S.; Liébault, F.; Piégay, H. Step by step error assessment in braided river sediment budget using airborne LiDAR

data. Geomorphology 2014, 214, 307–323. [CrossRef]
338. Houser, C.; Hamilton, S. Morphodynamics of a 1000-year flood in the Kamp River, Austria, and impacts on floodplain morphology.

Earth Surf. Processes Landf. 2009, 34, 613–628. [CrossRef]
339. Yang, C.; Cai, X.; Wang, X.; Yan, R.; Zhang, T.; Zhang, Q.; Lu, X. Remotely sensed trajectory analysis of channel migration in

Lower Jingjiang Reach during the period of 1983-2013. Remote Sens. 2015, 7, 16241–16256. [CrossRef]
340. Peixoto, J.M.A.; Nelson, B.W.; Wittmann, F. Spatial and temporal dynamics of river channel migration and vegetation in central

Amazonian white-water floodplains by remote-sensing techniques. Remote Sens. Environ. 2009, 113, 2258–2266. [CrossRef]
341. Dépret, T.; Riquier, J.; Piégay, H. Evolution of abandoned channels: Insights on controlling factors in a multi-pressure river system.

Geomorphology 2017, 294, 99–118. [CrossRef]
342. Yang, X.; Damen, M.C.J.; Van Zuidam, R.A. Satellite remote sensing and GIS for the analysis of channel migration changes in the

active Yellow River Delta, China. ITC J. 1999, 1, 146–157. [CrossRef]
343. Wen; Yang; Zhang; Shao; Wu Remotely Sensed Mid-Channel Bar Dynamics in Downstream of the Three Gorges Dam, China.

Remote Sens. 2020, 12, 409. [CrossRef]
344. Garofalo, D. The Influence of Wetland Vegetation on Tidal Stream Channel Migration and Morphology. Estuaries 1980, 3, 258.

[CrossRef]
345. Thomas, J.; Kumar, S.; Sudheer, K.P. Channel stability assessment in the lower reaches of the Krishna River (India) using

multi-temporal satellite data during 1973–2015. Remote Sens. Appl. Soc. Environ. 2020, 17, 100274. [CrossRef]
346. Biron, P.M.; Choné, G.; Buffin-Bélanger, T.; Demers, S.; Olsen, T. Improvement of streams hydro-geomorphological assessment

using LiDAR DEMs. Earth Surf. Processes Landf. 2013, 38, 1808–1821. [CrossRef]
347. Zakharova, E.; Nielsen, K.; Kamenev, G.; Kouraev, A. River discharge estimation from radar altimetry: Assessment of satellite

performance, river scales and methods. J. Hydrol. 2020, 124561. [CrossRef]
348. Perks, M.T.; Russell, A.J.; Large, A.R.G. Technical Note: Advances in flash flood monitoring using UAVs. Hydrol. Earth Syst. Sci.

Discuss. 2016, 1–18.
349. Wyrick, J.R.; Senter, A.E.; Pasternack, G.B. Revealing the natural complexity of fluvial morphology through 2D hydrodynamic

delineation of river landforms. Geomorphology 2014, 210, 14–22. [CrossRef]
350. Brousse, G.; Arnaud-Fassetta, G.; Liébault, F.; Bertrand, M.; Melun, G.; Loire, R.; Malavoi, J.; Fantino, G.; Borgniet, L. Channel

response to sediment replenishment in a large gravel-bed river: The case of the Saint-Sauveur dam in the Buëch River (Southern
Alps, France). River Res. Appl. 2020, 36, 880–893. [CrossRef]

