
J. Math. Anal. Appl. 538 (2024) 128422
Contents lists available at ScienceDirect

Journal of Mathematical Analysis and Applications

journal homepage: www.elsevier.com/locate/jmaa

Regular Articles

Bifurcation and asymptotics of cubically nonlinear transverse 

magnetic surface plasmon polaritons

Tomáš Dohnal ∗, Runan He
Institut für Mathematik, Martin-Luther-Universität Halle-Wittenberg, 06120 Halle (Saale), Germany

a r t i c l e i n f o a b s t r a c t

Article history:
Received 29 November 2023
Available online 15 April 2024
Submitted by C. Clason

Keywords:
Nonlinear Maxwell equations
Surface plasmon
Bifurcation
Operator pencil
PT-symmetry
Asymptotic expansion

Linear Maxwell equations for transverse magnetic (TM) polarized fields support 
single frequency surface plasmon polaritons (SPPs) localized at the interface of a 
metal and a dielectric. Metals are typically dispersive, i.e. the dielectric function 
depends on the frequency. We prove the bifurcation of localized SPPs in dispersive 
media in the presence of a cubic nonlinearity and provide an asymptotic expansion 
of the solution and the frequency. The problem is reduced to a system of nonlinear 
differential equations in one spatial dimension by assuming a plane wave depen-
dence in the direction tangential to the (flat) interfaces. The number of interfaces 
is arbitrary and the nonlinear system is solved in a subspace of functions with the 
H1-Sobolev regularity in each material layer. The corresponding linear system is an 
operator pencil in the frequency parameter due to the material dispersion. The stud-
ied bifurcation occurs at a simple isolated eigenvalue of the pencil. For geometries 
consisting of two or three homogeneous layers we provide explicit conditions on the 
existence of eigenvalues and on their simpleness and isolatedness. Real frequencies 
are shown to exist in the nonlinear setting in the case of PT -symmetric materials. 
We also apply a finite difference numerical method to the nonlinear system and 
compute bifurcating curves.

© 2024 The Author(s). Published by Elsevier Inc. This is an open access article 
under the CC BY license (http://creativecommons .org /licenses /by /4 .0/).

1. Introduction

In this article we study time harmonic electromagnetic waves at one or more interfaces between layers of 
nonlinear and dispersive media. In applications these are typically layers of dielectric and metallic materials 
and the waves are referred to as surface plasmon polaritons (SPPs). The underlying model is given by 
Maxwell’s equations with the absence of free charges, i.e.

∂tD = ∇×H, μ0∂tH = −∇× E , ∇ · D = ∇ · H = 0, (1)
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where E and H are the electric and magnetic field respectively, D is the electric displacement field depending 
on E in a Kerr nonlinear and nonlocal relation

D(x, y, z, t) = ε0E(x, y, z, t) + ε0

∫
R

χ(1) (x, y, z, t− s) E(x, y, z, s)ds

+ ε0

∫
R3

χ(3) (x, y, z, t− s1, t− s2, t− s3) ((E(x, y, z, s2) · E(x, y, z, s3)) E(x, y, z, s1)) d(s1, s2, s3),
(2)

χ(1) : R4 → R, χ(3) : R6 → R, χ(1)(·, τ) = 0 for τ < 0, and χ(3)(·, τ1, τ2, τ3) = 0 if τ1 < 0 or τ2 < 0 or τ3 < 0. 
The constants ε0 and μ0 are the permittivity and the permeability of the free space respectively.

For a monochromatic field

(E , H, D) (x, y, z, t) = (E, H, D) (x, y, z)e−iωt +
(
E, H, D

)
(x, y, z)eiωt,

with a real frequency ω, one can obtain a nonlinear eigenvalue problem in (ω, (E, H)) by neglecting higher 
harmonics (terms proportional to e3iωt and e−3iωt), see [25],

∇×H = −iωD, ∇×E = iωμ0H, ∇ ·D = ∇ ·H = 0 (3a)

D = ε0

(
1 + χ̂(1)(x, y, z, ω)

)
E

+ ε0

(
(χ̂(3)(x, y, z,−ω, ω, ω) + χ̂(3)(x, y, z, ω,−ω, ω))|E|2E + χ̂(3)(x, y, z, ω, ω,−ω)(E · E)E

)
.

(3b)

Here |E|2 = E ·E and f̂ is the Fourier transform of f in time, f̂(ω) :=
∫
R f(t)eiωt dt. Clearly, if ω �= 0, then 

all solutions of the first two equations in (3a) satisfy the last two equations, i.e. the divergence conditions.
For notational simplicity we assume

χ̂(3)(x, y, z,−ω, ω, ω) = χ̂(3)(x, y, z, ω,−ω, ω) = χ̂(3)(x, y, z, ω, ω,−ω) =: χ̂(3)(x, y, z, ω).

Then (3b) becomes

D = ε0

(
1 + χ̂(1)(x, y, z, ω)

)
E + ε0χ̂

(3)(x, y, z, ω)
(
2|E|2E + (E · E)E

)
.

Note that the analysis can be carried out in the same way without this simplification.

Remark 1. The removal of higher harmonics occurs automatically if one uses a time averaged model for the 
nonlinear part of the displacement field tailored for the frequency ω ∈ R. This model has been used, for 
instance, in [21,27,28]. In detail, one sets

D(x, y, z, t) = ε0E(x, y, z, t) + ε0

∫
R

χ(1) (x, y, z, t− s) E(x, y, z, s)ds

+ ε0χ
(3) (x, y, z) 〈|E|2〉ω(x, y, z)E(x, y, z, t),

(4)

where 〈f〉ω := ω
2π

∫ 2π
ω

0 f(t) dt. With this model and the monochromatic ansatz one obtains D =
ε0
(
1 + χ̂(1)(x, y, z, ω)

)
E + ε0χ

(3)(x, y, z)|E|2E.

We consider one-dimensional structures, where χ̂(1) and χ̂(3) are independent of y and z, i.e.

χ̂(j)(x, y, z, ω) = χ̂(j)(x, ω), j = 1, 3,
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and study the transverse magnetic fields

E(x, y, z) = (μ0u1(x), μ0u2(x), 0)T eiky,

H(x, y, z) = (0, 0, u3(x))T eiky
(5)

with k ∈ R fixed. The factor μ0 has been added for convenience. This leads to the vectorial nonlinear system

Lk(x, ω)u := Au−B(x, ω)u = h(x, ω, u), u := (u1, u2, u3)T , x ∈ R, (6)

where

A :=
( 0 0 ik

0 0 −∂x
−ik ∂x 0

)
= ∇k×, ∇k = (∂x, ik, 0)T ,

B(x, ω) :=
( iV (x, ω) 0 0

0 iV (x, ω) 0
0 0 iω

)
, V (x, ω) := −ωε0μ0

(
1 + χ̂(1)(x, ω)

)
,

h(x, ω, u) := −iωε0μ3
0χ̂

(3)(x, ω)
(
2|uE |2uE + (uE · uE)uE

)
,

(7)

and with uE := (u1, u2, 0)T . In this reduction, solutions u of system (6) satisfy ∇k ·(B(·, ω)u +h(·, ω, u)) = 0, 
i.e. ∂xD1 + ∂yD2 = 0. Due to the z-independence of E and H and because H1 = H2 = 0, we obtain the 
divergence conditions ∇ ·D = ∇ ·H = 0 as expected. The operator Lk(x, ω) and the matrix B(x, ω) will 
often be abbreviated via Lk(ω) and B(ω).

Remark 2. Note that problem (6) can be considered also for ω = ωR + iωI ∈ C. However, the resulting field

(E , H, D) (x, y, z, t) = (E, H, D) (x, y, z)e−iωt +
(
E, H, D

)
(x, y, z)eiωt,

solves the nonlinear Maxwell equations (1), (2) (with the harmonics e−3iωRt and e3iωRt neglected) or (1), 
(4) only if ωI = 0. In fact, for ωI �= 0, the averaged model (4) is not defined. In (1), (2) the linear terms 
are proportional to eωIt while the nonlinear terms are proportional to e3ωIt. This is clearly in contrast with 
the linear problem (χ̂(3) = 0), where complex frequencies are allowed. In fact, the classical linear surface 
plasmons on metallic surfaces have frequencies with Im(ω) < 0 resulting in an exponential decay in time.

In our analysis we will first prove bifurcations of solutions of (6) with complex ω. Second, we show that 
under the so called PT -symmetry assumption on the functions χ̂(1,3)(·, ω) bifurcations with real ω can be 
proved. The PT -symmetry results in a spatial balance of loss and gain of the material.

The concrete form of the functions χ̂(1,3) will not be important for our results. These material functions 
are given by measurements for the given material. A classical description of (homogeneous) metals is via 
the Drude model [3]

χ̂(1)(x, ω) = −
ω2
p

ω2 + iγω , (8)

where ωp ∈ R+ and γ ∈ R. In dielectrics, on the other hand, one often uses an ω-independent approximation 
of χ̂(1). Such an approximation is valid in a certain range of operating frequencies. In homogenous dielectrics 
one then has χ̂(1) = const. ∈ R. The realness of χ̂(1) means that the material is conservative, i.e. no energy 
loss or gain is present. Also χ̂(3) typically takes the form of a rational function, see Chapter 1 in [7], or it is 
again assumed to be a real constant (for homogenous materials).
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SPPs have been observed and studied since the 1950s, see e.g. [22], [24] and [23]. Classical SPPs arise 
from the interaction between an illuminating wave and the free electrons of a conductor and generate a 
highly confined electromagnetic field at the interface of a metal and a dielectric. This makes them useful 
in sensing (see [2], [18] or for example [16]). The strong localization is useful also in applications requiring 
light propagation in sub-wavelength geometries [4]. In addition, the strong field near the interface enhances 
the nonlinear response of the medium, see [26], [30], and SPPs propagating in the form of solitons or 
solitary waves have been studied [9], [14]. These and similar studies give a numerical or a formal analytical 
evidence of such solutions of Maxwell’s equations. We give an analytical proof of the existence of localized 
time harmonic SPPs bifurcating for their linear counterparts. In the case of the transverse electric (TE) 
polarized fields this bifurcation analysis was carried out in [10,11]. Here we address the TM-polarization. 
Note that in the simplest setting of a single interface between a linear homogenous metal and a linear 
homogenous dielectric, only TM-SPPs exist.

Interfaces of materials can be understood as waveguides. In fact, a classical waveguide is given by a 
material sandwiched between two other materials. Such a setting with dielectric homogeneous materials 
was studied in the Maxwell’s equations both for the TE and TM polarization with the finite material being 
Kerr nonlinear in [29], [31] and [32]. Nonlinear dispersion relations were derived in these references. In our 
case the layers need not be homogenous, all layers can be nonlinear and we allow ω-dependence of the 
material constants. In addition, the number of layers is arbitrary in our bifurcation result.

As explained in Remark 2, in our time-independent nonlinear equation only solutions with real frequencies 
ω produce solutions of the nonlinear Maxwell’s equations. We achieve the realness of ω by working in PT -
symmetric materials. PT -symmetry was originally proposed in quantum mechanics in [6]. In the context of 
SPPs it has been used in [1], [5], [10,11], [15], and [17]. Mathematically, we reduce the bifurcation problem 
to one in a PT -symmetric subspace. Such approach was used also in [12] in a general bifurcation problem 
but with a linear dependence on the bifurcation parameter. In our case the bifurcation parameter is ω and 
the dependence on it in the SPP case is generally nonlinear.

1.1. Main results

We consider interfaces of two or more media. These are generally inhomogeneous but with a smooth 
dependence of χ̂(1,3)(x, ω) on x within each layer. In the case of m material layers we write

R = ∪m
j=1Ij , Ij := (xj−1, xj),

where x0 = −∞, xm = ∞, and xj−1 < xj for all j = 1, . . . , m. We use the following notation:

〈·, ·〉 := 〈·, ·〉L2(R,Cn), ‖ · ‖ := ‖ · ‖L2(R),

H1 := {f ∈ L2(R,Cn) : f |Ij ∈ H1(Ij ,Cn) ∀j = 1, . . . ,m}, n ∈ N,

‖f‖H1 :=
m∑
j=1

‖f‖H1(Ij),

where the value of n depends on the context. The cases n = 1, 2, 3 appear in the paper.
Let us now fix the functional analytic setting. Working in the Hilbert space L2(R, C3), the domain of 

the operator A is naturally chosen as

D(A) :=
{
u ∈ L2 (R,C3) : ∇k × u ∈ L2 (R,C3)} . (9)

Assuming that χ̂1(·, ω) ∈ L∞(R), we clearly have that B(·, ω) : D(A) → L2(R, C3) is bounded and 
D(Lk(ω)) = D(A) for every ω in the domain of V (x, ·). The range of Lk(ω) is L2(R, C3) for every ω
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in the domain of V (x, ·). Note that k is fixed throughout the paper and the operator Lk is considered as a 
pencil with respect to the parameter ω.

One can easily see that

D(A) =
{
u ∈ L2 (R,C3) : u2, u3 ∈ H1 (R,C)

}
. (10)

For the linear problem, it is useful to study the operator Lk(x, ω) in each material layer separately. Clearly, 
we have

D(A) =
{
u ∈ L2 (R,C3) : u2, u3 ∈ H1 (Ij ,C) ∀j ∈ {1, . . . ,m} and (12) holds

}
. (11)

�u2� = �u3� = 0 at xj ∀j ∈ {1, . . . ,m− 1}, (12)

where

�f� = 0 at xj means lim
x→xj

+
f (x) = lim

x→x−
j

f(x).

We assume V ∈ L∞(R, C) for all ω ∈ Ω ⊂ C and define

Vj(·, ω) := V (·, ω)|Ij , j ∈ {1, . . . ,m}

for each ω ∈ Ω. Defining Ωj := {ω ∈ C : Vj(·, ω) ∈ L∞(Ij))}, we have

Ω = ∩m
j=1Ωj .

Note that typically Ω �= C as χ̂1 usually has poles in the ω-variable, see e.g. the Drude model.
The following assumptions are used in Theorems 1.1 and 1.2.

(A-E) ω0 �= 0 is an algebraically simple, isolated eigenvalue of the operator pencil Lk;
(A-T) 〈∂ωB(·, ω0)ϕ0, ϕ∗

0〉 �= 0.

