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The quantum Hall effect emerges when two-dimensional samples are subjected to strong magnetic fields
at low temperatures: Topologically protected edge states cause a quantized Hall conductivity in multiples of
e2=h. Here we show that the quantum Hall effect is accompanied by an orbital Hall effect. Our quantum
mechanical calculations fit well the semiclassical interpretation in terms of “skipping orbits.” The chiral
edge states of a quantum Hall system are orbital polarized akin to a hypothetical orbital version of the
quantum anomalous Hall effect in magnetic systems. The orbital Hall resistivity scales quadratically with
the magnetic field, making it the dominant effect at high fields.
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The quantum Hall effect is one of the most funda-
mental effects of modern solid-state physics. When a two-
dimensional electron system is subjected to a strong
magnetic field, the zero-field band structure turns into
flat Landau levels [1–3]. In the 1970s, it was predicted
and measured that these Landau levels give rise to a
quantized Hall conductivity. von Klitzing et al. deter-
mined these values to multiples of the constant e2=h and
thereby revealed their fundamental significance [4].
The theoretical explanation of the quantum Hall effect

is based on a nontrivial topology of the system [5] induced
by the magnetic field. The reciprocal-space Berry curva-
ture [6,7] of a perfectly flat Landau level is finite and the
Landau levels can be characterized by an integer topo-
logical invariant [8–11]. According to the bulk-boundary
correspondence, topologically protected states emerge at
the edge of the sample [12]. Each state contributes a
conductivity quantum and bridges the gap between the
Landau levels, making the insulating sample conducting at
the edge.
In a semiclassical interpretation [cf. Fig. 1(a)], moving

electrons are forced onto circular trajectories in the bulk.
However, at the edge, such a trajectory is not possible and
skipping orbits emerge, thereby transporting charge along
the edge. The complete orbits in the bulk do not contribute
to the conductivity but cause an out-of-plane orbital
magnetization that can be calculated based on the modern
formulation of orbital magnetization [13–18].

After the measurement and explanation of the quantum
(charge) Hall effect, the quantum spin Hall effect was
predicted and observed [19–22]. Instead of charge, spin
angular momentum is transported along the edges. The
combined spin and charge transport in magnetic materials
is labeled the anomalous Hall effect and it can also occur in
a quantized manner [23–25]: The edge state transports
charge and is spin polarized. More recently, interest has
shifted also toward the orbital angular momentum [26–48].
While it is often quenched in equilibrium, it is considerable
in transport phenomena. The orbital Hall effect [26–42]
accompanies and often even surpasses the spin Hall effect
and occurs even without spin-orbit coupling [31,32]. So far,
the orbital Hall effect has mostly been discussed as a
hybridization effect of different atomic orbitals [28–31], but
recently we have shown that s orbitals can also generate an
orbital Hall effect in a kagome lattice where the effect stems
from intersite hybridization [38]. This contribution is
crucial to describe the orbital transport in a quantum
Hall system and it is included in the modern formulation
of orbital magnetization [13–18]. However, since it has
been neglected by the community until recently, the
quantum Hall effect and the skipping orbits have never
been analyzed with respect to the orbital degree of freedom,
so far.
In this Letter, we show for the first time that the quantum

Hall effect is accompanied by an orbital Hall effect. Edge
states bridge the gap between Landau levels in reciprocal
space [cf. Fig. 1(b)] and are polarized with respect to the
orbital angular momentum. In real space, they transport
charge and orbital angular momentum along the edge of the
sample [cf. Fig. 1(a)]. In the following, we use a tight-
binding approach to calculate the intrinsic charge and
orbital Hall conductivities as well as the orbital magneti-
zation in the presence of a strong magnetic field based on
the Berry theory [6] and the modern formulation of orbital
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magnetization [13–18]. We discuss quantization effects and
De Haas–Van Alphen oscillations (Fig. 2) and determine
the magnetic field dependence of the effects (Fig. 3).
Landau levels in the presence of strong magnetic fields—