351. Bhattacharya, R.K.; Das Chatterjee, N.; Das, K. Impact of instream sand mining on habitat destruction or transformation using
coupling models of HSI and MLR. Spat. Inf. Res. 2020, 28, 67–85. [CrossRef]

https://doi.org/10.1016/j.rse.2014.09.021
https://doi.org/10.3390/rs8040354
https://doi.org/10.3390/w7084175
https://doi.org/10.1117/1.JRS.7.073573
https://doi.org/10.1117/1.JRS.14.016505
https://doi.org/10.1126/science.aat0636
https://doi.org/10.1002/esp.2001
https://doi.org/10.1007/s00027-015-0430-7
https://doi.org/10.1016/j.pss.2008.02.009
https://doi.org/10.1029/2007WR006133
https://doi.org/10.1109/JSTARS.2014.2320582
https://doi.org/10.1002/rra.2714
https://doi.org/10.1029/2018JF004971
https://doi.org/10.1016/j.geomorph.2014.02.014
https://doi.org/10.1002/esp.1730
https://doi.org/10.3390/rs71215828
https://doi.org/10.1016/j.rse.2009.06.015
https://doi.org/10.1016/j.geomorph.2017.01.036
https://doi.org/10.1016/S0303-2434(99)85007-7
https://doi.org/10.3390/rs12030409
https://doi.org/10.2307/1352081
https://doi.org/10.1016/j.rsase.2019.100274
https://doi.org/10.1002/esp.3425
https://doi.org/10.1016/j.jhydrol.2020.124561
https://doi.org/10.1016/j.geomorph.2013.12.013
https://doi.org/10.1002/rra.3527
https://doi.org/10.1007/s41324-019-00271-3


Remote Sens. 2024, 16, 2425 46 of 47

352. Heeren, D.M.; Mittelstet, A.R.; Fox, G.A.; Storm, D.E.; Al-Madhhachi, A.T.; Midgley, T.L.; Stringer, A.F.; Stunkel, K.B.; Tejral,
R.D. Using Rapid Geomorphic Assessments to Assess Streambank Stability in Oklahoma Ozark Streams. Trans. ASABE 2012, 55,
957–968. [CrossRef]

353. Hamshaw, S.D.; Bryce, T.; Rizzo, D.M.; O’Neil-Dunne, J.; Frolik, J.; Dewoolkar, M.M. Quantifying streambank movement and
topography using unmanned aircraft system photogrammetry with comparison to terrestrial laser scanning. River Res. Appl.
2017, 33, 1354–1367. [CrossRef]

354. Johansen, K.; Grove, J.; Denham, R.; Phinn, S. Assessing stream bank condition using airborne LiDAR and high spatial resolution
image data in temperate semirural areas in Victoria, Australia. J. Appl. Remote Sens. 2013, 7, 073492. [CrossRef]

355. Resop, J.P.; Lehmann, L.; Hession, W.C. Drone Laser Scanning for Modeling Riverscape Topography and Vegetation: Comparison
with Traditional Aerial Lidar. Drones 2019, 3, 35. [CrossRef]

356. Meinen, B.U.; Robinson, D.T. Streambank topography: An accuracy assessment of UAV-based and traditional 3D reconstructions.
Int. J. Remote Sens. 2020, 41, 1–18. [CrossRef]

357. Micheli, E.R.; Kirchner, J.W. Effects of wet meadow riparian vegetation on streambank erosion. 1. Remote sensing measurements
of streambank migration and erodibility. Earth Surf. Processes Landf. 2002, 27, 627–639. [CrossRef]

358. Vázquez-Tarrío, D.; Borgniet, L.; Liébault, F.; Recking, A. Using UAS optical imagery and SfM photogrammetry to characterize
the surface grain size of gravel bars in a braided river (Vénéon River, French Alps). Geomorphology 2017, 285, 94–105. [CrossRef]

359. Carbonneau, P.E.; Bizzi, S.; Marchetti, G. Robotic photosieving from low-cost multirotor sUAS: A proof-of-concept. Earth Surf.
Process. Landforms 2018, 43, 1160–1166. [CrossRef]

360. Carbonneau, P.E.; Dugdale, S.J.; Breckon, T.P.; Dietrich, J.D.; Fonstad, M.A.; Miyamoto, H.; Woodget, A.S. Generalised classification
of hyperspatial resolution airborne imagery of fluvial scenes with deep convolutional neural networks. Geophys. Res. Abstr. 2019,
21, 1.