There exists δ > 0 such that

(A-V) Vj(x, ·) : C → C is holomorphic on Bδ(ω0) ⊂ C for each j ∈ {1, . . . , m} and almost every x ∈ Ij and

Vj(·, ω), 1
Vj(·, ω) , ∂ωVj(·, ω), ∂2

ωVj(·, ω) ∈ W 1,∞(Ij ,C) ∀j ∈ {1, . . . ,m}, ω ∈ Bδ(ω0);

(A-N) C � ω �→ χ̂(3)(·, ω) ∈ W 1,∞(Ij , C) is Lipschitz continuous on Bδ(ω0) for each j ∈ {1, . . . , m}, i.e. 
there is La > 0 such that

max
j∈{1,...,m}

‖χ̂(3)(·, ω1) − χ̂(3)(·, ω2)‖W 1,∞(Ij) ≤ La|ω1 − ω2|

for all ω1, ω2 ∈ Bδ(ω0);

Theorem 1.1. Let k ∈ R. Assume (A-E), (A-V), (A-T), and (A-N). Let ϕ0 ∈ D(A) be an eigenfunction 
corresponding to ω0 normalized to ‖ϕ0‖ = 1 and ϕ∗

0 the eigenfunction of the adjoint L∗
k with the eigenvalue 

ω0 normalized to 〈ϕ0, ϕ∗
0〉 = 1.

Then there is a unique branch of solutions (ω, u) ∈ C×(D(A) ∩H1) of (6) bifurcating from (ω0, 0). There 
exists ε0 > 0 s.t. for any ε ∈ (0, ε0) the solution (ω, u) with 〈u, ϕ∗

0〉 = ε1/2 has the form
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ω = ω0 + εν + ε2σ, u = ε
1
2ϕ0 + ε

3
2φ + ε

5
2ψ, (13)

where

ν = − 〈h(·, ω0, ϕ0), ϕ∗
0〉

〈∂ωB(·, ω0)ϕ0, ϕ∗
0〉
, (14)

φ is the unique solution in D(A) ∩H1 ∩ 〈ϕ∗
0〉⊥ of

Lk(x, ω0)φ = h(x, ω0, ϕ0) + ν∂ωB(x, ω0)ϕ0, (15)

σ ∈ C and ψ ∈ D(A) ∩H1 ∩ 〈ϕ∗
0〉⊥.

Theorem 1.2. In the setting of Theorem 1.1 assume in addition ω0 ∈ R and the PT -symmetry of the 
material, i.e. V (x, ω) = V (−x, ω) and χ̂(3)(x, ω) = χ̂(3)(−x, ω) for all x ∈ R and all ω ∈ (ω0 − δ, ω0 + δ)
with some δ > 0. Then the bifurcating solution family with ε ∈ (0, ε0) satisfies ω ∈ R and u can be chosen 
PT symmetric, i.e. u(x) = u(−x).

Our construction of a family of solutions bifurcating from an eigenvalue ω0 uses the Fredholm property 
of Lk(ω0) - in particular the closedness of its range - as well as the algebraic simpleness of ω0. As Lk is an 
operator pencil, some care has to be given to defining the spectrum as well as simpleness and isolatedness 
of eigenvalues. We proceed analogously to [8], where the second order formulation corresponding to (6) was 
studied. Note that unlike in [8] we have not included the linear divergence condition ∇k ·

(
(1 + χ̂(1)(·, ω))u

)
=

0 in the domain D(A). In [8] this was included to obtain ∇ ·D = 0 also if ω = 0. In this paper we are interested 
only in ω near some eigenvalue ω0 �= 0. In fact, including the divergence condition in the definition of D(A)
would complicate the nonlinear analysis as the range of Lk(ω) would include only divergence free functions. 
The nonlinearity h(·, ω, u) is, however, generally not divergence (∇k·) free for u with ∇k ·

(
(1 + χ̂(1)(·, ω))u

)
=

0.
In applications χ̂1 is often complex valued. As a result Lk(ω) is not self-adjoint and the existence of 

a real linear eigenvalue ω0 (or a real nonlinear eigenvalue ω) cannot be expected. However, we show that 
for PT symmetric metamaterials (i.e. with a spatial balance of gain and loss) real linear eigenvalues can 
be obtained. These persist to real nonlinear eigenvalues. In this way nonlinear transverse magnetic surface 
plasmons with real frequencies are found. Such surface plasmons are conservative.

The structure of the rest of the paper is as follows. In Section 2 we first define the spectrum for general 
operator pencils. Next, we derive explicit conditions for the existence of eigenvalues in the cases of two and 
three homogeneous layers. We also study their simplicity and isolatedness from the rest of the spectrum. 
A numerical example is provided where eigenvalues are computed and tested for simplicity and isolatedness. 
Theorems 1.1 and 1.2 are proved in Sections 3 and 4 respectively. In Section 5 we present a finite difference 
numerical method for the computation of the bifurcating solutions. Numerical results are shown to confirm 
the asymptotics given by Theorem 1.1 and Theorem 1.2. Finally, the two appendices provide some supporting 
calculations for the spectral analysis and for the bifurcation proof.

2. Linear spectral problem

Similarly to [8] we define the spectrum of the operator pencil Lk using an additional parameter λ. 
Specifically, one considers the standard eigenvalue problem

Lk(ω)u = λu. (16)
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Whether ω belongs to the spectrum (or its subset) of Lk is defined below by the condition that λ = 0
belongs to the corresponding set for Lk(ω) with ω fixed.

We first define the resolvent set of the pencil Lk by

ρ(Lk) := {ω ∈ Ω : Lk(ω) : D(A) → L2(R,C3) is bijective with a bounded inverse}

and the spectrum of Lk by

σ(Lk) := Ω \ ρ(Lk). (17)

Note that σ(Lk) = {ω ∈ C : 0 ∈ σ(Lk(ω))}.
The point spectrum is defined by

σp(Lk) := {ω ∈ Ω : ∃u ∈ D(A) \ {0} : Lk(ω)u = 0}.

Elements of σp(Lk) are called eigenvalues of Lk.
The discrete spectrum is defined via

ω ∈ σd(Lk) :⇔ 0 ∈ σd(Lk(ω)), ω ∈ Ω, (18)

i.e. λ = 0 is an isolated eigenvalue of finite algebraic multiplicity of the standard eigenvalue problem (16)
(with ω ∈ Ω fixed).

Here note that the algebraic multiplicity of λ as an eigenvalue of Lk(ω) is called infinite if its geometric 
multiplicity, i.e. dim ker(Lk(ω)), is infinite or there exists a sequence (un)n∈N0 of linearly independent 
elements un ∈ D(A) such that (Lk(ω))un+1 = un for all numbers n ∈ N0 with the function u0 ∈ ker(Lk(ω)) \
{0}. Otherwise the algebraic multiplicity is called finite.

Finally ω ∈ σp(Lk) is called algebraically simple if λ = 0 is an algebraically simple eigenvalue of Lk(ω), 
i.e. if it is geometrically simple and there is no solution u ∈ D(A) of

Lk(ω)u = v, (19)

where v ∈ ker(Lk(ω)) \ {0} and such that u and v are linearly independent.
In order for the spectral theory to be meaningful, we need A (and hence also Lk) to be a closed and 

densely defined operator. We shall prove the closedness and the denseness results for the operator Lk(ω).

Proposition 2.1. The operators A : D(A) −→ L2 (R,C3) and Lk(ω) : D(A) −→ L2 (R,C3) are closed and 
densely defined.

Proof. The denseness of D(A) in L2(R, C3) is obvious. We first show that A : D(A) → L2(R, C3) is closed. 
For this we recall that D(A) equipped with the inner product

〈u, v〉A := 〈u, v〉L2(R,C3) + 〈∇k × u, ∇k × v〉L2(R,C3) (20)

is a Hilbert space, which is shown completely analogously to Lemma 3.1 in [8]. We note that the norm 
generated by 〈·, ·〉A is the graph norm

‖v‖A =
(
‖v‖2

L2(R,C3) + ‖∇k × v‖2
L2(R,C3)

)1/2

and A : D(A) → L2(R, C3) is bounded if D(A) is equipped with ‖ · ‖A.
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Let now (uk) ⊂ D(A) and (uk, Auk) → (u, v) in L2(R, C3)2. This implies that (uk) is a Cauchy sequence 
in (D(A), ‖ · ‖A) and hence u ∈ D(A). By the continuity of A we then get Auk → Au in L2 and hence 
v = Au.

Since V (·, ω) ∈ L∞(R), we get that B(·, ω) : D(A) → L2(R, C3) is bounded, and conclude that the 
operator Lk(·, ω) is a closed and densely defined operator in L2(R, C3). �
Lemma 2.2. Let ω0 be an eigenvalue of Lk and assume 1

Vj(·,ω0) ∈ W 1,∞(Ij , C) for all j ∈ {1, . . . , m}. Then 

corresponding eigenfunctions ϕ0 ∈ D(A) \ {0} satisfy ϕ0 ∈ H1.

Proof. We have ϕ0,2, ϕ0,3 ∈ H1(Ij) for each j by the definition of D(A). The first component is given by 
ϕ0,1 = kϕ0,3

V (·,ω0) , which is in H1(Ij) for each j as 1
Vj(·,ω0) ∈ W 1,∞(Ij). �

2.1. Homogeneous layers

In the case of homogeneous layers, i.e.

Vj(·, ω) = Vj(ω) ∈ C, j ∈ {1, . . . ,m},

the fundamental system for the linear part of (6) can be found explicitly and the condition for ω to be an 
eigenvalue reduces effectively to an algebraic equation.

We study eigenvalues in the case of homogeneous layers only outside the set

Ω0 := {ω ∈ Ω : ω = 0 or Vj(ω) = 0 for some j ∈ {1, . . . ,m}}.

This set consists of eigenvalues of infinite multiplicity. Assuming namely Vj(ω) = 0, then Lk∇kϕ = ∇k ×
(∇kϕ) = 0 for each ϕ ∈ C∞

c (Ij , R) (curl of a gradient vanishes and B(x, ω)(v, w, 0)T = 0 for each x ∈
Ij , v, w ∈ L2(R)).

In contrast, in [8], where D(A) includes the divergence condition, ω ∈ Ω0 is an eigenvalue of infinite 
multiplicity only if 1 + χ̂(1)(·, ω) = 0 on one of the layers.

Next, we consider two special cases, namely m = 2 and m = 3.

2.1.1. Two homogenous layers
Without loss of generality we choose the two homogeneous layers I1 := R− := (−∞, 0), I2 := R+ :=

(0, ∞) (i.e. with the interface at x = 0). Hence

V (x, ω) = V±(ω) for ± x > 0,

where V±(ω) := V (±x > 0, ω) are independent of x. We also define the functions

W (x, ω) := −ωV (x, ω) and W±(ω) := −ωV±(ω).

The spectrum of the problem with two layers was analyzed in [8] in detail for the second order formulation 
(the curl-curl problem) with the condition ∇k ·

(
(1 + χ̂(1)(·, ω))u

)
= 0 included in the definition of the domain 

of A. As explained in Section 1, this definition of D(A) is not suitable for the nonlinear analysis. Our domain 
D(A) excludes this condition and hence the range of Lk is not divergence free. As a result, in the second 
order formulation the resolvent problem cannot be reduced to a scalar equation since derivatives of L2

functions would appear, see the proof of Proposition 3.2 in [8]. Hence, there is no substantial benefit in 
using the second order formulation and we stay within the first order formulation. For this we need to redo 
some of the calculations in [8] with the definition of D(A) as in (10).

For the resolvent set we have
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Proposition 2.3. Let k ∈ R. Then

ρ(Lk) ⊃ Ω \ (M (k)
+ ∪M

(k)
− ∪N (k) ∪ Ω0),

where

M
(k)
± := {ω ∈ Ω \ Ω0 : W±(ω) ∈ [k2,∞)},

and

N (k) := {ω ∈ Ω \ Ω0 : W+(ω),W−(ω) /∈ [k2,∞) and (22) holds}. (21)√
k2 −W+(ω)V−(ω) +

√
k2 −W−(ω)V+(ω) = 0. (22)

Proof. Let r ∈ L2(R, C3) and ω ∈ Ω \ (M (k)
+ ∪M

(k)
− ∪N (k)∪Ω0). We need to show the existence of a unique 

u ∈ D(A) such that

iku3 − iV±(ω)u1 = r1
−u′

3 − iV±(ω)u2 = r2
u′

2 − iku1 − iωu3 = r3

⎫⎪⎬
⎪⎭ on R±, (23)

where V (ω) := V (x, ω) and such that ‖u‖L2(R)3 ≤ c‖r‖L2(R)3 with c independent of r. The first equation 
in (23) implies

u1 = i
V±(ω) (r1 − iku3) on R±. (24)

Plugging (24) into the third equation of (23), one obtains

u′
3 + iV±(ω)u2 = −r2

u′
2 + iW±(ω)−k2

V±(ω) u3 = r3 − k
V±(ω)r1

}
on R±. (25)

The homogeneous version of system (25) (with the solution vector being (u2, u3)T ) has the fundamental 
solution matrix

Y±(x) :=
(

μ±e
μ±x μ±e

−μ±x

−iV±(ω)eμ±x iV±(ω)e−μ±x

)
, (26)

where μ± :=
√

k2 −W±(ω). Analogously to [8] (see Lemma 3.5), we have the following particular solutions 
in L2(R±, C2)

ũ+
p (x) := 1

2Y+(x)
(∫∞

x
ρ
(1)
+ (s)e−μ+s ds∫ x

0 ρ
(2)
+ (s)eμ+s ds

)

= 1
2

(
eμ+xμ+

∫∞
x

ρ
(1)
+ (s)e−μ+s ds + e−μ+xμ+

∫ x

0 ρ
(2)
+ (s)eμ+s ds

eμ+x(−iV+(ω))
∫∞
x

ρ
(1)
+ (s)e−μ+s ds + e−μ+xiV+(ω)

∫ x

0 ρ
(2)
+ (s)eμ+s ds

)
, x ∈ R+,

ũ−
p (x) := 1

2Y−(x)
( ∫ 0

x
ρ
(1)
− (s)e−μ−s ds∫ x

−∞ ρ
(2)
− (s)eμ−s ds

)

= 1
2

(
eμ−xμ−

∫ 0
x
ρ
(1)
− (s)e−μ−s ds + e−μ−xμ−

∫ x

−∞ ρ
(2)
− (s)eμ−s ds

eμ−x(−iV−(ω))
∫ 0
x
ρ
(1)
− (s)e−μ−s ds + e−μ−xiV−(ω)

∫ x

−∞ ρ
(2)
− (s)eμ−s ds

)
, x ∈ R−,
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where

ρ
(1)
± (x) := i r2(x)

V±(ω) + kr1(x)
V±(ω)μ±

− r3(x)
μ±

, ρ
(2)
± (x) := i r2(x)

V±(ω) − kr1(x)
V±(ω)μ±

+ r3(x)
μ±

. (27)

Because of Re(μ±) > 0 (recall that ω /∈ M
(k)
± ) it holds that ũ+

p ∈ L2(R+, C2), ũ−
p ∈ L2(R−, C2).