We model a two-dimensional electron system under the
effect of a strong magnetic field B ¼ Bez by a tight-binding
approach [3,49–51]. For clarity, we use a square lattice with
one s orbital per lattice site. Without the application of a
magnetic field, the Hamiltonian directly reveals the band
structure that consists of a single band [Fig. 2(a)]. Its
density of states (DOS) n0ðEÞ is shown in Fig. 2(b).
To simulate the magnetic field, we consider Landau

gauge, with the vector potential A ¼ −Byex that enters the
hopping terms of the tight-binding Hamiltonian. After a
Peierls substitution, the hopping amplitude t is transformed
for each pair of neighboring lattice sites ði; jÞ according to

t → t0 exp
�
e
ℏ

Z
ri→rj

AðrÞ · dr
�

ð1Þ

with t0 ¼ −1 eV. These terms have to be periodic in order
to be able to define a unit cell of size q0. Therefore, coprime
integers p and q have been introduced to define the
magnetic field: B ¼ ð1=a2Þðh=eÞðp=qÞ. Diagonalization
of the Hamiltonian (matrix form given in Supplemental
Material [52]) gives rise to the band structure Eνk and the
eigenvectors jνki.
The bulk band structure for p=q ¼ 1=52 is shown in

Fig. 2(c). It consists of q ¼ 52 Landau levels. Even though
the corresponding magnetic field of Bz ∼ 80 T (for lattice
constant a ∼ 1 nm) is very large, we have chosen this value
because smaller fields would mean higher q, which would
result in even more Landau levels, which would make it
impossible to resolve and properly discuss them. By

contrast with free electrons, the emerging Landau levels
are neither perfectly flat nor equidistant. This is because of
the influence of the square lattice and the resulting zero-field
band structure that is, in general, not parabolic [cf. Fig. 2(a)]
and the DOS is not constant [cf. Fig. 2(b)]. Results for the
cases p=q ¼ 1=17 and p=q ¼ 3=52 are shown in
Supplemental Material, Figs. S1 and S2 [52].
Figure 1(b) shows the results of a slab calculation for

p=q ¼ 1=17 and q0 ¼ 6q ¼ 102. Again, we see q ¼ 17
rather flat bands corresponding toLandau levels that come in
bundles of five and form the bulk bands. However, since this
time the geometry has actual edges, edge states emerge that
bridge the band gaps. In the lowest band gap, one right-
propagating edge state (mainly located at the upper edge)
and one left-propagating state (at the lower edge) emerge.
For each Landau level, one additional edge state emerges for
each edge. This behavior corresponds to the edge channels
giving rise to the quantum Hall effect. Since the effective
mass of the zero-field band structure is positive for E < 0,
the charge carriers behave like electrons. Starting the
discussion at the topmost band gap, the behavior is exactly
opposite. This happens because the effective mass of the
zero-field band structure is negative forE > 0, so the charge
carriers behave like holes.
Orbital angular momentum—Next, we will show that

these edge charge currents are accompanied by orbital
currents, so we introduce the k-resolved orbital angular
momentum along the out-of-plane direction. Lν;zðkÞ are the
diagonal elements of the tensor hνkjLzjαki, where ν ¼ α is
the band index. For further calculations of the transport
properties, the off-diagonal tensor elements ν ≠ α are
crucial as well. We calculate them based on the formalism
derived by Pezo et al. [34], including a small correction to
ensure gauge invariance of the orbital Hall conductivity,

hνkjLzjαki ¼ i
eℏ2

4gLμB

X
β≠ν;α

�
1

Eβk − Eνk
þ 1

Eβk − Eαk

�

× ðhνkjvxjβkihβkjvyjαki
− hνkjvyjβkihβkjvxjαkiÞ: ð2Þ

Here, v ¼ ð1=ℏÞ∇kH is the velocity operator. The used
approach is in accordance with the modern formulation of
orbital magnetization [13–18] that takes into account
intersite hybridization which is crucial for describing the
quantum Hall system and can allow for finite Lν;zðkÞ even
for s electrons that are characterized by Lz ¼ 0 in the
atomic center approximation.
The value of Lν;zðkÞ has been used as a color code of the