361. Carbonneau, P.E.; Lane, S.N.; Bergeron, N.E. Catchment-scale mapping of surface grain size in gravel bed rivers using airborne
digital imagery. Water Resour. Res. 2004, 40. [CrossRef]

362. Rainey, M.; Tyler, A.; Gilvear, D.; Bryant, R.; McDonald, P. Mapping intertidal estuarine sediment grain size distributions through
airborne remote sensing. Remote Sens. Environ. 2003, 86, 480–490. [CrossRef]

363. Cassel, M.; Piégay, H.; Fantino, G.; Lejot, J.; Bultingaire, L.; Michel, K.; Perret, F. Comparison of ground-based and UAV a-UHF
artificial tracer mobility monitoring methods on a braided river. Earth Surf. Processes Landf. 2020, 45, 1123–1140. [CrossRef]

364. Barale, V. Environmental Remote Sensing of the Mediterranean Sea. J. Environ. Sci. Health Part A 2003, 38, 1681–1688. [CrossRef]
[PubMed]

365. Kaliraj, S.; Chandrasekar, N.; Ramachandran, K.K. Mapping of coastal landforms and volumetric change analysis in the south
west coast of Kanyakumari, South India using remote sensing and GIS techniques. Egypt. J. Remote Sens. Space Sci. 2017, 20,
265–282. [CrossRef]

366. Dang, K.B.; Dang, V.B.; Bui, Q.T.; Nguyen, V.V.; Pham, T.P.N.; Ngo, V.L. A Convolutional Neural Network for Coastal Classification
Based on ALOS and NOAA Satellite Data. IEEE Access 2020, 8, 11824–11839. [CrossRef]

367. Boak, E.H.; Turner, I.L. Shoreline Definition and Detection: A Review. J. Coast. Res. 2005, 214, 688–703. [CrossRef]
368. Moore, L.J.; Griggs, G.B. Long-term cliff retreat and erosion hotspots along the central shores of the Monterey Bay National

Marine Sanctuary. Mar. Geol. 2002, 181, 265–283. [CrossRef]
369. Valderrama-Landeros, L.; Blanco y Correa, M.; Flores-Verdugo, F.; Álvarez-Sánchez, L.F.; Flores-de-Santiago, F. Spatiotemporal

shoreline dynamics of Marismas Nacionales, Pacific coast of Mexico, based on a remote sensing and GIS mapping approach.
Environ. Monit. Assess. 2020, 192. [CrossRef] [PubMed]

370. Kanwal, S.; Ding, X.; Sajjad, M.; Abbas, S. Three Decades of Coastal Changes in Sindh, Pakistan (1989–2018): A Geospatial
Assessment. Remote Sens. 2019, 12, 8. [CrossRef]

371. Ford, M.R.; Dickson, M.E. Detecting ebb-tidal delta migration using Landsat imagery. Mar. Geol. 2018, 405, 38–46. [CrossRef]
372. Marghany, M.; Sabu, Z.; Hashim, M. Mapping coastal geomorphology changes using synthetic aperture radar data. Int. J. Phys.

Sci. 2010, 5, 1890–1896.
373. Shu, Y.; Li, J.; Gomes, G. Shoreline Extraction from RADARSAT-2 Intensity Imagery Using a Narrow Band Level Set Segmentation

Approach. Mar. Geod. 2010, 33, 187–203. [CrossRef]
374. Elnabwy, M.T.; Elbeltagi, E.; El Banna, M.M.; Elshikh, M.M.Y.; Motawa, I.; Kaloop, M.R. An approach based on landsat images

for shoreline monitoring to support integrated coastal management—A case study, ezbet elborg, nile delta, Egypt. ISPRS Int. J.
Geo-Inf. 2020, 9, 199. [CrossRef]

375. Dong, P.; Chen, Q. LiDAR Remote Sensing and Its Applications; CRC Press, Taylor & Francis Group: Boca Raton, FL, USA, 2018;
ISBN 978-1-4822-4301-7.