The general solution ũ = (u2, u3) ∈ L2(R, C2) of (25) is given by

ũ(x) =

⎧⎪⎪⎨
⎪⎪⎩
C−e

μ−x

(
μ−

−iV−(ω)

)
+ ũ−

p (x), x < 0,

C+e
−μ+x

(
μ+

iV+(ω)

)
+ ũ+

p (x), x > 0
(28)

with C± ∈ C arbitrary. For ω /∈ Ω0 we have V±(ω) �= 0 and (24) yields also u1 ∈ L2(R).
For the interface condition �u2� = 0 (at x = 0) first note that

lim
x→0+

u2(x) = C+μ+ + μ+

2

∞∫
0

ρ
(1)
+ (s)e−μ+s ds, lim

x→0−
u2(x) = C−μ− + μ−

2

0∫
−∞

ρ
(2)
− (s)eμ−s ds. (29)

Hence �u2� = 0 if and only if

C+ = μ−
μ+

C− + μ−
2μ+

0∫
−∞

ρ
(2)
− (s)eμ−s ds− 1

2

∞∫
0

ρ
(1)
+ (s)e−μ+s ds. (30)

For �u3� = 0 we note that

lim
x→0+

u3(x) = C+iV+(ω) − iV+(ω)
2

∞∫
0

ρ
(1)
+ (s)e−μ+s ds,

lim
x→0−

u3(x) = −C−iV−(ω) + iV−(ω)
2

0∫
−∞

ρ
(2)
− (s)eμ−s ds.

(31)

Using (30), we get

(μ−V+(ω) + μ+V−(ω))C− = 1
2 (μ+V−(ω) − μ−V+(ω))

0∫
−∞

ρ
(2)
− (s)eμ−s ds + μ+V+(ω)

∞∫
0

ρ
(1)
+ (s)e−μ+s ds.

(32)
Hence, a unique C− exists for any r ∈ L2(R, C3) if and only if

μ−V+(ω) + μ+V−(ω) �= 0,

i.e. ω /∈ N (k).
To prove ‖u‖L2(R,C3) ≤ c‖r‖L2(R,C3) with c independent of r, note that Lemma 3.5 of [8] provides an 

estimate for all the integral terms in ũ±
p :
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∥∥∥∥∥∥eμ+·
∞∫
·

ρ
(1)
+ (s)e−μ+s ds

∥∥∥∥∥∥
L2(R+)

≤ c

Re(μ+)

∥∥∥ρ(1)
+

∥∥∥
L2(R+)

,

∥∥∥∥∥∥e−μ+·
·∫

0

ρ
(2)
+ (s)eμ+s ds

∥∥∥∥∥∥
L2(R+)

≤ c

Re(μ+)

∥∥∥ρ(2)
+

∥∥∥
L2(R+)

,

∥∥∥∥∥∥e−μ−·
·∫

−∞

ρ
(2)
− (s)eμ−s ds

∥∥∥∥∥∥
L2(R−)

≤ c

Re(μ−)

∥∥∥ρ(2)
−

∥∥∥
L2(R−)

,

∥∥∥∥∥∥eμ−·
0∫

·

ρ
(1)
− (s)e−μ−s ds

∥∥∥∥∥∥
L2(R−)

≤ c

Re(μ−)

∥∥∥ρ(1)
−

∥∥∥
L2(R−)

.

(33)

For ω ∈ Ω \ (M (k)
+ ∪M

(k)
− ∪ Ω0) we clearly have

‖ρ(1)
± ‖L2(R±) ≤ c‖r‖L2(R±,C3) and ‖ρ(2)

± ‖L2(R±) ≤ c‖r‖L2(R±,C3).

In summary, we get ‖ũ‖L2(R,C2) ≤ c‖r‖L2(R,C3). For u1 we get from (24) the estimate

‖u1‖L2(R) ≤ c
(
‖r1‖L2(R) + ‖u3‖L2(R)

)
.

Altogether we conclude ‖u‖L2(R,C3) ≤ c‖r‖L2(R,C3).
The only missing property for u ∈ D(A) is ũ ∈ H1(R±, C2). This follows, however, from the estimates 

(33) because we have, for example,

u′
2(x) = μ2

−

⎛
⎝C−e

μ−x + 1
2

⎛
⎝eμ−x

0∫
x

ρ
(1)
− (s)e−μ−s ds− e−μ−x

x∫
−∞

ρ
(2)
− (s)eμ−s ds

⎞
⎠
⎞
⎠

+ μ−
2 (ρ(2)

− (x) − ρ
(1)
− (x))

for x ∈ R−.
The proof of Proposition 2.3 is complete. �

Remark 3. Note that Proposition 2.3 holds also with Ω0 replaced by the possibly smaller set Ω̃0 := {ω ∈
Ω : Vj(ω) = 0 for some j ∈ {1, . . . , m}}. In other words, 0 ∈ ρ(Lk) if 0 ∈ Ω, Vj(0) �= 0 ∀j, and k �= 0. The 
inequality Vj(0) �= 0 is possible if χ̂(1) has a pole at ω = 0. If k = 0, then M (k)

± = {ω ∈ Ω \ Ω̃0 : −ωV±(ω) ∈
[0, ∞)} and hence 0 ∈ M

(k)
+ ∪M

(k)
− as long as V+ or V− has no pole at 0.

Remark 4. Equation (22) is equivalent to the dispersion relation (2.14) in [20].

The next result determines the set of eigenvalues of Lk away from the set Ω0 for any k ∈ R, and shows 
their simplicity.

Proposition 2.4. Let k ∈ R. Then

σp(Lk) \ Ω0 = N (k). (34)

All eigenvalues in σp(Lk) \ Ω0 are geometrically simple. An eigenvalue ω ∈ σp(Lk) \ Ω0 is algebraically 
simple if and only if
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(2k2 −W+(ω))(2k2 −W−(ω)) − 2k4 − (k2 −W+(ω))V−(ω)2 �= 0. (35)

Proof. From the proof of Proposition 2.3 we get that L2(R)-solutions of Lk(ω)ψ = 0, i.e. of the homogenous 
version of (23), have the form

ψ(x) =

⎧⎪⎪⎨
⎪⎪⎩
c−e

μ−x

( −ik
μ−

−iV−(ω)

)
for x < 0,

c+e
−μ+x

( ik
μ+

iV+(ω)

)
for x > 0

(36)

with c± ∈ C. For any c± ∈ C we clearly have ψ|R± ∈ H1(R±, C3). The interface conditions (12) hold if and 
only if

c−μ− = c+μ+ and − c−V−(ω) = c+V+(ω),

which is equivalent to c+ = −V−(ω)
V+(ω) c− and V+(ω)μ− + V−(ω)μ+ = 0, i.e. equation (22).

The above unique form of the eigenfunction ψ shows that each eigenvalue ω in σp(Lk) \Ω0 is geometrically 
simple in the sense that λ = 0 is a geometrically simple eigenvalue of

Lk(ω)u = λu.

Finally, we study the algebraic simpleness, i.e. the non-existence of a solution u ∈ D(A) of (19) with 
v := ψ. That means, we consider

Lk(ω)u = ψ, u ∈ D(A).

Assuming for a contradiction that a solution u exists, we first follow the lines of the proof of Proposition 2.3
with r := ψ ∈ L2(R, C3). Since (22) holds, we get from (32)

0 = 1
2 (μ+V−(ω) − μ−V+(ω))

0∫
−∞

ρ
(2)
− (s)eμ−s ds + μ+V+(ω)

∞∫
0

ρ
(1)
+ (s)e−μ+s ds

= μ+V−(ω)
0∫

−∞

ρ
(2)
− (s)eμ−s ds + μ+V+(ω)

∞∫
0

ρ
(1)
+ (s)e−μ+s ds =: α, (37)

with ρ(1)
+ and ρ(2)

− given in (27).
Next, from (36), setting c− := 1 (hence c+ = −V−(ω)/V+(ω)) and using (22) gives

ψ1(x) =
{
−ikeμ−x, x < 0,
−ik V−(ω)

V+(ω)e
−μ+x, x > 0,

ψ2(x) =
{
μ−eμ−x, x < 0,
μ−e

−μ+x, x > 0,
ψ3(x) =

{
−iV−(ω)eμ−x, x < 0,
−iV−(ω)e−μ+x, x > 0

and we obtain

∞∫
0

ρ
(1)
+ (s)e−μ+s ds = i

2μ+

(
μ−
V+

− k2V−
V 2

+μ+
+ V−

μ+

)
,

0∫
ρ
(2)
− (s)eμ−s ds = i

2μ−

(
μ−
V−

+ k2

V−μ−
− V−

μ−

)
.

−∞
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Using (22), i.e. μ−V+ + μ+V− = 0, (37) implies

−2i α
V+

=μ−
V+

− k2V−
V 2

+μ+
+ V−

μ+
− μ−

V−
− k2

V−μ−
+ V−

μ−

=μ−
V− − V+

V+V−
+ k2V−μ2

− − V+μ
2
+

V+μ2
+V−μ−

+ V−
μ+ + μ−
μ+μ−

= 1
μ2

+μ−V+V−

[
(V− − V+)(μ2

−μ
2
+ + k2(μ2

+ + μ2
−)) + k2(μ2

−V+ − μ2
+V−) + μ+V+V

2
−(μ+ + μ−)

]
.

Because μ2
−V+ − μ2

+V− = k2(V+ − V−) and μ+V+V
2
−(μ+ + μ−) = μ2

+V
2
−(V+ − V−), we obtain

−2i α
V+

= V− − V+

μ2
+μ−V+V−

[
(μ2

+ + k2)(μ2
− + k2) − 2k4 − (k2 −W+)V 2

−
]

= V− − V+

μ2
+μ−V+V−

[
(2k2 −W+)(2k2 −W−) − 2k4 − (k2 −W+)V 2

−
]
.

Since V+(ω) �= V−(ω) (due to (22)), the statement follows. �
As we show next, outside the set Ω0, the eigenvalues of Lk are isolated, i.e. the eigenvalue λ = 0 of 

Lk(ω)u = λu is isolated from the rest of the spectrum of this eigenvalue problem.

Proposition 2.5. Let k ∈ R. Every eigenvalue in σp(Lk) \ Ω0 is isolated.

Proof. Let ω ∈ σp(Lk) \ Ω0. It is to show that λ ∈ ρ(A − B(ω)) for all λ ∈ Br(0) \ {0} with r > 0 small 
enough.

Analogously to Proposition 2.3 we have (replacing B(ω) by B(ω) + λI)

ρ(Lk) ⊃ {ω ∈ Ω \ Ω0 : (ω − iλ)(V±(ω) − iλ) /∈ [k2,∞) and μ
(λ)
− (V+(ω) − iλ) + μ

(λ)
+ (V−(ω) − iλ) �= 0},

where

μ
(λ)
± :=

√
k2 + (ω − iλ)(V±(ω) − iλ).

Clearly, as −ωV±(ω) = W±(ω) /∈ [k2, ∞) (since ω ∈ N (k)), we get also −(ω − iλ)(V±(ω) − iλ) /∈ [k2, ∞) for 
all |λ| small enough. It remains to be shown that μ(λ)

− (V+(ω) − iλ) �= −μ
(λ)
+ (V−(ω) − iλ) for all |λ| small 

enough.
Assuming the equality, we get

(k2 + (ω − iλ)(V− − iλ))(V+ − iλ)2 = (k2 + (ω − iλ)(V+ − iλ))(V− − iλ)2,

which can be simplified to

k2((V− − iλ) + (V+ − iλ)) = −(ω − iλ)(V+ − iλ)(V− − iλ) (38)

after dividing by V+ − V−, which is non-zero. Equation (38) is a cubic equation for λ ∈ C. One of the roots 
is λ = 0 due to (22), which implies k2(V+ + V−) = −ωV+V−. We denote the other two roots by λ1, λ2. 
Choosing r < min{|λ1|, |λ2|}, the equation does not hold for any λ ∈ Br(0) \ {0}. �
Remark 5. Together with Proposition 2.4 we conclude that

σd(Lk) \ Ω0 = {ω ∈ N (k) : (35) holds}. (39)
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2.1.2. Three homogeneous layers
Next we consider three homogeneous material layers with interfaces at x = 0 and x = d > 0, i.e. a 

sandwich geometry with two unbounded layers:

V (x, ω) =

⎧⎪⎪⎨
⎪⎪⎩
V−(ω) for x < 0,
V∗(ω) for x ∈ (0, d),
V+(ω) for x > d,

(40)

where V−, V∗, V+ : Ω ⊂ C → C. In other words, we set I1 := (−∞, 0), I2 := (0, d), I3 := (d, ∞), V1 :=
V−, V2 := V∗, and V3 := V+. We also define W (x, ω) := −ωV (x, ω), W±(ω) := −ωV±(ω), and W∗(ω) :=
−ωV∗(ω). The following conditions (an effective dispersion relation) play an important role in the analysis 
of Section 2.1.2,

∃m ∈ Z : dm := 1
2μ∗

[
log

(
(μ∗V+(ω) − μ+V∗(ω)) (μ∗V−(ω) − μ−V∗(ω))
(μ∗V+(ω) + μ+V∗(ω)) (μ−V∗(ω) + μ∗V−(ω))

)
+ 2πim

]
∈ (0,∞) (41)

and ⎧⎪⎪⎨
⎪⎪⎩

μ∗V+(ω) + μ+V∗(ω) = 0, μ∗V−(ω) − μ−V∗(ω) = 0
or
μ∗V+(ω) − μ+V∗(ω) = 0, μ∗V−(ω) + μ−V∗(ω) = 0,

(42)

where

μ± :=
√

k2 −W±(ω), and μ∗ :=
√

k2 −W∗(ω).

As explained below, if dm ∈ (0, ∞) for some m ∈ Z and provided

k2 −W+(ω) /∈ (−∞, 0], k2 −W−(ω) /∈ (−∞, 0], and k2 −W∗(ω) �= 0,

and if (42) does not hold, then with

d := dm

an eigenvalue of the Maxwell operator Lk exists. The equation in (41) can then be reformulated as

e2μ∗d = (μ∗V+(ω) − μ+V∗(ω)) (μ∗V−(ω) − μ−V∗(ω))
(μ∗V+(ω) + μ+V∗(ω)) (μ−V∗(ω) + μ∗V−(ω)) . (43)

The term 2πim in (41) appears due the fact that z = log(b) + 2πim solves ez = b for any m ∈ Z.