Landau levels in Figs. 1(b) and 2(c). We see that for
electronlike states for E < 0, it is positive and for holelike
states for E > 0, it is negative. In a semiclassical explan-
ation, the negatively charged electrons are forced onto
circular trajectories by the Lorentz force due to the
magnetic field. For electronlike (holelike) effective masses

FIG. 1. Orbital polarized edge currents in a quantum Hall
system. (a) Blue represents electron trajectories affected by the
magnetic field B. Orbital angular momentum L is generated and
skipping orbits emerge at the edges. They transport charge as
charge currents j and orbital angular momentum as orbital
currents jLz along the edges. (b) Band structure of a slab with
p=q ¼ 1=17 and q0 ¼ 6q ¼ 102. Dispersive edge states are
polarized with respect to the orbital angular momentum (color).
They give rise to charge and orbital edge currents j and jLz

(dashed), as in (a). The left- and right-propagating states in one
gap are located at opposite sides of the slab.
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m > 0 (m < 0), the electrons move on a counterclockwise
(clockwise) trajectory giving rise to a positive (negative)
orbital angular momentum along the out-of-plane direction
L ¼ r × p. Note that L of the edge states is smaller than in
the bulk but still of considerable magnitude (multiple ℏ). At
the edges, the orbits turn into skipping orbits giving rise to
the edge channels that transport not only charge but also
orbital angular momentum [cf. Fig. 1(a)].
Observables: Orbital and quantum Hall conductivities

and orbitalmagnetization—First we review the well-known
results of the quantum Hall conductivity σxyðEFÞ [53] that
is calculated from the reciprocal-space Berry curvature
Ων;zðkÞ [6] as a Brillouin zone integral over all occupied
states (see Methods section in [52]). Figure 2(d) shows the
Hall conductivity that is quantized in units of e2=h. This is
an intrinsic effect caused by the features of the tight-
binding Hamiltonian. Starting at the lowest discussed
energy, it decreases stepwise to negative values upon
increasing the energy. Upon crossing each Landau level,
one conductivity quantum of −e2=h is added. This is
because Landau levels have a Chern number of Cν ¼R
Ων;zðkÞd2k ¼ 1 corresponding to the surface states dis-

cussed before in the slab band structure [Fig. 1(b)]. At the
energy of the Van Hove singularity E ¼ 0 the Hall
conductivity changes sign because the character of the
charge carriers changes from electron- to holelike [cf.
Fig. 2(a)] [60]. The Hall conductivity can be approximated
by the carrier density nðEÞ of the zero-field band structure,
σxy;approxðEÞ ∝ nðEÞ [cf. gray curve in Fig. 2(d)] [11,61].
While the magnetic field generates edge currents leading

to a quantized Hall conductivity, it also generates a meas-
urable orbital magnetization in the bulk that is calculated
based on the modern formulation MzðEFÞ [13–18]. It is
calculated as the integral over the diagonal elements of the

orbital angular momentum mν;zðkÞ ¼ −Lν;zðkÞ · ðgLμB=ℏÞ
plus a correction term that occurs due to the emergence of a
reciprocal-space Berry curvature [14].
Each Landau level contributes with its orbital angular

momentum. However, the Berry curvature term beco-
mes important especially in the band gaps where
ð∂=∂EFÞMzðEFÞ ¼ −ð1=2eÞσxyðEFÞ. In Fig. 2(e), one can
see that the two terms have opposite signs and lead
to De Haas–Van Alphen oscillations restricted by an
envelope function [62]. We can determine it via ΔMz ¼
−ð1=2eÞσxyΔE and, since σxy ∝ n and ΔE ∝ 1=n0, we find
the envelope function of the orbital magnetization,
Mz;envelopeðEFÞ ∝ ½nðEFÞ=n0ðEFÞ� (plotted as gray line).
The average orbital angular momentum in a Landau level
Lν;z can be approximated by the same energy dependence.
The orbital Hall conductivity [34]