376. Vousdoukas, M.I.; Ranasinghe, R.; Mentaschi, L.; Plomaritis, T.A.; Athanasiou, P.; Luijendijk, A.; Feyen, L. Sandy coastlines under
threat of erosion. Nat. Clim. Change 2020, 10, 260–263. [CrossRef]

377. Seidel, M.; Hutengs, C.; Oertel, F.; Schwefel, D.; Jung, A.; Vohland, M. Underwater Use of a Hyperspectral Camera to Estimate
Optically Active Substances in the Water Column of Freshwater Lakes. Remote Sens. 2020, 12, 1745. [CrossRef]

https://doi.org/10.13031/2013.41527
https://doi.org/10.1002/rra.3183
https://doi.org/10.1117/1.JRS.7.073492
https://doi.org/10.3390/drones3020035
https://doi.org/10.1080/01431161.2019.1597294
https://doi.org/10.1002/esp.338
https://doi.org/10.1016/j.geomorph.2017.01.039
https://doi.org/10.1002/esp.4298
https://doi.org/10.1029/2003WR002759
https://doi.org/10.1016/S0034-4257(03)00126-3
https://doi.org/10.1002/esp.4777
https://doi.org/10.1081/ESE-120021489
https://www.ncbi.nlm.nih.gov/pubmed/12929817
https://doi.org/10.1016/j.ejrs.2016.12.006
https://doi.org/10.1109/ACCESS.2020.2965231
https://doi.org/10.2112/03-0071.1
https://doi.org/10.1016/S0025-3227(01)00271-7
https://doi.org/10.1007/s10661-020-8094-8
https://www.ncbi.nlm.nih.gov/pubmed/31955253
https://doi.org/10.3390/rs12010008
https://doi.org/10.1016/j.margeo.2018.08.002
https://doi.org/10.1080/01490419.2010.496681
https://doi.org/10.3390/ijgi9040199
https://doi.org/10.1038/s41558-020-0697-0
https://doi.org/10.3390/rs12111745


Remote Sens. 2024, 16, 2425 47 of 47

378. Lyu, L.; Song, K.; Wen, Z.; Liu, G.; Shang, Y.; Li, S.; Tao, H.; Wang, X.; Hou, J. Estimation of the lake trophic state index (TSI) using
hyperspectral remote sensing in Northeast China. Opt. Express 2022, 30, 10329. [CrossRef] [PubMed]

379. Morrow, R.; Fu, L.-L.; Rio, M.-H.; Ray, R.; Prandi, P.; Le Traon, P.-Y.; Benveniste, J. Ocean Circulation from Space. Surv. Geophys.
2023, 44, 1243–1286. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1364/OE.453404
https://www.ncbi.nlm.nih.gov/pubmed/35473003
https://doi.org/10.1007/s10712-023-09778-9

	Introduction 
	Definition and Standards of Water Quality and Water Characteristics 
	Definition of Water Diversity Using Remote Sensing 
	Approaches for Monitoring Water Diversity and Water Quality 
	In Situ Approaches 
	Remote Sensing Approach 
	Monitoring the Diversity of Water Traits Using Remote Sensing 
	Monitoring the Diversity of Water Genese Using Remote Sensing 
	Monitoring the Structural Diversity of Water Using Remote Sensing 
	Monitoring the Taxonomic Diversity of Water with Remote Sensing 
	Monitoring the Functional Diversity of Water with Remote Sensing 


	Conclusions and Further Research 
	Appendix A
	References