Remark 6. Equation (43) is equivalent to the dispersion relation (2.28) in [20].

Note that if all the three layers are conservative materials, i.e. V±, V∗ : Ω → R+, then (41) cannot be 
satisfied for any real ω because μ±, μ∗ > 0 and the absolute value of the right hand side in (43) is smaller 
than one while the left hand side is larger than one for μ∗, d > 0.

For a PT -symmetric example setting (metal with gain - dielectric - metal with loss) we compute dm
numerically in Example 1 showing that this setting apparently leads to the existence of linear eigenvalues 
ω0 ∈ R.
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Next, we introduce important sets for the description of the spectrum for any k ∈ R:

M
(k)
− := {ω ∈ Ω \ Ω0 : W−(ω) ∈ [k2,∞)},

M
(k)
+ := {ω ∈ Ω \ Ω0 : W+(ω) ∈ [k2,∞)},

(44)

and

N (k) := {ω ∈ Ω \ Ω0 : W+(ω),W−(ω) /∈ [k2,∞),W∗(ω) �= k2, (41) holds and (42) does not hold}, (45)

O(k) := {ω ∈ Ω \ Ω0 : W+(ω),W−(ω) /∈ [k2,∞),W∗(ω) �= k2, and (42) holds}. (46)

For the resolvent set we have

Proposition 2.6. Let k ∈ R.

ρ(Lk) ⊃ Ω \ (M (k)
+ ∪M

(k)
− ∪N (k) ∪O(k) ∪ Ω0) =: M(k).

Proof. For the whole proof let ω ∈ Ω \Ω0. As in the proof of Proposition 2.3, given r ∈ L2(R, C3), we firstly 
need to show the existence of a unique u ∈ D(A) such that

u′
3 + iV (x, ω)u2 = −r2

u′
2 + iW (x,ω)−k2

V (x,ω) u3 = r3 − k
V (x,ω)r1

}
on (−∞, 0), (0, d) and (d,∞), (47)

and u1 := i
V (x,ω) (r1 − iku3).

Analogously to the proof of Proposition 2.3, L2(R)-solutions u (disregarding the interface conditions) 
exist if and only if Re(μ±) > 0, i.e.

k2 −W±(ω) /∈ (−∞, 0],

in other words if and only if ω /∈ M
(k)
+ ∪M

(k)
− . The corresponding ũ := (u2, u3)T has the form

ũ(x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

C−eμ−x

(
μ−

−iV−(ω)

)
+ ũ−

p (x), x < 0,

C
(1)
∗ eμ∗x

(
μ∗

−iV∗(ω)

)
+ C

(2)
∗ e−μ∗x

(
μ∗

iV∗(ω)

)
+ ũ∗

p(x), x ∈ (0, d),

C+e
−μ+x

(
μ+

iV+(ω)

)
+ ũ+

p (x), x > d,

(48)

where C±, C
(1,2)
∗ ∈ C are arbitrary,

ũ−
p (x) = 1

2

(
eμ−xμ−

∫ 0
x
ρ
(1)
− (s)e−μ−s ds + e−μ−xμ−

∫ x

−∞ ρ
(2)
− (s)eμ−s ds

−eμ−xiV−(ω)
∫ 0
x
ρ
(1)
− (s)e−μ−s ds + e−μ−xiV−(ω)

∫ x

−∞ ρ
(2)
− (s)eμ−s ds

)
,

ũ∗
p(x) = 1

2

(
eμ∗xμ∗

∫ d

x
ρ
(1)
∗ (s)e−μ∗s ds + e−μ∗xμ∗

∫ x

0 ρ
(2)
∗ (s)eμ∗s ds

−eμ∗xiV∗(ω)
∫ d

x
ρ
(1)
∗ (s)e−μ∗s ds + e−μ∗xiV∗(ω)

∫ x

0 ρ
(2)
∗ (s)eμ∗s ds

)
,

ũ+
p (x) = 1

2

(
eμ+xμ+

∫∞
x

ρ
(1)
+ (s)e−μ+s ds + e−μ+xμ+

∫ x

d
ρ
(2)
+ (s)eμ+s ds

−eμ+xiV+(ω)
∫∞
x

ρ
(1)
+ (s)e−μ+s ds + e−μ+xiV+(ω)

∫ x

d
ρ
(2)
+ (s)eμ+s ds

)
,

(49)

and



16 T. Dohnal, R. He / J. Math. Anal. Appl. 538 (2024) 128422
ρ
(1)
±,∗(x) := i r2(x)

V±,∗(ω) + kr1(x)
V±,∗(ω)μ±,∗

− r3(x)
μ±,∗

, ρ
(2)
±,∗(x) := i r2(x)

V±,∗(ω) − kr1(x)
V±,∗(ω)μ±,∗

+ r3(x)
μ±,∗

. (50)

The regularity u2, u3 ∈ H1(Ij), j = 1, 2, 3, follows just like at the end of the proof of Proposition 2.3 and 
u1 ∈ L2(R) holds thanks to V±,∗(ω) �= 0 and r1, u3 ∈ L2(R).

To show that u ∈ D(A), it remains to enforce the jump conditions �u2� = �u3� = 0 at x = 0, d. Since

lim
x→0+

u2(x) =
(
C

(1)
∗ + C

(2)
∗

)
μ∗ + μ∗

2

d∫
0

ρ
(1)
∗ (s)e−μ∗s ds,

lim
x→0−

u2(x) = C−μ− + μ−
2

0∫
−∞

ρ
(2)
− (s)eμ−s ds,

(51)

and V∗(ω) �= 0, the condition �u2� = 0 at x = 0 is equivalent to

(
C

(1)
∗ + C

(2)
∗

)
μ∗V∗(ω) = μ−V∗(ω)C− + μ−V∗(ω)

2

0∫
−∞

ρ
(2)
− (s)eμ−s ds− μ∗V∗(ω)

2

d∫
0

ρ
(1)
∗ (s)e−μ∗s ds. (52)

Similarly, as μ∗ �= 0, the interface condition �u3� = 0 (at x = 0), is equivalent to

(
C

(2)
∗ − C

(1)
∗

)
μ∗V∗(ω) = −μ∗V−(ω)C− + μ∗V−(ω)

2

0∫
−∞

ρ
(2)
− (s)eμ−s ds + μ∗V∗(ω)

2

d∫
0

ρ
(1)
∗ (s)e−μ∗s ds. (53)

Combining (52) and (53), we get

μ∗V∗(ω)C(1)
∗ = μ−V∗(ω) + μ∗V−(ω)

2 C− + μ−V∗(ω) − μ∗V−(ω)
4

0∫
−∞

ρ
(2)
− (s)eμ−s ds

− μ∗V∗(ω)
2

d∫
0

ρ
(1)
∗ (s)e−μ∗s ds,

(54)

μ∗V∗(ω)C(2)
∗ = μ−V∗(ω) − μ∗V−(ω)

2 C− + μ−V∗(ω) + μ∗V−(ω)
4

0∫
−∞

ρ
(2)
− (s)eμ−s ds. (55)

Analogously to the above, the interface conditions �u2� = 0 and �u3� = 0 at x = d are

e−μ+dμ+V+(ω)C+ =
(
C

(1)
∗ eμ∗d + C

(2)
∗ e−μ∗d

)
μ∗V+(ω) + μ∗V+(ω)

2 e−μ∗d

d∫
0

ρ
(2)
∗ (s)eμ∗s ds

− μ+V+(ω)
2 eμ+d

∞∫
d

ρ
(1)
+ (s)e−μ+s ds

(56)

and
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e−μ+dμ+V+(ω)C+ =
(
C

(2)
∗ e−μ∗d − C

(1)
∗ eμ∗d

)
μ+V∗(ω) + μ+V∗(ω)

2 e−μ∗d

d∫
0

ρ
(2)
∗ (s)eμ∗s ds

+ μ+V+(ω)
2 eμ+d

∞∫
d

ρ
(1)
+ (s)e−μ+s ds,

(57)

respectively.
Combining (56) and (57), we get

eμ∗d (μ∗V+(ω) + μ+V∗(ω))μ∗V∗(ω)C(1)
∗ + e−μ∗d (μ∗V+(ω) − μ+V∗(ω))μ∗V∗(ω)C(2)

∗

= μ+V∗(ω) − μ∗V+(ω)
2 μ∗V∗(ω)e−μ∗d

d∫
0

ρ
(2)
∗ (s)eμ∗s ds + μ+V+(ω)μ∗V∗(ω)eμ+d

∞∫
d

ρ
(1)
+ (s)e−μ+s ds.

(58)

Plugging (54) and (55) into (58), we obtain

[
eμ∗d (μ∗V+(ω) + μ+V∗(ω)) (μ−V∗(ω) + μ∗V−(ω)) + e−μ∗d (μ∗V+(ω) − μ+V∗(ω)) (μ−V∗(ω) − μ∗V−(ω))

]
C−

= (μ+V∗(ω) − μ∗V+(ω))μ∗V∗(ω)e−μ∗d

d∫
0

ρ
(2)
∗ (s)eμ∗s ds + 2μ+V+(ω)μ∗V∗(ω)eμ+d

∞∫
d

ρ
(1)
+ (s)e−μ+s ds

+ (μ+V∗(ω) + μ∗V+(ω))μ∗V∗(ω)eμ∗d

d∫
0

ρ
(1)
∗ (s)e−μ∗s ds

− 1
2
[
eμ∗d (μ∗V+(ω) + μ+V∗(ω)) (μ−V∗(ω) − μ∗V−(ω))

+e−μ∗d (μ∗V+(ω) − μ+V∗(ω)) (μ−V∗(ω) + μ∗V−(ω))
] 0∫
−∞

ρ
(2)
− (s)eμ−s ds. (59)

Equation (59) has a unique solution C− ∈ C if and only if

eμ∗d (μ∗V+(ω) + μ+V∗(ω)) (μ−V∗(ω) + μ∗V−(ω)) + e−μ∗d (μ∗V+(ω) − μ+V∗(ω)) (μ−V∗(ω) − μ∗V−(ω)) �= 0,
(60)

which holds because ω /∈ N (k) ∪ O(k). Note that (42) covers indeed all cases in which the factors of the 
exponential functions in (60) vanish. The cases μ∗ = −μ+

V∗
V+

= μ+
V∗
V+

and μ∗ = −μ−
V∗
V−

= μ−
V∗
V−

are both 
impossible because μ±, V∗(ω) �= 0.

To prove that ‖u‖L2(R,C3) ≤ c‖r‖L2(R,C3) with c independent of r, we use again (like in the proof of 
Proposition 2.3) estimates (33) together with the obvious analogy for the bounded interval (0, d), i.e.

∥∥∥∥∥∥eμ∗·
d∫

·

ρ
(1)
∗ (s)e−μ∗s ds

∥∥∥∥∥∥
L2((0,d))

≤ c
∥∥∥ρ(1)

∗

∥∥∥
L2((0,d))

,

∥∥∥∥∥∥e−μ∗·
·∫

0

ρ
(2)
∗ (s)eμ∗s ds

∥∥∥∥∥∥
L2((0,d))

≤ c
∥∥∥ρ(2)

∗

∥∥∥
L2((0,d))

. �

Next, we prove an analogy to Proposition 2.4, i.e., we determine the point spectrum of Lk outside Ω0.
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Proposition 2.7. Let k ∈ R.

σp(Lk) \ Ω0 = N (k) ∪O(k) (61)

with N (k) given in (45) and O(k) given in (46). All eigenvalues in σp(Lk) \ Ω0 are geometrically simple. 
Eigenvalue ω ∈ N (k) is algebraically simple if

0 �= α(ω) :=μ2
∗ − V 2

∗ + k2

μ2
∗V∗

(V 2
∗ μ+μ− − μ2

∗V+V−)(μ−V+ + μ+V−)
μ2
∗V

2
− − μ2

−V
2
∗

+
μ2

+ − V 2
+ + k2

2μ2
+V∗

(3μ+V∗ − μ∗V+) + (μ2
∗V

2
+ − μ2

+V
2
∗ )

(
1
μ−

μ2
− − V 2

− + k2

μ2
∗V

2
− − μ2

−V
2
∗

− d
μ2
∗ + V 2

∗ − k2

μ2
∗V

2
∗

)
,

where we recall that V±,∗ = V±,∗(ω), μ±,∗ = μ±,∗(ω).

Proof. Let ω ∈ Ω \Ω0 and k ∈ R. Applying the arguments of the proof of Proposition 2.6 to the case r = 0, 
we get that L2(R)-solutions ψ are given by

(
ψ2
ψ3

)
(x) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
Ã
(

μ+
iV+(ω)

)
e−μ+x, x > d,

B̃
(

μ∗
iV∗(ω)

)
e−μ∗x + C̃

(
μ∗

−iV∗(ω)

)
eμ∗x 0 < x < d,

D̃
(

μ−
−iV−(ω)

)
eμ−x, x < 0,

ψ1(x) = kψ3(x)
V (ω)

(62)

with free constants Ã, B̃, C̃, D̃ ∈ C. The L2-property holds if and only if ω /∈ M
(k)
+ ∪M

(k)
− . Once again, 

u2,3 ∈ H1(Ij), j = 1, 2, 3, holds. We can normalize ψ so that D̃ = 1. Indeed, if D̃ = 0, then using the 
interface conditions, one can show that Ã = B̃ = 0 and hence ψ ≡ 0.

Next, we consider the interface conditions (12). The conditions �ψ2� = 0 and �ψ3� = 0 (at x = 0 and 
x = d) yield

μ− = (B̃ + C̃)μ∗, V−(ω) =
(
C̃ − B̃

)
V∗(ω), Ãe−μ+dμ+ = (B̃e−μ∗d + C̃eμ∗d)μ∗,

Ãe−μ+dV+(ω) =
(
B̃e−μ∗d − C̃eμ∗d

)
V∗(ω).

(63)

The first equation in (63) yields the necessary condition μ∗ �= 0, i.e. W∗(ω) �= k2. Otherwise μ− = 0 and 
ψ3 /∈ L2(R, C). The first three conditions in (63) now produce a unique set of coefficients Ã, B̃, C̃, namely

Ã = eμ+d

2
μ∗
μ+

(
eμ∗d

(
μ−
μ∗

+ V−
V∗

)
+ e−μ∗d

(
μ−
μ∗

− V−
V∗

))
,

B̃ = 1
2

(
μ−
μ∗

− V−
V∗

)
, C̃ = 1

2

(
μ−
μ∗

+ V−
V∗

)
.