σLz
xyðEFÞ ¼

e
ℏ

X
ν

1

ð2πÞ2
Z
Eνk≤EF

ΩLz
ν;zðkÞd2k ð3Þ

is calculated from the orbital Berry curvature [63]

ΩLz
ν;zðkÞ ¼ −2ℏ2Im

X
μ≠ν

hνkjjzxjμkihμkjvyjνki
ðEνk − EμkÞ2

; ð4Þ

where hνkjjzxjμki ¼ 1
2

P
α½hνkjvxjαkihαkjLzjμki þ

hνkjLzjαkihαkjvxjμki� is the orbital current operator.
The orbital Hall conductivity is nonzero and exhibits

several plateaus [Fig. 2(f)]. Starting from zero at the lowest
discussed energy, it increases stepwise to positive values.
Each Landau level leads to a step, however, with a different
contribution for each Landau level. This means that the
orbital Hall conductivity is constant in the gap between

FIG. 2. Orbital Hall effect accompanying the quantum Hall effect for p=q ¼ 1=52. (a) Zero-field band structure of the square lattice.
The color indicates the effective mass of the charge carriers (blue, electronlike; red, holelike). (b) Normalized density of states n0ðEÞ of
the zero-field band structure. (c) Band structure under strong magnetic field B ∼ 80 T for ky ¼ π=ð2qaÞ. Landau levels carry orbital
angular momentum Lz (blue, positive; red, negative). (d) Charge Hall conductivity. The gray curve resembles the scaled carrier density
nðEÞ for which the sign accounts for electron- and holelike states. (e) Orbital magnetization Mz. The gray curve resembles the scaled
function nðEÞ=n0ðEÞ. (f) Orbital Hall conductivity. The gray curve resembles the scaled function ½nðEÞ�2=n0ðEÞ.
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Landau levels but it is not quantized by some natural
constant. At energies close to the Van Hove singularity,
several dispersive Landau levels are present that have a
highly changing orbital Berry curvature. Consequently, the
orbital Hall conductivity strongly changes with energy
close to E ¼ 0. For positive energies beyond the Van Hove
singularity, the orbital Hall conductivity decreases stepwise
because the character of the charge carriers has changed
from electron- to holelike.
The orbital Hall conductivity can be approximated by

the product of the approximated Hall conductivity and
the orbital magnetic moment σLz

xy;approxðEFÞ ∝ f½nðEFÞ�2=
n0ðEFÞg. To the best of our knowledge, this has never
been discussed before, but even classically this is expected
and corresponds to the conventional interpretation of
the quantum Hall effect caused by skipping orbits [cf.
Fig. 1(a)]. A cycloid trajectory generates an out-of-plane
orbital angular momentum and a charge current, so an
orbital current emerges and is proportional to both.
Field dependence—Figure 3(a) shows the field depend-

ence of the Hall resistivity ρxy ¼ −1=σxy. Classically, it
exhibits a linear dependence on Bz; a behavior which is
restored for large q values. Here, for rather small fields, the
Landau levels are so dense that quantization effects become
negligible. For smaller q values, i.e., larger fields, the
quantization becomes significant and the curve deviates
from the linear dependence.
The orbital Hall resistivity ρLz

xy ¼ −1=σLz
xy exhibits a

quadratic dependence on the magnetic field [cf. Fig. 3(b)]:
The larger q, the more Landau levels are occupied and the
larger is their orbital angular momentum. Remarkably, the
orbital Hall resistivity is negative independent of the sign
of the magnetic field or the electronlike vs holelike character
of the charge carriers. The reason is that once Lz changes,
also the propagation direction of the edge currents changes
and so the orbital edge current remains the same. For larger
fields, quantization effects become significant and the curve
deviates from the parabola. Because of the continuous
change of Lz of the Landau levels with increasing magnetic

field,ρLz
xyðBzÞdoes not exhibit plateaus in contrast toρLz

xyðEFÞ.
The orbital Hall resistivity changes with magnetic field even
if the Fermi energy is still located in the same band gap.
The orbital magnetization exhibits rather homogeneous