The last condition in (63) for a nontrivial solution (i.e. for B̃, C̃ �= 0) is equivalent to

eμ∗d (μ∗V+(ω) + μ+V∗(ω)) (μ−V∗(ω) + μ∗V−(ω)) + e−μ∗d (μ∗V+(ω) − μ+V∗(ω)) (μ−V∗(ω) − μ∗V−(ω)) = 0,
(64)

i.e. (41) or (42), i.e. ω ∈ N (k) ∪O(k). An eigenfunction ϕ0 with ‖ϕ0‖ = 1 is, of course, ϕ0 := ψ/‖ψ‖.
The construction of the above solution ψ ∈ D(A) guarantees the geometric simplicity of any eigenvalue 

in the sense that λ = 0 is a geometrically simple eigenvalue of Lku = λu.
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Next we show that if α(ω) �= 0, then the eigenvalue ω ∈ N (k) is also algebraically simple, which by (19)
means that the problem

Lk(ω)u = ψ, (65)

(with ψ as in (62)) has no solution u ∈ D(A). Let us set r := ψ ∈ L2(R, C3). Assuming for a contradiction 
that u ∈ D(A) is a solution of (65), the variation of constants from the proof of Proposition 2.6 gives the 
explicit form (48), (49), and (50) with u1 = i

V (x,ω) (r1 − iku3).
In order for u to belong to D(A), u2,3 must satisfy the continuity at x = 0 and x = d. This implies that 

the constants C−, C(1)
∗ , C(2)

∗ , C+ have to solve the linear system

T
(
C−, C

(1)
∗ , C

(2)
∗ , C+

)T
= b,

where

T :=

⎛
⎜⎜⎝

−μ− μ∗ μ∗ 0
V−(ω) −V∗(ω) V∗(ω) 0

0 −μ∗eμ∗d −μ∗e−μ∗d μ+e
−μ+d

0 V∗(ω)eμ∗d −V∗(ω)e−μ∗d V+(ω)e−μ+d

⎞
⎟⎟⎠

and

b := 1
2

⎛
⎜⎜⎜⎜⎝

μ−
∫ 0
−∞ ρ

(2)
− (s)eμ−s ds− μ∗

∫ d

0 ρ
(1)
∗ (s)e−μ∗s ds

V−(ω)
∫ 0
−∞ ρ

(2)
− (s)eμ−s ds + V∗(ω)

∫ d

0 ρ
(1)
∗ (s)e−μ∗s ds

e−μ∗dμ∗
∫ d

0 ρ
(2)
∗ (s)eμ∗s ds− eμ+dμ+

∫∞
d

ρ
(1)
+ (s)e−μ+s ds

e−μ∗dV∗(ω)
∫ d

0 ρ
(2)
∗ (s)eμ∗s ds + eμ+dV+(ω)

∫∞
d

ρ
(1)
+ (s)e−μ+s ds

⎞
⎟⎟⎟⎟⎠ .

Note that T is singular since T (1, C̃, B̃, Ã)T = 0, as dictated by (63). The functions ρ(1,2)
∗,± in b are as in (50)

with r = ψ.
In order to find a contradiction and exclude the existence of a solution u ∈ D(A) of (65), we now prove 

that b is not orthogonal to the kernel of TT if α(ω) �= 0. Standard computations show that kerTT is 
one-dimensional and given by

kerTT = span p, p :=

⎛
⎜⎜⎜⎝
eμ∗dV−(μ∗V+ + V∗μ+)
eμ∗dμ−(μ∗V+ + V∗μ+)
V+(μ∗V− − μ−V∗)
−μ+(μ∗V− − μ−V∗)

⎞
⎟⎟⎟⎠ .

For the scalar product (b, p)C4 a direct calculation shows that

− 4i (b, p)C4 = eμ∗d(μ∗V+ + μ+V∗)
(

2
μ−

(μ2
− − V 2

− + k2) + d

μ2
∗V

2
∗

(μ2
−V

2
∗ − μ2

∗V
2
−)(μ2

∗ + V 2
∗ − k2)

)

+ de−μ∗d

μ2
∗V

2
∗

(μ−V∗ − μ∗V−)2(μ+V∗ − μ∗V+)(μ2
∗ + V 2

∗ − k2)

+ sinh(μ∗d)
μ3
∗V

2
∗

(
(μ−V∗ − μ∗V−)2(μ∗V+ + μ+V∗) + (μ2

∗V
2
− − μ2

−V
2
∗ )(μ∗V+ − μ+V∗))

)
(μ2

∗ − V 2
∗ + k2)

+ 2
μ2

+V∗
(μ−V∗ cosh(μ∗d) + μ∗V− sinh(μ∗d))(μ−V∗ − μ∗V−)(μ2

+ − V 2
+ + k2).

(66)
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A number of simplifications, using (43) repeatedly, shows that after multiplication with e
μ∗d

2
μ∗V++μ+V∗

(μ∗V−−μ−V∗)2

(which is non-zero since ω /∈ O(k)) the right hand side equals α(ω). �
Remark 7. One can easily check in (66) that (b, p)C4 = 0 if ω ∈ O(k) and the first case in (42) is satisfied. 
We expect (b, p)C4 to vanish also in the second case of (42).

Remark 8. Note that it can be possibly proved that α(ω) �= 0 for all ω ∈ N (k). We refrain from trying to 
show this and only check that α(ω) �= 0 numerically for specific material parameters, see Example 1.

Finally, we study isolatedness of eigenvalues in σp(Lk) \Ω0. Again, we restrict our attention to eigenvalues 
in N (k).

Proposition 2.8. Let k ∈ R. Eigenvalue ω ∈ N (k) is isolated if and only if

d �= β(ω),

where

β(ω) := 1
(ω + V∗)(V 2

∗ μ
2
− − V 2

−μ
2
∗)(V 2

∗ μ
2
+ − V 2

+μ
2
∗)

{
(V∗(ω + V∗) − 2μ2

∗)(μ2
∗V+V− − V 2

∗ μ+μ−)(μ+V− + μ−V+)

− μ2
∗V∗

μ+μ−

[
μ−V+(ω + V+)(μ2

∗V
2
− − V 2

∗ μ
2
−) + μ+V−(ω + V−)(μ2

∗V
2
+ − V 2

∗ μ
2
+)
]

+2μ2
∗V∗

[
μ2
∗(μ+V

2
− + μ−V

2
+) − V 2

∗ μ+μ−(μ+ + μ−)
]}

.

Here, we have used the short notation V∗,± := V∗,±(ω) again.
In summary (together with Proposition 2.7), we have for all k ∈ R

{ω ∈ N (k) : α(ω) �= 0, β(ω) �= d} ⊂ σd(Lk) \ Ω0.

Proof. Analogously to Proposition (2.5) we choose ω ∈ N (k) and need to show the existence of δ > 0 such 
that

λ ∈ Bδ(0) \ {0} ⊂ C ⇒ λ ∈ ρ(Lk(ω)).

Hence, we work with the linear pencil L(λ)
k (ω) := Lk(ω) − λI = A − (B(ω) + λI) and need to show

ω ∈ ρ(L(λ)
k ) ∀λ ∈ Bδ(0) \ {0} ⊂ C.

Let us define

μ∗,±(λ) :=
√
k2 + (ω − iλ)(V∗,±(ω) − iλ), V∗,±(ω, λ) := V∗,±(ω) − iλ.

Based on Proposition 2.6 we have

ρ(L(λ)
k ) ⊃ Ω \ (M (k,λ)

+ ∪M
(k,λ)
− ∪N (k,λ) ∪O(k,λ) ∪ Ω(λ)

0 ),

where
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M
(k,λ)
± := {ω ∈ Ω \ Ω0 : −(ω − iλ)V±(ω, λ) ∈ [k2,∞)},

N (k,λ) := {ω ∈ Ω \ (Ω0 ∪M
(k,λ)
+ ∪M

(k,λ)
− ) : −(ω − iλ)V∗(ω, λ) �= k2, (67) holds and (68) does not hold},

O(k,λ) := {ω ∈ Ω \ (Ω0 ∪M
(k,λ)
+ ∪M

(k,λ)
− ) : (68) holds},

Ω(λ)
0 := {ω ∈ Ω : ω − iλ = 0 or V−(ω, λ) = 0 or V∗(ω, λ) = 0 or V+(ω, λ) = 0},

e2μ∗(λ)d = (μ∗(λ)V+(ω, λ) − μ+(λ)V∗(ω, λ)) (μ∗(λ)V−(ω, λ) − μ−(λ)V∗(ω, λ))
(μ∗(λ)V+(ω, λ) + μ+(λ)V∗(ω, λ)) (μ−(λ)V∗(ω, λ) + μ∗(λ)V−(ω, λ)) =: g(λ), (67)⎧⎪⎪⎨

⎪⎪⎩
μ∗(λ)V+(ω, λ) + μ+(λ) + V∗(ω, λ) = 0, μ∗(λ)V−(ω, λ) − μ−(λ)V∗(ω, λ) = 0
or
μ∗(λ)V+(ω, λ) − μ+(λ)V∗(ω, λ) = 0, μ∗(λ)V−(ω, λ) + μ−(λ)V∗(ω, λ) = 0.

(68)

Clearly, because ω /∈ (M (k)
+ ∪M

(k)
− ∪O(k) ∪ Ω0), we get ω /∈ (M (k,λ)

+ ∪M
(k,λ)
− ∪O(k,λ) ∪ Ω0) for all λ small 

enough.
It remains to be shown that (67) cannot hold if λ is nonzero and small enough. Otherwise there would 

be a sequence (λj) ⊂ C such that λj → 0 and f(λj) := e2μ∗(λj)d − g(λj) = 0 ∀j. Due to the C1 nature of 
f , this would imply f ′(0) = 0. Because f ′(0) = 2g(0)μ′

∗(0)d − g′(0) = −ig(0)d(ω + V∗(ω)) 1
μ∗(0) − g′(0), the 

equality f ′(0) = 0 is equivalent to

d = iμ∗(0)g′(0)
g(0)(ω + V∗(ω)) .

A direct calculation shows that iμ∗(0)g′(0)
g(0)(ω+V∗(ω)) = β(ω). �

Example 1. We choose the wave number k = 2 and the PT -symmetric setting (see Theorem 1.2 for the 
definition of PT -symmetry) with three homogenous layers

V∗(ω) = −6
5ω, V−(ω) = −ω

(
1 − 2π

ω2 − iω2

)
, V+(ω) = V−(ω).

A width d of the middle layer and corresponding eigenvalues can be found using (41). In Fig. 1 we plot 
dj(ω) for j = −1, 0, 1 and ω ∈ (0, 5). Apparently d−1(ω) /∈ (0, ∞) for all ω ∈ (0, 5), d0(ω) ∈ (0, ∞) for 
ω ∈ (0, a) ∪ (b, 5), where a ≈ 2.5, b ≈ 3.75, and, finally, d1(ω) ∈ (0, ∞) for ω ∈ (c, 5) with c ≈ 1.83.

As one can see, for example, for d = 0.7 there are at least five eigenvalues in N (k), see the intersections with 
the dotted line d = 0.7 in Fig. 1 (b) and (c). The approximate values are ω0 ∈ {1.11, 1.68, 3.09, 3.44, 4.57}, 
the first two of which are visible in Fig. 1 (b) and the last three in Fig. 1 (c).

Next, we set the width of the middle layer equal to d1(ω) and check the algebraic simplicity and isolat-
edness of the corresponding eigenvalue ω ∈ (c, 5) (i.e. the x-coordinate of the point on the graph of the real 
part in Fig. 1 (c)). Using Propositions 2.7 and 2.8, we plot in Fig. 2 the quantities α(ω) and |d1(ω) − β(ω)|
from Propositions 2.7 and 2.8. Clearly, α remains positive on the whole (c, 5) and d1 �= β everywhere except 
for at most two points, namely ω ≈ 2.15 and ω ≈ 3.3. Hence, the last three eigenvalues at d = 0.7 mentioned 
above, i.e. {3.09, 3.44, 4.57} are all algebraically simple and isolated.

3. Bifurcation of nonlinear surface plasmons

The aim of this section is to prove Theorem 1.1. As stated in this theorem, the solution of (6) is expanded 
in

ω = ω0 + εν + ε2σ, u = ε1/2ϕ0 + ε3/2φ + ε5/2ψ, (69)
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Fig. 1. Functions dj(ω) with j = −1, 0, 1 from (41).

Fig. 2. Quantities α(ω) and |d1(ω) − β(ω)| with α and β from Propositions 2.7 and 2.8 respectively.

where ω0 ∈ C, ϕ0 ∈ D(A) are fixed by the linear eigenvalue problem (and the normalization ‖ϕ0‖ = 1) and 
ν ∈ C, φ ∈ D(A) ∩ 〈ϕ∗

0〉⊥ are fixed by (14) and (15). Note that ν is well defined because of the assumption 
(A-T) and that the normalization 〈ϕ0, ϕ∗

0〉 = 1 is allowed because 〈ϕ0, ϕ∗
0〉 = 0 would imply the solvability 

of Lk(ω0)v = ϕ0 for v ∈ D(A), which contradicts the algebraic simplicity of ω0.
We decompose the nonlinear equation (6) using the projection

P0 : D(A) → 〈ϕ0〉, u �→ 〈u, ϕ∗
0〉ϕ0

and the complementary projection Q0 := I −P0 : D(A) → 〈ϕ∗
0〉⊥. This discussion as well as the subsequent 

fixed point arguments are very similar to those in [10]. We include them here (in a more compact form) for 
completeness.

Applying P0 to equation (6), we get

〈Lk(·, ω)u, ϕ∗
0〉 = 〈h(·, ω, u), ϕ∗

0〉

= 〈h(·, ω, u) − ε
3
2h(·, ω , ϕ ), ϕ∗〉 + ε

3
2 〈h(·, ω , ϕ ), ϕ∗〉.

(70)

0 0 0 0 0 0
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On the other hand, Taylor expanding B(ω) in ω0 up to order two (using assumption (A-V)), we have

〈Lk(·, ω)u, ϕ∗
0〉 = 〈Lk(·, ω0)u, ϕ∗

0〉 + 〈(Lk(·, ω) − Lk(·, ω0))u, ϕ∗
0〉

= 〈u, Lk(·, ω0)∗ϕ∗
0〉 − 〈(B(·, ω) −B(·, ω0))u, ϕ∗

0〉

= −
〈(

∂ωB(·, ω0)(ω − ω0) + 1
2∂

2
ωB(·, ω0)(ω − ω0)2 + I(·, ω)(ω − ω0)3

)
u, ϕ∗

0

〉
,

where

I(x, ω) := 1
2πi

∫
∂Br(ω0)

B(x, z)
(z − ω0)3(z − ω) dz

for any r < δ and ω ∈ Br(ω0). Inserting now the expansions of ω and u from (69) produces

−〈Lk(·, ω)u, ϕ∗
0〉 = ε

3
2 ν〈∂ωB(·, ω0)ϕ0, ϕ

∗
0〉 + ε

5
2σ〈∂ωB(·, ω0)ϕ0), ϕ∗

0〉

+ ε
5
2

〈(
ν∂ωB(·, ω0)φ + ν2

2 ∂2
ωB(·, ω0)ϕ0

)
, ϕ∗

0

〉
+ 〈v(·, ν, σ, φ, ψ), ϕ∗

0〉,
(71)

where

v(·, ν, σ, φ, ψ) : = ε
7
2

(
σ∂ωB(·, ω0)φ + (ν + εσ)∂ωB(·, ω0)ψ + ν2

2 ∂2
ωB(·, ω0)(φ + εψ)

+1
2∂

2
ωB(·, ω0)(2νσ + εσ2)(ϕ0 + εφ + ε2ψ)

)
+ ε

7
2 I(·, ω)(ν + εσ)3(ϕ0 + εφ + ε2ψ)

(72)

with ω = ω0 + εν + ε2σ.
The first inner product on the right hand side of (70) is o(ε 3

2 ) due to the Lipschitz continuity of h, see 
(78). Comparing now (70) and (71), the terms of order ε 3

2 match if and only if we set

ν := − 〈h(·, ω0, ϕ0), ϕ∗
0〉

〈∂ωB(·, ω0)ϕ0, ϕ∗
0〉
, (73)

which is well-defined thanks to assumption (A-T). From the rest of (70)-(71) we obtain

ε
5
2σ〈∂ωB(·, ω0)ϕ0, ϕ

∗
0〉 = − ε

5
2

〈(
ν∂ωB(·, ω0)φ + ν2

2 ∂2
ωB(·, ω0)ϕ0

)
, ϕ∗

0

〉
− 〈v(·, ν, σ, φ, ψ), ϕ∗

0〉 − 〈h(·, ω, u) − ε
3
2h (·, ω0, ϕ0) , ϕ∗

0〉.
(74)

Next, we apply Q0 to (6). First, we write

Q0Lk(·, ω)u = Q0Lk(·, ω0)Q0(ε
3
2φ + ε

5
2ψ) −Q0

(
B(·, ω) −B(·, ω0)

)
u.

The application of Q0 to (6) produces

Q0Lk(·, ω0)Q0(φ + εψ) = ε−
3
2
(
Q0h(·, ω, u) + Q0

(
B(·, ω) −B(·, ω0)

)
u
)

= ε−
3
2Q0h(·, ω, u)

+ Q0

(
(ν + εσ)∂ωB(·, ω0) + ε

(ν + εσ)2

2 ∂2
ωB(·, ω0) + ε2I(·, ω)(ν + εσ)3

)
(ϕ0 + εφ + ε2ψ).

(75)

It remains to solve the system (74), (75) for σ and ψ with φ ∈ D(A) ∩ 〈φ∗
0〉⊥ given by (15).
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3.1. Proof of Theorem 1.1

We take advantage of the fact that the nonlinearity h is well defined in H1 due to the algebra property 
of H1(a, b) for any (a, b) ⊂ R. In other words, h(·, ω, u) ∈ H1 for any u ∈ H1, see Lemma B.1.

First of all, we reduce equation (75) by eliminating the O(1) part. Because h(x, ω, αu) = α3h(x, ω, u) for 
all α ≥ 0 and (x, ω, u) ∈ R ×Bδ(ω0) ×(D(A) ∩H1), the term h(x, ω, u) in (75) equals ε3/2h(x, ω, ϕ0+εφ +ε2ψ). 
The O(1) part of (75) thus holds if and only if

Q0Lk(·, ω0)Q0φ = Q0(h(·, ω0, ϕ0) + ν∂ωB(·, ω0)ϕ0).

Due to (73) we have P0(h(·, ω0, ϕ0) + ν∂ωB(·, ω0)ϕ0) = 0 and hence

Q0Lk(·, ω0)Q0φ = h(·, ω0, ϕ0) + ν∂ωB(·, ω0)ϕ0, (76)

which is equivalent to (15) in D(A) ∩H1 ∩ 〈φ∗
0〉⊥ and uniquely solvable by the following lemma. Note that 

the right hand side is in H1 because ∂ωV (·, ω0) ∈ W 1,∞(Ij) for all j and ϕ0 ∈ H1 (and hence by the algebra 
property, also h(·, ω, ϕ0) ∈ H1). The regularity of ϕ0 follows from Lemma 2.2.

Lemma 3.1. (Q0LkQ0)−1 : Q0H1 → Q0(H1 ∩D(A)) is a bounded operator, i.e. ‖(Q0LkQ0)−1‖ ≤ ML with 
ML > 0.

Proof. The boundedness of the inverse (Q0LkQ0)−1 : Q0L
2 → Q0D(A) (with D(A) equipped with the graph 

norm) follows from the closed range theorem [13, Sec. VI.6]. Indeed, the operator Q0LkQ0 is Fredholm (see 
[19, Theorem IV.5.28], where the fact that λ = 0 is a simple isolated eigenvalue of the eigenvalue problem 
(16) is used).

The H1 regularity on each layer holds for the second and the third component of each element in 
D(A) by definition of D(A). The first component of u := (Q0LkQ0)−1r with r ∈ Q0H1 is given by u1 =

i
V (·,ω) (r1 − iku3), which lies in H1 since r1, u3 ∈ H1 and 1/Vj ∈ W 1,∞(Ij) for all j. �
Remark 9. As we are dealing with an ODE problem, the unique solvability in Lemma 3.1 can be shown 
explicitly using the variation of parameters; in Appendix A we provide the corresponding calculation for 
the example of two homogenous layers. An analogous calculation is, in principle, possible for N layers.

Having satisfied (76), the rest of (75) produces the following equation for (σ, ψ) ∈ C × (D(A) ∩H1):

Q0Lk(·, ω0)Q0ψ =ε−1Q0
(
h(·, ω, ϕ0 + εφ + ε2ψ) − h(·, ω0, ϕ0)

)
+ Q0(ν∂ωB(·, ω0)(φ + εψ))

+ Q0

(
σ∂ωB(·, ω0) + (ν + εσ)2

2 ∂2
ωB(·, ω0) + εI(·, ω)(ν + εσ)3

)
(ϕ0 + εφ + ε2ψ)

=:R(σ, ψ),

where ω = ω0 + εν + ε2σ. We write this as the fixed point problem

ψ = G(σ, ψ) := (Q0Lk(ω0)Q0)−1R(σ, ψ). (77)

The system (74), (77) is solved below for σ and ψ via a nested Banach fixed point approach analogously 
to [10]. First we solve (77) for ψ ∈ Br2(0) ⊂ D(A) for each σ ∈ Br1(0) ⊂ C fixed with r1 > 0 arbitrary and 
a suitable r2 = r2(r1). The radius r2 is chosen so that G(σ, ·) : Br2(0) → Br2(0) is a contraction if ε > 0 is 
small enough.
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Then, having obtained ψ = ψ(σ) ∈ Br2(0), we shall solve equation (74) for σ in Br1(0) ⊂ C with 
a suitable r1. Note that the fixed point argument for equation (74) requires the Lipschitz continuity of 
σ �→ ψ(σ), which we verify below.

Remark 10. The alternative approach of solving the system (74), (77) for (σ, ψ) ∈ Br1(0) × Br2(0) ⊂
C × (D(A) ∩ H1) via a fixed point argument simultaneously is possible. However, R(σ1, ψ) − R(σ2, ψ)
involves the term Q0∂ωB(ω0)ϕ0(σ1 −σ2), which is O(1) and prevents the contraction property. This can be 
avoided by substituting for σ1 − σ2 from (74) but this makes the approach more technical.

To prepare for the fixed point argument, let us start with some estimates on R. Denote by c a positive 
constant that may vary from line to line below but be independent of ε, r1, and r2 for all 0 < ε ≤ ε̄ with 
ε̄ = ε̄(r1, r2) > 0 small enough.

Firstly, choose arbitrary r1, r2 > 0. For all |σ| ≤ r1 and ‖ψ‖H1 ≤ r2, we use Proposition B.1 to estimate

‖h(·, ω, ϕ0 + εφ + ε2ψ) − h(·, ω0, ϕ0)‖H1

≤ ‖h(·, ω, ϕ0 + εφ + ε2ψ) − h(·, ω, ϕ0)‖H1 + ‖h(·, ω, ϕ0) − h(·, ω0, ϕ0)‖H1

≤ c(1)a ε
(
‖ϕ0 + εφ + ε2ψ‖2

H1 + ‖ϕ0‖2
H1

)
‖φ + εψ‖H1 + c(2)a ‖ϕ0‖3

H1 |εν + ε2σ|
≤ c(ε + ε2r1) + p3(ε2r2),

where p3 is a cubic polynomial with no zero degree terms. Clearly, there is a constant c > 0 such that 
p3(ε2r2) ≤ cε2r2 for all ε ∈ (0, ε0] with some ε0 = ε0(r2) > 0 small enough. Thus we get

‖h(·, ω, ϕ0 + εφ + ε2ψ) − h(·, ω0, ϕ0)‖H1 ≤ c(ε + ε2(r1 + r2)) (78)

for all ε ∈ (0, ε0].
Next, let us define

M := max
j∈{1,...,m}

sup
ω∈Br(ω0)

‖V (·, ω)‖W 1,∞(Ij),

where ‖H‖W 1,∞(Ij) for a matrix H denotes the maximum of the W 1,∞(Ij)-norm of all entries in H. 
We assume w.l.o.g. that M ≥ |ω0| + |δ| in order to estimate the entry iω in B also by M and obtain 
maxj∈{1,...,m} supω∈Br(ω0) ‖B(·, ω)‖W 1,∞(Ij) ≤ M .

Then, for each j ∈ {1, . . . , m}

‖(ν + εσ)3I(·, ω)‖W 1,∞(Ij) ≤ |ν + εσ|3
max

z∈∂Br(ω0)
‖B(·, z)‖W 1,∞(Ij)

r2(r − |ω − ω0|)
for all ω ∈ Br′(ω0) if 0 < r′ < r < δ

≤ |ν + εσ|3 2M
r3 for all ω ∈ Br/2(ω0),

≤ C + q3(εr1) ≤ c(1 + εr1), (79)

where q3 is a cubic polynomial with no zero degree terms (such that again q3(εr1) ≤ cεr1 for all ε ∈ (0, ε1]
with ε1 = ε1(r1) small enough). In the remaining estimates we directly estimate analogous polynomials of 
εr1 or ε2r2 by the linear terms.
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Due to (A-V) and (79)

‖ν∂ωB(·, ω0)(φ + εψ) + σ∂ωB(·, ω0)(ϕ0 + εφ + ε2ψ)‖H1 ≤ c (|σ|‖ϕ0‖H1 + (1 + ε|σ|) ‖φ‖H1

+ε (1 + |σ|ε) ‖ψ‖H1)

≤ c(1 + (1 + ε)r1 + (ε + ε2r1)r2)

‖(ν + εσ)2∂2
ωB(·, ω0)(ϕ0 + εφ + ε2ψ)‖H1 ≤ c(1 + εr1 + ε2r2)

‖εI(·, ω)(ν + εσ)3(ϕ0 + εφ + ε2ψ)‖H1 ≤ cε|ν + εσ|3
(
‖ϕ0‖H1 + ε‖φ‖H1 + ε2‖ψ‖H1

)
≤ cε(1 + εr1 + ε2r2).

As a result,

‖R(σ, ψ)‖H1 ≤c0 (1 + r1 + ε(r1 + r2)) ≤ 2c0(1 + r1) (80)

for all σ ∈ Br1(0) ⊂ C and ψ ∈ Br2(0) ⊂ D(A) ∩ H1. The constant c0 > 0 is independent of ε, r1, and 
r2 if ε is small enough. The property G(σ, ·) : Br2(0) → Br2(0) is thus satisfied, e.g., with r2 = r2(r1) :=
2c0ML(1 + r1) if ε > 0 is small enough.

For the contraction property we first consider h and use Proposition B.1 to get

‖h(·, ω, ϕ0 + εφ + ε2ψ1) − h(·, ω, ϕ0 + εφ + ε2ψ2)‖H1 ≤ c(1)a ε2
∑
j=1,2

‖ϕ0 + εφ + ε2ψj‖2
H1‖ψ1 − ψ2‖H1

≤ 4c(1)a ε2‖ϕ0‖2
H1‖ψ1 − ψ2‖H1

for all ψ1, ψ2 ∈ Br2(0) and ε = ε(r2) small enough. Together with assumption (A-V) and estimate (79) this 
leads to

‖R(σ, ψ1) −R(σ, ψ2)‖H1 ≤ c(ε + (1 + r1)ε2)‖ψ1 − ψ2‖H1

≤ cε‖ψ1 − ψ2‖H1

for all ψ1, ψ2 ∈ Br2(0), σ ∈ Br1(0), and for ε small enough.
Given r1 > 0, we have thus found a unique ψ = ψ(σ) ∈ Br2(0) ⊂ D(A) ∩ H1 for any σ ∈ Br1(0), where 

r2 = 2c0ML(1 + r1) and ε > 0 is small enough.
We proceed with the second step of the nested argument and solve (74) for σ after substituting ψ = ψ(σ). 