De Haas–Van Alphen oscillations [cf. Figs. 3(c) and 3(d)]
with 1=B ∝ q=p [64]. Whenever a Landau level shifts
through the Fermi energy, the orbital magnetization drops
due to the orbital magnetic moment of a bandmz

νðkÞ, which
is roughly constant with k, especially when the Landau
levels are flat.
Conclusion—Our calculations reveal that the edge states

that are known to emerge under strong magnetic fields and
exhibit the quantum Hall effect transport orbital angular
momentum as well. The charge currents are accompanied
by orbital currents and the quantum Hall effect is accom-
panied by an orbital Hall effect [cf. Fig. 1(a)].
The results persist even in a dirty sample with disorder.

Our calculations presented in Supplemental Material,
Fig. S3 [52] show the vastly unchanged observables for
one particular configuration of randomly varied on-site
energies (no configuration averaging). Furthermore, we
have repeated the calculations on a triangular lattice and
found similar results as for the square lattice (cf.
Fig. S4 [52]).
Our fundamental finding puts the characterization of the

spintronic Hall effects [65,66] into a new perspective: One
typically distinguishes (quantum) Hall, (quantum) spin
Hall, and (quantum) anomalous Hall effects characterized
by the emergence of transverse charge currents, spin
currents, and spin-polarized charge currents, respectively.
Orbital versions of the latter two effects have been
discussed before [26–39,41,42]: Pure orbital currents can
emerge in nonmagnetic systems (orbital Hall effect) and
orbital polarized charge currents in magnetic systems
(orbital version of the anomalous Hall effect). Here, we
have shown that the quantum Hall effect is actually not
characterized by pure charge currents but by orbital
polarized charge currents. In this regard, the quantum
Hall effect is akin to the orbital version of the anomalous
Hall effect even though the microscopic mechanisms are

FIG. 3. Magnetic field dependence. (a) Hall resistivity. The gray line shows the classical trend ρxy ∝ Bz. (b) Orbital Hall resistivity.
The gray line shows the trend ρxy ∝ −B2

z . (c) Orbital magnetization exhibiting De Haas–Van Alphen oscillations. The gray curves
resemble the expected behavior for ideally flat Landau levels. (d) Inverse magnetic field dependence. Data points show results of our
calculations for q ≤ 53 and various p ≥ 1 for a fixed EF ¼ −1.5 eV.
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distinct. Both effects are characterized by the same recip-
rocal space Ων and orbital Berry curvatures ΩLz

ν but the
time-reversal symmetry T is broken by a magnetic field
and a magnetic texture, respectively.
To detect signatures of orbital currents experimentally, three

approaches have been considered (more details in [52,54]).
(a) Orbital torques [48]: Orbital currents can be injected
into an attached ferromagnet where the spin-orbital coupling
generates a spin current that exerts a torque onto the
ferromagnet that can be detected. (b) Magneto-optical
Kerr effect [39,40]: A Kerr rotation of reflected light can
be measured to detect orbital angular momentum in particu-
lar at the edge of the sample and might reveal the orbital
polarized edge states. (c) Inverse orbital effects [47]: Since
the quantum Hall system exhibits an orbital Hall conduc-
tivity, an inverse effect exists as well. Orbital currents can be
pumped from a ferromagnet and will be transformed into a
charge current that can be measured electrically. To distin-
guish theorbital signature of thequantumHall effect from the
charge and spin contributions, it is convenient that the orbital
Hall resistivity scales quadratically (neglecting the steps)
with the magnetic field [cf. Fig. 3(b)] by contrast to the
roughly linear quantum Hall resistivity and the quantum
anomalous Hall resistivity that switches only between two
constant values [67,68].
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