For this we need the Lipschitz continuity of σ �→ ψ(σ) with respect to the H1 norm. From ψ(σ) = G(σ, ψ(σ))
and Lemma 3.1 we get for σ1, σ2 ∈ Br1(0)

‖ψ(σ1) − ψ(σ2)‖H1 ≤ ML‖R(σ1, ψ1) −R(σ2, ψ2)‖H1 ,

where ψj := ψ(σj), j = 1, 2. We denote also ωj := ω0 + εν + ε2σj , uj := ε1/2ϕ0 + ε3/2φ + ε5/2ψj .
Analogously to [10] (see page 15), using (79), one estimates

‖(ν + εσ1)3I(·, ω1) − (ν + εσ2)3I(·, ω2)‖W 1,∞(Ij) ≤ cε4|σ1 − σ2| ∀j ∈ {1, . . . ,m}, (81)

where c has a cubic dependence on r1.
Using again Proposition B.1, we get

‖h(·, ω1, ε
−1/2u1) − h(·, ω1, ε

−1/2u2)‖H1 ≤ 4c(1)a ε2‖ϕ0‖2
H1‖ψ1 − ψ2‖H1 ,

‖h(·, ω , ε−1/2u ) − h(·, ω , ε−1/2u )‖ 1 ≤ 8c(2)ε2‖ϕ ‖3 |σ − σ |
(82)
1 2 2 2 H a 0 H1 1 2
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for all σ1,2 ∈ Br1(0) and ε > 0 small enough. Hence, with the triangle inequalities

‖h(·, ω1, ϕ0 + εφ + ε2ψ1) − h(·, ω2, ϕ0 + εφ + ε2ψ2)‖H1

≤ ‖h(·, ω1, ε
−1/2u1) − h(·, ω1, ε

−1/2u2)‖H1 + ‖h(·, ω1, ε
−1/2u2) − h(·, ω2, ε

−1/2u2)‖H1

and

‖σ1∂ωB(·, ω0)(ϕ0 + εφ + ε2ψ1) − σ2∂ωB(·, ω0)(ϕ0 + εφ + ε2ψ2)‖H1

≤ ‖σ1∂ωB(·, ω0)(ϕ0 + εφ + ε2ψ1) − σ1∂ωB(·, ω0)(ϕ0 + εφ + ε2ψ2)‖H1

+ ‖(σ1 − σ2)∂ωB(·, ω0)(ϕ0 + εφ + ε2ψ2)‖H1 ,

and similarly for the other terms in R, one obtains

‖R(σ1, ψ1) −R(σ2, ψ2)‖H1 ≤ c
(
ε‖ϕ0‖2

H1‖ψ1 − ψ2‖H1 + εLa‖ϕ0‖3
H1 |σ1 − σ2|

+‖ϕ0‖H1 |σ1 − σ2| + ε2‖ψ1 − ψ2‖H1 + ε3|σ1 − σ2|
)
.

This clearly leads to

‖ψ1 − ψ2‖H1 ≤ c‖ϕ0‖H1 |σ1 − σ2| (83)

for all σ1,2 ∈ Br1(0) and ε > 0 small enough with a modified c. Equation (83) is the Lipschitz continuity of 
σ �→ ψ(σ) in H1.

Equation (74) is equivalent to

σ = S(σ),

where

S(σ) := cB

[〈(
ν∂ωB(·, ω0)φ + ν2

2 ∂2
ωB(·, ω0)ϕ0

)
, ϕ∗

0

〉
+ ε−

5
2 〈v(·, ν, σ, φ, ψ), ϕ∗

0〉

+ε−
5
2 〈h(·, ω, u) − ε

3
2h (·, ω0, ϕ0) , ϕ∗

0〉
]
,

cB := −〈∂ωB(·, ω0)ϕ0, ϕ
∗
0〉−1.

Next, we find r1 > 0 such that S : Br1(0) → Br1(0). Using (A-V) and (79), we have for ε small enough

‖v(·, ν, σ, φ, ψ)‖L2(R) ≤ c1ε
7/2,

‖h(·, ω, u) − ε
3
2h (·, ω0, ϕ0) ‖L2(R) ≤ c2ε

5/2‖ϕ0‖2
H1‖φ + εψ‖H1 + c3ε

5/2(|ν| + ε|σ|)‖ϕ0‖3
H1 + c4ε

7/2

with c1, c2 dependent on r1 but independent of ε, and c3 independent of r1 and ε if ε > 0 is small enough. 
Because ‖ψ‖H1 ≤ r2 = 2c0ML(1 + r1), this leads to

|S(σ)| ≤ 2cB
[
c5 + c2‖ϕ0‖2

H1‖φ‖H1 + c3‖ϕ0‖3
H1(|ν| + εr1)

]
for all ε small enough, where c5 := 2 

∣∣∣〈 (ν∂ωB(·, ω0)φ + ν2

2 ∂2
ωB(·, ω0)ϕ0

)
, ϕ∗

0

〉∣∣∣. Hence, we can choose, e.g., 
r1 := 2cB(c5 + c2‖ϕ0‖2

1‖φ‖H1 + c3‖ϕ0‖3
1 |ν| + 1).
H H
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Let us now check the contraction property of S on Br1(0) ⊂ C. Using (81) and (A-V), one easily estimates

|〈v(·, ν, σ1, φ, ψ1) − v(·, ν, σ2, φ, ψ2), ϕ∗
0〉|

≤ c
(
ε7/2|σ1 − σ2| + ε9/2|σ2

1 − σ2
2 | + ε13/2|σ3

1 − σ3
2 | + ε7/2‖ψ1 − ψ2‖H1

)
.

From (82) we obtain

|〈h(·, ω1, u1) − h(·, ω2, u2), ϕ∗
0〉| ≤ cε7/2 (‖ϕ0‖2

H1‖ψ1 − ψ2‖H1 + La‖ϕ0‖3
H1 |σ1 − σ2|

)
with the above definitions of ω1, ω2. Together with (83) the last two inequalities lead to

|S(σ1) − S(σ2)| ≤ cε|σ1 − σ2|

for all σ1, σ2 ∈ Br1(0) and ε small enough. The contraction property follows for ε > 0 small enough and the 
proof is finished.

4. Proof of Theorem 1.2 (bifurcation under the PT -symmetry)

We prove next Theorem 1.2, i.e. we show that the under the assumption of PT -symmetry of the coef-
ficients and the realness of ω0, the above bifurcation argument can be carried out in the PT -symmetric 
subspace resulting in real ω and PT -symmetric u.

As we show now, after multiplication with −i the operator Lk(·, ω) as well as the nonlinearity h commute 
with the PT symmetry provided χ̂(1,3) are PT -symmetric. We have

L̃k(·, ω)u = h̃(·, ω, u(·)) (84)

for u = (u1, u2, u3)T, where L̃k(x, ω) := −iLk(x, ω) and h̃(x, ω, u) := −ih(x, ω, u). For reference, we recall

L̃k(x, ω) =
( 0 0 k

0 0 i∂x
−k −i∂x 0

)
−
(
V (x, ω) 0 0

0 V (x, ω) 0
0 0 ω

)
, V (x, ω) = −ωε0μ0

(
1 + χ̂(1)(x, ω)

)
,

h̃(x, ω, u) = −ωε0μ
3
0χ̂

(3)(x, ω)
(
2|uE |2uE + (uE · uE)uE

)
with uE = (u1, u2, 0)T .

(85)

Lemma 4.1. Let ω ∈ R. If the functions χ̂(1)(x, ω) and χ̂(3)(x, ω) are PT -symmetric, i.e.

χ̂(1)(x, ω) = χ̂(1)(−x, ω), χ̂(3)(x, ω) = χ̂(3)(−x, ω) ∀x ∈ R,

then the operator L̃k(ω) and the nonlinearity h̃(·, ω, u) commute with the PT -symmetry, i.e.

BL̃k(x, ω) = L̃k(x, ω)B, Bh̃(x, ω, u(x)) = h̃(x, ω,Bu(x)) with Bu(x) := u(−x).

Proof. Let u = (u1, u2, u3)T ∈ D(A). Due to the symmetry of V (x, ω) we get

BL̃k(x, ω)u =

⎛
⎜⎝ ku3(−x) − V (−x, ω) u1(−x)

−i(∂xu3)(−x) − V (−x, ω) u2(−x)
−ku1(−x) + i(∂xu2)(−x) − ωu3(−x)

⎞
⎟⎠ =

⎛
⎜⎝ ku3(−x) − V (x, ω) u1(−x)

i∂x(u3(−x)) − V (x, ω) u2(−x)
−ku1(−x) − i∂x(u2(−x)) − ωu3(−x)

⎞
⎟⎠

= L̃ (x, ω)Bu.
k
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Hence BL̃k(ω) = L̃k(ω)B.
Next, we show the PT -symmetry of the nonlinearity h̃. As χ̂(3)(x, ω) is PT -symmetric, one, indeed, 

obtains

B(h̃(·, ω, u))(x) = −ωε0μ
3
0χ̂

(3)(−x, ω)
(
2|uE |2uE + (uE · uE)uE

)
(−x)

= −ωε0μ
3
0χ̂

(3)(x, ω)
(
2|uE(−x)|2uE(−x) + (uE(−x) · uE(−x))uE(−x)

)
= h̃(·, ω,Bu)(x). �

Lemma 4.1 allows us to restrict the bifurcation problem to the PT -symmetric subspace of D(A) ∩H1, i.e. 
to {u ∈ D(A) ∩H1 : Bu = u} provided the PT -symmetry of χ̂(1,3)(·, ω) holds for all ω in a real neighborhood
of ω0. The bifurcating eigenvalue is then real and the solution u is PT -symmetric, i.e. Theorem 1.2 holds. 
This is proved completely analogously to Proposition 3.1 in [10].

Note that the proof uses the PT -symmetry of the eigenfunction ϕ0. Under the assumption of algebraic 
simplicity and realness of ω0 the eigenfunction can always be selected PT -symmetric. Indeed, applying B
to the eigenvalue equation yields Lk(ω0)(Bϕ0) = 0 due to the PT -symmetry of Lk. As ω0 is simple, we get 
ϕ0 = Bϕ0 (up to a multiplicative constant).

5. Numerical results

We restrict the numerical computations to two layers (m = 2) with the interface at x = 0. We first reduce 
the nonlinear system (6) with ω �= 0 to a system of two equations for ũ := (u1, u2). For ω �= 0 the third 
equation in (6) namely produces

u3 = − i
ω

(u′
2 − iku1) (86)

and the remaining equations become

ũ′
2 − i

(
k + ωV (x)

k

)
ũ1 −

ω

k
h1(x, ω, ũ) = 0, x ∈ R \ {0}, (87)

ũ′′
2 − ikũ1 − ωV (x)ũ2 + iωh2(x, ω, ũ) = 0, x ∈ R \ {0}. (88)

Due to equation (86) the interface conditions (12) become

�ũ2� = �ikũ1 − ũ′
2� = 0 at x = 0. (89)

As (87)-(89) is to be solved for (ũ1, ̃u2) and ω, an additional constraint is needed. We choose the condition

〈u, ϕ∗
0〉 =

√
ε (90)

with a given ε > 0. By varying ε in a right neighborhood of zero we will thus generate a bifurcation curve 
in accordance with Theorem 1.1. System (87)-(90) is solved via the Newton iteration in a finite difference 
discretization. Because the function |ũ|2ũ is not complex differentiable, we work in the real variables

ũ1,R, ũ2,R, ũ1,I , ũ2,I , ωR, and ωI ,

where ũj,R = Re(ũj), ̃uj,I = Im(ũj), j = 1, 2, ωR = Re(ω), and ωI = Im(ω). We rewrite (87)-(90) as a 
system of six real equations with four real interface conditions, namely as the real and imaginary parts of 
equations (87)-(90).
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5.1. Numerical finite difference method

The finite difference discretization is implemented on the interval [−L, L] with L > 0 large enough and 
with homogenous Dirichlet boundary conditions at x = ±L, which are suitable as we search for localized 
solutions.

Next, we explain that while equation (88) is to be solved at all grid points excluding x = 0, equation 
(87) has to be solved also in the limit x → 0+ and x → 0−. The reason is the condition ∇ ·D = 0. The 
divergence condition

0 = ∇ ·D = − 1
ω

[∂x (V ũ1 − ih1(x, ω, ũ)) + ik (V ũ1 − ih2(x, ω, ũ))]

is satisfied on R \ {0} by solutions of (87), (88) because these equations imply

V ũ1 − ih1 = ik
ω

(ikũ1 − ũ′
2) , V ũ2 − ih2 = 1

ω
(ũ′′

2 − ikũ1) .

To get ∇ · D = 0 distributionally on R (which is the correct formulation of the divergence condition for 
u ∈ D(A)), we need to satisfy also �D1� = 0, i.e. �V ũ1− ih1� = 0. This follows automatically from the limits 
x → 0± of (87) and the second interface condition in (89). After discretization it means that we need to 
solve (87) also in the limits x → 0− and x → 0+.

Choosing Δx := 2L
N+1 with N ∈ 2N + 1, we have the N grid points −N−1

2 Δx, −N−2
2 Δx, · · · −

Δx, 0, Δx, . . . , N−1
2 Δx. We denote xj := −N−1

2 Δx + (j − 1)Δx, j = 1, . . . , N . Let j∗ := N+1
2 be the 

index of the interface grid point, i.e. xj∗ = 0.
Because ũ1 is discontinuous at x = 0, the degrees of freedom of the discretized problem must include 

approximations of ũ1(0−) and ũ1(0+). Hence, we have the (real) degrees of freedom

U
R/I
1,j , U

R/I
2,j , x ∈ {1, . . . , j∗ − 1, j∗ + 1, . . . , N}

approximating ũ1,R/I at xj , j �= j∗ and

U
R/I
1,j∗,−, U

R/I
1,j∗,+, U

R/I
2,j∗ ,

where UR/I
1,j∗,± approximate ũ1,R/I(0±) and UR/I

2,j∗ approximate ũ2,R/I(0). Finally, there are the two degrees 
of freedom ωR and ωI approximating Re(ω) and Im(ω).

These are altogether 4N + 4 real degrees of freedom. Solving (87) in the finite difference discretization 
at xj , j �= j∗ as well as at x1 → 0± and (88) at xj , j �= j∗, we get 2N + 2 real equations from (87) and 
2N −2 equations from (88). Condition (90) produces two real equations. After using the interface condition 
�ikũ1 − ũ′

2� = 0, two degrees of freedom, e.g. UR
1,j∗,+ and U I

1,j∗,+ are eliminated and we get 4N + 2 real 
degrees of freedom and 4N + 2 real equations.

At xj , j �= j∗, we use the centered finite difference stencil of second order for ∂x as well as for ∂2
x. At 

x = 0− and x = 0+ we use the one-sided second order stencils. The integral in the normalization condition 
(90) is approximated using the trapezoidal rule.

5.2. Bifurcation examples

We present here two numerical examples of bifurcation in the case of 2 layers. One of the examples 
is PT -symmetric and the linear frequency ω0 (hence also the bifurcating frequency ω) is real. The other 
example is non-symmetric and the frequency is complex.
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Fig. 3. (a) The graph of the PT -symmetric V (·, ω0) given by (91) with ω = ω0 ≈ 1.7914. (b) The corresponding bifurcation diagram 
for the bifurcation from the eigenvalue ω0. (c) Convergence of the approximation error |ω−ω0 − εν|. For comparison a curve with 
a quadratic convergence is plotted.

The nonlinear equations, discretized using the above finite difference scheme, are solved using the Newton 
iteration. The initial guess for ω = ω0 + εν with 0 < ε � 1 is provided by the asymptotic approximation 
ε1/2ϕ0, see Theorem 1.1. The bifurcation curve is obtained by a simple parameter continuation in ε.

5.2.1. PT -symmetric example
We choose k = 1 and a case of a PT -symmetric Drude material that is homogenous on each layer x < 0

and x > 0. In detail,

V−(ω) = −ω

(
1 −

2πω2
p

ω2 + iγω

)
, V+ = V− (91)

with ωp = 0.5 and γ = 0.7. The resulting function V is plotted in Fig. 3 (a).
We find a real eigenvalue ω0 by determining real elements of N (k). In the case of (91) condition (22) can, 

in fact, be solved explicitly. First, we note that (22) is equivalent to k2(W+(ω) +W−(ω)) = W+(ω)W−(ω). 
This equation, with W± = −ωV±(ω) and V± given in (91), reduces to a quadratic equation in μ := ω2. The 
two roots are

μ1,2 := k2 + 2πω2
p −

γ2

2 ± 1
2
(
γ2(γ2 − 4(2πω2

p − k2)) + 4k4)1/2
and we get μ1 = ω2

0 with ω0 ≈ 1.791. The corresponding eigenfunction ϕ0 is plotted in Fig. 4.
In the nonlinearity h we choose ε0μ3

0χ
(3) ≡ 1, i.e. χ(3) is real and x− as well as ω-independent. In 

particular, it is also PT symmetric.
The discretization parameters are L = 120 and N = 17999 (resulting in Δx ≈ 0.013). The numerically 

approximated value of ν is ≈ −0.2572.
In Fig. 3 (b) we plot the bifurcation diagram showing that the bifurcation parameter (i.e. frequency) 

ω indeed stays real. As expected, the bifurcation curve is tangent to the line given by the asymptotic 
approximation ω = ω0 + νε with ν from (14). In Fig. 3 (c) we show that the convergence of the asymptotic 
approximation error |ω−ω0− εν| is indeed approximately quadratic. The solution u (chosen at ω ≈ 1.7167) 
plotted in 4 satisfies the PT -symmetry. It is clearly close to the linear solution ϕ0 but not identical.

5.2.2. Non-PT -symmetric example
We present also one example which is not PT -symmetric, namely

V−(ω) = −ω

(
1 −

2πω2
p

ω2 + iγω

)
, V+ = −ω(1 + η) (92)
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Fig. 4. The nonlinear solution u at ω ≈ 1.7167. Recall that E1 = u1, E2 = u2, H3 = u3. The linear eigenfunction ϕ0 (normalized 
to have a similar amplitude to that of u) is plotted for comparison.

Fig. 5. (a) The graph of the V (·, ω0) given by (92) with ω = ω0 ≈ 0.4679 − i 0.061. (b) The corresponding bifurcation diagram for 
the bifurcation from the eigenvalue ω0. (c) Convergence of the approximation error |ω − ω0 − εν|. For comparison a curve with a 
quadratic convergence is plotted.

with ωp = 0.8, γ = 1, and η = 1. Because of the lack of PT -symmetry, the linear eigenvalues are not real. 
Equation (6) makes sense also for non-real ω. However, as explained in Remark 2, the corresponding solution 
u does not generate a solution of Maxwell’s equations. Nevertheless, we compute here the bifurcation from 
ω0 ∈ C \R.

In the nonlinearity h we choose again ε0μ3
0χ

(3) ≡ 1. The discretization parameters are L = 100 and 
N = 11999. The value of ν is approximated as ν ≈ −0.0336 − i0.0054.

Solving (22) numerically, we obtain an eigenvalue ω0 ≈ 0.4679 − i 0.061. In Fig. 5 (a) we plot V given 
by (92) with ω = ω0. In (b) we show the bifurcation diagram and the first order asymptotic approximation 
ω = ω0+νε. The corresponding asymptotic error is plotted in (c) with an observed approximately quadratic 
convergence, as predicted.
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Fig. 6. The nonlinear solution u at ω ≈ 0.4276 − i0.066. Recall that E1 = u1, E2 = u2, H3 = u3. The linear eigenfunction ϕ0
(normalized ot have a similar amplitude to that of u) is plotted for comparison.

The nonlinear solution u at ω ≈ 0.427 − i 0.066 is plotted in (b) together with the linear eigenfunction 
ϕ0 normalized to have a similar amplitude to that of u.

Note that in Fig. 6, both the real and imaginary part of the E1 component are discontinuous, whereas 
in Fig. 4 the real part of E1 becomes continuous due to PT -symmetry (real part is even).

Appendix A. Solvability of Lk(ω0)u = r with ω0 ∈ σp(Lk) and r ∈ Q0L
2(R) for the case of two 

homogenous layers using the variation of parameters

Here we consider the linear case of two homogenous layers of Section 2.1.1, i.e. m = 2, V1(x, ω) =
V−(ω), V2(x, ω) = V+(ω) with the interface at x = 0. Let ω0 ∈ σp(Lk) be simple and ϕ0 ∈ D(A), ϕ∗

0 ∈
D(A∗) = D(A) be corresponding eigenfunctions, i.e. Lk(·, ω0)ϕ0 = 0, L∗

k(·, ω0)ϕ∗
0 = 0. As we know, using 

the closed range theorem, equation

Lk(x, ω)u = r with 〈r, ϕ∗
0〉 = 0

has a unique solution in D(A) ∩ 〈ϕ∗
0〉⊥. Here we want to demonstrate this explicitly using the variation of 

parameters.
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The solution u ∈ D(A) is given by (28), (30) and

(μ−V+(ω0) + μ+V−(ω0))C− = 1
2 (μ+V−(ω0) − μ−V+(ω0))

0∫
−∞

ρ
(2)
− (s)eμ−s ds

+ μ+V+(ω0)
∞∫
0

ρ
(1)
+ (s)e−μ+s ds

(93)

with ρ(1)
+ and ρ(2)

− in (27).
Because ω0 ∈ N (k), the left hand side of (93) vanishes, see (22). The existence of u ∈ D(A) follows if the 

right hand side vanishes too. This is shown below to hold if r ∈ Q0L
2(R), i.e. if 〈r, ϕ∗

0〉 = 0.
From

L∗
k(·, ω0) = A−B(·, ω0) = L−k(·, ω0),

we conclude

ϕ∗
0(x; k) = ϕ0(x;−k).

The eigenfunction ϕ0(x; k) is given by (36) with c+ = −V−(ω0)
V+(ω0) c−, μ± =

√
k2 −W±(ω0), where V+(ω0)μ−+

V−(ω0)μ+ = 0. Hence,

ϕ∗
0(x; k) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
c−e

μ−x

( −ik
μ−

iV−(ω)

)
for x < 0,

c+e
−μ+x

( ik
μ+

−iV+(ω)

)
for x > 0.

The assumption 〈r, ϕ∗
0〉 = 0 becomes

0∫
−∞

eμ−x (ikr1(x) + μ−r2(x) − iV−(ω0)r3(x)) dx

− V−(ω0)
V+(ω0)

∞∫
0

e−μ+x (−ikr1(x) + μ+r2(x) + iV+(ω0)r3(x)) dx = 0.

(94)

The right hand side of (93) equals

μ+V−(ω0)
0∫

−∞

(
−kr1(x)
V−(ω0)μ−

+ i r2(x)
V−(ω0)

+ r3(x)
μ−

)
eμ−x dx

+ μ+V+(ω0)
∞∫
0

(
kr1(x)

V+(ω0)μ+
+ i r2(x)

V+(ω0)
− r3(x)

μ+

)
e−μ+x dx

and using (94), it simplifies to

(
μ+V−(ω0)
μ−V+(ω0)

+ 1
) ∞∫ (

kr1(x)
V+(ω0)μ+

+ i r2(x)
V+(ω0)

− r3(x)
μ+

)
e−μ+x dx,
0
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which is indeed zero since V+(ω0)μ− + V−(ω0)μ+ = 0.

Appendix B. Lipschitz continuity of the nonlinearity h

In the following we use the notation � to denote the inequality up to a multiplicative constant, which is 
independent of the variables and functions appearing on the right hand side of the estimate.

Proposition B.1. Let δ > 0 be such that Bδ(ω0) ⊂ Ω and such that (A-N) holds. Then the nonlinearity h
given by

h(x, ω, u) = −iε0μ3
0ωχ̂

(3)(x, ω)
(
2|ũ|2(ũ, 0)T + (ũ · ũ)

(
ũ, 0

)T
)
, where u = (ũ, u3)T, ũ = (u1, u2),

satisfies h(·, ω, u) ∈ H1 for all u ∈ D(A) ∩H1 and ω ∈ Bδ(ω0) as well as the Lipschitz properties

‖h(·, ω, ψ) − h(·, ω, ϕ)‖H1 ≤ c(1)a

(
‖ψ‖2

H1 + ‖ϕ‖2
H1

)
‖ψ − ϕ‖H1 , (95)

for all ω ∈ Bδ(ω0) and ϕ, ψ ∈ D(A) ∩H1, where

c(1)a := 9
2ε0μ

3
0(|ω0| + δ)

(
max

j∈{1,...,m}
‖χ̂(3)(·, ω0)‖W 1,∞(Ij) + Laδ

)
,

and

‖h(·, ω1, u) − h(·, ω2, u)‖H1 ≤ c(2)a ‖u‖3
H1 |ω1 − ω2| (96)

for all ω1, ω2 ∈ Bδ(ω0) and u ∈ D(A) ∩H1, where

c(2)a := 3ε0μ3
0

(
La(|ω0| + 2δ) + max

j∈{1,...,m}
‖χ̂(3)(·, ω0)‖W 1,∞(Ij)

)
.

Proof. Due to the algebra property of H1 it follows that

‖h(·, ω, u)‖H1 � max
j∈{1,...,m}

∥∥∥ωχ̂(3)(·, ω)
∥∥∥
W 1,∞(Ij)

∥∥2|ũ|2ũ + (ũ · ũ)ũ
∥∥
H1

� ‖u‖3
H1

Hence, h(·, ω, u) ∈ H1 for all u ∈ D(A) ∩H1 and ω ∈ Bδ(ω0). For ϕ, ψ ∈ D(A) ∩H1 we write ϕ = (ϕ̃, ϕ3)T

with ϕ̃ = (ϕ1, ϕ2)T and ψ = (ψ̃, ψ3)T with ψ̃ = (ψ1, ψ2)T and obtain (95) as follows:

‖h(·, ω, ψ) − h(·, ω, ϕ)‖H1

≤ ε0μ
3
0 max
j∈{1,...,m}

∥∥∥ωχ̂(3)(·, ω)
∥∥∥
W 1,∞(Ij)

(
2
∥∥|ψ̃|2ψ̃ − |ϕ̃|2ψ̃

∥∥
H1 +

∥∥∥(ψ̃ · ψ̃)ψ̃ − (ϕ̃ · ϕ̃)ϕ̃
∥∥∥
H1

)

≤ ε0μ
3
0(|ω0| + δ)

(
max

j∈{1,...,m}
‖χ̂(3)(·, ω0)‖W 1,∞(Ij) + Laδ

)(
2‖ψ̃‖2

H1

∥∥ψ̃ − ϕ̃
∥∥
H1 + 2 ‖ϕ̃‖H1

∥∥|ψ̃|2 − |ϕ̃|2
∥∥
H1

+
∥∥ψ̃ · ψ̃ − ϕ̃ · ϕ̃

∥∥
H1 ‖ϕ̃‖H1 +

∥∥ψ̃ − ϕ̃
∥∥
H1 ‖ψ̃‖2

H1

)
≤ c(1)a

(
‖ψ‖2

H1 + ‖ϕ‖2
H1

)
‖ψ − ϕ‖H1

because |ω| ≤ |ω0| + δ and ‖χ̂(3)(·, ω)‖W 1,∞(Ij) ≤ ‖χ̂(3)(·, ω0)‖W 1,∞(Ij) + Laδ and using
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∥∥ψ̃ · ψ̃ − ϕ̃ · ϕ̃
∥∥
H1 ≤

∥∥ψ̃ · (ψ̃ − ϕ̃)
∥∥
H1 +

∥∥ϕ̃ · (ψ̃ − ϕ̃)
∥∥
H1 ≤ (‖ψ̃‖H1 + ‖ϕ̃‖H1)

∥∥ψ̃ − ϕ̃
∥∥
H1 ,∥∥|ψ̃|2 − |ϕ̃|2

∥∥
H1 ≤ 1

2‖(ψ̃ − ϕ̃) · (ψ̃ + ϕ̃)‖H1 + 1
2‖(ψ̃ + ϕ̃) · (ψ̃ − ϕ̃)‖H1 ≤ (‖ψ̃‖H1 + ‖ϕ̃‖H1)

∥∥ψ̃ − ϕ̃
∥∥
H1 .

Similarly, using (A-N), i.e., the Lipschitz assumption on χ(3), we get (96). Indeed, for ω1, ω2 ∈ Bδ(ω0)
and u ∈ D(A) ∩H1,

‖h(·, ω1, u) − h(·, ω2, u)‖H1 ≤ ε0μ
3
0 max
j∈{1,...,m}

∥∥∥ω1χ̂
(3)
1 (·, ω1) − ω2χ̂

(3)
2 (·, ω2)

∥∥∥
W 1,∞(Ij)

∥∥2|ũ|2ũ + (ũ · ũ)ũ
∥∥
H1

≤ c(2)a |ω1 − ω2| ‖u‖3
H1 ,

where we have used∥∥∥ω1χ̂
(3)
1 (·, ω1) − ω2χ̂

(3)
2 (·, ω2)

∥∥∥
W 1,∞(Ij)

≤ max
l=1,2

∥∥∥χ̂(3)
1 (·, ωl)

∥∥∥
W 1,∞(Ij)

|ω1 − ω2|

+ max
l=1,2

|ωl|
∥∥∥χ̂(3)

1 (·, ω1) − χ̂
(3)
2 (·, ω2)

∥∥∥
W 1,∞(Ij)

≤ (‖χ̂(3)(·, ω0)‖W 1,∞(Ij) + Laδ)|ω1 − ω2| + (|ω0| + δ)La|ω1 − ω2|. �
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